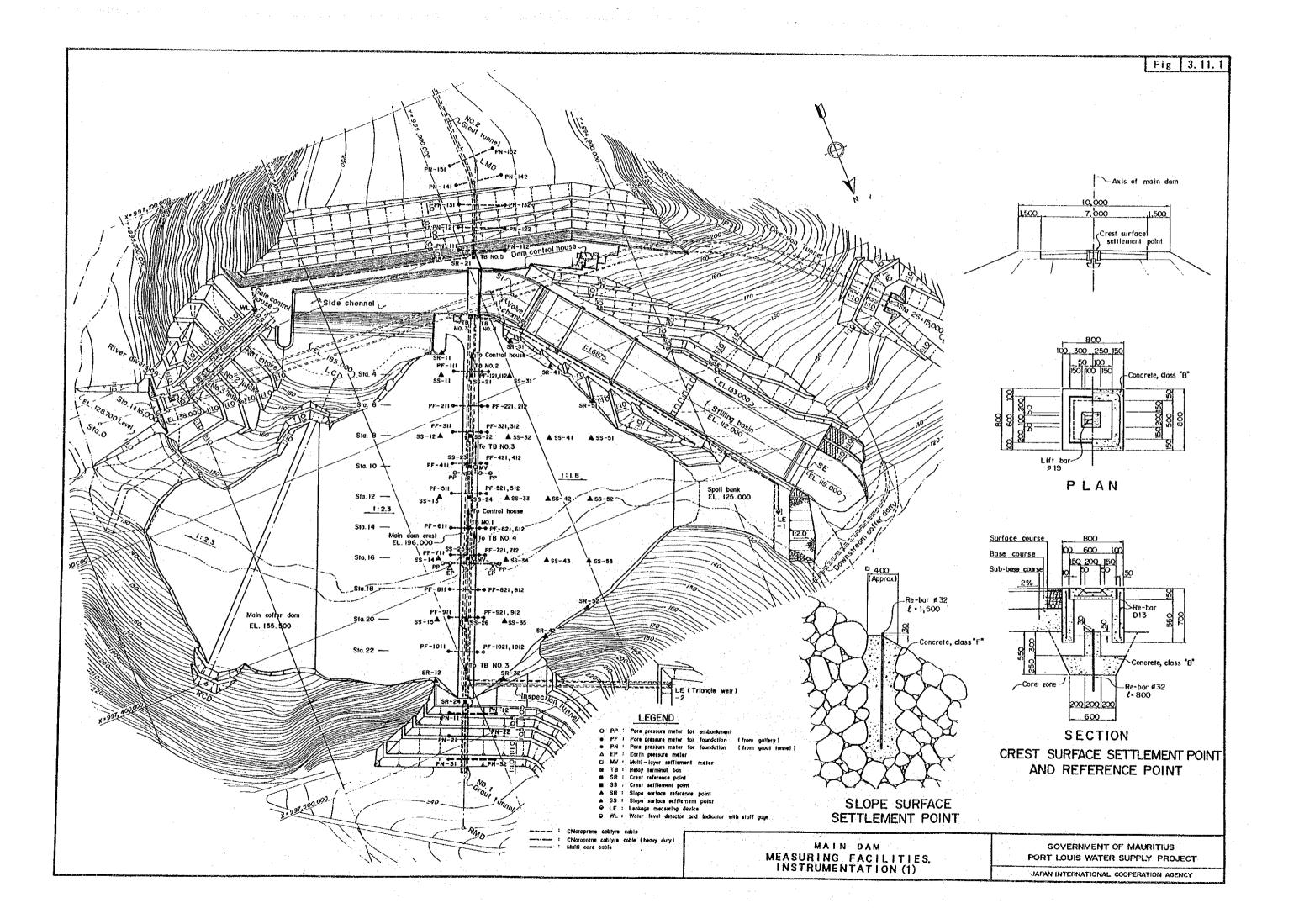
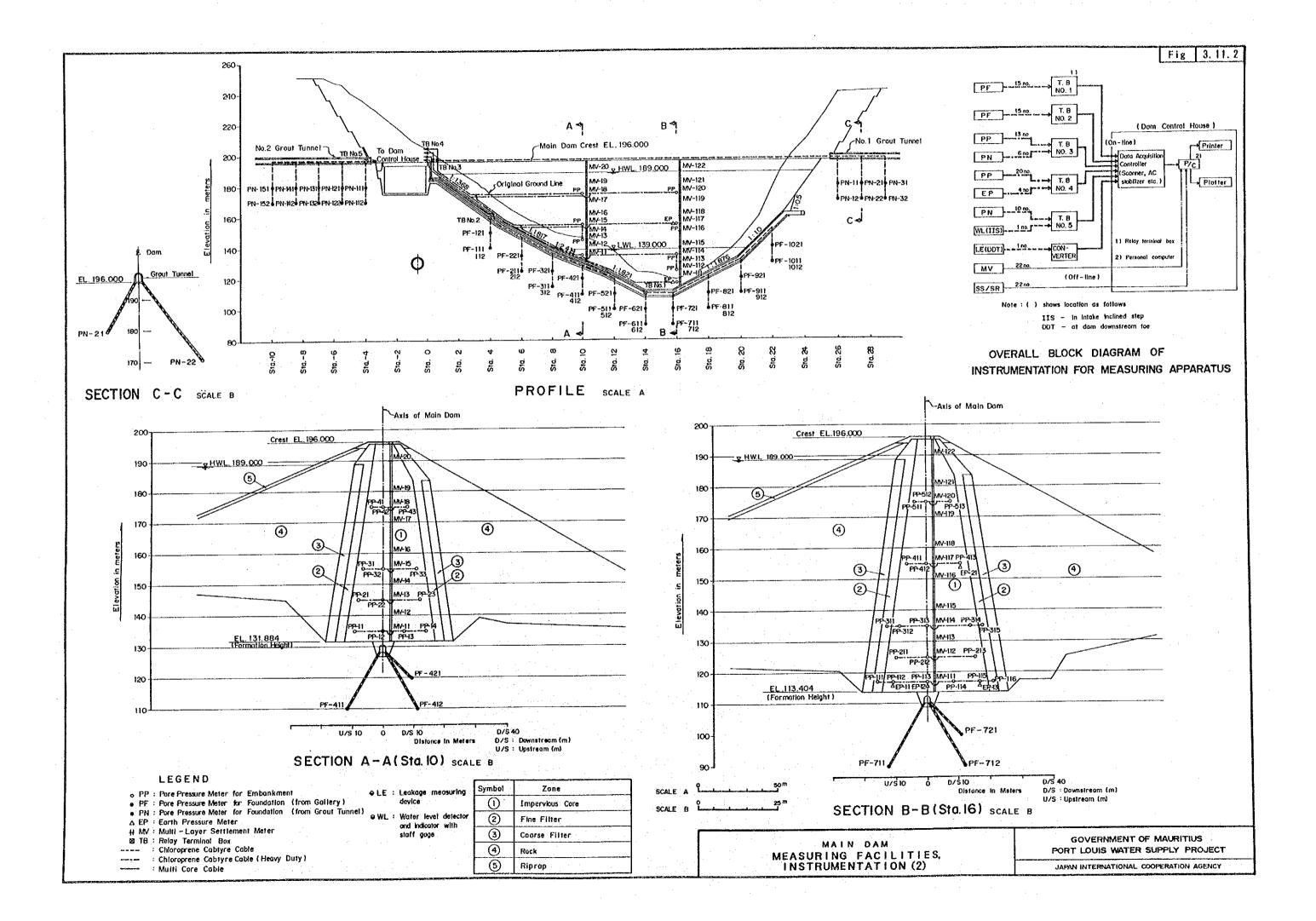

3.9.9 Velocity of Element Unit: cm/day රීදේ රිමුර්ග වැඩිම වැඩුම 1.38ද 1.38ද 1.38ද 1.38ද 1.38ද 1.38ද 1.38 ද ්_{රාව} අයා ඇත ඇත ඇත ඇත ක්රම ක්රම ඇත ඇත ඇත ඇත ඇත යනු යනු ඇත ඇත අයන .09 4 0g 0434 0650 053 0,490,406,706,44 0,43 0,41 0,39 0,35 9.30 8.24 0.20 60.0k 90.040.040.04 0.040.04 0.04 80.04 0.07.04.07.04.08 ₩.08 λ Ω ð. 0.04 38 O. O.


VELOCITY OF ELEMENT (LEFT BANK, SECTION C-C)


GOVERNMENT OF MAURITIUS PORT LOUIS WATER SUPPLY PROJECT

JAPAN INTERNATIONAL COOPERATION AGENCY

CHAPTER IV. DESIGN OF SPILLWAY

4.1 General

The type and location of the spillway are determined through comparative studies on conceivable alternatives as follows:

- As for the discharge carrier of the spillway, an open chuteway type and a tunnel type to utilize the diversion tunnel are conceivable. Comparative studies on the above two types come to the following conclusion: that is, the safety for handling floods will seriously be lessened in the case of the tunnel type. Besides that, any cost advantage or other merits are not expected in the tunnel type in the case of this project. Hence, the open chuteway type is selected.
- Alternative locations for the spillway are considered on the right and left abutments. A comparative study between both locations between both locations reveals that the spillway to be located on the left abutment will give a cost advantage mainly due to the topographic conditions, coming to a conclusion that the spillway should be located on the left abutment.
- Three (3) types of the spillway control structure are conceivable: (i) gate control type, (ii) uncontrolled type (non-gated) and (iii) combined type of (i) and (ii) above. Out of the three (3) types, the uncontrolled type (non-gated type) is adopted for the project, especially regarding the safety as important. The proposed type of spillway control structure will ensure a high safety by avoiding floods due to malfunction or misoperation of spillway gates.
- As for the type of uncontrolled weir, a side channel type which reduces the excavation volume is evidently most suitable from the economical point of view.

With regard to the energy dissipator, a horizontal apron type energy dissipator with an end sill (a stilling basin type of energy dissipator) is selected through comparative studies on other three (3) types of the hydraulic jump type, inclined apron type and roller bucket type as follows:

(i) Three types of the hydraulic jump type, inclined apron type and roller bucket type require an excessive excavation for the bottom of energy dissipator because their hydraulic mechanism requires to lower the bottom elevation sufficiently below the downstream water level.

The above does not make these types justifiable economically.

(ii) The ski-jump type requires a large plunge pool for energy dissipation of the energetic jet. An examination indicates the plunge pool of 100 m length, 30 m width and 13 m depth would be required. This type indicates a slight cost advantage (93% of the cost for the stilling basin type). However, the type has a high possibility to cause a remarkable scouring of the river bed or banks due to an very energetic jet. It is considered desirable to avoid the occurrence of such environmental and other unexpected troubles.

4.2 Hydraulic Design of Spillway

Probable flood peak discharges are analyzed as follows:

Return Year (Year)	Peak Discharge (m³/sec)	Specific Discharge (m3/sec/km ²)	Creager's C	
10	440	8	17	
20	520	9	19	
100	1,040	18	37	
200	1,200	22	46	
P.M.F.	1,890	35	72	

P.M.F.: Probable Maximum Flood

Fig. 4.2.1 shows the hydrographs of the above probable floods.

P.M.F. of 1,890 m³/s is taken as the spillway design flood which is required to safely be handled with the necessary freeboard by the spillway. On the one hand, 100-year flood is taken as the design flood of the energy dissipator, meaning that the dissipator will completely dissipate the flood discharge energy up to 100-year probable flood magnitude.

The above is based on the consideration that damages of energy dissipator if any or incomplete energy dissipation will not result in any fatal failure of the project and that about 100-year flood magnitude should be taken as its design flood from an economic aspect.

However, side walls of the energy dissipator should not be overtopped by P.M.F. since the overtopping may damage the main dam.

The Basic Design prepared the design for the spillway based on hydraulic analyses, which is shown in Fig. 4.2.2 as the original design of the spillway. In view that the spillway is a very important structure, and therefore, confirmations of its hydraulic details and adjustments where necessary are essential, a hydraulic model test of the spillway was carried out.

Details of results of the hydraulic model test are presented in the Spillway Hydraulic Model Test Report in detail.

Major items pointed out in the hydraulic model test of the spillway are as follows:

(1) Improvement of abutments of the overflow weir

Contracted flows at both abutments of the overflow weir would obstruct the discharge capacity of the overflow weir. Training walls with 12 m length should be provided towards the reservoir at the abutments on both banks, and the shape of upstream end of the wall should be circular with a radius of 4.5 m.

With the above improvement, the relationship between discharge coefficient (C) and overflow depth (H) is expressed as follows:

$$C = -0.0301 \cdot H^2 + 0.2645 \cdot H + 1.5827$$

At F.W.L. EL. 193.5 m (H=4.5 m), C is given as 2.16.

(2) Weir crest length

It is impossible to satisfy completely the necessary discharge capacity of the weir even after improvement of the abutments. As such, the length of overflow weir crest should be extended. If the length is extended by 2 m beyond the original length of 90 m, the discharge at F.W.L. EL. 193.5 m will be 1,897 m³/sec as calculated below, satisfying the necessary capacity.

$$Q = C \cdot B \cdot H^{3/2}$$

= 2.16 x 92.0 x 4.5^{3/2} = 1,897 m³/sec

(3) Improvement of the transition channel

From the aspect of the Froude number which is desirable to be less than 0.5, the required height of the sill should be around 4.0 m. However, the sill height of 3.0 m is recommended to maintain a perfect overflow on the weir.

