

Fig. 5-26 Temperature vs Depth Diagram of Exploratory Wells

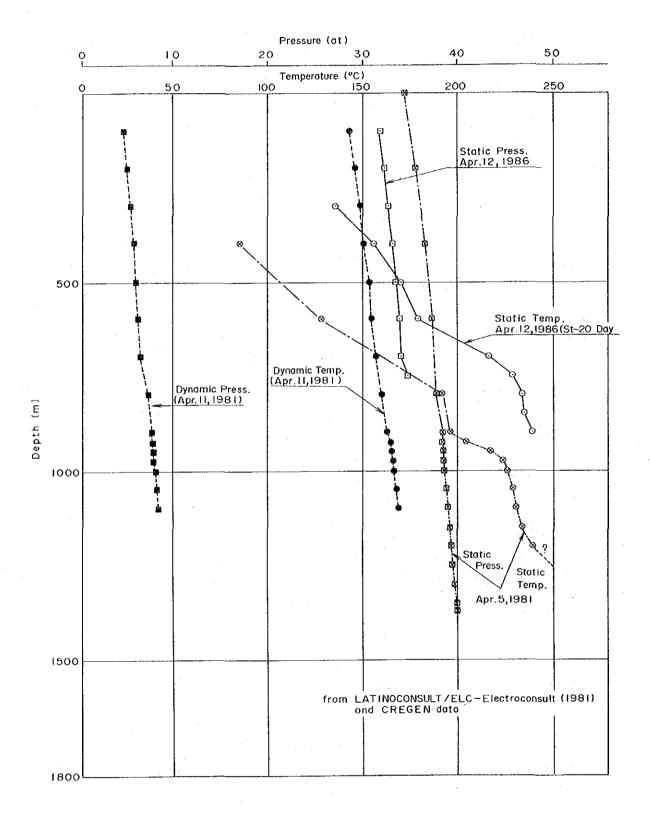


Fig. 5-27 Pressure and Temperature Profiles for COP-1

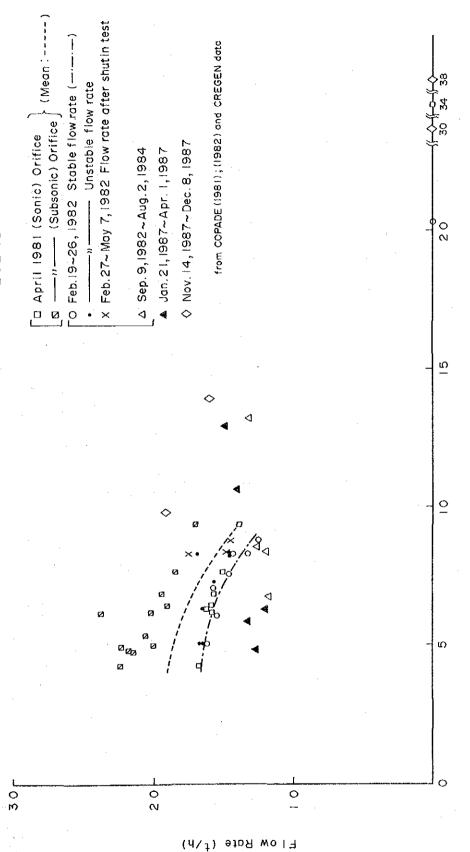
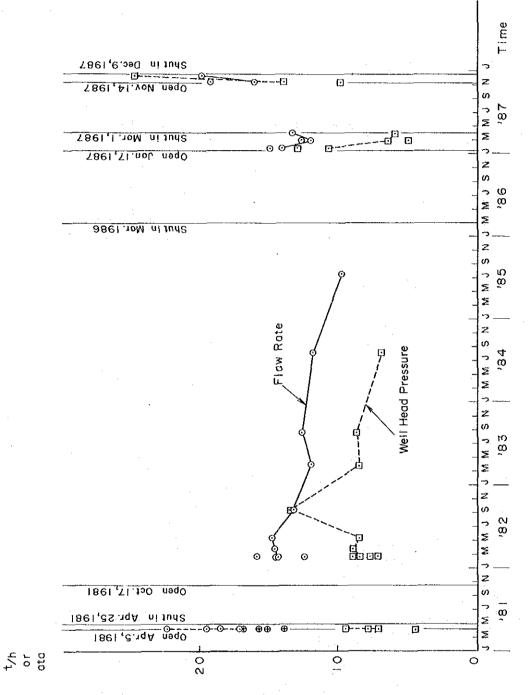



Fig. 5-28 COP-1 Well Characteristic Curve

Well Head Pressure (ata)

Flow Rate (©) and Well Head Pressure (E)

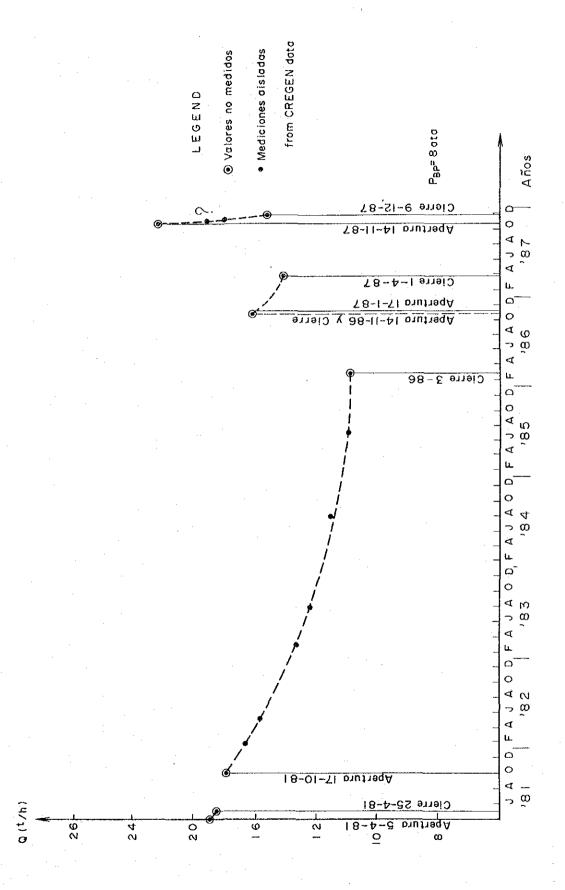


Fig. 5-30 COP-1 Schematic Production Curve

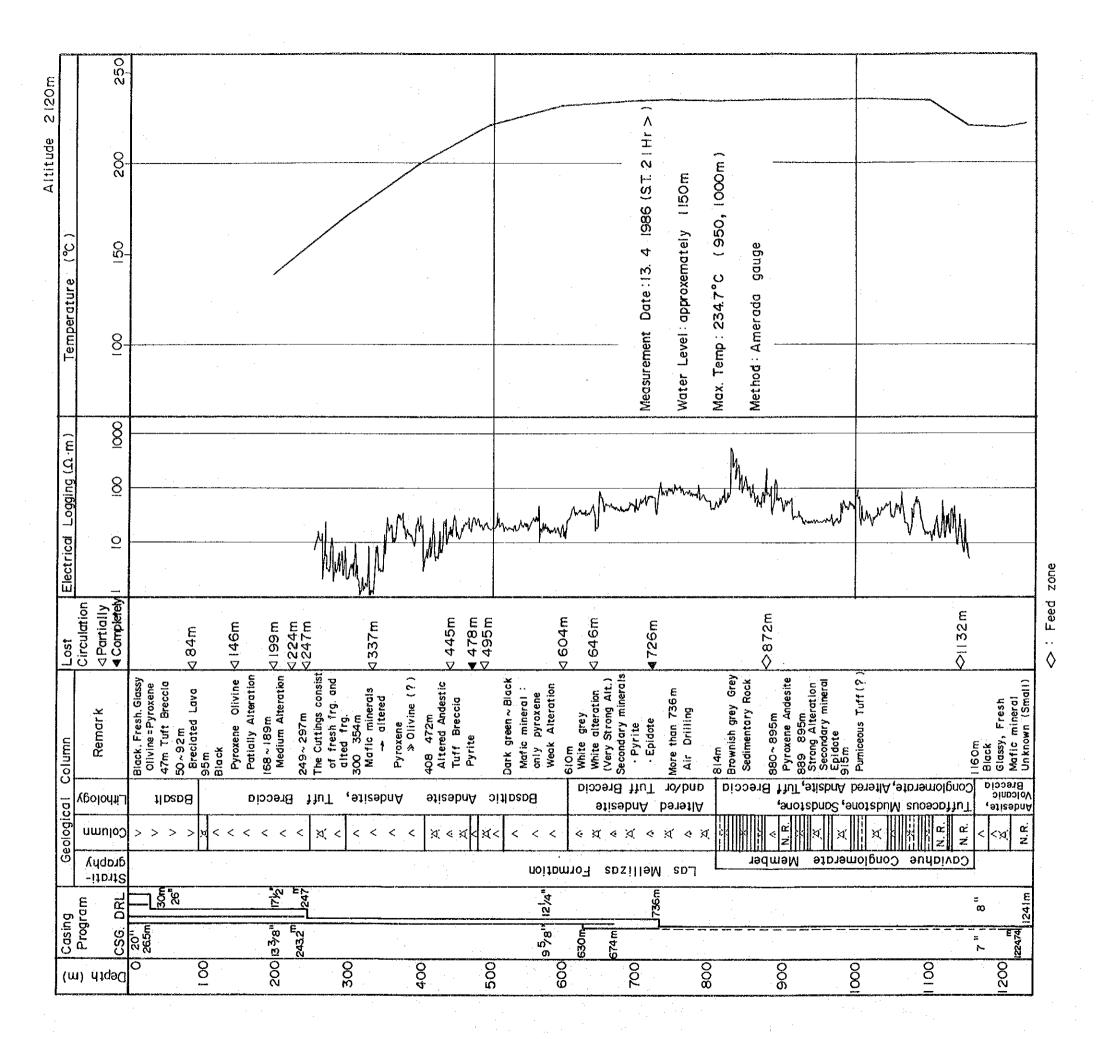


Fig. 5-31 Integrated Columnar Section of COP-2

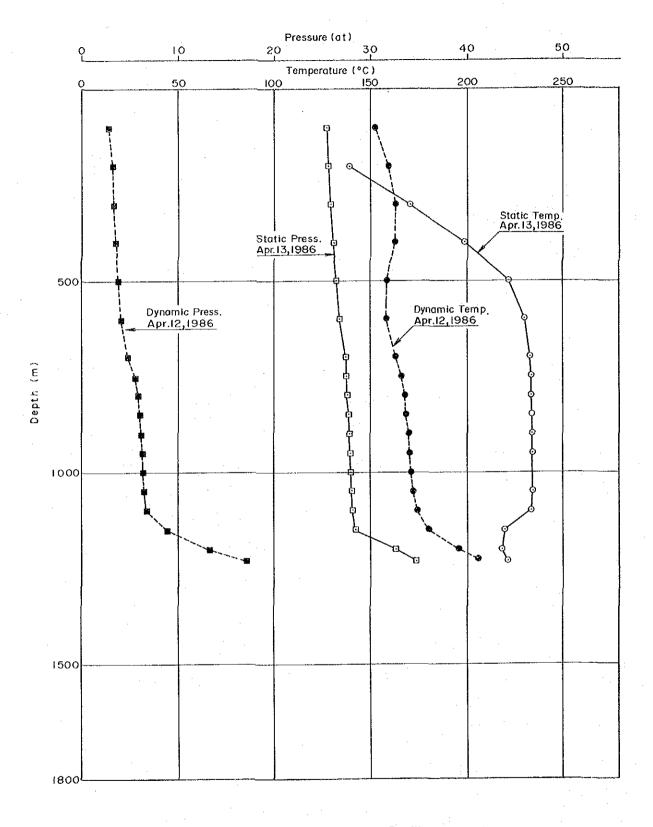


Fig. 5-32 Pressure and Temperature Profiles for COP-2

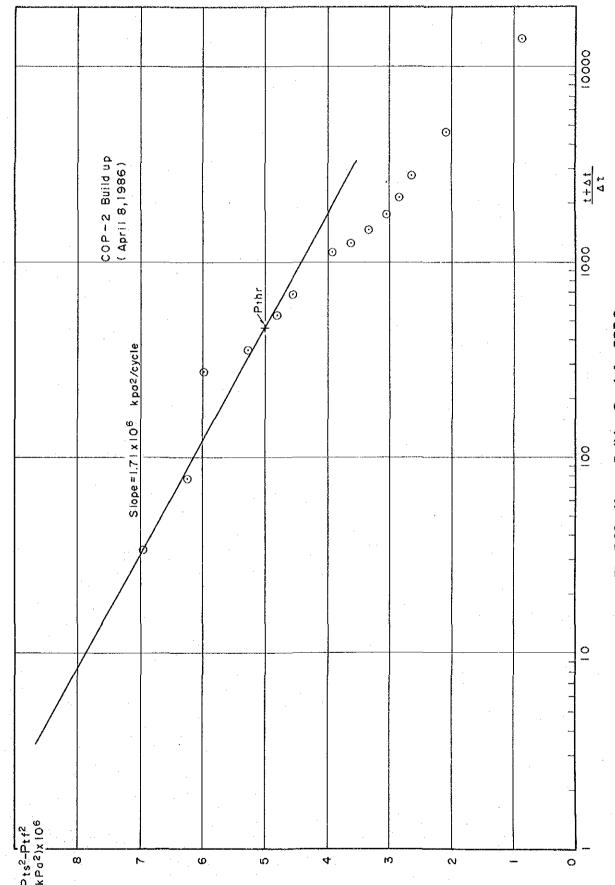
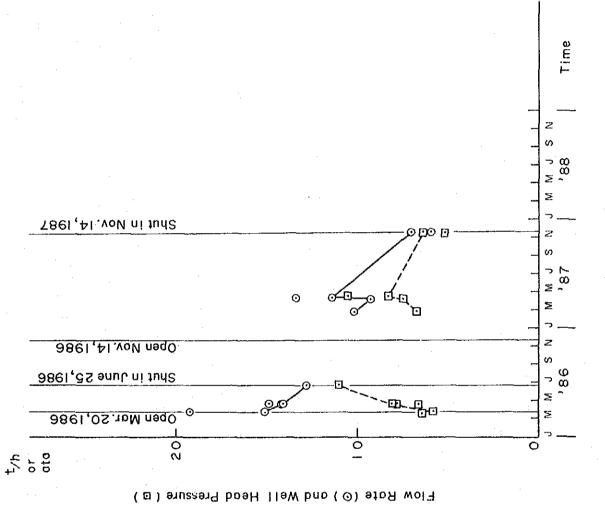



Fig. 5-33 Horner Buildup Graph for COP-2

Fig. 5-34 COP-2 Well Characteristic Curve

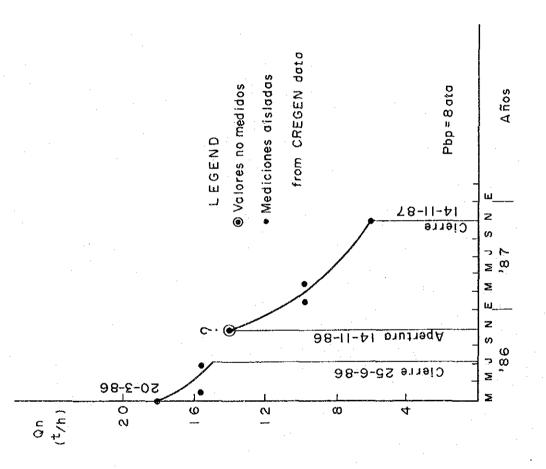


Fig. 5-36 COP-2 Schematic Production Curve

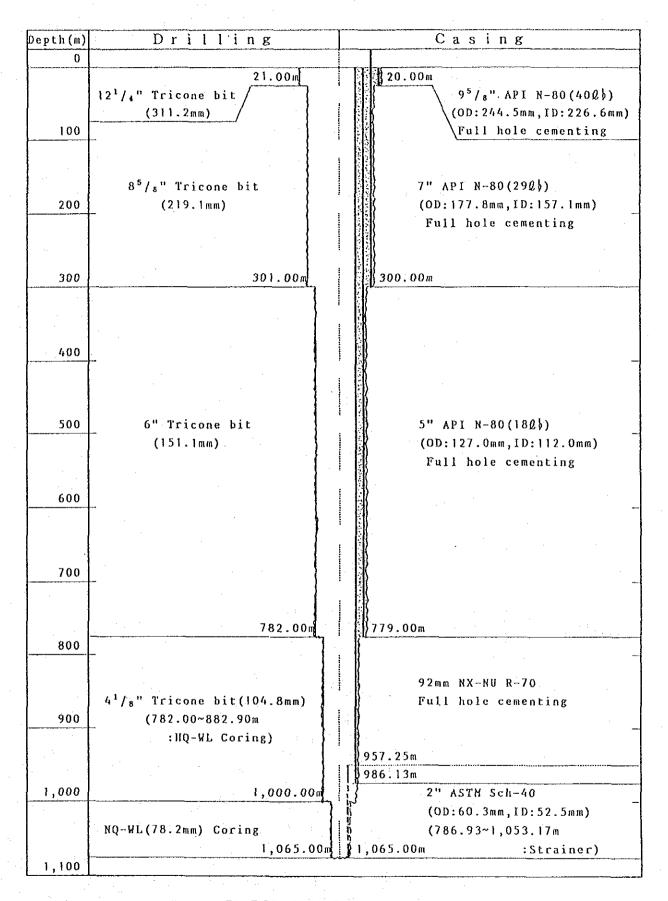
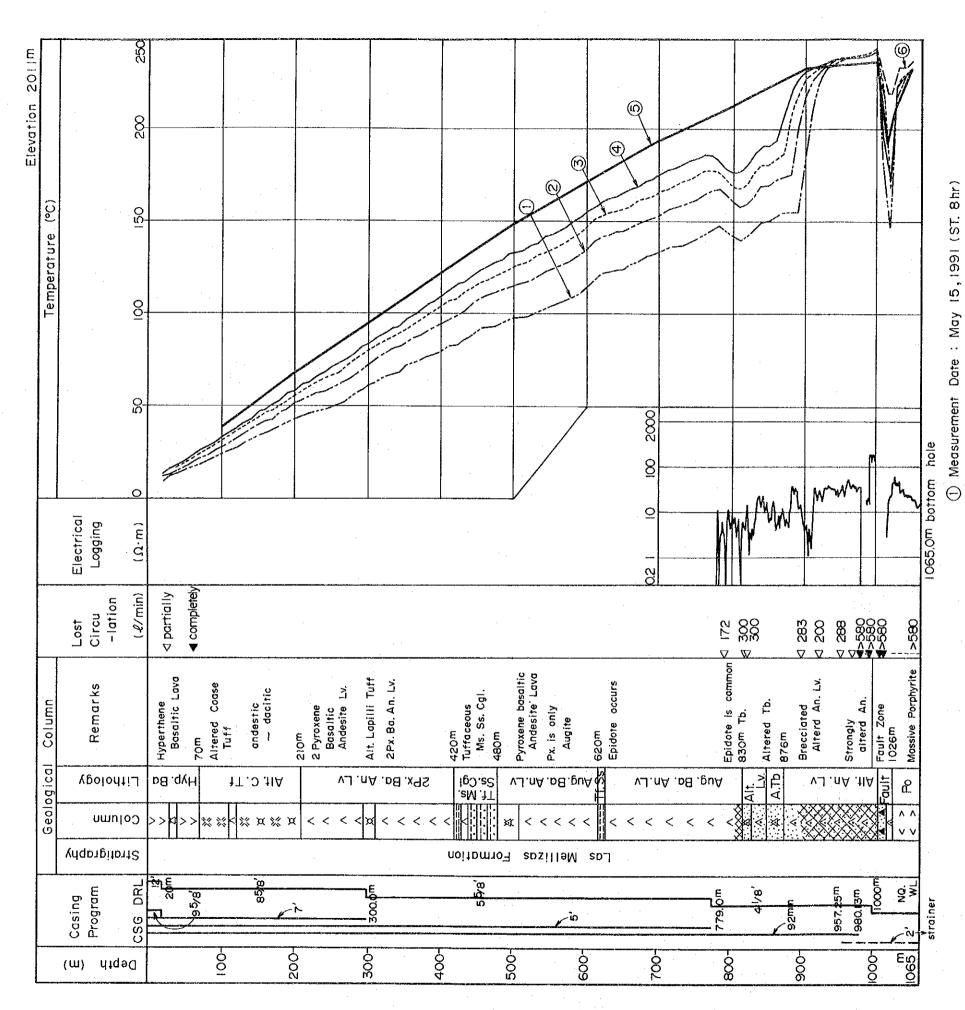



Fig. 5-37 Casing Program of COP-3

Max Temp: 241°C (1.002m)

Max Temp: 241°C (1.002m)

Masurement Date: May 17, 1991 (ST. 48hr)

Water Level: 875m

Max Temp: 242°C (1.002m)

Max Temp: 242°C (1.002m)

Max Temp: 242°C (1.002m)

Max Temp: 242°C (1.002m)

Max Temp: 236.9°C (1.000m)

Max Temp: 236.9°C (1.000m)

Max Temp: 236.9°C (1.000m)

© Equilibrium Temperature Calculated by

①, ②, and ③ (1.000m~1.065m) Max Temp : 240°C (1.002m) Measurement Date : May 16, 1991 (ST. 24hr) Water Level: 887m Water Level: 900m (0) (m) 4 **(**

