5.4 Design of Plugs in Diversion Tunnel

Tunnel plugs are provided at three (3) portions in the diversion tunnel, being named as No.1, No.2, and main plugs from the inlet to the outlet as shown in Fig.5.4.1 and as listed below :

Name	Starting point	Length	Location
	from inlet (m)	(m)	(around)
No.1	8.60	11.4	River outlet pit
No.2	27.80	11.0	Just downstream of
			intake pit
Main	201.00	30.0	Below dam axis

The No.1 and No.2 plugs have purposes to support the diversion gate, river outlet water supply pipes and the inlet portion, and to separate the water between the water supply intake and the river outlet.

The main plug has purposes to completely close the diversion tunnel and to install the water supply and river outlet facilities in it.

The main plug is provided with a length of 30 m of which determination depends on the standard to meet the minimum requirement to ensure a complete water stop and necessary resistible force against the water pressure.

The plug concreting will be made for a short period after installation of the diversion closing gate. Cracks due to shrinkage may occur in the plug concrete if the concrete temperature will become too high by the heat generated when hardening. To dissipate the heat generated in concrete when hardening and to avoid cracks due to shrinkage of the concrete the artificial pipe cooling system is provided at 0.3 m to 0.8 m interval horizontally in 5 lifts of 1 m to 1.4 m in thickness as shown in Fig.5.4.2. This cooling system is applied for the main plug only, considering the size of No.1 and No.2 plugs. The diameter of the cooling pipes is 25 mm, and the cooling will be made by using the river water.

The standard mentions that the difference between the highest concrete temperature and the final stable concrete temperature should be limited to about 20 °C to avoid cracks due to shrinkage. Thus, the cooling will be continued to depress the maximum temperature rise below 40° C.

The pressure grouting for the purpose of filling up the interstice to be caused due to the shrinkage of concrete or due to difficulty to fill the concrete in the upper portion of the tunnel is also required in the main plug portion.

Hence, the grout pipe system will be embedded in the plug concrete.

The grout pipe system embedded in the plug concrete consists of supply headers, return headers, vent headers and vent return headers, all being steel pipes of 40mm in diameter, and of steel riser pipes of 25mm in diameter which connect supply header to grout outlets and vent headers to drilled holes as air inlets, as shown in Fig.5.4.2.

Safety of the plugs is examined by the following Henry's formula :

$$n = \frac{f \cdot x \cdot V + \tau \cdot x \cdot A}{H} \ge 4$$

where

f

; friction coefficient = 0.75

V : weight of concrete plug (t)

 τ : shearing strength of mass concrete = 200 t/m²

A : area of sliding surface (m^2)

H : horizontal pressure to the concrete plug (t)

n : safety factor of sliding

The above equation is expressed as follows :

$$n = \frac{f \cdot r_{c} \cdot A_{c} \cdot L + \tau \cdot l \cdot L}{A_{c} \cdot P}$$

where

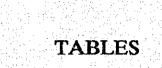
 r_c : unit weight of concrete in water = 1.3 t/m³

 A_c : sectional area of concrete plug = 36.3 m²

L : plug length (m)

l : contact length = $1/4 \pi D = 5.34 m$

P : pressure at the center of the plug = $81 \text{ t/m}^2 (\text{FWL} = 212.5 \text{ m})^{(*)}$


(*) : The project considers future expansion of dam by about 20 m in dam height, and water pressure acting to plugs takes this future increase into consideration.

Based on the above, necessary length of the plug is calculated at 11.0 m as follows :

$$\frac{0.75 \times 1.3 \times 36.3 \times L + 200 \times 5.34 \times L}{36.3 \times 81.0} = 4$$

1,103.4 x L = 11,761.2
L = 10.7 \Rightarrow 11.0 (m)

V -.63

The plugs are provided with length of 11.0 m or more, and therefore, are considered safe sufficiently. Although the main plug is provided with the length of 30 m, its determination depends on the standard to meet the minimum requirement to ensure a complete water stop as mentioned.

Table 5.2.1 (1): STRUCTURAL ANALYSIS OF INCLINED SHAFT BY SLOPE-DEFLECTION

Load Term Calculation $\alpha = \frac{I_2}{I_1} \cdot \frac{h}{h} = 1.0 \text{ x} \frac{3.2}{2.9} = 1.103$ $\beta = \frac{I_3}{I_1} \cdot \frac{h}{I_1} = 1.0 \text{ x} \frac{3.2}{2.9} = 1.103$ $N_1 = 2 + \alpha = 2 + 1.103 = 3.103$ $N_2 = 2 + \beta = 2 + 1.103 = 3.103$ $C_{AD} = \frac{W_2 \iota^2}{12} = \frac{66.8 \text{ x } 2.9^2}{12} = 46.816 \text{ t-m}$ $C_{BC} = \frac{W_1 \iota^2}{12} = \frac{66.8 \text{ x } 2.9^2}{12} = 45.358 \text{ t-m}$ $C_{AB} = \frac{h^2}{60} (3P_2 + 2P_1) = \frac{3.2^2}{60} x (3 \times 66.4 + 2 \times 63.2) = 55.569 \text{ t-m}$ $C_{BA} = \frac{h^2}{60} (2P_2 + 3P_1) = \frac{3.2^2}{60} x (2 \times 66.4 + 3 \times 63.2) = 55.023 \text{ t-m}$ $\theta_{A} = \frac{N_{1} (C_{AB} - C_{AD}) - (C_{BC} - C_{BA})}{N_{1}N_{2} - 1}$ $=\frac{3.103\ (55.569\ -\ 46.816)\ -\ (45.358\ -\ 55.023)}{3.103\ x\ 3.103\ -\ 1}=4.268\ t-m$ $\theta_{\rm B} = \frac{N_2 (C_{\rm BC} - C_{\rm BA}) - (C_{\rm AB} - C_{\rm AD})}{N_1 N_2 - 1}$ $=\frac{3.103 (45.358 - 55.023) - (55.569 - 46.816)}{3.103 \times 3.103 - 1} = -4.490 \text{ t-m}$

(2) End Moment Calculation

(1)

$$\begin{split} M_{AB} &= 2\theta_A + \theta_B - C_{AB} = 2 \times 4.268 + (-4.490) - 55.569 = -51.523 \\ M_{AD} &= \beta \theta_A + C_{AD} = 1.103 \times 4.268 + 46.816 = 51.524 \\ M_{BA} &= 2\theta_B + \theta_A + C_{BA} = 2 \times (-4.490) + 4.268 + 55.023 = 50.311 \\ M_{BC} &= \alpha \theta_B - C_{BC} = 1.103 \times (-4.490) - 45.358 = -50.310 \\ \Sigma M_A &= M_{AB} + M_{AD} = -51.523 + 51.524 \Rightarrow 0 \\ \Sigma M_B &= M_{BA} + M_{BC} = 50.311 - 50.310 \Rightarrow 0 \end{split}$$

Table 5.2.1 (2): STRUCTURAL ANALYSIS OF INCLINED SHAFT BY SLOPE-DEFLECTION

(3) Calculation of Shear and Maximum Moment

Upper Beam

$$S_B = S_C = \pm \frac{W_1 t}{2} = \pm \frac{64.72 \times 2.90}{2} = \pm 93.844 t$$

$$M_{\rm C} = \frac{W_1 \, \iota^2}{8} - M_{\rm B} = \frac{64.72 \, \text{x} \, 2.9^2}{8} - 50.311 = 17.726 \, \text{t-m}$$

Bottom Beam

$$S_{A} = S_{D} = \pm \frac{W_{2}t}{2} = \pm \frac{66.8 \times 2.90}{2} = \pm 96.860 t$$
$$M_{C} = \frac{W_{2}t^{2}}{8} - M_{A} = \frac{66.8 \times 2.9^{2}}{8} - 51.523 = 18.701 t \text{-m}$$

Side Beam

$$S_{A} = \frac{P_{1}h}{2} + \frac{(P_{2} - P_{1})h}{3} - \frac{M_{AB} + M_{BA}}{h}$$

$$= \frac{63.2 \times 3.2}{2} + \frac{3.2 \times 3.2}{3} - \frac{-51.523 + 50.311}{3.2} = 104.912 t$$

$$S_{B} = -\frac{P_{1}h}{2} - \frac{(P_{2} - P_{1})h}{6} - \frac{M_{AB} + M_{BA}}{h}$$

$$= -\frac{63.2 \times 3.2}{2} - \frac{3.2 \times 3.2}{6} - \frac{-51.523 + 50.311}{3.2} = -102.448 t$$

$$M_{max} = R_{A} \cdot \chi + \frac{P_{2} - P_{1}}{6h} \chi^{3} - \frac{P_{3}}{2} \chi^{2} + M_{AB}$$

$$= 104.912 \times 1.599 + \frac{3.2}{6 \times 3.2} \times 1.599^{3} - \frac{66.4}{2} \times 1.599^{2} + (-51.523)$$

= 32.027 t-m

where,

~

$$A = \frac{\Delta P}{h} = \frac{P_3 - P_1}{h} = \frac{3.2}{3.2} = 1.0$$

$$\therefore \chi = \frac{P_2 - \sqrt{P_2^2 - 2A \cdot R_A}}{A} = \frac{66.4 - \sqrt{66.4^2 - 2 \times 1.0 \times 104.912}}{1.0}$$

= 1.599 m

Member Spot	

.

М	t.m	51.50
Q	t	78.70
N	t	96.90
b	cm	100.00
h	cm	96.60
u	cm	38.30
đ	cm	86.60
d'	cm	10.00
d'/d		0.12
$\mathbf{M}' = \mathbf{M} + \mathbf{N}.\mathbf{u}$	t.m	88.61
M'/(b.d.d)	kg/cm ²	11.82
Q/(b.d)	kg/cm ²	9.09
f = M/N + u	cm	91.45
f/d		1.06
As	cm ²	19.36
As'	cm ²	19.36
As'/As		1.00
n		15.00
np = n.As/(bd)		0.034
C		4.86
S .		6.45
Z		1.16
Sigma c	kg/cm ²	57.4
Sigma s	kg/cm ²	1,143.6
Tau	kg/cm ²	10.6
Sigma ca	kg/cm ²	78.0
Sigma sa	kg/cm ²	2,340.0
Tau a	kg/cm ²	5.2

Table 5.2.3 (1) Examination on diameter of water supply conduit

Pipe Dia.	Flow Area	Flow Velocity	V ² /2g	Head Loss (Friction loss)
D (m)	A (m ²)	V (m/s)		hf (m)
1.2	1.131	7.956	3.231	23.620
1.3	1.327	6.780	2.346	15.413
1.4	1.539	5.846	1.744	10.381
1.5	1.767	5.093	1.323	7.185
1.6	2.011	4.476	1.022	5.093
1.7	2.270	3.965	0.802	3.686
1.8	2.545	3.537	0.638	2.717
1.9	2,835	3.174	0.514	2.036
2.0	3.142	2.965	0.419	1.549

where,

 $h_f = f \cdot L \cdot \frac{V^2}{2g}$

		#B
hf	:	Head loss (m)

- : Head loss (m) : Coefficient { $f = \frac{124.5 \cdot n^2}{D^{4/3}}$ }
- : Roughness coefficient (n = 0.012) n
- : Pipe length ($L \doteq 520 \text{ m}$) L
- V = Q/A

f

- : Discharge ($Q = 9.0 \text{ m}^3/\text{s}$) Q
- (2) Calculation of Energy Loss :

Pipe Dia. D (m)			Annual Loss Amount (US\$)	
1.3	15.413	2,405	168,350	
1.5	7.185	1,121	78,470	
1.7	3.686	575	40,250	
1.8	2.717	424	29,680	
2.0	1.549	242	16,940	

where,

 $E_l = E_t \cdot \frac{h_f}{H}$

E₁ : Annual energy loss (MWh)

: Average annual total energy ($E_t \neq 11,000$ MWh) Et

: Head (H = 189.0 - 118.5 = 70.5m) Η

Annual loss amount = $E_1 \times US$ 70/MWh

Table 5.2.3 (2)	Examination on diameter of water supply	conduit
(3) Calculation of Pipe	<u>Cost :</u>	

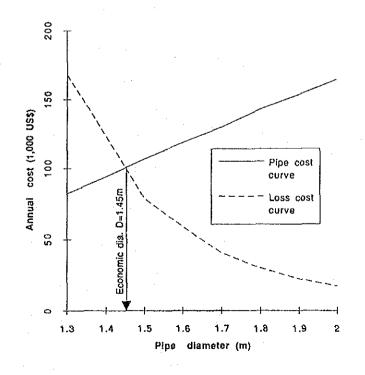
		Charles in the second state of the second				والمحمد والكريم وجداه الأحماط فالتكاف والمح	In the local distance of the second
	Pipe	Pressure	Total	Pipe	Pipe	Pipe	Annual
	Dia.	Rise	Pressure	Thickness	Weight	Cost	Pipe Cost
	D (m)	Δp (%)	P (kg/cm ²)	t (cm)	W (ton)	(US\$)	(US\$)
-	1.5	70	12.16	1.09	218	1,057,300	106,639
	1.8	60	11.44	1.21	290	1,406,500	141,860
	2.0	50	10.73	1.25	333	1,615,000	162,894

where,

P = (189.0 - 117.5) x (1 + $\frac{\Delta p}{100}$) x 0.1 t = $\frac{P \times D}{2 \times \sigma_a \times \eta} + \varepsilon$

 σa : Allowable stress ($\sigma a = 1,200 \text{ kg/cm}^2$)

 η : Coefficient for joints ($\eta = 0.85$)


 ϵ : Corrosion allowance (ϵ = 0.2 cm)

 $W = \pi \cdot D \cdot t \cdot L \times 7.85 \times 1.04 \times 10^{-6} \text{ (ton)}$

Pipe $cost = W \times US$ \$4,850/ton

Annual pipe cost = pipe cost x capital recovery factor Capital recovery factor = 0.10086

(4) Determination of Economic Diameter :

Note :

Although economic diameter is calculated at 1.45 m,pipe diameter is determined to be 1.5 m with some allowance.

