No. Lar

THE GOVERNMENT OF MAURITIUS
MINISTRY OF ENERGY, WATER RESOURCES AND POSTAL SERVICES
OBNITIAL WATER AUTHORITY

THE DETAILED DESIGN ON THE PORT LOUIS WATER SUPPLY PROJECT IN MAURITIUS

FINAL REPORT (2)

DATA BOOK

FOR

LOT II. 1 CIVIL WORKS(DAM AND APPLIPTEMENT STRUCTURES INCLUDING CLOSURES OF DIVERSION TUNNEL)

MARCH 1992

JAPAN INTERNATIONAL COOPERATION AGENCY

S S S O R (3) 92 -- 037

THE GOVERNMENT OF MAURITIUS MINISTRY OF ENERGY, WATER RESOURCES AND POSTAL SERVICES CENTRAL WATER AUTHORITY

THE DETAILED DESIGN ON THE PORT LOUIS WATER SUPPLY PROJECT IN MAURITIUS

FINAL REPORT (2)

DATA BOOK

FOR

LOT II: CIVIL WORKS(DAM AND APPURTENANT STRUCTURES INCLUDING CLOSURES OF DIVERSION TUNNEL)

MARCH 1992

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団

23717

Table of Contents

	rage
PART I HYDRAULIC DESIGN CALCULATION	
1. Spillway	I - 1
PART II STABILITY ANALYSIS	T.
1. Main Dam and Cofferdam	II - 1
2. Dam Foundation Plug Concrete (FEM)	II - 6
PART III LEAKAGE ANALYSIS	
1. Main Dam	III - 1
2. Left Bank	III - 5
PART IV STRUCTURAL CALCULATION	
1. Spillway	IV - 1
· · · · · · · · · · · · · · · · · · ·	IV - 14
3. Intake	IV - 21
4. Building Work	IV - 52
PART V STRESS CALCULATION	
1. Main Dam Gallery	V - 1
1. Main Dam Gallery	V - 6
3. Intake	V - 14
PART VI WORK QUANTITY CALCULATION	
1. Cofferdam	VI - 1 - 1
2. Main Dam	VI - 2 - 1
3. Spillway	VI - 3 - 1
4. Intake	VI - 4 - 1
5. River Outlet	VI - 5 - 1
6. Building Work	VI - 6 - 1
7. Repair for Existing	/
Municipal Dike	VI - 7 - 1

문화 시작 동안 그런 목일 살이다.				
원하면 사람은 누가 되었다.				
그리는 그들이 오늘이 모든데요.				
분별 최근 그래 시험하는				
	. 그는데 불살하게 되는 것이 되었다. 그런 생활하다 그 나는 하고 있는데 하는데 된다.			
PART	I HYDRAULIC	DECION CAL	CHIT ASTRONI	
	T TI DRACER	, DESIGN CAL	CULATION	
를 지하는 것을 받았다면 되는 것이 없어 있다는 것을 했다. 물론을 하고 있는 것을 하는데 없는 것을 하는데 없다.				
경기를 발표하는 것이 되었다. 중 마리 결과 중요합 기사를 보려고 있다. 사람들은				네가 되면서 다
		그림 하루는 연근하다		
《····································				
	당시 방안된 시민은 아무리 얼마를 하고 있다.			
	일은 경험 경험을 보면 그런 말을 다시다고요?			and a second control of the control

PART I HYDRAULIC DESIGN CALCULATION

1. Spillway

1.1 Hydraulic Design Value

An energy coefficient "a" in the following equation is assumed to be 1.0 in this design calculation:

$$Hv = aV^2/(2g)$$
 (Eq. 1)

where, hv: velocity head in m

h: mean velocity in m/s

g : acceleration of gravity (= 9.8 m/s^2)

Manning's coefficient of roughness is assumed as shown in the below:

- 1) Approach channel friction loss in neglected
- 2) Side channel trough friction loss in neglected
- 3) Transition channel 0.014
- 4) Chuteway 0.018 for assessment of water level
 - 0.008 for assessment of specific energy of flow to be dissipated

· ·

General Layout

General layout of the spillway is as shown in Fig. 1.1. Basic condition for design of the spillway are determined by the basic design as summarized below:

(1) Discharge

1,2

(a) Probable maximum flood

1.890 m3/s

(2) Reservoir water level

(a) Normal high water level

(= crest elevation of uncontrolled overflow weir)

EL. 189.0 m

(b) Design flood water level

EL. 193.5 m

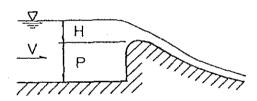
1.3 Hydraulic Design of Approach Channel

Approach channel has such a hydraulic function as to guide water from the reservoir to the overflow crest under stable and low velocity flow condition without causing excessive turbulence and abrupt changes in velocity of approach. For attaining this function there are the following design criteria:

(1a) $P/H \ge 0.2$ (To restrict decrease of discharge coefficient due to downstream apron effect within 10 per cent)

(1b) $P/H \ge 0.7$ (To eliminate downstream apron effect on discharge coefficient of overflow crest)

(2) $V \le 4.0 \text{ m/s}$ (For approach channel protection)


(3) $Fr \le 0.4$ (For stable subcritical flow)

where, P: overflow crest height measured from approach channel floor, in m

H: overflow head above overflow crest apex, in m

V: Velocity of approach, in m/s

Fr: Froude number of approaching flow

For above condition of (1a) is normally adopted to minimize downstream apron effect on discharge coefficient. However, the severer condition of (1b) is herein adopted so as to ensure design discharge capacity independently from the downstream apron elevation in the side channel trough. When bottom elevation of the approach channel is set at EL. 185.0 m being 4.0 m lower than the overflow crest elevation, all the above conditions are satisfied as shown below:

For Spillway Design Discharge

(1b)
$$P = 4.0 \text{ m}$$

 $H = 193.5 - 189.0 = 4.5 \text{ m}$
Then, P/H = 0.889 > 0.7

(2)
$$Q = 1.890 \text{ m}^3/\text{s}$$

 $q = Q/B$
 $= 1.890/90 = 21.0 \text{ m}^3/\text{s/m}$

$$V = q/(H + P)$$
= 21.0/(4.5 + 4.0)
= 2.47 m/s < 4.0 m/s

(3) Fr =
$$q/[g(H + P)^3]^{1/2}$$

= $21.0/[9.8 (4.5 + 4.0)^3]^{1/2}$
= $0.271 < 0.4$

It is then concluded from a hydraulic point of view that the bottom elevation of approach channel is to be set at or below EL. 185.0 m that is 4.0 m below the uncontrolled overflow crest. Actural bottom elevation of the approach channel is determined at EL. 185.0 m through the layout design taking into account the topographic and geologic conditions of the site as well as arrangement with the other structures.

1.4 Hydraulic Design of Uncontrolled Overflow Crest

An uncontrolled overflow crest is provided so as to make spillway discharge only dependent on the reservoir water level and not to be affected by the downstream flow condition.

1.4.1 Profile of uncontrolled overflow crest

The profile consists of the following 4 parts (refer to Fig. 1.2).

- (1) Upstream vertical face
- (2) Compound circular curve upstream from the cest apex
- (3) Semi-nappe curve from the crest apex to the point P where the curve has a slope of 1=0.8
- (4) Straight line having a slope of l=0.8

The downstream slope of 1=0.8 is determined from a viewpoint of the stability of the overflow weir.

Semi-nappe curve of the overflow crest are designed by the following equation:

$$Y/H0 = -K (X/H0)^n$$
 (Eq. 2)

where, Ho: design head of overflow weir

= 4.5 m

K,n: constants depending on slope of upstream face of the weir and velocity

of approach. To be read from Fig. 1.3.

Discharge per meter of overflow crest is obtained below for the spillway design discharge:

q = Q/B

= 1,890/90

 $= 21.0 \,\mathrm{m}^3/\mathrm{s/m}$

Velocity of approach Va and its velocity head ha are expressed by the equations:

$$Va = q/(P + ho)$$
 (Eq. 3)

 $ha = Va^2/(2g)$

where, ho = Ho - ha = 4.5 - ha

Eq. (3) is solved to obtain Va = 2.57 m/s and ha = 0.34 m as shown below:

$$ho = 4.5 - 0.34$$

 $= 4.16 \, \mathrm{m}$

Va = 21.0/(4.0 + 4.16)

= 2.57 m/s

 $ha = 2.57^2/(2 \times 9.8)$

= 0.34 m

A parameter ha/Ho will then be:

$$ha/Ho = 0.34/4.5$$

= 0.076 m

With this parameter, the constants K and n are read from Fig. 1.3 as follows:

$$K = 0.511, n = 1.842$$

Then, the curve from apex of the crest (origin of coordinates X and Y) to a point P shown in Fig. 1.2 is given by the following equation:

$$Y/4.5 = -0.511 (X/4.5)^{1.842}$$
 (Eq. 4) or
$$Y = -0.144X^{1.842}$$

Coordinates of the point P is given with a condition that the curve has a slope of 1=0.8 at this point P as follows:

$$Y' = -0.144 \times 1.842 \times 1.842$$

Then, coordinates X and Y of the point P will be:

$$X = [1/(0.8 \times 0.144 \times 1.842)]^{1/0.842} = 6.305 \text{ m}$$

 $Y = -0.144 \times 6.305^{1.842} = -4.279 \text{ m}$

Parameters for a compound circular curve that is adapted as an upstream profile from the crest apex are also read from Fig. 1.3. They are:

$$Xc/Ho = 0.248$$
 $Yc/Ho = 0.099$ $R1/Ho = 0.492$ $R2/Ho = 0.205$

Substituting the design head Ho=4.5 m to the above equations, coordinates (Xc, Yc) of the upstream end point of the compound circular curvature and their radii R1 and R2 are obtained as follows:

$$Xc = -1.116 \text{ m}$$
 $Yc = -0.437 \text{ m}$
 $R1 = 2.214 \text{ m}$ $R2 = 0.923 \text{ m}$

Profile of the uncontrolled overflow crest are thus determined as shown in Fig. 1.2.

1.4.2 Discharge coefficient

The discharge over an ogee crest is given by the formula:

$$Q = CBH^{1.5}$$
 (Eq. 5)

where, Q: discharge in m^3/s

C: a variable coefficient of discharge

B: effective length of crest, in m

H: total head on the crest, in m, including velocity of approach head, ha

The discharge coefficient C in the above formula usually varies from 2.0 to 2.2 for the design head of the overflow crest depending on the bottom elevation of approach channel, shape of crest profile, downstream apron effect and tailwater effect.

Bottom elevation of the approach channel and shape of the uncontrolled overflow crest profiles have been determined. The side channel trough will be designed so that the downstream water level will not affect coefficient of discharge of the overflow crest as a free overflow.

The discharge coefficient for the design head of Ho=4.5m is checked in accordance with the Iwasaki's formula as follows:

Cd =
$$2.200 - 0.0416(H/P)^{0.990}$$
 (Eq. 6)
C = $1.60 [1 + 2a(H/Hd)]/[1 + a(H/Hd)]$

where, Cd: coefficient of discharge at H=Hd

C: coefficient of discharge at an operating head of H

Hd: design head (=4.5 m)

H: total head on the crest, in m, including velocity of approach head ha

P: crest height measured from approach channel floor (=4.0 m)

a : constant, to be solved from equation

C = Cd at H = Hd

Substituting H=4.5 m and P=4.0 m to Eq. 6 discharge coefficient is estimates to be 2.153 as follows:

$$C = 1.60 [1 + 2a(H/Hd)]/[1 + a(H/Hd)]$$
$$= 1.60 (1 + 2a)/(1 + a) = 2.153$$

Solving the above equation for "a"

$$a = 0.5281$$

Then, discharge coefficient for operating heads other than the discharge head are given by the equation:

$$C = 1.60 [1 + 1.0562 (H/Hd)]/[1 + 0.5281 (H/Hd)]$$

= 1.60 (1 + 0.2347H)/(0.1173H) (Eq. 7)

Estimated Discharge Coefficient and Discharge Capacity of Uncontrolled Overflow Crest

		•	and the second s
R.W.L. (EL. m)	H (m)	С	Q (m ³ /s)
189.0	0	-	0
189.5	0.5	1.689	54
190.0	1.0	1.768	159
190.5	1.5	1.839	304
191.0	2.0	1.904	485
191.5	2.5	1.963	698
192.0	3.0	2.017	943
192.5	3.5	2.066	1,218
193.0	4.0	2,111	1,520
. 193.5	4.5	2.153	1,890

Note: $Q = 90CH^{1.5}$

The estimated discharge rating curve of the controlled overflow crest is shown in Fig. 1.4. These discharge coefficients and discharge capacities are, however, subject to modification based on the results of hydraulic model test.

1.5 Hydraulic Design of Side Channel Trough and Transitional Channel

Water spilt from the uncontrolled overflow crest is collected in the side channel trough and is guided to the chuteway through by the transitional channel.

1.5.1 Section and profile of side channel trough

1) Cross section

Cross section of the side channel trough consists of 2 side walls and 1 floor slab. The uncontrolled overflow weir forms a wall in the reservoir side having a slope of l=0.8. The mountain side wall is designed to be l=0.15. Bottom width of the side channel trough is determined through trial designs to be 25.0 m at its downstream end and 12.5 m at its upstream end respectively.

2) Profile

The side channel trough has a length of 90 m being equal to the crest length of the overflow weir. Bottom slope of the side channel trough is 1=45. Bottom elevation at the downstream end of the side channel trough is EL. 176.0 m and one at the upstream end is EL. 178.0 m respectively.

1.5.2 Flow condition in side channel

There are the following criteria for hydraulic design of side channel trough:

- i) Flow in a channel trough is to be subcritical to attain large water depth and low flow velocity in the trough for good diffusion of incoming water from overflow crest with water bulk in the trough.
- ii) Water level in side channel trough at its upstream end is to be set below such level as not to cause downstream submergence of overflow or:

$$D \le (2/3) H$$
 (Eq. 8)

where, D: water depth in the side channel trough at its upstream end measured from the overflow crest, in m

H: operating head of flow over the overflow crest, in m

The second condition will be checked in paragraph 1.5 based on the water surface profile calculation.

For attaining subcritical flow in the side channel trough and transitional channel as well as to keep certain water depth in the trough for discharge less than the spillway design discharge, a control sill is provided at the downstream end of the transitional channel. However, for securing subcritical flow in the trough under the spillway design discharge, bottom slope of the side channel trough is designed at a gentler slope than the critical slope ic for the spillway design discharge.

The critical slope ic is checked below for the downstream 9.0 m reaches of the side channel trough. This section interval is taken as 10 per cent of the trough length 90 m.

1) Design conditions and critical flow

				Section 1 at 9.0 m upstream	Section 2 at downstream end
a)	Design discharge	Q	(m ³ /s)	1,701	1,890
b)	Bottom width	В	(m)	23.75	25.0
c)	Critical depth	D	(m)	7.55	7.75
d)	Critical flow area	A	(m2)	206.39	222.28
e)	Critical flow velocity	V	(m/s)	8.24	8.50
f)	Hydraulic radius at critical flow	R		5.03	5.10

The above values are obtained by the following equation where subscript 1 denotes values of the upstream section "1" of the reaches and subscript 2 denotes ones of the downstream end section "2":

(a)
$$Q2 = 1,890 \text{ m}^3/\text{s}$$
 (spillway design discharge)
 $Q1 = (1,890/90) \times 81$
= 1,701 m³/s

(b)
$$B2 = 25.0 \text{ m}$$

 $B1 = 12.5 + (12.5/90) \times 81$
 $= 23.75 \text{ m}$

(c) Critical depth, area, velocity and hydraulic radius of each section are obtained by solving the following equation for critical flow in an open channel by trial and method;

$$[(1Q2)/(gA3)] \frac{dA}{dD} = 1$$
 (Eq. 9)

$$\frac{dA'}{dD} = Bs$$

where, a : energy coefficient (=1.0)

g : acceleration of gravity (9.8 m/s2)

Q: discharge in m3/s

A: (2B + 0.95D) D/2

B: bottom width of channel, in m

Bs: channel width of water surface, in m

= B + 0.95D

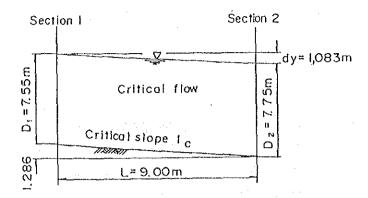
D: water depth in m

R : A/(B + 2.29D)

2) Critical slope ic

A channel having the same section and discharge with the designed side channel trough but having the critical channel slope ic for the spillway design discharge is first assumed. In this case, flow will be critical throughout the channel reaches of 9 m.

Water level rise "dy" in this assumed channel reaches from the downstream end section "2" to the upstream section "1" is estimated by the Hinds formula as shown below:


$$dy = (Q_1/g) [(V_1 + V_2)/(Q_1 + Q_2)] [(V_2 - V_1) + V_2 (Q_2 - Q_1)/Q_1] \dots (Eq. 10)$$

$$= (1,890/9.8) \times [(8.50 + 8.24)/(1,890 + 1,701)]$$

$$\times [(8.50 - 8.24) + 8.50 \times (1,890 - 1,701)/1,701]$$

$$= 1.083$$

Accordingly, profile of this channel reaches will be as shown below:

From the above figure, the critical slope ic is obtained as follows:

ic =
$$[(D2 + dy) - D1]/L$$
 (Eq. 11)
= $[(7.75 + 1.083) - 7.55]/9.0$
= $1/7.0$

The design channel slope of 1/45 is gentler than the critical slope of 1/7.0 resulting subcritical flow in the side channel trough under the spillway design discharge even without the control sill at the end of the transitional channel.

1.5.3 Section and profile of transition channel

The transitional channel conveys water collected in the side channel trough to the chuteway under subcritical flow. The transitional channel is designed as shown below:

(1) Cross section

(a)	Туре	Rectangular
(b)	Width	25,0 m

(2) Profile

(a)	Channel length	50.0 m
(b)	Channel slope	1 = 1,000
(c)	Bottom elevation at the upstream end	EL. 176.0 m
(d)	Bottom elevation at the downstream end	EL. 175.950 m

(3) Plan Straight axis

(4) Control sill at the downstream end

(a) Height above channel floor 1.042 m

(b) Slope of upstream face vertical

Width of the transitional channel is determined to be the same with that of the side channel trough at its downstream end in view of stable flow. A control sill is provided at the downstream end of the transitional channel to realize subcritical flow in the upstream transitional channel and the side channel trough even for discharge less than the spillway design discharge as well as smooth flow transition from subcritical in the upstream channels to supercritical in the downstream chuteway. Height of the control sill is assumed to be 1.0 m referring to other spillways, and is subject to modification by a hydraulic model test.

