(Table 3.3.4-1: Ui-13 and Ui-14). This water originated formerly from small rivers inflowing into Ui Chong. However, both rivers are now covered and water is flowing into the intercepting pipe.

3.3.5 Water Quality and Flow-out Load at Freshet Time

The survey was started at 14:00 on August 31 and continued for 9 hours.

The precipitation on August 30 and 31 around Ui Chong were 8.0 and 63.0 mm, respectively.

Water levels showed a slight decrease along the sampling time at both of the stations (Tables 3.3.5-1 and 2, Fig. 3.3.5-1).

The mean of DO at U-St. 1 was quite lower at 4.5 mg/l than usual values. BOD and SS showed small two peaks at U-St. 1.

The values of pH, DO, COD and NH₄-N at U-St. 2, were higher than those measured at U-St. 1, and showed a decreasing tendency with the sampling time.

SS at U-St. 2 showed one peak of 85.5 mg/l, then decreased to 4.0 mg/l.

The highest values of COD, NH_4 -N and coli-forms at U-St. 1 and U-St. 2 at freshet time were 1.6-4 times higher than those obtained on the clear day of August 25, 1990. BOD on freshet time was slightly higher by about 6-10 times. SS, on the other hand, was higher at this freshet time, 31 times at U-St. 1 and 34 times at U-St. 2, than those measured on a clear day, August 25.

The flow-out loads of selected items brought about during the freshet were calculated under several assumptions.

Π-106

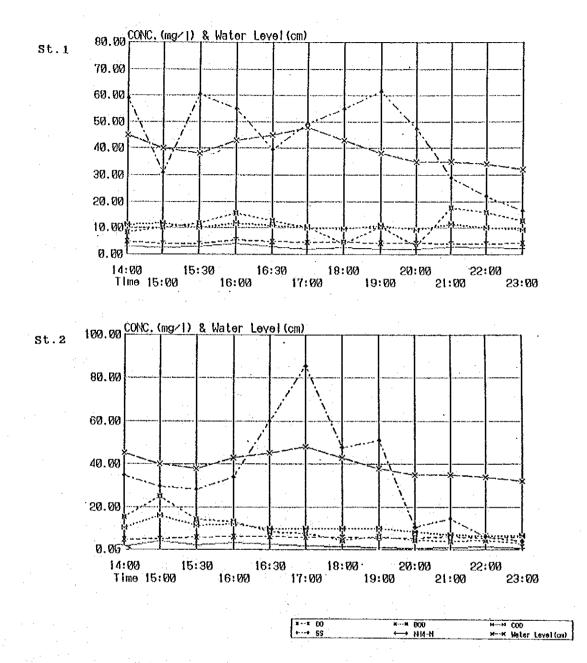


Fig. 3.3.5-1 Water Quality at Freshet Time of UI Chong, August 31, 1990

		0.544 0.000	0. 232 0. 000	0.104	0.141	0.157 0.000	0.120 0.000	0.213	0.175	0, 129 0, 000	0. 155 0. 000	0.165	0.000	7TO -N	3. 176 1. 183
NH4-N (t/h)	0.042	0.300	0.248	0.251	0.395	0.313	0. 253	0. 258	0.178	0. 156	0.228	0.186	0.158	0.0423	
	• .	15. 764	4. 558	0.000	2. 678	2. 433	0.000	0.000	6. 900 6. 000	4. 456	0.000	500 10	1.355	1-1-1	59, 360 1. 578
SS (t/h)	0.056	6. 362	2.866	5. 241	5.585	4. 259	5. 323	5, 585	5. 328	3.717	2.269	1. 562	1. 160	0.056	
		2.777	1. 037	0, 430 0, 000	0. 600	0.000	0.534	0.000	0.000	0. 000 0. 000	0.000	0.000	U. 58/ 7 607		13. 974 3. 313
(t/p) (t/p)	0.118	1.229	1. 082	0.875	1. 188	1. 186	1. 188	0. 965	0. 953	0.720	0.900	0. 763	0. 647	0.118	
·		0.408	0.840	0. 450	U. 610	U. 596	u. 609	0. 747	U. 584	1. 5U5	0. 743	1. 214	U. 365	CEO *P	14. 019 2. 209
80) (t/h)	0.0789	0. 895	0.943	1.014	1. 584	1. 359	1. 235	0.416	0.910	0.258	1. 385	1.201	0.885	0.079	n freshet /28h)
Q Interval (m3/s) (h)	1	י בעו	I 		ດ ເ ລີ່ເ	ດ ເ ສີ ເ		-		 - :			- <u>-</u>		Total (t/28h) on freshet On clear day(t/28h)
0 (s/£a)	7.825	29.953	25, 680	24.063	28. 205	29. 953	32. 675	28, 205	24.053	21.736	21. 736	20, 986	19. 527		Total On cl
₩ater level (m)		16.855	16, 805	16. 785	16.835	16.855	16. 885	16.835	16.785	16. 755	16. 755	16.745	16. 725	. •	
Gauge (cm)		45	40	38	43	45	48	43	38	35	35	34	32		
oli-form (PN/100ml)		180	270	100	120	80	110	210	110	100	100	210	170		
0 (1/8ª)		2.78	2.68	2. 90	3.93	2.90	2.15	2.54	2.05	2.12	2. 91	2.46	2. 25		
SS SS		59. 0	31.0	60. 5	55. 0	39.5	49, 5	55. 0	61.5			22.0	16.5		
COD SS (mg/1) (mg/1)		11.4		10.1		11.0		9.5			11.5		9. 2		
BOD (mg/l)	•	8.3	10.2	11 7	15.6	12.6	10.5	4.1	10.5	3.3	17.7	15. 9	12.6		e Second
00 (1/3m)					÷							4.1			•
ka a		1.1	23.4				23.4				1.1	22. 1			
Item	autr	14:00	15:00	15:30	15:00	16:30	17:00	18:00	19:00	20:00	21:00	22:00	23-00		÷

Water Quality of Ul Chong at Freshet Time, U-St 1, August 31, 1990 Precipitation: 8 mm(30th) and 63 mm (31st)

Table 3.3.5-1

,

,

,

NH4-N (t/J)	0. 003	0.013	8.041	0.024	0.051	0.037	0.023	0.018	0.012	0.011	0.012	0.016	0. 011	
	- 10 C	0 315					0,000	0.00	0.00 200 200	0.00	0.000	0000	1 00 0	4.549 0.188
SS (t/h)	0. 0067	0.347	0.297	0. 329	0.563	0, 872	T 191	0. 601	0. 599	0.143	0.170	0. 071	0. 051	
	666 0	0.110	0.00	886 900		000				0.00	000	.003 .003	500 °D	1. 173 0. 330
(t/h)	0.01178	0.101	0.161	0.132	0.199	0.142	0.130	0. 125	0.114	0.114	0.082	0. 075	0, 091	
	130 0	Tn: -n	0.000	000.00	0.000			0.000	0.000	0.000	0.000		0*n	1. 197 0. 188
B0D (t/h)	0, 0057	0, 151	0.252	0.165	0.214	0, 121	0. 102	0.057	0.073	0.061	0.045	0.053	0.037	freshet 28h)
	· u	י ר <u>-</u>	;u ⊂	ດີ ພ ລີ ເ	ດ່ມ ວິບ	о ц 5 с		 ·	• •	- ۱			14	Total (t/28h) on freshet On clear day(t/28h)
Q (m3/s)	0. 744	2.796	2.796	3, 265	4, 598	4. 037	3. 771	3. 513	3. 265	3. 771	3. 265	3. 265	3. 513	Total (f Dn clea
¥ater level (π)	27.528	27.548	27.648	27.558	27.718	27.698	27. 688	27. 578	27.658	27. 688	27.668	27.568	27.678	
Gauge (cm)		g	9	8	13	11	10	6	α)	10	ಳು	0	<u>6</u>	
Coli-form (MPN/100ml)		280	320	250	160	110	180	240	100	160	210	180	160	
NH4-N C (mg/1) (T- 34	4.05	2.00	3.07	2. 53	· 1. 71	1.40	0.98	0.84	1.06	1. 35	0.84	
		34.5	29.5	28.0	34.0	60. 0	85. 5	47.5	51.0	10.5	14.5	6. U	4 0	
COD (mg/1)	1.1	10.0	16.0	11.2	12.0	9.8	g. 6	6 6	9.7	3.4	0.12	6.4	6.4	•
新 DO BOD COD SS (*C) (風S/1)(加S/1) (加S/1) (加S/1)			25.0	14.0	12.9	ີຕໍ່ ຜ່	7.5	4.5	6.2	4, 5,	3.8	ດ ຊີ	2.9	
(I/20)		4.8	4.9	ນ. ຄ	6.1	5. 9	ജ ഹ	5. G	5.5	5	6.0	5.5	5.0	÷.
E C		23.9	23. 7	23. 5	23.4	23. 0	22.9	22.8	22.6	22.4	22.3	22.1	22.0	
ltem WT (°C) (n	i i	14:00	15:00	15:30	16:00	16:30	17:00	18:00	19:00	20:00	21:00	22:00	23:00	
	ан 1944 - А	: 1	. •							. '	• • .			

,

II -109

Assumptions:

- * The water qualities obtained from the 24-hour survey on August 25 were considered the water qualities taken on the clear day in the same month because the levels of the water qualities and the water levels seemed to be representatives of the clear days around this freshet time.
- * The starting and finishing times, which gave the flow-out loads of the freshet, were assumed comparing the curves between hourly precipitation and the flow-out load of BOD during the freshet. The duration estimated under assumption mentioned above was 28 hours.

Using these assumptions, the total flow-out load of selected items during the freshet time were below:

Table 3.3.5-3 Flow-out Load during the Freshet Time, August 31-September 1, 1990

BOD(ton)	COD(Mn)(ton)	SS(ton)	NH ₄ -N(ton)
14.0	14.0	59.4	3.2
2.2	3.3	1.6	1.2
1.2	1.2	4.5	0.2
0.2	0.3	0.2	0.08
	14.0 2.2 1.2	$\begin{array}{cccc} 14.0 & 14.0 \\ 2.2 & 3.3 \\ 1.2 & 1.2 \end{array}$	2.23.31.61.21.24.5

The flow-out loads of SS at both stations were much higher than those on a clear day compared to the other items. And it is presumed that much of SS flowed out were inorganic based on the data obtained in May and June, 1991 (Table A=3.3-1). It was supposed that SS at freshet time were brought about by erosion of the river bed and accumulation of it at the lower stations.

3.3.6 Self-purification Capacity

Survey for the self-purification capacity of this river was once conducted on the two sections on September 19, 1990, between U-St. 1 and U-St. 2. The flow-down durations were 25 and 30 minutes,

respectively.

Very high self-purification coefficients based on TKN (8.15-12.48 1/day) and BOD (5.27 1/day) were recorded. But, on section 2, the self-purification regarding TKN was not observed. This may have been caused by some unknown reasons.

These extraordinary high values of self-purification coefficients are thought to be due to high DO and small velocity. However, this time lack of appropriate places to be surveyed and a too short period to completed the survey may have brought about these high coefficients.

There was not enough time this time to repeat the surveys either during the stay in Korea. The repetition of the survey will hopefully give more accurate values.

3.3.7 Correlation between Water Qualities

Fairly high positive correlation coefficients were seen between BOD and SS, and $NH_{4-}-N$ (r=0.769 and 0.752, respectively) at U-St. 1. The coefficients on other items were positive, but small (Table 3.3.7-1).

The correlation between BOD and COD(Mn) at U-St. 1 (R=0.645) was not quite high. They seemed to behave differently.


DO and other items showed negative values at U-St.1. In particular the values between BOD and SS were -0.409 and -0.472, which may be attributed to self-purification.

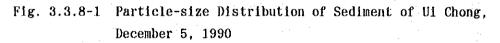

All coefficients at U-St. 2 were found lower than at U-St. 1.

Table 3.3.7-1	Correlation between Water Qualities obtained
	from Regular Monthly Survey, Ui Chong

U-St. 1					
	DO	COD	BOD	SS	NH4-N
DO	1				
COD	-0.242	1			
BOD	-0.409	0,645	1		
SS	-0.472	0.463	0.769	1	
NH4-N	-0.062	0,533	0.752	0.521	1

U-St. 2					
	DO	COD	BOD	SS	NH4-N
DO	1				
COD	-0.301	1			
BOD	-0.248	0.451	1		
SS	-0.162	0,486	0.434	1	
NH4-N	-0.029	0.196	0.307	-0.028	1

3.3.8 Sediment Quality

(1) Particle-size distribution

Particle-size distributions at both stations were different. Sand fraction (greater than 0.074 mm) accounted for 87 % by weight of the total at U-St. 1, and on the other hand, at U-St. 2 silt and clay (smaller than 0,074 mm) accounted for 44 % of the total (Fig. 3.3.8-1, Table 3.3.8-1).

Drying Loss at U-St. 1 was 36 % and 59% at U-St. 2 , which reflect the qualities of the riverbed mentioned above.

(2) Chemical content

Particularly high Ignition Loss values at both stations showed the bottom of this river was organically polluted (38 % at u-St.1, 62 % at U-St. 2). It is said that the rivers of which Ignition Loss of sediment are higher than 5.03 % is defined organically strongly polluted, and usually heavy metal concentrations are also high in the sediment (Table 3.3.8-2).

Heavy metals, CN, As, PCB and Organic-P concentrations, however, in this river sediment were found in low values. It is thought that this river has not been polluted by industrial waste water, only few of which exist along Ui Chong, but by domestic waste water.

(3) Macro-benthos

Ui Chong showed the lower degree of pollution than other rivers by biological indicator, i.e. species and individual numbers this river were greater than those at other rivers (Table 3.3.8-3).

