4.4 Building Work

4.4.1 General Description

4.4.1.1 General

The major design criteria applied in calculations are standerd requirements conforming to "Architectural Institute of Japan Standard for Structural Calculation of Rainforced Concrete Structures and Commentary" and "Architecteral Institute of Japan Standard for Structural Calcuration of Steel Structures". 2

No.____

4.4.1.2 Design Criteria

Loading Condition

In this structural calcurations, the loads and external forces that act on the structure are the following.

(A) Dead load(B) Live load

Table 1 Combination of Loads

Condition o	f Stresses	Combination of Stress	
Permanent stress	Normal time	G + P	

where ;

G ; stress due to dead load P ; stress due to live load

The dead and live loads of each part of building are applied in accordance with the Japanese Building Standard Law Enforcement Order.

3

4.4.1.3 Structural Analysis (1) Structural analysys Stress analysys of reinforced concrete frames are carried out through a computer, NEC PC-9801. Structural analysys for the vertical and holizontal load is obtained through the stiffnsee matrix method considering the axial, flexual and shering deformations based on elastic theory. (2) Moduius of Elasticity Module of elasticity are as follows ; Concrete ; Bc = 215.2 t/cm2Steel : Es = 2100 t/cm2Shear modulus of elasticity as follows ; Concrete ; Gc = 92.2 t/cm2Steel ; $Gs = 810 t/cm^2$ 4.4.1.4 Design of Members The design of reinforced concrete structure shall be based on "All Standerd for structural Calculation of Reinforced Concrete Structure". Compressive strength of concrete at 28 days shall be 210 Kg/cm2 and more. Reinforcement bar materials shall comply with deformed bar, "SD295", (JIS G 3112) Weight of reinforced concrete shall be calculated as 2.4 t/m3 and the "Young Ratio" of reinforcement bar to concrete shall be "n = 15".

No. ____4

4.4.1.5 Allowable Design Stress of Materials

(1) Concrete and Reinforcing Bar

Allowable design stress of concrete and reinforcing bar will be summarized as follows :

	Tension	Compression	Shear
Concrete (Fc=210kg/cm2		Fc/3 = 70	4.25
Rainbar (JIS G 3112)	1800	1800	1000

Allowable bond stress per unit surface of reinforcing bar shall be shown as follows ;

	:
Top bars	Other bars
Fc/15	Fc/10
14.0	21.0
	Fc/15

Top bar , in reference to load, shall be holizontal bar so placed that more than 30cm of concrete is casted in the member below the bar.

(2) Allowable Bearing Capacity of Soil

The bearing capacity of soil is 30 t/m2 for permanent load.

No.____

•

4,4.2 Dam Control House

.

§ .1 ASSUMED LOAD

FLOOR LOAD TABLE

TITLE	MATERIAL		TICK.	WEIGHT		DL	LL	TL	NOTE
		(t/m3)	(cm)	(kg/m2)		(kg/m2)	(kg/m2)	(kg/m2)	
	WATER PROOFING CEMENT MORTAR	2.00 2.40	2.0 12.0	10 40 288	TO <u>FLOOR</u> TO		180	540	
ROOF	SLAB CEILING	2,40	.12.0	200	BEAM	360	180	540	
					PRAME	24 A	130	490	
							(a_1, a_2, \dots, a_n)		
	FINISHED SLAB	2,00 2,40	3.0 13.0	312			300	700	
FLOOR	CEILING		ľ	. 20	TO B <u>BAM</u> TO	400	300	700	
					PRAME		180	580	
								. <u> </u>	
	WATER PROOFING CEMENT MORTAR	2,00	2.0		FLOOR		180	610	
CANOPY	SLAB CEILING	2,40	15,0	360 20		430	180	610	
			· .		FRAME		130	560	
	CEMENT MORTAR	2.00 2.40	2.0 16.5	396	FLOOR		180	640	
BALCONY	CEILING		:	20	BEAM	. 460	180	640	
. *		÷	1		TO PRAME		130	590	
						14 A.			

() GIRDER BEAM

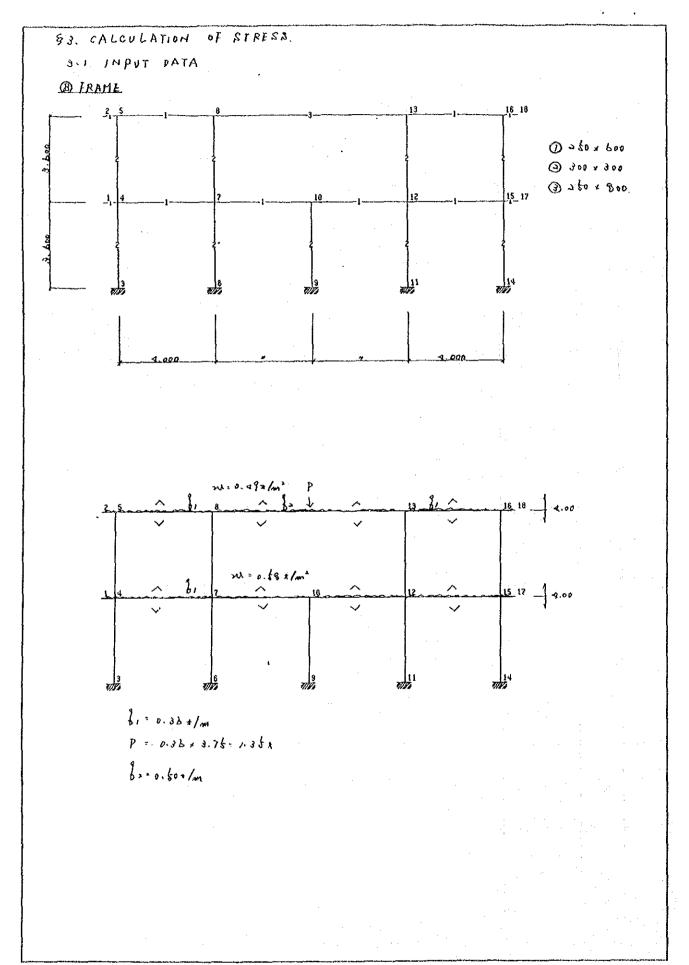
<pre>() OIRDER,1</pre>	DEAN					
	NO	В	D	CONCRETE	FINISHED	WEIGHT
		25.0	60.0	288	63	36
		25.0	80.0	408	83	50
		35.0	60.0	504	0	51
2 COLUMN	•				:	
	NO	8	0	CONCRETE	FINISHED	WEIGHT
		30.0	30.0	216	65	29
() WALL						
	<u>N0</u>	t		CONCRETE	PINISHBD	WBIGHT
	<u>N0</u> CB20	t20.0		CONCRETE 310	<u>FINISHED</u> 100	WBIGHT 41

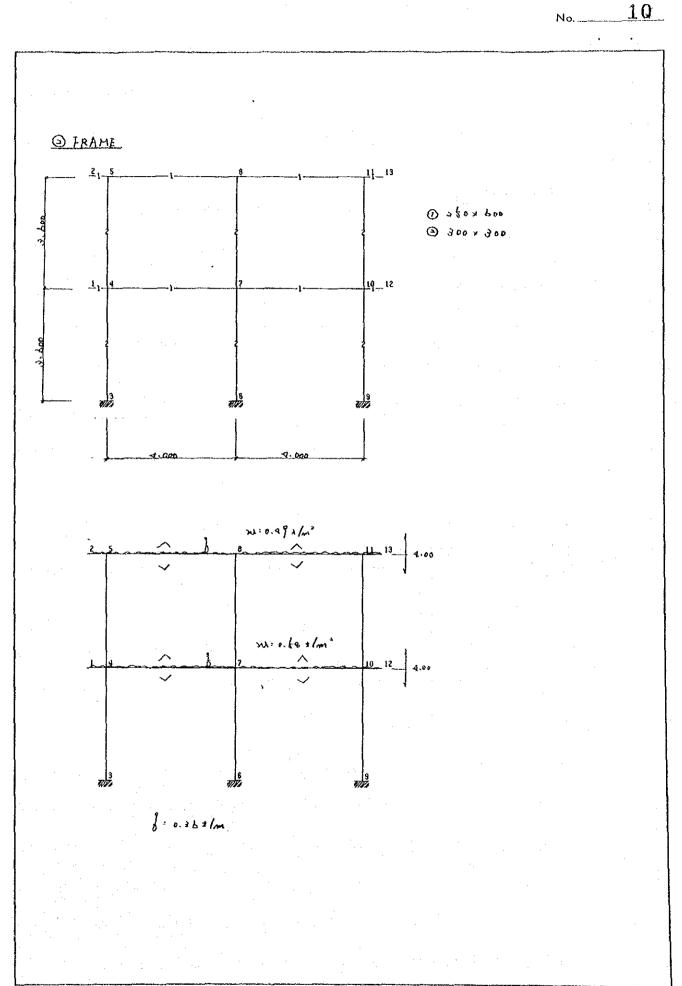
6

S. > PREPARTORY CALCULATION S-1 CALCULATION OF AXIAL FORCE OF COLUMNS ₩ (ι) ì FLOOR TITLE CALCULATION Σ¥ NO (1) c -1 د. ROOF 0.971 . 6 1 7.0 3.8 0.36, (2.3+2.7) 1.8 1. e. 291. 1. 6 /2 0.5 6.1 FiL. ł 0.69 + 2.6 + 3.6 3.5 1.8 4 0.29×4.6 е 1.0 7.3 13.4 F 0.49 + 5.0 [a: ____ 5.5 p. 41 x 5.0 x 2.0 68.22_ 6.2 89 33.3 0.5 8-1 ROOL p. 19 x 2. 6 + 1.0 . \$.1_ a. 36 x (3. 3 + 3.7) 5 <u>د. د</u> C. <u>n.</u> 6 7.9 2.681 3-6 x 4.0 Ic. 2 <u>____</u> 占 3.2 C 1.0 13.8 0.41 × 3.7 × 3.0 C.B.20___ 4.6 21.5 F 14 0.93x 3.7 1.6 C <u>. . . .</u> CRAD <u>-4.P</u> 47 283 0.9 × 9.0 × 1.0 C ~ 2 د Root 5.9._. 4____ 0.36-13-7+271 3-3 C. 8.7 2.88 + 9.0 + 3.0 FL. 1 . 2.4 4..... _____ . a.3 C..... ------• • • CB: 0.41× 3-7.1.3.1. ----<u>4 b</u> 141 33.6 Ţ. 12..... 0.9913.7 C_____ . c. 5_ CBaa 4.6 67 30.3 _ -----

1 2 1 . . IL - 150 (52 × 36)

IV - 56


No. 8


. .

NO	FLOOR	TITLE	CALCULATION			Σ¥ (1)
B-2	2	Reof	0.494 4.076.0			
		4	2. 3bx 11.85+ 2.7+ 2.75/2)	<u> </u>		
			a. 50 a. 2.3.5	~9 •.{		
	-	£			16.9	
	- 1	F1	0. 18 . 9.2 . 9.10	-9.3		
		4	0.36 + 7.4	<u></u>		
		۹			13.0	26.7
	F	Ç		.s.		
		. <u>V.`</u>		_e.s	۰.۶	⇒7.«
		······································				
		·				
		· · · · ·				
		·				
:						
:					н. С. С. С	
		·				
				····		
	}					
1.1						
	ľ	· · · · · · · · · · · · · · · · · · ·				
			······································		ł	
	11 - 11 - 1 1	•••		·		
			· · · · · · · · · · · · · · · · · · ·		· .	
			na an a	a - a - a - a - a - a - a - a - a - a -		
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	a de la construcción de la constru La construcción de la construcción d			
		· • · • • • • • • • • • • • • • • • • •		۱	······ - ····· [

• ·

No.____

.

3.2 STRESS PIAGRAM

@ FRAME

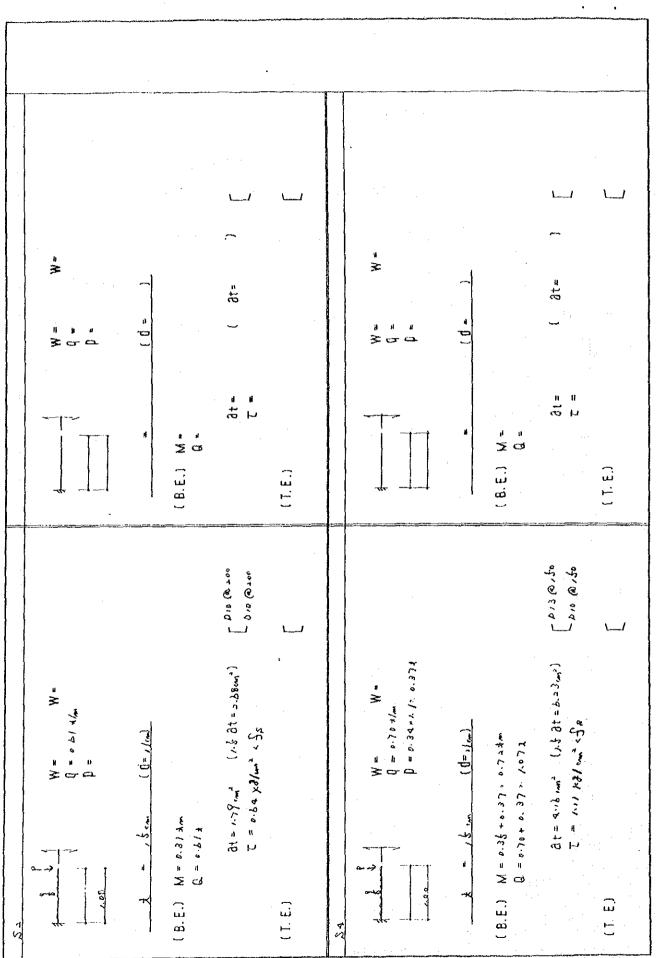
0-	.1 .37.6	8,3	-8.3	2.83	. 0.0
. (1	3 (.9).8 (4.5)	7	14.1 (8.6)	.7 (4.5)8 (.9)	(69.0)
	((.3)		(-,3)	(- ,2)
i	-1	2		.2	1
	(- ₃ 2)	(-3)		(_{.9} 3)	(2)
0	.1 .8 -1.6	1.8 - 9.5	3.5 -1.8		. 0.0
(- ² ,3 (2. ^A 2.6(3.2)	.1 (2.4).2(3.5)	0.0 (3.5).2(2.6)	1 (3.22.6(2.8)	('6''9''0)
	C.D	(0.0)	(0.0)	(0.0)	(D
	1	0.0	0.0	0.0	.1
	£.2 ¹⁾	(0 ⁰ 0)	(0.0 ⁰)	(0,00)	(.2 ^D

@ FRAME

0.	.1 .5	-2,1 2.1	5	.: 0.0
(2	0 ²) (2.3) 2.1	3.1) (0,0	3.1) 2.1-(2.3)	(6.8.0)
	(.2)	(0.0)		(2)
	0.0	0.0	•	0.0
	(2) r.4	(0.0)		(.2) .4
0	1.7	-3.1 2.7	7	.: 0.0
(ز	0 ²) (2.5) 2.1 (3.5) 0.0'	3.5? 2.1-(2.5)	(6,3:0) .2
	C.D	(0,0)		(1)
	1	9.0	· · · ·	.1
	(1) 1	(0.0)		C,i ^D
				1

.

11

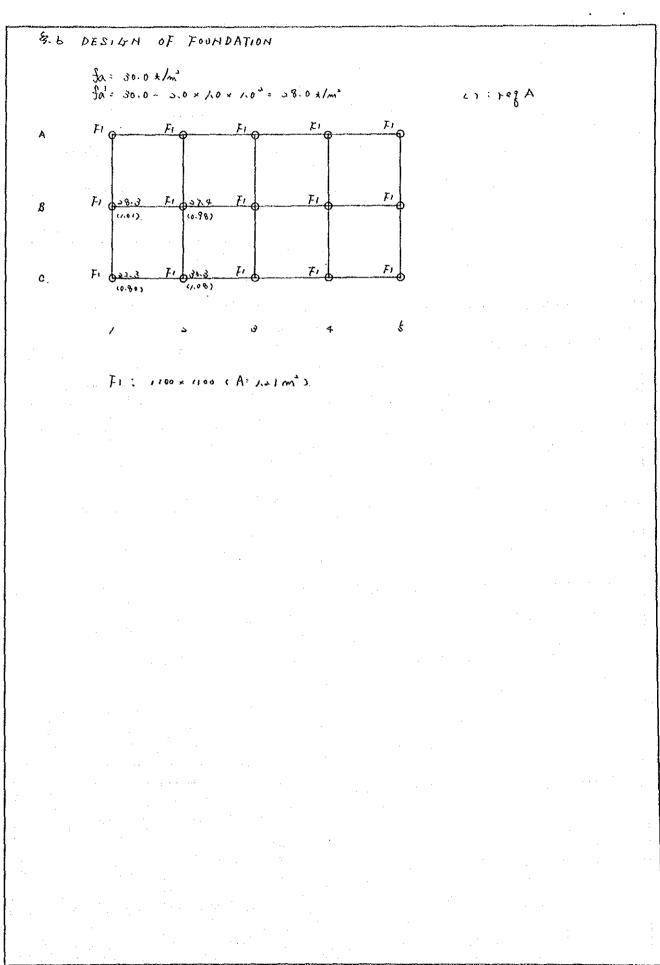

.

9	[SECTI	ממ		M	(<i>tm</i>)	[<u>~ (</u> 9	:(1)	MA	IN BA	R	STIF	RUP	
		\$	D	d	LE	Ľ	TE	 1, 1,	L.	r	L C	14	4.2	l r	1	
N0 (71)	PLACE	64	(cn) bd ¹	(m)]	L.E. 	В, Е	1 E - 1 11 F	4 1. Qu	Б п, ^г г	() u	(10/cd)	ul.	(ca) #¥	(19/cd) 0	11 d	TOP BAR BOTTOM
		*****	(10 ¹ cd)		<u> </u>				<u> </u>			(ed)	(18)			<u> </u>
<u> </u>			<u>.</u> 90	-79_	8.3.	• • • • • • • • • • • • • • • • • • • •	·	S:b		استنقاب		-7.42		-2.31	0.10	<u>e D</u>
A A	£.	•		-•		·				• •••••				1.24.		3
2~4					••••••	·****		•							••	¥
		•••••			14.1_							w.e.		0.00	200	\$
	E		• • • • • • • • • • • • • • • • • • • •	·										·	··	<u>.</u>
6	· •	<u></u>	_ <u>_</u>		_ <u></u>	TOTAL LONG	85 000 000000	4.5		20,0000000				3.8/		
8.	E	-25	<u>o</u> n	-28	<u></u>		•••••	¥117			• •••••••	4.94		3.0/	0.20	<u> </u>
B			·							•••••		••••••••••••••••••••••••••••••••••••••		*******	· · ·	3
~ 1	_ <u>C</u>			·		• •••••		* • • • • •	+	••••••		a:21	••••••	0 10 @		3
					. K . 1. D			r.,	••••••			Q:LL	··	<u>10</u> (20		1
	E														•••••••••	
G				<u>ta</u>	مىرىك		Roment	. 3. J		<u>,</u>		<u>بوبد</u>		2.62	0.30	3 01
RB3	E	- 11		· -132				· ¥		•••••		×.×+				3
» 8∼c						·	••••	*** •• •• ••							······	3
	С				3.1							3.47		2.00	309	3
														MT		×
}	<u> </u>													··········		
G																3 - 0 .9
84	<u> </u>			·				·								3
														·		3
	_:C						·			· ••• ·····•			·	2100	200	3
			•	·	··	ليعمد			· ·							
<u> </u>	<u> </u>									·						
.G		<u></u>	ьа	<u>.</u>	<u></u>	·		3.5				સમય.		<u>96</u>	0.10	2 - Q 15
81	<u> </u>		· •• ·	·								··				<u> </u>
»~з	<u>^</u>	···-··		····		•••••••			······			·: 				3
	<u>.</u>				<u>~~</u>	·						4.41		D 10.	ə.00	3
	E		• • • • • • •								1		· • • • • •	[]	·	· · · · · · · · · · · · · · · · · · ·
 		<u></u> غ		معنضنه		è-										·
182	E		Po	•	[*]	· • · · · •,		·				·		· · .	· · · · · ·	.a
/~-			· · · •				•	· - •		· ••	• • • •	} .		1.1.1	 	3
	<u> </u> C. ;	•••••		•		/ - - ·.	······ ·		••••				• · · · · · ·			
												·	••••••••••••••••••••••••••••••••••••••	D 10 (D	248	.3
.,1	E							· · · ·								1. 1. 1. 1. 1. 1.
G		.15.	60							فالتعملينين						
8.3	E											~ ~ ~ ~ ~ ~ ~			· · · ·	3
			ار. ایک رسانیه													3
	<u> </u>	• · · · •				1900 - 1904 			1	5. 				0106	LEC.	3
				••••					.							
	E		; 		emma											
Fai		30	.20											* ************************************		3 - DI
· · ·]	E.	: 				100 A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A	- 19 - 19									3
· · ·			la an	n an La chuirte	·											3
	C					· ·			Ľ	i s ti		1]		200	3

