APPENDIX M BASIC PLAN

## TABLE OF CONTENTS

| 1. | CONDITION OF BASIC PLANNING                                                          | M-1<br>M-1 |
|----|--------------------------------------------------------------------------------------|------------|
|    | 1.2 TARGET YEAR                                                                      | M-2        |
|    | 1.3 PLANNED SERVICE AREA                                                             |            |
| 2. | PROPOSED WATER SUPPLY AREA AND SYSTEMS                                               | м-2        |
|    | 2.1 SELECTION OF WATER SUPPLY SYSTEMS                                                | M-2        |
|    | 2.2 POPULATION, AREA AND WATER DEMAND OF PHASE III                                   |            |
|    | PLANNING AREA                                                                        |            |
|    | 2.3 SYSTEM 1                                                                         | M-7        |
|    | 2.4 SYSTEM 2                                                                         |            |
|    | 2.5 SYSTEM 3                                                                         |            |
|    | 2.6 SYSTEM 4                                                                         | M-18       |
|    |                                                                                      |            |
| 3. | PRELIMINARY DESIGN                                                                   | M-22       |
| ~• | 3 1 DECIMINE CONFERNI FACTI TATES                                                    | M          |
|    | 3.1 DESIGN OF GENERAL FACILITIES<br>3.2 DESIGN OF SYSTEM 1<br>3.3 DESIGN OF SYSTEM 2 | M 20       |
|    | S.2 DESIGN OF SISTEM 1                                                               | M-29       |
|    | 3.3 DESIGN OF SYSTEM 2                                                               | M-42       |
|    | 3.4 DESIGN OF SYSTEM 3 (MANUAL PUMP WELL)                                            | M-47       |
|    | 3.5 DESIGN OF SYSTEM 4                                                               | M-49       |
|    |                                                                                      |            |
|    |                                                                                      |            |

## LIST OF TABLE

## Page

Page

| Table M.1  | AREA/POPULATION OF EACH SYSTEM IN SECTEUR | M-50 |
|------------|-------------------------------------------|------|
| Table M.2  | Design Specified Water Demand             | M-54 |
| Table M.3  | PROPOSED WATER DEMAND OF SYSTEM-1         | M-55 |
| Table M.4  | Comparison of Type A and Type B           | M-56 |
| Table M.5  | LIST OF WATER SUPPLY SCHEME FOR SYSTEM-1  | M-58 |
|            | PROPOSED WATER DEMAND OF SYSTEM-2         |      |
| Table M.7  | LIST OF WATER SUPPLY SCHEME FOR SYSTEM-2  | M-60 |
|            | PROPOSED WATER DEMAND OF SYSTEM-3         |      |
|            | PROPOSED SHALLOW WELL FOR SYSTEM-3        |      |
| Table M.10 | PROPOSED WATER DEMAND OF SYSTEM-4         | M-65 |
| Table M.11 | Results of Economical Study of            |      |
|            | Transmission pipe                         | M-66 |

## LIST OF FIGURE

Page

|      |           | Flow Chart of Purification System             | M-69 |
|------|-----------|-----------------------------------------------|------|
| Fig. | M.2       | Type A : High Rate Coagulosedimentation Basin |      |
|      |           | with Gravity Rapid Sand Filter-1              | M-70 |
| Fig. | м.З       | Type A : High Rate Coagulosedimentation Basin |      |
| ÷    |           | with Gravity Rapid Sand Filter-2              | M-71 |
| Fig. | M.4       | Type B : Portable-type Purifier-1             | M-72 |
| Fig. | M.5       | Type B : Portable-type Purifier-2             | M-73 |
| Fig. |           | Hezen Williams Formula Figure                 | M-74 |
| Fig. | M.7       | Selection of Pump Facilities                  | M-75 |
| Fig. | M.8       | Service Blocks installed System 2             |      |
|      | · · · · · | instead of System 4                           | M-76 |
|      |           |                                               |      |

## 1. CONDITION OF BASIC PLANNING

#### 1.1 SERVICE LEVEL

(1) Water Supply Methods

Water supply methods were classified into the following levels:

- a) Individual house connection
- b) Yard connection

c) Public standpipe

- d) Well
- e) Rainwater harvesting

To improve sanitary conditions, it would be desirable to employ the individual house connection method. However, to provide as many residents as possible with a supply of water with limited funds, it would be preferable to use the yard connection, public standpipe, or well method all of which are inferior to the house connection method.

Judging from the conditions of the existing water supply facilities in Kibungo Prefecture, the public standpipe method would be adopted in areas having piped water supply systems.

The well method would be adopted in areas where shallow well construction would make it possible to utilize the high quality groundwater.

In the sparsely populated mountainous areas where proper water sources are not available, the rainwater harvesting method would be adopted.

The maximum distance from the beneficiary area to the proposed public standpipe and/or well shall be less than 1 km.

## (2) Water Supply Systems

The water supply plan would be established by classifying the water supply systems into the following four levels:

a) System-1

The public standpipe method using surface water. In this system, the surface water will be treated and distributed through pipes and supplied to users via public standpipes. One standpipe would cover approximately 200 families.

 b) System-2 The public standpipe method using groundwater. This system will distribute high quality groundwater requiring no treatment through pipes. The service level should be one standpipe for approximately 150 persons.

c) System-3

The well method. The maximum yield of one well would be 10 m3/day including the consumption of the public facilities. One well is estimated as able to supply water to approximately 75 households.

d) System-4 The rainwater supply method. Water is collected by roof catchment. The service block for System 4 would

#### 1.2 TARGET YEAR

The Project's target year is the year 2000 on the basis of the national development policy.

## **1.3 PLANNED SERVICE AREA**

The planned service area of Phase III Basic Plan is classified as Zone E which was discussed in Section 3.2 of Appendix L.

## 2. PROPOSED WATER SUPPLY AREA AND SYSTEMS

#### 2.1 SELECTION OF WATER SUPPLY SYSTEMS

be per household.

The following 4 systems would be adopted as a water supply system in Phase III Basic Plan.

| System | 1: | Piped water supply system with treatment                                      |
|--------|----|-------------------------------------------------------------------------------|
| _      |    | facilities and public standpipe                                               |
| System | 2: | Small scale piped water supply system by groundwater with pump facilities and |
|        |    | public standpipe                                                              |
| System | 3: | Shallow wells with manual pump                                                |
| System | 4: | Rainwater harvesting                                                          |

The service area and population served of communes by each system are tabulated in Table M.1. It is standing out that the southern area of Kibungo Prefecture, which has not yet developed or improved comparatively, has a large population served.

# 2.2 POPULATION, AREA AND WATER DEMAND OF PHASE III PLANNING AREA

## (1) Future Population

Kibungo Prefecture's population forecast for the year 2000 was based on the average annual population growth rate that was derived from the 1982 to 1988 population growth rates for each Commune. The calculated average annual population growth rate for Kibungo Prefecture is 3.3%. Kibungo Prefecture's year 2000 population was estimated as being 653,500.

Future population density in 2000 is shown in Figure below.

Population Growth Rate Population Commune (1988) (8)(2000)60,400 BIRENGA 43,400 2.8 36,000 4.3 59,400 RUKIRA RUSUMO 64,100 6.5 136,200 40,800 63,700 SAKE 3.8 60,000 46,100 2.2 MUGESERA 52,000 KIGARAMA 39,600 2.3 3.2 46,500 32,000 KABARONDO 32,200 KAYONZA 26,000 1.8 31,000 RUTONDE 2.2 40,300 3.0 38,500 55,100 MUHAZI RUKARA 35,500 2.5 47,700 TOTAL 433,000 3.3 653,500

## Future Population and Growth Rate

#### Source: The Study Team, 1990

Each commune's population forecasts and each secteur's forecast for the year 2000 are listed in DATA BOOK.

## (2) Population of Phase III Planning Area

The studied zone area which is defined as given in Section 3 of Appendix L for each secteur and the studied population and area covered by each water supply system are listed in Table M.1.

## (3) Water Demand of Phase III Planning Area

1) Unit of Water Demand Calculation

The water supply unit for the Rural Drinking Water Supply Manual (Draft) of the Director General of Water in MINITRAPEE was adopted for estimating the water demand. The unit of Water Demand is given in Table M.2. Based on MINITRAPEE's Unit of Water Demand given above, the design water demand of the Basic Plan of the Phase III Project was calculated with the following modifications:

- Where a piped system will be adopted, the domestic water consumption shall be 130/liters/household/day (including livestock consumption), and 90 liters/ household/day (including livestock consumption).
- Water use by schools shall be based on 5 liters/ student/day. 10 liters/student/day would be excessive.

The total domestic water consumption was estimated based on the number of households that was derived by dividing the year 2000's forecasted population by six (the average number of persons per family).

The total public water consumption was estimated by taking the actual number of hospital beds and the number of school children in August 1991 and multiplying the resultant number by the growth rates for the year 2000.

In System 4 (rainwater harvesting) installation areas, where System 2's per household initial cost and operation and maintenance cost will be too high, it is planned to secure a minimum water consumption of 3 liters/person/day during dry seasons.

#### 2) Planned Water Supply

a) Average Daily Water Consumption Based on the unit water supply amount, the average daily water consumption was calculated using the population figure and number of public facilities in each Sector.

The average daily water consumption of each water supply area was obtained from the ratio of the water supply area to the area of the Sector.

- b) Maximum Daily Water Consumption The maximum daily water consumption to be used as the basis for determining the capacities of the water supply facilities will be set up by referring to the standards used by Rwanda and Rwanda's neighboring countries as follows:
  - i) Large and Medium Water Supply Areas (Systems 1 and 2):
    By taking into account the head losses and fluctuations in the water use amount, the maximum daily water consumption of each water supply system with distribution pipes was set

as being 1.15 times the system's average daily water consumption.

ratio of load =  $\frac{\text{Maximum Daily Water Consumption}}{115}$ =  $\frac{100}{100} = 1.15$ 

ii) Small Water Supply Areas (Systems 3 and 4): The maximum daily water consumption in each small water supply area was set as being equivalent to its average daily water consumption.

#### c) Water Intake Amount

- Large Water Supply Area (System 1): By taking into account the washing water in treatment plants, each system's daily water intake amount was set as being 1.1 times its maximum daily water consumption.
- ii) Medium and Small Water Supply Areas (Systems 2 and 3): Each system's daily water intake amount was set

as being equal to its maximum daily water consumption.

d) Maximum Hourly Water Supply Amount The maximum hourly water supply amount will be the basis for determining the diameters of water distribution pipes.

The maximum hourly water supply amount is the amount of water that is taken at one time from one supply system's service connections, such as house connections, standpipes, faucets, etc. This can be shown by the following equation:

$$q = K \times \overline{24}$$

 $\cap$ 

Where, q: design maximum hourly water supply (m3/hr)

- Q: design maximum daily water supply
   (m3/day)
- K: coefficient (ratio of the maximum hourly water supply to the average hourly water supply)

As kiosks with standpipes are to be adopted for the Project, water will be supplied for twelve hours a day; thus, K was set as 2.0.

e)

Capacity of Reservoir Tank

The capacity of a reservoir tank shall be half of the maximum daily water supply amount by taking into account the service hours of kiosks (6:00 to 18:00).

f) Design Pump Discharge

To minimize the sizes of water supply facilities, it is planned to operate the pumps 24 hours a day. The design pump discharge will be obtained by the following equation:

## Design Pump Discharge = <u>Minimum Daily Water Supply Amount</u> 24 x 60

## (m3/min)

## (4) Design Criteria and Capacity

The design criteria for the preliminary design are in accordance with MINITRAPEE's design manual (draft) and Japanese design criteria for waterworks facilities.

The design criteria for the piped water supply systems for Systems 1 and 2 are planned as follows:

| Item                                                                                                            | System 1                      | System 2             |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|
| 1. Daily Maximum Supply:                                                                                        | Daily Average Supply X 1.15   | Same as for System 1 |
| 2. Planned Intake Amount:                                                                                       | Daily Maximum Supply X 1.1    | Daily Maximum Supply |
|                                                                                                                 | (including washing water for  |                      |
|                                                                                                                 | filtration material)          |                      |
| 3. Planned Treating Amount:                                                                                     | Daily Maximum Supply          |                      |
| 4. Pump Operating Time:                                                                                         | 24 hr a day                   | 24 hr a day          |
| 5. Planned Pump Discharge:                                                                                      | Daily Maximum Supply/24 hr    | Same as for System 1 |
| 6. Distribution Reservoir Capacity:                                                                             | Daily Maximum Supply/2        | Same as for System 1 |
| 7. Hourly Maximum Supply:                                                                                       | (Daily Maximum Supply/24) X 2 |                      |
|                                                                                                                 | (to be used to determine the  |                      |
| المراجع | distribution pipe diameter)   |                      |

## (5) Choice of Water Resources for the System Design

By taking into consideration the development priority of water resources(refer Sections 4.6 and 5.3.5), the basic water resource development concept for each system can be set up as follows:

System 1:

- 1) First priority should be given to such springs that have a stable yield amount and good water quality.
- For designing purposes, a spring's water yield should be its minimum yield during the dry season.

M - 6

 The shortage of spring water needed to fulfill the design water supply amount should be supplemented by treated lake water.

#### System 2:

- 1) Priority should be given to the use of spring water. However, in areas where, during the planning stage, it is uncertain if sufficient amounts and satisfactory qualities of water can be obtained, consideration should be given to the development of groundwater by drilling a well.
- During the project implementation stage, the 2) location of springs, the water yield, and the water qualities should be reexamined and a priority assigned to the use of the direct water intake method or the horizontal boring method for the development of springs.
- 3). For designing purposes, a spring's water yield should be its minimum yield during the dry season.
- 4) The shortage of spring water needed to fulfill the design water supply amount should be taken from wells.

System 3:

- 1)
- Groundwater use by drilling wells. First priority of "Sa-Development Potentiality 2) Class" should be given.

#### System 4:

1) Harvesting rainwater from roofs.

#### 2.3 SYSTEM 1

(1) General

System 1 will be installed in those areas having populations greater than 21,000 where the installation of System 3 (handpump type) will be difficult and where the infrastructure, such as roads and electricity supply facilities, are well developed.

#### (2) Population served and Water Demand

System 1 will be installed in two areas: Muhazi and Sake. The outline of the planned areas is shown in the following table.

| Name of<br><u>Area</u> | Served<br><u>Area(km2)</u> | Population<br>2000 |     | Average Daily<br>Consumption(m3/day) |
|------------------------|----------------------------|--------------------|-----|--------------------------------------|
| 1. MUHAZI              | 39.9                       | 21,944             | 550 | 518.2                                |
| 2. SAKE                | 54.1                       | 33,865             | 626 | 774.9                                |
| TOTAL                  | 94.0                       | 55,809             | 594 | 1,293.1                              |

(Detailed conformation can be referred in Table M.3.)

#### (3) Water Source

As it will be difficult to obtain groundwater, the water of lakes Muhazi and Sake will be used. Thus, the installation of purification facilities will be required for both areas. In the Sake area, however, 200 m3/day of spring water, including new development, will be used. Thus, the water supply system for the Sake area will be a combined surface water and spring water use type.

## (4) Intake Facilities

In both the Muhazi and Sake area, water for installing System 1 will be taken from lakes. As the shorelines of the lakes are extremely contaminated by such objects as decomposed aquatic plants and algae, it will be necessary to take into consideration appropriate measures against their inflow when selecting the water intake facility type.

Following area the possible water intake facility types:

- 1) Intake tower type
- 2) Floating type
- 3) Intake crib type

The floating type is to be adopted for the following reasons:

At about 100 m off the shorelines of lakes Muhazi and Sake, the water quality is good and contains no floating objects. The floating type intake facility enables taking water at offshore points.

The intake tower type facility also enables taking water at offshore points, but it costs more to construct than the floating type intake facility.

The intake crib type facility is insecure because floating objects may clog the filters and cause the intake capacity to decrease.

As a result of the field surveys, the intake points at both lakes shall be 100 m off the shoreline.

## (5) Decision of Purification Method

A regards selection of purifying methods, the most suitable one shall be chosen with provision of disinfection equipment, from among the following in consideration of the quality of raw water, amount of filtrate, procurement of site, construction costs, maintenance expenses, convenience of management, level of management, etc. (see Fig. M.1). Method solely dependent upon chlorinationSlow sand-filtration

Rapid sand-filtration

## 1) Chlorination

In case the raw water guality remains unchanged throughout the year, disinfection of the water depends solely upon this method.

2) Slow sand-filtration

Slow sand-filter stands eminent in this method. The socalled filter-film produced or formed biologically by the accumulated inorganic and organic impurities in the filter layers, purifies the influx through the processes of screening, absorption and biochemical action; the purifying force is so effective that even very small quantities of ammonia, manganese and other odorgenerating matters can be removed.

The filtrate is of high sanitary safety and of good quality. Although no technical proficiency required, labor for scraping of the filterbeds needed. When the turbidity of raw water is low, slow sand-filtration will prove preferable, because, in such cases, coagulation effect by chemicals is not necessarily excellent and, at the same time, uneconomical, that is, more expensive. According to the quality of raw water, setting basins of common type or chemical-treatmentary sedimentation basins might be provided or no provision of sedimentation basins can be considered.

3) Rapid sand-filtration

In this method, coagulation-settling basins and rapid sand-filters play the major part of operation. In this type of basin, sands of larger size than that in slow filters are used, and filtration is carried on with much higher velocity than in the slow filters; the prerequisite to this operation is that the clay particles, bacteria and algae, etc. contained in the influx are in advance coagulated in the form of flocks easy to be caught by the filter layers.

Regarding this type of filtration, it is presumed that the flocks are caught, not by the film formed on the surface of the filter layer, but by the adhesion brought by physicochemical action on the surface of the filter media and between the flocks themselves (coagulation within layers, flock-formation).

By this method, large quantities of water can be treated in a small area without human labor, but a good adequate pretreatment is indispensable and, in addition, high rate proficiency and minutest caution required for

satisfactory results. In the case of rapid filtration, coagulation by chemicals is indispensable.

Minute suspensions in the raw water must be coagulated as flocks prior to filtration process, or most of the suspensions will be passed through the sand layers without being arrested. As to the problem of which of the two basins ie. sedimentation of filter basin should perform the work of turbidity removal; there are two ways or principles.

One is the traditional course where, by coagulation attended by mixing and flock-formation, such flocks as steady and liable to settle are produced and led to settling basins. Thus the water conditioned will be led into the filter basins under desired conditions.

In other words, by extending the period of filtering operation, economical operation of filter basins is contributed; the other which is usually employed in periods of comparatively low turbidity, intends to check the growth of flocks by conducting coagulating operation only and without settling process, intends to remove turbidity in the filter basins. This latter is termed direct filtration.

The purification method to be adopted in the system will be decided based on the following criteria.

The qualities of raw water in Muhazi and Sake area are given as below.

|                 | MUHAZI | SAKE   |
|-----------------|--------|--------|
|                 | System | System |
| Turbidity (NTU) | 4.5    | 12.5   |
| Color (APHA)    | 40     | 150    |
| Ph value        | 8.5    | 8.5    |
| Coliform group  | > 1000 | > 1000 |
| (MPN/100 ml)    |        |        |

In view of the content of the coliform group, turbidities, and the amount of floating objects, such as decomposed aquatic plants and algae, in the waters of lakes Muhazi and Sake, it would be inappropriate to adopt the slow sand filtration method; thus, the rapid sand filtration method shall be adopted.

## (6) Water Purification Facilities

It may be possible to install the following two types of water purification facilities for Project use:

Type A: High rate coagulosedimentation basin and gravity rapid sand filter

Type B: Portable-type purifier

As shown in Table M.4 and Fig.M.2 - M.5, Type B would be cheaper to construct and easier to operate and maintain than Type A. Type B, having the following merits, is to be adopted:

 The basic design concept of the portable-type purifier for Project use is a compact version of the normal large-scale water purification plant. The portable-type purifier will have the same functions (quick mixing, slow mixing, inclined-boards settlement, rapid filtration) as the large-scale water purification plant. Therefore, the purifier will be very reliable.

As each function of the purifier is self-adjusting, no fine operational adjustments will be required. The purifier is easy to operate; it does not require a highly qualified operator.

- 2) Not only is the lake water very turbid, it contains iron, manganese, and other organic matter. The contents vary seasonably. To handle this particular situation, it would be necessary to fully utilize the functions of the portable-type purifier. To treat the lake water through the use of other types of purifiers would be difficult.
- 3) For the Project, three portable-type purifier units will be installed in parallel. As each unit will operate independently, they can be stopped easily for maintenance purposes. Even if one unit is shut down for some reason, such as repairs, the remaining two units will be able to treat 66.6 to 70% of the planned supply amount of water.

- Each of the three purifier units that operate in parallel will have 1/3 of the planned water purifying capacity. The purifiers will be fabricated as small-sized units. Each unit will have following equipments:
  - Raw water distribution tank
  - Chemical dosing equipment (Al, CaOCl and Lime)
  - Mixing tank (rapid and slow)
  - Sedimentation tank with baffle board
  - Rapid filtration equipment
  - Washing water tank
  - Treated water reservoir
  - . Pump facilities

Most portions of the purifier units can be manufactured and fabricated in Japan, thus minimizing the installation work at the sites.

- As many of the assembling parts for the purifier 5) units will be fabricated into compact units by the manufacturer and then be shipped to the installation sites, they will not be subjected to loss or theft.
- As the purifier units are portable, it will be 6) possible, if necessary, to relocate them in the future.
- Each function of the portable-type purifier is 7) utilized in the educational models of the water purification units that are normally installed at water treatment training centers in developing countries. This type of purification unit is well known by water treatment operators in those countries.

## (7) Transmission Type

A pump is to be used to deliver water from the purification facilities to the distribution reservoir, A turbine pump that is suitable for high water head will be installed.

A water hammer will be caused in the pipeline by the sudden stopping of the pump or by the sudden closing or opening of the valve, and the pipeline will be subjected to a strong instantaneous dynamic hydraulic pressure. Thus, piping material shall be strong enough to withstand the hydraulic pressures. For this reason, ductile cast iron pipe (DCIP) that is strong, easy to install, and anticorrosive, shall be used.

4)

## (8) Distribution Reservoir

It is planned to convey the water from the distribution reservoir to the public standpipes by gravity flow. Thus, the reservoir would be located at a high elevation. By taking into account the serving times (6:00 to 18:00) of the public standpipes. The reservoir would be able to store one half of the maximum daily supply amount.

#### (9) Distribution Pipe

Polyvinyl chloride (PVC) pipe that is economical and easy to install is obtainable in Rwanda and is to be used for the distribution pipelines.

## (10) Water Distribution Method

The service level of water distribution shall be the public standpipe type. By taking into consideration the certainty of water fee collection, kiosks with public standpipes shall be installed.

#### 2.4 SYSTEM 2

(1) General

System 2 will utilize high quality spring water and pumped up groundwater without treatment. This System will be installed in highly populated areas where hand pump installation (System 3) is difficult. This is the same type of system installed in Nyankora under the Phase I Project.

## (2) Population Served and Water Demand

System 2 installation areas and each area's water supply plan are outlined in the following Table.

|    | Block<br>Name | Served<br>Area(km2) | Population<br>2000 | Density<br>2000 | Water Demand<br>(m3/day) |
|----|---------------|---------------------|--------------------|-----------------|--------------------------|
| 1. | KAYONZA-1     | 12.9                | 4,374              | 339             | 100.4                    |
| 2. | KAYONZA-2     | 8.2                 | 3,508              | 428             | 80.3                     |
| 3. | RUTONDE       | 6.0                 | 3,720              | 620             | 80.7                     |
| 4. | KABARONDO     | 15.7                | 5,956              | 379             | 133.3                    |
| 5. | BIRENGA       | 9.3                 | 3,588              | 386             | 77.8                     |
| б. | RUSUMO-1      | 15.0                | 7,300              | 487             | 171.2                    |
| 7. | RUSUMO-2      | 13.8                | 8,292              | 601             | 199.0                    |
| 8. | RUSUMO-3      | 21.3                | 7,278              | 342             | 170.5                    |
|    | Total         | 102.2               | 44,016             | 431             | 1,013.1                  |
|    | Average       | 12.8                | 5,500              | 430             | 127.0                    |

The water demands of systems by each sector are given in Table M.6 and locations are given in DRAWINGS of Volume IV.

## (3) Outline of System

System 2 is a piped water supply system utilizing high quality spring water and pumped up ground water without water treated as water source.

This system consists of the following components:

- 1) Well
- 2) Pump
- 3) Transmission Pipe
- 4) Distribution Reservoir (High level tank)

5) Distribution Pipe

6) Public Standpipe (Kiosk)

## (4) Water Source

The water source for System 2 will be mainly good quality groundwater having a stable amount.

In the Rusumo-3 Area, a spring (30 m3/day) that is used for an existing water supply system will be utilized as the water source. A 60 m deep, 8 inch diameter tube-well is planned to supply 100 m3/day of groundwater. Each System 2 installation area's water source dependence rate is listed in the following Table.

| Block Name   | <u>Groundwater</u><br>(m3/d) | <u>Spring</u><br>(m3/d) | <u>Total</u>                             |
|--------------|------------------------------|-------------------------|------------------------------------------|
| (m3/d)       |                              | (                       |                                          |
|              |                              |                         | an a |
| 1. KAYONZA-1 | 115.4                        | 0.0                     | 115.4                                    |
| 2. KAYONZA-2 | 92.3                         | 0.0                     | 92.3                                     |
| 3. RUTONDE   | 92.8                         | 0.0                     | 92.8                                     |
| 4. KABARONDO | 153.3                        | 0.0                     | 153.3                                    |
| 5. BIRENGA   | 89.5                         | 0.0                     | 89.5                                     |
| 6. RUSUMO-1  | 196.8                        | 0.0                     | 196.8                                    |
| 7. RUSUMO-2  | 228.9                        | 0.0                     | 228.9                                    |
| 8. RUSUMO-3  | 166.1                        | 30.0                    | 196.1                                    |
|              |                              |                         | A CONTRACT OF A                          |

## (5) Transmission Pipe

Ductile cast iron pipes (DCIP) are to be used for System 2 for the same reason it is used in the System 1 installation (see 2.3.7).

