2.1.2 Yangjae Chong

(1) Generation Load Discharged by the Inhabitants of the basin

1) Settled Population within the basin

The population in the basin was calculated using the data of dondistricts in 1988. These data were summed up at every observation station.

The future population was estimated on the basis of the Basic Town Plan of Seoul Metropolitan. The population in 1990 and 2002 were estimated using the data in 1988, 2001 and 2010 by quota allotment. The result is indicated in Table 2.1.2-1

Table 2.1.2-1 Population in Yanjgae Chong Basin unit:person

	St. 1 to 2	St. 2 to 4	St. 3	Total
1988	130,440	19,543	67, 147	217,130
1990	140, 275	21, 017	72, 210	233,502
2002	291, 735	48, 618	152, 981	493, 334
2010	317, 196	47, 525	163, 284	528,005

2) Generation Load discharged by the Population

The generation Load discharged by the settled population was calculated using the generation unit load adopted in the Basic Sewage Plan of SMG published in 1984.

Table 2.1.2-2 Adopted Pollution Load Factor by Basic Sewage Plan of SMG

Treatment		Pollution Load of Population			Pollution Load of	T 1
District	Item	Domest	Night Soil	Sub-total	Commercial Use	Total
A	BOD	29	19	4.8	14. 2	62.2
Anyang	SS	29.3	25	54	14. 3	68.3
Tan	BOD	29	19	48	12.8	60.8
ıan	SS	29.3	25	54	12.9	66.9
T	BOD	29	19	48	18.9	66.9
Joongnang	SS	29.3	25	5 4	19.0	73.0

cf:converted figures 1990

Table 2.1.2-3 Pollution Load Amount of Yangjae Chong Basin(1990)

	St. 1 to 2	St. 2 to 4	St. 3	Total
Population	140,275	21,017	72, 210	233, 502
BOD(kg/day)	8,529	1, 278	4,390	14, 197
S S(kg/day)	9,384	1,406	4,831	15,621

(2) Estimate of Generation Load discharged by Industry

1) Industrial Classification and Production Amount within the basin

The data on the factories in the basin were offered by Seoul Metro-politan. These data include the industries in the basin and the number of workers in each unit of the district. Textile, chemistry, and others are listed as the major industries of this area.

The production amount by each factory classification within the basin was calculated by multiplication — population amount per employee number multiplied by employee number — using the results from the Reserch on the load Factor Discharge from Factories compiled by the Ministry of Commerce in 1984.

The production amounts of the year 1990 was arrived at based on the assumption that the annual growth rate was 10% from 1984 to 1990.

Table 2.1.2-4 Production Amount per Employee unit:million won per year

	Textile	Chemistry	Machinery	Others
1984	16.4	55.3	21.3	10.8
1990	29. 1	98.0	37.7	19. 1

Table 2.1.2-5 Employee Numbers & Yearly Production Amount unit: persons, mlion won per year

		St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
T ! 1	Employee nos	9	0	0	0
Textil	Production Amount	262	0	0	0
01	Employee nos	0	0	0	0
Chemistry	Production Amount	0	0	0	0
	Employee nos	0	20	0	0
Machinery	Production Amount	0	754	0	0
0.11	Employee nos	133	71	0	0
Others	Production Amount	2,540	1,356	0	0
	Employee nos	142	91	0	0
Total	Production Amount	2,802	2,110	0	0

2) Estimation of Generation Load Discharged by Industry

The industries in Korea are classified broadly into four categories, textile, chemistry, machinery and others. Machinery is further divided into three and others into four sub-categories.

The pollutant load factor per production has not been determined in Korea, because there was no Industry Pollution Factor included in the data. The pollutant load factor was therefore estimated using thedata in the Pollution Load Factor from the Japanese Design Criteria of Sewerage Facilities.

The industry discharge factor was estimated using the results of Reserch on the Load Factor Discharged from Factories compiled by the Ministry of Korea in 1984.

The estimate was arrived at using the following formulas.

Industry Discharge Factor

= discharge from the Factor

Industry Pollution Load Factor

- = discharge from the factories / pollution amount
- a. Industry Discharge Factor and Discharge by Factory Classification per Production Amount

i. Industry Discharge Factor per Production Amount

The industry discharge factors is indicated as follows.

Table 2.1.2-6 Industry Discharge Factor unit:m3/million won

	Industry Discharge Factor
Textile	17.7
Chemistry	28.3
Machinery	7.1
Others	4. 8

ii. Discharge of Each Factory Classification

The discharge of Each Factory classification, which was estimated using the production amount and discharge factor, is indicated as follows.

Table 2.1.2-7 Industry Discharge

Unit:m³/day

	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
Textil	13	0	0	0
Chemistry	0	0	0	0
Machinery	0	15	0	0
Others	33	18	0	0
Total	46	33	0	0

b. Estimatite of the Production Amount

The production amounts were estimated using the ratio of the production amount to each factory sort and the calculated total.

Table 2.1.2-8 Industry Production Breakdown (Seoul Area)

	Production per year	Ratio
Textile	1,164 (billion won)	1.00000
Chemistry	1, 182	1.00000
Machinery	2, 462	1. 00000
Casting & Nonferrousmetal	256	0.10398
Primary Metals	386	0.15678
Machinery&Instrumentation	1,820	0.73924
Others	2, 515	1.00000
Foods	1,673	0.66521
Wooden	65	0.02584
Printing	599	0. 23817
Others	178	0.07078
Total	7, 323	

c. Pollution Load Factor per Industry Discharge

Pollution load fcator per industry discharge was estimated using the data of the Japanese Design Criteria of Sewerage Pacility because the data obtained from Korea were insufficient.

Table 2.1.2-9 Industry Pollution Load Factor

	BOD (g/m³)	S S (g/m³)
Textile	15.0	22. 5
Textil Industry	20.0	15.0
Clothing	10.0	30.0
Chemistry	633.0	233.0
Resin acid & Glycerin	600.0	500.0
Crude Drugs	1,000.0	100.0
Petroleum	300.0	100.0
Casting & Nonferrousmetal	50.0	100.0
Primary Metals	360.0	230.5
Machinery & Instrumentation	25.0	20.0
Machinery	40.0	30.0
Instrumentation	10.0	100.0
Foods	2,400.0	1,200.0
Wooden	10.0	40.0
Printing	200.0	60.0
Others	10.0	100.0

d. Industry Discharge

The industry discharge of the nine categories was calculated using the ratio presented above.

Table 2.1.2-10 Industry Discharge of Yangjae Chong Basin unit:m³/day

Item	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
Textile	13	0	0	0
Chemistry	0	0	0	0
Machinery	0	15	0	0
Casting & Nonferrou	0	1.6	0	0
Primary Metals	. 0	2.4	0	0
Machin & Inst	0	11.1	0	0
Other	33	18	0	0
Foods	21.9	12.0	0	0
Wooden	0.9	0.4	0	0
Printing	7.9	4.3	0	0
Others	2.3	1.3	0	0

e. Generation Load by Industry

The generation load by industry based on the industry pollution load factor and the industry discharge is presented in the Table 2.1.2-11.

Table 2.1.2-11 Industry Input Load of Yangjae Chong Basin unit:kg/day

Item		St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
T	BOD	0.2	0	-	0
Textile	SS	0.3	0	_	0
Oh and a knowl	BOD	0	0	***	0
Chemistry	SS	0	0	-	0
O4: % N6	BOD	0	0.1	.	0
Casting & Nonfer	SS	0	0.2	_	0
Delegge Makala	BOD	0	0.9	-	0
Primary Metals	SS	0	0.6	<u></u>	0
Machin & Inst	BOD	0	0.3	_	0
	SS	0	0.2	-	0
D 1	BOD	52.6	28.8		0
Foods	SS	26.3	14.4	-	0
135	BOD	0	0	_	0
Wooden	SS	0	0	-	0
D . 7 . 4	BOD	1.6	0.9	-	0
Printing	SS	0.5	0.3	-	0
0.11	BOD	0	0		0
Others	8 8	0.2	0.1	-	0
<i>a</i> 1	BOD	54.4	31.0	-	0
Total	SS	27.3	15.8	_	0

(3) Generation Load by Land Utilization

1) Present Land Utilization conditions

The present land utilization condition and the land utilization plan for Seoul Metropolitan have not been compiled. Therefore in order to grasp the present state of land utilization at each observation station, the condition of the land utilization was studied at each river basin based on the Town Plan of Seoul Metropolitan published in 1989, 1/25,000 in scale. However, this method includes the areas of the productive green zone, development restricted zone, the agricultural farm zone, the bush zone and the green zone combined. The land area formation ratio of the farms, paddy fields including orchards and forest, were determined using the land utilization area survey of the smallest district. Each of the land utilization area was obtained by using the determined land area formation ratio. The green zone area includes the development restricted zone, the natural green zone, reductive green zone and the scenic zone.

Table 2.1.2-12 Land Use Area by Each Observation Station unit: km²

	Farm	Paddy	Forest	Residence	Others	Total
St. 1 to 2	0.183	0.129	2.820	3.913	0.335	7. 380
St. 2 to 4	0.078	0	0.897	1.569	0.666	3. 210
St. 3 to	1.076	0	10.381	0.406	0.317	12. 180
St. 4 to	2.163	0	29.679	2.200	2.308	36. 350
Total	3.500	0.129	43.777	8.088	3.626	59. 120

2) Generation Load by Utilization

a. Generation Unit Load

The generation unit load of the land utilization was adopted from the basic study result for principal rivers in Korea which was summarized in the Basic Plan and the Detailed Plan of the Water Purification Project for Anyang Chong.

The park is classified under the forest category. While the residential zone, the quasi-industrial zone, the quasi-residential zone and the commercial zone fall under the residential area category.

Table 2.1.2-13 Pollution Load Factor by Land Use

unit:kg/km²·day

	Farm	Paddy	Forest	Residence	Others
BOD	7. 10	5. 12	0.96	87.59	0.96
SS	7. 59	4. 41	1. 26	227.73	1.26

b. Generation Load by Land Utilization

The generation load by Land Utilization was calculated using the size of the land and the generation unit load.

Table 2.1.2-14 Input Load by Land Use

unit:kg/day

		Farm	Paddy	Forest	Residence	Others	Total
81.4.1.0	BOD	1.3	0.7	2.7	342.7	0.3	347.7
St. 1 to 2	SS	1.4	0.6	3.6	891.1	0.4	897.1
0.0.	BOD	0.6	0	0.9	137.4	0.6	139. 5
St. 2 to 4	S S	0.6	0	1.1	357.3	0.8	359.8
	BOD	7.6	0	10.0	35.6	0.3	53. 5
St. 3 to	SS	8.2	0	13.1	92.5	0.4	114. 2
G. t.	BOD	0.9	0	2.9	3, 298.8	2. 2	3,304.8
St. 4 to	SS	16.4	0	37.4	501.0	2. 9	557.7
m , 1	BOD	10.4	0.7	16.5	3, 814. 5	3.4	3,845.5
Total	S S	26.6	0.6	55.2	1,841.9	4. 5	1,928.8

(4) Generation Load by Livestock

1) Present Condition of Livestock

The present condition of the livestock within the basin is shown in the following.

Table 2.1.2-15 Livestok Amount of Yangjae Chong unit:head

	St.1 to 2	St. 2 to 4	St. 4 to	St. 3 to
Сож	<u></u>	117	728	383
Pig		205	1,675	152
Chicken	-	1,019	4,480	· -
Toal		1, 341	6,883	535

2) Generation Load by Livestock

a. Generation Unit Load factor of Livestock

The generation unit load of the livestock was estimated on the basis of the investigative study by Seoul Metropolitan. The result is indicated in Table 2.1.2-16.

Table 2.1.2-16 Livestock Pollution Load Factor

	BOD (g/head)	S S (g/head)
Сож	640	3,800
Pig	125	356
Chicken	12.5	18

b. Generation Load by Livestock

The generation load by livestock was estimated using the number of the livestock (Table 2.1.2-16) and the generation unit load.

Table 2.1.2-17 Livestock Input Load

unit:kg/day

		St. 1 to 2	St. 2 to 4	St.4 to	St. 3 to
Cow	BOD		74.9	465.9	245.1
	SS	-	444.6	2,766.4	1,455.4
n. t	BOD	-	25.6	209.4	19.0
Pig	SS	_	73.0	596.6	54.1
01.1.1	BOD	<u></u>	12.7	56.0	0.0
Chicken	SS	-	18. 3	80.6	0.0
f0	BOD	_	113. 2	731.3	264.1
Total	SS	-	535.9	3,443.6	1,509.5

(5) Result

The generation load obtained by the method described above is summarized in Table 2.1.2-18 & 19.

Table 2.1.2-18 Continuous Input Load (BOD) unit:kg/day

	St. 1 to 2	St. 2 to 4	St.4 to	St. 3 to
Poulation	8,529	1,278	Kwachon-shi	4,390
Industry	54	31	Kwachon-shi	0
Land Use	348	140	Kwachon-shi	54
Livestock	0	113	Kwachon-shi	264
Total	8, 931	1,562	_	4,708

Table 2.1.2-19 Continuous Input Load (S S) unit:kg/day

<u> </u>	St. 1 to 2	St. 2 to 4	St. 4 to	St.3 to
Poulation	9, 384	1,406	Kwachon-shi	4,831
Industry	27	16	Kwachon-shi	0
Land Use	897	360	Kwachon-shi	114
Livestock	0	536	Kwachon-shi	1,510
Total	10, 308	2,318	-	6,455

2.1.3 Ui Chong

(1) Generation Load Discharged by the Inhabitants of the basin

1) Settled Population within the basin

The population in the basin was calculated using the data of dondistricts in 1988. These data were summed up at every observation station.

The future population was estimated on the basis of the Basic Town Plan of Seoul Metropolitan. The population in 1990 and 2002 were estimated using the data in 1988, 2001 and 2010 by quota allotment. The result is indicated in Table 2.1.3-1

Table 2.1.3-1 Population in Ui Chong Basin

unit:person

	St.1 to 2	St. 2 to	Total
1988	199, 971	154, 529	354, 500
1990	182,494	141,024	323, 518
2002	209, 085	160, 283	369, 368
2010	217. 524	168,093	385, 617

2) Generation Load discharged by the Population

The generation Load discharged by the settled population was calculated using the generation unit load adopted in the Basic Sewage Plan of SMG published in 1984.

Table 2.1.3-2 Pollution Load Amount of Ui Chong Basin (SS) unit:g/person/day

Treatment District		Polluti	on Load of P	opulation -	Pollution Load of	W-4-1
		Domest	Night Soil	Sub-total	Commercial Use	Total
	BOD	29	19	48	14.2	62.2
Anyang S S	SS	29.3	25	54	14.3	68.3
	BOD	29	19	48	12.8	60.8
Tan S S	SS	29.3	25	54	12.9	66.9
	BOD	29	19	48	18.9	66.9
Joongnang S	S S	29.3	25	54	19.0	73.0

cf:converted figures 1990

Table 2.1.3-3 Pollution Loading Amount of Ui Chong Basin (1990)

	St. 1 to 2	St. 2 to 3	Total
Population	182, 494	141,024	323, 518
BOD(kg/day)	12, 209	9, 435	21,644
S S(kg/day)	13, 322	10, 295	23,617

- (2) Estimate of Generation Load discharged by Industry
 - 1) Industrial Classification and Production Amount within the basin

The data on the factories in the basin were offered by Seoul Metro-politan. These data include the industries in the basin and the number of workers in each unit of the district. Textile, chemistry, and others are listed as the major industries of this area.

The production amount by each factory classification within the basin was calculated by multiplication — population amount per employee number multiplied by employee number — using the results from the Reserch on the load Factor Discharge from Factories compiled by the Ministry of Commerce in 1984.

The production amounts of the year 1990 was arrived at based on the assumption that the annual growth rate was 10% from 1984 to 1990.

Table 2.1.3-4 Production Amount per Employee unit:million won per year

	Textile	Chemistry	Machinery	Others
1984	16.4	55.3	21. 3	10.8
1990	29. 1	98.0	37.7	19.1

Table 2.1.3-5 Employee Numbers & Yearly Production Amount unit:plion per year

	unit, piron por jean			
		St. 1 to 2	St. 3 to	
m 1	Employee nos	4,391	5, 345	
Textil	Production Amount	127,778	155, 540	
Chemistry	Employee nos	978	978	
	Production Amount	95,844	95, 844	
	Employee nos	795	787	
Machinery	Production Amount	29,972	29,670	
0.1	Employee nos	1,735	1,834	
Others	Production Amount	33,139	35,029	
Total	Employee nos	7,899	8, 944	
	Production Amount	286,733	316,083	

2) Estimation of Generation Load Discharged by Industry

The industries in Korea are classified broadly into four categories, textile, chemistry, machinery and others. Machinery is further divided into three and others into four sub-categories.

The pollutant load factor per production has not been determined in Korea, because there was no Industry Pollution Factor included in the data. The pollutant load factor was therefore estimated using thedata in the Pollution Load Factor from the Japanese Design Criteria of Sewerage Facilities.

The industry discharge factor was estimated using the results of Reserch on the Load Factor Discharged from Factories compiled by the Ministry of Korea in 1984.

The estimate was arrived at using the following formulas.

Industry Discharge Factor

= discharge from the Factor

Industry Pollution Load Factor

- = discharge from the factories / pollution amount
- a. Industry Discharge Factor and Discharge by Factory Classification per Production Amount
 - i. Industry Discharge Factor per Production Amount

The industry discharge factors is indicated as follows.

Table 2.1.3-6 Industry Discharge Factor unit:m3/million won

	Industry Discharge Factor
Textile	17.7
Chemistry	28.3
Machinery	7. 1
Others	4.8

ii. Discharge of Each Factory Classification

The discharge of Each Factory classification, which was estimated using the production amount and discharge factor, is indicated as follows.

Table 2.1.3-7 Industry Discharge

Unit:m³/day

	St. 1 to 2	St. 3 to
Texitile	6,196	7,543
Chemistry	7,431	7,431
Machinery	583	577
Others	436	461
Total	14,646	16,012

b. Estimatite of the Production Amount

The production amounts were estimated using the ratio of the production amount to each factory sort and the calculated total.

Table 2.1.3-8 Industry Production Breakdown (Seoul Area)

	Production per year	Ratio
Textile	1,164 (billion won)	1.00000
Chemistry	1, 182	1.00000
Machinery	2,462	1.00000
Casting & Nonferrousmetal	256	0.10398
Primary Metals	386	0.15678
Machinery&Instrumentation	1,820	0.73924
Others	2, 515	1. 00000
Foods	1,673	0.66521
Wooden	65	0.02584
Printing	599	0. 23817
Others	178	0.07078
Total	7, 323	-

c. Pollution Load Factor per Industry Discharge

Pollution load feator per industry discharge was estimated using the data of the Japanese Design Criteria of Sewerage Facility because the data obtained from Korea were insufficient.

Table 2.1.3-9 Industry Pollution Load Factor

	BOD (g/m³)	S S (g/m ³)
Textile	15.0	22.5
Textil Industry	20.0	15.0
Clothing	10.0	30.0
Chemistry	633.0	233.0
Resin acid & Glycerin	600.0	500.0
Crude Drugs	1,000.0	100.0
Petroleum	300.0	100.0
Casting & Nonferrousmetal	50.0	100.0
Primary Metals	360.0	230.5
Machinery & Instrumentation	25.0	20.0
Machinery	40.0	30.0
Instrumentation	10.0	100.0
Foods	2,400.0	1,200.0
Wooden	10.0	40.0
Printing	200.0	60.0
Others	10.0	100.0

d. Industry Discharge

The industry discharge of the nine categories was calculated using the ratio presented above.

Table 2.1.3-10 Industry Discharge of Ui Chong Basin unit:m3/day

I tem	St. 1 to 2	St. 3 to
Texitile	6, 196	7, 543
Chemistry	7, 431	7, 431
Machinery	583	577
Casting & Nonferrou	60.6	60.0
Primary Metals	91. 4	90.5
Machin & Inst	431.0	426.5
Others	436	461
Foods	290.0	306.7
Wooden	11. 3	11.9
Printing	103.8	109.8
Others	30.9	32.6

e. Generation Load by Industry

The generation load by industry based on the industry pollution load factor and the industry discharge is presented in the Table 2.1.3-11.

Table 2.1.3-11 Industry Input Load of Ui Chong Basin unit:kg/day

Item		St. 1 to 2	St. 3 to
T	BOD	92. 9	113.1
Textile	S S	139.4	169.7
Chemistry	BOD	4, 703. 8	4,703.8
CHemistry	8 8	1, 731. 4	1,731.4
Casting & Nonfer	BOD	3. 0	3.0
casting a nonier	SS	6. 1	6.0
Primary Metals	BOD	32. 9	32.6
riimaly metals	SS	21.1	20.9
Machin & Inst	BOD	10.8	10.7
machin d inst	8 8	8.6	8. 5
Foods	BOD	696.0	736.1
roous	SS	348.0	368.0
Wooden	BOD	0.1	0.1
rooden	8 8	0. 5	0.5
Drinting	BOD	20.8	22.0
Printing	SS	6. 2	6.6
041	BOD	0.3	0.3
Others	SS	3. 1	3. 3
Total	BOD	5, 560. 6	5,621.7
Total	SS	2, 264. 4	2,314.9

(3) Generation Load by Land Utilization

1) Present Land Utilization conditions

The present land utilization condition and the land utilization plan for Seoul Metropolitan have not been compiled. Therefore in order to grasp the present state of land utilization at each observation station, the condition of the land utilization was studied at each river basin based on the Town Plan of Seoul Metropolitan published in 1989, 1/25,000 in scale. However, this method includes the areas of the productive green zone, development restricted zone, the agricultural farm zone, the bush zone and the green zone combined.

The land area formation ratio of the farms, paddy fields including orchards and forest, were determined using the land utilization area survey of the smallest district. Each of the land utilization area was obtained by using the determined land area formation ratio. The green zone area includes the development restricted zone, the natural green zone, reductive green zone and the scenic zone.

Table 2.1.3-12 Land Use Area by Each Observation Station unit:km²

	Farm	Paddy	Forest	Residence	Others	Total
St. 1 to 2	0.074	0.044	3. 976	4.244	0.982	9.320
St. 2 to	0.236	0.088	15.650	0.054	0.832	16.860
Total	0.310	0.132	19.626	4.298	1.814	26.180

2) Generation Load by Utilization

a. Generation Unit Load

The generation unit load of the land utilization was adopted from the basic study result for principal rivers in Korea which was summarized in the Basic Plan and the Detailed Plan of the Water Purification Project for Anyang Chong.

The park is classified under the forest category. While the residen-

tial zone, the quasi-industrial zone, the quasi-residential zone and the commercial zone fall under the residential area category.

Table 2.1.3-13 Pollution Load Factor by Land Use unit:kg/km²·day

	Farm	Paddy	Forest	Residence	Others
BOD	7. 10	5. 12	0.96	87.59	0.96
SS	7.59	4.41	1.26	227.73	1.26

b. Generation Load by Land Utilization

The generation load by Land Utilization was calculated using the size of the land and the generation unit load.