NO			<u>SEC</u>	LION			_ <u>S</u> IR	ESS.	· ·- · =		IAIN.	BAR		110		Y 1
		b(r=)	(){i=)	(10 ⁴ ۲ж²)	[b]) ¹ (]05គ*)		4 (7)	AL , (<i>tra</i>)	Q	1760) (19, 50)			-at (cd)	(kg/cm ¹)	114 (i) (in)	- <u>χ</u> Ση Φ
·./.	~~					<u> </u>						0				<u> </u>
• >	x					<u>Е</u>				· • · · · · · · · · · · · · · · · · · ·						,
		30	_d.b			. <u>T.</u> T.	·•						0	0.98.	10 A 100	p q
						L.			····				•			
ļ	Y					. Е . Т.		······			· - •					107VI
					: 					· · · · · · · · · · · · · · · · · · ·	· · · ·					4-219
						<u>, і,</u> в			· ·				•			
	x					τ,	н н. .н.т		••••	· · ·	• •			ļ		
						т. Т.		••• •••	·	····				,		
						ւ Լ 		•••							ĺ	
	Y					T ₁		• • • • • •								
	-			•		<u>. r.</u> 1										
G						Ē	· · · ·		•						ł	
	X			{	ļ	T.		 	· · ·	· · · ·		•				,
	~					$\frac{T_1}{1}$							 	-		
	Y					В										
			}			The second									1	1
· · · ·						$\begin{bmatrix} T_1 \\ I_1 \end{bmatrix}$	[{		[
¥	x					E										
						$\frac{T_{1}}{T_{2}}$		-								
	-					<u>!-</u>]. 	{				•			. 		
	Y			ł		E										
						Т ₁ Т.										
			\. 	_		1.		· · · · · · · ·		· · · · · ·		· · · · · · · ·				
	х					E T		/								
			ļ			T.										
	Y						{									
						T.										
2.						I, .										
	Х										-					
		.				T_{\pm}		* 	 			· · · · ·		- v		
	Y								.							
		1	· ·		1	T T	1			1	1	1 - 1	1 · · ·	1	1 1	l an

<u>ر</u>			. <u> </u>		
			•		
				,	
			-		
1				•	
}					· .
, ,		\$200 \$200 \$200	\$200 \$200 \$200	:	
	1. J. 1.	ରି ଭି ଭି ଭି ଭି ଭି ଭି ଭି ଭି ଭି	<i>© © © ©</i> <i>N N N N N</i>		
	•				· ·
		DIO DIO DIO	D13 D13 D13 D13		
		At 2.85 1.90 3.25 2.17	3.25 2.17 3.66 2.44		
ļ					
]		M 0.36 0.24 0.25	0.46 0.31 0.31 0.31		
		2 2 22	6666		
					· .
		BAR	BAR BAR		: · · · ·
		t <u>PLACE</u> 12.0 MAIN BAR X MAIN BAR Y	13.0 MAIN BAR X Main Bar Y		
		2.01	0.5		
		- 11	Ĥ.		
а		NO SIS	25		
		2.0			
		539 539	692		
		-90 -9,90	10.68	• •	
÷		-			
ļ		400 400	400		
		400 400	400		
	1. ÷				
		110	300		
1		W0 70	8		
	DESIGN OF SLAB	NAME ROOF	J.		
	N OF	RC	ни		
 	ESIG	-1	2		·
- ;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	، د ۲۰ ۱۰ ۱۰		ана — ¹
L	· · · · · · · · · · · · · · · · · · ·			₩7.848.0	

No. 14

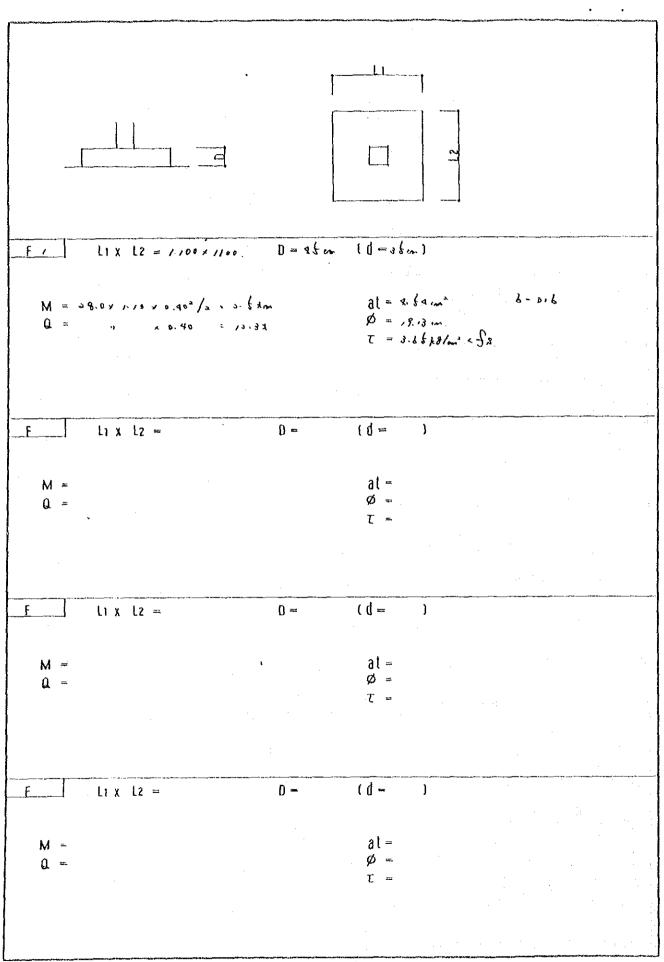


コクヨーコピー15D (52×36)

IV - 64

15

No.___


コクヨ コヒ-15D (52×36) IV-65

16

No._

No.____

•

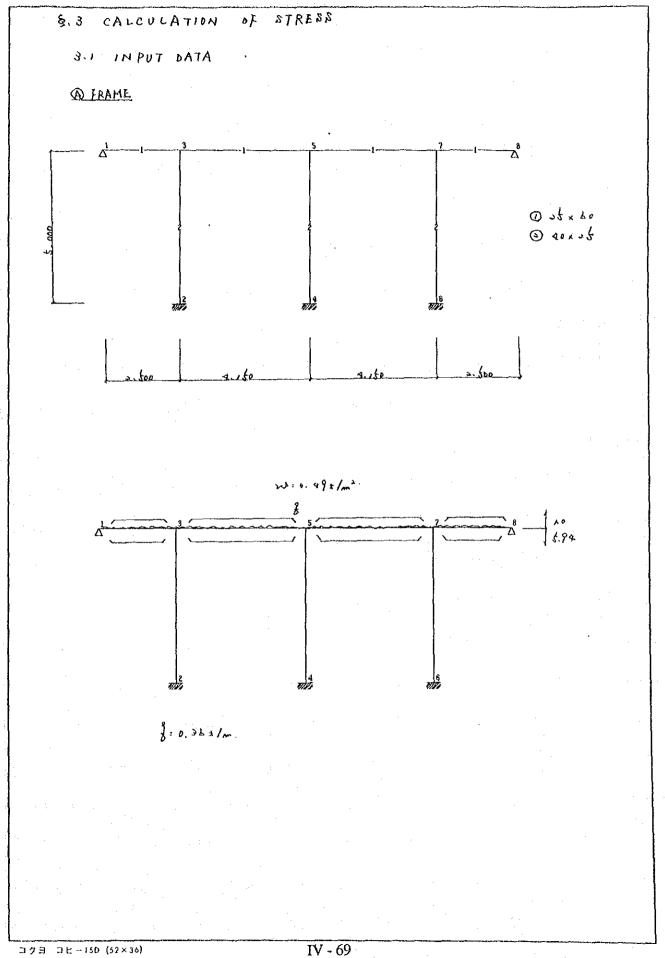
19

•

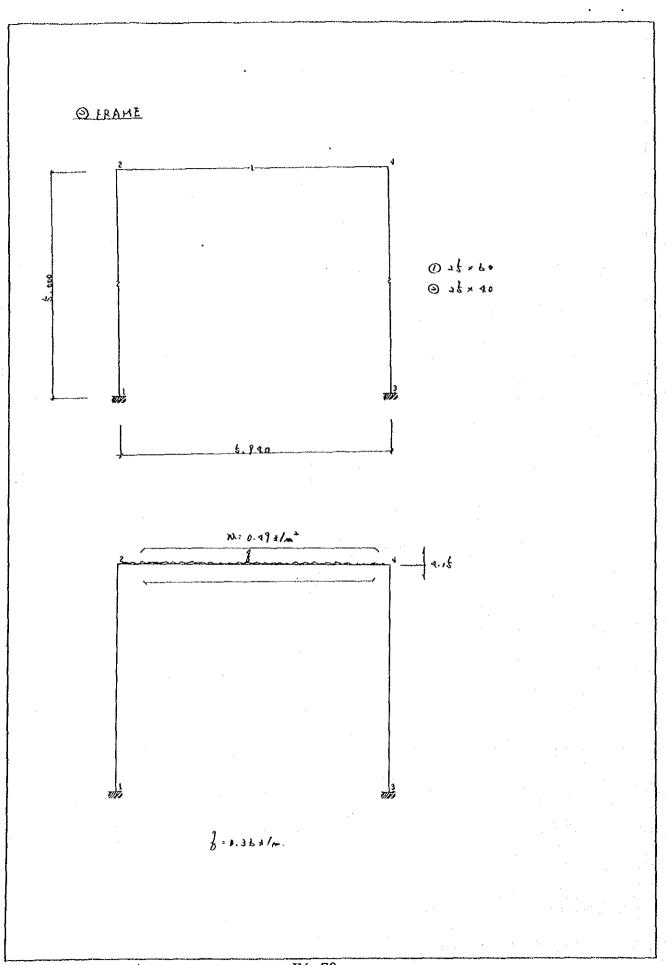
4.4.3 Gate Control House

§ .1 ASSUMED LOAD

TITLE	MATERIAL	T	TICK.	WEIGHT	· · · ·	DL	LL	TL	NOTE
		(t/m3)		(kg/m2)		(kg/m2)	(kg/m2)	(kg/m2)	
	WATER PROOFING		2.0	10 40	TO FLOOR		180	540	
	SLAB		12.0	1288	TO				
ROOP	CBILING		- 11 - 12 - 12 - 1	si ii 20	BEAM TO	360	180	540	
		- 12-14 - 12-14 - 12-14 - 12-14		42 (1) 1	PRAME	1997 - 1997 -	190	490	· .
	• • • • •	1			<u>د</u> ۲	•:			<u>_</u>
DEAD LOAD	OF GIRDER, COL	UMN, WALL							
			÷						
_	•••				· · · ·				
<pre>① GIRDER</pre>	, BEAM		· .		• •				
	NO B	<u>D</u>		FINIS					
1. 1.	25.0	60.0	21 , ; .1	98. 901 -	63 · · · · ·	360			
2 COLUMN						an se i			
- CODOMM	1.11				с і . 				
	<u>NO B</u> 25.0		CONCRETI	<u> Finis</u> 40					
•	2010								
3 WALL									
	NO t	÷	CONCORT	3 FINISH	IRD WP	TGHT			
· · · · · · ·	W20 20.0	,		<u>5 618151</u> 30	100	580			
. : · · ·									
5.		1							
			н 						
					• •				•
	·								
-									
	· .					· .			
		• • • • • •				·			
			•						
	1								
			1.						
			·.	. · ·			·		, ,
			*.						


		ALCULAT	ION OF AXIAL FORCE OF COLUMNS			
	FLOOR		CALCULATION	•	. W . (L)	Σ# (ι
A-1	1.	Roof	5.39×3.326×3.07	5.0		
		<u>B</u>	0.36x (3.076+3.77)	<u></u>		
		0		0.8		
		XY.20	0.31 × \$ 0/2 0.59 × 3.075 × \$.0/2	-9.5	12.4	
	Ē	c		0.8		
		wie 0		9.4	5-3	17.7
				-		
1 - 2	1	Reof	0.49 + 3.16+3.17	<u> </u>		
		<u></u>	0.36x (3.90+2.77)	3.4		
!		<u>C</u>		0.8		
		W20	0.58× 3.90× 5.0/2	\$.7	15-1	
	F	c		0.8		
		W20	· · · · · · · · · · · · · · · · · · ·	<u>+ 7</u>	5.5	-1.6
			and the second			
i				-		
İ	_					
				-		
(-	
				/		· .
{						
-	j					
		·				
l						
ł						
[
	ļ				1 () () () () () () () () () (
		,				· .
			· ····································			
{	}	···· ··· ··· · · · · · · · · · · · · ·				
ł						
				. 1		

l


ſ

No. 21

No. <u>22</u>

No. _____

. .

23

3.2 STRESS DIAGRAM

<u>© IRAME</u>

•

0.0 1.	1.2 -3.0	2.0 -1.3-	1.1 0.0
(.6)2(1.5	(2.1) T.2 (2.4)	(2.4) 1.2 (2.1)	(15)(.6)
	1	0.0	
	(0.0)	(0.0)	(0.0)
	0.0	0.0	0.0
		₹ 0,0) 0.0	(0.0) 0.0

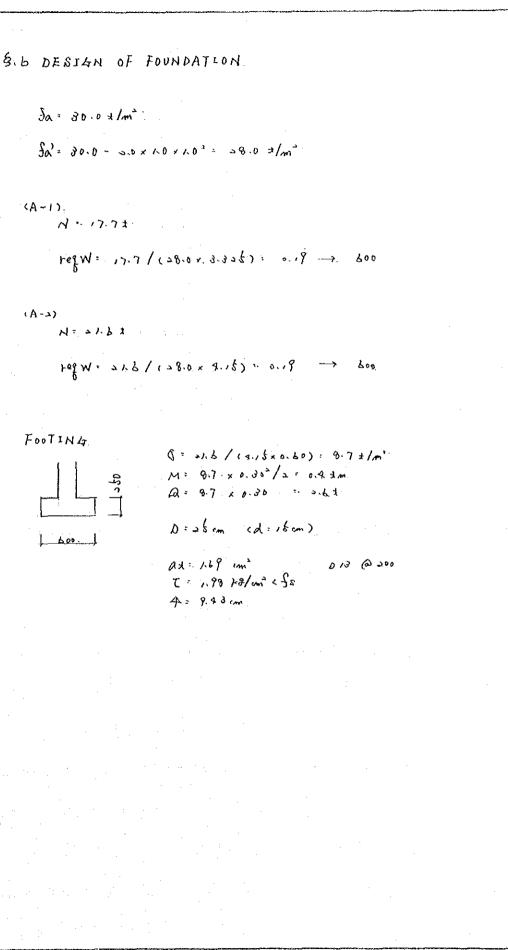
<u>O IRAME</u>

~ ~~	1.5	-1.5	
	(5.0)	7.8(5.0)	
-1.5			1.5
۰. ۰	>		(- ,4)
	÷		
4			.4

(- .4).

(_,4)

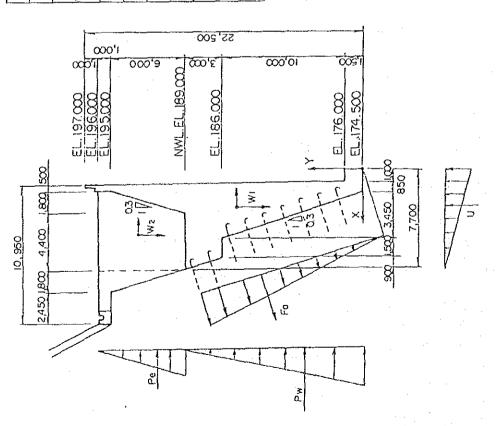
.1


	<u> </u>		DER		1	M	(<i>lm</i>)	[<u></u>	- <u>(</u> 4	(1)	- 14A	IN BA	Q	CT I	RUP	
]		SECT10			l	f	ןו			C MA	IN 08	n	يبافرا		
NO	PLACE	8 (cm)	(CH)	(ča)	L.E.	R		<u>,</u> 1.	E	T	(A /el)		(CA)	(19/01)	Pw	TOP BAR
	FUNCE	- 61	sd1	5			· • • · · · · · · · · · · · · · · · · ·		тъ, ст			ul.	ዋን	A .	11 pt	BOTTOM
(4°)	1.1		(10 4)		1.8	К,) <u>)</u> ((Qu	11, 11,	() u	1	(64)	(EM)	Δ.	4r	BAR
B 8/		35	60	64	1.t			5.0			1	176		4.23	(3 0.6
<u> 1 1 1</u>			<u></u>	O. I	<u></u>				1 00 4 10 1 4 4 4 4 7 10 10 10 10 10 10 10 10 10 10 10 10 10			- <i>14</i> -	**	1.20		
	£.					·	••••••			. 			*			3
								······	•	•			,			3
	£				_ <u>2.6</u>					;		2.29	; 	0100	300	\$
											- 11					······
	E															
ni anna an a				1.			a Deficienta de la	3.4				2.35				3 - N/6
81		<u></u>	<u>_60</u>	<u>.</u> <u></u> <u></u> <u></u>	2.0			. <u> </u>		********		- <u>A. 19</u> -19-19-19-19-19-19-19-19-19-19-19-19-19-		3.6.3.	, <u> </u>	
	<u> </u>				· ·	• •~~~										.3
	·			 											. - •	3
			1		1.2							191		0.00	200	3
											1					
		[·						~							
<u></u> }	E															······································
<u> </u>		1			·					•• ••• ••• •		·				······ ···· ···· ······
	E	1														والمحمد والمرجع بالمرجع
•				1 ·							1					
	C															
	<u>k</u>										• • • • • • • • • • • • • • • • • • • •					
		1												•		
	L <u>E</u>		-					. 							·	
<u> </u>		I														D
	L E		1													
	£	 -					·				.]	•		·	}	
	1															
	E.															
<u> </u>														·		<u> </u>
	£.			}	ſ		1	1	1	}	1	1			1	
						1										
	<u>C</u>				·····		• • • • • •									
				1												
	<u> </u>		1			بي الم	يتعار من الم							•		
<u> </u>		 .					•		1							<u>p</u>
	£															
	b			1.5.5		1	1 î 1	- 1		···		1			i ·	
									· ·		• • • •		·	•		
	<u> </u>						1			· •					.	
																1
• •	E E											1		1 .		
<u> </u>	. 		· · · ·													
- 14	1							· · · ·		1	1					······································
	E.	· · · · ·					· · · · ·		·		· · · ···			1	··	
	[1	1			1	1	1	1			4			
	. C .	•••						1			1.					
									1.	1		1				
	E					1			[1	}				
	<u>-</u>			. Linnar				•		· [-	•	·
	1		·					.							· [.,	
		·							: _							
								ł				1		1		. *
		- · · · ·		1]	[·			1				1		
	I	1	1		l			A ALLAN	1	.				. 1	- ا	I

NO			SEC	TION			ST P	ESS		L N	AIN	BAR		но	90P	Y 4 []
		Ն (<i>ո</i> .ա)	і)(<i>г</i> я)	հք) (10 ¹ 2# ²)	hD ⁴ (10 ⁵ cm ²)		(1) [*]	М ,	Q	1760	M/bD* (ky/cd)	\mathbf{P}_t	al (cil)	r (ka /cm²)	нф (4) (т)	
<u>C</u> 1_						<u>`</u> 										1 7, 2014
- J	x					Е	1 Mit 1018 1 1000							1		
						<u>т.</u> Т.	• • • • • • • •									و م م
						۰۰۰۰۰ ۱.	.15.1.	15	J.4			0				a c
	Y					E										b sd
		35	40			т <u>.</u> Т				· • • • • • •					310	8-016
<u>c </u>			·- ·· · · · · · · · · · · · · · · · · ·				•				·		0	0.54	Q108	
	x			į		"Е					· •···································	· · · · · · · · · · · · · · · · · · ·				
						Т. Т.	•· •·· •					·				
					•••	<u>-</u>					·			·	·· ····	
	Y					E				·						
l									· · ··		····-	· · · · ·				· .
C	•	• •	• • •	*****		$\frac{T_2}{L}$	•		<u></u>			•••••				
ĺ	x				:	E	• • • • • •									
ĺ						T1 T1				·					· · .	
			·	•		1.	•···		•	*** ****	•	·····	<u>-</u>		· ·	
	Y					Е										ų
						T_1	· · · · - · · · · ·									
		·	••••		•••••••	<u> </u>									•••••••	· · · · · · · · · ·
	x					E				· · · · · · ·		••••••••••••••••••••••••••••••••••••••				
						T.										
	•		·· ····			Т <u>.</u> І.	•			. .					••;	
· ·	γ					L E E	·	•, ••••	· · · · ·	•	••• ••• •	·····				
						T.					• .	• • •				
			• •			<u>T.</u> 				,		·	·· ····			
*	x					E					· · · · · · · · · · · · ·	•• ••••				
						<u> </u>	· · · · ·									,
			•	• •						·					1 1:	
	Y					L E		· · · ·				·· ····				
	•				-	ан Та 										
		· ••			. Series	<u> </u>				:	· · · · · · · · · · · ·					
	x					E E E	İ.									
· .	1			, i		т						•••••				
	•	••		.		Υ.			···· ····		····· ·					
	Y					І. Е	·		•••••			.				
					•	". Ti			••• ² ••••			•••••		· · 1.		
					:	т,		•••	··•••			-				

											No			,
	<u> </u>			د			 			<u>n</u>			•	••••
			•											
	·		4 4						•					
	6200 6200 8200	@200 @200 @250 @250												
	6666	00000	-											
	D13 D13 D10	DIO DIO DIO												
	At 4.39 2.93 1.99	0.34 0.23 0.13												
	23 33 23 23 23 23 23 23 25													
	1							. ·						
		х×					÷ .						·: ·	
	t PLACE 12.0 MAIN BAR X MAIN BAR Y	12.0 MAIN BAR Main Bar												
	O MAI	LAM 0.											:	
	19 17	12.												
	NO	त ज								•				
		Ð											•	
•	511 511	518												
	11.27	2.62												
	LV 594	665												
	1 390 390	100												
	180 TL	180						• .						
	80 TI	50						• •						
AB	AL .								•					
OF SL	NAME ROOF	ROOF											÷.,	
DESIGN OF SLAB		24			·			•				· ·		
	1					-								
- S - S							н 1			•				
								. •	Ţ				•	
					IV - '				 					_

No.....