Fig. 5-38 Columnar Section of COP-3

(

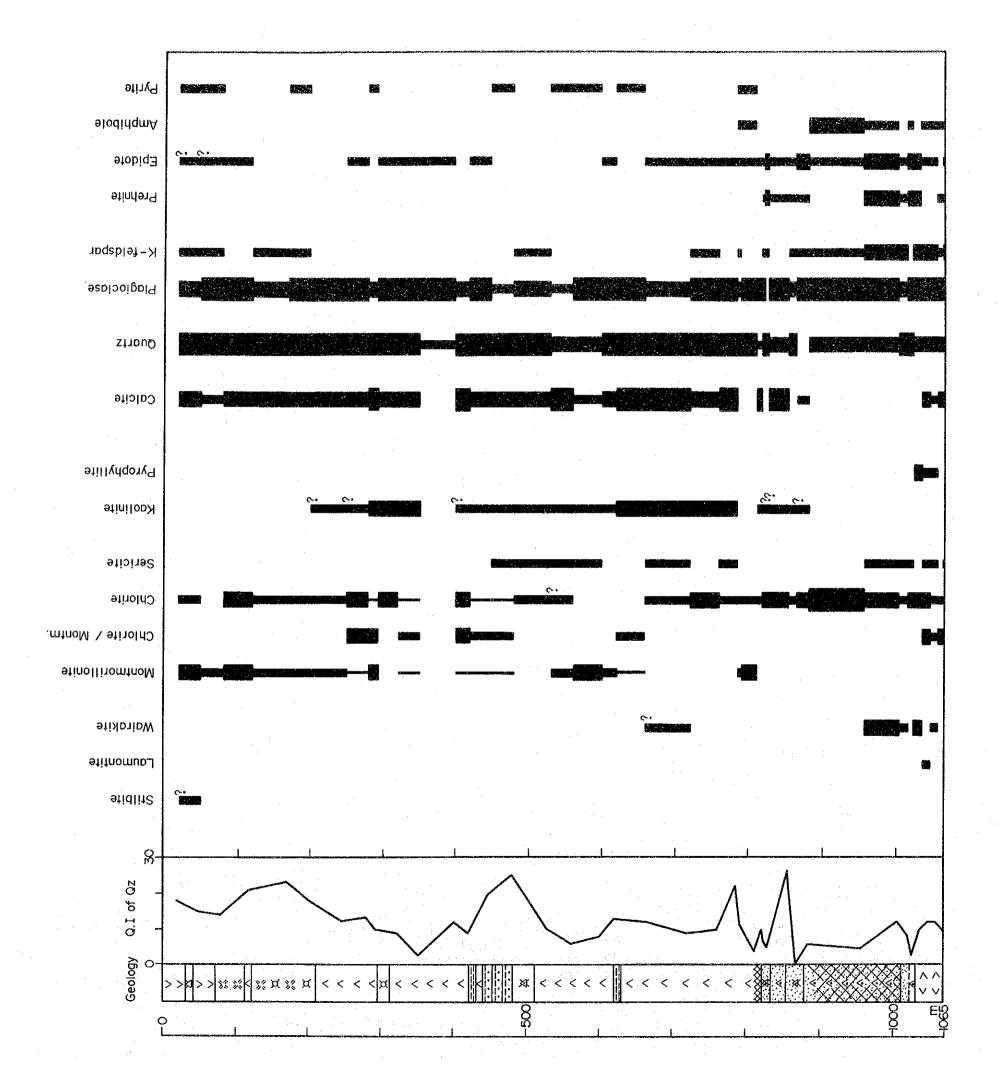


Fig. 5-39 Distribution of Alteration Minerals from COP-3, Detected by X-ray Diffractmeter