1.5.4 Flow condition in transitional channel

For securing subcritical flow in the transitional channel the channel slope needs to be gentler than the critical slope ic for the spillway design discharge. The critical slope ic is obtained below:

(1) Critical depth

Critical depth Dc in a rectangular section is given by:

$$Dc = [(aQ^2)/(gB^2)]^{1/3}$$
 (Eq. 12)

where, D: critical depth in m

a : energy coefficient (=1.0)

g: acceleration of gravity (=9.8 m/s²)

Q: discharge (=1,890 m 3 /s)

B: channel width (=25 m)

Substituting respective values to Eq. 11, the critical depth is obtained as follows:

$$Dc = 1,890^2 / (9.8 \times 25^2)]^{1/3}$$
$$= 8.35 \text{ m}$$

(2) Critical slope

Critical slope ic is equal to a friction loss slope of the critical flow, or:

$$ic = (n^2Q^2)/(Rc^{4/3}Ac^2)$$
 (Eq. 13)

where, ic : critical slope for Q

n : Manning's coefficient of roughness (=0.014)

Q: discharge $(=1,890 \text{ m}^3/\text{s})$

Rc: critical hydraulic radius in m

Ac: critical flow area in m²

Based on the critical depth of Dc = 8.35 m, the critical slope ic is obtained by Eq. 12 below:

$$Ac = BDc$$

= 25 x 8.35
= 208.75 m²

Rc = Ac/(B + 2Dc)
=
$$208.75/(25 + 2 \times 8.35)$$

= 5.01 m

Hence, the critical slope is:

ic =
$$(0.014^2 \times 1,890^2) / (5.01^{4/3} \times 208.75^2)$$

= 0.00187
= $1/535$

The design channel slope of i = 1/1,000 is gentler than the above critical slope of ic = 1/535. Therefore, flow in the transitional channel at the spillway design discharge will be subcritical even without the control sill at its downstream end.

1.5.5 Water surface profile in side channel trough and transitional channel

Water surface profile in the transitional channel is first checked in accordance with the following equation for non-uniform flow in an open channel:

$$\frac{dh}{dX} = \frac{i \cdot \frac{n^2}{R^{4/3}} (\frac{Q}{A})^2 + \frac{aQ^2}{gA^3} \frac{\partial A}{\partial X}}{1 - \frac{aQ^2B}{gA^3}} \dots (Eq. 14)$$

where, h : water depth in m

X: coordinate along channel, in m

i : channel slope (= 1/1000)

n : Manning's coefficient of roughness (=0.014)

Q: discharge in m³/s

R: hydraulic radius in m

A: flow area in m^2

a : energy coefficient (= 1.0)

g: acceleration of gravity (= 9.8 m/s^2)

B: channel width (= 25 m)

Boundary condition of Eq. 13 is given as a critical depth on the control sill provided at the downstream end of the transitional channel. The critical depth is given by Eq. 11. The non-uniform flow calculation is made from this downstream end toward upstream end of the transitional channel for the design discharge.

Calculation results for the transitional channel are summarized below:

Discharge		Water level at (in m)	
(m ³ /s)	Control weir	Upstream end (1)	Upstream end (2)
1,890	184.3	185.15	187.6 <u>/1</u>

with loss of head due to the gradual contraction from the trapezoidal section to the rectangular section

In between the transitional channel and the side channel is a loss of head due to the gradual contraction from the trapezoidal section to the rectangular section. This gradual contraction is not yet taken into account in the water level that are obtained by the non-uniform flow analyses. The loss of head h1 and the depth D1 at the entrance to the gradual contraction are given by:

$$h_1 = 0.2 (V_2^2 - V_1^2) / (2g)$$
 (Eq. 15)

$$D_1 = D_2 + h_1 + (V_2^2 - V_1^2)/(2g)$$
 (Eq. 16)

where, V1: velocity before the contraction, in m/s

V2 : velocity after the contraction, in m/s

D1: depth before the contraction, in m

D2: depth after the contractor, in m

h1: loss of head due to the gradual contraction in m

g: acceleration of gravity (= 9.8 m/s^2)

The loss is obtained as follows:

 $V2 = 1,890/(25.0 \times 9.15) = 8.26 \text{ m/s}$

 $A1 = (25 \times 2 + 0.95 \times 11.6) \times 11.6/2 = 353.9 \text{ m}^2$

V1 = 1.890/353.9 = 5.34 m/s

 $h1 = 0.2 (8.26^2 - 5.34^2) / (2 \times 9.8)$

= 0.405

 $D1 = 9.15 + 0.405 + (8.26^2 - 5.34^2) / (2 \times 9.8)$

With this depth at the downstream end for the discharge, water surface profile in the side channel trough are obtained by the Hinds equation (E1. 10).

Water level and depth at the upstream end, and velocity and Froude number at the downstream end of the side channel trough are summarized below:

	at upstrea	am end		at downstr	eam end	
Discharge (m ³ /s)	Water level (El. m)	Depth/1 (m)	Velocity (rn/s)	Depth (m)	Area (m ²)	Fr. No./2
1,890	190.93	+1.93	5.00	12.0	368.4	0.5

/1: Measured from the overflow crest EL. 189.0 m

/2: Fr = V/(gD)1/2, D = A/T

where, Fr : Froude number

V: velocity in m/s A: flow area in m²

T: channel width at water surface, in m

= B + 0.95D

D: depth, in m, measured from the channel floor
 B: bottom width (+ 25 m at the downstream end)

Water level at the upstream end will be EL. 190.93 m exceeding the overflow crest elevation by 1.93 m. As shown below, this depth in the side channel trough measured from the overflow crest satisfies the criterion set forth by Eq. 8:

$$D/H_{max} = 1.93/4.5$$

= 0.429 < 2/3

1.5.6 Freeboard of transitional channel

Wall around the side channel trough are raised up to EL. 196.0 m being equal to the dam crest elevation. This wall height around the side channel trough high enough in view of the specific energy of the incoming water that will be EL. 193.5 m at the maximum flood.

Due to such layout of the transitional channel as across the dam axis and spillway bridge, the side walls along the transitional channel are also raised up to the dam crest elevation at EL. 196.0 m except downstream 15 m reaches where the wall height is gradually reduced.

Freeboard for each point are as shown below:

Point	Water level (EL, m)	Wall elevation (EL, m)	Freeboard (m)
Upstream end	187.6	196.0	8.4
Control weir	184.3	186.0	1.7

As shown in the above figure, the design wall is higher enough for the design flood discharge.

1.6 Hydraulic Design of Chuteway

Chuteway has such a hydraulic function as safely to convey high velocity flow from the control sill provided at the upstream end of the chuteway to the energy dissipator at the downstream end.

1.6.1 Section and profiles of chuteway

The chuteway is designed as straight reaches in plan and profile joined by vertical curves. Its dimensions are determined as described below:

(1) Cross section

(a)	Туре	Rectangular
(b)	Channel width	30 m

(2) Profile

(a) Channel slope 1:2.0
 (b) Horizontal length of channel 131.0 m
 (c) Bottom elevation at BP of the chuteway EL. 177.0 m
 (d) Bottom elevation at EP of the chuteway EL. 112.0 m

1.6.2 Water surface profile in chuteway

Water surface profiles in the chuteway are obtained by Eq. 14 for non-uniform flow. Since the flow is supercritical the calculation is made from the upstream end, for which a boundary condition is given as a critical depth on the control sill, toward the downstream end.

As the required adjustment factor of depth due to the channel slope of l=1.6875 is in the order of $\cos\theta = 0.86$, the steep slope effect on the channel flow is neglected in the non-uniform analysis.

Manning's coefficient of roughness is assumed at n=0.018 to be conservative in checking water surface profile in and freeboards of the chuteway in accordance with the criteria set forth in the design criteria report.

Result is presented in Table-1.1.

Another non-uniform flow calculation is made for the spillway design discharge with Manning's n=0.008 to be conservative in estimating energy of the incoming flow to the stilling basin. Result is presented in Table 1.2.

1.6.3 Freeboard of chuteway

There is an empirical formula which gives a resalable indication of desirable freeboard values. The formula is expressed in the form of:

Freeboard (m) = $0.6 + 0.037 \text{VD}^{1/3}$ (Eq. 17)

where, V: velocity, in m/s

D: depth of flow, in m

Substituting velocity and depth of flow that are presented in 1.6.2 to the above formula, the minimum freeboard required against the spillway design discharge (Q=1,890 m³/s) at representative sections are obtained as follows:

Required Minimum Wall Height of Chutcway

STA.	Depth (m)	Velocity (m/s)	Freeboard (m)	D + Fb (m)
0	7.399	8.515	1.21	8.61
0+50	2.631	23.95	1.82	4.45
0+100	2.071	30.42	2.03	4.10
0+145.34	1.835	34.33	2,16	4.00

As shown in the above table, the design wall is higher than the required minimum against the spillway design discharge.

1.7 Hydraulic Design of Stilling Basin

Energy of the flow in the chuteway will be dissipated in the stilling basin before returning to the downstream river channel.

1.7.1 Section and profiles of stilling basin

The energy dissipator is determined to be a stilling basin type having a horizontal apron with end sill. The basin has a rectangular cross section. Design condition of the stilling basin are as follows:

(1)	Design discharge	1,040 m ³ /s
(2)	Tailwater level at the design discharge (assumed)	EL. 126.0
(3)	Depth of incoming flow from the chuteway	0.968 m
(4)	Froude number of incoming flow the chuteway	11.63

The above depth and Froude number of the incoming flow are obtained by the non-uniform flow analysis for the chuteway, of which results are presented in 1.6.2.

Based on the above design conditions, the stilling basin is designed as summarized below:

(1)	Floor elevation of the stilling basin	EL. 112.0
(2)	Top elevation of the end sill	EL. 121.0

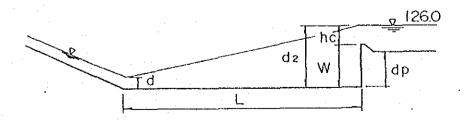
(3)	Water level after hydraulic jump without backwater	
	effect of tailwater level	EL. 125.97
(4)	Tailwater level (assumed)	EL. 126.0
(5)	Top elevation of the protection wall	EL. 130.0
(6)	Length of the stilling basin	80.0 m
(7)	Width of the stilling basin	30.0 m
(8)	Height of the end sill measured from apron surface	1.0 m
(9)	Height of the protection wall measured from	
	apron surface	18.0 m

1.7.2 Hydraulic jump

Based on the design conditions, hydraulic jump in the stilling basin is checked as follows:

(1) Hydraulic jump

Since the Froude number of the incoming flow of 11.63 is higher than 4.5, a true hydraulic jump will form in the stilling basin. A conjugate depth and length of the hydraulic jump in a horizontal channel is given by the equations:


$$\frac{W}{d} = \frac{(1 + 2Fr^2)\sqrt{1 + 8Fr^2 - 1 - 5Fr^2}}{1 + 4Fr^2 - \sqrt{1 + 8Fr^2}} - \frac{3}{2}Fr^{2/3} ...$$
 (Eq. 18)

$$L = 6d2$$
 (Eq. 19)

where, W: height of end sill

Fr : Froude number before jump = V/\sqrt{gd}

d : depth before jumpV : velocity before jump

Substituting the respective values to the above equations, the conjugate depth and length of the hydraulic jump are:

$$d2 = W + hc = 13.22 \text{ m}$$
 $dp = 13.22 - 6.0 = 7.22 \text{ m}$

$$L = 6 \times 13.22 = 79.3 \text{ m}$$

Bottom EL.
$$120.0 - 7.22 = 112.78 \text{ m}$$

Based on the above length (79.3 m) of hydraulic jump in a horizontal channel, length of the stilling basin L is determined to be 80 m in the conservative side. The floor elevation of the stilling basin will then to be EL. 112.0 m.

Table 1.1 WATER SURFACE PROFILE IN CHUTEWAY (n=0.018, Q=1,890m3/s)

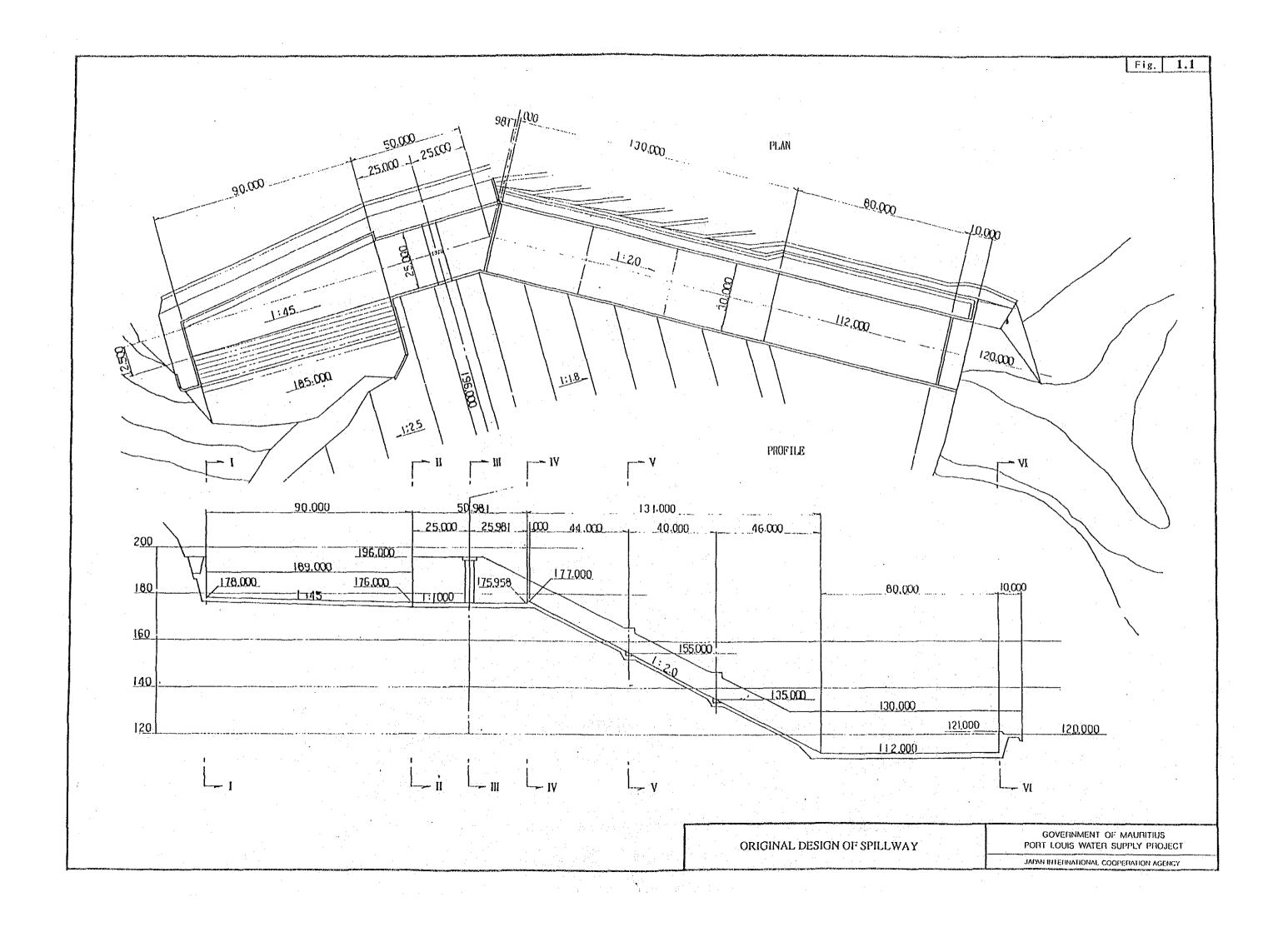
£	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)	(13)	(14)
STA.	Water	Area	Water Area Velocity		Water	Hydraulic		Surface	Mean	Friction Bottom	Bottom	Total	Total energy
:	depth			(V^2)/2g	surface	depth	R^(4/3)	slope	surface	surface loss head elevation	elevation		
					width				slope				
		A	>		а.	Œ		R	MSF	<u>ታ</u>	BM	EGH	EGH
	(m)	(m2)	(m/s)		(m)	(m)				(m)	(El.m)	(El.m)	(El.m)
0	7.399	221.97	8.515	3.699	44.8	4.954	8.447	0.00028	•		177.00	188.10	•
0+20	2.631	78.93	23.95	29.25	35.26	2.238	2.928	0.0634	0.0318	1.593	154.64	186.52	186.51
0+100	0+100 2.071	62.13	30.42	47.21	34.14	1.82	2.222	0.135	0.0992	4.959	132.28	181.56	181.56
+145.34	0+145.34 1.835 55.05	55.05	34.33	60.14	33.67	1.635	1.926	0.198	0.1665	7.555	112.00	173.98	174.00
A 10 40													

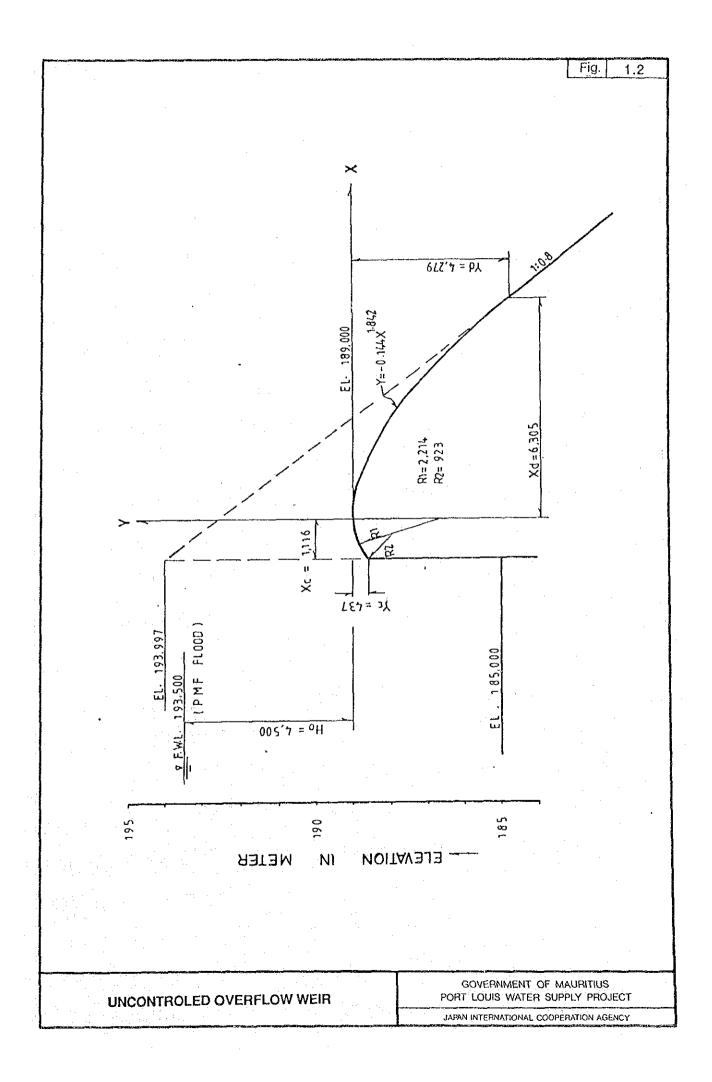
$$(4) = 1,890 / (3)$$

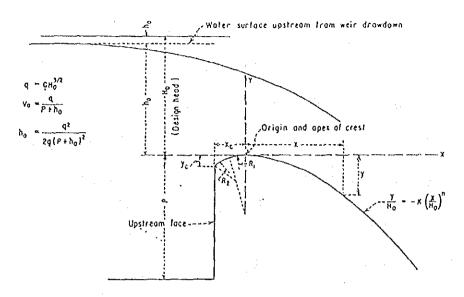
 $(6) = 2 \times (2) + 30.0$

$$(2) = (3) / (9) = (2)$$

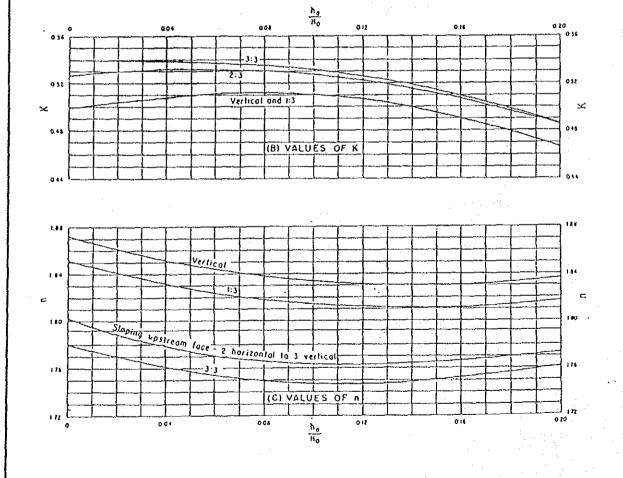
$$(7) = (3) / (6)$$
 $(9) = 0.018^2 (4)^2 / (8)$


$$(11) = (10) * L$$
 $(13) = (12) + (2) + (5)$


$$(14) = EG.H(n-i) - (11)$$


Table 1.2 WATER SURFACE PROFILE IN CHUTEWAY (n=0.008, Q=1,040m3/s)