(6) Distribution Reservoir

(See 2.3.8)

(7) Distribution Pipe

(See 2.3.9)

(8) Type of Distribution

(See 2.3.10)

- 2.5 SYSTEM 3
  - (1) General

System 3 is a handpump installation type. Its per capita capital cost and per household operation and maintenance cost will be less than those of Systems 1 and 2. Among the Systems that satisfy the basic development policy for the Basic Plan of the Project, System 3 is the most economical.

System 3 will be adopted in all areas where shallow wells are suitable.

## (2) Population Served and Water Demand

System 3 installation areas are listed in Table M.8. The water supply plan for each commune in those areas is outlined in the following Table.

|                                                                            |                                                                                       |                                                                  | and the second second                         |                                                             |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|
| Commune                                                                    | Service<br>Area<br>_(km2)_                                                            | Population<br>2000                                               | Density<br>2000                               | Water<br>Demand<br>(m3/day)                                 |
| RUKARA                                                                     | 158.4                                                                                 | 27,428                                                           | 173                                           | 507.0                                                       |
| MUHAZI                                                                     | 0                                                                                     | 0                                                                | 0                                             | U                                                           |
| MUGESERA                                                                   | 127.4                                                                                 | 51,802                                                           | 407                                           | 886.9                                                       |
| SAKE                                                                       | 68.2                                                                                  | 19,255                                                           | 282                                           | 320.1                                                       |
| KAYONZA                                                                    | 63.1                                                                                  | 14,423                                                           | 229                                           | 232.0                                                       |
| RUTONDE                                                                    | 24.1                                                                                  | 8,839                                                            | 367                                           | 140.9                                                       |
| KABARONDO                                                                  | 33.7                                                                                  | 10,173                                                           | 302                                           | 161.5                                                       |
| KIGARAMA                                                                   | 142.9                                                                                 | 26,231                                                           | 184                                           | 470.4                                                       |
| RUKIRA                                                                     | 48.5                                                                                  | 7,682                                                            | 158                                           | 123.2                                                       |
| BIRENGA                                                                    | 78.4                                                                                  | 17,242                                                           | 220                                           | 287.6                                                       |
| RUSUMO                                                                     | 265.2                                                                                 | 36,769                                                           | 139                                           | 605.3                                                       |
| Total                                                                      | 1,009.9                                                                               | 219,844                                                          | 218                                           | 3,734.9                                                     |
| KAYONZA<br>RUTONDE<br>KABARONDO<br>KIGARAMA<br>RUKIRA<br>BIRENGA<br>RUSUMO | $\begin{array}{r} 63.1 \\ 24.1 \\ 33.7 \\ 142.9 \\ 48.5 \\ 78.4 \\ 265.2 \end{array}$ | 14,423<br>8,839<br>10,173<br>26,231<br>7,682<br>17,242<br>36,769 | 229<br>367<br>302<br>184<br>158<br>220<br>139 | 232.0<br>140.9<br>161.5<br>470.4<br>123.2<br>287.6<br>605.3 |

## (3) Outline of System

System 3 is a water supply system utilizing high quality ground water through manual pumps.

The systems consist of the following components.

- 1) Well
- 2) Manual pump

3) Auxiliary facilities

## (4) Hydrogeological Classification of Well Condition

The wells for System 3 will be drilled in suitable shallow groundwater development areas. These areas are classified into the following groups based on their hydrogeological conditions (see the classification map of groundwater development potential).

- Sa: Suitable for a shallow groundwater development with lower limitations of both quantity and quality
- Sb: Moderately suitable for a shallow groundwater development with a low limitation of quantity but some limitation of quality
- Sc: Moderately suitable for a groundwater development with a high limitation of drilling work
- Sd: Marginally suitable for a shallow groundwater development with limitations of quantity

## (5) Type of Manual Pump

Based upon the standard of the Handpump option (World Bank) and well conditions of the Study Area, the following types of handpumps can be selected for the Project.

Abi-ASM Afrideb India Mark II Kardia Vergnet Volanta Consallen NISSAKU

MINITRAPEE recommends Bellows type handpump (NISSAKU) for the Project because Bellows type handpump is currently the most type used in the Project Area and they have following characteristics:

- This pump extract the water by means of bellows expansion motion, instead of sliding motion made by generally used piston or cylinder that are apt to cause the friction, thus, this is durable.
- By same reason, as there is no frictional power derived from the said sliding motion this can extract the water with smaller power.

The materials of this pump compose PVC, rubber, PA, brass and stainless steel, which are light in weight and no corrosive.
 (PVC : Poly Vinyl Chloride)
 (PA : Nylon)

By assuming that the daily pumping rate of one NISSAKU's handpump is 60% of its maximum capacity times 12 hours of operation, it was estimated that:

1,400 liters/hr x 12 hr x 60% = 10,080 liters/day = 10 m3/day

## (6) Design Pumping Rate

The smaller of either the well's safe yield (potential yield) value or the pump's pumping rate (see Section 2.5.4) is to be adopted as the design pumping rate.

| Well             | Safe yield | Pumping rate   | Design       |
|------------------|------------|----------------|--------------|
| <u>Condition</u> | of well    | of manual pump | pumping rate |
| Sa,Sb,Sc         | 77         | 10             | 10           |
| Sd               | 8          | 10             | 8            |

#### (7) Number of Wells

In accordance with the estimated safe yields (potential yields) from a well and design maximum daily demand at each secteur as given in Table M.10. The number of wells of System-3 required for the Project are outlined below.

|           | Sa  | Sb | Sc         | Sc  | Total |
|-----------|-----|----|------------|-----|-------|
| RUKARA    | 01  | 10 |            |     | 60    |
|           | 37  | 12 | U          | 14  | 63    |
| MUGESERA  | 13  | 9  | -0         | 90  | 112   |
| SAKE      | 0   | 4  | 0          | 38  | 42    |
| KAYONZA   | 11  | 17 | <b>Ö</b> . | 0   | 28    |
| RUTONDE   | 9   | 8  | 0          | 0   | 17    |
| KABARONDO | 14  | 6  | 0          | 0   | 20    |
| KIGARAMA  | 39  | 18 | 0          | 0   | 57    |
| RUKIRA    | 0   | 0  | 12         | 4   | 16    |
| BIRENGA   | 20  | 13 | 0          | 0   | 33    |
| RUSUMO    | 51  | 0  | 33         | 5   | 89    |
| TOTAL     | 194 | 87 | 45         | 151 | 477   |

Groundwater Development Potential Class

## (8) Auxiliary Facilities

The auxiliary facilities are composed of wash area around well, drainage ditch, plants handle and so on. The structure of them are presented in Drawings of Volume IV.

## 2.6 SYSTEM 4

#### (1) General

System 4 is a rainwater harvesting system employing the roof catchment method. This System will be installed in sparsely populated hilly areas where the installation of System 3 (manual pump type) would be difficult.

If more than 30 m2 of roof area is available, it will be possible, except during the dry season(June through August), to obtain 80 liters/household/day of water which satisfies the basic development policy. To satisfy the policy during the dry season, it will be necessary to install large capacity reservoir tanks and provide measures for retaining the water quality. The cost of such an installation would be too high.

In view of the above background, the reservoir tank capacity was decided upon by setting the per capita water supply amount at 3 liters/person/day.

As System 4 facilities will be installed at each household (quite different than Systems 1, 2 and 3), the rainwater harvesting method will be adopted. In System 4 installation areas, it would be possible to install piped water supply systems with the use of groundwater (the same as System 2) to satisfy the basic development policy. The unit costs per capita to install the piped water supply systems in System 4 installation areas will vary from US\$175 - 1,350. The capital investment would be quite inefficient and the operation and maintenance cost would be very high. Therefore, the installation of the piped water supply systems in System 4 installation areas can not be recommend.

## (2) Service Area and Population Served

System 4 installation area and water supply plan for each commune in those area are outlined in the following table.

| UGOTO!    | 1               |            |                                       |
|-----------|-----------------|------------|---------------------------------------|
|           | Service<br>Area | Population | Number of<br>family                   |
| Commune   | <u>(km2)</u>    | 2000       | 2000                                  |
| DIWADA    | 417 4           |            | 1 400                                 |
| RUKARA    | 47.4            | 8,566      | 1,430                                 |
| MUHAZI    | 0.0             | 0          | 0                                     |
| MUGESERA  | 0.0             | 0          | ····· · · · · · · · · · · · · · · · · |
| SAKE      | 0.0             | 0          | 0                                     |
| KAYONZA   | 96.9            | 4,453      | 743                                   |
| RUTONDE   | 3.1             | 902        | 151                                   |
| KABARONDO | 40.0            | 5,092      | 850                                   |
| KIGARAMA  | 30.2            | 3,632      | 606                                   |
| RUKIRA    | 41.1            | 3,959      | 663                                   |
| BIRENGA   | 26.3            | 3,862      | 645                                   |
| RUSUMO    | 202.0           | 19,564     | 3,263                                 |
| Total     | 487.0           | 50,030     | 8,351                                 |
|           |                 |            | 1                                     |

Served area and population served of sectors are presented in Table M.10.

## (3) Water Balance of Standard System

The average house in the Study Area has a roof area of 30 m2. The water balance of rainwater harvesting on a roof is as shown in the following Table. To secure a minimum of 3 liters/person/day of water during the dry season, it would be necessary to install a 600 liter capacity tank at each household.

| Month | Monthly<br>precipi-<br>tation<br>(mm) | Average<br>collected<br>water<br>(1/day) | Min. demand<br>/family<br>(June-Aug.)<br>(1/day/f) | Shortage<br>(June-Aug.)<br>(1/day/f)                                                                                                                                                                                                | Required<br>capacity of<br>reservoir<br>tank                                                                   |
|-------|---------------------------------------|------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1     | 84.5                                  | 74                                       | <u>[1/(dy/1/</u>                                   | 14/44/14/                                                                                                                                                                                                                           | ULIIIN                                                                                                         |
| 2     | 72.5                                  | 70                                       |                                                    |                                                                                                                                                                                                                                     |                                                                                                                |
| 3     | 152.3                                 | 133                                      |                                                    | and the second                                                                                                                                                                                                                      |                                                                                                                |
| 4     | 160.9                                 | 145                                      | · · ·                                              |                                                                                                                                                                                                                                     |                                                                                                                |
| 5     | 79.8                                  | 70                                       |                                                    | a a construction de la construction<br>La construction de la construction d |                                                                                                                |
| 6     | 10.5                                  | 9                                        | 18                                                 | 9                                                                                                                                                                                                                                   | 270                                                                                                            |
| 7     | 9.2                                   | 8                                        | 18                                                 | 10                                                                                                                                                                                                                                  | 310                                                                                                            |
| 8     | 20.6                                  | 18                                       | 18                                                 | •<br>•                                                                                                                                                                                                                              |                                                                                                                |
| 9     | 49.6                                  | 45                                       |                                                    |                                                                                                                                                                                                                                     |                                                                                                                |
| 10    | 78.3                                  | 68                                       |                                                    |                                                                                                                                                                                                                                     |                                                                                                                |
| 11    | 149.8                                 | 135                                      |                                                    |                                                                                                                                                                                                                                     | and a second |
| 12    | 80.3                                  | 70                                       |                                                    | and the second                                                                                                                    | ·**                                                                                                            |
| Total | 948.3                                 | , striger,                               |                                                    |                                                                                                                                                                                                                                     | 580                                                                                                            |
| Note: | Roof                                  | area is 30 m                             | 2 which is th                                      | ne average c                                                                                                                                                                                                                        | fthe                                                                                                           |

Roof area is 30 m2 which is the average of the dwellings in Kibungo Prefecture Harvest rate = 0.9

## (4) Extension Program of Supplying/financing

By taking into account the costs of other water supply systems to be borne by the residents and the residents' awareness of water supply projects, the extension program of the water supply systems is planned as follows:

- 1) The residents would bear one half of the material costs and provide the installation labor work.
- 2) The Government would bear the remaining half of the material costs and provide the residents with the technical guidance necessary for system installation.
- 3) By considering the income levels of the residents, they would pay the following costs:
  - For the first month after system installation

1,200 FRW

From the 2nd month through the 25th month : 200 FRW

4) The Government will select the number of households for system installation that can be financed by its available budgetary fund.

# Service Area and Population

| Commune   |                    | System         | System        | System<br>3        | System        | Total              |
|-----------|--------------------|----------------|---------------|--------------------|---------------|--------------------|
| RUKARA    | Area<br>Population | 0              | 0             | 158.4<br>27,428    | 47.4<br>8,566 |                    |
| MUHAZI    | Area<br>Population | 39.9<br>21,944 | 0<br>0        | 0<br>0             | 0             | 39.9<br>21,944     |
| MUGESERA  | Area<br>Population | 0              | 0             | 127.4<br>51,802    | 0             | 127.4<br>51,802    |
| SAKE      | Area<br>Population | 54.1<br>33,865 | 0<br>0        | 68.2<br>19,255     | 0<br>0        | 122.3<br>53,120    |
| KAYONZA   | Area<br>Population | 0<br>0         | 21.1<br>7,882 | 63.1<br>14,423     | 96.9<br>4,453 | 181.1<br>26,758    |
| RUTONDE   | Area<br>Population | 0<br>0         | 6.0<br>3,720  | 24.1<br>8,839      | 3.1<br>902    | 33.2<br>13,461     |
| KABARONDO | Area<br>Population | 0<br>0         | 15.7<br>5,956 | 33.7<br>10,173     | 40.0<br>5,092 | 89.4<br>21,221     |
| KIGARAMA  | Area<br>Population | 0<br>0         | 0<br>0        | 142.9<br>26,231    | 30.2<br>3,632 | 173.1<br>29,863    |
| RUKIRA    | Area<br>Population | 0<br>0         | 0<br>0        | 48.5<br>7,682      | 41.1<br>3,959 | 89.6<br>11,641     |
| BIRENGA   | Area<br>Population | 0              | 9.3<br>3,588  | 78.4<br>17,242     | 26.3<br>3,862 | 114.0<br>24,692    |
| RUSUMO    | Area<br>Population | 0<br>0         | 22,870        | 265.2<br>36,769    | 19,564        | 517.3<br>79,203    |
| Total     | Area<br>Population |                |               | 1,009.9<br>219,844 | 50,030        | 1,693.1<br>369,699 |
| Note:     | The figure         | of popul       | ation is      | of year            | 2000,         | -                  |

M. - 21

#### 3. PRELIMINARY DESIGN

## 3.1 DESIGN OF GENERAL FACILITIES

The general facilities mean the components of the water supply systems, which are given as below.

## (1) Distribution Reservoir

In Kibungo Prefecture, existing reservoirs are made of rocks and concrete. In general, they are maintained in good condition. For the Phase III Project, the same type of reservoirs are to be adopted for economical reasons.

The effective depth of distribution reservoir should be in between H.W.L and L.W.L. If it is too shallow, spacious area is needed for the required capacity, while too deep, though the area may be saved, problems arise of security of earthquake-proof, watertightness.

In gravity system, if the effective depth is too large, it becomes difficult to maintain the dynamic water pressure of the pipe within the proper range. In general, therefore, the effective depth should desirably be 2 - 4 m.

The inflow pipe will be installed at the upper portion of the reservoir with a float valve to control the tank level. A flow meter and a stop valve will be installed in the outflow pipe.

#### (2) Distribution Pipe

#### 1) Type of Pipe

As for type of distribution pipe, selection must be made according to the following requirements:

- Safety against the inner pressure
- Safety against the outer pressure
- Adequacy for pipe diameter

Pipe must have strong resistance to both inner and outer pressures. For inner pressures, maximum static pressure and hammering pressure should be considered, while for outer pressure, ground pressure and surface load (of the road), and in other cases, load conditions according to each situation must be surveyed on the occasion of pipe pressure designing.

Since there is a specified scope of pipe size according to the respective kinds, no problems arise so far as pipes of the specified-size are used, but in case those out of the scope are ordered, thorough technical check-up in view of the utilization planned must be made in every respect.

Distribution pipe is such a pipe as is laid starting from distribution reservoir for supplying potable water to the area concerned. It consists of distribution main which is the trunk pipeline and of distribution submain branching from the trunk line and connecting with the service pipe.

The type of distribution pipe range over cast iron, ductile cast iron, steel, cement-asbestos and PVC pipes. In selection of pipes, safety from inner and outer pressures, adoptability to pipeline conditions, or pipe laying techniques, non-influences upon water quality, etc. along with economy, should be considered.

| Materials                                                  | Merit                                                                                                                                                                                                          | Demerit                                                                                                                                                                                                                                               |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ductile cast iron pipe<br>(Inside mortar lining)<br>(PCIP) | <ol> <li>Intensive and corrosion resistance</li> <li>Strong to impact</li> <li>Mechanical joint is flexible and<br/>expansive</li> <li>Easy to construct</li> <li>Many kinds joints</li> </ol>                 | <ul> <li>(1) Heavy</li> <li>(2) Need specials protection against joint remove</li> <li>(3) Need outside lining in humus</li> <li>(4) in case large size pipe impossible to repair from inside</li> </ul>                                              |
| Steel pipe<br>(lining pipe)<br>(SP)                        | <ol> <li>Intensive (tension and bend)</li> <li>Strong to impact</li> <li>No need countermeasure to joint<br/>remove by welding joint</li> <li>Light</li> <li>Easy manufacturing</li> </ol>                     | <ol> <li>Need temperature expansion joint or<br/>flexible joint</li> <li>Weak to electric corrosion</li> <li>Take much time welding and lining<br/>difficult to construct in spring ground</li> <li>Flexibility is large (large size pipe)</li> </ol> |
| Risid poly venyl<br>chloride<br>(PVC)                      | <ol> <li>(1) Corrosion and electric corrosion<br/>resistance</li> <li>(2) Light, easy to construct</li> <li>(3) Possible to adhere</li> <li>(4) Inside roughness is not changing</li> <li>(5) Cheap</li> </ol> | <ol> <li>Weak to impact at low temperature</li> <li>Weak against heatness, ultraviolet<br/>rays and organic solvent</li> <li>Caution to fire solvent cement</li> <li>Need temperature expansive and<br/>flexible joint</li> </ol>                     |

Characteristics of Distribution Pipes

## 2) Pipe Size

The adopted pipe size will be determined considering with the followings.

- a. Maximum velocity of water flow within pipelines shall be 3.0 m/sec.
- b. Dynamic hydropressure at the points of Kiosks shall be secured 5.0 m (0.5 kgf/cm2).
- c. The top of buried pipes shall be kept lower than hydraulic grade line at any point.
- d. The hydrostatic pressure at any point shall be less than 10.0 kgf/cm2, which is the available hydrostatic pressure of PVC pipe.

Pipe flow formulae generally used Hazen-Williams(refer to Fig.M.7). Hazen-Williams' formula which is the representative of them is as follows:

- $D = 1.6258.C^{-0.38}.0^{0.38}.1^{-0.205}$
- V: average flow rate (m/sec) =  $0.35464.C.D^{0.63}.I^{0.54}$ Q: quantity of flow (m3/sec) =  $0.27853.C.D^{2.63}.I^{0.54}$ I: hydraulic gradient = h/l =  $10.666.C^{-1.85}.D^{-4.87}.Q^{1.85}$ 1: extension or length (m)  $= 3.5903.Q.D^{-2.63}.I^{-0.54}$

C: value(=110)

Based on above discussion, PVC pipe is to be used for the distribution pipeline, which is economical, easy to install and obtainable in Rwanda. The available hydrostatic pressure of PVC pipe is 10 kgf/cm2. The

# calculations are given in Fig. M.10.

## 3) Related Structure

#### Sluice Valve

Sluice valve of distribution pipe should desirably be provided in accordance with the following:

- a. Sluice valve should be so provided that the fewest possible number of these can function to limit the area affected by water cut to as small as possible.
- b. At the point of pipe branching, sluice valve shall be installed on the branch pipe as well as on the downstream side of the branching point of the main, in principle, too.
- c. Besides the above, sluice valve shall be installed at intervals within 2,000 m.

#### <u>Air Valve</u>

As to provision of air valve, the following must be observed:

- a. Air valve shall be installed either on a convex part of pipeline, or, in absence of a convex between the sluice valves, direct under the sluice valve located higher, provided that no provision is required, in the case of distribution submain, when there is no convex part between the sluice valves.
- b. In the case of pipe buried underground, protecting shed shall be built for air valve.

#### Flow Meter and Pressure Gauge

Flow meter and pressure gauge shall be provided according to the following criteria:

- a. At the starting point of distribution main flow meter must be provided.
- b. Flow meter must be equipped with Public Stand pipe (kiosk) for operation.

#### Drainage Facilities

As regards installation of drainage facilities, the following shall be observed:

- a. For a hollow part of the pipe route, adequate draining channel, draining facilities shall be built.
- b. The standard size of drain (or blow off) pipe is 1/2
   1/4 of those of distribution mains. In case discharge into water route is possible, size should better be enlarged.

## (3) Transmission Pipeline

1) Pipe Size

The diameter of the pipeline is to be determined in relation to its length and the pumping head.

In pumping system line, the state of affairs being utterly different, combinations of the size of the conveyance pipe and the lift to the pumps can be numerous, even innumerable. If the pipe size is too small, though the laying cost becomes low, passage resistance will rise, hydraulic gradient becoming acute, and it is necessary to raise the pump-lift. Thus, not only the cost of pumping equipment construction becomes high, but the power expense for pumping (generally called power expenses) will eternally be high. On the contrary, when the pipe size is too large, pumping cost can be held low, the cost of pipe laying will increase as a natural course of things. In either case, the design is far from economical. Following is the procedure for determining the diameter of the pipeline:

- a. Calculate the hydraulic head losses of the pipeline when the design water supply amount flows through the 75 mm dia., 100 mm dia, 150 mm dia. and 200 mm dia. pipeline.
- b. Estimate the cost of different diameter pipelines.
- c. Estimate the pumping cost per 1 m lift head. The average value of pumping cost divided by the total lift head was 45,000 FRW/1.0 m.
- d. Obtain pumping cost by multiplying the pumping cost per unit head by the total lift head.
- e. Calculate the required pump power per 1 m lift head. The average value obtained by diving the pumping power by the total lift head was 0.123 kw/1.0 m.
- f. Calculate the cost of electricity by assuming the pumps' service life as being 10 years and by multiplying the required pump power per 1 m lift head with the total pipeline head loss.
- g. Compare the total cost for each diameter's pipeline to determine which is the most economical.

Based on the above procedure, the most economical pipe diameters were found to be as follows:

For System 1 in Muhazi and Sake: 150 mm dia. For System 2 in all adoptable areas: 75 mm dia.

75 mm dia. is the smallest diameter of available ductileiron pipe.

#### 2) Pipe line Route and Pipe Burying Depth

The planned pipeline routes and pipe burying depths are shown in the drawings provided in DRAWINGS OF Volume IV.

(4) Comparative Study of Power Source for Pump

Possible power sources for System 1 and 2 pumps are the presently supplied electricity, or generator installation.

As a result of the following economic comparisons, electricity will be utilized in areas where power line extension from existing supply lines will be less than 3.4 km, and generator units will be installed where power line extension will be more than 3.4 km.

Model for Economic Comparison:

| <ul> <li>Pumping Rate: 200 liters/min, pumping head: 100m,<br/>pump's rated power: 7.5 kw</li> <li>Pump Type: Deep well submersible motor pump,<br/>150 mm dia.</li> <li>Electricity Rate: US\$0.10/kw</li> <li>Gasoline: US\$1.0/liter</li> <li>Generator Capacity: 50 kVA, 66 ps</li> </ul> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                               |
| 1) A case where Electricity is used:                                                                                                                                                                                                                                                          |
| <ul> <li>a) Electricity Fee:<br/>7.5 kwh x 24 hr x 0.1 = US\$18.0/day</li> <li>b) Power Line Extension Work Cost (service life of 10 years):<br/>US\$74,000/km / 10 years / 365 days = US\$20.3/day/km</li> </ul>                                                                             |
| 2) A case where Generator unit is used:                                                                                                                                                                                                                                                       |
| <ul> <li>a) Fuel Cost:</li> <li>0.05 liter/hr/ps x 66 ps x 24 hr x US\$1.0/liter</li> <li>= US\$79.2/day</li> <li>b) Generator's Depreciation Cost (service life of 10 years):</li> <li>US\$29,000 / 10 years / 365 days = US\$7.9/day</li> </ul>                                             |
| 3) Comparison Results                                                                                                                                                                                                                                                                         |
| For a case where electricity is used, an electricity fee<br>of US\$18.0/day and the cost of power line extension work<br>will be required.                                                                                                                                                    |
| For a case where a generator unit is used, the required daily costs will be US\$ 87.1 (\$ 79.2 + \$7.9).                                                                                                                                                                                      |
| If the cost of power line extension work is less than US\$ 69.1/day (\$ 87.1 - \$18.0), it would be more economical to use electricity rather than a generator unit. The break even point for evaluating which power source to utilize will be as follows:                                    |
| US\$ 69.1/day / US\$20.3/day/km = 3.4 km                                                                                                                                                                                                                                                      |

As a result, a generator unit shall be installed in an area where more than 3.4 km of power line extension work is required.

| Block Name                                                                                                                        | Transmission<br>line_(km) | Power source                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| SYSTEM-1                                                                                                                          |                           |                                                                                                                                                      |
| 1.Muhazi                                                                                                                          | 0.1                       | Existing Electric Service                                                                                                                            |
| 2.Sake                                                                                                                            | 3.0                       | Existing Electric Service                                                                                                                            |
| SYSTEM-2<br>1. KAYONZA-1<br>2. KAYONZA-2<br>3. RUTONDE<br>4. KABARONDO<br>5. BIRENGA<br>6. RUSUMO-1<br>7. RUSUMO-2<br>8. RUSUMO-3 | 1.8<br>1.2<br>2.0         | Existing Electric Service<br>Existing Electric Service<br>Generator<br>Existing Electric Service<br>Generator<br>Generator<br>Generator<br>Generator |

M - 28

## 3.2 DESIGN OF SYSTEM 1

## (1) Water Purification Facilities for MUHAZI Area

1) Outline of System

The system components of Muhazi area can be roughly classified into the following 4 facility groups.