Table 5.3.1:	CALCULATION RESULT OF TENSILE STRESS
	DUE TO INTERNAL PRESSURE

	Do	То	Material	σa	Pa	Pi
Water supply	1500	10	SM41	1300	12.5	9.0
River outlet	1500	10	SM41	1300	12.5	8.0

2 (mm) Corrosion allowance = Welding joint efficiency = 0.9 Internal diameter (mm) Do : Pipe shell thickness (mm) То : Allowable tensile stress (kgf/cm²) σа : Pa Allowable internal pressure (kgf/cm²) : Internal pressure (kgf/cm²) Pi :

<u>Pa > Pi</u>

Table 5.3.2:CALCULATION RESULT OF BUCKLING
PRESSURE OF PIPE SHELL

Case	Do	То	σа	σy	Pe	Pk	Sf
Embedded	1500	10	1300	2500	8.0	12.169	1.52

· .

Corr	osic	on allowance =	2 (mm)
Wel	ding	joint efficiency =	0.9
Do	:	Internal diameter (m	m)
То	:	Pipe shell thickness	(mm)
oa	•	Allowable stress (kg	gf/cm ²)
бу	:	Yield point (kgf/cm	²)
Pe	:	External pressure (k	gf/cm ²)
Pk	:	Critical buckling pro	essure (kgf/cm ²)
Sf	:	Safety factor = Pk/F	'e

<u>Sf > 1.5</u>

• .

	Item	Size	Unit Weight	Q'ty	Weight			
	المركز من المركز ال المركز المركز	(mm)	(kg)		(kg)			
1	Main horizontal beams							
-	No.1 gate	506 x 201 x 11 x 19 x 2600	268.0	3	804.0			
	No.2 gate	500 x 250 x 16 x 18 x 2600	335.0	3	1005.0			
	No.3 gate	550 x 250 x 16 x 22 x 2600	390.0	3	1170.0			
2	Horizontal beams							
	No.1 gate	500 x 100 x 11 x 20 x 2600	185.0	2	370.0			
	No.2 gate	500 x 150 x 12 x 16 x 2600	213.0	2	426.0			
	No.3 gate	550 x 150 x 12 x 18 x 2600	236.0	2	472.0			
3	Skin plate							
	No.1 gate	2200 x 2600 x 16	718.0	1	718.0			
	No.2 gate	2200 x 2600 x 17	763.0	- 1	763.0			
	No.3 gate	2200 x 2600 x 18	808.0	1	808.0			
4	Vertical beams							
	No.1 gate	125 x 65 x 6 x 8 x 2200	30.0	4	120.0			
	No.2 gate	150 x 75 x 6.5 x 10 x 2200	41.0	4	164.0			
	No.3 gate	150 x 75 x 9 x 12.5 x 2200	53.0	4	212.0			
5	Side beams			-				
	No.1 gate	506 x 201 x 11 x 19 x 2200	227.0	2	454.0			
	No.2 gate	500 x 250 x 16 x 18 x 2200	284.0	2	568.0			
	No.3 gate	550 x 250 x 16 x 22 x 2200	330.0	2	660.0			
6	Roller and roller shaft							
	No.1 gate	D550 x 150, D170 x 200	315.0	4	1260.0			
	No.2 gate	D560 x 150, D180 x 200	330.0	4	1320.0			
	No.3 gate	D640 x 150, D200 x 200	428.0	4	1712.0			
ota					2726.0.4			
	No.1 gate			1.0	3726.0 (kg			
				x 1.2 =	4.5 (to			
	No.2 gate				4246.0 (kg			
			:	x 1.2 =	5.1 (to			
	No.3 gate			. 10	5034.0 (kg			
			· .	x 1.2 =	6.1 (to			
ota	l weight of gate leaf				15.7 (to			

Table 5.3.3 (1): DIMENSIONS, QUANTITIES AND WEIGHTS OF MEMBERS (Intake Gate Leaf)

Item	anna ar gu ann an	Size (mm)	Unit Weight (kg)	Q'ty	Weight (kg)
1 Track fra	me	450x200x32x34x8100	1642.0	2	3284.0
2 Lintel bea	am	300x150x10x2700	95.4	1	95.4
3 Sill beam	l	200x150x6x9x3000	91.8	1	91.8
4 Side guid	le frame	150x75x6.5x10x4600	85.6	2	171.1
5 Side seal	ing frame	150x150x10x2100	49.5	2	98.9
6 Rail plate	:	200 x 23 x 8100	292.5	2	585.0
7 Sill plate		150 x 10 x 3100	36.5	1	36.5
6 Lintel sea	ling plate	150 x 10 x 2100	24.7	1	24.7
8 Side seal	ing plate	150 x 10 x 2100	24.7	2	49.5
Fotal				x 1.2 =	4436.9 (kg) 5.4 (tor
Fotal weight o	f guide fram	e	5.4	x 3 =	16.2 (tor

Table 5.3.3 (2): DIMENSIONS, QUANTITIES AND WEIGHTS OF MEMBERS (Intake Gate Guide Frame)

Item	Size (mm)	Unit Weight (kg)	Q'ty	Weight (kg)
Hoist with motor (per each gate)	3.7kW	395.0	1	395.0
Hoisting spindle			_	
No.1 gate	D114.3 x 6 x 66m	1060.0	1	1060.0
No.2 gate	D114.3 x 6 x 90m	1440.0	1	1440.0
No.3 gate	D114.3 x 6 x 115m	1840.0	1	1840.0
tal				
No.1 gate				1455.0
			x 1.2 =	1.8
No.2 gate				1835.0
			x 1.2 =	2.3
No.3 gate				2235.0
	-	:	x 1.2 =	2.7
tal weight of hoist				6.8

Table 5.3.3 (3): DIMENSIONS, QUANTITIES AND WEIGHTS OF MEMBERS (Intake Gate Hoist)

and a second second

ning and a second s

Table 5.3.3 (4): DIMENSIONS, QUANTITIES AND WEIGHTS OF MEMBERS (Intake Trash Rack)

(1) Front Trash Rack

	Item	Size (mm)	Unit Weight (kg)	Q'ty	Weight (kg)
1	Screen bar	100 x 12 x 3200	30.1	39	1175.6
2	Tie bolt	Dia 20 x 3000	7.4	9	66.6
3	Guide frame	100 x 100 x 10 x 3000	47.1	2	94.2
4	Guide frame	150 x 150 x 10 x 3000	70.7	2	141.3
Fota	ป (1)		<u></u>	x 1.2 = x 3 =	1477.7 (kg) 1.8 (ton) 5.4 (ton)

(2) Top Trash Rack

Item	Size (mm)	Unit Weight (kg)	Q'ty	Weight (kg)
1 Screen bar	100 x 12 x 1100	10.4	39	404.1
2 Tie bolt	Dia 20 x 3000	7.4	2	14.8
3 Guide frame	100 x 100 x 10 x 3100	48.7	1	48.7
	100 x 100 x 10 x 2100	33.0	1	33.0
4 Guide frame	150 x 150 x 10 x 3100	73.0	1	73.0
	150 x 150 x 10 x 2100	49.5	1	49.5
Total (2)			مالي ورجو محمد المالية م	623.0 (kg)
			x 1.2 =	0.8 (ton
			x 3 =	2.4 (ton
· · · .				

Total weight of intake trash racks (1) + (2)

7.8 (ton)

Table 5.3.3 (5): DIMENSIONS, QUANTITIES AND WEIGHTS OF MEMBERS (River Outlet Bulkhead Gate)

(1) Bulkhead Gate Leaf

Item		Item Size (mm)		Q'ty	Weight (kg)
1	Main horizontal beam	380x100x13x16.5x2000	124.0	4	496.0
2	Skin plate	1700 x 2000 x 18	480.4	1	480.4
3	Vertical beam	380 x 6 x 1700	30.4	2	60.9
4	Side beam	380x100x13x16.5x1700	105.4	2	210.8

Total (1)

1248.1 (kg) x 1.2 = 1.5 (ton)

(2) Bulkhead Gate Guide Frame

	Item	Size (mm)	Unit Weight (kg)	Q'ty	Weight (kg)
1	Track frame	200x100x5.5x8x4750	101.2	2	202.4
2	Sealing frame	180x75x7x10.5x1900	40.7	2	81.3
3	Side sealing frame	150 x 150 x 8 x 1500	28.3	2	56.5
4	Side guide frame	150x75x6.5x10x2700	50.2	2	100.4
5	Rail plate	100 x 8 x 4750	29.8	2	59.7
5	Sealing plate	100 x 8 x 1500	9.4	4	37.7
7	Auxiliary material for gate operation				2000.0
ota	al (2)	- ۵۱-۵۵ و و ۲۵		x 1.2 =	2538.0 3.1

.

Total weight of river outlet inlet bulkhead gate (1) + (2)

4.6 (ton)

Item	Size (mm)	Unit Weight (kg)	Q'ty	Weight (kg)
1 Screen bar	100 x 12 x 2600	24.5	25	612.3
	$100 \times 12 \times 2500$ $100 \times 12 \times 2500$	23.6	100	2355.0
2 Top beam	200 x 200 x 8 x 2600	121.9	4	487.8
3 Post	200 x 200 x 8 x 3200	150.1	4	600.3
4 Tie bolt	Dia 20 x 2600	6.4	40	256.3
5 Guide frame	80 x 10 x 2600	16.3	8	130.6
6 Guide frame	100 x 150 x 10 x 2500	49.1	4	196.3
otal				4638.6

٠

Table 5.3.3 (6): DIMENSIONS, QUANTITIES AND WEIGHTS OF MEMBERS (River Outlet Trash Tacks)

g)

Total weight of river outlet trash racks

x 1.2 = 5.6 (ton)

Table 5.3.3 (7): DIMENSIONS, QUANTITIES AND WEIGHTS OF MEMBERS (River Outlet Conduit and Valves)

(1) River Outlet Conduit

16/2000-1000-1000-1000-1000-1000-1000-1000	Item	Size (mm)	Unit Weight (kg/m)	Q'ty (m)	Weight (kg)
1	Steel conduit	1500 dia x 10 tickness	372.4	51.8	19289.8
2	Steel conduit	1000 dia x 8 tickness	198.9	5.5	1093.8
Tota	ıl (1)		<u></u>	x 1.2 =	20383.6 (kg) 24.5 (ton)

(2) River Outlet Valves

Item	Size (mm)	Unit Weight (ton)	Q'ty	Weight (ton)
1 Discharge valve	1000 dia	7.0	1	7.0
2 Guard valve	1000 dia	12.0	1	12.0
Total (2)		· · · · · · · · · · · · · · · · · · ·	x 1.2 =	19.0 (ton) 22.8 (ton)

Total weight of river outlet facilities (1) + (2)

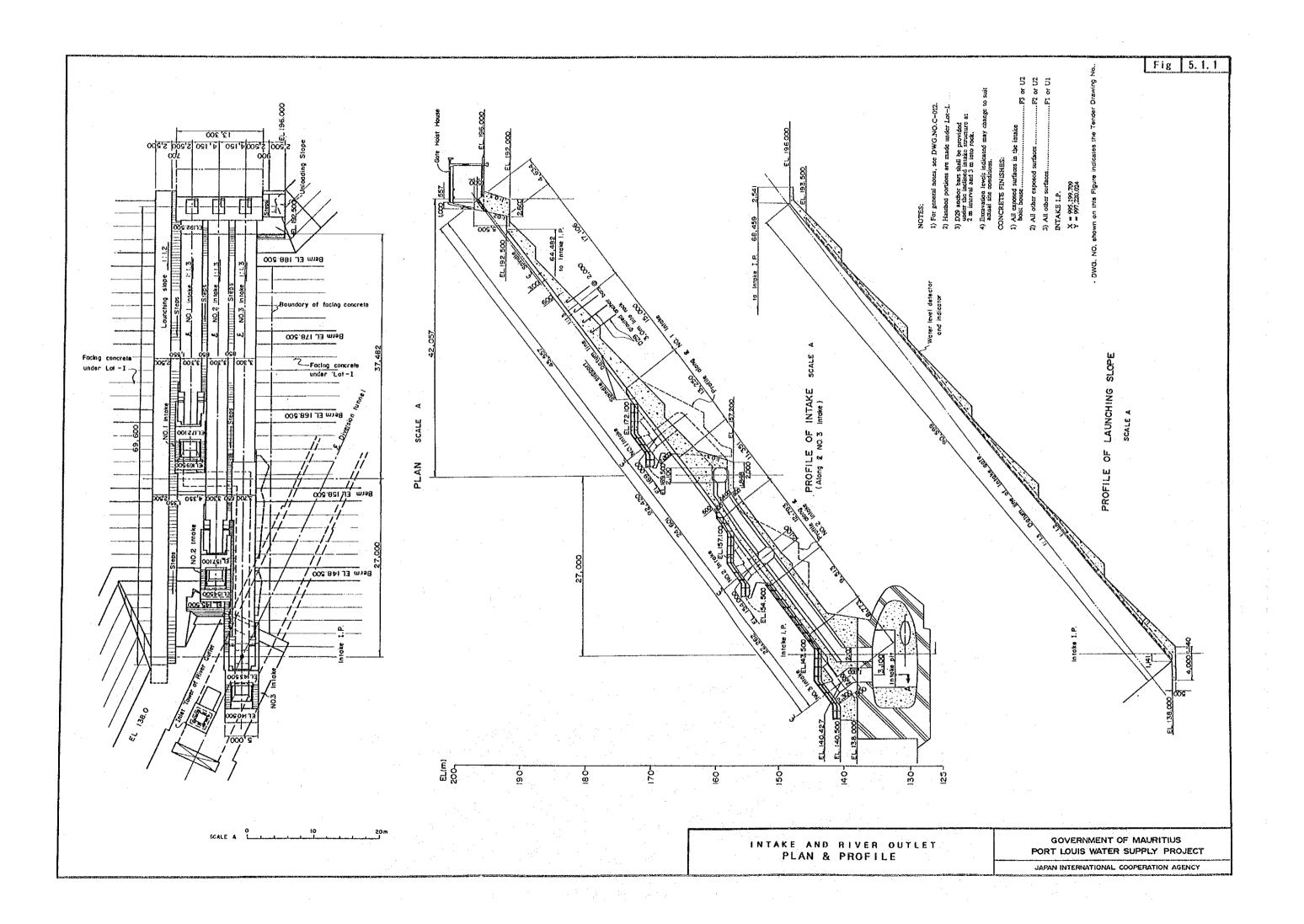
47.3 (ton)