Table 2.1.3-14 Input Load by Land Use

unit:kg/day

	:	Farm	Paddy	Forest	Residence	Others	Total
C	BOD	0.5	0.2	3.8	371.7	0.9	377.1
St. 1 to 2	8 8	0.6	0. 2	5. 0	966.5	1. 2	973.5
C. A.	BOD	1.7	1. 2	15.0	4.7	0.8	23.4
St. 2 to	SS	1.8	1.0	19.7	12.3	1.0	35.8
T 1	BOD	2.2	1.4	18, 8	376.4	1. 7	400.5
Total	2 2	2.4	1. 2	24.7	978.8	2. 2	1,009.3

(4) Generation Load by Livestock

1) Present Condition of Livestock

The present condition of the livestock within the basin is shown in the following.

Table 2.1.3-15 Livestok Amount of Yangjae Chong unit:head

	St. 1 to 2	St. 2 to
Сож	0	0
Pig	0	0
Chicken	0	74
Toal	0	74

2) Generation Load by Livestock

a. Generation Unit Load factor of Livestock

The generation unit load of the livestock was estimated on the basis of the investigative study by Seoul Metropolitan. The result is indicated in Table 2.1.3-16.

Table 2.1.3-16 Livestock Pollution Load Factor

	BOD (g/head)	S S (g/head)
Cow	640	3,800
Pig	125	356
Chicken	12.5	18

b. Generation Load by Livestock

The generation load by livestock was estimated using the number of the livestock (Table 2.1.3-16) and the generation unit load.

Table 2.1.3-17 Livestock Input Load

unit:kg/day

		St. 1 to 2	St. 2 to
0	BOD	0	0
Cow	SS	0	0
Pig	BOD	0	0
	SS	0	0
	BOD	0	0.9
Chicken	. \$ \$	0	1.3
Total	BOD	0	0.9
	SS	0	1.3

(5) Result

The generation load obtained by the method described above is summarized in Table 2.1.3-18 and 19.

Table 2.1.3-18 Continuous Input Load (BOD) unit:kg/day

	St.1 to 2	St. 2 to
Poulation	12,209	9, 435
Industry	5,561	5, 622
Land Use	377	23
Livestock	0	1
Total	18,147	15, 081

Table 2.1.3-19 Continuous Input Load (S S) unit:kg/day

	St.1 to 2	St. 2 to
Poulation	13,322	10, 295
Industry	2, 264	2, 315
Land Use	974	36
Livestock	0	1
Total	16,560	12,647

2.1.4 Chungroung Chong

- (1) Generation Load Discharged by the Inhabitants of the basin
 - 1) Settled Population within the basin

The population in the basin was calculated using the data of dondistricts in 1988. These data were summed up at every observation station.

The future population was estimated on the basis of the Basic Town Plan of Seoul Metropolitan. The population in 1990 and 2002 were estimated using the data in 1988, 2001 and 2010 by quota allotment. The result is indicated in Table 2.1.4-1

Table 2.1.4-1 Population in Chungroung Chong Basin unit:person

	St.1 to 2	St. 2 to 3	St. 3 to	Total
1988	76,002	326,312	16,202	418, 516
1990	69,359	297,792	14,786	381, 937
2002	101,910	432,055	23,035	557,000
2010	102,967	442,084	21,949	567,000

2) Generation Load discharged by the Population

The generation Load discharged by the settled population was calculated using the generation unit load adopted in the Basic Sewage Plan of SMG published in 1984.

Table 2.1.4-2 Adopted Pollution Load Factor by Basic Sewage Plan of SMG

unit:g/person/day

Treatment	Itom	Pollution Load of Population		Pollution Load of		
District	Item	Domest	Domest Night Soil Sub-total Commen		Commercial Use	Total
Anyang -	BOD	29	19	48	14. 2	62.2
	8 8	29.3	25	5 4	14.3	68.3
Tan	BOD	29	19	48	12.8	60.8
	SS	29.3	25	54	12.9	66.9
Joongnang	BOD	29	19	48	18.9	66.9
	8 8	29.3	25	54	19.0	73.0

cf:converted figures 1990

Table 2.1.4-3 Pollution Load Amount of Chungroung Chong Basin(1990)

	St. 1 to 2	St. 2 to 3	St.3	Total
Population	69,359	297, 792	14,786	381, 937
BOD(kg/day)	4,640	19, 922	989	25, 551
S S(kg/day)	5,063	21, 739	1,079	27, 881

(2) Estimate of Generation Load discharged by Industry

1) Industrial Classification and Production Amount within the basin

The data on the factories in the basin were offered by Seoul Metro-politan. These data include the industries in the basin and the number of workers in each unit of the district. Textile, chemistry, and others are listed as the major industries of this area.

The production amount by each factory classification within the basin was calculated by multiplication -- population amount per employee number multiplied by employee number -- using the results

from the Reserch on the load Factor Discharge from Factories compiled by the Ministry of Commerce in 1984.

The production amounts of the year 1990 was arrived at based on the assumption that the annual growth rate was 10% from 1984 to 1990.

Table 2.1.4-4 Production Amount per Employee unit:million won per year

	Textile	Chemistry	Machinery	Others
1984	16.4	55.3	21.3	10.8
1990	29.1	98.0	37.7	19.1

Table 2.1.4-5 Employee Numbers & Yearly Production Amount unit: persons. mlion won per year

		unit.pc	a sons, witon	HOII her Acar
		St. 1 to 2	St. 2 to 3	St.3 to
m 1	Employee nos	407	3, 287	4,491
Textil	Production Amount	11,844	95, 652	130,688
Chemistry	Employee nos	58	128	277
	Production Amount	5, 684	12, 544	27, 146
	Employee nos	71	144	323
Machinery.	Production Amount	2, 677	5, 429	12, 177
0.1	Employee nos	5 9	331	537
Others	Production Amount	1, 127	6, 322	10,257
Total	Employee nos	595	3, 890	5,628
	Production Amount	21, 332	119, 947	180,268

2) Estimation of Generation Load Discharged by Industry

The industries in Korea are classified broadly into four categories, textile, chemistry, machinery and others. Machinery is further divided into three and others into four sub-categories.

The pollutant load factor per production has not been determined in Korea, because there was no Industry Pollution Factor included in the data. The pollutant load factor was therefore estimated using thedata in the Pollution Load Factor from the Japanese Design Criteria of Sewerage Facilities.

The industry discharge factor was estimated using the results of

Reserch on the Load Factor Discharged from Factories compiled by the Ministry of Korea in 1984.

The estimate was arrived at using the following formulas.

Industry Discharge Factor

- = discharge from the Factor
- Industry Pollution Load Factor
 - = discharge from the factories / pollution amount
- a. Industry Discharge Factor and Discharge by Factory Classification per Production Amount
 - i. Industry Discharge Factor per Production Amount

The industry discharge factors is indicated as follows.

Table 2.1.4-6 Industry Discharge Factor unit:m3/million won

	Industry Discharge Factor
Textile	17.7
Chemistry	28.3
Machinery	7.1
Others	4.8

ii. Discharge of Each Factory Classification

The discharge of Each Factory classification, which was estimated using the production amount and discharge factor, is indicated as follows.

Table 2.1.4-7 Industry Discharge Unit:m3/day

	St. 1 to 2	St. 2 to 3	St. 3 to
Texitile	574	4,638	6, 337
Chemistry	441	973	2, 105
Machinery	52	106	237
Others	15	83	135
Total	1,082	5,800	8, 814

b. Estimatite of the Production Amount

The production amounts were estimated using the ratio of the production amount to each factory sort and the calculated total.

Table 2.1.4-8 Industry Production Breakdown (Seoul Area)

	Production per year	Ratio	
Textile	1,164 (billion won)	1.00000	
Chemistry	1, 182	1.00000	
Machinery	2,462	1.00000	
Casting & Nonferrousmetal	256	0.10398	
Primary Metals	386	0.15678	
Machinery&Instrumentation	1,820	0.73924	
Others	2, 515	1.00000	
Foods	1,673	0.66521	
Wooden	6 5	0.02584	
Printing	599	0. 23817	
Others	178	0.07078	
Total	7, 323	-	

c. Pollution Load Factor per Industry Discharge

Pollution load feator per industry discharge was estimated using the data of the Japanese Design Criteria of Sewerage Facility because the data obtained from Korea were insufficient.

Table 2.1.4-9 Industry Pollution Load Factor

	BOD (g/m³)	S S (g/m³)
Textile	15.0	22.5
Textil Industry	20.0	15.0
Clothing	10.0	30.0
Chemistry	633.0	233.0
Resin acid & Glycerin	600.0	500.0
Crude Drugs	1,000.0	100.0
Petroleum	300.0	100.0
Casting & Nonferrousmetal	50.0	100.0
Primary Metals	360.0	230.5
Machinery & Instrumentation	25.0	20.0
Machinery	40.0	30.0
Instrumentation	10.0	100.0
Foods	2,400.0	1,200.0
Wooden	10.0	40.0
Printing	200.0	60.0
Others	10.0	100.0

d. Industry Discharge

The industry discharge of the nine categories was calculated using the ratio presented above.

Table 2.1.4-10 Industry Discharge of Yangjae Chong Basin unit: m³/day

	Item	St. 1 to 2	St. 2 to 3	St. 3 to
1	exitile	574	4,638	6, 337
_(Chemistry	441	973	2, 105
λ	lachinery	52	106	237
	Casting & Nonferrou	5.4	11.0	24.6
	Primary Metals	8.2	16.6	37.2
	Machin & Inst	38.4	78.4	175.2
	Others	15	83	135
	Foods	10.0	55.2	89.8
	Wooden	0.4	2.1	3.5
	Printing	3.6	19.8	32.2
	Others	1.1	5.9	9.6

e. Generation Load by Industry

The generation load by industry based on the industry pollution load factor and the industry discharge is presented in the Table 2.1.4-11.

Table 2.1.4-11 Industry Input Load of Chungroung Chong Basin unit:kg/day

				unit:xg/day
Item		St. 1 to 2	St. 2 to 3	St. 3 to
(D	BOD	8.6	69.6	95.1
Textile	SS	12.9	104.4	142.6
01	BOD	279.2	615.9	1, 332. 5
Chemistry	SS	102.8	226.7	490.5
0 1 0 1 0 1	BOD	0.3	0.6	1.2
Casting & Nonfer	8 8	0.5	1.1	2.5
D	BOD	3.0	6.0	13.4
Primary Metals	SS	1.9	3.8	8.6
	BOD	1.0	2.0	4.4
Machin & Inst	SS	0.8	1.6	3.5
B 1	BOD	24.0	132.5	215.5
Foods	SS	12.0	66.2	107.8
Nr. 4	BOD	0.0	0.0	0.0
Wooden	SS	0.0	0.1	0.1
D	BOD	0.7	4.0	6.4
Printing	-S S	0.2	1.2	1.9
	BOD	0.0	0.1	0.1
Others	SS	0.1	0.6	1.0
	BOD	316.8	830.7	1,668.6
Total	S S	131.2	405.7	758.5

(3) Generation Load by Land Utilization

1) Present Land Utilization conditions

The present land utilization condition and the land utilization plan for Seoul Metropolitan have not been compiled. Therefore in order to grasp the present state of land utilization at each observation station, the condition of the land utilization was studied at each river basin based on the Town Plan of Seoul Metropolitan published in 1989, 1/25,000 in scale. However, this method includes the areas of the productive green zone, development restricted zone, the agricultural farm zone, the bush zone and the green zone combined. The land area formation ratio of the farms, paddy fields including orchards and forest, were determined using the land utilization area survey of the smallest district. Each of the land utilization area was obtained by using the determined land area formation ratio. The green zone area includes the development restricted zone, the natural green zone, reductive green zone and the scenic zone.

Table 2.1.4-12 Land Use Area by Each Observation Station unit:km²

	Farm	Paddy	Forest	Residence	Others	Total
St. 1 to 2	0.008	0.009	0.198	1.216	0.049	1.480
St. 2 to 3	0.046	0.024	2. 287	5.274	0.259	7.890
St. 3 to	0.011	0.010	6.392	3.213	0.404	10.030
Total	0.065	0.043	8.877	9.703	0.712	19.400

2) Generation Load by Utilization

a. Generation Unit Load

The generation unit load of the land utilization was adopted from the basic study result for principal rivers in Korea which was summarized in the Basic Plan and the Detailed Plan of the Water Purification Project for Anyang Chong.

The park is classified under the forest category. While the residential zone, the quasi-industrial zone, the quasi-residential zone and the commercial zone fall under the residential area category.

Table 2.1.4-13 Pollution Load Factor by Land Use unit:kg/km²·day

	Farm	Paddy	Forest	Residence	Others
BOD	7. 10	5. 12	0.96	87. 59	0.96
\$ \$	7. 59	4. 41	1.26	227. 73	1.26

b. Generation Load by Land Utilization

The generation load by Land Utilization was calculated using the size of the land and the generation unit load.

Table 2.1.4-14 Input Load by Land Use

unit:kg/day

		Farm	Paddy	Forest	Residence	Others	Total
	BOD	0.1	0	0. 2	106.5	0	106.8
St. 1 to 2	SS	0.1	0	0. 2	276.3	0.1	277.3
	BOD	0.3	0.1	2. 2	461.9	0.2	464.7
St. 2 to 3	SS	0.3	0.1	2. 9	1, 201.0	0.3	1, 204.6
	BOD	0. 1	0.1	6. 1	281.4	0.4	288.1
St. 3 to	SS	0. 1	0	8. 1	731.7	0.5	740.4
	BOD	0.5	0.2	8. 5	849.8	0.6	859.6
Total	SS	0.5	0.1	11. 2	2, 209. 6	0.9	2, 222. 3

(4) Generation Load by Livestock

1) Present Condition of Livestock

The present condition of the livestock within the basin is shown in the following.

Table 2.1.4-15 Livestok Amount of Chungroung Chong unit:head

	St. 1 to 2	St. 2 to 3	St. 3 to
Cow	0	0	0
Pig	0	0	0
Chicken	38	0	98
Toal	38	0	98

2) Generation Load by Livestock

a. Generation Unit Load factor of Livestock

The generation unit load of the livestock was estimated on the basis of the investigative study by Seoul Metropolitan. The result is indicated in Table 2.1.4-16.

Table 2.1.4-16 Livestock Pollution Load Factor

	BOD (g/head)	S S (g/head)
Cow	640	3,800
Pig	125	356
Chicken	12. 5	18

b. Generation Load by Livestock

The generation load by livestock was estimated using the number of the livestock (Table 2.1.4-16) and the generation unit load.

Table 2.1.4-17 Livestock Input Load

unit:kg/day

		St. 1 to 2	St. 2 to 3	St. 3 to
	BOD	0	0	0
Cow	SS	0	0	0
D.,	BOD	. 0	0	0
Pig	SS	0	0	.0
	BOD	0.5	0	1.2
Chicken	SS	0.7	0	1.8
T 1	BOD	0.5	0	1.2
Total	SS	0.7	0	1.8

(5) Result

The generation load obtained by the method described above is summarized in Table 2.1.2-18 & 19.

Table 2.1.4-18 Continuous Input Load (BOD) unit:kg/day

	St. 1 to 2	St. 2 to 3	St. 3 to				
Poulation	4,640	19,922	989				
Industry	317	831	1,669				
Land Use	107	465	288				
Livestock	1	. 0	-1				
Total	5,065	21,218	2, 947				

Table 2.1.4-19 Continuous Input Load (SS) unit:kg/day

	St. 1 to 2	St. 2 to 3	St. 3 to
Poulation	5,063	21,739	1,079
lndustry	131	406	759
Land Use	277	1,205	740
Livestock	1	0	2
Total	5,472	23,350	2, 580

2.2 Future Generation Load

Generation load in the future was estimated taking into consideration the following matters.

- 1) The population in the basin is considered to increase in the future due to the town re-development.
- 2) The future production amounts are expected to increase in view of the annual growth rate.
- 3) The future land utilization is not variable in the estimate, because except for highly dense development, new land development will not be carried out according to the Basic Town Plan of Seoul Metropolitan.
- 4) The number of livestock will be a calculated increase of generation load in future.

In general, with the estimates of the population and industrial variable there will be a calculated increase of generation load in future.

2.2.1 Anyang Chong

- (1) Generation Load Discharged by the Population of the Basin
 - 1) Settled Population within the Basin

Seou1

The population was calculated using the data don-districts in 1988.

The population of each don-district was summed up at every basin, where the water quality and discharge observation station were installed.

Kwangmyong-shi

The population was calculated using the data indicated in the Sewrage Service Basic Plan of Kwangmyong-shi.

The future population estimate was based on the Basic Town Plan of Seoul Metropolitan and the Sewerage Service Basic Plan of Kwangmyong-shi. The

population in 1990 and 2002 were estimated by quota allotment. The result is indicated in Table 2.2.2-1.

Table 2.2.1-1 Population in Anyang Chong Basin

unit:person

	St. 1 to 2 St. 2 to	0. 0. 1	St. 4 to 5			
		St. 2104	Seoul/Kwangmyong	St. 5to6	St.3 to	Total
1988	243,162	151,809	230, 787/230, 200	267,483	996, 569	2, 120, 010
1990	262,031	163,589	248,695/248,061	288,240	1,073,903	2, 284, 519
2001	283,973	177, 288	269,530/300,000	312,377	1, 163, 832	2,507,000
2002	302,641	195,956	288,198/305,000	331,045	1, 182, 500	2,605,340
2010	305, 591	190,784	290,038/345,000	336,157	1, 252, 430	2,720,000

2) Generation Load Discharged by the Population

a. Generation Unit Load of the Population

The future generation load of the settled population was calculated the estimated future generation unit load adopted in the Basic Sewerage Plan of SMG published in 1984. The estimated future generation load is as follows.

Table 2.2.1-2 Future Generation Unit Load by Basic Sewage Plan of SMG in Anyang Chong Treatment District

	BOD(g/person)	S S(g/person)	Remarks
1990	62.2	68.3	
2001	78.6	80.1	
2002	80. 9	81.1	
2010	92. 0	89. 5	

b. Generation Load Discharged by the Population

As described above, the future generation load discharged was determined using the estimated future population and the generation unit load. the result is represented in Table 2.2.1-3.

Table 2.2.1-3 Future Generation Load (BOD) of Poulation in Anyang Chong Basin

	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St. 3 to
1990	16, 298	10, 175	30,898	17, 929	66,797
2001	22, 320	13, 935	44, 765	24,553	91,477
2002	24, 484	15,853	47, 990	26,782	95,664
2010	28, 114	17,552	58, 423	30,926	115, 224

Table 2.2.1-4 Future Generation Load (S S) of Poulation in Anyang Chong Basin

	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St. 3 to
1990	17, 897	11, 173	33, 928	19,687	73,348
2001	22, 746	14, 201	45, 619	25,021	93,223
2002	24, 544	15,892	48, 108	26,848	95,901
2010	27, 350	17,075	56, 836	30,086	112,092

(2) Generation Load discharged by Industry

The future generation load, discharged by the industry, was estimated based on the future production figures, assuming that these figures increase 5% annually from the year 1990.

1) Future Production Amounts

Table 2.2.1-5 Yearly Production Amount of Anyang Chong Basin in 2002 unit:million per won

	and the second s					
	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St. 3 to	
Textile	165, 036	314, 498	45, 622	2,244,490	470,020	
Chemistry	1, 932, 413	391, 234	495, 247	5,020,227	411,826	
Machinery	1, 616, 292	731,607	989, 287	6,072,555	1, 356, 784	
Others	615, 734	159, 499	255, 714	1,641,775	379,574	
Total	4, 329, 475	1,596,838	1,785,047	14,979,047	2,618,204	

Table 2.2.1-6 Yearly Production Amount of Anyang Chong Basin in 2010 unit:million per won

	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St.3 to
Textile	243, 833	464,656	67, 404	3,316,134	694,434
Chemistry	2, 855, 054	578,032	731, 705	7,417,161	608,454
Machinery	2, 388, 000	1,080,916	1,461,627	8,971,930	2,004,588
Others	909, 720	235, 653	377, 806	2.425,650	560,804
Total	6, 396, 607	2, 359, 257	2,638,542	22,130,875	3,868,280

2) Future Generation Load

The future generation load, calculated using the future production amounts and the generation unit load of each kind of industry, is represented in Table 2.2.1-7 & 8.

Table 2.2.1-7 Industry Generation Load of Anyang Chong Basin(2002) unit:kg/day

Item		St. 1to 2	St. 2 to 4	St. 4to 5	St. 5to 6	St. 3 to
Toutile	BOD	120.0	228.8	33.2	177.8	341.9
Textile	SS	180.1	343.1	49.8	266.8	512.8
Chemistry	BOD	94,841.1	19, 201. 4	24, 543.3	246, 388.9	20, 212. 3
CHEMISTLY	S S	34,909.9	7,067.8	9,034.1	90,692.9	7,439.9
Casting & Nonfer	BOD	163.9	74.2	217.9	615.8	137.6
casting a nonier	S S	327.8	148.4	435.7	1, 231.6	275.2
Primary Metals	BOD	1,779.5	805.3	1,089.0	6,685.2	1,493.6
riimaly metals	SS	1, 139. 4	515.6	697.3	4, 280.4	956.3
Machin & Inst	BOD	582.7	263.7	356.6	2, 189.0	489.1
machin a inst	SS	466.1	211.0	285.3	1, 751.2	391.3
Poods	BOD	12,926.4	3,350.4	6, 153.6	34,468.8	7, 970. 4
Foods	SS	6,463.2	1,675.2	3,076.8	17, 234.4	3,985.2
10	BOD	2. 1	0.5	0.9	5.6	1.3
Wooden	SS	8. 4	2.2	3.5	22.3	5. 2
n - ! - 4 !	BOD	385.6	100.0	160.2	1,028.4	237.8
Printing	SS	115.7	30.0	48.1	308.5	71. 3
Othono	BOD	5.7	1.5	2.4	15.3	3. 5
Others	\$ \$	5. 7	1.5	2.4	15.3	3. 5
T-4-1	BOD	11,080.0	24,025.8	32, 557.1	291, 574.8	30,887.5
Total	SS	43,616.3	9,994.8	13,633.0	115,803.4	13,640.7

Table 2.2.1-8 Industry Generation Load of Anyang Chong Basin(2010)

	·		Υ		·	unit:kg/day
Item	· ₁ · · · · · · · · · · ·	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5to 6	St. 3 to
Textile	BOD	177.4	338.0	49.0	2, 412. 2	505.1
	8 8	266.0	507.0	73.6	3, 618.2	757.7
Chemistry	BOD	14,012.4	28,369.2	36, 148.1	364,028.2	29, 862. 4
Onomistry	8 8	51, 577. 8	10,442.4	13, 305.7	133, 994. 6	10,992.0
Casting & Nonfer	BOD	242.2	109.6	265.7	909.9	203.3
casting & wonter	SS	484.3	219.2	531.4	1,819.7	406.0
Primary Metals	BOD	2,629.1	1,190.2	1,609.2	9,877.3	2, 206.8
riimary metars	8 8	1,683.3	762.0	1,030.3	6, 324.2	1,413.0
Machin & Inst	BOD	860.8	389.7	526.9	3, 234, 2	722.6
machin & inst	SS	688.7	311.7	421.5	2, 587.4	578.1
Foods	BOD	19,099.2	4,946.4	8, 716.8	50,928.0	11,774.4
1 0003	8 - 8	9,549.6	2,473.2	4, 358.4	25, 464.0	5, 887. 2
Wooden	BOD	3.1	0.8	1.3	8.2	1. 9
	SS	12.4	3.2	5.1	33.0	7.6
Printing	BOD	569.8	147.6	236.6	1, 519.4	351.4
TITHUING	SS	170.9	44.3	71.0	455.8	105.4
Others	BOD	8. 5	2.2	3.5	22.6	5. 2
other 2	SS	8. 5	2.2	3.5	22.6	5. 2
Total	BOD	16,371.5	35, 493. 7	47, 557.1	432, 940.0	45, 633.1
Total	SS	64, 441. 5	14,765.2	19, 800.5	174, 319. 5	20, 152, 8

(3) Results of Estimation

The estimated future generation loads are summarized in Table 2.2.1-9 to

Table 2.2.1-9 Futurte(2002) Continuous Generation Load (BOD) unit:kg/day

	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St. 3 to
Poulation	24,484	15,853	47, 990	26,782	95, 664
Industry	110,807	24,026	32, 557	291, 575	30, 888
Land Use	1,301	147	1,664	1, 188	2, 123
Livestock	7	667	2, 835	5,830	27
Total	136,599	40,693	85,046	325, 375	128,702

Table 2.2.1-10 Future(2002) Continuous Generation Load (S S) unit:kg/day

				The second secon	***
	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St.3 to
Poulation	17,897	11,173	33, 928	19,687	73, 348
Industry	43,616	9,995	13,633	115,803	13, 641
Land Use	3,367	364	4, 144	3,059	5, 497
Livestock	38	3, 515	12, 186	29,962	123
Total	64,918	25,047	63,891	168,511	92,609

Table 2.2.1-11 Futurte(2010) Continuous Generation Load (BOD) unit:kg/day

	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St. 3 to
Poulation	28,114	17,552	58, 423	30, 296	115, 224
Industry	163,714	35, 494	47, 557	432, 940	45,633
Land Use	1,301	147	1,664	1, 188	2, 123
Livestock	7	667	2,835	5, 830	27
Total	193,136	53,860	110, 479	470, 254	163,007

Table 2.2.1-12 Future(2010) Continuous Generation Load (S S) unit:kg/day

	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St. 3 to
Poulation	27, 350	17,075	56, 836	30,086	112,092
Industry	64,442	14,765	19,801	174, 320	20, 153
Land Use	3,367	364	4, 144	3,059	5, 497
Livestock	38	3, 515	12, 186	29,962	123
Total	95, 197	35,719	92, 967	237, 427	137,865

2.2.2 Yangjae Chong

- (1) Generation Load Discharged by the Population of the Basin
 - 1) Settled Population within the Basin

The population in the basin was calculated using the data of don-districts in 1988, totaled at every observation station.