- . Intake Facilities
- . Purification Facilities
- . Transmission Facilities
- . Distribution Facilities

The outline of MUHAZI System is shown in DRAWINGS of Volume IV.

2) Facility Size

Water Treatment Amount: Daily average supply x 1.15 = 518 m3/day x 1.15

= 595.7 m3/day = 600 m3/day

Water Treatment Facility: Portable Purifier unit Rated capacity: 200 m3/day/unit (output) Number of units: 3 Material: Steel

Examination of Washing Water Discharge: Filter area of the treatment units = 3 m2/unit x 3 = 9 m2

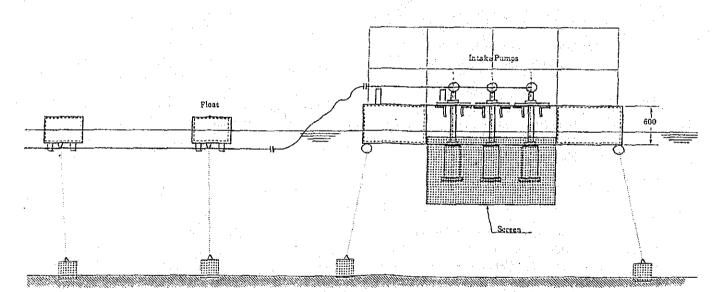
By assuming the cleaning time of once a day, the washing water discharge will be: 3 m2/unit x (0.6 m/min + 0.1 m/min) x 7 min x 3 units

= 44.1 m3 Remaining water in the tank:

3 m2/unit x 0.8 m x 3 units = 7.2 m3

Washing portion of the inflow water = approx. 1.1 m3

Total washing water discharge = 44.1 + 7.2 + 1.1= 52.4 m<sup>3</sup>


54.2 m3 is less than the daily average supply x 1.15 x 0.1 = 60.00 m3

## 3) Water Intake Facility

The floating type intake facility shown in the following figure will be adopted for the Muhazi water supply system. The floating pump stages are to be 4.0 m x 3.0 m per each in view of the necessary inspection and maintenance space. The floating pump stages shall be anchored.

The specifications for the intake pumps will be as follows:

Design intake amount: 655 m3/day = 0.46 m3/min Pump type: Submersible Number of pumps: 2 working units + 1 spare unit Capacity: 0.23 m3/min x 15 m x 1.5 kw



## 4) Purification Facilities

The purification facilities of the rapid sand filtration system with the portable type purifiers will be arranged as shown in Fig.M.7.

The major facility units are as follows:

a) Raw Water Distribution Weir

Delivered raw water by the intake pumps will be divided into three equal amounts by the weir.

#### b) Aluminum Sulfate Dosing Facility

This facility is to flocculate suspended matter that makes the raw water turbid. The facility consists of storage tanks, mixers, circulation pump, and distribution tank. The specifications for the facility are as follows:

Dosage amount:

600 m3/day x 50 mg/liter = 30 kg/day (normal) 600 m3/day x 70 mg/liter = 42 kg/day (maximum) Dosage volume (by assuming a 10% solution):

30 kg/day x 10 = 300 liters/day (normal) 42 kg/day x 10 = 420 liters/day (maximum) Mixing and storage tank (for 2 days of normal dosage):

Nominal capacity: 1,000 liters

Dimensions: 1,065mm (diameter) x 1,225mm (height) Number of units: 2

Material: Polyethylene

Distribution tank:

Approximate dimensions:

400 mm (width)x600 mm(length)x400 mm(height)

Number of units: 1

Material: Stainless steel

Circulation pump:

Capacity: 0.05 m3/min x 10 m x 0.4 kw

c) Calcium Hypochlorite Dosing Facility

The purpose of this facility is to oxidize the iron and manganese contained in raw water and, as a result, disinfect the water. The facility is composed of storage tanks, mixers, circulation pump, and distribution tank. The specification for the facility are as follows:

Dosage rate: normal 7mg/liter, maximum 10mg/liter Dosage amount:

600 m3/day x 7 mg/liter = 4.2 kg/day (normal) 600 m3/day x 10 mg/liter = 6.0 kg/day (maximum)

Dosage volume (by assuming a 2% solution): 4.2 kg/day x 50 = 210 liters/day (normal)

6.0 kg/day x 50 = 300 liters/day (maximum)

Mixing and storage tank (for 2 days of normal dosage):

Normal capacity: 1,000 liters

Dimensions: 1,065mm (diameter) x 1,225mm (height) Number of units: 2 material: Polyethylene

Distribution tank:

Approximate dimensions:

400mm (width) x 600mm (length) x 400mm (height) Number of units: 1 Material: Stainless Steel Circulation pump:

Capacity: 0.05 m3/min x 10 m x 0.4 kw

#### d) Slaked Lime Dosing Facility

The purpose of this facility is to adjust the pH values of water by dosing it with alum earth. The facility is composed of storage tanks, mixers, circulation pump, and distribution tank. The specifications for the facility are as follows:

Dosage rate: normal 25 mg/liter, maximum 35 mg/liter Dosage rate:

600 m3/day x 25 mg/liter = 15 kg/day (normal)600 m3/day x 35 mg/liter = 21 kg/day (maximum)

Dosage volume (by assuming a 10% solution): 15 kg/day x 10 = 150 liters/day (normal)

21 kg/day x 10 = 210 liters/day (maximum)

Mixing and storage tank (for normal dosage of 4 days):

Nominal capacity: 1,000 liters

Dimensions: 1,065mm (diameter) x 1,225mm (height) Number of units: 2

Material: Polyethylene

Distribution tank:

Approximate dimensions:

400mm (width) x 600mm (length) x 400mm (width) Number of units: 1

Material: Stainless Steel

Circulation pump (slurry pump):

Capacity: 0.05 m3/min x 10 m x 3.7 kw

#### e) Rapid Mixing Tank

The purpose of this tank is to mix the chemicals added to the raw water at the chemical dosage facilities. The specifications of the tank are as follows:

Tank dimensions:

| 500mm (width) x 500mm   | (length) x 1,745mm (height) |
|-------------------------|-----------------------------|
| Effective depth:        | 1,655 mm                    |
| Tank capacity:          | 0.414 m3                    |
| Retention time:         | 2.48 min                    |
| Number of mixing units: | 1                           |
| Mixer motor:            | 240V, 50Hz, 0.1kw           |
|                         | . *                         |

#### f) Slow Mixing Tank

The raw water and chemicals mixed by the rapid mixing tank will be stirred slowly in this tank and the suspended particles in the raw water will coagulate into flocks. The specifications for the slow mixing tank are as follows:

| Tank dimensions:       |             |                  |
|------------------------|-------------|------------------|
| 1,800mm(width) x 1,80  | Omm(length) | x 1,745mm(depth) |
|                        | 1,655 mm    |                  |
| Tank capacity:         | 4.94 m3     |                  |
| Retention time:        | 29.6 min    |                  |
| Number of mixer units: | 2           |                  |
| Mixer motor:           | 240V, 50Hz  | , 0.2kw          |

#### g) Sedimentation Tank with Baffle Board

Flocculated suspended particles in the slow mixing tank will settle in the sedimentation tank with baffle board and separate from the water. To accelerate the flocks' settling and separation action, titled boards are installed in the tank. The upper layer of the water will flow through the collecting troughs into the settling boards tank located behind the slow mixing tank. The settled flocks, sludge, will be collected and periodically withdrawn from the tank by opening the sludge discharge valve.

The specifications for the sedimentation tank with baffle board tank are as follow:

Tank dimensions:

| 1,800mm(width)   | x 3,800mm(length) | х | 1,745mm(depth) |
|------------------|-------------------|---|----------------|
| Effective depth: | 1,655 mm          |   |                |
| Tank capacity:   | 11.32 m3          |   |                |
| Retention time:  | 67.9 min          |   |                |

Number of scrapers (rakes): 2 units Scraper: 240V, 50Hz, 0.2 kw Titled board material: PVC

#### h) Rapid Filtration Equipment

The filter of the rapid filtration equipment is composed of an anthracite layer on top, a manganese sand layer in the middle, and a gravel layer at the bottom.

Most of the suspended particles in the raw water can be removed in the sedimentation tank; however, very fine particles and manganese must be removed by filtrating the water through the use of the rapid filtration equipment. The filtrated water is then collected into the washing tank through the underdrain pipes. The small particles and manganese trapped by the filter will periodically be back washed and discharged from the tank.

The water in the washing water tank will be used for back washing the particles that are lied in the filter and will also wash the filter surface.

The specifications for the rapid filtration equipment are as follows:

Tank dimensions:

1,800mm(width) x 1,660mm(length) x 1,840mm(depth) Effective filter area: 2.98 m2 Filtration velocity: 80.5 m/day Filter: Anthracite layer thickness: 200 mm Manganese layer thickness: 400 mm Gravel layer thickness: 150 mm

#### i) Washing Water Tank

The filtrated water flows into the washing water tank and the water in the tank will be used to wash the filtration equipment. However, most of the filtrated water will flow into the treated water reservoir through the washing water tank. The specifications for the washing water tank are as follows:

Tank dimensions: 1,800mm(width) x 3,000mm(length) x 750mm(depth) Effective depth: 600 mm Tank capacity: 3.24 m3

#### j) Treated Water Reservoir

The water treated by the rapid filtration tank flows into the treated water reservoir through the washing water tank and is stored in it. The water will then be delivered to the distribution reservoir by high lift pumps. The specifications for the treated water reservoir are as follows:

Reservoir capacity:

120 m3 (retention time = 4.4 hours)

Reservoir dimensions:

5 m (width) x 17.2 m (length) x 1.4 m (effective depth)

#### 5) Transmission Facilities

a) High Lift Pump

Water in the treated water reservoir will be delivered into the distribution reservoir (high level tank) by the high lift pumps. Following are the specifications for the high lift pumps:

Delivery amount: 0.4167 m3/min Number of pumps: 2 working units + 1 spare unit Pump capacity: 0.21 m3/min x 250 m x 18.5 kw

#### b) Transmission Pipe

Ductile cast iron pipes (DCIP) will be used for transmission pipe. As a result of the economic comparison study, the pipe to be used will have a diameter of 150 mm (see 3.1).

#### 6) Distribution Facilities

The features of the distribution facilities are to be as follows:

| Facility                              | Type                 | Size      | Quantity                  |
|---------------------------------------|----------------------|-----------|---------------------------|
| Reservoir Tank                        | Rock and<br>Concrete | 300 m3    | 1                         |
| Distribution Pipe<br>Public Standpipe | PVC                  | 50-150 mm | dia. 27,500 m<br>16 units |
| (Kiosk)                               |                      |           |                           |

For the detail of facilities, see 3.1.

#### (2) Water Furification Facility for SAKE Area

1) General

The water supply system in the Sake area can be classified into the following five facility groups:

. Spring water collecting facilities

- . Lake water intake facilities
- . Purification facilities
- . Water conveyance facilities
- . Water distribution facilities

The difference between the Sake area's water supply system and the one for the Muhazi area is that it is a combined spring water and lake water (Lake Sake) use type ... 100 m3/day of water from a spring that is already used for an existing water supply system and 100 m3/day from a spring that will be developed.

The outline of the Sake System is shown in DRAWINGS of Volume IV.

2) Facility Size

Water Treatment Amount: (Daily average water supply) x 1.15 - spring water use  $amount = 774.9 \text{ m}3/day \times 1.15 - 200 \text{ m}3/day = 690 \text{ m}3/day$ Treatment facility: Portable purifier units Nominal treatment capacity: 230 m3/day(output) per unit Number of purifiers: 3 Material: Steel Examination of Washing Water Discharge Amount: Filtration equipment's filter area:  $3 m2 \times 3 units = 9 m2$ By assuming one time washing a day, the washing water discharge amount will be: 3 m2/unit x (0.6 m/min + 0.1 m/min) x 7 min x 3 units = 44.1 m3 ------ [1] Remaining water in the tank: 3 m2/unit x 0.8 m x 3 units = 7.2 m3 ------ [2] Washing water out of the inflow amount will be approximately 1.3 m3 ----- [3]

Thus, the total washing water discharge amount will be

[1]+[2]+[3] = 44.1 m3 + 7.2 m3 + 1.3 m3 = 52.6 m3/day

This amount is less than,

the daily water supplyx1.15x0.10 = 69.00 m3/day

M = 36

Intake amount:

 $690 \times 1.15 \times 1.1 = 759.0 \text{ m3/day}$ = 0.527 m3/min

Number of pumps : 2 working units + 1 spare units Pump capacity : 0.26 m3/min x 15 m x 1.5 kw

#### 3) Spring Collecting Facilities

The spring collecting facilities of 100 m3/day capacity are planned to be newly installed in addition to the existing spring collecting facilities of 100 m2/day Capacity which will be also used for the project.

The system of spring collecting facility is outlined as below:

| Facility_Name      | No. of Unit | Size               |
|--------------------|-------------|--------------------|
| (Construction)     |             |                    |
| Collecting Chamber | 2           | 3.0 m3             |
| Storage Tank       | 1           | 40.0 m3            |
| Booster Pump       | 1           | 40 m dia x 7.5 kw  |
|                    |             | (Head 100 m)       |
| (Existing)         |             |                    |
| Collecting Chamber | 1           |                    |
| Storage Tank       | 1           | 50.0 m3            |
| Booster Pump       |             | 40 m dia. x 7.5 kw |
| ~                  |             | (Head 100 m)       |

#### 4) Water Intake Facilities

Floating type intake system, which is adopted in Muhazi area, will be adopted in Sake area.

The dimensions of floating type intake system are given as below.

Floating pump stage: 4.0 m x 3.0 m Design discharge of intake water: 690 m3/day = 479.2 liters/min Type of pump: Submersible pump Number of pumps: 2 working unit + 1 reserved unit

#### 5) Purification Facilities

a) Raw Water Distribution Weir

See 3.3 (1)

#### b) Aluminum Sulphate Dosing Facility

Dosing rate: 50 mg/liter (normal), 70 mg/liter (maximum) Dosing amount: 690 m3/day x 50 mg/liter = 34.5 kg/day (normal) 690 m3/day x 70 mg/liter = 48.3 kg/day (maximum) Dosage volume (by assuming a 10% solution):  $34.5 \text{kg/day} \times 10 = 345 \text{ liters/day} \text{ (normal)}$ 48.3kg/day x 10 = 483 liters/day (maximum) Mixing and storage tank (for 2 days of normal dosage): Nominal capacity: 1,000 liter Dimensions of unit: 1,065 mm (diameter) x 1,225 mm (height) Number of units: 2 Material: Polyethylene Distribution tank: Dimensions of unit (approximate): 400mm (width) x 600mm (length) x 400mm (height) Number of units: 1 Material: Stainless steel Circulation pump: Capacity: 0.05 m3/min x 10 m x 0.4 kw c) Calcium Hypochlorite Dosing Facility Dosing rate: 7 mg/liter (normal), 10 mg/liter (maximum) Dosing amount: 690 m3/day x 7 mg/liter = 4.83 kg/day (normal)690 m3/day x 10 mg/liter = 6.90 kg/day (maximum) Dosing volume (by assuming a 2% solution): 4.83 kg/day x 50 = 243 liter/day (normal) 6.90 kg/day x 50 = 345 liter/day (maximum)Mixing and storage tank (for 2 days of normal dosage): Nominal capacity: 1,000 liter Dimensions of unit: 1,065 mm (diameter) x 1,225 m (height) Number of units: - 2 Material: Polyethylene

Distribution tank: Dimensions of unit (approximate): 400mm (width) x 600mm (length) x 400mm (height) Number of units: 1 Material: Stainless steel Circulation pump: Capacity: 0.05 m3/min x 10 m x 0.4 kw d) Slaked Lime Dosing Facility Dosing rate: 25 mg/liter (normal), 35 mg/liter (maximum) Dosing amount: 690 m3/day x 25 mg/liter = 17.3 kg/day (normal) 690 m3/day x 35 mg/liter = 24.2 kg/day (maximum) Dosing volume (by assuming a 10% solution): 17.3 kg/day x 10 = 173 liter/day (normal) 24.3 kg/day x 10 = 243 liter/day (maximum) Mixing and storage tank(for 4 days of normal dosage): Nominal capacity: 1,000 liter Dimensions of unit: 1,065 mm (diameter) x 1,225 mm (height) Number of units: 2 Material: Polyethylene Distribution tank: Dimensions of unit (approximate): 400mm (width) x 600mm (length) x 400mm (height) Number of units: 1 Stainless steel Material: Circulation pump (slurry pump) Capacity: 0.05 m3/min x 10 m x 3.7 kw e) Rapid Mixing Tank

Tank dimensions: 500mm (width) x 50mm (length) x 1,745mm (height) Effective depth: 1,655 mm Tank capacity: 0.414 m3 Retention time: 2.3 min Number of mixing units: 1 Mixing motor: 240V, 50Hz, 0.1 kw

#### f) Slow Mixing Tank

Tank dimensions: 1,800mm(width) x 1,800mm(length) x 1,745mm(height) Effective depth: 1,655 mm Tank capacity: 4.94 m3 Retention time: 27 min Number of mixing units: 2 Mixing motor: 240V, 50Hz, 0.2 kw

#### g) Sedimentation Tank with Baffle Board

Tank dimensions: 1,800mm(width) x 1,800mm(length)x1,745mm(height) Effective depth: 1,655 mm Tank capacity: 11.32 m3 Retention time: 61.9 min Number of scrapers (rakes): 2 Scraper: 240V, 50Hz, 0.2 kw Material of baffle board: PVC

#### h) Rapid Filtration Equipment

Tank dimensions: 1,800mm(width) x 1,660m(length) x 1,840mm(height) Effective filter area: 2.98 m2 Filtration velocity: 88.4 m/day Filter: Anthracite layer thickness: 200 mm Manganese layer thickness: 400 mm Gravel layer thickness: 150 mm

#### i) Washing water Tank

Tank dimensions: 1,800mm(width) x 3,000mm(length) x 750mm(height) Effective depth: 600 mm Tank capacity: 3.24 m3

#### j) Treated Water Reservoir

Reservoir dimensions: 5m(width) x 17.2m(length) x 1.4m(effective depth) Reservoir capacity: 120 m3 Retention time: 3.9 hours

#### 6) Transmission Facilities

Transmission facilities are composed of two systems, which connect between spring collecting facilities to distribution tank (System A) and between purification facilities to distribution tank (System B).

The outline of both system is given as below.

|                      | System A                             | System B                     |
|----------------------|--------------------------------------|------------------------------|
| Water source         | Sake Lake                            | Spring                       |
| Design discharge     | 690m3/day<br>(0.479m3/min)           | 200m3/day                    |
| Type of pump         | turbine pump                         | turbine pump                 |
| Number of pumps      | 2 working units<br>+ 1 reserved unit | 2 working units              |
| Pump capacity        | 0.31m3/min x 300m<br>x 30kw          | 0.07m3/min x 100m<br>x 5.5kw |
| Transmission<br>pipe | DCIP 150mm dia.                      | DCIP 75mm dia.               |

#### 7) Distribution Facilities

a) Distribution Reservoir (High lift tank)

The existing reservoir, which has 350 m3 of capacity and is available for this project, will be used as the distribution reservoir of the project.

#### b) Others

| Fac              | ilities           | Type<br>of pipe | Diameter<br>of pipe | Quantity             |
|------------------|-------------------|-----------------|---------------------|----------------------|
| Distr            | ibution pipe<br>" | PVC<br>"        | 50 mm<br>75 mm      | 17,200 m<br>10,300 m |
|                  | <b>11</b>         | 11              | 100 mm              | 14,000 m             |
|                  | H                 | f3              | 150 mm              | 2,000 m              |
| Public<br>(Kiosl | c standpipe<br><) |                 |                     | 26 unit              |

For the detail, see 3.1.

#### **3.3 DESIGN OF SYSTEM 2**

(1) Well

1) Location

The potential areas to be developed are presented in "Classification of Groundwater Development Potential".

However, the drilling locations of wells should be determined at the most prospective points selected through the field geological survey including geophysical prospecting, at implementation stage of the Project.

2) Well Screen

The length of well screens required for the new wells is determined, based upon both the conditions of aquifers to be penetrated and the structure of wells, as follows:

The relationships among the screen length (1) and pumping rate (Q) etc. are expressed by formula below:

- $1 = Q / (2 \times r \times V)$ 
  - Q : Pumping rate
  - r : Radius of screens (3" = 75 mm)
    - : Unit opening area of screen (15%)
  - 1 : Screen length (m)
  - V : Critical inflow velocity (2.8 mm/sec = 0.168 m/min - lower limit of very fine sand)

The calculation of screen length for motor pump well is:

1 = Q/(2 x 75 mm x 15% x 0.168) Q : 85 liter - 150 liter/min 1 = 7.2 - 12.6 m

According to the above calculation, the required screen length is more than 8 m at lowest discharge charge.

#### 3) Well Structure

The hydrogeological conditions at shallow groundwater development area are that unconfined groundwater is expected in upper subsurface portion consisting alluvium of 20 m and underlying weathered rock of 40 m in thickness. The groundwater Table is estimated at 20 m-GL and design drawdown at pumping duration is considered to be 10 m. Thus, 60 m of well depth is recommended. Through the unconfined aquifer to depth of 60 m, a diameter of 6" (150 mm) is considered to be suitable on account of size of installed pumping facilities and capacity of drilling rig. Since the filter thickness (gravel pack) is required over 40 mm, drilling diameter should be more than 230 mm (9 1/2").

In addition, as groundwater in upper subsurface of 20 -30 m may be contaminated by surface water, the upper portion of the wells should be sealed by complete cementation.

The well structure is presented in DRAWINGS of Volume IV.

(2) Pump

#### 1) Required Facilities

Proposed pump facilities of System 2 installation area are listed as below:

| Name of<br><u>Block</u> | Pow<br>Num | ping rate<br>er Load a<br>ber of pu | and<br>umps                                                                                                     | Power source       |
|-------------------------|------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|
|                         | 1/m        | in k                                | w set                                                                                                           |                    |
| KAYONZA-1               | 100        | x 7.5                               | x 1                                                                                                             | Existing electric  |
|                         | 100 C      |                                     | ta di secondo di second | Service            |
| KAYONZA-2               | 120        | x 11                                | x 1                                                                                                             | <b>u</b>           |
| RUTONDE                 | 100        | х 5.5                               | x 1                                                                                                             | Generator 12.5 KVA |
| KABARONDO               | 85         | x 7.5                               | ж 2                                                                                                             | Existing electric  |
|                         |            |                                     |                                                                                                                 | Service            |
| BIRENGA                 | 115        | x 11                                | x 1                                                                                                             | 11                 |
| RUSUMO-1                | 85         | x 7.5                               | x 2                                                                                                             | Generator 37 KVA   |
| RUSUMO-2                | 110        | x 11                                | x 2                                                                                                             | " 37 KVA           |
| RUSUMO-3                | 85         | x 7.5                               | x 2                                                                                                             | " 37 KVA           |
|                         |            |                                     |                                                                                                                 |                    |

The pump selection procedure is presented in the followings.

The location, structure and dimensions of pump facilities are shown on DRAWINGS of Volume IV.

#### 2) Selection of Pump Facilities

a) Type of Pumping Facility

Submersible motor pump will be installed as a pumping facilities \*\*\* wells because the pump is fitted to higher lifting due to the structure.

The required head and discharge capacity are given as below:

| Name of<br><u>Block</u> | Pumped<br>Capacity<br>(1/min) | Total<br>Heads<br>(m) |
|-------------------------|-------------------------------|-----------------------|
| KAYONZA-1               | 80.1                          | 180                   |
| KAYONZA-2               | 64.1                          | 220                   |
| RUTONDE                 | 64.4                          | 125                   |
| KABARONDO               | 106.5                         | 185                   |
| BIRENGA                 | 62.1                          | 220                   |
| RUSUMO-1                | 136.7                         | 180                   |
| RUSUMO-2                | 159.0                         | 250                   |
| RUSUMO-3                | 136.2                         | 185                   |

#### b) Capacity

Pumping Rate

Pumping rate of well pumps are determined, based upon daily safe yields (102 m3/day) of shallow well. Thus, the pumping rate can be calculated by the maximum daily demand (m3/day) within safe yields divided by design pumping duration of 24 hours.