In order to enhance the effect of stilling of the sill, the sill should be provided downstream from the bend. A contracted flow occurs along the side wall of the bend on the right bank due to insufficient distance between the bend of the transition channel and the sill. It makes the overflow on the sill and flow regime in the chuteway undesirable. Thus, the length of the transition channel should be extended.

Further, the alignment of the transition channel should be of more smooth curve.

As a result of the tests, the proposed shape of the transition channel is given in Fig. 4.2.3 as the revised design. In this design, shock waves in the chuteway and eccentric hydraulic jump in the stilling basin disappear and adequate stilling effect is obtained.

(4) Modification of bottom slope of side channel

The tests confirmed that the flow regime would be satisfactory, when the elevation at upstream end of the side channel is about 1.0 m higher than the elevation of the sill crest. Since the sill crest is raised by 2.0 m, the elevation at the upstream end of the side channel is also raised by 2.0 m, resulting in the elevation of EL. 180.0 m at the upstream end of the side channel and the bottom slope of the side channel of 1 to 23 which is considered a reasonable value.

(5) Depth of stilling basin

For the discharge of 1,040 m³/sec (100-year flood), the hydraulic jump in depth 9 m is apt to become submerged flow, and the flow regime in depth 7 m, is critical for the hydraulic jump. In the case of depth 8 m, the most desirable hydraulic jump was observed in the examination.

For the discharge of 1,890 m³/sec (P.M.F), the hydraulic jump is not perfect and in turbulence for any depth. The hydraulic jump for depth 9.0 m and 8.0 m are fairly stable, while for depth 7.0 m super-critical flow appears in the stilling basin, and the hydraulic jump is considerably unstable.

As a result of the examination, it is reasonable that the depth of stilling basin be 8.0 m. Under such condition, the flow is in strong jump, and the water will overflow sometimes with intermittent fluctuation of the water surface due to turbulence. Hence, the side wall should be made more high to prevent overflow.

(6) Provision of chute block

By providing chute blocks at the entrance of the stilling basin, the hydraulic jump would be more stable. For the case of six chute blocks with height 2.0 m, width 2.5 m, intermittent fluctuation of water surface hardly appears and it is confirmed that the hydraulic jump is quite stable. Hence, the height of side wall could be minimized by adopting the chute blocks.

(7) Chuteway

The height of side walls in the chuteway should be 7.0 m so as to safely discharge P.M.F of 1.890 m³/sec with a freeboard over 1.5 m.

It is found on the basis of the results of the model test that the design of the spillway should be as shown in Fig. 4.2.3. Hydraulic conditions for this final design are given in Figs. 4.2.4 to Fig. 4.2.9.

4.3 Structural Design of Spillway

4.3.1 Stability Analysis

4.3.1.1 General

The spillway is a side channel type with an open chuteway, having dimensions of about 30 m in width, about 364 m in length and 75 m in height.

The spillway is composed of the following components:

- (i) Side channel
- (ii) Chuteway
- (iii) Stilling basin (Energy dissipator)

These structures are the reinforced concrete structure with anchor bars.

4.3.1.2 Design Value

The design values for examining the stability of the structures are determined on the basin of the field test results and/or the design standards and are summarized as follows:

(1) Unit weight

Material		Unit Weight (t/m ³)
Concrete		2.40
Water		1.00
Backfill material	(wet)	1.94
	(submerged)	1.23
Impervious core for dam embankment	(wet)	1.72
	(submerged)	0.80
Rock and riprap for dam embankment	(wet)	2.14
	(submerged)	1.37

(2) Internal friction angle (φ) and cohesion (C)

Material	φ (deg)	C (t/m ²)
Backfill material (Free Draining)	36	0
Foundation rock: Highly weathered	35	20
Slightly weathered	40	190
Impervious core for dam	30	0
embankment		e
Rock and riprap for dam embankment	40	0

(3) Friction coefficient with concrete

Material	Coefficient
Concrete to concrete	0.65
Concrete to rock	0.55

(4) Modulus of elasticity (E) and Poisson's ratio (P)

Materi	al :	E (kg/cm ²)	Р
Reinforced concrete	$(SIG28 = 180 \text{ kg/cm}^2)$	2.4 x 10 ⁵	0.2
	$(SIG28 = 210 \text{ kg/cm}^2)$	2.55 x 10 ⁵	0.2
Steel	(reinforcement bar)	2.1 x 10 ⁶	0.3

Note: 1) SIG28 means compressive strength at the age of 28 days.

2) Reinforced concrete of $SIG28 = 210 \text{ kg/cm}^2$ is applied only to spillway bridge.

(5) Seismic coefficient

Horizontal component Kh 0.05 Vertical component Kv 0

(6) Allowable stress

(A) Reinforced concrete

SIG28	Allowable stress (kg/cm ²)				
(kg/cm ²)	Compression	Tension	Shearing*	Bond	Bearing
180	60	-	4, 8	14	54
210	70	•	4.25, 8.5	16	63

^{*} The first value is for beam and second for slab.

(B) Steel (reinforcement bar)

Tensile stress (ultimate) 3,000 kg/cm²

(C) Foundation rock

Bearing stress 100 t/m²

4.3.1.3 Design Criteria

Design criteria for stability analyses of the spillway structure follow the standards for retaining walls and are summarized below:

(1) Body force

Dead load is a self weight of structure including weight of earth, water and others are as formulated below.

$$W = U_w \cdot V \text{ (or } Uw \cdot A)$$

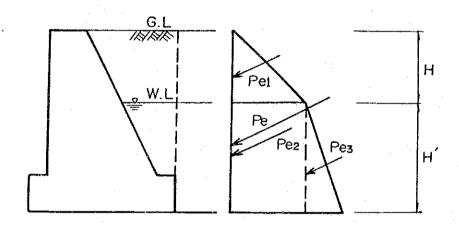
where, W: dead load (t)

Uw: unit weight (t)

V : volume (in case of 3-dimensional calculation)

A : area (in case of 2-dimensional calculation)

Seismic force originated in self weight above is calculated by the following formula.


$$Ws = Kh \cdot W$$

where, Ws: seismic force (t)

Kh: seismic coefficient

(2) Earth pressure

Earth pressure acting on the structures is given as follows:

Pe = Pe₁ + Pe₂ + Pe₃
=
$$\frac{1}{2}$$
 K γ_{wet} H² + K γ_{sub} HH' + $\frac{1}{2}$ K γ_{sub} H'²

where, Pe : earth pressure (t)

K: coefficient of earth pressure

 γ_{wet} : unit weight of earth in wet condition (t/m³)

 γ_{sub} : unit weight of earth in submerged condition (t/m³)

H: height from ground level to water level (m)

H': height below water level (m)

Coefficient of Coulomb's active earth pressure shown below is applied for the load of structural calculation.

- under normal condition

$$ka = \frac{\cos^2(\phi - \theta)}{\cos^2\theta \cdot \cos(\theta + \delta) \cdot (1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \alpha)}{\cos(\theta + \delta) \cdot \cos(\theta - \alpha)}})^2}$$

where, θ : inclination of the back with the vertical

φ : internal friction angle of backfill material

 δ : angle of wall friction between the back and backfill material

α: surface slope of back fill with the horizontal

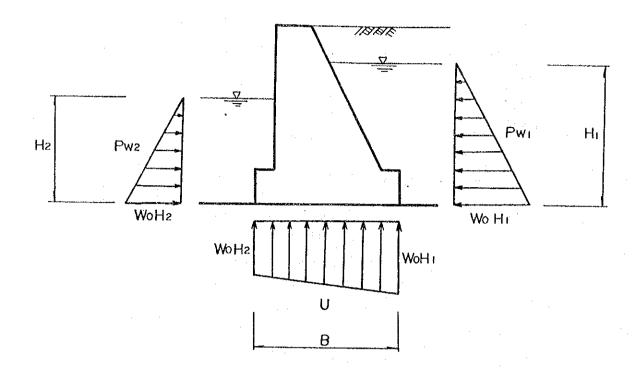
under seismic condition

$$kae = \frac{\cos^{2}(\phi - \theta \circ - \theta)}{\cos\theta \circ \cos^{2}\theta \cdot \cos(\delta + \theta + \theta \circ) \cdot (1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \alpha - \theta \circ)}{\cos(\delta + \theta + \theta \circ) \cdot \cos(\theta - \alpha)}})^{2}}$$

where, θo : combined angle = $tan^{-1} Kh/(1-Kv)$

Kh: horizontal component of seismic coefficient

Kv: vertical component of seismic coefficient


 θ , ϕ , δ and α : above-mentioned

The following values are adopted for wall friction angle (d) in accordance with conditions:

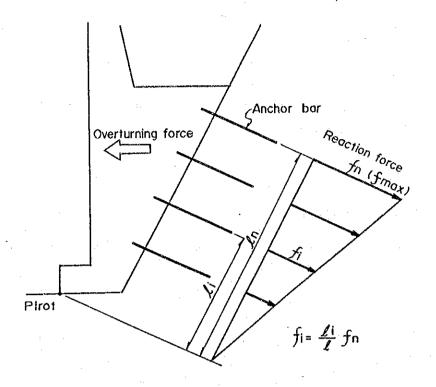
Condition	δ
Stability calculation (earth to earth), normal	ф
Stability calculation (earth to earth), seismic	φ/2
Stress calculation (earth to concrete), normal	φ/3
Stress calculation (earth to concrete), seismic	0

(3) Hydraulic pressure

Hydraulic pressures act on the structure are as follows:

Static water pressure
$$P_{w1} = \frac{1}{2} \text{ Wo H}_1^2$$

$$P_{w2} = \frac{1}{2} \text{ Wo H}_2^2$$


where, Pw1, Pw2: Static water pressure (t)

U: uplift pressure (t)

Wo: unit weight of water (t/m³)

(4) Resisting force of anchor bar

As a concrete structure is assumed to be rigid, the reaction force to be caused in a series of anchor bars is proportional to the distance from overturning pivot as follows:

The expective maximum resisting force in the uppermost anchor bar is

$$f_{max} = \sigma_{su} \cdot As$$

where, f_{max}: maximum resisting force (kg)

 σ_{su} : tensile stress (ultimate) of steel bar (kg/cm²)

As : sectional area of steel bar (cm²)

Anchor bar	σ _{su} (kg/cm²)	As (cm ²)	fmax (t)
D25	3,000	5.067	15.201
D29	3,000	6.424	19.272
D32	3,000	7.942	23.826

Total resisting moment is calculated by the following equation.

$$M_{m} = \sum_{i=1}^{n} f_{i} \cdot l_{i} = \sum_{i=1}^{n} \frac{f_{i}}{l_{n}} \cdot l_{i}^{2}$$

where, Mra : total resisting moment of anchor bars (t.m)

fi : resisting force of each anchor bar (t)

li : distance from overturning pivot to anchor bar (m)

fn : resisting force of uppermost anchor bar (t)

In : distance from overturning pivot to uppermost anchor bar (m)

n : numbers of anchor bars

(5) Stability calculation

(A) Stability against sliding

Stability against sliding is judged by the safety factor calculated below.

$$F_S = \frac{f\Sigma V + \tau A + Ha}{\Sigma H}$$

where, Fs : safety factor for sliding

ΣV: sum of vertical forces (t)

ΣH: sum of horizontal forces (t)

 τ : shearing strength (= 20 t/m2 from result of soil test)

A : area of horizontal base (m2)

Ha : Resisting force of anchor bar (t) (Horizontal component)

(B) Stability against overturning

Stability against overturning is examined by the following equation.

$$F_S = \frac{\sum M_I}{\sum M_I}$$

where, Fs : safety factor for overturning

 ΣMr : sum of resisting moment (t.m)

 ΣMt : sum of overturning moment (t.m)

(C) Stability against bearing capacity of foundation

Bearing stress of foundation is calculated as below:

$$q = \frac{\sum V}{B} < qa$$

where, q: maximum bearing stress of foundation (t/m²)

qa : allowable bearing stress of foundation (t/m²)

ΣV : sum of vertical force (t)

B : projected base (m)

(D) Safety factor requirement

	Loading condition		
Condition of stability	Normal	Extreme*	
Safety factor for sliding	1.5	1.2	
Safety factor for overturning (for retaining wall of reinforced type)	1.5	1.2	

^{*} Flood or seismic conditions

4.3.1.4 Analysis

(1) Analysis for Side Walls

Stability analyses for the side walls of the side channel, transition portion, chuteway and stilling basin are made in Table 4.3.1 to Table 4.3.12.

Cases and loading conditions of the stability analyses are summarized as follows (As for section name, reference is made to figures of spillway structure design):

Sec	Section of Wall Loading Case No.		Conditions of Loading
	side Channel; Section C-C)	Case I	 Normal condition It is assumed that water from the reservoir comes to the back side of the wall under the condition of side channel empty.
			- Water pressure above HWL of the reservoir is considered to be released through drain system.
		Case II	- Seismic condition
			- This case considers that under the condition of Case I above.

