

ţ ţ ←(Rio Magistral) — I ⊢(Rio Magistral) 59.4m³/day 197.0m³/day No. 5 No. 5 ļ ţ 141.7m³/day 151.0m³/day (No Surface Water) No. 4 No. 4 ţ 0m³/day No. 5 No.4 (No Surface Water) 4.136.6m³/day 86,077.3m³/day No. 1 No. 1 t 0m³/day Om³/day 0m³/day No. 6 No. 6 415.6m³/day No. 1 7,152.1m³/day 28.624.3m³/day No. 2 No. 2 0m³/day Groundwater Purched Rainy Season (26 to 27, Jul.) No. 2 Rainy Season (6 to 7, Aug) Dry Season (15, Mar.) 70,076.8m³/day 7,241.8m³/day Groundwater 0m³/day Purched No. 3 No. 3 No. 3 ļ ţ ţ

Fig. 5-4-2 Surface Water Balance (New El Coco)

--- 98 ---

Fig.5-4-3 Analysis Map of Ground Water Reservoir (Plane) -99-

Fig.5-4-4 Analysis Map of Ground Water Reservoir (Cross Section)

-100-

Fig. 5-4-5 Groundwater Simulation Area -101-

ti i serenda

Fig.5-4-6 Rock Classification Map (1)

-102-

-103-

03--

-104-

-105-

Fig.5-4-8 Groundwater Velocity Map (2)

-- 106 --

-107-

-108-

.

Fig.5-4-11 Groundwater Velocity Map (after Setting up a Tailing Dam)

-109-

. .

		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Survey Area	El Bote	Parral	New B1 Coco
Elec.Exploration (Dry Season)	49 stations	60 stations	26 stations
Boring Works (Dry Season)	No. Depth (m) Riverside $B-1$ 10 $B-2$ 30 $B-3$ 20 3 60 $B-3$ 29 $D-1$ 29 $D-2$ 19 $D-3$ 15 $D-3$ $D-3$	No. Depth(m) Riverside B-1 10 B-2 15 B-3 40 3 65 Damsite D-1 17 D-2 12 2 29	No. Depth(m) Riverside B-1 50 B-1 50 B-2 105 B-3 20 B-4 30 B-4 30 B-5 14 B-6 10 B-7 14 B-8 14 -8 14 8 257 -8 -8
Sub Total	3 63 6holes 123m	5holes 94m	8holes 257m
(Rainy Season) Sub Total	NONE	Riverside B-4 15 Damsite D-3 17 2holes 32m	Riverside B-920 B-1015 B-1115 B-1215 B-1310 575 Sholes75m
TOTAL	6holes 123m	7holes 126m	13holes 332m

Table 2-1 Total Amount of Electric Exploration and Boring Works

Remarks: Riverside borings were aimed at ground water movement but not always located in the vicinity of a river, while damsite borings were drilled in a tailing dam to study the property of soil. Refer to Location of the Drill Holes.

				and the second second second		
Site	Season	Date	Section of Flow (m ²)	Velocity (m/sec)	Flow Rate (m ³ /sec)	Daily Flow (m ³ /day)
No. 0	Rainy	12, Aug.	0.16	0	0	0
	Dry	20, Mar.	0.0480	0. 2122	1.019×10^{-2}	880.4
NO. 1	Rainy	13, Aug.	0.0578	0.0896	5. 177×10^{-3}	447.3
	Dry	20, Mar.	0	0	0	0
NO. 2	Rainy	13, Aug.	0.0114	0.2313	2. 631×10^{-3}	227.3
	Dry	20, Mar.	0.0112	0	0	0
NO. 3	Rainy	12, Aug.	0.0127	0.0477	6.042 × 10^{-3}	522.0
	Dry	20, Mar.	0.0590	0.2380	1. 404 $\times 10^{-2}$	1, 213. 1
NO. 4	Rainy	12, Aug.	0.0795	0.1767	1. 405×10^{-2}	1,213.9
	Dry	20, Mar.	0.0318	0.2082	0.662 × 10^{-2}	572.0
NO. 5	Rainy	12, Aug.	0.0735	0.1909	1. 403 × 10 ⁻²	1,212.3
	Dry.	20. Mar.	0.0450	0. 1051	0. 473 × 10 ⁻²	408.7
NO. 6	Rainy	12, Aug.	0.0513	0.1048	5. 372×10^{-3}	464.2