Required pumping rate therefore, is based upon the following conditions:

. Max. Daily Demand < Safe Yield Pumping Rate = Max. Daily Demand/24 hr

Max. Daily Demand > Safe Yield
 Pumping Rate = Max. Daily Demand/n/24 hr

Where,

n = Max. Daily Demand/Safe Yield
(n : raise to an integral number)

#### <u>Head</u>

Required heads for pumps are calculated in accordance with the following formula:

Total head = Actual head + Pipeline head loss

The results of the head calculation with the respective pumps employed are presented in the table below:

|  | CALCULATION | OF | SUBMERG1BLE | PUMP | TYPE |
|--|-------------|----|-------------|------|------|
|--|-------------|----|-------------|------|------|

| SERVICE<br>Block | WATER<br>DIMAND | PUMP<br>CAPACITY | REFERENCE<br>PLANE | SUCTION<br>LEVEL | DI SCHARGE<br>LEVEL | TRANS-<br>MISSION |          |      | CALCURATED<br>TOTAL HEAD | TOTAL<br>HEAD |
|------------------|-----------------|------------------|--------------------|------------------|---------------------|-------------------|----------|------|--------------------------|---------------|
| NAME             | (m3/day)        | (m3/min)         | (m)                | (m)              | (n)                 | LINE (m)          | LINE (m) | (m)  | LOSS (11)                | <b>(</b> m)   |
| KAYONZA-1        | 115.5           | 0. 080           | 1, 455             | 1, 425           | 1,600               | 506               | 1. 31    | 2.00 | 178.31                   | 180           |
| KAYONZA-2        | 92.3            | 0.064            | 1, 450             | 1, 420           | 1,625               | 260               | 0.44     | 2.00 | 207.44                   | 220           |
| RUTONDE          | 92.8            | 0.064            | 1, 450             | 1, 420           | 1, 540              | 796               | 1. 38    | 2.00 | 123.38                   | 125           |
| KABARONDO        | 153.5           | 0.107            | 1, 430             | 1, 400           | 1, 580              | 600               | 2.63     | 2.00 | 184.63                   | 185           |
| BIRENGA          | 89.5            | 0.062            | 1, 420             | 1, 390           | 1,605               | 950               | 1.53     | 2.00 | 218.53                   | 220           |
| RUSUMO1          | 196.8           | 0.137            | 1, 465             | 1, 435           | 1,600               | 1, 290            | 8.95     | 2.00 | 175.95                   | 180           |
| RUSUMO-2         | 228. 9          | 0.159            | 1, 550             | 1, 520           | 1, 755              | 1, 365            | 12.53    | 2.00 | 249.53                   | 250           |
| RUSUMO-3         | 196.1           | 0.136            | 1, 405             | 1, 375           | 1, 550              | 714               | 4. 92    | 2.00 | 181. 92                  | 185           |

OPERATION TIME : 24hr/day

For the calculation, the low water levels at the wells during pumping are assumed as 30 m below from ground-surface.

#### 3) Selection of Pump

Based on required discharge and head, pump facilities are selected using pump selection diagram (Fig. M.8).

### 4) Design Pumping Rate and Duration

The design pumping rate is 70 to 80% of maximum potential in order to plan a shorter pumping duration.

The pump types, design pumping rate and pumping duration at design rate are obtained as Table below:

| Name of<br>Block |          | rDischarge     | llead      | No. | Load        | Max            | Design         | Pumping     |
|------------------|----------|----------------|------------|-----|-------------|----------------|----------------|-------------|
| DIOCK            | demand   | Capacity       |            |     | 1.1         | Potential      |                | Juration at |
|                  | 144 6 01 |                |            |     |             |                | Rate I         | )esign Rate |
|                  | (115%)   | <u>(1/min)</u> | <u>(m)</u> |     | <u>(kw)</u> | <u>(1/min)</u> | <u>(1/min)</u> | (hr)        |
| KAYONZA-1        |          | 80.1           | 180.0      | . 1 | 7.5         | 130.0          | 100.0          | 19.2        |
| KAYONZA-2        | 92.3     | 64.1           | 220.0      | 1   | 11.0        | 150.0          | 120.0          | 12.8        |
| RUTONDE          | 92.8     | 64.4           | 125.0      | 1   | 5.5         | 130.0          | 100.0          | 15.5        |
| KABARONDO        | 153.3    | 106.3          | 185.0      | 2   | 7.5         | 110.0          | 85.0           | 15.0        |
| BIRENGA          | 89.5     | 62.2           | 220.0      | 1   | 11.0        | 145.0          | 115.0          | 13.0        |
| RUSUMO-1         | 196.8    | 136.6          | 180.0      | 2   | 7.5         | 110.0          | 85.0           | 19.3        |
| RUSUMO-2         | 228.9    | 159.0          | 250.0      | 2   | 11.0        | 140.0          | 110.0          | 17.3        |
| <u>RUSUMO-3</u>  | 196.1    | 136.2          | 185.0      | 2   | 7.5         | 110.0          | 85.0           | 19.2        |
| TOTAL            | 1165.1   | 808.9          |            | 12  | 68.5        |                |                |             |

Other related facilities; i.e. transmission pipe, distribution reservoir, distribution pipe and public standpipe, are designed using same manner of System 1.

#### 3.4 DESIGN OF SYSTEM 3(MANUAL PUMP WELL)

(1) Well

1) Location

The drilling locations of wells should be also determined through the field geophysical prospecting as same as the motor pump well of System-2, at the Project implementation stage.

2) Well Screen

The screen length is also calculated using the formula below mentioned in Section 2.4.

1 = Q/(2 x 50 mm x 15% x 0.168) Q : 1.4 m3/hr = 23.5 1/min 1 = 3.0 m

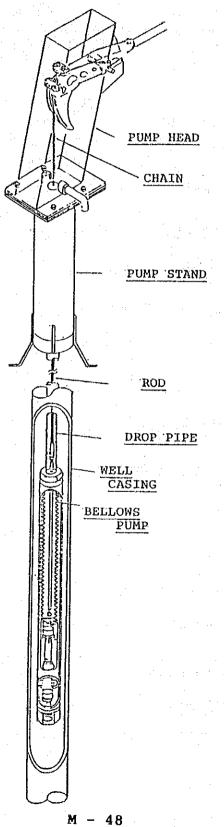
According to the calculation, screen length of more than 3.0 m is required for manual pump wells of System 3.

3) Well Structure

The hydrogeological conditions at the recommended well sites are similar to those of motor wells of System 2.

The design drawdown is estimated between 7.0 and 9.0 m as Table below. Therefore, 50 m of well depth is suitable for manual pump installation. However, wells in "Sb" of groundwater development class is recommended. 60 m deep to intake deeper groundwater, because of bad water qualities within upper subsurface.

| Well | Well             | Borehole | Static             | Dynamic            |
|------|------------------|----------|--------------------|--------------------|
| Type | <u>Condition</u> | depth    | <u>Water level</u> | <u>Water level</u> |
| I    | Sa,Sb,Sc         | 50 m     | GL-20.0 m          | GL-27.5 m          |
| II   | Sd               | 60 m     | GL-20.0 m          | GL-30.0 m          |


A diameter of 4" (100 mm) is proposed on account of size of pumping facilities. As filter thickness (gravel pack) is required more than 30 mm, drilling diameter should be over 160 mm (6-2/5").

According to the same conditions of groundwater contamination in upper subsurface as System-2 motor pump wells, the upper portion of the wells should be sealed by complete cementation.

The well structure is given in DRAWINGS of Volume IV.

# (2) Manual Pump of System 3

NISSAKU's handpump is selected for the Project. The structure, dimensions, etc are shown in the followings.



\_

## 3.5 DESIGN OF SYSTEM 4

The material of System 4(ROOF CATCHMENT FACILITIES) for one household will be given as the followings.

|                        | Quantity   | Amount(FRW) |
|------------------------|------------|-------------|
| Steel fuel tank (used) | 3 unit     | 6,000       |
| Collection pipe        | 5 m        | 5,000       |
| Gutter                 | <u>3 m</u> | 900         |
| Total                  |            | 11,900      |

At the Stage, only "Extension Program of Supplying /Financing" for System 4 is recommended.

M – 49

TOTAL (BIRENGA) System-1 System-2 System-3 System-4 POPULATION AREA POPULATION AREA POPULATION AREA AREA POPULATION AREA POPULATION BARE 0.0 0 0.0 8.8 1, 237 0.0 0 8.8 1,237 0 0.0 1,802 0 9.0 1, 351 10.7 19:7 3, 153 BIRENGA 0.0 0 2,060 5, 769 GAHARA 0.0 0 0.0 0 26.0 3, 709 15.6 41.6 **GAHULIRE** 0.0 0 0.0 3.8 1, 512 0.0 0 3.8 1,512 0 GASHONGORA 0.0 0 2,231 0.0 0 11.6 2, 231 0.0 0 11.6 0.0 7.0 3, 570 KIBAYA 0.0 0 0.0 0 7.0 3, 570 0 0\_ 0 0 0.0 0 0.0 **KIBARA** 0.0 0.0 0 0.0 1, 522 0 0.0 0 0.0 6. 9 0.0 6.9 1, 522 **KIBIMBA** 0 0 0 0 0.0 **KIBUNGO** 0.0 0.0 0 0.0 0 0.0 MATONGO 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 NDAMIRA 0.0 0 9.3 3, 588 0.0 0 0.0 0 9.3 3, 588 SAKARA 0.0 0 0.0 0 5.3 2, 110 0.0 0 5.3 2 110 TOTAL 0.0 0 9.3 3, 588 78.4 17, 242 26.3 3,862 114.0 24,692

|           | :        |         |      |            |              | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |              |            |       |            |
|-----------|----------|---------|------|------------|--------------|-----------------------------------------|--------------|------------|-------|------------|
| (RUSUMO)  | System   | -1      | Sys  | tem-2      | Sy           | stem-3                                  | Sy           | stem-4     | TO    | ral        |
|           | AREA POP | ULATION | AREA | POPULATION | AREA         | POPULATION                              | AREA         | POPULATION | AREA  | POPULATION |
| GATORE    | 0.0      | 0       | 6.4  | 3, 285     | 17.5         | 3, 285                                  | 11.6         | 1, 641     | 35.5  | 8, 211     |
| GISENYI   | 0.0      | 0       | 0.0  | 0          | 0.0          | 0                                       | 0.0          | 0          | 0.0   | 0          |
| KANKOBWA  | 0.0      | 0       | 0.0  | 0          | 117.6        | 4,847                                   | <u>55. 7</u> | 7,109      | 173.3 | 11, 956    |
| KIGARAMA  | 0.0      | 0       | 0.0  | 0          | 15.8         | 3, 361                                  | 32.2         | 5,041      | 48.0  | 8, 402     |
| KIGINA    | 0.0      | 0       | 0.0  | 0          | <u>22.</u> 0 | 5, 838                                  | 5. 7         | 730        | 27.7  | 6, 568     |
| KIREHE    | 0.0      | 0       | 8.6  | 4,015      | 6.7          | 2, 149                                  | 0.0          | 0          | 15.3  | 6, 164     |
| MUSAZA    | 0.0      | 0       | 0.0  | 0          | 30.4         | 6, 978                                  | 18.1         | 3, 489     | 48.5  | 10.467     |
| NYABITARE | 0.0      | 0       | 0.0  | 0          | 9. 9         | 5, 177                                  | 16.2         | 864        | 26.1  | 6,041      |
| NYAMUGALI | 0.0      | 0       | 21.3 | 7, 278     | 17.6         | 1,679                                   | 39.5         | 0          | 78.4  | 8,957      |
| NYARUBUYE | 0.0      | 0       | 13.8 | 8, 292     | 27.7         | 3, 455                                  | 23.0         | 690        | 64.5  | 12,437     |
| TOTAL     | 0.0      | 0       | 50.1 | 22, 870    | 265.2        | 36, 769                                 | 202.0        | 19, 564    | 517.3 | 79, 203    |

|           |          |            |       |            |        |            | - 1. L       | 100 A.     | 1      |                |
|-----------|----------|------------|-------|------------|--------|------------|--------------|------------|--------|----------------|
|           | System-1 |            | Sy    | System-2   |        | System-3   |              | stem-4     |        | <b>FAL</b>     |
| COMMUNE   | AREA     | POPULATION | AREA  | POPULATION | AREA   | POPULATION | AREA         | POPULATION | AREA   | POPULATION     |
| BIRENGA   | 0.0      | 0          | 9.3   | 3, 588     | 78.4   | 17, 242    | 26.3         | 3, 862     | 114.0  | 24,692         |
| KABARONDO | 0.0      | 0          | 15.7  | 5, 956     | 33.7   | 10, 173    | 40.0         | 5,092      | 89.4   | 21.221         |
| KAYONZA   | 0.0      | 0          | 21.1  | 7, 882     | 63.1   | 14, 423    | <u>96. 9</u> | 4, 453     | 181.1  | 26, 758        |
| KIGARAMA  | 0.0      | 0          | 0.0   | 00         | 142.9  | 26, 231    | 30.2         | 3,632      | 173.1  | 29,863         |
| MUGESERA  | 0.0      | 0          | 0.0   | 0          | 127.4  | 51,802     | 0,0          | 0          | 127.4  | 51,802         |
| MUHAZ I   | 39.9     | 21,944     | 0.0   | 0          | 0.0    | 0          | 0.0          | 0          | 39.9   | 21, 944        |
| RUKARA    | 0.0      | 0          | 0.0   | 0          | 158.4  | 27, 428    | 47.4         | 8, 566     | 205.8  | 35, 994        |
| RUKIRA    | 0.0      | 0          | 0,0   | 0          | 48.5   | 7,682      | 41.1         | 3, 959     | 89.6   | 11,641         |
| RUSUMO    | 0.0      | 00         | 50.1  | 22,870     | 265.2  | 36,769     | 202.0        | 19, 564    | 517.3  | 79, 203        |
| RUTONDE   | 0.0      | 0          | 6.0   | 3, 720     | 24.1   | 8,839      | <u>3. 1</u>  | 902        | 33.2   | 13, 461        |
| SAKE      | 54.1     | 33, 865    | 0,0   | 0          | 68.2   | 19, 255    | 0.0          | 0          | 122.3  | <u>53, 120</u> |
| TOTAL     | 94.0     | 55, 809    | 102.2 | 44,016     | 1009.9 | 219, 844   | 487.0        | 50,030     | 1693.1 | 369, 699       |
|           |          |            |       |            |        |            |              |            |        |                |

(continue)

|                      |        |             |       |                                        |                  | . <u></u>  |         |               | (1)(1)      | DA (                                                               |
|----------------------|--------|-------------|-------|----------------------------------------|------------------|------------|---------|---------------|-------------|--------------------------------------------------------------------|
| (RUKARA)             |        | <u>em-1</u> |       | stem-2                                 |                  |            |         | stem-4        |             | TAL DODULATION                                                     |
| A11111               |        | OPULATION   | AREA  | POPULATION                             | AREA             | POPULATION | AREA    | POPULATION    | AREA        | POPULATION                                                         |
| GAHINI               | 0.0    | 0           | 0.0   | <u> </u>                               | 5.8              | 3, 827     | 0.0     |               | 5.8         | 3, 827                                                             |
| KAWANGIRE            | 0.0    | 0           | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 0.0         | 0                                                                  |
| KIYENZI              | 0.0    | 0           | 0.0   | 0                                      | <u>    10. 6</u> | 3, 511     | 4.5     | <u>1, 505</u> | 15.1        | 5,016                                                              |
| NYAKABUNGO           | 0.0    | 0           | 0.0   | 0                                      | 17.6             | 2,345      | 13.2    | 1,698         | 30.8        | 4,043                                                              |
| NYAWERA              | 0.0    | 0           | 0.0   | 0                                      | 30,0             | 4,024      | 13.1    | 1, 724        | 43.1        | 5, 748                                                             |
| RUKARA               | 0.0    | 0           | 0.0   | 0                                      | 28.0             | 6,677      | 3.0     | 921           | <u>31.0</u> | 7, 598                                                             |
| RWIMISHINYA          | 0.0    | 0           | 0.0   | 0                                      | 12.2             | 3, 594     | 6.1     | 2, 248        | 18.3        | 5,842                                                              |
| RYAMANYONI           | 0.0    | 0           | 0.0   | 0                                      | <u>54. 2</u>     | 3,450      | 7.5     | 470           | 61.7        | 3, 920                                                             |
| TOTAL                | 0.0    | 0           | 0.0   | 0                                      | 158.4            | 27, 428    | 47.4    | 8, 566        | 205.8       | 35, 994                                                            |
|                      |        |             |       |                                        |                  |            |         |               |             |                                                                    |
|                      |        | 1 - 1 X     | 1 e.e |                                        | 1.1.1            |            | 11.<br> |               | 1<br>1 - 11 | an an taon taon 1997.<br>Ang ang ang ang ang ang ang ang ang ang a |
| (MUHAZI)             | Syst   | em-1        | Sv    | stem-2                                 | Sv               | stem-3     | Sv      | stem-4        | TO          | TAL                                                                |
|                      |        | OPULATION   | AREA  | POPULATION                             | AREA             | POPULATION | AREA    | POPULATION    | AREA        | POPULATION                                                         |
| GATI                 | 0.0    | 0           | 0.0   |                                        | 0.0              | 0          | 0.0     | 0             | 0.0         | 0                                                                  |
| GISHALI              | 0.0    | 0           | 0.0   | 0                                      | 0.0              | 0          | 0.0     | ···           | 0.0         | 0                                                                  |
| KABARE               | 7.5    | 4, 873      | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 7.5         | 4,873                                                              |
| AZIGURWA             | 7.5    | 4, 428      | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 7.5         | 4, 428                                                             |
| MUKARANGE            | 5.6    | 3, 628      | 0.0   | 0                                      | 0.0              | 0          | 0.0     |               | 5.6         | 3, 628                                                             |
| MUNYIGINYA           | 0.0    | 0           | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 0.0         | 0                                                                  |
| MURANBI              | 10.7   | 5, 200      | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 10.7        | 5, 200                                                             |
| NKOMANGWA            | 0.0    | 0           | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0.            | 0.0         | 0                                                                  |
| NYAGATOVU            | 8.6    | 3, 815      | 0.0   | <u>_</u>                               | 0.0              | 0          | 0.0     | 0             | 8.6         | 3, 815                                                             |
| NYARUBUYE            | 0.0    | 0           | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 0.0         | 0                                                                  |
| NYARUGARI            | 0.0    | 0           | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 0.0         | 0                                                                  |
| RUHUNDA              | 0.0    | Ő           | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 0.0         | 0                                                                  |
| TOTAL                | 39.9   | 21, 944     | 0.0   | 0                                      | 0.0              | 0          | 0.0     | 0             | 39.9        | 21, 944                                                            |
|                      |        |             |       |                                        |                  |            |         |               |             |                                                                    |
| .:                   | -<br>- |             |       |                                        |                  |            |         |               |             |                                                                    |
|                      |        |             |       |                                        |                  |            |         |               |             |                                                                    |
| (MUGESERA)           |        | .em-1       |       |                                        |                  | stem-3     |         | sten-4        |             | TAL DODUL LELON                                                    |
|                      |        | OPULATION   | AREA  | POPULATION                             | AREA             | POPULATION | AREA    | POPULATION    | AREA        | POPULATION                                                         |
| CYIZIHIRA            | 0.0    | 0           | 0.0   | 0                                      | 8.3              | 4, 199     | 0.0     |               | 8.3         | 4, 199                                                             |
| CATARE               | 0.0    | 0           | 0.0   | 0                                      | 13.8             | 4,311      | 0.0     |               | 13.8        | 4,311                                                              |
| KAGASHI              | 0.0    | 0           | 0.0   | 0                                      | 18.3             | 5, 137     | 0.0     |               | 18.3        | 5,137                                                              |
| KAREMBO              | 0.0    | 0           | 0.0   | 0                                      | 0.9              | 614        | 0.0     |               | 0.9         | 614                                                                |
| ARE                  | 0.0    | 0           | 0.0   |                                        | 7.4              |            | 0.0     |               | 7.4         |                                                                    |
| <u>KIBIL1Z1-1, 2</u> | 0.0    | 0           | 0.0   |                                        | 10.4             | 5,169      | 0.0     |               | 10.4        |                                                                    |
| KIRAMBO              | 0.0    | 0           | 0.0   |                                        | 9.0              |            | 0.0     |               | 9.0         | 3, 584                                                             |
| KUKABUYE             | 0.0    |             | 0.0   |                                        | 4.3              |            | 0.0     |               | 4.3         |                                                                    |
| MATONGO              | 0.0    | 0           | 0.0   |                                        | 4.4              | 3,726      | 0.0     |               | 4.4         | 3, 126                                                             |
| NGARA                | 0.0    | 0           | 0.0   |                                        | 8.8              |            | 0.0     |               | 8.8         |                                                                    |
| NYANGE               | 0.0    | 0           | 0.0   |                                        | <u>17.1</u>      | 3, 105     | 0.0     |               | <u> </u>    | 3,105                                                              |
| SANGAZA              | 0.0    | 0           | 0.0   | ······································ | 13.8             |            | 0.0     |               | 13.8        |                                                                    |
| SHYWA                | 0.0    | 0           | 0.0   |                                        | 7.0              |            | 0.0     |               | 7.0         |                                                                    |
| ZAZA                 | 0.0    | 0           | 0.0   |                                        | 3.9              |            | 0.0     |               | 3.9         |                                                                    |
| TOTAL                | 0.0    | 0           | 0.0   | 0                                      | 127.4            | 51,802     | 0.0     | 0             | 127.4       |                                                                    |
| . • :                |        | 44 - F      |       |                                        |                  |            |         |               |             | (continue)                                                         |

(continue)

## Table M.1 (3)

|           |      |            |      |              |       |            |      |             |       | and the second second second |
|-----------|------|------------|------|--------------|-------|------------|------|-------------|-------|------------------------------|
| (SAKE)    | Sy   | stem-1     | Sys  | tem-2        | Sys   | stem-3     | Sys  | stem-4      | TOT   | `AL                          |
|           | AREA | POPULATION | AREA | POPULATION   | AREA  | POPULATION | AREA | POPULATION  | AREA  | POPULATION                   |
| GITUZA    | 12.0 | 5, 083     | 0.0  | a 1 <b>0</b> | 0.0   | 0          | 0.0  | 0           | 12.0  | 5, 083                       |
| MABUGA-1  | 6.7  | 4, 329     | 0.0  | 0            | 0.0   | 0          | 0.0  | . <u>10</u> | 6.7   | 4, 329                       |
| MABUGA-2  | 6.3  | 4, 174     | 0.0  | 0            | 0.0   | 0          | 0.0  | 0           | 6.3   | 4, 174                       |
| MBUYE     | 0.0  | 0          | 0, 0 | 0            | 6.2   | 2,010      | 0.0  | 0           | 6.2   | 2,010                        |
| MURWA     | 0.0  | 0          | 0.0  | 0            | 31, 6 | 5,666      | 0.0  | 0           | 31.6  | 5,666                        |
| NGOMA     | 6.1  | 2, 974     | 0.0  | 0            | 0.0   | 0          | 0 0  | 0           | 6.1   | 2, 974                       |
| NSHILI-1  | 8.0  | 6,038      | 0.0  | 0            | 0.0   | 0          | 0.0  | 0           | 8.0   | 6,038                        |
| NSHILI-2  | 2.7  | 1, 926     | 0.0  | 0            | 0.0   | 0          | 0.0  | 0           | 2.7   | 1, 926                       |
| RUBAGO    | 8.5  | 5, 366     | 0.0  | 0            | 0.0   | 0          | 0.0  | 0           | 8.5   | 5, 366                       |
| RUKUMBERI | 0.0  | 0          | 0.0  | 0            | 16.0  | 6, 058     | 0.0  | 0           | 16,0  | 6,058                        |
| RUYEMA-1  | 1.3  | 1, 553     | 0.0  | 0            | 0.0   | 0          | 0.0  | 0           | 1.3   | 1, 553                       |
| RUYEMA-2  | 2.5  | 2, 422     | 0.0  | 0            | 0.0   | 0          | 0.0  | 0           | 2.5   | 2, 422                       |
| SHOLI     | 0.0  | 0          | 0.0  | 0            | 14.4  | 5, 521     | 0.0  | 0           | 14.4  | 5, 521                       |
| TOTAL     | 54.1 | 33,865     | 0.0  | 0            | 68.2  | 19, 255    | 0.0  | 0           | 122.3 | 53, 120                      |

| and the second second |      | 1. A. |      |            |              | 1.4<br>1.5 |      |            |              |            |
|-----------------------|------|-------------------------------------------|------|------------|--------------|------------|------|------------|--------------|------------|
| (KAYONZA)             | Sys  | stem-1_                                   | Sys  | tem-2      | Sy           | stem-3     | Sy   | stem-4     | TO           | ſAL        |
|                       | AREA | POPULATION                                | AREA | POPULATION | AREA         | POPULATION | AREA | POPULATION | AREA         | POPULATION |
| GASOGI                | 0.0  | 0                                         | 0.0  | 0          | 11.1         | 2, 617     | 3.3  | 1, 122     | <u>14. 4</u> | 3, 739     |
| KAYONZA               | 0.0  | 0                                         | 12.9 | 4, 374     | 0.0          | 0          | 0.0  | 0          | 12.9         | 4, 374     |
| MBURABUTURO           | 0.0  | 0                                         | 0.0  | 0          | 7.7          | 1, 932     | 1.9  | 828        | 9.6          | 2, 760     |
| MUSUMBA               | 0.0  | 0                                         | 0.0  | 0          | 8.6          | 1, 471     | 10.7 | 1,831      | 19.3         | 3, 302     |
| NYAMIRAMA             | 0.0  | .0                                        | 5.3  | 1, 403     | 13.5         | 3, 285     | 0.0  | 0          | 18.8         | 4, 688     |
| RUTARE                | 0.0  | 0                                         | 0.0  | 0          | 12.6         | 3, 267     | 0.0  | 0          | 12.6         | 3, 267     |
| RWINKWAVU             | 0.0  | 0                                         | 0.0  | 0          | 5.3          | 448        | 81.0 | 672        | 86.3         | 1, 120     |
| SHYOGO                | _0.0 | 0                                         | 2.9  | 2, 105     | 4.3          | 1, 403     | 0.0  | 0          | 7.2          | 3, 508     |
| TOTAL                 | 0.0  | 0                                         | 21.1 | 7,882      | <u>63. 1</u> | 14, 423    | 96.9 | 4, 453     | 181.1        | 26, 758    |
|                       |      |                                           |      |            |              |            |      |            | :            |            |
|                       |      | 1. C                                      |      |            |              |            |      |            |              |            |

| (RUTONDE)  | Sys  | stem-1     | Sys  | stem-2     | Sy   | stem-3     | Sy   | stem-4     | TO       | TAL CONTRACT |
|------------|------|------------|------|------------|------|------------|------|------------|----------|--------------|
|            | AREA | POPULATION | AREA | POPULATION | AREA | POPULATION | AREA | POPULATION | AREA     | POPULATION   |
| KADUHA     | 0.0  | 0          | 0.0  | 0          | 4.6  | 1, 339     | 3.1  | 902        | 1.1      | 2, 241       |
| KIGABIRO   | 0.0  | 0          | 0.0  | 0          | 0.0  | 0          | 0.0  | 0          | 0.0      | 0            |
| NKUNGU     | 0.0  | 0          | 0.0  | 0          | 0.0  | 0          | 0.0  | 0          | 0.0      | 0            |
| NSHINDA    | 0.0  | 0          | 0.0  |            | 0.0  | 0          | 0.0  | 0          | 0.0      | 0            |
| NYARUSANGE | 0.0  | 00         | 0.0  | 0          | 0.0  | 0          | 0.0  | 0          | 0.0      | 0            |
| RUTONDE    | 0.0  | 0          | 0.0  | 0          | 9.8  | 3, 326     | 0.0  | 0          | 9.8      | 3, 326       |
| RWERU      | 0.0  | 0          | 6.0  | 3, 720     | 1.5  | 930        | 0.0  | 0          | 7.5      | 4,650        |
| RWIKUBO    | 0.0  | 0          | 0.0  | 0          | 0.0  | 0          | 0.0  | 0          | 0.0      | 0            |
| SOVU       | 0.0  | 0          | 0.0  | .0         | 8.2  | 3, 244     | 0.0  | 0          | 8.2      | 3, 244       |
| TOTAL      | 0.0  | 00         | 6.0  | 3,720      | 24.1 | 8,839      | 3.1  | 902        | <u> </u> | 13, 461      |