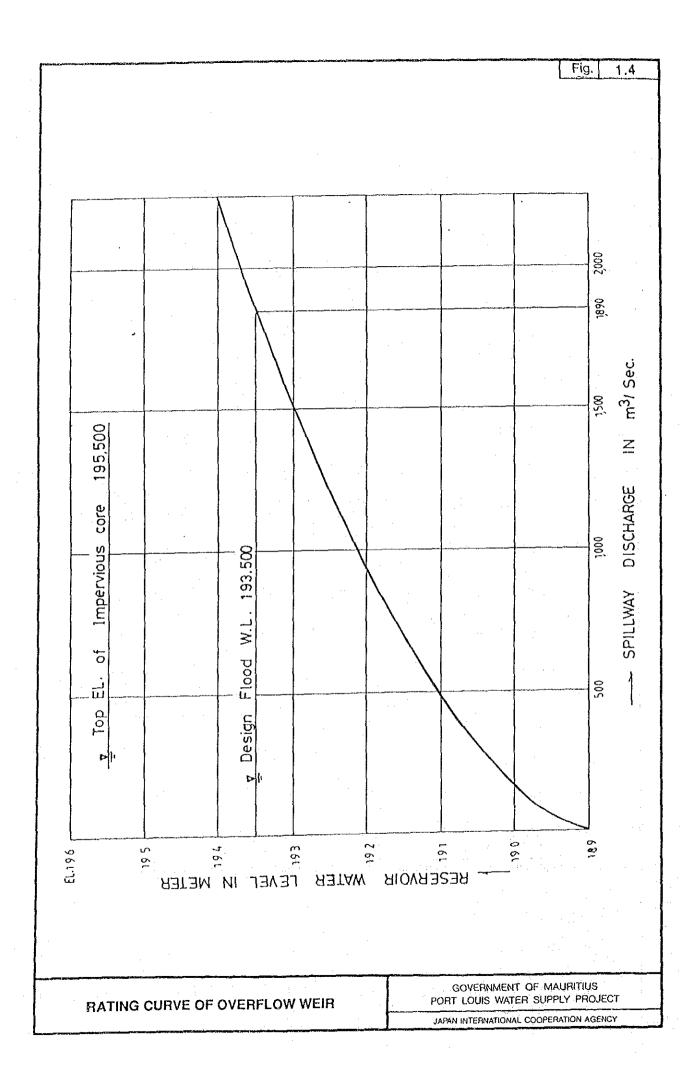
(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)	(10)	(11)	(12)	(13)	(14)
STA.	Water	Area	Velocity		Water	Hydraulic		Surface	Mean	Friction	Bottom	Total	Total energy
	depth			$(V^{\Lambda}2)/2g$	surface	depth	R^(4/3)	adols	surface	loss head	surface loss head elevation		
					width				slope				
		¥	>		σ.	Œ		Ω	MSF	生	BW	EGH	EG.H.
	(m)	(m2)	(m/s)		(m)	(m)				(m)	(El.m)	(El.m)	(El.m)
0	4.968	4.968 149.04	6.978	2.484	39.94	3.732	5.789	0.00054	t .	ı	177.00	184,45	1
0+20	1.487	44.61	23.31	27.73	32.97	1.353	1.496	0.0232	0.0119	0.593	154.64	183.86	183.86
0+100	1.125	1.125 33.75	30.81	48.45	32.25	1.047	1.062	0.057	0.0401	2.005	132.28	181.85	181.86
0+145.34 0.968	0.968	29.04	35.81	65.44	31.94	0.909	0.881	0.0928	0.0749	3.397	112.00	178.41	178.45
Note: (4) = 1,040 / (3)	40 / (3)		(6) = 2 ×	$(6) = 2 \times (2) + 30.0$		(7) = (3) / (6)	(9) /	(9) = 0.008^2 * (4)^2 / (8)	18^2 * (4)	^2 / (8)			
(11) = (10) * 1			(13) = (1)	(13) = (12) + (2) + (5)	(2)	(14) = EG	(14) = EG.H(n-i) - (11)	13)					

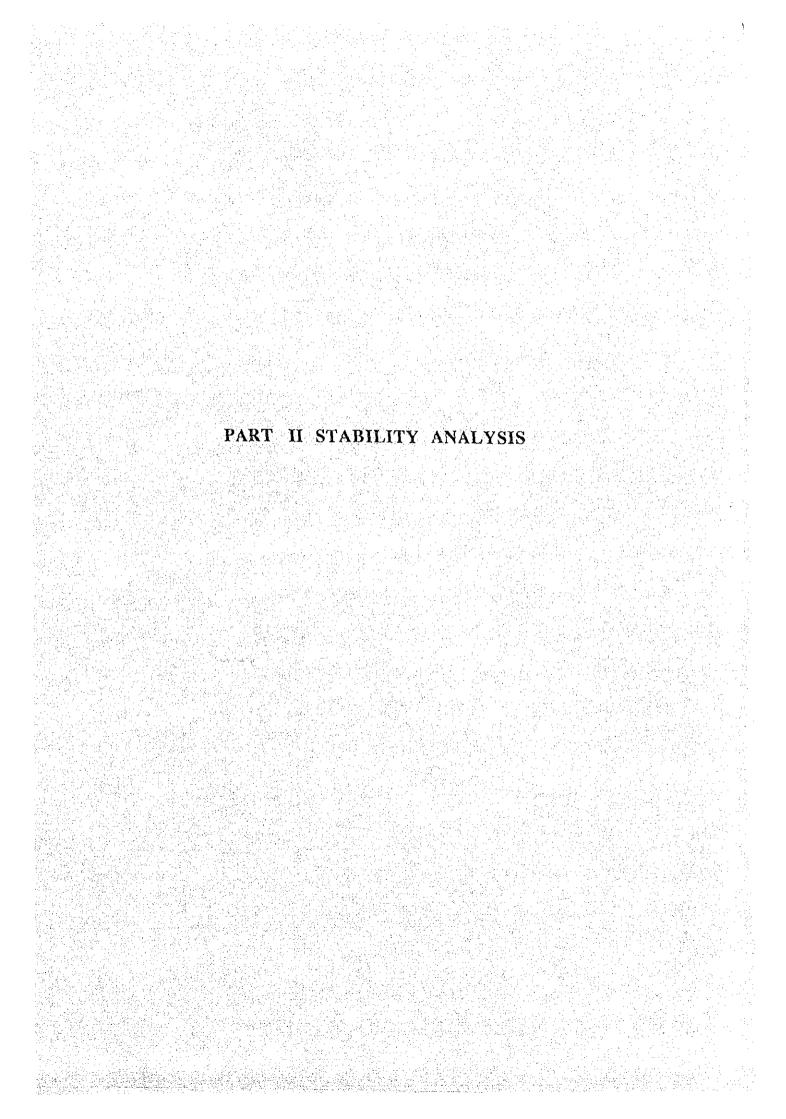

 $(11) = (10) \cdot L$

(A) ELEMENTS OF NAPPE-SHAPED CREST PROFILES

FACTORS OF DEFINITION OF NAPPE-SHAPED CREST PROFILE (1/2)

GOVERNMENT OF MAURITIUS PORT LOUIS WATER SUPPLY PROJECT


JAPAN INTERNATIONAL COOPERATION AGENCY


Fig. 1.3(2) κÏΪ ×]x° LOCATION OF CENTER FOR 거로

FACTORS OF DEFINITION OF NAPPE-SHAPED CREST PROFILE (2/2)

GOVERNMENT OF MAURITIUS PORT LOUIS WATER SUPPLY PROJECT

JAPAN INTERNATIONAL COOPERATION AGENCY

PART II STABILITY ANALYSIS

2.1 Main Dam and Cofferdam

2.1.1 Method of Dam Stability Analysis

The dam stability is analyzed by the slip circular method which examines trially the safety against slip along various assumed failure circles.

The factor of safety is given by the following equation:

$$Fs = \frac{\Sigma \{C \times L + (N - U - Ne) \times \tan \Phi\}}{\Sigma (T + Te)}$$

where,

Fs: Factor of safety

N: normal force acting on slip circle of each slice

T: tangential force acting on slip circle of each slice

U: pore pressure acting on slip circle of each slice

Ne: normal force of earthquake load acting on slip circle of each slice

Te: tangential force of earthquake load acting on slip circle of each slice

 Φ : angle of internal friction of materials on slip circle of each slice

C: cohesion of materials on slip circle of each slice

L: arc length of slip circle of each slice

 Σ : Summation for all slices

The factor of safety without earthquake force is obtained by substitution Ne = 0 and Te = 0 into the above equation. The normal force (N) and tangential force (T) are defined as:

$$N = W \cos \theta + Pn = W \cos \theta + P \sin \theta$$
$$T = W \sin \theta + Pt = W \sin \theta + P\cos \theta$$

where,

θ: angle between horizontal and the tangent of the arc at slice

W: total weight of slice (embankment and water)

W = (D1 wet .h1 + D1 sat .h2 + D2 sat .h3)*
$$\Delta X$$

or W = (D2 wet .h4 + D2 sat .h5)* ΔX

in which

 ΔX : width of a slice

Di wet: wet density of material (i)

Di sat : saturated density of material (i)

hi : height of a slice of material (i)

P : differential water pressure acting on both sides of a slice

$$P_{\perp} = Dw (h2 + h3 - \Delta X/2 x tan \theta) x \Delta X x tan \theta$$

 $(h2 + h3) \times \Delta X/2 \times tan \theta$ (Dw = 1.0 t/m³)

The normal and tangential forces due to earthquake are defined as follows:

$$Ne = W \times k \times \sin \theta$$

$$Te = W \times k \times \cos \theta$$

where.

k: horizontal seismic coefficient

Besides the above, the safety should be checked for plane surface sliding of cohesionless materials.

The factor of safety against plane surface sliding of cohesionless materials is given by the following equations. These equations are derived from the slip circular equation assuming a radius of circle to be infinite; that is, infinite slope.

(a) Submerged slopes (upstream slopes)

$$Fs = \frac{m - k \times R}{1 + k \times R \times m} \times \tan \phi$$

(b) Dry slopes (downstream slopes)

$$F_S = \frac{m - k}{1 + k \times m} \times \tan \phi$$

where,

Fs: factor of safety

m : slope gradient (1 : m)

k : horizontal seismic coefficient

φ : internal friction angle

R : Dsat/Dsub

D_{sat}: saturated density of material

D_{sub}: submerged density of material (Dsat - 1.0)

2.1.2 Design Value

The design values for dam stability analysis are determined on the basis of the field investigation results on construction materials.

Although Section 3.5 in Design Report for Lot-I "Dam Materials" of this report presents explanations on determination of design values, those are reproduced below:

Design Values of Dam Materials

			Fil	ter	
Item		Earth	Fine	Coarse	Rock
Specific gravity	•	2.88			
(Oven dry condition)			2.87	2.87	2.87
Natural moisture content	(%)	40.00			
Water absorption			1.50	1.50	1.50
Dry density	(tf/m ³)	1.23	1.90	2.00	2.10
Wet density	(tf/m ³)	1.72	1.93	2.03	2.13
Saturated density	(tf/m ³)	1.80	2.23	2.30	2.37
Submerged density	(tf/m ³)	0.80	1.23	1.30	1.37
Coefficient of permeability	(cm/sec)	1 x 10 ⁻⁵	1 x 10 ⁻³	1 x 10 ⁻²	1 x 10 ⁻¹
Strength parameter (effective stress analysis)					
Cohesion c'	(tf/m^3)	0.00	0.00	0.00	0.00
Internal friction angle (ø)	(degree)	30.00	36.00	38.00	40.00

The dam design considers that some talus deposits be left unexcavated in the rock zone of dam on the basis of dam stability analysis results. Design values for the talus deposits are conservatively assumed to be same as those of the fine filter material. Further, design values for coarse filter are also assumed to be same as those of fine filter for a conservative sake.

As for the seismic coefficient, the seismic coefficient of k = 0.05 is taken into consideration in the analysis in accordance with the standard which states that k = 0.05 should be taken into consideration even in areas having no earthquakes.

The safety factor which the dam has to secure is more than 1.2 in accordance with the standard.

2.1.3 Examined Cases

(1) Present Scheme and Future Expansion Scheme

The present project design considers to make it possible to expand the dam height if required in future.

Thus, the dam stability and dam slope should be examined in due consideration of both the present and expanded schemes. Further, the safety of the main cofferdam should be confirmed.

Hence, the dam stability is examined for the following three (3) cases:

(a):	Present scheme	(Dam crest	EL. 196.0 m)
(b):	Expanded scheme	(Dam crest	EL. 215.0 m)
(c):	Main cofferdam	(Dam crest	EL. 155.5 m)

(2) Loading Conditions

The dam will be subject to various loading conditions for which the safety of dam should be ensured.

In accordance with the standard, the dam stability is examined for the following loading conditions:

- (a) Reservoir normal high water level with the full seismic load.
- (b) Rapid drawdown of water level with the full seismic load.
- (c) Immediately after completion with a half of seismic load.
- (d) Design flood water level without seismic load.

(3) Dam Sections

Talus deposits will remain in the upstream rock zone foundation of left bank and in the downstream rock zone foundation of right bank where the critical sliding failure circles appear.

Therefore, the following two dam sections are taken into consideration in the analysis:

(a) Left bank dam section which include talus deposits for determination of upstream dam slope. (b) Right bank dam section which include talus deposits for determination of downstream dam slope.

2.1.4 Results of Stability Analysis

The computer program calculated the factor of safety for various assumed failure circles in respective cases and indicated the minimum value of the factor of safety in respective cases, which are summarized in Table 2.1.1 to Table 2.1.4. The failure circle along which the minimum value of safety factor appeared is shown in Fig. 2.1.1 to Fig. 2.1.5.

As seen, the factor of safety more than 1.2 is surely secured in the upstream dam slope of 1 to 2.3 and downstream dam slope of 1 to 1.8.

Under the above slope of dam, the safety for plane surface sliding is also secured as follows:

Submerged slope (upstream slope)

$$Fs = \frac{m - k \cdot R}{1 + k \cdot R \cdot m} x \tan \phi$$

$$= \frac{2.3 - 0.05 \times \frac{2.37}{1.37}}{1 + 0.05 \times \frac{2.37}{1.37} \times 2.3} x \tan 40^{\circ}$$

$$= \frac{2.213}{1.199} \times 0.839 = 1.548 > 1.2$$

Dry slope (downstream slope)

$$F_S = \frac{m - k}{1 + k \cdot m} x \tan \phi$$

$$= \frac{2.3 - 0.05}{1 + 0.05 \times 2.3} x \tan 40^\circ$$

$$= 1.693 > 1.2$$

2.2 Examination on Soft Layers in Dam Foundation

2.2.1 General

The geology of both abutments of the dam site consists of alternate layers of hard basalt layer and weathered soft layer.

Fig. 2.2.1 shows situations of hard basalt layers, weathered soft layers, and talus deposits to be removed. The impervious core to be embanked on such alternate layers may cause differential settlements, resulting in occurrence of cracks in the impervious core.

Such being the case, analyses of deformation and stress by the Finite Element Method(F.E.M.) are made to provide countermeasures if necessary.

The analyses are made with a model as shown in Fig. 2.2.2. Elastic moduli used in the analyses are assumed on the basis of the in-situ rock tests carried out in the test adits as follows:

· · · · · · · · · · · · · · · · · · ·	Elastic Modulus (kg/cm²)
Hard basalt	55,000
Soft layer	2,000
Core material	500

The unit weight of 1.8 t/m³ which is the saturated density of core material is assumed for the impervious core material and core material depth of about 80 m is considered as loading on the foundation, taking the future expansion of dam into consideration. The unit weight of the hard basalt and soft layer is disregarded with consideration that it provides negligibly small effect on the result of analysis.

2.2.2 Analyses of Deformation and Stress

In order to clarify the effect due to the soft layer, the analyses of deformation and stress are made for the following two cases:

CASE (i): Case that the foundation consists only of the hard basalt; that is, the foundation is wholly provided with elastic modulus of $E = 55,000 \text{ kg/cm}^2$.

CASE (ii): Case that the foundation is intercalated with the soft layer as shown in Fig. 2.2.2.

The analysis by F.E.M. are made with the following model.

1) Number of nodal point

84

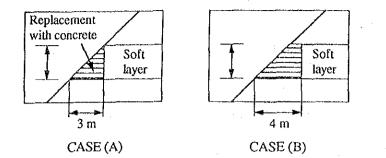
2) Number of element

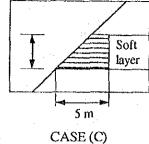
72.

Fig. 2.2.3 and Fig. 2.2.4 show stress distributions for CASE (i) and CASE (ii), respectively.

Deformations are calculated as tabulated in Table 2.2.1 and Table 2.2.2 and as shown below:

Point	Deformation (m)				
No.	CASE (i)	CASE (ii)			
34	-2.188 x 10 ⁻⁴	-2.09 x 10 ⁻⁴			
 40	-4.873 x 10 ⁻⁴	-5.50 x 10 ⁻³			
46	-7.466 x 10 ⁻⁴	-1.03×10^{-2}			
52	-9.746 x 10 ⁻⁴	-1.06×10^{-2}			
58	-1.166 x 10 ⁻³	-7.05×10^{-3}			
64	-1.321 x 10 ⁻³	-4.21 x 10 ⁻³			


As seen in the above, a remarkable effect on deformations due to the intercalated soft layer is recognized.


2.2.3 Results of Analyses

As seen in Fig. 2.2.3 which shows the case that the foundation is assumed to consist wholly of the hard basalt, no tensions arise in the impervious core and foundation. However, in the case that the foundation is intercalated with the soft layer as shown in Fig. 2.2.4, tensions occur in the core and upper hard basalt layer due to deformations of the soft layer, suggesting that there is possibility of damage on the hard basalt layer and serious occurrence of cracks in the impervious core and that some countermeasure is required.

2.2.4 Examination on Dam Foundation Treatment

Therefore, examinations are made to find a suitable and effective countermeasure; that is, the following three (3) cases of replacement with concrete are examined with stress analyses by the Finite Element Method.

Results of stress analyses for the above three (3) cases are given in Fig. 2.2.5, Fig.2.2.6 and Fig. 2.2.7, respectively.