The future population estimate was based on the Basic Town Plan of Seoul Metropolitan. The population in 1990 and 2002 were estimated using the data in 1988, while the population in 2001 and 2010 were estimated by quota allotment. The result is indicated in Table 2.2.2-1.

Table 2.2.	2-1	-	Population	iņ	Yangjae	Chong Basin
						unit:person

		1		unit.poi con
	St.1 to 2	St. 2 to 4	St. 3	Total
1988	130,440	19, 543	67,147	217, 130
1990	140, 275	21, 017	72, 210	233,502
2002	291,735	48, 618	152, 981	493, 334
2010	317, 196	47, 525	163,284	528,005

- 2) Generation Load Discharged by the Population
 - a. Generation Unit Load of the Population

The future generation load of the settled population was calculated the estimated future generation unit load adopted in the Basic Sewerage Plan of SMG published in 1984. The estimated future generation load is as follows.

Table 2.2.2-2 Future Generation Unit Load by Basic Sewage Plan of SMG in Tan Chong Treatment District

	BOD(g/person)	S S(g/person)	Remarks
1990	60.8	66. 9	
2001	76.6	78. 3	
2002	78.0	79.3	
2010	89.6	87.4	

b. Generation Load Discharged by the Population

As described above, the future generation load discharged was determined using the estimated future population and the generation unit load. the result is represented in Table 2.2.2-3.

Table 2.2.2-3 Future Generation Load (BOD) of Poulation in Yangjae Chong Basin

	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
1990	8,529	1,278	_	4,390
2001	21,904	3,282		11, 276
2002	22,755	3,792	-	11, 933
2010	28,421	4,258		14,630

Table 2.2.2-4 Future Generation Load (S S) of Poulation in Yangjae Chong Basin

	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
1990	9,384	1,406		4,831
2001	22,390	3,354	-	11,526
2002	23, 135	3,855	-	12, 131
2010	27,723	4,154		14, 271

(2) Generation Load discharged by Industry

The future generation load, discharged by the industry, was estimated based on the future production figures, assuming that these figures increase 5% annually from the year 1990.

1) Future Production Amounts

Table 2.2.2-5 Yearly Production Amount of Yangjae Chong Basin in 2002 unit:million per won

	T	r~	411.7.6.101	TITON PET WO
	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
Textile	471	0	_	0
Chemistry	0	0		0
Machinery	0	1,354	-	0
Others	4,561	2,435		0
Total	5,032	3,789	-	0

Table 2.2.2-6 Yearly Production Amount of Yangjae Chong Basin in 2010 unit:million per won

	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to	
Textile	695	0	_		0
Chemistry	0	0	_		0
Machinery	0	2,001			0
Others	6,739	3,598		. :	0
Total	7,434	5,599	_		0

2) Future Generation Load

The future generation load, calculated using the future production amounts and the generation unit load of each kind of industry, is represented in Table 2.2.2-7 & 8.

Table 2.2.2-7 Industry Generation Load of Yangjae Chong Basin(2002) unit:kg/day

ltem		St. 1 to 2	St. 2to 4	St. 5 to	St. 3 to
Textile	BOD	0. 3	0	_	0
TextITE	s s	0. 5	0		0
Chemistry	BOD	0	0	-	0
Onemisci j	SS	. 0	0	_	0
Casting & Nonfer	BOD	0	0.2	<u>.</u>	0
Casting & nonici	8 8	0	0. 3	-	0 .
Primary Metals	BOD	0	1. 4	**	0
firmary metals	8 8	0	0.9	- .	0
Machin & Inst	BOD	0	0. 5	-	0
machin & inst	8 8	0	0.4	-	0
Foods	BOD	96.0	50.4	***	0
10003	8 8	48.0	25.2	_	0
Wooden	BOD	0	· : 0	- :	0
	2 2	0. 1	0	e.u	0
Printing	BOD	2. 8	1.6	-	0
TITHETHE	SS	0.8	0.5	-	0
Others	BOD	0	0	-	0
others	SS	0	0	-	0
Total	BOD	99.1	54.1		0
Total	SS	49.4	27.3	-	0

Table 2.2.2-8 Industry Generation Load of Yangjae Chong Basin(2010) unit:kg/day

Item		St. 1 to 2	St. 2to 4	St. 5 to	St. 3 to
1 (-0:)	l non			01.010	
Textile	BOD	0.5	0	<u> </u>	0
	8 8	0.8	0		0
Chemistry	BOD	0	0		0
Chemistry	8 8	0	0	-	0
O - 4 ! 9 N C	BOD	0	0.2		0
Casting & Nonfer	SS	0	0.4		0
D	BOD	. 0	2. 2	_	0
Primary Metals	8 8	0	1. 4		0
Machin 9 Inst	BOD	0	0.7	_	0
Machin & Inst	SS	0	0.6		0
Poods	BOD	70.8	74.4	_	0
Foods	SS	48.0	37. 2	<u>-</u>	0
10	BOD	0	0	-	0
Wooden	8 8	0. 1	0	-	0
D. Carlotte	BOD	4. 2	2. 2	. -	0
Printing	\$ \$	1. 3	0.7	-	0
0.11	BOD	0.1	. 0		. 0
Others	SS	0.1	0	-	0
	BOD	146.4	79.7	_	0
Total	SS	73.1	40.3	-	0

(3) Results of Estimation

The estimated future generation loads are summarized in Table 2.2.2-9 to 12.

Table 2.2.2-9 Futurte(2002) Continuous Generation Load (BOD) unit:kg/day

	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
Poulation	22, 755	3,792	Kwachon-shi	11,933
Industry	99	54	Kwachon-shi	0
Land Use	348	140	Kwachon-shi	54
Livestock	0	113	Kwachon-shi	264
Total	23, 202	4,099	_	12,251

Table 2.2.2-10 Future(2002) Continuous Generation Load (S S) unit:kg/day

	St. 1 to 2	St. 2 to 4	St.4 to	St. 3 to
Poulation	23, 135	3,855	Kwachon-shi	12,131
lndustry	49	27	Kwachon-shi	0
Land Use	897	: 360	Kwachon-shi	114
Livestock	0	536	Kwachon-shi	1,510
Total	24, 081	4,778		13,755

Table 2.2.2-11 Futurte(2010) Continuous Generation Load (BOD) unit:kg/day

	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
Poulation	28, 421	4.258	Kwachon-shi	14,360
Industry	146	80	Kwachon-shi	0
Land Use	348	140	Kwachon-shi	54
Livestock	0	113	Kwachon-shi	264
Total	28, 915	4,591		14,678

Table 2.2.2-12 Future(2010) Continuous Generation Load (S S) unit:kg/day

	St. 1 to 2	St. 2 to 4	St. 4 to	St. 3 to
Poulation	27, 723	4,154	Kwachon-shi	14, 271
Industry	73	40	Kwachon-shi	0
Land Use	897	360	Kwachon-shi	114
Livestock	0	536	Kwachon-shi	1,510
Total	28,693	5,090	-	15,895

2.2.3 Ui Chong

- (1) Generation Load Discharged by the Population of the Basin
 - 1) Settled Population within the Basin

The population in the basin was calculated using the data of don-districts in 1988, totaled at every observation station.

The future population estimate was based on the Basic Town Plan of Seoul Metropolitan. The population in 1990 and 2002 were estimated using the data in 1988, while the population in 2001 and 2010 were estimated by quota allotment. The result is indicated in Table 2.2.3-1.

Table 2.2.3-1 Population in Ui Chong Basin unit:person

	St.1 to 2	St. 2 to	Total
1988	199, 971	154, 529	354, 500
1990	182, 494	141,024	323, 518
2002	209, 085	160, 283	369, 368
2010	217, 524	168,093	385, 617

- 2) Generation Load Discharged by the Population
 - a. Generation Unit Load of the Population

The future generation load of the settled population was calculated the estimated future generation unit load adopted in the Basic Sewerage Plan of SMG published in 1984. The estimated future generation load is as follows.

Table 2.2.3-2 Future Generation Unit Load by Basic Sewage Plan of SMG in Joongnang Chong Treatment District

	BOD(g/person)	S S(g/person)	Remarks
1990	66. 9	73.0	
2001	85.0	86.1	
2002	86.7	87.3	
2010	99. 9	99. 9	

b. Generation Load Discharged by the Population

As described above, the future generation load discharged was determined using the estimated future population and the generation unit load. the result is represented in Table 2.2.3-3.

Table 2.2.3-3 Future Generation Load (BOD) of Poulation in Ui Chong Basin

	St. 1 to 2	St. 2 to
1990	12, 209	9, 435
2001	17,631	13,624
2002	18, 128	14,041
2010	21, 731	16,793

Table 2.2.3-4 Future Generation Load (S S) of Poulation in Vi Chong Basin

	St. 1 to 2	St. 2 to
1990	13, 322	10, 295
2001	17, 859	13,800
2002	18, 253	14, 138
2010	21, 731	16,793

(2) Generation Load discharged by Industry

The future generation load, discharged by the industry, was estimated based on the future production figures, assuming that these figures increase 5% annually from the year 1990.

1) Puture Production Amounts

Table 2.2.3-5 Yearly Production Amount of Ui Chong Basin in 2002 unit:million per won

	St. 1 to 2	St. 2 to 4
Textile	229,471	279,327
Chemistry	172, 122	172, 122
Machinery	53,825	53,283
Others	59,513	62,907
Total	514, 931	567,639

Table 2.2.3-6 Yearly Production Amount of Ui Chong Basin in 2010 unit:million per won

	St. 1 to 2	St. 2 to 4
Textile	339,033	412,694
Chemistry	254,303	254,303
Machinery	79,525	78,723
Others	87,928	92,942
Total	760,789	838,662

2) Future Generation Load

The future generation load, calculated using the future production amounts and the generation unit load of each kind of industry, is represented in Table 2.2.3-7 & 8.

Table 2.2.3-7 Industry Generation Load of Vi Chong Basin (2002) unit:kg/day

ltem		St. 1 to 2	St. 2to
Textile	BOD	166.9	203. 2
16% (116	SS	250.4	304.8
Chemistry	BOD	8, 451. 4	9, 451. 4
CHEMISTIY	SS	3, 113. 4	3, 113. 4
Coating & Nonfon	BOD	5. 5	5. 4
Casting & Nonfer	S S	10.9	10.8
Primary Metals	BOD	59.4	58.7
Tilmaly metals	SS	38.0	37.6
Machin & Inst	BOD	19.4	19. 2
machin & inst	SS	15.5	15.4
Foods	BOD	1, 250. 4	1,320.0
roous	8 8	625. 2	660.0
W 1	BOD	0. 2	0. 2
Wooden	SS	0.8	0.8
Daintin -	BOD	37.2	39. 4
Printing	8 8	11. 2	11.8
Othona	BOD	0.6	0.6
Others	SS	0.6	0.6
Tatal	BOD	9, 991. 0	10,098.1
Total	SS	4,066.0	4, 155. 2

Table 2.2.3-8 Industry Generation Load of Vi Chong Basin(2010) unit:kg/day

	St. 1 to 2	St. 2to
BOD	246.6	300.2
S S	369.9	450.3
BOD	12,486.8	12,486.8
8 8	4,600.0	4,600.0
BOD	8. 1	8. 0
8 8	16.1	16.0
BOD	87.5	86.8
SS	56.0	55.6
BOD	28.7	28.4
SS	22.9	22.7
BOD	1,845.6	1,951.2
SS	922.8	975.6
BOD	0.3	0.3
SS	1. 2	1.3
BOD	55.0	58. 2
SS	16.5	17. 5
BOD	0.8	0. 9
s s	0.8	0. 9
BOD	14,759.4	14,920.8
s s	6,006.2	6, 139. 9
	S S BOD S S BOD	BOD 246.6 S S 369.9 BOD 12.486.8 S S 4,600.0 BOD 8.1 S S 16.1 BOD 87.5 S S 56.0 BOD 28.7 S S 22.9 BOD 1,845.6 S S 922.8 BOD 0.3 S S 1.2 BOD 55.0 S S 16.5 BOD 0.8 S S 0.8 BOD 14.759.4

(3) Results of Estimation

The estimated future generation loads are summarized in Table 2.2.3-9 to 12.

Table 2.2.3-9 Futurte(2002) Continuous Generation Load (BOD)

unit:kg/day

	St. 1 to 2	St. 2 to
Poulation	18, 128	14.041
Industry	9, 991	10,098
Land Use	377	2.3
Livestock	0	1
Total	28, 496	24, 163

Table 2.2.3-10 Future(2002) Continuous Generation Load (S S) unit:kg/day

	St. 1 to 2	St. 2 to
Poulation	21, 731	16,793
Industry	4,066	4, 155
Land Use	974	36
Livestock	0	1
Total	26,771	20,985

Table 2.2.3-11 Futurte(2010) Continuous Generation Load (BOD) unit:kg/day

	St. 1 to 2	St. 2 to
Poulation	21, 731	16,793
Industry	14,759	14,921
Land Use	377	23
Livestock	0	1
Total	36, 867	31,738

Table 2.2.3-12 Future(2010) Continuous Generation Load (S S) unit:kg/day

	St. 1 to 2	St. 2 to
Poulation	21, 731	16,793
Industry	6,006	6,140
Land Use	974	36
Livestock	0	. 1
Total	28, 711	22, 970

2.2.4 Chungroung Chong

- (1) Generation Load Discharged by the Population of the Basin
 - 1) Settled Population within the Basin

The population in the basin was calculated using the data of don-districts in 1988, totaled at every observation station.

The future population estimate was based on the Basic Town Plan of Seoul Metropolitan. The population in 1990 and 2002 were estimated using the data in 1988, while the population in 2001 and 2010 were estimated by quota allotment. The result is indicated in Table 2.2.4-1.

Table 2.2.4-1 Population in Chungroung Chong Basin unit:person

	St.1 to 2	St. 2 to 3	St. 3 to	Total
1988	76,002	326,312	16,202	418, 516
1990	69,359	297,792	14,786	381, 937
2002	101,910	432,055	23,035	557,000
2010	102,967	442,084	21,949	567,000

- 2) Generation Load Discharged by the Population
 - a. Generation Unit Load of the Population

The future generation load of the settled population was calculated the estimated future generation unit load adopted in the Basic Sewerage Plan of SMG published in 1984. The estimated future generation load is as follows.

Table 2.2.4-2 Future Generation Unit Load by Basic Sewage Plant of SMG in Joongnang Chong Treatment District

	BOD(g/person)	S S(g/person)	Remarks
1990	66. 9	73.0	
2001	85.0	86. 1	
2002	86.7	87.3	
2010	99. 9	99. 9	

b. Generation Load Discharged by the Population

As described above, the future generation load discharged was determined using the estimated future population and the generation unit load. the result is represented in Table 2.2.4-3.

Table 2.2.4-3 Future Generation Load (BOD) of Population in Chungroung Chong Basin unit:kg/day

	St. 1 to 2	St. 2 to 3	St. 3 to
1990	4, 640	19, 922	19,922
2001	8, 521	36, 583	36,583
2002	8,836	37, 459	37, 459
2010	10, 286	44, 164	44, 164

Table 2.2.4-4 Future Generation Load (SS) of Population in Chungroung Chong Basin unit:kg/day

	St. 1 to 2	St. 2 to 3	St. 3 to
1990	5,063	21, 739	1,079
2001	8,631	37,056	1,840
2002	8,897	37,718	2,011
2010	9,936	42,661	2,118

(2) Generation Load discharged by Industry

The future generation load, discharged by the industry, was estimated based on the future production figures, assuming that these figures increase 5% annually from the year 1990.

1) Future Production Amounts

Table 2.2.4-5 Yearly Production Amount of Chungroung Chong Basin in 2002 unit:million per won

	St. 1 to 2	St. 2 to 3	St. 3 to
Texitile	21, 270	171,777	234, 697
Chemistry	10, 208	22,527	48,750
Machinery	4,808	9,750	21,868
Others	2, 024	11, 353	18, 420
Total	38, 310	215, 407	323, 735

Table 2.2.4-6 Yearly Production Amount of Chungroug Chong Basin in 2010 unit:million per won

	St. 1 to 2	St. 2 to 3	St. 3 to
Texitile	31, 426	253, 793	346, 754
Chemistry	15,081	33, 283	72,026
Machinery	7, 103	14, 405	32, 309
Others	2, 990	16,774	27, 215
Total	56,600	318, 255	478, 304

2) Future Generation Load

The future generation load, calculated using the future production amounts and the generation unit load of each kind of industry, is represented in Table 2.2.4-7 & 8.

Table 2.2.4-7 Industry Generation Load of Chungroung Chong Basin (2002) unit:kg/day

Item	•	St. 1 to 2	St. 2 to 3	St. 3 to
Textile	BOD	15.5	125.0	170.7
	8 8	23. 2	187.4	256.1
01	BOD	500.9	1, 106.4	2, 393.9
Chemistry	8 8	184.5	407.6	881.9
O-41 9 NC	BOD	0.5	1.0	2. 2
Casting & Nonfer	S S	1.0	2.0	4.4
D-2 N-4-1-	BOD	5.4	10.8	24.1
Primary Metals	8 8	3.5	6.9	15.4
N. 5.2. 0 T	BOD	1.7	3, 5	7.9
Machin & Inst	SS	1.4	2.8	6.3
n J.	BOD	43.2	237.6	386.4
Foods	2 2	21.6	118.8	193.2
W 4	BOD	0	0	0.1
Wooden	SS	0	0.2	0.2
n	BOD	1.2	7.0	11.6
Printing	\$ \$	0.4	2.1	3.5
0.1	BOD	0	0.1	0.2
Others	\$ \$	0	0.1	0.2
	BOD	568.4	1, 491.4	2, 997.1
Total	S S	235.6	727.9	1,361.2

Table 2.2.4-8 Industry Generation Load of Chungroung Chong Basin(2010) unit:kg/day

Item		St. 1 to 2	St. 2 to 3	St. 3 to
Tautila	BOD	22.9	184.6	252.2
Textile	8 8	34.3	276.9	378.3
Chariatay	BOD	740.3	1,634.5	3, 536. 3
Chemistry	SS	272.7	602.1	1, 302.7
Casting & Nonfer	BOD	0.7	1.5	3.3
casting a nonier	\$.\$	1.4	2.9	6.6
Drimary Matala	BOD	7.9	15.8	35.6
Primary Metals	S S	5.1	10.1	22.8
Machin & Inst	BOD	2.6	5.2	11.7
Machin & Inst	8 8	2.1	4.2	9.3
Foods	BOD	62.4	352.8	571.2
roods	\$ \$	31.2	176.4	285.6
Wooden	BOD	0	0.1	0.1
moodeil	SS	0 -	0.2	0.4
Daintina	BOD	1.8	10.6	17.0
Printing	\$ \$	0.5	3.2	5. 1
Others	BOD	0	0.2	0.3
Others	SS	0	0.2	0.3
T-4-1	BOD	836.6	2, 205.3	4, 427.7
Total	8 8	347.3	1,076.2	2, 011. 1

(3) Results of Estimation

The estimated future generation loads are summarized in Table 2.2.4-9 to 12.

Table 2.2.4-9 Futurte(2002) Continuous Generation Load (BOD)
unit:kg/day

	St. 1 to 2	St. 2 to 3	St. 3 to
Poulation	8,836	37, 459	1, 997
Industry	568	1, 491	2,997
Land Use	107	465	288
Livestock	1	0	1
Total	9, 512	39, 415	5, 283

Table 2.2.4-10 Future(2002) Continuous Generation Load (S S) unit:kg/day

			.87 443		
	St. 1 to 2	St. 2 to 3	St. 3 to		
Poulation	8, 897	37,718	2, 011		
Industry	236	728	1,361		
Land Use	277	1, 205	740		
Livestock	1	. 0	2		
Total	9, 411	39,651	4, 114		

Table 2.2.4-11 Futurte(2010) Continuous Generation Load (BOD) unit:kg/day

	St. 1 to 2	St. 2 to 3	St.3 to
Poulation	10, 286	44, 164	2, 193
Industry	839	2, 205	4, 428
Land Use	107	465	288
Livestock	1	0	1
Total	11, 233	46,834	6, 910

Table 2.2.4-12 Future(2010) Continuous Generation Load (S S) unit:kg/day

			41111116/
	St. 1 to 2	St. 2 to 3	St. 3 to
Poulation	9, 936	42,661	2, 118
Industry	347	1,076	2, 011
Land Use	277	1, 205	740
Livestock	1	0	2
Total	10, 561	44, 942	4, 871

Chapter 3 Measured Pollution Load along the Rivers

The water quality and the discharge measurements were carried out at each observation station every month from January 1990 to May 1991. BOD and SS at each station.