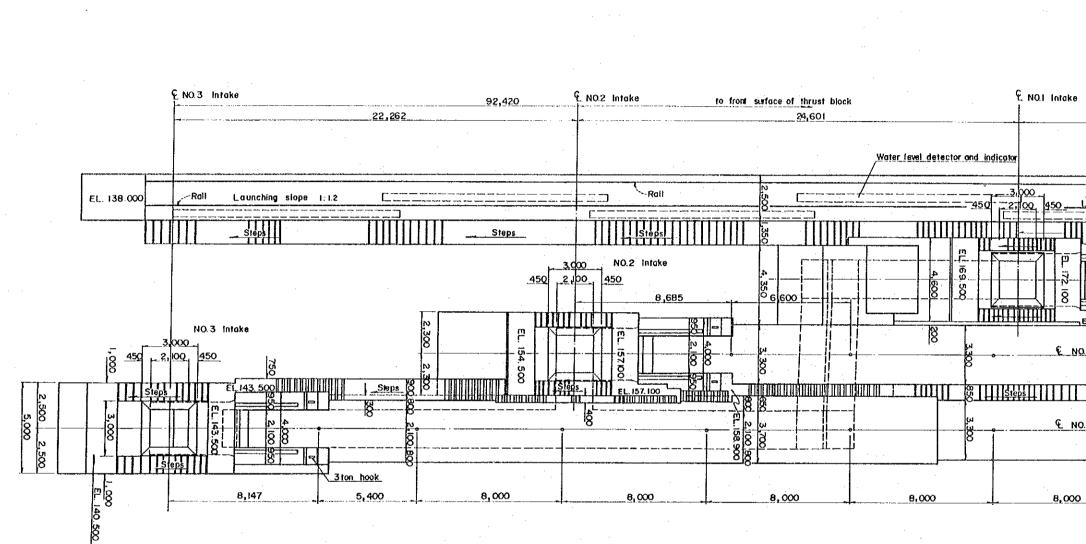
Table 5.3.3 (8): DIMENSIONS, QUANTITIES AND WEIGHTS OF MEMBERS (Water Supply Facilities)

Item	Size (mm)	Unit Weight (kg/m)	Q'ty (m)	Weight (kg)
1 Steel conduit	1500 dia x 10 tickness	372.4	206.2	76789.3
2 Steel conduit	400 dia x 6 tickness	60.1	4.0	240.3
Fotal (1)		9 2 7 7 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	x 1.2 =	77029.6 (kg 92.5 (tor

(1) Water Supply Conduit & River Outlet Conduit

(2) Water Supply Valves

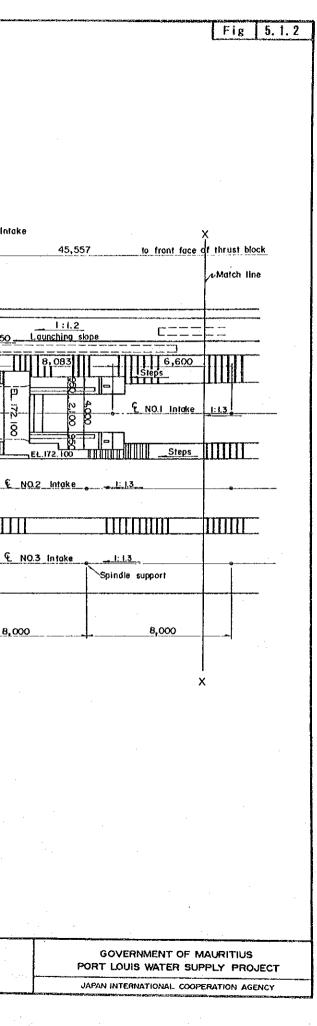

Item	Size (mm)	Unit Weight (ton)	Q'ty	Weight (ton)
Discharge valve	400 dia	1.5	1	1.5
Guard valve	400 dia	2.5	1	2.5

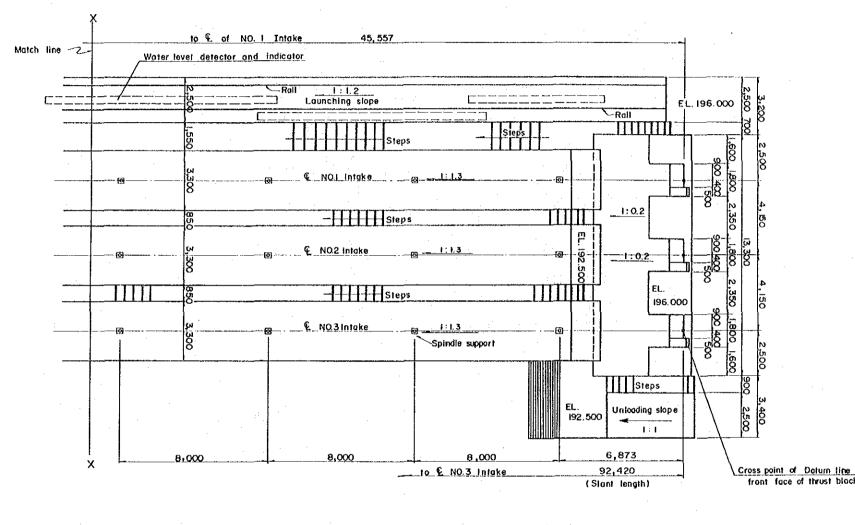

.

Total weight of water supply facilities (1) + (2)

97.3 (ton)

