NH_4 -N was distributed in high concentrations (5.10-22.89 mg/l) at all stations. Generally, higher concentrations were found in the colder season and lower concentrations in the hotter season as found in COD(Mn) and BOD patterns, although the difference between the high and low values was not so great. Exceptionally low values were found at all stations in July 1990, which was brought about by unknown causes. Other lower values were recorded in June 1990, which was supposedly due to heavy rainfall which diluted the concentrations.

 NO_2-N often recorded 0.000 mg/l after July, when NO_3-N was also zero, and range of variance was very large (0.000-0.735 mg/l). There was no seasonal systematic distribution found. In Anyang Chong, NH_4-N was very high, but it seemed that DO was constantly too low to oxidize NH_4-N to NO_2-N , then to NO_3-N .

Coli-form bacteria compared to other high pollutant concentrations were found in very small numbers until November, 1990 (90-2600MPN/100ml). However, a sudden increase from December, 1990 (3500-17000MPN/100ml) was discovered and the increase still seems to be continuing. Since the number at A-St. 7 was very high and this shows that much of human waste is mixing with the domestic waste water in Kaehwa Chong.

The were not found at all stations throughout the sampling period.

Low concentrations of CN have been detected after January, 1991 (Table 3.1.2-1-7). In particular the values at A-St. 6 and A-St. 7, were found in higher than those at the other stations, which was thought to be the result of the mixture of waste water from industries up stream.

(2) Variations of other water qualities

Several quality items mentioned here were obtained from the bimonthly 24-hour-survey (Tables 3.1.2-8-14 and Tables A-3.1-1-42).

Table 3. 1. 2-8 Water Quality Obtained from 24-hour Survey in Anyang Chong, A-St. 1 A-St. 1, July 5-6, 1990 DO TN TON NO3-N NO2-N NIA-N TP PO4-P. BOD DBOD COD DCOD Sujfide MBAS SS Settleable matter Gauge (mg/l)(mg/l) (mg/l) (mg/l Item
 0.03
 0.042
 12.96
 0.934
 0.525
 60.0

 0.01
 0.044
 1.59
 0.142
 0.137
 10.1
 29. S 4. 2 - 3.5 4.73 34.2 - 0.2 1.42 13.7 Mean 0.0 31.5 68 -26.3 12 SD 0.0 A-St. 1, September 7-8, 1990 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l) (mg/l Itea
 1. 2
 12. 31
 1. 55
 0. 22
 0. 017
 10. 53
 0. 813
 0. 476
 32. 1
 13. 6
 23. 8
 18. 8
 3. 94
 4. 68
 3

 0. 5
 1. 93
 0. 48
 0. 09
 0. 041
 1. 95
 0. 201
 0. 14
 12. 5
 3. 3
 6. 7
 4. 6
 0. 13
 1. 33
 7.2 35 Hean 4.68 21.3 58 SD 2.9 6.5 17 31 4.8 38 2.0 10 A-St. 1, November 13-14, 1990 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l) (mg/l Item
 1.6
 20.68
 2.91
 0.04
 0.018
 17.71
 1.856
 0.934
 59.8
 41.3
 30.9
 25.6

 0.4
 1.37
 0.7
 0.04
 0.004
 0.88
 0.183
 0.104
 2.9
 7.9
 3.0
 2.5
 60 4. 20 2. 53 24. 8 15.3 36 Mean 0.13 0.36 8.4 SD. ĨĪ 7.1 A-St. 1, January 15-16, 1991 DO TN TON NO3-N NO2-N NMA-N TP-PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Srttleable matter Gauge (mg/1) (mg/1 Item
 1.8
 14.89
 0.69
 0.03
 0.047
 14.16
 1.831
 0.766
 93.1
 57.9
 76.0
 51.7
 4.35
 1.85
 39.2

 0.5
 1.02
 0.32
 0.00
 0.050
 0.98
 0.281
 0.157
 20.0
 18.7
 11.7
 2.5
 0.14
 0.28
 4.5
 35 Sean 13.7 37 SD 21 A A-St. 1, March 5-6, 1991 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l) (mg/l Itea
 0.031
 15.39
 2.600
 0.761
 70.9
 49.5
 53.6
 44.9

 0.006
 1.21
 0.612
 0.158
 2.1
 6.5
 4.7
 5.0
 0.2 16.89 1.46 ND 0.1 1.34 0.59 ND 4.13 5.81 41.9 0.20 0.62 2.8 47 35 19.9 Mean SD 2.7 5 5 A-St. 1, May 31-June 1, 1991 DO TN TOH NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l) (mg/l Itez 0. 4 14. 17 1. 41 0. 11 0. 000 12: 65 2. 036 1. 310 58. 0 46. 1 43. 9 34. 9 5. 36 1. 71 46. 7 26 1 52 50 Hean 0. 1 1. 11 0. 41 0. 06 0. 000 0. 01 0. 276 0. 153 8. 0 5. 4 5. 1 4. 3 SD 0.14 0.46 13.5 12.4 13 11

Water Quality Obtained from 24-hour Survey in Anyang Chong, A-St. 2 Table 3, 1, 2-9 A-St. 2, July 5-6, 1990 DO TN TON NO3-N NO2-N NI4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Sttleable matter Gauge Item (mg/1) (¥) (ca) (ng/l) 0.00 0.000 13.01 0.820 0.400 63.0 0.00 0.000 0.42 0.195 0.099 5.3 -35.7 4.7 3.4 3.89 77.6 0.2 1.45 19.0 69. 4 19. 2 0.0 89 37 Mean SD 19.0 0.0 6 1 72.8 64.4 88 9.9 9 1 A-St. 2, September 7-8, 1990 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l) (mg/l Item . (mg/l) Mean 0.3 13.35 1.39 0.00 0.007 11.81 1.232 0.539 23.9 15.7 15.7 21.7 SD 0.1 0.52 0.52 0.00 0.010 0.71 0.322 0.130 5.0 6.1 6.1 4.4 4. 13 0. 15 3.90 49.8 1.16 15.9 79 8 38. 3 15. 5 44 9 A-St. 2. November 13-14, 1990 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Srttleable matter Gauge (mg/l) (mg/l Iten 4.21 1.98 20.0 30.1 10.8 27 Mean 0. 51 0. 97 7. 4 4. 97 SD 3.4 5.3 11 1 0.21 A-St. 2, January 15-16, 1991 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l)(3.0 16.92 1.06 0.16 0.044 15.64 1.415 0.881 92.7 56.3 68.5 68.5 0.4 1.76 0.35 0.05 0.028 1.73 0.149 0.251 20.2 17.8 4.4 4.5 Mean 4.38 1.19 42.2 4.37 0.28 3.7 14.7 35 20 SD 4.5 3.7 6.7 16 2 A-St. 2, March 5-6, 1991 Item DO TN TON NO3-N NO2-N NIM-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l) (ng/l) Mean 2.0 16.53 1.21 0.00 0.036 15.28 1.397 0.715 74.8 52.1 56.5 43.0 4.22 4.42 33.1 SD 0.4 0.98 0.23 0.00 0.017 0.89 0.181 0.180 10.9 9.7 5.3 3.5 0.12 0.66 3.9 40 18 13.4 4.2 9 A-St. 2, May 31-June 1, 1991 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l)(Item 0.80 0.04 0.000 10.97 1.874 1.213 26.8 23.2 29.1 25.5 5.22 1.95 0.21 0.04 0.000 1.22 0.337 0.283 7.2 6.0 3.4 2.7 0.20 0.38 42 Kean 0. 4 11. 77 1.95 20.4 8.0 11

5.7 - 2.2

21

П - 23

0.2 1.23

SD

Water Quality Obtained from 24-hour Survey in Anyang Chonng, A-St. 3 Table 3. 1. 2-10 A-St. 3, July 5-6, 1990 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/1) (mg/1 Itea -36.3 2.8 0.7 3.3 87.8 1.6 16.0 2.9 56 82.0 93. 0.1 Hean ... 16.0 ---15.3 4 -2 SD D. 2 õ. 7 19.2 A-St. 3, September 7-8, 1990 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Set (mg/l)(mg SS Settleable matter Gauge Item (sg/l) (%) (cm) 0. 2 13. 68 1. 07 0. 00 0. 042 12. 59 1. 833 0. 807 51. 0 32. 6 29. 5 22. 7 0. 1 2. 49 0. 33 0. 00 0. 062 2. 36 0. 732 0. 178 8. 1 8. 0 8. 5 8. 0 60.7 3.39 70.6 77 Mean 3.24 50 8.0 0.33 1.26 23.8 19.4 23 4 SD 3.07 0.51 A-St. 3, November 13-14, 1990 Item DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/1)
 37.6
 45.0
 33.5
 4.11

 18.4
 18.1
 4.0
 0.72
 27.7 2.51 39.8 66 43 2.2 16.07 Kean 1.42 46. 5 33.6 13 SD 0.4 5.95 33.5 28.0 19.6 70 12.3 22.8 19 4 A-St. 3, January 15-16, 1991 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (ng/l) (ng/l Ite∎ 3.5 13.59 2.00 0.30 0.367 11.19 1.518 0.900 53.4 34.6 47.2 36.3 4.15 0.3 2.85 0.60 9.15 0.322 2.91 0.371 0.219 12.8 10.7 4.6 4.0 0.36 Mean 2.05 20.6 17 44.2 0.34 13.7 8. 1 İİ -2 SD A-St. 3. March 5-6, 1991 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS (mg/l) (SS Settleable matter Gauge Iten (X) (CE) (憲法/1) . 7.43 1.309 0.241 16.0 3.16 25.3 52 2.5 8.36 0, 90 ŃD 0.030 13.6 20.6 17.6 3.26 13. 4 17 Mean 0.4 1.44 8 0.95 0.22 ND 0.009 1,31 0.168 0.077 2.8 3. 3 3.3 2.3 0.54 16.4 9.7 4 SD A-St. 3, May 31-June 1, 1991 ÷ DO TN TON NO3-N NO2-N NI4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l)(DO TN TON NO3-N NO2-N HII4-H TP PO4-P BOD Itea -0. 00 0. 126 5. 85 0. 750 0. 409 11. 6 0. 00 0. 180 1. 06 0. 120 0. 121 2. 4 8.1 10.3 2.1 1.8 2.3 6.89 0.84 9. 6 3, 50 1.18 18.8 7.9 42 Hean 1, 8 1.03 0.26 13.7 5.6 6 1 SD 0.8 1.00 0.19

Π - 24

Water Quality Obtained from 24-bour Survey in Anyang Chong, A-St. 4 Table 3.1.2-11 A-St. 4, July 5-6, 1990 Item DO TN TON NO3-N NO2-N NH4-N TP PO4-P. BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/1) 3.3 1.63 83.1 0.3 0.2 46 0 Mean Sn 0.00 0.000 12.06 0.828 0.148 60.7 -0.00 0.000 0.70 0.248 0.076 15.8 -35.5 -6.8 -78.7 93 21 0.0 45 2 đ 0.1 2 A-St. 4, September 7-8, 1990 Item DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l)
 Mean
 0.4
 12.60
 1.16
 0.00
 0.012
 11.59
 0.986
 0.468
 26.6
 18.8
 30.0
 26.6
 3.72
 2.02
 56.6

 SD
 0.4
 1.60
 0.52
 0.00
 0.016
 1.51
 0.278
 0.117
 3.1
 6.0
 11.3
 9.5
 0.15
 0.35
 27.9
 46.8 81 25 25.5 ĥ - 3 A-St. 4, November 13-14, 1990 Item DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l)(mg/l)(mg/l)(mg/l) (mg/l)(Mean 2.2 20, 92 2.76 0.16 0.021 17, 90 1.588 1.161 47, 0 25.8 36.4 29.4 4.14 2.34 26.4 SD 0.4 1.12 0.38 0.02 0.008 1.06 0.144 0.145 6.5 5.5 6.0 5.2 0.26 0.40 6.7 12.0 45 19 ij. 3.9 A-St. 4, January 15-16, 1991 Item DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l)
 Mean
 3. 2
 16. 64
 1. 11
 0. 05
 0. 031
 15. 49
 0. 000
 1. 053
 81. 3
 63. 6
 62. 2
 54. 6
 4. 21
 2. 26
 42. 7

 SD
 0. 7
 1. 08
 0. 35
 0. 00
 0. 005
 1. 08
 0. 370
 0. 299
 13. 5
 15. 2
 6. 2
 4. 0
 0. 18
 0. 43
 4. 8
 · 17.6 40 11 6.5 11 1 A-St. 4, March 5-6, 1991 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge ltex (mg/l) (rg/l) (X) (CB)
 0.021
 15.61
 1.667
 0.914
 66.3
 54.6
 51.3
 42.5
 4.46
 4.19
 29.8

 0.006
 0.69
 0.080
 0.045
 14.9
 9.8
 3.3
 1.8
 0.13
 0.81
 7.5
 Hean 2. 2 17. 17 1. 54 ND 13.3 43 10 4.3 ត 0.4 0.64 0.28 ND SÐ A-St. 4, May 31-June 1, 1991 DO TN TON NO3-N NO2-N NII4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Set (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge Item (ng/l) (%) (cn) 0.6 11.21 1.2675 0.00 0.000 9.89 1.870 1.383 48.9 39.9 40.5 30.9 4.50 67 20 2.65 61.5 42.4 Kean

4.6 5.7

3.8 0.65 0.90 55.1

ġ.

3

39-1

П -25

SD

0.3 1.72 0.38 0.00 0.000 1.37 0.299 0.203 6.3

Table	9 3, 1, 2-	12		ч. 1	₩at	er Qual	ity Ob	tained	from 24	1-hour	Survey	in Any	ang Choi	18, A-1	St. 5			
A-St.	5, Jul	y 5-6	, 1990													i.		.:
ltem	00 (sg/l)	TN (#g/1)	TON (mg/l)	NO3-N (mg/1)	NO2-N (eg/1)	N114-N (mg/1)	- TP (ng/1)	P04-P (mg/1)	80D (mg/1)	DBOD (mg/1)	COD (ag/l)	DCOD (eg/1)	Sulfide (mg/l)	MBAS (mg/l)	SS) (mg/1)	Settleable (mg/l)		Gauge (cm)
Nean SD	0.7 0.4	-	-	0. 00 0. 10		11.56 1.21				 	28.6 5.4		3.2 0.3	1.62 0.42 1.53 0.29	20. 3	52. 9 18. 6	90 5	39 6
A-St.	5, Sep	tesbei	r 7-8,	1990												· · ·	. 1	
ltem	00 (mg/1)	TN (mg/1)		NO3-N (æg/1)	NO2-N (#g/1)	NH4-N (mg/1)	TP (eg/1)	P04-P (mg/l)	BOD (mg/1)	DBOD (mg/1)	COD (mg/1)	DCOD (mg/1)	Sulfide (mg/l)	HBAS (mg/l)	SS (#g/l)	Settleable (mg/l)		Gauge (cm)
Hean SD		14.80 1.10	1. 16 0. 41				0. 732 0. 803	0. 512 0. 449 0. 386 0. 114	26. 1 3. 6	15. 9 4. 3	27. 2 5. 2	21.7 5.2		1.82 0.53		42. 9 25. 7	79 11	43 4
A-St.	5, Nov	ember	13-14,	1990	19 J.	·	· .					·. ·	:			• • • •		
Itea	D0 (mg/l)		TON (mg/1)					P04-P (mg/l)			COD (mg/l)					Settleable (ng/l)		Gauge (c∎)
Mean SD	1.7 0.3	0.70	2.54 0.41	0. 05	0. 011 0. 002	17. 31 0. 52		1.080 0.200	44. 9 8. 9			36.2 7.0		3. 10 0. 71		19. 2 11. 4 15. 2 7. 9	55 14 55	38 2
	5, Janı		· · · ·	1.1					•	ti Nga	an An					al la constante A constante da activita		۰۹. م
Iten	00 (mg/1)	тн (98/1)		NO3-N (mg/1)							COD (mg/1)		Sulfide (mg/l)			Settleable (mg/l)		Gauge (cm)
Mean SD	2.1 0.6		1. 15 0. 45		6, 020 6, 005		2. 026 0. 567		79. 1 8. 9		71. 3 11. 6	54.0 5.0	4. 14 0. 22	1.65 0.37	42.8 6.0	17. 9 7. 1	41 13	30 2
A-St.	5, Marc	h 5-6	, 1991	t d									en e		i s List			
Item	DO (mg/l) (TH mg/l)		KO3−N (#g/1)						D80D (mg/1)			Sulfide (sg/l)			Settleable (mg/l)		Gauge (c⊯)
Mean SD	4.01 0.6		1. 21 0. 12			14. 39 0. 83				68.8 11.2	55. 3 5. 9	47.4 6.0		4. 57 0. 90	33. 1 3. 8	14. 5 4. 0	44 10	20 2
A-St.	5 May	31-Ju	ne 1, 1	991	*								- 11	•				17
Item	00 (mg/1) (ĩN ≋g∕l)		NO3-N (mg/1)				P04-P (∎g/1)		DBOD (mg/l)			Sulfide (mg/l)			Settleable (mg/l)		Gauge (cm)
Mean SD		0. 54 0. 66	1. 19 0. 15		0.000 0.000		1. 675 0. 205	1. 093 0. 130	38. 8 9. 4	32. 6 8. 7	32. 0 3. 0	26. 9 2. 7	4. 73 0. 23		37.4 9.2	23. 2 8. 4	61 9	28 3
																		1997 - 19

II - 26

Table 3.1.2-13 Water Quality Obtained from 24-hour Survey in Anyang Chong, A-St. 6 A-St. 6, July 5-6, 1990 DO TN TON NO3-N NO2-N NII4-N TP PO4-P BOD DBOD COD DCOD Suifide MBAS SS Settleable matter Gauge (mg/l) (mg/ Item 0.07 0.040 10.84 0.733 0.168 50.2 -0.08 0.046 0.70 0.168 0.091 14.9 -3.4 2.25 61.4 0.4 0.93 29.3 0.0 Kean 33. 3 _ 56.0 89 61 0.0 -SD 5.1 30.1 6 2 49.2 54.7 9Ö 17.0 17.6 A-St. 6, September 7-8, 1990 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Set (mg/l) (mg/ TN DCOD Sulfide MBAS SS Settleable matter Gauge Item (mg/1)(X) (ca) n 0.3 13.81 0.97 0.00 0.079 12.76 0.911 0.476 27.2 11.6 24.2 0.3 0.90 0.30 0.00 0.052 0.84 0.280 0.097 6.0 3.8 2.0 20. 9 72 9 42 Nean 3.53 2.38 46.2 34.5 2.8 0.34 0.77 18.5 SD 17.7 30.5 42.1 12.3 A-St. 6, November 13-14, 1990 DO TN TOH NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l)(Item -Mean 1. 2 25. 70 2. 54 0. 14 0. 027 22. 89 1. 589 1. 073 38. 9 34. 2 51. 4 SD 0. 3 2. 92 0. 44 0. 07 0. 019 2. 71 0. 277 0. 307 3. 1 5. 8 3. 3 3.98 3.70 19.0 44.0 9.1 33 46 4.5 2.34 2.34 12.4 3.87 19.5 0.30 1.7 . 2. 9 2 A-St. 6, January 15-16, 1991 Item DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable (mg/l) DCOD Sulfide MBAS SS Settleable matter Gauge (X) (cm)
 Mean
 2
 2
 16.62
 1.31
 0.00
 0.024
 15.23
 1.931
 1.135
 89.7
 63.0
 69.3
 58.0
 4.07
 2.06
 42.0

 SD
 0.6
 2.02
 0.82
 0.00
 0.002
 1.71
 0.409
 0.174
 5.7
 13.9
 7.1
 4.1
 0.15
 0.35
 10.4
 19.3 45 17 7.4 ġ 1 A-St. 6, March 5-6, 1991 Item DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/1)(m
 Mean
 3.7
 18.07
 1.51
 0.00
 0.022
 16.53
 1.678
 0.824
 93.9
 84.1
 52.5
 45.9
 4.41
 3.99
 28.8

 SD
 0.5
 1.16
 0.35
 0.00
 0.004
 0.85
 0.088
 21.9
 24.1
 5.2
 4.7
 0.15
 1.41
 4.5
 10.4 36 15 3.9 10 1 A-St. 6, May 31-June 1, 1991 DO _TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide NBAS SS Settleable matter Gauge (mg/l) (mg/ item
 0.00
 0.000
 8.10
 1.500
 1.061
 28.6
 21.5
 29.3
 21.5
 4.80
 1.37
 14.0

 0.00
 0.000
 0.54
 0.323
 0.161
 4.2
 4.4
 0.7
 3.4
 0.18
 0.21
 4.3
 39 Mean 8.5 9,39 1.114 5.7 25 0.3 0.46 10 0.11 SD 3.0

II -27

Table 3.1.2-14 Water Quality Obtained from 24-hour Survey in Anyang Chong, A-St. 7 A-St. 7, July 5-6, 1990 TN DO TON NO3-N NO2-N NII4-N TP Item P04-P - B0D DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (ng/1) (sg/l) (%) (ca) Mean 0.6 0.06 0.083 10.59 1.283 0.525 47.0 32.8 1.84 50.2 47.1 93 31 3.5 17.7 46.3 0.05 0.119 1.28 0.400 0.243 10.2 9.1 30.5 4.8 SD 0.2 0.3 0.49 17.0 3 12.1 A-St. 7, September 7-8, 1990 DO TN TON NO3-N NO2-N N14-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS S (mg/l) Item DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/1) (X) -(പ്രജ)
 0.0
 14.78
 1.54
 0.00
 0.624
 12.51
 2.062
 1.210
 27.9
 21.0
 24.0
 22.6

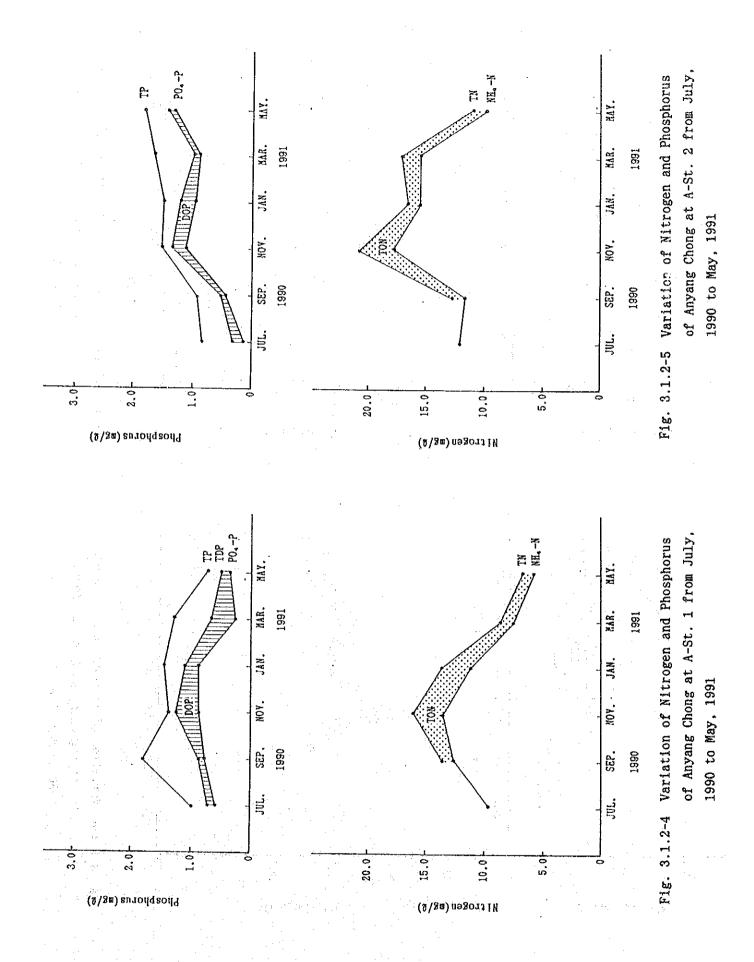
 0.0
 1.76
 0.31
 0.00
 0.366
 2.08
 0.818
 0.605
 5.3
 3.9
 2.1
 2.7

 0.533
 1.872
 1.078
 0.197
 0.501
 0.410
 3.58 1.97 36.2 Kean 22.7 60 10 SÐ 0.20 0.48 15.4 13.5 15 A-St. 7, November 13-14, 1990 DO TN TON NO3-N NO2-N NIM-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS (mg/l) (Itea DCOD Sulfide MBAS SS Settleable matter Gauge (mg/1) (1) (ca)
 1.8
 22.90
 2.48
 0.18
 0.009
 20.16
 2.573
 1.878
 51.9

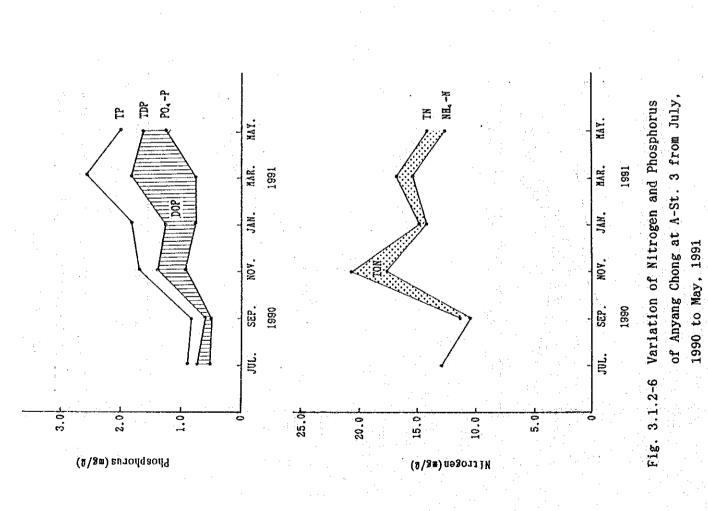
 0.4
 3.23
 0.55
 0.05
 0.006
 2.85
 1.159
 0.955
 11.6

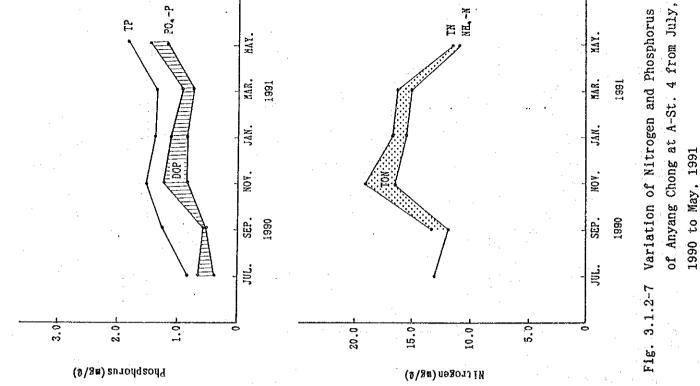
 22.11
 19.49
 Mean 31.1 47.1 55 38. 3 3.75 2.14 48.8 26.7 12 SD 9.7 5.9 5.9 0.22 0.98 5.7 q 2 8.9 1.76 1.76 St. 7, January 15-16, 1991 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge (mg/l) (mg/l Item
 0.035
 17.65
 2.327
 1.389
 53.6
 42.2
 67.2
 56.2
 4.12
 2.22
 79.2

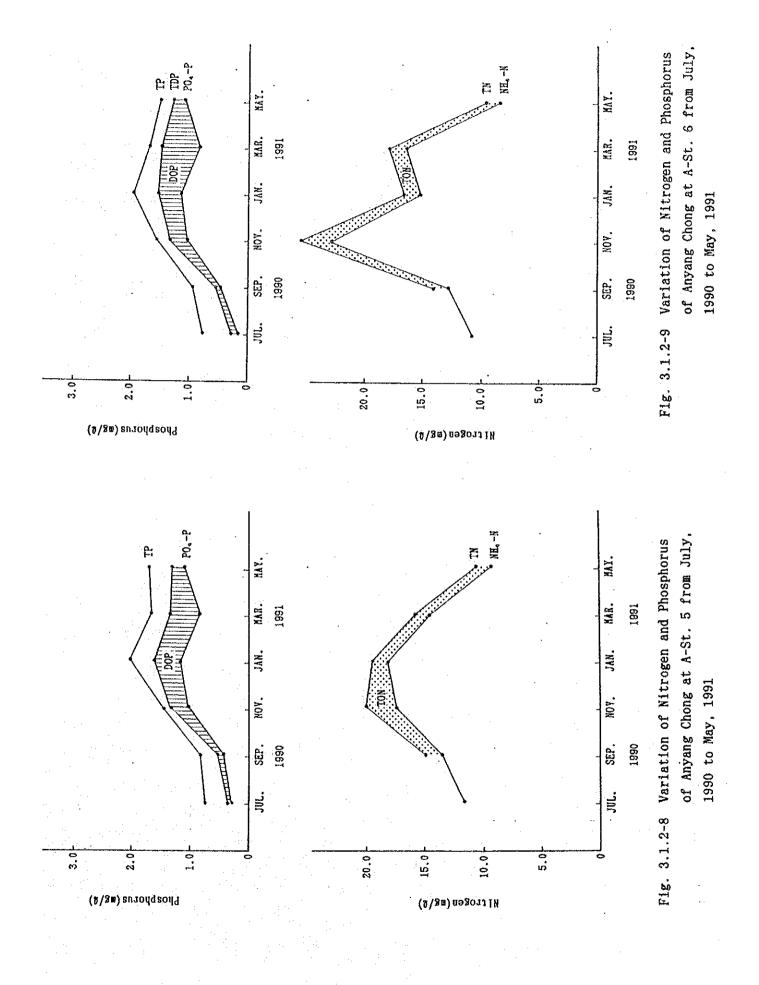
 0.006
 2.00
 0.378
 0.307
 12.5
 11.6
 11.9
 5.8
 0.23
 0.38
 22.7
 2.1 20.19 1.72 0.4 2.94 0.69 ND Mean 37.9 47 25 SD ND 19.8 15 2 St. 7. March 5-6, 1991 DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Sulfide MBAS SS Se (mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l)(mg/l) DBOD COD DCOD Sulfide MBAS SS Settleable matter Gauge Item (ng/l) (%) (cm)
 0.022
 17.49
 2.086
 0.985
 92.6
 66.8
 44.2

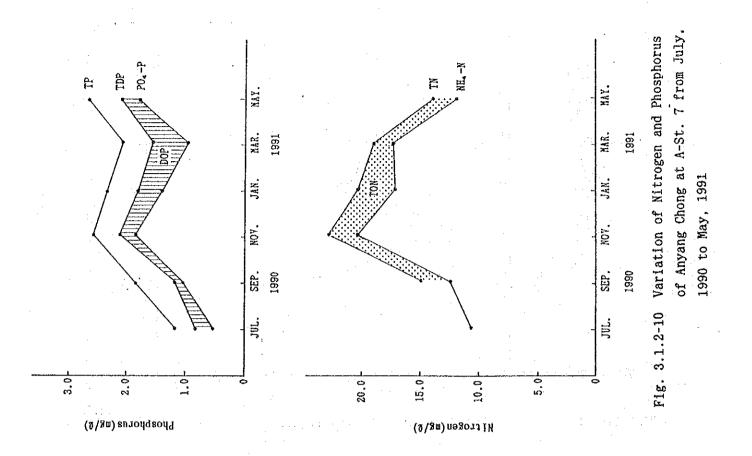

 0.004
 1.17
 0.510
 0.220
 7.2
 13.0
 3.3

 33.8
 4.55
 2.75
 51.5


 2.7
 0.53
 0.76
 12.1
 Bean 6.0 19.05 1.53 NÐ 66.8 44.2 9 1.0 1.25 0.42 ND SD 8 8.1 St. 7, May 31-June 1, 1991 DBOD COD DO TN TON NO3-N NO2-N NH4-N TP PO4-P BOD DBOD COD DCOD Solfide MBAS SS (mg/i) (mg/l) (DCOD Sulfide MBAS SS Settleable matter Gauge Item (mg/1) (%) (cm) 0.4 13.79 2.02 Mean
 4.82
 2.13


 0.13
 1.08
 39.0 36.2 29.2 19 62.0 SD 7.4 8.3 5.8 5.4 38.7 18.5 10 2


П -28


II - 2 9

11-31

TN concentrations were very high at all stations throughout the sampling period (6.80-25.70 mg/l). These values range from 1/2 to 1/5 of the TN concentrations usually found in raw sewage in Japan. The higher values are almost of the same concentration as that found in the sewage in the intercepting pipe (18.8-2-.1 mg/l) in Seoul (Figs. 3.1.2-4-10).