Table 3-4-1 Hydrologic Measurement of Surface Water (El Bote)

-114-

Table 3-4-2 Background and Water Supply Ceiling of Chemical Components in Water

(mdd)

Background Value	Cu	Pb	Zn	ਜ	Cd	Total Cr	As	8 H	Cre+	CN
Fresh Water	0.003	0.003	0.020	0.1	0.032×10^{-3}	0.001	0.002	0.07×10^{-3}	0.001	0
Water Supply Ceiling	1	0.05	5	0.3	0.01	0.05	0.05	0.002	0.05	0
after Rose, W., Hawkes,	H.E., and	₩ebb,J.S	S. (1979)	:Geochem	istry in Miner	al Explo	ration			
Water Supply Ceiling	is by U.S	. Envire	omental	Protecti	on Agency (197	7)				

Table 3-4-3 Chemical Analysis of Surface Water

-115-

ЪН	7.93	7.89	2.54	2.56	7.94	8.18	8.15	7.76	8.10	7.75	7.77	7.72	7.51	77.77	7.43	te Water
CN (ppm)	n. d.	n.d.	n. d.	n. d.	n. d.	n.d.	n. a.	n. d.	n. d.	n.d.	n. d.	n. d.	п. d.	n. d.	n. d.	W:Was
Çr ^{s+} (ppm)	n. d.	п. d.	n.d.	n d.	n. d.	n d.	п. d.	n d.	n. d.	n.d.	п. d.	n. d.	n.d.	n.d.	п. d.	iling Dam
(Hgu)	n. d.	0.0002	0.0004	n d.	n. d.	0.0001	n.d.	n d	n. d.	0.0004	n. d.	n.d.	n. d.	0.0011	n. d.	er, D:Ta
(As (ppm)	n. d.	0.003	52	0.29	0.03	0.003	0.01	0.002	0.003	0.001	0.008	n. d.	0.003	n. d.	n. d.	R:Riv.
Total (ppm)	n.d.	n.d.	0.33	0.11	0.009	n. d.	0.013	0.003	0.02	n. d.	п. d.	0.001	0.04	0.055	0.065	
(cd ppm)	0.09	0.13	55	12	0.12	0.076	0.09	0.11	0.12	0.11	0.11	0.065	0.21	0.25	0.11	
(Ppm)	1.9	0.68	910	190	0.31	0.23	0.53	0.40	1.4	0.54	1.6	. 1. 7.	1.2	1. 3	2.5	
(ppm)	4.9	4.9	7,800	1.100	6.5	2.1	3.3	3, 9	5.3	3.2	4.3	3.9	10.4	6.9	1.7	•••
(ppm)	0.019	0.32	1.5	0.54	1.0	n. d.	0.06	0.015	0.09	0.002	0.003	0.022	0.21	0.37	0.60	
(ppm)	0.37	0.037	240	85	0.03	0.005	0.011	0.036	0.33	0.019	0.030	0.059	0.06	0.092	0.19	8-22 (Rainy) - 160,
Date	20. Mar.	13, Aug.	20.Mar.	12.Aug.	20, Mar.	12. Aug.	20. Mar.	12. Aug.	20. Mar.	12. Aug.	12. Aug.	13, Aug.	20. Mar.	13, Aug.	13. Aug.	/# a/cm) 1s; a7)=34, B-B2(Dr7)=140,
Season	Dry	Rainy	Dry	Rainy	Dry	Rainy	Dry	Rainy	Dry	Rainy	Rainy	Rainy	Dry	Rainy	Rainy	rie Conductityly ((Dry)-15, B-B1(Build
Site	0	7 ¥ - Q	2 0 0	7 U _ C	6 6	っ ビー ロ	6	D-114		си- д	B-R6	B-R7	0 1 1 1 1 1 1 1 1 1	- Π/Π_Ω	B-W1	Blacts B-K1(

bri(bry)-14, p-11(datay)-24, a-12(02)/244, p-62(datay)-140, p-13(02)/24, p-23(fatay)-40, b-15(bry)-42, g-15(fatay)-46, b-16(fatay)-24, p-21(fatay)-43, p-D1(bry)-45, b-21(fatay)-40, p-16(fatay)-42, p-21(fatay)-43, p-21(bry)-45, p-21(fatay)-40,