As seen in the above figures, tensions still occur in the upper hard layer in CASE (A) and CASE (B). The tension disappears in CASE (C).

The above analyses reveal that the replacement with concrete up to a depth of about 1.7 times thickness of the soft layer will be the efficient countermeasure to ensure the safety. Based on the above, the design of dam foundation treatment considers to replace with concrete up to the depth of 2.0 times soft layer thickness for the soft layers of core zone. The replacement will be made with lean concrete.

Table 2.1.1 RESULTS OF DAM STABILITY ANALYSIS (Dam Scheme: Present Scheme (Dam Crest EL. 196.0 m),

Dam Section: Left Bank Dam Section)

MF-01: Case Name

SFN: Safety Factor in Normal Condition SFE: Safety Factor in Seismic Condition

Case	Water Level	Seismic Coefficient	Upstream 1:2.3	Downstream 1:1.8
			MO-01	MO-01
Reservoir Full	189.00	0.05	SFN = 1.926	SFN = 1.533
			SFE = 1.568	SFE = 1.367
			MO-02	MO-02
Rapid Drawdown (1)	155.50	0.05	SFN = 1.979	SFN = 1.533
			SFE = 1.722	SFE = 1.367
			MO-03	MO-03
Rapid Drawdown (2)	164.00	0.05	SFN = 1.883	SFN = 1.533
	,		SFE = 1.594	SFE = 1.367
			MO-04	MO-04
After Completion		0.025	SFN = 1.979	SFN = 1.533
			SFE = 1.849	SFE = 1.446
			MO-05	MO-05
Design Flood	193.50		SFN = 1.979	SFN = 1.533
			SFE =	SFE =

RESULTS OF DAM STABILITY ANALYSIS Table 2.1.2

(Dam Scheme: Expanded Scheme (Dam Crest EL. 215.0 m), <u>Dam Section: Left Bank Dam Section)</u>

MF-01: SFN : SFE : Case Name Safety Factor in Normal Condition Safety Factor in Seismic Condition

	Water	Seismic	Upst	ream	Downstream
Case	Level	Coefficient	1:2.3	1:2.5	1:1.8
			MF-01	MF-02	MF-01
Reservoir Full	209.00	0.05	SFN = 1.711	SFN = 1.881	SFN = 1.533
			SFE = 1.387	SFE = 1.509	SFE = 1.366
			MF-03	MF-04	MF-03
Rapid Drawdown (1)	155.50	0.05	SFN = 1.506	SFN = 1.620	SFN = 1.533
		·	SFE = 1.294	SFE = 1,386	SFE = 1.366
			MF-05	MF-06	MF-05
Rapid Drawdown (2)	174.00	0.05	SFN = 1.523	SFN = 1.620	SFN = 1.533
			SFE = 1.289	SFE = 1.378	SFE = 1.366
			MF-07	MF-08	MF-07
After Completion		0.025	SFN = 1.543	SFN = 1.597	SFN = 1.533
			SFE = 1.435	SFE = 1.469	SFE = 1.446
	Г. Т. Т. Т. 1.		MF-09	MF-10	MF-09
Design Flood	212.50		SFN = 1.831	SFN = 1.982	SFN = 1.533
			SFE =	SFE = -	SFE =

Table 2.1.3

RESULTS OF DAM STABILITY ANALYSIS
(Dam Scheme: Expanded Scheme (Dam Crest EL. 215.0 m),
Dam Section: Right Bank Dam Section)

MF-01: SFN : SFE : Case Name Safety Factor in Normal Condition Safety Factor in Seismic Condition

Case	Water Level	Seismic Coefficient	Upstream 1:2.3	Downstream 1:1.8
				MFR-01
Reservoir Full	209.00	0.05		SFN = 1.464
	1			SFE = 1.276

RESULTS OF DAM STABILITY ANALYSIS (Main Coffer Dam (Dam Crest EL, 155,5 m)) Table 2.1.4

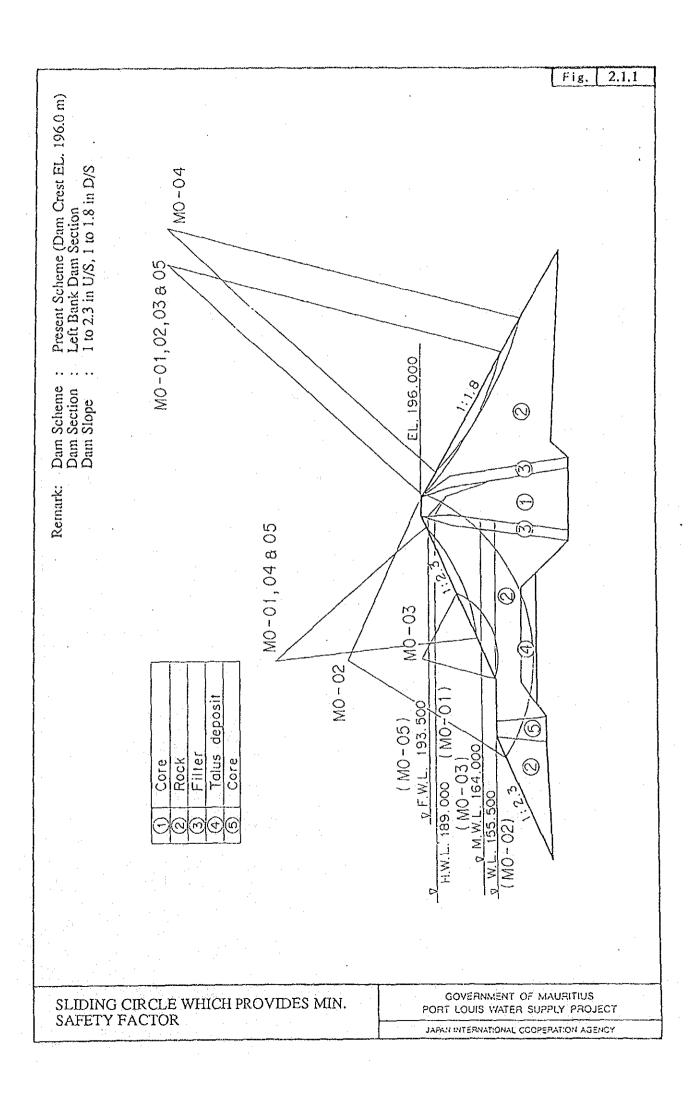
MF-01: SFN : SFE : Case Name Safety Factor in Normal Condition Safety Factor in Seismic Condition

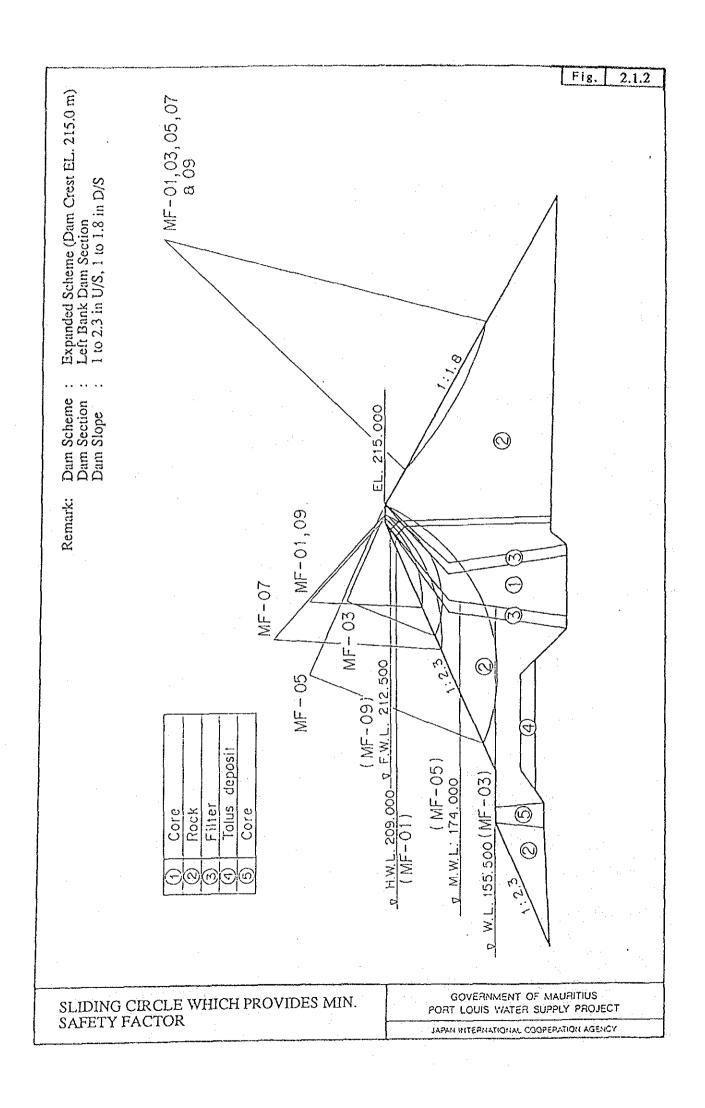
Case	Water Level	Seismic Coefficient	Upstream 1:2.3	Downstream 1:1.8
			C-01	C-01
Rapid Drawdown	138.00	0.05	SFN = 1.843	SFN = 1.604
			SFE = 1.546	SFE = 1.426
			C-02	C-02
After Completion		0.025	SFN = 1.998	SFN = 1.604
			SFE = 1.866	SFE = 1.511
			C-03	C-03
Design Flood	154.50		SFN = 1.997	SFN = 1.604
		<u></u>	SFE =	SFE =

Table 2.2.1 DEFORMATION OF EACH POINT - CASE(i) (1/2)

******	李本帝本李本帝李本帝李本帝李本帝李本帝	李本本本本本本本本本本本本本本	******	*****
****	MODAL DISDLACEMENT A	ND ጥርጥAT	STEP NO I	
*******	***************	******	**************	*****
N.P. NUMBER	UX (m)	ሀያ (ጠ)	,UR (m)	
1	0.000000E+00	-1.0271979E-01	0.000000E+00	
	0.0000000E+00	-8.7651848E-02	0.0000000E+00	
2 3		-7.1400869E-02	0.000000E+00	
4		-5.4330267E-02	0.0000000E+00	
5		-3.6661729E-02	0.000000E+00	
. 6	0.000000E+00	-1.8510176E-02	0.0000000E+00	
7	0.000000E+00	0.0000000E+00	0.000000E+00	
8		-1.0142778E-01	0.000000E+00	
9		-8.6315933E-02	0.000000E+00	
10	-1.3293913E-03	-7.0080042E-02	0.0000000E+00	
11		-5.3150016E-02	0.0000000E+00	
12	9.1078696E-04	-3.5760388E-02	0.000000E+00	
. 13	1.5621862E-03	-1.8015834E-02	0.000000E+00	
14	1.7600523E-03	0.0000000E+00	0.0000000E+00	
15	-1.0492305E-02 *	-9.7505337E-02	0.0000000E+00	
1 G 1	-5.9102985E-03	-8.2228738E-02	0.0000000E+00	
17	-2.62139908-03	-6.5989502E-02	0.000000E+00	
18		-4.9360781E-02	0.0000000E+00	
19	1.3445573E-03	-3.2774859E-02	0.000000E+00	
20		-1.6286262E-02	0.0000000E+00	
21	2.6590658E-03	0.000000E+00	0.0000000E+00	
22	-1.5061507E-02	-9.0863207E-02	0.0000000E+00	
23		-7,5228989E-02	0.0000000E+00	
24		-5.8821759E-02	0.000000E+00	
25	-8.0254267E-04	-4.2384292E-02	0.000000E+00	
26	9.3416249E-04	-2.6508352E-02	0.0000000E+00	
27	2.0609085E-03	-1.2137157E-02	0.0000000000000000000000000000000000000	
28	8.0635964E-04	0.000000E+00	0.000000E+00	·
29	-1.8602162E-02	-8.1503671E-02	0,0000000E+00	
30		-6.5240606E-02	0.000000E+00	
31		-4.8388512E-02	0.000000E+00	
32		-3.1653550E-02	0.0000000E+00	
33	5.0564104E-04	-1.561/582E-02	0.0000000E+00	
3.4	6.8566253E-04	-2.1876344E-04	0.000000E+00	
36	u. 550550 t E-04	U. UUQUUUUE+00	0.000000E+00	
36	-2.0578023E-02	-6.9609894E-02	0.0000000E+00	
37		-5.2456499E-02	0.000000E+00	
- 38	-3.9368980E-03	-3.4848809E-02	0.000000E+00	
39	-6.9984845E-04	-1.7531444E-02	0.000000E+00	
40	5.9079164E-04	-4.8734549E-04	0.0000000E+00	
41	5.9076565E-U4	-2,4266928E-04	0.00000E+00	•
42	5.9157113E-04	0.0000000E+00	0.0000000E+00	
43		-5.5616291E-02	0.000000E+00	
4.4	-8.7256976E-03	-3.7255475E-02_	0.0000000E+00	
45	-2.3163553E-03	-1.8883672E-02	0.000000E+00	
_46	4.6382951E-04a	-7.4663613E-04	0,000000E+00	
47		-4.931341/E-04	0.000000E+00	
48		-2.4553880E-04	0.0000000E+00	
49	5.0201222E-04	0.0000000E+00	0.000000E+00	
50	-1.7656298E-02	-3.9753541E-02	0.000000E+00	

Table 2.2.1 DEFORMATION OF EACH POINT - CASE(i) (2/2)


中央市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市市	*********	*******	STEP NO. = ·1	***********
中市子水市	NODAL DISPLACEMENT	AND TOTAL	******	******
*****	李泰维特洛普安克西普米亚西亚亚亚	****		
N.P. NUMBER	UX (m)	υ <u>ν</u> (m)	UR (M)	
H.Z. ROMBER	•			
51	-5.2042155E-05	-2.0298235E-02	0.000000E+00	* .
52	3.0360208E-04	-9.7461326E-04	0.0000000E+00	
53	40-asse788.6	-7.2027881E-04	0.000000E+00	
54	3.9844347E-04	<u>-4.7720049E-04</u>	0.0000000E+00	<u>.</u>
55	4.09579911-04	-2.3/80886E-04	0.0000000E+00 0.0000000E+00	·
<u>56</u> 57	4.1226687E-04 -1.0900992E-02	0.0000000E+00 -2.2932983E-02	0.0000000E+00	
57 58	1.1982905E-04	-1.1658737E-03	0.0000000E+00	
50	2.2589947E-04	-9.1398270E-04	0.000000E+00	
60	2.7864119E-04	-6.7925334E-04_	0.000000E+00	
61	3.0439300E-04	-4.50//321E-04	0.0000000E+00	
62	3.1494330E-04	-2.2502874E-04	0.0000000E+00	
63	3.1763571E-04	0.000000E+00	0.000000E+00	
64	-6.1290546E-05	-1.3213185E-03.	0.000000E+00	
65	a.0726078E-05	-1.0753676E-03	0.000000E+00	
<u> </u>	1.4960878E-04	<u>-8.5172885E-04</u>	0.000000E+00	
67	1.8811465E-04	-6.3617489E-04	0.000000E+00	
• 68	2.0666591E-04	-4.2371469E-04	0.000000E+00	
69	2.1455985E-04	-2.1191330E-04	0.0000000E+00	1
70	2.1665527E-04	0.000000E+00	0.0000000E+00 0.000000E+00	
71 70	-1.86945681-05	-1.2318442E-03 -1.0124245E-03	0.000000E+00 0.000000E+00	•
72 73	3.6074870E-05 7.5118589E-05	-8.0629122E-04	0.0000000E+00	······································
73 74	9.4907087E-05	-6.0453645E-04	0.0000000E+00	
75	1.0469278E-04	-4.0385358E-04	0.000000E+00	
76	1.0886077E-04	-2.0233751E-04	0.000000E+00	
77	1.09982986-04	0.000000E+00	0.000000E+00	
78	0.0000000E+00	-1.2154080E-03	0.000000E+00	
. 79	0.0000000E+00	-9.9395376E-04	0.000000E+00	•
80	0.000000E+00	-7.8980514E-04	0.0000000E+00	
81	0.0000000E+00	~5.9306605E-04 -3.9659965E-04	0.0000000E+00 0.0000000E+00	4
8 <u>2</u> 83	0.0000000E+00 0.000000E+00	-1.9884452E-04	0.0000000E+00	
. 84	0.000000E:00	0.0000000E+00	0.0000000E+00	
	•.			·
•				
				.*
			<u> </u>	
	•	2		•
				·
		the second second	<u>·</u>	
			<u></u>	
			• •	
	-			<u> </u>
				e de la companya del companya de la companya del companya de la co
		. :	4.6	of the factor of


Table 2.2.2 DEFORMATION OF EACH POINT - CASE(ii) (1/2)