27

	(m.1) HM			508.104	192.023				700.128	= 1.87 > 1.5
	Mv (t.m)	401.645	363.419			-143.284			621.779	
	ү (m) У			4.833	16.833					(i) (1.5m pitch) (i) (1.5m pitch) (i) 8 (1m) 8 (1m) $= 1.005 \times 3.35 + 63.3$ 116.532 $= 1.9065 \times 1.5$ $= 23.06 (/m^2 < 100 t/m^2)$ icture design.
	X (m)	2.848	4.955			2.567				(t) (1.5m pitch) 2 (t) 2 (t) 3 (t) 08 (t.m) 158.545 + 20 x 3 116.532 116.532 116.532 = 1.906> 1.5 = 23.06 t/m ² < ructure design.
TURE	H (i)			105.125	11 407				 116.532	The formula for the form of t
Y STRUC g Case I)	(i) A	141.030	73.340			-55.825			158.545	2.1.7 1+1 2.2.1.7 2.2.
PILLWA C, Loadin		٣١	W2	Pw	Pe	D				bree of Ancho ponent: imponent: frs = $\frac{\sum V}{\sum Mt}$ fs = $\frac{\sum V}{B}$ f = $\frac{\sum V}{B}$ tion name, see
STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Side Channel Wall, Section C-C, Loading Case I)	Load	Body force	Earth force	Water pressure	Earth pressure	Uplift			Total	
Table 4.1.1: STABILITY / (Side Channel	10,950	2.450,1800, 4.400 , 1.800, 500			-			000 9		SECTION AND LOADING CONDITION

 Table 4.1.2:
 STABILITY ANALYSIS OF SPILLWAY STRUCTURE

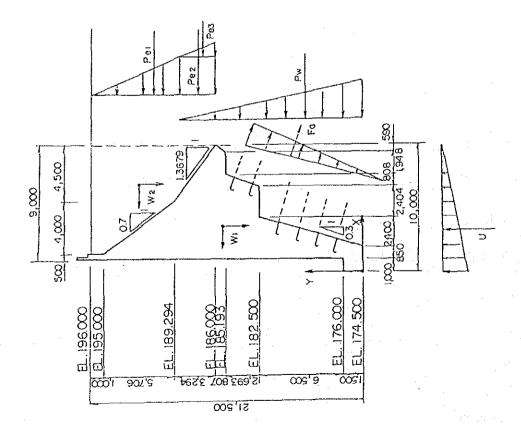
 (Side Channel Wall, Section C-C, Loading Case II)

Load		V (I)	H (t)	X (m)	Y (m)	Mv (t.m) MH (t.m)	Mil (t.m)
Body force	W1.	141.030	7.052	2.848	10.312	401.645	72.713
Earth force	W2	73.340	3.667	4.955	18.213	363.419	66.788
Water pressure	Ρw		105.125		4.833		508.104
Earth pressure	Pc		12.469		16.833		209.889
Uplin	'n	-55.825		2.567	i	-143.284	
Total		158.545	128.312			621.779	857.494
ov Docicina Torno of Anchor Bar	a of Anchy		En - 66 003 (1) (1 S.n nitch)	2 (1) (1 5 m -	virch)		•

= 1.7 > 1.2 Fa = 66.093 (t) (1.5m pitch) = 1.56 > 1.2 128.312 Ma = 713.008 (t.m) Va = 18.992 (t) Ha = 63.306 (i)621.779 + 713.008 857 494 Max. Resisting Moment of Anchor Bar: Max. Resisting Force of Anchor Bar: НД 11 EM - Horizontal component: - Vertical component: FS≓ Fs = Safety factor for Safety factor overturning: for sliding:

Safety for $q = \frac{\Sigma V}{B} = \frac{158.545 + 18.992}{7.7} = 23.06 t/m^2 < 100 t/m^2$

Note: As for Section name, see Figures of spillway structure design.


SECTION AND LOADING CONDITION

ε σ			N U N	ФИ	(m) X	(m) /	Mu /r m	Var 1 IV
500 4,000 L 4,500	Body force	W1	187.773		3.526		662.103	
	Earth force	W2	84.342		6.763		570.370	
	Water pressure	Pw		105.125		4.833		508.104
20	Earth pressure	Pel		12.523		16.833		210.802
W2	Earth pressure	Pe2		2.496	1	13.000		32.451
1.3679	Earth pressure	Pe3		010.1		12.500		13.373
	Uplift		-72.500		3.333		-241.667	
								-
	Toul		199.615	121.214			990.807	764.730
× Fo	 Max. Resisting Force of Anchor Bar: Vertical component: Horizontal component: Max. Resisting Moment of Anchor Bar: 	: of Ancho. .cnt: oonent: .ent of Anc		Fa = 71.583 (t) (1.0) Va = 20.569 (t) Ha = 68.564 (t) Ma = 535.917 (t.m)	Fa = 71.583 (t) (1.0m pitch) Va = 20.569 (t) Ha = 68.564 (t) Ma = 535.917 (1.m)	pitch)		
1,000 <u>6,400 2,400 / 1948</u> 590 850 10,000 608	Safety factor Fs = for sliding:		$\frac{\mathbf{f} \cdot \mathbf{\Sigma} \mathbf{V} + \tau \cdot \mathbf{A} + \mathbf{H}_{a}}{\mathbf{\Sigma} \mathbf{H}} = \frac{0.55 \times 199.615 + 20 \times 6.202 + 68.564}{121.214}$	a <u>0.55 x</u>	1 <u>99.615 + 20 x</u> 121.214	20 x 6.202 214	+ 68.564	= 2.5 > 1.5
	Safety factor for Fs = overturning:	= ΣMr ΣMi	= <u>990.8</u>	990.807+ 535.917 764.730	<u>7</u> = 2.00> 1.5	1.5		
	Safety for bearing: q	2 2	= 199.61	<u>199.615 + 20.569</u> 10.0		$= 22.0 \ t/m^2 < 100 \ t/m^2$	/m2	
SECTION AND LOADING CONDITION	Note: As for Section name, see Figures of spillway structure design.	t name, see	lo sangiT :	spillway st	rncture de	iign.		

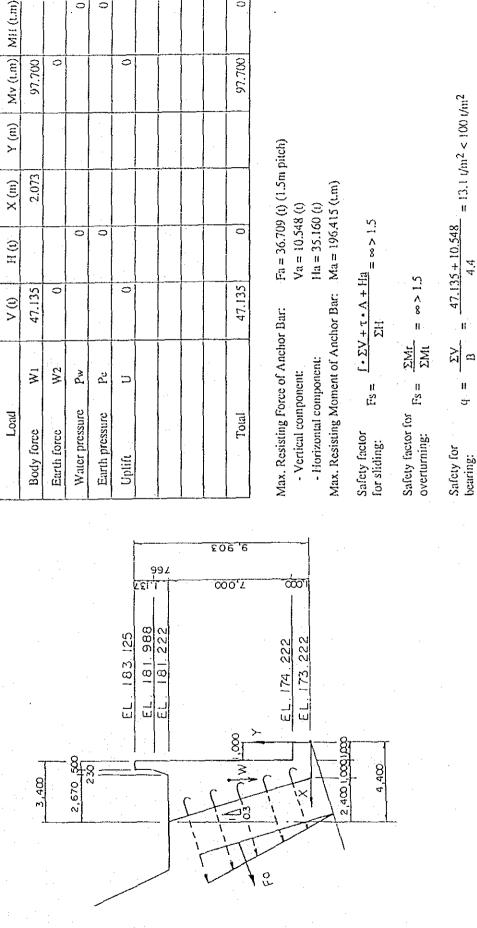
STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Transition Wall, Section G-G, Loading Case I)

Table 4.1.3:

Note: As for Section name, see Figures of spillway structure design.

Load		V (I)	(1) H	X (m)	Y (m)	Mv (t.m)	MII (1.m)
Body force W1		187.773	9.389	3.526	10.866	662.103	102.013
Earth force W2		84.342	4.217	6.763	17.837	570.370	75.221
Water pressure Pw			105.125		4.833		508.104
Earth pressure Pel			14.025		16.833		236.091
Earth pressure Pe2			2.796		13.000		36.344
Earth pressure Pe3			1.198	1	12.500		14.977
Uplift U	<u> </u>	-72.500		3.333		-241.667	
Total		199.615	199.615 137.091			990.807	972.750

Max. Resisting Force of Anchor Bar: Fa = 71.583 (1) (1.0m pitch) - Vertical component: Va = 20.569 (1) - Horizontal component: Ha = 68.564 (1)

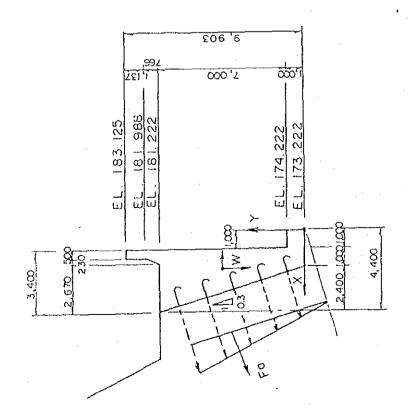

Max. Resisting Moment of Anchor Bar: Ma = 535.917 (t.m)

= 2.2 > 1.2 $\frac{f \cdot \Sigma V + \tau \cdot A + Ha}{2} = \frac{0.55 \times 199.615 + 20 \times 6.202 + 68.564}{2000}$ $\frac{199.615 + 20.569}{100 \text{ } \text{lm}^2} = 22.0 \text{ } \text{lm}^2 < 100 \text{ } \text{lm}^2$ = 1.57 > 1.2 136.750 $\frac{\Sigma Mr}{\Sigma Mt} = \frac{990.807 + 535.917}{972.750}$ 10.0 ΣH 11 ఎ ģ FS = Safety factor for Fs = П σ Safety factor overturning: for sliding: Salciy for bcaring:

Note: As for Section name, see Figures of spillway structure design.

SECTION AND LOADING CONDITION

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Chuteway Side Wall, Section A-A, Loading Case I) Table 4.1.5:



Note: As for Section name, see Figures of spillway structure design.

SECTION AND LOADING CONDITION

 $\overline{\mathbf{o}}$

0

SECTION AND LOADING CONDITION

Load	;	V (I)	H (t)	X (m)	Y (m)	Mv (t.m) MH (t.m)	(Im) IIM
Body force	W1	47.135	2.357	2.073	4.733	97.700	11.153
Earth force	W2	0				0	
Water pressure	Pw		0				0
Earth pressure	Pe		0				0
Uplifi	n	0				0	
Total		47.135	2.357		-	97.700	11.153

Max, Resisting Force of Anchor Bar: Fa = 36.709 (t) (1.5m pitch)
Vertical component: Va = 10.548 (t)
Horizontal component: Ha = 35.160 (t)
Max. Resisting Moment of Anchor Bar: Ma = 196.415 (t.m)

Safety factor Fs = $\frac{f \cdot \Sigma V + \tau \cdot A + Ha}{\Sigma H} = \frac{0.55 \times 47.135 + 20 \times 2.0 + 35.16}{2.357} = 42.9 > 1.2$ for sliding: Fs = $\frac{\Sigma Mr}{\Sigma H} = \frac{97.700 + 196.415}{11.153} = 26.37 > 1.2$

Safety for $q = \frac{\Sigma V}{B} = \frac{47.135 + 10.548}{4.4} = 13.11 \text{ (}\text{m}^2 < 100 \text{ (}\text{m}^2)$

Note: As for Section name, see Figures of spillway structure design.

	(III) WII (L.M.)	203.431	203.431	
	<u> </u>		0	
	╞╌┼╌┼╼┼╼╴		468	t/m ²
	Y (m)	17.833	n pitch) + 20 x 3.92	1.5 1 ² < 100 itgn.
	X (m) 2.398 4.448 0.500	1.675		<u>196</u> = 6.1> 1.5 - =24.1 <i>V</i> m ² < 100 <i>V</i> m ² structure design.
rure se l)	H (I)	11.407		468.240 + 773.896 203.431 140.840+ 20.341 6.7 ures of spillway stru
Y STRUC	V (I) 104.835 59.830 8.000	-31.825	840 ar: A + F	- = <u>468.24</u> = <u>140.84</u> cc Figures of
SPILLWA ction E-E, I	W1 W2 W3		ponent: ponent: ponent: foment of Ar $F_S = \frac{f \cdot \Sigma_1}{F_S}$	$F_{S} = \frac{\Sigma M r}{\Sigma M t}$ $q = \frac{\Sigma V}{B}$ tition name, se
NAL YSIS OF Side Wall, See	Load Body force Earth force Water force	Earth pressure Uplift	Total140.84(Max. Resisting Force of Anchor Bar:- Vertical component:- Ilorizontal component:Max. Resisting Moment of Anchor Bar:Safety factor $Fs = f \cdot \Sigma V + \tau \cdot A + for sliding:Fs = \frac{f \cdot \Sigma V + \tau \cdot A + for sliding:$	Safety factor for $F_{S} = \frac{\Sigma M r}{\Sigma M t} = \frac{468,240 + 773,896}{203,431} = 6.1 > 1.5$ overturning: $F_{S} = \frac{\Sigma V}{2} = \frac{140.840 + 20.341}{6.7} = 24.1 /\text{m}^2 < \frac{140.840 + 20.341}{6.7} = 24.1 /\text{m}^2 < \frac{140.840 + 20.341}{6.7} = 24.1 /\text{m}^2 < \frac{140.840 + 20.341}{6.7} = 24.1 /\text{m}^2 < \frac{140.840 + 20.341}{6.7} = 24.1 /\text{m}^2 < \frac{140.840 + 20.341}{6.7} = 24.1 /\text{m}^2 < \frac{140.840 + 20.341}{6.7} = $
Table 4.1.7: STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stillway Basin Side Wall, Section E-E, Loading Case I)		EL. 123.000		SECTION AND LOADING CONDITION

222.357 343.057 57.620 63.079 MII (Lm) Mv (t.m) 4.000 53.307 468,240 $\mathbf{f} \cdot \mathbf{\Sigma} \mathbf{V} + \mathbf{\tau} \cdot \mathbf{A} + \mathbf{Ha} = \underbrace{0.55 \times 140.840 + 20 \times 3.925 + 67.802}_{\text{constrained}}$ 251.400 266.147 =24.1 t/m² < 1()0 t/m² 12.034 19.261 17.833 ζ (m) γ Fa = 70.787 (t) (1.5m pitch) 20.702 = 3.62> 1.2 4,448 2.398 0.500 1.675 (m) X Ma = 773.896 (t.m) Va = 20.341 (I) Ha = 67.802 (t)468,240+773,896 2.992 5.242 12.469 140.840+ 20.341 20.702 H (I) 343.057 6.7 140.840 59.830 -31.825 8.000 104.835 (i) N Max. Resisting Moment of Anchor Bar: Max. Resisting Force of Anchor Bar: HΣ 11 İI ΣMr ZMI 2 ц - Horizontal component: W2 W3 WI - Vertical component: 5 Э FS = Es = Ħ c Load Total Safety factor for Earth pressure Water force Body force Earth force Safety factor overturning: for sliding: Safety for bcaring: Uplift 23,500 () () 2.000_1 EL.112.000 000.11 2000 E ω 000,8 VWL..EL.120000 FL. 123000 134 000 EL. 126000 SECTION AND LOADING CONDITION Pwi 8 2001/02/12012 9,300 Ň 5222,2100_3,400 1,800, ŝ 50 ເດ O 17w1

2

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stillway Basin Side Wall, Section E-E, Loading Case II) Table 4.1.8 :

Note: As for Section name, see Figures of spillway structure design.

= 10.81> 1.2

9,300	Loud	V (I)	H (I)	X (m)	Y (m)	Mv (Lm)	MII (Lm)
	Body force W1	104.835		2.398		251.400	
	Earth force W2	59.830		4.448		266.147	
	Water force W3	8.000		0.500	:	4.000	
	Earth pressure Pe		11.407		17.833		203.431
	Water pressure Pw1		-45.125		3.167		-142.896
	Water pressure Pw2		120.125		7.167		860.896
	Upiifi Ul	-18.288		0.963		-17.602	
	Uplift U2	-37.006		3.517		-130.139	
	Uplift U3	-5.775		1.283		-7,411	
1 1 1 1 - 1 MML. EL. 120.000	Total	111.596	86.407	+		366.395	921.431
	Max. Resisting Force of Anchor Bar: - Vertical comment:		Fa = 70.787 (t) Va = 20.341 (t)	Fa = 70.787 (t) (1.5m pitch) Va = 20.341 (t)	aitch)		
	- Horizontal component:	Ha	Ha = 67.802 (t)	e (
	Max. Resisting Mornent of Anchor Bar:		Ma = 773.896 (1.m)	Q (1.m)			
	Safety factor $F_S = \frac{f \cdot \Sigma}{F_S}$	$\frac{f \cdot \Sigma V + \tau \cdot \Lambda + Ha}{\Sigma H}$	= 0.55 × 1	11.596 + 86	<u>0.55 x 111.596 + 20 x 3.925 + 67.802</u> 86.407	+ 67.802	= 2.4 > 1.2
	Safety factor for $F_{S} = \frac{\Sigma Mr}{\Sigma M_{I}}$	11	<u>366.395 + 773.896</u> 921.431	= 1.24 > 1.2	> 1.2		
5	Safety for $q_1 = \frac{\Sigma V}{B}$ bearing:	$=\frac{111.596}{6}$	111.596 + 20.341 6.7	m/) [].e1=	=19.7 \m2 < 100 \m2	1112	
SECTION AND LOADING CONDITION	Note: As for Section name, see Figures of spillway structure design.	ce Figures of sp	illway str	ncture des	ign.		

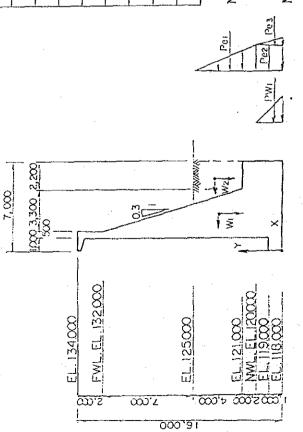

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stillway Basin Side Wall, Section E-E, Loading Case III)

Table 4.1.9:

Note: As for Section name, see Figures of spillway structure design.

 Table 4.1.10:
 STABILITY ANALYSIS OF SPILLWAY STRUCTURE

 (Stilling Basin Side Wall, Section I-I, Loading Case I)

Load		V (i)	H (I)	X (m)	Y (m)	Mv (Lm) Mii (t.m)	MII (t.m)
Body force	W1	105.720		2.907		307.276	
Earth force	W2	22.002		5.558		122.285	
Water pressure	Pw		2.000		0.667		1.333
Earth pressure	Pel		5.820		3.667		21.340
Earth pressure	Pc2		1.484		1.000		1.484
Earth pressure	Pe3		0.593		0.667		0.396
Uplift	n	-7.000	-	3.500		-24.500	
			1				
Total		120.722	9.897			405.061	24.553

Max. Resisting Force of Anchor Bar:Fa = 0- Vertical component:Va = 0- Horizontal component:Ha = 0Max. Resisting Moment of Anchor Bar:Ma = 0

Safety factor $F_{S} = \frac{f \cdot \Sigma V + \tau \cdot \Lambda + Ha}{\Sigma H} = \frac{0.55 \times 120.722 + 20 \times 7.0}{9.897} = 20.9 > 1.5$ for sliding:

⇒

Safety factor for $F_S = \frac{\Sigma Mr}{\Sigma M_1} = \frac{405.061}{24.553} = 16.5 > 1.5$ overturning:

Safety for $q = \frac{\Sigma}{B} \left(1 + \frac{5c}{B} \right) = \frac{120.722}{7.00} \left(1 + \frac{6 \times 0.348}{7.00} \right) = 22.4, 12.1 \text{ t/m}^2$

SECTION AND LOADING CONDITION

G CONDITION Note: As for Section name, see Figures of spillway structure design.

1e'coc

 Table 4.1.11: STABILITY ANALYSIS OF SPILLWAY STRUCTURE

 (Stilling Basin Side Wall. Section I-I. Loading Case II)

35.342 221.833 270.842 Mv (Lm) MII (Lm) 457.333 6.500 -24.500 142.061 307.276 -269.500 122.285 $\frac{f \cdot \Sigma V + \tau \cdot \Lambda + H_{a}}{2000} = \frac{0.55 \times 53.222 + 20 \times 7.0}{2000} = 4.0 > 1.2$ 2.333 3.667 4.667 ζ(m) Υ $\frac{2x53.222}{6.015} = 17.7 \ t/m^2 < 100 \ t/m^2$ 3.500 2.333 2.907 5.558 0.500 78.575 (m) X = 3.4 > 1.2 78.575 116.075 60.500 -98.000 H (C) Va = 0Max. Resisting Moment of Anchor Bar: Ma = 0 Ha = 0Fa = 035.342 142.061 53.222 -10.500 -77.000 105.720 22.002 13.000 Ω Λ Max. Resisting Force of Anchor Bar: H, ΣII Ił ΣMr ΣMt 22V B - Horizontal component: Pw2 Pwl W2 W3 Pc2 Pe3 Pel 5 Ň 5 - Vertical component: Fs = 0. II FS = Water pressure Load Water pressure Total Safety factor for Earth pressure Earth pressure Earth pressure Water force Body force Earth force Safety factor overturning: for sliding: Safety for bearing: Uplift Uplifi 55 EL.129.000 IPw1 <u>cm_3,300_2,200</u> ŝ 28/2 5 ž g Ś ≻ FWLEL.132.000 $\frac{1}{10000}$ PW2 125.000 EL.131000 EL.121.000 000,811 ц Ш Ž

2000

0007

000, 81

,000,4000,000,

Table 4.1.12: STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stillway Basin Side Wall, Section I-I, Loading Case III)

Note: As for Section name, see Figures of spillway structure design.