Site	Season	Date	Elevation (m)	Thickness of Aquifer	Flow Rate (m/sec)	Flow in Bore Hole(m ³ /day)	Width of Aquifer	Total Flow (w ³ /day)
	Dry	19, Apr.			0.0040	34.5		172, 800
		12, Aug.	2, 308 to	214	0. 0044	38.0		190,080
	Rainy	15, Aug.	2,310		0.0071	61.3		306, 720
B∽2	Dry	19, Apr.			0.0048	103.7	250m	518,400
		12, Aug.	2, 315 to	5 M	0.0040	86.4		432,000
·R	Rainy	15, Aug.	2, 320		0.0052	112. 3		561,600
	Dry	19, Apr.		· .	0.0073	378.4		<u></u>
B3		12, Aug.	2, 302 to	12#	0.0093	482.1		
	Rainy	15, Aug.	2, 314		0.0150	777.6		

Table 3-4-4 Charcteristic of Aquifer

Table 3-4-5 Chemical Analyses of Ground Water

Site	Season	Date	Cu (ppm)	Pb (ppm)	Zn (ppm)	Fe (ppm)	Cd (ppm)	Total Cr (ppm)	As (ppm)	Hg (ppm)	C1 ⁶⁺ (ppm)	СН (ррш)	pll
B-B1	Rainy	13, Aug.	0.039	0.065	0.43	0.89	0.006	0.012	0.002	n.d.	n. d.	л. d.	7.97
	Dry	20, Mar.	0.13	0.14	n.d.	1.3	n.d.	0.04	n.d.	. n. d.	n. d.	n.d.	7.70
B-82	Rainy	12, Aug.	0.015	0.080	0.52	2.8	0.007	0.010	n. d.	0.0003	n.d.	n. d.	7. 33
:	Dry	20, Mar.	0.11	0. 27	n. d.	2.0	n. d <i>.</i>	0.05	n.d.	n.d.	n. d.	n. d.	7.48
B-B3	Rainy	12, Aug.	0.014	0.021	0.41	1. 2	0.011	0. 022	n. d.	0,0004	n.d.	n. d.	7. 53
B-M1	Rainy	13, Aug.	0.042	0.12	1.7	0.65	0.17	0.031	n.d.	0.0016	n.d.	n.d.	7. 52
BW2	Rainy	14, Aug.	0. 21	0.14	140	2.1	2.5	0.032	n.d.	0.0006	n. đ.	n.d.	6.35
B-M3	Rainy	14, Aug.	0.071	0.11	3. 9	1.6	0.13	0.043	n. d.	n. d.	n. d,	n. d.	7.30

B:Drilling Hole, M:Interior of Mine

Electric Condectivity (µ m/cm) 1s; 8-81(Dry)=30, 8-82(Dry)=38, 8-82(Wsiny)=82, 8-83(Dry)=33, 8-83(Ralay)=31, 8-W1(Ralay)=40, 8-W2(Ralay)=43, 8-W3(Ralay)=48

ł

-116-

	Matrix	Fracture	Fracture	Matrix	Fracture
Legend	Permeabilty	Permeability	Zone Width	Porosity	Porosity
No.	pkm(cm/sec)	pkf(cm/sec)	hef(m)	porm(%)	porf(%)
1	10 ^{-s}	0	0	30	30
(Vein)					
2	5×10-4	10 ⁻²	0	30	30
(Aquifer)				an a	
3 (Aquitard)	10-4	10 ⁻³	0	20	30
(Aquitaru)					
5	10-6	10 ⁻⁸	0	15	30
(Aquiclude)					
7	10-7	10 ^{-s}	0	5	30
(Aquifuge)					
Nodel's Bloc	k Permeability	$(K) = (hef/\Delta x)$)×pkf+(1-hef/	$(\Delta x) \times pkm$	

Table 3-4-6 Permeability and Porosity Model

 $\triangle x = block width(m)$

-117-

Table 4-4-1	Hydrologic	Measurement	of	Surface	Water	(Parral)