In particular, 5 species of benthos appeared at U-St. 2, which was the greatest number of all rivers. <u>Chironomus yoshimatsu</u> were found 43 individuals/m² at U-St. 1 and 23 individuals/m² at U-St. 2, of which numbers were not obtained in other rivers, either.

Particle-size Distribution of Sediment of Ui Ghong (Accumulated Percent in Weight)

	Classification												
	Gravel		Sand	Silt	Clay								
Size (ms) Station	Fine 18. 38-4. 76	Coarse 4. 76-2. 00	Medium 2.00-0.42	Fine 0. 42-0. 074	0. 074-0. 005	0. 005>							
U-St. 1 U-St. 2	100. 0	89.5 100.0	78. 0 99. 0	21. 5 66. 0	2.0 43.5	0. 0 6. 5							

Table 3.3.8-2 River Sediment Quality of Ui Chong, December 5, 1990

	Weather on the day: Clear Weather on the previous day: Clear AT: 9°C (10:00)		n an		
Item Station	CN As THg Cr(6+) Cd (ng/kg) (ng/kg) (ng/kg) (ng/kg) (ng/kg)	Pb Sulfide PCB (mg/kg) (mg/kg) (mg/kg)	Org-P Malathion PAP DL (mg/kg) (mg/kg) (%)	lL Color (%)	0dor

U-St. 1	0. 409	0. 133	0. 063	ND	0. 100	1. 133	5.68	ND	ND	ND	36. 4	38. 0	Dark brown	Non
U-St. 2	0. 250	0. 233	0. 054	NĐ	0. 183	1. 960	6.45	ND	ND	ND	59. 0	62. 5	do.	do

Table 3.3.8-3 Macro-benthos in Sediment of Ui Chong (December 5, 1990)

Station U Species	I-St. 1 U-St. 2
Class Oligochaeta Order Haplotaxida Family Tubificidae Limnodrilus <u>socialis</u>	
Class Hurudinea Order Pharyngobdellidae Family Erpobdellidae <u>Erpobdella</u> sp.	2 1
Class Gastropoda Order Lymnophila Family Phydidae <u>Physella acuta</u>	ан сайтаа 3
Class Insecta Order Diptera Family Chironomidae Chironomus yoshimatsui <u>Chironomus</u> sp.	43 23 1 2 8 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
Total species number/m2 Total individual number/m2	2 5 45 40
Diversity Index Biological Pollution Class	0.26 1.71 ps alpha-m

ps: polysaprobic alpha-m: alpha-mesosaprobic U-St. 2 belongs to mesosaprobic water area and U-St. 1 to polysaprobic water area by classification of biological pollution class. However, degree of classification of these stations was reached in by the river bed material, where it is hard for benthos to habit.

3.4 Chungroung Chong

3.4.1 Hourly Change of Water Quality

A systematic hourly change on the water quality distribution of this river was not found. DBOD, DCOD and SS concentrations, however, tended to have higher values from 10:00 to 14:00 on the first sampling day, when the other items also showed great variances. The mean values, therefore, obtained from the 24-hour survey are supposed to be more accurate than the results taken from the once-aday sampling.

The mean values of the same items as in the regular monthly surveys were included in the results from the regular monthly surveys to be discussed.

Data obtained from 24-hour surveys were sited in Tables A-4.1-1-18.

3.4.2 Monthly Variation of Water Quality

(1) Water quality variation obtained from the regular monthly survey

pH were in the small ranges from 6.6 to 8.2, usually showing neutral or weak alkaline (Tables 3.4.2-1-3).

D0 concentrations were higher in July, August and September, and lower in December and January. In particular, it showed higher than 8 mg/l at all stations in February, 1991. The values at C-St. 3, which was located on the mouth of the sewer being covered, were constantly lower (3.2-8.4 mg/l) than the other two stations (C-St. 1: 3.7-9.4 mg/l, C-St. 2: 5.2-8.7 mg/l). It is supposed that the inflow from the upstream brought about these lower D0 concentrations at C-St. 3. (Table 3.4.2-1-3, Fig. 3.4.2-1).

П -116

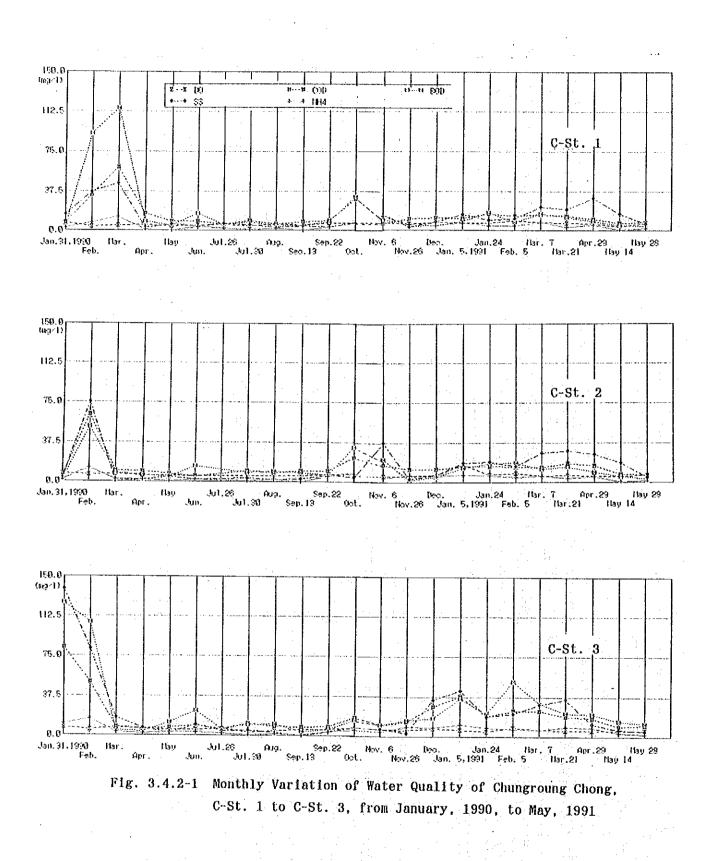
Table 3.4.2-1

Water Quality of Chungroung Chong. C-St. 1

Date	Itea	WT (°C)	pĦ	EC (mS/ca)	DO (mg/l)	COD (Mn) (eg/1)	BOD (≣g/1)	SS (ng/1)	NH4-N (mg/1)	NO2-N (mg/1)	Coli-form (MPN/100ml)	CN (mg/l)	lig (ag/1)	Gauge (cm)
Jan. 31	, 1990	3.8	7.7	-	7.5	7.2	3. 9	Ĭ5. Ó	2.45	0.012	((aa ₀) 13	(#6/ I/	-3
Feb. 22	, 1990	6, 1	7.2	-	3.7	33. 4	92.0	37.0	7.45	0.063	-	-	· _	-2
Mar. 20		11.0	7.1	-	5, 1	60.2	116.0	45.0	12.84	0.026	~	~	_	อ้
Apr. 20	, 1990	19.2	7.9	-	5. 2	16.0	8.4	2.8	1.07	0.143	-	_		ĭ
- Hay 28	, 1990	23.8	7.8	-	4. 2	8, 8	5. 0	6.0	0. 22	0.368	_	-	-	i
Jun. 22		19. 2	7.4	0.5	4. 9	8, 5	16.0	4.4	3, 92	-	12	-	-	24
	, 1990	23.0	6.9	-	5, 5	6.1	5.4	6.7	2.16	0.063		-	-	15
	. 1990	28.4	7.1	• ·	4.6	9.4	7.9	5.5	0.66	0. 088	24	0.000	0, 000	ž
	, 1990	28.0	7.5	-	5.7	6. 0	3.6	2.5	2.03	0.091	200	0.000	0.000	ĩ
Sep. 13		21.3	6.6	-	4.7	7.9	4.9	4.5	0. 09	0,009		~	-	25
Sep. 22		24. 1	7,4	-	6.8	9.2	8.0	3.4	3.30	0.159	180	-	<u> </u>	24
Oct. 22		23. 2	7. 2	-	7.2	29, 6	31. 9	7.0	7.07	0.684	450	-	-	12
	1990	12. 9	7.2	-	5. 9	10.4	14.8	12.9	4.61	0.204	-	-	-	ĨŽ
Nov. 26,		12.1	7.1	-	6. 2	10.7	3. 8	3.0	5.28	0.172	1400	0.000	0.000	7
Dec. 24		5.2	7.6	-	7.8	11.7	4.4	8.0	4, 35	0.167	1100	-	~	Ś
Jan. 5,		6.4	7.3	-	7.2	11.4	8.6	15.3	6. 88	0.149	1200	0.000	0.000	14
Jan. 24		2.9	7.5		7.1	15.7	16.7	9.7	4.18	0.177	-	-	-	3
feb. 5		1.7	7.4	-	9.4	13.5	7.8	11.5	4.08	0.000	1500	0.028	0.000	10
Mar. 7		6.2	7.3	-	1.1	15, 2 .	15. 9	22. 3	7.78	0.049	-	-	-	7
Mar. 21,		6.2	7.6	-	7. 2	13.7	12.2	20.0	3.26	0.054	1200	0.000	0.000	7
Apr. 29		13.0	7.4	-	6. 7	11.0	8.4	31.0	5.36	0.026	2000	0.000	0.000	6
Kay 14,		24.1	7.7	-	3. 9	6.8	4.8	15.8	0.26	0.596		-	-	0Š
May 28,	1991	16.4	7.4	-	6.8	7.8	4. 2	8.7	2.42	0.075	2800	0.000	0,000	0>

Table 3.4.2-2

Water Qality of Chungroung Chong, C-St. 2


		ltem	WT	pH	EC	DO	COD (Kn)	BOD	SS	NH4-N	N02-N	Coli-form	CN	Hg	Gauge
Dat			(°C)		(mS/cm)	(mg/l)	(ng/)	(ng/l)	(mg/l)	(ng/l)	(@g/l)	(MPN/100ml)		(mg/1)	(ca)
		1990	3. 6	7.1	-	7.4	5.1	1.4	3.1	1 41	0.006	-	~	: -	-7
Feb.	22,	1990	8.3	7.5	-	6.5	63. 2	52.0	75.0	12.84	0.145	-	· •	-	-2
Mar.	20,	1990	15.0	6.7	<u> </u>	7.1	10.1	8.2	0.5	2.30	0.095		-	-	-5
Apr.	20,	1990	20. 1	6.8	-	5.8	10.0	6. 6	1.7	2.00	0.078		-	-	-ž
May	28,	1990	24. 1	7.4		5.7	7.8	4.2	5.0	0.45	0.300	-	-		กั
Jun.	22,	1990	18, 6	7.3	0.8	5.3	5.0	14.8	. 2.4	2, 31	-	. 17	-	-	16
Jul.	26,	1990	22.1	6.9	-	6.6	6.0	5.4	3.8	2, 61	0.069		-	_	17
Jul.	30,	1990	27.4	7.1		5.2	10.4	8,4	3.0	0.74	0.084	22	0, 000	0.000	4
Aug.	25,	1990	26.6	7. 2	-	5, 5	8.8	9.9	2.0		0.093	310	0.000	0.000	ŝ
Sep.	13,	1990	20. 3	7.2	-	5.7	10.3	8.4	2.8	0. 21	0.079	~	-	0.000	17
Sep.	22	1990	23.7	7.2	- -	7.2	10.2	6.7	6.6	5.44	0.128	220	-	_	28
Oct.	22,	1990	21.9	1.4	-	7.5	22. 6	32.7	4.5	7.65	0.428	890	~	_	10
Nov.	6.	1990	13.4	7.1	-	6. 0	16.0	21.5	37.5	4. 37	0.048		_	 	14
Nov.	26.	1990	11.0	7.0		5.7	12.5	2.4	3. 0	6.39	0.191	1400	0.000	0.000	11
Dec.	24.	1990	4.1	7.5	-	7.2	12.4	5.3	7.0	6.09	0. 246	1000	0.000	0.000	10
Jan.		1991	5.9	7.4	-	7. 0	15.0	13.4	18.3	7.25	0.132	900	0.014	0.000	17
Jan.		1991	4.6	7.3	· •	6, 9	15, 1	17.8	19.5	6.44	0.294	100	0.014	0.000	17
Feb.		1991	5.3	7.5	-	8. 7	14.8	18.2	15.0	4.83	0.000	1200	0. 093	0. 000	11
Mar.		1991	6.9	7.5	-	6. 2	14.0	12.4	27.5	5.82	0.063	1200	0.035	0.000	22
Mar.		1991	5.3	7.4	-	6.7	17.7	14.5	30. Ŭ	4.03	0.039	1100	0. 000	0. 000	8
Apr.		1991	12.0	7.0	÷	5.8	15.6	9.8	26.5	5. 22	0.039	1700	0.000		-
Kay		1991	18.0		_	5.4	7.5	5.5	18.3	0.30	0.039	1700	0.000	0.000	10
May	28.	1991	19.4	1.2		7.0	6.7	3.5	4.7	1.63	0. 307	9100	0.000	0.000	Į.
ady	,	1001	10. 1	e. 2		1.0	0.7	J. J	4.7	1.03	0.200	2100	0.000	0.000	6

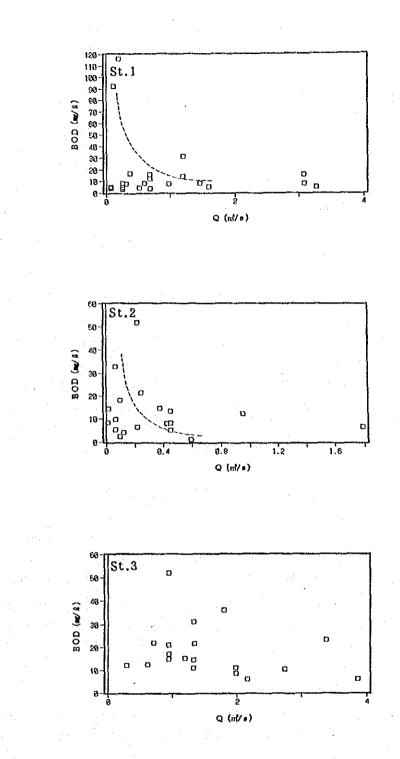
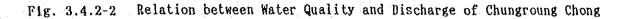

.

