Volume calculation Sheet

•				Volume	m.ps	000	245,000	1,120,000	1,680,000	1	1,650,000	1,570,000	1,410,000		425.000	000.	000	000	,	000		000	000	000	000.	000	000	000	000	10,785,000
			tht Abutment	Means area	m	000.	24.500	56.000	84.000	85.500	82.500	78.500	70.500	75.000	85.000	43.500	.000	.000	.000	.000	000.	000	000	.000	000.	.000	.000	000	000.	n) ==
			Clearing and Stripping of Right Abutment	Sectional	Length m	16.000		79.000			83.000	74.000	67.000																	Total Voulme (Sq.m)
	et		Clearing an	Distance	E	000	10.000	20.000	20.000	20.000	20.000	20.000	20.000	13.000	5.000															T
	Volume calculation Sheet		(0/1)	Section No.		.000 Section 1-1	555.500 Section 2-2	710.000 Section 3-3	890.600 Section 4-4	,803.400 Section 5-5	3,660.000 Section 6-6	4,990.000 Section 7-7.	4,408.000 Section 8-8	,892,000 Section 9-9	7,310.000 Section 10-10												[(
	Volume cal	-		Volume	sq.m	000	555.500	1,710.000	890.600	1,803.400	3,660.000	4,990.000	4,408.000	1,892,000	7,310.000	6,078.100	873.171	1,919.800	4,551,100	5,088.750	621.000	5,100.000	1,840.300	1,955.700	596.400	000	000	000.	000	55,843.821
			ш	Means area	u	000	50.500	85.500	122.000	142.000	183.000	249.500	304.000	344.000	365.500	350.000	331.500	331.000	320.500	287.500	270.000	255.000	239.000	159.000	71.000	31.000	000.	000	000	11
		nd Stripping	d Stripping of Dam	Sectional	- Grath m	45.000	56.000	115.000	129.000	155.000	211.000	288.000	320.000	368.000	363.000	337.000	326.000	336.000	305.000	270.000	270.000	240.000	238.000							Total Voulme (59.m)
-		: Clearing a	Clearing and Strip	Distance	m	.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400	000.				Ţ
		Work Division: Clearing and Stri	(010)	Section No.		Sta.0+9.000	Sta.2	Sta.4	Sta.4+7.300	Sta.6	Sta.8	Sta. 10	Sta.11+4.500	Sta.12	Sta.14	Sta.15+7.366	Sta.16	Sta.16+5.800	Sta.18	Sta. 19+7.700	Sta.20	Sta.22	Sta 22+7.700	Sta.24	Sta.24+8.400					
																٠														

Volume calculation Sheet

C | Work Division : Excavation for Main Dam

102	Volume of	Volume of Excavation Common	non		102 a)	Volume of	Excavation Weathered Rock	thered Rock	
Section No.	Distance	Sectional area	Means area	Volume	Section No.	Distance	Sectional area	Means area	Volume
	m	m.ps	m.ps	cu.m		E	sq.m	m.ps	cr.m
Sta.0+9.000	000:	280.000	000:	000:	000 Sta.0+9.000	000	48.000	000:	000
Sta.2	11.000	460.000	370.000	4,070.000 Sta.2	Sta.2	11,000	72.000	000:09	900.099
Sta.4	20.000	700.000	580.000	11,600.000 Sta.4	Sta.4	20.000	000.96	84.000	1,680,000
Sta.4+7.300	7.300	750.000	725.000	5,292,500	5,292,500 Sta.4+7,300	7.300	32.000	64.000	467.200
Sta.6	12.700	700.000	725.000	9,207.500 Sta.6	Sta.6	12.700	000'96	64.000	812.800
Sta.8	20.000	1,000.000	850.000	17,000.000 Sta.8	Sta.8	20.000	120.000	108.000	2,160,000
Sta. 10	20.000	1,200.000	1,100.000	22,000,000 Sta.10	Sta.10	20.000	112.000	116.000	2,320,000
Sta.11+4.500	14.500	970.000	1,085.000	15,732.500 Sta.11+4	Sta.11+4.500	14.500	264.000	188.000	2,726.000
Sta. 12	5.500	760.000	865.000	4,757.500 Sta.12	Sta.12	5.500	304.000	284.000	1,562.000
Sta. 14	20.000	820.000	790.000	15,800.000 Sta.14	Sta.14	20.000	320.000	312.000	6,240,000
Sta. 15+7.366	17.366	500.000	000.099	11,461.560	11,461,560 Sta.15+7.366	17.366	104.000	212.000	3,681.592
Sta, 16	2.634	465.000	482.500	1,270.905 Sta.16	Sta.16	2.634	144.000	124.000	326.616
Sta.16+5,800	5.800	555.000	510.000	2,958.000	2,958.000 Sta. 16+5.800	5.800	32.000	88.000	510.400
Sta. 18	14.200	206.000	530.500	7,533,100 Sta,18	Sta.18	14.200	88.000	60.000	852.000
Sta.19+7.700	17.700	800:000	653.000	11,558.100 Sta.19+7	Sta.19+7.700	17.700	176.000	132.000	2,336,400
Sta.20	2.300	840.000	820.000	1,886.000 Sta.20	Sta.20	2.300	120.000	148.000	340.400
Sta.22	20,000	1,180.000	1,010.000	20,200.000 Sta.22	Sta.22	20.000	376.000	248.000	4,960.000
Sta.22+7.700	7.700	1,570.000	1,375,000	10,587.500 Sta.22+7	Sta.22+7.700	7.700	480,000	428.000	3,295.600
Sta.24	12.300	300.000	935.000	11,500.500 Sta.24	Sta.24	12.300	584.000	532.000	6,543.600
Sta.24+8.400	8.400	180.000	240.000	2,016.000	2,016.000 Sta.24+8.400	8.400	480.000	532.000	4,468.800
	000.		90.000	000		000		240.000	000:
			000.	000.	:			000	000
			000	000				000	000
			000	000.				000	000:
	Tot	Total Voulme (cu.m)	=	186,431.665		To	Total Voulme (cu.m)	n) = (u	45,943.408

Volume calculation Sheet

C | Work Division: Excavation for Main Dam

105 0	Volume of	Volume of Excavation Hard Rock	Rock		03	Volume of	Volume of Excavation Sand and Grave	l and Gravel	
Section No.	Distance	Sectional area	Means area	Volume	Section No.	Distance	Sectional area	Means area	Volume
	m	sq.m	ar.ps	cu.m		я	m.ps	m.ps	כוניש
Sta.0+9.000	000	12,000	000	000	000 Sta.0+9.000	000	000	000	900.
Sta.2	11,000	18.000	15.000	165.000 Sta.2	Sta.2	11.000	000	000	000.
Sta.4	20.000	24.000	21.000	420.000 Sta.4	Sta.4	20.000	000.	000	000
Sta.4+7.300	7.300	8.000	16.000	116.800	116.800 Sta.4+7.300	7.300	000.	000	000
Sta.6	12,700	24.000	16.000	203.200 Sta.6	Sta.6	12.700	000	000.	000.
Sta.8	20,000	30.000	27.000	540.000 Sta.8	Sta.8	20.000	000	000.	000
Sta.10	20.000	28.000	29.000	580.000 Sta.10	Sta.10	20.000	000	1000	000.
Sta.11+4.500	14.500		47.000	681.500	681.500 Sta.11+4.500	14.500	130.000	65.000	942.500
Sta.12	5.500	000'94	71.000	390.500 Sta.12	Sta.12	5.500	240.000	185.000	1,017,500
Sta.14	20,000	80.000	78.000	1,560.000 Sta. 14	Sta.14	20.000	000.09	150.000	3,000,000
Sta.15+7.366	17.366	26.000	53.000	920.398	920.398 Sta.15+7.366	17.366	110.000	85.000	1,476.110
Sta. 16	2,634	36.000	31.000	81.654 Sta.16	Sta.16	2.634	135.000	122.500	322.665
Sta. 16+5.800	5,800	8.000	22.000	127.600	127.600 Sta.16+5.800	5.800	45.000	000.06	522.000
Sta.18	14,200	22.000	15.000	213.000 Sta.18	Sta.18	14.200	84.000	64.500	915.900
Sta.19+7.700	17,700	44,000	33.000	584.100	584.100 Sta. 19+7.700	17.700	000	42,000	743.400
Sta.20	2.300	30.000	37.000	85.100 Sta.20	Sta.20	2.300	000.	000	000
Sta 22	20.000	34.000	32.000	640.000 Sta.22	Sta.22	20.000	000.	000.	000.
Sta 22+7.700	7,700	120.000	77.000	592,900	592,900 Sta.22+7,700	7.700	000	J000:	000
Sta.24	12.300	146.000	133.000	1,635.900 Sta.24	Sta.24	12.300	000	000:	000:
Sta.24+8.400	8.400	120,000	133.000	1,117,200	117.200 Sta.24+8,400	8.400	000.	000	000:
	000		000.09	000		000.		000	000.
			000	000.				000	000
			000	000				000	000
			000	000.				000	.000
	Tot	Total Voulme (cu.m.	= (10,654.852		To	Total Voulme (cu.m	n) = (n	8,940.075

Original ground line Remarks Quantity 360 002,2 600 250 Unit E M m) 3 C KW 7,200 m3 an 3 spen out excavation weathered Open cut excavation common st lu 037 Calculation Details = 14 OS excavation excountion Working Division: Inspection tunnel d V= 7,200×0,2 V= 7,200 x 0.5 V= 2,200×0.3 V= 5x32 × 9 Doen out Open and 10401 Description 02 Ü