FIGURES



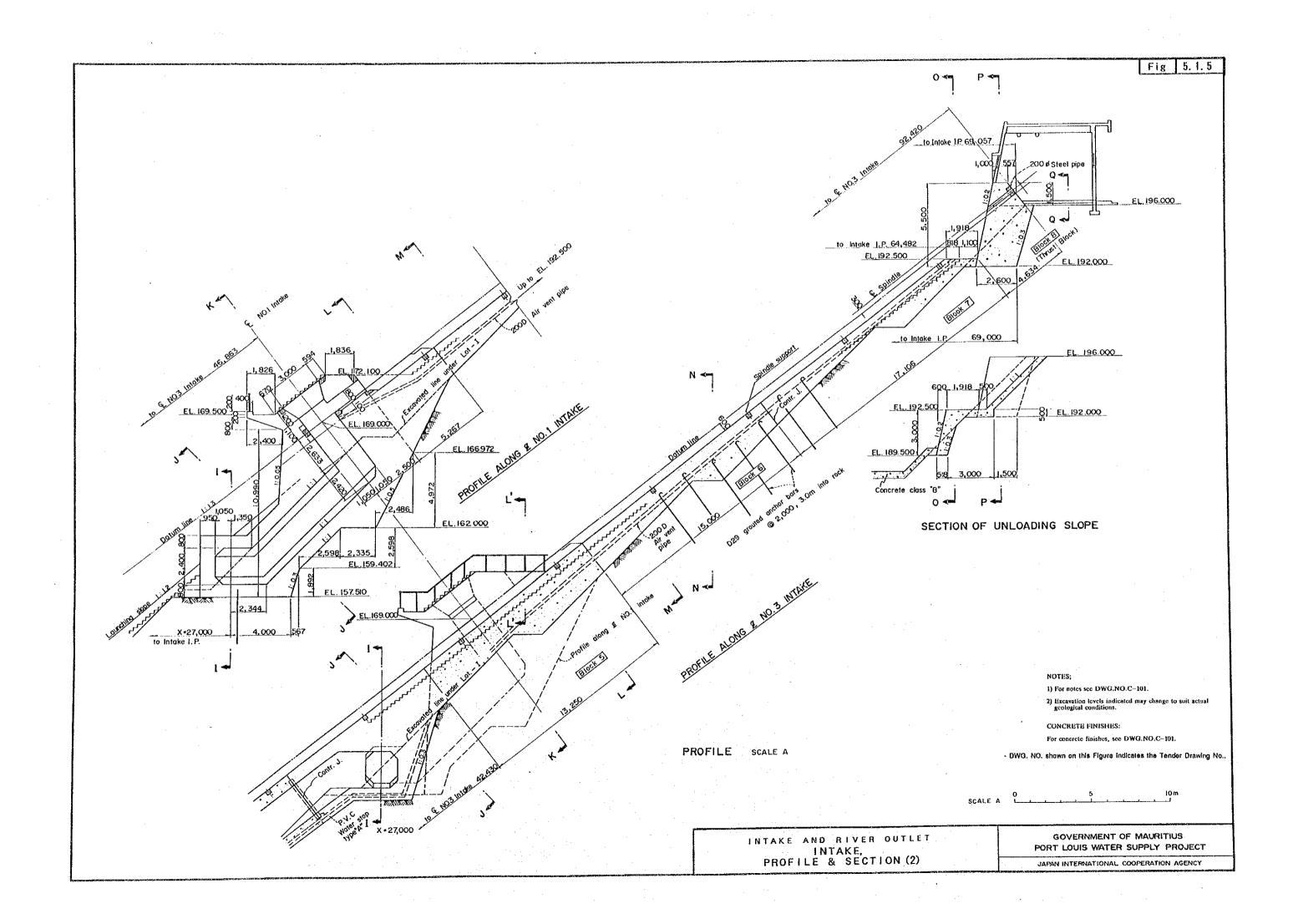


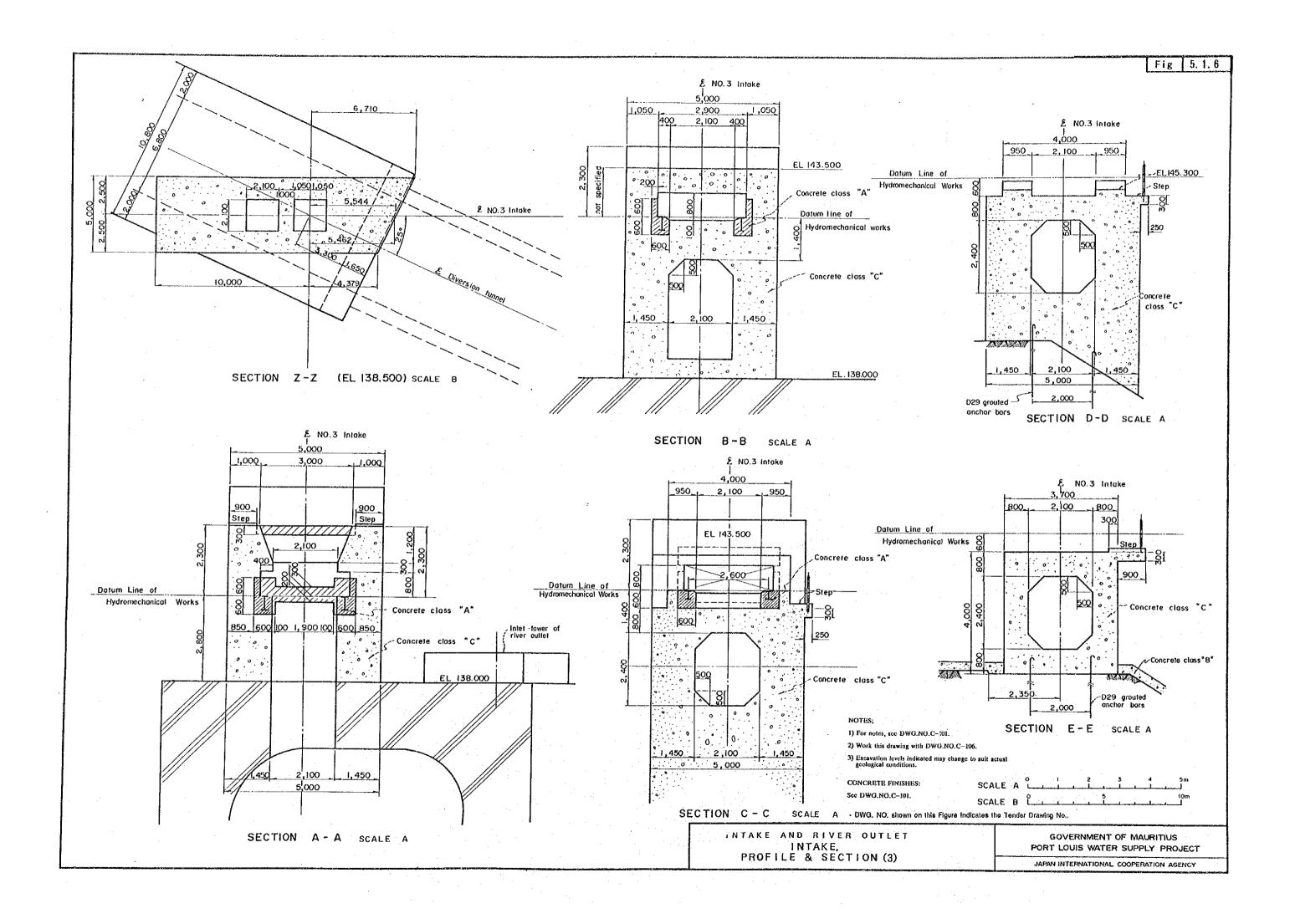
SCALE A

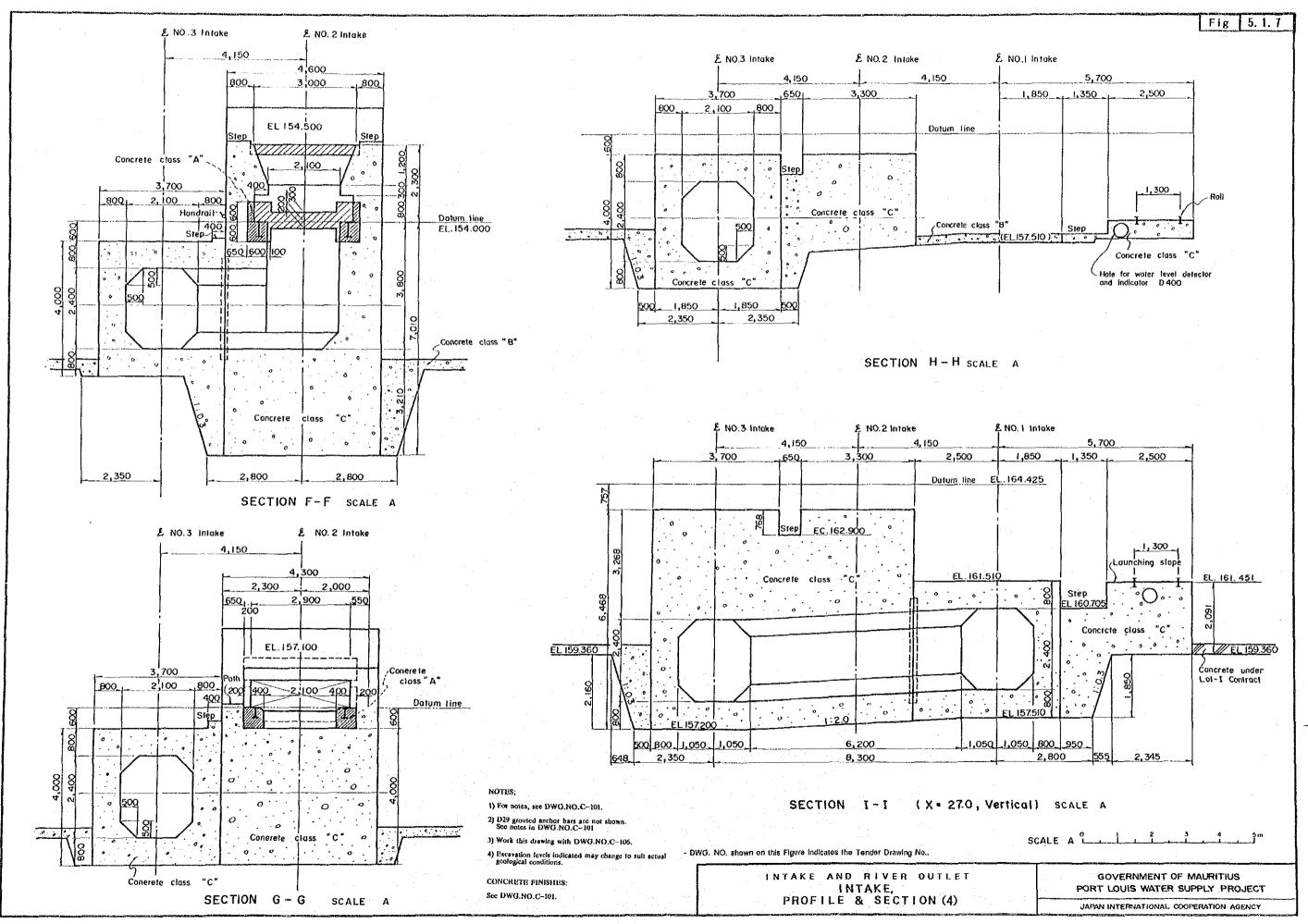
SLANT PLAN SCALE A

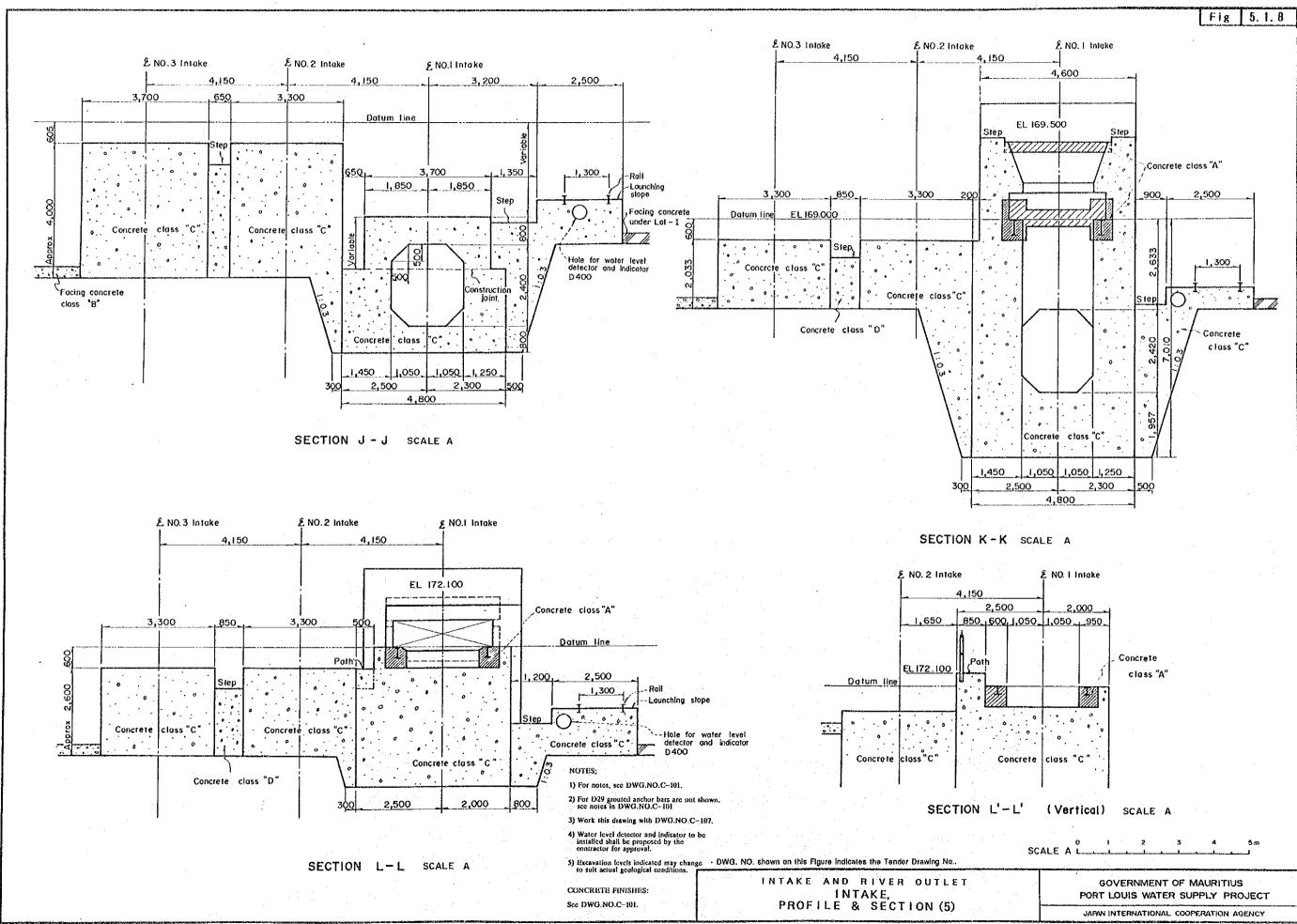
INTAKE AND RIVER OUTLET INTAKE, SLANT PLAN (1)

SLANT PLAN SCALE A


SCALE A


INTAKE AND RIVER OUTLET INTAKE, SLANT PLAN (2)


	Fig	5.1.3	
	<u>L'''</u>	1	
- · · ·			
		·	
· · ·			
· .			
			ł
	÷ *		
GOVERNMENT OF	MAURITIU	5	
PORT LOUIS WATER SI	PERATION A		



	1.10.001	Fig 5.1.4
	· // ·	
	1	
<u>;</u> /		
Intoke		
Inte		
\backslash		
\backslash		
	ана са се	
÷.		
	· ·	
	2	
	NOTES;	
	1) For notes see DWG.NO.C-101.	
	2) Excavation levels indicated may geological conditions.	change to suit actual
	CONCRETE FINISHES:	
	For concrete finishes, see DWG.N	O.C-101.
DWG. NO.	shown on this Figure Indicates th	e Tender Drawing No.,
0	5	10 m
EA 1	ۍ سيو سيو او	ternitarian Lananaan
	GOVERNMENT OF I	
	JAPAN INTERNATIONAL COO	PERATION AGENCY
	an a	

.