JOW WEIR	
OF OVERFL	
STABILITY ANALYSIS OF OVERFLOW WEIR	(Normal Condition)
Table 4.1.13:	

Body force			Water force	Water pressure		Uplift		Total		Max. Resisting Porce	3		Cuttor Control
-		• •				0.4	M	- - 		. •••			
	9.50		T		MW M	W3		- W2	nd		^	Ĺ	
		0.0	{					MI -					

Ň

≻

192.023

508.104

4.833 16.833

3.90

6.50 8.50

18.40

154.84 86.11 119.60 68.00

5.10

30:36 22.08

W1 W2

W3 Ň × X

1.21 (i)

0.47

0.57

MII (1.m)

Mv (Lm)

χ (m)

X (m)

(I) H

Load

-27.63

1.38

-15.13

Ρw

8.00

-235.13

4.50

-52.25

-262.76

429.12

-15.13

27.80

Fa = 48.18 (1)(1.5mpitch)

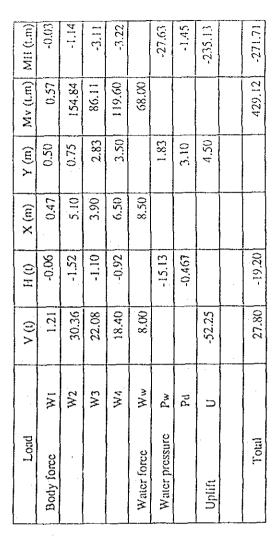
of Anchor Bar:

cut of Anchor Bar: Ma = 216.81 (t.m)

 $\frac{f \cdot \Sigma V + \tau \cdot \Lambda + 11a}{v t} = \frac{0.55 \times 27.8 + 20 \times 9.5}{15.12}$ ΣH ES == Safety factor for sliding:

- = 13.6> 1.5

15.13


= 2.46> 1.5 = 429.12 + 216.81 262.76 <u>SMr</u> $F_{\rm S} =$ Safety factor for overturning:

= 8.0 /m2 < 100 /m2 $= \frac{27.80 + 48.18}{0.5}$ 9.5 ୷ଇ н b Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

Table 4.1.14:

STABILITY ANALYSIS OF OVERFLOW WEIR (Seismic Condition)

Fa = 48.18 (1)(1.5mpitch)Max. Resisting Moment of Anchor Bar: Ma = 216.81 (t.m) Max. Resisting Force of Anchor Bar:

₹

120

ч. W2

≶

nd

⊃

Fa

00.4

WΜ

≸ **f**^

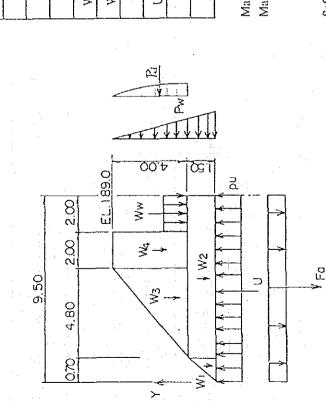
Š ¢*

≻

EL. 189. 0

2.00 2.00

80 4


g

9.50

= 10.7> 1.5 $= 8.01/m^2 < 1001/m^2$ 0.55 x 27.8 + 20 x 9.5 - = 2.38> 1.5 19.20 429,12 + 216.81 27.80 + 48.18271.71 $\frac{f \cdot \Sigma V + \tau \cdot \Lambda + Ha}{f} = -$ 9.5 -£Η It 11 **ZMr** 긻 E Safety factor for Fis = ES II n o Safety factor for sliding: overturning: Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

Table 4.1.15: STABILITY ANALYSIS OF OVERFLOW WEIR (After the Flood (P.M.F))

Max. Resisting Force of Anchor Bar: Fa = 48.18 (1)(1.5mpitch) Max. Resisting Moment of Anchor Bar: Ma = 216.81 (1.m)

$= \frac{20 \times 9.5}{15.13} = 12.6 > 1.2$	$\frac{2+216.81}{455.13} = 1.42 > 1.2$
T•A EH	$\frac{\Sigma Mr}{\Sigma Mt} = \frac{429.12 + 216.81}{455.13}$
اا بې	
Safety factor for sliding:	Safety factor for overturning:

Table 4.1.16 : STRESS ANALYSIS OF REINFORCED CONCRETE (Spillway Side Wall, Section C - C)

(kg/cm2)|(kg/cm2) 2.426 0.518 0.625 2.426 Q/bd M'/bd^2 0.701 0.866 0.866 0.55 N+W=W 16.98 (t m) 16.98 33.94 26.6 p/,p (cm) σ (mo) 220 220 140 140 Sectional dimension σ (cm) Þ (cm) 150 150 230 230 c (m) (cm) 100 100 100 007 zΞ 33.96 11.40 13.75 33.96 σΞ Internal force 16.98 26.60 33.94 (t.m) 16.98 Σ Spot Direction Cond-| Member EL.189 EL.189 Toe Toe Seis. Seis. Nor Nor. Load Ìon

		Sectional area of reinforcing	orcing bar		= du	Coeff. 1	Coeff. from Nomogram	logram	Stre	Stress (kg/cm2)	m2)
I=M/N+U	f/d	AS	As'	As'/As	As'/As n.As/bd C	0	s. S	Z	SIGc=	SIGs=	Tau=
	:	(cm2)	(cm2)		· (CM'/bd^2	CM/bd^2 nSM/bd^2	PQ/DZ
	.	D19@200 = 14.33			0.010 15.9	15.9	105	1.05	8.7	366	0.5
	. 	D19@200 = 14.33			0.010 15.9	15.9	105	1.05	11.1	1104	0.7
		D19@200 = 14.33			0.015 13.2	13.2	70.3	1.06	11.4	914	2.6
		D19@200 = 14.33			0.015	13.2	70.3	1.06	11.4	914	2.6
							· .				

Allowable stress : SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 · : Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

Table 4.1.17 : STRESS ANALYSIS OF REINFORCED CONCRETE (Spillway Side Wall, Section G - G & A - A)

(kg/cm2) (kg/cm2) 1.189 Q/bd 0.015 M'=M+Nu M'/bd^2 0.839 0.660 16.45 (t.m) 5.35 p/.p (cm) σ (cm) 140 06 Sectional dimension σ (cm) ∍ ч (ms) 150 100 (cm) 100 1 0:0 م zΞ 32.90 10.70 σΞ Internal force 16.45 (t.m) 5.35 Σ Spot Direction A--A С О Cond- Member Toe Toe Seis Seis. Nor. Load tion

		Sectional area of reinforcing bar	inforcing bar		= du	Coell.	Coeff. Irom Nomogram	nogram	Stre	ess (kg/ci	n2)
f=M/N+u	f/d	As	Ast	As'/As	As'/As n.As/bd C	U	S	2	SIGc=	SIGS= 18	Tau=
	- :	(cm2)	(cm2)						CM/bd^2	CM/bd^2 nSM/bd^2 ZO/bd	ZO/bd
		D19@200=14.33			0.015	13.2	70.3	1.06	11.0	885	2.5
	-	D19@200=14.33	-		0.024	10.9	0.024 10.9 44.6 1.07	1.07	7.2	442	1.3
								1			

n=Es/Ec=15, Allowable stress : SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 · : Allowable stresses marked with (*) are applied for the sesmic and flood conditions.

1.686 (Kg/cm2) 0.518 1.786 Tau≕ 0.627 ZQ/bd pq/p 0.5 0 ъ. 1 8 0.7 Stress (kg/cm2) nSM'/bd^2 M=M+Nu M'/bd^2 (kg/cm2) SIGs= 0.638 0.602 1117 634 866 673 0.55 0.71 CM'/bd^2 SIGC= 34.34 11.8 -1-0 12.5 26.6 7.9 8.7 α. 4 (t.m) 1.06 1.06 1.05 1 05 Coeff. from Nomogram p/,p Ν 70.3 70.3 105 1.05 (cm) S 15.9 15.9 13.2 13.2 220 220 140 140 (cm) Sectional dimension \circ σ As'/As n.As/bd 0.015 0.015 = du (cm) 0.01 0.01 Table 4.1.18 : STRESS ANALYSIS OF REINFORCED CONCRETE ∍ 230 230 150 150 (cm) ء Spillway Side Wall, Section E-E) 100 100 100 100 a (m) (cm2) ,s∖ zΞ ı ı , Sectional area of reinforcing bar 25.00 23.60 11.40 13.79 σΞ Internal force 11.80 26.60 12.50 34.34 (t. m) Z D19@200=14.33 D19@200=14.33 D19@200=14.33 D19@200=14.33 (cm2)-Spot Direc-As ion f/d Flood EL. 126.00 Seis. |EL.126.00 Cond-| Member n=Es/Ec=15, Toe Toe =M/N+u Flood Nor.8 Nor.& Seis. Load ю

Aliowable stress : SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 * : Allowable stresses marked with (*) are applied for the sesmic and flood conditions.

 Table 4.1.19 : STRESS ANALYSIS OF REINFORCED CONCRETE

 (Spiilway Side Wall. Section 1 - L(1))

Load				Inte	Internal force	ce			Sectior	Sectional dimension	nsion					
Cond- Member	tember		Spot	Spot Direc-	Σ	σ	z	a	4	n	P	5	d'/d	M'=M+N∪	M'/bd^2	Q/bd
tion				tion	(t.m)	(1)	(1)	(cm)	(cm)	(cm)	(cm)	(cm)	:	(t.m)	(kg/cm2) (kg/cm2)	kg/cm2)
Nor. El	Nor. EL.121.0	н у 1	Back		4.96	3.72		100	380		370			4.96	0.036	0.101
Seis. El	Seis. EL.121.0		Back		23.60	7.46	1	100	380		370			23.6	0.172	0.202
Flood El	Flood EL.121.0		Front		134.11	26.71	•	100	380		370			134.11	0.98	0.722
		1														
											-					
						-										
						- - -										
	-		Sect	Sectional area		of reinforcing	bar			= du	Coeff.	Coeff. from Nomogram	nogram	Stre	Stress (kg/cm2)	n2)
f=M/N+U	- ·	p/i		As			As'		As'/As	n.As/bd	0	s	Ζ.	SIGc=	SIGs=	Tau≃
				(cm2)			(cm2)							CM7bd^2	2~bd/.MSn	ZQ/bd
			D19	D19@200=14.33	1.33					0.006	20	173	1.03	0.7	94	1.0
		÷	D19	D19@200=14.33	4.33					0.006	20	173	1.03	3.4	447	0.2
			D19	D19@200=14.33	4.33					0.006	20	173	1.03	19.6	2542	0.7
							-									

Allowable stress : SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 • : Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

Load			Inte	Internal force	ce			Section	Sectional dimension	nsion					
Cond-	Cond- Member	Spot	Spot Direc-	Ŵ	σ	z	q	۹.		σ	d,	p/,p	M'=M+Nu M'/bd^2 Q/bd	M'/bd^2	Dd/D
tion			tion	(t.m)	E	(I)	(cm)	(cm)	(E)	(cm) ((cm)		(t.m)	(t.m) (kg/cm2) (kg/cm2)	(kg/cm2)
Nor.	Toe	L O W		9.81	19.42		100	100		06			9.81	9.81 1.211 2.158	2.158
Seis.	Toe	Moj		11.66 22.93	22.93		100	100		06			11.66	11.66 1.44 2.548	2.548
Flood	Toe	Upper		0.76	1.6		100	100		06			0.76	0.094 0.178	0.178
								<u></u>			. '	. –			
	-														

		Sectional area of reinforci	orcing bar		= du	Coeff. 1	np = Coeff. from Nomogram	nogram	Stre	Stress (kg/cm2)	12)
f=M/N+u	f/d	As (cm2)	As' (cm2)	As'/As n.As/bd C	n.As/bd	ပ	S	Z	SIGc= cM'/bd^2	SIGc= SIGs= cM/bd^2 nsM/bd^2	Tau= zo/bd
		D19@200=14.33			0.024	0.024 10.9	44.6	1.07	13.2	810	2.3
		D19@200=14.33			0.024	0.024 10.9	44.6	1.07	15.7	963	2.7
		D19@200=14.33			0.024	10.9	44.6	1.07	44.6 1.07 1.0	63	0.2
			· · · · · · · · · · · · · · · · · · ·								

Allowable stress : SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 • : Allowable stresses marked with (*) are applied for the sesmic and flood conditions.

n=Es/Ec=15,

					U	<u>nit : t•m</u>
Nodal Point	D.L (B.C)	D.L (A.C)	L.L Max. (A.C)	L.L Min. (A.C)	Max. (A.C)	Min. (A.C)
No. 1 Main Girder	r (G-1):					
1	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
4	100.1	22.5	66.8	- 3.7	89.3	17.7
	100.1	22.5	66.8	- 3.7	89.3	17.7
7	162.5	32.1	114.6	- 7.6	146.7	22.3
	162.5	32.1	114.6	- 7.6	146.7	22.3
10	182.2	27.8	137.3	- 11.4	165.1	12.9
· · · ·	182.2	27.8	137.3	- 11.4	165.1	12.9
13	162.5	32.1	114.6	- 7.6	146.7	22.3
	162.5	32.1	114.6	- 7.6	146.7	22.3
16	100.1	22.5	66.8	- 3.7	89.3	17.7
	100.1	22.5	66.8	- 3.7	89.3	17.7
19	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
No. 2 Main Girder	(G_{-2})		н. 1		· · · ·	· · ·
2	0.0	0.0	0.0	- 0.0	0.0	0.0
5	98.0	10.5	80.1	- 0.0	90.6	10.4
~	98.0	10.5	80.1	- 0.0	90.6	10.4
8	161.2	26.1	122.7	- 0.0	148.8	26.1
	161.2	26.1	122.7	- 0.0	148.8	26.1
11	184.6	46.5	128.2	- 0.0	174.7	46.5
	184.6	46.5	128.2	- 0.0	174.7	46.5
14	161.2	26.1	122.7	- 0.0	148.8	26.1
	161.2	26.1	122.7	- 0.0	148.8	26.1
17	98.0	10.5	80.1	- 0.0	90.6	10.4
	98.0	10.5	80.1	- 0.0	90.6	10.4
20	0.0	0.0	0.0	- 0.0	0.0	- 0.0
No. 3 Main Girder	(6-3):	· · ·				
<u>3</u>	~ 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
6	100.1	22.5	66.8	- 3.7	89.3	17.7
	100.1	22.5	66.8	- 3.7	89.3	17.7
9	162.5	32.1	114.6	- 7.6	146.7	22.3
	162.5	32.1	114.6	- 7.6	146.7	22.3
12	182.2	27.8	137.3	- 11.4	165.1	12.9
12	182.2	27.8	137.3	- 11.4	165.1	12.9
15	162.5	32.1	114.6	- 7.6	146.7	22.3
1.7	162.5	32.1	114.6	- 7.6	146.7	22.3
18	102.5	22.5	66.8	- 3.7	89.3	17.7
10	100.1	22.5	66.8	- 3.7	89.3	17.7
21	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
21	- 0.0	- 0.0	0.0	- 0.0	0.0	~ 0.0

.

SUMMARY OF BENDING MOMENT IN COMPOSITE GIRDER (Main Girder)

.

.

.

Note : B.C : Before compounding

A.C : After compounding D.L : Moment due to dead load L.L : Moment due to live load

					U	<u>nit : ton</u>
Nodal Point	D.L (B.C)	DL (A.C)	L.L Max. (A.C)	L.L Min, (A.C)	Max. (A.C)	Min. (A.C)
No. 1 Main Girder	<u>(G-1)</u> :					
- 1	25.5	6.2	16.3	- 0.8	22.5	5.1
4	17.1	3.4	13.2	- 2.0	16.6	0.7
	17.1	3.4	13.2	- 2.0	16.6	0.8
7	8.4	0.5	10.2	- 4.1	10.8	- 4.1
	8.4	0.5	10.2	- 4.1	10.8	- 4.1
10	- 0.4	- 2.3	7.5	- 6.5	7.5	- 8.8
	0.4	2.3	6.5	- 7.5	8.8	- 7.5
13	- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
	- 8.4	- 0.5	4 1	- 10.2	4.1	- 10.8
16	- 17.1	- 3.4	2.0	- 13.2	- 0.8	- 16.6
-	- 17.1	- 3.4	2.0	- 13.2	- 0.7	-16.6
19	- 25.5	- 6.2	0.8	- 16.3	- 5.1	- 22.5
No. 2 Main Girder	· (G-2)·					
2	24.7	1.8	21.5	- 0.3	23.2	1.3
5	17.0	2.7	15.7	- 3.3	18.4	- 1.6
<i>.</i> ,	17.0	2.7	15.7	- 3.3	18.4	- 1.6
8	8.8	3.7	11.0	- 7.4	14.7	- 5.9
0	8.8	3.7	11.0	- 7.4	14.7	- 5.9
11	0.7	4.7	7.4	- 11.8	12.1	-10.7
	- 0.7	- 4.7	11.8	- 7.4	10.7	- 12.1
14	- 8.8	- 3.7	7.4	- 11.0	5.9	- 14.7
14	- 8.8	- 3.7	7.4	- 11.0	5.9	- 14.7
1-7		- 3.7 - 2.7	.3.3	- 15.7	1.6	- 18.4
17	- 17.0		3.3	- 15.7	1.6	- 18.4
	- 17.0	- 2.7	0.3	- 15.7 - 21.5	- 1.3	- 23.2
20	- 24.7	- 1.8	0.5	- 21.5	- 1.5	
No. 3 Main Girder					00.5	εī
- 3	25.5	6.2	16.3	- 0.8	22.5	5.1
6	17.1	3.4	13.2	- 2.0	16.6	. 0.7
	17.1	3.4	13.2	- 2.0	16.6	0.8
9	8.4	0.5	10.2	- 4.1	10.8	- 4.1
	8.4	0.5	10.2	- 4.1	10.8	- 4,1
12	- 0.4	- 2.3	7.5	- 6.5	7.5	- 8.8
	0.4	2.3	6.5	- 7.5	8.8	- 7.5
15	- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
	- 8.4	- 0.5	4 1	- 10.2	4.1	- 10.8
18	- 17.1	- 3.4	2.0	- 13.2	- 0.8	- 16.6
	- 17.1	- 3.4	2.0	- 13.2	- 0.7	- 16.6
21	- 25.5	- 6.2	0.8	- 16.3	- 5.1	- 22.5

Table 4.1.22 SUMMARY OF SHARE FORCE IN COMPOSITE GIRDER (Main Girder)

. -

Note : B.C : Before compounding A.C : After compounding D.L : Share due to dead load L.L : Share due to live load

				<u>Unit : ton</u>
Nodal Point	D.L (B.C)	D.L (A.C)	L.L Max. (A.C)	Total Reaction Force
No. 1 Main Girder (G-1):				
1	25.5	6.2	16.3	48.0
19	25.5	6.2	16.3	48.0
No. 2 Main Girder (G-2):		. : . :		
2	24.7	1.8	21.5	47.9
20	24.7	1.8	21.5	47.9
No. 3 Main Girder (G-3):				
3	25.5	6.2	16.3	48.0
21	25.5	6.2	16.3	48.0

Table 4.1.23 SUMMARY OF REACTION FORCE AT____SUPPORTS

B.C : A.C : D.L : L.L : Note :

Before compounding After compounding Reaction due to dead load

Reaction due to live load

Table 4.1.24 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 1 MAIN GIRDER, NO. 1 SECTION)

•	Bending moment before compoundingMS =	101.88	t•m
-	Bending moment after compoundingMV =	<u>90.90</u>	t•m
-	Bending moment by dead load after compoundingMVD =	22.84	i∙m
-	Base slab thicknessTS =	18.0	cm
-	Haunch	_6.0	стп
	Effective base slab widthBS =	<u>228.1</u>	cm
-	Distance between fixed points of flangeP =	<u>490.0</u>	cm

- Section and sectional area of steel girder:

		Section (mm)	Sectional Area (cm ²)
• Upper flange • Web	:	<u>230 x 11</u>	25.3 (SM50Y)
• Web	:	<u>1,550 x 9</u>	<u>139,5</u> (SM50Y)
 Lower flange 	:	<u>_280 x 11</u>	<u>30.8</u> (SM50Y)
TOTAL			<u>195.6</u>

- Sectional area and moment of inertia of area:

	Sectional Area	Moment of Inertia
	<u>(cm²)</u>	of Area (cm ⁴)
Concrete section	: AC = 4.105	IC = 110,832
 Steel girder section 	: AS = 195.6	IS = <u>620.099</u>
 Composite section 	: AV = 782	IV = 1.951.186

- Geometrical moment of area of concrete (AC x DC)......QC = <u>97,226</u> cm³

- Distance and section modulus (See Fig.4.4.7):

Distar	<u>1ce (cm)</u>	Section Mc	<u>odulus (cm²)</u>
D⇒	94.7	WSU =	7,675
DS =	71.0	$WSL \simeq$	8,116
DC =	23.7	WVU =	199.399
YSU =	80.8	WVL=	13,236
YSL=	76.4		
YVU =	<u>9.8</u>		
YVL=	147.4		
YVC =	32.7		