Site	Season	Date	Section of Flow (m ²)	Velocity (m/sec)	Flow Rate (m ³ /sec)	Daily Flow (m ³ /day)
	Dry	11,Mar.	0	0	0	0
No. 1	Rainy	30, Aug.	0	0	0	0
	Dry	11, Mar.	0.0305	0.1777	0.542×10^{-2}	468.3
NO. 2	Rainy	30, Aug.	0.014	0. 2754	0.386×10^{-2}	333.1
	Dry	11,Mar.	0.1875	0.0983	1.843×10^{-2}	1, 592.4
 NO. 3	Rainy	30, Aug.	11.182	1. 3077	14.623	1.263×10 ⁶
N- 4	Dry	11, Mar.	0.0785	0. 2143	1.682×10^{-2}	1,453.2
NO. 4	Rainy	30, Aug.	14.380	1.5829	22.763	1.967 \times 10 ⁶
	Dry	11,Mar.	0.0265	0. 4132	1.095×10^{-2}	946.1
No. 5	Rainy	30, Aug.	17.0575	1. 5071	25.707	2.221×10^6

-118-

18--

Table 4-4-2 Background and Water Supply Ceiling of Chemical Components in Water

(mqq)

Background Value	Сп	ΡЪ	uZ	е Ч	Cd	Total Cr	As	88 Hi	CT6+	CN
Fresh Water	0.003	0.003	0.020	0.1	0.032×10^{-3}	0.001	0.002	0.07×10^{-3}	0.001	0
Water Supply Ceiling	1	0.05	ۍ ک	0.3	0.61	0.05	0.05	0.002	0.05	e
after Rose, W., Hawkes,	H.E., and	Webb, J.	S. (1979)	:Geochem	istry in Miner	al Exploi	ration		-	

Water Supply Ceiling is by U.S. Enviromental Protection Agency (1977)

Table 4-4-3 Chemical Analysis of Surface Water (El Bote)

								To + a 1					
Site	Season	Date	(ppm)	(ppm)	(mdd)	(ppm)	(ppm)	(ppm)	(ASm)	(Hgm)	(ppm)	(cNa)	рн
0-01	Dry	11. Mar.	0.10	1.1	2.2	43	0.009	0.003	0.36	0.002	Ъ, d	0.1	8.40
	Rainy	30, Aug.	0.30	0.15	0.11	0.47	0.001	0.013	1.0.	0.0009	n. d.	0.1	9.23
0_03	Dry	11. Mar.	5.0	0.14	1.2	1.4	0.006	0.10	0.04	n. d.	0.04	4.2	8.20
7 4 4	Rainy	30. Aug.	0.29	0.30	0.20	1.2	0.003	0.022	0.13	n. d.	n. d.	n. d.	9.00
D 1 0	Dry	11. Mar.	n. d.	n. d.	n. d.	0.18	n.d.	n. d.	n.d.	n. d.	n. d.	n. d.	8.42
2 TF 7	Rainy	30. Aug.	0.017	0.085	0.080	0.84	0.004	0.025	0.028	0.0043	п. d.	n.d.	7.80
D_D.	Dry	11. Mar.	4.9	0.07	0.86	0.07	0.01	0.08	n. d.	n. d.	0.045	3.9	8.37
**	Rainy	30. Aug.	0.023	0.053	0.085	1.3	0.002	0.030	0.025	0.0012	п. d.	n. d.	7.92
D_D.	Dry	11. Mar.	0.03	0.23	0.08	1.2	0.004	0.008	0.03	n. d.	n.d.	п. d.	8.48
	Rainy	30, Aug.	0.017	0.040	0.091	0.89	0.002	0.035	0.023	0.0008	n. d.	n. d.	7.93
P-R6	Rainy	30. Aug.	0.020	0.047	0.085	0.95	0.001	0.043	0.022	0.0007	п. d.	n. d.	1.97
P-R7	Rainy	30, Aug.	0.022	0.048	0.057	0.84	0.002	0.051	0.021	0.0004	n. d.	n. d.	7.87
D_D1	Dry	11, Mar.	16	0.47	0.16	0.12	0.009	0.06	- 0.004	0.0003	п. d.	10	8.90
	Rainy	30, Aug.	43	0.44	25	0.72	0.10	0.059	n.d.	0.0077	n.d.	150	11.05
P-#1	Rainy	31. Aug.	40	0.37	33	0.88	0.058	0.056	n. d.	0.0004	n.d.	120	11.50
Electric	Conductivity (man	/cu) te:							R:Rive	er. D.Tai	ling Dam.	W. Wast	e Water

Electric Conductivity (12 s/ea) io: P-ElOPy-02. P-BICALAY-95. P-EXOPY-05. P-EXOFY-06. P-ElOPy-04. P-ERCALAY-045. P-EKOPY-045. P-EK(TALAY)-045. P-ESOPy-042. P-ESCALAFY-045. P-ESCALAY-045. P-ESCALAY-045. P-ESCAPY-042. P-05(CALAY)-045. P-ESCALAY-0450.