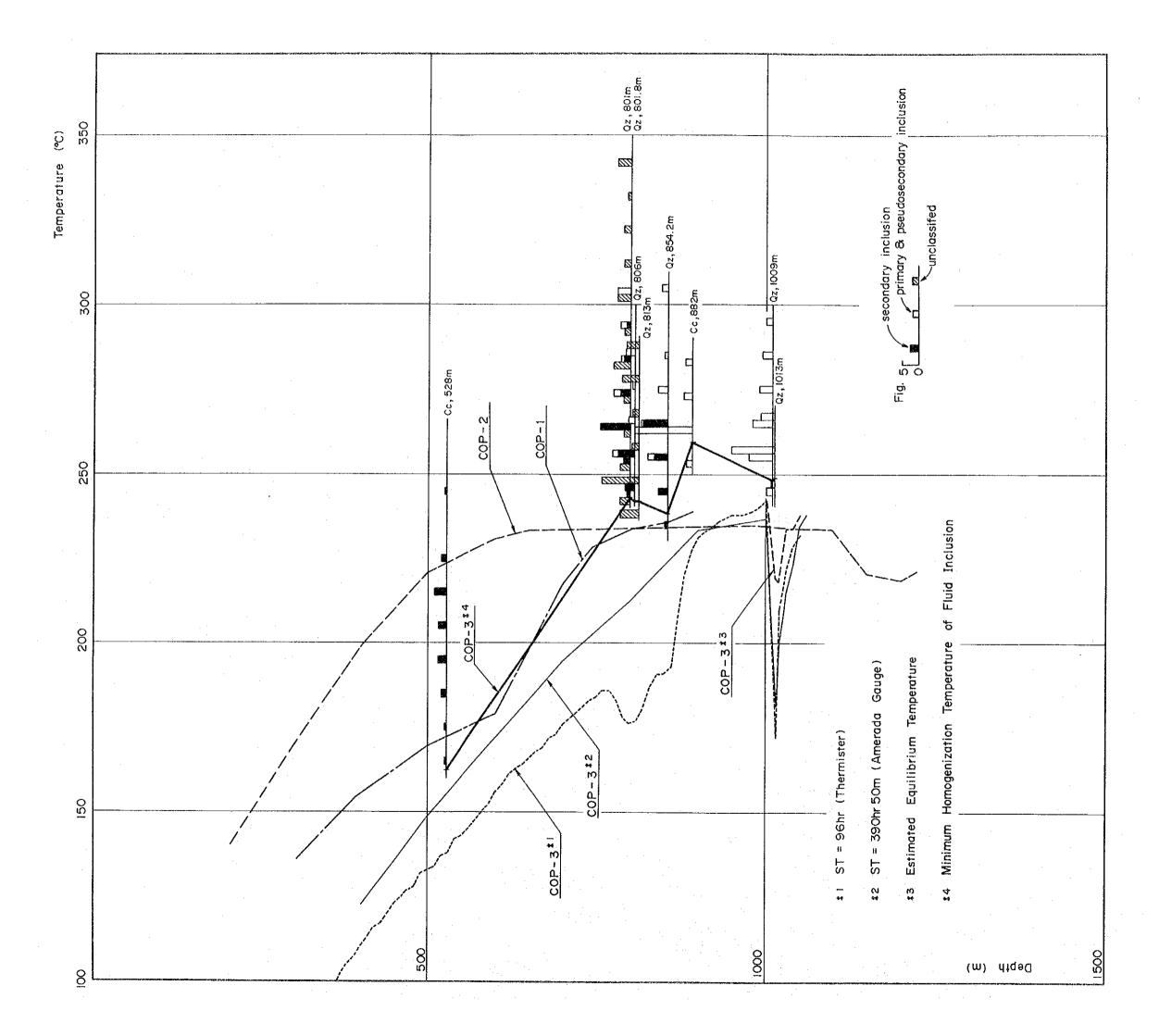


Fig. 5-40 Homogenization Temperature of Fluid Inclusion of COP-3

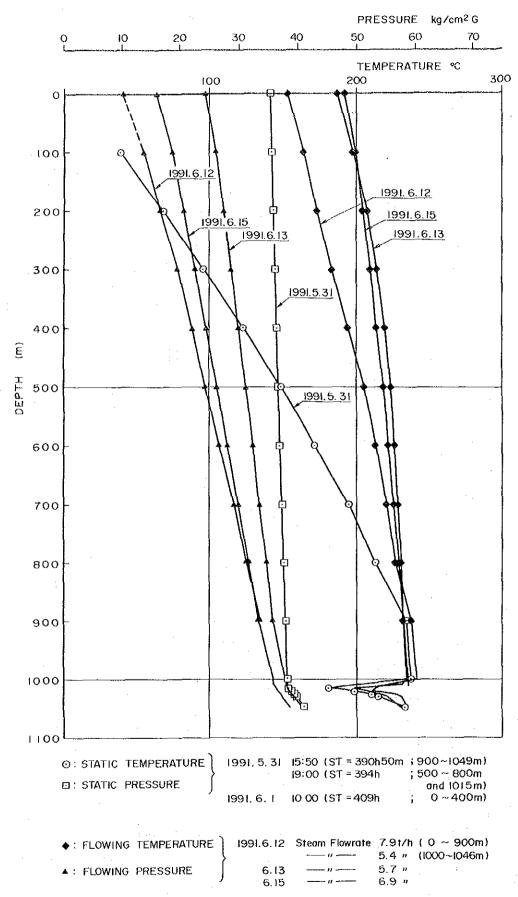


Fig. 5-41 Pressure and Temperature Profiles for COP-3

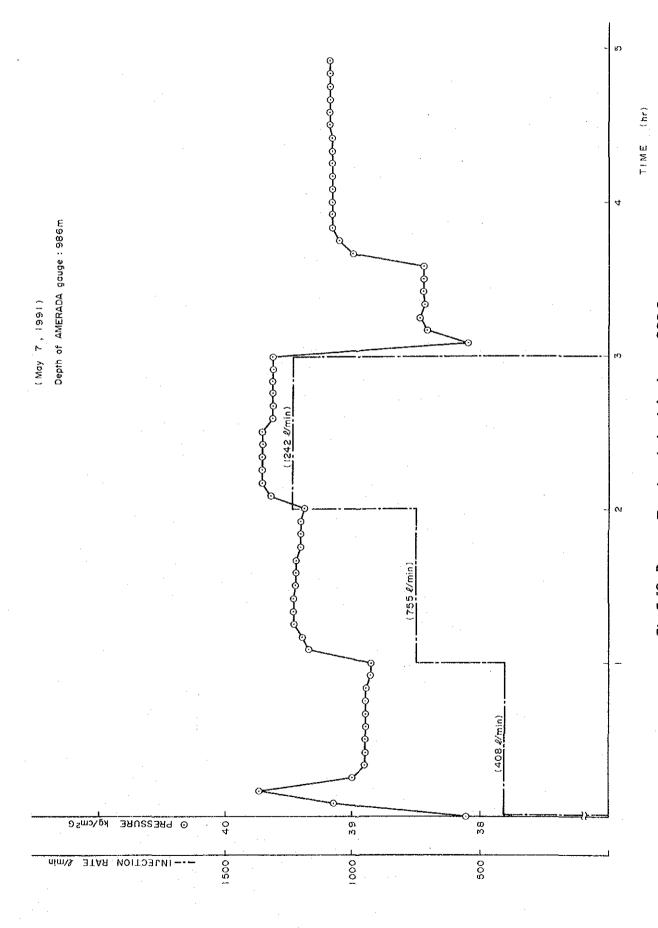


Fig. 5-42 Pressure Transient during Injection on COP-3

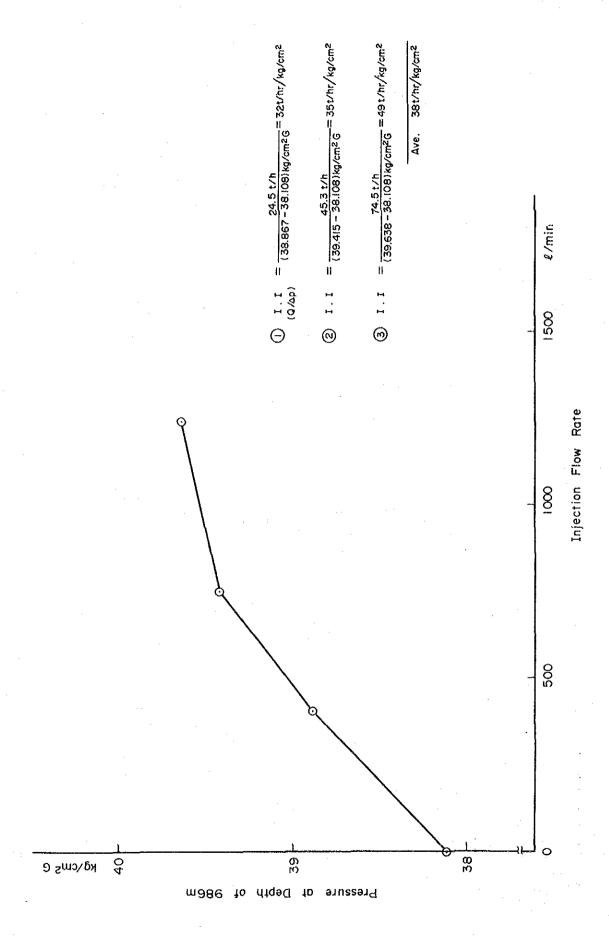


Fig. 5-43 Injectivity of COP-3

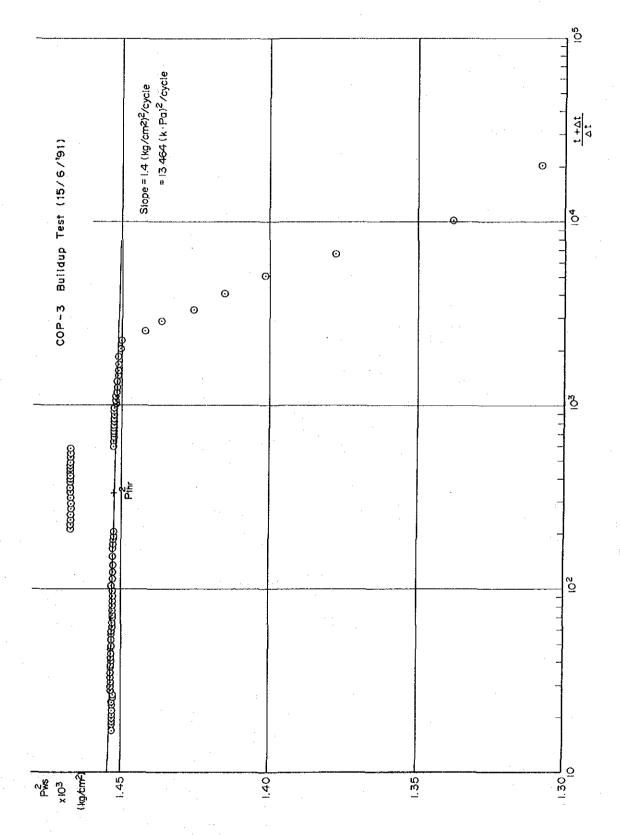


Fig. 5-44 Horner Buildup Graph for COP-3

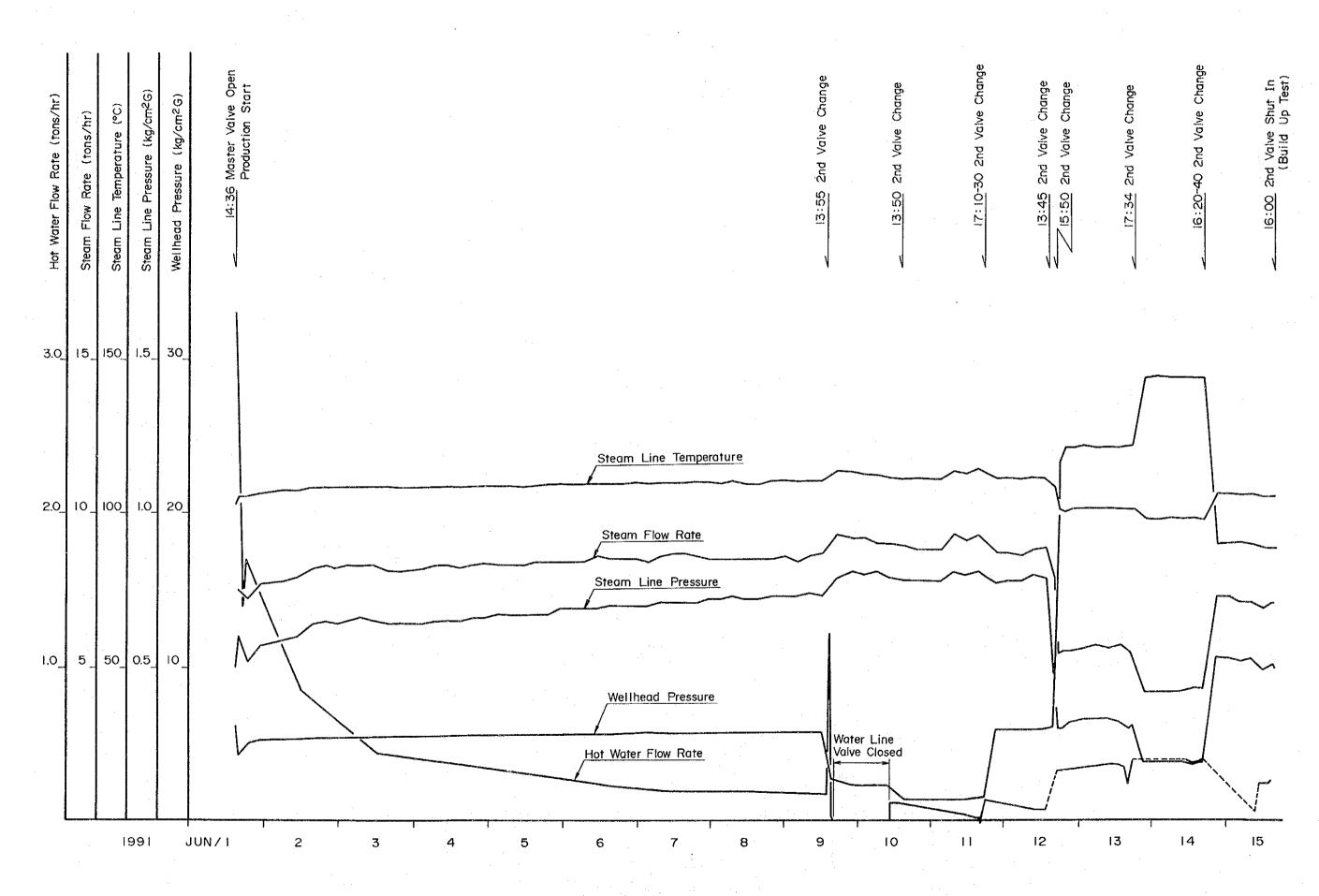


Fig. 5-45 COP-3 Production History

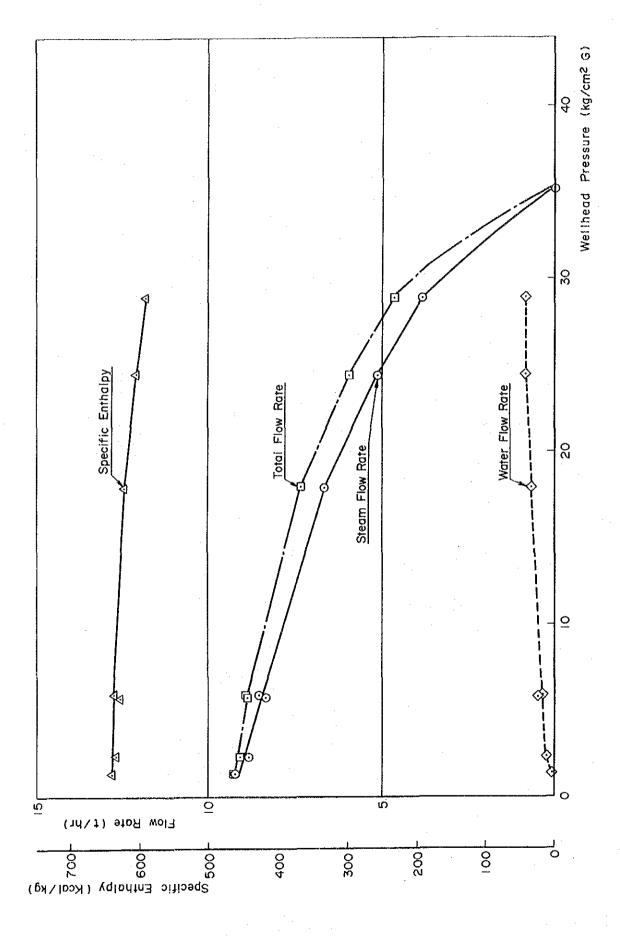
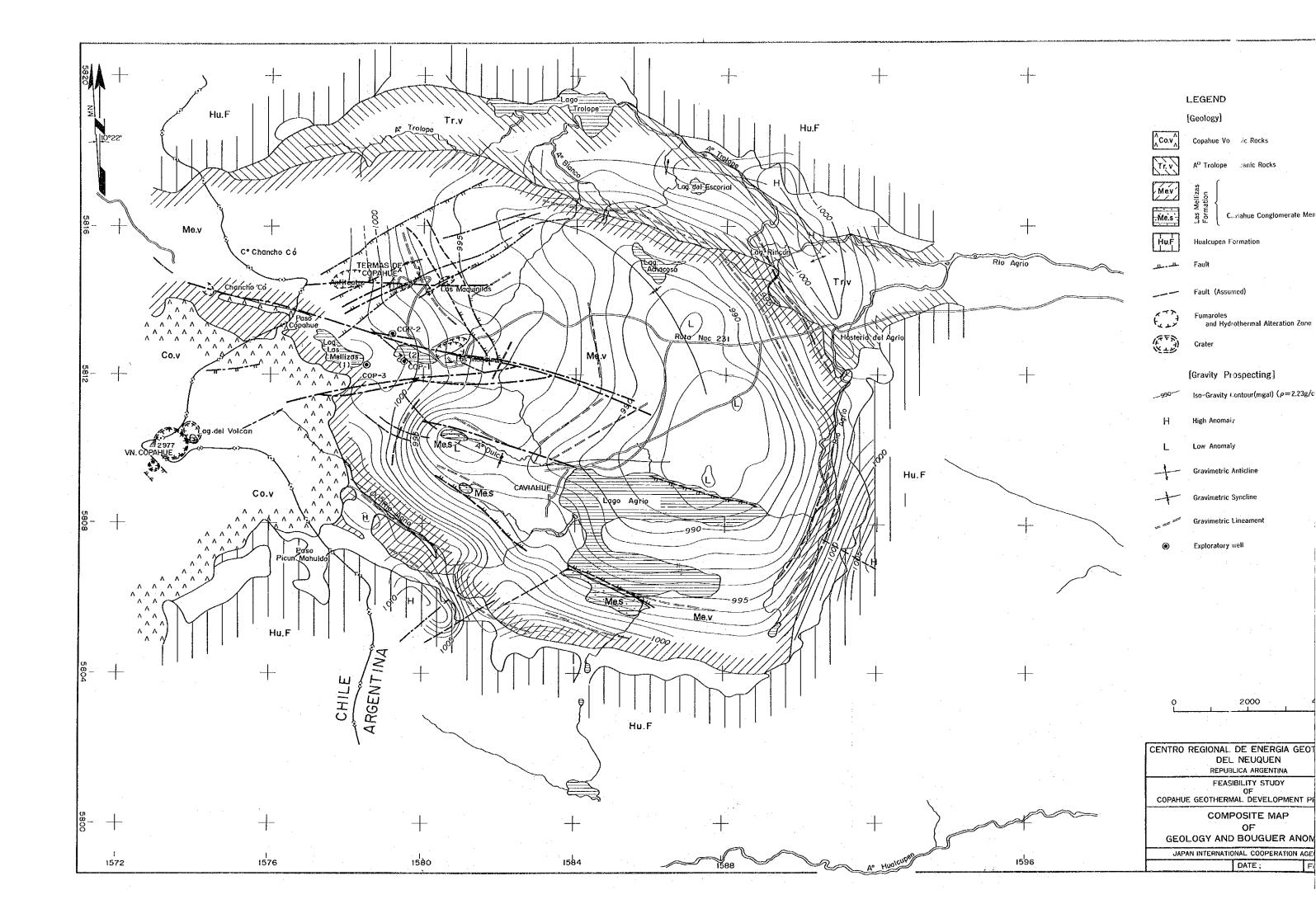
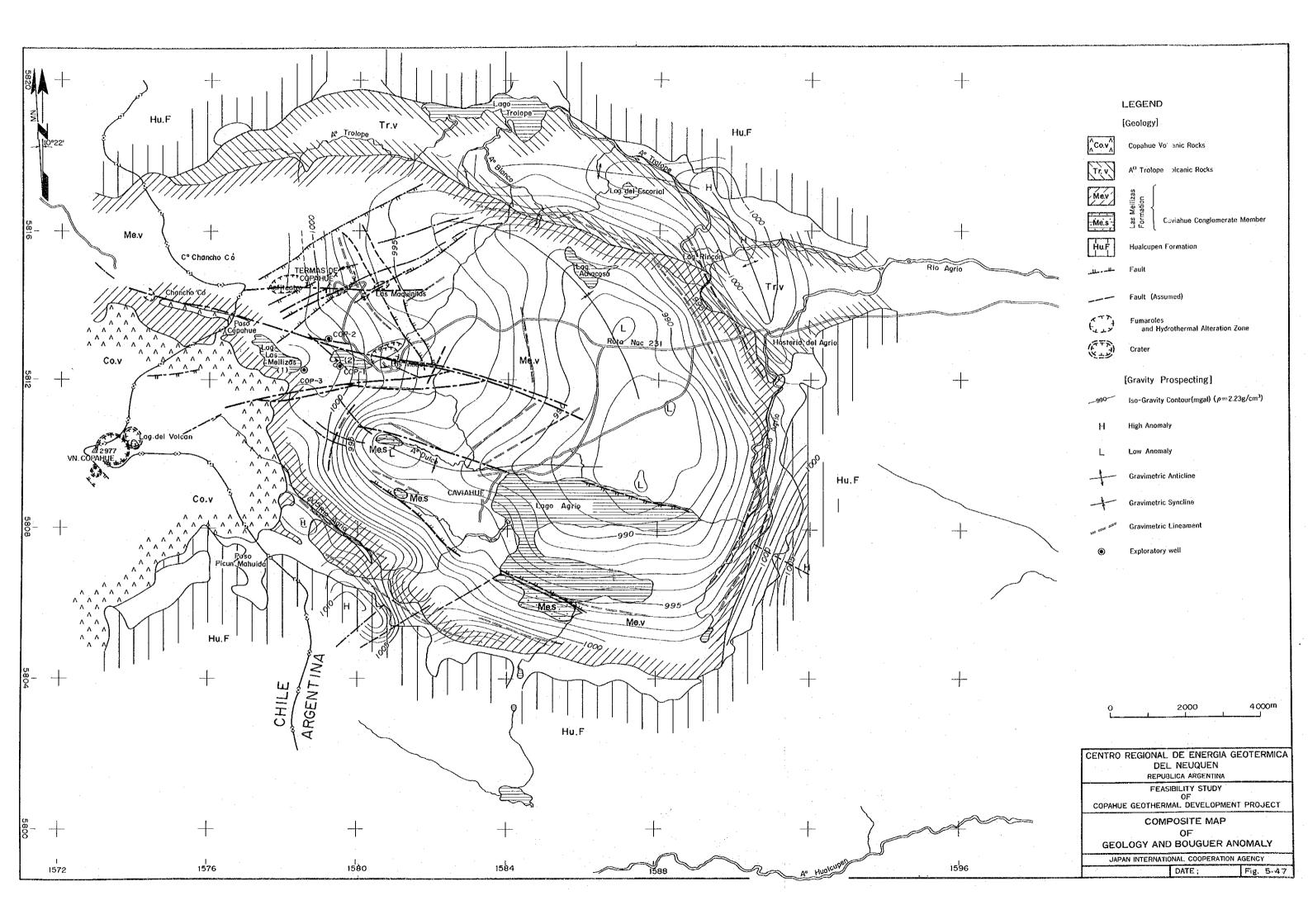
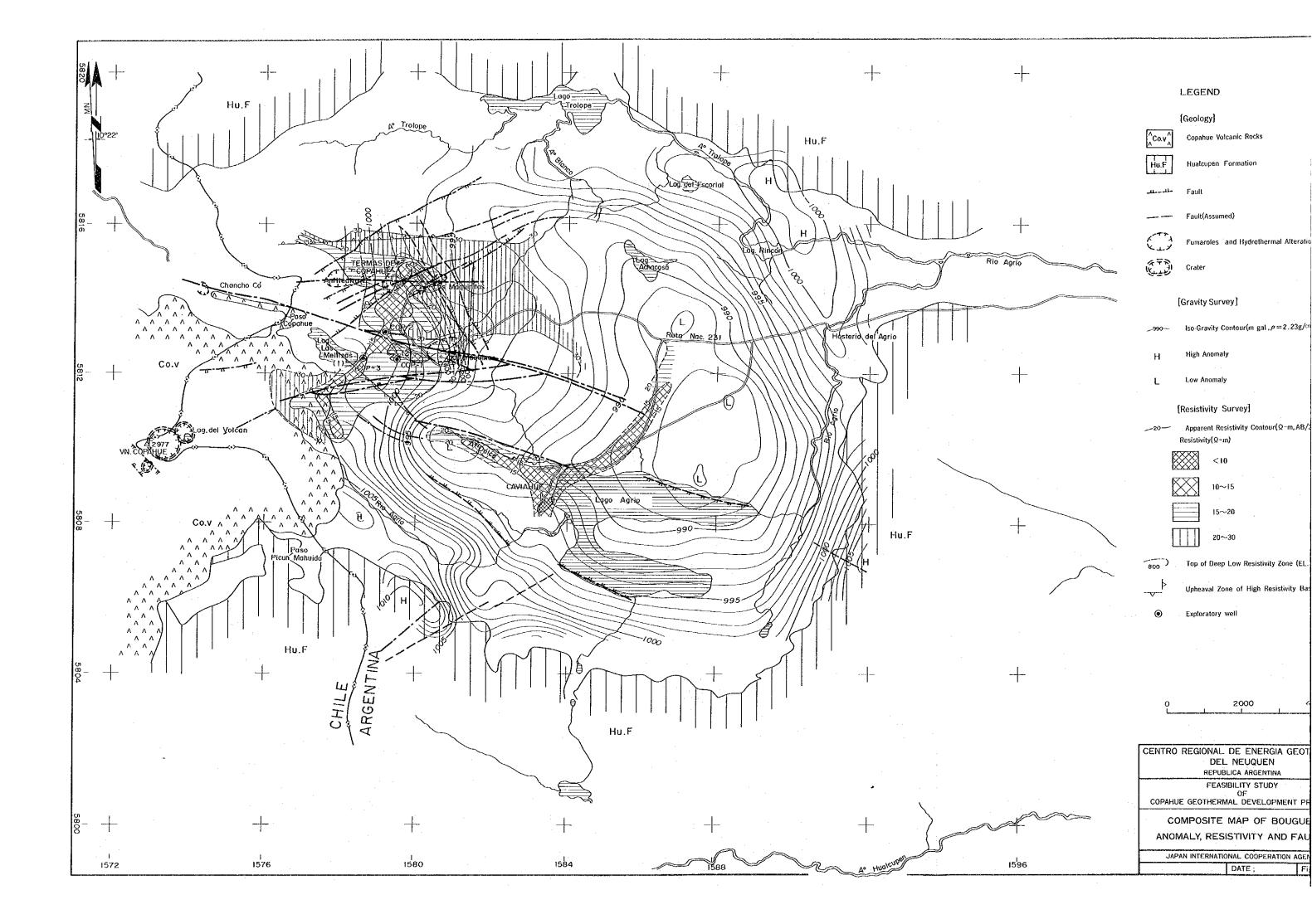
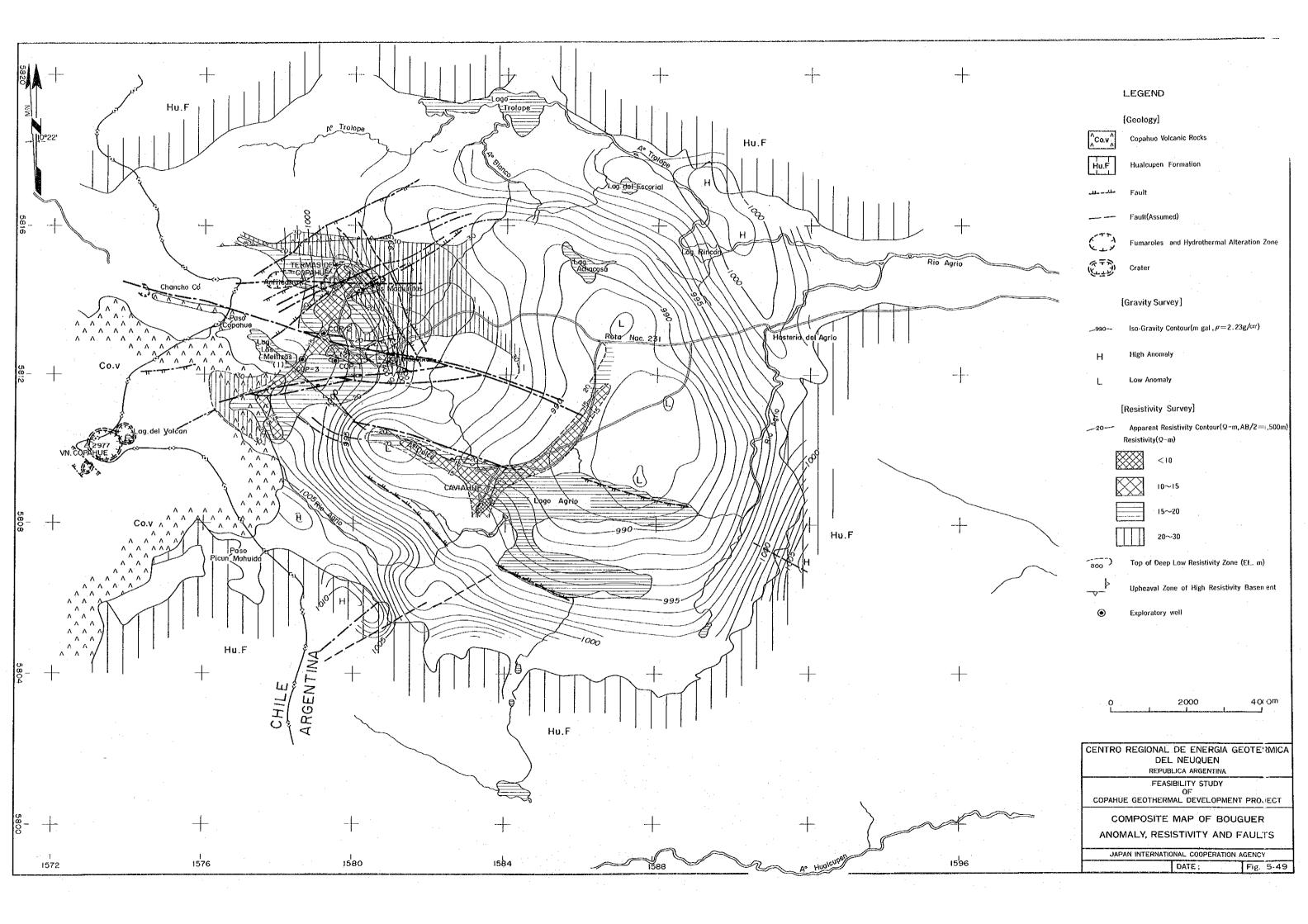
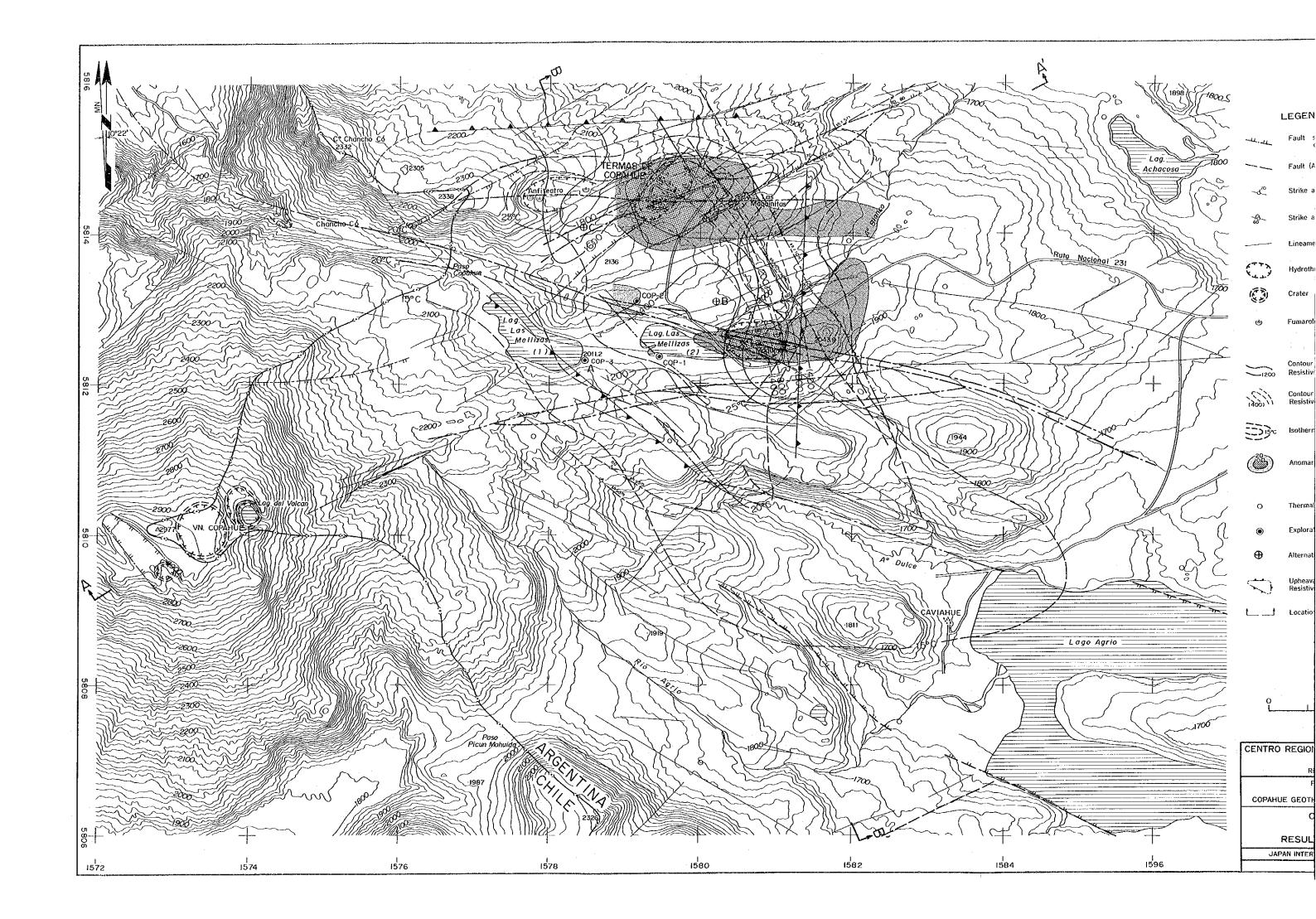




Fig. 5-46 COP-3 Well Characteristic Curve




LEGEND Profile A - A' Τa Talus Lag.del Volcan VN. Copahue Co.v Copahue Volcanic Rocks m 0000 m 3000 Tr.v A^D Trolope Volcanic Rocks Log.Las Mellizas COP-2 COP-3 Me.v A⁰ Trolope Me.s - 2000 --2000 R.8.p Riscos Bayos Pyroclastic Flow Deposits Hu.F Hualcupen Formation 1000 --1000 R.B.p Geologic Boundary Hu.F Fault (Assumed) Hu.F Base of Shallow Low Resistivity Layer Top of Deep Low Resistivity Layer Profile B - B 3000^m - 3000^m Lag. Las Mellizas COP-2 COP-I Rio Agrio 2000 --2000 Me.v Me.s Me.s Me.v Me.v - 1 000 -Me.s R.B.p RB.p Me.v Me.v R.B.p R.B.p R.B.p 2000 4000m Hu.F (Horizontal) CENTRO REGIONAL DE ENERGIA GEOTERMICA DEL NEUQUEN REPUBLICA ARGENTINA FEASIBILITY STUDY OF COPAHUE GEOTHERMAL DEVELOPMENT PROJECT GEOLOGY AND RESISTIVITY PROFILE


JAPAN INTERNATIONAL COOPERATION AGENCY

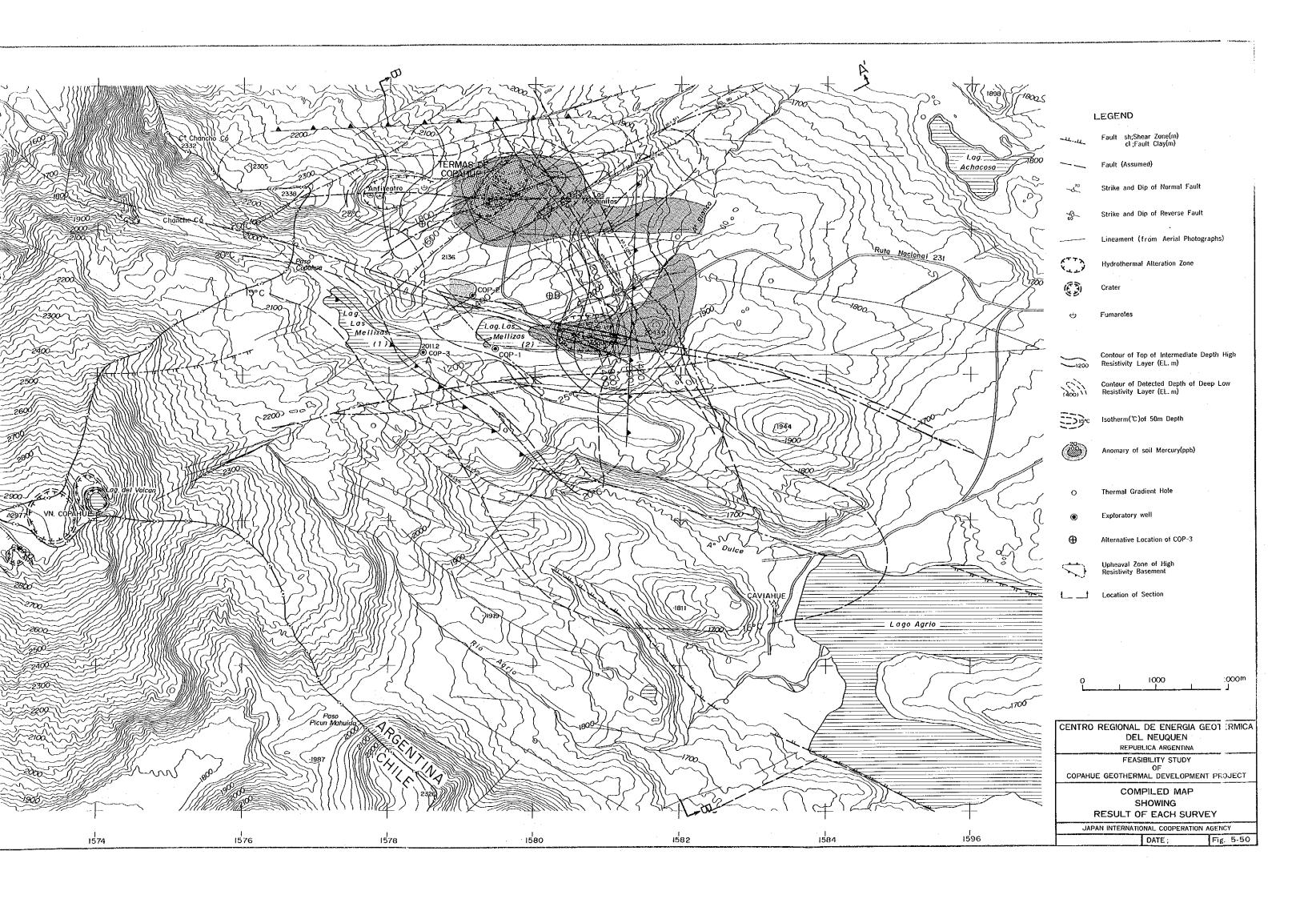

DATE;