The TN distribution pattern curve showed that the lower values occurred in July or September and the highest in November, followed by the abrupt or gradual drop of values to reach their lowest concentration in May. At A-St.3, after the construction in Torim Chong, TN concentrations maintained low values.

TON concentrations generally showed very low values (0.69-2.91 mg/l) at all stations, although these were found slightly higher when TN was high. The percentages of TON to TN were in a significant narrow range (5-15 %)(Table 3.1.2-15) at all stations throughout the sampling period.

NO3-N (0.00-0.30 mg/l) was constantly found in very low values, while NH4-N, main nitrogen part of TN (85-92 %) showed a similar variation pattern to TN (Table 3.1.2-15).

The results regarding various forms of nitrogen indicate that much of the content of the sewage gully inflows to Anyang Chong.

TP values generally showed a gradual increase (0.718-2.720 mg/l) from July to May with the exception of A-St. 3, where although small decreases were found in January and March, TP, like TN, decreased (Sept.:1.833 mg/l, May:0.750 mg/l) after the construction had been completed (Figs. 3.1.2-14-20).

TOP concentrations varied seasonally in relatively consistent values (0.341-1.061 mg/l) with the exception of A-St. 1, which showed a greater variance (0.337-1.839 mg/l).

PO₄-P concentrations ranged from 0.148-1.878 mg/l, and varied

Table 3, 1, 2-15

Each Form of Nitrogen of Anyang Chong

	÷		Jul <i>y</i> (mg/1)	(%)	Septer (ng/1)	mber (%)	No (ng/l)	venber (X)	January (mg/l)	(%)	March (mg/l)	(%)	M (mg/1	ay (%)
· .	A-St 1	TN TON NH4-N	- 12. 96		12, 30 1, 55 10, 53	13 86	20. 70 2. 91 17. 71	14	14.89 0.69 14.16	5 95	1.48	9 91	14, 17 1, 41 12, 65	10 89
	A-St. 2	TN TON NH4-N	13.01	-	13.30 1.39 11.81	10 89	19.08 2.51 16.43	13 86	16. 92 1. 06 15. 64	6 92	16.53 1.21 15.28	7 92	11. 77 0. 80 10. 97	7 93
	A-St. 3	TN TON NH4-N	- 9. 67	-	13. 70 1. 07 12. 59	8 92	16, 07 2, 30 13, 60	14 85	13, 59 2, 00 11, 19	15 82	8.36 0.90 7.43	11 89	6. 80 0. 84 5. 85	12 86
	A-St. 4	TN TON NH4-N	- 12.06	-	12.60 1.16 11.59	9 92	20, 92 2, 76 17, 90	13 86	16. 64 1. 11 15. 49	7 93	17. 17 1. 54 15. 62	- 9 91	11. 21 1. 33 9. 89	12 88
	A-St. 5	TN TON N141-N	11. 56	-	14, 80 1, 16 13, 45	8 91	19, 93 2, 54 17, 31	13 87	19. 31 1. 15 18. 14	6 94	15.62 1.21 14.39	8 92	10. 54 1. 19 9. 36	11 89
	A-St. 6	TN TON NH4–N	- 10. 84		14.00 0.97 12.76	7 91	25. 70 2. 64 22. 89	10 89	16. 62 1. 31 15. 23	8 92	18.07 1.51 16.53	8 91	9.39 1.04 8.10	11 86
	A-St. 7	TN TON NH4-N			1.54		22. 90 2. 48 20. 16	11	20. 19 1. 72 17, 65	9 87	19. 05 1. 53 17. 49	8 92	13. 79 2. 02 11. 77	15 85
n ta	1 () (:	.**			·. · ·	e statu		141				•

and the second second second second second second second second second second second second second second second

Table 3. 1. 2-16

Phosphorus of Anyang Chong

			July (mg/l)	(X)	Septemb (mg/l)				Janua (ng/1)		March (mg/l)		May (ng/l)	(\$)
et e s	Station A-St. 1	TP P04-P	0. 934 0. 525	56	0. 813 0. 476		1.656 0.934		1. 831 0. 766	42	2. 600 0. 761	29	2.035 1.310	64
	A-St. 2	TP P04-P	0. 820 0. 400	49	1. 232 0, 539	46	1. 574 0. 871	55	1. 415 0. 881	62	1. 397 0. 715	51	1. 874 1. 213	6
i.	A-St. 3	TP P04-P	1.050 0.615	59	1.833 0.807	43	1.547 1.042	66	1.518 0.900	59	1. 309 0. 241	18	0. 750 0. 409	5
101	A-St. 4	TP P04-P	0. 828 0. 148	18	0. 986 0. 468	48	1. 588 1. 161	73	1.581 1.053	67	1.667 0.914	55	1. 870 1. 383	7
·····	A-St. 5	TP P04-P	0. 718 0. 326	36	0. 803 0. 386	48	1. 461 1, 080	74	2.026 1.163	57	1. 663 0. 798	48	1.675 1.093	6
	A-St. 6	TP P04-P	0. 733 0. 168	23	0. 911 0. 476	52	1.589 1.073	68	1. 931 1. 135	59	1. 678 0. 824	49	1. 500 1. 061	7
	A-St. 7	TP P04-P	1. 283 0. 525	41	1. 872 1. 078	58		73	2. 327 1. 389	60	2. 086 1. 052	50	2. 720 1. 858	6
•	:	Mean SD	0. 626 0. 317		0. 913 0. 474								1. 440 0. 563	66. 5.

Table 3.1.2-17

Percentage of DBOD to TBOD and DCOD(Mn) to TCOD(Mn) of Anyang Chong

		July (sg/l)		Septei (mg/1)	nber (%)	Nov (ug/1)	ember (%)	January (mg/l)	(%)	March (ng/1)	(%)	 (ng/1)	ay (%)	Nean	SD
A-St. 1	TBOD DBOD TCOD (Mn) DCOD (Mn)	60. 0 29. 5		32. 1 13. 6 23. 8 18. 8	67 79	59, 8 41, 3 30, 9 25, 6	69 83	93. 1 57. 9 76. 0 51. 7	62 68	70, 9 49, 5 53, 6 44, 9	70 84	58.0 46.1 43.9 34.9	79 79	69 79	6 6
A-St. 2	TBOD DBOD TCOD (Ha) DCOD (Ha)	63.0 35.7	. *	23, 9 15, 7 34, 1 21, 7	66 64	46.6 40.2 34.1 27.9	86 82	92, 6 56, 3 68, 5 49, 9	61 73	74. 8 52. 1 56. 5 43. 0	70 76	26. 8 23. 2 29. 1 25. 5	87 88	78 80	11 5
A-St. 3	TBOD DBOD TCOD (Hn) DCOD (Hn)	106.4 36.3		51.0 32.6 29.5 22.7	64 77	39.5 33.5 45.0 33.5	85 74	53, 4 34, 6 47, 2 36, 3	65 77	16. 0 13. 6 20. 6 17. 6	85 85	11.6 8.1 10.3 9.6	70 93	78 81	9 7
A-St. 4	TBOD DBOD TCOD (Mn) DCOD (Mn)	60. 7 35. 5	ntal. By s	26.6 18.8 30.0 26.6	71 89	47. 0 25. 8 36. 4 29. 4	55 81	81. 3 63. 6 62. 2 54. 6	78 88	66. 3 54. 6 51. 3 42. 5	82 83	48. 9 39. 9 40. 5 30. 9	82 76	70 82	13 4
A-St. 5	TBOD DBOD TCOD (Mn) DCOD (Mn)	56.0 28.6	11	26. 1 15. 9 27. 2 21. 7	61 80	44. 9 43. 1 43. 4 36. 2	96 83	79. 1 59. 1 71. 3 54. 0	75 76	83. 9 68. 8 55. 3 47. 4	82 86	38. 8 32. 6 32. 0 26. 9	84 84	87 82	8 3
A-St. 6	TBOD DBOD TCOD (Mn) DCOD (Mn)	50. 2 33. 3	:	27. 2 11. 8 24. 4 20. 9	43 86	38. 9 34. 2 51. 4 44. 0	88 86	89, 7 63, 0 69, 3 58, 0	70 84	93, 9 84, 1 52, 5 45, 9	90 87	28.6 21.5 29.3 25.5	75 87	82 86	8
∧-St. 7	TBOD DBOD TCOB (Mn) DCOD (Mn)	47. 0 32. 8		27. 9 21. 0 24. 0 22. 6	75 94	51. 9 31. 1 47. 1 38. 3	60 81	53.6 42.2 67.2 56.2	79 84	92. 6 66. 8 44. 2 33. 8	72 76	48. 0 39. 0 36. 2 29. 2	81 81	70 81	9 3

 $(t, \xi_{i})_{i \in \mathbb{N}} = \{ i \in [t, t_{i}] : i \in [t, t_{i}] : i \in [t, t_{i}] \}$

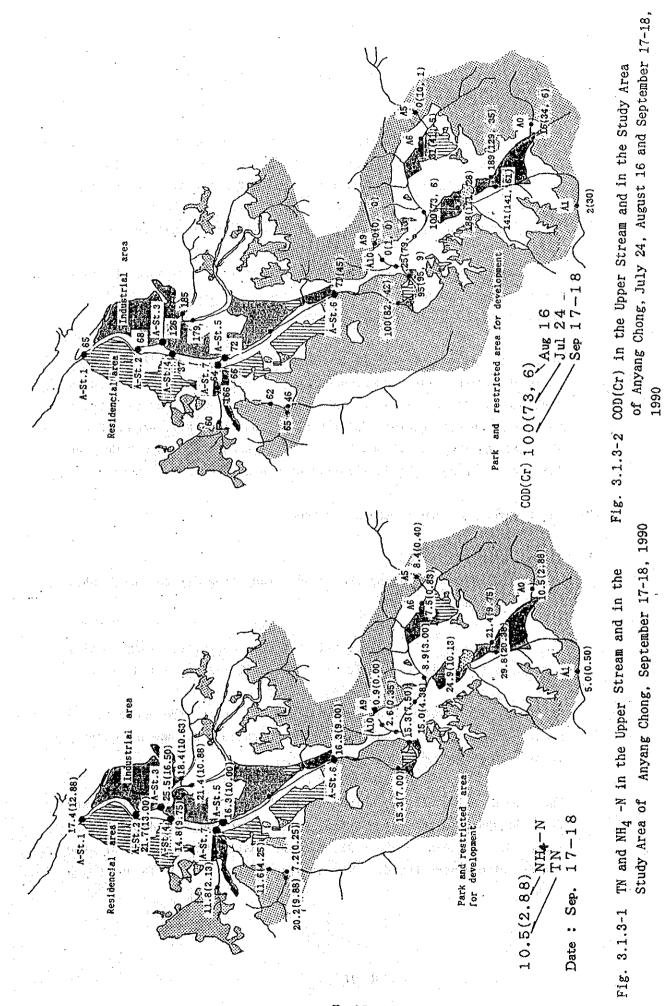
ŝ	•	÷.	de la		1	
	Table	3. 1	2-18			

			÷ .	T. I.		Santant	her :	Nor	enher	Jaquary.		March		. Na	iy
,			5	(mg/l)	(%)	(ng/l)	(X)	(ng/l)	(%)	(ng/l)	(%)	(mg/l)	(%)	(mg/1	(%)
	A-St.	1	SS SM	34. 2 31. 5	92	21. 3 7. 2	34	24. 8 15. 3	62	39. 2 13. 7	35	41. 9 19. 9	47	46.7 26.1	56
	A-St.	2	SS SM	77. 6 69. 4	89	49. 8 38. 3	77	20. 0 10. 8	54	42. 2 14. 7	35	33. 1 13. 4	40	20.4 8.0	3
÷	A-St.	3	SS SM	87. 8 82. 0	93	70, 6 60, 7	86	28. 0 19. 6	70	44. 2 20. 6	47	25. 3 13. 4	53	18.8 7.9	4
	A-St.	4	SS SM	83. 1 78. 7	95	56.6 46.8	81	26. 4 12. 0	45	42.7 17.6	41	29. 8 13. 3	45	61. 5 45. 6	6
	A-St.	5	SS SM	58, 6 52, 9	90	52. U 42. 8	82	32. 8 19. 2	59	42. 8 17. 9	42	33. 1 14. 5	44	37.4 23.2	6
	A-St.			54. 7 49. 2	90	42. i 30. 5	72	19.0 9.1	48	42.0 19.3	46	28. 8 10. 4	36	14. 0 5. 3	3
	A-St.		SS SM	50. 2 47. 1	94	36. 2 22. 7	63	48. 8 26. 7	55	79. 2 37. 9	48	51. 5 24. 2	: 47	62. 0 28. 6	4
			Mean		92		171		56 8	÷	42 5		:45		5

monthly showing a curve similar to TP. The PO₄-P concentration usually amounted to higher than half of TP concentrations (18-74 %) (Table 3.1.2-16).

The TN/TP ratio was quite low (5-15) and this shows that the proportion of domestic waste water to all sewage inflowing to Anyang Chong was high.

A great part of the organic matters were smaller than 1 um. This means that although DBOD concentrations varied with TBOD, the percentages showed considerably fixed and high values (55-96 %) at all stations throughout the sampling period. DCOD(Mn) was also found in high percentages in TCOD(Mn)(68-93%) (Table 3.1.2-17).


The percentages of settleable matter to SS at all stations on each month were in a narrow range (Table 3.1.2-18), showing decreases from September to January. These values increased again in March to May. The mean percentage of seven stations each month was 42 (January) - 92 % (September).

Concentrations of Sulfide at all stations showed increases from July to May, however, these were still in a narrow range (2.8-5.36 mg/l). Of these, A-St.3 was a lower increase than other stations (2.8-4.15 mg/l). While A-St.1 and A-St. 2 had higher ranges reflecting the pollutant accumulation down stream (3.5-5.36 mg/l at A-St. 1: 3.4-5.22 mg/l at A-St.2) (Tables 3.1.2-8-14).

A substantial amount of artificial detergents are assumed to be used in Seoul, because quite high values of MBAS were found (1.37-5.81 mg/l). Higher concentration was found downstream than upper stream, which indicates MBAS flow downstream without being decomposed.

3.1.3 Changes of Water Quality and Pollution Load from the upper to the lower stations

(1) Water quality in the upper stream

II - 37

COD(Cr), TN and NH_4 -N values covering all of Anyang Chong are shown in Figs. 3.1.3-1 and 2.

Low concentrations of COD(Cr) and TN were obtained at Sts. AO, A1, A5, A9 and A10, which are located on the small branches. It was understood then that these sites have not yet been polluted by human activities, both domestic and industrial. The original water of Anyang Chong, therefore, seems to have these water quality levels.

It is thought that the domestic waste water flows down through many towns where sewage systems were not yet improved, therefore resulting in low quality downstream.

There are many industries on sides of this river from which untreated waste water are thought to be discarded. The results mentioned above clearly show that the untreated waste waters present serious pollution problems for the river, particularly, around Stns. AN2, AN3 and AN4, and T1 and D1. On those stations both COD(Cr) and TKN were recorded to be in significantly high concentrations.

(2) Water quality change in the study area

1) Changes in short period

The results obtained during the 17-day study from May to June, 1991, is discussed here.

Discharges were quite low at all stations, however, large daily variations were found at A-St. 4 and A-St. 7 (Tables 3.1.3-1-7).

The pollution load here was calculated using the practically measured values of discharges and concentrations of water quality items on the same occasion.

The concentration of each component of the water generally increased from the upper to the lower stations. However, between A-St. 4 and A-St. 5, and A-St.5 and A-St. 6, only small differences of the concentrations were found. The high concentrations of TR and NH_A-N

Discharge (m3/s)	6. 385 7. 034 3. 636		Discharge (m3/s)	1. 958 3. 490 3. 256			Discharge (m3/s)	0. 057 0. 040 0. 095	
EC BS/cm)	88999999999999999999999999999999999999	4.0	EC D (mS/cm)		53 0.7		2 22/03 22/03	0.158.77 0.758.77	0. 7 0. 0
(I) (I) (I)	si i i i i i sortas Libiti	128	00 (1/200)	0.7	10 10 10		8 (1/2 8	2 1 1 0 1	7.0
S S S S	80000000000000000000000000000000000000	22.4	6 1	2222222	23.7	1. J.	140 140 140	21. 8 21. 8 27. 4 25. 5 5. 5	23.9
N-200 N-200	4,000,000,000 4,000,000,000,000	5 4 CU	N-20N N-20N	200240000 200141100	212 12 12		1/2m) N-20N	~~~~ 	0.5
N-44-N (1/2m)	28, 38 22, 53 22, 53 23, 53 24, 53 24, 53 24, 53 24, 53 25, 53 24, 54 24, 54, 54 24, 54, 54, 54, 54, 54, 54, 54, 54, 54, 5	21. 95 5. 64	1/2m) N-7HIN	241-50 24	22.00 4.42		NH4-N NH4-N	8897.8 899.79	6. 37 5. 25
(11) (3) (11) (3) (11) (3)	みらかのこうりょ 」 ようようにつうちょう	21	SM(IL)/ TR(IL) (%	809700 909700 1	17 16		SH(IL)/ TR(IL)/	115 4 12 1	44
S/NS SW/S	5022228119	²⁵	SW/SS	239 244 239 244 239 244 20	33. 7 10. 1		SN/SS (x)	1 38289	43 9
SM/TR (\$)	646000000 246000000	0.13	ENES Sector		2.5 0.9		NS SWS	4w <u>0</u> 0	10 4
(3)两	8584268334	11	H(IL)/	14233334	12 33		R(III)/	141 331	47 12
(1/8) [1/8]	ବ୍ୟମ୍ମର୍ମ୍ୟନ୍ୟ ୧୦୧୦୫୧୭୭ ।	0.4 0.5	WS (1/2m)	444444 0000000	r> iΩ	· .	(%) HS (1/3m) (/(11) HS (11) HS	12.00	5
	13.64404223	805 815 815	(1/2 1/2	229.8 17.7 12.0	818		WS WS	12.3	23
TR(IL)/ TR(\$)	222232223	80		388337338	12		100/ 18(3)(22 23 25 24 25 24 25 26 25 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	48
TR(IL)T (===_1)T	222.0 243.3 243.3 254.0 254.0 254.0 143.0 157.0 326.0	245. 7 106. 2	TR(IL) TR(IL)/	319.3 287.3 123.7 178.0 178.0 351.0 351.0	248. 2 78. 9		TR(IL) TR(IL)/ (mg/1) TR(%)(22, 9 238, 9 236, 0 236, 0 236, 0	136. 6 36. 7
81 1/300	910 1050 1286 543 701 742	788.8 2 256.2 1 256.2	 1)(1/200)	845 3 541 1 546 1 546 1 546 1 548 1 548 1 555 3 555 3	668 2 130		TR 1 (1/2m)	340 373 373 373 373 373 373 373 373 373 37	353 1 84
\ ` #	88222442	30 11 12	() () ()	9112312 99123129 99123129	11	II.	< G	23 147 147 147 147 147 147 147 147 147 147	25 15
tin STRS	പരംപപംഗത്ര പ്രത്തം പംഗത്തം പ്രത്തം പ്രത	7 1 ne, 1991 time.	L) / SS(IL), (c) TR(IL) ()	(ዓመሥበ ዓምፋ	10 m	May-June, 1991 He same time.	(L) / SS(LL) / (C) TR(IL) (5		
ay~Ju same SS(IL		11.7.2.1.2.1.1.2. May-June, 19. the same time.	SS(IL)			ay-Jun same	SE SE	10 10 10 1~ 1	9 1
44 Ně	49000000000000000000000000000000000000	on the 2	S	50666604	r-m	چې	SS-2/ THO		5-65
nong, A-St. measured on (1)/SS-2(\$) T	288222621	8 64 4 6 ong, A-St 2 measured on	(IL)/ SS-2()	8887782 8885782	200	A-Si ured	(IL)/ SS-2 (3	50 F 70 50 50 50 50 50 50 50 50 50 50 50 50 50	52 19
월 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.25233332400 4.2523333400	88.7 54.8 41.5 20.4 Anyang Chong, practically meas	SS-2(IL) (mg/1)	21.33.288.99 21.33.29 21.33.29 21.33.29 21.33 21	38.3 10.9	of Anyang Chong, practically meas	S-2(IL) (12/1)	19.3 20.0 37.6 10.0 10.0	21.0 9.0
of An pract SS-2 (mg/l)	123.0 46.7 75.0 75.3 75.0 75.3 75.0 75.3 75.0 75.3 75.0	88.7 41.5 of Any	SS-2 (1)	232 330 0 4 232 330 0 4 232 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 4 233 3 0 0 0 0 4 233 3 0 0 0 0 0 4 233 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	48.8 15.5	f Anys ractio	S52	20.03 20.13 20.03	44 6 21.2
sss-1 sss-1 sss/1)	267 267 272 267 267 267 267 267 267 267	129 62 11ty o	SS-1	120 128 128 128 128 128 128 128 128 128 128	3 3 72	lity o was p	SS-1 (1)(1)(5 85 138 28	52
Water Quality Discharge was COD (Mm) COD (Cr) SS-1 (ms/1) (ms/1) (ms/1)	150 150 150 150 150 150	3 123 129 3 25 62 #ater Quality Discharge was	COD (Cr SS-1 (mg/1 (mg/1))	102 102 103 103 104	114 29	Water Quality of Discharge was n	COD (Cr SS-1 SS-2 SS-2 (1) (mg/1 (mg/1) (mg/1) (mg/1	923 Z I	44 18
D (Mr) C D1 2010	20002544	43. 3 14. 3 Wa	COD (Mh.) (mg/1)	33.9 2 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	41. 7 14. 2	Dis	COD (Mn) ((mg/1)	19:08 113:4 12:4 12:4 12:4	15.3 2.9
승규는 가슴 물건 물	Sir 5 Sir 5 00 2	S C S	0	ູ້ຊະຄະ «	Mean SD	~	1.1	N1 07 64	Mean SD
-		3.1.	Item	00-00-000	207	. 1. 3-3		3-1 May 3-1 May 3-1 May 3-1 Jun.	a e (7)
Table .		Table 3	Ct-452	25255555555555555555555555555555555555	- - 	Table 3.		A-A-Str A-Str Str Str A-A-Str A-A-Str A-A-Str A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-	
	an an Araba an An Araba an Araba Araba an Araba					* .			