Table 3.4.2-3


Water Quality of Chungroung Chong. C-St. 3

Item WT Date (°C) Jan. 31, 1990 3.2 Feb. 22, 1990 6.8 Mar. 20, 1990 18.0 Apr. 20, 1990 20.0 May 28, 1990 22.5 Jun. 22, 1990 18.0 Jul. 26, 1990 23.7 Aug. 25, 1990 23.7 Sep. 13, 1990 20.2	pH EC DO (mS/cm) (mg/1) 8.2 - 7.5 7.6 - 5.2 8.1 - 7.8 6.8 - 5.9 7.2 - 5.3 7.7 - 5.6 7.2 - 6.3 7.2 - 6.3 7.0 - 3.2 7.4 - 4.2 7.1 - 5.7	(mg/1) (mg/1) (mg 82.7 125.0 13 50.1 106.5 8 7.9 4.9 1 6.4 3.7 7.5 12.4 10.0 23.3 1 6.2 6.0 11.2 10.5 8.6 11.0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Coli-form CN (MPN/100m1) (mg/1) 23 - 38 0.090 310 0.000	Hg Gauge (ng/l) (cm)
May 28, 1990 22.5	7.2 - 5.3	7.5 12.4	2.0 3.18 0.921	23 -	
Jul. 30, 1990 23.7	7.0 - 3.2	6.2 6.0 11.2 10.5	1.1 2.35 0.060 5.0 0.74 0.078	38 0.000	- 22 0. 000 25
Sep. 13, 1990 20.2 Sep. 22, 1990 19.2	7.1 - 5.7 7.1 - 6.0	8.0 8.7	2. 6 1. 39 0,000 3. 9 0. 11 0. 518 3. 6 3. 59 0. 054	310 V. VOU 190 -	- 21 - 21 - 30
Oct. 22, 1990 18.0 Nov. 6, 1990 13.2 Nov. 26, 1990 10.4	7.2 - 7.8 7.2 - 6.5 7.4 - 6.0	10.4 11.1	7.5 5.44 0.789 5.9 4.42 0.060 3.5 9.03 0.278	710 -	- 14 - 17
Dec. 24, 1990 3.9 Jan. 5, 1991 5.3	7.3 - 7.6 7.3 - 6.7	28.1 17.1 3 38.1 36.0 4	L 9 8.70 1.737 3.3 11.30 0.632	1800 0.000 1500 1100 0.004	0.000 16 - 14 0.000 20
Jan. 24, 1991 3.9 Feb. 5, 1991 4.4 Mar. 7, 1991 6.7	7.3 - 5.1 7.8 - 8.4 7.6 - 6.3	24.5 52.0 2).0 8.61 0.021 l.5 7.00 0.021).4 6.73 0.054	1100 0.054	- 17 0.000 14 - 17
Mar. 21, 1991 4.8 Apr. 29, 1991 10.0 May 14, 1991 17.3	7.4 - 6.0 7.3 - 6.2 7.4 - 6.2	17.2 21.0 1	5.0 9.35 0.063 2.0 8.41 0.064 5.7 3.56 1.183	1200 0.000 1900 0.000	0,000 12 0,000 14
May 28, 1991 21.2	7.2 - 5.9		5. 3 2. 90 0. 487	2800 0.000	- 17 0.000 7

COD(Mn), BOD, SS and NH_4 -N, obtained with good correlation (as mentioned in 3.4.7), showed very similar distribution patterns, i.e. considerably high values were found in January, February and March, 1990, in particular the extraordinarily high values were obtained in February, 1990, at all stations. Then these concentrations of four items decreased suddenly, and kept the same levels until November, 1990. It is possible to say that low concentrations were obtained in the hotter months with higher discharge, and contrarily higher concentrations were found in colder months with lower discharges (Fig. 3.4.2-2).

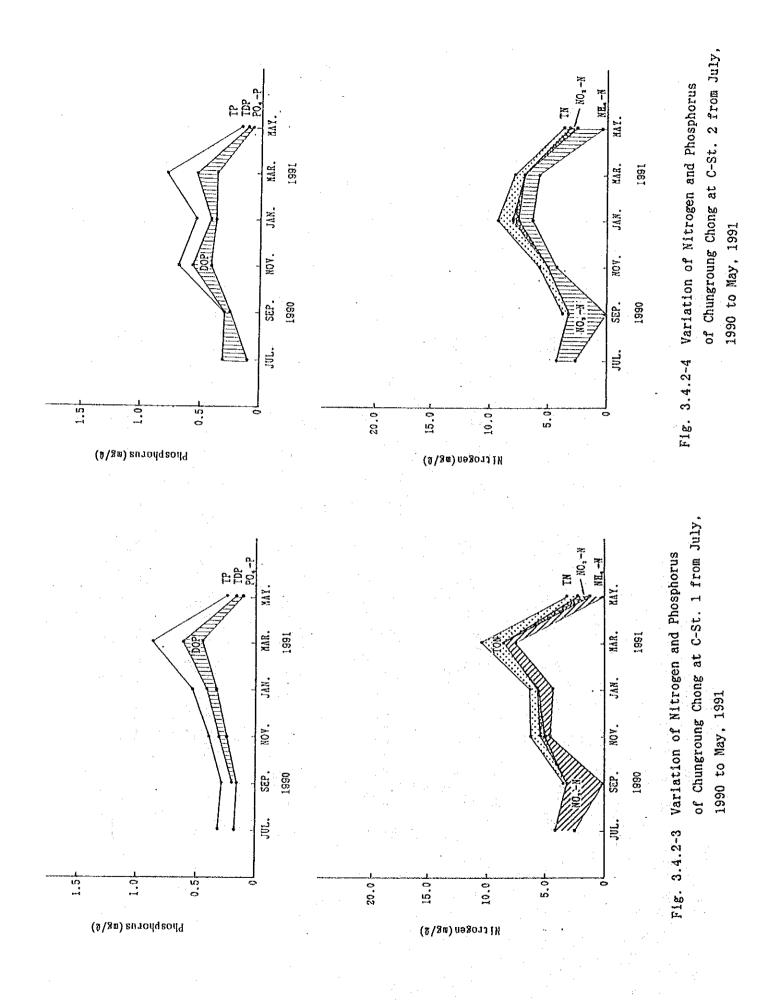
 NO_2 -N showed extremely great monthly variations at all stations (0.000-1.737 mg/l), however usually with quite low values.

Coli-form bacterial numbers started in quite low values at 12 (C-St. 1), 17 (C-St. 2) and 23 (C-St. 3) MPN/100ml, respectively. Those numbers, however, increased at all stations until 2800 MPN/100ml at C-St. 1 and C-St. 3, and 2100 MPN/100ml at C-St. 2, in May, 1991. This increase still seems to be continuing. It may indicate the increase of waste water or human waste, recently.

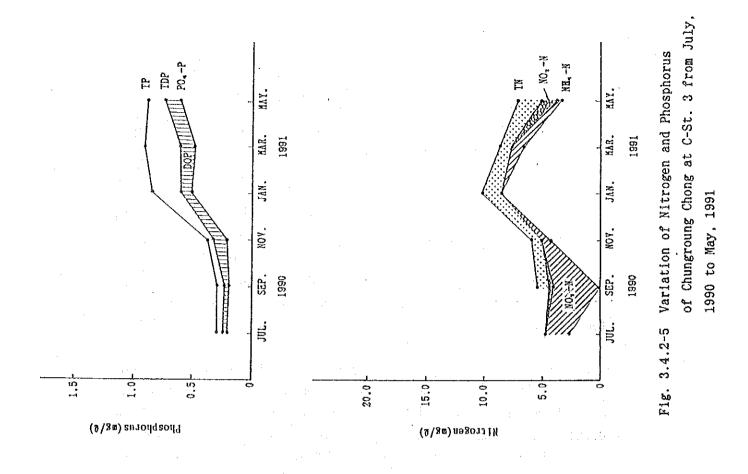
Tllg was not detected at all stations throughout the sampling period.

CN was detected only two times in January and February, 1991, although the concentrations were quite low (0.004-0.093 mg/l) (Table 3.4.2-1-3). In these months, the discharges were small. Had then concentrations been higher than those when the discharges were greater in hotter months, it might have been detected.

(2) Variations of other water qualities


TN concentrations showed constantly high values at all stations, although with great variances (3.15-10.06 mg/l). TN is supposed to be distributed in lower values from May to September and then the increase peaking in March, as shown in the sign curves (Figs. 3.4.2-3-5, Tables 3.4.2-4-6).

Gauge (cm) Gauge (cm) 15 Cauge 25 B) 25 B) Gauge (cm) 12 12 Gauge (cn) 3 Gauge (cm) 1 MBAS SS Settleable matter Ga (mg/l) (mg/l) (mg/l) (%) 2.80 22.3 10.2 45 0.79 10.0 5.5 8 国atter (%) 17 84 matter (%) 10 matter (%) 12 matter (%) 87 matter (%) 15 51 Settleable m (mg/1) 5 4.1 7 2.8 Settleable m (mg/1) 6.2 5.2 Settleable r $\begin{pmatrix} mg/l \\ 5.0 \\ 7 \\ 4.5 \\ 4.5 \\ 1.$ Settleable (mg/1) 8.2 11.4 7.3 Settleable (mg/1) 174.7 336.0 8.1 8.1 MBAS SS S (mg/1) (mg/1) 1.60 4.5 0.51 2.7 1.48 1.48 1.32 MBAS SS S (mg/1) (mg/1) 1.31 9.7 0.44 5.7 MBAS SS S (mg/1) (mg/1) 1.75 122 1 1.26 281 6 132 3 290 8 MBAS SS (mg/1) (mg/1) (1.31 9.5 1.31 9.5 1.45 12.0 1.42 6.7 7.2 0.27 7.2 0. MBAS SS S (mg/1) (mg/1) 1, 54 15, 8 6, 42 11, 6 ***4 C-St. Water Quality Obtained from 24-hour Survey on Chungroung Chong. Sulfide (mg/l) 2.9 0.5 Suifide (mg/1) 2.1 0.7 Sulfide (mg/l) 1.54 1.22 1.27 0.79 Sulfide (mg/l) 2.97 0.15 Sulfide (mg/l) 3.89 0.26 Sulfide (mg/l) 4.30 0.38 DC0D 30.0 37.3 DC0D (mg/1) 7.7 2.8 11.7 6.1 DCOD 12.0 2.5 DC0D (mg/1) 15.1 2.7 DCOD (alg/1) 6.0 1.2 DCOD (mg/1) COD 37.9 47.6 COD (mg/1) 15.2 2.4 COD (mg/1) 5. 8 1. 7 (mg/1) 6.1 0.9 COD (画g/1) 7.9 1.4 10.4 2.5 COD 15.7 6.0 DB0D (mg/l) 34.1 47.8 DB0D (mg/l) 4.9 1.7 DB0D 10.5 4.9 DB0D (mg/1) 14.8 4.9 10.7 4.8 DBOD (mg/l) 3.6 1.4 DBOD (mg/1) -600 (mg/1) (mg/1) 43.7 50.1 B0D (mg/1) 16.7 8.9 800 5.6 1.2 14.8 1.5 B0D (mg/1) 15.9 6.2 805 (mg/1) 1.3 BOD (mg/1) 5.4 0.7 P04-P (国民/1) 0.162 0.054 P04-P (mz/1) 0.231 0.060 P04-P (mg/1) 0.447 0.088 P04-P (mg/1) 0.117 0.048 P04-P (mg/1) 0.325 0.032 P04-P (mg/1) 0.184 0.171 0.171 TDP (mg/1) 0.138 0.059 TDP (mg/l) 0.310 0.059 TDP (mg/1) 0.170 0.064 TDP (mg/1) 0.417 0.084 TOP (mg/l) 0.605 0.182 dor (1/Su) TP (mg/1) 0.887 0.238 TP (mg/1) 0.274 0.080 TP (ig/1) 0.395 0.052 TP (mg/1) 0.224 0.083 TP (mg/1) 0.526 0.064 $_{0.322}^{\mathrm{TP}}$ NH4-N 0.10 0.03 0.03 0.03 0.03 NH4-N (mg/1) 0.58 0.34 0.34 NH4-N (mg/l) 4.18 0.61 NH4-N (mg/1) 0.26 0.06 NH4-N (mg/l) 4.61 1.24 NH4-N (mg/l) (7.78 1.52 N02-N (mg/l) 0.049 0.004 N02-N (mg/1) 0.204 0.162 N02-N (開8/1) 0.177 0.061 N02-N (mg/l) 0.009 0.013 NO2-N (mg/1) 0.596 0.332 N02-N (mg/1) 0.063 0.009 N03-N (ag/1) 0.74 0.61 0.60 N03-N 1. 85 0. 83 NO3-N 1.32 0.38 NO3-N 0.84 0.84 0.25 N03-N 18/1) 1.94 0.21 N03-N 3.06 0.13 1990 DO TN TON 7 (mg/1) (mg/1) (ng/1) (1 7,7 10.06 1.39 0.3 1.19 0.28 TN TON (mg/l) (mg/l) (6.24 0.69 0.97 0.33 January 24-25, 1991 TN TON (mg/1) (mg/1) (6.35 0.68 1 0.75 0.20 TON (mg/1) 0.46 TON 0.21 0.01 1990 September 13-14, November 6-7, 1990 1991 1991 26-27, TN (mg/1) (3.15 0.72 . NT (1) ((TN (mg/1) 3.39 0.14 1, March 7-8, 1, May 14-15, D0 (mg/1) 3.9 0.6 t July D0 4.7 0.5 D0 5. 9 0. 5 3.4.2-4 00 7.1 0.3 D0 (mg/1) 5.5 0.7 ÷ ÷ --i Table ÷ c-st. c-St. I tem Mean SD c-st. Item Mean SD Item Mean SD Item Mean SD c-st. Item Mean SD C−St. l tem Mean SD St.