This survey was forcused on the average conditions, rather than on seasonal and temporal dynamics. Therefore, the average data during the observation period were taken as the measured pollution load, excluding maximum data in the calculation.

3.1 Anyang Chong

The aberage measured pollution load of Anyang Chong is represented in Table 3.1-1. (St.3-1 shows the period of unusual condition, i.e., February 1990 to December 1991, when the wastewater was flowed into the river because of the destruction of the intercepting sewer located beneath the road under construction. St.3-2 shows the period after its repair work.)

Table 3.1-1 Measuered Pollutoin Load of Anyang Chong unit: kg/day

	St. 1	St. 2	St. 4	St. 5	St. 6	St. 3-1	St. 3-2
BOD	32, 119. 3	41,009.8	18,678.3	31,807.1	22, 406. 3	25, 364. 9	154. 2
2 2	32,680.4	37, 112. 1	23,827.0	24, 533. 7	18,943.2	19,003.5	280. 9

3.2 Yangjae Chong

The average measured pollution load of Yangjae Chong is represented in Table 3.2-1.

Table 3.2-1 Measurred Pollutoin Load of Yangjae Chong

				1107 444
	St. 1	St. 2	St. 3	St. 4
BOD	1,800.6	438.9	425.8	1, 471. 5
SS	4,539.7	1, 712.9	6, 222.4	2, 247. 3

3.3 Vi Chong

The average measured pollution load of Ui Chong is represented in Table 3.3-1.

Table 3.3-1 Measurred Pollutoin Load of Vi Chong unit: kg/day

	St. 1	St. 2
BOD	1,326.6	264.3
SS	2, 358. 5	888.0

3.4 Chungroung Chong

The average measured pollution load of Chungroung Chong is represented in Table 3.4-1.

Table 3.4-1 Measureed Pollutoin Load of Chungroung Chong unit: kg/day

	St. 1	St. 2	St. 3
BOD	683.4	450.0	1,844.6
\$ \$	453.4	226. 2	1, 105. 9

3.5 Measured Pollution Load of Each River

Table 3.5-1 Measuered Pollutoin Load of Anyang Chong unit:BOD kg/day

Date	St. 1-1	St. 1-2	St. 2	St. 2	St. 4
Jan. 31, 1990		7, 612.6		38,019.8	17,761.4
Feb. 22	11, 199. 3		61, 198. 3		20,710.6
Mar. 20	<u>.</u>		114,629.1		27,039.4
Apr. 20	10, 121. 9		117, 942. 7		44,851.3
May, 28	39, 680. 4		56, 084. 7	·	11, 302. 4
Jun. 22	-		_		-
Jul. 30	98, 579. 5		49, 127. 7		51, 353. 2
Aug. 25	6, 485. 2		8,840.7		7,347.8
Sep. 22	23, 242. 5	+t	25, 297. 5		11,007.6
0ct. 22	10, 137.4		-		5,815.8
Nov. 26	20, 507. 9		21,679.3		11,812.2
Dec. 25	16, 711. 3		15,088.6	:	17,227.5
Jan. 5,1991		41,075.5		48,956.7	12,755.2
Feb. 5	·	34, 799. 2		49,708.1	16,760.3
Mar. 5		37, 477. 4		49, 575. 5	13,455.8
Apr. 29		59,788.7		41,556.0	10,974.1
May. 28		11,962.1		18, 242. 7	_
Mean	26, 296. 2	32, 119. 3	52, 209. 5	41,009.8	18,678.3

Table 3.5-2 Measuered Pollutoin Load of Anyang Chong unit:BOD kg/day

Date	St. 5	St. 6	St. 3-1	St. 3-1
Jan. 31, 1990	33,530.5	11,203.9		57.7
Feb. 22	115,786.4	57,558.9	54,028.7	
Mar. 20	73,093.4	28.327.8	71,165.5	
Apr. 20	43, 181. 9	18,535.1	22, 272. 7	
May, 28	11,042.3	18,960.5	29,889.5	
Jun. 22		-		
Jul. 30	63,428.4	47,365.2	24, 191. 1	
Aug. 25	6, 153. 9	16,423.9	13,803.2	
Sep. 22	8,582.8	4,745.0	3,458.9	
0ct. 22	_	_ :	-	
Nov. 26	6, 420. 3	4,996.8	4,686.0	:
Dec. 25	30, 496. 6	12,862.9	4,788.6	
Jan. 5,1991	24,072.4	18,127.4		309.4
Feb. 5	13, 107. 5	29,544.1		-
Mar. 5	28,647.9	42,033.2		123.0
Apr. 29	11, 314. 3	12,894.2		126.7
May. 28	8, 248. 3	12,515.5		-
Mean	31,807.1	22,406.3	25, 364. 9	154.2

Table 3.5-3 Measuered Pollutoin Load of Anyang Chong unit: S S kg/day

Date	St. 1-1	St. 1-2	St. 2-1	St. 2-1	St. 4
Jan. 31, 1990		5, 356. 2		43,015.1	19,681.6
Feb. 22	17, 384.5		37, 326. 6		18,025.9
Mar. 20			103, 021. 1		39,571.9
Apr. 20	3, 038.5		476, 967. 0		139,599.6
May, 28	26, 708.0		54, 568. 9		15,823.4
Jun. 22					
Jul. 30	41, 074.8		67, 038, 9		13,365.9
Aug. 25	9, 127. 3		21,049.2		12,858.7
Sep. 22	72, 902.6		57, 451. 3		24, 387. 5
0ct. 22	7, 241.0				5,410.0
Nov. 26	11, 535. 7		14, 320. 3		14,046.9
Dec. 25	10, 439.3		9, 778. 2		9,169.5
Jan. 5, 1991		34,086.8		42.003.4	14,344.0
Feb. 5		27,066.0		49,045.3	11,941.2
Mar.5		22, 148. 1		21, 937.8	6,048.0
Apr. 29	•	72, 152. 4		35, 524. 7	13, 131. 4
May. 28		35, 272. 8		31, 146. 0	-
Mean	22, 161. 3	32,680.4	93, 502. 4	37, 112. 1	23,827.0
		1			

Table 3.5-4 Measuered Pollutoin Load of Anyang Chong unit: S S kg/day

Date	St. 5	St. 6	St.3-1	St. 3-2
Jan. 31, 1990	42,033.7	10,734.4		467.1
Feb. 22	83,959.8	70,516.2	40,851.0	
Mar. 20	50,409.2	11,100.2	47,241.8	
Apr. 20	19,747.8	4,808.3	13,126.3	
May, 28	8,868.2	12,387.5	12,718.9	
Jun. 22			-	
Jul. 30	17.017.4	22, 202. 4	12,332.7	
Aug. 25	9, 330. 1	20,178.0	28, 223. 0	
Sep. 22	15,311.6	7,851.9	9,423.3	
Oct. 22		· •••	-	
Nov. 26	8,083.2	4,654.8	3,962.6	
Dec. 25	22,628.6	5, 283. 5	3,151.9	
Jan. 5, 1991	16,901.9	17, 372. 1		313.3
Feb. 5	18,622.7	36,706.3		
Mar. 5	11, 302.1	12,892.0		194.5
Apr. 29	13, 427. 6	21, 133, 3		148.7
May. 28	30, 361. 5	26, 327. 6		<u> </u>
Mean	24, 533. 7	18,943.2	19,003.5	280.9

Table 3.5-5 Measureered Pollution Load of Yangjae Chong unit: BOD kg/day

				III. DOD KE/ GAJ
Date	St. 1	St. 2	St. 3	St. 4
Jan. 31, 1990	4,084.0	516.7	48.4	35.5
Feb. 22	2,250.6	446.9	1,942.4	. - · ·
Mar. 20	-	-	56.4	290.0
Apr. 20	274.8	172.7	45.7	201.7
May. 28	1,610.9	834.6	. - -	
Jun. 22	254.4	267.5	166.3	610.0
Jul. 30	3,883.5		262.8	561.9
Aug. 25	1,295.8	678.2	177.2	438.5
Sep. 22	901.7	682.2	177.4	289.9
0ct. 22	453.7	291.9	38.7	150.6
Nov. 26	1,747.6	136.6	31.6	143.9
Dec. 25		361.8	78.4	89.3
Jan. 5, 1991	862.2		pr = 1 1	
Feb. 5	633.4	· -		
Mar.5	3,472.1	_	1,363.7	14,867.7
Apr. 29	1,674.6		1,146.3	1,051.1
May. 28	3,610.3		. -	399.9
Mean	1,800.6	438.9	425.8	1,471.5

Table 3.5-6 Measureered Pollution Load of Yangjae Chong S Skg/day

Date	St. 1	St. 2	St. 3	St. 4
Jan. 31, 1990	9, 313. 7	1,391.0	151.4	111.3
Feb. 22	2,914.4	1,383.2	-	4,451.0
Mar. 20	_	<u></u>	23.8	106.5
Apr. 20	431.6	142.2	37.0	193.0
May. 28	1,724.3	1,550.0	-	←
Jun. 22	127.2	1,805.6	1,140.5	2,837.4
Jul. 30	7, 166. 1	_	728.0	4,982.6
Aug. 25	7,901.3	996.6	151.9	151.2
Sep. 22	2,623.2	1.472.2	498.5	1,172.3
Oct. 22	662.9	470.2	183.9	208.7
Nov. 26	2,496.6	2,527.1	163.4	143.9
Dec. 25	7,448.0	5,391.0	153.4	333.6
Jan. 5,1991	1, 943. 9	=	-	-
Feb. 5	1, 414. 2	-		-
Mar.5	4,088.2		1,431.9	11, 507.7
Apr. 29	_	. - ,	2,057.5	4,624.6
May. 28	17,839.2	-	74, 170. 1	637.9
Mean	4, 539. 7	1,712.9	6,222.4	2, 247. 3

Table 3.5-7 Measuered Pollution Load of Ui Choung

	BOD (kg	BOD(kg/day)		g/day)
Date	St. 1	St. 2	St.1	St. 2
Jan. 31, 1990	-	74.7	991.4	89.7
Feb. 22	718.9	434.0	3,993.8	591.8
Mar. 20	1.202.0	337.1	2,404.0	80.3
Apr. 20	2, 260. 7	529.8	3,875.6	3,411.3
May. 28	756.0	169.5		154.4
Jun. 22	-	_	_	-
Jul. 30	1,757.8	221.5	4,394.5	332.3
Aug. 25	1,893.0	160.7	1,352.2	160.7
Sep. 22	399.6	277.2	522.6	653.5
Oct. 22	486.0	176.4	1,166.4	98.0
Nov. 26	2,119.0	147.8	4,276.8	1,157.1
Dec. 24	1,237.2	521.0	2,984.9	1,060.4
Jan. 5, 1991	· –	-	- "	-
Feb. 5	-	- : ·		·-
Mar. 7	_	246.8	· <u> </u>	2,500.1
Apr. 29	1,885.9	179.4	1,694.9	1,980.5
May. 28	1,202.8	223.8	644.4	161.6
Mean	1,326.6	264.3	2,358.5	888.0

Table 3.5-8 Measuered Pollution Load of Chungroung Chong

	BOD(kg/day)			S S(kg/day)			
Date	St. 1	St. 2	St. 3	St. 1	St. 2	St. 3	
Jan. 31, 1990	25.6	-	248.4	98.5	11.0	274.2	
Feb. 22	866.4	1,136.7	1, 306.6	348.5	- 1	1,006.0	
Mar. 20	1,934.3	60.2		750.4	_	70.5	
Apr. 20	177.1	144.3	45.4	59.0	37.2	88.3	
May. 28	105.4	141.2	661.0	126.5	168.0	106.6	
Jun. 22		-	6,840.6	1,169.8	522.3	3,053.3	
Jul. 30	205.5	505.1	2, 490. 3	143.0	180.4	1, 185.8	
Aug. 25	75.9	934.1	1, 883. 7	52.7	188.7	479.5	
Sep. 22	1,634.7	1, 264.9	634.0	694.7	1,246.0	380.4	
Oct. 22	1,157.6	1,096.2	277.5	254.0	150.9	140.6	
Nov. 26	65.0	9. 5	34. 1	51. 3	11.9		
Dec. 24	-	51.3	93.1	-	67.7	190.0	
Jan. 5,1991	-	_	3, 956. 4	_	_	-	
Feb. 5	312.0	_		460.0		2, 912.7	
Mar. 7	2,261.2	49.3	4, 240. 4	_	109.3	4, 118. 4	
Apr. 29	452.9	7. 6	3, 135. 3	1,671.3	20.6	1,791.6	
May. 28	293.6	-	1,821.5	468.3	-	791.3	
Mean	683.4	450.0	1,844.6	453.4	226.2	1, 105.9	

Chapter 4 Run-off Ratio of Pollution Load

Contaminants discharged from a pollution source flow into a river through a waterway. Run-off ratio of pollution load is the proportion of the pollution load which is just short of falling into a river, to the pollution load which is discharged from a waterway mixing treated and untreated water.

Therefore, in this study estimated pollution load of pollution source was used in calculation, instead of the pollution load which was discharged from a waterway. The calculation is indicated as follows.

Run-off Ratio of Pollution Load in this study

= Measured Pollution Load / Estimated Generation Load

The ratio obtained through the calculation presented above was regarded as the run-off ratio.

4.1 Anyang Chong

Generation load, measured pollution load and the run-off ratio of Anyang Chong at each observation station are indicated in Table 4.1-1.

According to these data, the measured pollution load at St.1 is lower than at the upstream stations. This is probably due to infiltration of river water. However it does not reflect the true state accurately in case of this because the apearant run-off ration is negative. Discharge was thereby corrected with the basin area and data before and after this station.

Table 4.1-1 Measurred and Estimate Pollutoin Load Amount unit: BOD kg/day

		St. 1	St. 2	St. 4	St. 5	St. 6	St. 3
Estima	ate Load	79,237	24, 237	52,872	187,193	-	85,952
Discha	arge(m³/s) Measuered	6.703	7. 973	4. 117	6.615	5.336	0.078
	Revised	8.564	_	7.771	_	-	_
t	Measuered	32, 119. 3	41,009.8	18,678.3	31,807.1	22, 406.3	154. 2
Load	Revised	41,066.1		35, 249. 3	<u>.</u>		-
Section	on Load	56.3	5,606.3	3, 442. 2	31,807.1		154. 2
Run-of	ff Ratio	0.001	0. 231	0.065	0.170	_	0.002

Table 4.1-2 Measuered and Estimate Pollutoin Load Amount unit: S S kg/day

		St.1	St. 2	St. 4	St. 5	St.6	St. 3
Estima	ate Load	45,615	20,623	57, 462	118,472	_	86,579
Discha	arge(m³/s) Measuered	6.703	7. 973	4. 117	6.615	5.336	0.078
	Revised	8.564	-	7. 771	-		
	Measuered	32,680.4	37, 112. 1	23,827.0	24,533.7	18, 943. 2	280.9
Load	Revised	41,732.0		44, 987. 8	_		_
Setion	n Load	4,602.1	-8, 135.8	13, 150. 2	31,834.6		280.9
Run-o	ff Ratio	0.101	-0.395	0. 229	0.269	_	0.003

4.2 Yangjae Chong

The run-off ratio of Yangjae Chong at each observation station is indicated in Table 4.2-1.

Table 4.2-1 Measurred and Estimate Pollutoin Load Amount unit: BOD kg/day

	St. 1	St. 2	St.3	St. 4
Estimate Load	8, 931	1,562	4,708	
Discharge(m³/s)	1. 548	0.929	0.284	0.634
Measuered Load	1,800.6	438.9	275.0	281.1
Section Load	1, 917. 8	-117. 2	275.0	281.1
Run-off Ratio	0. 215	-0.075	0.058	<u></u>

Table 4.2-2 Measuered and Estimate Pollutoin Load Amount unit: S S kg/day

	St. 1	St. 2	St.3	St. 4
Estimate Load	10, 308	2, 318	6,455	-
Discharge(m³/s)	1. 548	0.929	0.284	0.634
Measuered Load	4,539.7	1,712.9	323.2	1,335.6
Section Load	4, 485. 5	54.1	323.2	
Run-off Ratio	0. 435	0.023	0.050	_

4.3 Ui Chong

The run-off ratio of Ui Chong at each observation station is indicated in Table 4.3-1.

Table 4.3-1 Measuered and Estimate Pollutoin Load Amount unit:BOD kg/day

	St. 1	St. 2 .
Estimate Load	18, 147	15,081
Discharge (m³/s)	4. 335	0.935
Measuered Load	1, 326. 6	264.3
Section Load	1,062.3	264.3
Run-off Ratio	0.059	0.018

Table 4.3-2 Measurred and Estimate Pollutoin Load Amount unit:S S kg/day

	St. 1	St. 2
Estimate Load	16,560	12,647
Discharge (m³/s)	4. 335	0.935
Meausered Load	2,358.5	888.0
Section Load	1,470.5	888.0
Run-off Ratio	0.089	0.070

4.4 Chungroung Chong

Generation load, measured pollution load and the run-off ratio of Chungroung Chong at each observation station are indicated in Table 4.4-1.

BOD and SS decrease between St.3 and St.2. This is considered to be due to decrease of discharge, decreasing to 40%. The cause of discharge decrease is considered to be infiltration or interception with an intercepting sewer. This was corrected by the same way as Anyang Chong.

Table 4.4-1 Measureed and Estimate Pollutoin Load unit: BOD kg/day

		St. 1	St. 2	St. 3
Estimat	e Load	5,065	21, 218	2, 947
Dischar	ge(m³/s) Measuered	0.567	0.463	1. 125
	Revised	2.176	2.010	_
_	Measuered	683.4	450.0	1,844.6
Load	Revised	2, 632.1	1,945.0	1, 844. 6
Section	Laod	687.1	100.4	1, 844. 6
Run-off	Ratio	0.136	0.005	0.626

Table 4.4-2 Measurred and Estimate Pollutoin Load unit: S S kg/day

		St. 1	St. 2	St. 3
Estima	te Load	5,472	23, 350	2,580
Discha	rge(m³/s) Measuered	0.567	0.463	1. 125
	Revised	2.176	2.010	·
Load	Measuered	453.4	226.2	1, 105. 9
	Revised	1,748.5	989.9	
Section	n Load	758.6	-118.2	1, 105. 9
Run-of	f Ratio	0.139	-0.005	0.429

Chapter 5 Prediction of water Quality

5.1 Prediction of Water Quality

In order to predict future water quality, the rivers without specified water quality improvement facilities require the investigation of various factors which restrict the discharge and inflow load. In this study, however, the dischage and the inflow load are largely influenced by the conditions of the existing drainage systems. In addition to this, the actual conditions of the pollution source and the emission load have not been completely grasped, therefore, it is extremely difficult to make an accurate prediction. Future water quality was estimated on the basis of BOD and SS by calculation of annual average value at each observation station under the following conditions.

- (1) The average pollution load, excluding the maximum and the minimum data in calculation, was adopted in this study as the measured pollution load at each observation station. This load was calculated from the results of discharge observation and water quality analysis carried out every month during the observation period of this survey.
- (2) The generation load was estimated by multiplying. The generation unit load and the data related to the pollution source is based on the systems described below.
 - * life system based on the settled population
 - * natural system based on the area of the classified land utilization
 - * industrial system based on the production amounts for each factory classification
 - * stock farm system based on the number of livestock
- (3) Scientifically, run-off ratio is calculated as follows.

Run-off ratio

= measured generation load/emission load

However, since it was impossible to measure the emission load in this survey, "rete of pratically measured load and estimated generation load" was used as an alternative. Thus, the result of this calculation was regarded as the run-off ratio in this study.

(4) If existing sewerage system are not repaired, run-off ratio in the future will remain the same.

Yangjae Chong and Chungroung Chong, show negative existing run-off ratios. With their BOD and SS estimated at 0.02 and 0.07.

If existing sewerage systems are repaired, BOD and SS in the future are estimated to be 0.02 and 0.07 adopting the data of Ui Chong.

However, if the present run-off ratio is below these 0.02 and 0.07 will be adopted.

(5) Future inflow load is calculated as follows.

Future Generation Load multiplied by Run-off Ratio

- (6) The river water under current conditions has been the mixture of river water itself and polluted water from the sewerage systems. Therepair work is undertaken the discharge from the river will change in the future. In this respect, the discharge used for water quality prediction was calculated in consideration of not only estimated water quality of the river itself but also of the water quality of the sewage.
 - (7) Future water quality is calculated as follows.

Inflow Load divided by Discharge

(8) It is not necessary to consider self-purification of the rivers in this study.

5.2 Existing Generation Load and Future generation Load

Both the existing generation load and future generation load, which were calculated so far, are represented in tables below.

5.2.1 Anyang Chong

Table 5.2.1-1 Continuous Generation Load (BOD) unit:kg/day

1277		St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St. 3 to
1990	Loading	79,237	24,237	52,872	187, 193	85, 952
L	Loading	136,599	40,693	85,046	325, 375	128,702
2002	2002/1990	1.724	1.679	1.609	1.738	1.497
2010	Loading	193,136	53,860	110,479	470, 254	163,007
	2010/1990	2.437	2.222	2.090	2. 512	1.896

Table 5.2.1-2 Continuous Generation Load (S S) unit:kg/day

	,,	St. 1 to 2	St. 2 to 4	St. 4 to 5	St. 5 to 6	St. 3 to
1990	Loading	45,615	20,623	57,462	118, 472	86, 579
	Loading	64, 918	25,047	63,891	168, 511	92,609
2002 2002/1990	2002/1990	1.423	1.215	1.112	1. 422	1.070
	Loading	95, 197	35,719	92,967	237, 427	137,865
2010	2010/1990	1990 2.087 1.732	1.618	2.004	1.592	

5.2.2 Yangjae Chong

Table 5. 2. 2-1 Continuous Generation Loadit (BOD) unit:kg/day

		St. 1 to 2	St. 2 to 4	St.4 to	St. 3 to
1990	Loading	8, 931	1, 562	Kwachon-shi	4,708
	Loading	23, 202	4,099	Kwachon-shi	12, 251
2002	2002/1990	2. 598	2. 624		2.602
	Loading	28, 915	4, 591	Kwachon-shi	14,678
2010	2010/1990	3. 238	2. 939	-	3.118

Table 5.2.2-2 Continuous Generation Loadit(S S)

unit:kg/day

		St. 1 to 2	St. 2 to 4	St.4 to	St. 3 to
1990	Loading	10,308	2, 318	Kwachon-shi	6,455
20.02	Loading	24,081	4, 778	Kwachon-shi	13,755
2002	2002/1990	2. 336	2.061	-	2.131
2010	Loading	28,693	5,090	Kwachon-shi	15,895
4010	2010/1990	2.784	2. 196		2.462

5.2.3 Ui Chong

Table 5.2.3-1 Continuous Generation Load (BOD) unit:kg/day

		St. 1 to 2	St. 2 to
1990	Loading	18,147	15,081
0000	Loading	28,496	24, 163
2002	2002/1990	1.570	1. 602
0010	Loading	36,867	31, 738
2010	2010/1990	2.032	2. 105

Table 5.2.3-2 Continuous Generation Load (S S) unit:kg/day

·		St. 1 to 2	St. 2 to
1990	Loading	16,560	12,647
10000	Loading	26,771	20, 985
2002	2002/1990	1.617	1.659
0010	Loading	28,711	22, 970
2010	2010/1990	1.734	1. 816

5.2.4 Chungroung Chong

Table 5.2.4-1 Continuous Generation Load(BOD) unit:kg/day

	p	St. 1 to 2	St. 2 to 3	St. 3 to
1990	Loading	5,065	21, 218	2, 947
2002	Loading	9,512	39, 415	5, 283
2002	2002/1990	1.878	1.858	1.793
2010	Loading	11,233	46,834	6, 910
2010	2010/1990	2. 218	2. 207	2. 345

Table 5.2.4-2 Continuous Generation Load(S S) unit:kg/day

	: .	St. 1 to 2	St. 2 to 3	St. 3 to
1990	Loading	5, 472	23, 350	2, 580
2002	Loading	9,411	39, 651	4, 114
2002	2002/1990	1.720	1.698	1. 595
2010	Loading	10,561	44, 942	4,871
2010	2010/1990	1.930	1. 925	1.888

5.3 Pollution Load Run-off Ratio

Tables below represent run-off ratio from each river, calculated with the method previously described, and the ratio to be adopted after the repair work.