II - 3 9

,

arrze 565 923	1/5) 3370 072 072	800 H H
가 다 (BSt Disc	Discharge (m3/s) 4.537 3.072	ischarg (m3/s) 2. 460 5. 051 3. 673 3. 673
బ్రహదర్దిందందం ర		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9.5	0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	88 468 1 800 83
	28. 1 0 1 1 3 3 3 3 1 0 1 1 3 1 3 1 3 1 3 1	100 HAGAZZZGRAR Zu 000 888 888 890 000 000 0000 0000000000
12000000000000000000000000000000000000	11 00 4-1-1-0 4-1 80 - 11 - 12 - 14 14 - 12 - 14 - 14 14 - 14 - 14 - 14 - 14 - 14 -	01 01 10 10 10 10 10 10 10 10 10 10 10 1
2 2112222225 5	11 3. 22 SM(LL)/ MH4-N IR(LL) (% (ag/1 25. 20 1 25. 20 6 21.05 4 4. 75	((IL) // NH4-N ((IL) // NH4-N 3 14,00 7 15,538 7 15,5557 7 15,5577 7 15,55777777777777777777777777777777777
	18 18 18 18 18 18 18 18 18 18	88 88 11 12 8 12 12 8 12 12 8 12 12 12 12 12 12 12 12 12 12 12 12 12
28	αα, μαα αα, μαα, μ	58 N 4N480-0N NN
○ 湯		XIII XIII XX XX XX XX XX XX XX XX XX XX
第一次 115 115 115 115 115 115 115 11	∞ <u>)</u> 25 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	Safety (2000) (2
38.7 38.7 38.7 38.7 38.7 38.7 5.3 38.7 5.3 38.7 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	8/ 000 3	* <u> </u>
TR(IL)/ TR(\$)/ 337 337 337 337 337 337 337 337 337 28 28 28 28 28 28 28 28 28 28 28 28 28		第111 1911年 1911 191
	81.5 BR(IL) TR (mg/1) 1 133.0 286.0 408.0 95.2 273.4	
TR TR(II) (mg/1)		
	×2 1222 8	
une, 1991 le time, 1991 (3) TR(IL) (3) TR(IL) (4 5 111 111 255 111 111 255 5 23 5 23 5 23 5 23 5 23 5 23 5 23	II sai SS SS	199 SSS(1 R(IL
SS(I TR	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. May-June. the same ti 22/SS(U)/ R(% TR(%)/ R(% TR(%)/ R(% 111 9 111 9 111 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	i e s	28 - 20 8 - 20 8 11 17 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
S (SS		71 71 71 71 71 73 73 73 74 74 73 73 73 73 73 73 73 73 73 73 73 73 73
<u>រក្រ ក្រ ស្តីស្តីស្តីម៉ីត</u> ្រ ក្	29. 3 29. 3 29. 3 29. 3 20. 0 30. 0 20. 8 20. 8 20. 8 20. 8	vang Chon Lically ≣e (II)) (55.2 (II)) (55.9 (55.9 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7
of Anyang Practical: SS-2 SS-2 SS-2 SS-2 SS-1 (ag 53, 0 44, 0 53, 0 45, 3 45,		Water Quality of Anyang Cho Discharge was practically m (200(Gr SS-1 SS-2 SS-2 (IL meg/1 (meg/1) (meg/1) - 84 68.0 56.9 - 66 77.0 56.9 - 66 77.0 55.9 - 132 45 33.3 22.7 114 55 38.0 22.0 112 39 42.0 30.7 114 55 38.0 22.7 114 55 38.0 22.7 114 55 38.0 33.3 14 15 15.7 13.7
ccharge was 1 ccharge was 1 200 (Cr SS-1 (ms/1 (ms/1)) 113 113 113 113 113 114 114 114 114 114	110 110 110 282-1 120 282 282 282 282 282 282 282 282 282 2	ality o 8 2 2 1 6 2 2 2 1 6 2 2 2 2 6 2 2 2 2 7 2 2 2 2 7 2 2 2 2 7 2 2 2 2 7 2 2 2 2 7 2 2 2 2 7 2 2 2 2 7 2 2 2 2 7 2 2 2 2 7 2 2 2 7 2 2 2 2 2 7 2 2 2 2 2 2 7 2 2 2 2 2 2 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Mater Quality Outlity Discharge was 1 0 Discharge was 1 1 Discharge was 1 <t< td=""><td></td><td>ater Qua lscharge (mg/1() mg/1() 1112 1112 1112 1112 1111 1111 1111 1</td></t<>		ater Qua lscharge (mg/1() mg/1() 1112 1112 1112 1112 1111 1111 1111 1
C00 (Mr) 11 (Mr) 11 (Mr) 12 (M		Rat Plas 23,4 3,4 3,4 3,4 3,4 3,4 3,4 1 3,4 1 3,4 1 3,4 1 3,4 1 3,4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	, NN,	
김 아이는 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table 3.1. Table 3.1. Station A-St 5-2 A-St 5-2 A-St 5-2	제
	L N4444	➡ 公共会社社社社社社

II -40

	%) (11) HI (%) /(11) HS SS/HS	· 03391433337	30				of the Poll	l 1	C00 (Mn) SS (ton/day) (ton/day) 34.08 27.18 43.12 33.42	44 44 27.6 27.6 21.25 21.25					
	₹¥3	58 4.7 56 5.9 28 11.8 28 11.8 16 16 9 47 2.2 43 5.0 43 5.0	41 15 5				Mean Value	during the birvey reriod from Movember, 1994, to May, 1991		3 3.45 5 16.28 5 22.07 22.07					
· .	(1) (11) SM (11) / (1/)	6 0 1 2 2 2 4 2 6 0 1 2 2 2 4 2 6 0 4 4 7 7 7 7	9 14,1 5,4	e de			. 1. 3-9		Station A-St. A-St.	A-St A-St St A-St A-St				:	
:	TR(IL)TR(IL)/ SH ((mg/1) TR(X)(mg/1)	53 24.3 29.3 29.3 29.3 29.3 24.3 24.3 24.3 24.3 24.5 24.5 24.6 5 3 24.6 5 3 24.6 5 3 24.6 5 3 24.6 5 3 24.5 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3	41 45. 14 35.				Table 3. 1. 3-9			· · ·			·. ·		•
	11 (1/2 (1/2	518 273. 7 497 184. 1 679 199. 0 633 177. 0 463 179. 0 463 179. 0 377 257. 0 377 257. 0	523 202.7 95 42.1	. •			1931	4	1	 •	1	1. ^{1.} 191			
e. 1991 Lime	/ SS(IL)/ TR(IL) (\$)	2882882	33	•		:	23-June 8,	N03-N (ton/day)	0, 96 1, 20 0, 12	1, 70 0, 54 0, 58	3.06	0.52 0.52 0.52	-0-0-0 66-0-0	0.58 0.39 0.39 0.39	0. 15 0. 03 02
7, May-Jun the same	(IL)/-SS-2/-SS (IL)/-SS (IL)/ SS-2 (\$ TR (\$ TR (\$) TR (IL) (\$)-	12 12 12 12 12 12 12 12 12 12 12 12 12 1	22 11 4	:	•	· .	in Short Period, May 23-June 8,	NB4-N (ton/day)	3. 12 2. 90 0. 55	3.15 2.41	10. 51	98 98 1, 17 1, 33 1, 33	14.85 6.07 0.04	66 6 06 7 09 0 09 0 09 0 00 0 00 0 00 0 00 0 00	11.50 8.90 0.10
ng, A-St. easured on		*******	69 15	· · ·	. •	• • • • •	n Short Pe	rR n/day)	162.8 141.8 13.3	137.6 1.6 112.7	577.3	338.6 231.7 235.8 235.8 235.8	366.3 168.4 1.2	178.4 187.3 200.1 1.4	283.2 231.0 1.4
Anyang Cho Actically m	-2 SS-2(IL) c/1) (mg/1)		5 75.4				lag Chong i	(ton/day)	26.8	11.5 0.18 9.5	74	27.1 29.4 11.5	34.1 12.0 0.29	2005 1111 10	28. 3 76. 7 0. 38
Water Quality of Anyang Chong, A-St. 7, May-June, 1991 Discharge was practically measured on the same time.	0D(Cr SS-1 SS-2 SS-2(1 (mg/1(mg/1)(mg/1)(mg/1	108 90.0 109 89.0 300 262.0 269 256.7 70 559.3 79 559.3 7000000000000000000000000000000000000	158 125. 5 85 86. 6	 			ad of Anyn ctual meae	COD (NH) BOD SS (ton/day) (ton/day) (ton/day)	21.5 21.9 21.9	20.9 0.07 11.9	43.7	27.7 11.0 5.9 5.9	28.3 7.1	13.8 11.5 14.3 0.2	27.9 24.0 0.04
Water (Dischar	COD (Mn) COD (Cr S (mg/1) (mg/1)	58.88 59.55 80.22 88.22 354 56 125 91 125 91 125 91 125 91 125 91 125 91 125 91 125 91 125 91 125 91 125 91 125 91 125 91 125 92 125 94 125 94 125 94 55 95 55 95 55 95 55 55 55 55 55 55 55	57.7 216 16.7 126				Pollution Load of Anymag Chong in S Discharge: Actual messurement velue	COD (Mm) (ton/day)	5 15.2 6 12.1 7 1.6	2 10.4 3 0.1 7.7	28.2	21.2 15.1 3.6 3.6	21. 1 8. 8 0. 05	013755 013755	18.6 13.8 0.14
Table 3.1.3-7	l ten Date	22 Jun 23 10 23 13	Nean Rean				Table 3.1.3-8 P		SI A-St. SI A-St. A-St.	91 A-St. A-St. A-St.	'91 A-St 1	91 A-St 5 A-St 5 A-St 6 A-St 6 A-St 7	'91 A-St 1 A-St 2 A-St 3	'91 A-St 4 A-St 5 A-St 6 A-St 7	91 A-St 1 A-St 2 A-St 3
Table 3	Station	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		. *			Table 3		May 23,	May 24,	May 25,	May 29.	Kay 30,	June 7,	June 8,

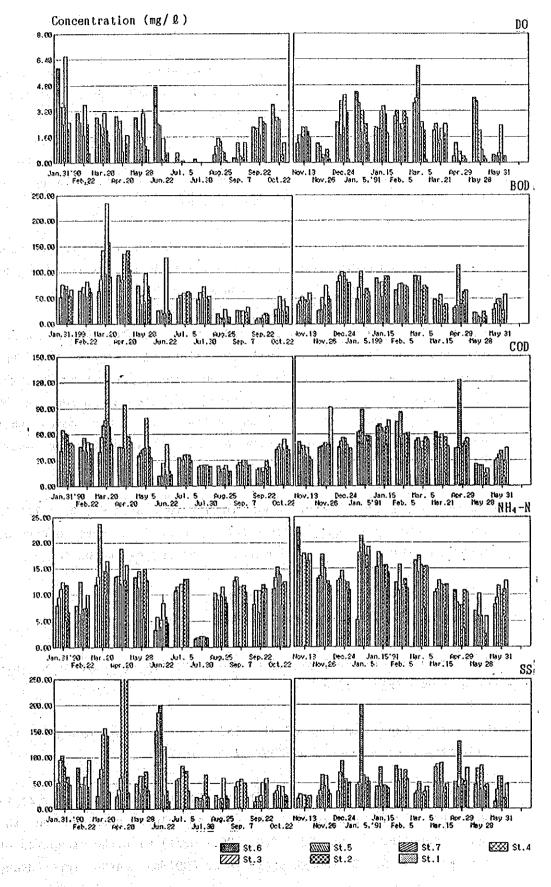
.

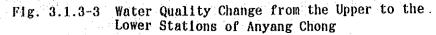
were particularly found at A-St. 7. On the other hand, the all components of the water at A-St. 3 were observed in considerably lower values. This is in spite of both stations having the same conditions in terms of locations; on the mouth of small branches.

It is hard to discuss consistently from A-St. 6 to A-St. 1 including A-St. 7 and A-St. 3, for water quality results were obtained on the different dates and discharges varied every day. Therefore, only the pollution load calculated on each sampling date at several stations are discussed, here (Table 3.1.3-8).

There seemed an underground stream between A-St. 6 and A-St. 5, and A-St. 5 and A-St. 4, therefore, no differences of load between those stations were found. It is believed that during this time there was no additional load from side-inflow, or if any it was significantly small. Pollution load at A-St. 1 was constantly accumulated, and it was found in greater values than at A-St. 2.

Discharges at A-St. 3 and A-St. 7 were so small that the contributions of their pollution load to the total were negligible, in spite of the concentrations were quite high.


It became obvious that the survey of changes on water quality and pollution load from upper to lower streams should be conducted on the same dates and same time.


2) Changes during this survey period

COD(Mn) concentration tended to increase from the upper to the lower stations until May, 1990. However, results were not clear after that. According to the remarkably high COD(Mn) concentrations at A-St. 3 from January to May, 1990, it was believed that Torim Chong was seriously polluted before the sewer pipe construction. On the other hand, high COD(Mn) concentrations were found on many cases at A-St. 7 in 1991, which indicated it is progressing the pollution on Kaehwa Chong (Fig. 3.1.3-3).

The changes on BOD and SS showed similar patterns to COD(Mn). There

II - 4 2 🗄

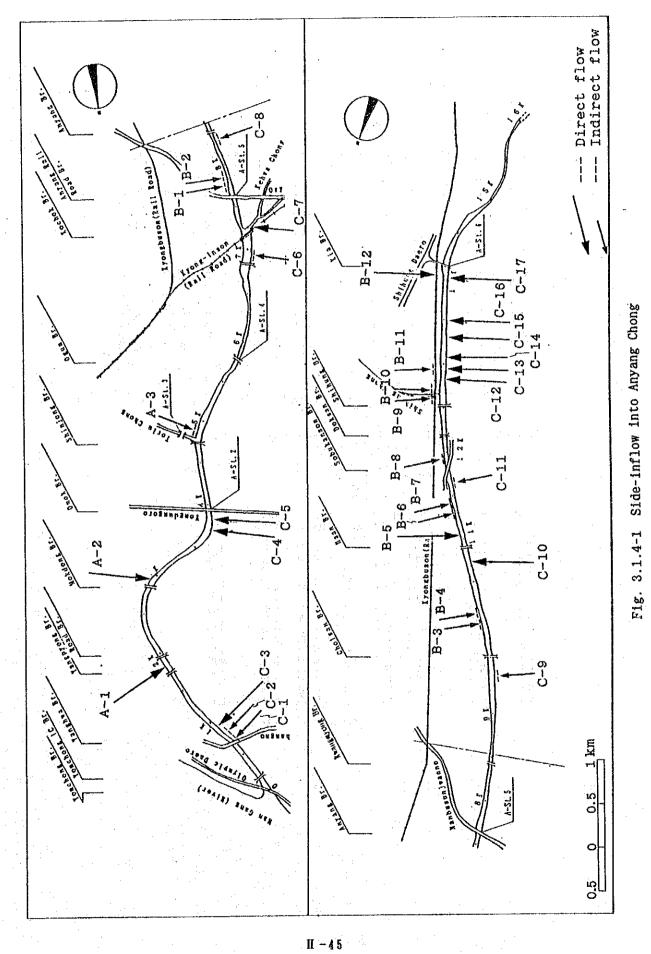
was no observed changes in NH_4 -N concentrations. NH_4 -N was also higher at A-St. 7 than at any other station after October, 1990. Table 3.1.3-9 shows the mean values from November, 1990, to May, 1991, of the pollution load of each station. During this time, the water levels were recorded by an automatic water level recorder, then the discharges were estimated more accurately than using the all values of gauge throughout the sampling period.

The load at A-St. 5 was lower than at A-St. 6 due to the underground stream between those stations. At A-St. 4 the load was increased by additional loads from side-inflow and Kaehwa Chong.

The variance of pollution load at A-St. 3 was greater than at other stations, and the values of load were relatively higher than the results obtained during the short period survey. For it was thought that this calculation also contained the concentration values before sewer pipe construction completion. It is considered that the present value is the same level of that obtained from the short period survey.

The pollution load at A-St. 1 was smaller than at A-St. 2. It is supposed that the back water effect by Hang Gang gave error on discharge values, and it was underestimated during the period.

3.1.4 Side-inflow into Anyang Chong


There are many side-inflows which flow directly or indirectly into Anyang Chong (Fig. 3.1.4-1).

The surveys and samplings of side-inflows into Anyang Chong in the study area were conducted on June 14-15, 1990.

COD(Mn) of the water from these direct side-inflows (16.0-78.2 mg/l) where relatively higher than the COD(Mn) values obtained on the regular sampling on June 22 (12.0 - 26.7 mg/l) with the exception of 48.1 mg/l at St. 3, though there is no COD(Mn) datum for Anyang

· 是一般的问题,我们就是我们的问题。

化学学说 网络小麦树香油

.

Table 3, 1, 4~1

Water Quality of Side-inflow into Anyang Chong

Date of survey: June 14-15, 1990, Weather: 14- Cloudy and windy 15- Clear AT: 14-23.3°C(10:40)

-		λT: 14	1-23. 3* ((10:40)) (1987) 19				lo	ad
Itea	₩T (*C)	₽Ħ	00 (mg/1)		Turbid. (mg/l)	COD (Mn) (ng/1)	SS (mg/1)	Discharge (m3/s)	COD (Mn) (t/day)	SS
Station A-1# A-2"	22. 6 22. 4	47 51	4.3 2.5	0. 8 0. 7		78. 2 50. 8	118 71	0. 977	4. 288	5. 993
8-5 8-12	24. 6 21. 1	6.7 7.0	0. 0 1. 7	-	-	45. 4 60. 1	40 126	0. 499 0. 008	1. 957 0. 042	6. 765 0. 452
C-3 C-4"	21. 0 24. 0	79 79		0.4 0.8		36. 7 39. 4	51 56	0.001	0.003	0. 014 -
C-5" C-7	22. 8 20. 7	7.5	0.2	0.7		47.4 49.8 24.0	53 62 25	0. 935 0. 116	4. 023 0. 241	21.551 0.520
C-10 C-12 C-13	18. 2 20. 6 20. 4	7.3 7.3 6.9	3.2 0.8 1.0	0.7 0.8 0.8		24.0 54.8 56.1	69 63	0.002 0.029	0.009 0.141	0.056 0.765
C-14 C-15	18.9 25.6	7.2	2.4 6.9	0.9		32. 1 16. 0 69. 5	107 30 125	0.002 0.008 0.002	0.006 0.011 0.012	0.051 0.029 0.130
C-16 C-17	18, 5 22, 5	7.4 7.7	1. 1 1. 2		-	34.7	28		0. 977	2. 364

Total (t/day) 11.71

38.69

Total(t ": Pumping Station #: Sewerage pype was under construction, therefore, the sewere was drained to Anyang Chong.

Table 3.1.4-2

.

Quality of Water from the Intercepting Sewer Installated on the Riverbed of Anyang Chong Date of survey: June 14-15, 1990 Weather: 14-Cloudy and windy 15-Clear

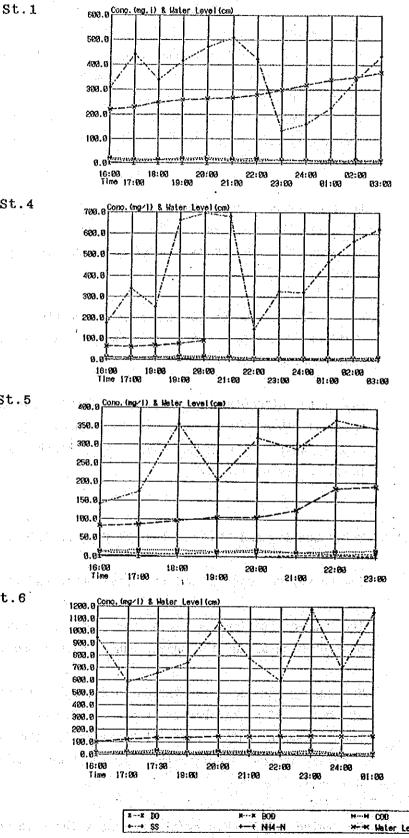
		AT:	23. 3° Ĉ (10	:40)		Lo	he	
Item	₩T (*C)	pHi D((sg/			Discharge (m3/s)		SS (t/day)	
Station B-1 B-2 B-3 B-4 B-6 B-7 B-8 B-9 B-10 B-11 C-1 C-2 C-6	21.5 21.5 20.1 20.0 19.7 19.7 22.6 19.7 19.7 19.8 18.5 20.8 21.9	6.8 6.8 5.8 5.8 7.4 7.4 6.7 7.4 7.4 7.4 7.3 7.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93 116 77 102 70 50 78 63 63 94 64 102 63	0. 248 0. 146 0. 253 0. 243 0. 166 0. 164 0. 011 0. 270 0. 919 0. 209 0. 005 0. 004 0. 416	1. 17 0. 72 1. 23 1. 23 0. 67 1. 14 0. 05 1. 00 3. 40 0. 94 0. 02 1. 51	1. 99 1. 46 1. 68 2. 14 1. 00 0. 71 0. 07 1. 47 5. 00 1. 70 0. 03 0. 04 2. 26	
C-8 C-9 C-11	21. 4 20. 1 23. 0	7.7 (). 9 42. 1). 0 50. 1). 3 81. 5	51 51 21 Total (0. 072 0. 090 0. 095 (t/day)	0, 26 0, 39 0, 68 14, 44	0. 32 0. 40 0. 17 20. 45	
		:			11 A.	11111	the stars	

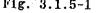
Chong water on the same date (Tables 3.1.4-1 and 2). The total inflow load of COD(Mn) from direct side-inflow was 11.7 ton/day. Side-inflow of C-7, of which the load was 4.0 ton/day, was located between A-St. 4 and A-St. 5. This value plus the load from Kaehwa Chong, which was not estimated due to lack of discharge data, seems enough to increase the load level from A-St. 5 to the load level at A-St. 4.

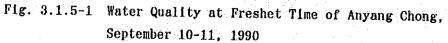
On the other hand, the SS of the water from these side-inflows (28 mg/l- 126 mg/l) was in the same range as the Anyang Chong water on June 22. The total load of SS that inflowed directly was 38.7 ton/day.

The inflowing water in larger volume originated from the pumping stations, therefore, it is necessary to take account of inflowing from pumping stations.

The load of COD(Mn) from indirect side-inflows was greater (14.4 ton/day) than direct side-inflows, however, the load of SS was almost half of the direct one. It is clear that these additional loads occurs on rainy days.


3.1.5 Water Quality and Flow-out Load at Freshet Time


The survey was carried out on September 10 and 11, 1990.


The precipitation on 10th was 255.5 mm and on the 11th it was 102.0 mm around the Anyang Junior High School.

The survey and sampling started on September 10 at 16:00, which was 10 hours after the beginning of the rainfall. The survey and the sampling were continued for 11 hours during the rain. Water level readings increased during the sampling time (Tables 3.1.5-1-4, Fig. 3.1.5-1).

DO value (1.9 - 2.8 mg/l) was almost the same or slightly higher

St.6

Table 3.1.5-1

Water Quality of Anyang Chong at Freshet Time, A-St.i September 10-11, 1990 Precipitation: 255.5 mm (10th) and 102.0 mm (11th)

• Item	WT (°C)	D0 (mg/l)	- BOD (mg/1)	COD (mg/1)	SS (øg/l)	NH4-N (øg/1)	Coli- form (MPN/100ml)	Gauge (cn)	Discharge (m3/s)
Time									
16:00	24, 2	0.6	15.7	22.0	309.7	3. 92	420	220	212.880
17:00	24.1	0.5	8.4	15, 5	442.7	2.97	560	230	228. 376
18:00	23.8	0.4	12.9	15.1	339.0	2. 92	480	250	260. 629
19:00	23.8	1.0	12.3	18.6	415.9	2. 22	620	260	277, 387
20:00	23.2	1.0	14.5	21.6	472.5	2.35	980	265	285. 923
21:00	23.1	1.6	11.4	17.3	508.4	2. 21	820	268	291.096
22:00	22. 2	3.1	11.5	18.6	425.0	1.48	750	280	312.164
23:00	21.8	3.0	15.0	12.9	135.1	2.08	720	300	348, 624
24:00	22.0	3.0	12.6	12.5	159.7	1.73	680	320	386. 766
01:00	21.8	2.7	7.5	12.6	226.4	1.60	650	340	426. 591
02:00	21.6	3.3	14.6	11.7	339.3	1.43	620	350	447.135
03:00	21. 3	2.6	5.7	12.1	435.8	1. 32	580	370	489. 484

Table 3.1.5-2Water Quality of Anyang Chong at Freshet Time, A-St. 4September 10-11, 1990
Precipitation: 255.5 mm (10th) and 102.0 mm (11th)

It	₩T (°C)	D0 (eg/1)	80D (mg/1)	СОD (шg/1)	SS (ag/1)	N114-N (¤g/1)	Coli- form (MPN/100ml)	Gauge (cm)	Discharge (@3/s)
Time 16:00	23. 6	2.3	15.6	12.9	173.4	3, 69	580	65	24, 570
17:00	23.5	2.7	9.4	13.4	338.4	2.30	680	63	23, 571
18:00 19:00	23.4	2.4 1.8	13.8 9.3	12.9 17.7	253.7 663.1	3.28	740	67 78	25, 593 31, 647
20:00	22.7	2.1	9.3	17.3		1.87	920	9 0	39.076
21:00 22:00	22.4	3.0 3.4	9.9 10.8	16.0 11.2	680. 9 147. 1	1.38	1100 980	-	A HAR A
22:00	22.0	2.8	8.1	9,1	325.1	1.44	920		
24:00 01:00	21.0 21.0	3.0 3.2	8.1 8.4	10, 4 9, 1	323.2 467.6	1.53 0.86	870 820	`. -	
02:00	20.9	2.9	9.6	12.1	566.0	1.62	760	~	
03:00	21.7	3.8	10.2	14. 2	621. 0	2.01	640	-	

Table 3.1.5-3Water Quality of Anyang Chong at Freshet Time, A-St. 5September 10-11, 1990
Precipitation: 255.5 EM (10th) and 102.0 EM (11th)

It WT (°C)	DO 80D (ag/l) (ag/l)	COD SS (mg/i) (mg/l)	NH4-N Coli- form (mg/l) (MPN/100ml)	Gauge (cm)	Discharge (m3/s)
Time 16:00 23.5 17:00 23.5	0.1 11.1 0.1 9.0	14.7 141.6 16.8 174.2	2.63 520 2.35 480	83 85	22. 273 22. 964
17:00 23.3 18:00 23.4 19:00 23.3	1.2 6.9 1.6 11.7	17.3 354.8 14.2 205.9		96 105	26. 979 30. 537
20:00 23.1 21:00 22.8	1.4 12.9 5.1 13.2	13.4 290.8	1.22 920	106 125	30. 947 48. 933
22.00 21.6 23:00 21.4	6,0 8.4 4.7 10.5	15.5 368.8 18.1 346.8		185 190	116, 535 122, 978

Table 3.1.5-4Water Quality of Anyang Chong at Freshet Time, A-St. 6September 10-11, 1990Precipitation: 255.5 mm (10th) and 102.0 mm (11th)

2		WT (*C)	00 (ag/1)	BOD (mg/1)	COD (mg/1)	SS (mg/1)		Coli- form (MPN/100ml)	Gauge (cm)	Discharge m3/s)
	Time 16:00	23.5	2.0	15.9	18.6		2.16	480	100	92.097
	17:00 17:30	23.4 24.0	3.8 4.0	12.9 18.3	21.1 34.1	583, 9 659, 3	1, 57	520 590	120 136	125. 027 152. 373
	19:00 20:00	23.2 23.0	4.3	9.6 17.1	16. 0 30. 6	743.0 1070.0	1.73 1.58	620 650	136 146	152, 373 169, 915
	21:00 22:00	22.8 22.7	4.2	17.7		779.0 602.4	1.42 1.12		148 150	173.465 177.029
	23:00 24:00	22.5	4.9 5.2	18.9 12.9		1177.0		800 740	155 157	186,001 189,613
	01:00	22.1	4.8	15.3		1158.0		720	162	198, 706

than the clear day values. However, they were 2-3 times higher at A-St. 6 (4.3 mg/).

BOD (10.2 - 11.8 mg/l) was also approximately the same as the clear day values measured in September. At St. 6, however, the values (15.1 mg/l) were about twice the clear day values. A-St. 6 is settled at the highest location in the study area on Anyang Chong. Therefore, it appeared that the water in this station was first influenced by the rain in comparison to the other stations.

COD(Mn) at all of the sampling stations was barely lower than the clear day levels (13.0 - 24.8 mg/l).

SS during the freshet were much higher than the clear day values measured in September (8-9 times at St. 1; 20-40 times at St. 4; 15-20 times at St. 5 and 40-80 times at St. 6). This is supposed to be caused by the erosion from both of the river beds.

The number of coli-forms was 30-70 % of the number measured on a clear day in September.

3.1.6 Self-purification Capacity

DO in Anyang Chong were constantly found in incredibly low values. It is clear that under these conditions any self-purification did not occur. The survey, therefore, was not conducted.

3.1.7 Correlation between Water Qualities

High positive correlation existed between BOD and COD(Mn) at all stations (r=0.574-0.840). Also high positive correlation were found between COD(Mn) and SS, COD(Mn) and NH₄-, BOD and SS, and BOD and NH₄-N at several stations (Table 3.1.7-1).

DO had correlation with NH₄-N at A-St. 2 and A-St. 4, although those

Table 3, 1, 7-1	Correlation between Water Qualities Obtain						
	from Regular Monthly Survey. Anyang Chong						
A 514 1							

A-St. 1		and the second second second second second second second second second second second second second second secon			
	DO	COD	BOD	<u>SS</u>	NIL4-N
DO	1				
COD	0.181	1			
BOD	0.165	0.609	11		
SS	0.118	0.306	0.215	ll_	
NH4-N	0.247	0.450	0.503	0.077	

<u>A-St. 2</u>	DO	COD	BOD	SS	<u>N114-N</u>
DO	1			<u> </u>	
COD	0.600	1			
BOD	0.390	0.743	1		
SS	-0,005	0.295	0.636	1	
NII4-N	0,490	0.670	0.405	0.097	

<u>A-St. 3</u>	DO	COD	BOD		NH4-N
: D0	1				<u></u>
COD	0.104	1			
BOD	0.010	0.840	1		
SS	-0.024	0.578	0.797	1	
NIIAN	0 001	0.220	0, 220	0.291	

.

		1	DO	COD	BOD	55	NH4-N
la n		DO	1				
		COD	0.359	i			
· · ·	18. A 19.	BOD	0.154	0.840	1	·	
		SS	-0.111	0.686	0.649	1	·
· .		NH4-N	0.472	0.657	0.398	0.381	<u> </u>

. . .

	<u>A-St. 5</u>		1. A.	1. A.		
•		DO	COD	BOD	55	NH4-N
	DO	1	1.1.1 1.1.1			
	COD	0.480	1		·	
	BOD	0.259	0.675	1		
an a sa ing ing ing ing ing ing ing ing ing ing	SS	0, 295	-0.096	0.007	1	
	NU4-N	0.202	0.614	0.334	-0.248	<u> </u>

and the state of the second		DO	COD	BOD	SS.	. NI
a state of the state of the state	DO	1				
	COD	0.179	1		The second	
	BOD	0.246	0.574	1		
ing an en transfer	SS	0.383	0.008	-0.012	1	İ
	NH4-N	-0.194	0.464	0,360	-0.352	

A-St. 7			a far a	. Jang <u>Agan</u>	
	DO	COD	BOD	SS	N114-N
DO	1				
COD	0.096	1			
BOD	0.323	0.764	1		
SS	. 0. 136	0.542	0.374	1	· · · · · · · · · · · · · · · · · · ·
NII4-N	0.308	0.421	0.538	0.097	1

11-51

were not so high (r=0.490 and 0.472).

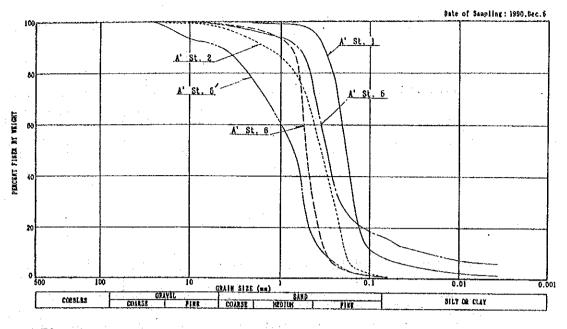
3.1.8 Sediment Quality

The surveys and the samplings were done on December 5, 1990.

Due to heavy rain and flood in Seoul, in September, 1990, it was thought that the river bottom was not representing the ordinary condition.