Water Quality Obtained from 24-hour Survey on Chungroung Chong. C-St. 2

	Gauge (cm) 17 4		Gauge (cm) 17 3		Gauge (cm) 14		Gauge (cm) 0		Gauge (cm) 22		Gauge (cm) 3
-	matter (%) 12		matter (%) 13		matter (%) 50 15		matter (%) 58		matter (%) 7		matter (%) 56
	Settleable (mg/l) 4.3 4.4 3.3 2.9		Settleable (mg/l) 1.9 1.1		Settleable (mg/1) 36.4 23.6 23.6 22.9		Settleable (mg/l) 12.3 11.7		Settleable (mg/l) 12.2 7.3		Settleable (mg/l) 12.3 14.0
ہ ۲	SS (電Z/1) 2.885 2.9855 2.9855 2.9855 2.9855 2.9855 2.9855 2.9855 2.9855 2.985		(mg/1) 2.8 1.3		(mg/l) 53.3 37.5 50.8		SS (ag/1) 19.5 14.4) (mg/1) 27.5 13.0		SS mg/1) 18.3 18.4
n A	MBAS (mg/1) 2.28 0.68		MBAS (mg/1) 0. 69 0. 69		MBAS (mg/1) 1.74 1.17		MBAS (回g/1) 1.07 0.23		MBAS (#8/1) 2.96 0.65	÷.	MBAS (mg/1) 0:17
	Sulfide (mg/l) 3.1 0.5		Sulfide (mg/1) 2.90 0.50	÷	Sulfide (mg/l) 2.25 1.24		Sulfide (mg/l) 2.51 0.76		Sulfide (mg/l) 3.24 0.90		Sulfide (mg/l) 4.53 0.15
	DCOD (mg/1) -		DCOD (mg/1) 7.9 3.1		000 33.0 32.1 8.8 8.1 8.1 8.1 8.1 8.1		0000 12.5 2.3 2.3		DC0D 13.2 1.9		DCOD (mg/1) 3.0
}	COD (mg/1) (mg/1) 6. 0	. •	COD (#82/1) 10.3 1.5		COD 33.0 32.1 16.0		COD 15.1 4.7		COD (mg/1) 14.0 1.6		COD 7.5 1.9
	D800 (mg/1)		DBOD (ms/1) 2.9 2.9		DB0D 25.0 15.4 6.4		DB0D 10.8 5.6		0800 (mg/1) 10.3 4.9		DB0D 3.0 1.5
	800 5.4 0.8		B0D 8.4 2.9		B0D 37.3 27.4 21.5		800 17.8 10.4		800 12.4 5.9	-	800 5.5 1.9
	P04-P (mg/1) 0.204 0.071		P04-P (mg/1) 0.245 0.064		P04-P (mg/1) 0.418 0.408		P04-P (mg/l) 0.374 0.085		P04-P (mg/1) 0.370 0.072		P04-P (mg/1) 0.067 0.026
	10P - -		TDP (mg/1) 0.301 0.073		TDP (mg/1) 0.595 0.526		TDP (mg/1)) 0. 425 0. 077		TDP (mg/1) 0.526 0.112		TDP (mg/1) 0.101 0.041
	TP (mg/l) 0.300 0.069		TP (mg/1) 0.321 0.304 0.969		TP (mg/1) 0.689 0.588		TP (mg/1) 0.526 0.108		TP (mg/1) 0.798 0.110		TP (mg/1) 0.154 0.069
	NH4-N (mg/1) 2.61 0.90		NH4-N (mg/1) 0.21 0.12		NH4-N (ms/1) 4. 37 2. 12		NH4-N (mg/l) 6,44		NH4-N 5.82 1.25	. : ·	NH4-N MS/1) 0.30 0.11
	NO2-N (mg/1) 0.080 0.040 0.013 0.013		NO2-N (mg/1) 0.203 0.493 0.119		N02-N (mg/1) 0.048 0.040		NO2-N (mg/1) 0.294 0.165		NO2-N (mg/1) 0.063 0.025	· ·	NO2-N (mg/1) 0.567 0.420
	N03-N (mg/l) 1.89 0.21	80	N03-N (mg/1) 3.23 0.12		N03-N (a8/1) 0.84 1.09	11	N03-N (mg/1) 1.46 0.62		N03-N (ag/1) 1.20 0.26		N03-N (mg/1) 2.40 1.37
1990	TON (mg/l)	September 13-14, 1990	TON [132/1) 0.30 0.11	1990	TON 0.53 0.26	January 24-25, 1991	TON (mg/l) 1.11 0.24	1991	TON 0.87 0.35	1991	TON 0.48 0.13
26-27,	NL (T/Su)	ber 13-	TN 3.3.041) 3.3.041) 3.3.041) 3.3.041) 3.3.041) 3.3.0041) 3.3.0041) 3.3.0041)	November 6-7,	TN 5.79 1.44	ary 24-	TN 9. 31 1. 22	7-8,	TN 7.95 1.32	14-15,	TN (mg/1) (3.74 1.20
2, July	D0 (mg/l) 5.6 0.4	Septem	D0 (mg/1) 5.7 0.5	Novemb	D0 (mg/1) 5.0 0.6	2, Janu:	D0 (mg/1) 5.9 0.8	2, March	D0 1.0 1.0 1.0	2, May 1	D0 5.4 0.8
c-st.	I tem Mcan SD	St. 2,	I tem Mean SD	St. 2,	Item Mean SD	C-St. 2	Item Mean SD	C-St. 2	Item Mean SD	c-st. 2	Item Mean SD

		·										
		Gauge (Cm) 22 52		Gauge (cm) 21 2		Gauge (cm) 17 1		auge (cm) 2		auge (cm) 17		Gauge (cm) 17 1
		matter G (%) 14		matter G (%) 56 16		13 83 83 83		tte 108,851		13 13 13 13 13 13 13 13 13 13 13 13 13 1		23.3(%)
		able as 3.7 2.6		able at 2.3 1.3		(mg/1) (mg/1) 68.7 160.0 27.4 74.7	4 5 8 9	able ma /1) 1.6 9.3		able Ea	~ ~1	able ma /1) 0.9 0.9
		Settleable (mg/l) 3.7 2.6		Settleable (mg/1) (mg/1) 2.9 1.3		*	•	Settleable (mg/l) 11.6 9.3		Settleable (mg/l) 16.7 14.5 13.7	4	Settleable (mg/l) 2.3 0.9
	" م ند	SS (mg/1) 4.1 2.7		SS 3.9 1.2		SS (mg/1) 174.9 35.1 93.7	6.9 6.7	SS 18/1) 13.8 13.8		SS (ag/1) 30.4		SS (mg/1) 6.7 2.4
	kg, C-St.	MBAS (ag/1) 2. 00 0. 40		MBAS (mg/1) 2.05 0.41		MBAS (mg/1) 1. 60 0. 60		MBAS (mg/1) 2. 46 2. 46		MBAS (mg/1) 3.30 1.19		MBAS (開2/1) 0.15 0.15
	Water Quality Obtained from 24-hour Survey on Chungroung Chong.	Sulfide (mg/l) 3.2 0.6		Sulfide (mg/l) 3.2 0.5		Sulfide (mg/l) 2.90 1.00		Sulfide (mg/l) 2.97 0.81		Sulfide (mg/1) 4.35 0.26		Sulfide (国2/1) 4.33 0.15
	Chungr	bcob (mg/1)		DCOD 8.3 2.8 2.8	2.0	DCOD 21.4 21.4 5.1 5.1		DCOD (加容/1) 14.5 3.8		DCOD (mg/1) 19.7 11.3		DCOD (mg/1) 10.0 1.8
· .	rvey on	COD 6.2 1.3		COD 8. 0 2. 5		(mg/1) 35.6 0.3 0.3 0.3		C0D 19.0 4.3		COD 24.4 15.9		C0D 11.5 11.5
	hour Su	DB0D (mg/l) ((DB0D 6.4		000 119.3 119.3 119.3 19.0 4.4		DB0D 13.6 4.9		DBOD (mg/1) 25.5 16.9		DBOD (mg/1) (9.9 5.7
	rom 24-	BOD 6, 0 1. 1		BOD 8.7) (180 2.1		800 [(mg/1) (fr 41.8 53.1 1.1 1.1 1.1 1.0		BOD 21.7 5.0		BOD 31.3 19.3 19.3		B0D (mg/1) (14, 7 4, 6
	ained f	P04-P (mg/1) (0.241 0.289 0.058		P04-P (mg/1) (0.198 0.034		P04-P (mg/1) (0.208 0.059		P04-P (mg/1) (0.503 0.244		P04-P (mg/1) (0.495 0.231		P04-P (mg/l) (0.602 0.146
· :	ity Obt	TDP 0, 264 0, 255 0, 057 0, 057		10P 0. 230 0. 041		10P 0. 341 0. 066		TDP (ag/1) 0. 605 0. 254		10P 0.612 0.320		TDP (mg/1) (0.755 0.198
	er Qual	TP (mg/1) (0.311 0.107 0.288 0.074		TP (mg/1) (0.296 0.050		TP 0. 398 0. 398 0. 104 0. 067		TP (mg/1) (0.840 0.510		TP (mg/1) () 0. 483 -		TP (mg/1) ((0.871 0.174
and An an	Hat	NH4-N (mg/1) 0.82 0.52 0.52 152 152		NH4-N (mg/1) ((0.11 - 0.07 -		NH4~N (mg/1) (1 4.42 1.01	•	NH4-N (mg/1) ((8.61 2.79		NH4-N (mg/l) ((6.73 0.81		NH4-N (mg/1) ((3.56 1.2
2		NO2-N (mg/1) (4 0.053 0.013 0.008 0.008		NO2-N (mg/1) (6 0.518 0.391		NO2-N (mg/l) (9 0.050 0.041		NO2-N (mg/1) (6 0.021 0.011		NO2-N 1 (mg/1) (1 0.054 0.02		NO2-N (mg/1) 1.282 0.700
		N03-N (mg/1) (m 2. 39 0. 23 0. 23		N03-N M03-N 4.59 0.43		NO3-N (mg/1) (n 0.79 (0.54 (N03-N 2.06 0.28		NO3-N N (mg/1) (n 1.21 (0.62		N03-N (mg/1) 0.29 0.33 0.33
	80	NOL 2	4, 1990	1387) or	1990	TON 0.68 0.28 0.28	5, 1991	33 ¹ 1	991		166	N C TO
	-27, 19	TN 86/1) (m	er 13-1	TN TN TO 1) (mg/1) (mg (mg	r .6-7,	TN 5.94 0.86	ry 24-2	TN TN 10.41 1.00 1.00 1.00 1.00 1.00 1.00 1.0	7-8, 1	TN TON (mg/l) (mg/l) (mg/l) 8.83 0.84 1.03 0.29	4-15, 1	TN TN TO (mg/1) (mg/1) (mg/2) (mg/2) (mg/1)
	Table 3.4.2-6 St. 3, July 26-27, 19	D0 TN TON (mg/1) (mg/1) (mg/1) 6.3 0.7	September 13-1	D0 5.7 0.3	St. 3, November 5-7,	D0 6.5 0.5 0.5	3, January 24-2	D0 5.1 10 1.3 7	3, March 7-8,	D0 6.3 6.3 0.5	3, May 14-15,	D0 5.2 0.5
	Table 3.4.2-6 St. 3, July 21	Item Mean SD	St. 3.	Item (j Mean (j SD	t. 3	Item Mean SD	c-St. 3,	Item Mean SD	c-st. 3,	Item Mean SD	C-St. 3.	Item Mean SD
	E N	H ≥ 01		≕ ⊋ 0	. 0)	₩ ¥0	U		0	⊶ <u>s</u> eon	0	H 201
	2		•		•.							
		a tana a sa	. '									
	· .				÷ 1.							
	Х. 1 с. с.			· · ·								
		: · · ·			. •	II -12	3					
						~~ 1 <i>4</i>	4					

П -124

TN at C-St. 2 showed a clear sign curve with the peak in January (3.74-9.31 mg/l).

Due to the location, TN at C-St. 3 was constantly higher (5.59-10.41 mg/l) than the other two stations with a similar curve at C-St. 2.

TON concentration at all stations was found in low values (0.21-1.39 mg/l) and the percentage to TN was usually from 6-15 %, with exception of 29 % at C-St. 3 in May. It means that TIN showed a similar distribution pattern to TN. Of TIN, the main part was usually NH₄-N (66-83 %), being displaced occasionally by NO₃-N (Table 3.4.2-7).

TP showed a similar distribution pattern to TN, lower concentrations from July to September, gradually increasing until the maximum is reached in March at all stations. The values at C-St. 1 (0.224-0.887 mg/l) and C-St. 2 (0.154-0.798 mg/l), however, decreased in May, contrasted to this, C-St. 3 kept the same level (0.288-0.938 mg/l) as the one of TN found the month before (Figs. 3.4.2-3-5, Tables 3.4.2-4-6).