Fig. 5-48

Profile A-A' LEGEND Lag, dei Volcan VN. Copohue Talus Τσ Gravel, Sand and Mud __0000E__ 3000^m **(A)** Log. Las Mellizas Copahue Volcanic Rocks Co.v COP-2 (B) Pyroxene Olivine Basalt, Liparite and Pyroclastic Rocks COP-3 Co.v CO2 NH4 SO4 AO Trolope Volcanic Rocks A° Trolope Tr. v HCL Me.v Pyroxene-bearing Plagioclase Andesite SQ2 or H2S 2000-- 2000 Olivine Pyroxene Basaltic Andesite, Me.v Me.v Pyroxene Andesite and Agglomerate etc. .100℃1 Lake Sediments and Glacial Deposits Me.s Me,s Conglomerate, Sandstone and Mudstone Hu.F Hu.F Me.s R.B.p Riscos Bayos Pyroclastic Flow Deposits 1000 -1000 Me.s Hualcupen Formation Fine Pyroxene Andesite, Agglomerate, Tuff Breccia, Tuff etc. Hu.F R.B.p Me.v Hu.F Geologic Boundary Hu.F Fault Fault (Assumed) Fumarole and Hot Spring Isotherms Heat Conduction Meteoric Water Flow Fig. 2-1 Hydrothermal Fluid Flow Profile B - B' Volcanic Gas - 3000^m Lag. Las Mellizas 3 000° Vapor dominated Reservoir COP - 2 COP-1 Rio Agrio Hot Water Reservoir SO4 HCO3 NH4 CO2 NH4 НСОз **Alteration Zone** -2000 2000 Mev d 11 Production Zone Me.v 100°C Me.v Alternative Location of COP-3 Me.s 1000 1000 -100°C Me.s R.B.p R.B.p Hu.F Me.v RBp_____MRBp Me.v 2000 4000m 500.C ____ (Horizontal) CENTRO REGIONAL DE ENERGIA GEOTERMICA $\text{\rm Hu}, \text{\rm F}$ DEL NEUQUEN REPUBLICA ARGENTINA FEASIBILITY STUDY COPAHUE GEOTHERMAL DEVELOPMENT PROJECT MODEL OF GEOTHERMAL SYSTEM JAPAN INTERNATIONAL COOPERATION AGENCY DATE; Fig. 5-51

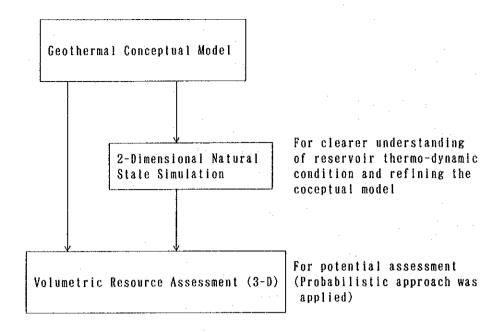


Fig. 5-52 Conceptual flow of resource assessment in Copahue Study

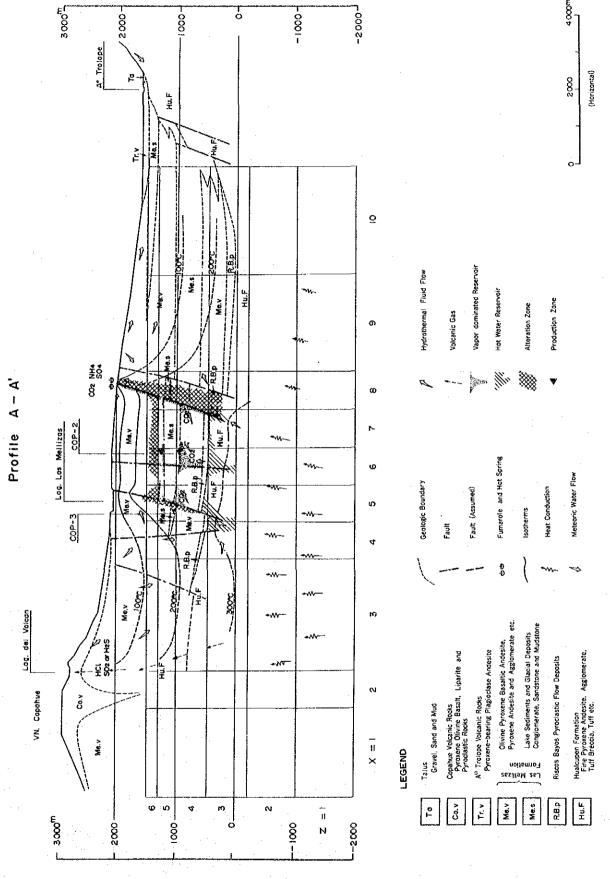


Fig. 5-53 Simulation Model

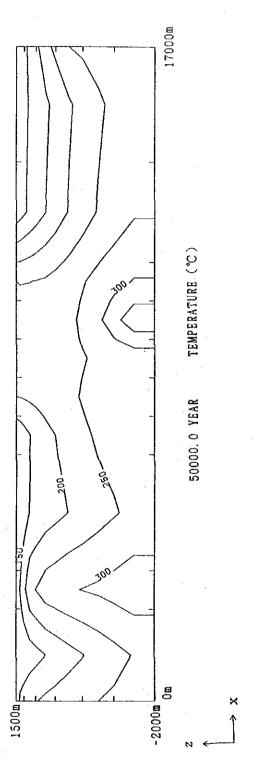


Fig. 5-54 Computed Temperature Distribution

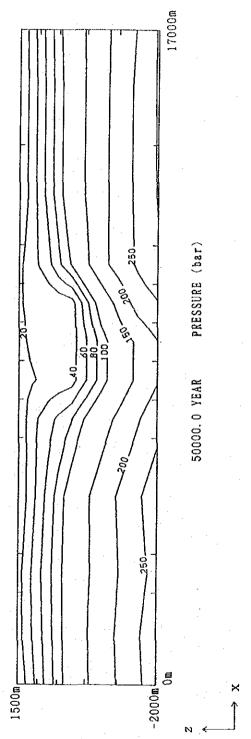
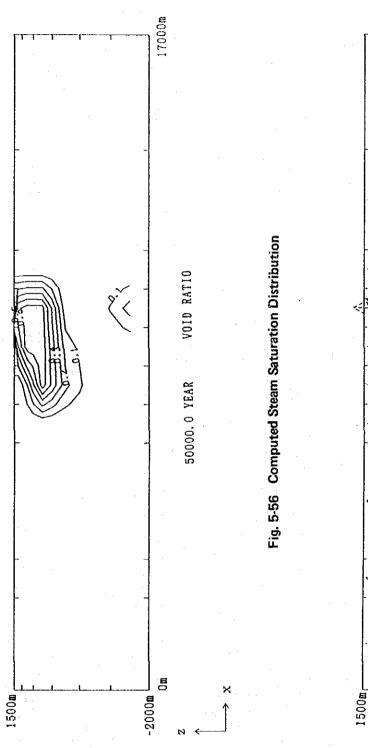
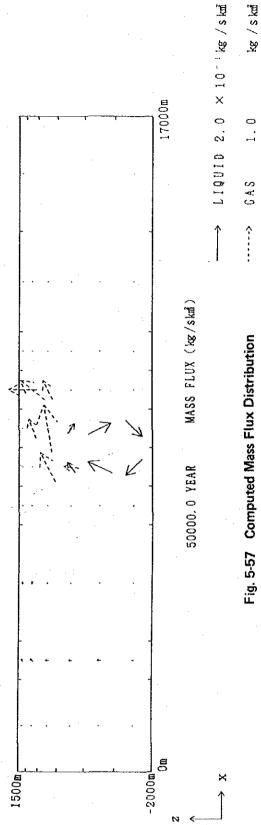




Fig. 5-55 Computed Pressure Distribution

,					·	
0.1	0.1	0.1	0.1	0.1	0.1	10
0.1	0.1	0.1	0.1	0.1	0.1	တ
0.001	0.001	0.001	0.001	0.1	0.1	∞
0.5	50.0	50.0	50.0	0.001	0.001	7
0.001	50.0	50.0	50.0	50.0	50.0	မ
0.001	0.001	50.0	50.0	50.0	50.0	ເດ
1.0	1.0	0.001	0.001	0.001	0.01	4
1.0	1.0	0.1	0.1	0.1	0.1	က
5.0	5.0	5.0	5.0	5.0	5.0	. ⇔
0.1	0.1	0.1	0.1	0.1	0.1	X = 1
9 = Z	ശ	₹*	ഞ .	Ø	1.	