- Axial force

Due to drying schrinkage Due to creep		NSH = NCR =	$\frac{17.1}{2.5}$	ton ton
Due to temperature change		NTM =	12.0	ton
Stress (kg/cm ²):	6			7

· · · ·	Concrete Base Slab	Upper Flange	Lower Flange
(1) Stress before compounding	-	- 1.327	1,255
(2) Stress after compounding	- 21.8	- 46	687
(3) Stress due to drying schrinkage	3.1	- 297	110
(4) Stress due to creep	1.9	- 42	16
(5) Stress due to temperature difference	- 0.6	- 207	75
(6) = (1) Allowable stress		- 1.327	<u> 1,255</u> <u> 2,625</u>
(7) = (1) + (2) Allowable stress	- 21.8	<u>- 1,373</u> <u>- 2,100</u>	1.942
(8) = (1) + (2) + (3) + (4) Allowable stress	- 16.8 - 77.1	<u>- 1,712</u> <u>- 2,415</u>	2.068
(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	- <u>17.5</u> - <u>88.7</u>	<u>- 1,918</u> <u>- 2,730</u>	2.143

Table 4.1.25 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 1. MAIN GIRDER, NO. 2. SECTION)

-	Bending moment before compoundingMS =	182.18	t•m
•	Bending moment after compoundingMV =	165.06	t•m
-	Bending moment by dead load after compoundingMVD =	27.76	t•m
-	Base slab thicknessTS =	18.0	cm
•	HaunchHH =	6.0	cm
-	Effective base slab widthBS =	228.1	cm
-	Distance between fixed points of flangeP =	<u>490.0</u>	cm
•	Section and sectional area of steel girder:		

Section and sectional area of steel glucer:

1	11	Section (mm)	<u>Sectional Area (cm²)</u>
• Upper flange • Web	:	<u>280 x 14</u>	<u>39.2</u> (SM50Y)
• Web	:	<u>1,550 x 9</u>	<u>139.5</u> (SM50Y)
 Lower flange 	:	<u>440</u> x 19	<u>83.6</u> (SM50Y)

262.3

TOTAL

- Sectional area and moment of inertia of area:

	Sectional Area	Moment of Inertia
	(cm ²)	of Area (cm [±])
Concrete section :	AC = 4.105	IC = 110.832
Steel girder section		IS = 987.001
• Composite section :	$AV ={849}$	IV = 3.032.152

- Geometrical moment of area of concrete (AC x DC)......QC = 134,244 cm³

- Distance and section modulus (See Fig. 4.4.7):

Distan	<u>ce (cm)</u>	Section Mo	dulus (cm ²)
D =	105.8	WSU =	10,703
DS =	73.1	WSL =	14.936
DC ==	32.7	WVU =	<u>158,724</u>
YSU =	92.2	WVL =	21,783
YSL =	66.1		
¥VU ≕	19.1		
YYL =	139.2		
YVC =	41.7		

- Axial force

• Due to drying schrinkageNSH =	20.8	ton
• Due to creepNCR =	3.3	ion
Due to temperature changeNTM =	15.1	ton

- Stress (kg/cm2): Upper Lower Concrete Flange Flange Base Slab - 1,702 1,220 (1) Stress before compounding • - 32.4 - 104 758 (2) Stress after compounding (3) Stress due to drying schrinkage 4.1 - 284 67 (4) Stress due to creep 1.7 - 44 10 · 205 48 (5) Stress due to temperature difference - 1.6 . 1.702 1.220 (6) = (1)Allowable stress . 1,765 2,625 - 32.4 (7) = (1) + (2)- 1,806 1,977 - 77.1 2.100 Allowable stress 2,100 - 26.6 2,055 (8) = (1) + (2) + (3) + (4)- 2,134 - 77.1 Allowable stress - 2,415 2,100 - 2.338 2,103 (9) = (1) + (2) + (3) + (4) + (5)- 28.2 - 88.7 2,730 2,415 Allowable stress

Table 4.1.26 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 1 MAIN GIRDER, NO. 3 SECTION)

	·			
•	Bending moment before compounding	4S =	101.89	i•m
•	Bending moment after compounding	fV =	<u>90.91</u>	ŀm
•	Bending moment by dead load after compounding	ſVD≃	22.85	ŀ'n
•	Base slab thickness	<u>`S =</u>	18.0	cm
*	Haunch	IH =	6.0	cm
-	Effective base slab widthE	3S ==	<u>228.1</u>	cm
•	Distance between fixed points of flange	, ≈	<u>490.1</u>	cm
-	Section and sectional area of steel girder:	· .		

• Upper flange • Web • Lower flange	:	$\frac{\text{Section (mm)}}{230 \times 11}$ $\frac{230 \times 11}{1.550 \times -9}$ $\frac{280 \times 11}{11}$	<u>Sectional Area (cm²)</u> <u>25.3</u> (SM50Y) <u>139.5</u> (SM50Y) <u>30.8</u> (SM50Y)
TOTAL.			<u>195.6</u>

- Sectional area and moment of inertia of area:

	Sectional Area	Moment of Inertia
	<u>(cm²)</u>	of Area (cm ⁴)
 Concrete section 	AC = 4,105	IC = 110,832
 Steel girder section 	AS = 195.6	IS = 620.099
 Composite section 	$: AV ={782}$	IV = 1.951,186

- Geometrical moment of area of concrete (AC x DC)......QC = <u>97,226</u> cm³

- Distance and section modulus (See Fig. 4.4.7):

Distance (cm)		Section Modulus (cm ²)		
D =	94.7	WSU =	7;675	
DS =	71.0	WSL =	8,116	
DC =	23.7	WVU ==	199.399	
YSU =	80.8	WVL=	13,236	
YSL =	76.4			
YYÜ =	9.8			
YVL=	147.4			
YVC =	32.7			

- Axial force

• Due to drying schrinkageNSH =	17.1	ton
• Due to creepNCR =	2.5	ton
• Due to temperature changeNTM =	<u>12.0</u>	ton

- Stress (kg/cm²):

Stress (kg/cm ²):	Concrete Base Slab	Upper Flange	Lower Flange
(1) Stress before compounding	-	- 1,328	1,255
(2) Stress after compounding	- 21.8	- 46	687
(3) Stress due to drying schrinkage	3.1	- 297	110
(4) Stress due to creep	1.9	- 42	16
(5) Stress due to temperature difference	0.6	- 207	75
(6) = (1) Allowable stress		<u>- 1,328</u> <u>- 1,412</u>	1.255
(7) = (1) + (2) Allowable stress	- 21.8	- 1,373	<u>1,942</u> 2,100
(8) = (1) + (2) + (3) + (4) Allowable stress	- 16.8	- 1,712 - 2,415	2,068
(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	<u>- 17.5</u> - 88.7	- 1.918 - 2.730	2,144

Table 4.1.27 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 2. MAIN GIRDER, NO. 1. SECTION)

		<u>99,73</u>	t•m
٠	Bending moment after compoundingMV =	92.14	t•m
-	Bending moment by dead load after compounding $MVD =$	10.68	۱۰m
-	Base slab thicknessTS ==	18.0	ċm
-	HaunchHH =	2.2	cm
-	Effective base slab widthBS =	<u>263.9</u>	cm
•	Distance between fixed points of flangeP =	<u>490.0</u>	cm
-	Section and sectional area of steel girder:		

• Upper flange • Web • Lower flange	:	<u>Section (mm)</u> <u>230</u> x 10 <u>1,550</u> x 9 <u>280</u> x 11	<u>Sectional Area (cm²)</u> <u>23.0</u> (SM50Y) <u>139.5</u> (SM50Y) <u>30.8</u> (SM50Y)
TOTAL			<u>193.3</u>

- Sectional area and moment of inertia of area:

	Sectional Area	Moment of Inertia
	<u>(cm²)</u>	<u>of Area (cm²)</u>
 Concrete section 	: AC = 4.750	IC = 128,255
 Steel girder section 	AS = 193.3	IS = 604,926
 Composite section 	: AV = 872	IV = 2.114.354

- Geometrical moment of area of concrete (AC x DC)......QC = 104,844 cm³ - Distance and section modulus (See Fig. 4.4.7):

20101100	-			(0000.0	
		Distance	1.	· \	

Distance (cm)		Section Modulus (cm ²)		
D ==	99.6	WSU =	7,408	
DS =	77.5	WSL =	8,018	
DC.=	_22.1_	WVU≈	506.868	
YSU =	81.7	WVL=	13,826	
YSL =	75.4			
YVU =	4.2			
YVL =	152.9			
YVC =	31.1			

Axial force

_

Due to drying schrinkage	1.0	ton ton ton
Stress (kg/cm ²):		1

	Concrete Base Slab	Upper Flange	Lower Flange
(1) Stress before compounding	-	- 1,346	1,244
(2) Stress after compounding	- 19.3	- 18	666
(3) Stress due to drying schrinkage	2.3	- 301	116
(4) Stress due to creep	0.7	- 17	6
(5) Stress due to temperature difference	- 0.1	- 204	77
(6) = (1) Allowable stress		- 1,346	<u>1.244</u> 2.625
(7) = (1) + (2) Allowable stress	- 19.3	- 1.364 - 2,100	<u> </u>
(8) = (1) + (2) + (3) + (4) Allowable stress	<u> </u>	- 1,682 - 2,415	2.033
(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	<u>- 16.4</u> <u>- 88.7</u>	<u>- 1,886</u> <u>- 2,730</u>	2,109

Table 4.1.28 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 2 MAIN GIRDER, NO. 2 SECTION)

- Bending moment before compoundingMS =	184,64	t•m
- Bending moment after compoundingMV =	174.66	t•m
- Bending moment by dead load after compoundingMVD =	46.45	∶t•m
Base slab thicknessTS =	18.0	cm
- HaunchHH =	9.9	¢m
- Effective base slab widthBS =	<u>263.9</u>	ċm
- Distance between fixed points of flangeP =	<u>490.0</u>	cm
- Section and sectional area of steel girder:		

		Section	<u>(mm)</u>	<u>Sectional</u>	Area (cm ²)
 Upper flange 		280	x <u>14</u>	39.2	(03,001)
• Web	:	1,550	<u>x 9</u>	<u>139.5</u>	(SM50Y)
 Lower flange 	:	450	x <u>19</u>	85.5	(SM50Y)

<u>264.2</u>

TOTAL - Sectional area and moment of inertia of area:

a ga a	Sectional Area	Moment of Inertia
Concrete section	AC = 4.750	$IC = \frac{\text{of Area}(\text{cm}^4)}{128,255}$
Steel girder section	AC = 4.750 : AS = 264.2	IC = 128,255 IS = 995,003
 Composite section 	: AV = 943	IV = 3.322.056

- Geometrical moment of area of concrete (AC x DC).....QC = 146,672 cm³ - Distance and section modulus (See Fig. 4.4.7):

Distan	ice (¢m)	Section Mc	dulus (cm ³)
D ==	110.2	WSU =	10,735
DS =	79.3	WSL =	15,164
DC =	30.9	WVU =	<u>248,339</u>
YSU =	92.7	WVL=	22.923
YSL =	65.6		
YVU =	13.4		
YVL≕	144.9		
YVC =	39.9		

- Axial force

 Due to drying schrinkageNSH = 	20.7	ion
• Due to creepNCR =	4.7	ton
Due to temperature changeNTM =	14,6	ion

- Stress (kg/cm²):

Stress (kg/cm²):	Concrete Base Slab	Upper Flange	Lower Flange
(1) Stress before compounding	<u> </u>	- 1,720	1,218
(2) Stress after compounding	- 30.0	- 70	762
(3) Stress due to drying schrinkage	3.4	- 289	
(4) Stress due to creep	2.4	- 64	16
(5) Stress due to temperature difference	- 1.0	203	49
(6) = (1) Allowable stress		<u>- 1,720</u> - 1,765	1.218
(7) = (1) + (2) Allowable stress	- 30.0	- 1,790	<u>1.980</u> 2,100
(8) = (1) + (2) + (3) + (4) Allowable stress	- 24.1	- 2,143	2,066
(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	<u>- 25.2</u> - 88.7	- 2.346	2.115

Table 4.1.29 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 2 MAIN GIRDER, NO. 3 SECTION)

- Bending mom	ent before compounding	MS =	.99.75	t•m
- Bending mom	ent after compounding	MV =	92.16	t•m
- Bending mom	ent by dead load after compounding	MVD =	10.68	t+m
- Base slab thick	kness	TS ==	18.0	cm
- Haunch		HH =	99	cm
- Effective base	slab width	BS =	263.9	cm
- Distance betw	een fixed points of flange	P =	<u>490.0</u>	cm
- Section and se	ctional area of steel girder:			
	Section ()	Continu	1 1	

• Upper flange • Web • Lower flange	 $\begin{array}{r} \underline{\text{Section (mm)}}\\ \underline{230} \times \underline{10}\\ \underline{1.550} \times \underline{9}\\ \underline{280} \times \underline{11} \end{array}$	<u>Sectional Area (cm²)</u> <u>23.0</u> (SM50Y) <u>139.5</u> (SM50Y) <u>30.8</u> (SM50Y)
TOTAL		<u>193.3</u>

- Sectional area and moment of inertia of area:

. 1	Sectional Area	Moment of Inertia
	<u>(cm²)</u>	of Area (cm ⁴)
 Concrete section 	AC = 4.750	IC = 128,255
 Steel girder section 	AS = 193.3	IS = <u>604.926</u>
 Composite section 	: AV = 872	IV = 2.114.354

- Geometrical moment of area of concrete (AC x DC)......QC = <u>104,844</u> cm³

- Distance and section modulus (See Fig. 4.4.7):

Distance (cm)		Section Mo	<u>dulus (cm²)</u>
D =	99.6	WSU =	7,408
DS =	77.5	WSL =	8,018
DC =	22.1	WVU =	506.868
YSU =	81.7	WVL =	13,826
YSL =	75.4		
YYU =	4.2		
YVL =	152.9		
YVC =	31.1		

- Axial force

_

Stress (kg/cm²):	Concrete	Upper	Lower
	Base Slab	Flange	Flange
(1) Stress before compounding	-	- 1,346	1,244
(2) Stress after compounding	- 19.3	- 18	667
(3) Stress due to drying schrinkage	2.3	- 301	116
(4) Stress due to creep	0.7	- 17	6
(5) Stress due to temperature difference	- 0.1	- 204	
(6) = (1)		- 1,346	1.244
Allowable stress	-	- 1,379	2.625
(7) = (1) + (2)	- 19.3	- 1,365	1.911
Allowable stress	- 77.1	- 2.100	2.100
(8) = (1) + (2) + (3) + (4)	- 16.3	- 1.682	2,033
Allowable stress	- 77.1	- 2.415	2,100
(9) = (1) + (2) + (3) + (4) + (5)	- 16.4	- 1,886	2,110
Allowable stress	- 88.7	- 2,730	2,415

Table 4.1.30 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 3 MAIN GIRDER, NO. 1 SECTION)

	•			
-	Bending moment before compounding	.MS =	101.88	t•m
•	Bending moment after compounding	.MV =	<u>90.90</u>	t•m
÷	Bending moment by dead load after compounding	.MVD =	22.84	t•m
•	Base slab thickness	.TS =	18.0	cm
-	Haunch	.HH =	_6.0	cm
-	Effective base slab width	.BS =	228.1	стп
-	Distance between fixed points of flange	.P =	<u>490.0</u>	cm
-	Section and sectional area of steel girder:		. "	

• Upper flange • Web • Lower flange	:	$\begin{array}{r} \underline{\text{Section (mm)}} \\ \underline{230 \times 11} \\ \underline{1.550 \times 9} \\ \underline{280 \times 11} \end{array}$	<u>Sectional Area (cm²)</u> <u>25.3</u> (SM50Y) <u>139.5</u> (SM50Y) <u>30.8</u> (SM50Y)
TOTAL			<u>195.6</u>

- Sectional area and moment of inertia of area:

	Sectional Area	Moment of Inertia
	<u>(cm²)</u>	of Area (cm ⁴)
 Concrete section 		IC = 110,832
 Steel girder section 	: AS = 195.6	IS = <u>620.099</u>
 Composite section 	$: AV ={782}$	IV = <u>1,951,186</u>

 Geometrical moment of area of concrete (AC x DC)......QC = <u>97,226</u> cm³

- Distance and section modulus (See Fig. 4.4.7):

Distan	ce (cm)	Section Mc	dulus (cm ³)
D =	94.7	WSU =	7,675
DS =		WSL =	8,116
DC =	23.7	WVU =	<u>199.399</u>
YSU =	80.8	WVL=	13,236
YSL =	76.4		
YVU =	9.8		
YVL=	147.4		
YVC =	32.7		

- Axial force

Due to drying schrinkage	k = 2.5	ton ton ton
--------------------------	---------	-------------------

mass (Valem2)

Stress (kg/cm²):	Concrete Base Slab	Upper Flange	Lower Flange
(1) Stress before compounding	*	- 1,327	1,255
(2) Stress after compounding	- 21.8	- 46	.687
(3) Stress due to drying schrinkage	3.1	- 297	110
(4) Stress due to creep	1.9	- 42	16
(5) Stress due to temperature difference	- 0.6	- 207	
(6) = (1) Allowable stress		- 1.327	1,255
(7) = (1) + (2) Allowable stress	- 21.8	<u> </u>	1,942
(8) = (1) + (2) + (3) + (4) Allowable stress	- 16.8	- 1.712	2,068
(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	- 17.5 - 88.7	<u> </u>	2,143 2.415

Table 4.1.31 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 3 MAIN GIRDER, NO. 2 SECTION)

-	Bending moment before compoundingMS =	182.18	t•m
-	Bending moment after compoundingMV =	165.06	t•m
-	Bending moment by dead load after compoundingMVD =	27.76	t•m
	Base slab thicknessTS =	18.0	cm
-	HaunchHH =	6.0	cm
-	Effective base slab widthBS =	228.1	cm
-	Distance between fixed points of flangeP =	<u>490.0</u>	cm
	Section and sectional area of steel girder:		

Section and sectional area of steel girder:

1		Section (mm)	Sectional Area (cm ²)
Upper flange Web	:	<u>280 x 14</u>	<u>39,2</u> (\$M50Y)
	:	<u>1.550 x 9</u>	<u>139.5</u> (SM50Y)
 Lower flange 	:	<u>440 x 19</u>	<u>83.6</u> (SM50Y)
TOTAL			<u>262.3</u>

- Sectional area and moment of inertia of area:

1	Sectional Area	Moment of Inertia
and the second second second second second second second second second second second second second second second	(cm ²)	of Area (cm ⁴)
Concrete section : AC		IC = 110,832
 Steel girder section : AS 	= <u>262.3</u>	IS = <u>987.001</u>
• Composite section : AV	' = 849	IV = 3.032.152

- Geometrical moment of area of concrete (AC x DC)......QC = 134.244 cm³

- Distance and section modulus (See Fig. 4.4.7):

Distance (cm)		Section Mo	<u>dulus (cm²)</u>
D =	105.8	WSU =	10,703
DS =	73.1	WSL =	14,936
DC =	32.7	WVU =	158,724
YSU =	92.2	WYL =	21,783
YSL =	66.1	1	
YVU =	19.1		
YVL =	<u>139.2</u>		1
YVC =	41.7		

- Axial force			
Due to drying schrinkage Due to creep Due to temperature change		NCR = 3.3	ton ton ton
- Stress (kg/cm²):	Concrete Base Slab	Upper Flange	Lower Flange
(1) Stress before compounding	• *	- 1,702	1,220
(2) Stress after compounding	- 32.4	- 104	758
(3) Stress due to drying schrinkage	4.1	- 284	67
(4) Stress due to creep	1.7	- 44	10
(5) Stress due to temperature difference	- 1.6	- 205	48
(6) = (1) Allowable stress		- 1,702 - 1,765	<u> 1,220</u> 2,625
(7) = (1) + (2) Allowable stress	- 32.4	- 1,806	1.977
(8) = (1) + (2) + (3) + (4) Allowable stress	26.6	<u>- 2,134</u> <u>- 2,415</u>	2,055
(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	- 28.2	- 2.338 - 2,730	2,103

Table 4.1.32 STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 3_MAIN GIRDER, NO. 3_SECTION)

 Bending moment before compoundingMS = 	101.89	[*m	
- Bending moment after compoundingMV =	90.91	t•m	
- Bending moment by dead load after compoundingMVD =	22.85	ŀņ.	
- Base slab thicknessTS =	18.0	сm	
- HaunchHH =	6.0	cm	
- Effective base slab widthBS =	228.1	cm	
 Distance between fixed points of flangeP = 	<u>490.1</u>	cm.	
- Section and sectional area of steel girder:			