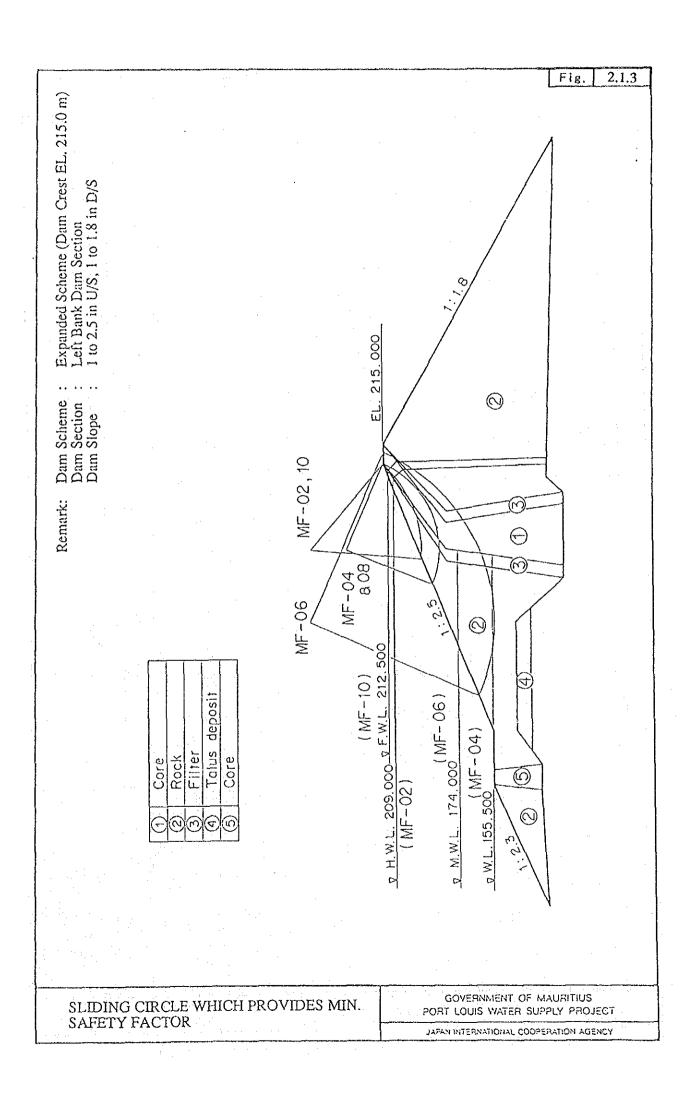

AAAAAA**AAA**AAAA**AAAAAAAAAAAAAAA							
N.P. NUMBER	tlx (m)	(m) YU	UR (m)				
1	0.0000000E+00	-1.0480671E-01	0.0000000E+00				
. 2	0.0000000E+00	-8.9241375E-02	0.0000000E+00				
3	0.0000000E+00	-7.2609499E-02	0.00000000E+00				
4	0.00000000E+00	-5.5210906E-02	0.0000000E+00				
5	0.0000000E+00	-3.7243378E-02	0.0000000E+00				
- 6	0.0000000E+00	-1.8803785E-02	0.00000000E+00				
7	0.0000000E+00	0.0000000000000	0.0000000E+00				
8	-4.2976799E-03	-1.0371135E-01.	0.00000000E+00				
9	-2.3116684E-03	-8.8108352E-02	0.0000000E+00				
10	-7.8187642E-04	-7.1470372E-02	0.0000000E+00				
il.	3.5652080E-04	-5.4167887E-02	0.00000000E+00				
12	1.2218088E-03	-3.643143SE-02	0.0000000E+00				
13	1.8311404E-03	-1.8357814E-02	0.0000000000000				
14	2.0353427E-03	0.0000000E+00	0.0000000E+00				
15	-8.4295483E-03	-1.0039562E-01	0.0000000E+00				
16	-4.4548733E-03	-8.4659798E-02	0.0000000E+00				
17	-1.4748124E-03	-6.7957495E-02	0.0000000E+00				
18	5.7517892E-04	-5.0793630E-02	0.0000000E+00				
19	2.0184006E-03	-3.3700585E-02	0.0000000E+00				
20	3.0785975E-03	-1.6767307E-02	0.0000000E+00				
21	3.3083988E-03	0.0000000E+00	0.0000000E+00				
22	-1.2192573E-02	-9.4795340E-02	0.0000000E+00				
23	-6.2107953E-03	-7.8793686E-02	0.00000000E+00				
24	-1.8805519E-03	-6.1860442E-02	0.0000000E+00				
25	8.5966302E-04	-4.4605271E-02	0.00000000E+00				
26	2.1355570E-03	-2.7766157E-02	0.00000000E+00				
27	2.9334111E-03	-1.2753707E-02	0.0000000E+00				
28	2.0752432E-03	0.00000000E+00	0.0000000E+00				
29	-1.5349960E-02	-8.6840045E-02	0.0000000E+00				
30	-7.3148335E-03	-7.0435460E-02	0.0000000E+00				
31	-1.6677975E-03	-5.3078889E-02	0.00000000E+00				
32	t .6387938E-03	-3.5357657E-02	0.0000000E+00				
33	2.9145927E-03	-1.7696510E-02	0.0000000E+00				
34	1.9804282E-03	-2.0925002E-04	0.0000000E+00				
35	1.9635608E-03	0.0000000E+00	0.0000000E+00				
38	-1.7625046E-02	-7.6424982E-02	0.000000000000				
37	-7.5193608E-03	-5.9491701E-02	0.00000000E+00				
38	-6.2158205E-04	-4.1768963E-92	0.0000000E+00				
39	3.3300113E-03	-2.3624160E-02	0.0000000E+00				
40	4.5G29447E-03	-5.4982654E-03	0.00000000E+00				
. 41	1.8633033E-03	-1.9637216E-04	9.00000000£±00				
42	1.8256999E-03	0.00000000000	0.0000000E÷00				
43	-1.8622508E-02	-6.3354191E-02	0.00000000E+00				
44	-6.5280987E-03	-4.5979214E-02	0.0000000E+00				
45	1.0240967E-03	-2.7768074E-02	0.0000000E+00				
<u>46</u>	5.6950535E-03	-1.0303684E-02	0.00000000E+00				
47	4.4709826E-03	-5.0651368E-03	0.0000000E+00				
48	1.6948313E-03	-1.6623805E-04	0.0000000E+00				
49	1.6544053E-03	0,00000000000000	0.00000000000000				
50	-1.7651723E-02	-4.7024637E-02	0.0000000E+00				

Table 2.2.2 DEFORMATION OF EACH POINT - CASE(ii) (2/2)

*****	***********	***********	*********	*****
****	NODAL DISPLACEMENT		STEP NO.= 1	****
	;****************	*********	********	*****

N.P. NUMBER	υχ (m)	บิY (m)	VR (m)	
1111 1 11011111111				
51	-4.0670235E-03	-2.8633144E-02	00+30000000.0	
_ 52	3.2154680E-03	-1.0632131E-02	0.0000000E+00	
53	5,0031740E-03	-7.1623705E-03	0.0000000E+00	
54	4.3118545E-03	-3,8497999E-03	0.00000000000000	÷
55	1.4664738E-03	-1.1195683E-04	0.0000000E+00	
56	1,4291067E-03	0.0000000E+00	0.+30000000.0	
57	-1.2320660E-02	-2.8295682E-02	0.0000000000000	
58	-8.4380373E-05	-7.0454169E-03	0.00000000000	
59	3.0595649E-03	-7.0275691E-03	0.00000000E+00	
60	4.2085297E-03	-4.8415364E-03	0.00000000E+00	
61	3.6204424E-03	-2.6101140E-03	0.0000000000	
62	1,1739864E-03	-5.4!70864E-05	0.00000000E+00	
63	1.1416782E-03	0.00000000E+00	0.0000000E+00	
64	-2,2111000E-03	-4.2126706E-03	0.0000000E+00	
65	7.3467234E-05	-4.0339283E-03	0.0000000E+00	
66	2.4677993E-03	-3.9668334E-03	0.00000000000000	
67	3.1425251E-03	-2.8628768E-03	0.0000000000+00	
68	2.6726862E-03	-1.6627851E-03	00+30000000.0	
63	8.2140828E-04	-3.8948608E-06	0.0000000E+00	
70	7.9801726E-04	0.0000000E+00	0.0000000E+00	
71	-1.4726554E-03	-1.8353686E-03	0.0000000E+00	
72	7.1800944E-05	-1.4496698E-03	0.0000000E+00	
73	1.5374427E-03	-1.5733809E-03	0.0000000E+00	*
74	1.6762339E-03	-1.3229138E-03	0.0000000E+00	• •
75	1.5086420E-03	-9.3399966E-04	0.0000000E+00	1
76	4,3043335E-04	3.5606852E-05	0.0000000E+00	
77	4.0266353E-04	0.00000000+00	0.0000000E+00	
78	0.0000000E+00	0.0000000E+00	0.0000000E+00	
79	0.0000000E+00	0.0000000E+00	0.0000000E+00	
80	0.0000000000000000000000000000000000000	0.00000000E+00	0.0000000E+00	
	0.0000000E+00	0.0000000E+00	0.0000000E+00	
82	0.0000000E+00	0.00000000E+00	0.0000000E+00	
83	0.0000000000000000000000000000000000000	0.0000000E+00	0.0000000E+00	
84	0.0000000E+00	0.0000000E+00	0.0000000E+00	
04	Λ'ΩΘΩΩΘΩ <u>Γ</u> ιΩΩ	A * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	vv	

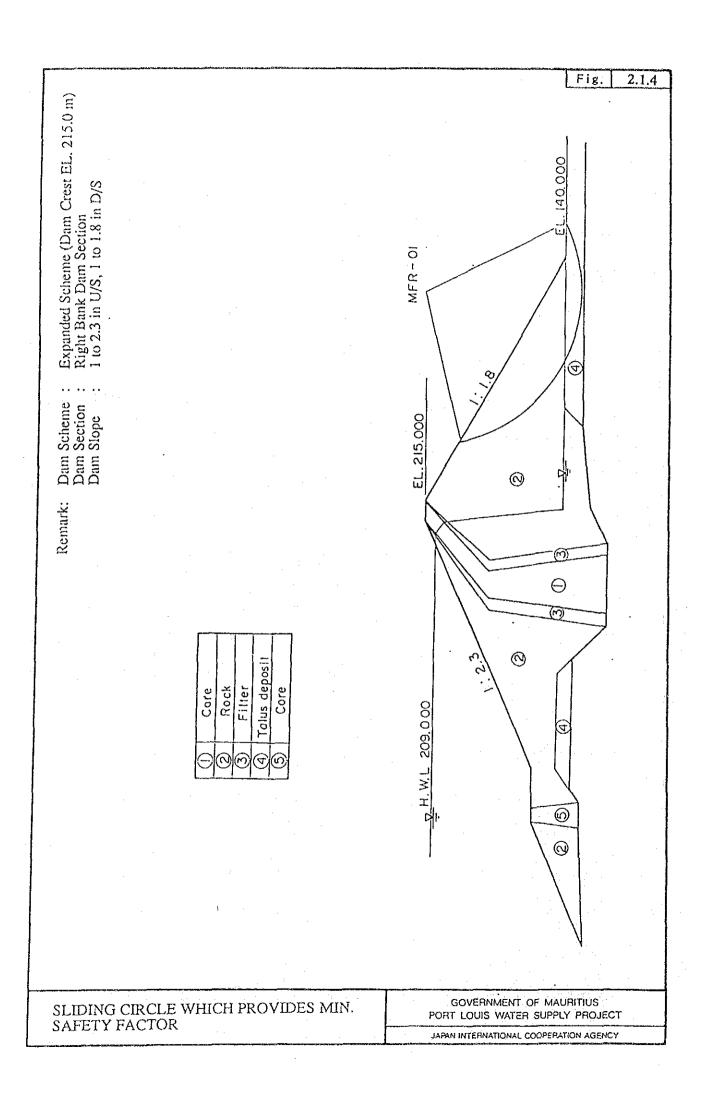
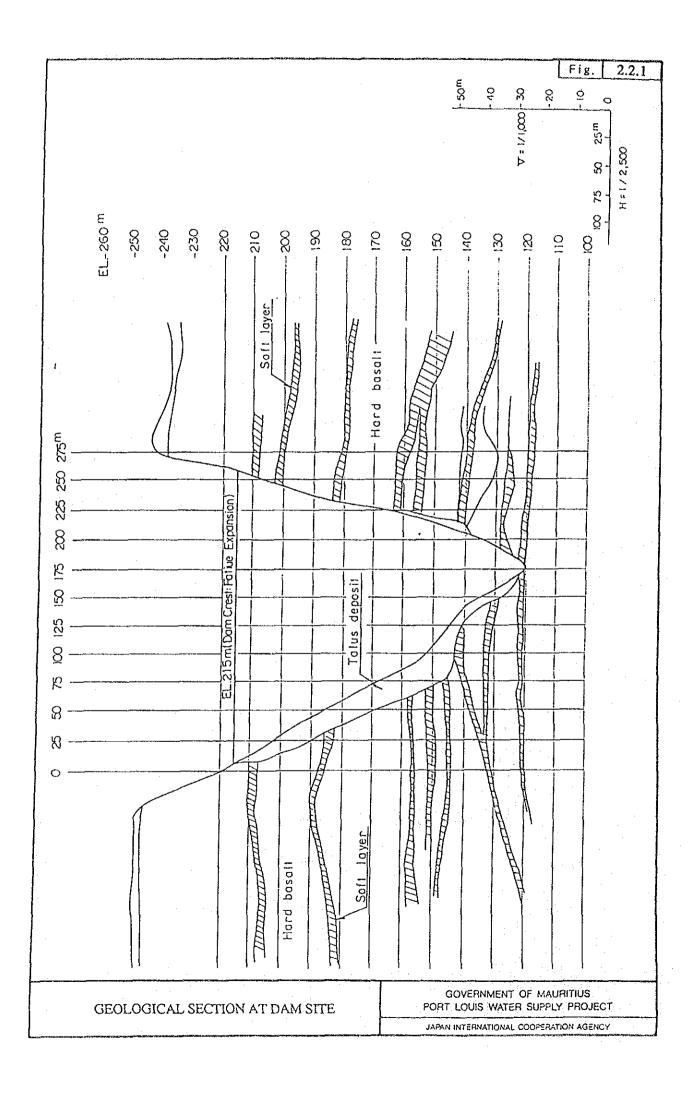
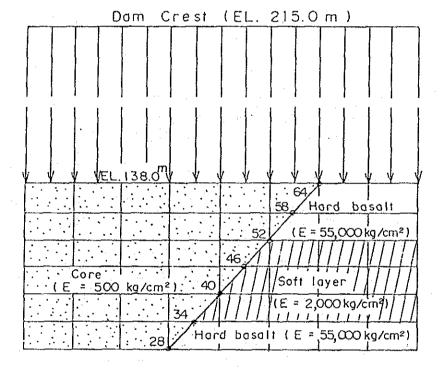
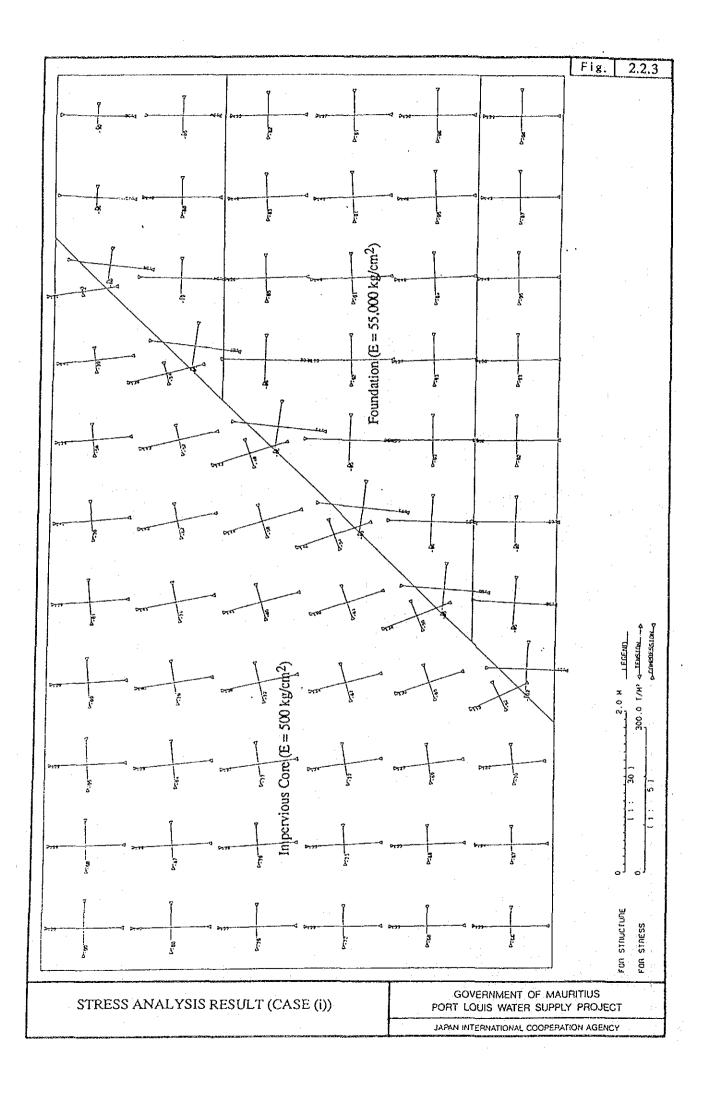
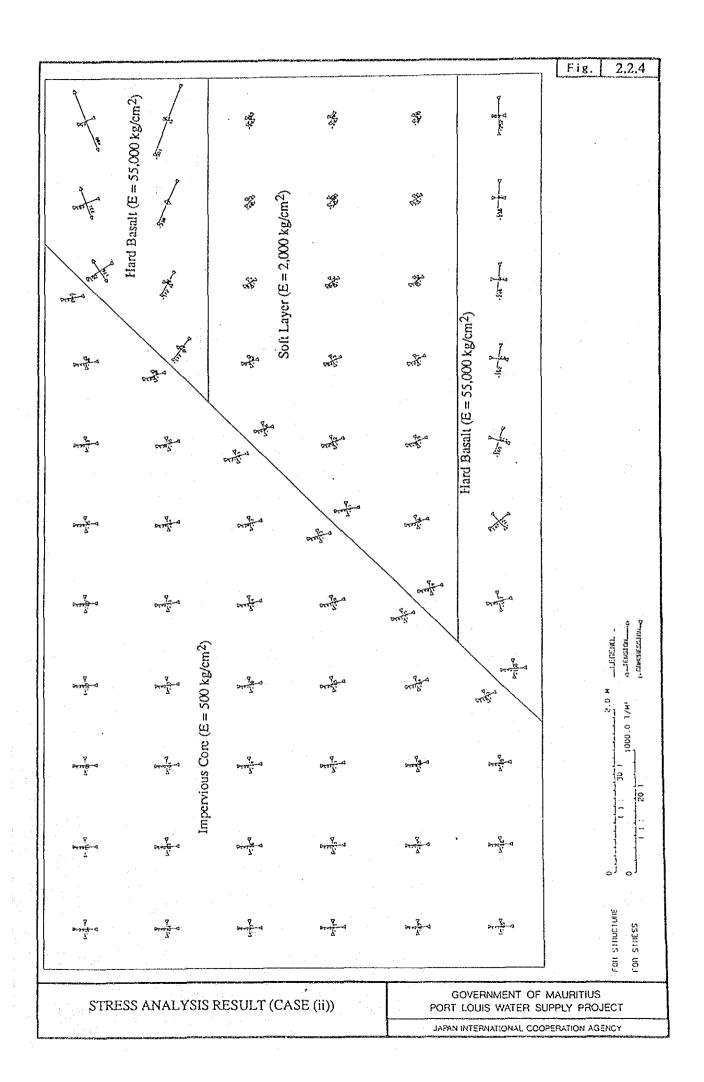
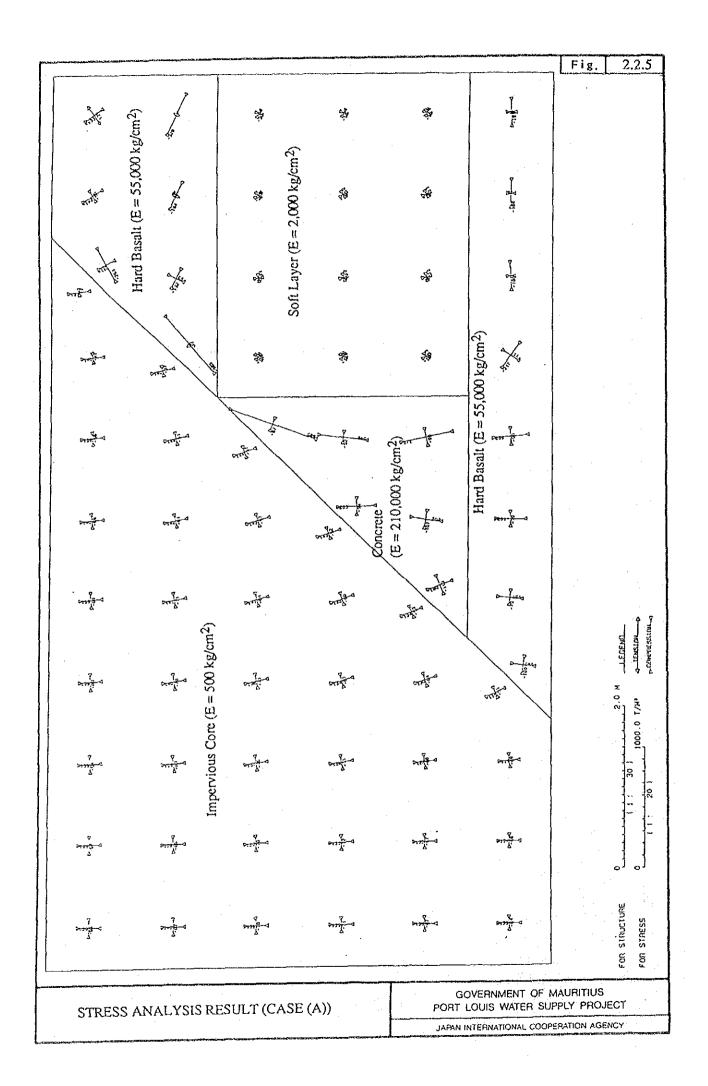
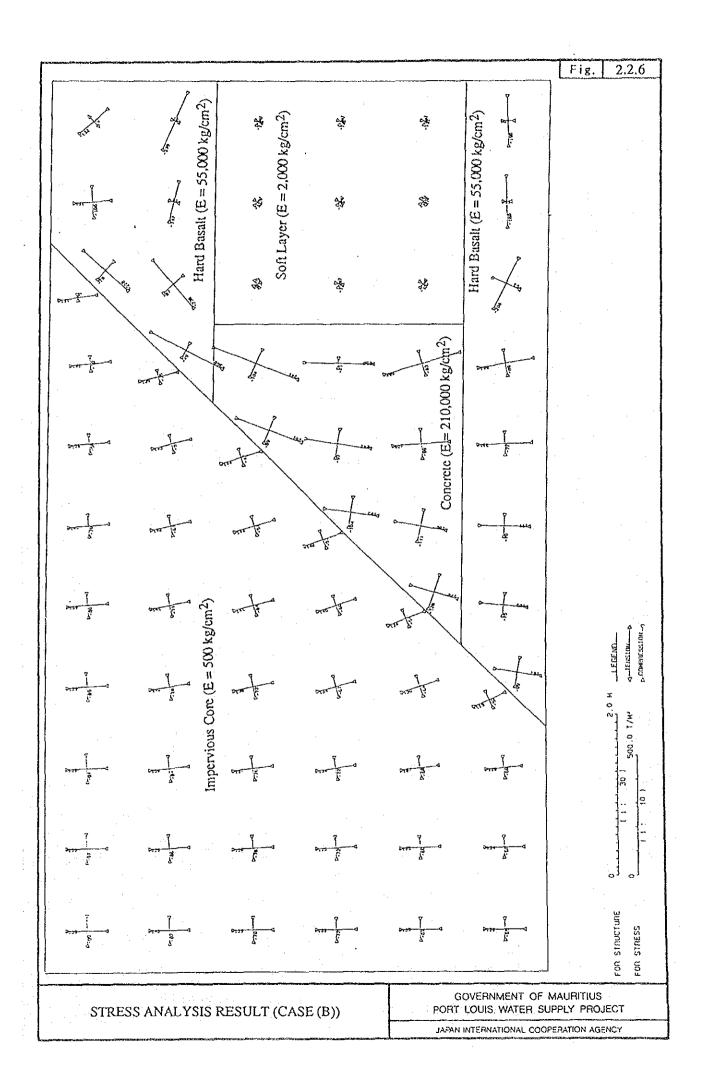
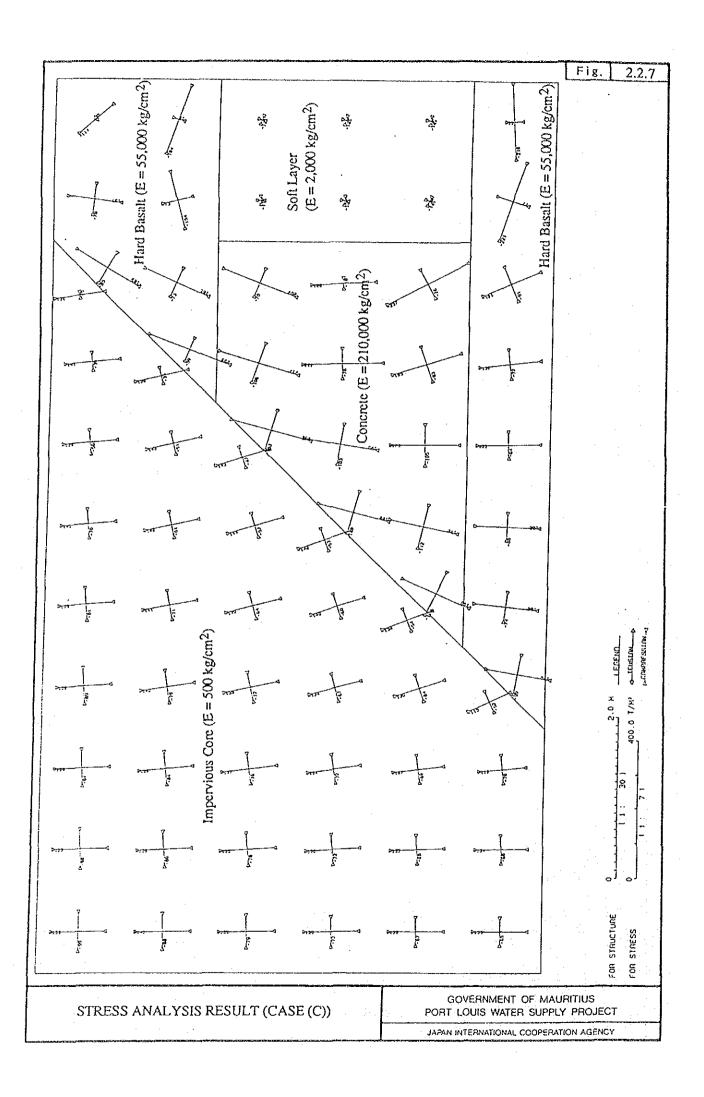