(b) Transition Case I Normal condition portion This case also assumes that water pressure from (Section G-G) the reservoir acts to the back side of the wall. Case II Seismic condition The case considers the seismic force acts to the wall under the condition of Case I above. Chuteway: Case I (c) Normal condition (Section A-A) The case does not consider any water pressure from back side of the wall since water will be drained by the drain system provided in the back side of the wall. Case II Seismic condition Seismic force is loaded under the above Case I. Stilling basin: Case I Normal condition (d) (Section E-E) Water levels are considered to be balanced at EL. 120.0 m between the stilling basin side and back side of the wall. Case II Seismic condition

Case III - Flood condition

- Water level in the stilling basin side is set at EL.
 120.0 m. (Hydraulic model test indicates the water level in the stilling basin does not lower below EL. 120.0 m at flooding time)
- Water level in back side of the wall is set at EL.
 126.0 m which is the uppermost level in the back side of the wall at flooding time. Water above EL.
 126.0 m will be drained through weep holes.
- (e) Stilling basin (Section I-I)

Case I - Normal condition

 No water pressure in the stilling basin side is assumed with earth and water pressure in back side of the wall.

Case II - Seismic condition

- Seismic force is loaded under the above Case I.

Case III - Flood condition

- FWL EL. 132.0 m up to which water level will rise is assumed in the stilling basin side.

(2) Examination on Length of Anchor Bar in Side Walls

Anchor bars are required to be examined on the shearing strength around bore hole and on the bond strength between anchor bar and mortar.

Then, necessary length to withstand the acting force has to be provided for the anchor bar.

Assuming the bore hole diameter of 64 mm and reinforcement bar diameter of D29 mm, the necessary length of anchor bar is examined as follows:

 $F_1 = \pi \cdot D_1 \cdot \tau_1 \cdot l = 3.14 \times 6.4 \times 2 \times 100 = 4,019 \text{ kg/m}$ $F_2 = \pi \cdot D_2 \cdot \tau_2 \cdot l = 3.14 \times 2.9 \times 14 \times 100 = 12,748 \text{ kg/m}$ where, F₁: shearing strength around bore hole for anchor bar per meter (kg/m)

F₂: bond strength between anchor bar and mortar for anchor bar per meter (kg/m)

D₁: diameter of bore hole (cm)

D2: diameter of anchor bar (cm)

τ₁: shearing strength around bore hole (2 kg/cm² for highly weathered rock)

τ2: bond strength between anchor bar and mortar (14 kg/cm²), and

l: length of anchor bar (100 cm)

As seen above, the shearing strength around bore hole is much less than the bond strength between anchor bar and mortar. Thus, the necessary length of anchor bar is determined on the basis of the shearing strength around bore hole.

The necessary length of anchor bar is calculated by the following equation:

 $l = l_0 + F_{\text{max}} / (\pi \cdot D_1 \cdot \tau_1)$

where, l: necessary length of anchor bar (m),

F: maximum tensile force of anchor bar (kg),

 D_1 : diameter of bore hole (64 x 10^{-3} m),

 τ_1 : shearing strength around bore hole (2 x 10^4 kg/m²), and

 l_0 : loose depth of rock due to excavation work (0.5m)

The necessary length of anchor bar will be as follows:

For D29 anchor bar:

$$l = 0.5 + 19.272 \times 10^{3} / (3.14 \times 64 \times 10^{-3} \times 2 \times 10^{4})$$

= 5.295 (m)

For D25 anchor bar:

$$l = 0.5 + 15.201 \times 10^3 / (3.14 \times 64 \times 10^{-3} \times 2 \times 10^4)$$

= 4.282 (m)

(3) Examination on Anchor Bar in Side Channel Slab

The side channel slab will be subject to uplift pressure under the condition of side channel empty, requiring anchor bars to withstand the uplift pressure. The anchor bars of D29 will be provided under the slab at 1.0 m interval.

Tensile force acting to anchor bar, tensile stress of anchor bar and necessary length of anchor bar after the flood (P.M.F) are examined as follows:

Tensile force acting to one anchor bar:

Body force : $W = 1.0 \text{m x } 1.0 \text{m x } 1.5 \text{m x } 2.4 \text{t/m}^3 = 3.6 \text{ t}$

Uplift : $U = (193.5 - 176.0) t/m^2 x 1.0m x 1.0m = 17.5 t$

Acting Force : F = U - W = 17.5 - 3.6 = 13.9 t

Tensile stress of anchor bar:

$$\sigma_S = F/As = 13,900 \text{ kg/} 6.602 \text{ cm}^2 = 2,105 \text{ kg/cm}^2$$

 $F_S = 3,000 / 2,105 = 1.43 > 1.2$

Necessary length of anchor bar:

The shearing strength around bore hole determines the necessary length of anchor bar as follows:

$$l = lo + F / (\pi \cdot D_1 \cdot \tau_1)$$

= 0.5 + 13,900 / (3.14 x 64 x 10⁻³ x 2 x 10⁴)
= 3.96 m

(4) Examination on Anchor Bar in Stilling Basin Slab

The stilling basin slab will be subject to the remaining uplift pressure after floods. Hence, anchor bars are provided to withstand the above uplift pressure. D32 anchor bars will be provided at 1.5m interval. Tensile force acting to the anchor bar, its tensile stress and necessary length of the anchor bar are examined below:

Tensile force acting to one anchor bar:

The loading condition considers the following case that is, the water level in the stilling basin will rise up to EL.132.0m during the flood (P.M.F). The water level will lower down to EL.120.0m (the top elevation of end sill) after the flood. However, the uplift pressure of EL. 132.0m will remain under the stilling basin slab.

Thus,

Body force : $W = (2.4 \times 1.5 + 1.0 \times 8.0) \times 2.25 = 26.10 t$

Uplift : $U = (132 - 112) \times 2.25 = 45.0 \text{ t}$

Acting Force : F = U - W = 45.0 - 26.10 = 18.9 t

Tensile stress of anchor bar:

$$\sigma_s = F / As = 18,900 \text{kg} / 8.038 \text{ cm}^2 = 2,351 \text{ kg/cm}^2$$

 $F_S = 3,000 / 2,351 = 1.28 > 1.2$

Necessary length of anchor bar:

The shearing strength around bore hole is the factor to determine the necessary length of anchor bar which is calculated as follows:

$$l = lo + F/(\pi \cdot D_1 \cdot \tau_1)$$

= 0.5 + 18,900/(3.14 x 64 x 10⁻³ x 2 x 10⁴)
= 4.7 m

(5) Analysis for Overflow Weir

The stability analysis for the spillway overflow weir is made in Table 4.3.13 to Table 4.3.15.

The analysis is made for the following three (3) loading condition:

Normal condition :

This case assumes that the reservoir water level is at H.W.L EL.189.0 m and that the base of the weir is subject to the full uplift pressure of 5.5 m (EL.189.0 - EL. 183.5).

(ii) Seismic condition:

In this case, the seismic force acts to the weir under the above normal condition.

(iii) After the flood (P.M.F):

This case assumes that the base of the weir is subject to the remaining uplift pressure of 10.0 m (EL.193.5 - EL.183.5) after the flood (P.M.F).

As seen in the analyses, anchor bars will be required to withstand the loading condition after the flood (P.M.F). D29 anchor bars will be provided at 2.0 m interval. Necessary length of anchor bar which is determined by the shearing strength around bore hole is l = 5.295 m (= 5.5m).

4.3.2 Stress Analysis of Reinforced Concrete

Reinforced concrete stress analyses for the spillway side walls are made in Table 4.3.16 to Table 4.3.20, based on bending moments, shear forces and axial forces acting to the walls, of which calculations are given in the Data Book.

In the analyses, the allowable stresses are increased by 50 % for such tentative and rare cases as the seismic and flood conditions in accordance with the standard.

As seen in the analyses, the reinforcement bar arrangement of D19 @ 200 which is considered minimum requirement of the reinforcement bars for the structure will withstand the acting forces.

4.4 Spillway Bridge

4.4.1 General

The spillway structure is located on the left abutment of the damsite. The spillway is a side channel type with an open chuteway.

A bridge is required to cross this open channel at the dam crest level of EL. 196.0 m. The total length of the bridge is 29.8 m. Its span is 29.0 m in terms of the length between two supports. From an economical point of view, the bridge is provided with an effective width of 6.0 m which is the minimum width for traffic to pass each other.

The bridge is designed as the second-order bridge for which the design car load is specified to be 14.0 ton with the following consideration: that is, although the dam design is based on a consideration that the possibility of utilization of dam crest as a traffic road is not ruled out, its road will not be a trunk road but a branch road.

The bridge is designed as a composite girder in which the acting loads are borne by both the girder and floor slab. This section presents the main parts of the design analyses consisting of those on the composite girder. Reference is made to the Data Book with regard to analyses on other detailed parts.

4.4.2 Design Condition

The design conditions of the spillway bridge which is based on the Specification for Road Bridge by Japan Society of Road are summarized below:

•	Total length	29.8 m
-	Span	29.0 m
-	Class of bridge	Second-order
	Bridge type	Composite girder
**	Total width	7.2 m
-	Effective width	6.0 m

-	Pavement thickness	50 mm 180 mm	
-	Floor slab thickness		
-	Allowable stress:		
	Compressive strength of concrete		kg/cm ^{2(*)}
	Tensile stress of reinforcement steel bar (SS41)	1,400	kg/cm ^{2(**)}
	Tensile and compressive stress of shape steel (SM50Y)	2,100	kg/cm ^{2(**)}
	Shearing stress of reinforcement bar (SS41)	800	kg/cm ^{2(**)}
	Shearing stress of shape steel (SM50Y)	1,200	kg/cm ^{2(**)}

- (*) It is specified that the concrete strength of base slab should not be less than 270 kg/cm² and that its allowable stress be 1/3.5 times the above concrete strength.
- (**) These allowable stresses also follow the Specification for Road Bridge by Japan Society of Road.
- Increase of allowable stress for concrete:

The allowable compressive strength of concrete is allowed to increase by 15% in the case that the temperature difference between base slab and steel girder is taken into consideration.

- Increase of allowable stress for shape steel:

The Specification allows to increase the allowable stress of shape steel as follows:

	Loading Condition		Increase of Allowable Stress (%)
(1)	Main loading except the effect due to creep and drying shrinkage		0
(2)	Main loading including the effect due to creep and drying shrinkage	Compressive side	15
		Tension side	0
(3)	 (2) + Effect due to temperature difference between base slab and steel girder 	Compressive side	30
		Tension side	15
(4)	Construction stage	Compressive side	25
		Tension side	25

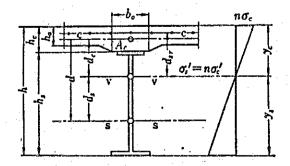
The design allows the above increase of the allowable stress.

-	Temperature difference between base slab and steel girder	10°C
•	Seismic coefficient	0.05
-	Wind speed	40 m/sec.

4.4.3 Design Calculation

(1) Analysis of composite girder

Fig. 4.4.1 shows the frame plan, section and dimensions of the composite girder. As seen, the composite girder of bridge consists of three (3) main girders (G-1, G-2, G-3) and seven (7) crossing frames.


Fig. 4.4.2 and 4.4.3 show the loading conditions. Fig. 4.4.2 shows the loading condition before compounding the base slab and steel girders, and Fig. 4.4.3 shows that after compounding. As mentioned, the bridge is designed as the second-order bridge for which the car load of 14 ton is taken into consideration as the live load. The Specification mentions for this condition that the design should consider the live load and uniform load of 3.5 ton/m and 0.245 ton/m² respectively with a width of 5 m (A half of the above is imposed on the remaining width). Thus, the loading condition considers the above live load in addition to the dead load as seen in Figures.

The analysis of the composite girder is made in Table 4.4.1 to 4.4.12. Table 4.4.1 to 4.4.3 presents the bending moments and shearing forces to occur in the frames due to the loadings. Table 4.4.4 to 4.4.12 analyze the stresses to arise in the composite girder. Fig. 4.4.4 to 4.4.6 summarize all results of analyses on the composite girder. As seen in Fig. 4.4.4 to 4.4.6, all the stresses to be caused by the loadings are within the allowable stresses, and the composite girder will safely withstand the loadings.