(1) Particle-size distribution

Particle-size distributions showed that this river bed were mainly composed of sand (smaller than 4.76 mm) (Table 3.1.8-1, Fig. 3.1.8-1). However, all particles at A-St. 1 were smaller than medium sized sand (2.0 mm >), which led the distribution on the smallest particle side of all stations. Unlike the other stations, smaller than 0.074 mm particles (silt and clay) were found at A-St. 5 making up 16 % of this total composition. At A-St. 5', particles ranged from silt to coarse gravel (0.005-73.5 mm), which was composed mainly of sand.


(2) Chemical content

Chemical content of Anyang Chong sediment was shown in Table 3.1.8-2.

Almost the same items of this river sediment were analyzed twice at 43 stations in 1987. Table 3.1.8-3 shows the values obtained from 14 stations which were located within the same area as this time. CN, As, Cr(6+) and Pb in 1987 were higher, while Cd in 1987 was only slightly higher than those observed this time.

Organic-P was found only at A-St. 5', which was little higher than those in 1987.

11:-52

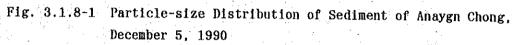


Table 3.1.8-1 Particle-size Distribution of Sediment of Anyang Chong (Accumulated Percent in Weight)

		÷	C	lassification			
	Gravel			Sand		Silt	Clay
Size (ma)	Coarse 73. 5-18, 38	Fine 18. 38-4. 76	Coarse 4. 76-2. 00	Medium 2.00-0.42	Fine 0, 42-0. 074	0. 074-0. 005	0. 005>
Station A-St. 1 A-St. 2 A-St. 5 A-St. 5' A-St. 6	100. 0	100, 0 100, 0 98, 5 100, 0	98. 0 99. 0 90. 5 99. 5	100. 0 92. 5 91. 5 76. 0 97. 5	95.5 60.0 73.0 15.5 28.0	8.0 1.0 16.5 0.5 0.5	1.5 0.0 1.5 0.0 0.0
	,	•	· · ·	• .	· · · · · · · · · · · ·		: :
		·					

Table 3.1.8-2 River Sediment Quality of Anyang Chong, December 5, 1990

· · · · · · · · · · · · · · · · · · ·			Org-P		
Iten CN As	Tilg Cr (6+) Cd	Pb Sulfide	PCB Malathion PAP	DL IL	
(ng/kg) (ng/kg)	(mg/kg) (mg/kg) (mg/kg)	(eg/kg) (eg/kg)	(mg/kg) (mg/kg) (mg/kg)	(%) (%))
Station					
A-St, 1 0.193 0.068	0.012 ND 0.167	1.730 5.68	ND ND ND	39.6 42.	. 1
A-St. 2 0.136 0.100	0.035 ND 0.162	1,400 5.46	1.102 ND ND	36.2 37.	. 9
A-St. 5 0.466 0.133		2.100 5.57	1.881 ND ND	41.2 44.	. 5
	0.037 ND 0.150	0.240 6.01	4.038 0.090 0.108	25.6 27.	. 0
	0.025 ND 0.150	1. 187 6. 23	1,585 ND ND	28.9 29.	

 Table 3.1.8-3
 River Sediment Quality of Anyang Chong measured in 1987

 14 out of 43 results, which located in the same area as this time, were adopted.

Ites		As (ag/kg)		Cr (6+)		Pb (eg/kg)	Org-P
	(VH0/ 10/	(48/16/	(40/140/	(************	(#6/ 1/0)	1-07-007
Nin.	1.3	0.1	0,006	1.8	0, 23	5.11	0.988
Kax.	2. 9	6. 5	0,024	7.1	0. 91	12.42	0. 169
¥e an	1.9	3.5	0.013	3.6	0.55	8.64	0. 125

Table 3.1.8-4	Macro-benthos Appeared in Sediemnt of Anyang Chong (December 5, 1990)						
Species	Station	A-St.	1	A-St. 2	A-St. 5	A-St. 5'	A-St. 6
Class Oligocha Order Haplot Family Tub Limnedri	axida			1	5		
Class Insecta Order Dipters Family Phy Phycoda J	codidae			2	· · · ·		
Total species (Total individu	number/m2 al number/m2		0	2 3	1 5	0 0	0 0
Diversity Inder Biological Pol	r lution Class		0	0, 92 ps	0 ps	0	0

ps: polysaprobic

THg, on the other hand, showed almost the same values as in 1987.

Heavy metals in the sediment of several rivers near Tokyo, Japan, were quite higher (Table A-3.8-1) than those taken this time, particularly, Pb (4.3-39 mg/kg). THg, were almost the same in both results. Ignition Loss in Anyang Chong was very high compared to (27.0 - 44.5 %) those found in Japanese rivers (2.3 - 7.9 %).

The present values in Anyang Chong found lower than the past, may show that the flood still had an effect on the river bottom conditions even after three months. Or the completion of the sewage system around this river had a substantial effect of the waste water on the river bottom.

The high IL means Anyang Chong sediment has been heavily polluted organically, and even after the big flood organic pollution on the bed quickly progressed.

(3) Macro-benthos

Table 3.1.8-4 shows the species and individual numbers that appeared in the sediment samples taken from the surface. Very small numbers of both species and individuals were found only two stations (A-St. 2 and A-St. 5).

The river bed of those two stations belong to polysaprobic water areas by biological pollution classification.

II - 5 5

3.2 Yangjae Chong

3.2.1 Hourly Change of Water Quality

There were no hourly changes in the water qualities of Yangjae Chong, although some items fluctuated on several occasions.

The mean value of the results of the same analytical items as measured on the regular monthly surveys were included for discussion.

and the Article for

ant shi san

3.2.2. Seasonal Variation of Water Quality

(1) Water quality variation obtained from monthly survey

DO concentrations showed the opposite distribution pattern to that of temperature, i.e. the highest DO of each station was found in January (Y-St. 1) or February, the lowest from May to August. Generally, lower DO were observed at Y-St. 1 (3.0 -6.8 mg/l) and higher DO values at Y-St. 2 (4.7-8.4 mg/l) and Y-St. 4 (3.7-8.8. mg/l) (Tables 3.2.2-1-4) (Fig 3.2.2-1).

BOD concentrations were observed from 2.3 to 53.4 mg/l showing the curves with lower values from June to September, in the hotter months, then increased to show the peak in December or January, the colder months. This variation pattern seems to show the inverse proportion of distribution to discharge at Y-At. 1 and Y-St. 2 (Fig. 3.2.2-2). This contrary relation, however, was not found at Y-St. 3 and Y-St. 4.

COD(Mn) concentrations (5.0-48.7 mg/l) also had a similar curve to BOD. The lowest value was found in the same month as BOD, however, the peak months varied among the different stations. The monthly variances at Y-St. 4 (5.0-21.2 mg/l) was found to be smaller than at the other stations. Table 3.2.2-1

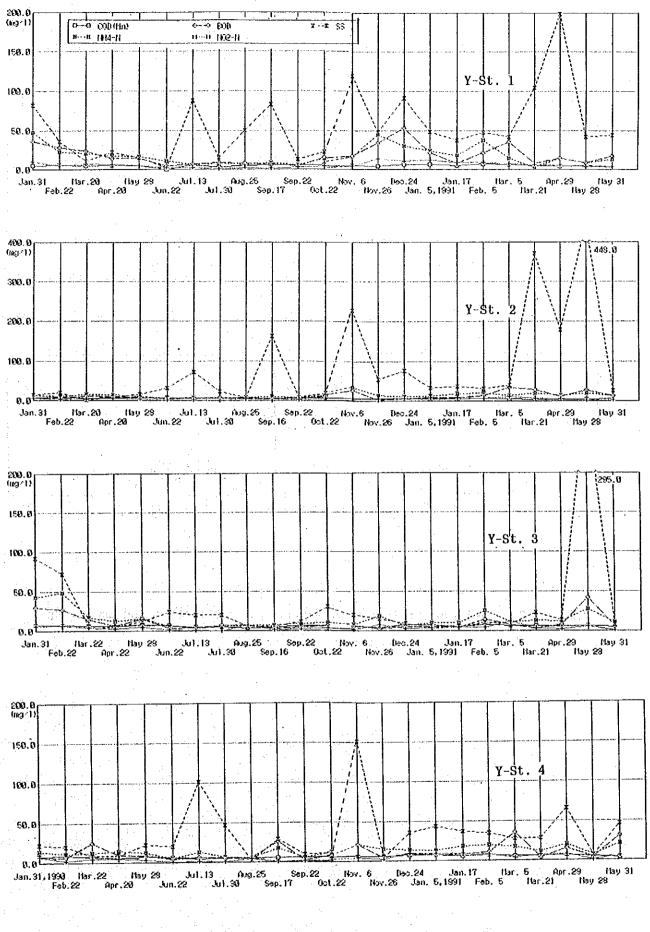
Water Quality of Yangjae Chong, Y-St. 1

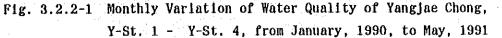
Ites	- WT p	I EC	DO	COD (Mn) BO	D SS	NH4-N	N02-N	Coli-form	CN	lig (Gauge
Date	(°C)	(BS/CD)	(eg/l)	(@g/l) (@g/	1) (mg/1)	(ag/1)	(E g/1)	(MPN/100m1)	(mg/l)	(mg/l)	(ca)
Jan, 31, 199		2 ~	5.0	47.6 35	0 82.1	10.01	0.046	· -	-	-	4
Feb. 22, 199		5 -	5.6	22.4 27	. 8 - 36. 0	4, 73	0.026	-	-	**	26
Mar. 20, 199		9 -	4.9	21. 2 23	.6 11.0	7.54	0.078	-	-	-	17
Apr. 20, 199		1 -	5.8	17.4 14	2 22.3	6. 70	0.131	· •		-	11
May 28, 199		7 -	5. 2	16.7 14	. 2 15. 2	5.27	0.416	-	-		4
Jun. 22, 199		0 0.8	3.0	11.0 4	0 2.0	2.34	-	84	-	-	40
Ju). 13, 199		8 -	6.0	6.36	9 88.4	1, 87	0.361		-	-	64
Jul. 30, 199		9 -	3, 2	8.0 8	4 15.5	0.38	0.013	72	ND	ND	30
Aug. 25, 199		9 -	5, 0		2 50.0	2.08	0.041	230	ND	ND	42
Sep. 13, 199		3 -	6.1	8.9 7	. 2 83. 2	1.07	0. 827	· -	-	-	47
Sep. 22, 199		2 -	5.5		4 12.8	2.83	0.410	560	-	-	42
Oct. 22, 199		1 -	6, 0		.4 22.5	4.46	0.424	820	-	-	38
Nov. 6, 199		3 -	4.9	16.5 17	6 120 1	4.25	0.031	-	-	-	32
Nov. 26, 199		2 -	4.2		6 48.0	13.85	ND	5400	ND	ND	33
Dec. 24 199		3 -	6.2	30.0 53	. 4 92.0	10.87	0.579	4300	<u> </u>	-	29
Jan. 5, 199		3 -	6.8	23.6 21	.6 48.7	12.17	0.099	. 3400	ND	ND	27
Jan. 17, 199		6 ~ .	6.7	20.8 13	.4 44.2	11.78	0.058			-	23
Feb. 5, 199		2 -	7.2		5 48.0	9.42	ND	5200	0.015	ND	24
Mar. 5 199		2 -	6.2		.5 41.8	7.36	0.028	-	-	-	31
Mar. 21 199		4 -	5.2	12.8 8			0.042	2800	0.003	ND	38
Apr. 29, 199		3 -	4.2						0.004	ND	28
May 28 199		2 -	5.4		.5 42.0			3500	0.014	ND	26
May 31, 199		4 -	3. 3		. 3 44.0			-	-	-	22

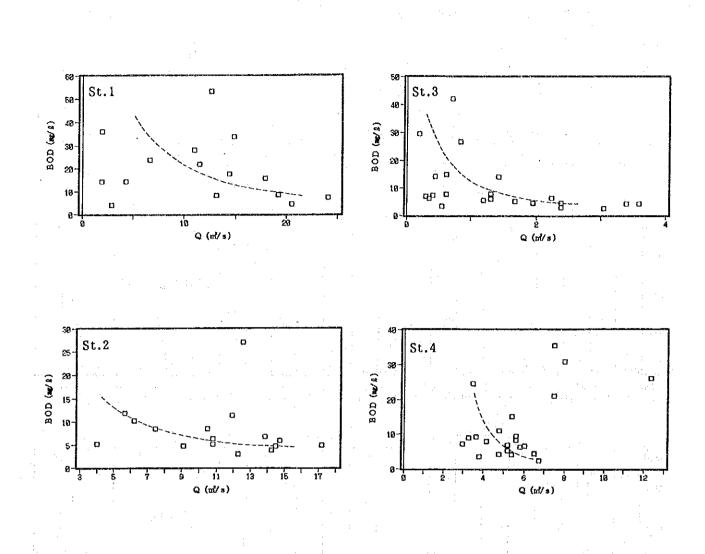
	Table	3. 2. 2-2		. :	• • •	Water	Quality	of Yar	igjae Cl	iong, Y-	St. 2				
5 - 5	Date	Item	WT (°C)	pH	EC (mS/cm)	D0 (mg/l)	COD(Mn) (mg/l)					Coli-form (MPN/100ml)		Hg (mg/l)	Gauge (cm)
	Jan. 3	1, 1990			. ••	7.9	13.0	5.2	14.0	5.09	0, 017	· · · ·	-	-	-8
		2. 1990		7.0	1. a 1	8.4	10.0	6.3	19.5	3. 51	0.024	-	∽.	-	14
	Mar. 2	0, 1990	13.0	7.1	. –	6.2	16.0	11.8	1.2	4.70	0. 080		÷	-	-2
	Apr. 2	0, 1990	22.3	7.3	· -	7.8	15.0	10.2	8.4	5.26	0.175	· · -	, ~ .	-	0
		8. 1990	22.5	7.6	- .	7.2	12.0	- 8, 4	15.6	4. 24.	0. 553	· · · · · ·	• •• *	-	4
	Jun. 2	2, 1990	18.0				5.0	4.8	32.4	1.02	. 🛥	. 120	-	-	. 9
. 4	Jul. 1	3, 1990	18.2	6.9	, - .	. 6.5	7.1	5. 9	72.1		0.290		· 🚽	-	24
	Jul. 3	0. 1990	27. Ż	7.0	-	6.8	64				0. 036			ND	22
		5 1990			- -	6.7	5 8.0	4.9	7.2	6. 02	0. 057	330	ND.	ND	30
	Sep. 1	3, 1990	19.2	7.1	.	6.3	10.0	4.7	163.2	0. 16	0.068	2 - 1 -	· . - -	-	24
	Sep. 2	2. 1990	20.2	7.2		6.5	8.2	3.8			0.080	420	1 4 1	-	23
	Oct. 2	2, 1990	16. 2	7.3		7.1	13.6	- 11.3	18. 2	- 4. 36	0. 520	670	÷.	• •	17
	Nov.	6. 1990	13.1	2.2	-	5.3	34.8	27.0	227. 6	5. 191	0.049	- .	-	-	19
	Nov. 2	6, 1990	11.7	7.4		5.2				6, 35	0.092	2100	ND	ND	18
	Dec. 2	4, 1990	6. 8	7.1	-	6.8	11.4	5.1	in 76. O	7.61	0. 105	- 2800	. •		14
	Jan.	5, 1991	6.2	7.1	. - 1.	6.2	12.4	8.4	32.8		0. 092	2600	ŇÐ	ND	13
	Jan. 1	7, 1991	2. 6	. 7.6	5. - 1	6.7	20. 8	13.4		-11.78	0. 058	÷1	÷. 1	-	23
	Feb.	5, 1991	5.9	7.8	-	6.9	20.5	÷ 15. O	32. 0	7.42	TR	3800	0.020	ND	11
1	Har.	5, 1991	10, 0	je 7. 3	- 2	6.1	14.7		40.4	10. 91	0. 029	- ; ; ;		-	31
1.1	Mar. 2	1 1991	6.0	2.3		4.9	20, 0	28.5	. 371. 7	6. 98	0. 046		0.004	- ND	21
14		9, 1991		7.2		4.8	14.0	11.4	178.7	6. 16	0, 029	3200	0, 007	ND	20
		8 1991	19.4	7.8	:: <u>-</u> .	4.7	20.7	27.6	448.0	2.04	0.342	5400	0.007	ND	15
		1, 1991	20. 5		-	5.9	12.6	12.5	30. 0	3. 24	1. 720		-	-	38

II - 5 7

Table 3.2.2-3


•


•


Water Quality of Yangjae Chong, Y-St. 3

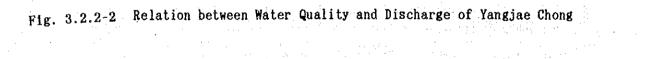

	Item	WT	pH	EC	D0	COD (陆)	BOD	SS	NH4-N		Coli-form	CN		Gauge
Date		(* C)		(mS/cm)	(sg/1)	(ng/1)	(æg/)	(rg/)	(mg/1)	(eg/1)	(MPN/100al)	(mg/i)	(ng/l)	(cm)
Jan. 31				· · · -	7.1	42.6	- 29. 5	92. 2	6. 12	0.033		· -	-	-6.
Feb. 22,	, 1990	8. 2	7.0	- ·	7.1	48.7	26. 7	72.0	6. 82	0. 028	- '	••	••	10
Mar. 20,	, 1990 -	11.0	7.0	÷ .	6.8	17.0	14. 2	6.0	4. 58	0. 067	<u> </u>	- - '	-	5
Apr. 20,	1990	20.8	71	-	6. 7	12, 0	5.3	5.1	2. 95	0.114	1 . 4	-	-	3
May 28,	1990	22. 9	7.2	-	7.5	16.0	15.0	12.0	5. 11	0.645	-	- '	-	7
Jun. 22,	1990	17.5	7.0	0.6	7.2	5.5	3.5	24. 0	1.73	· • ·	130	÷.,	-	6
Jul. 13,	1990	20.7	6. 9	<u> </u>	4.3	.5.0	4.2	20. 1	0. 72	0.053	_	-	-	29
Jul. 30	1990	27.0	6.9	-	5.3	5.6	7.4	20. 5	0.13	0.037	120	ND	ND	4
Aug. 25,	1990	22. 6	6.9	· · 🛏	3.4	7.2	7.0	6.0	3.91	0.039	310	ND	ND	2
Sep. 13,	1990	19.0	6.9	-	4.6	7.0	3. 2	5.5	1.15	0. 386	· • ·	s 🖬 (r)	-	91
Sep. 22,	1990	20. 5	7.0	-	6. 2	9.6	4.2	11.8	2. 39	0.054	610	·	-	- 28
Oct. 22,	1990	15.1	7.1		6.8	10.0	6.4	30.4	3, 67	0. 566	580		-	21
Nov. 6,	1990	13.6	7,2	1 - -	6, 2	8.1	6.0	20.3	1.61	0.054	-			- 14
Nov. 26,	1990	12.6	7.3	-	3.8	19.0	3. D	15.5	7.81	0.053	1800	ND	ND	22
Dec. 24,	1990	4.1	7.3	· • ·	7.7	6. 3	4.7	9.2	3. 12	0.079	2400		. •	- 19
Jan. 5,	1991	4.2	7.3	-	7.4	9.8	5, 1	3, 5	3.85	0.079	1900	ND	ND	17
Jan. 17,	1991	1.5	7.2	-	5.4	10.3	4.6	4.3	4. 51	0.054	1 🖵 🤉	· .	-	22
Feb. 5,	1991	5.4	7.6	-	7.8	25.1	14.1	11. 0	4.58	0.026	2100	0.003	ND	15
Bar. 5,	1991	7.9	7.3	-	6.4	11.8	8.0	8.4	12, 50	0.026	·	·		- 14
Mar. 21,	1991	5.2	7.5	-	6.3	12.7	2.5	23.0	3.29	0.032	1900	0. 003	ND	26
Apr. 29,	1991	10.0	6.9		5.9	12.0	7.8	14.0	2. 33	0.024	2900	0. 008	ND	1
May 28,	1991	21.0	7.4		6. 2	27.6	42.0	295.0	5. 66	0. 039	5400	ND	ND	8
May 31,	1991	19. 9	7.4	1 - 1	5.3	10.5	5.5	8.3	0, 65	1. 428	- <u>-</u>	-	-	13
												1		

Table 3.2.2-4	Nater	Quality	of Yang	gjae Cl	iong, Y	-st. 4				
ltea WT pH EC Date (°C) (aS/ca)	00 (mg/l)	COD (Mn) (mg/l)	80D (ng/l)	SS (ng/l)			Coll-form (MPN/100ml)			Gauge (c#)
Jan. 31, 1990 5.4 7.2 -	7.9	14. 3	7.2	22.6	7.04	0.027	· ·	-	-	. 6.
Feb. 22, 1990 6.8 5.9 -	8.8	11.1	6. 6	20.5	2.12	0.017	~ ``	, ÷.,	-	22
Mar. 20, 1990 10.0 7.2 -	7.0	12.4	24.5	9.0	. 4. 68	0. 820	÷ ;	° + 1	+	9
Apr. 20, 1990 20.5 7.3 -	6. 0	14:2	9.3	8.9	-5, 27	0. 157	-	· - :	-	10
May 28, 1990 22.4 7.0 -	7.0	12.0	9.0	22.4	- 3, 58	0.842	.		-	8.
Jun. 22, 1990 17.4 7.1 0.8	6.5	5.0	4.3	20.0	0. 94		150	· ••		16
Jul. 13, 1990 22.1 6.9 -	4.3	13.1	6.4	101.9	1.76	0.391		la e 🖬 🖓	-	21
Jul. 30, 1990 27.1 7.1 -	5.5	6.6	5.3 -	47.0	0, 59	0.030	180	ND -	ND	18
Aug. 25, 1990 24.0 7.1 -	5.3	6.0	5.8	2.0	4.30	0.047	210	ND	ND	100
Sep. 13, 1990 17.6 7.0	5.7	17.3	26. 0	28.8	0.71	0. 564		는 알 가	**	45
Sep. 22, 1990 20.6 7.2	6.0	5.8	2.3	9, 3	1.43	0.039	380	a 💶 10	-	25
Oct. 22, 1990 16, 9 7, 4 -	6.4	12.0	8.3	11.5	1.70	0.724	550	10 - 4 1	-	20
Nov. 6, 1990 13.3 7.1 -	6.0	21.0	21.0	151.5	-4.04	0.025		i 🗕 1	-	28
Nov. 26. 1990 12.8 7.3	5.7	15.0	4.5	4.5	2.50	0.134	1400	ND -	ND	24
Dec. 24, 1930 5.8 7.1 -	7.2	14.0	9.4	35.1		0.083	3500		-	20
Jan. 5, 1991 5.1 7.1 -	6.9	13.2		43.0		0.092	2500	ND	ND	18
Jan. 17. 1991 4.1 7.3 -	5.9		7.9	36.5	9.74				-	13
Feb. 5, 1991 5.2 7.5 -		19.5	: 11.0 -	34.7	7.83	ND	2800	° O. 083	ND	16
Mar. 5, 1991 10.7 7.4 -	5.8	17. 3	35.4		3. 49		-		-	28
Mar. 21, 1991 5.7 7.2 -	6.0	11.5	3.5			0.005	1500	0.005	ND	11
Apr. 29, 1991 12.0 7.2	6.2		15.0	66.0		0.068	2400		NĎ	19
May 28, 1991 18.2 7.3	5.4	6.9		6.7		0. 328	2800	ND	NĎ	19
May 31, 1991 18, 3 7, 4 -	3.7	21.2	30.8	46.4	5.77				_	30
200 01, 1001 10.0 1.1	Q. 1	£1.£	30.0	10. 1				÷		

 NH_4 -N concentrations showed the extremely great monthly variances (0.13-13.85 mg/l). These variation curves were similar to that of BOD. At Y-St. 4, in particular, The typical curve mentioned above was seen. The higher NH_4 -N indicated that this river has been polluted seriously by human waste.

SS concentrations were from 1.2 to 92.0 mg/l, often found in extremely high values (72.0-448.0 mg/l) and were assumed to be the effects of rainfall or construction work done on the riverbed. From the distribution according to the curve, it is possible to say that the lower values were found from March to October, the hotter months, while slightly higher values were obtained in the other months.

Y-St. 3 is located on the mouth of Nyoi Chong. Water qualities this station were lower and DO was higher than at any other station, indicating that Nyoi Chong was less polluted than the main river.

NO₂-N concentrations were usually found in very low values at all stations. Occasionally great values were obtained (0.000-1.720 mg/l), but usually lower than 0.820 mg/l.

Coli-form bacterial numbers increased abruptly in 1991 and is still continuing to increase (72-5400 MPN/100ml). This may indicate that the volume of the human waste in this river has recently increased.

Fortunately THg was not detected at all stations throughout the sampling period.

CN was not found at all stations until January, 1991. From February, 1991 to May, 1991, however, low concentrations were detected (0.003-0.014 mg/l). It is assumed therefore that the activities of the plating or chemical industries have increased, and waste water from these industries have discarded without any treatment.

(2) Variation of other water qualities

TN concentrations (3.89-14.99 mg/l) showed lower values in the hotter months and higher values in the colder months as found in BOD and others, peaking in the months of January or March. Although there were variations from month to month, these concentrations were quite high. Among the stations, TN at Y-St. 3 was lower than at any other station (Figs. 3.2.2-3-6, Tables 3.2.2-5-8).

TON concentrations at all stations generally varied monthly with TN (0.28-2.59 mg/l). The TON proportions to TN were constantly lower than 1/5 of TN with two exceptional cases; TIN, consequently, takes main part of TN, especially NO₃-N and NH₄-N (75-95 % of TN), because NO₂-N were constantly low. Usually, NH₄-N was mainly found in TIN (Table 3.2.2-9).

TP concentrations were 0.138-1.183 mg/l, showing a similar distribution pattern as TN at Y-St. 1 and Y-St. 2 (Figs. 3.2.2-3-6). TP at Y-St. 3, however, had a high value in November, and at Y-St. 4 it continued to increase from July. Low TP concentrations at Y-St. 3 resulted in the higher values of TN/TP (TN/TP: 15-41) than at other stations (9-26). This seems to indicat that the ratio of waste water from farms around Y-St. 3 to domestic waste water was alightly higher than at the other three stations.

and the second second second second second second second second second second second second second second secon

TDP concentrations at all stations were quite high and constantly showed similar distribution patterns to TP. This means that particulate phosphorus was constantly found in the same level of concentration throughout the survey period. The main part of TDP was inorganic phosphorus, PO-P, which showed a similar distribution pattern to TP. The percentages of PO_4 -P to TP ranged from 33 to 75 % (Table 3.2.2-10).

DBOD was also measured (2,2-25.7 mg/l). These percentages of concentration to TBOD ranged from 49-94 %, but did not differ among stations and months (Table 3.2.2-11).