Fig. 2.1,5 C-01,02 g 03 155, 500 0 Core **(**) 138,000 (1.0 - 3)D M.W.L GOVERNMENT OF MAURITIUS SLIDING CIRCLE WHICH PROVIDES MIN. SAFETY FACTOR (Main Cofferdam) PORT LOUIS WATER SUPPLY PROJECT JAPAN INTERNATIONAL COOPERATION AGENCY


Fig. 2.2.2




Depth from dam crest
77 m
78_m
79 m
80 _m
81 m
82 m
83 ^m

AMO-017	
8	
7.7	
ಡ	
m.	
1:2.3	
189m	
ž	
SCHEME RESERVOIR WL. 1891	
SCHEME	
RIGINAL	
DAMO	
TRO	

26	ιΩ	16	7	ω	26	0.0500	1.0000
NUMBER OF NODAL POINTS	NUMBER OF DIFFERENT MATERIALS	NUMBER OF ELEMENTS	NUMBER OF SURFACE LINES	NUMBER OF WATER POINTS	NUMBER OF PORE PRESSURE POINTS	ACCELERATION OF EARTHQUAKE	UNITE WEIGHT OF WATER

MATERIAL PROPATY

	TYPE	COHESION (T/M2)	FRICTION (DEGREE)	WEIGHT (WET) (T/M3)	WEIGHT(SAT) (T/M3)	ACC.FACTOR	WEIGHT(SAT) ACC.FACTOR PORE.FACTOR (T/M3)
ं स्त	0	0.0	30.0	1.72	1.80	1.000	0.000
2	0.0	0.0	40.0	2.13	2.37	1.000	000.0
ന	0	0.0	36.0	1.93	2.23	1.000	000.0
. 47		0.0	36.0	1.93	2.23	1.000	000.0
່ ທ ຸ	0	0.0	30.0	1.72	1.80	1.000	00000
DATA OF SLIPP	PPE CIRCLE						
OUTLINE OF (SRID						
		13 / 12 / 12		(C) allOab			
NOMBER	0049111111 20071X	GROOF (1)	X-COOR	S Y-COOR			
H	-200 000	000,0	20.000				
1 67	-40.000	000.0	160.000	. :			
м	-40.000	160.000	160.000				
4	-200.000	160,000	20:000	0 160.000			

	*								7													
1008+01)	* * * * * * * * * * * * * * * * * * *										-											
E-01)X+(-7.100E+01	* * * * * * * * * * * * * * * * * * *																					
20.0 20.0 10.0 5.0 x=(0.000E	******* -62.0 -70.0		ATE	00	00	500	000	00	00	00	00	00	000	00	00	000	000	000	000	000	000	000
ACE	**************************************		Y-COORDINATE (M)	0.0		140.5	70.		۲.	σ.	თ.	თმ		54	-54.0	917	0.011	ြင်	Ю	0	85.	162.
)) () () () () () () () () () () () () (TYPE -2 -2	ODAL	X-COORDINATE (M)	0.	93.15	-114.900	9 6	Ś	11.	'n	ത്	24.525		'n		νi,		H	5.00	000	04.97	-33.025
FERVAL (X FERVAL (X FERVAL (R NG HEIGH LINE OF	NUMBER 1 2	OF.)						٠		٠	-										N M
THE INTERVITHE INTERVITHE INTERVITHE INTERVITHE HISTORING HISTORINE HINE NUMBER OF		00R	POLINT	H	7	W 4	, ru	Ø	7	α	on.	10	10		14		9 L	8 T			22.0	7 7

÷							-																	POT	-72 -72 -72	
				19																-			ON ZONE	C-COORDINATE	-79,500 -70,437 -61,375	
7.000 3.500 8.000	3	. 6 卍 I		12		н	4	ო	13	ო ი	I i		1		9 T	~			20				PERMEATIC	INATE Y	ഗ്രന	
1 H M	NUMBE	20	BER)	E E		×	w		21	0 5		φι Η •							87				NON-PER	COORD	18.38	
300	(NODAL	2	AL NUMBE	6 10		þ.	M	Q		ო c				전' 대		15	ഗ		17				Z	 	-	
10.0	CE DATA	m	TA (NOD	25 26		н	4	44	ന	က င	77	7		13		ч	9 7		20				PRESSURE	! ! ! !		
	SURFAC	4,	INE DA	24	DATA	TYPE		ω,	7	0 5	dr (70	N		ന	က	Н	⊣	m	m	7	7	PORE	LUIO	ମ୍ବର	
2 2 2 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	GROUND 8	ហ	WATER L	23	ELEMENT	ELEMENT	Н	7	m _.	ማ የ	ימ	.o (_	ω					13				DATA OF	NODAL PO		

ENTIAL

```
-6.117 -52.312 -72.500
-3.846 -43.250 -72.500
-2.710 -25.125 -72.500
-1.574 -16.062 -72.500
0.475 -70.000 -72.500
1.812 -70.250 -55.500
3.150 -61.000 -55.500
4.488 -51.750 -55.500
5.825 -42.500 -55.500
10.475 -79.500 -41.500
12.040 -71.200 -41.500
13.605 -62.900 -41.500
16.735 -46.300 -41.500
23.000 -69.750 -19.500
23.000 -69.750 -19.500
23.000 -60.000 -19.500
```

IIA - 4

TRO DAM ORIGINAL SCHEME RESERVOIR WL.189m 1:2.3 & 1:1.8 <MO-01>

Y FACTOR) (SEISMIC)		. 54	マ	00.00	00.00	•	00.00	00.00	. 54	5.4	54	. 59	. 69	69.	69	69	69	69	00.	.34	.34	34	34	.34	34	ന	.34	1 347
PE SAFETY (NORMAL)	Đ.	1,930	. 93	00.00	00:00	100,000	00.00	00.00	. 93	.93	. 93	. 93	.93	. 93	. 93	.93	. 93	8	00.	. 51	.57	57	Ч	. 51	ત	. 53	-	1.510
GRA. OF SLOPE	1	4.	.43	00	00	000.0	00.	00.	43	43	.43	. 43	43	43	43	43	43	. 43	00.	.55	.55	55	55	.55	.55	.55	.55	ഹ
FRICTION	i	.83	.83	57	83	0.839	.83	.83	.83	83	83	8	83	.83	.83	.83	83	.83	.57	83	83	83	8	.83	.83	.83	83	ጥ
ACCEL	1	.05	S	0.5	.05	0.050	.05	.05	.05	.05	.05	.05	.05	.05	.05	0.5	.05	.05	.05	.05	.05	.05	.05	.05	.05	r)	.05	0.050
WEIGHT (SAT)	1	.37	.37	.80	.37	2.370	.37	.37	.37	.37	.37	.37	.37	.37	37	37	.37	.37	80	.37	.37	.37	.37	3	.37	.37	'n	ω.
WATER	. 1	H	텀	7	7		디	r-i	۲,	7	근 1	eH	ьt	Н	H	_	-1	۲۰۰۱	Н	m		7	Н	H	႕	⊣	, 1	гI
MAT	0	7	7	ß	7	7	Ġ	7	2	7	(7)	7	7	7	7		7	7	H	7	2	0	7	8	8	7	~	7
X-COORDINATE START) (PERIOD)	90.7	-125.900	22.9	14.9	111.9	9.	9,50	93.1	Ь.О	0.8	6,1	5.5	9.5	6.0	2.6	0	4.0	0	0.0	0.8	5.0		1.0	4.0	2.	r.	0	5.0
X-COORI (STARI)	00.00	-190.750	125.90	22.90	114.90	11.90	04.97	93.90	3.15	1.02	3.02	6.10	15.52	9.52	6.00	2.62	1.00	4,	0.00	0.00	0.84	5.00	8.30	1.00	4.00	4.52	S	9.52
вгоск	Н	5	က 	7	Ŋ	ဖ	2	ω	თ	10	11	12	-1	14 All	1	급	117	8	б	20	77	22	23.	24	25	26	27	28

***************** STABILITY ANALYSIS

************************* (NORMAL) (MOST DANGEROUS SLIPPE CIRCLE)

TRO DAM ORIGINAL SCHEME RESERVOIR WL.189m 1:2.3 & 1:1.8 <MO-01>

	TRO DAM ORIGINAL SCHEME RESERVOIR WL.189m 1:2.3 & 1:1.8 <mo-01></mo-01>	M > 1:1 3	VT0-0	
		; ; ; ; ;	; 	} i
	CALCULATION NUMBER	ଦ୍ର		
	SLIPPE CIRCLE (X-COORDINATE)	-80.000 100.000 131.000	(Fig. 1)	
	SAFETY FACTOR (NORMAL CONDITION)	1.926		
IIΔ - 6	RESISTANCE MOMENT (TOTAL:NORMAL)	60913. 58914. 0.00	(TON*M) (TON*M) (TON)	
	-DO- (FRICTION:BODY FORCE) -DO- (-DO- :WATER PRESSURE)	1273.10 76.13 -884.25	(TON) (TON) (TON)	
	-DO- (-DO- :EARTHQUAKE)	31634	(TON)	
	STIDING MORE (RODY FORCE)	37511.	(HON*M)	
		-262.22 44.86	(NOT)	

STABILITY ANALYSIS (MOST DANGEROUS SLIPPE CIRCLE) (SEISMIC)

TRO DAM ORIGINAL SCHEME RESERVOIR WL.189m 1:2.3 & 1:1.8 <MO-01>

16	
80.000	ŶŶ;
000.11.	(W)
1.945	*. *
1.568	
32133.	(TON*M)
30986.	(W*NOL)
0.00	(NOL)
1004.31	(LON)
82.27	(NOI)
-797.10	(NOI)
-10,33	(NOL)
16522.	(TON*M)
19756.	(HON*M)
406.07	(NOT)
-257.22	(NOI)
29.13	(TON)
mond wwo is and add	91 0.000 0.000 1.99 1.99 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0

****************************** ***************** MINMIM SAFETY FACTOR AT EACH GRID POINT (NORMAL) TRO DAM ORIGINAL SCHEME RESERVOIR WI.189m 1:2.3 & 1:1.8 <MO-01>

 - - - - - -		PE CIRCLE		 H	 	H H		i i i H	1 1 1 1 1 1 1 1	DKNAMIC	
NUMBER I	8×		RADIUS	нн	SAFETY FACTOR	O M E	N T SLIDING	нн	SAFETY FACTOR	ia)	T SLIDING
1	00 00 6-		71 00	 - -	1 10	104	111		0	43700	10
				i 1) (,	٠ (ę 1	1 1	, () i
	-180.00	00.0	21.00	⊢ 4	7	012	33.	H	7.5	716	661
	-180:00	00.0	41.00	ы	47	513	826	ы	8	386	325
	-180,00	00.00	61.00	1-4	89	270		H	2	104	037
	-180.00	00	81.00	н	8	262	28643.	н	12	059	5
н. 9	-180.0		201.000	н	3.063	105558.	4,	н	2.229	103119.	46261.
	-160.00	0	61.00	Н	ω ω	231	24	H	81	163	11933.
	-160,00	0.00	00.	H	61	727	4	H	.97	627	∞
	-160.00	00.0	01.00	н	8	562	ത	н	1	425	25624.
_	-160.00	0.00	21.00		70	706	478	н	.25	532	34
	-160.00	00.0	41.00	н	æ ⊢1	0486	29	Н	23	0253	Z.
٠.	-160.00	00.00	61.00	Н	0	4310	650	Н	24	3979	23
	-160.00	00	.00	н	9	401	۶. 4	H	5	926	87871.
	-160.00	40.00	01.00	: H	7.6	5986	413	Н	0	5311	24
	-160.00	60.00	21.00	ы	62	4291	2	H	9	3353	6752
_	-140.00	8	0.1	Н	4	5		H	.23	8	3365.
_	-140:00	0.0	2.0	⊦ ⊣	3	347	2	н	.44	321	0
	-140.0(0.00	01.00	н	(C)	0121	S	ы	.40	909	-1
m	-140.0(ŏ	1.00	H	Н	80	712	н	2	4343	$^{\circ}$
٠,	-140.0(0.0	41.0(Н	8	0593	107	įΗ	7.	0082	$^{\circ}$
	-140.0(00.00	61.00	н	7	8037	0289	н	9	296	33
-	-140.00	0.0	81.00	н	ī	7215	9	Н	ę.	6184	マ
σ.	-140.0	40.06	01.0	Н	4	8535	9883	Н	89	Ι.	5074
~	-140.0(60.00	21.	н	4	0485	5098	н	8.	807	1562
ന	-120.00	ŏ	1.0	н	æ	356	63	H	ò	\sim	364
10	-120.00	0.0	81.000	н	Ñ	0		н	ŭ	0483	504
~	-120.0	0.0	01.00	H	ળ	6494	665	н	Ŧ.	9	S
o.	-120.0	0.0	21.00	ŀЗ	ٷٚ	3903	875	⊢ł	0	3275	1546
~	-120.0	80.0	41.00	н	Ņ	251	3159	н	9	328	683
ന	-120.000	100.0	1.0	н	4	457	185540.	Н	8	3321	234285.
و	-120.0	20.02	71.00	H	'n.	5585	0682	н	œ	84	335