 PO_4 -P concentration showed the great monthly variation (0.067-0.602 mg/l), however, its percentage to TP was in the narrow range from 44-77 %).

The distributions of N and P may indicate that the degree of pollution from up stream became greater after January, 1991. In May, however, with increase of temperature, it is supposed that self-purification occurred between C-St. 3 and C-St. 2, and C-St. 1, consequently the concentration at C-St. 1 and C-St. 2 were found in lower values.

Percentages of DBOD to BOD (55-93 %) were usually lower than DCOD(Mn) to TCOD(Mn) (77-99 %), as found on other rivers (Table 3.4.2-9).

Table 3.4.2-7

Each Form of Nirtogen in Chungroung Chong (24-hour)

July September November January Ma (mg/1) Ratio (mg/1) (%) (mg/1) (%) (mg/1 (%) (mg/1	-ch (%)	1 11 1 101
		(mg/1) (%)
St. 1 TN - 3, 39 6, 24 6, 35 10, 0		3.15
TON - 0.21 6 0.69 11 0.68 11 1.3	3 14	0,46 15
NO3-N 1, 94 1 3, 06 90 0. 60 10 1, 32 21 0. 8	18	1.85 59
NH4-N 2.30 1.2 0.09 3 4.61 74 4.18 66 7.7		0.26 8
St. 2 TN - 3.80 5.79 9.31 7.9	5	3.74
TON - 0, 30 8 0. 53 9 1. 11 12 0. 8	7 11	0,48 13
NO3-N 1.89 1 3.23 85 0.84 15 1.46 16 1.2) 15	2.40 64
NH4-N 2. 61 1. 4 0. 21 6 4. 37 75 6. 44 69 5. 8	2 73	0.30 8
	n	7 90
St. 3 TN - 5,59 5.94 10.41 8.8		7. 32
TON - 0.36 6 0.68 11 1.14 11 0.8		2.14 29
NO3-N 2, 39 1 4, 99 89 0, 79 13 2, 05 20 1, 2	1 14	0.29 4
NH4-N 2.35 1 0.11 2 4.42 74 8.61 83 6.7		3.56 49

 Table 3. 4. 2-8
 TP and PO4-P of Chungroung Chong (24-hour)

 July
 Santashar

		July		Septembe	er	Novem	ber	Janu	ary	Marc	h	Ma	у
÷		(mg/l)	(%)	(mg/1)		(mg/l)	(%)	(sg/l)	(%)	(ag/l)	(%)	(ng/l)	(%)
St. 1	TP P04-P	0. 322 0. 184	5 7	0, 274 0, 162	59	0. 395 0. 231	58	0. 526 0. 417	79	0. 887 0. 447	50	0. 224 0. 117	52
St. 2		0. 300 0. 204	68	0. 321 0. 245	78	0. 689 0. 418	61	0. 526 0. 374	- 71	0. 798 0. 370	46	0. 154 0. 067	44
St. 3	TP PO4-P	0. 288 0. 221	77	0. 296 0. 198	67	0. 374 0. 208	56	0, 840 0, 503	60	0. 938 0. 495	53	0. 871 0. 602	69
Mean			67		67		58		70		50		55

Table 3.4.2-9

DBOD and DCOD(Mn) of Chungroung Chong (24-hour)

(8	July g/l) Ratio	September (mg/l) (%)	November (mg/1) (%)	January (mg/l (%)	March (mg/l) (%)	May (mg/l) (%)
St. 1 BOD DBOD COD DCOD	5.4 1 6.1 1.1	5.6 1 4.9 88 7.9 1 7.7 97	14.8 1 10.7 72 10.4 0.7 9.4 90	16.7 1 10.5 63 15.7 0.9 12.0 76	15.9 1 14.8 93 15.2 1 15.1 99	4.8 1 3.6 75 6.8 1.4 6.0 88
St. 2 BOD DBOD COD DCOD	5.4 1 6.0 1.2	8.4 1 7.0 83 10.3 1 7.9 77	21.5 1 15.4 72 16.0 0.7 13.6 85	17.8 1 10.8 61 15.1 0.8 12.5 83	12.4 1 10.3 83 14.0 1.1 13.2 94	5.5 1 3.0 55 7.5 1.4 6.9 92
St. 3 BOD DBOD COD DCOD	6.0 1 6.2 1	8.7 1 6.4 74 8.0 0.9 7.0 88	11. 1 1 9. 0 81 10. 4 0. 9 9. 9 95	21.6 1 13.6 63 19.0 0.9 14.5 76	31.3 1 25.5 81 24.4 0.8 19.7 81	14.7 1 9.9 67 11.5 0.8 10.0 87
Table 3.4.2-10	SS a	nd Settleable	Matter of Chung	roung Chong (24-	hour)	

March (ag/1) (%) July (mg/l) (%) September (mg/l) (%) November (mg/l) (%) January (æg/1) (%) May (mg/1) (%) St. 1 SS SM 12. 9 7. 9 22, 3 10, 2 6.7 5.6 4.5 4.1 9.7 5.0 15. 8 6. 2 45 84 87 61 47 45 SS S員 15.4 9.1 19.5 12.3 27.5 12.2 3, 8 3, 3 2.8 1.9 18.3 12.3 St. 2 42 42 81 68 59 58 SS SM 19.0 11.6 30.4 16.7 3.9 2.9 6, 9 4, 9 6.7 2.3 St. 3 4.1 83 66 63 60 48 48 83 74 61 55 45 45 Mean

II - 1 2 7

Sulfide was constantly low at all stations, although the relatively lower values were found at St. 1 (1.54-4.30 mg/l) than on the other two stations (2.25-4.53 mg/l at C-St.2; 2.9-4.53 mg/l at C-St. 3). These gradually decreased from July to the lowest in November, then increased until the highest in May (Tables 3.4.2-4-6).

MBAS were found in values from 1.07 to 3.30 mg/l, showing higher values at C-St. 3. Because of the location, C-St. 3 may have easily been affected by the waste water from upper stream.

Whatever the concentrations were, the percentage of settleable SS matter to SS were in fairly narrow ranges from 42 to 87 %, showing a slight decrease from July, 1990, to May, 1991. The great part of SS being composed by larger particles make the treatment system of the works easier (Table 3.4.2-10).

- 3.4.3 Change of Water Quality and Pollution Load from the Upper to the Lower Stations
 - (1) Change in the short period

The results obtained from the four surveys conducted from May to June, 1991 are discussed below.

The bottom materials in this river are mainly composed of coarse sand (see Fig. 3.4.8-1). There may exist underground streams between C-St. 3 and C-St. 2, and C-St. 2 and C-St. 1, therefore, occasionally there was no discharge found at C-St. 1 and C-St. 2. Contrasted to these stations, due to the location on the mouth of a covered small river to which waste water are inflowing, the discharge at C-St. 3 was constantly higher than other two stations (Tables 3.4.3-1-3).

Discharges at all stations showed great variances, $0.00-0.03 \text{ m}^3/\text{s}$ at C-St. 1, $0.010-0.082\text{m}^3/\text{s}$ at C-St. 2 and $0.143-0.230 \text{ m}^3/\text{s}$ at C-St. 3, even in a short period.

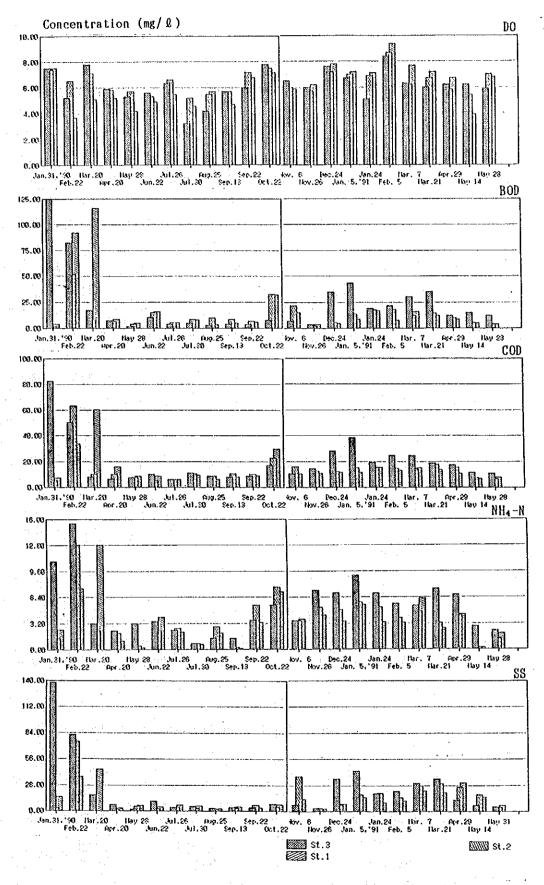
Table 1.4.3-1 Water Quality of Chungroung Chong. C-St. 1, May-June, 1991 Discharge was practically measured on the same time.	Item C0D (Mh) COD (Cr ¹) SS-2 SS-2 (IL) (IL)/ SS (IL)/ TR TR (IL)/ TR TR (IL)/ SM SM (IL)/SM/TR SM/SS SM (IL)/ NH4-N NO3-N FT D0 EC Discharge (ag/1)	(11)/ SS-2(1)/ SS-2(1	Table 3.4.3-3Water Quality of Changroung Chong, C-St. 3, May-June, 1991Item C00 (Mn) C00 (Cr) SS-1SS-2 (IL) (IL) / SS-2/ SS(IL) / SS-11 (mg/1) (m
	భదా క్	월 9년9년	₩ ŇĊĊĊĊĊĊ
÷	n an tha an t	II too	

ł,

'.

II – 1 2 9 🚟 –

The pollution load at C-St. 3 were estimated, and those values showed considerably higher values than other two stations, because of the high discharge and high water quality concentrations. Since the load at this station had a smaller range than the other two stations, it was thought that the water through the covered small sewer stream was not affected from outside, then the high and low variable pollution load at C-St. 3 was obtained.


The river water are filtrated before C-St. 2 and C-St. 1 by underground streaming. The concentrations of these stations, consequently, becomes lower and discharge also smaller, the load is inevitably calculated very low. SS, in particular, greatly decreased from C-St. 3 to C-St. 1 (Table 3.4.3-4).

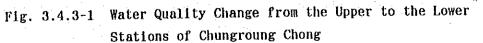

· · ·		COD (Ma) (kg/day)	80D (kg/day)	SS (kg/day)	TR (t/day)	NII4-N (kg/day)	NO3-N (kg/day)
May 28, '91	C-St. C-St. C-St.	2 47.7		13. 0 49. 6 347. 8		14. 40 25. 40 105. 10	9.3 17.7 27.8
June 5, '91		2 10.7	7.6 191.5		0. 71 4. 66	0. 50 116. 4	5. i 19. 8
June 10,'91		2 6.9		22.5 363.7	0. 53 5. 93	0. 95 170. 10	2.6 11.4
June 26,'91	C-St. C-St. C-St.	2 5	4.6	0. 9	0. 27 0. 17	2. 51 14. 80	2. 51

Table 3.4.3-4	Pollution Load of Chungroung	Chong in Short Period,	May 28-June 26, 1991
	Discharge: Actual measurement	t value	

(2) Changes during the study period

There were two types of change of DO concentrations from the upper to the lower stations : One type was during the colder month in 1990, when DO values at all stations were being high, DO at C-St. 3 was higher than the lower stations and decreased gradually along downstream. The other type was that DO at C-St. 3 in the hotter months in 1990, from July to September and the whole survey period in 1991, January to May, was at its lowest and gradually increased along the stream (Fig. 3.4.3-1).

Changes of the distribution patterns of COD(Mn), BOD , SS and NH_4 -N concentrations were similar to one another showing three particular periods. One was that those values were extraordinarily high at all stations, in particular at C-St. 3, in January and February, 1990. Two was that the concentrations at all three stations were found with small differences from March to November, 1990. Three was that after November the concentrations at C-St. 3 were considerably higher than the other stations and decreased along the downstream.

The tendencies after November were clearly observed in the distributions of all items. It is supposed that after November unknown reason might have occur on the waste water which flowed through the sewer stream and appeared at C-St. 3 (Fig. 3.4.3-1).

Pollution loads were calculated using HQ curve and water quality data obtained by the monthly survey (Table 3.4.3-5). There were great monthly variances found in all values of loads on each station. The variances at C-St. 2 was largest, and at C-St. 3 the smallest. As found in the results obtained in the short period survey, the variance at C-St. 3 being the smallest was thought to be brought about by the waste water through the sewer stream a not affected from the outside, therefore constant distribution was found at C-St. 3.

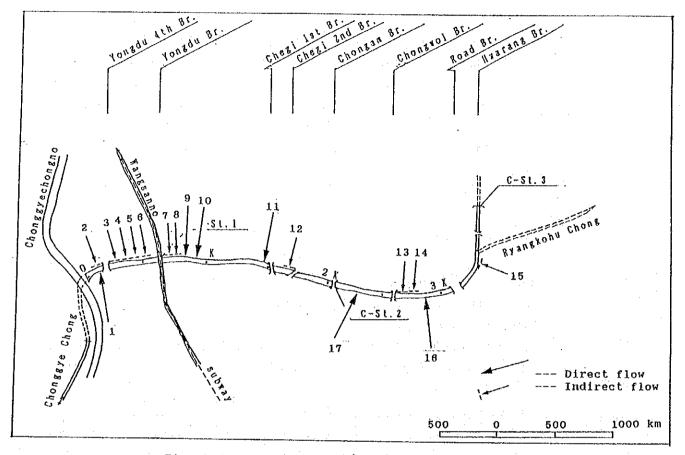
No systematic monthly tendency of load was found on the same station. The mean pollution load showed the same tendencies among the three stations as found in the short period survey; the load at C-St. 3 was the greatest it dropped at C-St. 2, while the lowest values were found at C-St. 1.