Volume calculation Sheet

Work Division: Right Abutment

	Volume	cu.m	000:	630.000	5,920.000	13,220.000	14,580.000	14,260,000	17,440.000	16,560.000	9,412.000	3,720.000	000.	000	000	000.	000:	000:	000	.000	000	000	000.	000	000	000.	95,742.000	
	Means area	m.ps	000.	63.000	296.000	661.000	729.000	713.000	872.000	828.000	724.000	744.000	380.000	000	1000	000.	000.	000	000.	000	000	000.	000:	000	000	000.	u) = {u	
Volume of Excavation Rock	Sectional area	sq.m	16.000	110.000	482.000	840.000	618.000	808.000	936.000	720.000	728.000	760.000	000.														Total Voulme (cu.m	
Volume of	Distance	æ	000	10.000	20.000	20.000	20.000	20.000	20.000	20.000	13.000	5.000															To	
	Section No.		000 Section 1-1	780.000 Section 2-2	Section 3-3	4,680.000 Section 4-4	Section 5-5	7,760.000 Section 6-6	Section 7-7	7,100,000 Section 8-8	7,137,000 Section 9-9	3,715.000 Section 10-10																٠
	Volume	cu.m	000.	780.000	3,000.000	4,680.000	6,840.000	7,760.000	7,100.000	7,100.000	7,137,000	3,715.000	000	000	000	000.	000.	000	000	000	000	000	000.	000	000.	000.	48,112.000	
ered Rock	Means area	m.ps	000	78.000	150.000	234.000	342.000	388.000	355.000	355.000	549.000	743.000	374.000	000	000	000	000	000:	000	000	000:	000:	000	000	000.	000:	m) ==	•
Volume of Excavation weathered Rock	Sectional area	m.ps	56.000	100.000	200.000	268.000	416.000	360.000	350.000	360.000	738.000	748.000	000														Total Voulme (cu.m)	
Volume of E	Distance	Œ	000:	10.000	20.000	20.000	20.000	20.000	20.000	20.000	13.000	5.000															Tol	
	Section No.		Section 1-1	Section 2-2	Section 3-3	Section 4-4	Section 5-5	Section 6-6	Section 7-7	Section 8-8	Section 9-9	Section 10-10																

(9 4

(Y 24)

Page 1

Remarks 2,40 1:534 Quantity Unit E. 368 m2 A4==>×(1,20+2,10) × 0,30 = 0,495 m2 **4** VI= 15,896 x 136,50 = 2,169.804 m3 113 = 2 × (15,896 + 11,428) × 500 = 683 | m3 A1= 124 m2 1775 2 15/360 x 2 = 4, 124 m2 F = 163.420 m3 A2 = 2 × 0.315 × 1.775 x 2 = 0.559 m2 303 i) -A4=15.896 Total VI + V2 + V3 = 2,401.534 11 AI= TX 2, 025 x 75/360 x2 .428 m² Calculation Details A2 = 1.90 x 3.55 = 6.745 m2 Az= 5×0591×2,205 × 2 43=2.40×4.05 =9.72 8 Working Division: Inspection Tunne W=11.428 x 14.30 Inspection Tunne excavation A = A + + A = + 11 (Section B-B A = A 1 + A 2 + A3 (Section A-A Transitram, Tunne Description

PROFILE SCALE B PLAN (NO I GROUT TUNNEL) **₹** EL.226.000 Remarks SECTION A-A 43.00 EL. 236, 000 2,00 pare 24°, 8 220-8 230 8 Quantity 万 り り Unit /M 3. A2=(TCX1,7752x 15/360)x2-4,124m2 A1 = 5× 0.476 ×1.775 ×2 = 0.845 m2 43.00 - 503,702 A3 = 3.55 × 1.90 = 6.745 M2 Calculation Details Working Division: NO. Grout Tunne excavation V=11,714 M2 A=11,714 M2 Tunnel 90 Description

٠. Remarks 5,018.606 Quantity Unit /M3 = 11,714 × 428,428 = 5,018.606 2.632+ 18.028+40.187+5.00 exceletion = 428.428 Working Division: No.2 Growt Tunne Calculation Details excavation Please refer to tunne A = 11-714 M2 Tunnel > Description 90,

Description Calculation Details U	Unit Quantity	Remarks
+		8,85
Treath (111)	m 1,146 &1	
- FOR inspection gallery		\ \ \ \
		93
R=272,715		0 2 1 2 2 2
		<u> </u>
Vi= 40,208×272,715 =10,965,325m		7 = 4 430
		9 × 6 × 3
		2,0.0
Sump pit) 1/2 = 9,80 m2 x 11 m = 107,8 m3		A=40.2080
		r.
V1 + V2 = 11, 073.125 M3		
		2003
- FOR Drawn dutch		
		Gra
V= 2×(0.8+0.96)×0.6 × 137 m		がなっています。
= 72,366 M3	:	etia
- For Drain pit		THE PARTY OF THE P
		22
V= 2×(0,62+0,96) × 0,75 × 2=1,32 m3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-	

Inspection Cal	Remarks	Control of the contro	Be and	and the state of t	and the state of t					Page 1 Section 1		Distriction of the second of t	03/19-1	Oracia de la companya	Company of the Compan	00	PROFILE XANG .			-		
w γ ξ τ ω w s t τ ails	antity								 		- - - -							<u></u>				
tails x t t m										-												
tails x x x x x x x x x x x x x x x x x x x	Cu	(E)		-						-			-		-	-	ļ	-	-		-	1
Inspection tun French wit excar = 50.53 = 50.53	on Details	ne		la Tison		× 55																
	Calculation	Inspection tun		Trench out excar		V= = x (1.45+ 1.00) x																

Volume calculation Sheet

Work Division EM/R EL 196.0 - 190.0

	Volume	cu.m	000	000.	000.	000.	000	000.	000	000	000.	000	000	000	.000	.000	000	000.	000.	000.	000	000.	000	000	000	000.	000
filter	Means area	m bs	000	000	000	000	000'	000.	000.	000	000	000	000.	000.	000.	000.	000.	000.	000.	000'	000	000.	000	000	000	000.	11
Volume of Coarse filter	Sectional area	m.ps	000	000	000	000	000	000.	000.	000	000	000.	000	000.	000	000	000	000	000.	000.	000	000.					Total Voulme (cu.m)
V.	Distance	m	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
01/10	Section No.		Sta. 0+9,000	Sta. 2		Sta. 4+7,300		Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20		Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
41	Volume	cu.m	000	458.700 Sta	834.000 Sta	304.410	529.590 Sta	834.000	834.000 Sta	604.650 Sta	229.350 Sta	834.000 Sta	724.162 Sta.	109 838 Sta	241,860 Sta	592,140 Sta	738.090 Sta.	95.910 Sta	834.000 Sta.	321.090 Sta	512.910 Sta.	243,600 Sta	000'	000	000	000	9,876.300
ious earth core	Means area	sq.m	000	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	41.700	29.000	8.150	000.	000.	000	li
Volume of Impervious ear	Sectional area	m.ps	41.700	41.700	41.700	41.700	41.700	41,700	41,700	41.700	41.700	41.700	41.700	41.700	41.700	41,700	41,700	41.700	41.700	41.700	41.700	16.300					Total Voulme (cu.m)
108 Vo	Distance	m	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total V
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18			Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

Volume calculation Sheet

Work Division EM/R EL 190.0 - 180.0

	Volume	c.t.m	000	264.000	780.000	284.700	495.300	780.000	780.000	565.500	214.500	780.000	677.274	102.726	226.200	553.800	690.300	89.700	780.000	300.300	325.335	58.380	000	000.	000.	000	8,748.015
filter	Means area	m.ps	000.	24.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	26.450	6.950	000.	000.	000.	000	ı
Volume of Coarse filter	Sectional area	m.ps	000'6	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39.000	39,000	13.900	000					Total Voulme (cu.m)
\	Distance	8	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
e e	Volume	cu.m	000.	1,068.100 Sta.	2,570.000 Sta	938.050 Sta	1,631.950 Sta.	2,570.000 Sta	2,570,000 Sta.	1,863.250 Sta	706.750 Sta.	2,570,000 Sta	2,231.531 Sta	338,469 Sta	745.300 Sta.	1,824.700 Sta	2,274,450 Sta.	295.550 Sta	2,570.000 Sta.	989.450 Sta	1,188.180 Sta	271.740	000	000	000.	000	29,217,470
ious earth core	Means area	sq.m	000	97.100	128.500	128.500	128.500	128.500		128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	009.96	32.350	000.	000	000'	000	
Volume of Impervious ear	Sectional area	m.ps	65.700	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	128.500	64.700	000					Total Voulme (cu.m)
Λ	Distance	m	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

Volume calculation Sheet

Work Division EM/R EL 180.0 - 170.0

	Volume	cu.m	000.	67.100	722.000	438.000	762.000	1,200.000	1,200.000	870.000	330.000	1,200.000	1,041.960	158.040	348.000	852.000	1,062.000	138.000	1,200.000	462.000	369.000	000	000.	000.	000.	000.	12,420.100
filter	Means area	m-sa-m	000.	6.100	36.100	60.000	60.000	60.000	60.000	60.000	60.000	90.00	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	30,000	000	000.	000.	000.	000.	II
Volume of Coarse filter	Sectional area	Sq.m	000	12.200	60.000	60.000	000.09	000.09	60.000	60.000	000.09	60.000	000.09	000.09	60.000	60.000	60.000	60.000	60.000	60.000	000	000.					Total Voulme (cu.m)
Λ	Distance	ш	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14,500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20,000	7.700	12,300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
9	Volume	cu.m	.000 Sta	171.050 Sta.	1,961.000 Sta	1,204.500 Sta. 4+7	2,095.500 Sta	3,300.000 Sta. 8	3,300.000 Sta.	2,392,500 Sta.	907.500 Sta	3,300,000 Sta	2,865.390 Sta	434.610 Sta. 16	957.000 Sta.	2,343,000 Sta	2,920.500	379.500 Sta.	3,300.000 Sta.	1,270.500 Sta.	1,014.750 Sta.	000.	000	000.	000	000	34,117.300
ious earth cor	Means area	m.ps	000	15.550	98.050	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165:000	165.000	165.000	165.000	82.500	000.	000.	000.	000	000.	11
Volume of Impervious earth core	Sectional area	m.ps	000'	31.100	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	165.000	000	000.					Total Voulnie (cu.m)
Λ	Distance	Ε	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	1 :	Sta. 15+7,366		Sta. 16+5,800			Sta. 20	Sta. 22	Sta. 22+7.700	Sta. 24	1					

Volume calculation Sheet

Work Divisior EM/R EL 170.0 - 160.0

	Volume	cu.m	000.	000	400.000	365.000	762.000	1,200.000	1,200.000	870.000	330.000	1,200.000	1,041.960	158.040	348.000	852.000	1,062.000	138.000	1,200.000	381.150	239.850	000.	000	000	000.	000.	11,748.000
filter	Means area	m.ps	000.	000	20.000	50,000	60.000	60,000	60.000	900.09	60.000	60.000	60,000	900'09	60.000	60.000	000'09	000.09	60.000	49.500	19.500	000	000	000	000.	000.	Ħ
Volume of Coarse filter	Sectional area	w-bs	000	000	40.000	60.000	60.000	60.000	60.000	000'09	60.000	000.09	60.000	900.09	60.000	000'09	000:09	000'09	000:09	39.000	000	000					Total Voulme (cu.m)
Λ	Distance	th.	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2,300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12		Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	cu.m	.000 Sta.	:000 Sta	1,266.000 Sta.	1,173.840 Sta	2,476.500 Sta.	3,900.000 Sta	3,900.000 Sta	2,827.500 Sta.	1,072,500 Sta	3,900,000 Sta.	3,386.370 Sta.	513,630 Sta. 16	1,131.000 Sta.	2,769.000 Sta	3,451.500 Sta.	448,500 Sta	3,900.000 Sta.	1,226,225	759.525 Sta. 24	000.	000.	000	000.	000	38,102,090
ious earth core	Means area	Sq.111	000.	000	63.300	160.800	195.000	195.000	195.000	195.000	195.000	195.000	195.000	195.000	195.000	195.000	195.000	195,000		159.250	61,750	000	000	000	000	000	11
Volume of Impervious carth	Sectional area	m.ps	000	000.	126,600	195.000	195.000	195.000	195.000	, 195.000	195.000	195.000	195.000	195.000	195.000	195.000	195.000	195.000	195.000	123.500	000	000					Total Voulme (cu.m)
>	Distance	m	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