-119-

Site	Season	Date	Elevation (m)	Thickness of Aquifer	Flow Rate (m/sec)	Flow in Bore Hole(m ³ /day)	Width of Aquifer	Total Flow (m ³ /day)
	Dry	9. Mar.		· · ·	0.0040	69.1	:	
B-i		29, Aug.	1, 727 to	. 4m	0.0120	207. 4		
	Rainy	2, Sep.	1,731	-	0.0073	126.1		
		29, Aug.	1.732		0.0070	220. 3		
B-2	.Rainy	2, Sep.	to 1,735	312	0.0055	71.3	-	
	Dry	9, Mar.		14m	0.0103	622. 9		1.869x10 ⁶
		29, Aug.	1, 712 to	10 🕫	0.0191	825. 1		2. 475x10 ⁶
B-3	Kainy	2, Sep.	1,742	30 m	0.0298	3.852.1	150m	11. 585x10 ⁸
		29, Aug.	1,742		0.0395	511.9		1. 536x10 ⁸
. '	Kainy	2. Sep.	1.745	32	0.0438	567. 6	н а ^н	1. 703×10 ⁸
		29, Aug.	1, 744		0.0135	58.3	650-	0. 175x10 ⁸
B-4	Kainy	2, Sep.	to 1,745	lm ·	0.0070	30.2	2901	0.091x10 ⁶

Table 4-4-4 Charcteristic of Aquifer

Table 4-4-5 Chemical Analyses of Ground Water 1

Site	Season	Date	Cu	Pb	Zn	Fe	Cd	Total Cr	As	Hg	Cr ⁸⁺	CN	рĦ
L			(ppa)	(ppm)	(ppa)	(ppm)	(ppa)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	
0.01	Dry	11, Mar.	0.06	0.50	0.52	28	0.005	0.02	0.04	0.0003	n.d.	n.d.	7.45
P-81	Rainy	29, Aug.	0.014	0.063	0.13	0. 52	0.003	n.d.	0.0011	0.0031	n.d.	n.d.	7.34
P-B2	Rainy	29, Aug.	0.010	0.051	0.13	0.73	0.003	0.010	0.0003	0.0009	n.d.	n.d.	7.46
P-B3	Dry	11, Mar.	0.04	0.54	4.3	1.7	0.009	0.009	0.005	n. d.	n. d.	n. d.	4. 35
	Rainy	29, Aug.	0.020	0.12	35	0.79	0.088	0.019	n. d.	n. d.	n.d.	n.d.	6.70
P-B4	Rainy	29, Aug.	0.056	0.13	0.15	3.4	0.007	0.033	0.013	0.0003	n.d.	n. d.	8.83
P-M1	Rainy	30. Aug.	0.033	0.11	0.067	0.35	0.007	0.035	0.003	0.001	n. d.	n. d.	7.28
P-M2	Rainy	31, Aug.	0.033	0.11	0.055	0.39	0.007	0.041	0.001	0.0058	n.d.	n.d.	7.69
P-M3	Rainy	31, Aug.	0.049	0.17	15	0.44	0.074	0.045	n.d.	0.0049	n.d.	n.d.	4.83

Electric Copductivity (μ ε/cm) is; P-b1(βrg)=38, P-b1(Rping)=37, P-b3(Reing)=38, P-82(Brg)=135, P-b3(Raing)=58, P-B4(Raing)=41, P-B1(Raing)=47, P-K3(Raing)=18, P-M3(Raing)=180

B:Drilling Hole, M:Interior of Mine

Legend No.	Matrix Permeabilty pkm(cm/sec)	Fracture Permeability pkf(cm/sec)	Fracture Zone Width hef(m)	Matrix Porosity porm(%)	Fracture Porosity porf(%)
1 (Vein)	10 ^{-s}	0	0	100	30
2	10 ^{-s}	10-3	25	15	30
(Aquifer)	•				
3 (Aquitard)	10-6	10-3	12	15	30
5 (Aquiclude)	10-5	10 ^{-s}	6	15	30
7 (Aquifuge)	10-7	10-3	0.11 20.11 20.11 20.11 20.11	5	30 · · ·