					•							
		Gauge (cm) 54 3		Gauge (Cm) 47		1, 23 33 33 33 33 33 35 33 35 35 35 35 35 35				1 31 (Gauge		~ [2] [Car (Car (Car (Car)
	:	matter (%) 855		5.3 월 11 10 월 21		matter (%) 73		matter (炙) 10		aatter 883 8		matter (%) 18
		Settleable (mg/l) 76.1 52.8		Settleable (面g/1) 71.1 47.2		Settleable (mg/l) 91:7 130.9		Settleable (mg/1) 28.5 10.0		Settleable (mg/l) 19.2 13.1		Settleable (mg/l) 23.5 6.4
بہ لی		SS (mg/1) 88.4 61.0) (mg/1) 83. 2 53. 4		(120.1 150.1 163.1		SS 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11		SS 41.8 24.6		SS 44.0 11.2
ng, Y-St.		MBAS 1. 49 0. 18 0. 18		MBAS (mg/1) 1.61 0.23		MBAS (mg/1) 2. 11 0. 58		MBAS (mg/1) 1.25 0.21		組AS (mg/1) 0.18 0.18		MBAS (mg/1) 1. 15 0. 25
Quality Obtained from 24-hour Survey on Yangjae Chong.		Sulfide (mg/1) 2.6 0.6		Sulfide (mg/l) 3.37 0.26		Sulfide (mg/l) 3.02 0.56		Sulfide (mg/l) 4.12 0.23		Sulfide (mg/l) 3.92 0.12		Sulfide (mg/l) 2.63 0.32
v on Ya	÷	DCOD 		000 (■g/1) 7.0 2.8		DCOD (mg/1) 24. 3 19. 6		DC0D 18. 0 2. 7		DC00 12.0 1.6		DCOD 10.9 1.9 1.9
ır Surve		COD COD COD COD COD COD COD COD COD COD		COD 8.9 1.3	. :	COD 15.0 15.0 15.0	ת -	C00 20.8 20.8 2.7		COD 14.6 1.5		C00 13.0 2.3
1 24-hou		DB00		0800 (mg/1) 3.6 1.4		DB00 (mg/l) 16.5 14.4		DB00 (mg/1) 11.7 3.6		0800 23.5 9.7		0800 (ag/1) 2.3 2.3
ed fro		B00 6. 3 5. 4 2. 4		B00 7,2 1,5		800 17.5 11.5 10.3	4* 1-	800 13.4 1.6		B0D 35.5 2.4		800 (mg/1) 17. 3 2. 4
Obtain		P04-P (mg/1) 0.133 0.024		PO4-P (mg/1) 0.195 0.021		P04-P (mg/1) 0. 143 0. 050		P04-P (mg/l) 0.578 0.124		P04-P (mg/1) 0. 616 0. 075		P04-P (mg/1) 0.175 0.040
Quality		TDP (ag/1) 0. 168 0. 025		TDP (ag/1) 0. 220 0. 027		TDP (mg/1) 0. 235 0. 071		TDP 0.611 0.123		TDP (agg/1) 0. 796 0. 042		TDP (mg/1) 0.254 0.091
#ster		TP (mg/1) 0.259 0.065	·'	TP (mg/1) 0.377 0.087		TP (mg/1) 0.329 0.102		TP (mg/l) 0. 153		(asc/1) 0.937 0.073		TP (mg/1) 0.320 0.110
	•	NH4-N (ug/1) 1.87 0.56		N-144 (1/2011-1-0	0.19	NH4-N (mg/1) 4.25 1.10		NH4-N 11.78 0.85		NH4-N (15/1) 7.36 0.82		NH4-N (mg/1) 3.62 0.79
		NO2-N (mg/1) 0.339 0.161 0.161 0.097		NO2-N (mg/l) 0.827 1.257	•	NO2-N (mg/l) 0.031 0.013		NO2-N (mg/1) 0.058 0.010		NO2-N (mg/1) 0.028 0.010		NO2-N (mg/1) 1.451 0.458
· · ·	:	N03-N (mg/1) 1.89 0.21	1990	N03-N 1) 2.95 0.40		NO3-N (1) 0.71 0.71 0.51	16	N03-N 0.83 0.83 0.08		N03-N (1) 0.00 0.00 0.00	61	NO3-N (#2/1) 1.62 0.50
	1990	TON (1/3a)	17-18,	TON 0.50 0.50	1, November 6-7, 1990	TON (108/1) 0.51 0.17	-18, 1991	TON 1.93 0.39	1991	TON 1.19 1.24 0.24	e 1, 1991	TON 1.18 1.18 0.22
сл сл	, July 13-14	TR (1) (1) (1)	September	TN 5,35 1,56	enber 6	0. 55 0. 55 0. 55	January 17-18,	TN (mg/l) 14.44 0.59	1, March 5-6,	TN (mg/1) 8.83 0.94	31-June 1.	TN 7.87 0.56
3.2.2-5	1, Jul	00 66.0 0.4	1. Sep	0.3 0.3 0.3	1, Nov	00 (1/20 (1,9 4,0 4,0	1, Jani	00 (mg/1) 6.7 0.4		00 6.2 0.6	1. May	0. 3 0. 3 0. 3
Table	Y-St.	I tea Wean SD	Y-St.	I tea Mean SD	Y-St.	I tea Mean SD	Y-St	I tem Mean SD	Y-St.	I ten Mean SD	Y-St.	I tea Mean SD
		8 N.										

II – 6 3

.

Table 3.2.2-6 Y-S

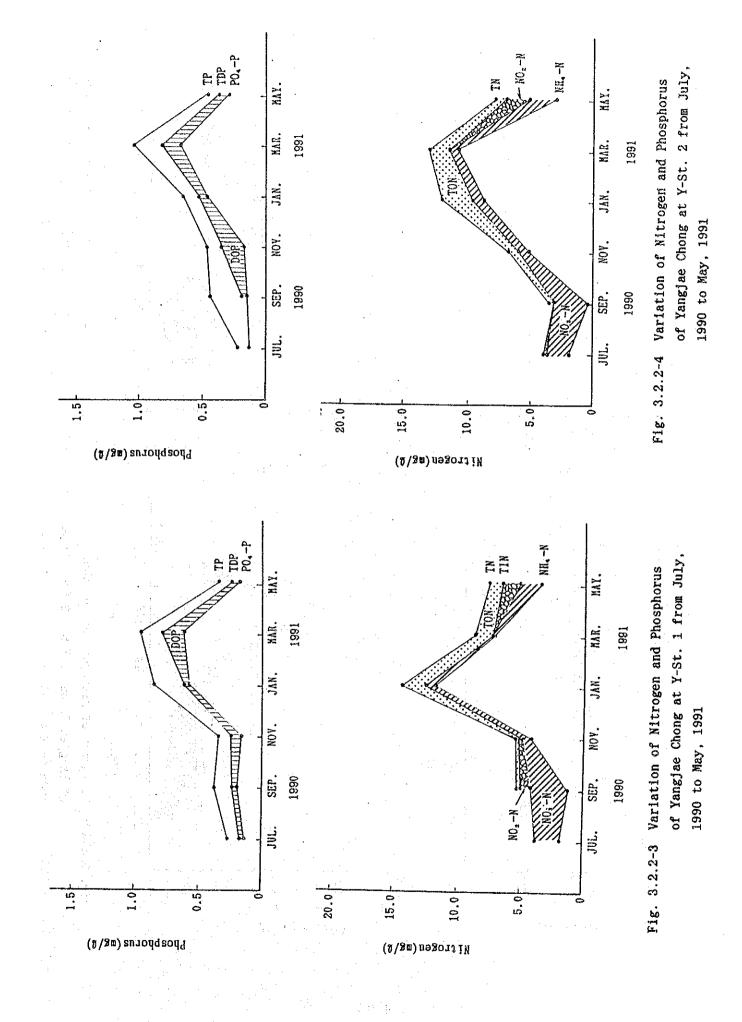
.

Water Quality Obtained from 24-hour Survey in Yangjae Chong, Y-St. 2

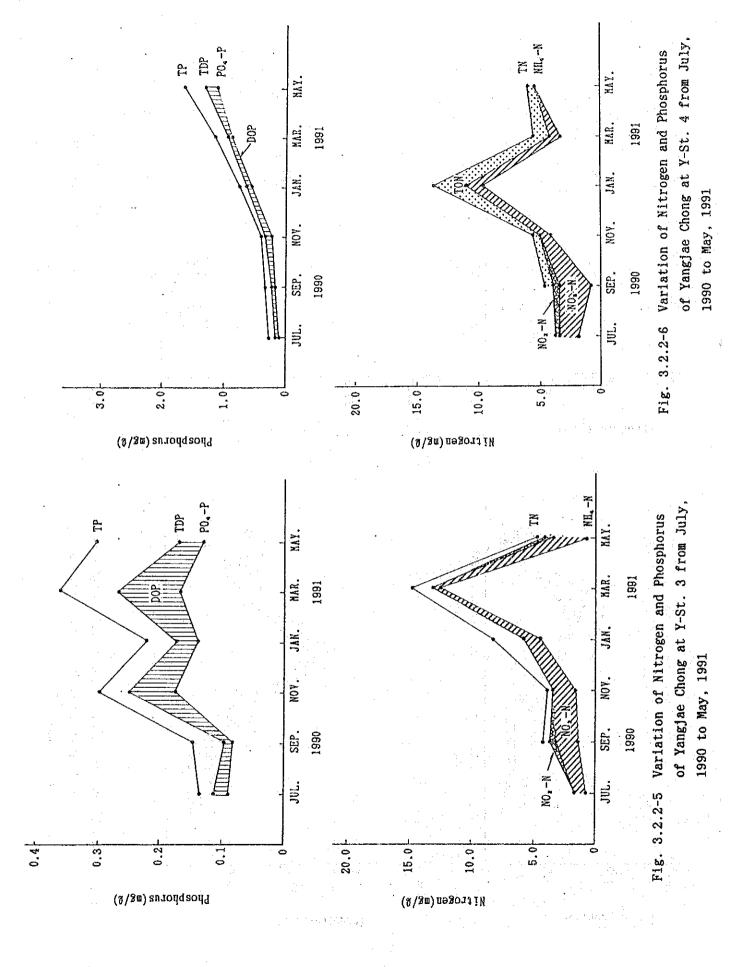
	8.A		87-1-1		83m-		8. a		83			Rame
	Gauge (cm) 24 24 24 24		Gauge (cm) 24		Gauge (CER) 19		Gauge (cm) 26		989 19	57		2 38 (Suge 38 (Suge
	103(\$) 103(\$)		matter 85 55		matter (\$) [5		12 Effe 5 Effe 5 Effe		matter (3)	47 13		uatter (%) 13
	Settleable (mg/1) 53 50		Settleable (mg/1) 120.7 75.2		Settleable (mg/l) 192.0 197.3		Settleable (mg/1) 25.5 9.8		Settleable (mg/l)	21.4		Settleable (mg/l) 19.9 11.7
) (mg/1) 72, 1 51, 2		88 13 2 88 13 13 1 88 13 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		SS (#2/1) 287.1 287.1 287.1	221.6	SS SS (元/1) 37.5 10.5		ื่ม เ	40.4 24.8	÷	(12871) 266.4
	MBAS (mg/1) 0.17 0.17		昭約5 (182/1) 0.18 0.18		MBAS (mg/1) 2.25 1.26	1.88	MBAS (mg/1) 2.09 0.51		NBAS (1/2m)	0.99 0.16		(1/201) (1/201) (1.12
	Sulfide (mg/l) 3.3 0.3		Sulfide (mg/1) 3.47 0.23		Sulfide (mg/l) 2.59 0.37		Suifide (ag/1) 4.13 0.17			3.74 0.20		Sulfide (mg/l) 2.44 0.54
	DCOD (mg/1)		DCOD (mg/1) 5.6 2.1		DC00 38. 6 27. 1		DC00 14.7 2.0		DCOD (1/20)	13.6 L.9		DC00 12 12 2.0
. •	C00 77.1 1.0		COD (mg/1) 10.0 0.3		2871) 287.8 34.8 34.8 34.8	12. 3	(ag/1) 1.5 1.5 1.5			14.7		COD 12.6 1.6
			0800 1-0 1-0		D800 22.5 11 1 22.5		0800 7.4 2.4			25.7	*	0800 11.7 3.8
	800 1.2 1.2		B00 (1/20) (1/20) (1/20) (1/20)		800 27.0 141	9 9 9 9 9 9 9	800 3.2 3.2	· .	B00 (1)	34.3	,ť	800 12.5 1.2
	P04P (mg/1) 0. 130 0. 031		P04-P (mg/1) 0. 148 0. 027		P04-P (mg/1) 0. 163 0. 078		P04-P (mg/1) 0.456 0.052	•		0. 572 0. 044		P04-P mg/1) 0. 289 0. 033
	dot (1/20)		0, 120 0, 180 0, 222		TDP- (mg/1) 0.344 0.068		10P (mg/1) 0.540 0.058			0. 828 0. 070		TDP (mg/1) 0. 367 0. 046
	TP (mg/1) 0.214 0.040		TP (mg/1) 0.449 0.129		TP (mg/1) 0.468 0.127		TP (mg/1) 0. 561 0. 079		₽ }	1. 043 0. 109		TP 0. 471 0. 054
	NH4-N (ag/1) 1.97 0.25		NH4-N 0.16 0.06		NH4-N mg/1) 5, 19 0, 93	5 5 - 5	NH4-N (152/1) 8.83 0.99			10. 90 90		NH4-N 1.08 1.08
	NO2-N (mg/1) 0.290 0.127		NO2-N (mg/1) 0.068 0.112		NO2-N (mg/1) 0. 049 0. 015		N02-N 0.052 0.052		NO2-N (1/3m)	0, 029 0, 007	11	N02-N (mg/1) 1.720 0.561
	N03-N L 68 L 68 0. 12	1990	N03-N 22 95 0. 11		NO3-N (1) 0.94 0.77	1	N03-N 1.08 0.13 0.13		(1/2m) N-20N		31	N-2385
1990	NOI 100		10N 0. 23 0. 05	-7, 1990	TON 0.53 0.13	-18, 13	TON (mg/1) 0.45 0.45	1991		0.37	31-June 1. 1991	TON 3. 18 1. 14
13-14	KI (1∕38)	mber 1	TN (15 - 10 - 11 - 12 - 12 - 12 - 12 - 12 - 12	ber 6-	0. 78 0. 70 0. 78	iry 17	12 32 12 32 1 14	1 5-6,		1.10	11-Jun	TN 8.14 0.92
. July	0.4 0.4	2. September 17-18.	00 6.3 0.5	2, November 6-7, 1990	00 [13] [1,3] [1,3]	2. January 17-18, 1391	(12 12 12 12 12 12 12	2. March 5-6,	([\] ([\] ([\])		2, May	00 7.4 0.1
Y-St 2	SD SD SD	Y-5t. 2	Item Mean SD	Y-St 2			Iten Mean SD			Kean		item Mean SD

	: .	Gauge (cm) 1	Lauge (cm) 11 1	Gauge (cm) 14 1	auge (ca) 1	auge (cm) 14 1	99 99 99 19 12
	· .	atter (%) 12	atter (%) 20	atter (5) 12 12	5000 2000 2000 2000 2000 2000 2000 2000	14 13 13 14 13 14 13 14 14 10 10 11 10 10 10 10 10 10 10 10 10 10	12 33 B ff
	e fa t	Settleable 1 (mg/l) 18.5 11.8	Settleable : (mg/1) 3.8 3.8	Settleable (mg/1) 24.7 41.1 15.5	Settleable 1 (mg/l) 3.9 3.9	Settleable (mg/1) 3.8 2.2	Settleable s (mg/1) 3.0 1.8
		SS 23.9 17.1 17.1 17.1 11.3	SS (現代1) 5.5 4.0	SS 32.2 20.3 20.3) (IISS (IISS) (IISS) (IISS) (IISS) (IISS) (IISS) (IISS) (SS 88/1) 88/1)	SS 38,1 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1
		MBAS (187/1) 0.06 0.06	MBAS 11,50 0,14 0,14	MBAS (ag/1) 0.19 0.19	HBAS (mg/1) 0.28	補BAS (mg/1) 1.39 0.26	開設 1-23 1-23 1-13 1
	¢7	Sulfide (mg/l) 3.5 0.2	Sulfide (mg/l) 0.48 0.48	Sulfide (mg/1) 2.45 0.32	Sulfide (mg/l) 4.23 0.12	Sulfide (mg/1) 3.96 0.13	Sulfide (mg/l) 0.35
	r, Y-St.	DC00 (hr)	0000 (ffn) (ms/1) 5.4 1.2	0000 (Mn) (mg/1) 13.7 15.1 10.3 10.3	DCOD (Mr.) (mg/1) 9.9 1.3	0000 (Mm) (mg/1) 10. 6 1. 3	DC0D (Mn) (mg/1) 1.0 1.0
	Water Quality Obtained from 24-bour Survey in Yangjae Chong, Y-St.	(mg/1) (mg/1) 1.1	COD (ffn) (msc/1) 7.0 0.7	(00 (Mn) (mg/1) 2.1 2.1	200 (Mr) (mg/1) . 10. 3 . 0. 5	200 (Mr) (ms/1) 11. 8 1. 2	100 (M) 10.5 11.2
	in Yang	0800 (12/3)	0500 2.2 0.6	D800 (mg/1) 5.5 5.5	D800 3.9 1.1	0000 (mg/1) 8.2 2.4	0805 (mg/1) 4.4 1.0
	urvey 1	800 4.2 1.7 1.7	800 3.2 1.2 1.2	80D 6.0 2.5	80D 4-5 0.9	800 (mg/1) 6.0 1.1 7	BOD 5.5 1.0
	-hour S	P04-P (mg/1) 0.087 0.023	P04-P 0.085 0.021 0.081 0.081	РО4-Р (шg/1) 0.174 0.129	P04-P (mg/l) 0.135 0.041	P04-P (mg/1) 0. 169 0. 051	P04-P (mg/1) 0. 134 0. 068
	fron 24	TDP (mg/1) 0.114 0.027	TDP 101 0.101 0.023 0.023 0.023	TDP (mg/1) 0. 250 0. 164	TDP (#8/1) 0. 055 0. 055	TDP 0. 267 0. 083	100 (mg/1) 0. 173 0. 068
	tained	TP (面)1) 0.138 0.039	TP 0.156 0.045 0.046 0.146 0.034	TP (ug/1) 0. 293 0. 196	(#8/1) 0.22 0.070	17 0352 0.136 0.136	TP (mg/1) 0. 309 0. 195
	lity Obi	NH4-N M82/1) 0.72 0.25	NH4-N (88/1) 1. 15 0. 84 0. 84	NH4-N (mg/1) 1.61 0.92	NH4-N 1. 67 1. 67	NH4-N (88/1) 1.38 1.38	NH4-N (mg/1) 0. 65 0. 54
	ter Qua	NO2-N (mg/1) 0.053 0.022	NO2-N NO2-N 0. 386 0. 339	NO2-K (48/1) 0.054 0.026	NO2-N (48/1) 0.054 0.006	NO2-N NO2-N 0.026 0.014	NO2-N (mg/1) 1.428 3.571
	#at	N03-N 182(1) 0.83 0.83 0.83 1590	NO3-N 1. 35 0. 35	233G*	<u>7</u> 283	N03-N 0.88/1) 0.88 0.23	£0128
	1390	NG(-1) 81	10N 0.53 0.37 0.37 0.37	TON 150 1.50 1.15 1.15 1.15 1.15 1.15	TON 2.47 0.29 1991	TON 1, 35 1, 35 1, 35 1, 199	10N 0.53 0.27
·	13-14.	TN (mg/l) (TN 4-35 0.98 0.98	TH (mg/l)(3.89 0.39 0.39 ary 17-	TN 8.30 1.71 1.71	TN (mg/l) (14, 99 1. 30 1. 30 31-June	1. 06 1. 06
	3. 2. 2-7 3. July	10 10 14 13 0.8 3. Sept.	D0 4.6 0.7 0.7 3, Nove	D0 8.2 0.3 1, Janu	00 1.3 1.3 1.3 Marci	(mg/1) 8.4 0.5 May	m DO TM TON NO3 (mag/1) (mag/1) (mag/1) (mag/1) (mag/1) n 5.3 4.76 0.53 2. n 0.6 1.06 0.27 0.
	Table Y-St	Item DO IN T (mg/l) (mg/l) (mg/l) (mg Mean 4.3 SD 0.8 Y-St 3. September 17-	I tear Mean SD Y-St	Item DO TN TON NO3 (mg/1) (mg/1) (mg/1) (mg/ Mean 6.2 3.89 0.50 1. SD 0.3 0.39 0.16 0. Y-St 3, January 17-18, 1991	Item Mean SD Y-St	item Mean SD Y-St.	I tem Mean SD

•


Ш -65

,


23 (19) 23 (19 ag(8):1-1 ~ 29 (F) aatter 33 33 atte RIB RIB 821 antier Bitter Bitter 12 <u>15 (5</u> 12 matter (g) **Batter** Settleable 1 (mg/1) 91.2 22.3 Settlezble = (mg/l) 24.0 22.4 15.5 11.1 Settleable J (mg/1) 117.3 117.3 117.3 117.3 100.2 89.2 83.4 Settleable (mg/l) 113.2 4.5 Settleable = (mg/1) 30.3 18.3 Settleable 25.3 29.0 S 151.5 79.9 79.9 79.9 79.9 79.9 79.9 SS 101.9 25.1 SS 27.4 5.9 85.4 19.5 19.5 SS 36,5 36,5 267 267 268 268 268 268 MBAS 1 - 6 2 - 49 2 - -MBAS (mg/1) 0.52 MBAS (mg/1) 0.47 1. 85 0. 85 0. 85 Sulfide (mg/l) 2.43 0.45 Sulfide (mg/1) 3.1 0.5 Sulfide (mg/1) 4.19 0.20 Sulfide (mg/l) 2.92 0.44 Sulfide (mg/1) 3.31 0.25 Sulfide (mg/1) 3.54 0.35 ÷ Y-St DC00 (Hr) (mg/1) 0C00 (Mt) (mg/1) 13. 3 4. 0 DCOD (Mn) (mg/1) 20.5 10.8 DCOD (Mn) (mg/1) 12.4 1.5 0000 15.1 3.3 9000 (Ma) (mg/1) 13.1 1.2 Quality Obtained from 24-hour Survey in Yangjae Chong. 1 3 (me/1) 21. 2 3. 5 (127.3 (127.3 127.3 3.3 COD (Mn) | (mg/1) 20.8 10.8 (mg/1) 18.0 18.0 2.3 COD (Mn) (mg/1) 13.1 10.3 080 12.8 12.8 4.4 0800 21.1 5.6 12.00 12.12 12.0 0800 2,1) 2,5 0800 25.2 25.2 1 ° 1 B00 21.0 13.9 800 25.0 25.0 800 35.4 5.7 800 807() 5.4 1.2 800 (1) 3. 3. 3 800 30.8 4.7 P04-P (ag/1) 0. 889 0. 095 P04-P (mg/1) 0.124 0.034 P04-P (182/1) 0. 202 0. 040 P04-P (mg/1) 0.232 0.101 P04-P 0.586 0.586 0.082 P04-P 1. 159 0. 588 TDP (mg/1) 0.250 0.046 0. 685 0. 102 0. 102 0.152 0.152 0.036 0.183 0.183 0.183 100 0.351 0.351 0.973 0.973 0.093 TP 0. 799 0. 073 17 0, 285 0, 050 TP (mg/1) 1.183 0.224 17 1.645 0.526 0.367 0.367 0.059 0.082 0.082 NH4-N (08/1) 0.35 0.35 NH4-N 1,76 1,76 1,76 NH4-N 18-71 1-18 NHA-N 1.49 1.49 1.49 NH4-N 1/20 0.31 NH4-N 1, 75 0, 75 Water NO2-N 0: 391 0. 186 NO2-N (mg/1) 0.564 0.690 NO2-N 0.025 0.018 NO2-N 0.055 0.010 NO2-N (186/1) 0.023 0.012 N02-1 0.000 0.000 0.000 N03-N 1-05 0.57 0.57 NO3-H 153-H 1.53 0.46 NO3-N (1/28) (1/28) (1/28) (1/28) NO3-N 1/28 0.03 NO3-N 0.10 0.10 0.10 NO3-N 0. 08 0. 09 1990 1991 1991 TN TON (mg/1) (mg/1) () 5.50 0.48 0.53 0.20) (age/1) 0.13 0.13 108 0.42 0.20 4, November 5-7, 1990 TN TON (msc/1) (msc/1) (6. 17 0. 30 0. 70 0. 16 TN TON (INS/I) (INS/I) 1990 0, 23 4. September 13-14. 1, 1 1991 i. January 17-18. 4. July 13-14, 31- June TN (mg/1) 0.58 TN (13, 75 13, 75 1, 12 11 (mg/1) 5. 63 0. 41 2 2 2 K March 5-6, 00 (12) 0.3 0.3 0 3. 2. 2-8 00 5.7 0.3 0.3 0 9 9 9 1 8 1 9 9 1 9 8 (1/3 (1/3 (1/3 (1/3) 8 Жay 4 ÷ 4 Table Y-St Itea SD Y-St Item S S Y-St ten <u>۲</u>-2 te Regione Sole Rear Y-St Item See. See Item

.

11 -66

11 -67.

Π -68

Table 3.2	. 2-9			Each form of	Nitrogen of	Yangjae Chon	g			
:		July	Septembe	r Nove	mber	January	March	h	Мау	Y
Y-SL I	TN TON NO3-N NH4-N	(mg/l) - 1.89 1.87	5.35 0.47 8 2.95 55	x) (ng/l) 5.33	(%) 9.6 13.3 79.7	14.44 1.93 13	%) (ng/1) 8.83 .4 1.19 .7 0.00 .6 7.36	(%) 13.5 0.0 83.4	(mg/l) 7.87 1.18 1.62 3.62	(%) 15.0 20.0 46.0
¥-St. 2	TN TON NO3-N NH4-N	1. 68 1. 97	2.96 85	6.70 6.1 0.53 6.5 0.94 6.6 5.19	7.8 14.0 77.5	1.08 8	13. 19 . 2 2. 25 . 8 0. 89 . 7 10. 91	17. 1 6. 7 82. 7	8. 14 3. 18 2. 28 3. 24	39. 1 28. 0 39. 8
Y-SL 3	TN TON NO3-N NH4-N	0. 89 0. 72	2.18 50	3. 89 4 0. 50 4 1. 73 5. 4 1. 61	12. 9 44. 5 41. 4		14. 99 8 2. 47 . 0 0. 88 . 3 12. 5	16. 5 5. 9 83. 4	4. 76 2. 68 2. 14 0. 65	56. 3 45. 0 13. 7
Y-St. 4	TN TON NO3-N NH4-N	1. 59 1. 76	2.85 62	5.60 0.3 0.48 0.8 1.05 0.6 4.04	8.6 18.8 72.1	1.36 9	5, 63 , 8 2, 12 , 9 0, 86 , 8 3, 49	37. 7 15. 3 62. 0	6. 17 0. 40 0. 10 5. 77	6.5 1.6 93.5

Table 3.	2. 2-10		Phosphor	us:of:Yang	jae Chong	- - 2	
	• . •	July	September	November	January	Karch	Hay
Y-St. 1	1P(mg/l)	0.259	0. 377	0. 329	0.841	0. 937	0. 320
	P04-P(mg/l	0.133	0. 195	0. 143	0.578	0. 816	0. 175
	(%)	51	52	43	69	66	55
Y-St. 2	TP(mg/l)	0, 214	0. 449	0. 468	0. 561	1. 043	0. 471
	PO4-P(mg/l	0, 13	0. 148	0. 163	0. 455	0. 672	0. 289
	(%)	61	33	35	69	64	61
Y-St. 3	TP (mg/l)	0. 138	0. 146	0. 216	0. 220	0. 362	0. 309
	PO4-P (mg/l	0. 087	0. 081	0. 145	0. 136	0. 169	0. 134
	(%)	63	55	67	62	47	4 3
Y-St. 4	TP (mg/1)	0. 286	0.367	0. 401	0. 799	1. 183	1.645
	PO4-P (mg/1	0. 124	0.202	0. 232	0. 586	0. 889	1.159
	(%)	43	55	58	73	75	70

П =69 —

• ·

Table 3.2.	2-11		B)D and COD	of Yangjae	Chong			
		July	September	November	January	March	May	Mean	SD
Y-St. 1	TBOD (mg/1) DBOD (mg/1) (%)	6. 9 -	7.2 3.6 50	17.6 16.5 94	13. 4 11. 7 87	35.5 23.5 86	17, 3 11, 5 66	16. 3 13. 4 73	9.6 6.5 15.8
· · ·	TCOD (ag/l) DCOD (ag/l) (%)	6.3	8.9 7 79	16.5 13.1 79	20. 8 17 82	14.6 12 82	13.0 10, 9 84	13. 4 12. 0 81	4.8 3.2 1.9
Y-St. 2	TBOD (ng/1) DBOD (ng/1) (%)	5.9	4. 7 2. 3 49	27. 0 22. 5 83		34. 6 25. 7 74	12.5 11.7 94	15. 7 13. 9 76	11.2 8.9 15.0
	TCOD (mg/1) DCOD (mg/1) (%)	7.1 	10. 0 6, 6 66	34. 8 28. 8 83	18. 3 14. 7 80	14. 7 13. 6 93	12.6 12.0 95	16. 3 15. 1 83	9.0 7.4 10
f-St. 3	TBOD (mg/1) DBOD (mg/1) (%)	4.2	3. 2 2. 2 69	6.0 4.0 67	3. 9	8.0 7.5 94	5. S 4. 4 80	5. 3 4. 4 79	1.5 1.7 10
	TCOD (mg/1) DCOD (mg/1) (%)	5.0	7.0 5.4 77	8.1 7.3 90	10. 3 9. 9 96		10, 5 8, 9 85	8.8 8.4 88	2.3 1.9 6
(-St. 4	TBOD(wg/l) DBOD(ag/l) (%)	5.4 -	26. 0 12. 8 49	21. 0 17. 1 81	7.9 7.2 91	35. 4 25. 2 71		21. 3 16. 7 72	10. 9 6. 3 14
	TCOD (eg/1) DCOD (eg/1) (%)	13.1	17.3 13.9 80	20.6 18.5 90	18. 0 12. 4 69	17. 3 13. 1 76	21. 2 16. 1 76	17. 9 14. 8 78	2.6 2.2 7

Table 3. 2. 2-12 Y Y

Percent of Settleable Matter to SS of Yangjae Chong

Y-St. 1	SS (ng/i) SM (ng/i) (%)	July 88.4 76.1 85	September 83.2 71.1 84	November 120, 1 91, 7 73	January 44. 2 28. 5 64	Karch 41. 8 19. 2 46	May 44.0 23.5 53
Y-St. 2	SS(mg/1)	72. 1	163. 2	227.6	37.5	40. 4	26. 4
	SH(mg/1)	63	120. 7	192	25.5	21. 4	19. 9
	(%)	83	85	68	88	53	75
Y-SL 3	SS(mg/l) SM(mg/l) (%)	20. 1 11. 3 78	5.5 3.8 62			8.4 3.8 45	8.3 3.0 36
¥-St. 4	SS(mg/l)	101. 9	28. 8	151. 5	36.5	27.4	46. 4
	SM(mg/l)	25. 1	24. 0	117. 3	25.3	13.2	30. 3
	(%)	89	80	74	69	48	65

DCOD(Mn) concentrations were obtained from 5.4-28.8 mg/l. The percentage to TCOD(Mn) was a little higher (66-96 %) than that of DBOD. High proportions of both DBOD and DCOD(Mn) indicate that the water in this river will possibly be treated biologically and efficiently.