VI- Z- 26

Work Divisior EM/R EL 160.0 - 150.0

	^	Volume of Impervious earth core	vious earth cor	9		>	Volume of Coarse filter	filter	
Section No.	Distance	Sectional area	Means area	Volume	Section No.	Distance	Sectional area	Means area	Volume
	E	i sq.m	sq.m.	cu.m		m	ur.bs	lu-ps	cu.m
Sta. 0+9,000	000.6	000'	000	000.	Sta. 0+9,000	9.000	000	000.	000.
Sta. 2	11.000	000	000	.000 Sta.	Sta. 2	11.000	000	000.	000.
Sta. 4	20.000	000	000	.000 Sta		20.000	000.	000	000
Sta. 4+7,300	7.300	42.500	21.250	155.125 Sta	Sta. 4+7,300	7.300	12.000	6.000	43.800
Sta. 6	12.700	191.000	116.750	1,482.725 Sta.	Sta. 6	12.700	54.000	33.000	419.100
١.	20:000	225.000	208.000	4,160.000	Sta. 8	20.000	60.000	57.000	1,140.000
Sta. 10	20.000		225.000	4,500.000 Sta	Sta. 10	20.000	60.000	60,000	1,200.000
Sta. 11+4,500	14.500	225.000	225.000	3,262.500 Sta	Sta. 11+4,500	14.500	60.000	60.000	870.000
Sta. 12	5.500	225.000	225.000	1,237.500 Sta	Sta. 12	5.500	000.09	60.000	330.000
Sta: 14	20.000	225.000	225.000	4,500.000 Sta	Sta. 14	20.000	60.000	000.09	1,200.000
Sta. 15+7,366	17.366	225.000	225.000	3,907.350 Sta	Sta. 15+7,366	17.366	60.000	000'09	1,041.960
Sta. 16	2.634		225.000	592.650 Sta.	Sta. 16	2.634		900'09	158.040
Sta. 16+5,800	5.800		225.000	1,305.000	Sta. 16+5,800	5.800	000.09	000'09	348.000
ŧ	14.200	225.000	225.000	3,195.000 Sta	Sta. 18	14.200	60.000	60.000	852.000
Sta. 19+7,700	17.700	225.000	225.000	3,982.500 Sta.	Sta. 19+7,700	17.700	60.000	60.000	1,062.000
Sta. 20	2.300	225.000	225.000	517.500 Sta	Sta. 20	2.300	60.000	60.000	138.000
Sta. 22	20.000	90.300	157.650	3,153.000 Sta	Sta. 22	20.000	25.200	42.600	852.000
Sta. 22+7,700	7.700	000	45.150	347.655 Sta.	Sta. 22+7,700	7.700	000.	12.600	97.020
1	12.300	000	000	000.	Sta. 24	12.300	000.	000.	000.
Sta 24+8,400	8.400	000.	000	.000 Sta.	Sta. 24+8,400	8.400	.000	000	000.
			000'	000.				000	000.
			000	000.				000	000.
			000	000.				000	000
			000.	000.	-			000	000.
	Total	Total Voulme (cu.m)	11	36,298.505		Total	Total Voulme (cu.m)		9,751.920

EL 150.0 - 140.0

Work Division EM/R

138.000 1,200.000 158.040 348.000 000 000 000 852.000 8,400.000 000 330.000 1,041.960 ,062,000 600.000 1,200.000 Volume 60.000 30.000 000 000 60.000 000 000 000 000 000 60.000 60.000 60.000 60.000 60.000 000 30.000 60.000 60.000 60.000 Means area II Volume of Coarse filter 000.09 60.000 000 000 000 000 8 000 000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 Total Voulme (cu.m) Sectional area 12.700 2.634 5.800 17.700 2.300 20.000 9.000 20.000 5.500 7.700 8,400 17.366 14.200 12.300 11.000 20.000 7.300 20.000 14.500 Distance 4,513.500 Sta. 19+7,700 586.500 Sta. 20 2,550.000 Sta. 22 000 Sta. 24+8,400 4,428.330 Sta. 15+7,366 000 Sta. 22+7,700 3,697.500 Sta. 11+4,500 1,479.000 Sta. 16+5,800 Section No. 000 Sta. 4+7,300 000 Sta. 0+9,000 671.670 Sta. 16 000 Sta. 24 5,100.000 Sta. 14 3,621,000 Sta. 18 5,100.000 Sta. 10 1,402.500 Sta. 12 2,550.000 Sta. 8 000 Sta, 4 000 Sta. 6 000 Sta. 2 000 000 35,700.000 Volume Volume of Impervious earth core 255.000 000 000 000 000 000 255.000 000 127.500 255.000 255.000 255.000 255.000 255.000 255.000 255.000 255.000 127.500 Means area H [8] 255.000 255.000 255.000 255.000 255.000 .000 255.000 255.000 000 000 255.000 255.000 Sectional area 255.000 255.000 Total Voulme (cu.m) 20.000 14.500 5.800 2.300 9.000 7.300 2.634 20.000 17.366 7.700 8.400 5.500 20.000 14.200 20.000 Distance 11.000 20.000 12.700 12,300 Sta. 15+7,366 Sta. 19+7,700 Sta. 22+7,700 Sta. 24+8,400 Sta. 11+4,500 Sta. 16+5,800 Section No. Sta. 4+7,300 Sta. 0+9,000 Sta. 14 Sta. 16 Sta. 18 Sta. 20 Sta. 10 Sta. 12 Sta. 22 Sta. 24 Sta. 6 Sta. 8 Sta. 2 Sta. 4

Work Divisior EM/R EL 140.0 - 130.0

Work Divisior EM/R EL 130.0 - 120.0

	Volume	cu.m	000	000.	000.	000.	000	000.	000.	174.000	190.025	1,051.000	1,041.960	158.040	348.000	762.540	419.490	000.	000.	000.	000.	000.	000.	000	000.	000.	4,145.055
filter	Means area	m.ps	000	000	000	000	000	000.	000	12.000	34.550	52.550	60.000	000'09	60.000	53.700	23.700	000.	000	000.	000.	000	000	000	000.	000	Ţŧ
Volume of Coarse filter	Sectional area	sq.m	000.	000	000	000	000	000.	000.	24.000	45.100	000.09	60.000	90.000			000	000	000		000	000					Total Voulme (cu.m)
^	Distance	m	000.6	11.000	20.000	7.300	12.700	20.000	20,000	14.500	5,500	20,000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.	-	Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	000 Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800		Sta. 19+7,700	000 Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	m'no	.000 Sta.	.000 Sta.	.000 Sta.	000	000	000	.000 Sta.	891.750 Sta.	943.250 Sta	5,350.000 Sta	5,470.290 Sta.	829.710 Sta.	1,827.000 Sta.	3,011.820 Sta.	966.420 Sta.	000.	.000 Sta.	.000 Sta.	.000 Sta.	.000 Sta	000	000	000	000	19,290.240
ious earth core	Means area	sd.m	000.	000.	000	000.	000	000	000.	61.500	171.500	267.500	315.000	315.000	315.000	212.100	54.600	000	000	000	000.	000	000.	000.	000	000	ì
Volume of Impervious earth	Sectional area	m.ps	000.	000	000	000	000	000	000.	123.000	220.000	315.000	315,000	315.000	315.000	109.200	000	000.	000	000.	000.	000.					Total Voulme (cu.m)
^	Distance	æ	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17,366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