5.3.1 Anyang Chong

Table 5.3.1-1 Pollutoin Load Run-off Ratio (BOD)

	St. 1	St. 2	St. 4	St. 5	St.6	St. 3
Measuered(1990)	0.001	0.231	0.065	0.170	-	0.002
Sewer Repair	0.020	0.020	0.020	0.020	-	0.002

Table 5.3.1-2 Pollutoin Load Run-off Ratio(S S)

	St. 1	St. 2	St. 4	St. 5	St. 6	St. 3
Measuered(1990)	0.101	-0.395	0.229	0.269		0.003
Sewer Repair	0.070	0.070	0.070	0.070		0.003

5.3.2 Chungroung Chong

Table 5.3.2-1 Pollutoin Load Run-off Ratio(BOD)

	St. 1	St. 2	St. 3	St. 4
Measuered(1990)	0.215	-0.075	0.058	-
Sewer Repair	0.020	0.020	0.020	. –

Table 5. 3. 2-2 Pollutoin Load Run-off Ratio(S S)

	St. 1	St. 2	St. 3	St. 4
Measuered(1990)	0.435	0.023	0.050	: #+
Sewer Repair	0.070	0.023	0.050	· _

5.3.3 Vi choung

Table 5.3.3-1 Pollutoin Load Run-off Ratio(BOD)

	St. 1	St. 2
Measuered(1990)	0.059	0.018

Table 5.3.3-2 Pollutoin Load Run-off Ratio(S S)

	St. 1	St. 2
Measuered(1990)	0.089	0.070

5.3.4 Coungroung Chong

Table 5.3.4-1 Pollutoin Load Run-off Ratio (BOD)

	St.1	\$t.2	St. 3
Measuered (1990)	0.136	0.005	0.626
Sewer Repair	0.020	0.020	0.020

Table 5.3.4-2 Pollutoin Load Run-off Ratio(S S)

	St.1	St. 2	St. 3
Measuered(1990)	0.139	-0.005	0.429
Sewer Repair	0.070	0.070	0.070

5.4 Water Quality Prediction

The water quality prediction result based on the aforesaid data are represented below.

5.4.1 Anyang Chong

The water quality predictions were conducted for the following four cases.

Case 1: Sewerage system will not be improved in future.

Case 2: BOD will be attained to 23.7 mg/l at St.6 due to the sewerage projects in the upstream basin, and the condition within Seoul won't change.

Case 3: The sewerage system within Seoul will be improved but it in the upstream basin won't be improved.

Case 4: The sewerage system within the basin will be all improved.

Table 5.4.1-1 Future Water Quality of Anyang Chong(Case1) unit:mg/l

		St. 1	St. 2	St.4	St. 5	St. 6	St. 3
	BOD	55.5	59.5	52.5	55.7	48.6	22.9
1990	SS	56.4	53.9	67.0	42.9	41.1	42.0
	BOD	148.1	158.9	148.6	164.9	84.5	38.2
2002	S S	120.0	119.3	136.8	135.1	69.1	41. 2
	ВОД	211.3	226.7	213.6	238.4	122.1	48.4
2010	\$ \$	170.3	168.9	197.7	190.3	97.4	61.4

Table 5.4.1-2 Future Water Quality of Anyang Chong(Case2) unit:mg/l

		St. 1	St. 2	St. 4	St. 5	St. 6	St. 3
4000	BOD	55.5	59.5	52.5	55.7	48.6	22.9
1990	SS	56.4	53.9	67.0	42.9	41.1	42.0
	BOD	110.2	118. 2	106.9	115.9	23.7	38. 2
2002	\$ \$	106.4	104.8	121.9	117.5	47.4	41. 2
2010	BOD	150.0	160.9	146.0	159.0	23.7	48.4
2010	S S	139.1	135.5	159.4	150.0	47.4	61.4

Table 5.4.1-3 Future Water Quality of Anyang Chong(Case3) unit:mg/1

		St. 1	St. 2	St. 4	St. 5	St.6	St. 3
	BOD	55.5	59.5	52.5	55.7	48.6	22. 9
1990	SS	56.4	53.9	67.0	42.9	41.1	42.0
2002	BOD	86.7	90.0	83.2	92.0	84.5	38. 2
	SS	84.7	84.4	76.2	78.5	58.4	41.2
2010	BOD	124.5	129.3	119.7	133.0	122.1	48.4
	S S	120.3	119.5	107.8	110.6	82.4	61.4

Table 5.4.1-4 Future Water Quality of Anyang Chong(Case4) unit:mg/

:		St. 1	St. 2	St.4	St. 5	St. 6	St. 3
4.000	BOD	55.5	59.5	52.5	55.7	48.6	22.9
1990	SS	56.4	53.9	67.0	42.9	41.1	42.0
	BOD	39.0	37.7	33.7	35.3	23.7	38. 2
2002	SS	76.1	74. 9	67.2	68.1	47.4	41.2
	BOD	47.3	44.7	39.8	41.2	23.7	48.4
2010	SS	92.8	89. 4	79.3	77.9	47.4	61.4

5.4.2 Yangjae Chong

Case1: Without the sewerage system improvement

Case2: With the sewerage system improvement

Table 5.4.2-1 Future Water Quality of Yangjae Chong(Case1) unit:mg/l

		St.1	St. 2	St. 3	St. 4
1000	BOD	13.5	5. 5	11.2	5.1
1990	S S	33.9	21.3	13. 2	24.4
0000	BOD	45.3	13.4	29.0	5.1
2002	SS	94.3	26.6	28.0	24.4
0010	BOD	55.6	15.3	34.7	5.1
2010	S S	110.1	28.0	32.4	24.4

Table 5.4.2-2 Future Water Quality of Yangjae Chong(Case2) unit:mg/l

* .		St. 1	St. 2	St. 3	St. 4
1000	BOD	13.5	5. 5	11.2	5.1
1990	S S	33. 9	21. 3	13. 2	24.4
0000	BOD	8.8	7.7	10.7	5.1
2002	SS	35.5	33. 5	42.2	24.4
	BOD	10. 2	8. 5	12.9	5.1
2010	SS	121. 1	28. 6	34.8	24.4

5.4.3 Ui Chong

Case1: When maintein present condition.

Table 5.4.3-1 Future Water Quality of Ui Chong (Case1) unit:mg/l

		St. 1	St. 2
1990	BOD	3.5	3.3
1990	8 8	6.3	11.0
2002	ВОР	5.7	5.4
2002	8 8	10.3	18.2
2010	BOD	7.3	7.1
2010	2 2	11.1	19.9

5.4.4 Chungroung Chong

Case1: Without the sewerage system improvement

Case2: With the sewerage system improvement

Table 5.4.4-1 Future Water Quality of Chungroung Chong(Case1) unit:mg

:		St. 1	St. 2	St. 3
1000	BOD	14.0	11.2	19.0
1990	S S	9.3	5.7	11.4
2002	BOD	25.5	20.2	34.0
2002	S S	49.1	35.9	60.7
2010	BOD	32.4	26.3	44.5
2010	SS	57.3	41.3	70.2

Table 5.4.4-2 Future Water Quality of Chungroung Chong(Case2) unit:mg/

		St. 1	St. 2	St. 3
1000	BOD	14.0	11.2	19.0
1990	8 8	9.3	5.7	11.4
0000	BOD	6.4	5. 5	1.3
2002	S S	17.5	8.0	11.5
2010	BOD	7.6	6.7	1.6
2010	SS	20.4	9. 1	13.3

Chapter 6 Applicable Water Quality Improvement Methods

6.1 Applicable Water Quality Improvement Methods

The applicable water quality improvement methods for the studied rivers are listed in Table 6.1-1, and the characteristics and the applicable conditions are described as follows.

Table 6.1-1 Water Quality Improvement Method

- A. Countermeasure at Source
 - A-1 Restriction of installation
 - A-2 Restriction of discharge
 - A-3 Install wastewater treatment plant
- B. Countermeasure between river and pollution sources
 - B-1 Sewerage improvement
 - B-2 Repair of existing sewer pipes
- B-3 Removal of sludge in sewer pipes and retarding basins
- C. Countermeasure at River Channel
 - C-1 Removal of bed sediment in rivers
 - C-2 Sediment pond
 - C-3 Contact oxidation with cobble plant
 - C-4 Groundsel
 - C-5 Sheet flow channel
 - C-6 Aeration facility
 - C-7 Dilution with clean water

(1) Applicable technology to pollution sources

There are three sorts of available countermeasures at pollution sources as shown in Table 6.1-1.

A-1 Regulation on location of industry

Locations of factories are large in emitted pollution load and

those which may discharge harmful matters are regulated by legislation, etc. The development limitation being applied by the Seoul Metropolitan Government is a kind of location regulation. However, it is difficult to applied this kind of regulation to the industrial area like Kuro Industrial Area, already established, because a large amount of expenses may be required for shifting many large-scale factories and compensating factories to be shifted for business suspension. In general, such regulation is applied to an area where its good environment must be maintained from now on by keeping the developed form of its urban zone.

A-2 Emission regulation

When the location regulation is impractical, the pollutant content and discharged quantity of waste water from a factory, etc. is to be regulated. In Korea, the wastewater emission standards settled by the Natural Environmental Preservation Act corresponds to this regulation.

No effective results can be expected from such regulation unless the regulation is supported by an executable monitoring system and fair monetary penalty system.

A-3 Installation of wastewater treatment plant

In order to control emission concentration of the wastewater in conformity with the regulation, the treatment plant can be installed in each factory or district. Generally, installation and operation cost must be spent by the owner company.

Its' competitive power will be down in comparison with other competitors who don't need to do so, because production cost must cover those treatment cost. In the result, there can be a case that factories shift its location to the unregulated area and pollutant sources spread.

Therefore, This kind of regulation shall be duties accompanied with a administrative support like a subsidy for its practical management.

(2) Applicable technology between pollution sources and river channels

B-1 Improvement of sewerage system

Improvement of sewerage is the most popular means for preventing rivers from being contaminated by domestic wastewater, human waste, industrial wastewater, etc, and this have been almost completed in Seoul.

While a high sewerage diffusion rate has been attained in a short period in the Seoul Metropolitan area due to intercepting sewers installed along rivers, the sewerage system thus installed causes water pollution and declines inflow to the rivers, because the main part of the system is combined system.

B-2 Rehabilitation of existing sewer pipes

When the sewer pipes are installed along a river channel in the Study Area, rehabilitation work of the damaged sewer pipes are very important because the damaged sewer pipes directly cause water pollution to the river. Leakage of sewage from aged sewer pipes was not observed in this investigation, but at some places it was found that sewage was flowing into rivers due to the design problem of intercepting sewers and due to wrong connection of sewer pipes to storm pipes in the separated system. Therefore, it is necessary to replace the wrongly connected sewer pipes and to review and modify of the design of defective intercepting ports.

B-3 Removal of deposited sludge from sewer and retarding basin

According to the investigations carried out by Public Works Research Institute, Ministry of Construction, Japan, the pollution load by the sludge deposited in sewers in an area equipped with the combined sewerage system corresponds to 56 - 66% of the emitted pollution load of river basin.

In the Study Area, many retarding basins and pumping stations are installed in the Seoul Metropolitan area to prevent inland water flooding, and the pollution load by the sludge deposited on the bottom of the basins is estimated to be equivalent to or more than the pollution load by the sludge deposited in the sewers. Therefore, removal of the sludge from such sewers and retarding basins will lead the reduction of pollution load flowing into rivers.

- (3) Applicable technology to river channel
- C-1 Dredging of deposited sludge in river channel

In the Anyang Chong, water quality is very close to that of sewage, it is considered that one reason of the water pollution may be attributed to the sludge deposited on the river channel in addition to the sludge deposit in sewers (The sludge described here means soft organic silts and clays).

Consequently, removal of the sludge deposited on the river channel by dredging may be considered to be one means for improving the quality of river water. However, since deposition of the sludge will be repeated unless the pollutants are prevented from flowing into the river, the dredging work should be carried out after pollution inflow decrease.

C-2 Sediment basin

Sediment basins are installed so as to remove precipitable pollutants by keeping waste water containing a large amount of pollutants in a stationary condition. The sediment basins can be divided into ordinal sediment basin where pollutants are precipitated by gravity only and chemical sediment basin where chemicals are added so that pollutants may settle by flocculate sedimentation. As for the operation and maintenance cost, that of chemical sediment basin will be costlier than ordinal sediment basin.

C-3 Contact oxidation plant by cobble

This plant purifies river water by passing the water through a tank filled with cobbles after a sufficient quantity of dissolved oxygen is added to the water and decomposing organic pollutants by means of microorganisms adhering to the surface of the cobbles in an oxidizing atmosphere.

This plant contributed after paying attention to the strong self-purifying action in mountainous streams where numerous cobbles are deposited and sufficient quantities of oxygen are supplied.

The advantage of this plant are as follows.

- (a) Cobbles to be used for adhering microorganisms are abundant on river beds and can be obtained at low costs,
- (b) Possibilities of producing secondary troubles is low, since the purifying process of this plant is the same as the selfpurifying process of rivers,
- (c) The plant may not be damaged easily even when a flood, etc., takes place, since the filler is cobbles having strong mechanical strengths.

On the other hand, this plant has such disadvantages as;

- (a) Since sludge will be deposited in the cobble layers during the purification operation, removing sludge and cleaning cobble should be carried out every five years.
- (b) The activity of the microorganisms decline and the treatment capacity is lowered when the treated water is 80 mg/l or higher in BOD content.
- (c) When the SS content of the water to be treated is high, a large quantity of sludge deposits in a short period and it will lead decrease of the purification capacity due to the blockage of cobble layers.
- (d) The activity also declines and the capacity is lowered when the water temperature becomes lower.

These advantages, however, can be eliminated to some extent by

adding appropriate pretreatment facilities and controlling the water quality and water temperature.

C-4 Falling works

This facility forms a fall in a river channel and removes organic pollutants from the river water by utilizing the oxygen dissolving into the water when the water drops along the fall. Therefore, this work cannot be installed unless the river bed has a certain gradient in the longitudinal profile. The purifying capacity of this facility varies depending upon the fall, river width, oxygen demand of the river water, etc., and, therefore, quantitative evaluation of this facility is difficult.

For such a highly polluted river as the Anyang Chong, it may be possible that installation of a drop work may increase the offensive odor instead of reducing the odor.

C-5 Sheet flow channel

This facility not only supplies oxygen to the river water to which this facility is installed by spreading cobbles all over the river bed which is increased in width and reduced in depth, but also promotes decomposition of organic matters by means of microorganisms adhering to the surface of the cobbles.

Since the oxygen supplying method and water staying time are limited, this facility can only be applied to rivers, the water of which is not much contaminated. Moreover, since the flow passing through this channel becomes an eddy current, reduction of the SS contamination cannot be expected. At present, it is difficult to make quantitative evaluation on this facility, because test data are insufficient.

C-6 Installation of aeration system

This system forcibly supplies oxygen to river water by using machinery, such as blowers, etc., so as to promote decomposition of organic pollutants in an oxidizing atmosphere. Since the

river water must be aerated for about 35 hours to reduce the BOD content by about 50%, a wide facility area will be required when this facility is installed to a river with a large flow. For example, when the quantity of the water to be treated is 1.0 m3/sec, the aeration tank to be installed must have a capacity of about 140,000 m3, and, when the depth of the tank is 3 m, the required area becomes about 50,000 m2.

Consequently, this system is recognized to be impractical because the necessary land is too wide.

C-7 Dilution with clean water

This method is used for lowering the pollutant content of contaminated river water by adding river water or underground water having a good quality and, at the same time, for improving the self-purifying capacity of the river. This is an excellent method when a water source having a good water quality and a large water quantity is available, since the maintenance and management costs are inexpensive, but it must be noticed that at least the same amount of dilution water is required for reducing the pollutant content of the present river water quality to a half even when the dilution water is significantly clean.

(4) Evaluation on applicable water quality improvement technology in the river channel

The evaluation of each water quality improving countermeasure and technique, those which are applicable (executable measures as river improvement works) to the objective channels of this study are evaluated in the preceding paragraphs and the summary of the evaluated results is listed on Table 6.1-2.

Table 6.1-2 Evaluation of Applicable Water Quality Improving Technology within River Channel

	Type of Investment	Possibility of Enlargement	Equivalent Evaluation	Experience
Dredging of deposited sludge in river channel	I	0	Δ	Δ
Sediment basin	I+R	0	Ö	Δ
Contact oxidation plant by cobble	I+R	0	0	. 0
Falling works	I	. 0	×	0
Sheet flow channel	I	0	×	Δ
Installation of aeration system	I+R	Δ.	Δ	- Д
Dilution with clean water	I+R	O 1	0	O 2

^{*&}quot;I" means "Initial Cost Type" and "R" means "Running Cost Type".

6.2 Quantitative Evaluation of the Applicable Technology within the River and its Effects

Of the above-mentioned water quality improving technologies, only the "Retarding basin" and "Contact oxidation with cobble plan" are evaluated quantitatively here.

(1) Sediment basin

The sediment basins used for water treatment can be divided into gravity and chemical treatment types as mentioned above and the selection of the basins must be made on the basis of the pollutant contamination of the water to be treated and the required water quality.

1) Gravity Treatment Type

In the case of the sediment basin, it is generally said that about 30% of the BOD content and 35% of the SS content can be removed at retention time of 3.0 hours and a water area load of 25 m³/m²/day (Japan Sewage Institute: Design Handbook for Sewerage Facilities), but the removal ratios vary depending upon the nature of the water to be treated. Especially, when the river to be treated is high in inorganic SS (sediments, etc.,) content like the Yangjae Chong, it is expected that the SS removal ratio may reach 35% or more.

2) Chemical Treatment Type

Since the pollutant removal ratio with the chemical settling basin varies depending upon the nature of the water to be treated and the chemical used for the treatment, it is desirable to decide the ratio by carrying out jar tests every time.

The jar tests carried out on the water sample (COD (Cr): 23 mg/l) collected from the Anyang Chong (at St. 6) in September, 1990, by varying the injecting concentration of chemicals, $FeCl_3$ and $Al_2(SO_4)_3$, from 50 mg/l to 1,000 mg/l give good results at injecting concentrations of 300 mg/l for both $FeCl_3$ and $Al_2(SO_4)_3$, with the COD (Cr) removal ratio being about 60%. However, the water treated with $FeCl_3$ was slightly colored in reddish black. From the above-mentioned results, $Al_2(SO_4)_3$ and 300 mg/l will be selected as the chemical to be used and injecting concentration to be set when the chemical settling basin is used in this plan. Under such condition, the removal ratios of both BOD and SS can be set at 50%. The detention time and water area load are set to the same values as those used for the sediment basin.

(2) Contact oxidation treatment with cobble plant

The contact oxidation treatment with cobble plants can be divided

into the pre-aerated contact oxidation treatment with cobble plants (a sufficient amount of dissolved oxygen is added to the water to be treated before the water is made to flow to the treatment tank) and the contact oxidation treatment with aerated cobble plants (the water to be treated is directly aerated in the treatment tank). The Ministry of Construction, Japan, recommends the latter when the BOD content of the water to be treated exceeds 25 mg/l on the basis of investigation results.

Since the contact oxidation treatment with cobble plants is a kind of biological treatment, the activity of the microorganisms and, accordingly, the BOD removal ratio decline when the water temperature becomes lower. In order to study the effect of the water temperature on the treatment function of this treatment method, the probability that the water temperature of the objective rivers becomes 1.5 - 22.0 C was calculated by using the water temperatures measured at the time of periodic water quality observations in 1990 (see Table 6.2-1) and, at the same time, the relation between the water temperature and BOD removal ratios was calculated by using Howland's equation to be used for the fixed type biological treatment(see Table 6.2-2).

Table 6.2-1 Non-Exceed probability of Water Temperature

Water Temp. (°C)	22.0	17.5	13.0	10.0	5.0	1.5
Non-exceed Probability(%)	83	58	35	25	10	5
Day	303	212	128	92	37	18

Table 6.2-2 Relation between Water Temperature and BOD Removal Ratio in Contact Oxidation Treatment with Cobble Plan

unit:removal ratio %

Time	Wa	ter Tempe	rature(°C)			
(hr)	22.0	17.5	13.0	10.0	5.0	1.5
0.5	49.0	40.0	31.0	32.5	27.3	24.2
1.0	75.0	64.0	53.0	49.6	41.8	37.0
1.5	870	77.5	68.0	57.6	48.5	43.0
2.0	94.0	86.0	78.0	62.3	52.4	46.5
2.5	97.0	91.0	85.0	64.1	54.0	47.9
3.0	98.4	94.2	90.0	65.2	54.9	48.6
Ratio 1	1.1	1.0	0.91	0.72	0.61	0.54
Ratio 2	1.2	1.1	1.0	0.80	0.67	0.60

As far as the BOD removal ratio at detention time of 2.0 - 2.5 hours which are standards for the pre-aerated contact oxidation treatment with cobble plants, the ratio can be lowered at temperatures which are being used as design standards in Japan in such a way that the ratio can be lowered to about 90% at 13 C, about 70% at 10 C, about 60% at 5 C, and about 54% at 1.5 C.

When it is tried to secure the same removal ratios even when the design standard water temperatures are lowered, the required facility becomes excessively larger in size, because the detention time must be prolonged.

In this plan, therefore, the facility is designed so that the removal ratio at 17.5 C can be secured 100% against the water temperature (13 C) of 75% in annual frequency of occurrence and the removal ratio can be secured about 80% even when the water temperature drops to 10 C. However, it is necessary to carry out pilot tests to validate these figures and confirm the removal

ratio before starting actual contact oxidation treatment with cobble plants.

6.3 Adopted Water Treatment System

The contact oxidation with cobble treatment system is basically adopted, adding pretreatment and post-treatment depending on the quality of the raw water.

(1) Removal Ratio

The pollutant removal ratios are determined by each treatment operation and total removal ratio is determined in case of the composite treatment system.