Fig. 5-58 Permeability Distribution

permeability $(10^{-15} \, \mathrm{m}^2)$

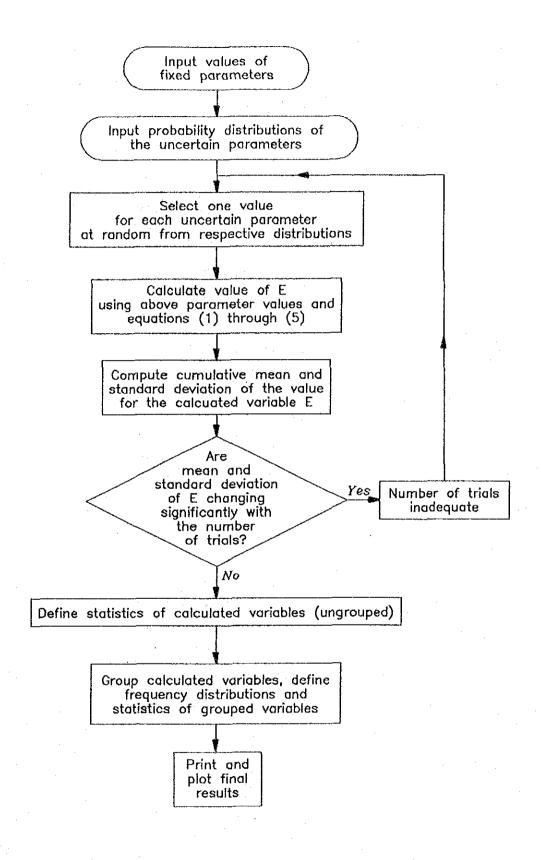


Fig. 5-59 Schematic Representation of the Monte Carlo Simulation Process

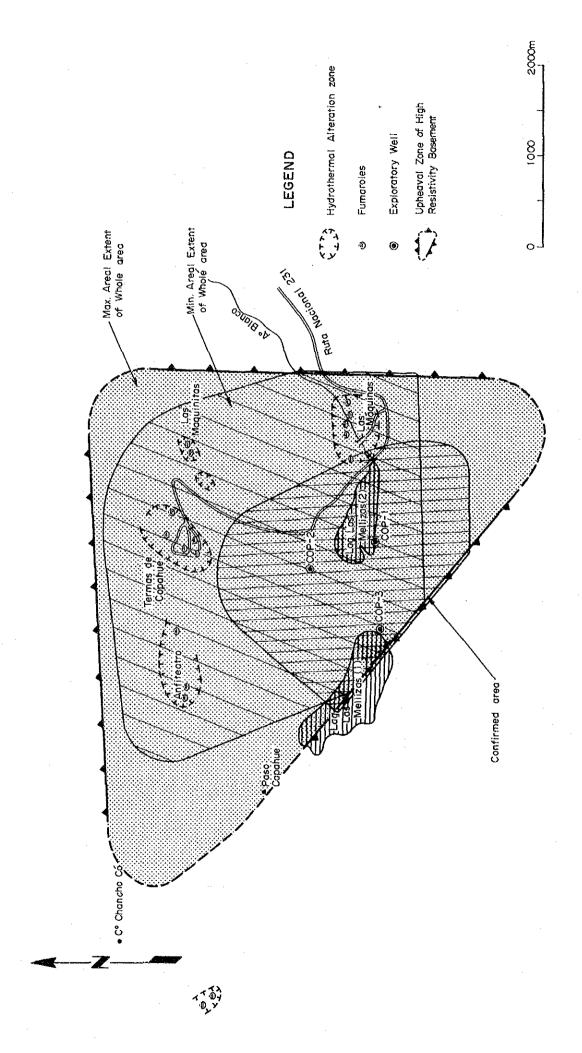


Fig. 5-60 Map of confirmed and whole areas

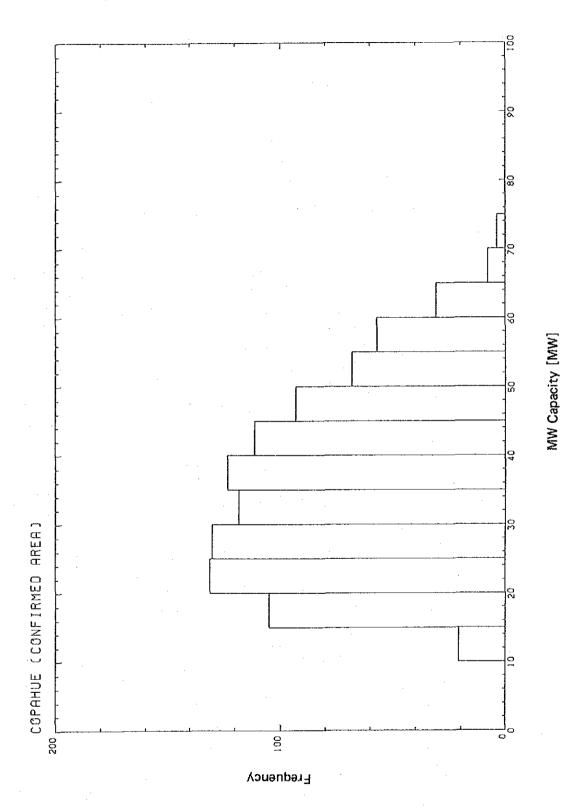


Fig. 5-61 Histogram of MW Capacity, Confirmed Area

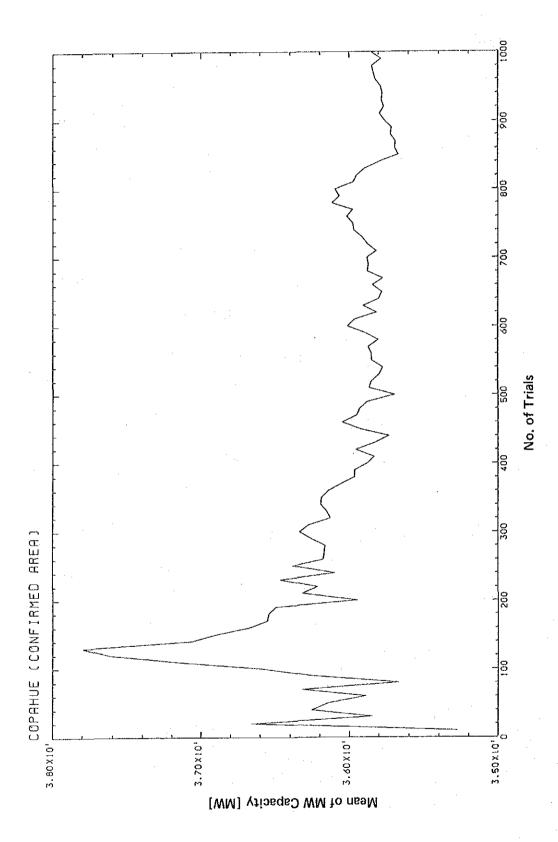


Fig. 5-62 Mean of MW Capacity vs. No. of Trials, Confirmed Area

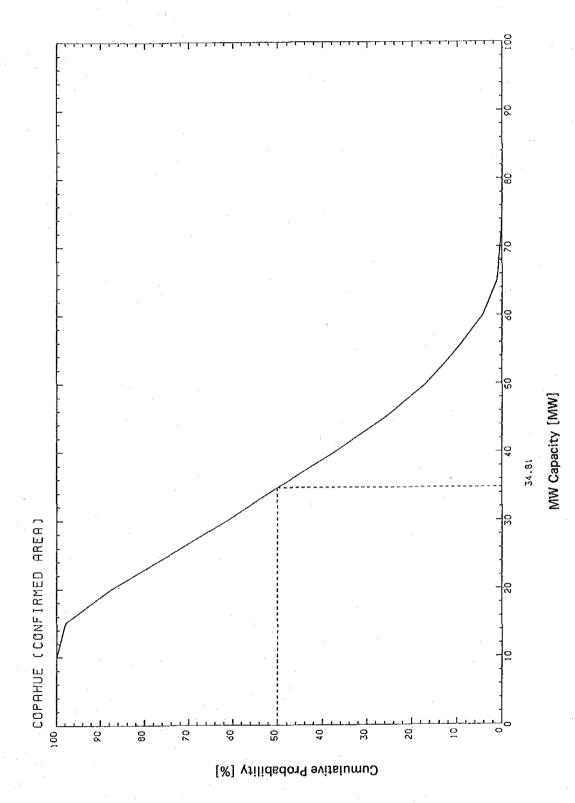


Fig. 5-63 Cumulative Probability of MW Capacity, Confirmed Area

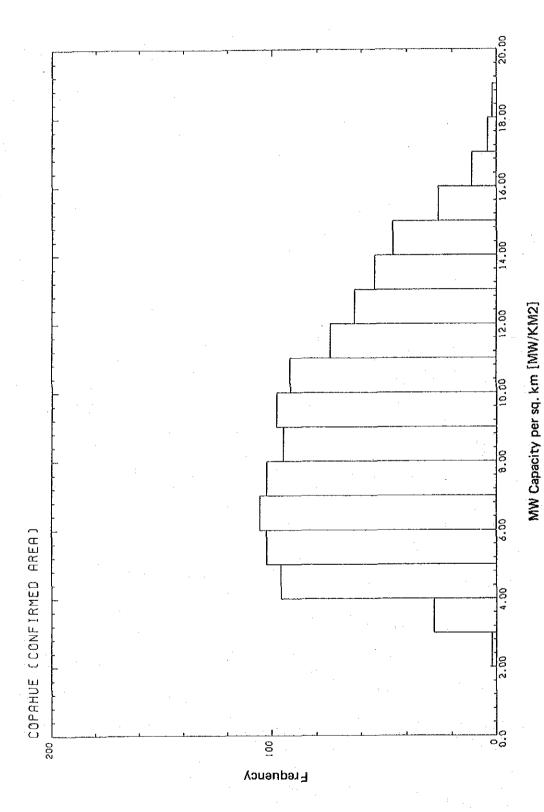


Fig. 5-64 Histogram of MW per Square Kilometer, Confirmed Area

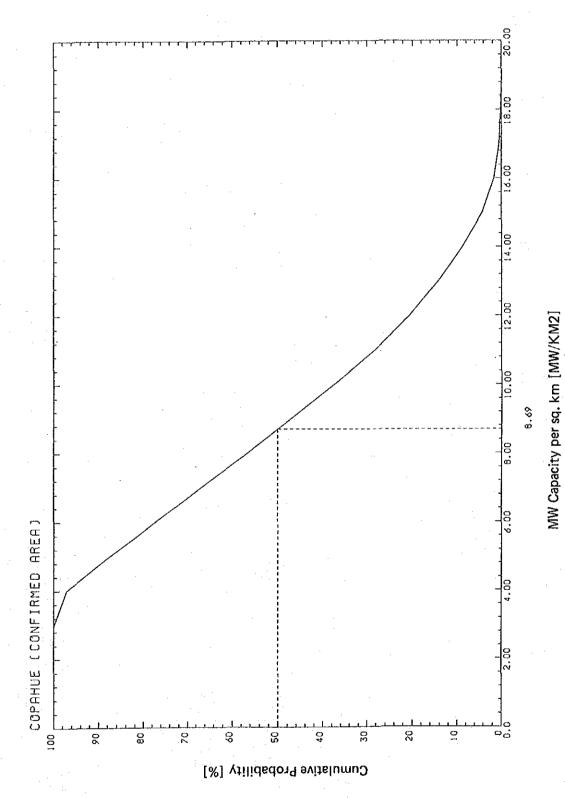


Fig. 5-65 Cumulative Probability of MW per Square Kilometer, Confirmed Area

Fig. 5-66 Histogram of MW Capacity, Whole Area

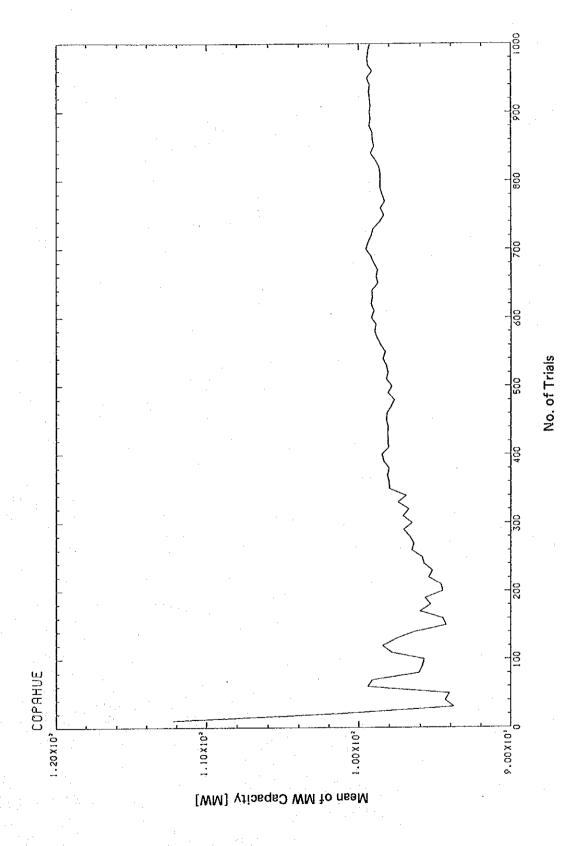


Fig. 5-67 Mean of MW Capacity vs. No. of Trials, Whole Area

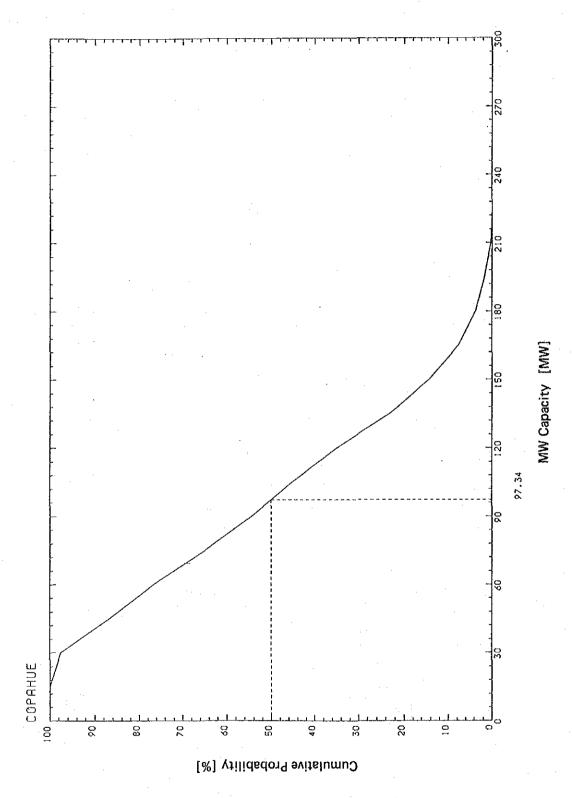


Fig. 5-68 Cumulative Probability of MW Capacity, Whole Area

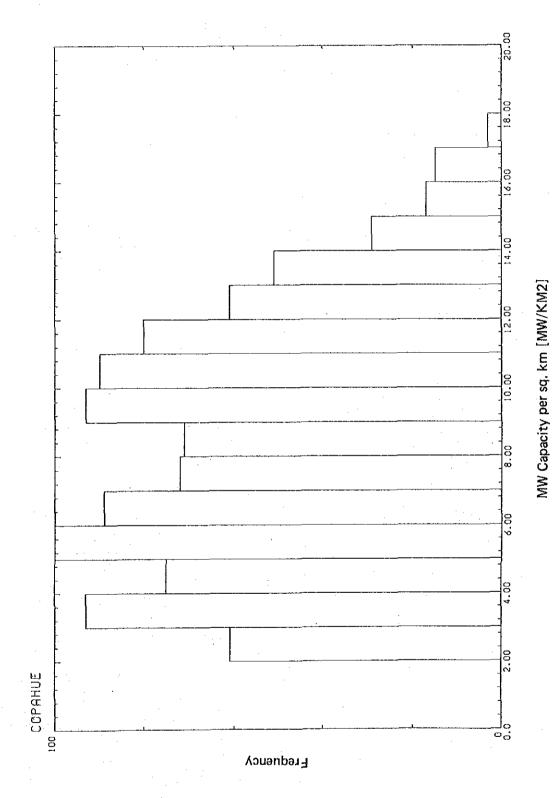


Fig. 5-69 Histogram of MW per Square Kilometer, Whole Area

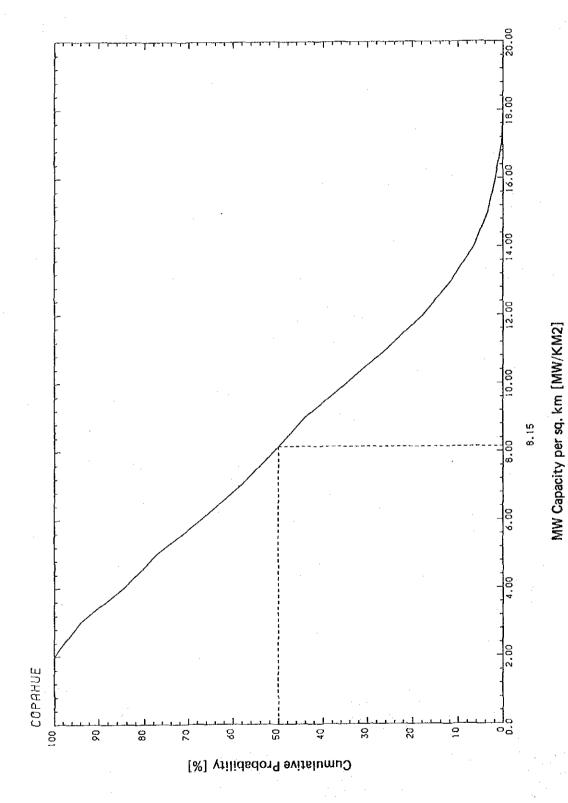


Fig. 5-70 Cumulative Probability of MW per Square Kilometer, Whole Area

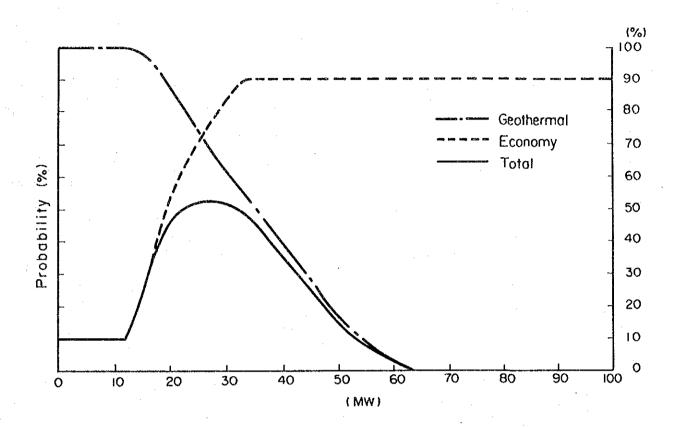


Fig. 5-71 Evaluation Curve of Plant Capacity

Table 5-1 List of Geothermal Investigation Works in Copahue Area

	,				
Investigation Works	Year	Admini- stra- tion *1	Exe- cuter	Scope of Investigation Works	No. of Data *2
Geological survey	1974 1980 1987	CNEG COPADE	YPF L-ELC A. H. Pesce	regional survey detailed survey volcano-tectonics	 C1, 13 C6
Geophysical prospecting	-	!			
Gravity prospecting Electrical prospecting	1975 1980	CNEG COPADE	YPF L-ELC	180 km ² , 285 points AB/2=2000m, 56 points 69 lines	C26-27 C1
	1981	119	**	AB/2=5000m, 7 points 15 lines	C3
·	1987	CREGEN	CREGEN	AB/2=1500m, 11 points	
Geochemical survey .	1974	CNEG	YPF		- -
Soil geochemistry	1986	CREGEN	CREGEN	Hg, CO ₂ , lm depth temperature 10km ² , 70 points + 8 km ² , 50 points	С7
Fluid geochemistry	1980-87	COPADE CREGEN	L-ELC CREGEN	surface water, fluids of fumarole, well fluid, analysis of	C1,18-23
	·			chemical conposition and isotope	
Well survey	:				
Thermal gradient hole Exploratory well COP-1	1975-76 1976 1981	CNEG CNEG COPADE	YPF YPF YPF	11-200m, 17 wells 954m, logging deepen to 1414m	C28,29 C2,4,31, 32,34
Exploratory well COP-2	1986	CREGEN		1241m, logging	C5,33, 34,35
Well test (COP-1, 2)	1981-87	COPADE CREGEN	L-ELC CREGEN	production test, hole temperature. pressure	C2,4,5, 31,36,37 38

*I Administration

CNEG : Comision Nacional de Estudios Geotermicos COPADE: Consejo de Planificacion para el Desarrollo CREGEN: Centro Regional de Energia Geotermica del Neuquen

L-ELC: Latinoconsult/ELC-Electroconsult

^{*2} List of Collected Dates

Table 5-2 Stratigraphic Correlation between this Report and Other Reports

	Age	LATINOCONSULT/ELC-Electroconsult (1980)	Pesce (1987)	This report
	Holocene	Productos del Volcan Copahue	Centro Efusivo Copahue	Copahue Volcanic Rocks
			Efusiones de Fondo de Valle	A° Trolope Volcanic Rocks
Quaternary	Pleistocene			Las Mellizas Formation
			Centro Efusivo Las Mellizas	Caviahue Conglomerate Member
		Formación Palao-Co		
			Depositos Fondo de Caldera	Riscos Bayos Pyroclastic Flow Deposits
				,
, }	allocelle Little		Formación Hualcupen	Hualcupen Formation
<u>}</u>	Miocene		Formación Epulaufquén	
			~	
Okuo, — — — — — — — — — — — — — — — — — — —	Pre-Tertiary	Sedimentos de la Cuenca Neuquina		

Table 5-3 Chemical Composition of Ground Surface Water and Hot Spring Water

	· · · · · · · · · · · · · · · · · · ·	Τ	Temp.	рH	Conduc-	Na	ĸ	Ca	Mg	NH ₄	HCO ₃	S0 ₄	cı	S102	Γ
No.	Sample No.	Date	°C	Pri	pS/cm	110	L <u>"</u>	mg/l	l	L4		mg/l	L	mg/1	No. of
1	A	7.'80	12.3	5.25	260	6.7	0.8	meq/1 9.2	1.5		20.0	meq/1 60.0	20.0	3.0	data C.1
2	Agrio 1 Agrio 2	7. 60	10.4	4.97	1,520	0.29 48.9	0.02 17.4	0.46 113.6	0.12 186.0		0.33 20.0	1.25	0.56	4.0	"
3	Agrio 3	n	11.2	4.48	4,400	2.13 141.0	0.45 36.5	5.67 393.0	15.31 765.0		0.33	14.35 2,360.0	5.36 5,040.0	27.0	
4	CAV L		13.5	1.80	11,500	6.13 25.2	0.93	19.61 7.8	62.96 45.0		0	49.09 2,100.0	142.13 520.0	12.0	,,
5	CAV 2		14.6	2.60	1,520	1.10 7.4	0.38	0.39 2.8	3.70 12.5		0	43.68 250.0	14.66 50.0	4.0	, "
6	CAV 5	u	12.6	5.42	260	0.32 8.9	1.2	21.1	1.04		30.0	90.0	20.0	10.0	11
7	CAV 6	" .	11.0	5.52	260	0.39 9.6 0.42	0.03 2.3 0.06	1.05 11.4 0.57	1.23 16.0 1.32		0.49 0 0	1.87 100.0 2.08	0.56 50.0 1.41	6.0	11
8	CAV 7	"	11.1	6.98	350	7.4 0.32	0.3	18.5 0.92	21.0	:	30.0 0.49	80.0 1.66	20.0	7.0	. "
9	ARA 2	"	12.1	7.25	24	2.8	0.3	1.4	1.2 0.10		40.0 0.66	10.0	10.0	8.0	EF .
10	ARA 4	"	9.0	6.00	390	11.9 0.52	1.2 0.03	12.8 0.64	33.0 2.72		30.0 0.49	120.0 2.50	20.0 0.56	12.0	"
11	ARA 6	"	14.0	0.75	20,000	95.0 4.20	99.6 25.5	14.2 0.71	87.0 7.16		0	9,140.0 190.11	4,870.0 137.33	38.0	
12	HU 5	"		6.36	. 18	0.6	0.4	1.1 0.05	0.9 0.07		0.66	10.0 0.21	10.0	3.0	"
13	HAC 3	"	10.1	6.30	250	8.9 0.39	0.03	11.1 0.55 0.7	15.0 1.23 0.9		20.0 0.33 50.0	30.0 1.66 10.0	20.0 0.56 10.0	5.0	"
14	1T 3T		12.3	6.75	20 28	0.7 0.03 0.7	0.4 0.01 0.4	0.03 0.7	0.07		0.82	0.21	0.28 4.6	12.0 6.0	11
16	co 1		7.6	6.05	20	0.03	0.01	0.03	0.07		0.49 30.0	0.21	0.13 10.0	12.0	11
17	CO 2		8.0	6.10	3	0.03	0.01	0.03 0.7	0.02 0.3		0.49 0	0.21 20.0	0.28 20.0	8.0	0
18	CO 4	11	8.9	6.35	12	0.02	0.01	0.03	0.02 0.3	,	0 30.0	0.42 10.0	0.56 10.0	9.0	n '
19	Ç0 5	"	12.0	6.20	8	0.02 0.7	0.01	0.03	0.02 0.3		0.49 30.0	10.0	0.28 20.0	7.0	13
20	co 7		10.1	6.31	16	0.03	0.01	0.03	0.02	**	0.49 0	170.0	0.56 20.0	8.0	"
21	co 8	-	9.5	6.20	9	0.02 0.4 0.02	0.01 0.4 0.01	0.03 0.7 0.03	0.02 0.3 0.02		30.0	3.54 10.0 0.21	0.56 10.0 0.28	6.0	11
22	co 10	"	10.2	6.35	116	5.9 0.26	1.2	5.7 0.28	8.7 0.72		30.0 0.49	10.0	30.0 0.85	5.0	"
23	CO 11	"	11.2	6.10	114	6.7	0.03	6.0	7.3 0.64		30.0 0.49	10.0	30.0 0.85	7.0	tı
24	CO 12	"	10.5	5.04	230	9.6 0.42	1.7 0.04	9.2 0.46	15.0 1.23		20.0 0.33	100.0 2.08	30.0 0.85	9.0	11
25	CO 15	"	10.4	4.20	26	0.7 0.03	0.4 0.01	1.1 0.05	0.3 0.02		20.0 0.33	10.0 0.21	20.0 0.56	4.0	,,
26	RHCP 3	"	12.1	6.55	34	2.2 0.10	0.4	2.1 0.10	1.6 0.13		40.0 0.66	0.21	10.0 0.28	10.0	,,
27	на 3	"	11.2	7.48	55	3.0 0.13	0.3	2.5 0.12	2.7 0.22	206.0	30.0 0.49 146.4	10.0 0.21 350.0	10.0 0.28 20.0	14.0 18.0	14
28	MA 2 HA 3	"	91.2	5.82 6.55	1,720	2.7 0.12 1.0	4.5 0.12 1.2	0.6 0.03 0	3.6 0.30 0	206.0 11.45 227.0	2.40 194.0	7.28 374.0	0.56 23.0	24.0	
30	MA 5		17.4	4.24	68	0.04	0.03	0 3.6	0 3.0	12.62	3.18 14.6	7.78 12.0	0.65	7.0	н
31	MA 7	.,	84.0	4.32	1,640	0.16 5.8	0.02 6.3	0.18 1.6	0.25 8.3	0 189.0	0.24	0.25 342.0	0.45 13.0	11.0	11
32	MA 9	,,	91.8	6.95	380	0.25 12.8	0.16 5.1	0.08	0.68 0.6	10.51	230.0	7.11 52.0	0.37 16.0	19.0	11
33	MAT 4	"	80.5	4.01	2,800	0.56 15.7	0.13	0.03 1.6	0.05 5.4	276.0	3.77 0	530.0	40.0	21.0	11
34	MAT 6	"	87.0	2.45	4,220	0.68 12.8	0.45 11.9	0.08 2.9	0.44 11.4	15.35 147.0 8.17	0	11.02 636.0 13.23	1.13 23.0 0.65	6.0	1)
35	ANF 3	11	82.6	5.72	1,480	0.56 1.0 0.04	0.30 1.0 0.03	0.14 0 0	0.94 0 0	189.0 10.51	0	330.0 8.68	21.0 0.59	9.0	H -
36	ANF 5	11	36.4	6.30	660	63.8	4.8 0.12	8.0 0.40	26.4 2.17	0 0	256.0 4.20	97.0 2.18	16.0	15.0	1)
37	ANF 6	"	11.2	5.36	31	1.0	0	2.1 0.10	1.1	ő	13.4	10.0	18.0 0.51	18.0	11
38	COPA 5	2.'85	61	6.6		53 2.30	23 0.59	51 2.55	30 2.50		474 7.90	13 0.27	2 0.06	- 90	C.18
39	COPA 6	"	51.5	5.9		38 1.65	19 0.49	39 1.95	13 1.08		282 4.70	23 0.48	0.03	100	"
40	COPA 7	"	34	5.9		19 0.83	6.2 0.16	61 3.05	9.5 0.79		287 4.78	12 0.25	2 0.06	80	"

Note: No. 1 - No. 27: Ground surface water No. 28 - No. 40: Hotspring water

Table 5-4 Gas Composition and Geochemical Temperature

			Gas	Composit (Vol %)	ion			ochem nperat		No. of Collected
Sample No.	Date	CO ₂	H ₂ S	H ₂	N ₂	CH₄	α	β	T (°C)	data
Chancho Có	777	66.93 75.69	16.75 10.75	16.22 13.25		0.06 0.31	-0.60 2.31	7 0	(598)* (373)*	C.20
Anfiteatro	'77 7.'80	95.04 93.14	0.32 n.d.	2.06 3.72	0,50	2.65 2.62	14.72 12.69	0	215* 235 209	C.20 C.1
" 2	6.′82	95,36	0.1	1.31 1.34	0.51	2.68	15.37	ŏ	194	C.4
Rio Blanco	11, '86	92.66 92.24	0.52 0.41	1.86 1.91	2.55 2.85	2,41 2.62	13.77 14.07	0	224* 221*	C.22
B° de Copahue	'77 " "	96.30 95.59 96.55 96.34	0.003 0.04 0.46 0.26	2.29 2.45 1.14 2.10		1.41 1.93 1.85 1.26	19.59 16,29 15,10 13,91	0 0 0	172* 200* 211* 223*	C.20
Termas de Copahue 2 " 2 " 6	7. 80	89.63 93.81	n.d. " n.d.	5.89 3.24 4.59 2.25	2.19 tr	2.32	12.78 14.34 13.25 15.11	0 0 0 0	234 218 229 211	C.1
Copahue (COT 6) " (COT 2)	6.482	95.94 91.94	0.1 0.1	2.30 3.32	tr 2.24	1.64 2.37	15.13 14.36	0	211 218	C.4
Termas de Copahue	11,′86	94.56 94.19	0.62 0.56	1.62 1.57	2.15 2.57	1.02 1.11	13.18 13.49	0	230* 227*	C.22
Aqua de Lemon	11.'86	91.73	0.64	1.54	4.92	1.17	13.33	0	229*	.,
Las Maquinitas 1 1 1 1 1	777 7.′80 ′81 6.′82 11.′86	96.13 94.69 94.80 " 94.8 96.39 95.4 95.6	0.50 0.17 n.d. n.d. 0.1 0.53 0.44	1.74 2.60 3.50 1.85 1.8 1.83 1.45	0.23 0.2 0.23 1.32 1.96	1.63 2.74 1.42 3 1.4 1.44 1.3 1.3	13.76 14.53 13.88 15.53 15.60 15.63 13.94 13.74	0 0 0 0 0 0	224 217 223 207 206 206 222* 224*	C.1 "" C.2 C.4 C.22
Las Maquinas " 1 " 1 " 4 " 4 " 1 " 1 " 4	777 "7,'80 "" "81 6,'82 "	93.46 93.95 92.68 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.15 0.65 n.d. " n.d. 0.1 0.1	2.7 2.34 2.57 2.08 3.00 2.35 2.1 2.08 2.35 1.68	3.08 2.57 3.1 3.08 2.57 2.23	3.65 3.05 2.45 2.77 2.5 2.45 2.77 2.18	14.50 13.12 15.09 15.04 14.75 15.39 15.63 15.63 15.39 13.74	00000000	217 230 211 206 214 208 206 206 206 208 224*	C.1 "" "" C.2 C.4 ""
COP-I " (No. 1) " (No. 2) " (No. 3) " (No. 4) " (No. 5) " (No. 6) " (No. 7)	*81 6.*82 " "	94.0 94.02 93.62 93.35 93.72 92.31 91.97 93.63	0.3 0.24 0.15 0.17 0.16 0.15 0.14 0.28	2.0 1.89 1.92 1.87 2.01 1.89 1.92 2.62	1,2 1,03 1,53 1,30 0,9 2,5 2,81 1,81	2.5 2.53 2,43 3,01 2.96 2,76 2.55 1.63	14.37 14.81 15.34 15.42 15.31 15.45 15.42 13.37	0 0 0 0 0 0	218 214 209 208 209 208 208 208 228	C.2 C.4
Pozo Copahue 1	11. 86	93.7 94.2	0.51 0.80	1.6 1.2	2,45 2.6	1.7 1.2	13.92 13.79	0 0	223* 224*	C.22 C.22
COP-I steam	6, 91	90.49	0,76	2.98	2.44	3.27	12,24	0	240*	JICA
COP-3 steam	"	95.79	0.39 0.45	0,93	2.35	0.52	14.72	0	215*	JICA CREGE