Work Division EM/R EL 120.0 - 110.0

ction No. Distance Sectional area Means area Volume Series Section No. Distance Sectional area Series Seri		Α	Volume of Impervious earth core	rions earth con	re		>	Volume of Coarse filter	se tilter	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Section No.	Distance	Sectional area		Volume	Section No.	Distance	Sectional area	Means	Volume
0+9,000 9 000 1, 000 000 000 000 000 0 000 0 0 0		m		m.ps	ca.m		m	sd.r		cu.r
2 11,000 000 000 Sta. 2 11,000 000 000 4+7,300 20,000 .000 .000 Sta. 4+7.30 20,000 .000 .000 6 12,700 .000 .000 Sta. 6 12,700 .000 .000 8 20,000 .000 .000 Sta. 6 12,700 .000 .000 11,4,500 .000 .000 .000 Sta. 11,44,500 .000 .000 .000 11,4,500 .000 .000 .000 Sta. 11,44,500 .000		000.6	000.	000.	000		000.6	00.		00.
4 47,300 (2000) (2000) (312, 4 47,300 (2000) (312, 4 48,400 (2000	Sta. 2	11.000	000:	000.	000	Sta. 2	11.000	00.		00
4+7,300 7,300 0,000 Sta. 4+7,300 7,300 0,000 Sta. 6 1,2,700 0,000 0,000 6 1,2,700 0,000 0,000 Sta. 10 20,000 0,000 10 20,000 0,000 0,000 Sta. 11 20,000 0,000 11 20,000 0,000 0,000 Sta. 11 20,000 0,000 11 20,000 0,000 0,000 Sta. 11 20,000 0,000 12 2,500 0,000 0,000 Sta. 11 20,000 0,000 12 2,500 1,300 2,40,000 Sta. 14 20,000 0,000 15+7,366 17,366 274,000 2,49,150 17,48,284 Sta. 15+7,366 17,366 48,000 24,000 16+5,800 2,634 14,200 0,000 17,120 17,700 10,000 10,000 16+5,800 2,300 0,000 1,11,130 1,11,130 1,11,130 1,11,130 1,11,130 1,11,130 <td>Sta. 4</td> <td>20.000</td> <td>000</td> <td>000</td> <td>000</td> <td></td> <td>20.000</td> <td>00.</td> <td></td> <td>00</td>	Sta. 4	20.000	000	000	000		20.000	00.		00
Secondary Continuous Cont	4+7	7.300		000.	000.	4+7	7.300	00.		00.
8 20,000 000 000 5ta. 8 20,000 .000 <t< td=""><td></td><td>12.700</td><td>000</td><td>000</td><td>000</td><td></td><td>12.700</td><td>)00.</td><td></td><td>00.</td></t<>		12.700	000	000	000		12.700)00.		00.
10	Sta. 8	20.000	000	000	000	Sta. 8	20.000)00		00.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.000		000.	000.		20.000	00.		00.
12 5.500 .000 .000 sta. 12 5.500 .000 .000 14 20.000 274.000 1.37.000 2.74.000 2.75.0 48.000 24.000 2.75.0 48.000 24.000 2.75.0 48.000 24.000 22.05.0 25.050 10.500 25.050 <td>F</td> <td>14.500</td> <td></td> <td>000.</td> <td>000.</td> <td></td> <td>14.500</td> <td>00.</td> <td></td> <td>000.</td>	F	14.500		000.	000.		14.500	00.		000.
14 20,000 274,000 137,000 2,740,000 Sta. 14 20,000 48,000 24,000 15+7,366 17,366 274,000 274,000 4,758,284 Sta. 15+7,366 17,366 48,000 48,000 16+5,800 2,800 118,100 171,200 65,6261 Sta. 16+5,800 5,800 10,500 25,050 16+5,800 5,800 118,100 171,200 838,510 Sta. 16+5,800 3,800 10,500 25,050 16+5,800 5,800 118,100 .000 .000 .000 10,500 25,050 16+5,800 14,200 .000 <		5.500		000.	000		5.500	00.		00.
7.366 17.366 274.000 274.000 4,758.284 Sta. 15+7,366 17.366 48.000 49.000		20.000			2,740.000		20.000	48.00(480.000
2.634 224.300 249.150 656.261 Sta. 16 2.634 39.600 43,800 +5,800 5.800 118.100 171.200 992.960 Sta. 16+5,800 5.800 10.500 25.050 +7,700 11,200 .000 .000 .000 .000 .26.00 .26.00 .26.00 .26.00 .26.00 .26.00 .26.00 .26.00 .000 <td>15+7</td> <td><u> </u></td> <td></td> <td>274,000</td> <td>4,758.284</td> <td>15+7</td> <td>17.366</td> <td>48.000</td> <td></td> <td>833.56</td>	15+7	<u> </u>		274,000	4,758.284	15+7	17.366	48.000		833.56
+5,800 5.800 118.100 171.200 992.960 Sta. 16+5,800 5.800 10.500 25.050 +7,700 14.200 .000 .000 .000 Sta. 18 14.200 .400 5.450 +7,700 .000 .000 .000 .000 .000 .200 .200 +7,700 .000 .000 .000 .000 .000 .000 .000 +7,700 .000 .000 .000 .000 .000 .000 .000 +8,400 8.400 .000 .000 .000 .000 .000 +8,400 8.400 .000 .000 .000 .000 .000 +8,400 8.400 .000 .000 .000 .000 .000 -000 .000 .000 .000 .000 .000 .000 -000 .000 .000 .000 .000 .000 .000 -000 .000 .000 .000	Sta. 16	2.634		249.150	656.261		2.634	39.60		115.36
18 14.200 .000 59.050 838.510 Sta. 18 14.200 .400 5.450 19+7,700 17.700 .000 .000 .000 .000 .000 .200 20 .2300 .000 .000 .000 .000 .000 .000 22 20.000 .000 .000 .000 .000 .000 .000 22+7,700 7.700 .000 .000 .000 .000 .000 .000 24 12.300 .000 .000 .000 .000 .000 .000 24+8,400 8.400 .000 .000 .000 .000 .000 .000 24+8,400 8.400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	+5	5.800		171,200	992.960		5.800	10.500		145.29
19+7,700 17.700 .000 .000 sta. 19+7,700 17.700 .00	Sta. 18	14.200		59.050	838.510		14.200	.40(77.39
20 2.300 .000 .000 sta. 20 2.300 .000		17.700		000	000'	19+7	17.700	00.		3.54
22 20.000 .000 .000 Sta. 22 20.000 .000	Sta. 20	2.300		000'	000.		2.300	00.		00.
22+7,700 7.700 .000 .000 .000 Sta. 22+7,700 7.700 .000 .000 .000 Sta. 22+7,700 7.700 .000 .000 .000 Sta. 24 12.300 .000 .000 .000 Sta. 24 12.300 .000 .000 .000 Sta. 24+8,400 8.400 Sta. 24+8,400 8.40	Sta. 22	20.000		000'	000		20.000	IÕO.		00.
24 12.300 .000 .000 sta. 24 12.300 .000 .000 sta. 24+8,400 8.400 .000 .000 24+8,400 8.400 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	22+7	7.700		000.	000.	22+7,	7.700	.00		00.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sta. 24	12.300	1	000'	000.		12.300	.00		00.
1000 1000	Ι.	8.400		000′	000	Sta. 24+8	8.400	00.		00.
(cu.m) = 9,986,015 Total Voulme (cu.m) = .000				000'	000				000	00.
(cu.m) = 9,986.015 Total Voulme (cu.m) = .000				000	000				000.	00.
(cu.m) = 9,986.015 Total Voulme (cu.m) = .000				000	000.				000.	00.
(cu.m) = 9.986.015 Total Voulme $(cu.m) = 1.000$				000'	000				000.	00'
9		Total	-	11	9,986.015		Total	- 1		1,655.15
		٠.		, 2,	C 907 2 113					62,293

Work Divisior EM/R EL 196.0 - 190.0

(1.70	00	Volume of Fine filte	filte		0	12	Volume of Inner shell of random rock	hell of randon	n rock
Section No.	Distance	Sectional area	a Means area	Volume	Section No.	Distance	Sectional area	Means area	Volume
- 1	m	m.ps		co.m)		=	\$9.00	sq.m	cu.mo
Sta. 0+9,000	9.000	36.900	000.	.000 Sta.	Sta. 0+9,000	000.6	30.900	000	000
Sta. 2	11.000	36.900	36.900	405.900 Sta	1 .	11.000	32.800	31.850	350.350
Sta. 4	20.000	36.900	36.	738.000 Sta	Sta. 4	20.000	32.800	32.800	656,000
Sta. 4+7,300	7.300	36.900	36.900	269.370 Sta.	Sta. 4+7,300	7.300	32.800	32.800	239.440
Sta. 6	12.700	36.900	36.	468.630 Sta	١.	12.700	32.800	32.800	416.560
Sta. 8	20.000	36.900	36,900	738.000 Sta	Sta. 8	20.000	32,800	32.800	656.000
Sta. 10	20.000		36.	738.000 Sta	Sta. 10	20.000	32.800	32,800	656,000
Sta. 11+4,500	14.500	36.900	36,900	535.050 Sta.		14.500	32.800	32.800	475.600
Sta. 12	5.500	36.900	36,900	202.950 Sta	Sta. 12	5.500	32.800	32.800	180.400
Sta. 14	20.000	:	36.	738.000 Sta.	Sta. 14	20.000	32.800	32.800	656,000
Sta. 15+7,366	17.366	36.900	36.900	640.805 Sta.	Sta. 15+7,366	17.366	32.800	32.800	569.605
Sta. 16	2.634		36,900	97.195 Sta.	Sta. 16	2.634	32.800	32.800	86.395
Sta. 16+5,800	5.800		36.	214.020 Sta.	Sta. 16+5,800	5.800		32.800	190.240
Sta. 18	14.200	36.900		523.980 Sta	Sta. 18	14.200	32.800	32.800	465.760
Sta. 19+7,700	17.700		36.	653.130 Sta.	Sta. 19+7,700	17.700	32.800	32.800	580.560
Sta. 20	2.300	36.900	36.900	84.870	Sta. 20	2.300	32.800	32.800	75.440
Sta. 22	20.000	36.900	36.	738.000 Sta	Sta. 22	20.000	32,800	32.800	656.000
Sta. 22+7,700	7.700	36.900	36.900	284.130 Sta.	Sta. 22+7,700	7.700		32.800	252.560
Sta. 24	12.300	36.900	36.900	453.870 Sta	Sta. 24	12.300	32.800	32.800	403.440
Sta. 24+8,400	8.400	12.900	24	209.160 Sta	Sta. 24+8,400	8.400	300	16.550	139.020
			6.450	000				150	000
			000	000.				000	000
			000.	000.				000	000.
			000.	000.				000	000.
	Total	Total Vouline (cu.m	n) = (u	4,840.110		Total	Total Voulme (cu.m)	1	7,705.370

Work Divisior EM/R EL 180.0 - 170.0

1 rock	Volume	cu.m	000	25.300	4,346.000	3,577.000	7,620.000	13,050.000	13,100,000	9,497.500	3,602.500	13,100.000	11,374,730	1,725.270	3,799.000	9,301.000	11,593,500	1,506.500	12,725.000	4,150.300	2,832.075	000	000	000.	000.	000	126,925,675
hell of randon	Means area	w.ps	000	2.300	217.300	490.000	600.000	652.500	655:000	655,000	655.000	655.000	655.000	655.000	655.000	655.000	655.000	655.000	636.250	539,000	230.250	000'	000.	000	000	000.	11
Volume of Inner shell of random rock	Sectional area	sc.m.	000	4.600	430.000	550.000	650.000	655.000	655.000	655.000	655.000	655.000	655.000	655.000	655,000	655,000	655,000	655.000	617.500	460.500	000	000					Total Voulme (cu.m)
	Distance	Ē	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20,000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12,300	8.400					Total
	Section No.		000 Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta, 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	cu.m	000	67.100	722.000 Sta	438.000 Sta. 4+7	762.000 Sta	1,200.000 Sta	1,200.000 Sta	870.000 Sta.	330.000 Sta	1,200.000 Sta.	1,041.960 Sta.	158.040 Sta.	348.000 Sta.	852,000 Sta	1,062.000	138,000 Sta	1,200.000 Sta.	462.000 Sta.	369.000 Sta.	000	000.	.000	000.	000	12,420.100
e	Means area	m.ps	000.	6.100	36.100	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	30.000	000.	000.	000,	000.	000.	11
Volume of Fine filte	Sectional area	m.ps	000.	12.200	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	000	000					me (cu.m)
Volum		a E			0	0		0	0		0	0	2	4	0	0	0	0	0	0	0	0					Total Voulme
	Distance	T I	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Tota
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