(continue)

## Table <u>M.1</u> (4)

| ÷ |               | · .      |           | ·    |            |                                       |                                       |            |            |      | Table      |
|---|---------------|----------|-----------|------|------------|---------------------------------------|---------------------------------------|------------|------------|------|------------|
| ÷ |               | · [. · . |           |      |            |                                       |                                       |            | ·          |      |            |
|   | (KABARONDO)   | Syst     | em-1      | Sys  | stem-2     | Sys                                   | stem-3                                | Sy         | stem-4     | TO   | ΓAL.       |
|   |               | AREA P   | OPULATION | AREA | POPULATION |                                       | POPULATION                            | AREA       | POPULATION | AREA | POPULATION |
|   | BISENGA       | 0.0      | 0         | 0.0  | 0          | 9.2                                   | 2, 223                                | 7.1        | 1, 110     | 16.3 | 3, 333     |
|   | CYINZOVU      | 0.0      | 0         | 0.0  | 0          | 0.0                                   | . 0                                   | 0.0        | 0          | 0.0  | 0          |
|   | KABARONDO     | 0.0      | 0         | 0.0  | 0          | 0.0                                   | 0                                     | 0.0        | 0          | 0.0  | 0          |
|   | MURAMA        | 0.0      | 0         | 0.0  | 0          | 4.6                                   | 941                                   | 14.8       | 1, 412     | 19.4 | 2, 353     |
|   | <u>NKAMBA</u> | 0.0      | 0         | 3.7  | 1, 447     | 2.5                                   | 934                                   | 0.0        | 0          | 6.2  | 2, 381     |
|   | RUBIRA        | 0.0      | 0         | 0.0  | 0          | 0.0                                   | 0                                     | 0.0        | 0          | 0.0  | 0          |
|   | RUKIRA        | 0.0      | 0         | 0.0  | 0          | 0.0                                   | 0                                     | 0.0        | 0          | 0.0  | 0          |
|   | RUNDU         | 0.0      | 0         | 0.0  | 0          | 0.0                                   | 0                                     | 0.0        | 0          |      |            |
|   | RURAMIRA      | 0.0      | 0         | 6.5  | 1, 914     | 6.5                                   | 1, 914                                | 0.0        | 0          | 13.0 | 3, 828     |
|   | RUSERA        | 0.0      | 0         | 0.0  | 0          | 5.9                                   | 2, 159                                | 2.9        | 1,064      | 8.8  | 3, 223     |
|   | RUYONZA       | 0.0      | 0         | 5.5  | 2, 595     | 2.3                                   | 1, 115                                | 0.0        | 0          | 7.8  | 3, 710     |
|   | SHYANDA       | 0.0      | 0         | 0.0  | 0          | 2.7                                   | 887                                   | 15.2       | 1, 506     | 17.9 | 2, 393     |
|   | TOTAL         | 0.0      | 0         | 15.7 | 5,956      | 33.7                                  | 10, 173                               | 40.0       | 5,092      | 89.4 | 21, 221    |
|   | 4             |          |           |      |            | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | <u>x</u> _ |            |      | NAL HOL    |

|            |      | · · · · · · · · · · · · · · · · · · · | 10.1 |                                           |       | 10,110     | 40.0 | 0,036      | 09.4  | 61,641                  |
|------------|------|---------------------------------------|------|-------------------------------------------|-------|------------|------|------------|-------|-------------------------|
|            |      |                                       |      |                                           |       | · .        |      |            |       |                         |
|            | :    |                                       |      | en an |       |            |      |            |       | angan dari<br>Baran Sar |
| (KIGARAMA) |      | stem-1                                | Sys  | stem-2                                    | Sy    | stem-3     | Sys  | ten-4      | TOT   | AL                      |
|            | AREA | POPULATION                            | AREA | POPULATION                                | AREA  | POPULATION |      | POPULATION |       | POPULATION              |
| KWE        | 0.0  | 0                                     | 0.0  | 0                                         | 0.0   | 0          | 0.0  | 0          | 0.0   | 0                       |
| MISETSA    | 0.0  | 0                                     | 0.0  | 0                                         | 8.2   | 696        | 0.0  | 0          | 8.2   | 696                     |
| GASHANDA   | 0.0  | 0                                     | 0.0  | 0                                         | 10.1  | 2, 326     | 0.0  | 0          | 10.1  | 2, 326                  |
| KABARE-1   | 0.0  | 0                                     | 0.0  | . 0                                       | 9.3   | 1, 507     | 0.0  | 0          | 9.3   | 1, 507                  |
| KABARE-2   | 0.0  | 0                                     | 0.0  | · · 0 · ·                                 | 37.8  | 3, 370     | 16.6 | 1, 683     | 54.4  | 5, 053                  |
| KABERANGWE | 0.0  | 0                                     | 0.0  | 0                                         | 9.0   | 1, 714     | 0.0  | 0          | 9.0   | 1, 714                  |
| KANSANA    | 0.0  | 0                                     | 0.0  | 0                                         | 11.8  | 2, 395     | 0.0  | 0          | 11.8  | 2, 395                  |
| REMERA     | 0.0  |                                       | 0.0  | 0                                         | 9. 9  | 1, 748     | 2. 9 | 803        | 12.8  | 2, 551                  |
| RUBONA     | 0.0  | 0                                     | 0.0  | 0                                         | 10.7  | 6, 110     | 10.7 | 1, 146     | 21.4  | 7, 256                  |
| RURENGE    | 0.0  | 0                                     | 0.0  | 0                                         | 14.9  | 1, 924     | 0.0  | . 0        | 14.9  | 1, 924                  |
| VUMWE      | 0.0  | 0                                     | 0.0  | 0                                         | 21.2  | 4, 441     | 0.0  | 0          | 21.2  | 4, 441                  |
| TOTAL      | 0,0  | 0                                     | 0.0  | 0                                         | 142.9 | 26, 231    | 30.2 | 3, 632     | 173.1 | 29, 863                 |
|            |      |                                       |      |                                           |       |            |      |            |       |                         |

| Tomb      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>v</u> |      | V                  | 144. 3                                | 40, 401    | QU. Z | 3,034      | 113.1 | 29,863     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|--------------------|---------------------------------------|------------|-------|------------|-------|------------|
|           | ··· .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |      |                    |                                       |            |       |            |       |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      |                    |                                       |            |       |            |       |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |      | <u></u>            | · · · · · · · · · · · · · · · · · · · |            |       |            |       | -          |
| (RUKIRA)  | <u>System-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u> | Sys  | tem-2              | Sys                                   | stem-3     | Sys   | stem-4     | TO    | TAL        |
|           | AREA POPUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATION    | AREA | POPULATION         | AREA                                  | POPULATION | AREA  | POPULATION | AREA  | POPULATION |
| GASIRU    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  |                    | 8.3                                   | 1, 733     | 7.4   | 694        | 15.7  | 2, 427     |
| GITUKU    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  | 0                  | 0.0                                   | 0          | 2.5   | 595        | 2.5   | 595        |
| TWE       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  |                    | 9. 3                                  | 2,056      | 0.0   | 0          | 9.3   | 2,056      |
| MUBAGO    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  | 0                  | 0.0                                   | 0          | 0.0   | 0          | 0.0   | 0          |
| MURAMA    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  |                    | 0.0                                   | 0          | 0.0   | 0          | 0.0   | 0          |
| MUSHIKILI | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  | 0                  | 15.1                                  | 1, 786     | 11.3  | 1, 191     | 26.4  | 2, 977     |
| NTARUKA   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  | 0                  | 3.7                                   | 224        | 8.8   | 223        | 12.5  | 447        |
| RUGARAMA  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  | 0                  | 12.1                                  | 1,883      | 11.1  | 1, 256     | 23.2  | 3, 139     |
| RURAMA    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  | 15 gr <b>0</b> - 5 | 0.0                                   | 0          | 0.0   | 0          | 0.0   | 0          |
| RURENGE   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  | 0                  | 0.0                                   | 0          | 0.0   | 0          | 0.0   | 0          |
| TOTAL     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0        | 0.0  | 0                  | 48.5                                  | 7,682      | 41.1  | 3, 959     | 89.6  | 11,641     |
|           | and the second se |          |      |                    |                                       |            |       |            |       |            |

| Table             | Design Specified Water Dema                    | ind                                     |                       |                       |
|-------------------|------------------------------------------------|-----------------------------------------|-----------------------|-----------------------|
| No.               | Type of Consumpion                             | Vater                                   | Demand                | Remarks               |
| 1 10.             |                                                | Quantity                                | Unit                  |                       |
| 1                 | DOHESTIC CONSUMPTON                            | - uuunerer                              |                       |                       |
| 1.1               | Public Taps                                    |                                         |                       | llfamily              |
| 1.1.1             | Low Population Density                         | 80                                      | l/family/day          | =6persons             |
| 1.1.2             | High Population Density                        | 120                                     | l/family/day          |                       |
| 1.1.3             | Water Demand for Livestock                     | 10                                      | l/family/day          |                       |
| <u>[</u>          | Water Demand IVI LIVESLOCK                     | - <u> </u> !V                           | <u>17 (um) (17 uu</u> |                       |
| 1.2               | Individial House Connection                    |                                         |                       | <u> </u>              |
| 1.2               | a) water demand rate                           | 5 or 10                                 | ×                     | consumpt.             |
|                   | b) water demand                                | 240                                     | l/family/day          | per day_              |
| ]                 | i bi Hatei Uemanu                              | 240                                     | <u>ir iumiiir uui</u> |                       |
| 2                 | PUBLIC FACILITIES                              |                                         |                       |                       |
| 2.1               | Health                                         |                                         |                       |                       |
| 2.1.1             | llospital                                      | 15                                      | m3/day                | per 100bed            |
|                   | - water demand                                 | 150                                     | l/bed/day             |                       |
| 2.1.2             | Dispensary                                     | 1000                                    | l/day                 |                       |
| 2.1.3             | Haternity                                      | 150                                     | l/bed/day             | max. 20bed            |
|                   | llealth Center                                 | 6 or 10                                 | m3/day                |                       |
| 2.1.4             | Nutritional Center                             | 500                                     | l/day                 |                       |
| f <u>z. l. z</u>  |                                                | <u> </u>                                | <u> </u>              |                       |
| 2.2               | Education                                      |                                         |                       | 1                     |
|                   | Primary School                                 | 10                                      | l/student/day         | 1                     |
| 2.2.1             | Secondary School                               |                                         | 17 5 4 4 4 4 4 4 4    |                       |
| <u>L.L.L</u>      | - boarder                                      | 70                                      | l/student/day         | 1                     |
| ]                 | - student, outside                             | 10                                      | I/student/day         |                       |
| <u> </u>          |                                                | <u> </u>                                | 1/ Student/ uur       | and the second second |
| 0 0               | Coolol Inotitute                               |                                         |                       |                       |
| 2.3               | Social Institute<br>Vocational Training Center | 250                                     | l/day                 |                       |
| 2.3.1             |                                                | 250                                     | l/day                 | <u> </u>              |
| 2.3.2             | Public Hall                                    | 50                                      | l/pers/day            |                       |
| 2.3.3             | Youth Center                                   | 30                                      | l/pers/day            |                       |
| 2.3.4             | Orphanage                                      | <u> </u>                                | 1/ per 3/ udy         |                       |
| 0.4               | Administration                                 | ·   · · · · · · · · · · · · · · · · · · |                       |                       |
| 2.4               | Administration<br>Communal Bureau              | 500                                     | 1/day                 |                       |
|                   | Sectoral Bureau                                | 100                                     | I/day                 | -[                    |
| 2.4.2             |                                                | 500                                     | I/day                 | -                     |
| 2.4.3             | Sub Prefecture                                 | 200                                     | I/day                 |                       |
| 2.4.4             | Court                                          | 200                                     | <u> </u>              |                       |
| <u>ο</u> ε        | Athors                                         | <u>}</u>                                |                       |                       |
| 2.5               | Others                                         | * 0.5                                   | m3/day                | studying              |
| 2.5.1             | Church                                         | * 0.5                                   | <u>m3/day</u>         | studying              |
| 2.5.2             | Prison                                         | * 7.0                                   | l/occupant/day        |                       |
| 0.5.0             | - water demand                                 |                                         | /occupant/day         |                       |
| 2.5.3             | Kilitary Camp                                  | 100                                     | proceupanciady        | - <u> </u>            |
|                   |                                                |                                         | <b>}</b>              |                       |
| 3.                | CONHERCE/INDUSTRY                              | ·                                       | 1/464                 | see 1.1.2             |
| 3,1               | Business Center                                | *                                       | l/day                 | DEC 1.1.2             |
| 3.2               | <u>Market</u>                                  | 1000                                    | l/day                 | etuduina              |
| <u>3.3</u><br>3.4 | Artisan/small enterprise                       | <u>  *</u>                              | milday                | studying              |
| 3.4               | Slaughterhouse                                 | 1.5                                     | m3/day                | mavimum               |
|                   | <u>water demand</u>                            | 350                                     | I/animal/day          | maximum               |
| 3.5               | Tea Factory                                    | 55                                      | m3/ton                | hu aaaa               |
| 3.6               | Others                                         | * :                                     |                       | by case               |

PROPOSED WATER DEMAND OF SYSTEM-1

RESORVOIR 743.5 (300)(450)445.5 CAPACITY (m3) 91.2 79.5 83.9 27.0 42.0 <u>9</u>3. ] 66.1 95.2 91.2 DEMAND CAPACITY 104.3 618 (1/min) 2 ວີ. ວີ. 1, 032. é 92. 53. PUMP MAX WATER 114. 5 120.8 95. 2 60.5 134:0 77.6 38, 8 131.4 1, 487. 1 131.4 133.5 150.9 137.1 (115%) 596.0 110.1 51.7 891. 1, 293, 1 114.3 <u>9</u>9. 6 116.6 82.8 52. 6 74, 9 (m3/day) 44.5 119.3 33, 7 114.3 105. 1 518.2 19 31. 116. ц. Ц TOTAL WATER DEMAND (m3/day) PUBLIC 83.1 8. 6 0.0 3. 7 0.1 с. С 25.4 25.6 3, O 10. 6 5 . (0.13m3/f)52.5 734. 3. FAMILY 95.9 93.9 90. 5 64.5 130.9 1.210.0 105.7 82.7 110.2 116.4 33. 7 112.7 475.7 78. 41. 9.307 813 3.659 848 496 1. 007 259 404 5, 648 738 605 867 636 722 696 895 321 2000 POPULATION FAMILY 55, 809 4, 873 3, 528 1, 553 4, 428 5, 200 3, 815 1,944 5, 083 6, 038 1, 926 5, 366 2.422 4, 329 2, 974 33, 865 4.174 2000 39.9 94.0 9 2 2 8. 9. 12.0 8. 5 5 с З 6. 3 20. ക് AREA ഹ് တ် (km2) KI TAZI GURW MUKARANGE MURANB I NYAGATOVU Z-ITIHSN MABUGA-2 VSHILI-1 RUYEMA-1 MABUGA-1 RUYEMA-2 SECTOR TOTAL GITUZA TOTAL RUBAGO KABARE NGOMA NAME COMMUNE MUHAZI NAME TOTAL SAKE

55

|  |     | 1  | Λ. |  |
|--|-----|----|----|--|
|  | ÷Е. | L. | )  |  |
|  | •   |    |    |  |

| ·               | Туре А                             | Type B                            |
|-----------------|------------------------------------|-----------------------------------|
| Characteristics | 1. A special design is made to the | 1. It requires slightly larger    |
|                 | flocculator to allow high up-      | space to install than Type A.     |
|                 | lift flow velocity. Thus, a small  | 2. Compared to Type A, it is suit |
|                 | flocculation area is needed.       | able for variable conditions.     |
|                 | 2. Operation is unstable for       | 3. In the flocculator, the time   |
|                 | variable conditions.               | of contact with the chemical      |
|                 | 3. In the flocculator, time of     | is long and stable water          |
|                 | contact with the chemical is       | treatment is possible.            |
| ·<br>·          | short and some types of parti-     | 4. Deviation between jar test     |
| · · ·           | cles cannot be removed.            | results and the qualities of      |
|                 | 4. Deviation between jar test      | actually treated water by         |
|                 | results and the qualities of       | Type B purifier is small.         |
|                 | actually treated water by          | Thus, it is quite easy to         |
|                 | Type A purifier is large.          | predict water treament results    |
|                 | 5. Treatment results vary depend-  | 5. Installation is easy and       |
|                 | ing upon the qualities of the      | requires only a short period      |
|                 | water source.                      | of time.                          |
|                 | 6. It requires more difficult      | 6. Expansion of the facility is   |
|                 | operation and maintenance          | quite easy.                       |
|                 | work than Type B.                  | 7. By installing the same type    |
|                 |                                    | of units, it will be possible     |
|                 |                                    | to utilize compatible spare       |
|                 |                                    | parts, making the operation       |
|                 |                                    | and maintenance work of the       |
| •               |                                    | unit easy.                        |
|                 |                                    | 8. Highly skilled operating       |
|                 |                                    | personnel is not required.        |

| Egyknalder a liger bar Hill allow frid and a landow | Туре А                                      | н н н н н н н н н н н н н н н н н н н | Туре В                                     |                  |
|-----------------------------------------------------|---------------------------------------------|---------------------------------------|--------------------------------------------|------------------|
| Equipment<br>Costs (Yen)                            | Intake Facility:                            | 14,600,000                            | Intake Facility                            | 14,600,000       |
| 00878 (16U)                                         | Raw Water Well:                             | 2,500,000                             | Raw Water Well:                            | 2,500,000        |
|                                                     | Coagulant Settling<br>Facility:             | 34,600,000                            |                                            |                  |
|                                                     | Filtration Facility:                        | 23,600,000                            | Small-sized                                | 94,100,000       |
|                                                     | Chemical Injection<br>Pumping Facility:     | 47,800,000                            | Purifier                                   |                  |
|                                                     | Delivery Pumping<br>Facility:               | 64,300,000                            | Delivery Pumping<br>Facility:              | 64,300,000       |
|                                                     | Distribution Pond<br>Facility:              | 18,000,000                            | Distribution Fond<br>Facility:             | 18,000,000       |
|                                                     | Drainage Tank Facility:                     | 10,000,000                            | Drainage Tank Facility                     | :10,000,000      |
|                                                     | Electrical Measuring<br>Facility:           | 54,600,000                            | Electrical Measuring                       |                  |
|                                                     | SUBTOTAL                                    | 270,000,000                           | SUBTOTAL                                   | 242,000,000      |
| Civil Eng.                                          | Intake Work                                 | 2,000,000                             | Intake Work:                               | 2,000,000        |
| Work Costs<br>(Yen)                                 | Raw Water Well<br>Construction              | 1,600,000                             | Raw Water Well<br>Construction             | 1,600,000        |
|                                                     | Coagulant Settling<br>Basin Construction:   | 1,200,000                             | Purifier Foundation:<br>Construction:      | 2,000,000        |
| :                                                   | Filter Construction:                        | 900,000                               | Chemical Injection<br>Chamber Construction | 1:9,300,000      |
|                                                     | Chemical Injection<br>Chamber Construction: | 9,300,000                             |                                            |                  |
|                                                     | Clear Water Reservoir<br>Construction:      | 10,100,000                            | Clear Water Reservo:<br>Construction:      | lr<br>10,100,000 |
|                                                     | Distribution: Pond<br>Construction:         | 19,000,000                            | Distribution Pond<br>Construction          | 19,000,000       |
|                                                     | SUBTOTAL:                                   | 44,100,000                            | SUBTOTAL:                                  | 44,000,000       |
| Installation<br>Costs (Yen)                         | Installation Work:                          | 17,000,000                            | Installation Work:                         | 9,000,000        |
| COSTS (IGN)                                         | Piping Work:                                | 60,000,000                            | Piping Work:                               | 60,000,000       |
|                                                     | Painting Work                               | 9,000,000                             | Painting Work:                             | 9,000,000        |
|                                                     | SUBTOTAL                                    | 86,000,000                            | SUBTOTAL                                   | 78,000,000       |
| Project Costs<br>(Yen)                              |                                             | 400,000,000                           |                                            | 364,000,000      |

Note: The construction costs were obtained from the model study of the water treatment facilities (treatment capacity of 1,200  $m^3/day$ ) in the Mugesera

Area.

| I-WATZYS |   |
|----------|---|
| F O R    | , |
| SCHEME   |   |
| Y.Iddil2 |   |
| WATER    |   |
| ц<br>С   |   |
| 5        |   |

LI

| Service<br>Blook Booster Pump<br>Name<br>MUHAZI 16,5kwx3 250<br>AKE 7.5kwx1 100<br>7.5kwx1 100                          |               |                          |             |                            |              |               |          |                          |          |                |             |
|-------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|-------------|----------------------------|--------------|---------------|----------|--------------------------|----------|----------------|-------------|
| Blook Booster Pump<br>Name Booster Pump<br>Name Pump Unit Head<br>MUHAZI 15.5kwx3 250<br>SAKE 30kwx3 300<br>7.5kwx1 100 |               | Pipe                     | Tank<br>K   | بر . مورد بر المراجع ميرين |              |               |          |                          |          |                | Trans-      |
| ne<br>Pump Unit Read<br>30 kwx3 250<br>7.5 kwx1 100                                                                     | Plant         | DCIP Aire                |             | PVC                        | C Pipe       | Aire          | tand     | Drain Va                 | Valve Ga | Gate Valve     | BISSION     |
| Pump Unit Head           21         18.5kwx3         250           30kwx3         300         7.5kwx1         100       | Capacity      | (m) Valve                | (unit)      |                            | (E)          | Valve         | Pipe     | (pcs)                    |          | (pcs)          | Line        |
| ZI 18.5kwx3 250<br>30kwx3 300<br>7.5kwx1 100                                                                            | ( <u>m</u> 3) | φ 150mm+φ 1 <u>50</u> mm | 100m3(300m3 | ¢ 50mm   ¢ 75mm            | Ø 100mm      | 150mm(unit) ( | (unit) 7 | 7 5 mm 0 0 0 mm 1 5 0 mm | 0mm 50mm | 75mm100mm150mm | m (m)       |
| ZI 18.5 K W X 3 250<br>30 k W X 3 300<br>7.5 K W X 1 100                                                                |               |                          |             |                            |              |               |          | -<br>-<br>-<br>-         |          |                |             |
| 30 kwx3<br>7.5 kwx1<br>7.5 kwx1<br>200                                                                                  | 200x3         | 11,000 5                 |             | 0.000 11.700               | 3.300 2.500  | 4 0(          | 1 6      | · • •                    | ۍ<br>۲   | 5 4 2          | 100         |
| 30 Kw x 3 300<br>7.5 Kw x 1 100                                                                                         |               |                          |             |                            |              |               |          |                          |          | :<br>          | · · · · · · |
| 00                                                                                                                      | 270×3         | 7,000 5                  |             | 7.200 10.300               | 14.000 2.000 | 00 15         | 26       | 1 2                      | 12       | 22<br>         | 3, 000      |
|                                                                                                                         |               |                          |             |                            |              |               |          |                          |          | -              |             |
|                                                                                                                         | · · ·         |                          | ·<br>       |                            |              |               | <br>     |                          | <b>`</b> |                |             |
|                                                                                                                         |               |                          |             |                            |              |               |          |                          |          |                |             |
|                                                                                                                         |               |                          |             |                            |              |               |          |                          |          |                |             |
|                                                                                                                         |               |                          |             |                            |              |               |          |                          |          |                |             |
|                                                                                                                         |               |                          |             |                            |              |               |          |                          |          |                |             |
| TOTAL                                                                                                                   | ę             | 18.000 10                |             | 27 200 22 000              | 17.300 4.    | 500 19        | 42       |                          | 1 L L L  | 6<br>8         | 3, 100      |
|                                                                                                                         |               |                          |             |                            |              |               |          |                          |          |                |             |
|                                                                                                                         | .*            |                          |             |                            |              | - 1<br>- 1    |          | •                        |          |                |             |
|                                                                                                                         | •             | •                        |             |                            |              |               |          | •                        | •        |                |             |
|                                                                                                                         | ·····         | •                        |             | · ·                        |              | •             |          | ·                        | *        |                |             |
|                                                                                                                         |               |                          |             |                            |              |               |          |                          |          |                | · · ·       |