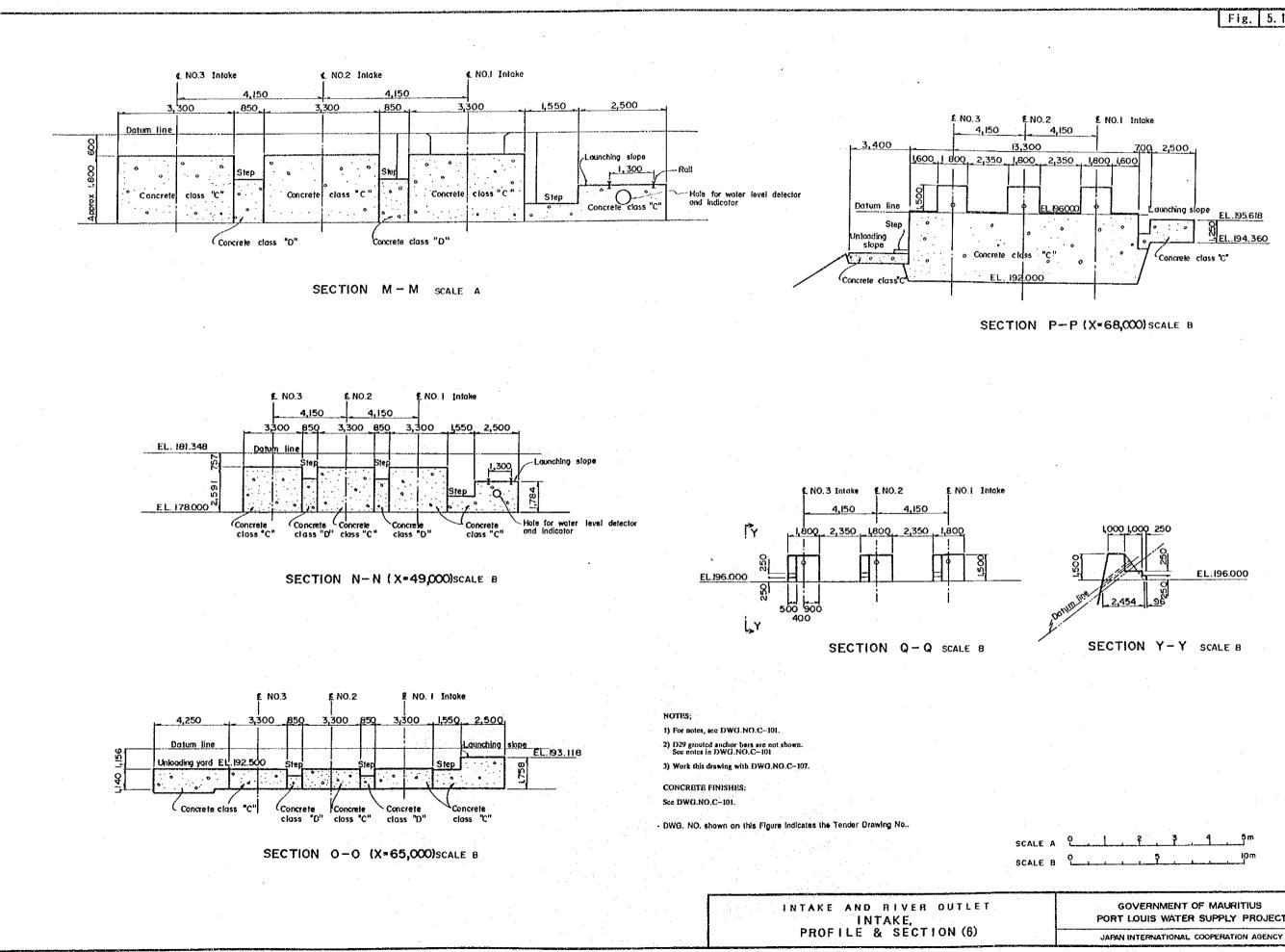
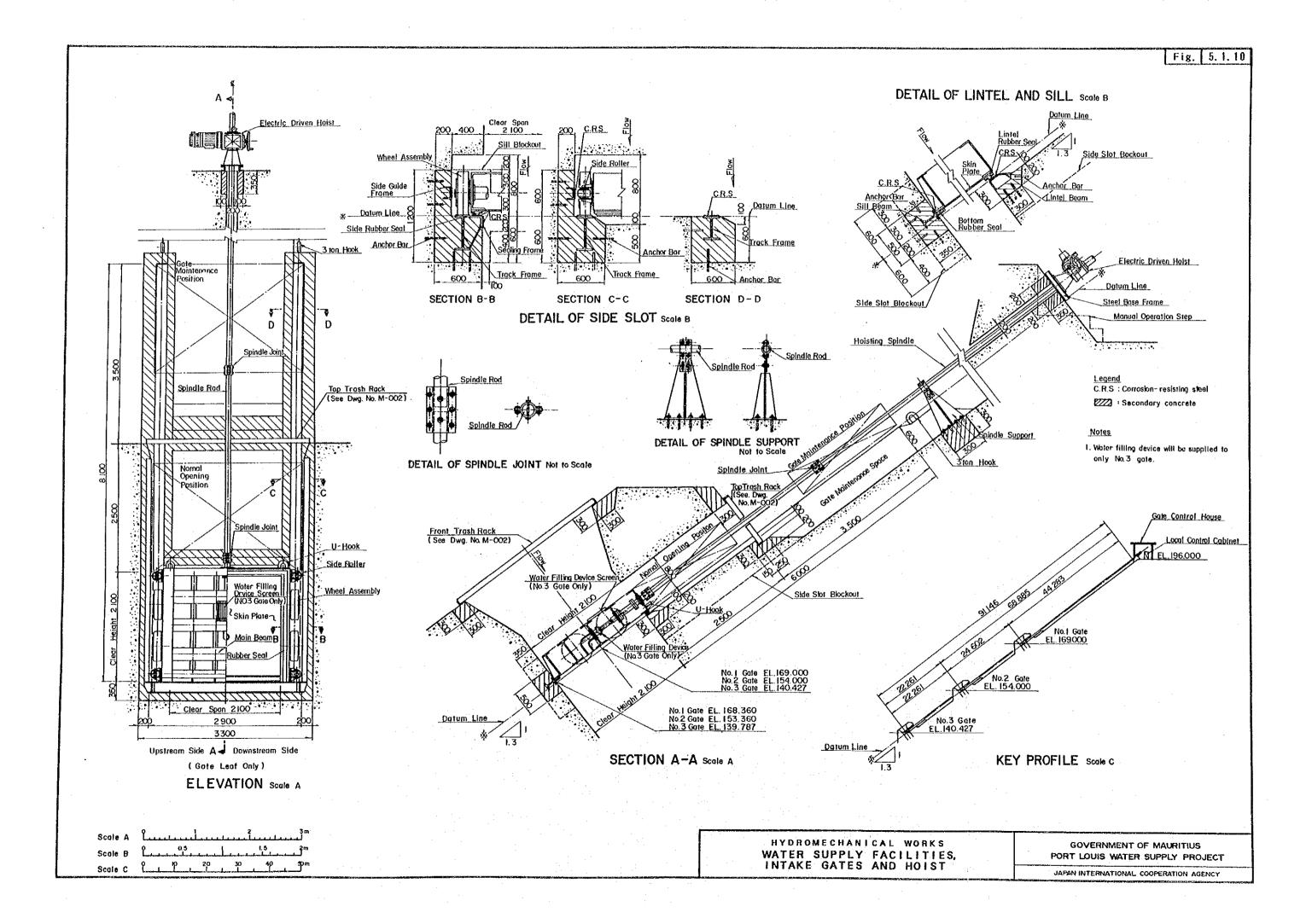
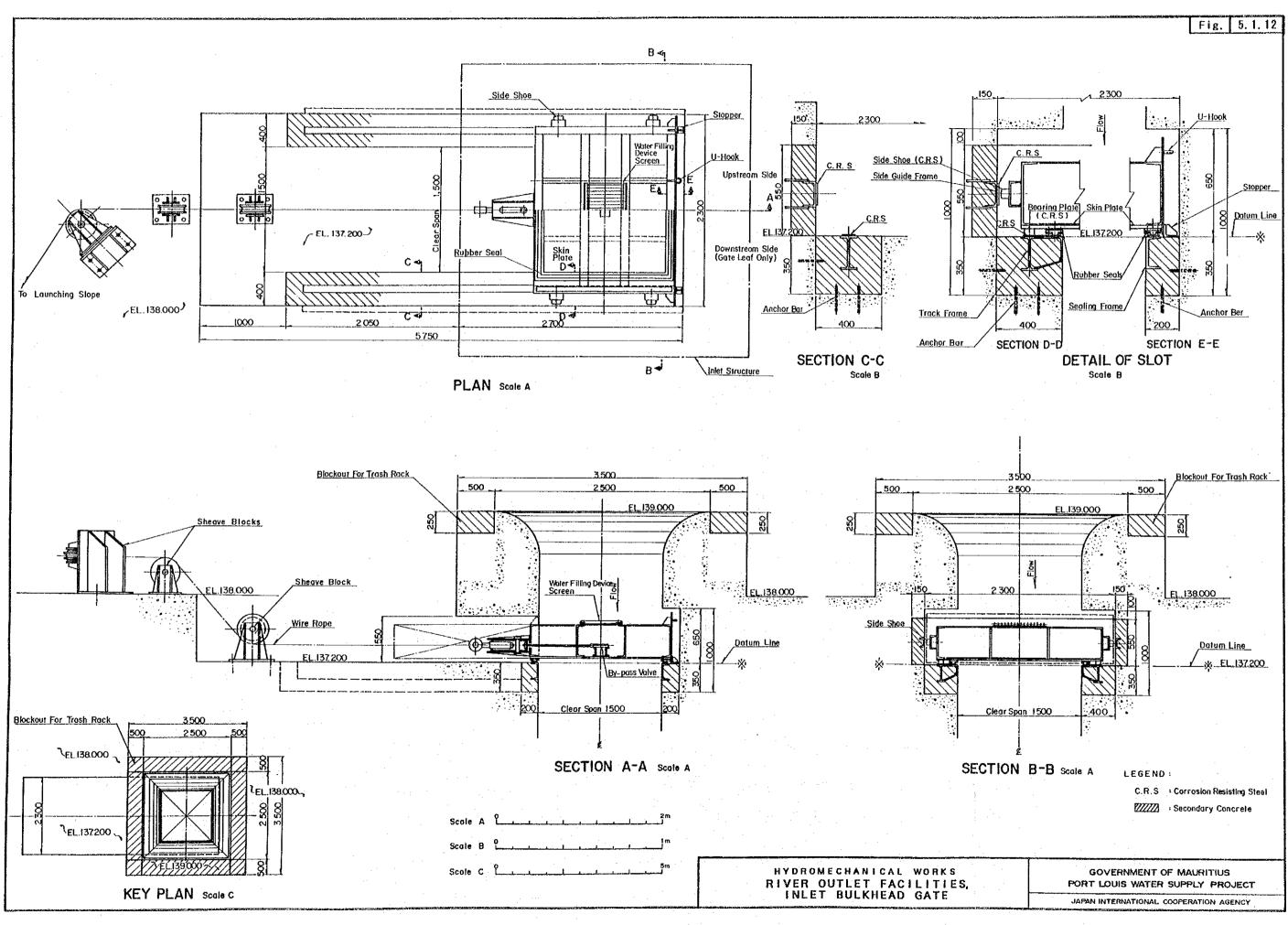
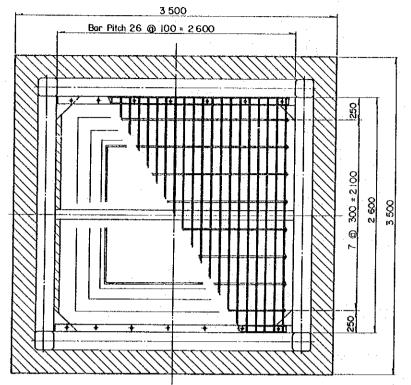
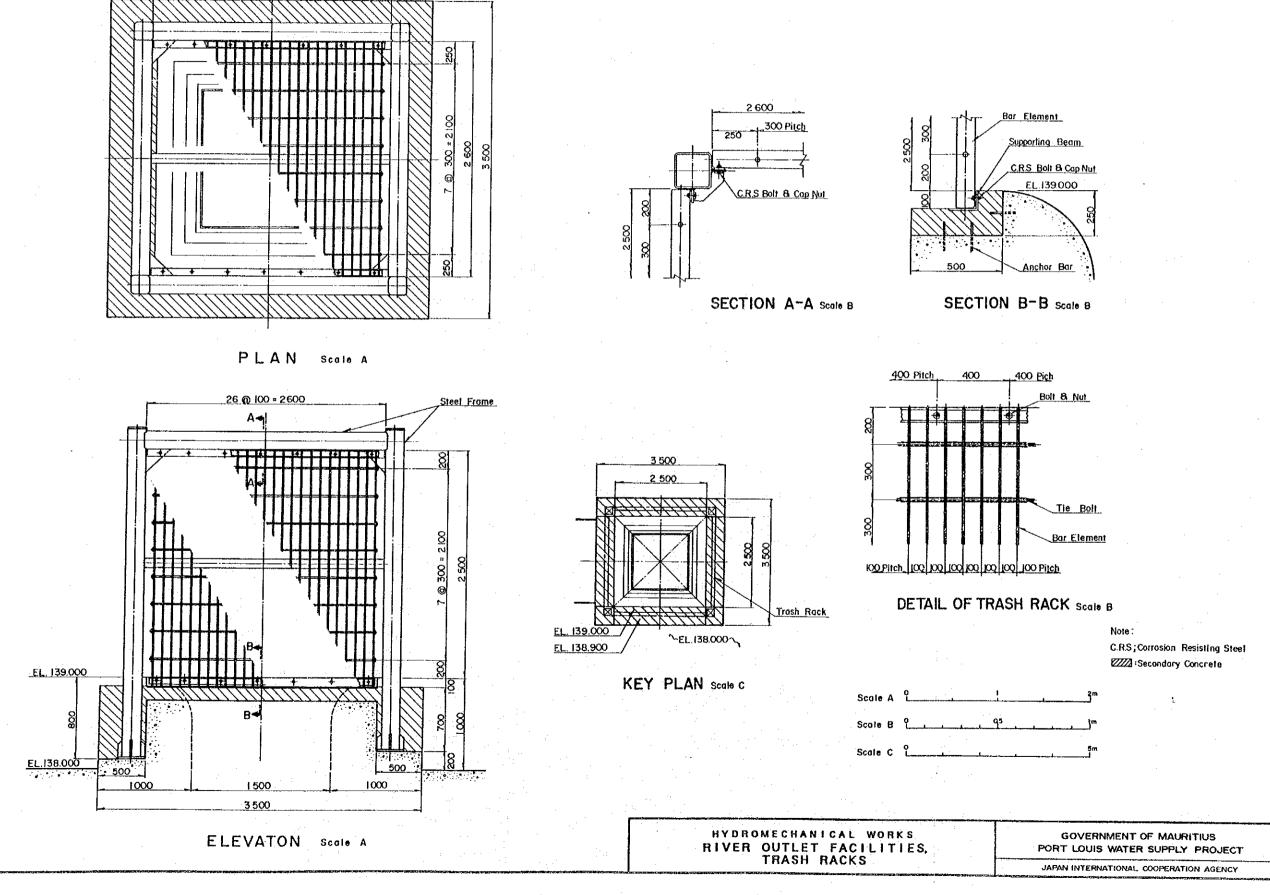
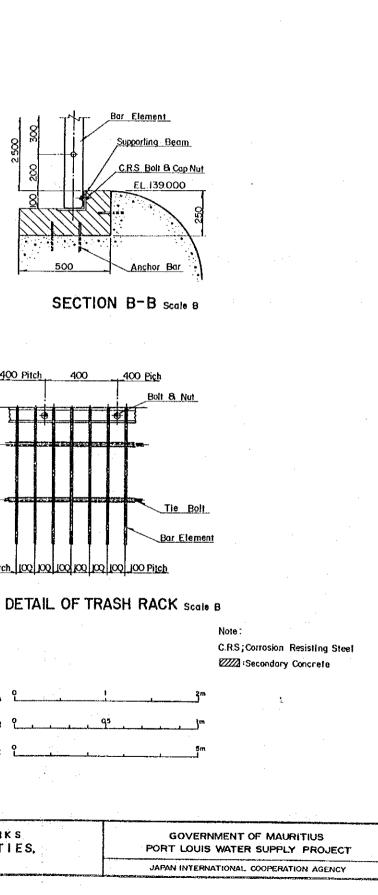




Fig. 5.1.9


PORT LOUIS WATER SUPPLY PROJECT




· .