	8013	222653.	952	436	206	820	411	903	978	1853	362	61	836	549 9	254	975	751	506	0.65	17	341	030	50	125	688	855	677	389	010	13	3	372	162	6	327	772	65	9
	2994	416651,	805	5189	518	2954	507	9399	358	9664	5334	1303	940	874	091	098	891	8985	329	5873	586	722	86	6717	022	053	711	490	370	196	866	215	852	686	652	720	2	972
	.83	1.871	. 22	.04	. 92	. 62	.61	.59	39	. 65	.76	ŗ.	.67	.65	.61	.56	.57	. 63	.74	.88	.71	.67	. 61	. 62	.76	. 64	.76	. છે.	.08	.72	. 60	. 61	.78	.03	.30	.57	.35	. 54
	н	Н,	}- {	Η	H	н	H	Н	H	н	н	н	Ħ	H	ы	н	н	Н	H	Н	н	Н	н	н	н	н	Н	н	Н	H	ы	H	н	H	н	H	ы	H
	4486	178233.	2906	651	469	504	822	921	501	824	750	622	508	922	201	652	163	607	27	822	9	846	57	439	664	576	238	779	220	92	449	57	786	247	583	831	ന	ထို
	959	428239.	8006	587	4184	063	712	9740	848	0282	6062	1348	185	9809	4466	213	0913	9259	6680	6267	6909	783	190	69269	293	1382	826	631	533	203	896	280	944	799	783	866	0	300
	34	2.403	60	.75	.55	.03	02	.97	8	90.	21	36	11	80.	00.	94	. 92	0.1	.17		.17	10	00.	.01	.20	9	1.5	.38	65	13	9	.97	. 20	. 58	.01	48	9	.20
	⊢4	н.	F-4	ы	⊢₁	н.	: H	Ä	н.	н	н	: H	H	н	н	ы	ы	H	H	ы	н	н	н	н	н	H	н	н	н	H	H	н	н	ы	н	н	Н	н
	91.00	211.000	61.00	81.00	01.00	01.00	21.00	41.00	1.00	81.00	01.00	41.00	61.00	81.00	01.00	11.00	31.00	51.00	71.00	91.00	31.00	51.00	1.00	91.00	11.00	1.00	41.00	61.00	81.00	21.00	1.00	1.00	1.00	01.00	21.00	41.00	1.00	71.00
	40.00	160.000	00.0	00.0	0.00	0.00	80.00	00.00	0.00	40.00	00.09	0.00	00.0	0.00	0.00	80.00	00.00	20.00	0.00	60.00	00.0	00.0	00.0	00.0	00.0	00.00	00.0	40.00	60.00	0.00	0.00	40.00	00.00	80.00	00.00	20:00	00.0	00.09
	120.00	-120.000	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	10.00	40.00	10.00	40.00	40.00	40.00	0.00	00.0	00.0
	: H	н.	Ĥ	Ħ.	H	н	ы	: H	H	н	н	н	н	Ы.	Н	H	н	Н	ьi	н	Н	H	н	н	н	ы	н	Н	н	н	н	Н	Н	Н	н	Н	н	н
**:	48	50	25	54	56	09	63	99	69	12	75	78	8 1	α) 4,	87	91	95	9	0	0	\vdash	~	-	CA.	N	ന	ന	4	4	r)	L)	9	O	£~.		ထ	∞	194
			٠.		i.,		:	**														IΙΑ	. -	9		٠											•	

**************** MINMIM SAFETY FACTOR AT EACH GRID POINT (SEISMIC).

TRO DAM ORIGINAL SCHEME RESERVOIR WL.189m 1:2.3 & 1:1.8 <MO-01>

NUMBER	нн	SLIPPE	PE CIRCLE	RADIUS	нн	XEBBAS	STATIC	EH Z	нн	>4	D Y N A M I C M O M E N	{ -4
-	: : II -	. :		-	: 1-4 ⊁	0	TANCE	STID	i i i i i	KC.	F- I	SLIDING
! !	! ! - - 	00.00	00.0	210	[] 	53	497	775	! } ┥ ┾┦ !	16	4372	80
2	н	-180.000	09	00:	н	2.257	30126.	13345.	Н	1.756	29174.	16610.
ო	н	30.00	0.00	41.00	н	47	515	826	Н	88	4386	325
4	н	30 00	00.00	61.00	Н	89	270	338	н	0	6104	337
ഗ	Н	30.00	0.00	81.00	ы	88	262	864	ы	12	8029	788
Ø	١.,	30.00	40.00	01.00	н	90	Ŋ	445	Н	22	10311	979
7	5 →	00.09	00	90::	Н	8	231	ري 4	H	8	2163	193
8	H	60.00	0.00	00:	н	.61	727	425	Н	ς O	3627	8
თ	H	60.00	0.00	01.00	н	8	562	940	н	댐	5425	562
10	r-1	60.00	0.00	21.00	н	07.	706	478	H	23	7532	34
11	H	60.00	0.00	41.00	н	8	0486	9.4	H	2	10253	465
12	· 1-4	60.00	00.00	61.00	Н.	.0.	310	650	H	2	13979	237
14	ы	60.00	20.00	81.00	Н	.91	9401	654	H	4	18926	38
15	Н	90.09	00.	1.00	1-4	76	986	94137.	Н	90	25311	224
16	н	60.00	60.00	21.00	Н	.62	4291	042	М	0,	33353	752
H	Н	40.00	ŏ	1.0	H	Ξ.	5	9	н	23	750	ന:
20	н	40.00	0.0	0.1	H	3	347	8	н	44	1321	0
21	; ⊣	40.00	0.00	01.0	ıΗ	'n	0121	995	H	4.0	6066	12
23	H	40.00	ŏ	1.00	H	1	089	7	н	2	143	33
25	н	40.00	0.00	41.0	H	8	0593	107	H	77	20082	363
26	н	40.06	00.00	61.00	н	7.	8037	0289	н	0	27296	3339
27	1-1	40.00	20.00	81.0	н	ທ	7215	4461	H	9,	36184	8488
29	Ĥ	40.00	0.00	01.0	Н	₹,	8535	88	Н	õ	4.	0.7
31	н	40.00	60.00	21.0	н	4.	485	5098	1 —1	8	58807	1562
33	Н		ŏ	0.1	ы	$\widetilde{\omega}$	š	16364.	إشو	9	624	36
တ္ထ	H	20.00	0.0	1.0	H	৾৻৻৻	0714	287	ы	ĕ	10483	94.
37	н	20.03	0.0	01.0	н	တ	6494	665	Н	i.	16094	523
99	н	20.02	Ö	٥.۲	Н		Ψı	~	Н	Ö	232.	40
41	Н	20.00	ō	41.0	ы	Ņ	3251	159	н	9	32328	89
				-					:			

234285.	υς υς υς υς υς	2000	3952	436	206	1820	411	903	978	853	4362	197	836	549	254	975	751	506	065	417	41	030	350	125	688	855	677	389	010	113	538	372	62	801	327	772	965	99		
433210.	4040	1 C	8805	5189	518	2954	507	9399	4358	664	5334	1303	076	5874	091	30986	8914	9852	3297	58734	586	7222	7868	67170	0221	0533	7113	4906	370	396	998	215	52	686	652	720	270	972		
1.849	οα οα	, ~	22	.04	.92	. 62	. 61	.59	.59	. 65	.76	.71	. 67	.65	. 61	.56	.57	. 63	.74	.88	.71	. 67	. 61	. 62	.76	. 64	. 76	.91	.08	.72	. 60	.61	. 78	.03	30	ĘČ.	.35	.54		
нь	4 F	i -	1 H	н	н	H	н	H	н	н	H,	н	ЬЧ	н	н	Н	М	н	ьч	Ħ	н	ы	н	ы	н	H	н	H	н	Н	н	н	н	Н	н	н	н	н		
185540.	0 0 4 0 0 0 4 0 0 0 0	7823	2906	651	469	504	822	921	501	9824	750	622	508	922	201	652	163	607	827	22	279	846	957	439	664	7	238	779	220	92	449	157	9	247	583	831	<u>ო</u>	38		
445745.	3000	2823	9006	5587	184	3063	712	9740	4848	282	6062	1348	3185	086	0446	3213	091	9259	668	6267	909	783	919	6926	293	138	826	631	533	203	968	280	44	799	783	866	300	008		
2.402	ا در	40	60	7.5	.55	.03	.02	.97	98	90	.21	, 1 ,	덛	.08	00.	ص 4	. 92	į.	.17	.38	.17	10	00.	2.	.20	9	F.	8	9	5	9	9	2	58	5	.48	8	7		
ы⊨	- L	1 1-4		H	H	H	ы		ы	ы	H		ы	H	H	H	н	н	14	н	н	н	н	Ħ	н	н	н	⊢	H	H	н	ы	H	н	н	н	Н	н		
000	000.10	000.11	61.000	81.000	000.10	000.10	21.000	41.000	61.000	000.1	01.000	7.000	1.000	81.000	01.000	11.000	31.000	51.000	71.000	1.000	31.000	1.000	1.000	91.000	11.000	1.000	41.000	61.000	81.000	21.000	1.000	1.000	81.000	000.10	1.000	41,000	51,000	71.000		
100,000		00,	00.0	00.0	00.0	00.0	0,00	00.0	0.00	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	0.00	0.00	00.0	00.0	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00		
-120,000	120.00	120.00	100.00	100.00	100.00	100.00	100.00	100-00	100.00	100.00	100.001	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	80.00	60.00	60.00	00,09	60.09	60.00	00.09	60.00	00.09	60.09	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00		
 H F	4 F	I H	LH	Н	Ĥ	н	н	H	Н	н	H	ы	Н	H	ы	Н	H	Ĥ	⊦- 4	Н	Ħ	H	н	H	H	H	н	н	H	н	н	'n	Н	н	. Н		н	. H		
 4 4 W A	t 4	0.0	52	54	56	9	63	99	69	72	75	78	년 8	84	87	5	ம்) வ	<u>ଚ</u>	O	0	Ц	1	Ч	$^{\circ}$	$^{\circ}$	m	ന	4	4	Ş	S	O	ဖ	r-	-	- α	000	1 H 9 C		
						."				٠		•					٠	I	IJΑ	. -	11	ı						٠												

STABILITY ANALYSIS

******************************** (MOST DANGEROUS SLIPPE CIRCLE) (NORMAL)

TRO DAM ORIGINAL SCHEME RESERVOIR WI.189m 1:2.3 & 1:1.8 <MO-01>

			i
CALCULATION NUMBER	199		
SLIPPE CIRCLE(X-COORDINATE)DO- (Y-COORDINATE)	140.000 140.000 191.000	EEE	
SAFETY FACTOR (NORMAL CONDITION)	1.533		
RESISTANCE MOMENT (TOTAL:NORMAL)	99232.	(TON*M)	
RESISTANCE FORCE (COHESION)	0.00 519.54	(TON)	
-DO- (-DO- :WATER PRESSURE) -DO- (-DO- :PORE PRESSURE) -DO- (-DO- :EARTHQUAKE)	0.00	(TON) (TON)	
SLIDING MOMENT (TOTAL:NORMAL)sliding FORCE (DOD' FORCE)	-64710. -70623. -338.80 0.00	(TON*M) (TON*M) (TON) (TON) (TON)	

MINMIM SAFETY FACTOR AT EACH GRID POINT (NORMAL)

TRO DAM ORIGINAL SCHEME RESERVOIR WL.189m 1:2.3 & 1:1.8 <MO-01>

	1 I	9799	6737	7739	2814	786	2897	2763		44	1042	8776	63.65	5837	2059	2917	3692	4422	7114	9343	384	5844	~	9454	2356	2675	5398	0.68	2534	
A M I C O M E N T		8	23834	224	63	1110	4 ⊒	388	175	82	538	121	2946. –	555	199	047	087	150	200	074	4756.	935	771	590	9.90	294	4989.	9813.	116	
D Y N M	1 1	0.5	27	08	26	144	62	3	-1	-	2	ന	319	o,	n	5	2	တ	58	4.	S	α.	N	16	ന	8	7	12	O.	
SAFETY	֓֞֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֡֓֜֜֜֜֓֓֡֓֜֜֡֓֡֓֜֡֓֜	. 64	72	.86	.94	.01	.07	. 95	88.	.16	.43	.45	. 50	. 63	. 55	.73	16.	90.	.14	.50	1.425	. 52	99.	.75	69	44	8	.43	. 52	
ннь	, , , , ,	ı 1-1	⊢	н	н	ы	н	H	ы	Н	н	Н	н	н	н	H	н	н	н	н	н	Н	H	H	H	н	Н	н	н	
T N T SULTAIN	1 1	03	5334	8138	1648	\dashv	8533	2370		4	56	2144	650	5190	842	567	197	765	363	444	-34946.	251	829	289	078	544	-4938	8241	87	٠.
S T A T I C M O M E I		05861	27968	08861	26727	860	63210	469	9	850	567	4744	002	741	266	137	99	282	951	4396	56126.	130	3020	890	065	765	7705	3304	544	
SAFETY	1 1 1	8	62	98.	00.	. 12	.23	30	22	. 60	99.	.13	.22	.87	17	00.	.25	.46	. 63	7.0	1.606	.73	96.	.03	9.	. 62	.56	.61	£.	
 	 - -	ιн	Н	н	н	Н	н	Н	н	н	н	Н	н	1-I	н	H	H	H	н	H	н	H	н	Н	н	Н	н	Н	Ĥ	
RADIUS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31.00	51,00	1.00	81.00	1.00	21.00	1.00	1:00	11.00	31.00	1.00	31.00	1.00	01.00	21.00	41.00	61.00	00.10	01.00	11.	31.00	51.00	71.00	81.00	11.00	21,00	41.00	161.000	
PE CIRCLE NATE	; ; ; ; ; ;	0.00	00.0	00.00	20.00	0.00	60.00	00.0	00.	00.00	20.00	00.0	60.00	0.00	0.00	00.00	20.00	0.00	60.00	0.00	00.0	00,00	0.00	40.00	60.00	60.00	00.0	00.00	120.000	
SLIPPE COORDINAT X	\	0.00	0.00	0.00	0.00	.00	0.00	00.0	00.	00.	.00	00.0	0.00	00.0	0.00	0.00	0.00	0.00	00	00.0	0.00	0.00	00.0	00.0	0.00	00.00			100.000	•
 	1 1 1 }	4 1-4	1 1	,⊢1	н	Н	Н	H	н	н	Н	Н	Н	!~!	H	I~1	н	н	Н	Н	⊦ -4	Н	+	ı ı.	Ļ	, 1-	٠ ١ -	4 1-	٠ ٢	ı
NUMBER	1	Н	89														Ó	0		~~	S	0	(c	. () 4	٠ 7	หน) n	າ ຫ າ ທາ	7

		٠.			•			١,		·.	ئے	~	<u>ر</u>	ر ر	5.	ς,	7		Ţ,	
-158277	538	-27950	-64645	-119834	-176131	4	-90746	-34555	-76407	-140058	-222641	-70623	-128342	-4209	-8943	4	-25765	\circ	-160561	
278	82913.	38540.	89697.		253852.	75727.	131107.	47612.	105902.	194992.	311843.	96517.	179000.	57970.	384	23	955	112486.	220642.	
59	1.539		38	1.395	1.441	•	1.445	1.378	1.386	1.392	1.401	1.367	1.395	1.377	1.385	1.391	1.395		1.374	
н	ы	ы	H	Н	H	H	н	۲H	H	ы	Н	- 1	н	н	H	H	H	H	H	
-141178.	₽.	S	-59153.	-109524.	0.03	000	-82260.	163	-69922.	-128119.	0	-64710.	-117103.	-38548.	-81851.	-146298.	4,	-75416.	-147001.	
0.0	471		92179.	171639.	tΩ	W.	134295.	48939.	108835.	200367.	320162.	99232.	183725.	59587.	127276.	853	943	115650.	677	
1.828	1.753	1.548	1.558	T.567			1.633	1.547	1.557	1.564	1.575	1.533	1.569	1.546	1.555	1.562	1.568	1.533	1.543	
Ħ	н	Н	н	H	Н	н	H	H	H	μi	н	н	н	1-4	ы	н	ы	н	1-1	
181.000	191.000	111.000	131.000								181,000			131.000				201,000	221.000	
140.000	160.000	60.000	80.000	100.000	120,000	140.000	160.000	60.000	80.000	100.000	120.000	140,000	160.000	60.000	80.000	100.000	120.000	140.000	160,000	
100.000	100.000	120.000	120.000	120.000	120.000	120,000	120.000	140.000	140.000	140.000	140.000	140.000	140.000	160.000	160.000	160.000	160.000°	160.000	160,000	
н	н	ы	1 -4	H	н	H	ы	н	ы	H	H	н	Н	н	H	ы	н	н	н	
163	168	171	174	177	180	184	188	190	192	194	196	66 H	202	203	204	205	206	208	210	

028	1	
TRO DAM ORIGINAL SCHEME RAPID DRAWDOWN WL.155.5m 1:2.3 & 1:1.8 <mo-02></mo-02>	\$	
တ	-	
Η.	}	
-1	1	
м М	ļ	
2	į	
H	;	
5m	ì	٠
ν.		
۲,	į	
×Υ	1	
Z	1	
9	-	
A.	-	
õ	i	
a	}	
RA	į	
臼	!	
A I I	ľ	
SS	1	
귀		
Z	Ì	
ŽĬĞ	-	
Ö	į	
AM	ļ	
0	i	
TR	Ì	

UMBER OF NOD	NUMBER OF NODAL POINTS	27
NUMBER OF DIF	DIFFERENT MATERIALS	
NUMBER OF ELE	ELEMENTS	16
TUMBER OF SUR	NUMBER OF SURFACE LINES	~
NUMBER OF WAT	NUMBER OF WATER POINTS	13
UMBER OF POR	NUMBER OF PORE PRESSURE POINTS	26
CCELERATION	ACCELERATION OF EARTHQUAKE	0.0500
NITE WEIGHT	UNITE WEIGHT OF WATER	1.0000

MATERIAL PROPATY

	3475	COHESION (T/M2)	FRICTION (DEGREE)	WEIGHT (WET) (T/M3)	WEIGHT(SAT) (T/M3)	ACC.FACTOR	ACC.FACTOR PORE,FACTOR
근.	0	0.0	30.0	1.72	1.80	1.000	0.000
2	0	0.0	40.0	2.13	2.37	1.000	000.0
m		0.0	36.0	1.93	2.23	1.000	000.0
4	0	0.0	36.0	1.93	2.23	1.000	000.0
rs	0	0 • 0	30.0	1.72	1.80	1.000	000.0
DATA OF SLIPPE	PE CIRCLE						
OUTLINE OF GRID	RID						
NUMBER	GROU	GROUP (1)	GR(GROUP (2)			
	X-COOR	Y-COOR	X-COOR	Y-COOR			
r ^a	-200.000	000.0	20,000				
2	-40.000	00000	160,000	000.09			
m	-40.000		160.000	160.000			
4	-200.000	160.000	20.000	000.091			

.100E+01)	* * * * * * * * * * * * * * * * * * *																						
0 0 0 0 00E-01)X+(-7.100E+01	**************************************		·																				
20.0 20.0 10.0 5.0 Y=(0.00	**************************************		ATE	000	500	000	. 000	000	000	500	000	500	000	000	000	000	000	0.00	00	00	0.	000	200
FACE	**************************************	E→	Y-COORDINATE (M)	0.0	140		0	ŗ.	ŗ.	<u>.</u>		σ,	_; <	יי איי	ဖ	ر.	v.	Ġ	-75	0.	-62.	-62.	-40,
L(X)	1 KPE	-1	X-COORDINATE (M)	0.000	0) -	7 7 7 F	\mathcal{C}	2	H	и, с	24.525		e d			-1.000	15.000		5.00	10.0	4.97	ფფ	00.0
THE INTERVAL(X) THE INTERVAL(Y) STOPPING HEIGHT FR START LINE OF CIRC	NUMBER 1 2	OORDINATE	POINT	Н	OI F	೧೮	'n	Q	7	ထင	n O	근	27.	7 T	ં િન	9-	17	18	ઈ.ቲ	20	21	22	
, p p w w Z			, ,			IIA	- 1	16															