Table 4-4-6 Permeability and Porosity Model

Model's Block Permeability(K) = $(hef/\Delta x) \times pkf + (1-hef/\Delta x) \times pkm$

 $\Delta x = block width(m)$

	p	·			·····	
Site	Season	Date	Section of	Velocity	Flow Rate	Daily Flow
			Flow (m ²)	(m/sec)	(m^3/sec)	(m ³ /day)
	Dry	15 Mar.	0.4012	0.0120	0.481 × 10 ⁻²	415.6
No. 1	Rainy	26, Jul.	0.1575	0.3040	4.788 $\times 10^{-2}$	4,136.6
	Rainy	6, Aug.	1.6660	0.5980	0.963	86,077.3
	Dry	15, Mar.	1.1338	0	0	0
No. 2	Rainy	26, Jul.	1.2950	0.0639	8. 278 $\times 10^{-2}$	7,152.1
	Rainy	7. Aug.	2.0888	0.1587	0.3313	28,624.3
	Dry	15 Mar.	0.5225	0	0	0
No. 3	Rainy	27, Jul.	1.0183	0.0823	8. 382×10^{-2}	7,241.8
	Rainy	6, Aug.	4.5850	0.1769	0.811	70.076.8
	Dry	15, Mar.	0	0	0	0
No. 4	Rainy	26, Jul.	0.0232	0.0706	0.164×10^{-2}	141.7
	Rainy	6, Aug.	0.0144	0.1537	0.175×10^{-2}	151.0
	Dry	15,Mar.	0	0	et 0	0
No. 5	Rainy	26, Jul.	0.0351	0.0650	0. 228×10^{-2}	197.0
÷ :	Rainy	6, Aug.	0.0083	0.0833	0.069×10^{-2}	59.4
Nof	Rainy	27. Jul.	0.0570	0	0	0
NO. 0	Rainy	7, Aug.	0.0570	0	0	0

 Table 5-4-1
 Hydrologic Measurement of Surface Water

Table 5-4-2 Background and Water Supply Ceiling of Chemical Components in Water

(mdd) 0 ο CN 0.001 Cr⁶⁺ 0.05 0.07×10^{-3} 0.002 811 0.002 0.05 after Rose, W., Hawkes, H.E., and Webb, J.S. (1979): Geochemistry in Mineral Exploration As 0.001 0.05 Total с Ч Water Supply Ceiling is by U.S. Enviromental Protection Agency (1977) 0.032×10^{-3} 0.01 g Fe. 0. 3 0.1 0.020 u2 ഗ 0.003 0.05 P b 0.003 Cu C ---Water Supply Ceiling Background Value Fresh Water

Table 5-4-3 Chemical Analysis of Surface Water

Site	Season	Date	(ppm)	Pb (mqq)	(mqq)	(ppm)	(pom)	Total Cr (ppm)	(AS (DDm)	Hg Hg Hg	Çr 5+	μđ
ž	Dry	15, Mar.	n. d.	n. d.	0.005	0.28	n. d.				、 モノン エ	000
7	Rainy	26. Jul.	0.012	n. d.	0.085	0.29	n. d.	0.001	0 003	5 - E	; r ; r	20.00
6 Q - J	Dry	15. Mar.	n. d.	п. d.	0.01	0.06	n. d.	n. d.	0.027	р п		7 28
V-N4	Rainy	26. Jul.	0.004	0.002	0.089	0.25	n. d.	0.002	0.004	ר יכ ב	- -	2 2 2
00-0	Dry	15. Mar.	0.001	n. d.	п. d.	0.03	n. d.	n. d.	n. d.	n. d.	;	
сл- у	Rainy	27, Jul.	0.003	0.009	0.090	0.31	n. d.	0.001	0.003	- -	; -	7 59
C-R4	Rainy	26, Jul.	0.005	n. d.	0.082	0.79	n. d.	0.003	0.026	- -		30.5
C-R5	Rainy	26. Jul.	0.004	n. d.	0.079	0.24	n. d.	0.001	0.058			7 01
7_D£	Rainy	27, Jul.	п. d.	n. d.	0.028	0.95	n. d.	0.001	n d.	n. d	n, d.	6.58
	Rainy	21. Aug.	0.006	0.17	0.12	0.86	n. d.	0.048	0.003	n. d.	r L	6 88
Flectric Col C-E1(Dry)=	ndact vity { # a/ci 13. C-R1(Raiwy)-45	() 1=: C-22(Dr7)=45, C-12(1	talay)=46									River