1) Sediment Treatment

	Table 6.3-1	Removal Ratio		
	·	BOD	SS	
	Sedimentation Method	30%	35%	·
	Flocculent Settling	50%	50%	
) Conta	ct Oxidation with Cobble	Treatment		
•	Table 6.3-2	Removal Ratio		
			BOD	SS
ontact (Oxidation with Cobble Met	hod	75%	85%

(2) Treatment Flow and Total Removal Ratio

The composite treatment flows are shown below.

Type 1
Sand basin + Chemical settling basin + Contact oxidation with aerated cobble + Re-aeration

Type 2

Sand basin + Sediment basin + Contact oxidation with Aerated Cobble + Re-aeration

Type 3

Sand basin + Sediment basin + Pre-aerated Contact Oxidation with Cobble + Re-aeration

Type 4

Sand basin + Contact Oxidation with aerated Cobble + Re-aeration

Type 5

Sand Basin + Pre-aerated Contact Oxidation with Cobble + Re-aeration

Table 6.3-3 Water Treatment Unit Process and Removal Ratio

ltem	Design Factor	Removal Ratio	Remarks
Sand Settler	Surface Loading: 1800m ³ /m ² /day Detention Time:60sec	BOD: - S S: -	Removal Specific Gravity 2.65 (Sand & Soil) 0.02m ³ /1,000m ³
Flocculent Settling	Detention Time:3.0 hr Surface Loading: 25m ³ /m ² /day	BOD:50% S S:50%	A12(SO4)3300mg/1
Sedimentation Method	Detention Time:3.0 hr Surface Loading: 25m ³ /m ² /day	BOD:30% S S:35%	Sewage Densign Guide Line (Japan)
Aeration *C.O.C Method	Detention Time: 3. Ohr	BOD:90% S S:80%	Tama River (Japan)
Pre Aeration *C.O.C Method	Detention Time: 2. Ohr	BOD:75% S S:85%	Tama River (Japan)

*C.O.C Method: Contact Oxidation with Cobble Method

Table 6.3-4 Removal Ratio of Each Treatment System

Item	Settling	C.O.C Method	Toatl Removal Ratio
Type 1 BOD S S	Chemical 50% 50%	Aeration 90% 80%	95% 90%
Type2 BOD S S	Normal 30% 35%	Aeration 90% 80%	93% 87%
Type3 BOD S S	Normal 30% 35%	Pre Aeration 75% 85%	8 2. 5% 90%
Type4 BOD S S		Aeration 90% 80%	90% 80%
Type5 BOD S S	-	Pre Aeration 75% 85%	75% 85%

6.4 Water Quality Improvement Plan for Anyang Chong

6.4.1 Basic Policy

The water quality improvement plan occupies mostly a part of the river environment improvement plan because the discharge quantity is sufficient for water familiarization function.

In order to improve the water quality of Anyang Chong fundamentally, it is necessary to improve sewer system in the basin of Kehwa and Oru Rivers and intercepting sewer running in the planning section in addition to the improvement of sewer in the upper basin beyond St. 6.

These measures are to be executed as a sewer project, however, the execution of which would takes considerable time while the improvement of the resident' living environment and the effective utilization of the river space could not be expected. Under such circumstances, any feasible measure shall be used, to execute as the river improvement works, so as to improve the water quality as early as possible.

The measures to be applied to the river shall be executed from upstream phase by phase while checking the water quality to maximize the investment effect.

6.4.2 Target Water Quality

Environmental Bureau determined that the water quality of this river should be Class V, however, the actual water quality is lowering "the limit that would not give any disconformity to the people's daily life (Class V)" greatly, and terribly stinky.

Therefore, tentative target of water quality on Class V (BOD concentration is below 10 mg/l)shall be set. This water quality

is the limit of making no bad smell caused by the decomposition of organisms.

As stated previously, Anyang-shi's sewage treatment facility will be operated fully (100%) in 2001, and the water quality at St. 6 is expected to be improved by then to BOD concentrations of 23.7 mg/l, and the target mentioned above could be attained until 2002 by operating appropriate river purifying facility.

However, judging from the current load measured in the downstream past St. 6 and a possible increment of the load occurred hereafter, it appears to be very difficult to attain the target in the entire planning section by 2002, even if the arrangement of sewer were executed as per plan.

In order to clear the hurdle of Class V in the entire planning section, it is necessary to execute orderly arrangements and repair of sewage-related facilities in the downstream past St. 6 in parallel with the installation of water quality purification facilities.

6.4.3 Selection of Applicable Technology

The examined result on the applicability of technology are summarized below.

Table 6.4.3-1 Applicability of Water Quality Improvement Technology

X	Yater Quality improvement Technology		Applicable Condition				
A	Restriction of installation Restriction of discharge Install wastewater treatment plant	 ©	Conservation of green grass area and development restricted area This should be imposed for development restricted area.				
В	Sewerage improvement Repair of existing sewer pipes Install water preservation drainag Removal of studge in sewer pipes	- O - x	Investigation of intercepting sewers is necessary. Intercepting sewers has been provided.				
С	Removal of bed sediment in rivers Sedimentation pond Contact oxidation with cobble plan Ground sill Sheet flow channel Direct aeration facility Dilution with clean water	0 0 0 0	of the river will be recovered. It is expected to improve slightly based according to the present discharge and water quality.				

Legend

Most applicabe method

O Applicable method subject to condition

△ Low applicability method

× Not necessary

- Out of investigation scope

The technologies indicated in column C of Table 6.4.3-1 with O and O marks are considered applicable as river projects for Anyang Chong. Among these technologies, the dredging of the bed sediment and the sheet flow channel will not be very effective, unless water quality has been improved to a certain level. It is considered wise to conduct dredging bed sediment while observing

the water quality improved from the established grit chamber and the contact oxidation with cobble plant facilities.

6.4.4 Location and Function of Primary Facilities

(1) Design discharge

As regards the design discharge corresponding to them, ordinary discharge (Q185) which is approximate to 50% value, is adopted, however that in Table 6.4.4-1, the values of St. 1 and St. 4 are made smaller than that of the upstream being affected by the underground flow, so a supplementary correction was made, referring to specific discharge, etc. Prior to the implementation of the project this design discharge must be reviewed by the further observation data.

Table 6.4.4-1 Designed Discharge of Anyang Chong unit:m³/sec

	St. 1	St. 2	St. 3	St.4	St. 5	St. 6
95days Discharge	11.074	11.070	4.333	6.472	9.108	6.478
185days Discharge	4. 156	8.962	2.268	3.893	5.630	3. 252
275days Discharge	2.639	6.562	0.520	3.039	4.048	2. 187
365days Discharge	0.182	2.440	0.004	2.349	0.614	1.484
Design Discharge	9. 632	8.962	2.268	7. 494	5.630	3. 252

(2) Design water quality

As for BOD concentration of the design water quality, estimated future water quality of each river is adopted. Incidentally, SS concentration shall be worked out from BOD concentration using SS/BOD ratio which were obtained from January, 1990 to May, 1991.

1) SS/BOD Ratio

The average rates of SS and BOD which were obtained in 1990 are summarized in Table 6.4.4-2.

Table 6.4.4-2 SS-BOD Ratio
River Anyang Yangjae Ui Chungroung
SS/BOD 1.50 4.00 2.50 1.10

2) Design water quality

It is too difficult to estimate accurately the design water quality because it varies depending on the sewerage improvement conditions in Seoul Metropolitan and the upstream cities. In this report, assuming the sewerage system will be improved in Seoul and the upstream cities, the design water quality is determined. In other words, we assumed as follows,

- a. The apparent run-off ratio in Seoul is improved to that level of Ui Chong
- b. BOD is attained to 23.7 mg/l at St.6 after the sewerage condition is improved in the upstream cites.

Table 6.4.4-3 Designed Water Quality of Anyang Chong unit:mg/l

Year(Item)	St.1	St.2	St.4	St.5	St.6	St.3
1990 (BOD)	55.5	59.5	52.5	55.7	48.6	23.0
(SS)	56.4	53.9	67.0	42.9	41.1	42.0
2002 (BOD)	39.0	37.7	33.7	35.3	23.7	38.2
(SS)	58.5	56.6	50.6	53.0	35.6	57.3
004 0 (non)	45.0		00.0	14.0	00.7	00 D
2010(BOD) (SS)	47.3 71.0	44.7 67.1	39.8 59.7	14.2 61.8	23.7 35.6	38.2 57.3

Table 6.4.4-5 Water Purification Facility Configuration and River Water Quality (2010)

		93 - 194 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1		Water Quality (BOD mg/1)						
	•		St. I	St. 2	St.4	St. 5	St. 6			
W.t.l.		Load	39,362	34,612	25,770	20, 041	6,659			
Without Project		Conc.	47.3	44.7	39.8	41.2	23.7			
	Removal Load		3,682	3,862	3,862	3, 862	3,862			
St. 6	Concentration		42.7	39.7	33.8	33.3	10.0			
	Removal	Removal Load		11,325	11,325	11, 325	-			
St. 5	Concentr	ation	29.1	25.1	16.3	10.0	· -			
0. 1	Removal	Removal Load		4, 127	4,127	-				
St. 4	Concentration		24.1	-19.8	10.0	-	. =			
St. 2	Removal	load	7, 573	7,573	_	-	_			
	Concentration		15.0	10.0		-				

(4) Facility Planning

The facility planning was selected among the five treatment flows described in 5.5, referring to the required removal ratio and the raw water quality shown in Table 6.4.4-6.

The treatment flow, and water quality and discharge of raw water, effluent and river water concerning the proposed plant at St.3 are summarized in Table 6.4.6-7.

Table 6.4.4-6 Treatment Discharge and River Water Quality (2002)

	River	Treatment	Raw Water	Treated Water	River Water	Flow
	Discharg	Discharg	Quality	Quality	Quality	Sheet
-	(m³/sec)	(m³/sec)	(BOD mg/1)	(BOD mg/1)	(BOD mg/1)	
St. 6	3. 252	2. 089	23.7	2.37	10	Type 4
St. 5	5.630	3. 972	27.4	2.74	10	Type 4
St. 4	7, 494	3. 200	14.7	3.68	10	Type 5
St. 2	8.962	5. 278	17.9	4.48	10	Type 5

Table 6.4.6-7 Treatment Discharge and River Water Quality (2010)

	River	Treatment	Raw Water	Treated Water	River Water	Flow
:	Discharg	Discharg	Quality	Quality	Quality	Sheet
	(m³/sec)	(m³/sec)	(BOD mg/1)	(BOD mg/l)	(BOD mg/1)	
St. 6	3. 252	2. 089	23.7	2.37	10	Type 4
St. 5	5.630	4. 378	33.3	3.33	10	Туре 4
St. 4	7.494	3.867	16.3	4.08	10	Type 5
St. 2	8.962	5. 915	19.8	4.95	10	Type 5

6.4.5 Expected Water Quality Improvement Effect

As there is no effective alternate measure applicable to the water quality of this river, the estimation of future water quality was carried out for the purpose of finding the differences of effects depending on the facility locations assuming the following conditions.

- 1) Only data obtained after the intercepting sewer of Torim Chong was completed were used.
- 2) BOD concentration will attain 23.7 mg/l at St.6 in 2001 because the sewerage improvement achieve 100% in 2001.
- 3) The other conditions which affect the apparent run-off ratio will not change.
- 4) The water improvement facilities will be constructed from the upstream one by one and the treatment method is selected among the aforesaid several types in conformity with the inflow raw water quality.
- 5) The estimations were carried out for the year 2002 and 2010.

The estimation result are shown in Fig. 6.4.5-1. In order to attain the

target water quality in the entire planning section, it is

necessary to install a complex treatment facility comprising of the sediment pond and contact oxidation with cobble plant at St. 6, 4, 2. It is quite obvious that the effect of installing such facilities at St. 5 is great.

The improvement effect by dredging works is not able to be estimated at present. In addition, the improvement effect by the sheet flow channel is also not able to be estimated due to the insufficient data.

6.5 Water Quality Improvement Plan for Yangjae Chong

6.5.1 Basic Policy

It can be expected to attain high standard recreational zone with water familiarity by water quality improvement work which cannot be executed in other river section, since this river provides a relatively good water in quantity and quality except for some segments.

Therefore this river is proposed to be improved aiming the river environment improvement model in Korea.

In order to achieve such plan, repairing of erroneous connection of the sewage pipe and maintaining the present specified development restricted zone are required. In this report, only applicable plans within rivers were investigated.

The target of maintenance flow was not determined because the present discharge exceeds the required discharge to maintain the present environment and also because maintaining cleanness of water can be executed by the water quality improvement plan.

6.5.2 Water Quality Target

This river lacks the water quality standards established by Environmental Bureau because of a quasi-river. However, the water quality of Tan Chong joining this river is classified as Class II by Environmental Bureau.

This standard defines this river as a model river of the small-medium river environmental improvement project at such a level that is suitable to swimming and playing in the water and this concept is compatible with the basic policy of this scheme intending to create a quality recreation space possessing a great deal of hydrophile properties.

However it was estimated that the water quality would not be able to attain this target in the downstream of St.2 in the year 2002 even if the contact oxidation with cobble plant will be installed unless the inflow sewage is diverted. Therefore, the target water quality of this river is defined as Class III.

6.5.3 Selection of Applicable Technology

The examined result on the applicability of technology are summarized below.

Table 6.5.3-1 Applicability of Water Quality Improvement Technology

			·
ì	Yater Quality improvement Technology		Applicable Condition
A	Restriction of installation Restriction of discharge Install wastewater treatment plant	- O	Conservation of green grass area and development restricted area This should be imposed for development restricted area.
В	Sewerage improvement Repair of existing sewer pipes Install water preservation drainag Removal of sludge in sewer pipes	-00 x	Misconnection of sewerage pipes must be repaired. In case sewerage repair work is impossibile.
c	Removal of bed sediment in rivers Sedimentation pond Contact oxidation with cobble plan Ground sill Sheet flow channel Direct aeration facility Dilution with clean water	× © 0 × × ×	DO is sufficient. DO is sufficient. DO is sufficient. A large amount of clean water must be introduced because of large present discharge.

Legend

- Most applicabe method
- O Applicable method subject to condition
- △ Low applicability method
- × Not necessary
- Out of investigation scope

The technologies indicated in column C of Table 6.5.3-1 with and marks are considered applicable as river projects for Yangjae Chong.

6.5.4 Location and Function of Primary Facilities

(1) Design discharge

As regards the design discharge corresponding to them, ordinary discharge (Q185) which is approximate to 50% value, is adopted. Prior to the implementation of the project this design discharge must be reviewed by the further observation data.

Table 6.5.4-1 Designed Discharge of Yangjae Chong unit:m³/sec

	St.1	St.2	St.4	St.3
Q(95-day)	1.132	0.992	0.293	0.875
Q(185-day)	0.736	0.645	0.397	0.152
Q(275-day)>	0.341	0.299	0.079	0.170
Q(365-day)	0.008	0.007	0.013	0.057
Design Discharge	0.736	0.645	0.152	0.397

(2) Design water quality

As for BOD concentration of the design water quality, estimated future water quality of each river is adopted. Incidentally, SS concentration shall be worked out from BOD concentration using SS/BOD ratio which were obtained from January, 1990 to May, 1991.

1) SS/BOD Ratio

The average rates of SS and BOD which were obtained in 1990 are

summarized in Table 6.4.4-2.

2) Design water quality

It is too difficult to estimate accurately the design water quality because it varies depending on the sewerage improvement conditions in Seoul Metropolitan and the upstream cities. In this report, assuming the sewerage system will not be improved.

Table 6.5.4-2 Designed Water Quality of Yangjae Chong

Year(Item)	St.1	St.2	St.4	St.3
1990(BOD)	13.5	5.5	5.1	11.2
(SS)	33.9	21.3	24.4	13.2
2002(BOD)	45.3	13.4	5.1	29.0
(SS)	181.2	53.6	20.4	116.0
2010(BOD)	155.6	15.3	5.1	34.7
(SS)	222.4	61.2	20.4	138.8

(3) Arrangement Plan of Facility

The result of the study on how to achieve the target water quality, 6 mg/l of BOD, based on the aforesaid total removal ratio is shown in Table 6.5.4-4.

Table 6.5.4-4 Water Purification Facility Configuration and River Water Quality (2002)

V			Water Quality (B	OD mg/1) & Remov	al Load(kg/day)
			St. 1	St. 2	St. 3
Without Project Conc.		2, 881	747	381	
		Conc.	45.3	13.4	29
a	Removal Load		0	0	.0
St. 3	Concentration		45.3	13.4	29
St. 2	Removal	Load	441	441	-
SI. Z	Concentration		38.8	6.0	-
	Removal	Load	0		_
St. 1	Concentr	ation	38.8		

Table 6.5.4-5 Water Purification Facility Configuration and River Water Quality (2010)

,			Water Quality (B	Water Quality (BOD mg/1) & Removal Load(kg/day)					
			St. 1	St. 2	St. 3				
Without Project		Load	3, 536	853	456				
		Conc.	55.6	15.3	34.7				
C.L. O	Removal Load		0	0	0				
St. 3	Concentration		55.6	.15.3	34.7				
CT 0	Removal Load		520	5 2 0	_				
St. 2	Concentration		47.4	6.0					
St. 1	Removal Load		0	-	-				
	Concentration		47.4		-				

(4) Facility Planning

The facility planning was selected among the five treatment flows described in 5.5, referring to the required removal ratio and the raw water quality shown in Table 6.5.4-6.

The treatment flow, and water quality and discharge of raw water, effluent and river water 3 are summarized in Table 6.5.6-7.

Table 6.5.4-6 Treatment Discharge and River Water Quality (2002)

		River	Treatment	Raw Water	Treated Water	River Water	Flow
:		Discharg	Discharg	Quality	Quality	Quality	Sheet
		(m³/sec)	(m³/sec)	(BOD mg/1)	(BOD mg/1)	(BOD mg/1)	
	St. 2	0.645	0.475	13.4	1.34	6	Type 3

Table 6.5.6-7 Treatment Discharge and River Water Quality (2010)

	River	Treatment	Raw Water	Treated Water	River Water	Flow
	Discharg	Discharg	Quality	Quality	Quality	Sheet
	(m³/sec)	(m³/sec)	(BOD mg/1)	(BOD mg/l)	(BOD mg/1)	
St. 2	0.645	0. 523	15.3	1.53	6	Type 3

6.5.5 Expected Water Quality Improvement Effect

The primary pollution causes are Yoi Chong and the sewerage inflow from the storm water pipes between St.1 and St.2. The proposed plan is to install the facility near St.2 for the purpose of reducing pollution load from the main river and Yoi Chong. The expected water quality effect is shown in Fig.6.5.5-1.

This figure proves that water quality will be able to attain the target at St.2 in 2002 but not in the downstream of St.2 unless pollution load between St.1 and St.2.

In order to reduce the pollution load between St.1 and St.2, repairing the sewer pipes is most effective. The other measures are as follows,

a. Small contact oxidation with cobble plants are installed at

each outlet.

b. Diverting sewage from the outlets by intercepting sewer newly installed.

6.6 Water Quality Improvement Plan for Ui Chong

6.6.1 Basic Policy

Environmental Bureau has not established the water quality standard of this river, however, the water quality standard of the confluence of this river and Chungryang Chong is made Class III. The water quality improvement plan is not necessary to be established, because at present this standard is satisfied and also it is estimated to be satisfied in future.

However, it is necessary to conduct the flow-regime improvement plan due to insufficient river flow.

6.7 Water Quality Improvement Plan for Chungroung Chong

6.7.1 Basic Policy

The cause of deterioration of this river is greatly depending on the imperfect construction of the pipe intercepting sewer. Unless it is renovated, the water quality of the river would further deteriorated. Further, the occupation ratio of the river space by highway and parking lot would all the more increase and the construction conditions of facilities would become severer.

Under such circumstances, there is an opinion such that we should consider the effective utilization of the river space by covering the whole of river. However, we would improve the water quality on the precondition that we would leave the river space.

6.7.2 Water Quality Target

Environmental Bureau has not established the water quality standard of this river, however, Chungryang Chong which joins this river is classified as Class III. Accordingly, the target water quality of this river is defined as Class III.

6.7.3 Selection of Applicable Technology

The examined result on the applicability of technology are summarized below.

Table 6.7.3-1 Applicability of Water Quality Improvement Technology

¥	Mater Quality Improvement Technology		Applicable Condition
A	Restriction of installation Restriction of discharge Install wastewater treatment plant	-	Conservation of green grass area and development restricted area
B	Sewerage improvement Repair of existing sewer pipes Install water preservation drainag Removal of sludge in sewer pipes	- O × ©	Sewerage service rate is 100%. Investigation of intercepting sewers is necessary. It shoud be executed for open intercepting sewers.
С	Removal of bed sediment in rivers Contact oxidation with cobble plan Ground sill Sheet flow channel Direct aeration facility Dilution with clean water	O	It is not so effective unless existing sewer pipes is repaired. DO is sufficient, dge sediment on bed because of DO is sufficient, ble after self purifing capacity DO is sufficient, improve slightly based according It is possible to introduce water from Man River.

Legend

- Most applicabe method
- O Applicable method subject to condition
- △ Low applicability method
- × Not necessary
- Out of investigation scope

The technologies indicated in column C of Table 6.7.3-1 with \bigcirc and \bigcirc marks are considered applicable as river projects for Chungroung Chong.

6.7.4 Location and Function of Primary Facilities

(1) Design discharge

As regards the design discharge corresponding to them, ordinary discharge (Q185) which is approximate to 50% value, is adopted. Prior to the implementation of the project this design discharge must be reviewed by the further observation data.

Table 6.7.4-1 Designed Discharge of Yangjae Chong unit:m³/sec

<u> </u>			·	
	St.1	St.2	St.4	
Q(95-day)	0.434	0.715	1.107	
Q(185-day)	0.244	0.300	0.168	
Q(275-day)	0.109	0.075	0.042	
Q(365-day)	0.012	0.020	0.011	
Design Discharge	0.244	0.300	0.168	

(2) Design water quality

As for BOD concentration of the design water quality, estimated future water quality of each river is adopted. Incidentally, SS concentration shall be worked out from BOD concentration using SS/BOD ratio which were obtained from January, 1990 to May, 1991.

1) SS/BOD Ratio

The average rates of SS and BOD which were obtained in 1990 are summarized in Table 6.4.4-2.

2) Design water quality

It is too difficult to estimate accurately the design water

quality because it varies depending on the sewerage improvement conditions in Seoul Metropolitan and the upstream cities. In this report, assuming the sewerage system will not be improved.

Table 6.7.4-2 Designed Water Quality of Chungroung Chong

	···	
St.1	St.2	St.3
14.0	11.2	19.0
9.3	5.7	11.4
25.5	20.2	34.0
28.1	22.2	37.4
32.4	26.3	44.5
35.6	28.9	49.0
	14.0 9.3 25.5 28.1	14.0 11.2 9.3 5.7 25.5 20.2 28.1 22.2

(3) Arrangement Plan of Facility

The result of the study on how to achieve the target water quality, 6 mg/l of BOD, based on the aforesaid total removal ratio is shown in Table 6.7.4-4. The water quality improvement facility is determined to be installed near St.3.