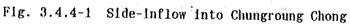
Table 3.4.3-5 Mean Pollution Load at Each Station

Item	St.	St. 1	St. 2	St. 3
BOD(to	n/day)	0.73	1.67	3.84
COD(to	n/day)	0.73	1.76	2.75
SS(ton,	/day)	0.52	1.18	2.01
NH ₄ -N(t	(day)	0.22	0.57	0.80

These mean values were higher than those obtained during the short period. The extremely high values and those known to have been affected by the rainfall were omitted from the estimation of the mean values. However, the values obtained in September and November were quite higher than other months, and these might be due to after-effects of the rainfall. These may be the ones that gave the high mean values.

3.4.4 Side-inflow into Chungroung Chong


There are 17 side-inflows into Chungroung Chong (Fig. 3.4.4-1). Five of them were directly inflowing to this river, although the discharges were small except in Nos. 11 and 17 (Table 3.4.4-1). Generally, COD(Cr) and TKN values of these inflows were higher than those found on the Chungroung Chong water (Fig. 3.4.4-1 : A1-A4).


The upper part of Chungroung Chong is underdrained. Ryangkohu Chong (No. 15), the branch, is also underdrained and its water is now full of sewage. However, the water of this river does not directly flow into Chungroung Chong on clear days.

The water of indirect side-inflows are carried to the intercepting sewer pipe. It is, therefore, thought that the effects of these side-inflows on the water quality of this river is small on clear days.

It is, however, obvious that the water of this river is significantly polluted. A trial to find out where the pollutant was coming from was attempted with use the dye in December, 1990. The dye was placed in the sewer on the upper part of C-St. 3 from which sewer water must be carried to intercepting sewers. However, the dye was unfortunately discovered in the water of the river at the lower part of C-St. 3. It means that sewage is flowing directly into the river, although the degree of the total volume is still unknown.

∏ –133

Table 3.4.4-1	Side	Inflow	into	Chungroung	Chong
---------------	------	--------	------	------------	-------

ltem Station	pll	#T (* C)	DO (#g/1)	EC (rrg/1)	Turbid. (mg/l)	COD (Cr) (ng/1)	TKN (mg/l)	(ng/1)	Discharge ') (m3/s) ·	Load COD(Cr) (t/day)
1	-	-	-	-		2	6.7	3. 1	Very small	
2	-	÷.	-	-	-	19	11.7	2.3	- .	
3	·	-	-	-	-	172	27.5	14.5	n 😜 👘 👘	
- 4	-	-		-	· 🗕	81	.12.5	4.0	-	
5	-			· - ·	ن <u>د</u>	6	0.4	17.7	_ ·	1.6
6	7.6	24.8	4.9	0.8	18	96	15.8	5. 2	-	
- 7	-	-	-	~	1 - L 1	-		4 7	6 - 16 - 17	1. The State
8		-	-	-	· 🕳	174	-	10. 9	(1.6 L)	
9	8. I	25. 6	6. 2	0. 9	. 9	35	·	3. 0	(12 L)	
10	7.4	23.6	5.9	0.7	Ō	. 4	- - -	17.3	2.2	0.00
- 11	7.5	24.7	4.6	0.5	40	172		14.7		
12	7.1	23.1	5.3	0.8	25	37	-	5.1		
13	7.9	23.1	5.5	0.9	30	47	_ `	3.3		
14	1.1	23. 6	3.9	0.9	22	54	_	5.2	- · · ·	
15	7.5	23.4	3.4	0.8	24	48	-	4.1		
16	8.4	25. 2	5.9	0, 7	· 93	124	-	10. 6	(48 L)	
17	7, 6	22.5	7.2	0.9	6	11	-	3. 9	9.9	9, 41
					•			01 0		
A1 -	7.7	28.0	5.3	0.8	. 3		· _	-	-	
٨2 -	7.7	28.2	5.6	0. Š	Å	4	~	2.9	~	1.1.1. A.
۸3	7.7	30. Î	5.4	0.9	ź	់ព	-	2.7	_	
A4	7.5	Ž1. Ô	6. 2	Ŏ. 9	2.	ii	· _ ·	5 . 0	-	
				3. 0	. •				(1) (1) (1) (1) (1)	

1, 9, 10, 11, 16, 17: Direct Side-inflow A1, A2, A3, A4: Water of Chungroung Chong II -134

3.4.5 Water Quality and Pollution Load at Freshet Time

The survey was conducted at C-St. 1 on July 1-2, 1991. The precipitation was 6 mm.

The water level suddenly increased showing two peaks and it slowly decreased. The water level returned to the ordinary level in 19 and a half hours after the second peak (Fig. 3.4.5-1).

Distribution pattern of concentrations of water qualities during this freshet time were similar to that of the water level pattern, and the time of the peaks of both almost corresponded one another; the first peak was obtained within 2 hours after the water level started to go up and the second peak was found 6-7 hours after the first peak (Table 3.4.5-1).

Various forms of nitrogen flowed into this river by freshet, of these much of TON particularly inflowed (Table 3.4.5-2).

Table 3.4.5-2 Nitrogen during Freshet Time

TN(mg/1)TON(mg/1)NH4-N(mg/1)10.9-16.02.8-6.15.9-11.0

Much of SS, in particular the inorganic part of SS inflowed, even if the ratio of organic and inorganic parts of TR did not change even during freshet (TR(IL)/TR: 21-46%, SS(IL)/SS: 23-67 %) (Table 3.4.5i).

Water quality concentrations were not recorded from the beginning of the time when the water level increased, therefore by means of assumption using the curves of both water level and water quality concentrations the flow-out load during the freshet (24 hours) were calculated (Table 3.4.5-4).

Item	₩T (°C)	pH	DO (mg/l) (Water level (m)	Discharge (m3/s)		COD (Mn) (mg/l)	TN (@g/1)	TKN (mg/1)	TON_TON/TN (mg/1_(%)	NO2-N (ng/1)	NO3-NO3-N/ (aug/1TN (%)	N114-N N114-N/ (ug/l) TN (%)
Date Time July 1 11:50 12:10 12:50	23. 5	6.2 7.0 7.5	5.3 4.5 3.7	0.8 0.8 0.8	96 71 25	13. 342 13. 292 13. 262	4. 903 3. 765 3. 154	58 46 29	18.0 14.6 14.0	16.0 14.6 13.9	13.8 13.3 12.9	2.8 17.5 6.7 46.0 4.7 33.9	0. 190 0. 170 0. 175	2.0 12.5 1.1 7.5 0.8 5.8	6.6 45.3 8.2 59.1
13:50 14:00 14:10	23.6 23.7 23.7	7.6 7.8 7.8	3.9 4.4 3.6	0.8 0.9 0.9	20 40 65	13.262 13.312 13.372	3, 154 4, 202 5, 658	48 45 67	14.0 15.0 23.7	13, 3 12, 9 13, 1	12. 1 11. 7 11. 7	3.4 25.5 3.7 28.8 3.9 29.7	0. 220 0. 155 0. 120	$\begin{array}{cccc} 1.0 & 7.5 \\ 1.0 & 7.6 \\ 1.3 & 9.9 \\ \end{array}$	8.0 62.2 7.8 59.5
14:20 14:30 15:00	23.7 23.6	7.7 7.8 7.7	3.2 2.3 2.9 3.4	0, 9 0, 85 0, 85	60 42 25 15	13, 392 13, 362 13, 302 13, 252	6. 191 5. 400 3. 981 2. 963	60 70 42 29	24.0 22.7 15.2 12.6	14, 8 14, 4 14, 4 12, 8	13.3 13.8 12.9 10.8	6.1 41.3 6.4 44.4 5.6 38.8 3.8 29.6	0, 180 0, 100 0, 235 0, 235	1.3 8.8 0.5 3.5 1.3 9.0 1.8 14.0	7.4 51.4 7.3 50.6
15:30 16:00 16:30 July 2 10:00		7.7 7.7 7.7	5.4 4.0 4.0	0. 85 0. 85 0. 85	12	13. 212 13. 192 13. 142	2, 256 1, 939 1, 251	31 18	10.8 10.0	11. 7 10. 9	10, 0 9, 2	4.1 35.1 3.2 29.5	0. 180 0. 150	1.5 12.8 1.5 13.8	5,9 50.5
				• .							• :	* .	. ·		
D.4. **) TR (IL)) /TR (%)	SS-1 (@g/1)	SS-2 (ng/1)	SS-2(1L) (8g/1)	SS-2(IL) /SS-2(%)	SS-2/ SS TR(%) /1	S(IL) CI TR(IL)(m		-P SS(IL /1) /TR(
Date Time July 111:50 12:10 12:50	290 243 206	70.0 77.3 45.3	32	117	159.3 117.3 52.7	36.0 33.3 25.3	23 28 48	55 48 26	51 43 56	18 4.	52 1	2 4 2			
13:50 14:00 14:10	239 272 290	66.1 87.7 82.9	28 32 29	45 88 139	37.3 80.7 173.0	17.3 26.0 66.0	46 32 38	16 30 60	80	28 1. 31 1.	.65 1 .90 2	3			
14:20 14:30 15:00	307 259	130.0 141.3 54.7	46	115	164.0 129.3 - 53.3	48.0 37.3 22.5	29 29 42 42	46 42 21 19	37 26 41 21	27 1.	.79 1	3 2 9			
15:30 16:00 16:30 July 210:00	216 186 191	84. 6 46. 0 63. 9	25	-	- 41.5 - 22.0 - 10.5	17.5 10.5 7.0	42 48 67	19 12 5	23 11	25 25		6 4			
0017 210.00															

Table 3.4.5-1 Water Quality at Freshet Time of Chungroung Chong, C-St. 1, July 1, 1991

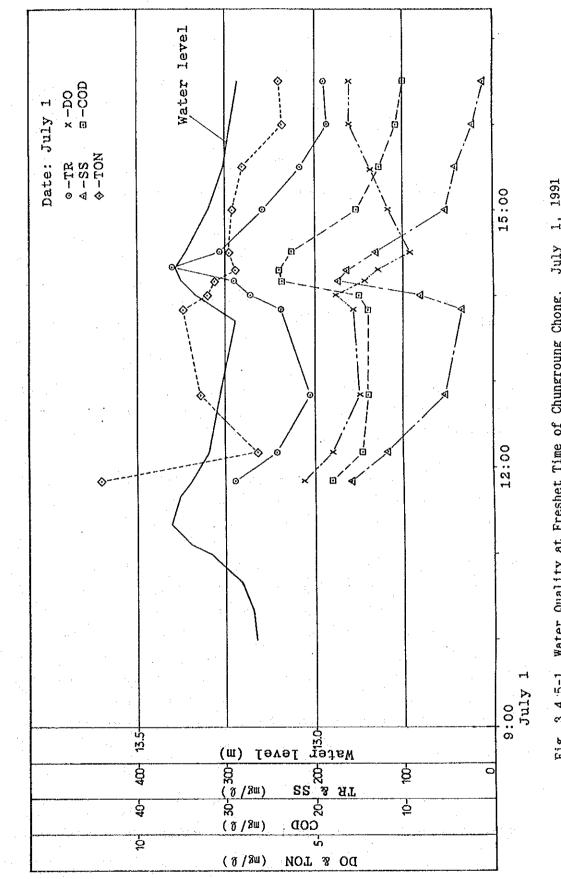


Fig. 3.4.5-1 Water Quality at Freshet Time of Chungroung Chong, July 1, 1991

II. -137

Table 3.4.5-4 Total Flow-out Load during Freshet (ton/24 hours)

	COD(Cr)	COD(Mn)	TN	TON	NH ₄ -N	TR	SS
Freshet time	5.58	2.30	2.09	0.68	1.16	38.3	7.9
Ordinary time	3.25	0.95	-	-	0.44	26.3	0.8

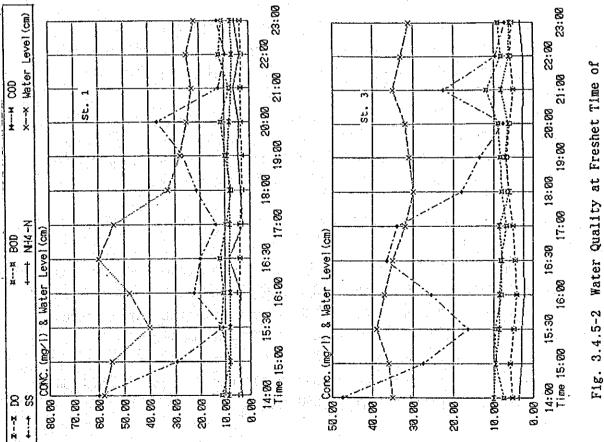
Because of the low precipitation of only 6 mm, it is supposed the flow-out loads this time were obtained in low values.

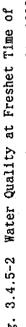
The other result on freshet time on August 31, 1990 is mentioned below.

This survey was conducted 10 hours after the rain started, and continued for 11 hours. Rain stopped an hour after the survey started.

The rain period was too short to obtain the whole results of freshet which affects water quality, and to estimate of the flow-out load using it.

The water level at C-St. 1 decreased with the sampling time, but the decreasing of the water level was not found at C-St. 3 (Table 3.4.5-5 and 6, Fig. 3.4.5-2).


SS at C-St. 3 seemed to decrease with the time. The mean of SS was 22.1 mg/l (7.0-47.5 mg/l), which was much higher than that found on a clear day on August 25 (2.8 mg/l). The mean SS at C-St. 1 (23.1 mg/l) as also higher than the clear day value of 2.5 mg/l.