^{* :} Calculated by JICA

Table 5-5 Isotope Analysis of Meteoric Water and Geothermal Fluid

No.	Sample No.	Date	Temp °C	Type of Sample	EL, of Sampling Point m	δ ¹⁸ O ‰	δ D ‰	3 _H TU	No. of Collected Data
I-1	COP-I	2,82		Vapor (COP-I)	2,000	10.5	-84.0		C 18
1-2	COPA-2	2.′85	242	"	• •	-9.6	-82.7	0.6 ± 0.7	"
1-3	COP-I	11, 86		"		-8.2	-74 -76		
I-4	COP-II	2.85		Vapor (COP-II)		-10.8	-85		
I-5	COP-II	11.486		"		-7.7	-80 -83		
I-6	COPA-1	2. 85	130	Vapor (MAT)		-10.8	-84.2	0.8 ± 0.7	C 18
1-7	COPA-3	"	85	Vapor (MA)		-10.6	85.1	0.0 ± 0.6	
1-8	COPA-20	. H.		Vapor (COP)	2,010	-12.8	-90.2		.,
1-9	COPA-5	"	61	Hot spring	2,020	-11.9	-84.2	2.5 ± 0.7	
I-10	COPA-6		51.5	"	2,020	-11.9	-84.3		"
I-11	COPA-4	"	51		2,020	<i>–</i> 11.9	-84.7	1.7 ± 0.7	
1-12	COPA-7		34	"	2,010	-12.0	-84.3	3.3 ± 0.7	"
I-13	COPA-9	"	26		·	-12.2	-83.3		,,
i-14	CAVI-4	.,	12	River	1,670	-11.3	-81.9	3.6 ± 0.5	,,
I-15	COPA-8	"		. "	2,040	-11.8	-84.3	2.4 ± 0.7	"
I-16	COPA-12			Spring	2,310	-11.9	-84.6	3.6 ± 0.7	"
1-17	CAVI-1	.,	13	Spring water for drinking		-11.5	-81.7	3.9 ± 0.4	"
I-18	VAF-1	4.185	8	Spring	2,050	-12.5	-90,1	4.8 ± 0.7	
1-19	CAVI-3	2.785	10	River	1,420	-12.9	-92.5	4.5 ± 0.4	"
1-20	VAF-2	4.′85	7	Spring	1,820	-13.5	-9 7.2	1.8 ± 0.4	"
1-21	CAVI-2	2.485	10	"	1,660	-12.9	-93,5	3.2 ± 0.7	"
I-22	VAF-3	4.'85	11	,,	1,674	-13.6	-94.5	1.8 ± 0.7	"
I-23		6.191		Vapor (COP-1)	2,000	-11.5	-100.1		JICA
1-24		6.'91		Vapor (COP-3)	2,011	-9,4	-85.3	< 0.3	"
1-25		6, 91		Hot water (")	2,011	-4.3	-62.4		

Table 5-6 Quantity of Geochemical Survey in Wells

Well name	Analysis Item	Sampling Date
COP-1	Gas Vapor Ratio Chemical Composition of Gas Chemical Composition of Condensate Water	13 JUNE 1991 13 JUNE 1991 13 JUNE 1991
COP-3	Gas Vapor Ratio Chemical Composition of Gas Chemical Composition of Condensate Chemical Composition of Hot Water	11 & 15 JUNE 1991 11 JUNE 1991 9-14 JUNE 1991 15 JUNE 1991

Table 5-7 Chemical Analysis of Geothermal Fluid from COP-1 and COP-3 Wells

Well	Sampling Date	Gas Vapor Ratio (Volume%)	Chemical Composition Gas (Volume%) Vapor (mg/1)
COP-1	June 1991		Gas 91. 25 CO ₂ 90. 49 H ₂ S 0. 76
		Gas 5. 28	Residual Gas 8.75 Ar CH ₄ 3.27 H ₂ 2.98 He 0.00 N ₂ 2.44
		04.70	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		Vapor 94.72	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
COP-3	June 1991		Gas 96. 18 CO ₂ 95. 79 H ₂ S 0. 39 ***
		Gas 5.0 **	Residual
		05.0 44	pH 5.8 EC 830 (μs/cm) TSM 17 (mg/ℓ)
		Vapor 95.0 **	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*} Air contamination is high percentage. ** Average of 10times mesuring. *** CREGEN's value is 0.45%.

Table 5-8 Chemical Analysis of Hot Water from COP-3 Well

Sampling Date	Chemical	Compos	ition			(mg/))
June. 1991	pH EC TSM		7. 7 800 50	(μs/ (mg/	cm) (l)		
	Na ⁺ K ⁺ Ca ²⁺ Mg ²⁺ B NH ₄ ⁺ Mn ²⁺ Li	3. 1 0. 9 2. 1 0. 16 40 <0. 8 <0. 2 <0. 1	T-Fe C1- S042- HC03- C032- Br- I-	1	0.81 2.2 11 78 0.5 <0.5 <0.1	F- T-Hg H ₂ S As ³⁺	1. 0 0. 02 <1 0. 15

Table 5-9 Isotope Analysis of Geothermal Fluid from COP-1 and COP-3

Loc.		δD (‰)	δ ¹⁸ Ο _{in} H ₂ Ο (‰)	13C/12C in CO2 (‰)	³⁴ S/ ³² S (‰)	³H (TU)
COP-1	Condensate	-100. 1	-11.5	-8. 9	+ 3.6	
COP-3	Condensate	- 85.3	- 9.4	-9.3	- 3.6	<0.3
COP-3	Hot Water	- 62.4	- 4.3 *	-14.1	+12.3	_

^{*} $\delta^{18}O$ value in SO_4 is not mesured for it's low content

Table 5-10 Results of X-ray Analysis on COP-1 and -2

	Well No.	Depth	티	Wa	Мо	Ch/Mo	Se/Mo	Ch	Se	Ка	ည	ζò	P1	K-f	Pr	дБ	Неш	Remarks
		130m			1								3	1			1	Cuttings
		230m			1								3				1	##
		360m			1						1		3					u
		458-463m			1	1	1	1		!	1	3	3				1	Core
	COP-1	541m			1	1		1		-		3	3				1	Cuttings
		630-631m	1			1	1			,	1	2	3				1	Core
		720m			1	1						1	3					Cuttings
		801m		?	1			1	1		1	3	3					u
		930m		?				1			1	1	3.	2	1			Core
		415m			1	1		2			1	3	3					Cuttings
		602m			1	1		1			1	3	3					. **
		643m		2	1			1	1	1		3	3		1	1		11
		844m			:			2				3	3		?	1		89
	COP-2	883m						2				3	3		?	1	:	"
	S	970m						1				3	3			3	. !	
	·	1030m						2			,	3	3		2	2		11
		1160m			1			2			?	3	3			1		29
		1205m			1			1				3	3		?	1		
ι	i				L	نــــا			L		L	L i	L	L				

Abbriviation Lm: Laumontite, Wa: Wairakite, Mo: Montmorillonite Ch/Mo: Chlorite/Montmorillonite mixed-layer mineral, Se/Mo: Sericite/Montmorillonite mixed-layer mineral, Ch: Chlorite, Se: Sericite, Ka: Kaorinite, Cc: Calcite, Qz: Quartz, Pl: Plagioclase, K-f: K-feldspar, Pr: Prehnite, Ep: Epidote, Hem: Hematite

Number in this table means a relative intensity of detected minerals (3 > 2 > 1).

Specimens of COP-2 between 844~m and 1205~m were not able to be analyzed by the oriented X-ray analysis because of the scarcity of specimens.

Table 5-11 Characteristics of Alternative Location of COP-3

Site	A	В	ນ	
1. Geology				
<pre>Structure Formation Fault and Lineament</pre>	Graben/Horst Las Mellizas F./Hualcupen F. WNW-ESE; Predominant conti-	Horst Las Mellizas F./Hualcupen F. NW-SE ; Reverse fault ENE-WSW Tingament	Horst Las Mellizas F./Hualcupen F. NE-SW; Consentrated Parallel	
2. Gravity Prospecting	NW-SE ; Lineament	יייי דוופסוורון	ומכדר סלסרפונו	
° Bouguer Anomaly ° Depth of Gravity Basement	High anomaly area About 1,600 m	High anomaly area About 1,600 m	High anomaly area About 1,600 m	
3. Temperature Gradient of Shallow Zone	High	High	High	
4. Electrical Prospecting				
Depth to Top of High	About 650 m	About 750 m	About 400 m	
Resistivity basement Deep Low Resistivity Layer and Depth	Detect (Measurement Point D-I)	Detect (Measurement Point D-II)	No detect (Measurement Point D-14)	
° Electrical Fault	5/66	About 1,800 m None	None	
5. Geochemical Survey				
* Temperature from Geothermometer	205 - 230°C	205 - 230°C	205 - 230°C	
6. Topography				
° Accessibility ° Altitude	Good About 2,010 m	Good About 2,040 m	Bad About 2,090 m	
7. Distance from the Site to Manifestation	2.2 km (to Copahue) 2.2 km (to Maquinas)	0.6 km (to Maquinas) 1.8 km (to Copahue)	1.2 km (to Copahue)	

Table 5-12 Result of Microscopic Observation for COP-3

(Observation : Lic. Ana María Casé)

DDAD M	GRADO	DOGS	TRYTHDA		MINER	ALES F	ORMADO	RES DE	ROCA	······································]			(Franky) in section 1		************	MINER		E ALTI				ii ia va	**************************************		
PROF. No	GRADO DE ALTER.	ROCA	TEXTURA	Qz	Pl	Bi	Au	Hy	llo		Qz	N.	Ch	Se	Ch/M	Ka	Сc	Ер	Pr	Ар	Ga	Ze	Wa	Ac	Le	Ру
• 10 m	2	LAVA ANDESITICA			4		ı	1			1		1							l		l		<u></u>	2	1
* 50	3	LAVA ANDESITICA			4		1	1			1		1		3	·	1			1					,	2
* 80	4	TOBA ANDESITICA		1	4						ı		4		1	1									2	
* 110	4	LAVA BRECHADA			3								4			1	1						1		2	1 .
• 160	4	TOBA		2	3						ı		3		1		1			1	:				3	1
• 210	3	ANDESITA		1	3		1	 					2		2		2			1						2
* 290	3	ANDESITA			3		2						3	ı		1	2								2	2
293. 3	5	LAVA BRECHADA	IRRECONOCIBLE								3		2		1-2		2			1					3	1
* 350	l	ANDESITA			3	1	2						1			1.			ļ	1						1
* 430	1 - 2	ANDESITA			3		2				1			1												
• 490	4	ТОВА										4	2		2	2	2									2
• 528	1	BASALTO			3	1		2									1									i
* 560	2	ANDESITA			3		1	ì	2		1	1	2	2	2	1				ī					1	1
• 670	4	TOBA		2	2						<u> </u>		2	1		3	2	1							2	
710	3	ANDESITA			. 3						1		3				2			_					2	2
* 740	4	TOBA ANDESITICA		1	3								3				2	2							2	2
801.7	3	ANDESITA		_,	3				•		1		3				1	2	1			ļ			2	1
* 811	3	ANDESITA			3						2		3			2		2	2		<u> </u>				. 2	1
* 819	4	ANDESITA			3						2		3					2	2	ı			1		2	
824. 7	3	LAVA ANDESITICA		3	3								3			. ;		2				-			2	
* 838	4	ANDESITA									2	3	3					2	i					1	2	1
862. 2	4	ANDESTTA			4								2				2	3	1			ļ. <u>.</u>		11	3	2
882. 1	3	ANDESITA			4						1		2		3			2	1						3 .	
956.8	- 3	ANDESITA	PORF. PASTA: INTERSERTAL		4						1		2					2							2	
1002.9	3	BRECHA		4	1						3		1					2	1				2	3	2	
1015.0	3 .	ANDESITA	PORFIRICA		4		i i				1		3		1			2	2				1		- 1	
1022. 2	3	AND. QZOSA	PORF. PASTA: HIPIDIOM GRANU	1	4					: :	1		2	:				2	<u> </u>		? .			1	2	
1035.0	2	AND. QZOSA	INTERSERTAL	1	4	1	1						2					2						1	1	
1045.86	$\cdot 2 - 3$	AND. QZOSA	INTERSERTAL	i	4		1						2					1			1			1	Ī	
1055.35	1 - 2	AND. QZOSA	INTERSERTAL	1	4	1 .	1						2					2		** .					11	
1064. 26	2 - 3	AND. QZOSA	INTERSERTAL	1	4		1						2					2							1	

Table 5-12 Result of Microscopic Observation for COP-3 (continued)

(Observation : JICA)

Le : LEUCOXINO

Py : PIRITA

0000 11	GRADO	DAA	WEATHER !		HINER	ALES F	ORMADO	RES DE	ROCA								MINE	ALES D	E ALTE	RACIO	1			
PROF. No	GRADO DE ALTER.	ROCA	TEXTURA	Qz	Pl	Bi	Au	01	Но	0р	Qz	М	Ch	Ch/M	Se/M	Ka	Cc	Ep	Pr	Ga	Wa	Ac	Le	Py
293. 2	4	TOBA	CLASTICO	4	?						1	2	3		2	2	3							1
528.8	2	BASALTO	PORFIRITICA		4 4	21 21	? 4			1.2	1		1				3,2							
783. 0	2	OLIVINA BASALTO	PORFIRITICA		4,4		? 2	4.7		1,3	1	4 4												
1005.9	3 - 4	ANDESITA ALTERADA	PORFIRITICA		3 . . 3		?		?	?	, '2		2.3					1.1		İ	11		, 2	
1020.6	3 - 4	ANDESITA ALTERADA	PORFIRITICA		3 . 3		?		?	(1), (1)	, 3		2.2			-		$\frac{2}{1}$	2.				1,1	
1027.7	3	ANDESITA ALTERADA	PORFIRITICA		4 3		?		?	?	. 2		, '3				11	1.1	$\frac{1}{z^2}$				1	
1030.6	3	PORFIDO ALTERADA	HOLOCRISTALINO	1	4		2		?	(1)			3	2			1	1	1			1	1	
1040.5	3	PORFIDO ALTERADA	HOLOCRISTALINO	ı	4		2		?	1			2	2				1		1		1	1	
1053.1	3	PORFIDO ALTERADA	HOLOCRISTALINO	1	4		2		?	ı			1	3				1		1		2	1	:
1064.3	3	PORFIDO ALTERADA	HOLOCRISTALINO	l	4		2		7	1			2	2			1	1		1		1	1	

GRADO DE ALTERACION CANDIDAD DE MINERALES PORFIDOBLASTO/PASTA

1 : FRESCO 1 : POCO 2 ;

1 : J 3

5 : FUERTE 5 : MUCHO

MINERALES FORMADORES DE ROCA MINERALES DE ALTERACION

Qz : CUARZO Qz : CUARZO Cc : CALCITA Pl : PLAGIOCLSA M : MONTMORILLONITA : EPIDOTO Bi : BIOTITA Ch : CLORITA Pr : PREHNITA : GRANATE: Au : AUGITA Se : SERICITA : CEOLITA Hy : HIPERSTENO Ch/M : CLORITA/MONTMORILLONITA Ol : OLIVINA Se/M : SERICITA/MONTMORILLONITA Wa : WAIRAKITA Ac : ACTINOLITA HORNBLENDA Ka : CAOLINITA Op : OPACO Ap : APATITA

Table 5-13 Result of X-ray Analysis of COP-3

Depth	Sample	Stilbite	Laumontite	Wairakite		Montmorillonite	Chiorite Mont	Chlorite	Sericite/Mont	Sericife	V-11: 14	Agoinnie	Pyrophyllite	Calcite		Quartz	Plagiociase	K-feldspar		Prehnite	Epidote	Garnet	Pyrite		Pyroxene	alodident.
	BULK	2?				4		2						9		18	4	3			2?		3			
ID CO	ORIENT	?				0							7	0		0	0	•					O			
20	E. G.	?				$\overline{\circ}$																				
	HCL						·																			
	BULK		3			2								3		15	21	3			3?		3			
m	ORIENT					•								0		0	0	0			•					
50	E. C.					•																				
	HCL					•																				
	BULK					4		4						5		14	18				3?					
Ф	ORIENT					•		•						0		0	0									
80	E.G.			1		•		•				1														
	HCL					-																				
	BULK					3		3				1		6		21	7	3								
m	ORIENT					•	-	•						0		0	0	•								
120	E.G.							•																		
	HCL															-	·									
	BULK					2		3				\top	_	5		23	22	3				_	2			Γ
m	ORIENT							•		_			1	0		0	0	•					•			
170	E. G.					$\overline{\cdot}$		•																		
	HCL					•					1		\uparrow						Ì				:			Γ
	BULK					3		3			3	?		6		18	15									Γ
m	ORIENT					•		•						0		0	0									Γ
200	E. G.					•		•					\top													
	HCL					•						1	\top													Γ
	BULK						3	3			3	?		5	Г	12	10				2?					
m	ORIENT						0							0		0	0			-						
250	EG							•			7	1														
	HCL																							ĺ		
	BULK					3	0	3				3	1	10		13	5						2			
· M	ORIENT					O	0				1	•		0		0	0						•			
280	E.G.					0						•	1										-			_
	HCL				- +	0					Τ,	.	_		1											
:	BULK					_		3				4	7	5		10	9				•					
m	ORIENT							O						0	-	1	0							П		_
294.2	E.G.							0					\top													
	HCL							•						1	1											_

① : Large Volume

O : Medium Volume

· : Small Volume

Table 5-13 Result of X-ray Analysis of COP-3 (continued)

Depth	Sample	Stilbite	Laumonfite	Wairakite		Montmorillonite	Chlorite Mont	Chlorite	Sericite/Mont	Sericite		Kaolinite	Pyrophyllite		Calcite	1	Planinciace	K-feldspar		- Prehnite	Epidote	Carnet	Pyrite	Pyroxene	Amphibole.
	BULK						3					3			5		12				2?				
M	ORIENT						•					•			0	©	6)	<u> </u>						
320	E.G.					•		•				•						1	1	1	- -				
	HCL,											•					T	1			-				
	BULK														4	3	15				•				
n oro	ORIENT											Ī		·		C	0)			0				
350	E.G.																								
	HCL																								
	BUŁK						3	3				?			8	12	: 6								
M	ORIENT						0	0							0	(0)						ĺ	
400	E. G.			-		•		•									T		İ		İ				
	HCL,					•													Ţ					ļ	
	BULK						3	3				?	eAE-Create-		4	{	11	T			2?				
m	ORIENT									:		•			•	C	0		İ						
420	E. C.						_	•	-			•					Ť	1							
	HCL					•						•							T						
	BULK						3			2		3	7-1-474		10	2	4						2		
m aro	ORIENT									•		•	,,,,,,		0	(C			ļ				٠		
450	E.G.			_		•		•				•													
	HCL					•						•					 		1						
	BULK							3		2		3			10	2	9	3							
(I)	ORIENT	-						•		•		•			0	(C	C								
480	E.G.							•		•	(Ì									
	HCL		-							•	(
	BULK				· ·	3		?		2		3			39	10	2						4		
E00	ORIENT					•						•	·		0	C	•						•		
528	E.G.											•													
	HCL					•						•													
	BULK					3				2		3			3	- (17						2		
m reo	ORIENT					•				•		•			•	C	0						•		
560	E.G.		-			•						•													
	HCL					•						•													_
	BULK	Γ				3						2			6	1	12				2			7	_
m coo	ORIENT					•						•			0	C	0)			•				
600	E.G.					•						•			j						-				
	HCL					•		-												1					

◎ : Large Volume

O : Medium Volume

• : Small Volume

Table 5-13 Result of X-ray Analysis of COP-3 (continued)

Depth	Sample	Stilbite	Laumontite	Wairakite	4	Montmorillonite	Chlorite Mont	Chlorite	Sericite Mont	Sericite		Kaolinite	Pyrophyllite		Calcite	Diartz	Plagioclase	K-feldspar		Prehnite	Epidote	Carnet	Pyrite		Pyroxene	Amphibole
	BULK	П					3			2		4		all the state	8	13	8						2			-
m	ORIENT						•					0			0	0	0				<u> </u>		•			· · · · ·
620	E.G.					•		•				•					1	-								!
	HCL					•		?				•					1									
	BULK			2?				2		2		4			9	12	7				2					
m m	ORIENT			?				•		•		Ō			0	0	0				•					
660	E.G.				·					•		0														
	HCL							?				0														
	BULK	Ì			-			4				3			6	9	10	3			2					
III .	ORIENT							0				0			0	0	0									
720	EG							0				0														
	HCL							•				0														
	BULK							3		2		4			9	10	9				3					
7700	ORIENT							•				0			0	0	0	1			•					
760	E.G.							•				0														
	HCL							•				0														
m	BULK					3		3								22	8	3			3		3			-2
m 785	ORIENT					٠		•								0	0	•			٠	٠	٠			•
100	EG					٠		•																		٠
	HCL					٠																				٠
100	BULK					4		3							3	11	8	· _			3		3			2
789.4	ORIENT					0		•							•	0	0						•	;_		۰
100.4	E.G.					0		٠								_	ļ	ļ. <u>.</u> .								٠
	HCL					•											ļ		_							•
ma.	BULK							3				5			15	4	20				3					
812	ORIENT					•		٠				•			0		0				٠					
012	EG							.•				•				_										
	HCL							٠				٠					ļ									
l m	BULK							6				5				10	-	4		3	3					
819.8	ORIENT		<u>.</u>					0				•				0	0	•			٠					
	EG							0				•	_			_	<u> </u>	<u> </u>	_	:					_	
	HCL							•							igwdap		<u> </u>	-								
m	BULK							5				?				7		3	_	5	4					
822	ORIENT	L						0					_			0	1	•		0	0	ļ				
	E.G.		-				-	0									-	_								
L	HCL							0										<u> </u>	zed							

Figure of Bulk: Quartz Index ©: Large Volume

O: Medium Volume

• : Small Volume

Table 5-13 Result of X-ray Analysis of COP-3 (continued)

Depth	Sample	Stilbite	Laumontite	Wairakite	Montmorillonite	Chlorite-Kont	Chlorite	Sericite,Mont	Sericite		Kaolinite	Pyrophyllite		Calcite		Quartz	Plagioclase	K-feldspar		Prebaite	Paidote	Carnet	Pyrite		Pyroxene	Amphibole
	DI S (7				 		-			J-21074				11		_	10			0						
m	BULK						4				?			11		5	13			2	3					,
827.8	ORIENT				_									0		0	0		-							
	E.G.				 											ļ										
	HCL			-,1222							0					OC.	10	0		0						
m	BULK				 		4				3					26	12	3		2	2					
854.5	ORIENT						0				•					0	0			•						_
	EG	<u> </u>					0				•															
	HCL				 		?				•									_						_
n	BULK						5				4?			3			14	3		3	5					
866	CRIENT													•			0	٠		0		_				
	EG		·	_	 		-										<u> </u>	_								
	HCL						•				<u> </u>					<u> </u>			-		_					
B)	BULK				 		8				<u> </u>					6	10	4			5			•		5
882	ORIENT						0									0	0	•			•	_				•
~~	E.G.						0		ļ													_		_		
	HCL															-									_	
n	BULK			2			4		1		_					5	8	3		2	3					1
956	ORIENT					L	0				_		ļ			0	0	О		0	0	ļ				
~~	EG				 		0				L															
	HCL													<u> </u>	ļ	[
a	BULK			2			2		1					_		12	6	3		2	2	_				
1002	ORIENT			•	 L		•		L.,							0	0	0		•	•					
IVAL	E.G.						•		<u> </u>										ļ				_			_
	HCL .																									
	BULK						2		1				_			9	7			3	8	ļ				1
1015	CRIENT						0									0	0				0					•
1010	E G						0															_				
	HCL																,									
	BULK			2			4					2?				3	6			3	4					
n 1022	ORIENT			0			0					?				0	0	0		0	0					
1022	E G						0															<u> </u>				
	HCL								-2			?			. ,						-					
	BULK		1			2	2		2			2?		2		5	9	2		2	2					2
1024	ORIENT					•	•							q		0	0	•			•		ļ			•
1034	E.G.					•	•																			
	HCL.																									