The concentrations of settleable matter were obtained with great variance from 2.2 to 192.0 mg/l. The higher values were usually obtained from the 24-hour servys with great standad deviations. The high limit of the range was possibly 76.1 mg/l, instead of the value noticed above. The percentages to SS, however, fell within a narrow range from 45 to 89 %, showing a decrease from July to March all stations (Table 3.2.2-12). However, even when at the concentrations of both SS and settleable matters were extremely affected by the rainfall and construction work, high. the proportions fell within the range given. The percentages at Y-St. 3, however, were slightly lower than those of the other stations.

Sulfide was found in fairly narrow ranges in each station each month (Tables 3.2.2-5-8 and A-3.2.-1-24). Highest mean values (4.12-4.23 mg/l) were obtained in January, 1991, at all stations and lowest values (2.43-2.6 mg/l) in July, November and March.

Small quantities of MBAS were found (0.99 - 2.25 mg/l). These values seem to result from detergent. Concentrations higher than 0.5 mg/l cause froth on the river. It is advisable, therefore, to use

3.2.3 Changes of Water Quality and Pollution Load from the Upper to the Lower Stations

natural soap rather than detergent.

which is the proceeding of the bull of the bull

late et

COD(Cr), TN and NH_4 -N on the upper stream of the study area and in the study area of Yangjae Chong were analyzed by the JICA team using HACH Water Analyzer

(1) Water quality in the upper stream of the study area

COD(Cr) in the above Y-St. 3 was slightly higher or almost same as that of Y-St. 3. NH_4 -N was relatively higher than that of Y-St. 3 (Fig. 3.2.3-1).

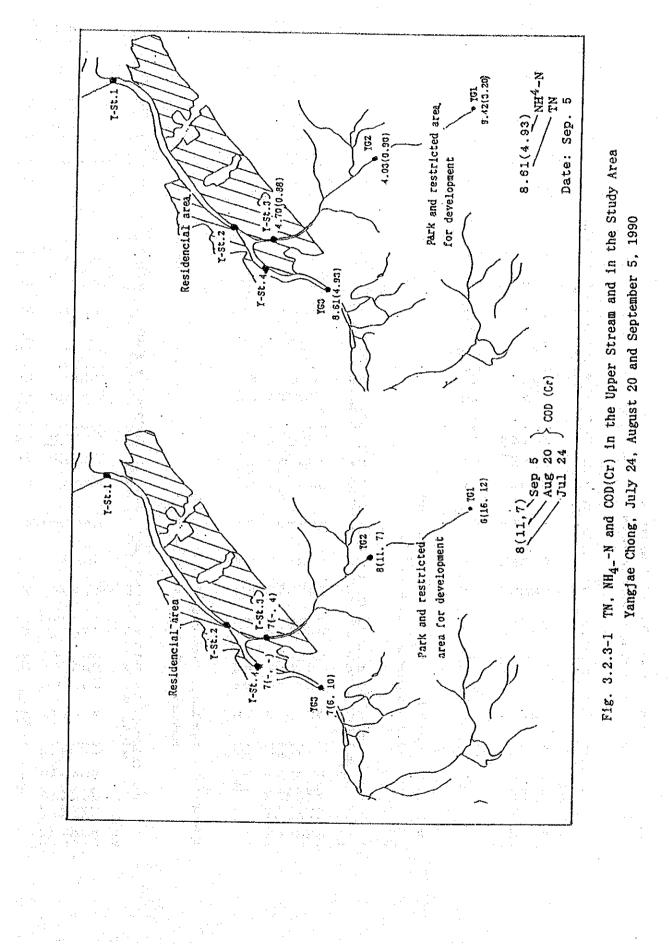
The study area which included both sides of this river, is mainly used for housing, while the area outside of the study area is mainly used for farming. It is assumed that high NH_4-N was caused by the fertilizers on these farms.

COD(Cr) at Y-St. 4 and the area above it, on the other hand, showed same level of concentrations.

and a second second second second second second second second second second second second second second second

In Yangjae Chong, extremely high purification coefficients were recorded, therefore, it is assumed that purification may have occurred between Y-St. 3 and YG1, and between Y-St. 4 and the upper stream, and brought about the lower values to these stations.

cuture period for example, or press over Marchae example, and the study area of the study and the study area of the


1) Change in short period

The results obtained from the survey conducted four times from May to June, 1991, are discussed here. Discharge values were practically measured on the same dates (Tables 3.2.3-1-4).

> Discharges at all stations showed great daily variations. It increased on the main river from the upper to the lower stations. Y-St. 3 constantly had small discharges due to the location, which is on the mouth of Nyoi Chong.

> > Y-ST. 1: 0.42-3.28 m³/s Discharge Y-St. 2: 0.73-2.91 m³/s Y-St. 3: 0.05-0.32 m³/s Y-St. 4: 0.67-1.94 m³/s

The results obtained on the 27th of May indicate that the pollution

II - 73

___ i v

	61	r	10		. A.	*** ~>					
	Discharge) (m3/s)	3. 277 1. 009 0. 519	1, 735 1, 091		Discharge (m3/s)	2. 914 1. 352 0. 715	1. 660 0. 924	. •	Discharge (<u>m</u> 3/s)	0. 318 0. 059 0. 047	0.130
	EC BS/cm	නහත ⊳ ෆ්ට්ට්ට්ට්	8 H 8 H		EC (mS/cm)	පපතිසු සං පපතිසු සං	00 18	·	EC D (mS/cm)	0,0,0,0,0 80,888,0,0,0 80,888,0,0,0,0,0,	8 10 10
	D0 (mg/1)	000 1000 1000	ຍ ເບ ເຊີເວີ		8 8	ດຕອບ ຊະຈຳວ່າ	1.3 4	•	[[20 20 20 20	ເຜດຕ ເ⊳ດສ	80 H
	() ()	16 6 15 7 23.3 23.3	21 1 4 1		k€	237.584 237.575 237.5755 237.5755 237.5755 237.5755 237.5755 237.5755 237.5755 237.5755 237.5755 237.5755 237.5755 237.57555 237.57555 237.57555 237.575555 237.5755555 237.575555555555555555555555555555555555	53.53	· · · ·	€ €	228.18.1 228.18.1 228.18.10	21.6
	NO3-N (mg/1)	6-0040 64-1010	2.8		N-50N N-20N		910 914	· · · ·	(1/8m) N-SON	പരംഗരംഗം പുറ്റുവുവുവു	2.03
	NH4-N (ag/1)	4.65 9.17 9.37 9.8	2.6		([/200) N-141N	3.45 3.95 8.17 11.3	ರಾ ೯೫ ರು ೯೫) (1/2m)) (1/2m)	52525 52561 5256 5256	0 L - 1 0
	્રજી	1122	12	÷	(IL) () (IL) (()	10,4,0011	12		(IL) (%) ((IL) (%) (1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12
• *	SS SM(IL), TR(IL)				责任				5E		• . •
	IR SM/SS (\$)	334	86.4		R SM/SS (%)	1 2238 1 1	62 8		R SW/SS (%)	89 28 28 28	32
) (%) (%)	==*''	න ආ	. · · ·	ELVIS (1 1 1 2 8 3 1	មួល		(%)	11122	21
	(11) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	25511	1		SH(IL) / SH(IL) /	, ¹²³ , 138, 148, 148, 148, 148, 148, 148, 148, 14	5		SM(IL)/ SM(%)	1 1 8738	8 8
	(1/300) (1/300) (I/300) (I/300)	មលស) ។ សូសុក្	លល ភូមិ		SK (1E) (12/1)	, 1, 4, 8 , 7, 7, 9 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	6.7 1.6	: · · ·	(1/2m) S(11)WS	001-011 10-41	2 8
		23.3 23.4 12.7	19.8 5.0	· · ·	SN (1/2m)	2473 27.25 2.5.25	36.4		SK [1/2]	35.1 22.3 22.3	23.1
2 2 2	TR(IL)/ TR(\$)	32225	262		R(IL)/ TR(S)	400 31 0 0 50 31 0 0	33		R(IL) / TR(%)	2821.95	31.0 23.5
	TR(1L) (mg/1)	22.7 35.7 69.3 205.3 205.3	86. 8 85. 2		TR(IL)TR(IL)/ (mg/l) TR(%)	15.3 140.0 190.7 190.7	112. 9 62. 5		TR(IL)TR(IL)/ (mg/l) TR(%)	20.3 33.0 179.0 157.0 157.0	80. 5 66. 9
-	11 (1/21)	205 205 219 275 275	257 41		TR 1 (mg/1) (217 217 329 322 322 1079) (257 1	298. 8 1 67. 2		TR T (mg/1) (176 215 215 284 327 1 233	239
1 1 1	SS(IL)/ TR(IL) (3)	\$8228°	30 33	Ħ	ି କରୁ ଜୁନ	6 6 6 113880 6 113880 9	27 2 29	-		828100	38
time.	S E S E	നല്യയം	<u>د</u> ه دو	une, 1991 ti∎e.	/ SS(IL) / TR(IL) (~~**(]4	ъ ч	ure, 199 ti æ e.	TR(IL)		10 5 4
Same	S(IL)/ TR(\$)	•		2. May-June. the same tim	SS(IL)	E		May-June, 1991 same time	SS(IL)/ TR(S)		- , ,
on the	SS-2/ TB(\$)	22233	21		IR (S)	22555,00	\$°	rt n	SS-2/ TR (x)	<u>ღ</u> ოშ	► ∞
្ល	(1L)/ S-2 (3)	****	52	, Y-St. ured on	(IL)/ 5-2 (3)	8992898	89	Y-St. ired on	-2(1)	73 55 4 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	57
practically measur	2(IL) 8/1) S	115.0 200 11.7 200 7 11.7 200 7 11.7 200 7 11.7 200 7 11.7 200 7 20 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 2 2 2 2	15.5	Water Quality of Yangjae Chong. Discharge was practically measu	2(II) 2(II) 2(II)	11.5 11.5 11.5 15.7 15.7 15.7 15.7 15.7	5 5 8 7	Water Quality of Yangjae Chong. Discharge was practically measu	(II) SS (1/2)		0.7
ticall	COD (Mr.) COD (Cr.) SS-1 SS-2 (11) (mg/1) (mg/1) (mg/1) (mg/1) (mg/1)	58.0 53.5 34.55 34.55 35.57 35	50. 1 10. 9	angjae ticall	COD (Mr) COD (Cr) SS-1 SS-2 (11) (mg/1) (mg/1) (mg/1) (mg/1)			Water Quality of Yangjae (Discharge was practically	C00 (Mm) C0D (Cr) SS-1 SS-2 SS-2 (IL) (mg/1) (mg/1) (mg/1) (mg/1) (
s prac	間 2017 11 12 12	488888 888888	11 20 11	y of Y s prac	い。 (1) (1) (1) (1) (1) (1) (1) (1)	41 36 45 67.3 - 48 24 59.3 77 (857.5 46 21.0	48 48 9 19 17.5	of Ya pract	1) (1) (1)	441 442 442 442 322 392 392 392 392 392 392 392 392 39	22. 15.
rse va	(£) ∑)(£	20244028	ធត	Qualit; rge wa	() () () () () () () () () () () () () (212 24 23	85	uality Se Was	r) SS- 1) (ag/		6 27 4 17
Discharge was	n) COD (n		, in or	fater ()ischar) (00 (C		ana di K	ater Q ischar	000(c	488840 8	82 51 51
	COD (M		ធ្លូ		COD ()F	1.00014001	15.6 8.1	B≊ ⊂1.	() () () () () () () () () () () () () (11.0 11.0 11.0	60-i
	l tem Date	Jun. 10 Jun. 10 Jun. 27 Jun. 26	Nean SD an	3-5		Mat 27 Jun 10 Jun 10 Jun 26 Jun 26	SU	с. - С	ltem (Date	n. 10 27 27 27 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	Mean
				. e.i.		2000000 200000	n 2 Inn An Suitean	ର ମ		3-1 May 3-2 May 3-2 May 3-2 Jun. 3-2 Jun.	
	Station	Y-254		Table 3.	Station	Y-St Y-St Y-St Y-St	· ·	Table	Station	******	
									1		

II -74

Water Quality of Yangjae Chong, Y-St. 1, May-June, 1991

Table 3.2.3-1

· _.

	8	942 9	
- -	ichary (#3/s)	L 940 L 940 L 674 L 215	0. 533
	Dis (070101~~~	
	23 23 23 23	ೆದದದರ	30
	8	, 505-50 1 505-50 1 505-50	7.5
	و ريسا ريسا	നത്.നെ – ന പ്പ്പ്പ്പ്	ເມເຫ
	s. Ni€		52
میں ایک اور ایک میں اور اور اور اور اور اور اور اور اور اور		4-14-14	~~
	N-11/200)	10.51	80 67
÷.,	() (3)	40 10 10	81
	第(IL) 第(IL)	an an tarr Tarran	1. 1.
	SH/SS SH (\$)	នានា	77
	E S	11123	23
	あ)	20 60	С. С.
·	」) 第 5 1 5 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7		10
-	HC(II) SH	25.04	7.3
1	55 (1/28 155 (1/28	0 4	70 70
	~~" ® ,		322
	TR(11 TR(4
	B(IL)	2221232	125. 5 54. 4
	TR T [7]	247 271 1 237 1 252 1	236 1 88
	े ड ्रिस्टे	86194	222
1661	SS (11.)		
time.	~"目 入窗	စာများကက	-4
lay-Ju same	E S		
ti ĉ. K	S-2/ TR(3)	222 a	11
r-St.	S (8)	321253	44 20
ng,) asure			
e Cho 1y Me	-2(II \$71)	225 25 25 25 25 25 25 25 25 25 25 25 25	24.5 22.9
angje tical	-1 SS 1) ((ຄະຄາດອາດ	сл г т
of Y	88 ()	53 67.3 40 127.0 26 10.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21	42.4
ulity was	8 S		55 25
Water Quality of Yangise Chong Discharge was practically meas	000 (Mr) C00 (Cr) SS-1 SS-2 SS-2 (IL) (mg/1) (mg/1) (mg/1)	59 ⁰ 08	67.50 7.50
Wate Disc	(g) (g) (f)	Y-St. 4-2 May 27 7.3 Y-St. 4-2 Jun. 10 48.6 Y-St. 4-2 Jun. 14 10.0 Y-St. 4-1 Jun. 25 10.7 Y-St. 4-2 Jun. 26 10.7	ເກເພ
	lo S S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17. 5 15. 6
		231188 291144	Kein Kein
Table 3.2.	Item Station Date	월리리 <u>리</u> 라 100000	
ble 3	tion	エー・	
	Ste Ste	*****	e tra e
		<u>.</u> .	
. * .	· · ·		

	dur.	Jan Jan	£		2	ŝ	
· · · ·			ation	Y-St. 1	-St.	-St-	
	Table 3.2.3-6		St		Ϋ́	Y	
•	Table					•••	
· · · · ·	. •		. :	et a	• .		
÷			1			ć.	
	÷	۰. ۱۰۰		:	: '		:
				¹	•	: 1	
· · · ·	166	1. A. A.				÷	
	μ. Υσί		۰ ۱		1		
	iune 2	NO3-N ton/day)	1.1	0.15	0.19	82	
i teri e	27-3	(ton/	- 1 1			• • •	
	Kay	N. (Val	នួ	68	08.0	38.0	;;
	Load of Ynagjae Chong in Short Period, May 27-June 26, 1991 Actual measurement value	NH4-N (ton/day)					
	L.	(VB	:00 in 01 or	4 1.4 4	7.8	42 1	
19 - 19 S	n Sho ue	TR 1 1y) (ton/day) (tc	6.0		2	4	
	i Suc	ି <u>ନ</u>	50	110	ŝ	6.3 0.06	•
	le Ch	B0D SS (ton/day) (ton/day)	22	- 3			
n ya an e	nagja easur	t) R	5 - C	÷.	9	L 7	:
	of Y Bal	800 Å/da					
	Load Actu	Ę.				N IO	
	lution L harge:	COD (Mn) on/day)	~-	0.02	17	1.7	
	ollut	(ton					
	ř.		***	يد يد			
je s tel s	5		**	Y-St Y-St	- A-	10, '91 Y-St. 2	• •
	3. 2. 3-5	N AR	5.			5	
			~	· ·	1.1	a -	

Table

Mean Value of the Pollution load of Yangjae Chong during the Survey Period January, 1990, to January, 1991 : Y-St. 1 and Y-St. January, 1990, to May, 1991 : Y-St. 3 and Y-St. 4

 Item
 BOD
 COD(Mn)
 SS
 NH4-N

 Station
 (ton/day)
 (ton/day)
 (ton/day)
 (ton/day)

 Y-St. 1
 18.18
 17.38
 64.07
 5.28

 Y-St. 2
 7.38
 11.38
 52.06
 3.81

 Y-St. 3
 1.13
 2.13
 3.21
 0.55

 Y-St. 4
 7.04
 7.40
 17.37
 2.46

				1
NO3-N (ton/day)	1.14 0.158 0.158 0.15	00000 97833 9783	0.000 16 16 16 16 16	0. 03 0. 13 0. 13
NH4-N (ton/day)	0.03 0.03 88 0.03 88 0.03	0000 8888 8	6000 6000	
TR (ton/day)	4 50 4 50 4 4 50 4 4 50 4 4 50 50 50 50 50 50 50 50 50 50 50 50 50 5	27.8 42.1 41.9	21.3 15.7	10.0 16.2 16.2
SS (ton/day)	11.3 11.3 11.3	3.6 6.3 11.3	4.3 0.02 4.8	0.02 0.02
800 (ton/day)	-1001 -1001	- 03 0 03 0 03	0.8 2.4 0.03	0.6 0.6 03
COD (Mn) (ton/day)	1-2-1- 0-0-1-5-1- 1-5-1-5-1-5-1-5-1-5-1-5-1-5-1-5-	0.05 4.3 4.3	0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.4 0.74 0.05
1.4	~10107 A		1004	
	Y-St Y-St Y-St	****	****	Y-St Y-St
5 . J.E	5	6	. 5	31
	.12	, H	- 	26, .
	May 2	June	June	June

Π -75

load gradually increased from the upper to the lower stations caused by over-flow from theinterceptin sewer pipe or side-inflow (Table 3.2.3-5).

On the other dates, however, no consistent pattern was noticed. It is supposed that the construction work on the river bed often affected the results.

Due to the low concentration of water quality and small discharges, the pollution load at Y-St. 3 was considerably low. Therefore, it gives less contribution to the total pollution load on the main river.

2) Changes during this survey period

It was found that COD(Mn) concentrations gradually increased from the upper to the lower stations in the colder months except in January and February, 1990, when extremely high values were found at all stations. On the contrary, lower values were found at all stations in the hotter months and these fell within a smaller range. It was noticed, however, that Y-St. 3 maintained the same level of COD(Mn) even after the hotter months of 1990, and Y-St. 1 contained the highest level of COD(Mn) when compared to the other stations (Fig. 3.2.3-2).

NH₄-N distribution pattern showed the same pattern as found in COD(Mn). However, after the hotter months, Y-St. 3 maintained lower levels of COD(Mn).

Distribution patterns of BOD and SS concentrations from the upper to the lower stations showed similar patterns to COD(Mn). However, the SS concentration at Y-St. 3 stood out in lower values than at other stations. This may be because of the effect of the construction work on the other stations. The construction work affects, particularly, the SS concentrations observed at Y-St. 1 and Y-St. 2 from March to May in 1991.

Great monthly variations on the load of each quality item were

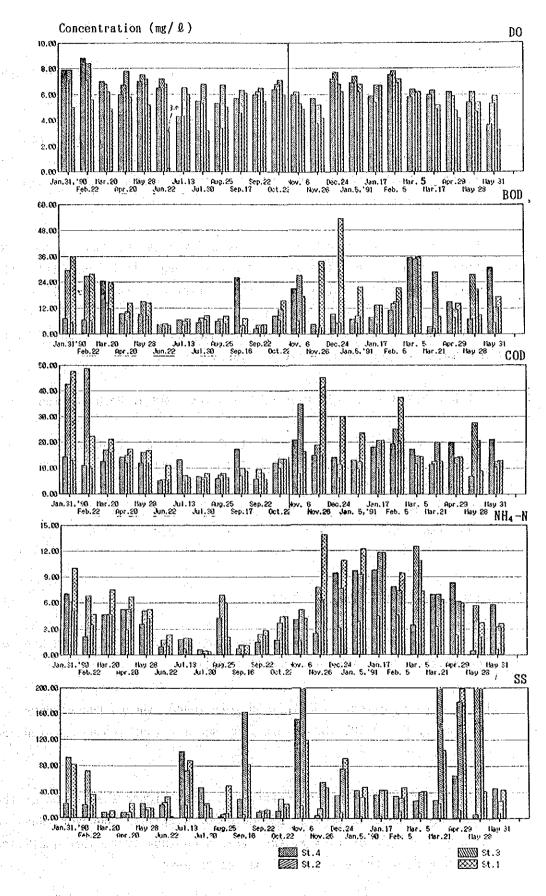


Fig. 3.2.3-2 Water Quality Change from the Upper to the Lower Stations of Yangjae Chong

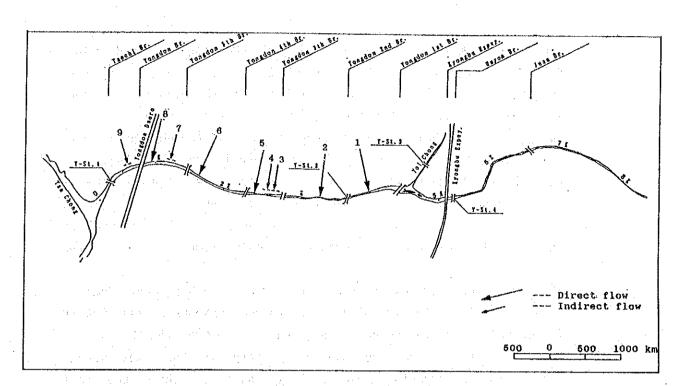
obtained at all stations, and the variance of the SS load was noticeably very large.

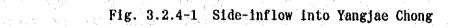
The values of the load of BOD and COD(Mn) showed tendencies of having lower values in the hotter months, which may have been brought about by the quick decomposition of organic matters due to high temperature and higher DO.

The load estimated based on each quality item increased from the upper to the lower stations. This was thought to be caused by the over-flow and side-inflow with great variations (Table 3.2.3-6).

Each load at Y-St. 3 was very low therefore it contributed very minimally to the total pollution load.

Table 3.2.3-6 Yearly Mean of Pollution Load at Each Station


Item	Station Y-St. 1	Y-St. 2	Y-St. 3	Y-St. 4
BOD(to	n/day) 18.2	7.4	1.1	7.0
COD (Mn)(ton/day) 17.4	11.4	2.1	7.4
SS(ton,	/day) 64.1	52.1	3.2	18.0
NH ₄ -N(1	ton/day) 5.3	3.8	0.6	2.5


3.2.4 Side-inflow into Yangjae Chong

There are many side-inflows in the study area, most of which are on the right side of the river (Fig. 3.2.4-1).

Five of main direct side-inflows were found, though the volumes of inflow (0.001-0.135 m3/s) were much smaller than those of Yangjae Chong (Table 3.2.4-1).

COD(Mn) and SS of these side-inflows were higher than those of the river (COD: 28.1-42.0 mg/l; SS: 40.0-162.0 mg/l). However, due to the small volume of inflow, the effects on the river water qualities are thought to be very minimal on clear days.

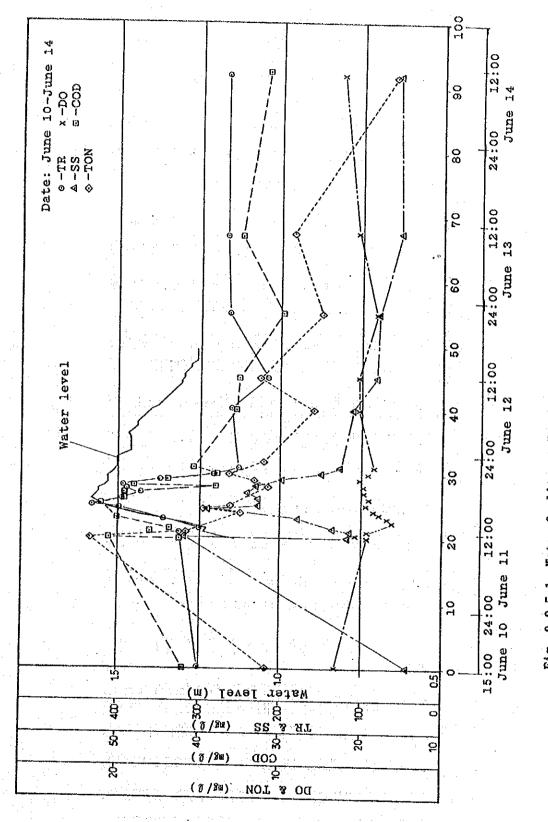
		Weather AT: 22	r: Cloi	κάν, lai):15),	ter clear 25.4°C(1)-16:40		e ix		Bat inv	
Iten Station	¥T (°C)	рĦ			Turbid. (mg/l)	COD (Mn) (ag/1)	SS (mg/1)	Discharge (m3/s)	Lo: COD (Mn) (kg/day)	SS
1 2 3"	19. i 18. 9	7.9 7.7	3.4	0, 9 0, 8	50 28	46. 1 28. 1			537. 7 121. 4	821. 172.
4" 5 6	20.7 21.5 16.6	7.8 7.9 7.5		0.8 0.8 0.8	30 20 0	36. 1 42. 0	48.7 162.0		233. 9 76. 2	315. 293.
7" 8	21.2 19.3 20.5		3.0 5.5 2.9	0.8 0.9 0.8	25 30 25		46. 0 56. 0	0. 054	159. 1 2. 8	214. 4.

: Water from these side inflow sewer systems is carried to Tang Chong Sewage Treatment Plant by the intercepting sewers.

Sec.

The inflow loads from 1, which is located between Y-St. 2 and Y-St. 4 have the largest side-inflow, of COD(Mn): 0.54 ton/day, SS: 0.82 ton/day. These values were quite smaller than the mean load of the main river, although the date they were measured were different. The sum of all other inflows of COD(Mn) was 0.52 ton/day and SS was 0.37 ton/day, and these inflows were located lower than Y-St. 2. When the total loads from inflows and the main river's are compared roughly, the former was considerably lower than the latter on a clear day. However, on rainy days it is supposed that very much of the pollution load would be added to the main river.

The water quality results, however, obviously show that Yangjae Chong has been seriously polluted due to some unknown causes, but it may be mainly dou to domestic waste water. Most of the area around Yangjae Chong is used for housing and they say that the sewage system in the area is completed. It is assumed, therefore, that large amounts of waste leak through some routes causing river pollution.


3.2.5 Water Quality and Flow-out Load at Freshet Time

Survey on freshet time was conducted at Y-St. 1 from 10 to 14, June 1991, when the precipitation was 5 mm on 9th and 46 mm on 11th. It continued to rain for 12 hours with interval on 11th. The main survey on this freshet time was conducted on 11th

The water level increased quickly and reached the maximum level within 5 hours. Then it decreased slowly and it returned the normal water level in about 72 hours (Fig. 3.2.5-1).

Several items of water qualities of COD(Cr), SS and TN showed the maximum concentrations during this freshet time within 10 minutes after the water level started to increase (Table 3.2.5-1), in particular TON concentration abruptly increased.