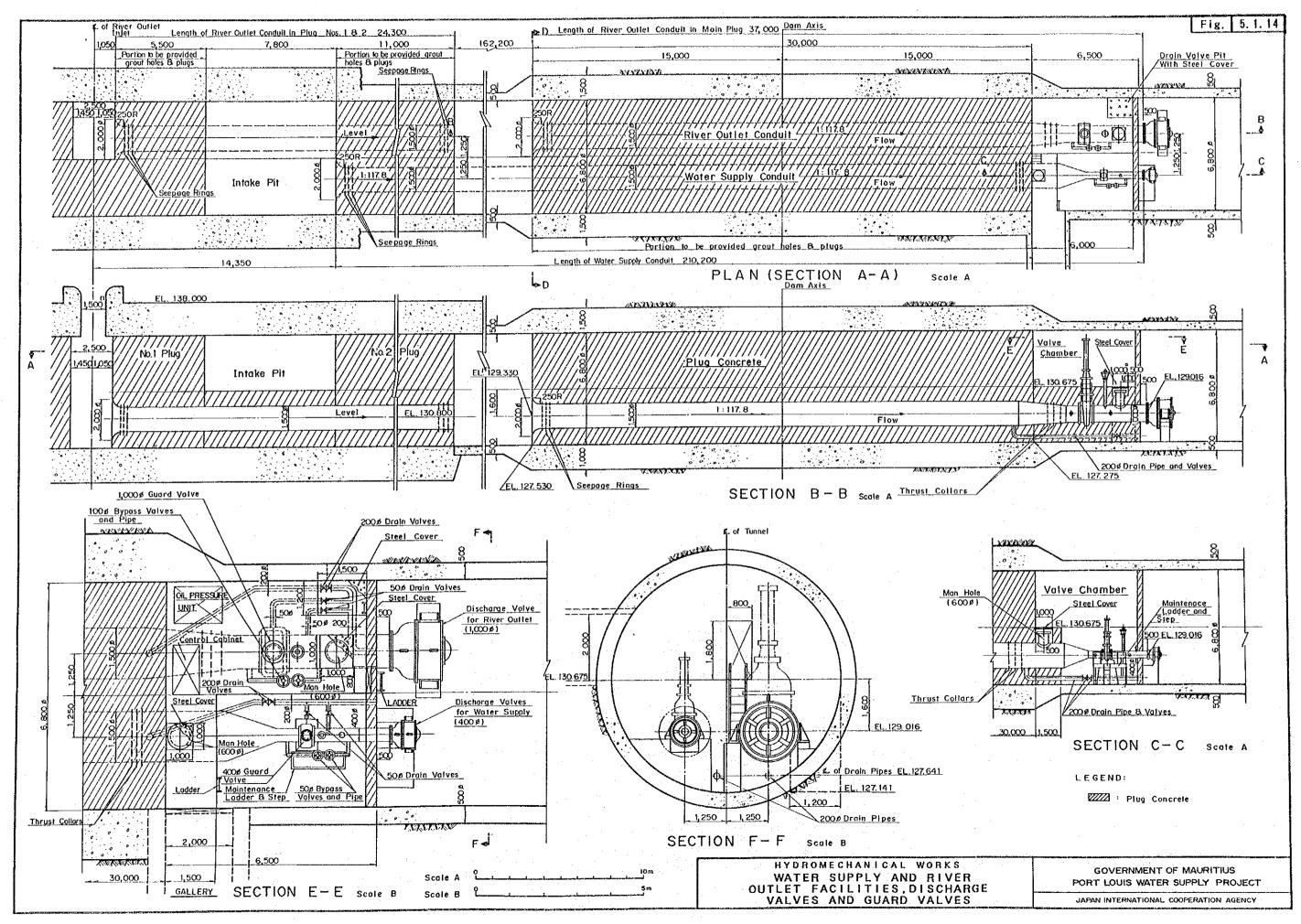

.

Fig. 5.1.13

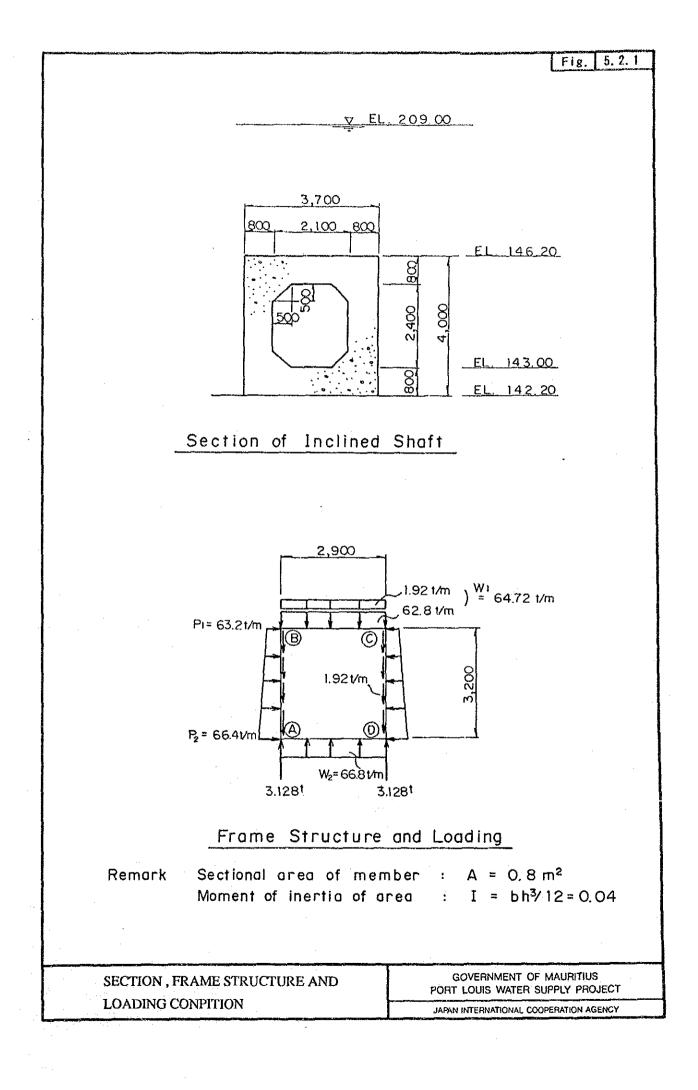
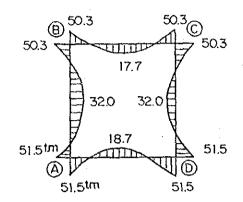
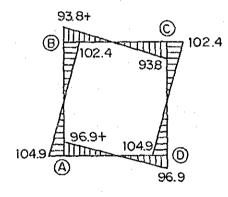
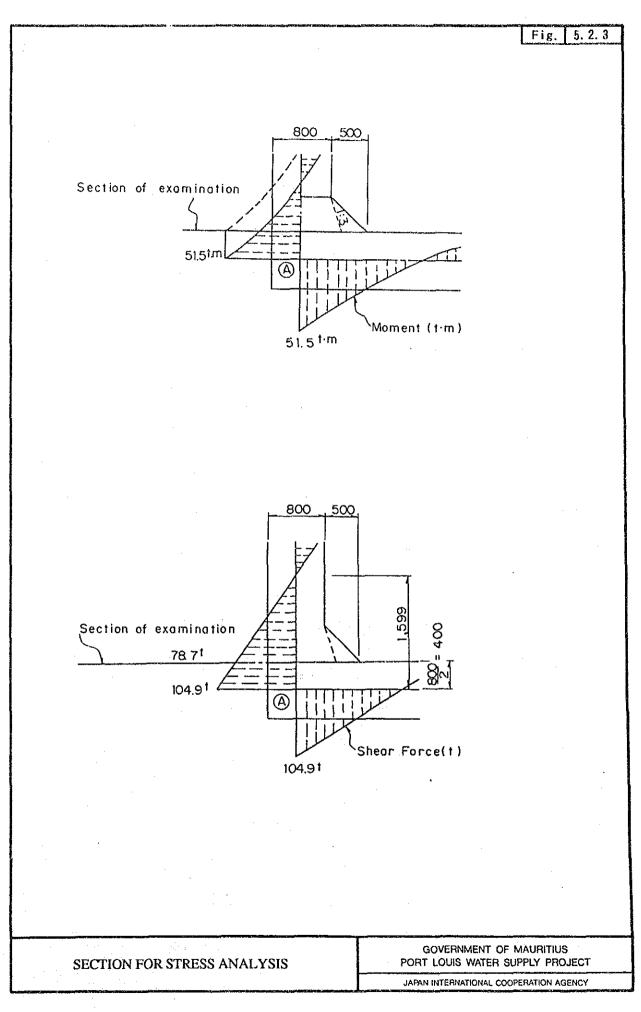
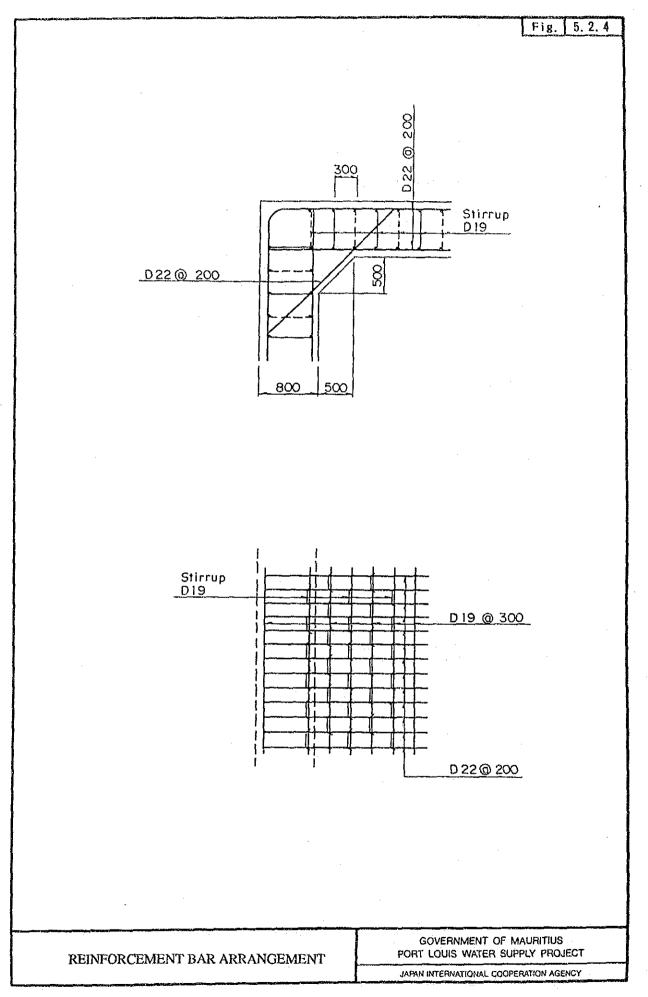