BOD and COD(Mn) values at C-St. 1 were slightly higher than the clear day values, while the NH_4 -N value (3.00-8.42 mg/l) was quite higher than on the clear day (2.03 mg/l) as found as on SS.

3.4.6 Self-purification Capacity

Appropriate place for self-purification survey on this river was not

Discharge (m3/s) Discharge (m3/s) ÷ e. 44444444444 C-St C-St Water Quality of Chongroung Chong at Freshet Time, August 31, 1990 Chongroung Chong at Fresfet Time, (Gauge 8169495888888888 Gauge (cm) 888888888888888 Coli-form (MPN/100ml) Coli-form (MPN/100ml) NH4-N (1/3m) u4410808444666888888 NH4-N (1/2m) 12822683332282 maddadadadad S ([/3]) នទ្រឹ 10 10 10 10 10 10 10 10 10 881881468358 Water Quality of August 31, 1990 (1) (1) (1) 90004000000 C0D (1/2m) ಪ ಪ ಪ ಪ ಪ ಪ ಪ ಪ ವ ಪ ಪ ನ ನ ನ -448048068999946 448048068048 DO BOD (mg/1) 002 102 2 2 2 2 3 4444446666666 ᇇᇄᇵᆋᅀᆧᇏᄜᄜᄧᇥᅆᅇ ᅋᄭᅇᅇᄵᆘᆈᅭᇝᇛᇓᆋᅌᄵᅇ lable 3.4.5-5 Table 3.4.5-6 ₽Û É.G Iten I ten 71 14:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 22:00 200

Chungroung Chong. August 31, 1990

found. The survey, therefore, was not carried out.

3.4.7 Correlation between Water Qualities

Correlations between COD(Mn), BOD, SS and NH_4 -N were significantly and positively high throughout the sampling period at all stations (Table 3.4.7-1). In particular, COD(Mn) showed high correlation with BOD (r= 0.896-0.940).

DO showed small correlations with other items at C-St. 1. However, positive but quite small correlations between DO and other items were found at C-St. 2 and C-St. 3.

3.4.8 Sediment quality

(1) Particle-size distribution

Particle-size at C-St. 1 was mainly composed by medium sized sand (52 %) and fine sized sand (41 %). On the other hand, at C-St. 2 it distributed in a narrower range, mainly medium sized sand at 91 % (Table 3.4.8-1, Fig. 3.4.8-1).

Due to these materials, the bottom of this river has poor preservation capacity for water and it occasionally brings about no discharge at C-St. 1 and C-St. 2 during the dry season.

(2) Chemical content

High values of Ignition Loss means the bottom of this river also has been heavily and organically polluted as found on the other river beds (C-St. 1: 35.0 %, C-St. 2: 51.5 %) even less than three months after the big flood in September, 1990 (Table 3.4.8-2).

Drying Loss at C-St.1 was lower(33.0 %) than at C-St. 2 (49.3 %) reflecting the particle-size distributions.

Table 3.4.7–1 Correlation between Water Qualities obtained from the Regular Monthly Survey, Chungroung Chong

	C-St. 1					
		00	COD	BOD	SS	N14-1
	D0	1				
İ	COD	-0.118	1			
	BOD	-0. 298	0.940	1		
:'	ŜŜ	-0.078	0.715	0.779	1	
	NIL4-N	0, 240	0.799	0.747	0.712	1

C-St. 2					
	- DO	COD	BOD	SS	<u>NI4-N</u>
DO	1				
COD	0.136	1			
BOD	0.187	0,896	1		
SS	0.032	0.849	0.757	1	
NIA-N	0, 361	0, 802	0, 745	0.672	

C-St. 3	· · · · · · · · · · · · · · · · · · ·				
1. S.	DO	COD	BOD	SS	NH4-N
00	11	1 A.			
COD	0.299	1			
BOD	0.210	0.937	1		
SS	0.287	0.974	0. 932	1	
N14-N	0.168	0.747	0. 712	0.702	1

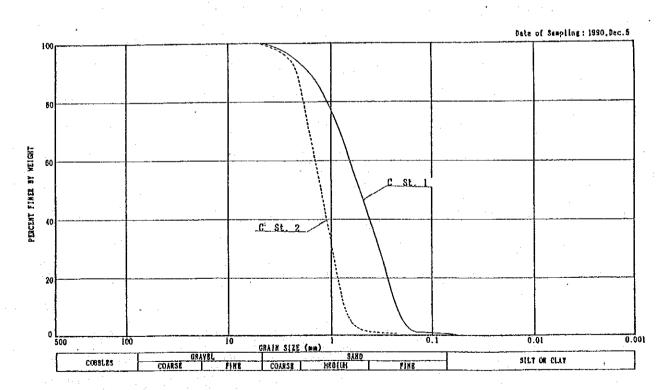


Fig. 3.4.8-1 Particle-size Distribution of Sediment of Chungroung Chong, December 5, 1990

Five items out of six, which were detected, THg, Pb, CN, As and Sulfide were slightly higher at C-St. 1 than at C-St. 2. However, those concentrations were not so high, as found on the other rivers.

The Cd value of this river was found to be the second lowest of the four rivers. Only THg was almost the same as those in Japan, as found on all stations of other rivers.

(3) Macro-benthos

Fauna in this river was also very poor, only <u>Chironomous yoshimatsu</u>. was found 1 individual/ m^2 at C-St. 1 and 1 individual/ m^2 of <u>Physella</u> <u>acuta</u>? was found at C-St.2 (Table 3.4.8-3).

By biological pollution class, this two stations were classified as polysaprobic water areas, however, this poor fauna may have been produced by the bottom material character of the sand.

Table 3.4.8-1	Particle-size Distribution of Sediment of Chungroung Chong (Accumulated Percent in Weight)
	Classifiation

			018	SSTICATION	
	Gravel	····	Sand		Silt
	Fine 18. 38-4. 76	Coarse 4. 76-2. 00	Hedium 2.00-0.42	Fine 0, 42-0, 074	0.074-0.005
Station C-St 1 C-St 2		100. 0 100. 0	93. 0 92, 0	41.0 1.5	1.0 0.0

Table 3.4.8-2

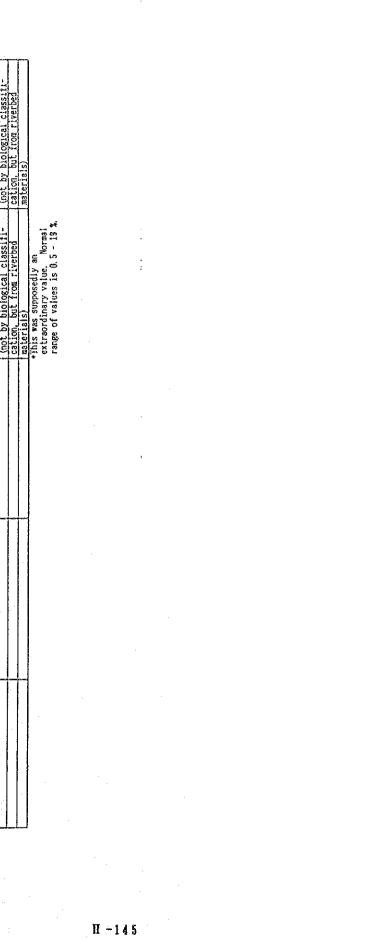
River Sediment Quality of Chungroung Chong, December 5, 1990

	Weather	on the on the C(10:00	previo	lear bus day:	Clear				<u>^</u>	D		
Iten	CN (ng/kg)	As (ng/kg)		Cr (6+) (mg/kg)	Cd (ng/kg)		Sulfide (mg/kg)	PCB (ng/kg)	Org Malathion (mg/kg)	PAP	DL (%)	IL (%)
Station C-St. 1 C-St. 2	0. 386 0. 182	0. 187 0. 160	0. 029 0. 025	ND ND	0. 100 0. 110	1. 200 0. 793	6.45 5.46	ND ND	ND ND	ND ND	33. 0 49. 3	35.0 51.5

Table 3.4.8-3	Macro-benthos Appeared in Sediment of
	Chungroung Chong (December 5 1990)

Station	-C-St. 1	C-St. 3
Species		
Class Gastropoda		
Order Lymnophila		
Family Phydidae		
Physella acuta		1
Class Insecta		
Order Diptera		
Family Chironomidae		-
Chircnomus yoshimatsui	1	
Total species number/m2	1	1
Total individual number/m2	ī	1
Diversity Index	0	 ຄ
Biological Pollution Class	ps	ps
	DS:0	lysaprobic

 $\Pi=1\,4\,3$


Chapter 4

Summary of Water Quality of the Four Rivers

Sumary of characteristics of water quality obtained during the study period for the four rivers are sited in Table 4.1.

River	Anvang Chong	Venetion Phase	12	
	Puino Poince-		UI URONG	Chungroung Chong
Monthly variation of water quality	ried inversely charge, the higher colder season and	Not found 4 The same tendencies as Anyang Chong at Y-St. 1 and Y-St. 2. The lower concentrations at the	And found The higher concentration in the colder season the lower in the bitter caseson	Not found Extraordinarily high values from January to March, 1990.
	the lower values in the hotter season	upper stations, were increasing toward the lower stations	proportional with the discharge broportional with the discharge broncentrations higher at U-St. I than at U-St. 2	Atter match, un magner concer- trations in the colder months. The lover in the hotter months. The values at C-SL abruptly increased from Movember 1990
Doncentration of quality item DO(mg/l)	0.0 - 6.6		0 7	Exclude extraordinary values
011 (mg/1) 000 (mg/1) 01800 (mg/1)	$\begin{array}{c} 0.1 - 8.8 \\ \underline{30.5 - 158.0} \\ \end{array}$	5.9 - 7.8 2.3 - 53.4	6.9 - 7.8 0.9 - 18.8	6.6 - 8.2 1.4 - 52.0
COD (Mn) (mg/1) DCOD (Mn) (mg/1)	$\begin{array}{c} 0.1 & 0.3, 0 & (43 - 30, 8) \\ 17.3 & 76, 0 \\ 9.6 & 58, 0 & (64 - 34, 8) \end{array}$	$\frac{2.2 - 25.7}{5.0 - 48.7} (49 - 94.8)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3. 0 - 25. 5 (55 - 5. 1 - 38. 1 5. 5
SS(mg/1) Settleable matter(mg/1) ve(117/y ^f ve()	$\frac{13.9 - 144.3}{5.3 - 81.0}$	1.2 - 92.0 2.2 - 76.1 (45 - 89)	$\frac{0.5 - 54.7}{1.0 - 16.3}$ (45 - 94)	
IR(mg/1) TR(IL) (\$ of TR)	109.7 - 1286.0 12 - 53	159 - 471 9 - 75	$\frac{14 - 82}{123 - 565}$	
TN (mg/1) TON (mg/1)	6. 80 - 25. 70 0. 59 - 2. 91 (5 - 15 %)	$\frac{3.89 - 14.99}{0.28 - 2.59 (7 - 30 x)}$	1 94 - 6 39 0 23- 0 60 (5 -15 %)	3.15 - 10.41 3.25 - 10.41
N19 - N (m2/1) N02 - N (m2/1) N03 - N (m2/1)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.13 - 13.85 (5 - 94 X) 0.000 - 1.720 (0.820>)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1P (mg/1) P04-P (mg/1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01 - 2.96 0.318 - 1.183	$\frac{1.53 - 5.04}{0.050 - 0.469}$	
Sulfide(mg/l) MBAS(mg/l)	2.8 - 5.36 10 - 13 - 5.81	$\frac{0.091 - 1.133}{2.6 - 4.23}$	$\begin{array}{c} 0.013 - 0.210 (11 - 13 3) \\ 2.14 - 4.62 \\ 0.80 - 2.63 \end{array}$	
Coll-terms (MPN/100mf)	<u>90 - 17000</u> Increased from the upper stations	72 - 5400 creased from the upper to the	The yearly mean at U-St. I was	Great monthly variation.
	to the lower stations, but lower at A-St 1 than at A-St 2	wer stations. Y-St 3. quite small	higher than at U-St. 2. COD (Mn), bowever, showed the inverse	however, the yearly mean decreased in the lower stations
	<u>Mean value except at A-St.3 and</u> A-St.7		relation.	
B0D (ton/day) C0D (Mn) (ton/day)	1 16.99 - 43.12 16.28 - 35.48	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.73 - 3.84 0.73 - 2.75
	18.12 - 33.42 3.90 - 8.83	$\frac{17.79}{2.46} - \frac{64.07}{5.28} (0.55)$	<u>0.83 - 0.88</u> <u>0.04 - 0.13</u>	0.52 - 2.01 0.22 - 0.80
	<u>ude-inflows including</u> pumping stations	_	One direct side-inflow	5 out of 17 direct side-inflows with small discharges.
COD (Mu) (ton/day) SS (ton/day)	11.7 38.7		UN VUT V U. 30 (COT/ 032)	C00 (Cr) 10.17 (ton/day)
	lieight of the concentration on freshet time versus that on a	leght of the flow-out load versus that on a clear day	Concentration and flow-out load I values on clear day in the	The curve of concentrations was similar to that of the water
	0-11, 1990		parenthesis August 31-September 1, 1991, for	eve L cve
	almost the same		28 fours	길기
	CO 011162	•	COD (Mn) 1.6 - 4 1.2 -14.0	000
			-10 1.2 -14.0	
		T	$\frac{35}{55} = 31 - 34 = \frac{35}{4} - \frac{25}{5} - \frac{2}{5} + \frac{35}{5} - \frac{3}{5} + \frac{35}{5} - \frac{35}{5} + $	10 0.68
		SS 74.3 ton (17.0) NIA-N 4.9 ton (1.7)		SE
Lt-purification pacity	Not conducted	TKN 4.20 - 5.21 (1/day)	BOD 5.271 (1/day) TKN 8.15 - 12.48 (1/day)	Not conducted
Correlation between quality Coefficients				
800 - 55 800 - 55	F I	0. 531 - 0. 798 0. 128 - 0. 852	$\begin{array}{rrrrr} 0.451 & - 0.645 \\ 0.434 & - 0.769 \end{array}$	$\frac{0.896 - 0.940}{0.757 - 0.332}$
buv - NIA-N D0 - NIA-N	$\begin{array}{rrrr} 0.220 & -0.538 \\ -0.194 & -0.490 \end{array}$	-0.046 - 0.581 - 0.247	0.307 - 0.752 - 0.052	$\begin{array}{r} 0.712 - 0.747 \\ 0.168 - 0.351 \end{array}$
Particle-size	5> - 73. 5 mm	0.005> 18.38 mm	0.005> - 18.38 mm	0.005> - 4.76 mm
Chemical content	(main)	(mainly 0.005 - 2.00 mm)	(mainly 0.005 - 4.75 mm)	(mainly 0.074 - 2.00 mm)
IL (X) CN (ng/kg)		$\begin{array}{c} 43.2 - 53.0 \\ 0.000 - 0.114 \end{array}$	38.0 - 52.5 0.250 - 0.409	35.0 - 51.5 0.182 - 0.386
As (mg/kg) [1][g_(mg/kg)		0.068 - 0.213 0.009 - 0.394	$\begin{array}{r} 0.133 - 0.233 \\ 0.054 - 0.053 \end{array}$	0.160 - 0.187 0.025 - 0.029
Ut (07) (mg/Kg) Cd (mg/Kg) Ph (mg/Kg)	0.150 - 0.200 0.200 0.240 - 2.100	Not detedted 0. 149 - 0. 177 0. 073 - 1 590	Not detedted 0.100 - 0.183 1 173 - 1 650	Not detedted 0 100 - 0 110 0 703 - 1960
Sulfide (mg/kg) PCB (mg/kg)		5:45 - 5.01 5:46 - 6.01 Not detedted	5. 68 - 6. 45 Kof defected	5. 46 - 6. 45 Mof defected
Organic-P (mg/kg) Macro-benthos		Not detedted	Not detected	Not detected
Total species number/m2 Total individual		2	0 - 2	1 - 1
number/m2 Biological pollution class	0 - 5 ps (A-St. 2 and A-St. 5)	<u>40 - 45</u> ps at 3 stations	0 - 5 0-51 0-51 0-51 0-51 0-51 0-51 0-51	1 - 1 ps
			(not by biological classifi- cation, but from riverbed	(not by biological classifi- cation, but from riverbed