(2) Major formula used for stress analysis

Major formula used for the stress analysis are as follows:

Stress due to the bending moment:

where.

v - v: Neutral axis of composite girder

c-c: Center of gravity of concrete section

s - s : Center of gravity of steel girder

Ac : Sectional area of concrete section

As : Sectional area of steel girder section

n = Es/Ec = Young modulus ratio between steel and concrete (n = 7.0)

The stress are calculated as follows:

$$\sigma_c = M \cdot y_c/I_v$$

$$\sigma_c' = M \cdot y_c'/I_v$$

$$\sigma_s = n \cdot M \cdot y_s/I_v$$

$$\sigma_{s}' = n \cdot \sigma_{c}'$$

where,

 σ_c : Stress in upper edge of concrete

 σ_{c} : Stress in lower edge of concrete

 σ_s : Stress in lower edge of steel

 σ_s' : Stress in upper edge of steel

 I_{v} : Moment of inertia of area for neutral axis of composite girder (v-v)

 $I_v = I_s + \frac{1}{n} \cdot I_c + A_s \cdot d_s^2 + \frac{1}{n} \cdot A_c \cdot d_c^2$

Is : Moment of inertia of area for axis of center of gravity of steel girder (s-s)

I_c : Moment of inertia of area for axis of center of gravity of concrete (c-c)

M : Bending moment

Stress due to creep:

The stress due to creep is obtained by the following formula:

$$\sigma_{cu} = \frac{N_c}{A_c} - \frac{M_c}{I_c} \cdot Y_{cu}$$

$$\sigma_{cl} = \frac{N_c}{A_c} - \frac{M_c}{I_c} \circ Y_{cl}$$

$$\sigma_{SU} = \frac{N_S}{A_S} - \frac{M_S}{I_S} \circ Y_{SU}$$

$$\sigma_{sl} = \frac{N_s}{A_s} - \frac{M_s}{I_s} \cdot Y_{sl}$$

$$N_c = -N_s = -N_{co} (1 - e^{-F\phi 1})$$

$$N_{co} = -N_{so} = -\frac{d_c A_c}{n I_V} \cdot M_o$$

$$M_S = d \cdot N_C$$

$$M_c = \frac{H}{1 - F} (e^{-F\phi_1} - e^{-\phi_1})$$

where.

 σ_{cu} : Stress due to creep at upper edge of concrete

σ_{cl}: Stress due to creep at lower edge of concrete

 σ_{su} : Stress due to creep at upper edge of steel girder

 σ_{sl} : Stress due to creep at lower edge of steel girder

N_c and N_s: Incremental axial force due to creep acting to center of gravity of concrete slab and steel girder, respectively

M_c and M_s: Incremental bending moment due to creep acting to center of gravity of concrete slab and steel girder, respectively

N_{co} and N_{so}: Axial force at time T=0 acting to center of gravity of concrete slab and steel girder, respectively

M_{CO} and M_{SO}: Bending moment at time T=0 acting to center of gravity of concrete slab and steel girder, respectively

ycu : Distance from neutral axis of concrete slab to its upper edge

ycl: Distance from neutral axis of concrete slab to its lower edge

y_{su}: Distance from neutral axis of steel girder to its upper edge

ysl : Distance from neutral axis of steel girder to its lower edge

 ϕ_1 : Creep coefficient from time T=0 to T= ∞ ($\phi_1 = 2.0$ is specified to be used

in the case of the composite girder)

 M_0 : Bending moment acting to composite girder

$$F = \frac{1}{1 + \frac{A_c}{nA_s} + \frac{A_c d^2}{I_c + nI_s}}$$

$$H = \frac{I_c}{nI_s} d F N_{co}$$

Stress due to temperature difference (between concrete slab and steel girder):

The stress due to temperature difference between concrete slab and steel girder is obtained by the following formula:

$$\pm \sigma_{cu} = \frac{N_c}{A_c} - \frac{M_c}{I_c} \cdot Y_{cu}$$

$$\pm \sigma_{cl} = \frac{N_c}{A_c} + \frac{M_c}{I_c} \cdot Y_{cl}$$

$$\pm \sigma_{su} = \frac{N_s}{A_s} - \frac{M_s}{I_s} \cdot Y_{su}$$

$$\pm \sigma_{SI} = \frac{N_S}{A_S} + \frac{M_S}{I_S} \cdot Y_{SI}$$

$$N_c = -N_s = \frac{\alpha t E_s}{\frac{n}{A_c} + \frac{1}{A_s} + \frac{nd^2}{I_c + nI_s}}$$

$$Mc = N_c d \frac{I_c}{I_c + nI_s}$$

$$M_S \cdot N_C d \frac{nI_C}{I_S + nI_S}$$

where,

 σ : Incremental stress due to temperature difference

 α : (1.2×10^{-5})

t : Temperature difference between concrete slab and steel girder (10°C is

specified to be used as standard)

N_c : Incremental axial force due to temperature difference acting to center of

gravity of concrete slab

Mc : Incremental bending moment due to temperature difference acting to

center of gravity of concrete slab

Ms : Incremental bending moment due to temperature difference acting to

center of gravity

Stress due to shrinkage of concrete slab:

The stress due to shrinkage of concrete slab is obtained by the following equations:

$$\sigma_{Su} = \frac{N_S}{A_S} - \frac{M_C}{I_C} \cdot Y_{Su}$$

$$\sigma_{SI} = \frac{N_S}{A_S} + \frac{M_S}{I_S} \cdot Y_{SI}$$

$$\sigma_{cu} = \frac{N_c}{A_c} - \frac{M_c}{I_c} \cdot Y_{cu}$$

$$\sigma_{cl} = \frac{N_c}{A_c} + \frac{M_c}{I_c} \cdot Y_{cl}$$

$$N_{S} = N_{C} = \frac{\varepsilon_{S} \cdot E_{S}}{\frac{n_{\phi}}{A_{C}} + \frac{1}{A_{S}} + \frac{n_{\phi}d^{2}}{I_{C} + n_{\phi}I_{S}}}$$

$$Ms = \frac{n_\phi I_S}{I_C + n_\phi I_S} N_C d$$

$$Mc = \frac{I_C}{I_C + n_\phi I_S} N_C d$$

$$n_{\phi} = n (1 + \frac{\phi_2}{2})$$
 $(\phi_2 = 4.0)$

where,

 σ : Incremental stress due to shrinkage of concrete slab

 $\varepsilon_{\rm S}$: Final rate of shrinkage (18 x 10⁻⁵)

 N_{C} and M_{C} : Incremental axial force and bending moment due to shrinkage acting to center of gravity of concrete slab

 N_s and M_s : Incremental axial force and bending moment due to shrinkage acting to center of gravity of steel girder

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Side Channel Wall, Section C-C, Loading Case I) Table 4.3.1:

Mv (tm) MH (tm)

Y (m)

X (m)

H(t)

Θ >

Load

401.645 363.419

2.848 4.955

141.030

73.340

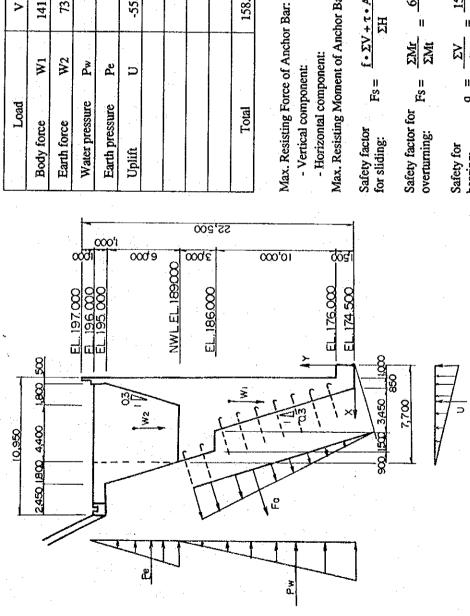
 W_2 ¥1

P. å

192.023

-143.284

2.567


-55.825

 \supset

11.407 105.125

508.104

4.833 16.833

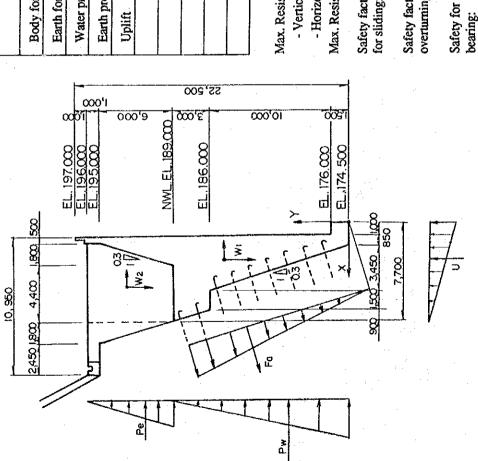
Total	158.545	158.545 116.532		621.779 700.12	700.128
Max. Resisting Force of Anchor Bar:		Fa = 66.093 (t) (1.5m pitch)	pitch)	1	

- Vertical component:

Va = 18.992 (t)Ha = 63.306 (t)

- Horizontal component:

Max. Resisting Moment of Anchor Bar. Ma = 713.008 (Lm)


= 1.87 > 1.5 $f \cdot \Sigma V + \tau \cdot A + Ha = \frac{0.55 \times 158.545 + 20 \times 3.35 + 63.306}{110.0000}$ Σ H FS≡ Safety factor for sliding:

= 1.906 > 1.5621.779 + 713.008 700.128 'n SMt SMt Safety factor for Fs =overturning:

 $= 23.06 \text{ t/m}^2 < 100 \text{ t/m}^2$ 158.545 + 18.992 집m bearing:

Note: As for Section name, see Figures of spillway structure design.

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Side Channel Wall, Section C-C, Loading Case II) Table 4.3.2:

Load		(i) A	(1) H	X (m)	Y (m)	Y (m) Mv (t.m) MH (t.m)	MH (t.m)
Body force	WI	141.030	7.052	2.848	10.312	401.645	72.713
Earth force	W2	73.340	3.667	4.955	18.213	363.419	66.788
Water pressure	Ρw		105.125		4.833		508.104
Earth pressure	Pe		12.469		16.833		209.889
Uplift	n	-55.825		2.567		-143.284	
			:		:		
Total		158.545	158.545 128.312			621.779	857.494

Fa = 66.093 (t) (1.5m pitch) Max. Resisting Force of Anchor Bar:

Va = 18.992 (t)Ha = 63.306 (t)

- Vertical component:

- Horizontal component:

Ma = 713.008 (t.m)Max. Resisting Moment of Anchor Bar:

 $f \cdot \Sigma V + \tau \cdot A + Ha = 0.55 \times 158.545 + 20 \times 3.35 + 63.306 = 1.7 > 1.2$ 128.312 出 H S Safety factor for sliding:

= 1.56 > 1.2621.779 + 713.008 857.494 Σ Mr ΣĬ Safety factor for Fs = overturning:

 $\frac{158.545 + 18.992}{-} = 23.06 \ t/m^2 < 100 \ t/m^2$ М H


Note: As for Section name, see Figures of spillway structure design.

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Transition Wall, Section G-G, Loading Case I) Table 4.3.3:

000'6	Load	(i) A	H(t)	X (m)	Y (m)	Mv (tm) MH (tm)	MH (t.m)
500 4,000 1,4,500	Body force W1	187.773		3.526		662.103	
	Earth force W2	84.342		6.763		570.370	<i>•</i>
S EL. 395.000	Water pressure Pw		105.125		4.833		508.104
1 90	Earth pressure Pel		12.523	·	16.833		210.802
٠	Earth pressure Pc2		2.496		13.000		32.451
EL 189.294	Earth pressure Pe3		1.070		12.500		13.373
20d - 1	Uplift	-72.500		3.333		-241.667	
1							
긔	Total	199.615	121.214			708.066	764.730
			3 2 2	0 1/ 69	(47)		
•	Max. Resisting Force of Anchor Bar: - Vertical component:		Fa = /1.583 (t) Va = 20.569 (t)	Fa = 71.585 (t) (1.0m pitch) Va = 20.569 (t)	otton)		
8 E. 174.500 John	- Horizonial component: Max. Resisting Moment of Anchor Bar:		Ha = 68.564 (t) Ma = 535.917 (tm)	4 (t) 17 (tm)			
1,000 2,400 2,400 1948 590 856 10,000	Safety factor $F_S = f \cdot \Sigma V$ for sliding:	f· EV + t· A + Ha 0.55 x 199.615 + 20 x 6.202 + 68.564 EH 121.214	a 0.55 x	199.615 + 20 x 121.214	20 x 6.202 214		=2.5 > 1.5
	Safety factor for $F_S = \Sigma M_I$ overturning:	11	990.807+ 535.917 764.730	7_ =2.00>1.5	• 1.5		
	Safety for $q = \frac{\Sigma V}{B}$	= 199.61	10.0	$\frac{199.615 + 20.569}{10.0} = 22.0 \text{ t/m}^2 < 100 \text{ t/m}^2$	n ² < 100 v	ím²	

Note: As for Section name, see Figures of spillway structure design.

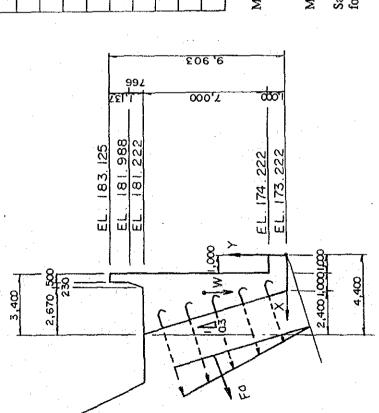
STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Transition Wall, Section G-G, Loading Case II) Table 4.3.4:

Load	·	V (t)	H(t)	X (m)	Y (m)	Mv (Lm) MH (Lm)	MH (t.m)
Body force	W1	187.773	6386	3.526	10.866	662.103	102.013
Earth force	W2	84.342	4.217	6.763	17.837	570.370	75.221
Water pressure	Pw		105.125		4.833		508.104
Earth pressure	Pel		14.025		16.833		236.091
Earth pressure	Pe2		2.796		13.000		36.344
Earth pressure	Pe3		1.198		12.500		14.977
Uplift	U	-72.500		3.333		-241.667	
Total		199.615	199.615 137.091			708.066	972.750

Fa = 71.583 (t) (1.0m pitch) Max. Resisting Force of Anchor Bar:

Va = 20.569 (t)

Ha = 68.564 (t)


Max. Resisting Moment of Anchor Bar: Ma = 535.917 (t.m)

 $f \cdot \Sigma V + \tau \cdot A + Ha = \frac{0.55 \times 199.615 + 20 \times 6.202 + 68.564}{0.55 \times 199.615 + 20 \times 6.202 + 68.564}$ = 1.57 > 1.2136.750 990.807 + 535.917 972.750 ΣMr

 $\frac{199.615 + 20.569}{20.0 \, \text{ym}^2} = 22.0 \, \text{ym}^2 < 100 \, \text{ym}^2$ ⋧ Ħ σ bearing:

Note: As for Section name, see Figures of spillway structure design.