Electric Conductivity (# 1/cm) 11: C=E1(07)-141, C=E1(Eciary)-41, C=E2(07)-43, C=E2(Eciary)-46, C=E2(Eciary)-44, C=E1(Eciary)-41, C=E1(Eciary)-42, C=E1(Eciary)-42, 42) C=E1(Eciary)-42, 43

-123-

Table 5-4-4 Charcteristic of Aquifer All provides

Site	Season	Date	Elevation	Thickness	Flow Rate	Flow in Bore	Width of	Total Flow
OILC	Jeason	vals	(a)	of Aquifer	(m³/sec)	Hole (m³/day)	Aquifer	(1 ³ /day)
	Dry	25, Apr.	107		0.0054	116.6		233, 280
	Г — —	26, Jul.	107		0.0042	90.7		181, 440
· ·	Rainy	6, Aug.		ា	0.0074	159.8	1	319, 680
		20, Aug.	192		0.0069	149.0		298, 080
	Dry	25, Apr.	200		0.0069	238.5		476, 930
.	[26, Jul.	200	0-	0.0070	241. 9	100	483, 840
B~1	Rainy	6, Aug.	1 10	ол	0.0112	387.1	. 1000	774, 140
· ·		20, Aug.	200	· ·	0.0040	138.2		276, 480
	Dry	25, Apr.	210		0.0074	351.6		703, 300
i	[26, Jul.	210	110	0.0074	351.6		703, 300
	Reiny	6, Aug.		· 1102	0.0192	912.4		1, 824, 770
		20, Aug.	221		0.0041	194.8		389, 660
	Dry	25, Apr.	141 to 144	3 m	0, 0097	125.7	90 a	225, 280
B-2	Ðry	25, Apr.			0.0310	2, 544. 5		4,071,170
		25, Jul.	165	10-	0.0210	1, 723. 7		2, 757, 890
	Rainy	5, Aug.	to	19 n	0.0295	2, 421. 4	80a (3, 874, 180
		7, Aug.	184		0. 0246	2,019.2		3, 230, 670
		20, Aug.			0.0479	3, 931. 6		6, 290, 610
	Dry	25, Apr.			0.0063	108.9		217, 730
	Dry Rainy	25, Jul.	310	10	0.0040	69.1		138, 240
		5, Aug.	210		0.0040	69.1	100a	138, 240
		7, Aug.	220	-9 <u>1</u>	0.0040	69.1	[138, 240
		20, Aug.	220		0.0044	76.0		152,060
<u>B-3</u>	Rainy	20, Aug.	201 to 202	12	0.0087	376.	250a	187, 920
	Dry	25, Apr.	226	_	0.0040	69.1	- 1	
B-4		24, Jul.	230	4-	0.0047	81. 2		
	Rainy	5, Aug.	240		0.0040	69.1		-
		19, Aug.	240		0. 0264	456. 2	. [
	Dry	25, Apr.			0.0091	235, 9		471, 740
	UI Y	24, Jul.	920	ĺ	0.0089	230, 7	. [461, 380
8-5	Rainy	30, Jul.	435	e_ {	0.0065	168, 5	100a (336, 960
	Notify	5, Aug.	244	vg ·	0.0040	103.7		207, 360
		19, Aug.	249		0.0043	111.5		222, 910
8-6	Rainy	19, Aug.	244 to 246	2a	0.0069	59.6		
B-8	Rainy	24. Jul.	239 to 244	Sp	0.0081	175.0	1	