🔾 : Medium Volume

• : Small Volume

Table 5-13 Result of X-ray Analysis of COP-3 (continued)

Depth	Sample	Stilbite	Laumoniite	Waizakite		Montmorillonite	Chlorite-Mont	Chlorite	Sericite, Mont	Sericite		Kaolinite	Pyrophyllite		Calcite		Quartz	Plagioclase	K-feldspar		Prehnite	Epidote	Garnet	Pyrite		Pyroxene	Amphibole
	BULK			2			2	2	-	1			1?	e settember.	2		7	14	4			3	-				2
m A A A A A A	ORIENT										•				•		0	0				•			-		•
1045	E.G.						•	٠																,			
	HCL																										
_	BULK						2	2							2		7	11			2	2					1
I M	ORIENT						٠	•							٠		О	Ο,									
1055	EG						•	٠																			_
	HCL																										
_	BULK						2	2		1					2		5	12	4		2	2					2
m 1064	ORIENT						,	•							•		0	0				٠					•
1004	E G.						0	٠																	<u> </u>		Ĺ
	HCL															- Land		-	-						_		_
P0	BULK																										
n	ORIENT																										<u> </u>
	E.G.																								<u>. </u>		_
	HCL																										_
n	BULK																										_
ti1	ORIENT																								 		<u> </u>
	E.G.																						_				_
	HCL													ļ													_
on.	BULK																			<u> </u>			_				
	CRIENT																										_
	E.G.										L					:.											
· · · · · · · · · · · · · · · · · · ·	HCL										-												_				_
a	BULK								i	-										_					_		-
-	ORIENT									}										_				_	<u> </u>		_
	EG				<u> </u>					,		<u> </u>		! 									_	_	-		_
-	HCL				_				_					<u> </u>										-	_		\vdash
n	BULK											_				_							ļ		_		
	ORIENT											_									 		<u> </u>				
	E.G.	-				-							<u> </u>	ļ													
•	HCL														ļ									-	ļ		\vdash
F13	BULK													_						_				ļ	<u> </u>		_
	ORIENT				<u>_</u>																				ļ		
	E.G.				-										<u> </u>								<u></u>				
	HCL											<u> </u>	<u> </u>			<u></u>		L.,		ـــ	by D		Ļ_	<u> </u>	<u> </u>	L	<u> </u>

◎ : Large Volume

O: Medium volume

: Small Volume

Table 5-13 Result of X-ray Analysis of COP-3 (continued)

Depth	Sample	Stilbite	Laumontite	Wairakîte		- Montonorillonite	Chlorite Mont	Chlorite	Sericite/Mont	Sericite		Kaolinite	Pyrophy!lite		Caicite	į	Quartz	Plagioclase	K-feldspar		Prebnite	Epidote	Garnet	Pyrite		Pyroxene	Amphibole
	BULK					2		4	?		******	2			22		27	4		*******				1		-	-
0	ORIENT					0		0	•			0					•	•									
293.2	E.G.					0		0	•			o															
	HCL					0			• :			0						•									
	BULK						?	8							3		25	10						<1		1?	
m 529.2	ORIENT						•	0							3		•	•									
J23. 4	E.G.						•	0																		_	
	HCL																										
	BULK					?	?	9	. !					 			11				3	1		4		?	?
866.0	ORIENT					ь		0																		?	?
uu.v	EG					•	•	0															ļ				?
	HCL					٠																					?
m	BULK			<1				1				_					8	8					<1				< 1
1005.9	ORIENT				ļ			0			-						•	•							_		
	E.G.							0																	_		~~~~
	HCL									-			_			_									_		
, m	BULK							<u><1</u>									12	8	3		1		<1			?	
1020.6	ORIENT				_	·		0									-	•	•						_		•
	E.G.							•				_				-	-		1				<u> </u>		-		•
	HCL		_	-									_			- 	_		-	_			_			_	•
in	BULK					-		2				\dashv				4	7	9	2				<1			?	1
1027.7	ORIENT							0				-				-	•	•									•
	E.G.							0				-				\dashv					_				_		•
	HCL				_	Н		-0				\dashv				-	0	10			-		/1	-			· /1
. а	BULK ORIENT						1	2 ③		-							8	15				-	<1			1	<1 •
1030.6	E.G.						•	0	-		-	\dashv	_				-								-		•
	HCL.															\dashv									-		•
	BULK	-											-				5	14	-	-			4 1		-	1	<1
, m	ORIENT					_	0	0					\dashv		\dashv	+		17	$-\dagger$	\dashv			-1			1	•
1040.5	E.G.						$\stackrel{\smile}{-}$	•					\dashv		-	+				-							
	HCL									\dashv		\dashv					,			\dashv	-						•
	BULK	\vdash					<1	<1		+		-			-	+	5	15			-		<1			1	<1
Æ	ORIENT		T				0			+	1	-				+	•	•	-	1							•
1053.1	E.G.				-		•			$\neg \dagger$	\dashv	1					-				1				-		•
	HCL									_	7	7				\dashv			1	1	1			\dashv	\dashv	\dashv	•

Figure of Bulk : Quartz Index 🔘 : Large Volume

O: Medium volume

• : Small Volume

Table 5-13 Result of X-ray Analysis of COP-3 (continued)

Depth	Sample	Stilbile	Laumont te	Wairakite		Montmorillonite	ChloriteMont	Chlorite	Sericite Mont	Sericite		Kaolinite	Pyrophyllite		Calcite		Quartz	Plagioclase	K-feldspar		Prehnite	Epidote	Carnet	Pyrite		Pyroxene	, to the total
	BULK						1	<1.						_			5	14		-		V	<1			1	<
M	ORIENT		•				0	0									٠	•									
1064.3	E.G.						0	•																			١.
	HCL,																										١.
	BULK																						-				Γ
, M	ORIENT																				7					-	
	E G																							-			
	HCL																										Γ
, ,	BUK																										Γ
12	ORIENT																										ŗ
	EG																										Γ
	HCL																										
	BULK											•															
œ	ORIENT												_														İ
	E.G.					-			-																		ľ
	HCL				-										1				_								
	BULK																										Ī
m	ORIENT										_																İ
-	E G.															1											ľ
	HCL										_							- I									r
	BULK										_								-								r
M	ORIENT																								-		
	EG													٠,													r
	HCL	_									_														-		r
	BULK									\neg						_											Γ
W	URIENT		~																								-
	E G.				-									-													r
	HCL		•			ļ .									1								-				t
	BULK				-																		-				t
M	ORIENT		-																								t
	E.G.								_														<u> </u>				
	HCL										\dashv													·			1
	BLK		_										_														-
Ø	ORIENT	H	-				-									+									-		1
	E.G.	\vdash			-																						+
	HCL																		\dashv				<u> </u>	\vdash			-

① : Large Volume

🔾 : Medium volume

· : Small Volume

Table 5-14 Physical Properties of Cores of COP-3

Depth	γ _s	γa	Gs	φ	Rock Type
293.1m	2.40	2.237	2.674	16.35%	Altered Lapilli Tuff
293,2m	2.387	2.212	2.608	17.46%	Altered Lapilli Tuff
528.7m	2.778	2.772	2.788	0.60%	Basaltic Andesite
528,8m	2.770	2.746	2.813	2.40%	Basaltic Andesite
794.4m	2.735	2.697	2.803	3.76%	Basaltic Andesite
810.6m	1.976	1.815	2.164	16.11%	Basaltic Andesite (Fractured Zone)
821.7m	2.701	2.653	2.786	4.76%	Altered Lava
848.7m	2.521	2.425	2.684	9.66%	Altered Tuff Breccir
848,8m	2.524	2.387	2.766	13.69%	Altered Tuff Breccir
882.0m	2.525	2.446	2.655	7.85%	Altered Lava
1011.6m	2.68	2.64	2.76	4.3 %	Andesite Lava
1059.8m	3.50	3.45	3.62	4.8 %	Porphyrite

 $\begin{array}{lll} \gamma_s: & \text{Bulk specific gravity (saturated-surface-dry)} & = B/(B-C) \\ \gamma_d: & \text{Bulk specific gravity (Dry)} & = A/(B-C) \\ \text{Gs:} & \text{Apparent specific gravity (Particle density)} & = A/(A-C) \\ \phi: & \text{Effective porosity} & = (B-A)/(B-C) \times 100 \end{array}$

Here A: Weight of oven-dry sample in air (g)
B: Weight of saturated-surface-dry sample in air (g)

C: Weight of saturated sample in water (g)

Table 5-15 Homoginization Temperature of Fluid Inclusion of COP-3

Depth		Hom	ogeni za t	ion Temp	erature	(',C')	by Dra	. G. MAS
	251.6P	282.5P	311.5P	369. 9P	367.8P	328. 5P	303. OP	382.5G
180	213. 98	229.18	207.08	320. 3P	209. 08	217.48	223. 28	216.88
Quartz	237. 48	238. 8\$	238. OS	272. 7P	225. 38	226. 78		
**************************************	226. 6S	216.78	212. 18	224.7S	287. 9P	247.4P	210.75	212.58
010	216.78	283. 9P	282. 3P	228.68	271.6P	212.8\$	207.18	209, 38
210	208.58	239. 38	230. 58	260. 7P	219.38	218.98	213. 08	210. 6S
Quartz	220. 8\$	230. 08	280. 7P	216.78	213. 28	215. 4S	209.58	211.88
	265.7P	222. 98	237. 58	233.48	253. 4S	254. 1S	252. 4S	236. 6S
0.00	317.5P	228. 7S	246.68	318. 3P	315. 2P	339. 2P	325. IP	326. OP
320 0uanta	259.48	238. 48	244.38	221.6S	245. OS	242.18	220. 7S	227. 08
Quartz	238.48	239. 3\$	238. 28					
-	209. 1S	192.48	216.88	212.58	219. OS	209.68	227. 3\$	201.48
528	215. 6S	178. 2S	.192.48	187.78	181.38	196.48	223. 68	213. 88
Calcite	246.38	162. 6S	·					
	257. OS	276. 9S	278. 9S	280. 4S	294.5C	274.4C	276. OC	303. OP
801	264.08	261.28	265.18	266.7S	264.98	291.48	287.08	277. 38
	301.5P	285. 7P	260. 1S	261.58	265. 4S	245.48	252. 98	260. 58
Quartz	308. 5P	301. 9P	296. 9S					
806 *	252. 98	285. 9P	289. 1P	251.3\$	251.58	246.38	248. 48	252. 1C
Quartz	260. 8C	254. 1C	274. 9P	287. 1P	241.88	252. 3\$	259. 9\$	260. 98
	307. 1P	245. 6S	238. 58	242.48	245. 38	273.6C	263. 5C	259. 5C
854. 2	260. 8C	279. 8P	258. 9C	261. 3C	263. 4C	262. 2C	303. 4P	261.08
Quartz	258. 8\$	257. 68	287. 2C	271. 5P	251.8C	260.7C	258.4C	261.1C
	269. OT	275. 4T	264. 9T	270.9T	268.4T	269.6T	274.5T	269. 1T
882	283. 1T	259. 6T	268. 9T	263. 8T	260. 2T	262. OT	260.4T	265. 9T
Calcita	265. 3T	266. 1T	282. 3T	262. 1T	269. 6T	259.7T	268. 3T	265. 4T

P : Primary Inclusion

C : Cluster

S : Secondary Inclusion

T : Trail or Cluster

G : Gaseous Inclusion

* : Gaseous inclusions in the sample are avaiable.

Table 5-15 Homoginization Temperature of Fluid Inclusion of COP-3 (continued)

Depth		Нов	nogenizat	ion Temp	erature	(℃)	by Dra	. G. MAS
	258.9	268. 5	248. 0	266.7	270.7	286. 2	278. 1	258. 4
1009 m	266. 4	257. 8	254.1	262. 0	268. 8	271.3.	253. 0	268. 3
Quartz	287. 3	285. 6	279. 5	297.7	299. 5	248. 9	253. 5	256. 8
m 1012 ±	251.3	252. 4	256.5	261.3	257. 1	259. 5	255. 1	252. 3
1013 *	260. 2	254. 5	255. 7	248.5	254. 1	262. 3	256. 4	251.6
Quartz	256.5	262. 5						
Depth		Hor	ogenizat	ion Temp	erature	(℃)	by	JICA
	283. 0	281. 0	243.0	270.0	243.0	244. 0	304.0	275. 0
	311.0	329. 0	339. 0	304.0	296. 0	342.0	343. 0	344. 0
801.8	349.0	330. 0	263.0	251.0	281.0	283. 0	259. 0	276. 0
Quartz	309.0	312. 0	282. 0	309.0	257. 0	293. 0		
	243.0	243. 0	242.0	265.0	252. 0	252.0	262.0	237.0
11 O A	273.0	279. 0	240.0	239. 0	246.0	242.0	238. 0	241.0
813.0	242. 0	239. 0	243.0	273.0	266.0	272. 0	243.0	274. 0
Quartz	243.0	281. 0	281.0	244. 0	280.0			

All inclusions in the samples of 1,009 and 1,013 m are primary or pseudosecondary.

* : Gaseous inclusions in the sample are avaiable.

Table 5-16 Pressure and Temperature Values Measured at Feed Zone for COP-3

Depth of Feed Zone	Pressure (Measured Depth)	Temperature	Remarks
1010m	kg/cm ² G 38.13 (at 1000m)	236.9°C (at 1000m) 241.7°C (at 1000m)	Measured Date 31/05/91 (ST≈391hr) 12/06/91
	38.156* (at 1010m)		(flowing temp.) 31/05/91 (ST=391hr)

^{*:} Estimated pressure calculated by pressure gradient between 900m and 1000m

Table 5-17 Parameters in calculation of reserve for confirmed area

Parameter	Unit	Type of Probability (or fixed)	Minimum Value	Maximum Value	Most Likely Value
areal extent	kiổ	fixed	 .	- ,	4 .
thickness	m	triangular	6 0 0	1 2 0 0	9 0 0
temperature	°C	triangular	2 3 0	2 5 0	2 4 0
porosity		uniform	0 . 0 4	0.1	-
water saturation		uniform	0.3	0.5	-
recovery factor		uniform	0.04	0.15	<u> </u>
volumetric specif heat of rock	ic kJ/m³°C	fixed	: <u>_</u>	_	2 3 6 0
rejection temperature	°C	fixed	_	—	1 0
utilization factor	r	fixed	-	· .	0.6
power plant load factor	÷	fixed	<u> </u>		0 . 8 5
power plant life	years	fixed	_	·-	3 0

Table 5-18 Parameters in calculation of reserve for whole area

Parameter	Unit	Type of Probability (or fixed)	Minimum Value	Maximum Value	Most Likely Value
areal extent	kıń	uniform	1 1	1 3	· · · · · · · · · · · · · · · · · · ·
thickness	m ·	triangular	6 0 0	1 2 0 0	9 0 0
temperature	${}^{\mathbb{C}}$	uniform	2 3 0	2 5 0	North
porosity		uniform	0.04	0 . 1	
water saturation		uniform	0.3	0 5	na.
recovery factor		uniform	0 . 0 4	0.15	-
volumetric speci heat of rock	fic kJ/m³℃	fixed	_		2 3 6 0
rejection temperature	°C	fixed .	—		1 0
utilization fact	or	fixed	_	_	0.6
power plant load factor		fixed	-		0.85
power plant life	years	fixed	_ ·		3 0

CHAPTER 6 PRELIMINARY DESIGN OF POWER PLANT

Chapter 6 PRELIMINARY DESIGN OF POWER PLANT

Contents

			Page
6.1	Design	Conditions	6 - 1
	6.1.1	Site Conditions	6 - 1
	6.1.2	Selection of the Plant Site	6 - 1
	6.1.3	Design Conditions and Fundamental Characteristics	6 - 2
	6.1.4	Operating Conditions of Power Plant	6 - 2
	6.1.5	Fundamental Characteristics of Power Plant	6 - 7
6.2	Prelim	inary Design of Power Plant	6 - 8
	6.2.1	Basic Layout	6 - 8
	6.2.2	Access Road and Land Reclamation	6 - 8
	6.2.3	Production Well Drilling	6 - 9
	6.2.4	Freshwater Intake Facilities	6 - 9
	6.2.5	Steam Pipeline and Related Facilities	6 - 9
	6.2.6	Turbine and Related Facilities	6 - 12
	6.2.7	Electrical Equipment	6 - 15
	629	Powerhouse and Polated Buildings	

List of Table

Table 6-1 Comparison Study of Power Plant Site

List of Figures

Fig.	6-1		Site Selection of Power Plant
Fig.	6-2	,	Well Characteristic
Fig.	6-3		Location Map of Power Plant
Fig.	6-4	(1)	Plot Plan of Power Plant
Fig.	6-4	(2)	Cross Section of Powerhouse
Fig.	6-4	(3)	General Arrangement of 1st Floor
Fig.	6-4	(4)	General Arrangement of 2nd Floor
Fig.	6-4	(5)	General Arrangement of 3rd Floor
Fig.	6-5		Heat Balance

Chapter 6 PRELIMINARY DESIGN OF POWER PLANT

6.1 Design Conditions

6.1.1 Site Conditions

The Project site is located at an altitude of nearly 2,000 m in the Andes in the west of the Province of Neuquén close to the Argentine-Chilean border. It lies on a gently sloping mountainside where there is no inhabitation and no vegetation. The community nearest to the site is Copahue located about 2 km north. It is a summer resort and is almost abandoned during the winter months. Caviahue, located some 5 km southeast of the site, is the nearest community which is inhabited at all times.

The temperature is 20°C during the summer and -10°C during the winter and averages 7°C annually. Meteorologically, the site is characterized by strong west direction winds of 20 to 30 m/sec in speed which blow throughout the year. There lies a lake near the site and it is easy to obtain water from the lake. The annual rainfall is approximately 1,200 mm and there is snowfall of 3 to 4 m during the winter.

6.1.2 Selection of the Plant Site

The plant site needs to be selected by taking into account the following requirements.

- (1) It is favorable to select a plant site in a flat land to minimize excavation required for site reclamation, because there are many outcrops of rocks in the Project site.
- (2) The power plant is better to be located as close as possible to bases "A" and "B" of production wells to minimize the length of the pipeline.
- (3) The power plant is necessary to be in proximity to Lago Las Mellizas
 (2) from which water will be obtained, with the least practicable pumping head.

As shown in Fig. 6-1, three alternative sites are selected in the course of the field survey. The result of comparison is shown in Table 6-1. Overall evaluation taking into account the above requirements and other factors indicates that Alternative III is the most suitable site, followed by Alternatives II and I.

6.1.3 Design Conditions and Fundamental Characteristics

Output : 30 MW x 1 unit

Production Well: 1,200 m x 7 (directional drilling; well length

1,340 m)

No. of Well Bases : 2

Well End Spacing : 500 m or more

Well Diameter : Final diameter 8 in.

Well head 12 in.

Properties of Steam : Steam-dominated type (saturated steam)

Gas Content of Steam : 6% by weight (as CO_2)

Well Characteristics : Fig. 6-2

Well Damping Factor : First 2 years 15%

3 - 5 years 8%

6 years and more 3%

6.1.4 Operating Conditions of Power Plant

The geothermal power plant is to be operated at a base load with a 85% utilization factor. The plant service ratio is estimated to be 6%. Therefore, the annual generated energy is to be 2.1 x 10⁸ kWh. The plant operation is to be monitored constantly from the central control room. The operators are planned to be working on three shifts of 2 persons x 4 turns. Two operators are needed to be on duty at all times, but they will be assisted by day service personnel during plant startup and shutdown. The total plant staff is estimated to be 20 persons consisting of 8 operators and 12 maintenance/repair and control personnel.