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Chuteway Side Wall, Section A-A, Loading Case I) Table 4.3.5:

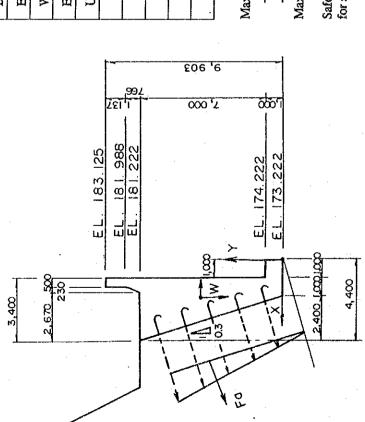
Load	V (t)	(t)	X (m)	Y (m)	Y(m) Mv(tm) MH(tm)	MH (t.m)
Body force W1	47.135		2.073		97.700	
Earth force W2	0				0	
Water pressure Pw	•	0				0
Earth pressure Pe		0		·		0
Uplift U	0				0	
						·
Total	47.135	0			97.700	٥

Fa = 36.709 (t) (1.5m pitch) Va = 10.548 (t)Max. Resisting Force of Anchor Bar:

- Vertical component

- Horizontal component:

Ma = 196.415 (Lm)Ha = 35.160(t)Max. Resisting Moment of Anchor Bar:


 $f \cdot \Sigma V + \tau \cdot A + Ha = \infty > 1.5$ HΩ Fs = Safety factor for sliding:

∑Mr ΣMt Safety factor for $F_S =$ overturning:

 $= 13.1 \text{ t/m}^2 < 100 \text{ t/m}^2$ 47.135 + 10.548 Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

Table 4.3.6: STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Chuteway Side Wall, Section A-A, Loading Case II)

Ê	53	<u> </u>	0	0		Τ	Τ	T	T	1
MH (t.	11.153									
Y (m) Mv (tm) MH (tm)	97.700	0			0					
	1									
H(t) X (m)	2.073									
H (t)	2.357		0	0						
V (t)	47.135	0			0					-
	Wı	W2	Pw	Pe	U					
Load	Body force	Earth force	Water pressure	Earth pressure	Uplift					

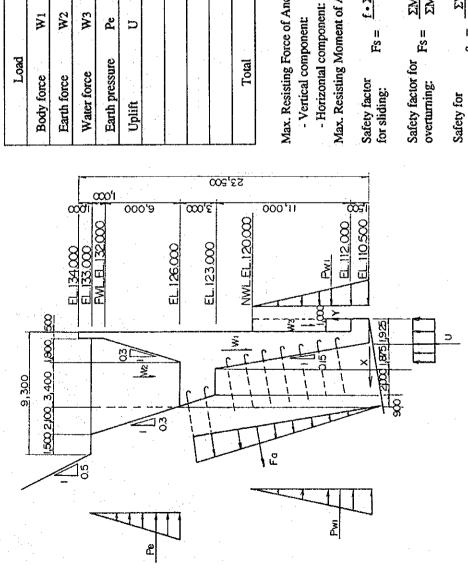
Max. Resisting Force of Anchor Bar: Fa = 36.709 (t) (1.5m pitch)

- Vertical component:

Va = 10.548 (t)Ha = 35.160 (t)

- Horizontal component:

Max. Resisting Moment of Anchor Bar: Ma = 196.415 (tm)


Safety factor Fs = $\frac{f \cdot \Sigma V + \tau \cdot A + Ha}{\Sigma H} = \frac{0.55 \times 47.135 + 20 \times 2.0 + 35.16}{2.357} = 42.9 > 1.2$

Safety factor for Fs = $\frac{\Sigma Mr}{\Sigma Mt}$ = $\frac{97.700 + 196.415}{11.153}$ = 26.37 > 1.2

Safety for $q = \frac{\Sigma V}{B} = \frac{47.135 + 10.548}{4.4} = 13.11 \text{ t/m}^2 < 100 \text{ t/m}^2$

Note: As for Section name, see Figures of spillway structure design.

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stilling Basin Side Wall, Section E-E, Loading Case I) Table 4.3.7:

Load		(1) A	(i) H	X (m)	Y (m)	Mv (t.m) MH (t.m)	MH (t.m)
Body force	Wı	104.835		2.398		251.400	
Earth force	W2	59.830		4.448		266.147	
Water force	W3	8.000		0.500		4.000	
Earth pressure	Pe		11.407		17.833		203.431
Uplift	U	-31.825		1.675		53.307	4
Total		140.840	11.407			468.240	468.240 203.431

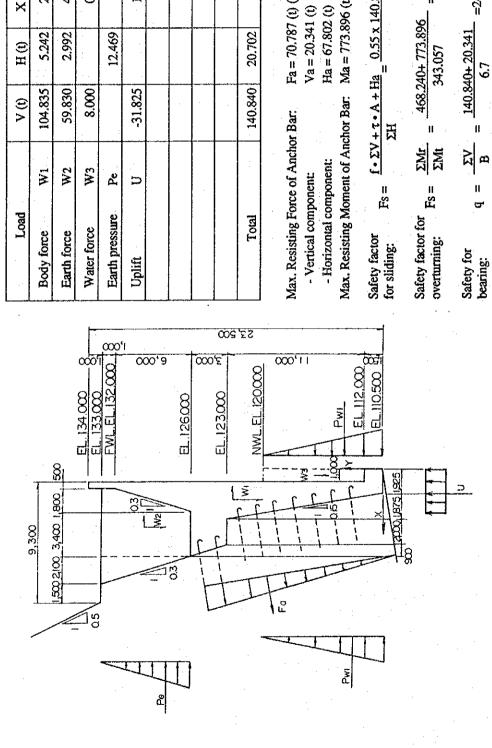
Fa = 70.787 (t) (1.5m pitch) Va = 20.341 (t)Max. Resisting Force of Anchor Bar:

Max. Resisting Moment of Anchor Bar: Ma = 773.896 (tm) Ha = 67.802 (t)

= 19.6 > 1.5f · EV + t · A + Ha 0.55 x 140.840+ 20 x 3.925 + 67.802 11.407 Ή

= 6.1>1.5 468.240 + 773.896 203.431 11 ZMr ZMt Safety factor for Fs =

 $=24.1 \text{ t/m}^2 < 100 \text{ t/m}^2$ 140.840+ 20.341 bearing:


Note: As for Section name, see Figures of spillway structure design.

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stilling Basin Side Wall, Section E-E, Loading Case II) Table 4.3.8:

Mv (t.m) MH (t.m)

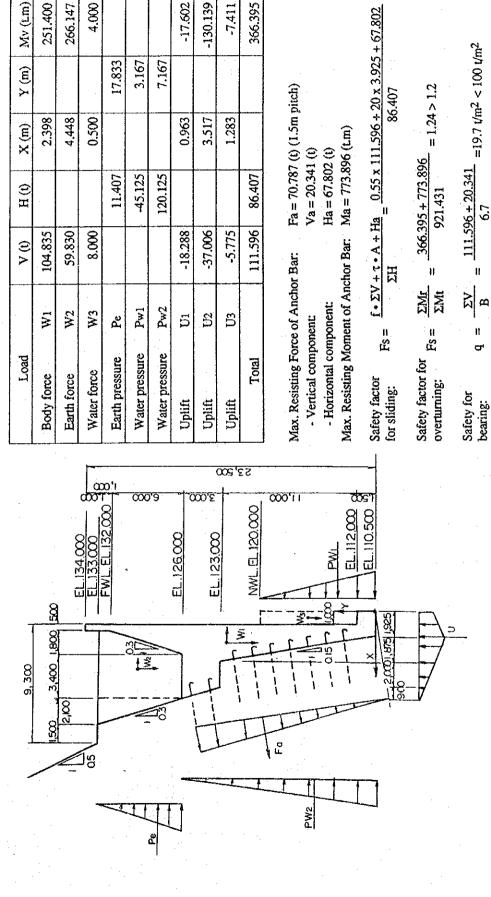
Y (m)

(m) X

63.079 57.620 343.057 222.357 4.000 468.240 251.400 266.147 -53.307 12.034 19.261 17.833 2.398 4.448 1.675 0.500 5.242 2.992 12.469 20.702

Fa = 70.787 (t) (1.5m pitch)

Max. Resisting Moment of Anchor Bar: Ma = 773.896 (t.m)


 $f \cdot \Sigma V + \tau \cdot A + Ha = \frac{0.55 \times 140.840 + 20 \times 3.925 + 67.802}{2.2 \times 140.81 \times 1.2} = 10.81 \times 1.2$

468.240+ 773.896 343.057

 $=24.1 \text{ ym}^2 < 100 \text{ ym}^2$ 140.840+ 20.341 6.7

Note: As for Section name, see Figures of spillway structure design.

STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stilling Basin Side Wall, Section E-E, Loading Case III) Table 4.3.9:

860.896

921.431

-7.411 366.395

1.283

-130.139

-17.602

0.963 3.517

203.431 -142.896

17.833 3.167 7.167

MH (t.m)

Mv (Lm)

Y (m)

X(m)

266.147 4.000

4.448

0.500

2.398

251.400

SECTION AND LOADING CONDITION

= 2.4 > 1.2 $=19.7 \text{ t/m}^2 < 100 \text{ t/m}^2$ = 1.24 > 1.286.407 366.395 + 773.896

Note: As for Section name, see Figures of spillway structure design.

Table 4.3.10: STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stilling Basin Side Wall, Section I-I, Loading Case I)

		Load		(Σ) Λ	H(t)	(m) X	Y (m)	Mv (t.m) MH (t.m)	MH (t.m)
		Body force	W1	105.720		2.907		307.276	,
2,000		Earth force	W2	22.002		5.558		122.285	
3,300 3,300		Water pressure	Pw		2.000		0.667		1.333
8		Earth pressure	Pel		5.820		3.667		21.340
		Earth pressure	Pe2		1.484		1.000		1.484
		Earth pressure	Pe3		0.593		0.667		0.396
		Uplift	Ŋ	-7.000		3.500		-24.500	
Sississis	~	Total		120.722	9.897			405.061	24.553
Town Town	Pe		. 1			-			

EL. 134000

F

125,000

000 91

000'2

Max. Resisting Force of Anchor Bar: Fa = 0- Vertical component: Va = 0

- Vertical component: - Horizontal component:

- Horizontal component: Ha = 0

Max. Resisting Moment of Anchor Bar: Ma = 0

Safety factor Fs = $\frac{f \cdot \Sigma V + \tau \cdot A + Ha}{\Sigma H} = \frac{0.55 \times 120.722 + 20 \times 7.0}{9.897} = 20.9 >$

Safety factor for $F_8 = \frac{\Sigma M_T}{\Sigma M_1} = \frac{405.061}{24.553} = 16.5 > 1.5$

Safety for $q = \frac{\Sigma}{B} \left(1 + \frac{6e}{B} \right) = \frac{120.722}{7.00} \left(1 + \frac{6 \times 0.348}{7.00} \right) = 22.4, 12.1 \ \mu\text{m}^2$

Note: As for Section name, see Figures of spillway structure design.

Table 4.3.11: STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stilling Basin Side Wall, Section I-I, Loading Case II)

			Load	12	(i) A	H(C)	X (m)	Y (m)	Mv (t.m) MH (t.m)	MH (t.m)
			Body force	W1	105.720	5.286	2.907	4.916	307.276	25.988
	2 000.2		Earth force	W2	22.002	1.100	5.558	5.152	122.285	5.668
	m 3 3m 2 2m		Water pressure	Pw		2.000		0.667		1.333
	500	† .	Earth pressure	Pe1		6.362		3.667		23.326
EL 134.000			Earth pressure	Pe2	·	1.622	·	1.000		1.622
8 FWL EL 132.000			Earth pressure	Pe3		0.649		0.667		0.432
2			Uplift	n	-7.000		3.500		-24.500	
000	"or					-				
G EL 125.000		4	Total		120.722	17.018			405.061	58.369
1,000 000 000 000 000 000 000 000 000 00	T _M ×	W.d.	Max. Resisting Force of Anchor Bar: - Vertical component: - Horizontal component: Max. Resisting Moment of Anchor Bar: Safety factor Free force of Anchor Bar:	e of Anchor nent: conent: nent of Anci	i i i	Fa = 0 Va = 0 Ha = 0 Ma = 0	120.722 + 2	.0x7.0	21 > 1 21	
	7		tor suding:		HZ.		17.018			

SECTION AND LOADING CONDITION

Note: As for Section name, see Figures of spillway structure design.