Work Division EM/R EL 170.0 - 160.0

			Volume of Fine filte	, e			Λ		shell of random	
	Section No.	Distance	Sectional area	Means area	Volume	Section No.	Distance	Sectional area	Means area	Volume
		tm		so.m	cu.m		m	sq.m	m'bs	m'no
	Sta. 0+9,000	000.6	000.	000.	000	Sta. 0+9,000	9.000	000.	000	000.
	Sta. 2	11.000	000	000	000	Sta. 2	11.000	000.	000	000.
		20.000	40.000	20.000	400.000	Sta. 4	20.000	102.500	51.250	1,025.000
	Sta: 4+7,300	7.300		50.000	365.000	Sta. 4+7,300	7.300	370.300	236.400	1,725.720
	Sta. 6	12.700		60.000	762.000 Sta.	Sta. 6	12.700	671.400	520.850	6,614.795
	Sta. 8	20.000	000:09	60.000	1,200.000	Sta. 8	20.000	1,040.000	855.700	17,114,000
	Ι.	20.000		60.000	1,200,000	Sta. 10	20.000	1,040.000	1,040.000	20,800,000
	Sta. 11+4,500	14.500		60.000	870.000 Sta.	Sta. 11+4,500	14.500	1,040.000	1,040.000	15,080,000
V	Sta. 12	5.500		60.000	330.000	Sta. 12	5.500	1,040.000	1,040.000	5,720.000
/ -	Sta. 14	20.000		000.09	1,200,000		20.000	1,040.000	1,040.000	20,800.000
-,2		17.366		60.000	1,041,960	Sta. 15+7,366	17.366	1,040.000	1,040.000	18,060.640
- ,		2.634		60.000	158,040	Sta. 16	2.634	1,040.000	1,040.000	2,739.360
35	l .	5.800		60.000		Sta. 16+5,800	5.800	1,040.000	1,040.000	6,032,000
-	Sta. 18	14.200		60.000	852.000	Sta, 18	14.200	1,040.000	1,040.000	14,768.000
	Sta. 19+7,700	17.700	000.09	60.000	1,062.000 Sta	Sta. 19+7,700	17.700	1,014.900	1.027.450	18,185.865
-	1 1 2	2.300		60.000	138,000 Sta	Sta, 20	2.300	1,022.000	1,018.450	2,342.435
		20.000		000.09	1,200,000 Sta	Sta. 22	20.000	703.500	862.750	17,255.000
	1.	7.700		49.500	381,150	Sta. 22+7,700	7.700	347.100	4	4,044.810
	Sta. 24	12.300	000	19.500	239.850	Sta. 24	12.300	000	173.550	2,134,665
		8.400		000.	000.	Sta. 24+8,400	8.400	000.	000.	000.
				000	.000				000	000
				000	000.				000	000
				000.	000.				000	000
				000.	000.				000	000.
		Total	Voulme (cu.m)	11	11,748.000		Total	Voulme (cu.m)	[j	174,442.290
					1					
					<u>п</u>	Page 1				

Work Division EM/R EL 160.0 - 150.0

																		•									
n rock	Volume	cu.m	000	000	000	16.425	2,169.795	13,722.000	24,811.000	21,048.200	8,036.875	29,803.000	26,558.692	4,086.256	9,065.400	22,497,060	25,593.315	2,949.175	20,855.000	4,201.890	1,722.000	000	000.	000	000.	000	217,136.083
hell of randor	Means area	sq.m	000.	000.	000	2.250	170.850	686.100	1,240.550	1,451,600	1,461.250	1,490.150	1,529.350	1,551.350	1,563.000	1,584.300	1,445.950	1,282.250	1,042.750	545.700	140.000	000.	000.	000.	000.	000.	#
Volume of Inner shell of random rock	Sectional area	sq.m	000.	000.	000	4.500	337.200	1,035.000	1,446.100	1,457.100	1,465.400	1,514.900	1,543.800	1,558.900	1,567.100	1,601.500	1,290,400	1,274.100	811.400	280.000	000	000					Total Voulme (cu.m)
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	Distance	_ E	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400				-	Total
	Section No.		000 Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 1.2	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	cu.m	000	.000 Sta	.000 Sta	43.800 Sta	419.100 Sta	1,140.000 Sta	1,200.000	870.000 Sta.	330.000	1,200.000 Sta	1,041.960 Sta.	158.040 Sta	348.000 Sta.	852,000 Sta	1,062.000 Sta	138.000 Sta	852.000 Sta	97.020 Sta.	.000 Sta	.000 Sta	000.	000.	000.	000	9,751.920
9	Means area	sd.m	000.	000.	000.	6.000	33.000	57.000	60.000	60.000	60.000	60.000	000.09	60.000	000.09	000.09	60.000	60.000	42.600	12.600	000.	000.	000.	000.	000.	000.	#
Volume of Fine filte	Sectional area	m bs	, 000	000	000.	12.000	54.000	60.000	60.000	60.000	, 60.000	60.000	60.000	60.000	900.09	60.000	60.000	60.000	25.200	000.	000.	000.				1.65	Total Voulme (cu.m)
Vc	Distance	E	0000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total V
	Section No.	-	Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

Work Division EM/R EL 150.0 - 140.0

ı rock	Volume	cu.m	000	000.	000.	000	000	4,675.000	16,000.000	18,222.875	7,667.825	30,311.000	28,817,140	4,500.848	10,034.000	23,132.510	24,453.435	2,829.575	15,180.000	1,155,000	000.	000.	000	000.	000.	000	186,979.208
hell of randon	Means area	m-bs	000.	000.	000	000.	000.	233.750	800.000	1,256.750	1,394.150	1,515.550	1,659.400	1,708.750	1,730.000	1,629.050	1,381.550	1,230.250	759.000	150.000	000.	000	000.	000.	000.	000.	EI I
Volume of Inner shell of random	Sectional area	m.ps	000	000	000	000.	000.	467.500	1,132,500	1,381.000	1,407.300	1,623.800	1,695.000	1,722.500	1,737.500	1,520.600	1,242.500	1,218.000	300.000	000.	000	000	-				Total Voulme (cu.m)
V	Distance	m1	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		000 Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	cu.m	000	.000 Sta	.000 Sta	.000 Sta.	.000 Sta	600.000 Sta	1,200,000 Sta.	870.000 Sta.	330.000 Sta.	1,200.000 Sta	1,041.960 Sta.	158.040 Sta.	348.000 Sta.	852.000 Sta.	1,062,000 Sta.	138.000 Sta.	600.000 Sta.	.000 Sta.	.000 Sta.	.000 Sta.	000	000	000	000	8,400.000
	Means area	sq.m	000.	000.	000.	000	000	30.000	60.000	90.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	30.000	000.	000.	000	000	000.	000	000.	13
Volume of Fine filte	Sectional area	m.os	000.	000	000	000	000	000.09	60.000	000.09	000.09	000.09	000.09	90.000	60.000	60.000	60.000	000.09	000	000	000	000.					Total Voulme (cu.m)
VC	Distance	E	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24						

Work Division EM/R EL 140.0 - 130.0

rock	Volume	cu.m	000.	000	000.	000	000.	25.000	5,790,000	11,665.250	5,775.000	23,280.000	23,325.143	3,801.389	7,934.110	15,874.890	14,558.250	1,410,705	5,423.000	000	000	000.	000.	000	000	000.	118,862.737
hell of randon	Means area	m.ps	000	000	000.	000.	000.	1.250	289.500	804.500	1,050.000	1,164.000	1,343.150	1,443.200	1,367.950	1,117.950	822.500	613,350	271.150	000.	000.	000	000	000.	000.	000.	II
Volume of Inner shell of random rock	Sectional area	sq.m	000'	000	000	000	000	2.500	576.500	1,032.500	1,067.500	1,260.500	1,425.800	1,460.600	1,275.300	960.600	684.400	542.300	000.	000.	000	000.					Total Voulme (cu.m)
Vc	Distance	m	000.6	11,000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta, 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366		Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	cn.m	000.	.000 Sta	000'	.000 Sta	.000 Sta.	.000 Sta	486.000 Sta	787.350 Sta	330.000 Sta	1,200.000 Sta	1,041.960	158.040 Sta.	348.000 Sta.	852.000 Sta	876.150 Sta.	73.830 Sta.	252.000 Sta.	.000 Sta	.000 Sta.	000	000.	000	000	000.	6,405.330
ه	Means area	m.ps	000.	000	000	000.	000.	000.	24.300	54.300	60.000	60.000	60.000	60.000	60.000	60,000	49.500	32.100	12.600	000.	000'	000	000.	000	000.	000.	11
Volume of Fine filte	Sectional area	i sa.mi	, 0000	000	000.	000.	000	000.	48.600	60.000	60.000	60.000	000.09	000.09	60.000	60.000	39.000	25.200	000.	000.	0000	000					Total Voulme (cu.m)
Λ	Distance	æ	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

Work Division EM/R EL 130.0 - 120.0

rock	Volume	cu.m	000	000	000	000.	000.	000.	3,200,000	9,354.675	5,686.725	22,231.000	15,957.617	1,910.967	4,066.380	9,225.030	6,210.930	100.395	213.000	000.	000.	000.	000.	000.	000.	000.	78,156.719
hell of random	Means area	sq.rn	000.	000.	000.	000.	000.	000	160.000	645.150	1,033.950	1,111.550	918.900	725.500	701.100	649,650	350.900	43.650	10.650	000.	000	000.	000	000	000	000.	11
Volume of Inner shell of random rock	Sectional area	sq.m	.000	000.	000	000.	000.	000.	320.000	970,300	1,097.600	1,125.500	712.300	738.700	663.500	635.800	66.000	21.300	000.	000	000.	000.					Total Voulme (cu.m)
Vc	Distance	E	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17,366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total V
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	000 Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta, 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	cu.m	.000 Sta	000	.000 Sta.	000	.000 Sta.	.000 Sta.	.000 Sta.	174.000 Sta.	185.900 Sta.	1,036.000 Sta.	1,041.960 Sta.	158.040 Sta.	348.000 Sta.	744.080 Sta.	396.480 Sta.	.000 Sta.	.000 Sta.	.000 Sta.	.000 Sta	.000 Sta	000.	000.	000	000	4,084,460
به	Means area	sq.m	000	000′	000	000	000	000	000	12.000	33.800	51.800	000.09	60.000	60.000	52,400	22.400	000	000	000	000'	000.	000.	000	000	000.	11
Volume of Fine filte	Sectional area	m. sq.m	000.	000.	000	000.	000	000.	000	7, 24,000	43.600	90.000	90.000	60.000	60.000	44.800	000	000.	000.	000.	000	000					oulme (cu.m)
γo	Distance	E	000.6	11.000	20.000	7.300	12.700	20,000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total Voulme
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta: 4+7,300	Sta. 6	Sta. 8	1 :::	Sta. 11+4,500	Sta. 12		Sta. 15+7,366	Sta. 16	Sta. 16+5,800	1	Sta. 19+7,700	Sta. 20		Sta. 22+7,700		Sta 24+8 400					