Table 6.7.4-3 Water Purification Facility Configuration and River Water Quality (2002)

			Water Quality (B	OD mg/l) & Remov	al Load(kg/day)	
		•	St. 1	St. 2	St. 3	
Wishaus	D	Load	538	524	494	
Without	Project Conc.		25.5	20.2	34.0	
	Removal Load		407	407	407	
St. 3	Concentration		5.9	4.7	6.0	
St. 2	Removal	Load	0	0	-	
S (,	Concentration		5.9	4.7	-	
	Removal	Load	0	-	-	
St. 1	Concentration		5.9	9079	e-ra .	

Table 6.7.4-4 Water Purification Facility Configuration and River Water Quality (2010)

			Water Quality (B	30D mg/1) & Remo	val Load(kg/day)	
			Št. i	St. 2	St. 3	
Withou	ıt Project	Load	683	682	676	
nithot	it rioject	Conc.	32.4	26.3	44.5	
St. 3	Removal Load		559	559 559		
J L. U	Concentra	ation	5.9	4: 7	6.0	
St. 2	Removal 1	oad	.0	0	-	
oi. 4	Concentra	ition	5.9	4.7	-	
St. 1	Removal L	oad	0			
	Concentra	tion	5.9	-		

(4) Facility Planning

The facility planning was selected among the five treatment flows described in 5.5, referring to the required removal ratio and the raw water quality shown in Table 6.7.4-6.

The treatment flow, and water quality and discharge of raw water, effluent and river water are summarized in Table 6.7.6-7.

Table 6.7.4-5 Treatment Discharge and River Water Quality

(2002)

						•
	River	Treatment	Raw Water	Treated Water	River Water	Flow
	Discharg	Discharg	Quality	Quality	Quality	Sheet
	(m³/sec)	(m³/sec)	(BOD mg/1)	(BOD mg/1)	(BOD mg/1)	
St. 3	0.168	0.153	34.0	3.40	6	Type 4

Table 6.7.4-6 Treatment Discharge and River Water Quality (2010)

	River	Treatment	Raw Water	Treated Water	River Water	Flow
	Discharg	Discharg	Quality	Quality	Quality	Sheet
	(m³/sec)	(m³/sec).	(BOD mg/1)	(BOD mg/1)	(BOD mg/l)	
St. 3	0.168	0.161	44.5	4.45	6	Type 4

6.7.5 Expected Water Quality Improvement Effect

The present primary cause of river water deterioration is deemed to be leakage of sewage, especially in the covered segment near St.3. The estimated water quality improvement effect is shown in Fig.6.7.5-1 in case of installing the pre-aeration contact oxidation with cobble plant near St.3.

Chapter 7. Investment amount in view of water quality level

7.1 Construction cost of each facility

Construction cost calculated with a view to the result described in the previous chapters is shown in Table 7.1-1.

Capcity (m³/sec) Flow Expenses Sheet (million won) Anyang Chong St. 6 St. 5 2.089 42, 195 Type 4 4.378 84,528 Type 4 3.867 Type 5 Type Š 5.915 78.741 Yangjae Chong St. 2 0.523 7,557 Type 3 Chungroung Chong 0.168 3.066 St. 3 Type 4' Total 278.262

Table 7.1-1 Expenses of Water Purification Facility

7.2 Investment amount in view of water quality level

Every sort of water quality purifying facilities designed in this study adopts mainly the biochemical treatment (contact oxidation with cobble plant). As elimination rate is constant in case of the biochemical treatment, manipulation of design parameter does not give a good result.

For example, in the facility of contact oxidation with cobble plant, water remains 3.0 hours and 90% of BOD is eliminated. On the assumption that water remains 2.0 hours there, elimination rate would not be variable in proportion to the time, and would be impossible to eliminate BOD sufficiently. Therefore, in this plan, the treatment ability of facility was determined by controlling the treatment water quantity and mixing both the treated and untreated water, for the purpose of maintaining the target water quality.

The construction cost per treatment water quality was calculated statistically in consideration of each treatment method using the

relationship between facility construction costs and treatment quality as mentioned above. It was recognized at each river quality level.

The forecasting water quality in 2010 and the commodity pri-July, 1991 were used for calculation.

Table 7.2-1 River Water Quality & Purification Facility Expenses of Anyang Chong

	River Water Quality(BOD mg/l)							
St. 6	St. 5	St. 4	St. 2	St. 1	(million won)			
23.7	41. 2	39.8	44.7	47.3	0			
20.4	36. 2	33.9	37.7	40.8	41,500			
15.2	28. 7	25.7	28.6	32.2	106,368			
10.6	22. 9	19.8	22. 3	26.5	161,588			
5.3	16. 9	14.3	16.8	21.3	222, 936			
2.4	10. 9	10.4	12. 2	17.1	278,894			
2.4	5. 8	6.6	9. 9	14.9	305,140			
2.4	2. 9	3. 3	5. 9	11.2	335,793			
2.4	2. 9	2.8	3. 5	8.9	335,723			

Table 7.2-2 River Water Quality Purification Facility Expenses of Yangjae Chong

River Water Qua	Cost		
St. 2	\$t. 1	(million won)	
15.3	55.6	. 0	
13.0	53.6	1,898	
10.0	50.9	4, 355	
8.0	49.2	5, 951	
5.0	46.6	8, 369	
3.8	45.6	9, 251	

ANNEX 1

PREDICTION OF FUTURE WATER QUALITY

						ng 2002/1990			ng 2010/1990	:
St. 3	0.078 41.83 0.00186		154.2	85, 952 0, 952		1,738\$t. 6 Loading 2002/1990 5.336 0.078	128, 702. 0 0. 002	38.2	2.5125t.6 Loading 2010/1990 5.336 0.078	163, 007. 0 0. 002 326. 0 48. 4
St. 6	5.336 126.38	5, 336	22, 406. 3		22, 406. 3 48. 5	1, 738 5, 336	E I	38, 942. 1 84. 5	2, 512 5, 336	56, 284. 6 122. 1
St. 5	6, 615 153, 8 0 04307	_	31, 807. 1	187, 193 209, 599	31, 807, 1 55, 7	6, 615	325, 375, 0 0, 170	94, 255, 9	6.615	470, 254, 0 0, 170 136, 227, 8 238, 4
St. 4	4. 117 212. 29 0. 01939	7.771	35, 249, 3 3442, 2	52, 872 262, 471 0, 065	18, 678, 3 52, 5	7.71	85, 046. 0 0. 065	99, 783. 9 94, 255. 9 148. 6 164. 9	7.771	110, 479, 0 0, 065 143, 408, 9 213, 6
St.2	7, 973 264, 55 0, 03014		41, 009.8 5606.3	24, 237 372, 660 0, 231	41, 009. 8 59. 5	7, 973	40, 693.0	109, 441, 4 158, 9	7, 973	53,860.0 110,479.0 470,254.0 0.231 0.065 0.170 156,176.6 143,408.9 136,227.8 226.7 226.7
St. 1	6, 703 284, 14 0, 02359	8, 564	41,066.1 56.3	79, 237 451, 897 0, 001	32, 119. 3 55. 5	8, 564	136, 599, 0 40, 693, 0 0, 001 0, 231	109, 578. 0 148. 1	8, 564	193, 136, 0 6, 001 156, 369, 7 211, 3
unit	m3/sec 加2	m3/sec m3/sec	配3/sec kg/day kg/day	kg/day kg/day -	kg/day ¤g/1	m3/sec m3/sec	m3/sec kg/day	kg/day ng/l	m3/sec	m3/sec kg/day kg/day mg/l
(1990)	Total Discharge (Meausered) Area Q/A	Revised Discharge River Discharge	Sewer Discharge Revised BOD Load(Meauser) BOD Span Loading(Meauser)	80D Generation Loading 80D Generation Loading 80D Run-off Ratio	BOD Loading (Meausered) BOD Conc.	(2002) Total Discharge River Discharge	Sewer Discharge BOD Generation Loading BOD Run-off Ratio	800 Loading 800 Conc.	(2010) Total Discharge River Discharge	Sewer Discharge BOD Generation Loading BOD Run-off Ratio BOD Loading BOD Conc.

			:			←St. 6 Loading 2002/1990 0.078			ling 2010/1990	
St. 3	0.078 41.83	0.0730	280. 9	86, 579 86, 579	280. 9 42. 0	←St. 6 Load 0.078	92, 609, 0 0, 003		2.004 ←St.6 Loading 5.336 0.078	137, 865. 0 0. 003 413. 6 61. 4
St. 6	5, 336 126, 38	5. 336	22, 406. 1		22, 406. 3 48. 6	1, 422 5, 336		31, 861. 8 69. 1	2.004 5.336	44, 902, 2 97, 4
St. 5	6.615 153.6 0.04307	6. 615	31,834.6	118, 472 140, 878	31, 807. 1 55. 7	6.615	168, 511. 0 0. 269	77, 191. 3 135. 1	6, 615	237, 427. 0 0. 269 108, 770. 1 190. 3
St. 4	4.117 212.29 0.01939	7 771	44, 984. 8	57, 462 198, 340	18, 678, 3 67. 0	7.771	63, 891, 0 168, 511, 0 0, 229 0, 269	91, 822. 3 136. 8	7.71	92, 967, 0 237, 427, 0 0. 229 0. 289 130, 059, 5 108, 770, 1 193, 7
St. 2	7.973 284.55 0.03014	7.973	37, 129, 9	305, 542	41, 009, 8 53, 9	7, 973	ထင္ယာ	സ്	7. 973	ဝင္ယာက္
St. 1	6, 703 284, 14 0, 02359	8.564	41, 732. 0	45, 615 351, 157	32, 119. 3 56. 4	配3/sec 8.564 7.9 m3/sec m3/sec	64, 948, 0 0, 101	28, 766. 2 120. 0	8.564	m3/sec ding kg/day 95,197.0 35,719 - 0.1010.3 kg/day125,979.0 116,334 mg/l 170.3 186
unit	edm3/sec km2 -	m3/sec[m3/sec rr)kg/day	kg/day kg/day	kg/day mg/l	m3/sec m3/sec	kg/day	Kg/day ng/l	m3/sec m3/sec	m3/sec kg/day kg/day mg/l
(1990)	Total Discharge (Meauseredm3/sec Area Q/A	Revised Discharge	Arvel Discharge m3/sec m3/sec Sewer Discharge m3/sec M3/sec S Load (Meauser) kg/day 41,732.0 37,18 S Span Loading (Meauser) kg/day 44602 1 -81	S S Generation Loading S S Generation Loading S S Bm-off Patio	S S Loading (Meausered) S S Conc.	(2002) Total Discharge River Discharge Sewer Discharge	3.9	S S Conc.		8 ~

			ng 2002/1990		2.512 ←St. 6 Loading 2010/1990 5.336 0.078	
St. 3	0.078 41.83 0.00186 0.078	154. 2 85, 952 85, 952 0, 002 154. 2	Ĩ	128, 702. 0 0. 002 257. 4 38. 2	←St. 6 Loadi 0.078	153, 067. 0 0. 002 326. 0 48. 4
St. 6	5, 336 126, 38 0, 04222 5, 336	22, 406. 3	1.738	10, 926.4 23.7	2, 512 5, 336	10, 926. 4 23. 7
St. 5	6.615 153.6 0.04307 6.615	31, 807, 1 31,807, 1 187, 193 209, 599 0,1,70 31, 807, 1	6.615	325, 375, 0 0, 170 66, 240, 2 115, 9	6. 615	470, 254. 0 0. 170 90, 869. 6 159. 0
St. 4	4.117 212.29 0.01938	35, 249, 3 3442, 2 52, 872 262, 471 0 0.65 18, 678, 3	7, 771	85, 046, 0 325, 375, 0 0, 065 71, 768, 2 56, 240, 2 106, 9	7.71	53,860,0 110,479,0 470,254,0 0.231 0.065 0.170 (10,818.4 98,050.7 90,869.6 160.9 146.0 159.0
St. 2	7.973 264.55 0.03014 7.973	41,009.8 5606.3 24,237 372,660 0.231 41,069.8	7. 973	40, 693. 0 0, 231 81, 425. 7 118. 2	7. 973	53, 850.0 0, 231 110, 818, 4 160, 9
St. 1	6, 703 284, 14 0, 02359 8, 584	41,086.1 56.3 79,237 451,897 0.001 32,119.3	8.564	136, 599, 0 0, 001 81, 562, 3 110, 2	8, 564	193, 136, 0 0, 001 111, 011, 5 150, 0
unit	m3/sec km2 - m3/sec m3/sec	m3/sec kg/day kg/day kg/day kg/day	m3/sec	m3/sec kg/day - kg/day mg/1	m3/sec m3/sec	m3/sec kg/day kg/day mg/l
Case 2 (1990)	Total Discharge (Meauscred) Area (1/A Revised Discharge River Discharge	Sewer Discharge Revised BOD Load(Meauser) BOD Span Loading(Meauser) BOD Generation Loading BOD Generation Loading BOD Run-off Ratio BOD Loading(Meausered)	Conc. (2002) Total Discharge	Sewer Discharge BOD Generation Loading BOD Run-off Ratio BOD Loading BOD Conc.	(2010) Total Discharge River Discharge	Sewer Discharge BOD Generation Loading BOD Run-off Ratio BOD Loading BOD Conc.

						St. 6 Loading 2002/1990 0.078			←St.6 Loading 2010/1990 0.078	
St. 3	0.078 41.83	0.078	280.9	86, 579 86, 579 0, 003	280.9 42.0	St. 6 Los 0.078		277.8 41.2	←St. 6 Lov 0.078	137, 865. 0 0, 003 413. 6 61. 4
St. 6	5. 336 126. 38 0. 04222	5. 338	22, 406. 1		22, 406. 3 48. 6	1, 422 5, 336	1,1	21, 852, 8 47, 4	2.004 5.336	21,852.8
St. 5	6, 615 153, 6 0, 04307	6, 615	31, 834, 6 31834, 6	118,472 140,878 0,269	31, 807. 1 55. 7	6, 615	168, 511. 0 0. 269	67, 182. 3 117. 5	6.615	237, 427. 0 0. 269 85, 720. 7 150. 0
St. 4	4.117 212.29 0.01939	7.77	44, 984.8 13150.2	57, 462 198, 340 0, 229	18, 678, 3 67. 0	7.771	63, 891. 0 0. 229	81,813,3 67,182.3 121.9 117.5	7.771	92, 967, 0 237, 427, 0 0, 229 0, 269 107, 910, 1 85, 720, 7 159, 4 150, 0
St. 2	7, 973 264, 55 0, 03014	7.973	37, 129. 3 -8135. 8	20, 623 305, 542 -0, 395	41, 009. 8 53. 9	7.973	25, 047, 0 -0, 395	72, 197. 5 104. 8	7, 973	5.750
St. 1	6. 703 284. 14 0. 02359	1 1	41, 732.0 4602.1	45, 615 351, 157 0, 101	32, 119, 3 56, 4	m3/sec 8.564 m3/sec	64, 948. 0 0. 101	78, 757. 2 106. 4	8. 554	iding kg/day 95,197,0 35,719 6,101 kg/day102,929,6 93,314 mg/l 139,1 139,1
unit	edm3/sec km2	m3/sec m3/sec m3/sec	\sim	kg/day kg/day	kg/day #g/1	#3/sec #3/sec	kg/day	kg/day mg/l	m3/sec m3/sec	kg/day kg/day mg/1
(1990)	Total Discharge (Meauseredm3/sec Area Q/A	Revised Discharge River Discharge Sewer Discharge	Revised S S Load (Meauser S S Span Loading (Meauser	S S Generation Loading S S Generation Loading S S Run-off Ratio	S S Loading (Meausered) S S Conc.	(2002) Total Discharge River Discharge Sewer Discharge	S S Generation Loading S S Run-off Ratio	S S Loading S S Conc.	(2010) Total Discharge River Discharge Sewer Discharge	္ရည္သိုင္က

sered) m3/sec			9	9
wilt St.1 St.2 St.4 St.5 St.6 St.6 St.6 St.6 St.6 St.6 St.6 St.6		•	02/199	10/199
wilt St.1 St.2 St.4 St.5 St.6 St.6 St.6 St.6 St.6 St.6 St.6 St.6			ing 20	
wilt St.1 St.2 St.4 St.5 St.6 St.6 St.6 St.6 St.6 St.6 St.6 St.6	St. 3	0. 078 41. 83 0. 00186 0. 0178 0. 0174 154. 2 85, 952 85, 952 87, 952 154. 2	0.078 0.078 0.014 0.078 0.078 128,702.0 257.4 38.2	6.078 0.064 0.064 0.014 0.078 163,007.0 0.002 325.0 48.4
sered) m3/sec	St. 6		2. 256 2. 256 2. 256 3.	255 3336 080 080 1.5
sered) m3/sec 284.1 St. 2 sered) m3/sec 284.14 284.35 m3/sec 8.564 7.933 m3/sec 3.843 3.851 m3/sec 4.721 3.237 m3/sec 113.3 41,009.8 1 m3/sec 4.721 4.122 m3/sec 4.721 4.122 m3/sec 1.737 24.237 m3/sec 1.737 24.237 m3/sec 1.737 24.237 m3/sec 1.737 41.237 m3/sec 1.737 4.122	ន ដ្		325,	470,
sered) m3/sec 6.703 sered) m3/sec 2.84.14 - 0.02559 m3/sec 3.843 kg/day 41.065.1 kg/day 41.065.3 m3/sec 6.001 kg/day 42.118.3 m3/sec 7.72 m3/sec 7.72 m3/sec 7.72 m3/sec 1.763 m3/sec 6.8564 m3/sec 1.763	St. 4	4, 117 212, 29 0, 1939 0, 1939 3, 2, 88 35, 249, 3 3442, 2 52, 872 262, 872 262, 872 18, 678 18, 678	7. 771 4. 483 3. 288 1. 208 6. 563 85, 045. 0 47, 150. 5 83. 2	7.771 4.483 3.288 1.208 1.208 1.10,479 0.020 67,899.3
sered) m3/sec [2] m3/s	St. 2	7, 973 264, 55 0.03014 7, 1973 7, 1973 13, 851 16,009, 8 5606, 3 24, 237 372, 660 0, 231 41, 009, 8	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.48.4.98.0.08.7
serred.) ng n	St. 1	6, 703 284, 14 0, 03559 4, 754 4, 1, 86 1, 86 1, 87 451, 89 451, 89 1, 99 1, 90 1, 9		8.564 4.721 3.843 1.763 1.93, 136, 0 73, 165, 2 73, 165, 2
Case 3 (1990) Total Discharge (Meausered) Area Q.A Revised Discharge Fiver Discharge Fersted BOD Load BOD Span Loading (Meauer) BOD Generation Loading BOD Generation Loading BOD Generation Loading BOD Generation Loading BOD Loading (Meausered) BOD Loading (Meausered) BOD Conc. (2002) Total Discharge SMG Sewer Discharge Total Discharge Conc. (2010) Total Discharge BOD Run-off Ratio BOD Loading BOD Conc. (2010) Total Discharge SWG Sewer Discharge Total Discharge Conc. (2010) Total Discharge BOD Generation Loading	unit	m3/sec ton2 	#3/sec #3/sec #3/sec #3/sec kg/day #g/day	m3/sec m3/sec m3/sec m3/sec kg/day kg/day mg/l
		Total Discharge (Weausered) Area 0/A Revised Discharge River Discharge Sewer Discharge Sewer Discharge Revised 800 Load B00 Span Loading (Meauer) B00 Generation Loading B00 Generation Loading B00 Generation Loading B00 Loading (Meausered) B00 Conc.	(2002) Total Discharge River Discharge Sewer Discharge SMG Sewer Discharge Total Discharge Total Discharge(2) BOD Generation Loading BOD Run-off Ratio BOD Loading	(2010) Total Discharge River Discharge Sewer Discharge SMG Sewer Discharge Total Discharge Total Discharge (2) BOD Generation Loading BOD Loading BOD Loading

		2002/1890	2010/1890
St. 3	0, 078 41, 83 0, 00186 0, 004 0, 004 1, 004 280, 579 86, 579 0, 003 41, 7	-St. 6 Loading 2002/1990 0.078 0.014 0.078 92.809.0 0.03 277.8 41.2	-5t. 6 Loading 0.078 0.014 0.014 0.078 137,865.0 413.6 61.4
St. 6	5,336 126,38 0,04222 5,336 2,28 18,948,3 18,943,2	2.08 2.08 2.08 2.08 2.08 2.08 5.944.5	2.004 3.256 2.08 2.08 3.972.4
လ ဂို	6. 615 153.6 0. 04307 6. 615 2. 98 24, 518.9 137, 412 137, 412 0. 047 42. 9	6. 615 3. 635 2. 98 0. 9 5. 715 168, 511. 0 0. 070 38, 740. 3	6. 615 3. 635 2. 98 0. 9 5. 715 237, 427, 0 0. 070 54, 592. 3
St. 4	4,117 212,29 0.01338 3,288 60,091,6 35572,7 194,872 194,874 0.619 31,844,5	7. 771 4. 483 3. 288 1. 208 6. 563 63, 891. 0 43, 212. 7 76. 2	7. 771 4. 483 3. 288 1. 208 6. 563 92. 967 0. 070 10. 070
St 2	7, 973 264, 55 0, 03014 7, 1973 4, 1273 10580, 8 10580, 8 302, 078 0, 513 70, 946, 3	7. 973 4. 122 3. 851 1. 771 5. 202 25, 047. 0 0. 070 45, 243. 8	7. 973 4. 122 9. 851 1. 771 1. 771 35, 719 0 64, 013.9
St. 1	5, 703 284.14 0, 0235 1, 843 50, 907.2 -20045, 1 45, 615 -0, 439 39, 860, 3	m3/sec 8.564 m3/sec 4.721 m3/sec 1.763 m3/sec 1.763 m3/sec 0.070 kg/day 64.948. 0 kg/day 49.790.2 mg/1 84.7	m3/sec 8.564 m3/sec 1.721 m3/sec 1.763 m3/sec 1.763 m3/sec 6.801 kg/day 95,197.0 kg/day 70,677.7 mg/l 120.3
unit	dm3/sec Fm2 m3/sec m3/sec m3/sec m3/sec kg/day kg/day kg/day kg/day kg/day	m3/sec m3/sec m3/sec m3/sec kg/day 64, kg/day 49,	#3/sec #3/sec #3/sec kg/day kg/day
(1990)	Total Discharge (Meauseredm3/sec Area Q/A Bevised Discharge m3/sec Biver Discharge m3/sec m3/sec Bevised S S Load S S Span Loading (Meauer) kg/day S Generation Loading kg/day S Generation Loading kg/day S S Conc.	(2002) Total Discharge Sever Discharge Sever Discharge SMG Sever Discharge Total Discharge (2) S S Generation Loading S S Run-off Ratio S S Loading	Total Discharge Nerr Discharge Sever Discharge Sever Discharge SMG Sever Discharge Total Discharge (2) S Generation Loading S S Generation S S Turn-off Ratio S S Conc. S S Conc.