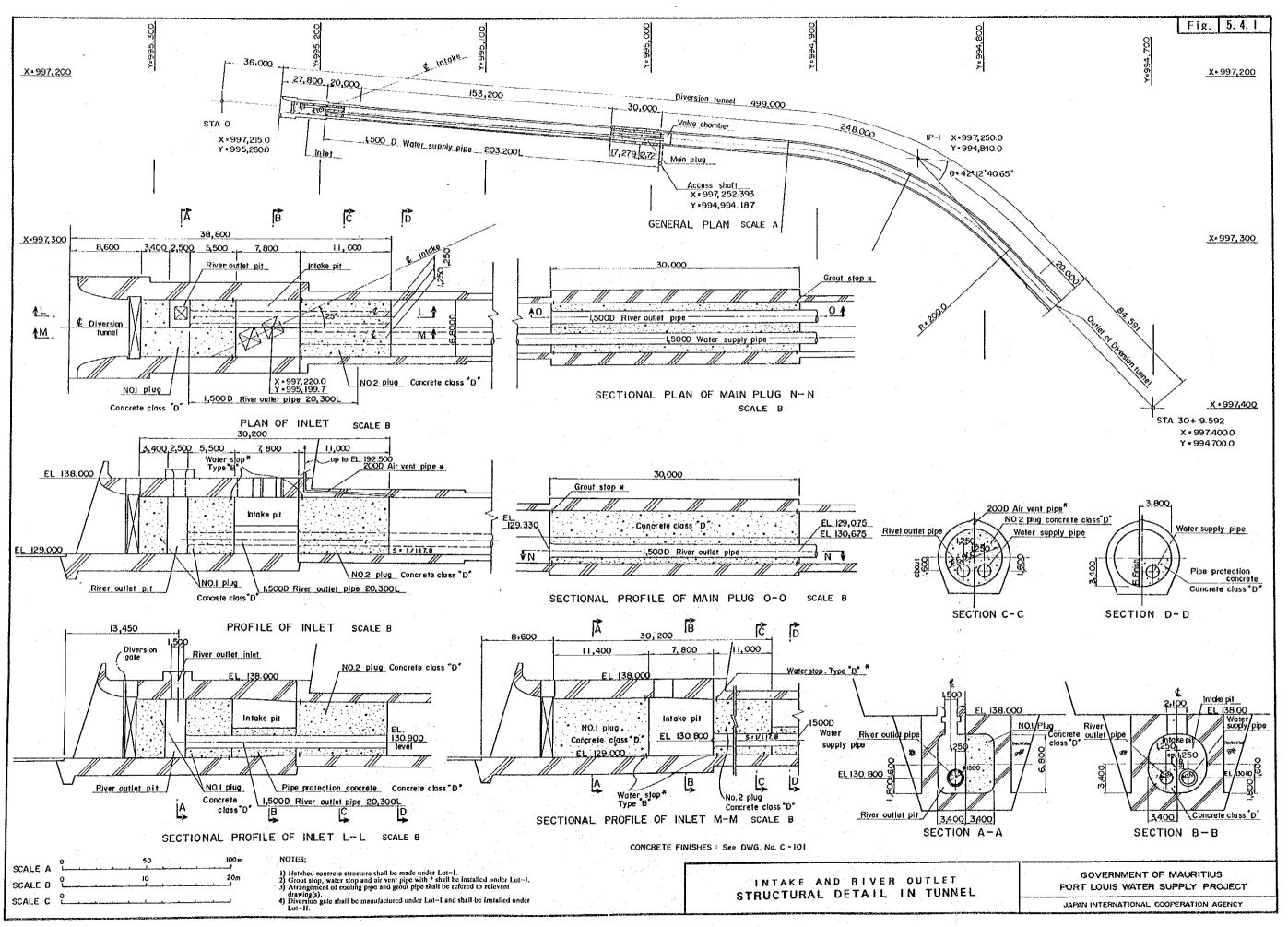
Fig. 5.2.2

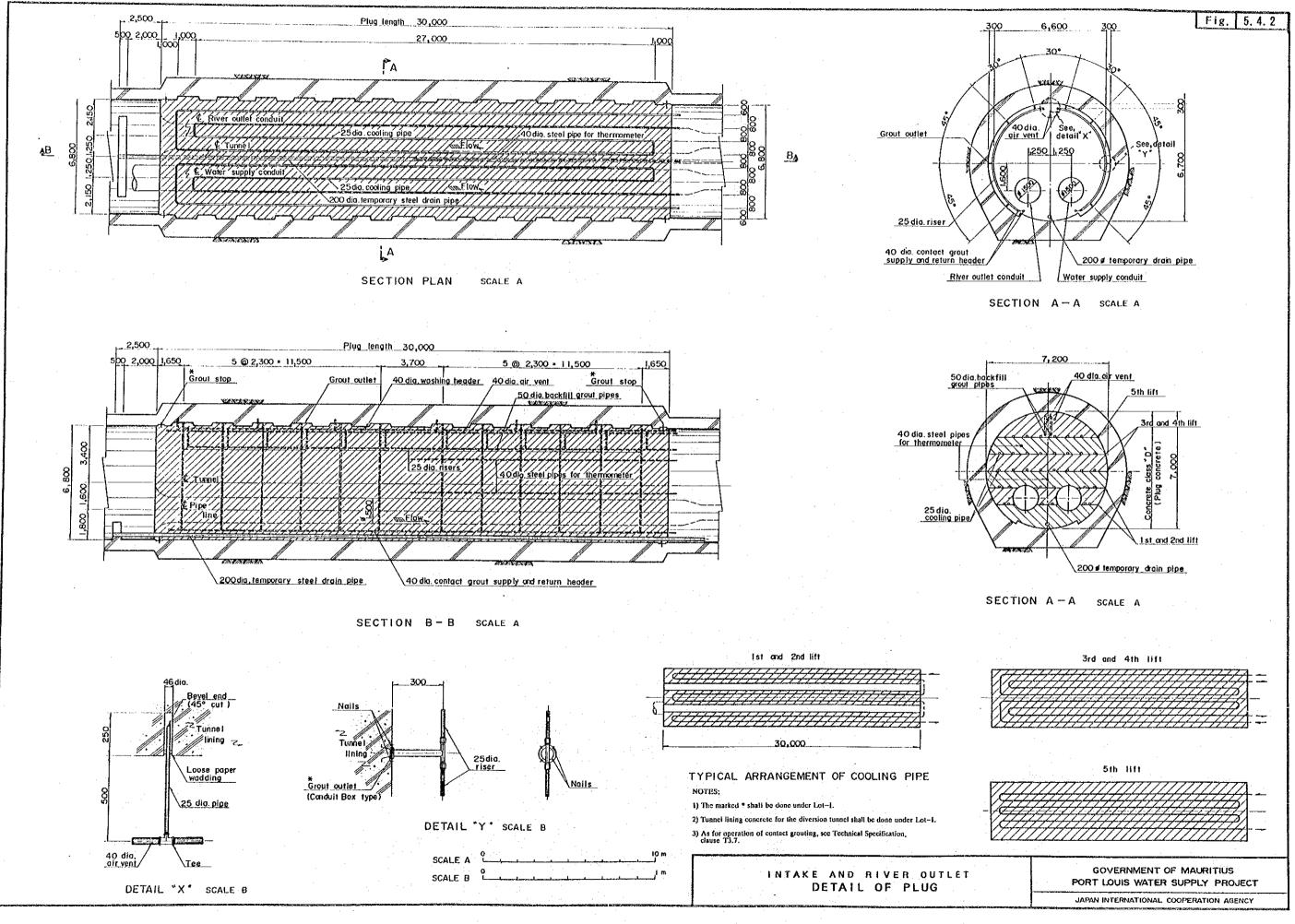
Moment Diagram



Shear Diagram


MOMENT AND SHEAR DIAGRAMS


GOVERNMENT OF MAURITIUS PORT LOUIS WATER SUPPLY PROJECT


JAPAN INTERNATIONAL COOPERATION AGENCY

.

.

CHAPTER VI CONSTRUCTION SCHEDULE

6.1 Pre-construction Program

The pre-construction activities for Lot II works comprise prequalification of contractors, tendering, evaluation and award of contract. The detailed design, preparation of tender documents and financial arrangement will be completed by the end of the first year, considering the implementation of Lot I works.

The selection of consultant for the construction supervision will also be made before starting the Lot I international tendering.

The implementation schedule for Lot II works is planned to be established according to the time of river diversion after the completion of diversion tunnel work (Lot I).

The tendering time which comprises of the advertisement of tender and prequalification, tendering, tender evaluation, approval and contract awarding are expected as shown in Fig. 6.1, Implementation Schedule (Lot II) for the Port Louis Water Supply Project.

6.2 Construction Period and Target Date

The construction period required for implementation of the Lot II works is planned to be 34 months. As for the overall construction works including Lot I, Lot II and Lot III works, the whole period is to be 47 months. The construction works are scheduled to be commenced at the beginning of January in the fourth year and be completed by the end of October in the sixth year.

The following target dates of the major works are required to ensure the good sequence of the Lot II works. The Lot II works are planned to commence two months before the completion of the Lot I works.

- a. Award of contract
- b. River diversion
- c. Cofferdam, completed
- d. Main dam, completed
- e. Spillway except bridge, completed
- f. Intake, completed

- : January 1, 4th year
- : March 1, 4th year
- : August 31, 4th year
- : March 31, 6th year
- : March 31, 6th year
- : September 30, 5th year

g.	Intake trush racks, intake gates, river outlet trush	:	March 31, 6th year
	rack and bulkhead, completed		
h.	Diversion gate and bulkhead gate closures		April 1, 6th year
i.	Dam impounding	:	April 1, 6th year
j.	River outlet including river outlet facilities, completed	:	September 30, 6th year
k.	Completion date of Lot II works	:	October 31, 6th year

6.3 Construction Schedule

The construction schedule of the Lot II works is shown in Fig. 6.2 by bar chart. The land acquisition and compensation for the Project will be settled by the CWA prior to the commencement of Lot II works.

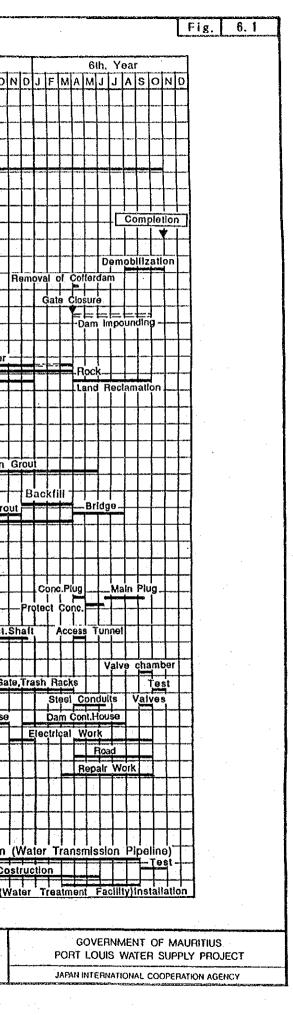
The Lot II construction works will be performed to follow the Lot II works including preparatory works and diversion tunnel work. The river diversion through the diversion tunnel provided by Lot I works is planned to be carried out on March 1 in the fourth year, two months after the commencement of Lot II works.

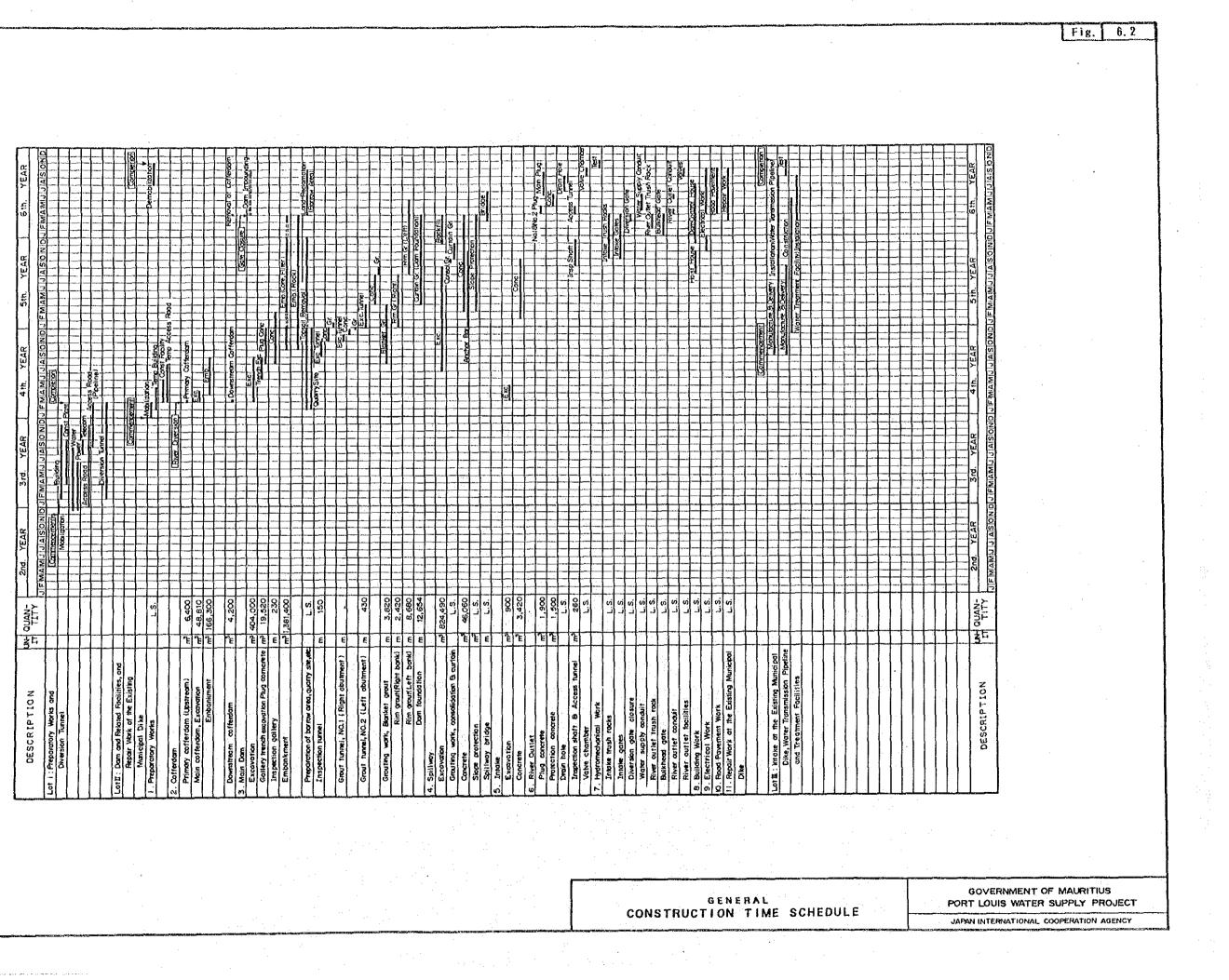
The work schedule for the major items are summarized by year as follows:

(1) Fourth year (the first year in Lot II)

- (a) Award of contract, Lot II
- (b) Mobilization and construction of site facilities
- (c) Temporary access road
- (d) River diversion
- (e) Excavation and embankment of the cofferdam
- (f) Provision of the deep well
- (g) Excavation, plug concrete, gallery concrete, embankment and grouting works of the main dam
- (h) Preparation of the borrow area and the quarry site
- (i) Excavation and concrete works of the inspection tunnel
- (j) Excavation and concrete works of the No. 1 grout tunnel
- (k) Excavation of the spillway