א חותנופ בעוכחני

Work Divisior EM/R EL 120.0 - 110.0

7001		cu.m	000.	000.	000.	000	000.	000.	100:000	-3,407.500	2,530.000	7,120.000	3,065,099	236.138	305.950	548.120	442,500	000	000.	000.	000.	000.	000.	000	000.	000	17,755.307	20.2 M3
chall of mandam	Means area	sd.m	000	000	000	000	000	000.	5.000	235.000	460.000	356.000	176.500	89.650	52.750	38.600	25.000	000	000	000.	000	000.	000.	000	000.	000.	ll	989,920.
Tolume of Incer		m.ps	000	000	000.	000	000.	000.	10.000	460.000	460.000		101.000			50.000	000.	000.	000	000.	000.	000.					Total Voulme (cu.m)	
	Distance	E	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total	
	Section No.	•	Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	000 Sta. 22+7,700	Sta. 24	Sta. 24+8,400						m
	Volume	cu.m	000.	.000 Sta	000.	.000 Sta.	000.	.000 Sta.	.000 Sta	000′	.000 Sta.	480,000 Sta	937,764 Sta.	127.617	137.460 Sta	74.550 Sta	.000 Sta.	.000 Sta	.000 Sta.	.000	000	.000 Sta.	.000	000	000.	000.	1,757.391	68,811.3 m3
٥	Means area	m.ps	000	000.	000.	000	000.	000	000	000	000	24.000	54.000	48.450	23.700	5.250	000	000	000.	000.	000	000.	000.	000	000	000.	=	
Volume of Fine filte	Sectional area	i sq.m	000.	000.	000.	000	000	000.	000.	000	000.	48.000	000'09	36.900	10.500	000.	000	000`	000	000	000	000					Vouline (cu.m)	
V	Distance	m	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total V	
	Section No.	:	Sta. 0+9,000	Sta. 2	Sta. 4	Sta, 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22		Sta. 24	Sta. 24+8,400						

Page 1

Volume calculation Sheet

Volume Work Division EM/R EL 196.0 - 190.0

	Volume	cu.rn	000.	130.900	238.000	86.870	151.130	238,000	238.000	172.550	65,450	238.000	206.655	31.345	69.020	168.980	210.630	27.370	238,000	91.630	146.370	97.440	000.	000.	000.	000	2,846,340
	Means area	sq.m	000.	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.600	5.650	000.	000	000	N
Volume of Top	Sectional area	m.ps	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.900	11.300					Total Voulme (cu.m)
Λ	Distance	m	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2:300	20.000	7.700	12.300	8.400					Total
	Section No.		000 Sta. 0+9,000	Sta. 2	Sta. 4	67.160 Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	33.400 Sta. 11+4,500	Sta. 12	Sta. 14		Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	cu.m	000.	82,500 Sta.	184.000 Sta	67.160	116.840 Sta.	184.000 Sta. 8	184.000 Sta.	133.400	50.600 Sta.	184.000 Sta	159.767 Sta.	24.233 Sta	53.360 Sta.	130.640 Sta	162.840 Sta	21.160 Sta.	184.000 Sta	70.840 Sta.	113,160 Sta	42.840 Sta.	000	000	000.	000	2,149.340
	Means area	m.ps	000	7.500	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	5.100	.500	000	000	000.	Ц
Volume of Riprap	Sectional area	t sq.m	5.800	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	9.200	1.000					Total Voulme (cu.m)
12 Ve	Distance]m	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
/10	Section No.		Sta. 0+9,000	Sta: 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500		Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20		Sta. 22+7,700		. 1					

Work Division EM/R EL 190.0 - 180.0

	Volume	m. no	000	000.	000	000.	000.	000.	000.	000	000.	000.	000	000.	000.	000.	000.	000	000.	000.	000	000.	000	000	000	000.	000
	Means area	sq.m	000.	000.	000.	000.	000.	000:	000.	000.	000	000	000.	000.	000.	000	000	000.	000.	000.	000	000	000`	000.	000	000.	11
Volume of Top	Sectional area	w.ps	000.	000.	000.	000	000.	000.	000	000	000.	000	000	000.	000	000	000.	000.	000	000	000	000					Total Voulme (cu.m)
Λ	Distance	Е	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12		Sta. 15+7,366		Sta. 16+5,800	Sta. 18	Sta. 19+7,700		Sta. 22	Sta. 22+7,700		Sta. 24+8,400		-			
	Volume	u.no	000	22.000 Sta	270.000 Sta.	167.900	292.100 Sta.	460.000 Sta	460.000 Sta. 10	333.500 Sta	126.500 Sta	460.000 Sta.	399.418 Sta.	60.582 Sta.	133.400 Sta	326.600 Sta.	407.100 Sta.	52,900 Sta	460.000 Sta	177.100 Sta.	148.830 Sta. 24	5.040	000'	000	000.	000	4,762.970
	Means area	m.ps	000.	2.000	13.500	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	12.100	009.	000	000.	000.	000]
Volume of Riprap	Sectional area	m.ps	, 000	4.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	1.200	000					Total Voulme (cu.m)
Vc	Distance	E	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20,000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366		Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

OHINIO A

Work Division EM/R EL 180.0 - 170.0

	Volume	cu.m	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000	000.	.000	000.	000.	000.	000.	.000	000.	000.	000.	000.	000
	Means area	sd.m.	000.	000	000	000	000	000.	000.	000	000.	000.	000.	000.	000	000.	000.	000.	000.	000	000.	000.	000.	000.	000.	000	11
Volume of Top	Sectional area	m.ps	000.	000	000.	000	000.	000	000.	000.	000	000	000.	000	000	000.	000	000	000	000.	000.	000					Total Voulme (cu.m)
Vc	Distance	EI.	000.6	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12		Sta. 15+7,366	Sta. 16	133.400 Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20		Sta. 22+7,700	Sta. 24	Sta. 24+8,400		:			
	Volume	cu.m	.000 Sta.	.000 Sta	35.000 Sta	46.355 Sta.	197.485 Sta. 6	449.000 Sta	460.000 Sta. 10	333,500 Sta.	126.500 Sta	460.000 Sta.	399.418 Sta.	60.582 Sta. 16	133.400	326.600 Sta	407.100 Sta.	52,900 Sta	460.000 Sta.	177.100 Sta.	141.450 Sta	000.	000.	000.	000	000.	4,266.390
	Means area	sq.m	000.	000	1.750	6.350	15.550	22.450	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	11.500	000	000.	000.	000	000.	
Volume of Riprap	Sectional area	ur.bs ,	000	000	3.500	9.200	21.900	23.000	23.000	, 23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	000	000					Total Voulme (cu.m)
À	Distance	E	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Ι.	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7.700	Sta. 20	Sta. 22	Sta 22+7.700	Sta 24	Sta 24+8 400					

Work Division EM/R EL 170.0 - 160.0

	Volume	cu.m	000.	000.	000.	000	000.	000.	000.	000	000.	000.	000.	000	000	000	000.	000.	000.	000	000.	000	000	000	000	000	000
	Means area	m.ps	000	000.	[000.	000	000.	000	000.	000	000	000	000.	000	000	000.	000.	000.	000.	000.	000	000	000	000	000	000.	3
Volume of Top	63	sq.m	000	000	000	000	000	000	000	000	000	000	000	000.	000	000.	000.	000	000	000	000	000					Total Voulme (cu.m)
Λ	Distance	Æ	9.000	11.000	20.000	7.300	12.700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		000 Sta. 0+9,000	Sta. 2	Sta. 4	000 Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12		Sta. 15+7,366	Sta. 16	Sta. 16+5,800)	Sta. 19+7,700	Sta. 20	Sta. 22	Sta. 22+7,700	Sta. 24	Sta. 24+8,400					
	Volume	cu.m	000	000	.000 Sta.	000	000	230.000 Sta	460.000 Sta. 10	333.500 Sta.	126.500 Sta	460.000 Sta.	399.418 Sta	60.582 Sta	133.400 Sta	326.600 Sta	407.100 Sta.	52.900	460,000 Sta. 22	177.100 Sta.	141.450 Sta	.000 Sta	000'	000.	000	000.	3,768.550
	Means area	sq.m	000.	000	000	000	000.	11.500	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	23.000	11.500	000	000	000	000	000	II.
Volume of Riprap	Sectional area	m.ps	000.	000.	000	000.	000.	23.000	23.000	23.000	23.000	23.000	23.000	23,000	23.000	23.000	23.000	23.000	23.000	23.000	000	000.					Total Voulme (cu.m)
V(Distance	æ	9.000	11.000	20.000	7.300	12:700	20.000	20.000	14.500	5.500	20.000	17.366	2.634	5.800	14.200	17.700	2.300	20.000	7.700	12.300	8.400					Total
	Section No.		Sta. 0+9,000	Sta. 2	Sta. 4	Sta. 4+7,300	Sta. 6	Sta. 8	Sta. 10	Sta. 11+4,500	Sta. 12	Sta. 14	Sta. 15+7,366	Sta. 16	Sta. 16+5,800	Sta. 18	Sta. 19+7,700	Sta. 20		Sta. 22+7,700	Sta. 24	Sta. 24+8,400					

			inio A	y olume calculation sheet	າຄອນ				
Work Division EM/R		EL 160.0 - 150.0							
	Λ	Volume of Riprap				Λ	olume of Top		
Section No.	Distance	Sectional area	Means area	Volume	Section No.	Distance	Sectional area	Means area	Volume
	m			cn.m		ш	sq.m	sci,m	cu.
Sta. 0+9,000	9.000	3	000	000	Sta. 0+9,000	9.000	000	000	000
Sta. 2	11.000			000	Sta. 2	11.000	000.	000	000.
Sta. 4	20.000				.000 Sta. 4	20.000	000		000.
Sta. 4+7,300	7.300	000	000		Sta. 4+7,300	7.300	000		ŏ
Sta. 6	12.700					12.700	000		000
Sta. 8	20.000	006.9			Sta. 8	20.000	000		000
Sta. 10	20.000	10.400	3		Sta. 10	20.000		-	000
Sta. 11+4,500	14.500	10.400	10.400	150.800 Sta.	Sta. 11+4,500	14.500			000.
Sta. 12	5.500		1(Sta. 12	5.500			000'
Sta. 14	20:000	10.400	1(Sta. 14	20.000			000'
Sta. 15+7,366	17.366		10.400	180,606 Sta.	Sta. 15+7,366	17.366			000.
Sta. 16	2.634	10.400	10		Sta. 16	2.634	.000		000.
Sta. 16+5,800	5.800		10		Sta. 16+5,800	5.800	000.	000	000.
Sta. 18	14.200		10.400	ī.	Sta. 18	14.200	000.		000.
Sta. 19+7,700	17.700	10.400	10	184.080	Sta. 19+7,700	17.700			000.
	2.300)[23.920	Sta. 20	2.300	000.	000:	000.
Sta. 22	20.000	10.400	10.400	208.000	Sta. 22	20.000	000.		o.
Sta. 22+7,700	7.700	10.400	10.400		Sta. 22+7,700	7.700	000.		000.
	12.300	000	5.200		Sta. 24	12.300	.000		000.
. s	8.400	000.			Sta. 24+8,400	8.400	000		000.
.l				000				000	000
			000					000.	000
			000	000.				000	000
			000					000	000