Table M.5

1

PROPOSED WATER DEMAND OF SYSTEM-2

| RESORVOIR       | CAPACITY   | (m3)       | 57.7_(60)        | 18.6             |               | 27.6    | 27.6<br>46.2 (60)                        | 27.6<br>46.2 (60)<br>46.4 (60) |                                  |                                                                |                                                                                                  |                                                              |                                                                            |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |
|-----------------|------------|------------|------------------|------------------|---------------|---------|------------------------------------------|--------------------------------|----------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| PUMP            | CAPACITY C | (1/min)    | 80.1             | 25.8             | 20 2          |         | 00. J                                    | 00. J<br>64. J                 | 00. J<br>64. 1<br>66. 4<br>25. 2 |                                                                | 25. 2<br>64. 1<br>64. 4<br>25. 2<br>36. 2<br>45. 0                                               | 064 4<br>064 4<br>25, 2<br>36, 2<br>45, 0<br>45, 0<br>105, 5 | 664 1<br>664 4<br>255 2<br>255 2<br>455 0<br>455 0<br>455 0                | 64 1<br>64 4<br>25.2<br>36.2<br>45.0<br>45.0<br>45.1<br>60.4<br>60.8                                                          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 6.4 4<br>6.4 4<br>25. 2<br>25. 25. 25. 25. 25. 25. 25. 25. 25. 25. | 64 1<br>64 4<br>25.2<br>25.2<br>25.2<br>45.0<br>45.0<br>60.8<br>60.8<br>136.4<br>136.9<br>136.9<br>136.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56. 4<br>66. 1<br>25. 2<br>36. 2<br>45. 0<br>45. 0<br>75. 9<br>136. 2<br>136. 2<br>136. 2<br>136. 2                    |
| MAX WATER       | DEMAND     | (115%)     |                  | 37. 2            | 55.1          |         | 92.3                                     | 92. 3<br>92. 8                 | 92.3<br>92.8<br>36.3             | 92.8<br>92.8<br>36.3<br>52.1                                   | 92. 3<br>92. 8<br>36. 3<br>52. 1<br>64. 8                                                        | 92. 3<br>92. 8<br>36. 3<br>52. 1<br>54. 8<br>64. 8           | 92.3<br>92.8<br>36.3<br>52.1<br>52.1<br>54.8<br>153.3<br>89.5              | 92.8<br>92.8<br>86.3<br>52.1<br>64.8<br>153.3<br>89.5<br>87.5                                                                 | 92. 8<br>92. 8<br>36. 3<br>52. 1<br>54. 8<br>64. 8<br>153. 3<br>89. 5<br>87. 5<br>109. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 92.3<br>92.8<br>36.3<br>52.1<br>52.1<br>54.8<br>54.8<br>54.8<br>89.5<br>81.5<br>100.3<br>100.3<br>195.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.8<br>92.8<br>36.3<br>52.1<br>54.8<br>52.1<br>54.8<br>84.5<br>87.5<br>109.3<br>196.8<br>196.8<br>228.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92. 8<br>92. 8<br>36. 3<br>52. 1<br>54. 8<br>54. 8<br>153. 3<br>89. 5<br>87. 5<br>109. 3<br>196. 8<br>196. 1<br>196. 1 |
|                 | TOTAL      | (m3/day)   | 100.4            | 32.3             | 6.12          |         | 80.3                                     | 80.3                           | 80.3<br>80.7<br>31.6             | 80.3<br>80.7<br>31.5<br>45.3                                   | 80.3<br>80.7<br>31.6<br>45.3<br>56.4                                                             | 80.3<br>80.7<br>31.6<br>45.3<br>56.4<br>133.3                | 80.3<br>80.7<br>31.6<br>45.3<br>45.3<br>1.33.3<br>1.33.3<br>1.33.3<br>77.8 | 80.3<br>80.7<br>31.6<br>45.3<br>56.4<br>133.3<br>76.1                                                                         | 80.3<br>8.0.7<br>45.3<br>45.3<br>56.4<br>1.33.3<br>76.4<br>76.1<br>95.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80.3<br>80.7<br>31.6<br>45.3<br>45.3<br>75.4<br>76.1<br>76.1<br>25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.3<br>80.7<br>31.6<br>45.3<br>45.3<br>45.3<br>76.1<br>35.1<br>131.2<br>35.1<br>131.2<br>131.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80.3<br>80.7<br>45.3<br>45.3<br>56.4<br>77.8<br>76.1<br>23.1<br>25.1<br>13.2<br>13.2<br>12.0<br>5                      |
| DEMAND (m3/day) | PUBLIC     |            | 5.6              | L. 9             | 2.3           |         | 4.3                                      | 4. 3                           | 4. 3<br>0. 1<br>0. 1             | 8 8<br>8<br>                                                   | ₩<br>₩<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 8 -                                                          | で<br>                                                                      | 8 -                                                                                                                           | 8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ଳ କ କ ପ କ ର ର<br>ବ ପ ପ ଲ ର ଏ ର ଏ ର ର<br>କ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 7 8 7 0 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 | 4<br>0                                                                                                                 |
| WATER D         | FAMILY     | (0.13m3/f) | 94.8             | 30. 4            | 45.6          |         | <u> </u>                                 | 80.6                           | 80.6<br>31.5                     | 80.6<br>31.5<br>41.5                                           | 80.6<br>81.5<br>41.5<br>56.3                                                                     | 60.6<br>81.5<br>41.5<br>56.3<br>129.3                        | 80.6<br>81.5<br>41.5<br>55.3<br>129.3<br>129.3                             | 40.0<br>80.6<br>81.5<br>81.5<br>81.5<br>6.3<br>7.7<br>71.7<br>71.2                                                            | 41.5<br>81.6<br>41.5<br>56.3<br>77.7<br>71.2<br>87.1<br>87.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.5           41.5           55.3           129.3           71.7           71.2           87.1           158.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000         1000           800         6           81.5         50.6           81.5         55.3           129.3         77.7           71.2         87.1           87.1         179.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41. 5<br>80. 6<br>81. 5<br>41. 5<br>56. 3<br>71. 2<br>87. 1<br>179. 7<br>157. 7<br>157. 7                              |
| FAMILY          | 2000       |            | 729              | 234              | 351           | TOL     |                                          | 620                            | <u> </u>                         | 500<br>542<br>319                                              |                                                                                                  | 909<br>620<br>319<br>433<br>994                              | 909<br>242<br>319<br>433<br>594<br>598                                     | 000<br>620<br>319<br>433<br>598<br>548                                                                                        | 520<br>520<br>542<br>548<br>548<br>670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202<br>620<br>242<br>319<br>433<br>594<br>594<br>598<br>548<br>548<br>548<br>1.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000<br>620<br>242<br>433<br>433<br>433<br>433<br>598<br>598<br>548<br>548<br>548<br>548<br>548<br>548<br>548<br>548<br>548<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20<br>2.42<br>3.19<br>4.33<br>5.48<br>5.48<br>1.218<br>1.382<br>1.382                                                |
| POPULATION      | 2000       |            | 4.374            | 1.403            | 2, 105        | 2 508   |                                          | 3,720                          |                                  | 1. 447<br>1. 447<br>1. 914                                     | 2, 595                                                                                           |                                                              |                                                                            |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |
| AREA P          |            | (km2)      | 12.9             | 5. S             | ઝ<br>ન્ય      | 6 8     | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, | 6.0<br>                        | <br>                             | 9 9 9<br>9 9 9<br>9 9 9                                        | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9      | ມ<br>ຜູ້ຄູ່ຄູ່<br>ບັນ<br>ເຊິ່                                | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                   | ຍ ຯ ຄ / ງ ຊາ ຄ / ງ 0 ເ<br>ຜ ຍ ຯ ຄ / ງ ຊາ ຍ ຍ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 4 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 0 0 P 9 7 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                |
| SECTOR          | NAME       | 19<br>11   | KAYONZA          |                  | <b>OBOYHS</b> | TOTAL . | 12101-1-1                                | RERU                           | EVERU<br>NKAMBA                  | EWERU<br>EWERU<br>NKAMBA<br>RURAMIRA                           | RTERU<br>RTERU<br>NKAMBA<br>RURAMI RA<br>RURAMI RA                                               | RYERU<br>RYERU<br>NKAMBA<br>RURAMIRA<br>RUYONZA<br>TOTAL     | EWERU<br>EWERU<br>NKAMBA<br>RURAMIRA<br>RUYONZA<br>TOTAL<br>NDAMIRA        | EWERU<br>EWERU<br>NKAMBA<br>RURAMIRA<br>RUYONZA<br>TOTAL<br>NDAMIRA<br>SATORE<br>GATORE                                       | RWERU<br>RWERU<br>NKAMBA<br>RURAMIRA<br>RUYONZA<br>TOTAL<br>NDAMIRA<br>GATORE<br>KIREHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EWERU<br>EWERU<br>NKAMBA<br>RURAMIRA<br>RUYONZA<br>TOTAL<br>NDAMIRA<br>NDAMIRA<br>GATORE<br>KIREHE<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RWERU<br>RWERU<br>NKAMBA<br>RURAMIRA<br>RUYONZA<br>TOTAL<br>NDAMIRA<br>GATORE<br>KIREHE<br>KIREHE<br>TOTAL<br>NYARUBUYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RWERU<br>RWERU<br>NVONZA<br>TOTAL<br>NDÅMIRA<br>GATORE<br>KIREHE<br>TOTAL<br>NYARUBUYE<br>NYAMUGALI                    |
| COMMUNE         | NAME       |            | AYONZA-1 KAYONZA | AYONZA-2 KAYONZA |               | :       |                                          | RUTONDE                        | RUTONDE<br>XABARONDO             | RUTONDE RUTONDE RWERU<br>KABARONDO KABARONDO NKAMBA<br>RURAMIF | RUTONDE<br>XABARONDO                                                                             | RUTONDE<br>) KABARONDO                                       | UTONDE RUTONDE<br>ABARONDO KABARONDO<br>ABARONDO KABARONDO                 | UTONDE RUTONDE<br>(ABARONDO KABARONDO<br>(ABARONDO KABARONDO<br>(ABARONDO<br>(ABARONDO<br>SI RENGA BI RENGA<br>USUMO-1 RUSUMO | RUTONDE<br>) KABARONDO<br>BIRENGA<br>BUSUMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RUTONDE<br>KABARONDO<br>BIRENGA<br>RUSUMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EUTONDE RUTONDE<br>(ABARONDO KABARONDO<br>SIRENGA BIRENGA<br>EUSUMO-I RUSUMO<br>EUSUMO-2 RUSUMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RUTONDE RUTONDE<br>KABARONDO KABARONDO<br>BIRENGA BIRENGA<br>RUSUMO-1 RUSUMO<br>RUSUMO-2 RUSUMO<br>RUSUMO-3 RUSUMO     |
| SYSTEM          | NAME       |            | KAYONZA-1        | KAYONZA-2        |               |         |                                          | RUTONDE                        | RUTONDE                          | RUTONDE .<br>KABARONDC                                         | RUTONDE<br>KABARONDC                                                                             | RUTONDE<br>KABARONDC                                         | RUTONDE<br>KABARONDC<br>BIRENGA                                            | RUTONDE<br>KABARONDC<br>BIRENGA<br>BIRENGA                                                                                    | RUTONDE<br>KABARONDC<br>BIRENGA<br>RUSUMO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RUTONDE<br>KABARONDC<br>BIRENGA<br>RUSUMO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RUTONDE<br>KABARONDC<br>KIENGA<br>RUSUMO-1<br>RUSUMO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RUTONDE<br>KABARONDC<br>BLRENGA<br>RUSUMO-1<br>RUSUMO-2<br>RUSUMO-2                                                    |

59

Μ

Table M.6

LIST OF WATER SUPPLY SCHEME FOR SYSTEM-2

| <br>      | Int  | Intake Facilities  | ies            | -=   | ransmission |                           | Reservoi   | ir Tank |        |          |        | Distribution | 1 on         | E.           | Facilities | es                                                                  | }-                   |                     |       | Power Supply Facilities | pply Fa | ilitie      |
|-----------|------|--------------------|----------------|------|-------------|---------------------------|------------|---------|--------|----------|--------|--------------|--------------|--------------|------------|---------------------------------------------------------------------|----------------------|---------------------|-------|-------------------------|---------|-------------|
| Service   | No.  | Pump Facility      | ţ              |      | DCIP        | Aire                      | (uni       | t)<br>I |        | PVC Pipe | Pipe   |              | Aire         | Stand        | Dra        | Drain Valve                                                         |                      | Gate Valve          | ve    | Trans-                  | Gene    | Generater   |
| B) ook    | of   | φ40 (n             | ø40(unit) Head |      | (E)         | Valve                     | SE<br>SE   | Ţ       |        | 5        | (H)    |              | Valve        | bipe         |            | (pcs)                                                               |                      | (pcs)               |       | mission                 | n)      | (unit)      |
| Nane      | Well | 5. 5kw 7. 5kw 11kw |                | (II) | 5 75mm      | (m) \$\$75mm \$\$75mm \$0 | 8          | 00 120  | Ø 30mm | ¢ 50mm   | ф75mm  | ф 100mm      | (unit)       | (mit)        | ¢ 30mm     | (unit)(unit)(unit) ∂ 30mm d 50mm d 75mm d 50mm d 75mm Line(m) 5.5kw | <b>同夕 30m</b>        | щ <del>ф</del> 50mm | Ø 75m | Line(m) 5               | 5kw 7.  | 7. 5kw 11kw |
| KAYONZA-1 |      |                    |                | 180  | 506         |                           |            |         | 6. 700 | 2.500    | 420    |              | 4            | <del>ي</del> | 2          |                                                                     | ~~~                  | 2                   |       | 1. 800                  |         |             |
| KAYONZA-2 | -    |                    | 1              | 220  | 260         |                           |            |         | 5. 750 | 2, 300   |        |              | 17           | <del>ک</del> | 2          |                                                                     | - 12<br>- 12<br>- 12 |                     | 6.9   | 1.200                   |         |             |
| RUTONDE   | -    |                    |                | 125  | 796         |                           |            |         | 3, 600 | 130      |        |              |              | 2            | :          |                                                                     | دى                   |                     |       |                         |         |             |
| KABARONDO | 2    | 2                  |                | 185  | 500         |                           |            |         | 5, 050 | 1, 700   | 30     | :            | e~-          | £            | 4          |                                                                     | <br>                 |                     | 1     | 1.800                   | <br>    |             |
| BIRNGA    | ч    |                    |                | 220  | 950         |                           |            |         | 6.400  | 1. 200   |        |              | . R          | ę            | 2          |                                                                     | •                    | <b>ہ</b> ــ         |       |                         |         |             |
| RUSUMO-1  | 5    | 2                  |                | 180  | 1. 290      | 5                         |            |         | 7,400  | 4. 250   | 1. 450 |              | ~            | ∞            | 4          | 2                                                                   |                      | 5                   | 2     |                         | <br>-   | 2           |
| RUSUMO-2  | 67   |                    | 5              | 250  | 1. 365      | 63                        |            |         | 7 750  | 7.200    | 2, 700 | 550          | <del>ن</del> | 11           | 5          | 2                                                                   | ي<br>د<br>د          | <b>دى</b>           | 2     |                         | -       | :           |
| RUSUMO-3  | 2    |                    |                | 185  | 714         |                           |            |         | 6.550  | 10.400   | 700    | 6, 000       | 63           | 17           | <br>M      | 53                                                                  |                      | ດນ<br>              |       |                         |         | 5           |
| •         |      |                    |                |      |             |                           |            |         |        |          |        |              |              |              |            |                                                                     |                      |                     |       |                         |         |             |
| TNTAT     | 61.  |                    |                | <br> |             |                           | <br>-<br>- |         |        |          |        |              |              |              |            |                                                                     |                      |                     |       |                         | <u></u> |             |

Table M.7

PROPOSED WATER DEMAND OF SYSTEM-3

NO. 1

| COMMUNE                               | SECTOR     | AREA                                    | POPULATION                                                                                                       | FAMILY | WATER DE                              | MAND (m3/ | day)                                                                                                             |     |
|---------------------------------------|------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------|-----|
| NAME                                  | NAME       | 11121/13                                | 2000                                                                                                             | 2000   | FAMILY                                |           |                                                                                                                  |     |
|                                       |            | (km2)                                   |                                                                                                                  | 1000   | (0.09m3/f)                            |           | (m3/day)_                                                                                                        |     |
| RUKARA                                | GAHINI     | 5.8                                     | 3, 827                                                                                                           | 638    | 57.4                                  | 54.0      |                                                                                                                  |     |
|                                       | KIYENZI    | 10.6                                    |                                                                                                                  | 586    | 52.7                                  |           |                                                                                                                  |     |
|                                       | NYAKABUNGO | 17.6                                    |                                                                                                                  | 391    | 35.2                                  | 2. 9      |                                                                                                                  |     |
|                                       | NYAWERA    | 30.0                                    |                                                                                                                  | 671    | 60.4                                  | 2. 2      | 62.6                                                                                                             |     |
| · ·                                   | RUKARA     | 28.0                                    |                                                                                                                  | 1, 113 | 100. 2                                | 19.7      | 119.9                                                                                                            |     |
|                                       | RWIMISHINY | 12.2                                    |                                                                                                                  |        | 53.9                                  | 4.1       | 58.0                                                                                                             |     |
| 1                                     | RYAMANYONI | 54.2                                    | 3, 450                                                                                                           | 575    | 51.8                                  | 8.4       | 60.2                                                                                                             |     |
|                                       | TOTAL      | 158.4                                   | 27, 428                                                                                                          | 4,573  | 411.6                                 | 95.4      | 507.0                                                                                                            |     |
| UGESERA                               | CYTZIHIRA  | 8.3                                     |                                                                                                                  | 700    | 63.0                                  | 0.1       | 63. 1                                                                                                            |     |
| •                                     | GATARE     | 13.8                                    |                                                                                                                  | 719    | 64.7                                  | 4.9       | 69.6                                                                                                             |     |
|                                       | KAGASHI    |                                         | 5, 137                                                                                                           | 857    |                                       |           |                                                                                                                  |     |
|                                       | KAREMBO    | 0.9                                     |                                                                                                                  |        |                                       |           | · · ·                                                                                                            | : ` |
|                                       | KIBARE     | 7.4                                     |                                                                                                                  | 816    | 73.4                                  |           |                                                                                                                  |     |
|                                       | KIBILIZI-I | 10.4                                    |                                                                                                                  | 862    | 77.6                                  |           |                                                                                                                  | •.  |
| -                                     | KIRAMBO    | 9.0                                     |                                                                                                                  | 598    | 53.8                                  |           |                                                                                                                  |     |
|                                       | KUKABUYE   | 4.3                                     |                                                                                                                  | 490    | 44.1                                  | 1.1       |                                                                                                                  |     |
|                                       | MATONGO    | 4.4                                     |                                                                                                                  | 621    | 55. 9                                 |           |                                                                                                                  |     |
|                                       | NGARA      | 8.8                                     |                                                                                                                  | 658    |                                       |           |                                                                                                                  |     |
|                                       | NYANGE     | 17.1                                    |                                                                                                                  | 518    | 46.6                                  |           | and the second | ÷   |
|                                       | SANGAZA    | 13.8                                    |                                                                                                                  | 699    | 62.9                                  |           |                                                                                                                  |     |
|                                       | SHYWA      | 7.0                                     |                                                                                                                  | 656    | 59.0                                  | 3.4       |                                                                                                                  |     |
|                                       | ZAZA       | 3.9                                     |                                                                                                                  | 344    |                                       | 68.6      |                                                                                                                  |     |
|                                       | TOTAL      | 1 A A A A A A A A A A A A A A A A A A A | 51,802                                                                                                           |        | · · · · · · · · · · · · · · · · · · · |           |                                                                                                                  |     |
| AYONZA                                | GASOGI     | 11.1                                    |                                                                                                                  |        | 39. 3                                 | 2. 2      |                                                                                                                  |     |
|                                       | MBURABUTUR | 77                                      |                                                                                                                  |        |                                       |           |                                                                                                                  |     |
|                                       | MUSUMBA    | 8.6                                     |                                                                                                                  | 246    | 22. 1                                 |           |                                                                                                                  |     |
|                                       | NYAMIRAMA  | 13.5                                    |                                                                                                                  | 548    | 49.3                                  |           |                                                                                                                  |     |
|                                       | RUTARE     | 12.6                                    |                                                                                                                  | 545    | 49.1                                  | 2.5       |                                                                                                                  |     |
|                                       | RWINKWAVU  | 5.3                                     |                                                                                                                  | 75     |                                       | 2.3       |                                                                                                                  |     |
|                                       | SHYOGO     | 4.3                                     |                                                                                                                  | 234    | 21. 1                                 | 1.6       |                                                                                                                  |     |
|                                       | TOTAL      | 63.1                                    |                                                                                                                  | 2, 407 |                                       |           |                                                                                                                  |     |
| UTONDE                                | KADUHA     | 4.6                                     | 1, 339                                                                                                           | 224    | 20. 2                                 | 0.1       |                                                                                                                  |     |
|                                       | RUTONDE    | 9.8                                     |                                                                                                                  | 555    | 50.0                                  | 4.7       |                                                                                                                  |     |
|                                       | RWERU      | 1.5                                     | 930                                                                                                              | 155    | 14.0                                  |           |                                                                                                                  |     |
|                                       | SOVU       | 8.2                                     |                                                                                                                  | 541    | 48.7                                  | 3.3       |                                                                                                                  |     |
|                                       | TOTAL      | 24.1                                    |                                                                                                                  | 1, 475 | 132.9                                 | 8.1       |                                                                                                                  |     |
| ABARONDO                              |            | 9. 2                                    |                                                                                                                  | 371    | 33.4                                  | 3.1       |                                                                                                                  |     |
|                                       | MURAMA     | 4.6                                     | 941                                                                                                              | 157    | 14.1                                  | 0.9       |                                                                                                                  |     |
| 1<br>1.145                            | NKAMBA     | 2.5                                     |                                                                                                                  | 156    | 14.0                                  | 0.1       |                                                                                                                  |     |
|                                       | RURAMIRA   | 6.5                                     |                                                                                                                  | 319    | 28.7                                  | 3.8       |                                                                                                                  |     |
| ·* .                                  | RUSERA     | 5.9                                     |                                                                                                                  | 360    | 20. 1<br>32. 4                        | 0.1       |                                                                                                                  |     |
|                                       |            |                                         |                                                                                                                  | 186    | 32.4<br>16.7                          | 0.1       |                                                                                                                  |     |
|                                       | RUYONZA    | 2.3                                     |                                                                                                                  |        |                                       |           |                                                                                                                  |     |
|                                       | SHYANDA    | 2.7                                     | and the second | 148    | 13.3                                  |           |                                                                                                                  |     |
| · · · · · · · · · · · · · · · · · · · | TOTAL      | 33.7                                    | 10,173                                                                                                           | 1,697  | <u>152.6</u>                          | 8.9       | 161.5                                                                                                            |     |

Table M.8 (1)