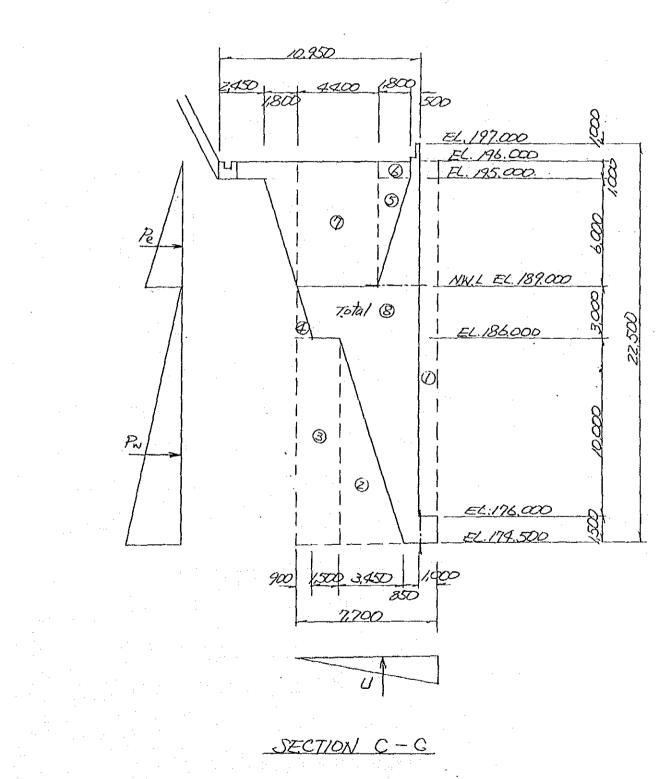
 Upper flange Web Lower flange 	:	$\frac{3600 \text{ (mm)}}{230 \text{ x}}$ $\frac{230 \text{ x}}{11}$ $\frac{1.550 \text{ x}}{280 \text{ x}}$ $\frac{280 \text{ x}}{11}$	<u>Sectional Area (cm²)</u> <u>25.3</u> (SM50Y) <u>139.5</u> (SM50Y) <u>30.8</u> (SM50Y)
TOTAL			<u>195.6</u>

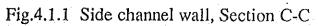
- Sectional area and moment of inertia of area:

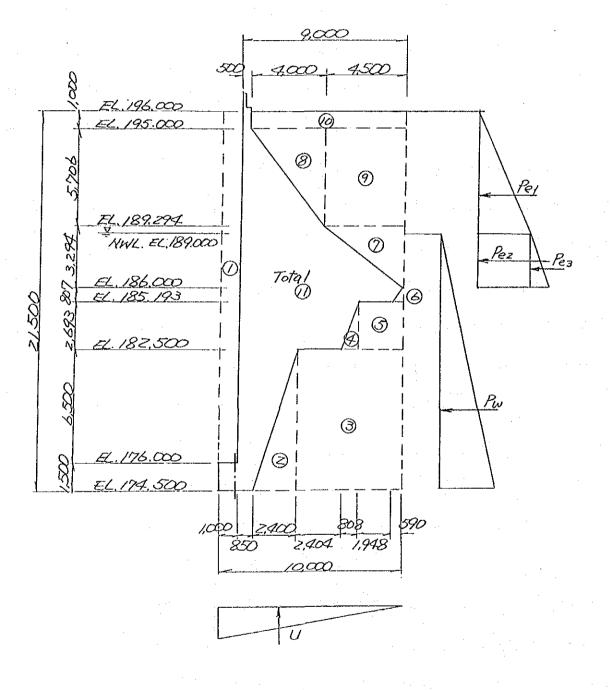
and the part of the	Sectional Area	Moment of Inertia
 Concrete section Steel girder section Composite section 	$\begin{array}{r} (cm^{2})\\ AC = 4.105\\ AS = 195.6\\ AV = 782 \end{array}$	$\begin{array}{r} \underline{\text{of Ares (cm^{\pm})}} \\ \text{IC} = \underline{110.832} \\ \text{IS} = \underline{620.099} \\ \text{IV} = \underline{1.951.186} \end{array}$

- Geometrical moment of area of concrete (AC x DC).....QC = 97,226 cm³

- Distance and section modulus (See Fig. 4.4.7):

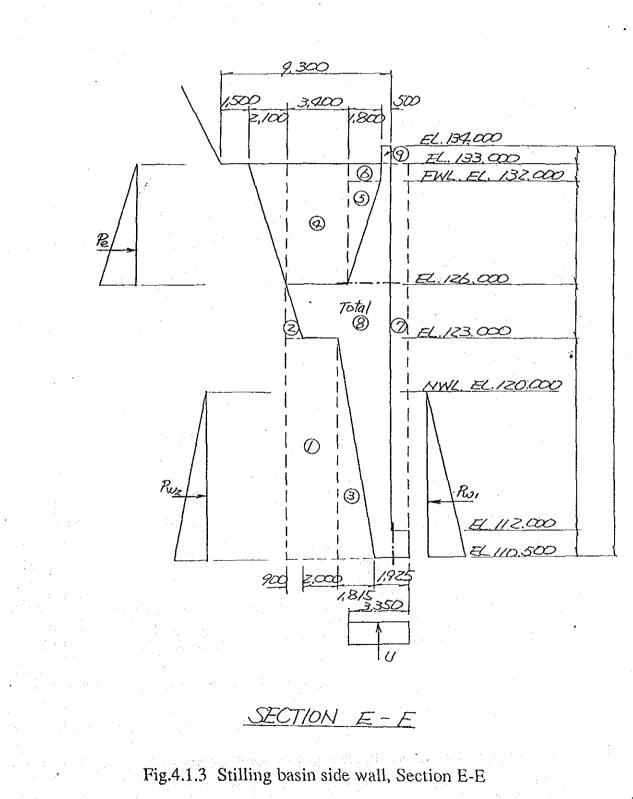

Distan	<u>ce (cm)</u>	Section Mc	dulus (cm ²)
D =	94.7	WSU =	7,675
DS ≈	71.0	WSL =	8.116
DC =	23.7	WVU≠	<u>199.399</u>
YSU =	80.8	WVL=	13,236
YSL =	76.4		
YVU =	9.8		
YVL =	147.4		
YVC =	32.7		

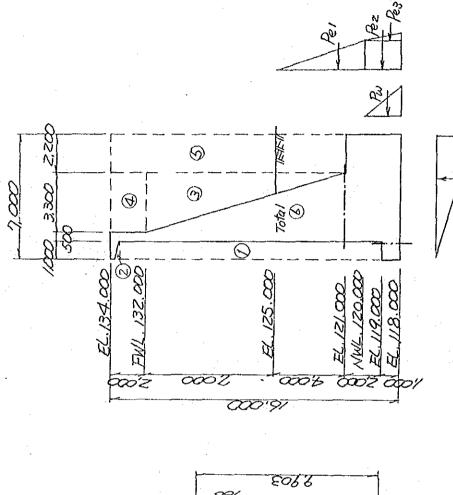

- Axial force


• Due to drying schrinkageNSH =	17.1	ton
• Due to creepNCR =	2.5	ton
Due to temperature changeNTM =	12.0	ton

- Stress (kg/cm²):

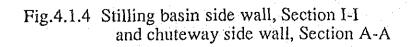
	Concrete Base Slab	Upper Flange	Lower Flange
(1) Stress before compounding		- 1,328	1,255
(2) Stress after compounding	- 21.8	- 46	687
(3) Stress due to drying schrinkage	3.1	- 297	110
(4) Stress due to creep	1.9	- 42	16
(5) Stress due to temperature difference	- 0.6	- 207	75
(6) = (1) Allowable stress	- - -	- 1,328	<u> </u>
(7) = (1) + (2) Allowable stress	- 21.8 - 77.1	- 1.373	<u>1.942</u> 2,100
(8) = (1) + (2) + (3) + (4) Allowable stress	- 16.8	<u>-1,712</u> -2,415	2,068
(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	- 17.5 - 88.7	- 1.918 - 2.730	2,144

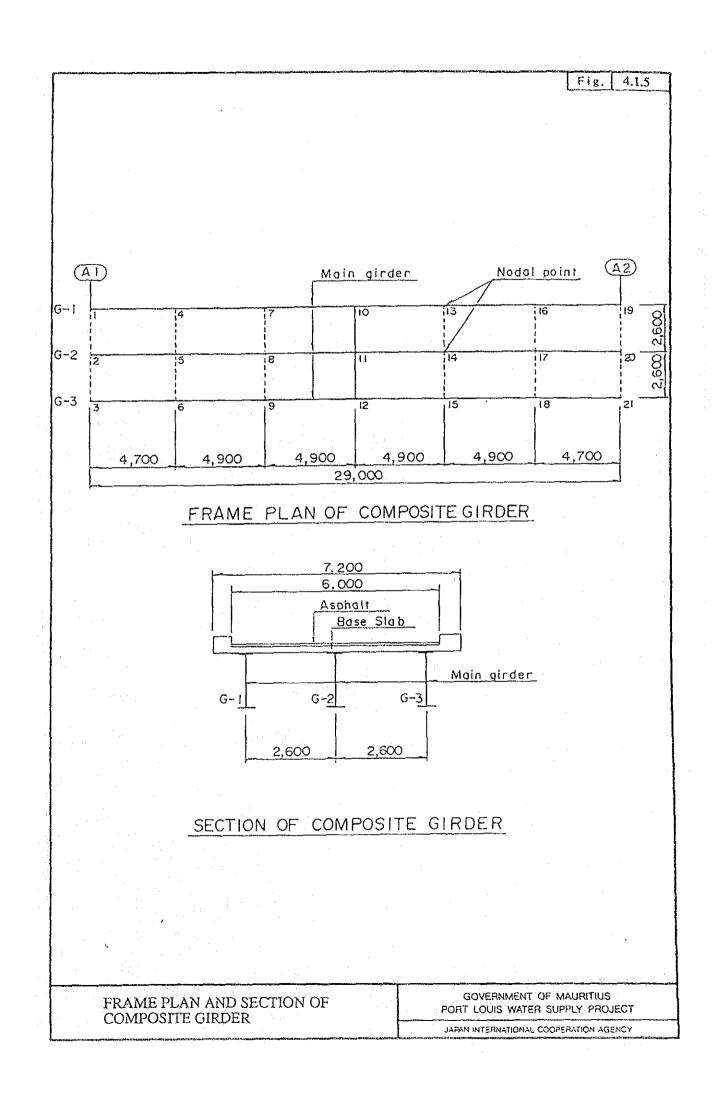


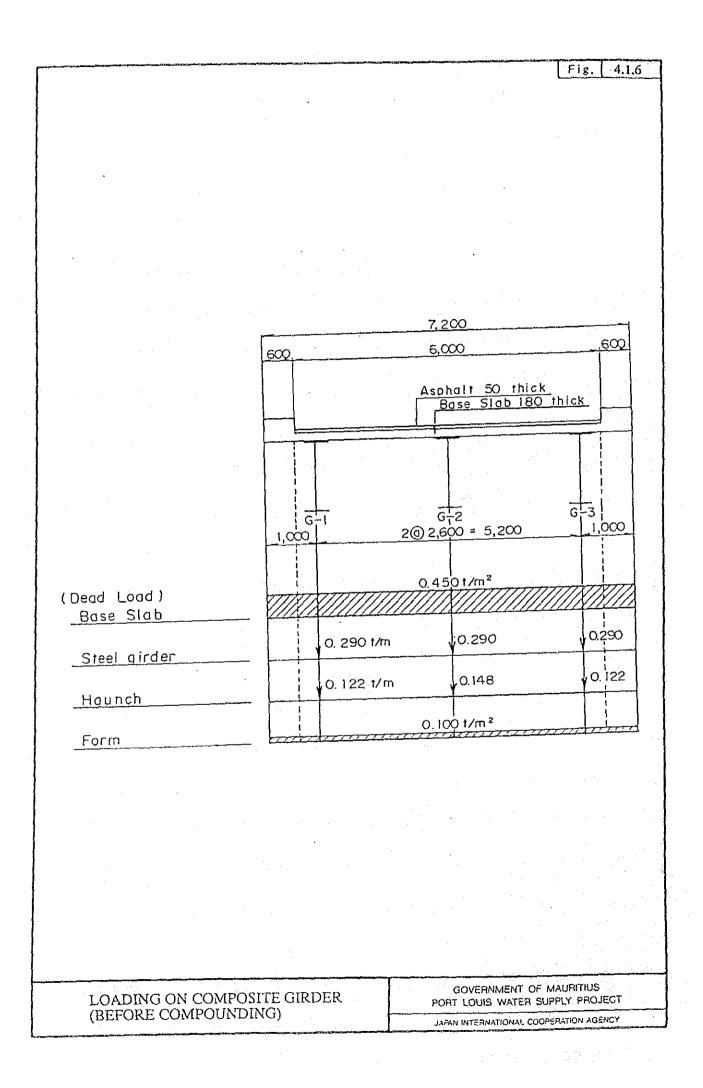


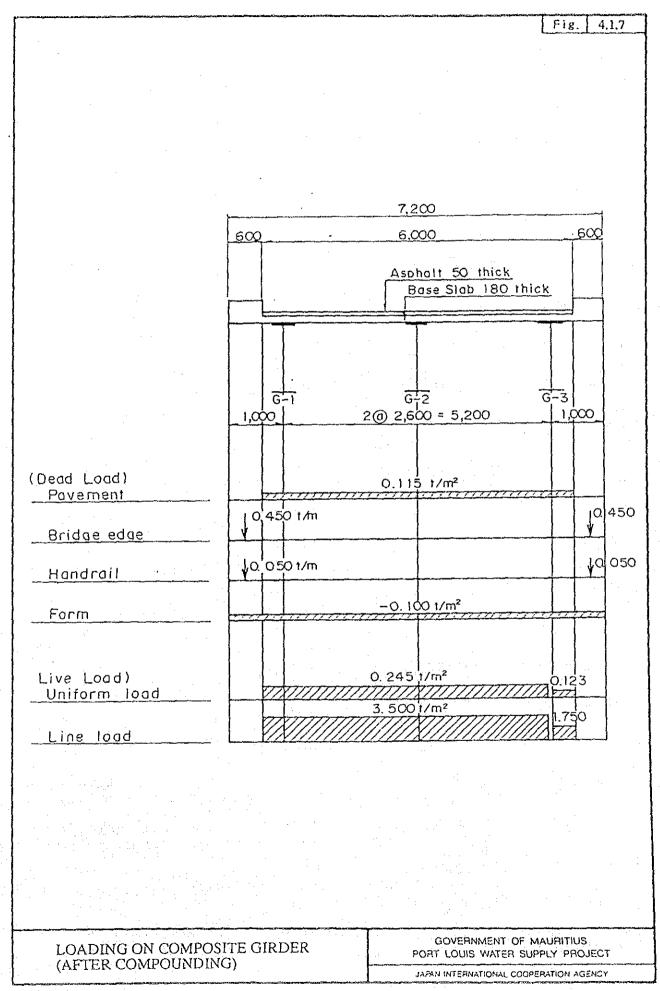
SECTION G-G

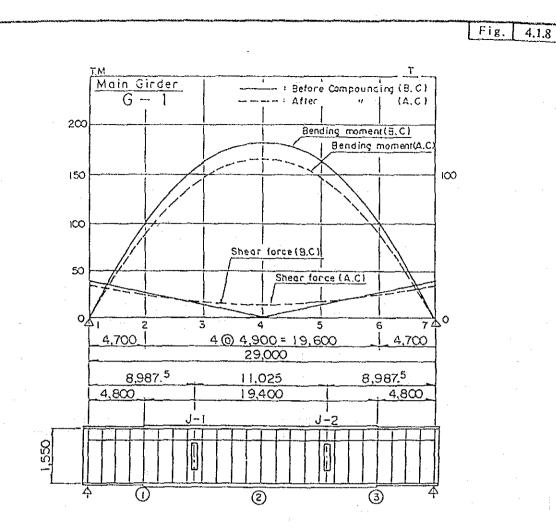
Fig.4.1.2 Transition wall, Section G-G

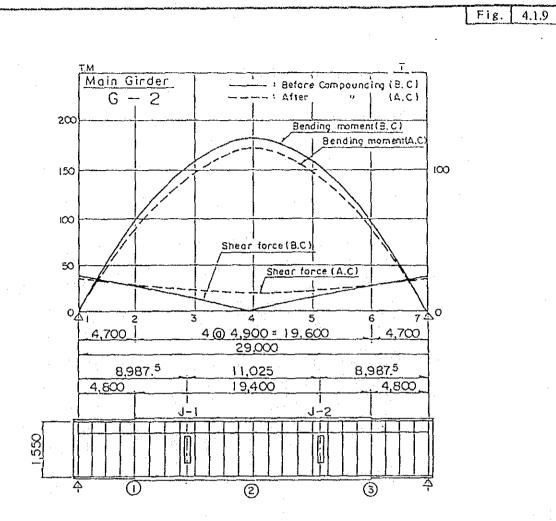







8.555 m

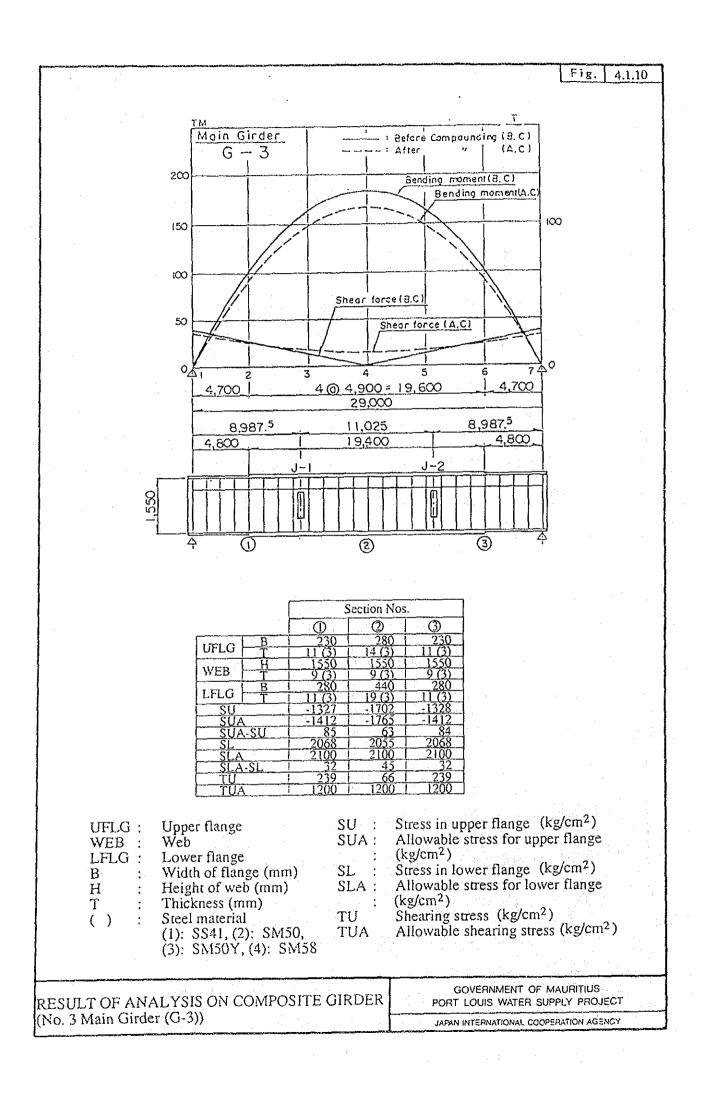

NO.