- (2) Fifth year (the second year in Lot II)
 - (a) Embankment and grouting works of the main dam
 - (b) Excavation and concrete works of the No. 2 grout tunnel
 - (c) Excavation, grout, concrete and slope protection works of the spillway
 - (d) Excavation and concrete works of the intake
 - (e) Excavation and concrete works of the inspection shaft
 - (f) Installation of the intake trush racks and the intake gates
 - (g) Building works of the hoist house
- (3) Sixth year (the third year in Lot Π)
 - (a) Embankment and grouting works for the main dam
 - (b) Concrete works of the spillway
 - (c) Installation of the intake trush racks, the intake gates, the diversion gate, the river outlet trush rack and the bulkhead gate
 - (d) Gates closure and dam impounding
 - (e) Spillway bridge
 - (f) River outlet works including the No. 1 and No. 2 plugs concrete, main plug concrete, pipe protection concrete, drain holes and valve chamber
 - (g) Excavation and concrete works of the access tunnel to the valve chamber
 - (h) Installation of the river outlet facilities in parallel with the river outlet works
 - (i) Land reclamation of the borrow area
 - (j) Building works of the dam control house
 - (k) Road pavement work at the dam site
 - (1) Repair work at the existing municipal dike
 - (m) Test for the hydromechanical work
 - (n) Demobilization


FIGURES


		1			<u></u>		st.					 _					(ear						3	rd.	Yea	ar	····-		.			4	th.	Yea	ar			_ _		f1			۱h,			-
DESCRIPTION	·			JF	F M	AN	1 j .	J A			10	J I	FIN	1	мJ	J		s o	N	0	JF	M	A M	11	١ļ		이		1	FN	A N	М	J.	J A	s	0	N	미	F	M	싀	<u>M</u>	나	뿌	<u>, s</u>	악
		-		Ple	adae	ofL	oan		┝╍┼	╾┼╌	+	$\left \right $					┠┠-		$\left - \right $			$\left \right $		┨╌┨			┠╾┟					+		-							-+	╾╊			+-1	-+
A.Financial Arrangement			ie-			F	╤╡	E/N	ູ່	 /A		┠╌┼╴		┦┨			┝╾┼╴		$\left\{ \cdot \right\}$		-			┼╌┤					+									_ .	┿─	┢╌╢	-+		~		╺╂╼┦	\rightarrow
B.Engineering Services	+				+		╬╍╬		Ħ		d c	i i Cons	ulta	nl(D	ı Frec	ະບັດ) Sonti	ract)		-+	- -		-	┼┼		+	┝─┼				╈	╋╍╸			╋		┝╼┧	-†-	+	┼╌┨	-+	-	+	╋		\uparrow
for Construction Supervision																								Ļ						En	gine	erl	ng (Serv	lce							\downarrow	_	-		
			·		-	 	╇		$\left\{ - \right\}$		- - - - - - - - - - - - - - - - - - -	4 4 1	<u>,</u>	\square		<u> </u>				{	FQ.		-	╞╌┨		<u>_</u>		Ten		Ľļ.	-						┨╼╍┨				┝╍┨	_	4	-	4-	┝╍┨
C. Tender and Contract Award				┝╍┼╸			┨╌┤		┝╌┝		F	\Box	Ten	nder	 Eva	1	┟╍┟╸	-	H	[Ţ	Te	l nder			Awa				Ev	al		H	Awa	ird	(10	bt	┉┝-		╄╌┨	-+	+		-		┝━┥
·····				┝╼┼╸			╉		┨╼┠	+-	╋	┠╌┼╴	┢	+	Ŧ			Awa			1	╞╌┼╴		F	<u>-</u>	1		10	¥	+	╞	Ap	orov		-	$\left - \right $	$\left - \right $	+	╉	$\left \right $	-+		÷	╋		┢╼╋
D.Construction Work : Lot II			• • • • • • • • • • •				+		┼╍┤		╋	╏╌┼	+	┾┤		+- '	Аррі	rova	1			┼╾┼	·-+	┉┼		np	hior	/dt ~		· · · · ·		+	<u>t</u>		+	$\left - \right $	$\left \cdot \right $	-	╌┼╾	$\left \cdot \right $	Γt	-	+	-	-	h
1.Preparatory Works				┝╼┤╍		÷	┼┼	╧╋╍╸	┼╾┼		+	┠╍┼╸	╉	╉╾╂	╶┼╴	╈	┼╌┼╸	-	┼┼	-		+	+1	Con	ime I	ncer	nen	<u>_</u>	* -!	lob	i)iza	ailo I	n P	tep.	l Wo	rk	$\left \cdot \right $	+	-	┢┤	-+	-+	+		+	H
2.Collerdam							┼┼		┼╌┼		┿╸	╏╌┼╸	╌┼╾	╋		+	╞┼					$\left \cdot \right $		╂┨	╋	+-	r 1				10	luoi	51	UDIE	lon	-1	┝─┟	╉	+	┢┤	(- +	~+	+	+	÷	
E. OVNOIDANN	+						┼┼	-	┼─┼		┿	┠╍┼╸		┼╌╢		+	┢┈┠╴		┼╌┼			\vdash	-+	┼╌┼		+		Prlr	nar 1	Ύf	Ŧ	Exc	Ĩ	Emt).	┍┤	$\left \cdot \right $	╉	┢	+	rt		-+-	-	-	[-+
3.Main Dam	1			┝╼┝╴	-		╈	-	┼╌┼		+	┟╍┼╸	-	┼┦		-	╏┤╴		┼╌┞	-†-	+	$\left \right $	+	╆╼╂	+	╋╸). 1990) W(F		xc.		1	┢┤	$\left \right $	╉		┼╌┨	\uparrow	÷	+	-	+	i†
Excavation	1	<u> </u>		┝╌┾╴	-1-1	┝╼╌┠╍╸	╋		┼╾┼	-†	+	┢┼	╈	╉┨			++		┢╸┠		+-	\square	+-	╆╋	+	+	-	+			+		XC.	t	† P	lug	CO	<u>.</u> .	+-	d			t	Ŧ	-	T,
Inspection Gallery	1	<u> </u>					† -†		†-†				-†	┢		┢		-	†-†		1.	\square	\uparrow	┼┼		\top	[]	+		\square	+-	1.	+	-	-	Co	net	 ata			\square	\uparrow		Ť		[†
Embankment	1	<u> </u>		┝╌╂╌	$\uparrow\uparrow$		$\uparrow \uparrow$		††	+		\vdash	╈	††	+	1	┢╴┢╴	1	††	-	1-	††	╎	††	-†-	+ +	H	+			+			Ē	T		H		+-			<u>- c</u>	Jore) ä	Fill	er
Preparation of borrow area	1							-			Ť		╧					-	Ħ	-1-		<u> -</u> -	+	<u>†</u> -†	1		H	1-	\top	10	550		em	t t						H	Ħ	-	Ŧ	-		F
and quarry	1												1		1							╞╼╊╸	1	†-†	╧			+-	T		10	រុំបន	urry				Π		1	Π			T	T		\Box
Inspection Tunnel						_	Ħ			+	\mathbf{T}	┝╌ϯ╴	+-	11	\top			-	11		╈	1-1	-†-	11		1-1	\square	-1-			T	1		_ In	Č.	-	<u> </u>	unr	1	\square	T		T			T
Grout Tunnel No.1	· ·	1							ΓŤ				┢	\square			Π	1.5		1		ΓT	1						1			1		1	G	rout	t Ty	nne	No	21	iΤ		·	T	T	\square
Grout Tunnel No.2	1							1.		1	Γ		1	1-1					П	-	1-	\square	1.					-1-			Τ	Γ					Ŭ		Ġro	out	Tun	nel	L NC			\square
Grouting Work	1.						T	Т	П	Τ	Π				Τ	Π	Π	Т	Π			Π		П	Т	Π	Π		Π					-	Bia	Ke							_	<u> </u>	urta	In
4.Spillway									Π																							Γ	Π			i.						\Box		:		
Excavation			[Π	·	Π		Π	Τ	Π		1	Π	T	Π	Π	Т	Π		1	Π		Π	Τ		Π				Τ				_				Exc.			_		-		
Concrete																	IΤ								Τ																Ċ	Con	icre	te		
5.Intake												·								1																										
Excavation																								Ĺ							XC,								<u>.</u>				·	1		\square
Concrete							\square																									L			1			⊥	╞		Co	iner	rete ==	4	╧	Ŀ
6.River Outlet																											\square					L			ļ.		\square				\square	H	_	_		Ц
Concrete plug, Protection										<u>.</u>			<u>_</u>		<u> </u>															·	1	1_						┥	1	\bot	Ц	┢╍╍┠	· 	_	- <u> </u>	┢╤┥
concrete					\downarrow	_	Ll.						1	\square		Ŀ		_		_					_ _						ŀ	<u> </u> :		<u> </u>					_	Ļ	Ц	┢╍┨	_	1		Ц
Inspection shaft and Access				_						<u> </u>			1					_											 		_				_			_	1.	Ц	\square	\square		un ⊷∔	ispe	
Tunnel					\downarrow								1	\square									_		_		\square		L				\square					4	4	\square	Ц	⊢∔	_	╇	·	\vdash
Valve chamber				-									_	\square						_	<u> </u>		<u> </u>		_						4		┞	<u> </u>			\square	┛	⊥		H	┝╌┨	_	╞	+-	
7.Hydromechanical Work		ļ	·····		$\downarrow \downarrow$		┞╢			1			_	⊢∤				1			1	\square	_				\square	<u> </u>			_	1	\square		- -	+-	1.1	_	-	\downarrow	⊢		4	-	+	Gat
					╇		_↓						_	╞╌╽		\square	 		\square	_		⊢₋	+	\square		+	$ \rightarrow $	_		-+	-		┡╋	_	╞	ļ.	$\left \right $	-	1	┢	\square		_ <u> </u>	1		Ц
8.Building Work					+		\square	-	\square	_			╇	┞┤		\downarrow	┝╢	-	\square	_ -	+-	┝╌┝	<u></u>	┟ _╼ ┟	_	4	┝╌╢				- -		\square				$\left \cdot \right $	4	╉	╉	Ц		-+	-F	t.Ho	ñ
9.Electrical Work							╞╌┠╴	44	\vdash			┝┃-		╄╋		4	╞╌╞╴	_	┟┯┟		+		+-	┞╌╽	_	╄┥	⊢-		\mathbf{H}	4	+-	+	H		-		$\left - \right $			+	\vdash	\vdash	-+-	+	+-	┝─┦
10.Road Pavement Work		<u></u>			╉╍┨		_	+	\square		\square		╇	\square		\parallel	┝╌╿┈	<u> </u>		_ _	+	\vdash	+-	┟-┼		+	┝╌╄		┢		-			╇	+-	<u> </u>	\square				┢╍┨	┝─┼	÷	+	+-	$\left - \right $
11.Ropair Work					╀╌┞		<u> </u> -	+	╞╌┡╴	-	┝─┃	┝┣-	+	┞┤		$\left - \right $	┝╌┠╴	-	┝─┝	┯┠╸	+-	┝╌╿╴	+	┝-┝			\vdash	-		┝╍┨╸			╞┼┥	+-	+	-	\square		+-	+	\vdash	\vdash	-+	+	+	\vdash
(Existing Municipal Dike)					╉╍┠		┥┥	4	-		_	┝┼╴	╉	⊢	+	+	┝╌┠╴	+	┝┼	_	-	┝╍┝	+-	┝┼	+-	╀┤	\vdash		┨─┤		╉		┝╌┼			 	┞╌┨	+		╉┿	┝┥	┝╼╋	+	+		\vdash
· · · ·				- -	╀╌╂		┢╍┠╴	╉┥	┝╍╂╸		┼╌┨		╉	╞┼		+	╞╶╇╴	+	Mot		atio	Ļ	+	┞╌┤	╉	+	\vdash		H	+	÷ -	┢	┝┼	+		-	$\left \cdot \right $	╉	+-	┼╌	┝╍╂	┢╼╋	÷	╇	- -	Η
Construction Work:Lot I					╉		┟╌┟╴		┝─┼╴	+-	┼╌┨	╤╋	+	$\left + \right $		┼╌┥	┝╌┠╸	+	<u></u> −−F	Ŧ			S		المم	lties	i	╡		┝╼╌┠╸		+	┝┼	-+-	╉┙	+	H	╋	+-	+	┝┥	\vdash	H	+	+-	\mathbb{H}
Construction Work:Lot III					╋			╡┤	┝┼╴	┿	╞┤	┝┼┼╴	+-	┢┤	+	┼╌┤	┝╌┠╌	+	\vdash	-	-	Ħ	_	t	-	Tur	_	Ŧ	Ħ		╈	+	┝╋	-+-	Ma	เม่าม	act	ırln	<u>, *</u>	De	aliv	ery	In	şta'	llatio	žu I
AND THE TRUE THE TRUE THE					┼╌╀	╺┼╾	┝╌┨╌	╡┥┥	┝┼╴	+-	┢┤		+-	┼┼	+-	╉┥	┝╌┼╸		┢╍╋	-	+	┝┼	-	+	+	+	┝╋			-	+	M	anul I I	actu	urin T	g ð	L D	ellv	əry		F	Ħ	Ŧ	Ŧ	-	<u>Co</u>
·				+-	┼-┼		┠┯┠╴		┝╾┼╴	-+	┢╍┨		+	┢╌╊		╋┯	┝╾┾╸		┝╌┼	- -	-+	┝╍┝		┢┯╊		+	\vdash	+	+		+	╈	-+-		╞	 –	┝─┦	1	-	1-	ft	f	T	Ŧ	T	(w

;

.

IMPLEMENTATION SCHEDULE (LOT II) FOR THE PORT LOUIS WATER SUPPLY PROJECT