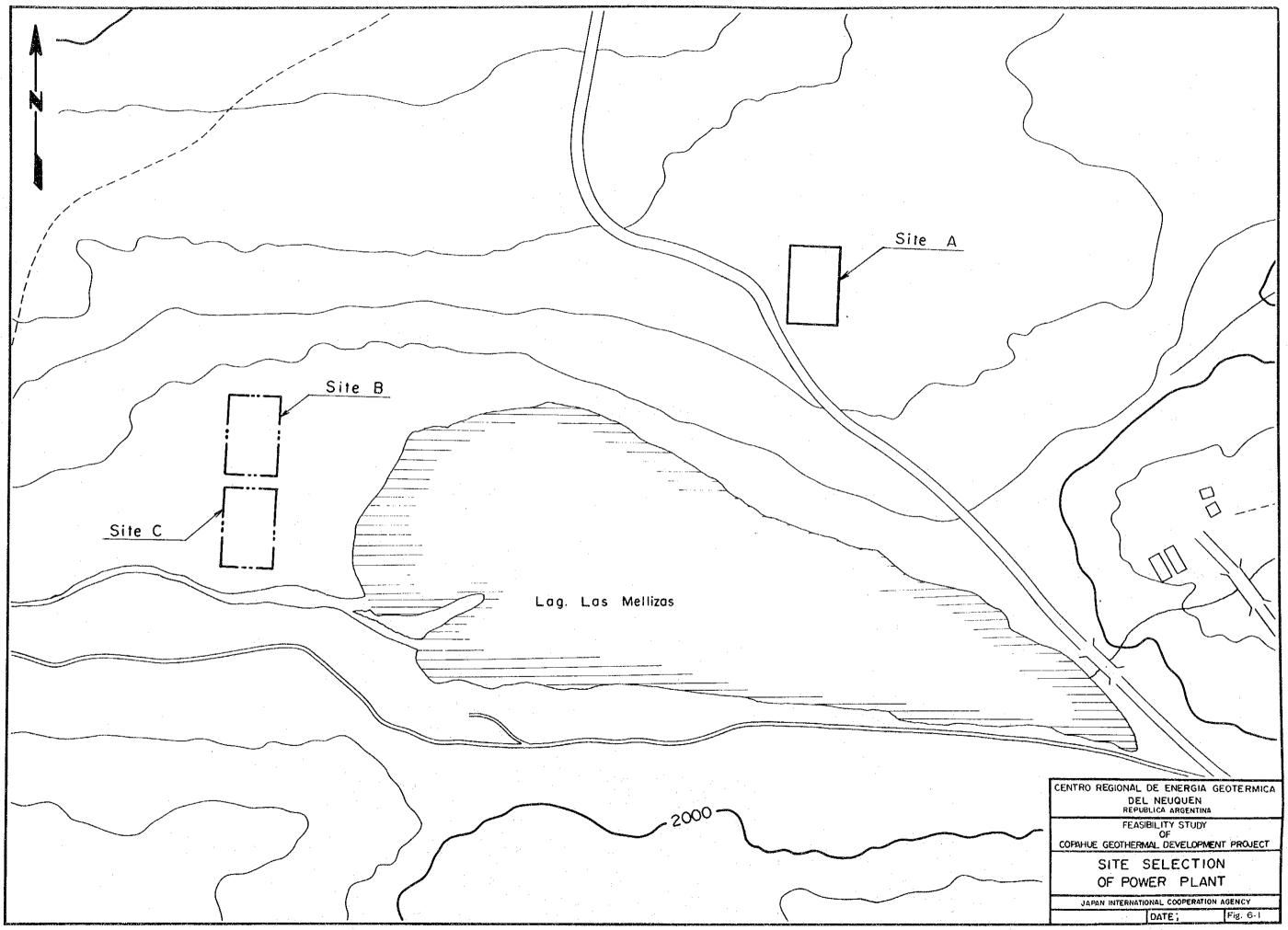
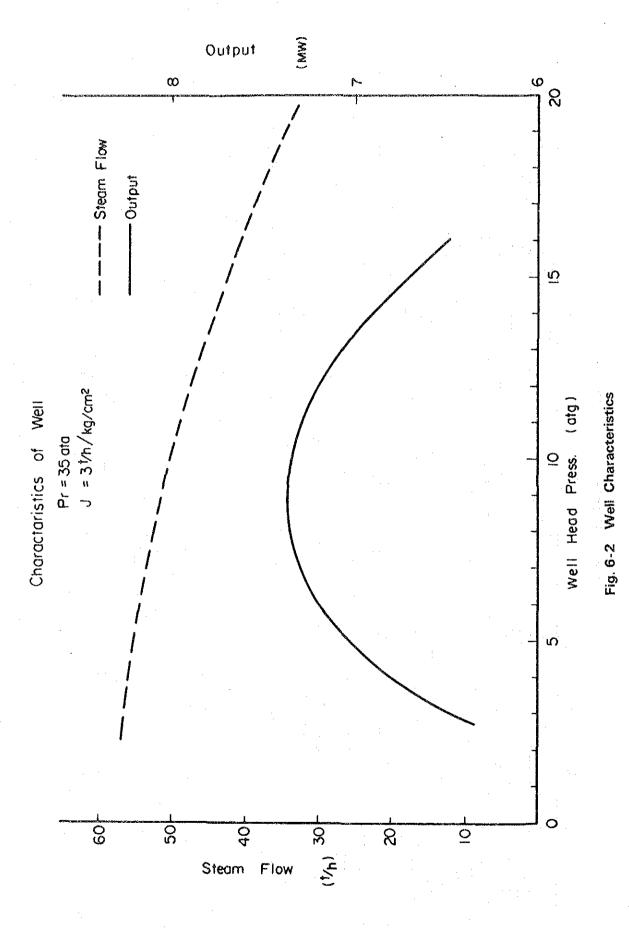



Table 6-1 Comparison Study of Power Plant Site

Location East drill Access Road Passi Access Road Passi Access Road From From Location of receiver West Cooling tower Cooling to	Alterna side of prod ling base "A" ing the south si the south si the south si aded from the building sou ing tower nor ant water can om nearby lag th little dif vel cated at the the slope to cated in the od subject t	Northeast side of production well drilling base "A" (Site B) Passing the south side of Lago Mellizas (2) and approaching from the south side of the site. Extended from the north side West side of the main building Main building north side and cooling tower south side and from nearby Lago Mellizas (2) with little difference in level. • Located at the foot of the south slope to have snowdrift. • Located in the path of west wind, subject to strong wind. • Access road is relatively long, crossing a small river	Southwest side of production well drilling base "B" (Site A) Approaching from the south side of the site through a road to Copahue village. Extended from the south side West side of the main building Main building south side and cooling tower north side and compared to other alternatives. Transmission line is shortest compared to other alternatives. Steam pipelines from bases "A" and "B" do not cross the access road. The maximum allowable load is needed to be checked for existing bridges to Copahue. The water intake point is relatively far from Lago Mellizas (2), requiring the
*	Lagos Mellizas (1) and (2). Access road is relatively long, crossing a small river between Lagos Mellizas.	between Lagos Mellizas (1) and (2).	pumping up of around 50 m.

6.1.5 Fundamental Characteristics of Power Plant

The geothermal power plant is planned to directly use saturated steam from steam dominated geothermal wells for operation of a condensing steam turbine.

The steam condenser is of direct contact type and uses a circulated mixture of condensed water cooled by a cooling tower as well as cooling water for cooling purposes. Surplus water in the cooling water system is to be returned to soil layers through reinjection wells.

Noncondensing gases (mostly CO_2) from the condenser is extracted from it by means of a vacuum pump and then released into the air from the cooling tower fan stack for diffusion. The generated power is boosted to 132 kV and then supplied to the EPEN power system.

6.2 Preliminary Design of Power Plant

6.2.1 Basic Layout

The power plant consists of the main building, cooling tower, switchyard, steam pipeline connecting production wells "A" and "B" with the power plant, and the freshwater intake and supply facilities. The layout is illustrated in Fig. 6-3. The power plant location and layout of the structures and equipment within the power plant yard have been determined with due consideration given to the topography and climatic conditions of the project area.

The power plant yard is 120 m long by 80 m wide. The layout of the major facilities in the power plant yard is as illustrated in Fig. 6-4. The main building is located in the center of the power plant yard and the cooling tower is installed parallel to the north side of the main building in consideration of the predominant wind direction. On the south of the main building is located a switchyard which transmits geothermal power to the Loncopue substation through a 132 kV transmission line. A parking house and a warehouse are also provided in the power plant yard.

6.2.2 Access Road and Land Reclamation

The power plant is to be located adjacent to the north side of the provincial road. The access road connects the provincial road with the power plant. For the construction of the power plant, an existing road leading to a point near production well site "A" is to be improved and used. A new access road to well site "B" is to be branched off from the power plant yard. It is planned to construct a new road about 4 m wide along the steam pipeline for the purpose of inspection and maintenance.

The plant site is located in flatland scattered with stones and the site reclamation is consisted mainly of excavation works for the purpose of securing adequate bearing capacity of the foundations for structures and equipment. The yard is to be reclaimed in such a way as to achieve the maximum possible balance between excavations and fills.

6.2.3 Production Well Drilling

Drilling of the steam production wells is to be undertaken in accordance with drilling plan including the location, depth, inclination and direction of the wells and the casing program, which is to be based on the results of exploratory works described in Chapter 11.

Drilling is to be carried out on a base system and seven wells are estimated to be necessary to be drilled in Bases "A" and "B". The average drilling depth is 1,200 m; average drilling length 1,340 m; maximum deviation distance 500 m; and well end spacing, 500 m or more.

6.2.4 Freshwater Intake Facilities

The pump is installed on the north shore of Lago Mellizas (2) to intake the water which is conveyed to the power plant through a pipeline. The water thus obtained is to be used primarily for cooling purposes and partly for drinking and other purposes.

Since a maximum snowfall of 4 m is anticipated at the Project site during the winter, the power plant building, switchyard, parking house, access road and other major facilities of the plant are planned to be provided with sprinklers for melting snow.

6.2.5 Steam Pipeline and Related Facilities

Two production well drilling bases are assumed. One base located at some 1,200 m southwest from the power plant is called Base "A", and the other at some 400 m east-northeast from the power plant is called Base "B". Four wells are planned to be drilled at Base "A" and three wells at Base "B". The minimum steam flow of each well averages 30 t/h and the maximum steam flow is 1.2 times larger (36 t/h).

Two pipelines each from the four wells at Base "A" are unified into two pipelines. Three wells at Base "B" are unified into one pipeline. The capacity of each pipeline is 60 to 72 t/h for Line "A" and 92 to 110 t/h for Line "B".

The well head pressure capable of providing the maximum output is nearly 9 ata when estimated from the well characteristics. Therefore, the preliminary plant design is based on a well head pressure around 9 ata. Assuming a pipeline diameter of 400 mm for all pipelines, the velocity is to be 32 to 38 m/sec for Line "A" and 50 to 60 m/sec for Line "B" and the pressure loss is calculated to be 1 to 1.4 kg/cm² for Line "A" and 0.9 to 1.2 kg/cm² for Line "B". Therefore, if the turbine inlet pressure is 8 ata, then the well head pressure is to be 8.9 to 9.4 ata.

An optimization check has been undertaken in respect of the pipeline diameter with the steam cost assumed to be 50,000 US\$/t/h. The check has revealed the following:

- If the pipeline diameter is 450 mm, pressure loss decreases with a resulting increase in the amount of steam obtainable, but this advantage is outweighed by an increase in the pipeline construction cost.
- If the pipeline diameter is 350 mm, the pipeline construction cost decrease, but this advantage is offset by increased pressure loss and a consequential reduction in the amount of steam generated.

The optimization study has revealed that the optimum pipeline diameter is 400 mm.

D m	Cost 1 1,000%	P.loss kg/cm ²	W.H.P. ata	Product t/h	Cost 2 1,000\$	Total 1,000\$
350	- 59	2.1	10.1	61.0	+75	+16
400	Base	1.1	9.1	62.5	Base	Base
450	+61	0.7	8.7	62.8	-15	+46
line (4	00 m)					
350	-20	1.7	9.7	90.6	+70	+50
400	Base	0.9	8.9	92.0	Base	Base
450	+20	0.6	8.6	92.3	-15	+5

A cyclone type separator is installed at each well head to prevent the intrusion of water and the eruption of rock powder and other solids. The maximum working pressure and the maximum working temperature are set at 12 kg/cm^2g and 190°C, respectively, with a certain allowance.

Before the junction of main steam lines of each well a flowmeter and two selector valves are installed to permit changeover of main steam lines and air release pipes. A simple silencer is installed as necessary in the air release pipes to lower the noise level during the release of steam into the air.

The principal specifications of the steam pipelines and related equipment are as indicated below:

Route		Base "A" - P/S	Base "B" - P/S	Total
No. of Wells		4	3	7
No. of Trains	<u> </u>	2	1	3
Capacity	(t/h)	60-72 (x2)	92-110	220-260
Velocity	(m/s)	32-38	54-64	_
Pressure Loss	(kg/cm ²)	1-1.4	0.9-1.2	**
Well Head Pressure	(ata)	9.0-9.4	8.9-9.2	<u>.</u>
Pipe Diameter	(mm)	400	400	·
Pipe Length	(m)	1,200 x 2	400	2,800
Separator	(unit)	4	3	7
Silencer	(unit)	4	3	7
Approx. Weight	(t)	302	63	365

6.2.6 Turbine and Related Facilities

Basic Design

The optimum position for installing a turbine is selected on the basis of the data available and with some design changes predicted for the future.

Turbine Inlet Steam Pressure

On the basis of the characteristics of COP-3, a simulation study has been carried out in which the well diameter is changed to the diameter of a production well, a 10% reduction is assumed in the reservoir pressure, and a productivity index of 1/2 is assumed. Under these conditions, the maximum output point is found in the vicinity of the well head pressure of 9 ata. Accordingly, the value of 8 ata has been taken for the turbine inlet pressure with a pressure loss in the pipeline assumed to be 1 kg/cm².

Turbine Outlet Steam Pressure

From COP-1 and COP-2, it is assumed that the gas content of steam is 6% by weight. The maximum exhaust pressure is calculated as approximately 0.1 ata.

As a result, the value of 0.1 ata is taken for the turbine outlet steam pressure.

Attempts have been made to work out a minimum cost assuming a gross turbine output of 30,000 kW, taking the required amount of steam, vacuum pump installation cost and plant power requirement as variable factors, and with the exchange rates for construction cost assumed to be 50,000US\$/t/h, 500US\$/kW and 1,500US\$/kW, respectively, for these factors.

An economic efficiency analysis made in respect to the back-pressure turbine has shown that only if the gas content is eatimated to be 13% or more, the type of turbine has been concluded economically more advantageous than the condensing type turbine.

Condenser type

The possibility is considered of using the water of a lake located near the site by means of a surface condenser. It is found, however, that the surface condenser is more expensive than the direct contact type of condenser because of the higher costs of the pump power, cooling water pipes and condenser tube. The surface condenser has a technical problem with cleaning the tube surfaces of scales.

Design Atmospheric Temperature for Cooling Tower

The average annual temperature is 7°C, but it rises to 20°C during the summer months of January and February. The design temperature of 10°C is taken to keep an output drop during the summer at a level lower than 5%.

Cooling Tower Type

Considering that the cooling tower is exposed to a high wind speed, the mechanical draught counterflow type has been selected for the cooling tower.

The number of cells has been fixed at four to facilitate adjustment of the fan operation to cope with temperature fluctuation.

Gas Extractor Type

For the gas extractor, an electric vacuum pump has been selected in preference to a steam ejector which is lower in operating efficiency and requires a larger quantity of steam. The number of gas extractors to be installed has been set at three to facilitate adjustments to changes in the amount of gas required.

The following are the principal specifications considered on the basis of the foregoing analyses for the turbine and associated equipment.

(1) Turbine

Model: Single-flow condensing steam turbine

Rated output: 30,000 kW

No. of unit: One

Inlet steam pressure: 8 ata

Inlet steam temperature: Saturated

Outlet steam pressure: 0.1 ata

Rate of steam flow: 214.3 t/h

(2) Condenser

Model: Direct contact low level type

No. of unit: One

Internal pressure: 0.1 ata

Cooling water temperature

(inlet/outlet): 16°C/42.9°C

Amount of cooling water: 3.916 t/h

Amount of exchange heat: 1,055 x 10⁸ kcal/h

(3) Cooling Tower

Model: Suction/induction ventilating

counterflow type

No. of cell:

Fan: 85 kW x 4

Approx. dimensions:

11 m x 44 m x 10 m H

Amount of cooling water:

4,000 tons/hr

Inlet water temperature:

42.9°C

Outlet water temperature:

16°C

Design atmospheric temperature: 10°Cwb

(4) Gas Extractor

Model:

Electric vacuum pump

No. of units:

Capacity:

73 kg/min

Electric motor:

340 kW

(5) Circulating Water Pump

Model:

Vertical single-stage centrifugal pump

No. of units:

2

Capacity:

2,000 t/h

Lift:

35 m

Electric motor:

250 kW

Electrical Equipment

Principal specifications of the electrical equipment are as follows:

(1) Generator

Model:

Horizontal shaft revolving-field 3-phase

AC air-cooled type

Capacity:

33,400 kVA

Power factor:

90%

Voltage:

11 kV

No. of unit:

One

(2) Main Transformer

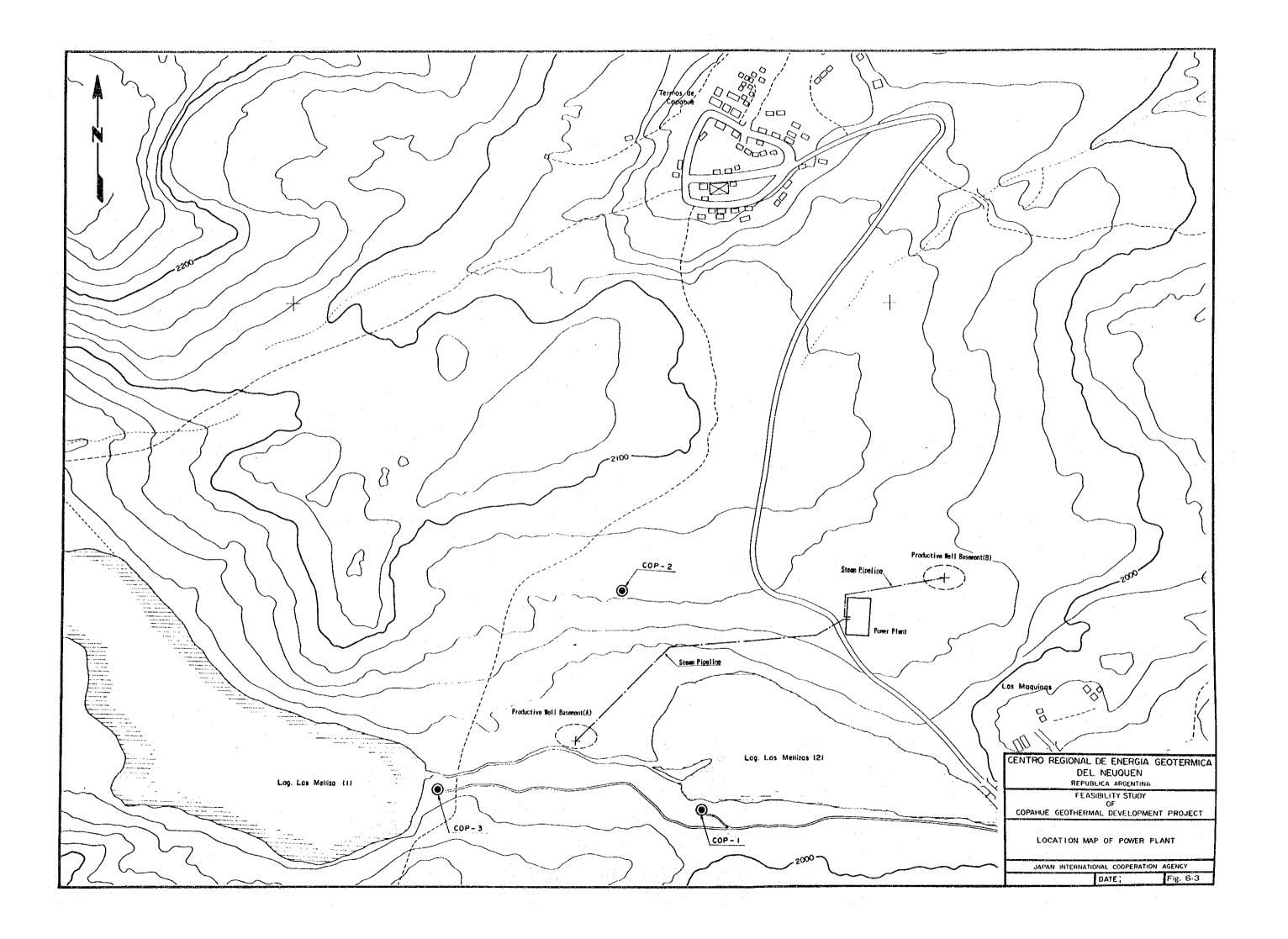
Model:

Outdoor oil-immersed air-cooled type

No. of unit:

0ne

Capacity:


33,400 kVA

6.2.8 Powerhouse and Related Buildings

It is planned that the powerhouse consists of a three-story building measuring 20.8 m wide, 32.4 m long and 21.5 m high. The first floor consists of pump rooms (vacuum pump and cooling water circulating pump), a tank room, a reserved power room, etc. A battery room, a relay room and an office are arranged on the second floor. The third floor is the main floor where a turbine generator room and a central control room are located.

The entrance for delivered equipment is located at the southwest corner of the main building and an air well is provided from the first to the third floor.

The powerhouse is designed to be of steel frame structure combined with steel sheet walls in consideration of long beams required and large design wind and snow loads. The related buildings in the power plant yard, including a parking house and warehouse, are also designed to be of steel frame and steel sheet wall.