Table 4.1 Summary of Characteristics of the Water Quality Obtained from the Four Rivers

Chapter 5 Recommendation for Continuing Survey and Sampling and Supplementary Survey

The time given for obtaining the whole and exact figures on water and sediment qualities of the four rivers this time was short. It is, therefore, recommended that further survey and sampling and supplementary survey be conducted in the future to complete the knowledge, which are quite helpful to progressing the measured relating the rivers.

Several recommendatory points on the surveys and samplings about water quality and sediment quality based on the results obtained this time are sited below.

- 5.1 Water Quality
- 5.1.1 Improvement on the regular sampling and survey station
 - (1) Anyang Chong

It is recommended that the stations on Anyang Chong be changed because of the reasons stated below:

- * There was not set up automatic water level recorder on the A-St. 7 this time. Since, A-St. 7 is located on the mouth of Kaehwa Chong, which is seriously polluted, and it is necessary to detect the quality and quantity of the pollution from this river and its degree of contribution to the main river in future. We recommend that the water level recorder at A-St. 4 be moved to A-St. 7.
- * Even after removing the water level recorder at A-St. 4, the balance of pollution load between A-St. 5 and A-St. 2 can still be determined with that from A-St. 7 and A-St. 3.

* A-St. 1 is not appropriate for the fixed station and it possible should be abolished, because of the strong effect of the back water from Hang Gang.

- * Because a lot of inflow pollution load was observed upper stream rather than at A-St. 6, it is necessary to set up more sampling stations in this area in cooperation with the Anyang and Suwon Cities. Recommended places for stations: Front of Sokusu Public Corporation apartment house, Anyang Old Bridge, Yam-myong Bridge, Pesam Bridge,
 - Kumpo Bridge,
 - On the mouths of the branches, etc.
- (2) Yangjae Chong
 - Y-St. 1, (Y-St. 2), Y-St. 3 and Y-St. 4
 Y-St. 2 may be omitted.
- (3) Ui Chong
 - * U-St. 1, U-St. 2 and Front of Green Hotel
- (4) Chungroung Chong
 - * C-St.1, C-St. 2 and C-St. 3

5.1.2 Items of survey, sampling and analysis

The survey, sampling and analysis of water quality mentioned in Chapter 2 were carried out. It is, however, not necessary for all items. Further monitoring is necessary only for the following.

- (1) For monthly variation of water quality
 - * Sampling stations: the regular stations on the three rivers of Yangjae Chong, Ui Chong and Chungroung Chong. On Anyang Chong the stations are mentioned in 3.4.1
 - * Times for sampling: once a month

* Analytical items: COD(Cr), TN, NH₄-N, PO₄-P, SS and BOD Analysis of BOD will be hopefully displaced

Π -147

by the measurement of carbon, TOC.

(2) For hourly change of water quality

- * Sampling stations: same as the regular monthly variation
- * Times of sampling: four times a year (each season), every two hours for two days each time
- * Analytical items: same as the regular monthly variation
- (3) For analysis of toxic material
 - * Sampling stations: same as the regular monthly variation
 - * Times of sampling: four times a year (each season)
 - * Analytical items: CN
- (4) For freshet time survey
 - * Sampling stations: same as the stations for freshet time sampling this survey period, 1990-1991. on Yangjae Chong, Ui Chong and Chungroung Chong. On Anyang Chong: A-St. 2, A-St. 3, A-St. 6, A-St. 7 and other several stations upstream
 - * Times of sampling: three times a year,
 - * Duration of survey: long enough to be able to obtain the whole figure of the freshet, start before rain and finish after rain
 - * Analytical items: same as the regular monthly survey
- (5) For side-inflow survey
 - * Sampling places: all side-inflows existed on both sides of

the four rivers. Survey and sampling must be done on the fixed stations on the main rivers at the same time.

- Survey frequency: 4 times a year, twice on a clear day and twice on a rainy day
- * Analytical items: same as the regular monthly survey
- 5.1.3 Points to consider in sampling
 - * To conduct survey and sampling efficiency, it is important to really understand their purpose, importance and methodology.
 - * The field records, records on weather, the time the rain starts and of ends, wind, air and water temperatures, sampling place, time of sampling, etc. are considerably important.
 - The records and data of the survey and analyses should be checked after every sampling work. Caution is necessary so as not to repeat the same mistakes twice.
- 5.1.4 Points to consider in analysis
 - * The first point is the same as the first in sampling.
 - Sampled water and sediment should be stored as soon as possible in place with low temperature and then analyzed.
 - The data obtained should be treated the same way as the data obtained from the sampling shall be treated.

5.1.5 Treatment of data

All data obtained are very important, therefore, they should be

treated carefully.

The water quality distribution pattern often changes unexpectedly. This distribution pattern can be identified from the data obtained, and the rules that govern the changes, if there are any, shall be determined by using statistical methods.

5.2 Sediment Quality

5.2.1 Chemical analysis

The results obtained from the sediment of the four rivers showed that the river beds of all rivers were seriously polluted organically. Although the concentrations of CN, As, PCB, Organic-P and heavy metals except THg were low, we recommend that the survey for sediment quality should be continued to be conducted once or twice a year, particularly the survey on organic pollution.

5.2.2 Biological analysis

This time, both of numbers of individuals and species of benthos were very small, almost zero at all stations. It is, however, necessary to continue the survey on benthos, because it is an appropriate indicator of the degree of pollution.

5.2.3 Stations

Sampling stations on sediment quality are adequately mentioned below:

- * Anyang Chong: A-St. 2, A-St. 3, A-St. 5, A-St. 6 and A-St. 7
- * Yangjae Chong: Y-St. 1, Y-St. 3 and Y-St. 4
- * Ui Chong: U-St. 1 and U-St. 2
- * Chungroung Chong: C-St. 1 and C-St. 3

П -150

Annex

Annex-1 Nitrification Capacity Annex-2 Hourly Change of the Four Rivers Annex-4 Comparison of Water Quality between River and Sewage Annex-5 Water Quality at Freshet Time Annex-8 Heavy Metals in River Sediment in Japan, 1986

Annex-1 Nitrification Capacity

A-1 Nitrification Capacity

Nitrification capacities were measured using the soil from Yangjae Chong (Y-St. 3 and Y-St. 4) and Chungroung CHong (C-St. 1, C-St. 2 and C-St. 3) on December 1, 1990.

100 mg of wet soil from each stations was put in. 1000 ml beaker with 500 ml of distilled water. 50 ml of NH_4 -N solution (N: mg/l) was added and aerated sufficiently. The water was sampling every hour and the temperature, pH, DO, NH_4 -N and NO_2 -N were measured.

Control was treated as mentioned above without soil.

Because the preparatory test showed that nitrification capacity decreased with decrease of pH, and the practically measured pH natural conditions were always around neutral, ph of test solution were occasionally adjusted.

The results showed that significant increases of NO_3-N and NO_2-N were not found in the solution, however, abrupt decreases of NH_4-N was found, so it was supposed that there exists nitrobacteria in the soil of these rivers and NH_4-N would be oxidized to NH_x-N sufficient DO existed.

ŝ	Control					2.5			Table A-1-2		ification	Capaci	ty of Sed	iment fro	Nitrification Capacity of Sediment from Chungroung Chong
i i	Time WT (°C)	Hd	00 1/28 1	NH4-N (1/2目) ((NO2-N	N03-N (mg/1)	Note	·	Control	F	-				:
6 CT		ີ ເດີຍ ເດີຍ	တံတံ	ವೆವೆ	ి ది		Ha			41 (C)	hd hd (1/2亩)	1	NH9-N NU2-N (mg/l) (mg/l)	N N03-N 1) (mg/1)	Note
1227 i	11:10 14 12:10 14 13:10 14 14:10 14	66667	10100 1010 1010 1010	4010	0000	0000	pH adjuastment pH adjuastment			1449 1449 1449 1449 1449 1449 1449 1499 1	-າຍຕອດ ຈັບບໍ່ດີຍີ່ບ	0 m 4 0 -	00000 00000 00000	00000	pli adjuastment pli adjuastment pli adjuastment
Ya	Yangjae Chong,	ang, Y-St.	r St G	December 12,	- 12, 1990)	6	· · · .		14:1	4	- CO	· 00	101	56	
Ξ	Time WT (°C)					(1/2回) N-EON	Note		Chun		0	<u>,</u> н.,		(0661	
101	1		න්ත්	13~	00				Lue Lue	#T(°C)	DG Hq (1/2皿)		NH4-N N02-N (mg/1) (mg/1)	N N03-N	Note
282	12:30 13:30 14:30 14:30	5000	5000		000	किक निर्मान			1:01 1:01 1:11	***	640	स्तरू च्	- 	ದರದ	pH adjuatment pH adjuatment
14	14:30 14	6 7 7	7 9.6	6 5.0	0.0	3.2	September 13		12:10 13:10	145	4 - 12	പപ്പ	8.4 7.8 0.05 7.8 0.05 0.05		52
Yar	Yangjae Chong,		Y-St. 4 (D	December 12.	. 12. 1990)	6	· · · ·		-	. E.M.					
Τ'n	Time WI (°C)		1 D0		N02-N	N-EON	Note		Chun	N	0	2		1990)	
19	16.		ĵ.	. 1						() : #	pH D0 (mg/l)		NH4-N ND2-N (mg/l)	N NO3-N	Note
H88 3	11:30 12:30 13:30 14:30 14:30 15.	1122	ರಾವ ಭರಗ ನಾವ ಭರಗ	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		80055 5000		. ·	15:00 17:00 18:00	15.5 15.5 15.5 15.5 15.5	7.728 7.338	ನು ದು ದು ದು ದು ದು ದು ದು ದು	8.2 8.2 8.9 8.9 8.9 0.05 8.7 0.16	8008 9000 9000 9000	
14	14:30 14.	9 7 9	1.9	8.8	0.3	1.3	September 13		600 12 12 12 13	명리목		N00	ന്ന് ഒരെ ഒ	ದರಣ	September 4
								-							
:									Churt	Chungroung Chong,	ong, C-St	ŝ	(December 3,	(3651	
Table A-1-2 Conti	· [trifica	Nitrification Cap	ipacity	acity of Sediment from	ent fro≊	a Chungroung Chor		Time	¥T (° C)	(I/Sm)		NH4-N NO2-N (mg/1) (mg/1)	N-201 N N-201 N	Note
Tine	ne WT (°C)	Hq ((1/3m)	NH4-N (I/3m)	NO2-N (1/200)	(1/2m) N-CON	Note		12:00	ងចុងដ	600	210	- - 	പ്പുവ	
**************************************	9:10 10:10 11:10 12:10 14:4 12:10 14:4 14:3 14:3 14:3 14:3 14:3 14:3 14:3	64646 66666 66666	ಧಣಕರ <u>-</u> ರಾವರಾದ	(((((((((((((((((((00000	00000	pH adjuastment pH adjuastment pH adjuastment		18:00	2000 2424 2004	4410	ත් ත් ත් ක් යා යා ද ද ද ක් ක් ක් ත්	2003	2000 2000 2000 2000 2000 2000 2000 200	September 4

A – 2