Page 1

Working Division:

Remarks													
Unit Quantity	11246 15			m3 296.845			on 3 523, 845			13 2,222,60		2 7.374 195	
Calculation Details	Surface coarse for main dam , crest	1.=249.45 m	A=7.00×249.45 = 1,946.15	as base course to angindan crest	V= 7.00 x 0.17 x 249.45= 296.845		blade course for main dam	Cresh	V= 7.00 x 0.30 x 249.45 = 523.845	Shoulder protection	V= 8.9/ m× 249.45-2,222.60	Sod faing for right abutment on	
Description	(1/13		1 5	4//5		7///	4			C1/16		C1/19	

500 250 Remarks B. 056 8 X Quantity Unit A= 5×0,225×0.75×2=0.169 002 Backfill in random materials Working Division: JNSPECTION TUNNEL V=0.169 × 50 m= 8.45 m3 Calculation Details Description

Working Division:

F===		ode, de CC-pajor, caro a	248 - 1.24 1.24 1.24 1.24 1.			·										
Remarks		cor cor les	(C)	PLAN XAL P	OF COST	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	# Section 625 - 1945 -								The man and a second se	
Quantity	14,553							~								
Unit	€ €								+		\dagger	-	\dagger	-		1
Calculation Details	Inspection tunne	Backfill in free-drainage materials	V, = 3,20×3,60 × 1,00 = 11,52 m2	= 11.52 m²	V2 = 2 x(1.52+8.70) × 0.30=3 032	+ V2 = 14.553 m3										
Description		61/13														

Remarks													
Quantity	12.656		15:15										
Unit	m3		3										
Working Division: Description Calculation Details	C1/18 Backfillin sepected material	1/= 0.15 × 0.3 × 0.05 × 150=12.656	C1/20 Gravel bedding for drainage	V=0,10 × 1,01 × 157= 15 15									
	· · ·			V	11-2	7	i	 <u> </u>	 				

Calculation Details Unit Quantity Alexa = (2,000 + 6,000)×3.010 × 1/2 = (2,000 + 6,000)×3.010 × 1/2 COLOCTETE class E Soft Lower Langth: LI About Langth: 2 430
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Unit Quantity Remarks						Inclined tole		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	R. L-1 465.	5	(天)	1) section from 0 to 30 m	in length		 W.S	·	(ii) Section from 30 to 10m	# 25 m	
	Sampling	(1) Section from 0 to 30 m in Ength m 13,790	≤0 m × 459 holes = 13,770 m	(ii) Section from 30 to 10 m in length. m 7,280	5 m x 14 holes = 70 m	x 16 holes = 160	× 13 holes = 195	li	×	'n	× 5 holes =	ļ.	0~13m x 24 hoks = 156 m	, tt	subtotal (ii) = 7,27/11		rounding up above 7,280 m.		

Working Division:

 	· · · · · ·										·					·				 		٠		
Remarks			Se S		ci) opport	901 > 100		(Inclined hob)	(4)			11) Section from 0 to 30 m in length	30m x 2 holes = 60m	the continuation of the second second	10 10 10 10 10 10 10 10 10 10 10 10 10 1									
Unit Quantity		m 1,570										M 930												
tion Details		10 50 m in length	10 m x 3 holes = 30 m	4 holes =	20 m x 2 holes = 40 m	25" × 1 holos = 25 m	l;	wb total : 1,565. m		rounding up above, 1,570 m		(1) Section from 30 to 20 m in length		5m × 1 holes = 20 m	ji	20m x 1 holes = 20 m	11	а	=	tota 930 m	Transfer of the second			
Description	10/77					-				The state of the s			a distribution of the second o		The second section is the second seco	F-1								

Working Division:

Remarks) [] [] [] [] [] [] [] [] [] [Spillway Franktion. Conselidation Greating			700						
Unit Quantity	m 5,050							-							m 450		 m 420			
Calculation Details	danket	ghart holes without sampling	- Dain foundation -	· Blanket anatina I	X M Ol X	0,000	x (3) x x	Spillmay Foundation	, Consolidation granting	15 holos x 1 m x > = /50 m	m 0.50 S 12tat		103 Core drilling	(a) Vertical hole	m Oto 30 m in length	15 holes x 30 m = 450 m	ii) section more than 30m in length			
Description	<u>C2</u>		and the state of t									THE PROPERTY AND THE PROPERTY OF THE PROPERTY								

Working Division:

	Kemarks																	-	
I Init Onsatitu			m 1,250							0781/ W									
Calculation Details			TOW O TO SO M IN KNOTK		25 MOES X 3Dm ≈ 670 M	Other s	20 holes x 30 m = 600 m	* 06C		i) Section more than 30 m in brigth	Check hole	550 m	· Others	1,290 m	Sub total 1,840,				
Description	C2 /03								-										

Working Division:

- L	Kemarks																							
Ousantitus	1.			5,520				Peo				1,830					2,380							
Init)		7.2	±ing.			80	Time				Time	Limes.				time	50		Ö		ż		
Calculation Details	14/ Water Branch of the Last	1 gov h	The breakdown is as follows	(a) Under a single pressure	- 5,5/5 times	tounding up above	5,520 times	(b) Under varied (seven) pressures	- Poo times		05/ Packer setting	(a) Depth not more than 9 m	-/876	rainding up above	1.830 times	To provide the same of the sam	(b) Depth 10 m to 30 m	2,377 times	rounding up above	2,380 +ims		Quarties in this page are estimated bosed i	judgement of the senior application	0 0
Description											3									49.00		8 A		•

Working Division:

C2 /os 1 (C) Denth more than 30 m						
		1,10	2,120			
	-2,112 times		,-•			
Hounding up above	0					
	2,120 times					
		-		 -		
				·		٠
06/ Grouting		ţ.	1,300			
						-
				T		:
07/material						
				· T ·		٠
(a) Cement		4 5	, 2m	—		
				4		
(b) Sand		t P	0)			
ics Bentnite		ton	Ω			
	The state of the s					
				1	÷	
				:	٠	
A) Quantities in this page are en	atimated base					
on judgement of the persion	,					
0 0	9 9					
A Quantities of backfill arow	uting one					
referred to 03/09 for just	section tunned					
No. 1 grout tunned and No.2	anout					
tannell	P			<u> </u>		
	Comments of the state of the st					
					.*	

Remarks Quantity 18.9 Unit SM 2×1.085×0233-0.126 m2 J. W. Calculation Details V=0.126 x 150=18.9 Working Division: Inspection tunnel Growting works 4 " Description C2/68 (a)

Remarks Quantity ه-3 Unit 6.210 3 A= 1×0,920 × 0,30 =0,138 m2 Working Division: 10.1 Grout tunne/ escription | Calculation Details 45 5 Backfill Growting V= 0,138 m2x Description C2/68 (b)

Working Division: No. 2 Grout Tunne 1

268 (C) Backill grading ms 1188 8 N= \frac{1}{2} \text{Na 200 \text{NO ms}} \text{18.79} \frac{1}{2} \text{N = 0.276m} \text{N = 1/8.79}	Description	Calculation Details	Unit Qua	Quantity	Rem	Remarks
Λ = 5 × 0 920 × 0.60 = 0.276 m² V = 0.276 m² × 430.40 m = 1/8.79		Backfill growting		3 8		
N= ½ x 0 920 x 0, b0 = 0.276 m² V= 0.276 m² x 430.40 m= 1/8.79						
V= 0.276m² x 430.40 m= 1/8.79		A = 2 x0 920 x 0.60 = 0.278				
V= 0.276m² x 430.40 m= 118.79						
		430.40 m= 1				
		·				
				Ī		
	÷ ;					
				Ī		
		The second secon		ļ		
				Ţ		
				Ī		
	-			ļ		
					-	
		:				

Working Division: Concrete class B

Remarks	tremat no		500 269				0 = 1tD on			and an action of the second					- Constant	* .		·		
			62		25	0,	·					 -							:	
Unit Quantity	!	m ³ 25 ao						.												
Calculation Details		Concrete class B for drawn datak	V=0.50# x 150 + 15 #3	1																
Description		C3/02							-											

					•				·					attick em by ₁₇ gam				in Company		
Remarks	· ·	,	ayr oas							m (2) = 0										
			\$1			476	2	749												
ntity	8										ļ				 				 	
Quantity	25														:					
Unit	 E M					-	<u> </u>													-
Calculation Details	Concrete class Bin drawn ditak		V=(1.00 × 0.75 - 0.5 × 0.5) × 50	i i																
Description	C3/82											The state of the s				1				-

Remarks		C Busection galley	34 Commerce 41111 E.	0.11	685 (22) 5 (22) 5 (24) 1	(TYPICAL CROSS SECTION)		ka part sa	Silver James Colored	DA CONTRACTOR	SECTION S. S. D. M. S. S. D. M. S. S. D. M. S. S. D. M. S. S. D. D. S.		
Division: Inspection gallery Calculation Details Unit Quantity		Concrete class C	- Inspection gailery m3 8.904.042	Sectional area = 40.208-2×12x 125	-32.40	L= 272,715 m	2, = 32,406 × 272,715 = 8,837,602m3	Vacant volume = 3 × (5,50 × 6,40) × 150	5.175=873	Sump put pation	1 47 1	030 = 14.965 m	V2 = 14.965 × 11,00 = 164.615 m3 ToTal = V, + V2 = 8,904,042
Working Division: Description	1 1	23/03											

Remarks Action to make separate MB 1.083.79 Quantity Unit V= 2x(6,872+5 099)x 5,00=29,928 = 6.872 × 136.50 = 938.028 M3 A E A-15.896 - RX1502x180/360-3.00 × 180-0.30×0.30 = 6.872 m2 A=11,428-Tx1,252x180/360-1.55 916 7 Calculation Details V= V,+Vo+V, = 1040.872 Working Division: Inspection Tunne x2.50 =5.099 m² =5.099 x 14.30 m Inspection tunne ω ا (4) A-A Concrete class Transation Section Section Description 40 Subtotal 03/