 $\begin{pmatrix} 1 + \frac{6e}{B} \end{pmatrix} = \frac{120.722}{7.00} \begin{pmatrix} 1 + \frac{6 \times 0.628}{7.00} \end{pmatrix} = 26.5, 8.0 \text{ y/m}^2$

Safety for bearing:

Safety factor for $F_S = \frac{\Sigma Mr}{\Sigma Mt} = \frac{405.061}{58.369} = 6.94 > 1.2$

Table 4.3.12: STABILITY ANALYSIS OF SPILLWAY STRUCTURE (Stilling Basin Side Wall, Section I-I, Loading Case III)

			Load		(C)	H(t)	X (m)	Y (m)	Mv (tm)	Mv (t.m) MH (t.m)
			Body force	W1	105.720		2.907		307.276	
			Earth force	W2	22.002		5.558		122.285	
11/1	- COC COE		Water force	W3	13.000		0.500		6.500	
1 00s	32006,500		Water pressure	Pw1	:	60.500		3.667		221.833
O EL 134,000			Water pressure	Pw2		-98.000		4.667		457.333
S FWL EL. 132.000			Earth pressure	Pel		116.075		2.333		270.842
	<u> </u>		Earth pressure	Pe2		:				
000		EL. 129.000	Earth pressure	Pe3						
'2	·		Uplift	Ų1	-77.000		3.500		-269.500	
G EL 125,000 W			Uplift	UZ	-10.500		2.333		-24.500	
			Total		53.222	78.575			142.061	35.342
NW. EL. 121 000 NW. EL. 121 000 NW. EL. 180 000 NW. E	22	Per Per	Max. Resisting Force of Anchor Bar: - Vertical component: - Horizontal component: Max. Resisting Moment of Anchor Bar: Safety factor Fs = $\frac{f \cdot \Sigma V + \tau \cdot A + \Gamma}{\Sigma H}$ Safety factor for Fs = $\frac{\Sigma Mr}{\Sigma H}$ = $\frac{142}{35.3}$	e of Anchor hent: conent: rent of Anci for EV 4	H 914	Fa = 0 Va = 0 Ha = 0 Ma = 0 $ \frac{1a}{a} = \frac{0.55 \times 53.2}{78} $	3.222 + 20 78.575	4	= 4.0 > 1.2	

SECTION AND LOADING CONDITION

 $= \frac{2x53.222}{6.015} = 17.7 \text{ ym}^2 < 100 \text{ ym}^2$ Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

STABILITY ANALYSIS OF OVERFLOW WEIR (Normal Condition) Table 4.3.13:

	Water for	Uplin	Max. Resisti	Safety facto
09.6	0.70 4.80 2.00 2.00 EL. 189.0	00.p	W, + W2 BB	* Fa

Load		(i) A	(1) H	(m) X	Y (m)	Mv (tm)	MH (Lm)
Body force	W1	1.21		0.47		0.57	
	W2	30.36		5.10		154.84	
	W3	22.08		3.90	4.833	86.11	508.104
	W4	18.40		05'9	16.833	119.60	192.023
Water force	Ww	8.00		8.50		68.00	
Water pressure	Pw		-15.13		1.38		-27.63
Uplift	U	-52.25			4.50		-235.13
Total		27.80	-15.13			429.12	-262.76

ting Force of Anchor Bar: Fa = 48.18 (t)(1.5mpitch) ting Moment of Anchor Bar: Ma = 216.81 (t.m)

= 13.6 > 1.5 $f \cdot \Sigma V + \tau \cdot A + Ha = 0.55 \times 27.8 + 20 \times 9.5$ FS= Safety factor for sliding:

429.12 + 216.81262.76 ΣMr Σ Mt Safety factor for Fs = overturning:

= 8.04m2 < 100 t/m2 27.80 + 48.18П П Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

Table 4.3.14: STABILITY ANALYSIS OF OVERFLOW WEIR (Seismic Condition)

9.50 4.80 2.00 2.00 W4 Ww 88 W3 7 4 WW 88 1.00 1.00 4.00 4.00 1.00 1.00 1.00 1.00				₹ 		
	9.50	4.80	 4 t	***		F

Load		V (t)	H(t)	X (m)	Y (m)	Mv (t.m)	MH (t.m)
Body force	W1	1.21	-0.06	0.47	0.50	0.57	-0.03
	W2	30.36	-1.52	5.10	0.75	154.84	-1.14
	W3	22.08	-1.10	3.90	2.83	86.11	-3.11
	W4	18.40	-0.92	6.50	3.50	119.60	-3.22
Water force	Ww	8.00		8.50		68.00	
Water pressure	Pw		-15.13		1.83		-27.63
	Pd		-0.467		3.10		-1.45
Uplift	ב	-52.25			4.50		-235.13
Total		27.80	-19.20			429.12	-271.71
· vmo v		20.13				_]	

Max. Resisting Force of Anchor Bar: Fa = 48.18 (1)(1.5mpitch)
Max. Resisting Moment of Anchor Bar: Ma = 216.81 (t.m)

Safety factor for sliding:
$$F_{S} = \frac{f \cdot \Sigma V + \tau \cdot A + Ha}{\Sigma H} = \frac{0.55 \times 27.8 + 20 \times 9.5}{19.20} = 10.7 > 1.5$$
Safety factor for
$$F_{S} = \frac{\Sigma Mr}{\Sigma M} = \frac{429.12 + 216.81}{271.71} = 2.38 > 1.5$$
Safety for
$$q = \frac{\Sigma V}{B} = \frac{27.80 + 48.18}{9.5} = 8.0 \text{ t/m} 2 < 100 \text{ t/m} 2$$

Note: As for Section name, see Figures of spillway structure design.

Table 4.3.15: STABILITY ANALYSIS OF OVERFLOW WEIR (After the Flood (P.M.F))

:	<u>a</u> P	
† · · · · · · · · · · · · · · · · · · ·	TV V V V V V V V V V V V V V V V V V V	
9.50 0.70 4.80 2.00 2.00	W, W	Fa

Load		V (t)	H(t)	X (m)	Y (m)	Mv (t.m)	Mv (t.m) MH (t.m)
Body force	\mathbf{w}_1	1.21		0.47		0.57	·
	W2	30.36		5.10		154.84	
	W3.	22.08		3.90	4.833	86.11	
	W4	18.40		6.50	16.833	119.60	
Water force	Ww	8.00		8.50		68.00	
Water pressure	Pw		-15.13		1.83	:	-27.63
Uplift	כ	-95.00			4.50		-427.50
Total		-14.95	-15.13			429.12	455.13

Max. Resisting Force of Anchor Bar: Fa = 48.18 (t)(1.5mpitch)
Max. Resisting Moment of Anchor Bar: Ma = 216.81 (t.m)

Safety factor Fs =
$$\frac{\tau \cdot A}{\Sigma H}$$
 = $\frac{20 \times 9.5}{15.13}$ = 12.6> 1.2

Safety factor for
$$Fs = \frac{\Sigma Mr}{\Sigma Mt} = \frac{429.12 + 216.81}{455.13} = 1.42 > 1.2$$

Table 4.3.16: STRESS ANALYSIS OF REINFORCED CONCRETE (Side Channel Wall, Section C - C)

Cond- Member Spot Direc- M (1.m) (1) (1) (1) (m) (m)	Load			Inte	Internal force	ce			Section	Sectional dimension	nsion					
EL.189 (cm) (t.m) (t) (t) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm	Cond	Member	Spot	Direc-	Σ	G	z	q	ڃ	ם	O	÷o	p/,p		M=M+Nu M'/bd^2 Q/bd	D/bd
EL.189 26.60 11.40 - 100 230 EL.189 33.94 13.75 - 100 230 Toe 16.98 33.96 - 100 150 Toe 16.98 33.96 - 100 150	tion			tion	(t.m)	3	(E)	(cm)	(cm)	(cm)	(cm)	(cm)		(t.m)	(kg/cm2) (kg/cm2)	(kg/cm2)
Toe 16.98 33.96 - 100 230 Toe 16.98 33.96 - 100 150	Nor	EL.189			26.60	11.40		100	230		220			26.6	0.55	0.518
Toe 16.98 33.96 - 100 150 Toe 16.98 33.96 - 100 150	Seis.	EL.189			33.94	13.75		100	230		220			33.94	0.701	0.625
Toe 16.98 33.96 - 100 150	Nor.				16.98	33.96		100	150		140			16.98	0.866	2.426
	Seis.					33.96		100	150		140			16.98	0.866	2.426
	JR	: .			·											

		Sectional area of reinforcing	nforcing bar		= du	Coeff. 1	Coeff. from Nomogram	nogram	Stre	Stress (kg/cm2)	m2)
f=M/N+u	f/d	As	As'	As'/As	As'/As n.As/bd	ပ	S	7	SIGc=	SIGs=	Tau≕
		(cm2)	(cm2)						CM//bd/2	CM'/bd/2 nSM'/bd/2	pq/OZ
		D19@200 = 14.33			0.010	0.010 15.9	105	1.05	8.7	866	0.5
		D19@200 = 14.33			0.010	0.010 15.9	105	1.05	1.1	1104	0.7
		D19@200 = 14.33			0.015	13.2	0.015 13.2 70.3	1.06	11.4	914	2.6
		D19@200 = 14.33			0.015	0.015 13.2	70.3	1.06	1.06 11.4	914	2.6
				_		_	_	_	-	_	

Allowable stress: SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 *: Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

Table 4.3.17 : STRESS ANALYSIS OF REINFORCED CONCRETE (Transition Wall, Section G - G & A - A)

Load			Int	Internal force	90			Section	Sectional dimension	nsion					
Cond	Cond- Member	Spo	Spot Direc-	M	Ø	z	Ω	4	ם			p/.p	M'=M+Nu M'/bd^2 Q/bd	M'/bd^2	O/pq
tion			tion	(t.m)	=	Ξ	(cm)	(cm)	(cm)	(cm)	(cm)		(t.m)	(t.m) (kg/cm2) (kg/cm2)	(kg/cm2)
Nor.															
g. Seis	Тое	ე- <u>ე</u>		16.45 32.90	32.90	•	100	150		140			16.45	0.839	0.015
Seis.	Toe	A-A		5.35	10.70	• [100	100		9.0			5.35	0.660 1.189	1.189
	:					:									!

		Sectional area of reinforcing bar	nforcing bar		= du	Coeff, from Nomogram	rom Non	nogram	Stre	sss (kg/c	m2)
f=M/N+u	f/d	AS	As'	As'/As n.As/bd	n.As/bd	၁	S	7	Sigo	SIGC= SIGS= Ta	Tau=
		(cm2)	(cm2)						CM'/bd^2	CM'/bd^2 nSM'/bd^2	ZQ/bd
		D19@200=14.33			0.015	0.015 13.2	70.3	1.06	11.0	11.0 885	2.5
		D19@200=14.33			0.024	0.024 10.9	44.6	1.07	7.2	442	1.3
									:		
							i				

n=Es/Ec=15, Allowable stress: SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2
* : Allowable stresses marked with (*) are applied for the sesmic and flood conditions.

Table 4.3.18 : STRESS ANALYSIS OF REINFORCED CONCRETE (Stilling Basin Side Wall, Section E -E)

Load			Inte	Internal force	ce			Section	Sectional dimension	ension					
Cond-	Cond- Member	Spot	Spot Direc-	×	Ø	z	۵	4	э	Ф	o,	۵,/۵	M=M+NC	M=M+Nu M'/bd^2 Q/bd	Dq/D
tion			tion	(t.m)	(i)	(t)	(cm)	(cm)	(cm)	(cm)	(cm)		(t.m)	(t.m) (kg/cm2) (kg/cm2)	(kg/cm2)
Nor.&															
Flood	Flood EL.126.00			26.60 11.40	11.40	_	100	230	. 31	220			26.6	0.55 0.518	0.518
Seis.	Seis. EL.126.00			34.34	13.79		100	230		220			34.34	0.71 0.627	0.627
Nor.&															
Seis.	Toe			12.50	25.00		100	150		140			12.5	0.638	1.786
Flood	Toe			11.80 23.60	23.60	•	100	150		140			11.8	11.8 0.602 1.686	1.686

		Sectional area of reinforcing bar	níorcing bar		= du	Coeff.	np = Coeff. from Nomogram	nogram	Str	Stress (kg/cm2)	n2)
f=M/N+u	£/d	As	As'	As'/As	As'/As n.As/bd C	O	S	7	SIGG	Sigc= Sigs=	Tau≕
		(cm2)	(cm2)	:		:			CM/bd^2	CM7bd^2 nSM7bd^2	ZQ/bd
							:				
		D19@200=14.33			0.01	15.9	105	1.05	8.7	866	0.5
		D19@200=14.33			0.01	0.01 15.9	105	1.05	11.3	11.3 1117	0.7
		D19@200=14.33			0.015	13.2	0.015 13.2 70.3	1.06	8.4	673	1.9
		D19@200=14.33			0.015	13.2	0.015 13.2 70.3 1.06 7.9	1.06	7.9	634	1.8

Allowable stress: SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 *: Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

Table 4.3.19: STRESS ANALYSIS OF REINFORCED CONCRETE (Stilling Basin Side Wall, Section 1 - 1 (1))