Of water qualities, the inflow quantities of TN, TON and SS stood

П -81

	(IL) R(S)	3.8	• •	1 1	•	10 S		าเ ที่		0 57 0 57	10.2	4	-	61 I 67 I	3.7	10.5	ı ç		87 87		0 9 10 10 10	
) SS-2 SS) /TR(%) /T	12.8	• •	• •	1	35.1 45.2		4		25.7		5		28.4	56.4	52.7		# 1 5	12.7	23.5	20.0 20.0	
	2(IL)SS -2(%) /	ន្តន	35	ł		23	i \$	2		112		195		16	11	20			22	3 S	28 23	
	SS-2(IL) SS-2(IL) (mg/1) /SS-2(%)	12.0				28.7 32.0	10	5 I 3	1.0	34.0	40.0	40.0		36. U 1	34.0	30.0	1.0	- n7			16.0 15.0	
· ·	SS-2 S	40.7	320	1 1	•	114	170	2 I 7	1 000	227	227	227	P - 1	229	161	149		1	111 81	28	57 20 57 20	
	SS-1 [2])	36	1	231	103	1 1	189	240	• •	256	315	250	1	213	235	185	185	130	36	됮	138 85 -	
	TR(IL)	38				12 13 13	2	1	. 4	ន	28	នខ	3, 3	5	33	2	55	3	ж.	8	22	
	TR(IL) T (mg/l) /	114.3		• •	• •	45.0 3	- 111 J	2 1	73.0	65.7	110.3	78.7		132. U	135, 2	38.3	- U 18	5	100. 0 49. 7	53.3	71.0 59.3	
.* E 	TR (mg/1)	319	1	• •	1	52E	343	; '	307	431	333	352	3 2	245	349	283	959	;	260 215	264	267	•
	NH4-N NH4-N (mg/1)/TN (%)	21''''''''''''''''''''''''''''''''''''	4	n no	ក្ ឃុំខ្ម	28 28 28 28	4.6	19 19	4 7 7 7 7	6.7 45.1		<u>ص م</u>	-	ت ن	6.6 46.6			101	5 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5.05	
:	NO3-N NTN (X) NT/	15,1			è.	<u>.</u>			-	12.5		19. 7 17. 9			1. 1.	18.5	, 0 5	,	24.1 21.5	-		
	NO3-N NO 0N N-20N	1 2 1 8 1			5 00	യ ശ	ເດເອ	0	es ác	r⇔r bor Icić	2	~ in		xx = cc		i.	ຄຸ່ມ		r~ ¢0	0		
	N02-N (mg/1)									0.150												
	TON/TN (%)	31.8	ំ ខេត្ត ខេត្ត	36.4 10	8	20.2	43 4 0 4 0			36.3		27. 7 31. 5		с., ,	33.2	36.3	32.0		25. 9 32. 2			
i t tet	NOT (1/2m)	່ດ ໄມ່	10.8		တ - အီစ	0 m	0 0 7	< 201	ស ។ ស ស	មាន ហើយ ហើយ		4 80 4		4 . # 1	4	ຕ ທີ່	. 4		ର ମ ରାକ	(0) (1) (1)	2.4 2.4	
11-14, 1991	T-KN (mg/1)	15.4	20.02	14.2	15.0	201	10.4	11.7	12.1	121		11.3	1	10. O	11.3	11.7	10.4		0 3 0 3	11.3	11.3	
	TN (国名/1)	18 .	20.2	17.0	0 1 1 0	201	202	14.7	14 D	14.9		13.7	1	0.71	14.2	14.6	Ē		1120	14.5	15.9	
nn - 1	COD (Mh) (mg/1)	16.0 16.0	20.5	• •	, c 1 c 1 c	16.4 16.4	20.0	,	20.0	21.0	19 0	19.0	, s 	⇒ . #	17.0	14.0	15.4	1	13.0 12.5		12.4	
. Y-St	COD (Cr) C((mg/1)	44 35	88	32	ធ្នូរ	- -	31	58	52	23	গ্ন	56 23	ដះ	នខ		I I	8	'n	- 8	•	ų) į	
e Chong							8	81	62	101		1. 19 15 19	ā	5	0.94	0, 30	88	8	78	53	96	
Yangja	Velocity (回/s)	- 1 - 1 - -	!	1 1	•	• • • •	1 1	• • •		÷.,		-11						. '		-		
Water Quality at Freshet Time of Yangjae Chong, Y-St. 1, June	Turbidi (mg/l)	15 53-70	143-167	135-150	75-85	82-108 82-108	95-104 145-167	152-161	145-177	158-177	155-175	155-180	155-190	142-160	120-148	117-145	108-120	91-106	89-102 45-51	57-67	27-35	•
Freshet	EC (IIIS/CIII)	00																				:
ty at	00 (1/200)	പ്പു പെടു	∞ c ≪† L	101 101 101		- () - t - t	- 4 - 4	භා ෆ් •	37 6	ে ে বা বা		50 20 20 20			сц (с С С (т) (т) (с) (с) (с) (с) (с) (с) (с) (с) (с) (с						ក ស ស ស ស ស ស	
r Quali	Hồ		0 u ~ c							55			ហៃម កំព	- 66 	יי יי רי רי	1.7	4 IN	5		8.	5 5 6 7 9	
Wate		26.0 22.5					ជជ	ដុខ	12		ដ		ដន	រដ		121	12	ង				
25-1	ltem Time	11:00	11:10		11	121	14:00	8:41	38		12:00	12:30	18:30	88	20:00	21:00	22:00	22:30	12:30	21:05	11:20	
Table 3.2.	Date	June 10 June 11								1		•		-	÷		•••		June 12		June 14	

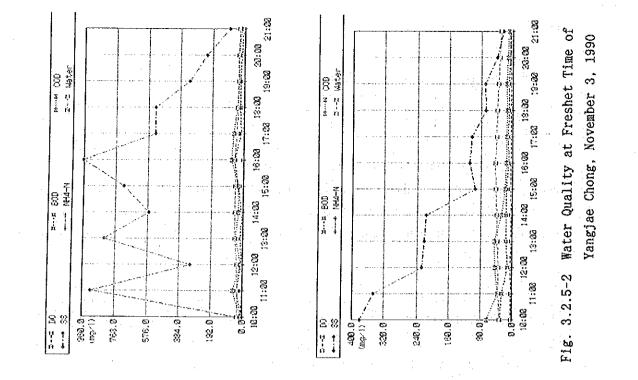
п −82 п −82

.; .:

out. Since inflowed organic nitrogen was a great part of the total (usual TON: 7-34 % of TN, freshet 25-55 %), the concentration of the inflowed organic form of SS was only a little higher than the usual (usual SS(IL): 28-34 % of SS, freshet: 12-32 %). Overflow of the sewage from the intercepting pipe resulted in high TON values at freshet time. High concentration of the inorganic part of SS was due to the construction work done on the riverbed, therefore, it is not clear whether inorganic SS will be constantly found even at freshet time.

The total flow-out load during this freshet time from 11:00 of 11, June, to 11:20 of 14, June, was estimated (Table 3.2.5-2).

Table 3.2.5-2 Flow-out Load at Freshet Time during 72.17 Hours (June 10-14, 1991)


COD(Mn)	10.0 ton (3.1)
BOD	*8.6 ton (-)
TN	9.3 ton (3.6)
NH4-N	4.9 ton (1.7)
SS	75.3 ton (17.0)

*This value was estimated using the formula:COD(Mn)=0.650 BOD + 4.378, which was obtained form the correlation between COD(Mn) and BOD measured in the monthly survey.

Values in the parentheses were the load on an ordinary day.

Another survey at freshet time was conducted on November 3, 1990, when rain continued for 11 hours, and the precipitation was 4 mm.

The curve of water level and discharge with time seem to show that this survey covered the period of effect on the river condition by freshet (Tables 3.2.5-3 and 4, Fig. 3.2.5-2). And the lowest water level observed on November 6-7 had the same results with the one value measured during the freshet. Therefore, the pollution load on an ordinary day was based on the water qualities obtained during freshet time, of which the water level was the same as found on

	Discharge (m3/s)	13. 664 14. 240 16. 642 16. 642 11. 2359 11. 235		Discharge (m3/s)	6,049 6,049 7,0,020 7,0,020 7,00 7,00 7,00 7,00 7,0
Y-St. 1	Fater level (cm)	88888888888888888888888888888888888888	Y-St 3	level (cm)	8485848488888
reshet Time. 4 mm	Coli-form (MPN/100mi)	930 2400 2400 2400 2400 2500 1400 2500 1500 1500 1500 1500 1500 1500 15	بر	(NPN/100ml)	2900 2700 2700 2700 2700 2700 2700 2700
ng at Fi tation:	(1/Sm)	010011110140 888824115888285	ng at Fr tation:	ина-и (1/2ш)	99999999999999999999999999999999999999
angjae Chong Precipitat	([] SS ([])	28 28 28 28 28 28 28 28 28 28 28 28 28 2	·~~~~	(۲/Sm) (۳۳/۲	380 386 386 386 386 386 386 386 387 36 38 38 38 38 38 38 38 38 38 38 38 38 38
of Yang 890,	COD (mg/l)	221112212212122 22333052122212222	30 t	(1/2u)	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9
ality 3, 19	800 (mg/1)	22,44 22,44 22,44 22,44 22,44 22,44 22,44 22,44 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,444 24,4444 24,4444 24,4444 24,44444 24,44444444	ality 3, 19	(1/3a)	8811818191199 <i>44</i> . 198949849499969
Water Qu November	. D0 (ng/1)	らうみすすうこうひろうかん きょうりぶて こののの このの ちょうしょう このの ちょうしょう このの いちょうしょう	Water Qu November	(1/3m)	๛๙๗๛ <i>๚</i> ๛๐๙๏๛๛๐ ๗๛๛๚๛๐๙๏๛๛๛
	Hq	**********		5	00000000000000000000000000000000000000
le 3.2.5-3	ltem WT (°C)	00000000000000000000000000000000000000	2 7 7		88888888888888888888888888888888888888
Tabl	Ĩ,		Table		10-00 11:000

November 6-7.

The total flow-out load brought about by the freshet this time were calculated, BOD: 19.0 ton/11hs, COD(Mn): 32.5 ton/11hs, SS: 479.4 ton/11hs and NH4-N: 0.90 ton/11hs, respectively. Extremely high SS load was assumed to be caused by construction.

The pollution load on an ordinary day, on the other hand, was assumed to contain BOD: 3.3 ton/11hs, COD: 4.8 ton/11hs, SS: 14.5 ton/11hs, and NH4-N: 0.36 ton/11hs.

It is possible to say that when precipitation reached 4 mm in 11 hours of rain, 83 % of the total load amount of BOD, 85 % of COD(Mn), 97 % of SS and 60 % of NH4-N were brought about by freshet.

3.2.6 Self-purification Capacity

Although the survey on self-purification was conducted only once on September 19, 1990, between the Yong Dong Second Bridge and the Yong Dong Fifth bridge. The time of flow down were 0.049 day and 0.056 day, respectively.

Remarkably high self-purification coefficients based on TKN were observed(4.20 and 5.21 1/day), in the selected sections. Self-purification based on BOD, however, was not detected.

This self-purification coefficient seems extraordinarily high when considering concentrations of other qualities and river conditions. However, there may be some causes of these high self-purification, i.e. great part of SS were large particles (the percentage of settleable matter to SS: 62-89 %) and velocity was small, therefore, the particles can easily escape from the water by settling to the bottom. These may have bought about quite high apparent self-purification capacity.

To obtain more accurate figures for self-purification, additional

surveys need to be done.

3.2.7 Correlation between Water Qualities

COD(Mn) and BOD showed relatively high correlations at all stations (r=0.631-0.798)(Table 3.2.7-1).

SS showed high positive correlations with COD(Mn) and BOD at Y-St. 2 and Y-St. 3, and between COD(Mn) and SS at Y-St.3 where it was particularly high at 0.852.

 NH_4-N between COD(Mn) (0.814) and BOD (0.681) at Y-t. 1, and between NH_4-N and COD(Mn)(0.510) at Y-St. 4 showed positive relatively high correlations.

High negative correlation coefficients were obtained at Y-St. 2 between DO and three items of COD(Mn), BOD and SS (r= COD(Mn): -0.426, BOD: -0.507, SS: -0.712). These results may have been brought about by the high purification that occurred around this station, which was recorded once in 1990.

3.2.8 Sediment Quality

(1) Particle-size distribution

The bottom survey was conducted on December 5, 1990.

Table 3.2.8-1 shows the particle-size distribution of sediments of Yangjae Chong. This river bed is composed of particles ranging from clay to fine gravel (0.001-18.38 mm) but consisting, mainly of silt and coarse sand (0.005-4.76 mm).

(2) Chemical content

Ignition Loss values of this river sediment were very high at all

Table 3.2.7-1	Correlation between Water Qualities obtained
	from Regular Monthly Survey. Yanglae Chong
<u>Y-St. 1</u>	

	bo	COD	BOD	SS	8114-8
DO	i				
COD	0,178	1			
BOD	0.228	0.732			
SS	0 032	0 077			
NII4-N	902	0 911			
5 1011 1		<u>v. 014</u>	V. 001	V. U94	

	Y-St. 2					
	•	DO	COD	BOD	SS	8114-8
	DO	1				
	COD	-0.425	1			
	BOD	-0.507	0.685	1		
	SS	-0.712	0.504	0.611	1	i
[NII4-N	-0.087	0.410	0.370	-0.092	1
						the second second second second second second second second second second second second second second second se

Y-St. 3					
	DÕ	COD	BOD	SS	NIIA-N
DO	1				
COD	0.324	1			
BOD	0.300	0.798	i		
<u>SS</u>	0.092	0.500	0.852	l	
<u>N114-N</u>	0.168	0.494	0.369	0.203	

	<u>Y-SL 4</u>					
		DO	COD	BOD	\$5	NII4-N
. [DO	i				
· [COD	-0.071	1	· · · · ·		
•	BOD	-0.237	0.631	1		
	55	-0.236	0.488	0.236	1	
	NII4-N	0.247	0.510	0.046	0.121	1

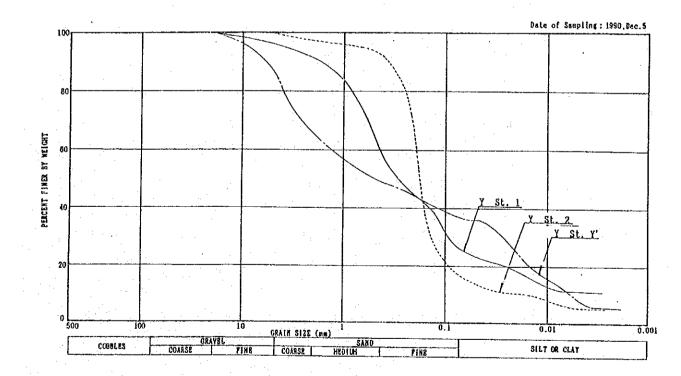


Fig. 3.2.8-1 Particle-size Distribution of Sediment of Yangjae Chong, December 5, 1990

Table 3.2.8-1 Particle-size Distribution of Sediment of Yangjae Chong (Accumulated Percent in Weight)

	Classification											
	Grave	:1		Sand	Silt	Clay						
Size(mm) Station	Coarse 73. 5-18. 38	Fine 18. 38-4. 76	Coarse 4. 76-2. 00	Nedium 2.00-0.42	Fine 0. 42~0. 074	0. 074-0. 005	0. 005>					
Y-St. 1 Y-St. 2		100. 0	96. 0 100. 0	91.5 97.5	58.0 92.5	26.0 17.0	11.5 5.5					
St. Y' St. YA		100. 0	86. 0 100. 0	65.5 98.5	49. 0 90. 5	37. 0 80. 0	8.5 19.5					

Table 3.2.8-2 River Sediment Quality of Yangjae Chong. December 5, 1990

Item	et	1	TU_	6. (C.)		Dt	01271-	Pap	Org		ы	13
	690 /ba)	85 (mg/bg)	(ma Ava)		Cd		Sulfide (mg/kg)		Malathion (mg/kg)		DI. (%)	IL (%)
Station	1861 061	VIIIS7 NS7	(wg/ng/	18/5/ 05/	1487 187	148/108/	1087 087	(AUG) ING /	(105/105/	166211021	1.07	(4)
	0.114	0.068	0.009	NÐ	0. 149	1.267	5, 54	ND	ND	ND	40.4	43.2
Y-St. 1	0.057	0.213		ND	0. 177	1. 520	6.01	ND	ND	ND	40. 9	63.0
Y-St. 2	ND	0. 072	0.394	ND	0. 152	0.973	5.46	ND	ND	ND	50.5	43.5

Table 3.2.8-3Macro-benthos Appeared in Sedicent of
Yangjae Chong (December 5, 1990)

st	ation	Y-St	. 1	Y-St.	2	St.	¥,
ta bi	ta xida ficidae us socialis	· · · ·		13	2		
n va	umber/m2 1 number/m2	·	0 0	13	1 2		 0 0
ex 11	ution Class		0	 P	p	 0 s	
11	ution Class		-	P	Ŝ	~	p

ps: polysaprobic

stations (43.2-63.0 %)(Table 3.2.8-2). These high IL values mean that this river has significantly been polluted organically. There was heavy flooding in September, 1990 around Seoul and it is supposed that most of the materials which had been sedimented were flushed out by the big flood. It is surprising that within less than three months the river bed was once again terribly organically polluted.

In spite of this river bed being organically polluted very quickly, concentrations of heavy metals, and CN, As, Sulfide, Organic-P and PCB in sediment were not found in high values. When these values are compared to those measured in the rivers in Saltama Prefecture and in many other rivers in Japan, only THg at St. 2 was a little higher than the mean value in Japan. Other values were quite lower than those from Japan, particularly As from 1/20 to 1/70 and Pb from 1/4 to 1/40.

It is therefore believed that this river water is mainly polluted by domestic waste water, although there is a sewerage system in the basin. Organic pollution in Yangjae Chong is serious, but pollution by heavy metals, CN and As caused by industries are not yet significantly present.

(3) Macro-benthos

Fauna was considerably poor on this river bed. Only <u>Limnodrilu</u> <u>sociali</u>, which usually appears in heavily polluted water area, were counted in 132/m² at Y-St. 2.

All stations are defined to be polysaprobic water area by biological pollution classification.

3.3 Ui Chong

3.3.1 Hourly Change of Water Quality

It seems that hourly change in Ui Chong at both stations were not detected on water qualities.

SS, however, showed a slight change with the time on the sampling date. Lower values were found around midnight.

Generally, larger values of TP, PO_4 -P, DBOD, DCOD(Mn), SS and settleable matters were found early in the sampling day rather than later at both stations.

The mean values of several items taken from the 24-hour-surveys were included in the results from the regular monthly survey to be discussed.

Results obtained from the 24-hour-surveys were sited in Tables A-3.1-1-12.

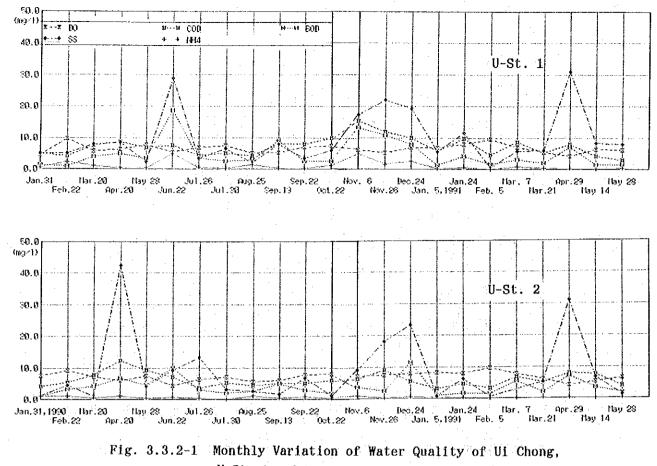
3.3.2 Monthly Variation of Water Quality

(1) Water quality variation obtained from the regular monthly survey

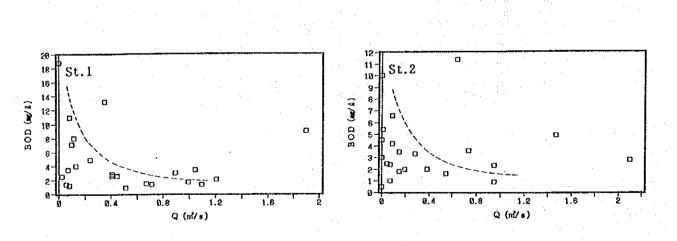
DO in this river showed lower concentrations from March to September (3.9-7.8 mg/l), and higher concentrations from the end of September to early March (4.6-9.7 mg/l). The maximum values of 9.7 mg/l (U-St.1) and 9.5 mg/l (U-St. 2) were recorded in February (Tables 3.3.2-1 and 2, Fig. 3.3.2-1).

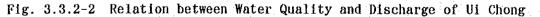
This river water was generally clear. Constant low turbidity at 1-3 mg/l was found with exceptional values of 13 mg/l at U-St. 1 and 14 mg/l at U-St. 2 (in Table 3.3.4-1).

П -90


Table 3.3.2-1

Water Quality of Ui Chong, U-St. 1


		Item	WT	pH	EC	DO ·	COD (Mn)	BOD	SS	NH4-N	NO2-N	Coli-form	CN	Hg	Gauge
Date			(°C)		(aS/ca)	(Bg/l)	(ng/l)	(ug/1)	(mg/l)	(ng/l)	(ng/1)	(MPN/100ml)	(mg/1)	(mg/l)	(cm)
Jan.			3. 6	6. 9	-	4.6	5, 1	1.4	5.1	0.47	0.015	-	_	-	-2
Feb.	22,	1990	5, 5	6, 9	-	9.7	4. 2	0. 9	5.0	2.42	0.017	-	-	-	17
Har.	20,	1990	12.0	7.8	-	5.8	7.6	4.0	8.0	1.05	0. 101	-	-	-	3
Apr.	20,	1990	18.0	7.0	-	6.4	8.7	4, 9	8.4	0.41	0.059		-		8
May	28.	1990	22, 1	7.8	-	1.1	6, 8	3.5	2.4	0. 27	0. 236	-	-	-	-1
Jun.	22,	1990	17.5	7.4	0, 5	5.4	7.5	18.8	28, 8	4.94		14	-	-	80
Jul.	26,	1990	23.5	7.4	0.7	6.8	4.3	3.5	3.4	0.61	.0.014	-	-		29
Jul.	30,	1990	28.8	7.1	-	7.4	5.0	2.6	6.5	0. 11	0.004	18	ND	ND	14
Aug	25,	1990	22, 8	6, 9		5.1	4.2	2.8	2.0	1.50	0.014	170	ND	ND	14
Sep.	13,	1990	20.3	: 7.0	-	5.3	8.2	9.0	7.9	0,08	0.000	•	-		43
Sep.	22,	1990	23.9	7.0	-	- 7.0	8.0	2.6	3.4	0, 22	0.016	240	-	-	15
Oct.	22,	1990	17, 9	7.4	•	7.4	10.0	2.5	6.0	1.34	0.076	320	-		-5
Nov.	6,	1990	13.3	7.1	-	6. 2	15.3	13.2	17.3	4.91	0.051	-	-	-	12
Nov.	26,	1990	12.8	7.2	-	5.2	12.0	10.9	22.0	1.67	0.408	1200	ND	ND	Õ
Dec.	24,	1990	4.9	7.8	_	6. 9	10. 0	8. 0	19.3	2.52	0.113	950	· •	_	2
Jan.	5,	1991	6.6	7.2	-	6. 9	5.8	1.2	5.6	0.15	0.055	420	0.004	ND	Ō
		1991	2.3	7.3	-	8.0	3. 0	1.3	11.6	0.47	0.054	-	_	-	30
Feb.	5,	1991	0.3	7.6	-	9.6	4.6	1.7	0.5	0,04	0.045	540	0.007	ND	28
Mar.	1.	1991	. 8.4	7.5	_	7.1	8.7	3.0	5.7	0.87	0.017		-	· •	26
		1991	6.1	7.6	· _	5.4	5. 2	2.1	6.0	0.25	0.014	1000	ND	ND	32
Apr.	29.	1991	15.0	7.2	-	4. 2	7.9	7.1	31.0	0.13	ND	1500	ND	ND	0>
May		1991	19.7	7.4	-	6.3	4.5	1.4	8.3	0.02	0.038		-	-	22
		19 91	17. 2	7.3	-	6. 2	2.8	1.5	8.0	0.33	0.237	1700	ND	ND	21
•															


	Tabl	e 3.	3. 2-2				Water	Quality	of Ui	Chong,	U-St. a	2				
	Date		Item	WT (°C)	рĦ	EC (@S/c#)	DO (mg/l)	COD(Hn) (mg/l)		SS (ag/l)		NO2-N (mg/l)	Coli-form (MPN/100ml)	CN (88/1)	Hg (mg/l)	Gauge (cm)
	Jan.	31,	1990	1.9	7.0	-	7.5	4. 2	1.0	1.2				-		-5
	Feb.	22,	1990	5, 7	7.1	-	9.2	5, 5	3. 3	4.5	1.03	0. 116	-	-	-	-1
	Mar.	20,	1990	10. Đ	7.0		7.2	7.7	4.2	1.0	0. 52	0.070	-	-	-	-5
	Apr.	20,	1990	17.6	7.4	•-	6.0	12. 2	5.6	42.5	1.00	0. 055	_	-	-	-5
				22.6	- 7.5	-	7.4	9, 2	4.5	4.1	0.43	0.213	-	-	-	-9
	Jun.	22,	1990	16. 1	- 7.5	0.7	4.3	7.0	10. 0	9. 2	0.80	-	20	-	-	31
	Jul.	26,	1990	20.6	7.4	0.2	6. 3	3. 6	3. 0	13. 2	0. 38	0.009	-	-	-	35
			1990		7.1	-	7, 0	5, 2	2. 0	3.0	0.04	0.005	25	ND	ND	-2
				24.7	7.2	· -	5.6	4.4	2. 5	2.5	1. 12	0.013	110	ND	ND	-6
			1990		7.1	-	6.0	5. 0	4.9	1.6	0. 28	0. 140	· _	-	-	11 -
	Sep.	22,	1990	22. 5	7.2	-	7.8	5.0	. 2. 8	6. 6	0. 88	0.011	180	-	-	15
			1990		7. 2	-	7.9	6.0	1.8	1.0	0. 23	0.666	240	-	-	_
	Nov.	6,	1990	11.8	7.1	-	7.1	6. 2	3, 6	9.1	0, 90	0.030	-	-	-	5
	Nov.	26,	1990	10.2	7.4	-	7.4	9, 0	2.3	-18.0	0.07	0.045	840	ND	ND	7
	Dec.	24,	1990	3.1	7.6	-	7.9	5.5	11.4	23. 2	0.57	0. 129	700	-	· -	4
	Jan.	5,	1991	4.2	7.3	· •	8. 2	3.0	0.9	0.8	0.00	0.042	350	0.004	ND	1
	Jan.	24,	1991	4.0	- 7. 5	-	7.9	1.5	0.5	6.2	0.21	0.013	-	-	-	
·	Feb.	5,	1991	0.5	7.9	-	. 9. 5	3.2	1.6	0, 5	0, 00	0.021	620	0.007	ND	· 3
	Har.	. 7.	1991	6.5	7.3		7.8	6. 6	5.4	54.7	0.03	0.013	+	-	-	0>
. 1	Har.	21,	1991	5.0	7.5	-	6.2	5, 0	2.0	5. 2	0.19	0.014	800	NÐ	ND	1
	Apr.	29,	1991	13,0	7.4		3.9	δ. δ	2.4	26. 5	0.03	0.013	1200	ND	ND	. 6>
				19.7	7.3	· -	5.3	7.5	3.5	6.6	0.02	0. 783		-	-	0>
	May	28,	1991	16.8	7. 6	-	6.5	4.0	1.8	1.3	0.10	0. 145	1400	ND	ND	0>

П -91

similar curves with two peaks a year in April or May, and November or December. It is possible that low concentrations of these water quality items were found when the discharges were high in the hotter months from June to September, while higher concentrations were obtained with low discharges in the colder months (Fig. 3.3.2-2).

In spite of the similarity of distribution patterns at both stations, the concentration of COD(Mn) at U-St. 1 (2.8-15.3 mg/l) was much higher than at U-St. 2 (1.5-9.0 mg/l) after September, 1990.

On the other hand, when BOD at U-St. 1 was considerably high (10.9 and 13.2 mg/l), BOD at U-St. 2 was quite low (2.3 and 3.6 mg/l). On the other cases, however, the differences of BOD values between two stations were small.

The above mentioned facts may be attributed to the following reasons: first the high self-purification measured on this river, may not have occurred due to low water temperature, second, the place where survey on self-purification being done was not consistent, third, the waters at U-St. 1 were often stagnant and it is supposed the settlement of pollutants accumulated there. Fourth, there is a direct side-inflow between U-St. 1 and U-St. 2, from which sewerage water flowed into the river, and fifth the overflow from the intercepting pipe to the river may have occurred.

However, BOD was lower than 5 mg/l, usually around 3 mg/l, which indicates this river is not very polluted yet.

COD(Mn) was generally two times higher than BOD values, which is the ratio usually found in natural rivers.

Contrary to the three items motioned above, NH_4 -N distribution did no clearly show a systematic pattern. At U-St. 1, however, there was a tendency for higher values to be found in the colder months. On the other hand, this trend was not found at U-St. 2. The value at both

aa shaqaa a ah ya

stations in 1991 was very low (0.00-0.87 mg/l). NH_4 -N at U-St. 1 generally was higher (0.02-4.94 mg/l) than those at U-St. 2 (0.00-1.12 mg/l) on many cases.

 NO_2 -N concentrations were usually found in low values, however, high values were occasionally obtained, so that the variances were great (0.000-0.783 mg/l) (Tables 3.3.2-1 and 2).

Coli-form bacterial numbers were not high in the first stage, however, it gradually increased (14-1700 MPN/100 ml at U-St. 1, 20-1400 MPN/100 ml at U-St. 2). It is supposed inflow of human waste was increasing.

THg was not detected at both stations throughout the survey period.

CN was detected in January and February, 1991, at both stations, despite the of concentrations being low (0.004 mg/l at U-St. 1 and U-St. 2 in January, and 0.007 mg/l at both stations in February).

(2) Variations of other water qualities

TN concentrations were found in relatively higher values from 1.94 to 6.24 mg/1, compared to be other low values of BOD or COD(Mn). Although there was a lack of TN on July, 1990, it is possible to assume that values were lower after July (Figs. 3.3.2-3 and 4, Tables 3.3.2-3 and 4).

TN at both stations started to increase from July, 1990 until September, 1991, then maintained the same level until May at U-St. 2, and until March at U-St. 1 with a sudden drop in May.