Working Division: Inspection tunnel

Description	Calculation Details			6			
1	Carcaracti Details	Onit Auantity	A	Re	Kemarks		
	Concrete class c.				-	٠	
						-	
	Portal			-			
			1				
	A1=4.30×4.20-1×1.502/2-		· T				
	1.80×3.00 - 0.30×0.30 = 9.036 m		<u> </u>				
	Az=4,65×4.20-1×1.502/2-	:	 T				
	1 x 0.30 = 10.506"]		-		
1,111							
			Ţ.				
	A3 = 0.30 × 0.70 + 2 × (0.30 + 0.60) ×			÷			- -
	0.30 = 0.345 m²						
			1		•		
			· · · · · · · · · · · · · · · · · · ·				
	V1 = 9,036 × 3,20 = 28,915 m3						
	K						
	V= 2 × (4.036+10.506) × 0.50 = 4.886		1				
			· 	•			* * ·
	V3 = 10.506 × 0.50 = 5.253 m3		T-	-			
	1/4 = 0.345 × 11,20 = 3.864 M3						
			-			-	
	Sub total - 42.918						
			1		-		
	Tatel = 1,040.872+42.918				-		
	= 1,083,79 m3						

PROFILE SCALE B PLAN (NÀ I GROUT TUNNEL) <()) L... EL.226.000 Remarks EL 216.000 SECTION A-A "" 45,000 43.cm EL. 236.000 1 2,000 Porte1 £L196,000 249 249-8 8 8 <u>8</u> 210-220-'n Quantity 230 Unit M 3 2,50 - 0.10 × 0.30 = 5.355 m2 € **3** A=11,714- Tx 1,25 x 180/360-1-55 = 230.27 Working Division: No. 1 Grout Tunnel Calculation Details £ Linning 43 = 5.355× (Concrete Tunne Description 401

Remarks		M. Commission of the Commissio		720FILE was a			Solidar Commence (1995)	1	200 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	STOP SALVES	\$700 	113 C37 C37 C37 C37 C37 C37 C37 C37 C37 C3	STATE AND THE STATE OF THE STAT			
Unit Quantity	M3 2,294,232			m ³												
Calculation Details	(Concrete class c)	Please refer to concrete class c	A-5,345 L-428,428	V= 5.355 x 428, 428 = 2,294,232												
Description	c3/04															

Working Division: Concrete class E

Remarks																	
tity	8					ļ		 			 	 		 	 		
Quantity	15																
Unit	~ EU																
Calculation Details	cΔ	concrete for drains ditch	ı	1 = 0,1 × 1,00 × 150 = 15 m					The state of the s								
Description	C3/08																

Remarks Quantity Unit M3 Working Division: In Spection Tunne /
escription Calculation Details 1= 1,0/x0,10 x 50= Concrete dassin concrete C3/08 Description

37 لاقالمودوات والالامام Remarks -, t3 982.49 Quantity Unit 4 E A= 5×(8,860+5,50)×5,600 A = 33.879 × 29 = 982.49 Nos. of contraction joint Calculation Details μ Working Division: Inspection gallery Form work class TX 1.2502/ Description 60

PLAN LEGIRAGE FACILITIES) LOIR O SECTION C'EL CHARGE Remarks 4 3144 DETAIL OF ENTRANCE PORTION PROSILE ECEVATION MALE P . 87,754 Quantity Unit m ₩ ×11.20 = 12.592 n= 136,50/12,00=11,38=12 4 L= 14.30 m A= 6.872 × 12 = 82.464 A4= 0.75 ×2×55m = 82.5 Calculation Details 11= 14.30/12.00 = 1.19 = = 187,754 ms A= 5-099×2=10,198 A3 = (070 + 10,32+0,32 Inspection tunne Form Work class Section B-B 4 Section A-A Draw ditch A= 6.872 M2 A=5.099 Portal tatal Description 63/09

Working Division: Inspection Tunnel

Remarks	PLAN (1		A CALL AND	i		PLAN scare c PROFILE scare c	Control of the for the control of th	8	0371	Security (1977)		HAIMPHALGEOTT THENEL WAS CENTRED WAS CENTR		
Unit Quantity	M2 30 4													
Working Division: No. Grout tunne scription Calculation Details	k class FI	Sectional area = 5.355 m²	Nos of contraction joint = 43.0/12= 4	A1=5.355×4=21.42 m2	(Portal >	Az = 1x(0.35+2.00)x3.85x2								
Working [Description	C3/09								7 10 10 10 10 10 10 10 10 10 10 10 10 10					
					V/-2	2-7/					:			

PROFILE MIS Remarks SECTION A-A ş. 209.913 Quantity Unit × ** ¥ Plazoe refer to Form work class A = A + + A = 209, 913 5.355 x 36 = 192.78 M2 Az = = = x (1.45+3,00) × 3.85 × 2 n= 428,428/ 12,00 = 36 No.2 (grout tunne) Calculation Details for Noil Grout Tumme H Formwork class . ₹ = (7, 133 5.355 total Description S S 3

Working Division:

SECTION 6-8 mms Remarks 421599 Quantity Unit 2 H B1 portion = 272,715 m = 9,527 × 272,715 = 2,598,156 ength of B. Partion = 10.00 m L= 1x Tx 1,25 x 180/360 + 1,55 x 2 Ę A= 0.30 × 1.40 + 5× (1.40+2.00) £ area = 2, 665, 126 m2 ×0.20+1.50 × 2.00 = 376 Calculation Details Working Division: Inspection gallery \mathcal{T}_{λ} 2= b.32 | x 10.00 Form work, class 0.30×2+ ength of Total ji N **(4)** Description 9 3

SECTION 8 . B MALE PLAN (LEARAGE FACILITIES) LOUR 201.52 Remarks DETAIL OF ENTRANCE PORTION ELEVATION MALE P PIONILE 03. Quantity 0 1.4 Unit ۳. ۲ A4 = (4.90 ×4-20- 8.934) + 2×(320+2.50) ₹ = 100, 486 m3 Ę A== x(1.027+8.312) x 5.00=38.348 ₹. L= 2x R×1.25 × 180/360 = 3.927 21=2×7×150×80/360=4.712 A= 8.312 × 136.5 = 1,134.588 8.312 m Calculation Details L=3,927 +3,10=7,027 ٤ Formwork class Fz A= 7.027 × 14.30 Inspection Tunne 0=4.712+3.60= ×4.90 = 43.479 Section A-A Dz = 1.80 x 2 Section B-B Dz=1-550 × 2 Translation Portal Description 3

Working Division: Inspection Tunne

Calculation Details Unit Quantity R Eptrewunck (lass F2 A5 = 0.60 x 150.00 = 90.00 m² A6 = (0.70 x 2.2.0 - 0.20 x 0.20 x 2 + 0.70 x 1.00 + 0.2 x 2 x 1.00 x 3 + 0.70 x 1.00 + 0.2 x 2 x 1.00 + 0.50 x 0.70 = 5.0 m² total A-A1 ta Ab = 1.441.911	Remarks							ing a Marie da pagenga.							DOCE CLEANE	 \$\$ 43.5\$ a.2.5		
Everywork class F2. As = 0.60 × 150.00 = 90.00 m² As = $(0.70 \times 2.20 - 0.20 \times 0.20)$ $\times 2 + 0.70 \times 1.00 + 0.2 \times 2 \times 1.00$ $+ 0.50 \times 0.70 + 0.50 \times 0.70$ $+ 0.30 \times 0.70 = 5.0$ m² $+ 0.40 $ A A A A B = $1.411.911$	R				-													
Eventuark class F2 As = 0.60 × (50.00 = 90.00 m² As = (0.70 × 1.20 - 0.20 × 0.20 × 0.00 + 0.2 × 2.x v.00 + 0.50 × 0.70 × 1.00 + 0.2 × 2.x v.00 + 0.50 × 0.70 × 1.00 + 0.2 × 2.x v.00 + 0.30 × 0.70 = 5.0 m² + 0.30 × 0.70 = 5.0 m²																		
	Calculation Details	Formwork class F2	= 0.60 x (50, 00 = 90.	A6 = (0.70 × 220 - 0	0+0	+0.50 ×0.70 +0.50 ×	+ 0.30 × 0.70 +		A-A, +0 Ab = 1,41		Tipotal Tipota						THE PROPERTY OF THE PROPERTY O	

\$ EED | PLAN (NO! GROUT TUNNEL) SOLE Remarks PLAN SCALE C SECTION A. A 34 Quantity 4 Unit 18N 2 A3 = 5 x 1,650 x 3,10 x2 = 5,115 m2 - 2x Tx1,25 x (80/360+1,65 x2 325,22m2 A=3,10 × 3,55=11,005 m2 Working Division: No.1 Grout Tunne Calculation Details FORM WORK Class Fr C Tunnel portion A. = 7.227 x 45 < Portal Description 9 3

ELEVATION
OF
MAI MOTA SECUT TUNNEL WAS C Remarks €%. PROFILE HALL A (5. SECTION A.A É wor, deal pipe for backfull youther = 1,000 ने असम्ब 12 13 OM2 3,112 369 Quantity Unit = 3.096.249 Ę Total A= A, + Az + Az = 3, 112, 369 12= 428.428 ¥ 5115 Place refer to Form work class = 11,005 ı) Calculation Details class Fz 3×1.650×3.10×2 for No. 1 grout tumme A=7.227 ×428.428 3,10 × 3,55 ŧ Form work L= 7,227 Portal A2 = f) A 3 Description 63

Working Division: No.2 Grout Tunne

Scription Calculation Details Unit Quantity Remarks C3/11 Reinforcement ban, In 176 Concrete Volume = 8,904,042 m³ Rein.bar = 2019 x 8,904,042 Rein.bar = 2019 x 8,904,042 -176,080,84 18 = 178,7m
2.404.042 m³ 9.404.042 m³ 9.404.042 9.84 kg = 179.70
2A. 8,904,042 9,84 kg = 178

Remarks Quantity Unit 1-fon Concrete volume = 1,083,79 m3 1,083.79 m2x 0.03 = 32.514 Calculation Details Working Division: Inspection Tunne Reinforcement Description 11/62

Working Division: No. 1 Grout tumme

				- -			- .	-		٠			 -	 		
Remarks				·					 		-					
								· .			4.					
Quantity	14 137					 										
Unit	ton															
Calculation Details	Reinfacement ban	Concrete volume = 471.24 m3	W-471,24×0.03 -14.137													
Description	37.11															