Table 5-4-5 Chemical Analyses of Ground Water

		· · · · · · · · · · · · · · · · · · ·										
site	Season	Date	Cu	Pb	Zn	Fe	Cd	Total Cr	As	Hg	Cr ^{s+}	Блн
	500301	Date	(pp#)	(ppa)	(pp:m)	(pp a)	(ррв)	(ppm)	(ppm)	(ppa)	(ppm)	
C-RI	Dry	15, Xar.	0.03	0.13	0,16	30	n. d.	0.007	0.25	n. d.	n.d.	7.60
V 01	Rainy	26, Jul.	n. d.	0.020	0.11	1.5	n. d.	0.001	0.14	n. d.	n. d.	7.61
C-82	Dry	15, Mar.	0.01	0.91	0.044	1.9	0.001	n. d.	n. d.	<u>n. d.</u>	<u>n. d.</u>	8.87
0.02	Rainy	26, Jul.	0.003	0.029	0.12	1.3	n.d.	0.005	0.001	n. d.	n.d.	8.46
0_02	Dry	16, Mar.	0.03	n.d.	0.05	3.8	n. d.	0.003	0.015	n. d.	n. d.	8.71
U-03	Rainy	27, Jul.	0.039	5.3	0.22	12	0.002	0.036	0.018	n. d.	n. d,	7,26
	Dry	15, Mar.	0.02	0.011	0.04	9.3	n. d.	0.009	0.024	n. d.	n. d.	7.45
CB4	Rainy	27, Jul.	0.011	0.042	0.06	8.0	n. d.	0.020	0,010	n. d.	n. d.	7,40
	Rainy	19, Aug.	0.009	0.037	0, 11	0.93	n. d.	0.005	0,032	n. d.	n. d.	7.38
С-В5	Dry	15, Mar.	0.03	0.05	0.075	22	0.003	0.005	0.045	n. d.	n.d.	8.64
	Rainy	27, Jul	0.014	0.12	0.044	6, 3	n. d.	0.008	0.030	n. d.	n. d.	7.60
	Rainy	19, Aug.	0.10	0.033	0.14	0.58	0.0006	0,005	0.014	n. d,	n. d.	7.77
C-96	Rainy	27, Jul.	0.093	0.11	0.085	20	0.0008	0.037	0,041	n. d.	n.d.	7.53
6 00	Rainy	19, Aug.	0.022	0.045	0.043	1.7	n, d,	0.012	0.031	n. d.	n. d,	7.69
· · ·	Dry	15, Mar.	0.03	0.1	0.06	5. 2	0.002	n. d.	0.12	n. d.	n. d.	7.94
C-B7	Rainy	27, Jul.	0.048	0.15	0.20	30	0.0004	0.058	0.10	n. d.	n. đ,	7.45
	Rainy	22, Aug.	0.008	0.001	0,009	2.0	0.001	0.017	0.075	n. d.	n. d,	6.71
C-88	Rainy	27, Jul.	0.022	0.20	0, 10	16	0.003	0.029	0.026	n. d.	n. d.	7.41
V 00	Rainy	19, Aug.	0.010	0.001	0.055	1.7	n. d.	0.024	0.019	0,004	n. d.	7.71
C-89	Rainy	_19, Aug.	0.007	0.059	0.080	1.9	n. d.	0.033	0.011	0.001	n.d.	7.86
C-810	Rainy	9, Sep.	0.015	0.032	0.25	0.77	n.d.	0.003	0.019	n. d.	n. d,	<u> </u>
C-BI1	Rainy	9. Sep.	0.033	0.093	0, 17	2.2	0.001	0.010	0.011	0.001	n. d.	7.95
C-B12	Rainy	9, Sep.	0.045	0.12	0.15	2.4	0.001	0.006	0,005	n. d.	n. d.	7.71
C-813	Rainy	19. Aug.	0.011	0. 026	0.091	1.8	n d	0.045	0 005	n d	n d	2 55

.

Legend No.	Watrix Permeabilty pkm(cm/sec)	Fracture Permeability pkf(cm/sec)	Fracture Zone Width hef(m)	Matrix Porosity porm(%)	Fracture Porosity porf(%)
l (Aquiclude)	5×10-8	10~*	0	15	30
2 (Aquifer)	10-6	10 ^{-s}	20	10	30
3 (Aquitard)	10-4	10-8	0	20	30
4 (Aquifuge)	10-7	10 ⁻³	0	5	30

Table 5-4-6 Permeability and Porosity Model

Model's Block.Permeability(K) = $(hef/\Delta x) \times pkf + (1-hef/\Delta x) \times pkm$ $\Delta x = block width(m)$

-125-

a second a s