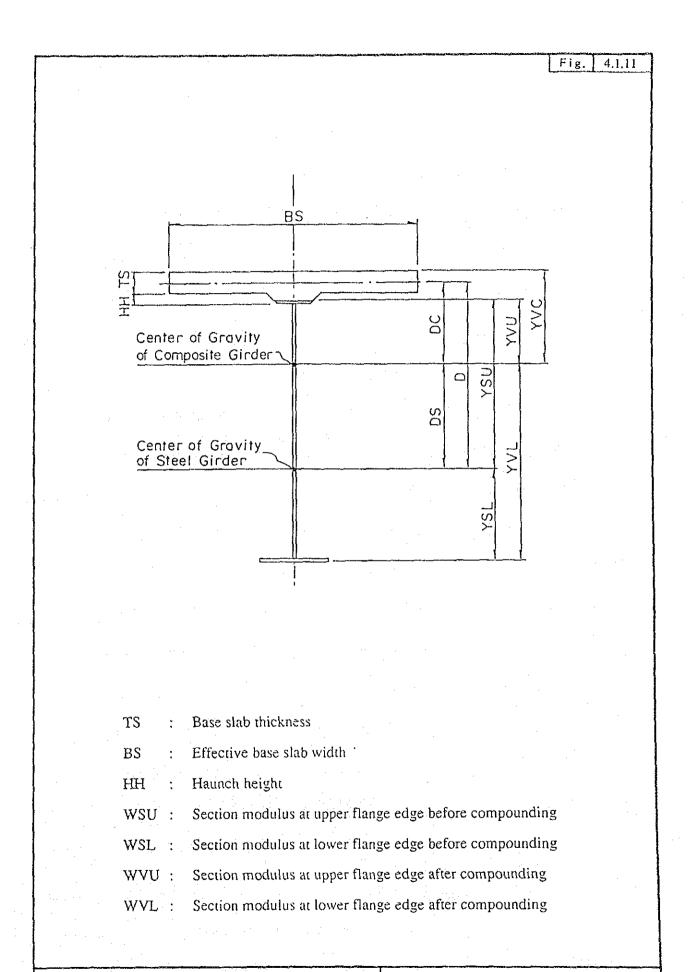


			·	
		Section Nos.		
		0	2	3
ITTIC	В	230	280	230
UFLG	T	11(3)	14 (3)	11(3)
NUED	H	1550	1550	1550
WEB	Ť	9(3)	9(3)	9(3)
ITC	B	. 280	440	280
LFLG	T	11(3)	19 (3)	11(3)
SU I		-1327	-1702	-1328
SUA I		-1412	-1765 1	-1412
SUA-SU i		85 1	63 1	84
<u>I</u>		2068	2055	2068
SLA I		2100	2100	2100
SLA-SL I		32	45 1	32
TU !		239	63 1	239
TUA		1200	1200	1200

UFLG WEB LFLG B H T ()	:	Upper flange Web Lower flange Width of flange (mm) Height of web (mm) Thickness (mm) Steel material (1): SS41, (2): SM50, (3): SM50Y, (4): SM58	: SL :	Stress in upper flange (kg/cm ²) Allowable stress for upper flange (kg/cm ²) Stress in lower flange (kg/cm ²) Allowable stress for lower flange (kg/cm ²) Shearing stress (kg/cm ²) Allowable shearing stress (kg/cm ²)
		۵۰٬۰ <u>۰۰ و ۲۰۰۰ و ۲۰۰۰ و ۲۰۰۰ و ۲۰۰۰ و ۲۰۰۰ و ۲۰</u> ۰۰ و ۲۰۰۰		

RESULT OF ANALYSIS ON COMPOSITE GIRDER	GOVERNMENT OF MAURITIUS PORT LOUIS WATER SUPPLY PROJECT
(No. 1 Main Girder (G-1))	JAPAN INTERNATIONAL COOPERATION AGENCY

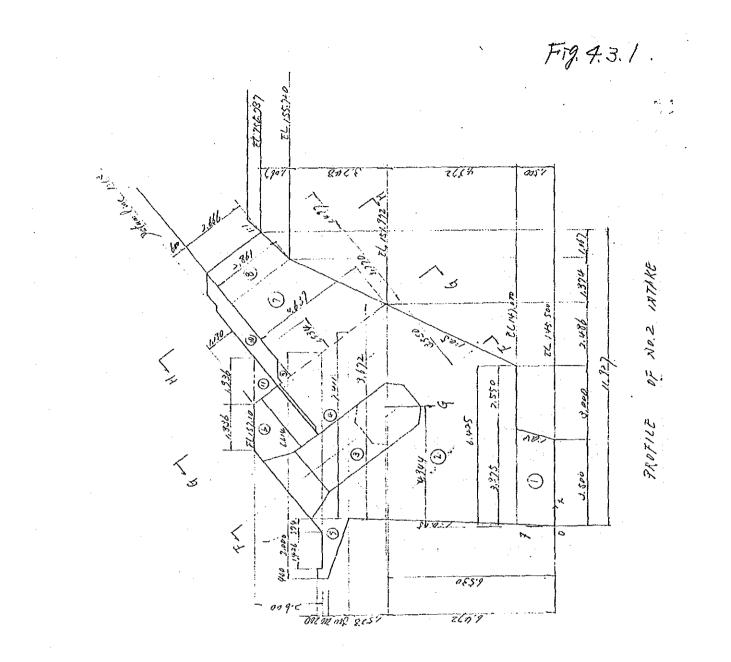


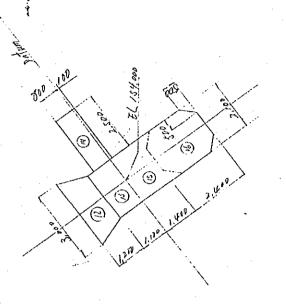

	[Section Nos.		
		0	0	3
ITTO	B	230	280	230
UFLG	T	10 (3)	14 (3)	10 (3)
11/20	H	1550	1550	1550_
WEB	T_I	9(3)	9 (3) 1	9(3)
TTO	B_	280 1	440	280
LFLG	T	$\overline{11}(3)$	19(3)1	11 (3)
SU		-1346_1	-1720	-1346
SUA		1379	1765	-1379
SUA-SU		33	45	33
SL		2033 i	2066 1	2033
SLA		2100	2100	2100
SLA-SL		67	34	67
TU		252	92	252
TUA		1200	1200 1	1200

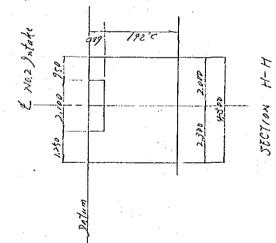
and the second second second second second second second second second second second second second second second	1. :	a sa <u>a</u> fa	0 1 33	
UFLG : Upper f	lange	SU :	Stress in upper flange (kg/cm ²)	
WEB : Web		SUA :	Allowable stress for upper flange	
LFLG : Lower f	lange		(kg/cm^2)	
B : Width o	of flange (mm)	SL :	Stress in lower flange (kg/cm ²)	
H : Height of	of web (mm)	SLA :	Allowable stress for lower flange	
T : Thickne	ess (mm)		(kg/cm ²)	
() : Steel m		TU	Shearing stress (kg/cm ²)	
(1): SS	41, (2): SM50,	TUA	Allowable shearing stress (kg/cm ²)	
(3): SM	150Y, (4): SM58	· · ·		
POINT OF ANALYSIS		GIRDER	GOVERNMENT OF MAURITIUS	

RESULT OF ANALYSIS ON COMPOSITE GIRDER (No. 2 Main Girder (G-2))

PORT LOUIS WATER SUPPLY PROJECT JAPAN INTERNATIONAL COOPERATION AGENCY

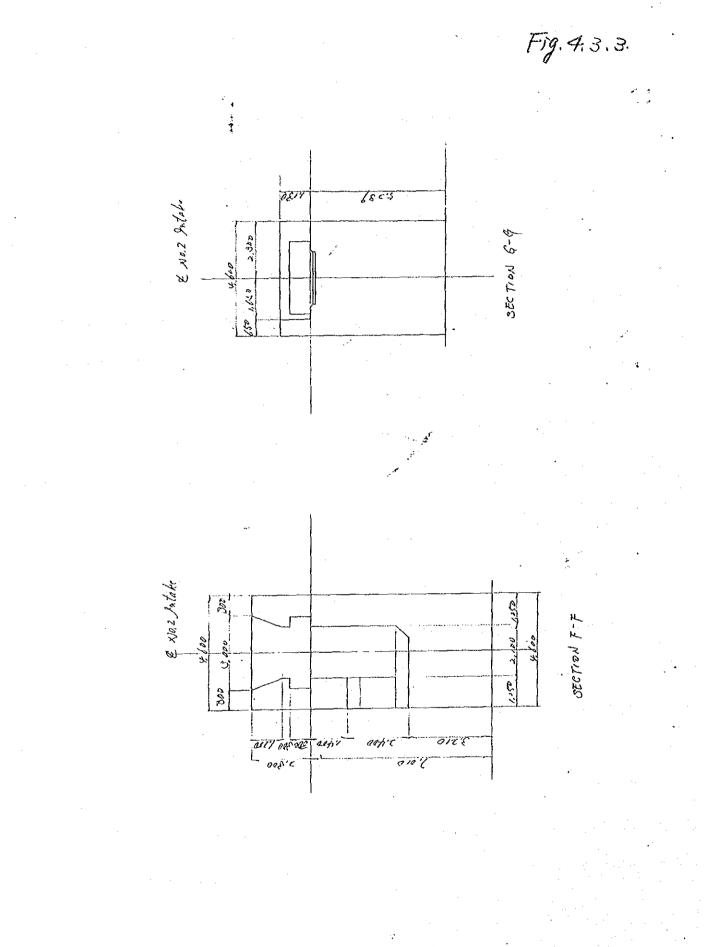




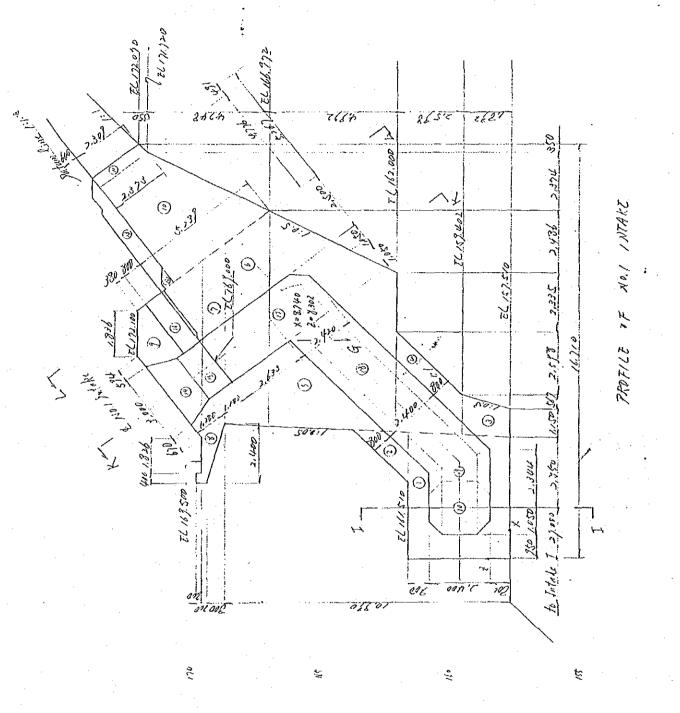

SYMBOLS OF COMPOSITE GIRDER

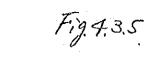
GOVERNMENT OF MAURITIUS PORT LOUIS WATER SUPPLY PROJECT

JAPAN INTERNATIONAL COOPERATION AGENCY



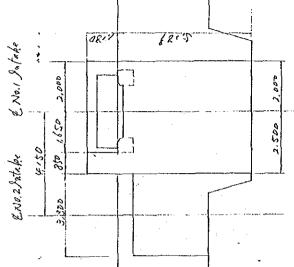
τ.»

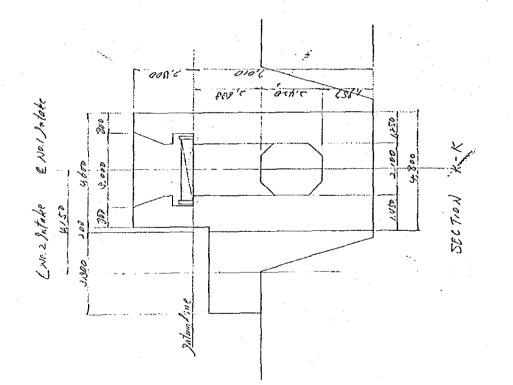

Portion



۰ ـ ـ ـ ۲ پو

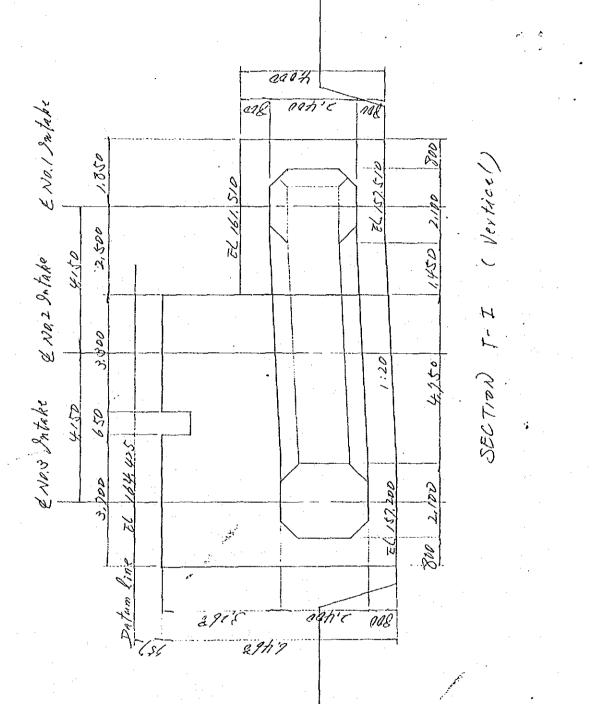
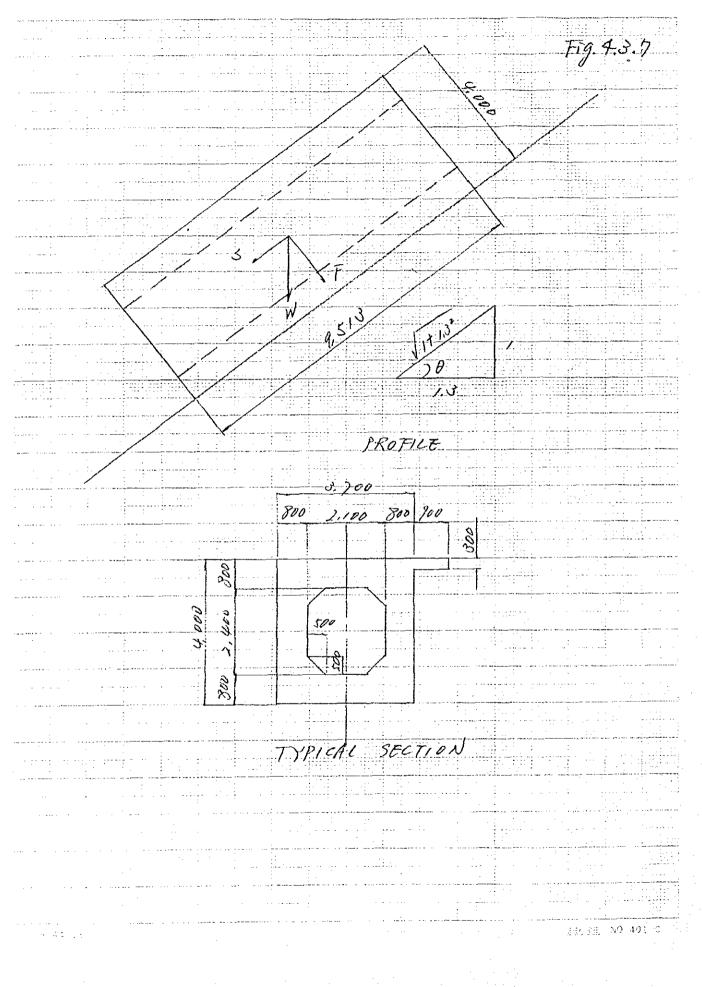
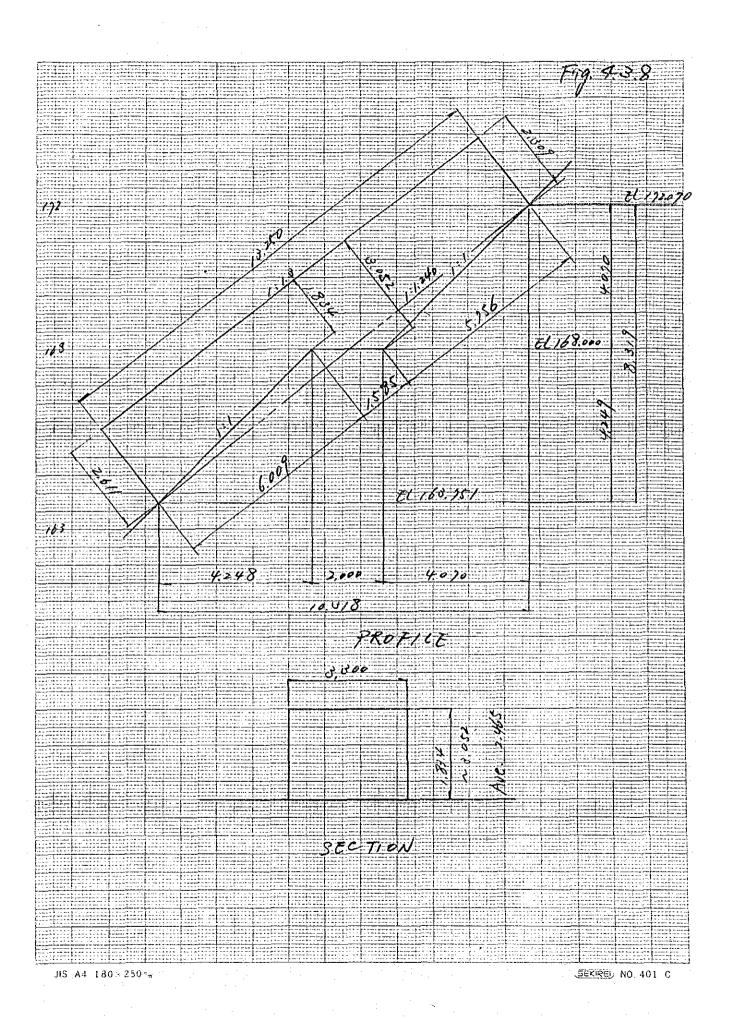
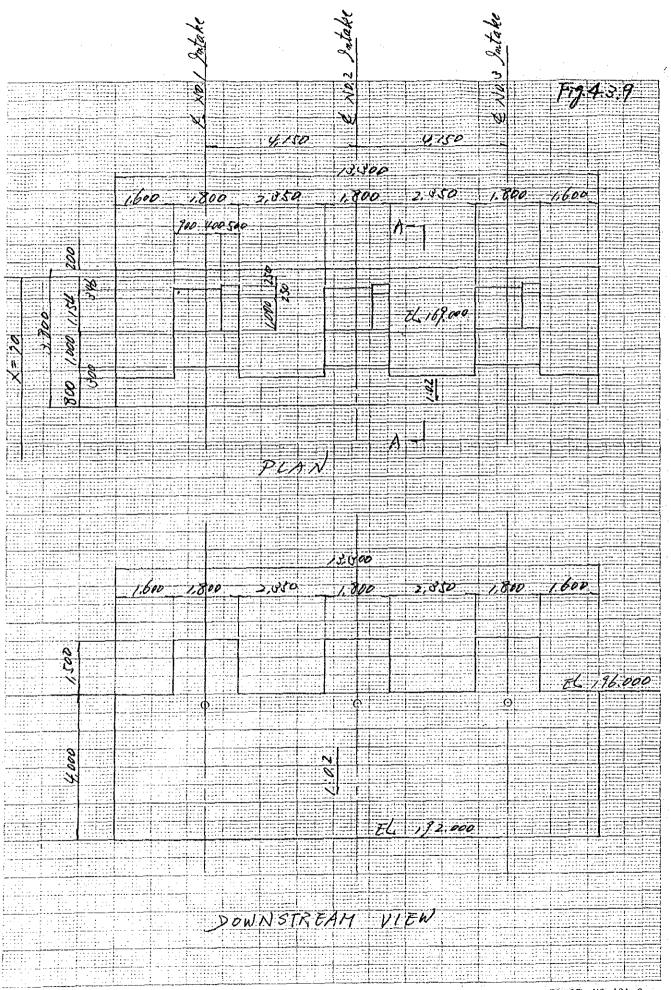
>

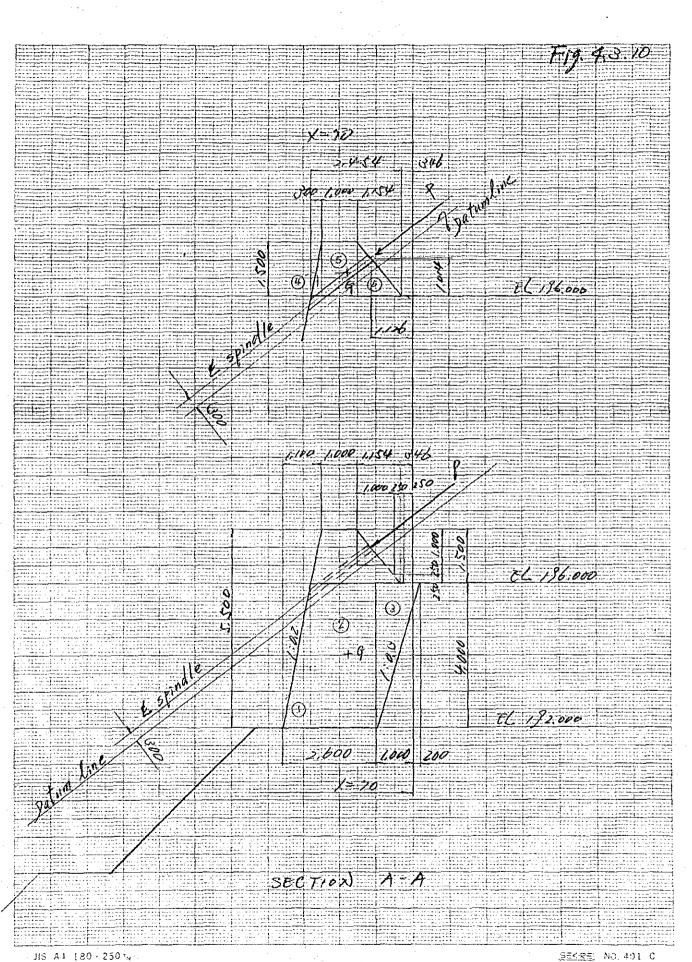

Fig. 4.3.4



フーフ

SECTION


Fig. 4.3.6

SEKIRE NO. 401 C

PART V STRESS CALCULATION

PART V. STRESS CALCULATION

5.1 Main Dam Gallery

5.1.1 Design Sections

Dimensions of the design section of the gallery are as shown in Fig. 5.1.1.

5.1.2 Design Values

(1) Unit weight

Reinforced concrete	$r_c = 2.40 t/m^3$
Water	$r_{w} = 1.0 \text{ t/m}^{3}$
Core material (embankment)	$r_{wet} = 1.80 t/m^3$ (wet condition)
· · ·	$r_{sat} = 1.72 \text{ t/m}^3$ (saturated con.)

(2) Elastic modulus and Poisson's ratio

:	Elastic modulus (t/m ²)	Poisson's ratio
Concrete	2.55 x 10 ⁶	0.2
Rock	5.5 x 10 ⁵	0.3

(3) Allowable stress

•	Compression	Tension	Shearing
Concrete	70 kg/cm ²	0 kg/cm^2	8 kg/cm^2
Steel bar	• •	1,800 kg/cm ²	1,800 kg/cm ²

5.1.3 Loading Conditions

It is schemed that the height of the dam will be risen when water demand increase in future. Accordingly structure analyses are carried out in the condition that the dam is filled up to the final crest elevation of EL, 215.0 m.