		s 2002/1990	6 Loading 2010/1990 - 078 - 014 - 02 - 02 - 02 - 02 - 02 - 04 - 48 - 48 - 48
St. 3	9, 078 41, 83 0, 00186 0, 078 0, 014 154, 2 85, 952 85, 952 0, 002	154.2 22.9 22.9 0.078 0.014 0.078 0.078 128.702.0 257.4 38.2	-St. 6 Loadin 0.078 0.014 0.014 1.078 153.007.0 326.0 48.4
St. 6	5, 336 126, 38 0, 04222 5, 336 3, 256 2, 08 22, 406, 3	22, 406, 3 48. 6 11, 738 3, 236 2, 080 2, 080 10, 926, 4 23, 7	2. 512 3. 256 2. 080 2. 080 10, 926. 4
St. 53	6, 615 153, 6 0, 04307 6, 615 3, 635 3, 635 31, 807, 1 94,00 187, 193 209, 599	31, 807, 1 55, 7 55, 7 3, 615 2, 980 0, 900 325, 375, 0 0, 020 17, 433, 9	6. 615 3. 635 2. 980 0. 900 5. 715 470, 254, 0 0. 020 20, 331, 5
St. 4	4, 117 212, 29 0, 01939 7, 771 4, 483 35, 249, 3 34, 249, 3 52, 842, 2 52, 842, 2 52, 847, 2 6, 065	18, 678, 3 52, 5 7, 771 4, 483 3, 288 1, 288 1, 288 1, 288 1, 288 1, 208 19, 134, 8	7. 771 4. 483 3. 288 1. 208 1. 208 6. 563 110, 479. 0 0. 020 22, 541. 1
St 2	7, 973 264, 553 0, 03014 7, 973 4, 122 3, 851 24, 008, 8 26, 003, 8 26, 003, 8 372, 660 0, 231	41, 009, 8 59, 5 7, 973 4, 122 3, 851 1, 771 6, 773 40, 693 0, 020 20, 206, 1	7, 973 4, 122 3, 851 1, 771 1, 771 53, 860, 0 0, 020 23, 944, 3
St. 1	6. 703 284. 14 0. 02359 8. 564 4. 3. 843 41. 066. 1 56. 3 79. 237 451. 897	32, 119, 3 55, 5 55, 5 55, 5 10, 721 136, 593, 0 0, 0, 0, 0 39, 0	8, 564 4, 721 3, 843 1, 763 1, 763 193, 136, 0 0, 020 27, 807, 0 47, 3
unit		kg/day mg/1 mg/1 mg/3 sec mg/sec mg/sec kg/day kg/day mg/1	m3/sec m3/sec m3/sec m3/sec m3/sec kg/day kg/day mg/l
Case 4	Total Discharge (Meausered) Area Q/A. Revised Discharge River Discharge Sewer Discharge Revised BOD Load BOD Span Loading (Meauer) BOD Generation Loading BOD Generation Loading BOD Generation Loading BOD Run-off Ratio	BOD Loading (Meausered) BOD Conc. (2002) Total Discharge River Discharge Sewer Discharge Sewer Discharge Total Discharge(2) BOD Generation Loading BOD Run-off Ratio BOD Loading BOD Conc.	(2010) Total Discharge River Discharge Sewer Discharge Sewer Discharge Total Discharge Total Discharge BOD Generation Loading BOD Loading BOD Loading

÷				2002/1990		2010/1990
St. 3	0.078 41.83 0.00186 0.078	0. 064 0. 014 280. 9	28, 579 0, 003 280, 9	-St. 6 Loading 2002/1990 0.078 0.054 0.014	0.078 92,609.0 0.003 277.8 41.2	-St. 6 Loading 2010/1990 0.078 0.014 - 0.078 137, 885, 0 413, 6 51, 4
St. 6	5. 336 126. 38 0. 04222 5. 336	₩-	- 18, 943. 2 41. 1	1. 422 5. 336 3. 256 2. 08	21,852.8 47.4	2.004 3.256 3.256 2.08 2.08 2.08 2.08 2.08 47.4
St. 5	6. 615 153. 6 0. 04307 0. 6. 615		137, 415 137, 415 0. 047 24, 533. 7 42. 9	6, 615 3, 635 2, 98 0, 9	5, 715 168, 511, 0 0, 070 33, 548, 6 68, 1	6. 615 3. 635 2. 98 0. 9 5. 715 5. 715 33, 427. 0 38, 472. 7
St. 4	4, 117 212, 29 0, 01939 7, 771	4, 483 3, 288 60, 091, 5 35572, 7	194, 877 0. 619 31, 844, 5 89, 5	7, 771 4, 483 3, 288 1, 208	63, 891, 0 0, 070 38, 121, 0 67, 2	7. 771 4. 483 3. 288 1. 208 1. 208 6. 563 92, 967. 0 0. 070 44, 980. 4
St. 2	7. 973 264.55 0.03014 7. 973	4. 122 3. 851 70, 953. 3 10580. 8	302, 079 0, 513 70, 946, 3 103, 0		6, 202 25, 047. 0 0, 070 40, 152. 1 74. 9	7. 973 4. 122 3. 851 1. 771 6. 202 35, 719 0 0. 070 47, 894, 3
St. 1	```ci	4. 721 3. 843 50, 907. 2 -20046. 1	347, 694 -0, 439 39, 860, 3 68, 8	8. 564 4. 721 3. 843 1. 763	2 3	8. 564 4. 721 3. 843 1. 763 6. 801 95, 197. 0 0. 070 54, 558. 1
unit	edm3/sec km2 _ m3/sec	_	kg/day kg/day mg/l	m3/sec m3/sec m3/sec	m3/sec kg/day - kg/day mg/1	m3/sec m3/sec m3/sec m3/sec kg/day kg/day kg/day kg/day
(1990)	<u>s</u>	niver Discharge Sewer Discharge Revised S Load S Span Loading(Meauer) S S Generation Loading	လလလလ	(2002) Total Discharge River Discharge Sewer Discharge SWG Sewer Discharge	lotal Discherge (2) S S Generation Loading S S Run-off Ratio S S Loading S S Conc.	(2010) Total Discharge River Discharge Sewer Discharge SMG Sewer Discharge Total Discharge (2) S Generation Loading S Run-off Ratio S S Loading S Conc.

					-1990FIX		9	YT JASST.	
	St. 4	0, 634	0.012	1, 335. 6	1.900 0.634 0.622	0.012 - 1 335 6	24.4	0. 634 0. 622 0. 912 0. 912	7. 1, 335, 6 24, 4
	St. 3	0.284	0, 026 8, 455, 0 323, 2 0, 050	323.2 13.2	0, 284 0, 264	0.020 13,755.0 0.050 897.8	28.0	0.284 0.264 0.020	15, 895, 0 0, 050 794, 8 32, 4
	St. 2	0.929 0.910	0.019 2,318.0 54.1 0.023	1,712.9	0.929 0.910	0.019 4,778.0 0.023	29. 6 29. 6	0.929 0.910 0.019	5, 090.0 0.023 2, 247.5 28.0
	St. 1	1. 548 1. 408	m3/sec 0.140 kg/day 10,308.0 kg/day 4485.6 - 0.435	4, 539. 7	1, 548 1, 408	m3/sec 0.140 kg/day 24,081.0 - 0.435 kg/day 12,688 5	94.3	1, 548 1, 408 0, 140	kg/day 28, 693. 0 - 0.435 kg/day 14, 729. 0 mg/l 110. 1
	unit	配3/sec m3/sec	m3/sec kg/day kg/day -	kg/day	m3/sec	m3/sec kg/day	(F) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	m3/sec m3/sec m3/sec	kg/day - kg/day ng/1
	(1980)	Total Discharge River Discharge	Sewer Discharge S S Generation Loading S S Span Loading S S Run-off Ratio	S S Loading S S Conc.	(2002) Total Discharge River Discharge	Sewer Discharge S S Generation Loading S S Run-off Ratio	S S Conc.	Total Discharge River Discharge Sewer Discharge	S S Generation Loading S S Run-off Ratio S S Loading S S Conc.
					-1990FIX		7190061	VT JOSET	ü
		223	75	-;-;	82,23	- 15	:⊷: E	1 2882 1	
	St. 4	0.634		281. 1 5. 1	1.000 0.634 0.622			0.634 0.622 0.012	281.1 5.1
	St. 3 St. 4		8, 708, 0 4, 708, 0 275 0, 058			0. 020 0. 012 12, 251. 0 0. 058 - 710 6 281. 1			14, 678.0 - 0.058 - 851.3 281.1 34.7 5.1
		0.284		275.0	0, 284 0, 264		29.0	0. 284 0. 264 0. 020	4,591.0 14,678.0 0.020 0.058 1,224.2 851.3 281.1 15.3 34.7 5.1
	St. 3	0, 929 0, 284 0, 910 0, 264	0. 020 4, 708. 0 275 0. 058	438.9 275.0 5.5 11.2	1. 548 0. 929 0. 284 1. 408 0. 910 0. 264	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.4 29.0	1. 548 0. 929 0. 284 1. 408 0. 910 0. 264 0. 140 0. 019 0. 020	28, 915, 0 4, 591, 0 14 0, 215 0, 020 7, 440, 9 1, 224, 2 55, 6 15, 3
	unit St.1 St.2 St.3	m3/sec 1.548 0.929 0.284 m3/sec 1.408 0.910 0.264	m3/sec 0.140 0.019 0.020 kg/day 8.931.0 1,562.0 4,708.0 kg/day 1917.8 -117.2 - 0.215 -0.075 0.058	kg/day 1,800,6 438,9 275.0 mg/l 13,5 5.5 11.2	m3/sec 1.548 0.929 0.284 m3/sec 1.408 0.910 0.264	m3/sec 0.140 0.019 0.020 kg/day 23,202.0 4,099.0 12,251.0 ke/day 6,021 0.020 0.058	mg/1 45.3 13.4 29.0	m3/sec 1.548 0.929 0.284 m3/sec 1.408 0.910 0.254 m3/sec 0.140 0.019 0.020	kg/day 28, 915.0 4, 591.0 14 - 0.215 0.020 kg/day 7, 440.9 1, 224.2 mg/l 55.6 15.3
Case 1	unit St.1 St.2 St.3	m3/sec 1.548 0.929 0.284 m3/sec 1.408 0.910 0.264	8, 931.0 1, 562.0 4, 708.0 1917.8 -117.2 275 0.0215 -0.075 0.058	kg/day 1,800,6 438,9 275.0 mg/l 13,5 5.5 11.2	m3/sec 1.548 0.929 0.284 m3/sec 1.408 0.910 0.264	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mg/1 45.3 13.4 29.0	m3/sec 1.548 0.929 0.284 m3/sec 1.408 0.910 0.254 m3/sec 0.140 0.019 0.020	28, 915, 0 4, 591, 0 14 0, 215 0, 020 7, 440, 9 1, 224, 2 55, 6 15, 3

					-1990FIX			←1990FIX		
	St. 4	0.534		1, 335, 6 24, 4	1, 000 0, 634 0, 622	0.012	1, 335, 6	0.834	0.012	1, 335, 6
	St. 3	0, 284 0, 264 0 020	6, 455.0	323. 2 13. 2	0.284	0.020 13,755.0 0.070		0.284	0.020 15,895.0	794.8 34.8
	St. 2	0. 929 0. 910 0.19	2, 318.0 54.1 0.03	1,712.9	0. 929 0. 910	0,019 4,778.0 0,070	2, 633,0	0.929	6, 030, 0 5, 030, 0	2, 247, 5 28, 6
	St. 1	1.548	10, 308, 0 4485, 6 0, 435	4, 539, 7	1, 548 1, 408	- St	4,318.7	1. 548	👏	14, 729, 0 121, 1
	unit	m3/sec m3/sec	kg/day kg/day	kg/day mg/l	m3/sec m3/sec	m3/sec kg/day 2	kg/day mg/1	m3/sec	#3/sec kg/day	kg/day 14, mg/l
	(1990)	Total Discharge River Discharge Sewer Discharge	S S Generation Loading S S Span Loading S S Run-off Ratio	S S Loading S S Conc.	(2002) Total Discharge River Discharge	Sewer Discharge S S Generation Loading S S Run-off Ratio	S S Loading S S Conc.	(2010) Total Discharge River Discharge	Sewer Discharge S.S. Generation Loading	s s nun-orr natio S S Loading S S Conc.
					×			Χĭ	: .	
					-1990F			-1990		
	St. 4	0.622 0.012		281.1 5.1	1. 000 —1990FIX 0. 634 0. 622	u. 612 -	281.1 5.1	1. 000 1990FI) 0. 634 0. 622	0.012	281. 1 5. 1
* 1	첬	ಠಠಠ	4, 708.0 - 275 0.058		0.634	0.020 0.012 12, 251.0 0.020 -		0. 284 0. 534 0. 264 0. 522		293. 6 281. 1 12. 9 5. 1
	첬	0. 284 0. 264 0. 020	•	275. 0 11. 2	1. 000 0. 284 0. 264 0. 634	251. 0 0. 020 0. 020	245. 0 10. 7	0. 284 0. 634 0. 264 0. 632	0.020 678.0	293. 6 12. 9
	St.2 St.3 St.	0, 929 0, 284 0, 0, 310 0, 264 0, 0, 0.019 0, 020 0, 0.020	4, 708. 0 - 275 0, 058	438.9 275.0 5.5 11.2	0. 929 0. 284 0. 634 0. 634 0. 634 0. 622	0.013 0.020 0.050 0.090 0.090 0.020 0.020 0.020	608, 1 245, 0 7, 7 10, 7	0. 929 0. 284 0. 634 0. 910 0. 264 0. 622	0.020 14,678.0	8. 5 12. 9
	St. 2 St. 3 St.	0, 929 0, 284 0, 0, 310 0, 264 0, 0, 0.019 0, 020 0, 0.020	8, 931.0 1, 562.0 4, 708.0 - 1917.8 -117.2 275 0.215 -0.075 0.058	438.9 275.0 5.5 11.2	m3/sec 1.548 0.929 0.284 0.534 m3/sec 1.408 0.910 0.264 0.622	23, 202. 0 4, 099. 0 12, 251. 0 0. 020 0. 020 0 0. 020 0 0. 020 0 0. 020	kg/day 1,072.1 608.1 245.0 mg/l 8.8 7.7 10.7	0. 929 0. 284 0. 634 0. 910 0. 264 0. 622	28, 915.0 4, 591.0 14, 678.0 0 020 0 020 0 020	244.8 666.5 293.6 10.2 8.5 12.9

		1990FIX	1990FIX
St. 2	0, 935 0, 933 0, 933 0, 002 12, 647.0 888.0 0, 070 11.0	0. 935 0. 933 0. 002 20, 985.0 0. 070 1, 469.0	0. 935 0. 933 0. 002 22, 970. 0 0. 070 1, 607. 9
St. 1	m3/sec 4.335 m3/sec 4.317 m3/sec 0.018 kg/day 16.560.0 kg/day 1,470.5 mg/1 6.358.5 mg/1 6.35	m3/sec 4.335 m3/sec 4.317 m3/sec 0.018 kg/day 26,771.0 kg/day 3,851.6 mg/l 10.3	m3/sec 4.335 m3/sec 4.317 m3/sec 0.018 kg/day 28.711.0 kg/day 4,163.2 mg/l 11.1
unit	m3/sec m3/sec kg/day kg/day kg/day mg/l	m3/sec m3/sec m3/sec kg/day kg/day	m3/sec m3/sec m3/sec kg/day kg/day
10001	Total Discharge River Discharge Sewer Discharge S Semeration Loading S S Span Loading S S Run-off Ratio S S Cooc.	(2002) Total Discharge River Discharge Sever Discharge S Generation Loading S S Run-off Ratio S S Loading S S Coot.	(2010) Total Discharge River Discharge Sewer Discharge S & Generation Loading S S Run-off Ratio S S Loading S S Conc.
St. 2	0. 935 0. 933 0. 002 15. 081. 0 264. 3 264. 3 3. 3	0. 935 0. 933 0. 002 24, 163. 0 434. 9 5. 4	0, 935 0, 933 0, 002 31, 738, 0 6, 018 571, 3
St. 1	4. 335 4. 317 0. 018 18, 147, 0 1. 062, 3 1, 326, 6	4, 335 4, 317 0, 018 28, 496, 0 0, 059 2, 116, 2 5, 7	4, 335 4, 317 0, 018 36, 897, 0 2, 748, 2
unit	m3/sec m3/sec m3/sec kg/day kg/day kg/day	m3/sec m3/sec kg/day kg/day mg/l	m3/sec m3/sec m3/sec kg/day kg/day mg/l
Case 1 (1000)	Total Discharge River Discharge Sever Discharge BOD Generation Loading BOD Span Loading BOD Run-off Ratio BOD Loading	(2002) Total Discharge River Discharge Sewer Discharge BOD Generation Loading BOD Run-off Ratio BOD Loading BOD Conc.	(2010) Total Discharge River Discharge Swer Discharge BOD Generation Loading BOD Run-off Ratio BOD Conc.

	St 3	1. 125	0. 151		1, 108, 1	2580	7, 280	1, 105, 9		1.125	12 755 0	0.429	5, 990. 9 60. 7		1, 125	1	15, 895. U	6, 819.0
i	St. 2	0,463	0, 031 2, 010	<u> </u>	989.9	23350	-0.55	226.2	0	2.010	778 0	0.070	6, 235.4 35.9	0	2, 010	6	3, USB, U	7, 175, 3
, i	St. 1	0, 567	0.054 2.176		1, 748, 5 758, 6	5472	0.139	453,4		2.176	24 081 0	0.139	9, 58 <u>2.</u> 7 51. 0		2. 176	000	28, 683, U	11, 163, 6 59, 4
:	ij	m3/sec m3/sec	m3/sec	m3/sec m3/sec	kg/day kg/day	kg/day	108/ UBy	kg/day ng/1	į	m3/sec	m3/sec	, se / se	kg/day mg/1		m3/sec m3/sec	m3/sec	K&/day -	kg/day 1
	(1990)	Total Discharge River Discharge	Sewer Discharge Revsised Discharge	Revsied River Discharge Revsied Sewer Discharge	Revsised SS Load S S Span Loading(Meuser)	, C	S S Run-off Ratio	S S Loading S S Conc.	(2002)	lotal Discharge River Discharge	Sewer Discharge	S S Run-off Ratio	S S Loading S S Conc.	(2010)	Total Discharge River Discharge	Sewer Discharge	S S Run-off Ratio	S S Loading S S Conc.
																		÷
4	SE 3	1, 125 0, 974	0. 151 1. 125		1, 844, 6 1844, 6	2947	0,625	1, 844. 6 19. 0		C77 -7	5, 283, 0	0.626	3, 307, 2 34, 0		1, 125	0 010 3	0, 510. 9	4, 325. 7 44. 5
. 8	3 T Z	0.463	0. 031 2. 010	٠	1, 945. 0 100. 4	21218	0.003	450.0 11.2	0 0	7. UIU	39, 415, 0	0.005	3, 504, 3 20, 2	0	2.010			4, 559, 9 26, 3
ż	2C 1	0.567	0. 054 2. 176		2, 632, 1 687, 1	5065 29 230	0, 136	683. 4 14. 0	6	7- 1/0	9.512.0	0.136	4, 797, 9 25, 5		2. 176	11 000 0	0.138	6, 087. 6
1	mit	n3/sec n3/sec	m3/sec m3/sec	m3/sec m3/sec	kg/day kg/day	kg/day	3	kg/day mg/l	Č	m3/sec	m3/sec kg/dav	3	kg/day mg/1	: }	m3/sec m3/sec	m3/sec	V8/ C89	kg/day ng/1
Case 1	(1990)	Total Discharge River Discharge	Sewer Discharge Revsised Discharge	Revsied River Discharge Revsied Sewer Discharge	Revsised BOD Load(Me) BOD Span Loading(Meuser)	800 Generation Loading 800 Generation Loading	BOD Run-off Ratio	BOD Loading BOD Conc.	(2002)	Niver Discharge	Sewer Discharge 80D Generation Loading	800 Run-off Ratio	800 Loading BOD Conc.	(2010)	Total Discharge River Discharge	Sewer Discharge	BOD Run-off Ratio	BOD Loading BOD Conc.

St. 3	1. 125 0. 974 0. 151 1. 125	1, 108.1 108.1 2580 2, 580 0, 429 1, 105.9 11.4	1, 125 0, 970 0, 155 13, 755, 0 0, 165 13, 755, 0 962, 9	1, 125 0, 970 0, 155 15, 895, 0 1, 112, 7 13, 3
St.2	0, 463 0, 432 0, 031 2, 010	989. 9 -118. 2 23350 25. 930 -0.005 226. 2	2. 010 1. 869 0. 141 4, 778. 0 0. 070 1, 297. 4 8. 0	2.010 1.869 0.141 5.090.0 1.469.0
St 1	0.567 0.513 0.054 2.176	1, 748. 5 758. 6 5472 31, 402 0, 139 453. 4	2, 176 1, 971 0, 205 0, 205 0, 007 2, 983.1 17.5	28, 693. 0 0, 205 28, 693. 0 0, 070 3, 477. 5
wit	m3/sec m3/sec m3/sec m3/sec	m3/sec kg/day kg/day kg/day kg/day kg/day mg/l	m3/sec m3/sec m3/sec kg/day kg/day mg/l	m3/sec m3/sec m3/sec kg/day - kg/day mg/1
(1980)	Total Discharge River Discharge Sewer Discharge Revsised Discharge Revsised Discharge	Revsied Sewer Discharge Revsised SS Load S S Span Loading S S Generation Loading S S Generation Loading S S Hur-off Ratio S S Loading S S Conc.	(2002) Total Discharge River Discharge Sewer Discharge S S Generation Loading S S Run-off Ratio S S Loading S S Conc.	(2010) Total Discharge River Discharge Sewer Discharge S S Generation Loading S S Run-off Ratio S S Loading S S Conc.
St 3	0, 974 0, 151 1, 125 0, 970	0. 155 1. 846. 8 1846. 8 2. 947 0. 627 1, 844. 6	1,125 0,970 0,155 0,155 1,020 1,05,7 1,3	1. 125 0. 970 0. 155 6. 910. 0 138. 2 1. 6
St. 2	0. 463 0. 432 2. 010 1. 869	0. 141 1, 945. 0 98. 2 21218 24, 165 0. 005 450. 0	2.010 1.869 1.869 0.141 0.020 894.0	2, 010 1, 869 0, 141 46, 834, 0 1, 074, 9
St. 1	0.567 0.513 0.054 2.176	0, 205 2, 632, 1 687, 1 5065 29, 230 0, 136 683, 4	2.176 1.971 0.205 9.512.0 0.020 1.084.2	2, 176 1, 971 0, 205 11, 233, 0 0, 026 1, 299, 6
mit	H3/sec H3/sec H3/sec	m3/sec kg/day kg/day kg/day kg/day kg/day mg/l	m3/sec m3/sec m3/sec kg/day kg/day mg/lay	m3/sec m3/sec m3/sec kg/day _ kg/day
Case 2	(1390) Iver Discharge River Discharge Revsised Discharge Revsised Discharge	Revsied Sever Discharge Revsied BOD Load BOD Span Loading BOD Generation Loading BOD Generation Loading BOD Loading BOD Loading	(2002) Total Discharge River Discharge Sewer Discharge BOD Generation Loading BOD Loading BOD Loading BOD Loading	(2010) Total Discharge River Discharge Sewer Discharge BOD Generation Loading BOD Run-off Ratio BOD Loading BOD Conc.