1.1

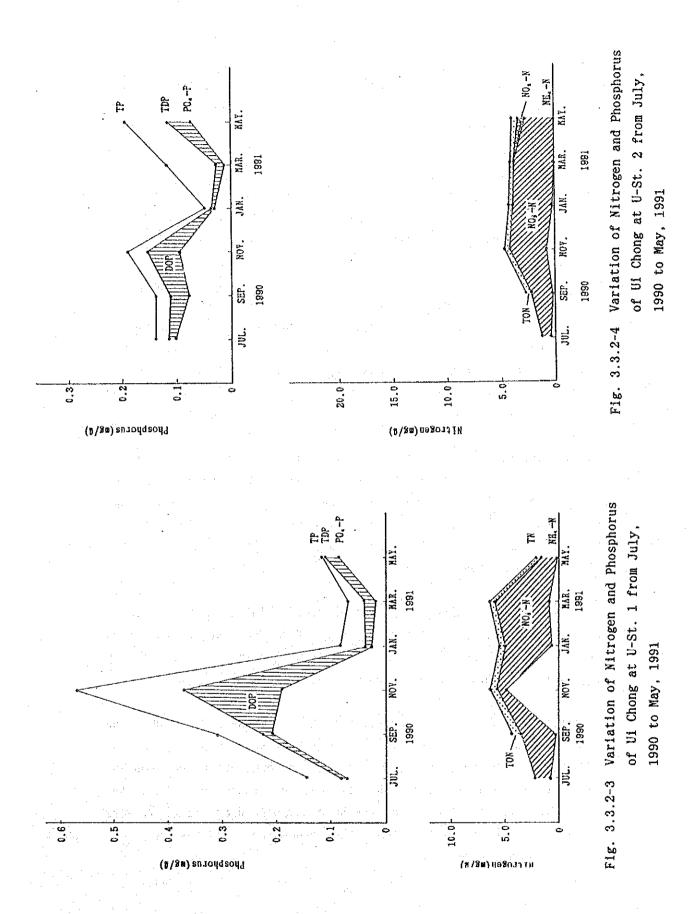
TON concentrations were constantly low at both stations (0.29-0.50 mg/l at U-St. 1; 0.23-0.60 mg/l at U-St. 2) throughout the sampling period. The percentages of TON to TN were in the small range of 5-15 %. It means that TIN concentrations were found in high values and accounted for the high proportions to TN (Table 3.3.2-5).

II - 94

	Gauge (cm) 29 3	Gauge (cm) 73 5	Gauge (cm) 3 3	Gauge (cm) 30	Gauge (cm) 26 1	Gauge (cat) 22 2
	: matter (\$) 13	aa tter (%) 38	matter (%) 13	matter (%) 81 8	aatter (%) 14 14	matter (%) 18 18 18 18
	Settleable (mg/1) 2.7 2.2 3.2 3.2 2.1 2.1	Settleable (ng/l) 8:5 4.2	Settleable (mg/l) 23.9 29.3 11.8 11.8 9.3	Settleable (mg/l) 7.3 7.8 7.8 4.0 0.7	Settleable (mg/l) 2.7 1.0	Settleable (mg/l) 6.5 5.1 3.8 3.8
	(128 (128) (SS 7.19 4.5	88/1) 38/1) 37.52.33 37.52 38.9 38.9 38.9 38.9 38.9 38.9 38.9 38.9	S 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(mg/1) (mg/1) (mg/1) (mg/1)	4 8 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	MBAS (mg/1) 1.63 0.34 0.34	MBAS (mg/1) 1.94 0.47	MBAS (mg/1) 1.15 0.15	MBAS (元2/1) 0.89 0.21	MBAS (ag/1) 0.11 0.11	MBAS (mg/1) (1. 34 0. 32 0. 20
U-St 1	Sulfide (mg/1) 3.4 0.5	Sulfide (mg/1) 2.8 0.3	Sulfide (mg/l) 2.14 1.3	Sulfide (mg/1) 2.98 D.34	Sulfide (mg/1) 4.31 0.28 0.28 0.07	Sulfide (mg/l) 4.40 0.20
L Chong	DC00 (mg/1)	000 7.5 2.3 2.3	DCOD 21.1 17.5 13.9 5.1	DC0D 8.1 0.8	DC0D 7.2 0.7	000D (arg/1) 4, 2 0, 6
i) on (ii	COD (ag/1) 0.9 0.9	COD 8.1 0.9 0.9	C0D 15.3 4.8	(12 9.8 1.8 1.8	COD 8.7 0.9	COD 1.0 1.0
ur Survey	DB0D (112)	DBOD 7.0 2.9 2.9	DBCD (mg/1) 10.0 3.5 3.5	DB0D 3.3. 0.9	DB0D 12.4 0.6	DB0D 1.2 0.4
a 24-hour	800 3.5 0.7 0.7	B00 9, 0 2, 1 2, 1	800 13.2 5.8	B0D 4.2 0.7	B0D (mg/1) (3. 0 0. 4	B0D 1.4 0.5
trom trom	P04-P (mg/1) 0.074 0.018	P04-P (ag/1) 0.210 0.048	P04-P (ag/1)) 0. 193 0. 204 0. 067	P04-P (mg/1) 0.028 0.008	P04-P (mg/1) 0.019 0.005	P04-P (mg/1) (0.086 0.043
Quality Obtained	10P (元2/1) 0.025 0.025	TDP 0.24 0.26 0.28 0.039 0.039	TDP (mg/1) 0.365 0.083	TDP (mg/1) 0.014 0.014	TDP- 0.042 0.02 0.02	TDP (mg/1) (0.114 0.038
Quality	TP (mg/1) 6. 138 0. 068	TP (mg/1) 0.328 0.305 0.033	TP (ms/1) 0.570 0.203 0.469 0.071	TP (ms/1) 0.122 0.052 0.023	TP (mg/1) 0.067 0.021	TP (mg/1) (0.118 0.064
¥ater	NH4-N (mg/1) 0.61 0.27	NH4-N (mg/l) 0.37 0.69 0.08 0.06		NH4-N (mg/1) 0.47 0.08	NH4-N 0.87 0.37 0.37	NH4-N (mg/1) 0.02 0.01
	N02-N (mg/1) 0.016 0.014 0.014	NO2-N (mg/1) 0.000 0.000		NO2-N 0.051) 0.003	N02-N (mg/1) 0.017 0.013 0.001	NO2-N (mg/1) (0.038 0.049
	N03-N (mg/1) 1.53 0.32 0.32	N03-N 3. 58 0. 53 0. 53	03-N 0.80 0.80 0.80	N03-N (mg/1) 0.69 0.69	N03-N (ag/1) (5.04 0.19	N03-N (mg/1) ((1.58 0.22
1330		TON 10, (ag/1) (10, 32 10, 32 114 0, 02 0, 02 6-7, 1990	TON 0.50 0.28 0.28 25, 19	TON (mc/1) 0.39 0.10 1991	TON (mg/1) (0.46 0.16 0.16 1991	TON (mg/1) (0.32 0.13
3 7 26-27,	11 In 12	TN L 37 L 05 L 05 N 105 N 105	TN 8.25 1.00 1.00 ary 24-	12 14 14 14 14 14 14 14 14 14 14 14 14 14	TN 82/1)	TN (mg/1) 1.94 0.27
3.3.2- 1, Juj	00 (mg/l) 5.8 1.3 1. Sept.	D0 5.3 0.8 1, Nove	D0 (mg/i) 6.2 0.4 1, Janu	D0 8.0 0.9 1. Marc	D0 7.1) 7.2 0.3 0.3 MaV	D0 6.3 0.6
Tabie 3. 3. 2-3 U-St. 1, July	lten Mean U-St. 1	Item Mean SD U-St.	Item DO (mgXi) (n Mean 6.2 8 SD 0.4 1 U-St. 1, Januar	Item D0 Mean (mg/1) (m Mean 0.9 5 SD 0.9 0 U-St. 1, March		SD SD SD SD SD SD SD SD SD SD SD SD SD S

· Π -95

	Cauge 35 35	Gauge (cm) 11 3	eauge (cm) 1 5	Gauge (cm)	CCE) CCE)	<u>9</u> 6999
	matter 83 7	matter (%) 15	8atter (%) 10	atter (\$\$) 12	10 50 10	15 46 15
	ettleable (mg/l) 11 11.7	ttleabje (昭/1) 1.0 0.4	Settleable [(mg/1) 221.3 221.3 221.3 221.3 221.3 221.3 221.3 221.3 21.3	Settleable (mg/l) 3.1 1.7	Settleable (mg/1) 30.0 30.6 20.6 117.7 117.7 10.7	Settleable z (mg/l) 3.0 1.3
	(mg/1) 13.2 13.9	s SS (mg/1) 0.5 0.5	(15%) (15%)	SS [1]) 2.9 2.9	(BZ/1) 30.8 12.22 12.22 12.22 12.22 12.22	SS (mg/1) 5.6 1.2
•	MBAS (鹿2/1) 0.27 0.27	MBAS (mg/1) 1.90 0.25	MBAS (mg/1) 1.40 0.19	MBAS 1.03 0.16	MBAS (mg/1) 1.40 0.31	MBAS (mg/1) 1.65 0.29
1-St 2	Sulfide (照/1) 3.44 1.15 3.65 0.92	Sulfide (mg/l) 3.9 0.22	Sulfide (mg/l) 2.39 0.76	Sulfide (mg/1) 3.35 0.21 0.14	Sulfide (mg/1) 4.62 0.21 4.55 0.11	Sulfide (mg/1) 4.48 0.20
i Chong	(IIS)	DCOD (mg/1) 4.7 1.4	DCOD 9.9 5.7 1.5 1.5 1.5	DCOD 第21) 0.3 0.3	DCOD 4.4 0.6	DCOD (mg/1) 7.3 0.8
ey on U	C00 3.6 0.7	COD (mg/1) 5.0 0.4	COD 6.2 1.0	COD (1) 1.1 1.1	C0D 6. [82/1] 1. 3 1. 3	COD 7.5 1.4
rr Surv	D80D 	DBOD 3.4 1.5	DE0D 3.0 3.0 3.0 0.5	0.5 0.5	2.5 2.5 2.5	DBOD (mg/1) 2.9 0.2
a 24-ho	BOD 3.0 0.6	B00 4.9 1.2	B0D (mg/1) 3. f	800 1.1.7 0.6	B00 5.4 4.8	BOD 3.5 3.5
ned fro	Р04-Р (ms/1) 0.102 0.023	P04-P (mg/1) 0.080 0.027	P04-p (10.098 0.058 0.058	P04-P (mg/1) 0.036 0.014	PC4-P (ng/1) 0.013 0.001	P04-P (mg/1) 0.076 0.04
Water Quality Obtained from 24-hour Survey on Ui Chong.	TDP (厩/1) 0.111 0.02	TDP 0.103 0.034	TDP (III2/1) 0.077 0.077	TDP (周2/1) 0.041 0.014	1DP (ms/1) 0.023 0.009	TDP (mg/1) 0.117 0.058
Qualit	TP (mg/1) 0.137 0.035	TP (mg/1) 0.139 0.036	TP (mg/1) 0.191 0.077	TP (mg/1) 0.050 0.017	TP 0.118 0.056	TP (mg/1) 0.195 0.066
Water	NH4-N 0.44 0.22 0.33 0.13	NH4-N (mg/1) 0.28 0.08	NH4-N (1871) 0.58 0.58	NH4-N (ag/1) 0. 21 0. 02	NH4-N 0.033 0.022 0.01 0.01 0.01	NH4-N (ag/1) 0.02 0.004
	NO2-N (mg/1) 0.011 0.009 0.009 0.009	NO2-N (画g/1) 0. 643 0. 687 0. 140 0. 055	N N02-N 5 0.058 1 0.073 0.033 0.033	NO2-N (202/1) 0.013 0.005 0.004 0.004	NO2-N (mg/1) 0.002 0.002	NO2-N (Eg/1) 0.783 0.770
	N03-N (mg/1) 0.86 0.16 0.16	N03-N 2.20 0.16	1. 8 0. 3 0. 3	NO3-N (48/1) 3.79 0.19	N03-N 4 01 0.44 0.44 0.64 0.44	NO3-N (12, 82 1, 34 1, 34
	1990 - 10N 3-14,	2/1) (mg/1) (mg/1) (10 6.0 2.77 0.24 6.5 0.24 0.08 0.5 0.24 0.08 0.06 0.06 November 6-7, 1990	TON N 0.22 (mg/l) (m 0.11 (m 0.11 (m 0.11 (m 0.11 (m 0.11 (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	TON 1.28 0.06 0.06 1391	10N 0.24 0.03 1991	0. 29 0. 60 0. 50 0. 50
	ZU-Z7 TN (mg/l) -	TN (mg/1) 2.77 0.24 0.24	D0 TN TO 7.01 4.82 0.85 0.3 0.485 0.7 7.1 0.485 0.6 7.1 0.485 0.6 7.1 0.485 0.6 7.1 0.485 0.6 7.1 0.485 0.6 7.1 0.485 0.6 0.2 0.2 0.6 0.2 0.7 0.6 0.2 0.7 0.7	TR 25	TN (mg/1) (4. 34 0. 47 14-15,	TN 4.22 0.64
3. 3. 2-4	Z, July D0 mg/l) 0.9 0.9 2, Septe	D0 (mg/1) 0.5 0.5 0.5 0.5 0.5	2, Janu	D0 (mg/l) (m 7.9 4 0.8 0 0.8 0 2, March	00 (mg/1) 7.8 0.5 0.5 2, May 1	D0
	U-St. Nean SD SD -St.	Item Mean SD U-St	Item Mean U-St. 2	Item Mean SD U-St. 2	Item Mean U-St. 2	I tem Mean SD


.

П — 96

-

.

. .

II -- 97

.

 NO_3 -N concentrations in this river were constantly obtained in very high values and showed very singular distribution patterns at both stations (0.80-5.04 mg/l at C-St. 1; 0.86-4.06 mg/l at C-St. 2). The main part of TIN was consequently NO_3 -N. The experiment using the river soil, although other river's, showed that nitrification progressed quickly under the sufficient DO concentrations (Table A-1.1-1). Ui Chong water constantly contained high DO, therefore, it is supposed that nitrification this river have produced these high NO_3 -N.

TP concentrations, on the other hand, were obtained with great variations, greater at U-St. 1 (0.067-0.469 mg/l) than U-St. 2 (0.050-0.195 mg/l). TP started to increase from July until November, but decreased suddenly in January and March, of which values were particularly low comparing to TN values (0.050, 0.052 and 0.067 mg/l)(Figs. 3.3.2-3 and 4, Tables 3.3.2-3 and 4)).

Extraordinarily high N/P was recorded in January (104 at U-St. 1 and 86 at U-St.2) and in March (95 at U-St. 1), which resulted from the low TP concentrations mentioned above. It was supposed that phophorus during this time was adsorbed by the soil on the bottom. However, during most cases the ratio showed 13-37, which was the values usually found in domestic waste water and sewerage.

 PO_4 -P was also in quite low values at 0.013-0.469 mg/l (Figs. 3.3.2-3 and 4). The proportion of PO_4 -P to TP was almost half, which means the organic part of phosphorus was obtained in relatively higher ratios than that of nitrogen (Table 3.3.2-6).

Whatever the concentrations, the percentages of DBOD to TBOD, and DCOD(Mn) to TCOD(Mn) were in quite narrow ranges (DBOD: 56-88 %, DCOD(Mn): 73-97 %) (Table 3.3.2-7). The concentration of COD(Mn) was usually higher than BOD. It showed, therefore, that the concentrations, which could easily be decomposed biochemically, were constantly quite higher than the concentrations which were decomposed chemically.

Table 3.3.2-5

Each Form of Nitrogen of Ui Chong

		July (mg/l) (%)		July September (mg/l) (%) (mg/l) (%)		January (mg/1) (%)	March (mg/1) (%)	May (mg/l) (%)
Ú-St. 1	TN TON NO3-N NH4-N	1. 53 0. 61		4. 37 0. 29 6. 6 3. 47 79. 4 0. 08 1. 8	(mg/l) (%) 6.25 0.50 8.0 0.80 12.8 4.91 78.6	5. 40 0. 39 7. 2 4. 53 83. 9 0. 47 8. 7	6.39 0.46 7.2 5.04 78.9 0.87 13.6	1.94 0.30 15.5 1.58 81.4 0.02 1.0
U-St. 2	TN TON NO3-N NH4-N	0. 86 0. 38	- - -	2. 77 0. 26 9. 4 2. 20 79. 4 0. 28 10. 1	4.85 0.23 4.7 3.65 75.3 0.90 18.6	4. 28 0. 28 6. 5 3. 79 88. 6 0. 21 4. 6	4.34 0.24 5.5 4.06 93.5 0.03 0.7	4. 22 0. 60 14. 2 2. 82 66 8 0. 02 0. 5

Table 3.3.2-6

Phosphorus of Vi Chong

	July	September	November	January	March	May	Mean	SD
TP(mg/l)	0. 138	0. 306	0. 469	0. 052	0.067	0. 118	0. 192	0. 149
U-st. 1 PO4-P(mg/l)	0. 074	0. 210	0. 204	0. 039	0.019	0. 086	0. 105	0. 075
(%)	54	69	43	75	28	73	57	17
IP (mg/1)	0. 137	0, 139	0. 191	0.050	0. 118	0. 195	0. 138	0. 049
U-St. 2 PO4-P (mg/1)	0. 102	0, 082	0. 098	0.036	0. 013	0. 076	0. 068	0. 033
(%)	74	59	51	72	11	39	51	22

Table 3	. 3. 2-7	BOD and COD of Ul Chong									
		 July	September	November	January	March	May	Mean	SD		
	160D (mg/l) DBOD (mg/l) (%)	3.5 -	9.0 7.0 78	13. 2 9, 1 69	4. 2 3. 3 79	3. 0 2. 4 80	1.4 1.2 86	5.7 3.8 65	4, 1 3, 2 30		
U-St. 1	TCOD (mg/1) DCOD (mg/1) (%)	4.3	8. 2 7. 5 91	15.3 13.9 91	9.8 8.1 83	8.7 7.2 83	4, 5 4, 2 93	8.5 6.8 74	3.7 4.2 33		
 	1BOD(mg/1) DBOD(mg/1) (%)	 3. 0	4, 9 3, 4 69	3. 6 3. 0	1. 7 1. 5 88	5.4 3.0 56	3.5 2.9 83	3. 7 2. 3 59	1. 2 1. 2 32		
U-St. 2	TCOD (mg/1) DCOD (mg/1) (%)	 3, 6	5. C 4. 7 94	6. 2 5. 7 92	4.5 3.9 87	6.6 4.4 67	7.5 7.3 97	5. 6 4. 3 73	1.3 2.2 34		

Table 3.3.2-8 Percent of Settleable Matter to SS in Ui Chong

		July	September No	ovenber	January	March	May	Mean	SD
U-St. 1	SS(mg/1) SM(mg/1) (%)	3, 4 3, 2 94	7. 9 6. 5 82	17.3 11.9 69	7.1 4.0 56	5. 3 2. 7 51	8.3 5.1 61	69	15
U-St. 2	SS(mg/1) SM(mg/1) (%)	13. 2 11. 0 83	1.6 1.0 63	9. 1 6. 8 75	6. 2 3. 1 50	32.2 16.3 51	6. 6 3. 0 45	61	14

The mean of Sulfide was found from 2.14 mg/l (November at U-St.1) to 4.62 mg/l (March at U-St. 2), which was constantly were higher at U-St. 2 than at U-St. 1 (Tables 3.3.2-3 and 4).

The mean concentrations of MBAS ranged from 0.89 mg/l (January at U-St. 1) to 2.03 mg/l (March at U-St. 1)(Tables 3.3.2-3 and 4). MBAS higher than 0.5 mg/l is said to be the cause of froth. It is recommended, therefore, natural soap rather than detergents which is the causes of MBAS be used.

- 3.3.3 Change of Water Quality and Pollution Load from the Upper to the Lower Stations
 - (1) Water quality in the upper-stream of the study area

Although the results of the water quality analysis in the upper stream of the study area were very few, they showed that the water quality in the upper part of Ui Chong were still good (Ui-1 in Fig. 3.3.4-1, Table 3.3.4-1). TN at St. Green Hotel, which was located higher than St. Ui-1, was relatively higher than the ordinary values of this river (3.3 mg/l). COD(Cr), however, was quite low at 1 mg/l even after the heavy rainfall of September 11-12. At St. Ui-1, COD(Cr) was 0 mg/l and TN was 5.22 mg/l. TON was high on both stations, which brought about the high TN concentrations.

Turbidity at St. Green Hotel were 0 and 1 mg/1, and DO was quite high at 9.3 mg/1.

It is possible to say that the water of Ui Chong originally had high quality based on COD(Cr), Turbidity and DO. Nitrogen, on the other hand, was found in high values even at the upper part of the river, which showed that this river was affected by human activities.

 $\Pi = 100$

- (2) Quality change in the study area
- 1) Change in the short period

Water quality change and change of pollution load measured within two weeks from May to June, 1991, are discussed here.

Daily variations of discharge even in the short period at both stations were great, U-St. 1: $0.055-0.350 \text{ m}^3/\text{s}$, U-St. 2: $0.013-0.285 \text{ m}^3/\text{s}$. However, on the same date the discharge was larger at U-St. 1 than at U-St. 2 (Tables 3.3.3-1 and 2).

Concentrations of water quality items at U-St. 1 were usually higher than at U-St. 2, and that U-St. 1 contained the greater load. Great variations of the load were found even in the short periods (Table 3.3.3-3).

2) Change during this survey period

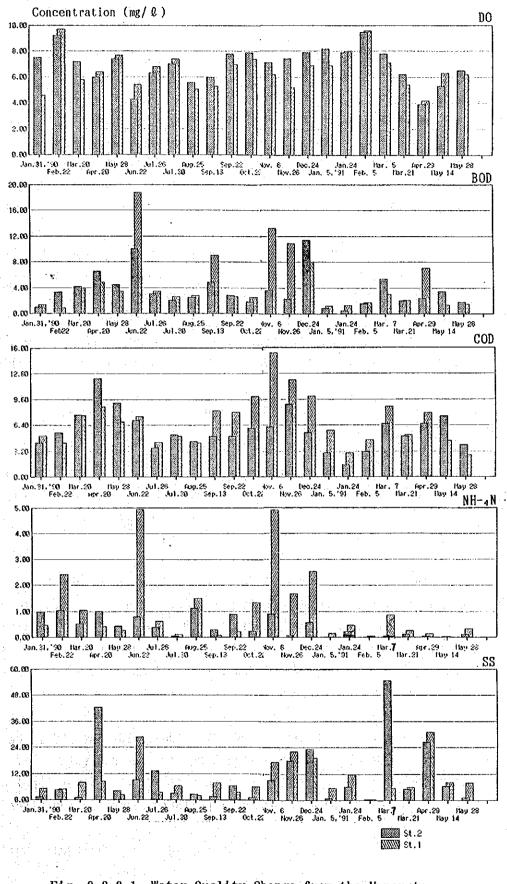
Great differences of DO concentrations were not found at both stations. There were, however, tendencies for higher DO to be found at U-St. 1 from April to August, while it was higher at U-St. 2 on the other months (Fig. 3.3.3-1).

COD(Mn) distribution patterns at both stations were similar with two peaks in March or April and November. COD(Mn) concentrations at U-St. 1 from November to April were relatively higher than at U-St. 2.

The distribution patterns of BOD and SS concentrations at both stations showed similar patterns as COD(Mn), although the peaks were not so clear.

The change of pollution load was estimated based on the mean concentrations of water qualities during the survey period and the HQ curves on both stations (Table 3.3.3-4).

The value of load varied monthly, except the values which were obviously affected by rainfall and were exceptionally high. However, the variance was not as large as the values found on other


U-St. 1 141.1 - 181.4 4.2 45.5 53.6 U-St. 2 98.5 - 209.3 1.3 35.7 59.1 U-St. 1 20.2 1.4 17.8 2.4 2.1 8.3 0.04
1 20.2 1.4 17.8 2.4 2.1 8.3 0.

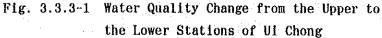

Rater Qaulity of Ui Chong, U-St. 1, May-June, 1991 Discharce was provinging measured on the same fime.

Table 3.3.3-1

,

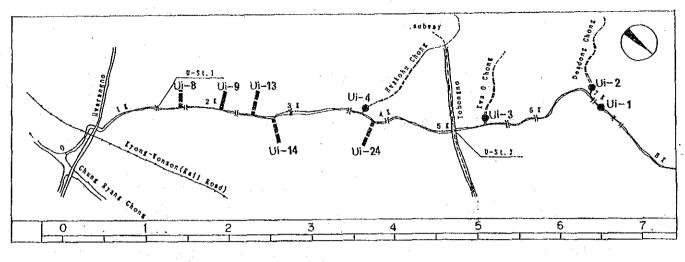
II - 1 0 2

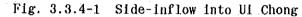
rivers. The range of variance at U-St. 1 was smaller than at U-St. 2.

The mean values of pollution load of BOD and SS at U-St. 1 were slightly higher (BOD: 0.54 ton/day, SS: 0.88 ton/day) than at U-St. 2 (BOD: 0.43 ton/day, SS:0.83 ton/day). COD(Mn) at U-St. 2, however, was greater than at U-St. 1 (U-St. 1: 0.41 and U-St. 2: 0.45 ton/day).

Generally the concentrations at U-St. 1 were higher than at U-St. 2 . The discharge of this river was very small, and it is supposed that an underground stream existed between both stations. It is thought, therefore, that the values of load at both stations would be almost the same, although overflow from intercepting sewer pipe and direct inflow to the river may have affected the water quality.

3.3.4 Side-inflow into Ui Chong


There are many side-inflowing sewers on the riverbed of Ui Chong. However, water from only one of them flows directly into the river (Ui-9 in Fig. 3.3.4-1) and its inflowing volume was low at 0.035 m3/s (Table 3.3.4-1).


The water from this direct inflowing sewer was thought to be the domestic sewage and its quality was quite bad. In spite of the volume of inflowing being small, it might have polluted the water of Ui Chong. COD(Cr) value, in particular, was much higher (100 mg/l) than that in the water of Ui Chong (31 mg/l at U-St. 1 and 9 mg/l at U-St. 2) (Table 3.3.4-1).

The inflow load of COD(Cr) from this side-inflow was 302.4 kg/day, TN was 56.8 kg/day and TON was 22.5 kg/day, respectively. Although the concentrations were higher than that of the river, pollution loads contribute less to the total pollution loads in the river.

The inflowing water from the left side was extremely polluted

Π-104

Table 3.3.4-1 Direct and Indirect Side-inflow into Ui Chong

Date: September 4, 1990 Weather on the day: Slightly cloudy Weather on the previous day: Clear and cloudy AT: 24.4 °C (11:20)

				1. S. S. S. S. S. S. S. S. S. S. S. S. S.									latio	owing Load	
Itea	WT	pH	EC	Turbid. COL)(Cr)	TKN	NO2-N	NO3-N	NII4-N-	TN	TON	Discharge	COD(Cr)	TN	TON
Station	(°C)	- C.	(BS/cff)		z/1)	(ng/1)	(mg/l)	(ag/1)		(ng/l)	(mg/l)	(m3/s)	(kg/day)	(kg/day) (kg/day)
U-St. 1	23,1	6.8	0,8	13	31	4.58		3.4	ĩ 01	8.04	3. 57	((-0)	(
0-St. 2	24.4	7.2	0.7	. 14	ĝ	3.33		2.4	0.37	5.75	2, 96	<u> </u>			
0-34 2	<u> </u>	1. 6	0. /	1.4	ä	0.00	0.010	2.4	0.37	0.10	2, 30	ant and the			
				0		· 0 . 6 4	0.007	° 0		6 99	2. 98	2. 333	402.14	1052.20	600. 68
01-11	21.4	6.4	0.7	0	4	3. 21	0.007	2.0	0.23	5. 22	4. 30	2. 335	403.14	1032. 20	000.00
		•													
Ui-2	24.7	7.4	0.8	2	19	4.58		1.5		6.09	2. 34	. – 1			
Ui-3	22.6	7.2	0, 8 -	16	16	12.92	0.302	2.5	6.63	- 15. 72	6. 29	-			
01-4	23.5	7.4	0, 9	25	63	17.5	0.446	2.3	9,75	20.25	7.75	~			
. Ui-8	-	_	-		63	10.83	0.088	3	5,75	13.92	5.08	· _			
Ui-9"	23.6	7.1	0.8	20	100	17.08			9.63	18.77	7.45		302.40	56.76	22. 53
													004.10		2
Ui-13#	20.4	6.6	0.7	42	18					8.50	1,66			· · · · ·	
Ui-14	27.3	7.4	0.8	8	. 25	17.08	0.030	3.1	11.25	20. 21	13.98	-			
Ŭi-24		-		-	122	20.83	0.239	1.2	11.63	22.27	9.20	-			
01 01					~~~	-4.00	0.000	~• •							

In Classical Faced

": water from this sewer is direcrly inflowing to Ul Chong. #: Water form this drain is originated from the under-constructing area. I: Water was samples from the upper Ui Chong, outside study area.

.