Under the above fill, the following two loading cases are adopted as design load conditions. (See Fig. 5.1.2)

Load case 1:	Reservoir water is at FWL (=212.5 m) without uplift
Load case 2:	Reservoir water is at FWL (=212.5 m) with full uplift

The loads are calculated as follows:

Load case 1

p1 = (212.5 - 112) x 1.80 t/m³ = 180.9 t/m² p2 = (215 - 212.5) x 1.72 t/m³ = 4.3 t/m²

Load case 2

 $p1 = (212.5 - 112) \times 1.80 \text{ t/m}^3 = 180.9 \text{ t/m}^2$ $p2 = (215 - 212.5) \times 1.72 \text{ t/m}^3 = 4.3 \text{ t/m}^2$ $p3 = (212.5 - 112) \times 1.0 \text{ t/m}^3 = 100.5 \text{ t/m}^2$ $p4 = \{212.5 - (112 - 4.4)\} \times 1.0 \text{ t/m}^3 = 104.9 \text{ t/m}^2$

5.1.4 Stress Analysis

Stress analyses on the design section are carried out by a finite element method. A computer FEM programme C-143 registered in Nippon Koei is used.

A mesh model and boundary conditions of the model are as shown in Fig. 5.1.3.

5.1.5 Results of FEM Analysis

Compressive/tensile stress in horizontal and vertical directions, shear stress and principle stress in every element in the model are given in Table 5.1.1 and 5.1.2. The compressive/tensile stress and shear stress which are required for design of reinforcement bar arrangement are extracted from these tables and put down in the relevant elements in the design section, as shown in Fig. 5.1.4 and 5.1.5.

From these tables and figures, the followings are noticeable.

(1) A maximum compressive stress in the design section is low enough for the allowable compressive stress of concrete (=70 kg/cm²). The maximum value in each loading conditions is as listed below.

		(Office Regional)
	X-direction	Y-direction
Load case 1	23.0 Element 279	53.0 Element 164
Load case 2	38.8 Element 146	54.3 Element 164

There are some elements where tensile stress occurs in both loading conditions. The tensile stress in load case 1 is larger than load case 2, in comparison with both conditions. Reinforcement bars against these tensile stress are required consequently.

(Think tradam?)

From this table, it is noticed that

(2)

(3)

- load case 2 is severer loading condition in shear stress, and
- the average shear stress at Line ⁽⁵⁾, ⁽⁸⁾, and ⁽⁹⁾ are larger than the allowable shear stress of concrete without stirrups (=8.5 kg/cm²) but below the allowable shear stress with stirrups (=19 kg/cm²) according to Standard Specification for Design and Construction of Concrete Structures 1986 Part 1, JSCE Clause 14.3.

Consequently, stirrups are required for these shear stresses.

5.1.6 Reinforcement Bars

(1) Re-bars for tensile stress

A required area at rc-bars against tensile stress is calculated with the following formula.

 $As = \frac{\text{Total tensile strength in 1m depth (kg)}}{\text{Allowable tensile stress in re-bar (kg/cm²)}}$

i) At the center of the upper slab (Line \oplus - \oplus in Fig. 5.1.4)

As =
$$\frac{\frac{1}{2} \times 6 \text{ kg/cm}^2 \times 35 \text{ cm} \times 100 \text{ cm}}{1,800 \text{ kg/cm}^2}$$

= 5.8 cm²

V-3

ii) At the Line @ - @ in Fig. 5.1.5, where the largest tensile stress occur in the upper part of the slab

As =
$$\frac{\frac{1}{2} \times 14 \text{ kg/cm}^2 \times 90 \text{ cm} \times 100 \text{ cm}}{1,800 \text{ kg/cm}^2}$$

= $3.5 \text{ cm}^2 \rightarrow D29 @150 = 42.9 \text{ cm}^2$

iii) At the center of the invert slab

As =
$$\frac{\frac{1}{2} \times 6 \text{ kg/cm}^2 \times 30 \text{ cm} \times 100 \text{ cm}}{1,800 \text{ kg/cm}^2}$$

= 4.9 cm²

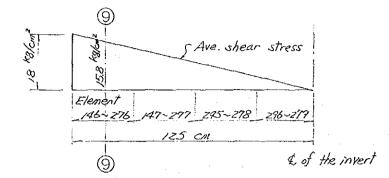
(2) Min. reinforcement bars

The above standard (by JSCE), Clause 6.2.3, specifies a minimum area of tensile reinforcement bars of 0.2% for the concrete area.

According to this, a minimum area of re-bar at Line (1) and (3) is calculated as follows:

i) Line ① - ①

As \geq 130 cm x 100 cm x 0.2/100 = 26 cm² \rightarrow D25 @150 = 33.8 cm²


As \geq 150 cm x 100 cm x 0.2/100 = 30 cm² \rightarrow D25 @150 = 33.8 cm²

(3) Stirrups

i) Line ⑨ - ⑨

- Shear stress distribution is as shown below.

: V - 4

A total shear stress is:

 $S = 0.5 \times 18 \text{ kg/cm}^2 \times 100 \text{ cm} \times 125 \text{ cm}$ $= 1,125 \text{ kg/cm}^2$

Required area of stirrups

 $As = (S x t)/(1,800 \text{ kg/cm}^2 x \text{ jd})$

 $= 1,125 \times \frac{30}{(1,800 \times 150 \times 2/3)}$

 $= 0.19 \text{ cm}^2 \rightarrow \emptyset 13 \ (= 1.327 \text{ cm}^2)$

where; t : jd :

spacing at stirrups (cm)
distance from compression resultant to centroid of tension reinforcement (m)

Pitch of the stirrups \geq D25 x 15 = 375 cm or $\emptyset 13 x 48 = 624$ cm or 130/2 = 65 cm $\rightarrow 350$ cm

ii) Line (5) and (8)

The shear stress at Line is smaller than Line . Accordingly the same stirrup arrangement in the invert slab as given above is made.

(4) Surface crack prevention re-bars

(5)

For prevention of surface cracks, D22 @300 is arranged.

From the above $(1) \sim (4)$, a reinforcement bar arrangement is made as shown in Fig. 5.1.6

5.2 Spillway

5.2.1 Wall Section C-C

(1) Case I

1) EL. 189.000 m

Shearing force - earth P.	$Qe = 1.93 \times 7^2 \times \frac{1}{2} \times 0.241$	=	11.40 t

Bending moment		1
- earth P.	$Me = 11.40 \times 7/3$	 26.60 t.m

2) Tœ

Shearing force				
- reaction	$Qr = 23.06 \times 1.0$			23.06 t
- concrete	$Qc = -1 \times 1.5 \times 2.4$		=	-3.60 t
- uplift	Qu = 14.5 x 1.0		=	14.50 t
1		Q	=	33.96 t

 Bending momer 	nt				
- reaction	Mr = 23.06 x 1.0/2		=	11.53 t.m	
- concrete	$Mc = -3.6 \times 1.0 \times 1/2$		=	-1.80 t.m	
- uplift	$Mu = 14.50 \times 1.0 \times 1/2$		=	7.25 t.m	-
•		М	=	16.98 t.m	

(2) Case II

1) EL. 189.000 m

Shearing force			
- earth P.	$Qe = 11.40 \times 1.05$		11.97 t
	$Qe = 1.8 \times 1.0 \times 1.93 \times 0.05$	=	0.17 t
	Qe = 1.8 x 6 x 1/2 x 1.93 x 0.05	=	0.52 t
- concrete	$Qc_1 = 0.48 \times 0.05$	=	0.02 t
	$Qc_2 = 1.2 \times 0.05$. = .	0.06 t
	$Qc_3 = 17.2 \times 0.05$	- =	0.36 t

	$Qc_4 = 12.96 \times 0.05$		=	0.65 t
		Q	=	13.75 t
Bending moment				
- earth P.	Me = 11.97 x 7/3		=	27.93 t.m
	Me = 0.17 x (6.0 + 0.5)		=	1.01 t.m
	Me = 0.52 x 6 x 2/3		=	2.08 t.m
- concrete	$Mc_1 = 0.02 \times (7 + 0.5)$		=	0.15 t.m
	$Mc_2 = 0.06 \times (6 + 0.5)$		÷	0.39 t.m
	$Mc_3 = 0.36 \times 3$		=	1.08 t.m
	Mc4 = 0.65 x 6/3		==	1.30 t.m
		М	13	33.94 t.m
Tœ				
Shearing force		*		
- reaction	$Qr = 23.06 \times 1.0$		Ħ	23.06 t
- concrete	$Qc = -1 \times 1.5 \times 2.4$		11	-3.60 t
- uplift	$Qu = 14.5 \times 1.0$	<u> </u>	Ξ	14.50 t
		Q	IR	33.96 t
Bending moment				
- reaction	$Mr = 23.06 \times 1.0/2$		_ =	11.53 t.m
- concrete	$Mc = -3.6 \times 1.0/2$		=	-1.80 t.m
- uplift	$Mu = 14.50 \times 1.0/2$	······	=	7.25 t.m
		М	=	16.98 t.m

5.2.2 Wall Section G-G

(1) Case I and II

2)

1) Toe

Shearing force		·			
- reaction	$Qr = 22.0 \times 1.0$		• = •	22.00 t	
- concrete	$Qc = -1.5 \times 1.0 \times 2.4$		=	-3.60 t	
- uplift	$Qu = 14.5 \times 1.0$	· · · · · · · · · · · · · · · · · · ·	=	14.50 t	
	· · ·	Q	=	32.90 t	

V-7

Bending moment					
- reaction	$Mr = 22.00 \times 1.0/2$			11	11.00 t.m
- concrete	$Mc = -3.6 \times 1.0/2$			æ	-1.80 t.m
- uplift	Mu = 14.50 x 1.0/2	-		=	7.25 t.m
-			М	11	16.45 t.m

5.2.3 Wall Section A-A

(1) Case II

1) Toe

Shearing force		· · · · ·			
- reaction	$Qr = 13.1 \times 1.0$		=	13.10 t	
- concrete	$Qc = 1.0^2 x - 2.4$			-2.40 t	
	• •	Q	=	10.70 t	
Bending moment					
- reaction	$Mr = 13.10 \times 1.0/2$		=	6.55 t.m	
- concrete	$Mc = -2.40 \times 1.0/2$		=	-1.20 t.m	
		M	=	5.35 t.m	

5.2.4 Wall Section E-E

(1) Case I

1) EL. 126.000 m

Shearing force - earth P. $Qe = 1.93 \times 7^2 \times \frac{1}{2} \times 0.241$

11.40 t

==

=

Bending moment - earth P. $Me = 11.40 \times 7 \times \frac{1}{3}$

26.60 t.m

2) Tœ

Shearing force

- reaction	$Qr = 24.10 \times 1.0$			=	24.10 t	
- concrete	$Qc = -1.0 \times 1.5 \times 2.4$:=	-3.60 t	
- water	$Qw = -1.0 \times 8.0 \times 1.0$::	-8.00 t	
- uplift	$Qu = 12.5 \times 1.0$	_		=	12.50 t	
			Q	×	25.00 t	
Bending moment						

0					
- reaction	$Mr = 24.10 \times 1.0/2$		=	12.05 t.m	
- concrete	$Mc = -3.6 \times 1.0/2$		=	-1.80 t.m	
- water	$Mw = -8.0 \times 1.0/2$		=	-4.0 t.m	
- uplift	Mu = 12.50 x 1.0/2		=	6.25 t.m	
		М	=	12.50 t.m	

(2)

Case II

1)

EL. 126.000 m

Shearing force $Qe = 11.40 \times 1.05$ 11.97 t - earth P. Ξ $Qe = 1.8 \times 1.0 \times 1.93 \times 0.05$ 0.17 t = $Qe = 1.8 \times 6 \times 1/2 \times 1.93 \times 0.05$ 0.52 t ₽ $Qc = 22.56 \times 0.05$ 1.128 t = - concrete Q = 13.79 t Bending moment

¢				
- earth P.	$Me = 11.97 \times 7 \times 1/3$		=	27.93 t.m
	$Me = 0.17 \times (0.5 + 6.0)$		=	1.11 t.m
· .	$Me = 0.52 \times 6 \times 2/3$		=	2.08 t.m
- concrete	$Mc = 2.4 \times 0.05 \times (1 + 6.0)$		=	0.84 t.m
	$Mc = 7.2 \times 0.05 \times 6/2$		=	1.08 t.m
	$Mc = 12.96 \times 0.05 \times 6/3$		· ==	1.30 t.m
		м		2121 +

V - 9

М 34.34 t.m ≂

2) Tœ

Shearing force

-				
- reaction	Qr = 24.10 x 1.0	÷	=	24.10 t
- concrete	$Qc = -1.0 \times 1.5 \times 2.4$		=	-3.60 t
- water	$Qw = -1.0 \times 8.0 \times 1.0$		==	-8.00 t
- uplift	$Qu = 12.5 \times 1.0$		=	12.50 t
		Q	¥	25.00 t
Bending moment				
maction	$Mr = 24.10 \times 1.0/2$		=	12.05 t.m

·		M	=	12.50 t.m	
- uplift	$Mu = 12.50 \times 1.0/2$		=	6.25 t.m	
- water	Mw = -8.0 x 1.0/2		=	-4.0 t.m	
- concrete	$Mc = -3.6 \times 1.0/2$		=	-1.80 t.m	
- leaction	WII - 24.10 X 1.0/2			10100 1011	

(3) Case III

> EL. 126.000 m 1)

Shearing force - carth P.	Qe = 1.93 x 7^2 x $\frac{1}{2}$ x 0.241	=	11.40 t
Bending moment - earth P.	Me = 11.40 x 7x $\frac{1}{3}$	=	26.60 t.m

2) Tœ

Shearing force

- reaction	$Qr = 19.7 \times 1.0$		=	19.70 t
- concrete	$Qc = -1.0 \times 1.5 \times 2.4$		Ħ	-3.60 t
- water	$Qw = -1.0 \times 8.0 \times 1.0$. =	-8.00 t
- uplift	$Qu = 15.5 \times 1.0$			15.50 t
-	and Alexandrian Control of Contro	Q	=	23.60 t

Bending momen	t set set			
- reaction	Mr = 19.7 x 1.0/2	=	9.85 t.m	
- concrete	$Mc = -3.6 \times 1.0/2$	=	-1.8 t.m	
- water	Mw = -8.0 x 1.0/2	- 	-4.0 t.m	

- uplift	Mu = 15.50 x 1.0/2		=	7.75 t.m
		М	=	11,80 t.m
Il Section I-I				
				·.
EL. 121.000 m				
Shearing force				
- carth P.	$Qe = 0.241 \text{ x } 1.93 \text{ x } 4.0^2 \text{ x } \frac{1}{2}$		=	3.72 t
				۰.
Bending moment - earth P.	Me = $3.72 \times \frac{4}{3}$		=	4.96 t.m
Tœ				
Shearing force				
-	$Or = (22.40 + 20.93)/2 \times 1.0$		=	21.67 t
			=	-2.40 t
			=	0.15 t
•	· · · ·	Q	-	19.42 t
· · ·				
Bending moment				
- reaction	Mr = 20.93 x 1.0 x 1.0/2 +			
· ·	1.47 x 1.0/2 x 1.0 x 2/3		_ =	10.96 t.m
- concrete	$Mc = -2.4 \times 1.0/2$		=	-1.20 t.m
- uplift	Mu = 0.15 x 1.0/3		=	0.05 t.m
		Μ	=	9.81 t.m
[
FI 121 000 m				
L/L, 141.000 III				
Shearing force				
- earth P.	$Qe = 3.72 \times 1.05$	•	=	3.91 t
	$Qe = 4.632 \times 0.05$			
	 I Section I-I EL. 121.000 m Shearing force carth P. Bending moment earth P. Toe Shearing force reaction concrete uplift Bending moment concrete uplift Bending moment concrete uplift Bending moment concrete uplift Bending moment concrete uplift 	II Section I-I EL. 121.000 m Shearing force - carth P. Qe = $0.241 \times 1.93 \times 4.0^2 \times \frac{1}{2}$ Bending moment - earth P. Me = $3.72 \times \frac{4}{3}$ Toe Shearing force - reaction Qr = $(22.40 + 20.93)/2 \times 1.0$ - concrete Qc = $-1.0 \times 1.0 \times 2.4$ - uplift Qu = $0.29 \times 1.0/2$ Bending moment - - reaction Mr = $20.93 \times 1.0 \times 1.0/2$ - concrete Mc = $-2.4 \times 1.0/2$ - uplift Mu = $0.15 \times 1.0/3$	M Il Section I-I EL. 121.000 m Shearing force - carth P. $Qe = 0.241 \times 1.93 \times 4.0^2 \times \frac{1}{2}$ Bending moment - earth P. $Me = 3.72 \times \frac{4}{3}$ Toe Shearing force - reaction $Qr = (22.40 + 20.93)/2 \times 1.0$ - concrete $Qc = -1.0 \times 1.0 \times 2.4$ - uplift $Qu = 0.29 \times 1.0/2$ Bending moment - reaction $Mr = 20.93 \times 1.0 \times 1.0/2 + 1.47 \times 1.0/2 \times 1.0 \times 2/3$ - concrete $Mc = -2.4 \times 1.0/2$ - uplift $Mu = 0.15 \times 1.0/3$ M EL. 121.000 m Shearing force	M = M = M = M = M = M = M = M = M = M =

.

- concrete	$Qc = 66.48 \times 0.05$			<u>3.32 t</u>
		Q		7.46 t
Bending moment				
- earth P.	$Me = 3.91 \times 4 \times 1/3$		=	5.21 t.m
	$Me = 0.23 \times 4 \times 2/3$		a	0.61 t.m ²
- concrete	$Mc = 7.2 \times 0.05 \times (0.1 + 12.8)$		u	4.64 t.m
	$Mc = 0.36 \times 0.05 \times (0.2 + 12.5)$		=	0.23 t.m
	$Mc = 0.36 \times 0.05 \times (0.15 + 12.5)$		Ħ	0.23 t.m
	$Mc = 1.80 \times 0.05 \times (1.5 \times \frac{1}{2} + 11).$	0)	=	1.06 t.m
	$Mc = 3.2 \times 0.05 \times 11 \times \frac{1}{2}$:	=	3.63 t.m
	$Mc = 43.56 \times 0.05 \times 11 \times \frac{1}{3}$	· .	=	7.99 t.m
	· • • • • • • • • • • • • • • • • • • •	М	=	23.60 t.m
Toc				
Shearing force				
00				
	Qr = (26.50 + 23.86)/2 x 1.0		=	25.18 t
	$Qr = (26.50 + 23.86)/2 \times 1.0$ $Qc = -1.0 \times 1.0 \times 2.4$		11	25.18 t -2.40 t
- reaction				
reactionconcrete	$Qc = -1.0 \times 1.0 \times 2.4$	Q	Ħ	-2.40 t
reactionconcreteuplift	$Qc = -1.0 \times 1.0 \times 2.4$	Q	=	-2.40 t 0.15 t
 reaction concrete uplift Bending moment 	Qc = -1.0 x 1.0 x 2.4 Qu = 0.29 x 1.0/2	Q	=	-2.40 t 0.15 t
 reaction concrete uplift Bending moment 	Qc = -1.0 x 1.0 x 2.4 Qu = 0.29 x 1.0/2 Mr = 23.86 x 1.0 x 1.0/2	Q		-2.40 t 0.15 t 22.93 t
reactionconcreteuplift	Qc = -1.0 x 1.0 x 2.4 Qu = 0.29 x 1.0/2 Mr = 23.86 x 1.0 x 1.0/2 + 2.64 x 1.0/2 x 1.0 x 2/3	Q	=	-2.40 t 0.15 t 22.93 t 12.81 t.m
 reaction concrete uplift Bending moment reaction concrete 	Qc = $-1.0 \times 1.0 \times 2.4$ Qu = $0.29 \times 1.0/2$ Mr = $23.86 \times 1.0 \times 1.0/2$ + $2.64 \times 1.0/2 \times 1.0 \times 2/3$ Mc = -2.4×0.5	Q		-2.40 t 0.15 t 22.93 t 12.81 t.m -1.20 t.m
 reaction concrete uplift Bending moment reaction 	Qc = -1.0 x 1.0 x 2.4 Qu = 0.29 x 1.0/2 Mr = 23.86 x 1.0 x 1.0/2 + 2.64 x 1.0/2 x 1.0 x 2/3	Q		-2.40 t 0.15 t 22.93 t 12.81 t.m

(3) Case III

2)

1) EL. 121.000 m

- earth	$Qc = 0.241 \text{ x} (1.93 - 1.00) \text{ x} 4.0^2/2$	=	1.79 t
- water	$Qw = 11.0^2/2$	=	-60.50 t
	$Qw = 8.0^2/2$	=	32.00 t
	0	==	-26.71 t

Bending moment

- earth	Mc = 1.79 x 4.0/3		Ξ	2.39 t.m
- water	Mw = -60.50 x 11.0/3		=	-221.83 t.m
	Mw = 32.00 x 8.0/3		=	85.33 t.m
	• •	М	=	-134.11 t.m

2)

Toe

Shearing force					
- reaction	$Qr = 0.04 \times 0.15/2$		=	0.01 t	
- concrete	$Qc = -1.0 \times 1.0 \times 2.40$		=	-2.40 t	
- water	$Qw = -13.0 \times 1.0 \times 1.0$		=	-13.00 t	
- uplift	Qu = (14.00 + 13.57)/2 x 1.0		=	13.79 t	
		Q	- ==	-1.60 t	

Bending moment

- reaction	$Mr = 0.01 \times 0.15/3$. =	0.01 t.m
- concrete	$Mc = -2.4 \times 1.0/2$	=	-1.20 t.m
- water	Mw = -13.0 x 1.0/2	=	-6.50 t.m
- uplift	$Mu = 13.57 \times 1.0/2 + 0.43$		
	x 1.0/2 x 1.0 x 2/3	=	6.93 t.m
	Ν	/I =	-0.76 t.m