Load		_	Inte	Internal force	ce			Section	Sectional dimension	nsion					
Cond	Cond- Member	Spot	Spot Direc-	Σ	O	z	۵	ے	ກ	ъ	o,	p/,p	M=M+Nu	M=M+Nu M'/bd^2 Q/bd	O/bd
tion			tion	(t.m)	Ξ	Ξ	(cm)	(Cm)	(cm)	(cm)	(cm)		(t.m)	(t.m) (kg/cm2) (kg/cm2)	(kg/cm2)
Nor	Nor. EL.121.0	Back		4.96	3.72		100	380		370			4.96	0.036	0.101
Seis.	Seis. EL.121.0	Back		23.60	7.46		100	380		370			23.6	0.172	0.202
Flood	Flood EL. 121.0	Front		134.11 26.7	26.71	f	100	380		370			134.11	0.98	0.722
						:									
												-			
													·		

		Sectional area of reinforcing bar	orcing bar		= du	Coeff.	Coeff. from Nomogram	nogram	Stre	Stress (kg/cm2)	m2)
f=M/N+u	f/d	As	As'	As'/As	As'/As n.As/bd	0	S	2	SIGc=	SIGc= SIGs=	Tau=
		(cm2)	(cm2)						CM'/bd^2	CM'/bd^2 nSM'/bd^2	ZQ/bd
		D19@200=14.33			900.0	0.006 20	173 1.03	1.03	0.7	94	0.1
		D19@200=14.33		-	900.0	20	173	1.03	3.4	447	0.2
		D19@200=14.33			0.006	20	173	1.03	19.6	2542	0.7
					÷						
					: '						

Allowable stress: SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 *: Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

Table 4.3.20 : STRESS ANALYSIS OF REINFORCED CONCRETE (Stilling Basin Side Wall, Section 1 - 1 (2)

Load			Int	internal force	rce			Sectio	Sectional dimension	ension					
ဗ် ၁	Cond- Member	Spot	Spot Direc-	Σ	O	z	٩	٦	ם	σ	۵.	d'/d	M=M+Nu M'/bd^2 O/bd	M'/bd^2	O/bd
tion			tion	(t.m)	(£)	(1)	(cmo)	(cm)	(cm)	(cm)	(cm)		(+ m)	(t.m) (ka/cm2) (ka/cm2	, wo / o x/
Nor.	Toe	Low		9.81	19.42	-	100	100		0 0			0 24	1 011 0 150	0 4 50
Seis.	Toe	ره ا		11 66	22 93		001						0 7	7	001.7
				3	1.00		2	001		202			11.00	1.44	2.548
Flood	Тое	Upper		0.76	9	•	100	100		0			0.76	0 0 44	178
													:		
		· · · · ·	**						:		:				
-															

		Sectional area of reinforcing bar	nforcing bar		= Qu	Coeff, from Nomogram	rom Non	nogram	Stre	Stress (kn/cm2)	101
f=M/N+u	f/d	As	As'	As'/As		O	S	7	SIGc=	SIGC= SIGS=	Tau=
		(cm2)	(cm2)						CM'/bd/2	CM7bd^2 nSM7bd^2	ZQ/bd
		D19@200=14.33			0.024	0.024 10.9	44.6	1.07		810	6
1 :		D19@200=14.33			0.024 10.9	10.9	44.6	1.07	15.7	0 63	7 6
		D19@200=14.33		1	0.024		9 7 7	1 0.7	1	2	i
						_	2	?	-	50	7.0
				-	:						
											01.0

				1							

Allowable stress: SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 *: Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

Table 4.4.1: SUMMARY OF BENDING MOMENT IN COMPOSITE GIRDER (Main Girder)

						· <u>U</u>	<u>nit : t•m</u>
**************************************	Nodal Point	D.L (B.C)	D.L (A.C)	L.L Max. (A.C)	L.L Min. (A.C)	Max. (A.C)	Min. (A.C)
No. 1 N	Aain Girder	(G-1):					
:	1	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
	4	100.1	22.5	66.8	- 3.7	89.3	17.7
		100.1	22.5	66.8	- 3.7	89.3	17.7
	7	162.5	32.1	114.6	- 7.6	146.7	22.3
		162.5	32.1	114.6	- 7.6	146.7	22.3
	10	182.2	27.8	137.3	- 11.4	165.1	12.9
		182.2	27.8	137.3	- 11.4	165.1	12.9
	13	162.5	32.1	114.6	- 7.6	146.7	22.3
		162.5	32.1	114.6	- 7.6	146.7	22.3
	16	100.1	22.5	66.8	- 3.7	89.3	17.7
		100.1	22.5	66.8	- 3.7	89.3	17.7
	19	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
No 2 N	Main Girder	(G-2):	N.				
110.20	2	0.0	0.0	0.0	- 0.0	0.0	- 0.0
	5	98.0	10.5	80.1	- 0.0	90.6	10.4
		98.0	10.5	80.1	- 0.0	90.6	10.4
	8	161.2	26.1	122.7	- 0.0	148.8	26.1
		161.2	26.1	122.7	- 0.0	148.8	26.1
	11	184.6	46.5	128.2	- 0.0	174.7	46.5
		184.6	46.5	128.2	- 0.0	174.7	46.5
	14	161.2	26.1	122.7	- 0.0	148.8	26.1
	1-7	161.2	26.1	122.7	- 0.0	148.8	26.1
	17	98.0	10.5	80.1	- 0.0	90.6	10.4
	7.4	98.0	10.5	80.1	- 0.0	90.6	10.4
	20	0.0	0.0	0.0	- 0.0	0.0	- 0.0
No. 3 N	<u> Aain Girder</u>		0.0	0.0	0.0	0.0	0.0
	3	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
	6	100.1	22.5	66.8	- 3.7	89.3	17.7
		100.1	22.5	66.8	- 3.7	89.3	17.7
	9	162.5	32.1	114.6	- 7.6	146.7	22.3
	"	162.5	32.1	114.6	- 7.6	146.7	22.3
•	12	182.2	27.8	137.3	- 11.4	165.1	12.9
		182.2	27.8	137.3	- 11.4	165.1	12.9
	15	162.5	32.1	114.6	- 7.6	146.7	22.3
		162.5	32.1	114.6	- 7.6	146.7	22.3
	18	100.1	22.5	66.8	- 3.7	89.3	17.7
:-		100.1	22.5	66.8	- 3.7	89.3	17.7
· . · · · .	21	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0

Note: B.C: Before compounding
A.C: After compounding
D.L: Moment due to dead load
L.L: Moment due to live load

Table 4.4.2: SUMMARY OF SHEAR FORCE IN COMPOSITE GIRDER (Main Girder)

				÷		Ų	nit : ton
	Nodal Point	D.L. (B.C)	D.L (A.C)	L,L Max. (A.C)	L.L Min. (A.C)	Max. (A.C)	Min. (A.C)
No. 11	Main Girder	(G-1):		(
	1	25.5	6.2	16.3	- 0.8	22.5	5.1
	4	17.1	3.4	13.2	- 2.0	16.6	0.7
		17.1	3.4	13.2	- 2.0	16.6	0.8
	7	8.4	0.5	10.2	- 4.1	10.8	- 4.1
		8.4	0.5	10.2	- 4.1	10.8	- 4.1
	10	- 0.4	- 2.3	7.5	- 6.5	7.5	- 8.8
		0.4	2.3	6.5	- 7.5	8.8	- 7.5
	13	- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
•		- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
	16	- 17.1	- 3.4	2.0	- 13.2	- 0.8	- 16.6
		- 17.1	- 3.4	2.0	- 13.2	- 0.7	-16.6
	19	- 25.5	- 6.2	0.8	- 16.3	- 5.1	- 22.5
No. 2 I	Main Girder	·(G-2):		•			
1.0.41	2	24.7	1.8	21.5	- 0.3	23.2	1.3
	5	17.0	2.7	15.7	- 3.3	18.4	- 1.6
٠.		17.0	2.7	15.7	- 3.3	18.4	- 1.6
	8	8.8	3.7	11.0	- 7.4	14.7	- 5.9
		8.8	3.7	11.0	- 7.4	14.7	- 5.9
	11	0.7	4.7	7.4	- 11.8	12.1	-10.7
	••	- 0.7	- 4.7	11.8	- 7.4	10.7	- 12.1
	14	- 8.8	- 3.7	7.4	- 11.0	5.9	- 14.7
	4-4	- 8.8	- 3.7	7.4	- 11.0	5.9	- 14.7
	17	- 17.0	- 2.7	3.3	- 15.7	1.6	- 18.4
	17	- 17.0	- 2.7	3.3	- 15.7	1.6	- 18.4
	20	- 24.7	- 1.8	0.3	- 21.5	- 1.3	- 23.2
No. 3 N	<u>Main Girder</u>			1/ 0	0.0	20 5	E 1
	3	25.5	6.2	16.3	- 0.8	22.5	5.1
	6	17.1	3.4	13.2	- 2.0	16.6	0.7
		17.1	3.4	13.2	- 2.0	16.6	0.8
	9 .	8.4	0.5	10.2	- 4.1	10.8	- 4.1
		8.4	0.5	10.2	- 4.1	10.8	- 4.1
	12	- 0.4	- 2.3	7.5	- 6.5	7.5	- 8.8
		0.4	2.3	6.5	- 7.5	8.8	- 7.5
	15	- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
		- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
	18	- 17.1	- 3.4	2.0	- 13.2	- 0.8	- 16.6
		- 17.1	- 3.4	2.0	- 13.2	- 0.7	- 16.6
	21	- 25.5	- 6.2	0.8	- 16.3	- 5.1	- 22.5

Note: B.C: Before compounding
A.C: After compounding
D.L: Shear due to dead load
L.L: Shear due to live load

Table 4.4.3: SUMMARY OF REACTION FORCE AT SUPPORTS

				Unit: ton
Nod Poir		D.L. (A.C)	L.L Max. (A.C)	Total Reaction Force
No. 1 Main Girder	· (G-1):			
1	25.5	6.2	16.3	48.0
19	25.5	6.2	16.3	48.0
No. 2 Main Girder	(G-2):		214.2	
2	24.7	1.8	21.5	47.9
20	24.7	1.8	21.5	47.9
No. 3 Main Girder	(G-3):		•	
3	25.5	6.2	16.3	48.0
21	25.5	6.2	16.3	48.0

Note:

B.C : A.C : D.L : L.L :

Before compounding After compounding Reaction due to dead load Reaction due to live load

Table 4.4.4: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 1 MAIN GIRDER, NO. 1 SECTION)

-	Bending moment before compounding Bending moment after compounding Bending moment by dead load after comp Base slab thickness Haunch Effective base slab width Distance between fixed points of flange Section and sectional area of steel girder:	oounding ,	MV = 90.90 MVD = 22.84 TS = 18.0 HH = 6.0 BS = 228.1	t•m t•m cm cm cm
	• Upper flange : 230 • Web : 1,550 • Lower flange : 280	x <u>11</u> x <u>9</u> x <u>11</u>	25.3 (SM 139.5 (SM 30.8 (SM	50Y) 50Y)
	TOTAL	•	<u> 195.6</u>	
-	Sectional area and moment of inertia of ar	ea:		
	• Concrete section : AC = 4. • Steel girder section : AS = 1	95.6 I	Moment of Ine of Area (cm) C = 110,832 S = 620,099 V = 1,951,186	
-	Geometrical moment of area of concrete	-	QC = $97,226$	cm ³
-	Distance and section modulus (See Fig.4.	.4.7):		
	Distance (cm) D = 94.7 DS = 71.0 DC = 23.7 YSU = 80.8 YSL = 76.4 YVU = 9.8 YVL = 147.4 YVC = 32.7	Section WSU WSL WVU WVL	$=$ $\frac{8,116}{199,399}$	
-	Axial force	·	Note 17.1	
	Due to drying schrinkage Due to creep Due to temperature change		$NCR = _{2.5}$	ton ton ton
-	Stress (kg/cm²):	Concrete Base Slab	Upper Flange	Lower Flange
	(1) Stress before compounding	•	- 1,327	1,255
	(2) Stress after compounding	- 21.8	- 46	687
	(3) Stress due to drying schrinkage	3.1	- 297	110
	(4) Stress due to creep	1.9	- 42	16
	(5) Stress due to temperature difference	- 0,6	- 207	75
	(6) = (1) Allowable stress	<u> </u>	- 1,327 - 1,412	1,255 2,625
	(7) = (1) + (2) Allowable stress	- 21.8 - 77.1	- 1,373 - 2,100	1,942 2,100
	(8) = (1) + (2) + (3) + (4) Allowable stress	- 16.8 - 77.1	- 1,712 - 2,415	2,068 2,100
	(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	- 17.5 - 88.7	- 1,918 - 2,730	2,143 2,415

Table 4.4.5: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 1 MAIN GIRDER, NO. 2 SECTION)