PROPOSED WATER DEMAND OF SYSTEM-3

| Ta | <u>b1</u> | e   | M | • | 8 |   |
|----|-----------|-----|---|---|---|---|
|    | -         | - 1 | C | 2 | ) | ÷ |

| COMMUNE    | SECTOR     | AREA    |          |        | WATER DE                                |        |                                       |
|------------|------------|---------|----------|--------|-----------------------------------------|--------|---------------------------------------|
| NAME       | NAME       | · · · · | 2000     | 2000   | 1. A | PUBLIC | TOTAL                                 |
| <u></u>    |            | (kn2)   |          |        | (0.09m3/f)                              |        | (m3/day)                              |
| SAKE       | MBUYE      | 6.2     | 2,010    | 335    | 30.2                                    |        | 31.0                                  |
|            | MURWA      | 31.6    | 5,666    | 945    |                                         |        |                                       |
|            | RUKUMBERI  | 16.0    | 6,058    | 1,010  |                                         |        |                                       |
| · · · ·    | SHOLI      | 14.4    |          |        |                                         |        |                                       |
|            | TOTAL      | 68.2    | 19, 255  | 3, 211 |                                         |        |                                       |
| X I GARAMA | GASETSA    | 8.2     | 696      | 116    | 10.4                                    | 1.9    |                                       |
|            | GASHANDA   | 10.1    | 2, 326   | 388    | 34.9                                    | 6.5    |                                       |
|            | KABARE-1   | 9.3     | 1, 507   | 252    | 22. 7                                   | 15.9   | 38.6                                  |
|            | KABARE-2   | 37.8    | 3, 370   | 562    | 50.6                                    | 10.5   | 61.1                                  |
|            | KABERANGWE | 9.0     | 1, 714   | 286    | 25.7                                    | 3.2    | 28.9                                  |
|            | KANSANA    | 11.8    | 2, 395   | 400    | 36.0                                    | 7.2    | 43.2                                  |
|            | REMERA     | 9, 9    | 1, 748   | 292    | 26.3                                    | 5.5    | 31.8                                  |
| · .        | RUBONA     | 10.7    | 6,110    | 1,019  | 91.7                                    | 16.0   | 107.7                                 |
|            | RURENGE    | 14.9    | 1, 924   | 321    | 28.9                                    | 4.4    | 33. 3                                 |
|            | VUMVE      | 21. 2   | 4, 441   | 741    | 66.7                                    | 5.4    | 72.1                                  |
|            | TOTAL      | 142.9   | 26, 231  | 4, 377 | 393.9                                   | 76.5   | 470.4                                 |
| RUKIRA     | GASIRU     | 8.3     | 1, 733   | 289    | 26.0                                    | 1.4    | 27.4                                  |
|            | GITWE      | 9. 3    | 2,056    | 343    | 30, 9                                   | 3.3    | 34.2                                  |
|            | MUSHIKILI  | 15.1    | 1, 786   | 298    | 26.8                                    | 1.3    | 28.1                                  |
|            | NTARUKA    | 3.7     | 224      | 38     | 3.4                                     | 0.5    | 3, 9                                  |
|            | RUGARAMA   | 12.1    | 1, 883   | 314    | 28.3                                    | 1.3    | 29.6                                  |
|            | TOTAL      | 48.5    |          | 1, 282 | 115.4                                   | 7, 8   | 123. 2                                |
| BIRENGA    | BARE       | 8.8     |          | 207    | 18.6                                    | 3.3    | 21. 9                                 |
|            | BIRENGA    | 9.0     | 1, 351   | 226    | 20.3                                    | 3. 3   | 23, 6                                 |
|            | GAHARA     | 26.0    | 3, 709   | 619    | 55.7                                    | 6.9    | 62.6                                  |
|            | GAHULIRE   | 3.8     | 1, 512   | 252    | 22. 7                                   | 1.8    | 24. 5                                 |
|            | GASHONGORA | 11.6    | 2, 231   | 372    | 33, 5                                   | 1.9    | 35.4                                  |
|            | KIBAYA     | 7.0     | 3, 570   | 595    | 53.6                                    | 5.2    | 58.8                                  |
|            | KIBIMBA    | 6.9     | 1, 522   | 254    | 22. 9                                   | 4.0    | 26.9                                  |
|            | SAKARA     | 5.3     | 2, 110   | 352    | 31.7                                    | 2.2    | 33. 9                                 |
|            | TOTAL      | 78.4    | 17, 242  | 2, 877 | 259.0                                   | 28.6   |                                       |
| RUSUMO     | GATORE     | 17.5    | 3, 285   | 548    | 49.3                                    | 4.9    | 54. 2                                 |
|            | KANKOBWA   | 117.6   | 4, 847   | 808    | 72. 7                                   | 6.8    | 79.5                                  |
|            | KIGARAMA   | 15.8    | 3, 361   | 561    | 50.5                                    | 2.9    |                                       |
|            | KIGINA     | 22.0    | 5, 838   | 973    | 87.6                                    | 15.3   | 102.9                                 |
|            | KIRENE     | 6.7     | 2, 149   | 359    | 32. 3                                   | 4, 3   |                                       |
|            | MUSAZA     | 30.4    | 6, 978   | 1, 163 | 104.7                                   | 3.3    | 108.0                                 |
|            | NYABITARE  | 9.9     | 5, 177   | 863    | 17. 1                                   | 4.9    | 82.6                                  |
|            | NYAMUGALI  | 17.6    | 1, 679   | 280    | 25. 2                                   | 3.0    | 28.2                                  |
|            | NYARUBUYE  | 27.7    | 3, 455   | 576    | 51.8                                    | 8.1    |                                       |
|            | TOTAL      | 265.2   | 36, 769  | 6, 131 | 551.8                                   | 53.5   | 605.3                                 |
| sub-TOTAL  | 10100      | 603.2   | 107, 179 | 17,878 | 1, 609, 2                               | 197.4  | · · · · · · · · · · · · · · · · · · · |
| SUN IVINL  |            | 000.6   | 1011110  | U      | 1,000,6                                 | 101,4  | 1, UVV+ U                             |

PROPOSED SHALLOW WELL FOR SYSTEM-3 (1)

| Table | M | ι. | 9 |
|-------|---|----|---|
|       | ( | 1  | } |

| COMMUNE<br>NAME | SECTOR<br>NAME | AREA  | POPULATIO<br>2000 | NCLASS I FICA<br>DEPTH | (50m)  | Sb<br>(60m)   | Sc<br>(50m)                                                                                                     | Sd<br>(50m) |
|-----------------|----------------|-------|-------------------|------------------------|--------|---------------|-----------------------------------------------------------------------------------------------------------------|-------------|
|                 |                | (km2) |                   | SAFTY FACT             |        | <u>1. 25</u>  | 1,25                                                                                                            | 1.25        |
| RUKARA          | GAHINI         | 5.8   | 3, 827            |                        | 12     |               |                                                                                                                 |             |
|                 | KIYENZI        | 10, 6 | 3, 511            | · · ·                  | 6      |               |                                                                                                                 |             |
|                 | NYAKABUNGO     | 17.6  | 2, 345            |                        | 5      | ÷             |                                                                                                                 |             |
|                 | NYAWERA        | 30.0  | 4,024             | -                      | 8      |               |                                                                                                                 |             |
|                 | RUKARA         | 28.0  | 6, 677            |                        |        | 12            |                                                                                                                 |             |
|                 | RWIMISHINY     | 12.2  | 3, 594            | .:                     | 6      |               |                                                                                                                 |             |
|                 | RYAMANYONI     | 54.2  | 3, 450            | -                      |        |               |                                                                                                                 | 14          |
|                 | TOTAL          | 158.4 | 27, 428           |                        | 37     | 12            | 0                                                                                                               | 14          |
| MUGESERA        | CYIZIHIRA      | 8.3   | 4, 199            |                        |        |               |                                                                                                                 | 8           |
|                 | GATARE         | 13, 8 | 4, 311            |                        |        |               |                                                                                                                 | 9           |
|                 | KAGASHI        | 18.3  | 5, 137            |                        | · .    |               |                                                                                                                 | 11          |
|                 | KAREMBO        | 0.9   | 614               |                        | 1      |               |                                                                                                                 |             |
|                 | KIBARE         | 7.4   |                   |                        |        |               |                                                                                                                 | 10          |
|                 | KIBILIZI-1     | 10.4  | 5, 169            |                        |        | 9             |                                                                                                                 |             |
|                 | K I RAMBO      | 9.0   | 3, 584            |                        |        | . · · ·       |                                                                                                                 | 1           |
|                 | KUKABUYE       | 4.3   | 2, 936            |                        | · 5    |               |                                                                                                                 | -           |
|                 | MATONGO        | 4.4   | 3, 726            | · · ·                  | -      |               |                                                                                                                 | 7           |
|                 | NGARA          | 8.8   | 3, 944            |                        | 7      | · .           |                                                                                                                 |             |
|                 | NYANGE         | 17.1  | 3, 105            |                        | •      |               |                                                                                                                 | 8           |
|                 | SANGAZA        | 13.8  |                   | 1.1.1                  |        |               |                                                                                                                 | 9           |
|                 | SHYWA          | 7.0   | 3, 931            |                        |        |               |                                                                                                                 | 8           |
|                 | ZAZA           | 3.9   | 2,064             |                        |        |               |                                                                                                                 | 13          |
|                 | TOTAL          | 127.4 | 51,802            |                        | 13     | 9             | 0                                                                                                               | 90          |
| SAKE            | MBUYE          | 6.2   |                   |                        |        | 4             | ·····                                                                                                           |             |
| OUND            | MURWA          | 31.6  |                   |                        |        | <b>7</b>      |                                                                                                                 | 13          |
|                 | RUKUMBERI      | 16.0  | 6,058             |                        |        |               |                                                                                                                 | 13          |
|                 | SHOLI          | 14.4  |                   |                        |        | . · · · ·     |                                                                                                                 | 12          |
|                 |                | 68.2  |                   |                        | 0      |               | 0                                                                                                               | 38          |
| 1/ A VA1/7 A    | TOTAL          |       |                   |                        |        | <u>4</u><br>5 | <u>v</u>                                                                                                        | 00          |
| KAYONZA         | GASOGI         | 11.1  | 2,617             |                        |        | 3             |                                                                                                                 |             |
|                 | MBURABUTUR     | 77    | 1, 932            |                        | . 0    | ð             |                                                                                                                 |             |
|                 | MUSUMBA        | 8.6   |                   |                        | 3<br>6 |               |                                                                                                                 |             |
|                 | NYAMIRAMA      | 13.5  | 3, 285            |                        | 0      | ~             |                                                                                                                 |             |
|                 | RUTARE         | 12.6  | 3, 267            |                        |        | 6             |                                                                                                                 |             |
|                 | RWINKWAVU      | 5.3   |                   |                        | 2      |               |                                                                                                                 |             |
|                 | SHYOGO         | 4.3   | 1,403             |                        |        | 3             |                                                                                                                 | -           |
|                 | TOTAL          | 63.1  | 14, 423           |                        | 11     | 17            | 0                                                                                                               | 0           |
| RUTONDE         | KADUHA         | 4.6   | 1, 339            |                        | 3      |               | 10 S.                                                                                                           |             |
|                 | RUTONDE        | 9.8   | 3, 326            |                        | 6      |               |                                                                                                                 |             |
|                 | RWERU          | 1.5   | 930               |                        |        | 2             |                                                                                                                 |             |
|                 | SOVU           | 8.2   | 3, 244            |                        |        | 6             |                                                                                                                 |             |
|                 | TOTAL          | 24.1  | 8, 839            |                        | 9      | 8             | 0                                                                                                               | 0           |
| KABARONDO       |                | 9.2   | 2, 223            |                        | 4      |               |                                                                                                                 |             |
|                 | MURAMA         | 4.6   | 941               | · · ·                  | 2      |               | di internetti di anternetti |             |
|                 | NKAMBA         | 2.5   | 934               |                        | 2      |               |                                                                                                                 |             |
|                 | RURAMIRA       | 6.5   | 1,914             |                        |        | 4             |                                                                                                                 |             |
|                 | RUSERA         | 5.9   | 2,159             |                        | 4      | ·             |                                                                                                                 |             |
|                 | RUYONZA        | 2.3   | 1, 115            |                        | 2      |               |                                                                                                                 |             |
|                 | SHYANDA        | 2.7   |                   | 1                      |        | 2             |                                                                                                                 |             |
|                 | TOTAL          | 33.7  |                   |                        | 14     | 6             | 0                                                                                                               | . (         |
|                 | sub-TOTAL      | 474.9 | 131, 920          |                        | 84     | 56            | 0                                                                                                               | 142         |

# PROPOSED SHALLOW WELL FOR SYSTEM-3 (2)

# <u>9</u> )

| T | ap | 1 | <u>e</u> |     | M   |   | 2 |
|---|----|---|----------|-----|-----|---|---|
|   |    |   |          | ÷ . | 1   | 0 |   |
|   |    |   |          |     | . t | 4 |   |

| COMMUNE<br>NAME | SECTOR<br>NAME                        | AREA<br>(km2) | POPULATION<br>2000 | DEPTH    |       | Sa<br>(50m) | Sb<br>(60m)<br>1.25 | Sc<br>(50m)<br>1.25 | Sd<br>(50m)<br>1.25                     |
|-----------------|---------------------------------------|---------------|--------------------|----------|-------|-------------|---------------------|---------------------|-----------------------------------------|
| KIGARAMA        | GASETSA                               | (Km2)<br>8, 2 | 696                | SAFTY P  | AUL   | 1.00        | 1. 20               | 1. 60               | 1.20                                    |
| K I GI MINU     | GASHANDA                              | 10.1          | 2, 326             |          |       | 5           |                     |                     |                                         |
|                 | KABARE-1                              | 9.3           | 1, 507             |          |       | 4           | ;                   | 1. T                |                                         |
|                 | KABARE-2                              | 37.8          | 3, 370             | · .      |       | 10          |                     | 1                   |                                         |
|                 | KABERANGWE                            | 9, 0          | 1, 714             |          |       |             | - 3                 |                     |                                         |
|                 | KANSANA                               | 11, 8         | 2, 395             |          |       | 5           |                     |                     | . **                                    |
|                 | REMERA                                | 9.9           | 1, 748             |          |       | •           | 4                   |                     |                                         |
|                 | RUBONA                                | 10.7          | 6, 110             |          |       |             | 11                  |                     | itere<br>Attende                        |
|                 | RURENGE                               | 14. 9         | 1, 924             |          |       | 4           |                     |                     |                                         |
|                 | VUMWE                                 | 21.2          | 4, 441             |          |       | 8           |                     |                     | ji in Ar                                |
|                 | TOTAL                                 | 142.9         |                    |          |       | 39          | 18                  | . 0                 | 0                                       |
| RUKIRA          | GASIRU                                | 8.3           | 1, 733             | •••••    | ••••• |             |                     |                     | 4                                       |
|                 | GITWE                                 | 9.3           | 2,056              |          |       |             |                     | 4                   |                                         |
|                 | MUSHIKILI                             | 15.1          | 1, 785             |          |       |             |                     | 4                   |                                         |
|                 | NTARUKA                               | 3.7           | 224                |          |       |             |                     | 1                   |                                         |
|                 | RUGARAMA                              | 12.1          | 1, 883             |          |       |             |                     | 3                   |                                         |
|                 | TOTAL                                 | 48.5          | 7, 682             |          |       | 0           | . 0                 | 12                  | 4                                       |
| BIRENGA         | BARE                                  | 8.8           | 1, 237             |          |       | 3           |                     |                     | ••••••••••••••••••••••••••••••••••••••• |
|                 | BIRENGA                               | 9.0           | 1,351              |          |       | 3           |                     |                     |                                         |
|                 | GAHARA                                | 26.0          |                    |          |       |             | 1                   |                     |                                         |
|                 | GAHULIRE                              | 3.8           | 1, 512             |          |       | 3           | · · ·               |                     |                                         |
|                 | GASHONGORA                            | 11.6          | 2, 231             |          |       | 4           |                     |                     |                                         |
|                 | KIBAYA                                | 7.0           | 3, 570             |          |       |             | - 6                 |                     | · · ·                                   |
|                 | KIBIMBA                               | 6.9           | 1, 522             | 4<br>1   |       | 3           |                     |                     |                                         |
|                 | SAKARA                                | 5.3           | 2, 110             | • `      |       | 4           |                     |                     |                                         |
|                 | TOTAL                                 | 78.4          | 17, 242            | :        |       | 20          | 13                  | 0                   | 0                                       |
| RUSUMO          | GATORE                                | 17.5          | 3, 285             |          |       |             |                     | 6                   |                                         |
|                 | KANKOBWA                              | 117.6         | 4, 847             |          |       | 30          |                     |                     |                                         |
|                 | K I GARAMA                            | 15.8          | 3, 361             |          |       | 6           | ·                   |                     |                                         |
|                 | KIGINA                                | 22.0          | 5, 838             |          |       | 11          | 1.0                 |                     |                                         |
|                 | K I REHE                              | 6.7           | 2, 149             |          |       | 4           | 1.1.1.1.1.1         |                     |                                         |
|                 | MUSAZA                                | 30.4          | 6,978              | н.<br>С. |       |             |                     | 11                  |                                         |
|                 | NYABITARE                             | 9.9           | 5, 177             |          |       |             |                     | 9                   | 1. 1. s.                                |
|                 | NYAMUGAL I                            | 17.6          | 1,679              | :        |       | · ·         | - 1<br>-            | ÷                   | 5                                       |
|                 | NYARUBUYE                             | 27.1          | 3, 455             |          |       |             |                     | 7                   |                                         |
|                 | TOTAL                                 | 265.2         | 36, 769            |          |       | 51          | 0                   | 33                  | 5                                       |
|                 | sub-TOTAL                             | 535.0         | 87, 924            |          |       | 110         | 31                  | 45                  | 9                                       |
| TOTAL           | · · · · · · · · · · · · · · · · · · · | 1,009.9       | 219,844            |          |       | 194         | 87                  | 45                  | 151                                     |

PROPOSED WATER DEMAND OF SYSTEM-4

| COMMUNE<br>NAME | SECTOR<br>NAME | AREA  | POPULATION 2000 | FAMILY<br>2000 | UNIT<br>NO. |
|-----------------|----------------|-------|-----------------|----------------|-------------|
|                 |                | (km2) |                 | <u>.</u>       |             |
| RUKARA          | KIYENZI        | 4.5   | 1,505           | 251            | 251         |
|                 | NYAKABUNGO     | 13.2  | 1,698           | 283            | 283         |
| 1. A. A.        | NYAWERA        | 13.1  | 1,724           | 288            | 288         |
|                 | RUKARA         | 3.0   | 921             | 154            | 154         |
|                 | RWIMISHINY     | 8. 1  | 2, 248          | 375            | 371         |
|                 | RYAMANYONI     | 7.5   | 470             | 79             | 79          |
|                 | TOTAL          | 47.4  | 8, 566          | 1, 430         | 1,43(       |
| KAYONŻA         | GASOGI         | 3. 3  | 1, 122          | 187            | 181         |
|                 | MBURABUTUR     | 1.9   | 828             | 138            | 138         |
|                 | MUSUMBA        | 10.7  | 1, 831          | 306            | 30(         |
|                 | RWINKWAVU      | 81.0  | 672             | 112            | 112         |
|                 | TOTAL          | 96.9  | 4, 453          | 743            | 743         |
| RUTONDE         | KADUIIA        | 3.1   | 902             | 151            | 15          |
|                 | TOTAL          | 3.1   | 902             | 151            | 15          |
| KABARONDO       | BISENGA        | 7.1   | 1, 110          | 185            | 18          |
|                 | MURAMA         | 14.8  | 1, 412          | 236            | 230         |
| н.<br>1         | RUSERA         | 2. 9  | 1,064           | 178            | 178         |
|                 | SHYANDA        | 15.2  | 1, 506          | 251            | 251         |
|                 | TOTAL          | 40.0  | 5,092           | 850            | 850         |
| K I GARAMA      | KABARE-2       | 16.6  | 1,683           | 281            | 28          |
|                 | REMERA         | 2.9   | 803             | 134            | 134         |
|                 | RUBONA         | 10,7  | 1, 146          | 191            | 19          |
|                 | TOTAL          | 30. 2 | 3, 632          | 606            | 601         |
| RUKIRA          | GASIRU         | 7.4   | 694             | 116            | 110         |
|                 | GITUKU         | 2.5   |                 | 100            | 100         |
|                 | MUSHIKILI      | 11.3  | 1, 191          | 199            | 199         |
|                 | NTARUKA        | 8.8   | 223             | .38            | 38          |
|                 | RUGARAMA       | 11. 1 | 1, 256          | 210            | 210         |
|                 | TOTAL          | 41.1  | 3, 959          | 663            | 66          |
| BIRENGA         | BIRENGA        | 10.7  | 1,802           | 301            | 301         |
|                 | GAHARA         | 15.6  | 2,060           | 344            | 344         |
|                 | TOTAL          | 26.3  | 3, 862          | 645            | 64          |
| RUSUMO          | GATORE         | 11.6  | 1,641           | 274            | 274         |
| . 1             | KANKOBWA       | 55.7  | 7, 109          | 1, 185         | 1, 18       |
|                 | KIGARAMA       | 32. 2 | 5,041           | 841            | 841         |
| · ·             | KIGINA         | 5.7   | 730             | 122            | 123         |
|                 | MUSAZA         | 18.1  | 3, 489          | 582            | 58          |
|                 | NYABITARE      | 16.2  | 864             | 144            | 144         |
|                 | NYAMUGALI      | 39. 5 | 0               | 0              | . (         |
|                 | NYARUBUYE      | 23.0  | 690             | 115            | 11          |
|                 | TOTAL          | 202.0 | 19, 564         | 3, 263         | 3, 26       |

# Results of Economical Study of Transmission Pipe SYSTEM-1 MUHAZI

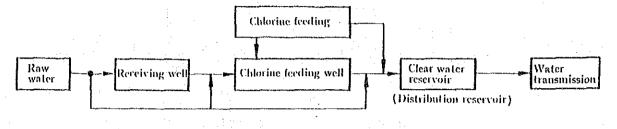
| Discharge      | Q=     | 596   | m3/day |     |           |
|----------------|--------|-------|--------|-----|-----------|
|                |        | 0.414 | m3/min | · . | 6.898 1/s |
| Transmission I | ipe L= | 11500 | m.     |     |           |
|                | 5      |       |        |     | 1 A.      |

| Pipe Dia           | D=  | 75            | 100          | 150           | 200           |
|--------------------|-----|---------------|--------------|---------------|---------------|
| Head Loss (Unit)   | m/m | 0.058         | 0.017        | 0.0017        | 0.00045       |
| llead Loss (total) | M   | 667           | 195.5        | 19.55         | 5. 175        |
| Pipe Cost (unit)   | RWF | 5, 077        | 7, 400       | 9, 481        | 12, 476       |
| Pipe Cost (total)  | RWF | 58, 389, 333  | 85, 100, 000 | 109, 027, 667 | 143, 474, 000 |
| Pump Cost          | RWF | 30, 015, 000  | 8, 797, 500  | 879, 750      | 232, 875      |
| Electric Fee       | RWF | 61, 286, 388  | 17, 963, 252 | 1, 796, 325   | 475, 498      |
| TOTAL              |     | 149, 690, 721 | 111.860,752  | 111, 703, 742 | 144, 182, 373 |

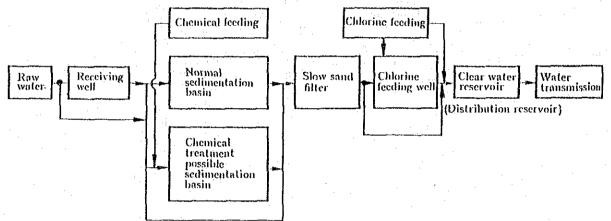
SYSTEM-1 SAKE

| Discharge<br>Transmission | Q=<br>Pipe L= |              | m3/day<br>m3/min<br>m | 7. 650       | 1/s          |
|---------------------------|---------------|--------------|-----------------------|--------------|--------------|
|                           |               | ·            |                       |              |              |
| Pipe Dia                  | D=            | 75           | 100                   | 150          | 200          |
| Head Loss (U              | nit) m/m      | 0.065        | 0.018                 | 0.002        | 0.0005       |
| llead Loss (to            | otal) m       | 390          | 108                   | 12           | 3            |
| Pipe Cost (               | unit) RWF     | 5,077        | 7, 400                | 9, 481       | 12, 476      |
| Pipe Cost (to             | otal) RWF     | 30, 464, 000 | 44, 400, 000          | 56, 884, 000 | 74, 856, 000 |
| Pump Cost                 | RWF           | 17,550,000   | 4,860,000             | 540,000      | 135,000      |
| Electric Fee              | RWF           | 35, 834, 620 | 9, 923, 433           | 1, 102, 604  | 275, 651     |
| TOTAL                     |               | 83, 848, 620 | 59, 183, 433          | 58, 526, 604 | 75, 266, 651 |
|                           |               |              |                       |              |              |

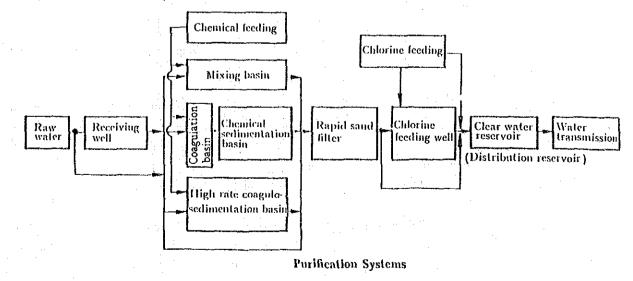
Table M.11 (2)