				10																	
				27																	
			. * -	26	٠																
.500	· ·	139		25		н	4	(r)	13	ო	ا		ন •	χç	;	17	20	20	18	18	D D
140	NUMBER	20	(R)	9 1		×	φ	7	21	.0	74	14	5	7 0		10					
	(NODAL N	₽	NUMBER	24		را را	vo	9	7	m.		က္		a,α							
3.500 0.438 0.000 8.300		7	(NODAL	7						H		1	•	⊣	Н		-	П		1	
ों निस	DATA	m		6 H		н	4	4	m	m	21	0		ין ני ה		16		20	17	18	20
	SURFACE	4,	NE DATA	1 4 C	DATA	TYPE	7	ഗ	7	(2)	বা	7	7	N (0	ണ	· 14	۲-4	ო	m	7	7
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GROUND SI	 ທ 	WATER LINE	23	EMENT	LEMENT	 1	~1	ന	ጥ	ഗ	G	[~ ;	ж) о	0 1	. H	12	13	7	72	9 Н
	GR		MA		E	E					47										
									IA	-	17										

	POTENTIAL	.50	50	2.50	2.50	2.50	2.50	2.50	2.50	72.50	55.50	5.50	55.50	55.50	5.50	5.50	3.50	ς,	3.5	1.50	જ઼	7.5	1.5	<u>S</u> .	9.5	-19.500	ō.
ON ZONE	Y-COORDINATE	9.50	0.43	1.37	2.31	3.25	78	5.12	90.	00.	.30	.25	8		. 50	.25	9.	5.5	71.20	8:	9.	Э.	ŏ.	5.5	7.	-60.000	Š.
IN NON-PERMEATION	X-COORDINATE	52	<u>ო</u>	25	러	s S	8	7	13	43	4	8	H	2	8	Ä.	5,	0.47	2.07	3.6	5.1	6.73	8.3(0.4	1.7	23.000	4.5
PRESSURE						r	. •																				•
DATA OF PORE	NODAL POINT	н	2	ന	ঝ	ŧΩ	9	7	တ	o	10	디디	12	13	14	15	16	17	18	19	20	21	.22	. 23	24	25	26

TRO DAM ORIGINAL SCHEME RAPID DRAWDOWN WL.155.5m 1:2.3 & 1:1.8 < MO-02>

STABILITY ANALYSIS

**************** (MOST DANGEROUS SLIPPE CIRCLE) (NORMAL)

TRO DAM ORIGINAL SCHEME RAPID DRAWDOWN WL.155.5m 1:2.3 & 1:1.8 <MO-02>

	TRO DAM ORIGINAL SCHEME RAFID DRAWDOWN WELLSS SM 1:2.3 & 1:1.8 < MO-UZ>	mo on	T 3 8 7:1	. 8. 4.	VXO-OWV
	. d	{ { { ! !	; 	1 1 1	i]] !
	CALCULATION NUMBER	. •	16		
	SLIPPE CIRCLE (X-COORDINATE)DO- (Y-COORDINATE)	::::	-80.000 80.000 111.000	$\widetilde{\mathbb{A}}\widetilde{\mathbb{A}}\widetilde{\mathbb{A}}$	
	SAFETY FACTOR (NORMAL CONDITION)	: :	1.979 1.733	·	
il A	RESISTANCE MOMENT (TOTAL:NORMAL)	:	48959.	(M*NOE)	ε
	-DO- (-DO-:SEISMIC)	:	47921.	(M*NOL)	Ξ
	RESISTANCE FORCE (COHESION)	:	00.0	(NOF)	
^	-DO- (FRICTION: BODY FORCE).	:	441.07	(NOL)	
	-DO- (-DO- :WATER PRESSURE).	•	00.00	(NOL)	
	-DO- (PORE PRESSURE).	:	00.0	(NOT)	
	-DO- (-DO- :EARTHQUAKE).		-9.35	(NOL)	
	(IAMBON - IATOH) HNEMOM SNIGITS		24739.	(HON*M)	Σ
			27657.	(M×NOL)	E
	RCE (:	222.88	(NOL)	
	-DO- (WATER PRESSURE)		00.0	(TON)	
·	-DO- (EARTHQUAKE)	12:	26.28	(TON)	

****************** STABILITY ANALYSIS

TRO DAM ORIGINAL SCHEME RAPID DRAWDOWN WI.155.5m	1:2.3 &	1:1.8 <mo-02< th=""></mo-02<>
CALCULATION NUMBER	89.	
SLIPPE CIRCLE (X-COORDINATE)	40.000	(X)
TOR	2.067	. :
Ŝ	407556.	(HON*M)
-DO- (-DO-:SEISMIC)	399822.	(HON*M)
RESISTANCE FORCE (COHESION)	00.00	(HOL)
-DO- (FRICTION: BODY FORCE)	5307.35	(TON)
-DO- :WATER PRESSURE)	104.14	(NOE)
-DO- (-DO- :PORE PRESSURE)	-1376.29	(NOL)
-DO- (-DO- :EARTHQUAKE)	-76.57	(NOI)
SIIDING MOMENT (TOTAL:NORMAL)	197136.	(M*NOH)
-DO- (-DO-:SEISMIC)	232244.	(TON*M)
SLIDING FORCE (BODY FORCE)	1957.06	(NOI)
_	-5.22	(HON)
-DO- (EARTHQUAKE)	347.60	(NOL)

******************* ************************* TRO DAM ORIGINAL SCHEME RAPID DRAWDOWN WL.155.5m 1:2.3 & 1:1.8 <MO-02> MINMIM SAFETY FACTOR AT EACH GRID POINT (NORMAL)

H	1	SLIPPE CIRCLE		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			 H		D Y N A M I C	
NUMBER I	ပ္က	et et	RADIUS	нн	SAFETY FACTOR	MOME ESISTANCE	N T SLIDING	нні	SAFETY FACTOR	MOMEN RESISTANCE	SLIDING
!	-200.00	160.00	21.0	! 	53	497	17758.	 	16	37.1	\sim
2	-180.00	000.09 0	121.000	н	2.257		334	Н	1.756	29174.	16610.
	-180,00	80.00	41.00	ы	47	515	826	ы	8	386	325
	-180,00	100.00	61.00	н	9	270	23384.	н	0	104	9
	-180.00	120.00	81.00	Н	80	262	864	Н	12	059	788
	-180,00	140.00	01.00	н	0.5	598	471	1-1	22	354	650
	-160.00	00.0	61.00	н	33	223	95)-1	8	163	5
	-160.00	20.00	00:	н	61	727	425	Н	97	627	837
	-160.00	40.00	01.00	ы	8	562	94	Н	Η	425	562
_	-160.00	00.09	21.00	⊱⊣	6	707	24794.	ы	25	533	ന
	-160.00	00.08	0	н	9	0685	(Y)	н	26	0454	611
۵۱	-160.00	100.00	61.00	H	88	5142	244	1-4	17	4819	816
	-160.00	120.00	81.0	Ħ	99	436	04	Н	90	979	덩
	-160.00	140.00	01.00	ы	4.8	9924	2028	н	9	9283	787
ın	-160.00	0.160.00	21.00	н	8	0962	351	Н	9	0081	0935
m	-140.00	0.00	51.00	H	1.	767	246	H	2	8	336
σ.	-140:00	20.00	1.00	Н	2	769	927	н	47	641	68
_	-140.00	0 40.00	01.00	н	7	0573	404	Н	25	0365	52
m	-140.00	0.09 0	21.00	ы	7.	5958	763	н	12	5635	364
۱۵	-140.00	30.08	41.00	Н	53	3292	173	H	õ	2808	3
30	-140.00	0 100.00	61.00	H	ñ	2885	3807	Н	9	191	6765
	-140.00	0 120.00	7	н	2	449976.	8	H	õ	4037	4
Q)	-140.00	0 140.00	01.00	н	ž.	9756	7152	ı-ı	8	480	2131
<u>~</u> 1	-140.00	0.091 0	21.00	Н	4	5295	4284	н	8	3738	0465
m	-120.00	0.0	61.00	H	m	699	00	н	7	6558	72
· M	-120.00	0 20.00	1.00	н	,	1752	298	н	ŏ	1534	49
-	-120.0(0 40.00	01.0	н	4.	∞	715	H	o,	マ	952
o,	-120.00	0 09 0	21.00	H	~	8324	2418	н	8	7742	500
r-4	-120.00	0 80.0	1.00	H	~	052	185756.	H	č	6996	m
m	-120.00	0 100.00	61.00	н	Ä	522	5867	Н	ς.	4070	053

8633	3916	73	5234	0012	543	2624	918	252	2162	894	9320	1092	442	3224	8641	765	957	124	125	946	490	481	219	406	26	246	206	065	843	63	23	696	632	438	38	47616.	9	9	
8 9 9 9	4479	. T	0104	8156	9022	622	640	4483	1723	388	7319	2045	60.19	9982	569	4792	8726	131	77.62	2557	925	717	5832	990	4633	1372	3485	8679	1006	310	3215	179	3686	7334	2282	128269.	454	239	
78	86	.89	89.	.81	75	.76	7.5	.75	.78	84	.93	87	73	.72	.80	.73	.76	.84	. 94	90.	.88	.83	8	98.	ç	. 84	.98	.13	29	8	.82	.87	.03	24	47	2.694	. 45	.67	
н	ıн	н	н	H	Ĥ	ы	н	H	н	Н	H	н	Н	H	H	H	н	н	Н	н	ы	ы	н	Н	н	н	н	н	н	н	н	ы	H	Н	нi	н	H	ъđ	
2724	0605	8	4214	8284	912	339	387	365	0822	020	6939	967	101	9713	069	473	422	303	997	8	433	316	864	783	9	987	798	497	106	44	642	499	286	924	446	38836.	8	ö	
0417	5363	7	0230	8520	9629	4720	825	4792	21689	952	79864	20860	72566	0755	5891	4895	909	3383	073	2921	943	773	952	0258	32	216	456	811	253	316	348	239	454	839	0352	129657.	484	275	
1.5	20	.25	44	23	133	.01	2	80.	.04	133	24	15	.07	90.	90.	.97	6	12	.26	.41	.17	2.	0.	. 14	25	. 12	38.	5	74	57.	9.	급.	ñ.	39.	ö	3,339	9,	ω.	
 H	H	H	ы	H	H	н	Н	H	н	н	H	н	н	Ĥ	н	H	н	н	н	H	H	н	н	H	н	H	н	H	н	H	j - j	н	H	н	н	H	Н	н	
81.000	91.000	1.000	61,000	1.000	01.000	000.10	21.000	41.000	61.000	81,000	000.10	41.000	81.000	000.10	01.000	11,000	31.000	51.000	71.000	1.000	31.000	1.000	1.000	91,000	1.000	21.000	41.000	61.000	81.000	21.000	1,000	1.000	81,000	01.000	21.000	41.000	51.000	1,000.	
20.00	40.00	00.0	0.00	00.0	00.0	00.0	00.0	00.00	20.00	00.0	00.09	00 (00.0	00.0	00.0	80.00	00.00	20.00	40.00	00.0	0.00	00.0	00.0	00.0	80.00	00.00	20.02	0.00	60.00	0-0	0.0	0.0	0.0	0.0	00.00	120,000	40.00	60.00	
120.00	120.00	00.0	00.00I	100.001	100.001	100.00	100.00	100.00	100.00	100.00	100.00	00.0	00.0	00.00	-80.00	00.00	00.00	30:00	30.00	30.00	50.00	50.00	50.00	50.00	50.00	50,00	30.00	50.00	50.00	10.00	10.00	10.00	10.00	10.00	10.00	40,	40.00	40.00	
н	н	н	H	н	ы	н	ы	н	Н	н	H	ы	Н		н	H	1-4	ļH	. ј-н	н	н	Н,	ы	ļH,	н	H	н	H	H	н	H	ïн	. ⊢ ⊣	: H	l H	ıН	· H	н	
45	8	20	25	54	95	9	63	9	69	72	75	78	79	82	87	6	95	Q)	0	0	Н	Н	Н	64	W	സ	ന	4	4	ഗ	ហ	, vo	(Q			- σο	∞	1 H	

TRO DAM C	ORIGINAL SCHEME	RAPID	DRAWDOWN WI	.155.5	5m 1:2.3 &	1:1.8 <mo-02></mo-02>	•	1	. 1		1
	ITS	PPE CIRCLE		н		H		ы		DYNAMIC	
5	COORD	INATE	RADIUS	нн	SAFETY	MOMEN RESISTANCE	r SLID	нн	SAFETY	MOMEN RESISTANCE	T SLIDING
ı	-200.00	0.00	21.0	і Н Н Н	1.8	4497	775	HH	1 0	371	1 80
2 I		60.000	00	H	2.257	30126.		ы	1.756	29174.	16610.
	-180.00	00.0	41.00	H	47	4515	826	н	88	386	325
	-180.00	00.00	61.00	н	8	6270	338	н	C C	104	33
	-180.00	0.00	81.00	н	88	8262	864	н	12	059	788
	-180.00	40.00	01.00	н	0.5	10598	471	ы	22	354	550
	-160.00	00	00	н	9	2231	4,	H	8	163	193
	-160.00	00.0	80:	н	61	3727	425	н	97	627	337
	-160.00	00.0	01.00	н	8	5562	940	н	Η	425	362
_	-160.00	00.0	21.00	Н	4	7707	479	ы	Ω Ω	533	343
٠,	-1.60.00	0.00	41.00	н	2	10685	443	H	2	0454	611
٠.	-160.00	00.00	0	ы	8	15142	4	Н	17	819	8
	-160.00	0.00	81.00	⊣	9	21436	049	Н	0.	0979	0144
	-160,000	40.00	00.10	н	24	29924	2028	H	9	9283	787
10	-160,00	60.00	21.00	н	8	40962	351	H	9	0081	0935
~	-140.00	0.00	51.00	н	7	767	<u>u</u>	H	2	750	9
~	-140.00	0.00	00.1	н	S	1347		н	4	321	0
است	-140,00	0.0	01.00	3-4	7	10573	104	н	2	0365	529
m	-140.0(0.0	21.0	Н	7	15958	16	н	-	5635	364
ın	-140.0(0.0	41.0	· H	ĸ	23292	7	;1	ŏ	2808	1379
10	-140.00	00.00	61.(₩	ĕ.	32885	3807	Ħ	9.	2191	6765
~	-140.0	ö	1.0	н	2	44997	8	H	8	033	~
ക	-140.0(40.00	01.0	H	~	59756	7152	ъ÷	ò	848	2131
a-1	-140.0(60.00	21.0	Н	ä	75295	428	1-i	ò	3738	0465
m	-120.00	ŏ	0.1	H	m	9999	000	Н	7.	6558	~
ıΩ	-120.00	0.0	0.4	⊢ t	Ľ,	11.752	293	H	ö	153	496
~	-120.0	0	01.0	н	ব	1885	71	i-i	ģ	848(9528
a	-120.0	0.0	21.0	⊬	Ñ	2832	241	ы	œ.	774	5005
ہے,	-120.0	80.0	41.0	Н	٦.	4052	857	н		996	2115
	-120.0	Ö	-1	H	4	5522.	ပ်	Н	i,	ī	
'n	-120.0	20.0	81.0	H	Η̈́.	7041,	N	н		899	8633

113	3052	5654	5.4.2 5.4.3	4679	2582	8252	162	5894	9320	8390	5442	232244.	1 V C C C	957	124	125	946	1447	8656	219	406	426	246	206	065	843 9	დე ე	2 0 2 0 3 0	32	438	138	761	9	0.9			
41.54	9657	3010 3010	9022	2702	7004	4483	1723	9388	7319	5080	67.09	399822.	4444	8726	3131	7762	2557	1155	3256	5832	9900	4633	4137	348	8679	100	310) () () (, 60	733	0228	826	2454	239			
. 82	8 6	, c	2 5	73	75	.75	. 78	. 84	. 93	200		1.722	. L	76	.84	.94	90.	84	.78	.81	.86	.97	.84	. 98	e. i	29	0 0	, σ ν ι.	.03	24	. 47	69	.45	.67			
3948.	44686	7 T T T T T T T T T T T T T T T T T T T	39121.	9427.	76050.	73654.	08227.	40508.	9397.	70220.	31077.	197136. I	04740	4229.	3038.	9918.	4818.	6758.	7215	8644.	7830.	4916.	9875.	7984.	4976	1060.	444 444	. 6000	860.	9244	4466	8836.	309.	367.		٠.	
85801	1508	2000	9629	3600	8142	4792	2168	9952	7986	5370	7.256	407556.	, Q	000	3383	8073	921	1547	3818	5952	0258	4882	4216	456	811	253	370	0 7 7 7) (J	839	0352	965	2484	275	-		
20	20 5	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֡֓֡	3 4	0.8	10	00.	0.4	. 13	24	1 0	5	2.067	. 0	10	.12	. 26	41	.22	1.5	.07	7.4	29	. 12	.30	5	7.4	٠. و	, c	9 6	89	8	.33	<u>ი</u>	щ.			
01.00	00. 12	200	01.00	21.00	41.00	41.00	61.00	81.00	01.00	00°	81.UU	1 000 TC	00.41	31.00	51,00	71.00	91.00	1.00	1.00	1.00	00.16	11.00	21.00	41.00	00.19	81.00	7.00	9 6	00	01.00	21,00	41.00	51.00	71.00			
00	220.00		0.000	00.0	80.000	000.00	000.0	40.000	60.000	00.00	000.0	40,000 1		00.000	0.000	40.000	60,000	0.00	00.0	0.00	000.0	0000.0	000.00	20,000	00.0	60.000	00.00	9 6		0000	00,00	0.000.0	40.000	60.000		÷	
120.00	00.00	00.00	100.00	100.001	100.00	100.00	100.00	100.00	100.00	30 00	20.00	180,000		30.00	30.00	80.00	90.00	60.00	00.09	00.09	60.00	60.00	50.00	60.00	60.00	00.09	40.00 40.00			00.04	40.00	40.00	40.00	40.00			
~ (D. C		•	ω.	⊢ 1	G	σi	N	S	<u>ن</u> و	د	20.00 F F) r-	ıω	മ	103	0.2	108	112	119	23	27	32	37	42	47	N €	~ (707		7,6	82	80	4,0			

STABILITY ANALYSIS

TRO DAM ORIGINAL SCHEME RAPID DRAWDOWN WL.155.5m	1:2.3 &	1:1.8 <mo-02></mo-02>
CALCULATION NUMBER	ტ ტ	-
CLE	140.000	(M)
-DO- (Y-COORDINATE)	191.000	(M)
SAFETY FACTOR (NORMAL CONDITION)	1.533	
()	1.367	
RESISTANCE MOMENT (TOTAL:NORMAL)	99232.	(TON*M)
-DO-	96517.	(HON*M)
RESISTANCE FORCE (COHESION)	00.00	(TON)
-DO- (FRICTION: BODY FORCE)	519.54	(NOL)
-DO- (-DO- :WATER PRESSURE)	00.00	(NOF)
-DO- (-DO- :PORE PRESSURE)	00.00	(NOI)
-DO- (-DO- :EARTHQUAKE)	-14.21	(NOL)
SLIDING MOMENT (TOTAL; NORMAL)	-64710.	(M*NOH)
-DO- (-DO-:SEISMIC)	-70623.	(HON*M)
SLIDING FORCE (BODY FORCE)	-338.80	(NOI)
-DO- (WATER PRESSURE)	00.0	(NOL)
-DO- (EARTHQUAKE)	-30.96	(NOL)