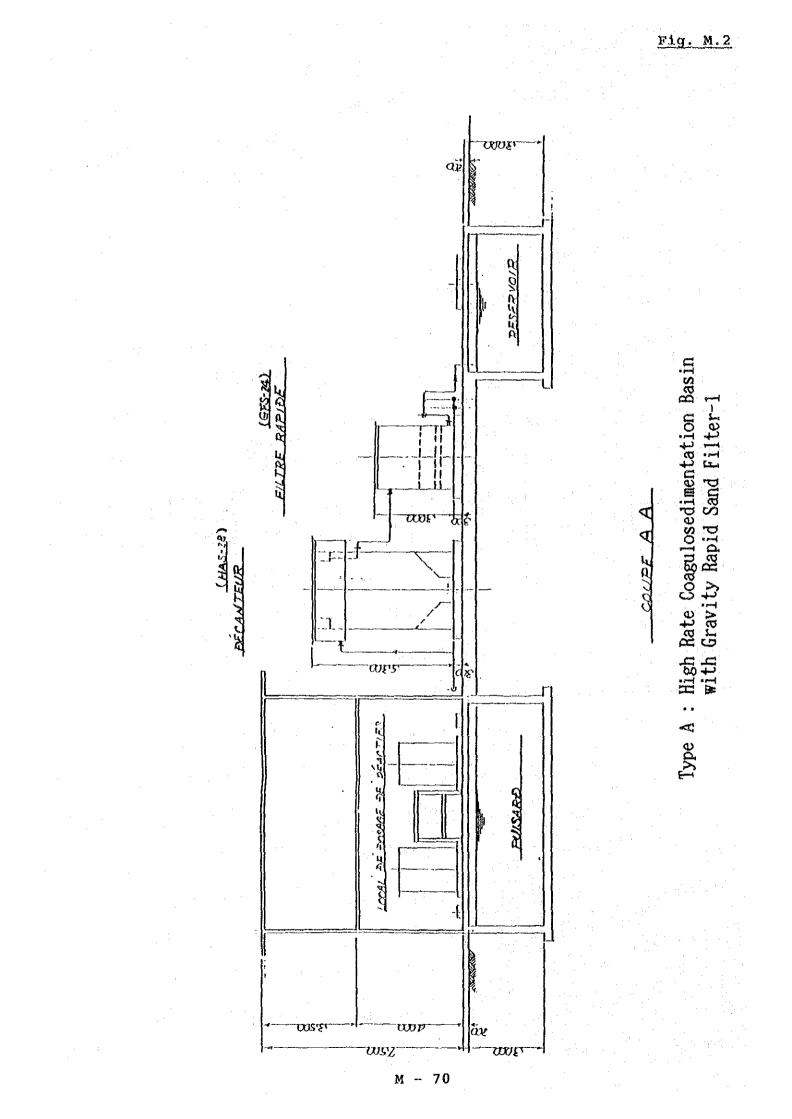

SYSTEM-2 CASE STUDY 1

| N                                                                                                                                                                                                                                                                                                                    |                                                                |                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                            |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Discharge                                                                                                                                                                                                                                                                                                            | Q=                                                             | 100                                                                                                                                                               | m3/day                                                                                                                                                                                         |                                                                                                                                            |                                        |
|                                                                                                                                                                                                                                                                                                                      |                                                                | 0.069                                                                                                                                                             | m3/min                                                                                                                                                                                         | 1.157 1/s                                                                                                                                  |                                        |
| Transmission Pipe                                                                                                                                                                                                                                                                                                    | l,=                                                            | 100                                                                                                                                                               | m                                                                                                                                                                                              |                                                                                                                                            |                                        |
|                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                            |                                        |
| Pipe Dia                                                                                                                                                                                                                                                                                                             | D=                                                             | 75                                                                                                                                                                | 100                                                                                                                                                                                            | 150                                                                                                                                        | · · ·                                  |
| llead Loss (Unit) (                                                                                                                                                                                                                                                                                                  |                                                                | 0.0018                                                                                                                                                            | 0.00047                                                                                                                                                                                        | 0.00005                                                                                                                                    |                                        |
| Head Loss (total)                                                                                                                                                                                                                                                                                                    | M                                                              | 0,18                                                                                                                                                              | 0.047                                                                                                                                                                                          | 0.005                                                                                                                                      |                                        |
| Pipe Cost (unit)                                                                                                                                                                                                                                                                                                     |                                                                | 5,077                                                                                                                                                             | 7,400                                                                                                                                                                                          | 9, 481                                                                                                                                     |                                        |
| Pipe Cost (total)                                                                                                                                                                                                                                                                                                    |                                                                | 507,733                                                                                                                                                           |                                                                                                                                                                                                | 948,067                                                                                                                                    |                                        |
| Pump Cost                                                                                                                                                                                                                                                                                                            | RWF                                                            | 8, 100                                                                                                                                                            | 2, 115                                                                                                                                                                                         | 225                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·  |
| Electric Fee                                                                                                                                                                                                                                                                                                         | RWF                                                            | 16, 539                                                                                                                                                           |                                                                                                                                                                                                | 459                                                                                                                                        | ••••                                   |
| TOTAL                                                                                                                                                                                                                                                                                                                | WH1.                                                           | 532, 372                                                                                                                                                          |                                                                                                                                                                                                | 948, 751                                                                                                                                   | ······································ |
| SYSTEM-2                                                                                                                                                                                                                                                                                                             |                                                                |                                                                                                                                                                   |                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                      |                                        |
| 5151L# 2                                                                                                                                                                                                                                                                                                             |                                                                |                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                            | •                                      |
| Discharge                                                                                                                                                                                                                                                                                                            | Q=                                                             | 100                                                                                                                                                               | m3/day                                                                                                                                                                                         |                                                                                                                                            |                                        |
|                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                                                                                   | m3/min                                                                                                                                                                                         | 1.157 1/s                                                                                                                                  |                                        |
| Transmission Pipe                                                                                                                                                                                                                                                                                                    | L=                                                             | 500                                                                                                                                                               |                                                                                                                                                                                                |                                                                                                                                            | :                                      |
| Dina Dia                                                                                                                                                                                                                                                                                                             | D                                                              |                                                                                                                                                                   | 100                                                                                                                                                                                            | 150                                                                                                                                        |                                        |
| Pipe Dia<br>Head Loss (Unit) (                                                                                                                                                                                                                                                                                       | D=<br>m/m                                                      | 75<br>0.0018                                                                                                                                                      |                                                                                                                                                                                                | <u>150</u><br>0. 00005                                                                                                                     |                                        |
|                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                                                                                   | ***********************************                                                                                                                                                            |                                                                                                                                            |                                        |
| Head Loss (total)                                                                                                                                                                                                                                                                                                    |                                                                |                                                                                                                                                                   |                                                                                                                                                                                                | 0.025                                                                                                                                      | ••••••••••••••••••                     |
| Pipe Cost (unit)                                                                                                                                                                                                                                                                                                     |                                                                | 5,077                                                                                                                                                             |                                                                                                                                                                                                | 9, 481                                                                                                                                     |                                        |
| Pipe Cost (total)                                                                                                                                                                                                                                                                                                    | KWF                                                            | 2, 538, 667                                                                                                                                                       |                                                                                                                                                                                                | 4, 740, 333                                                                                                                                |                                        |
| Pump Cost                                                                                                                                                                                                                                                                                                            | . <b></b> .                                                    | 40, 500                                                                                                                                                           |                                                                                                                                                                                                | <u>1, 125</u>                                                                                                                              | · · · · · · · · · · · · · · · · · · ·  |
| Electric Fee                                                                                                                                                                                                                                                                                                         |                                                                | 82, 695                                                                                                                                                           |                                                                                                                                                                                                | 2, 297                                                                                                                                     |                                        |
| TOTAL                                                                                                                                                                                                                                                                                                                | ·                                                              | 2, 661, 862                                                                                                                                                       |                                                                                                                                                                                                | 4, 743, 755                                                                                                                                |                                        |
|                                                                                                                                                                                                                                                                                                                      |                                                                |                                                                                                                                                                   | :                                                                                                                                                                                              |                                                                                                                                            |                                        |
| 1                                                                                                                                                                                                                                                                                                                    |                                                                |                                                                                                                                                                   |                                                                                                                                                                                                | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                    |                                        |
| SYSTEM-2                                                                                                                                                                                                                                                                                                             |                                                                | · .                                                                                                                                                               | 4                                                                                                                                                                                              |                                                                                                                                            |                                        |
| .*                                                                                                                                                                                                                                                                                                                   |                                                                |                                                                                                                                                                   |                                                                                                                                                                                                |                                                                                                                                            |                                        |
| Discharge                                                                                                                                                                                                                                                                                                            | 0=                                                             | 100                                                                                                                                                               | m3/day                                                                                                                                                                                         | ······································                                                                                                     |                                        |
| Discharge                                                                                                                                                                                                                                                                                                            | Q=                                                             |                                                                                                                                                                   | m3/day<br>m3/min                                                                                                                                                                               | 1 157 1/e                                                                                                                                  | •                                      |
| -                                                                                                                                                                                                                                                                                                                    | ÷.                                                             | 0.069                                                                                                                                                             | m3/min                                                                                                                                                                                         | 1.157 1/s                                                                                                                                  |                                        |
| -                                                                                                                                                                                                                                                                                                                    | ÷.                                                             |                                                                                                                                                                   | m3/min                                                                                                                                                                                         | 1.157 l/s                                                                                                                                  |                                        |
| Fransmission Pipe                                                                                                                                                                                                                                                                                                    | ÷.                                                             | 0.069                                                                                                                                                             | m3/min<br>m                                                                                                                                                                                    | 1. 157 1/s                                                                                                                                 |                                        |
| Fransmission Pipe<br>Pipe Dia                                                                                                                                                                                                                                                                                        | L=<br>D=                                                       | 0. 069<br>1000<br>75                                                                                                                                              | m3/min<br>m<br>100                                                                                                                                                                             | 150                                                                                                                                        |                                        |
| Transmission Pipe<br>Pipe Dia<br>Head Loss (Unit) 1                                                                                                                                                                                                                                                                  | L=<br>D=<br>m/m                                                | 0.069<br>1000<br>75<br>0.0018                                                                                                                                     | m3/min<br>m<br>100<br>0.00047                                                                                                                                                                  | 150<br>0. 00005                                                                                                                            |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) H<br>Head Loss (total)                                                                                                                                                                                                                                             | L=<br>D=<br>m/m<br>m                                           | 0.069<br>1000<br>75<br>0.0018<br>1.8                                                                                                                              | m3/min<br>m<br>100<br>0.00047<br>0.47                                                                                                                                                          | 150<br>0.00005<br>0.05                                                                                                                     |                                        |
| Transmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (unit)                                                                                                                                                                                                                              | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077                                                                                                                     | m3/min<br>m<br>0.00047<br>0.47<br>7,400                                                                                                                                                        | 150<br>0.00005<br>0.05<br>9,481                                                                                                            |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) H<br>Head Loss (total)<br>Pipe Cost (unit)<br>Pipe Cost (total)                                                                                                                                                                                                    | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333                                                                                                        | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000                                                                                                                                    | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667                                                                                               |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (unit)<br>Pipe Cost (total)<br>Pump Cost                                                                                                                                                                                            | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000                                                                                              | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150                                                                                                                          | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250                                                                                      |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (unit)<br>Pipe Cost (total)<br>Pump Cost                                                                                                                                                                                            | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333                                                                                                        | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185                                                                                                                | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594                                                                             |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) H<br>Head Loss (total)<br>Pipe Cost (unit)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee                                                                                                                                                                       | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000                                                                                              | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150                                                                                                                          | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250                                                                                      |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) H<br>Head Loss (total)<br>Pipe Cost (unit)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee                                                                                                                                                                       | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391                                                                                   | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185                                                                                                                | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594                                                                             |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit)  <br>Head Loss (total)<br>Pipe Cost (unit)<br>Pipe Cost (total)<br>Pipe Cost<br>Electric Fee<br>FOTAL                                                                                                                                                              | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391                                                                                   | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185                                                                                                                | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594                                                                             |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) H<br>Head Loss (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pipe Cost<br>Electric Fee<br>FOTAL<br>SYSTEM-2                                                                                                                                                 | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724                                                                      | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335                                                                                                   | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594                                                                             |                                        |
| Transmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee<br>TOTAL                                                                                                                                             | L=<br>D=<br>m/m<br>RWF                                         | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100                                                               | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>m3/day                                                                                         | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511                                                                |                                        |
| Transmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee<br>TOTAL                                                                                                                                             | L=<br>D=<br>m/m<br>RWF<br>RWF                                  | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100                                                               | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335                                                                                                   | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594                                                                             |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (unit)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee<br>FOTAL<br>SYSTEM-2<br>Discharge                                                                                                                                          | L=<br>D=<br>m/m<br>RWF<br>RWF<br>Q=                            | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100                                                               | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>m3/day<br>m3/day                                                                               | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511                                                                |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) (<br>Head Loss (Unit) (<br>Pipe Cost (Unit)<br>Pipe Cost<br>Fiber Cost<br>Pipe Cost<br>SYSTEM-2<br>Discharge<br>Fransmission Pipe          | L=<br>D=<br>m/m<br>RWF<br>RWF<br>Q=<br>L=                      | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100<br>0.069<br>1500                                              | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>m3/day<br>m3/day<br>m3/min<br>m                                                                | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511<br>1.157 1/s                                                   |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) (<br>Head Loss (total)<br>Pipe Cost (unit)<br>Pipe Cost (total)<br>Pipe Cost<br>Electric Pee<br>FOTAL<br>SYSTEM-2<br>Discharge<br>Fransmission Pipe<br>Pipe Dia                                                                                                    | L=<br>D=<br>m/m<br>RWF<br>RWF<br>Q=<br>L=<br>D=                | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100<br>0.069<br>1500<br>75                                        | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>m3/day<br>m3/day<br>m3/min<br>m                                                                | 150<br>0.00005<br>0.05<br>9,481<br>9,480.667<br>2,250<br>4,594<br>9,487,511<br>1.157 1/s<br>1.50                                           |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (Unit)<br>Pipe Cost (Unit)<br>Pipe Cost (Unit)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee<br>FOTAL<br>SYSTEM-2<br>Discharge<br>Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit)                                                                  | L=<br>D=<br>m/m<br>RWF<br>RWF<br>RWF<br>L=<br>D=<br>m/m        | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100<br>0.069<br>1500<br>75<br>0.0018                              | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>7,464,335<br>m3/day<br>m3/day<br>m3/min<br>m                                                   | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511<br>1.157 1/s<br>150<br>0.00005                                 |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee<br>FOTAL<br>SYSTEM-2<br>Discharge<br>Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit)<br>Head Loss (total)                                          | L=<br>D=<br>m/m<br>RWF<br>RWF<br>RWF<br>L=<br>D=<br>m/m<br>m   | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100<br>0.069<br>1500<br>75<br>0.0018<br>2.7                       | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>7,464,335<br>m3/day<br>m3/min<br>m<br>100<br>0.00047<br>0.705                                  | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511<br>1.157 1/s<br>150<br>0.00005<br>0.075                        |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee<br>FOTAL<br>SYSTEM-2<br>Discharge<br>Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit)<br>Pipe Cost (unit)                                           | L=<br>D=<br>m/m<br>RWF<br>RWF<br>RWF<br>L=<br>D=<br>m/m<br>RWF | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100<br>0.069<br>1500<br>75<br>0.0018<br>2.7<br>5.077              | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>7,464,335<br>m3/day<br>m3/min<br>m<br>100<br>0.00047<br>0.705<br>7,400                         | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511<br>1:157 1/s<br>150<br>0.00005<br>0.075<br>9,481               |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Fee<br>FOTAL<br>SYSTEM-2<br>Discharge<br>Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit)<br>Pipe Cost (unit)                                           | L=<br>D=<br>m/m<br>RWF<br>RWF<br>RWF<br>L=<br>D=<br>m/m<br>RWF | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100<br>0.069<br>1500<br>75<br>0.0018<br>2.7                       | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>7,464,335<br>m3/day<br>m3/min<br>m<br>100<br>0.00047<br>0.705<br>7,400                         | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511<br>1.157 1/s<br>150<br>0.00005<br>0.075                        |                                        |
| Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit) Head Loss (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pipe Cost (total)<br>Pump Cost<br>Electric Pee<br>TOTAL<br>SYSTEM-2<br>Discharge<br>Fransmission Pipe<br>Pipe Dia<br>Head Loss (Unit)<br>Pipe Cost (unit)<br>Pipe Cost (total) | L=<br>D=<br>m/m<br>RWF<br>RWF<br>RWF<br>L=<br>D=<br>m/m<br>RWF | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100<br>0.069<br>1500<br>75<br>0.0018<br>2.7<br>5.077              | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>7,464,335<br>m3/day<br>m3/min<br>m<br>100<br>0.00047<br>0.705<br>7,400<br>11,100,000           | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511<br>1:157 1/s<br>150<br>0.00005<br>0.075<br>9,481               |                                        |
| Pipe Cost (total)<br>Pump Cost<br>Electric Pee<br>TOTAL<br>SYSTEM-2<br>Discharge<br>Transmission Pipe<br>Pipe Dia<br>Head Loss (Unit)<br>Head Loss (total)                                                                                                                                                           | L=<br>D=<br>m/m<br>RWF<br>RWF<br>RWF<br>L=<br>D=<br>m/m<br>RWF | 0.069<br>1000<br>75<br>0.0018<br>1.8<br>5.077<br>5.077,333<br>81,000<br>165,391<br>5.323,724<br>100<br>0.069<br>1500<br>75<br>0.0018<br>2.7<br>5.077<br>7.616,000 | m3/min<br>m<br>100<br>0.00047<br>0.47<br>7,400<br>7,400,000<br>21,150<br>43,185<br>7,464,335<br>7,464,335<br>m3/day<br>m3/min<br>m<br>100<br>0.00047<br>0.705<br>7,400<br>11,100,000<br>31,725 | 150<br>0.00005<br>0.05<br>9,481<br>9,480,667<br>2,250<br>4,594<br>9,487,511<br>1.157 1/s<br>150<br>0.00005<br>0.075<br>9,481<br>14,221,000 |                                        |


Table <u>M.11</u> (3)

|       |                  |                                       |             |                  |                                       |                                         | st, C.                                   | 1.0 | $\frac{r_{1}}{(3)}$                                                                                                        |
|-------|------------------|---------------------------------------|-------------|------------------|---------------------------------------|-----------------------------------------|------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------|
|       | SYSTEM-2 CASE    | STUDY 2                               |             | · ·              |                                       |                                         |                                          | .1  |                                                                                                                            |
|       | D1 1             | à                                     | 000         | 0 /1             |                                       |                                         |                                          |     |                                                                                                                            |
|       | Discharge        | Q=                                    |             | m3/day           | 0.016                                 | 1/2                                     |                                          |     |                                                                                                                            |
|       | Transmission Pi  | Ind In                                | 100         | m3/min<br>       | 2, 315                                | 1/8                                     |                                          |     |                                                                                                                            |
|       | ITAIISMISSION FI | the r-                                | 100         | 10 ·             |                                       |                                         |                                          |     | ÷                                                                                                                          |
|       | Pipe Dia         | D=                                    | 75          | 100              | 150                                   | · · · · · · · · · · · · · · · · · · ·   |                                          |     |                                                                                                                            |
|       | Head Loss (Unit  |                                       | 0.0068      | 0.0016           | 0.00021                               | ••••••••••                              | and the second                           |     |                                                                                                                            |
|       | llead Loss (tota |                                       | 0.0008      | 0. 16            | 0, 00021                              | ·····                                   |                                          |     |                                                                                                                            |
|       | Pipe Cost (uni   |                                       | 5,077       | 7,400            | 9, 481                                | ••••••••••••••••••••••••••••••••••••••• | an a |     |                                                                                                                            |
|       | Pipe Cost (tota  |                                       | 507, 733    | 740, 000         | 948, 067                              | •••••••                                 |                                          |     |                                                                                                                            |
|       | Pump Cost        | A.Z. A01                              | 30, 600     | 7, 200           | 945                                   | ••••••••••••••••••••••••••••••••••••••  |                                          |     |                                                                                                                            |
|       | Electric Fee     |                                       | 62, 481     | 14, 701          | 1, 930                                | ······································  |                                          |     |                                                                                                                            |
|       | TOTAL            |                                       | 600, 814    | 761, 901         | _950, 941                             |                                         |                                          |     |                                                                                                                            |
|       |                  |                                       |             |                  |                                       |                                         |                                          |     |                                                                                                                            |
|       | SYSTEM-2         |                                       |             |                  |                                       |                                         |                                          |     |                                                                                                                            |
|       |                  |                                       |             |                  |                                       |                                         |                                          |     |                                                                                                                            |
|       | Discharge        | Q=                                    | 200         | m3/day           |                                       | : •                                     |                                          |     | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -            |
|       |                  |                                       | 0.139       | m3/min           | 2. 315                                | 1/s                                     |                                          |     |                                                                                                                            |
|       | Transmission Pi  | ipe L=                                | 500         | m                |                                       |                                         |                                          |     |                                                                                                                            |
|       |                  |                                       | <u> </u>    |                  |                                       | · · · · · · · · · · · · · · · · · · ·   |                                          |     | -                                                                                                                          |
|       | Pipe Dia         | D=                                    | 75          | 100              | 150                                   | ·····                                   |                                          |     |                                                                                                                            |
|       | Head Loss (Uni   |                                       | 0.0068      |                  | 0.00021                               |                                         |                                          |     | in the second                                                                                                              |
|       | llead Loss (tota |                                       | 3.4         | 0.8              | 0.105                                 |                                         |                                          |     |                                                                                                                            |
|       | Pipe Cost (uni   |                                       | 5,077       | 7, 400           | 9, 481                                | ·                                       |                                          | •   |                                                                                                                            |
|       | Pipe Cost (tota  | al) RWF                               | 2, 538, 667 | 3, 700, 000      | 4, 740, 333                           |                                         |                                          |     |                                                                                                                            |
|       | Pump Cost        |                                       | 153,000     | 36,000           | 4, 725                                | ••••••••••••••••••••••••••••••••••••••• |                                          |     |                                                                                                                            |
|       | Electric Fee     |                                       | 312, 404    | 73, 507          | 9, 648                                |                                         | -<br>-                                   |     |                                                                                                                            |
|       | TOTAL            |                                       | 3,004.071   | 3, 809, 507      | 4, 754, 706                           |                                         |                                          |     |                                                                                                                            |
| · · · |                  | · · · ·                               |             | *                |                                       |                                         |                                          |     |                                                                                                                            |
|       | SYSTEM-2         |                                       |             |                  |                                       | ·                                       |                                          |     |                                                                                                                            |
|       | 3131BM~2         |                                       |             |                  |                                       |                                         |                                          |     |                                                                                                                            |
|       | Discharge        | Q=                                    | 200         | m3/day           |                                       | · · · · · · · · · · · · · · · · · · ·   |                                          |     |                                                                                                                            |
|       | broonar 80       | •                                     |             | m3/min           | 2. 315                                | 1/s                                     |                                          |     |                                                                                                                            |
|       | Transmission P   | ipe L=                                | 1000        |                  |                                       |                                         |                                          |     |                                                                                                                            |
|       |                  | -1                                    |             |                  |                                       |                                         | · .                                      |     |                                                                                                                            |
|       | Pipe Dia         | D=                                    | 75          | 100              | 150                                   |                                         | a at the                                 |     |                                                                                                                            |
|       | llead Loss (Uni  |                                       | 0.0068      | 0.0016           | 0.00021                               |                                         |                                          |     |                                                                                                                            |
|       | llead Loss (tota |                                       | 6.8         | 1. 6             | 0.21                                  |                                         |                                          |     |                                                                                                                            |
| ж. «  | Pipe Cost (un    | it) RWF                               | 5, 077      | 7, 400           | 9, 481                                | :                                       |                                          |     |                                                                                                                            |
|       | Pipe Cost (tota  | al) RWF                               | 5,077,333   | 7, 400, 000      | 9, 480, 667                           | ····                                    |                                          |     |                                                                                                                            |
|       | Pump Cost        | · · · · · · · · · · · · · · · · · · · | 306,000     | 72,000           | 9, 450                                |                                         |                                          |     |                                                                                                                            |
|       | Electric Fee     |                                       | 624, 809    | 147, 014         | 19, 296                               |                                         |                                          |     |                                                                                                                            |
|       | TOTAL            |                                       | 6,008,142   | 7, 619, 014      | 9, 509, 412                           | ·                                       |                                          |     |                                                                                                                            |
|       |                  |                                       |             |                  |                                       | ·                                       | an a | ÷   |                                                                                                                            |
|       |                  |                                       |             | · · · ·          |                                       |                                         | •                                        |     |                                                                                                                            |
|       | SYSTEM-2         |                                       |             |                  |                                       |                                         |                                          |     |                                                                                                                            |
|       | D. 1             | 0-                                    | 200         | -9/day           | · · · · · · · · · · · · · · · · · · · |                                         |                                          |     |                                                                                                                            |
|       | Discharge        | Q=                                    |             | m3/day<br>m3/min | 9.015                                 |                                         |                                          | •   |                                                                                                                            |
|       | Transmission Di  | ina I-                                | 1500        |                  | 2.315                                 |                                         |                                          |     |                                                                                                                            |
|       | Transmission Pi  | the r-                                | 1000        |                  | · · · · · · · ·                       |                                         | e an ang th                              |     |                                                                                                                            |
|       | Pipe Dia         | [)=                                   | 75          | 100              | 150                                   |                                         |                                          | 4   | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -            |
|       | Head Loss (Unit  |                                       | 0.0068      | 0. 0016          | 0.00021                               |                                         |                                          |     | -                                                                                                                          |
|       | Head Loss (tota  |                                       | 10.2        | 2.4              | 0. 315                                | ·····                                   |                                          |     |                                                                                                                            |
|       | Pipe Cost (uni   |                                       | 5, 077      | 7, 400           | 9, 481                                | ·····                                   |                                          |     | · · ·                                                                                                                      |
|       | Pipe Cost (tota  |                                       | 7, 616, 000 | 11, 100, 000     | 14, 221, 000                          |                                         |                                          |     | -                                                                                                                          |
|       | Pump Cost        | ··/                                   | 459,000     | 108,000          | 14, 175                               |                                         |                                          |     |                                                                                                                            |
|       | Electric Fee     |                                       | 937, 213    | 220, 521         | 28, 943                               |                                         |                                          |     | an the<br>Calorina and Calorina |
|       | TOTAL            |                                       | 9,012,213   | 11, 428, 521     | 14, 264, 118                          |                                         |                                          |     |                                                                                                                            |
|       | <u></u>          |                                       |             |                  | E                                     |                                         |                                          |     |                                                                                                                            |


#### (A) Only chlorination system








(C) Rapid sand filtration system