-	Bending moment before compounding	***********	MS = 182.18	t•m
-	Bending moment after compounding			t•m
-	Bending moment by dead load after comp		and the second s	t•m
-	Base slab thickness	•		cm
-	Haunch		==	cm
-	Effective base slab width		BS = 228.1	cm
-	Distance between fixed points of flange	********	P = 490.0	cm
-	Section and sectional area of steel girder:			
	Section	(mm)	Sectional Area ((cm2)
	• Upper flange : 280	x <u>14</u>	39.2 (SM5	0Y)
	• Web : 1.550 • Lower flange : 440	x <u>9</u> x <u>19</u>	139.5 (SM5 83.6 (SM5	
	TOTAL			
	Sectional area and moment of inertia of are	.a.	<u>262.3</u>	
•	bectonal area and moment of fileffix of are	a.		
	Section		Moment of Iner of Area (cm ⁴	
	• Concrete section : $AC = 4.1$	<u>05</u> I	C = 110.832	.
	• Steel girder section : AS = 28 • Composite section : AV = 8		S = 987.001 V = 3.032.152	
_	Geometrical moment of area of concrete			cm ³
_	Distance and section modulus (See Fig. 4.	•		
		•		
	Distance (cm)	Section	1 Modulus (cm ³)	
	D= <u>105.8</u>	WSU		
	$DS = _{73.1}$ $DC = _{32.7}$	WSL: WVU		
	$YSU = \frac{32.7}{92.2}$	WYL		
	$YSL = \underline{66.1}$			
	YVU = <u>19.1</u>			
	YVL= <u>139.2</u> YVC= <u>41.7</u>			
	F			
-	Axial force	•	MOUT OOR	
	Due to drying schrinkage Due to creep	· · · · · · · · · · · · · · · · · · ·	NSH = <u>20.8</u> NCR = <u>3.3</u>	ton ton
	Due to creep Due to temperature change		NTM = 15.1	ten
-	Stress (kg/cm²):	Concrete	Hanas	Lower
		Base Slab	Upper Flange	Flange
	(1) Stress before compounding	<u>.</u>	- 1,702	1,220
	(2) Stress after compounding	- 32.4	- 104	758
	(3) Stress due to drying schrinkage	4.1	- 284	67
	(4) Stress due to creep	1.7	- 44	10
	(5) Stress due to temperature difference	- 1.6	- 205	48
	(6) = (1)	-	- 1,702	1,220
:	Allowable stress	*	- 1,765	2,625
	(7) = (1) + (2)	- 32.4	- 1,806	1,977
	Allowable stress	- 77.1	- 2,100	2,100
	(8) = (1) + (2) + (3) + (4)	- 26.6	- 2,134	2,055
	Allowable stress	- 77.1	- 2,415	2,100
	(9) = (1) + (2) + (3) + (4) + (5)			
	Allowable stress	- 28.2 - 88.7	- 2,338 - 2,730	2,103 2,415
			51.00	-,,,,,

Table 4.4.6: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. <u>1</u> MAIN GIRDER, NO. <u>3</u> SECTION)

- Bending moment before compounding.			2. t•m
- Bending moment after compounding			l t•m
- Bending moment by dead load after com-			<u>5</u> t•m
- Base slab thickness			cm
- Haunch		***************************************	_ cm
- Effective base slab width			_ cm
- Distance between fixed points of flange.		P = <u>490.1</u>	_ cm
- Section and sectional area of steel girder	:		
• Upper flange : 230 • Web : 1.550 • Lower flange : 280	x <u>9</u>	139.5 (SM	(cm²) (50Y) (50Y) (50Y)
TOTAL		<u> 195.6</u>	
- Sectional area and moment of inertia of a	uea:		
• Concrete section : AC = 4 • Steel girder section : AS = • Composite section : AV =	195.6 IS 782 I	Moment of Incompany of Area (cm 110,832) S = 620,099 V = 1,951,186	
- Geometrical moment of area of concrete		QC = 97,226	cm ³
- Distance and section modulus (See Fig.	4.4.7):		÷
Distance (cm)	Section	Modulus (cm ³)	
D= <u>94.7</u>	WSU		
DS =	WSL:		
DC = <u>23.7</u> YSU = 80.8	WVU		
YSU = 80.8 $ YSL = 76.4$	WVL:	= <u>13,236</u>	
YVU = 9.8			
YVL= <u>147.4</u>	•		
YVC = <u>32.7</u>			
- Axial force			
Due to drying schrinkage Due to creep Due to temperature change		.NCR = 2.5	ton ton ton
- Stress (kg/cm²):	Concrete	Upper	Lower
•	Base Slab	Flange	Flange
(1) Stress before compounding	-	- 1,328	1,255
(2) Stress after compounding	- 21.8	- 46	687
(3) Stress due to drying schrinkage	3.1	- 297	110
(4) Stress due to creep	1.9	- 42	16
· ·			
(5) Stress due to temperature difference	- 0.6	- 207	75
(6) = (1)	- 0.6	- 207 - 1,328	75 1,255
•		-	
(6) = (1)		- 1,328	1,255
(6) = (1) Allowable stress		- 1,328 - 1,412	1,255 2,625
(6) = (1) Allowable stress (7) = (1) + (2) Allowable stress	- 21.8	- 1,328 - 1,412 - 1,373 - 2,100	1,255 2,625 1,942 2,100
(6) = (1) Allowable stress (7) = (1) + (2)	- 21.8 - 77.1	- 1,328 - 1,412 - 1,373	1,255 2,625 1,942
(6) = (1) Allowable stress (7) = (1) + (2) Allowable stress (8) = (1) + (2) + (3) + (4)	- 21.8 - 77.1 - 16.8	- 1,328 - 1,412 - 1,373 - 2,100 - 1,712	1,255 2,625 1,942 2,100 2,068

Table 4.4.7: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 2 MAIN GIRDER, NO. 1 SECTION)

-	Bending moment before compounding Bending moment after compounding Bending moment by dead load after compounding moment before compounding moment by dead load after compounding moment before moment by dead load after compounding m	ounding	MV = MVD = TS = HH =	99.73 92.14 10.68 18.0 9.9 263.9	tem tem tem cm cm
-	Distance between fixed points of flange			490.0	cm
-	Section and sectional area of steel girder:		J.	-	
	• Upper flange : 230 • Web : 1.550 • Lower flange : 280	(mm) × 10 × 9 × 11	Sectional 23,0 139,5 30,8	(SM50 (SM50	OY) OY)
	TOTAL		193.3	<u>!</u>	
-	Sectional area and moment of inertia of are	a:			
		12) 50 23.3	$C = \frac{\text{of At}}{12}$ $C = \frac{12}{60}$	nt of Inert ea (cm²) 8,255 4,926 14,354	
-	Geometrical moment of area of concrete (QC = 1	104,844	cm ³
-	Distance and section modulus (See Fig. 4.	4.7):			•
	Distance (cm) D = 99.6 DS = 77.5 DC = 22.1 YSU = 81.7 YSL = 75.4 YYU = 4.2 YYL = 152.9 YYC = 31.1	Sectio WSU WSL WYU WVL	$J = \frac{8}{506}$	(cm ³) 408 018 .868 .826	
-	Axial force				
	Due to drying schrinkage Due to creep Due to temperature change		NCR =	$\frac{16.3}{1.0}$	ton ton ton
-	Stress (kg/cm²):	Concrete Base Slab	Uppe Flang		Lower Flange
	(1) Stress before compounding		- 1,34	16	1,244
	(2) Stress after compounding	- 19.3		18	666
	(3) Stress due to drying schrinkage	2.3	- 30)1	116
	(4) Stress due to creep	0.7	- 1	17	6
	(5) Stress due to temperature difference	- 0.1	- 20	14	77
	(6) = (1)		- 1,34	16	1,244
	Allowable stress	-	- 1,37		2,625
٠.	(7) = (1) + (2) Allowable stress	- 19.3 - 77.1	- 1,36 - 2,10		1,910 2,100
	(8) = (1) + (2) + (3) + (4) Allowable stress	- 16.3 - 77.1	- 1,68 - 2,41		2,033 2,100
	(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	- 16.4 - 88.7	- 1,88		2,109 2,415

Table 4.4.8: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 2 MAIN GIRDER, NO. 2 SECTION)

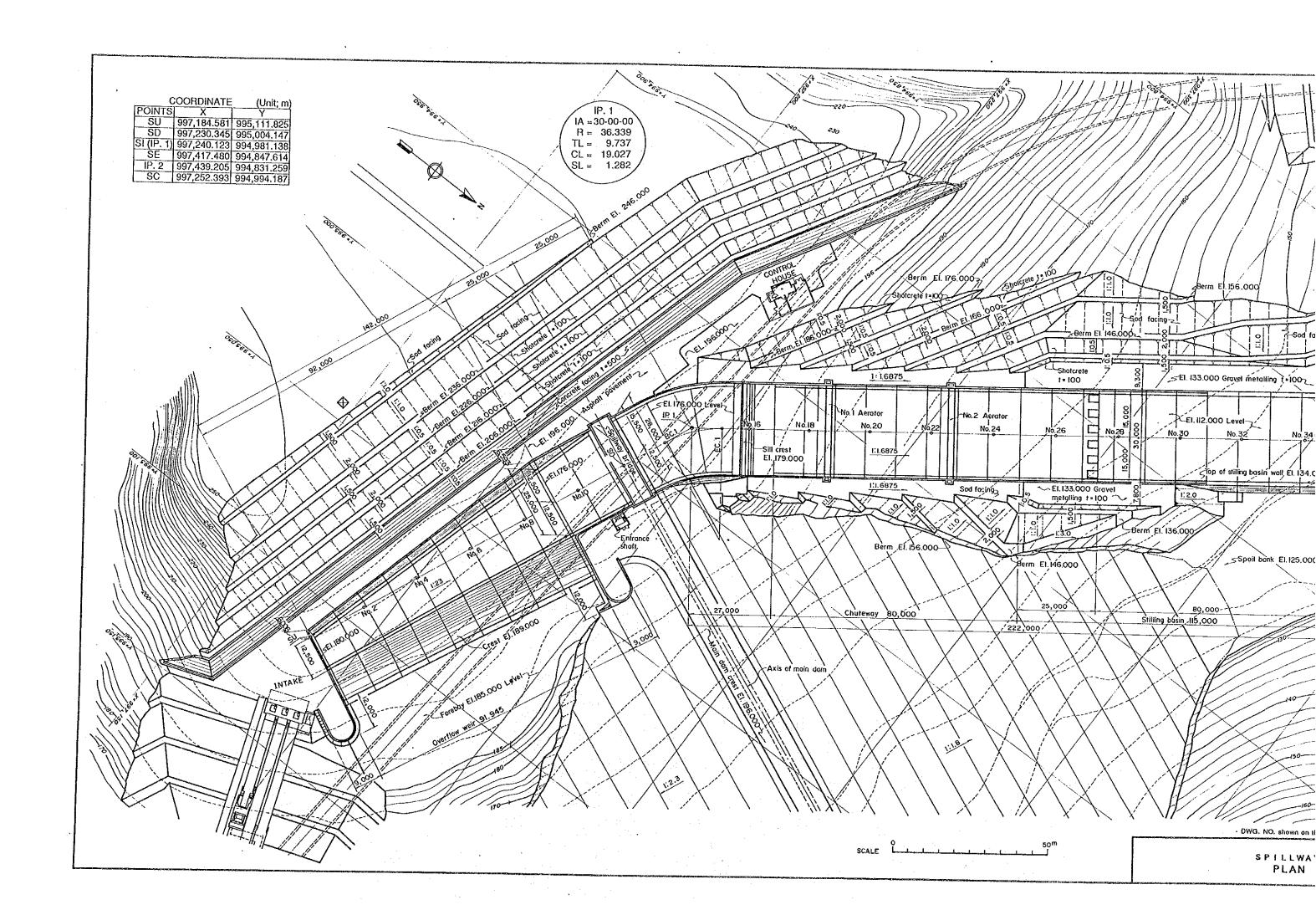
-	Bending moment before compounding		MS = <u>184.64</u>	t•m
-	Bending moment after compounding			t•m
4	Bending moment by dead load after comp			
-	Base slab thickness			cm
-	Haunch			•'
-	Effective base slab width			cm
-	Distance between fixed points of flange		P = 490.0	cm
-	Section and sectional area of steel girder:	11 1		
	• Upper flange : <u>280</u> • Web : <u>1.550</u> • Lower flange : <u>450</u>	(mm) x 14 x 9 x 19	139.5 (SM 85.5 (SM	(cm²) 50Y) 50Y) 50Y)
	TOTAL		<u>264.2</u>	
•	Sectional area and moment of inertia of are	ea:		
	• Concrete section : AC = 4.7 • Steel girder section : AS = 2 • Composite section : AV = 9	64.2 IS 43 IV	$\begin{array}{c} & \underline{\text{Moment of Ine}} \\ & \underline{\text{of Area (cm)}} \\ \text{C} = & \underline{128.255} \\ \text{S} = & \underline{995.003} \\ \text{V} = & \underline{3.322.056} \end{array}$	4)
-	Geometrical moment of area of concrete		QC = <u>146,672</u>	cm ³
-	Distance and section modulus (See Fig. 4	.4.7):		
	$\begin{array}{ccc} Distance & (cm) \\ D = & 110.2 \\ DS = & 79.3 \\ DC = & 30.9 \\ YSU = & 92.7 \end{array}$	Section WSU: WSL: WVU WVL:	= <u>15.164</u> = <u>248.339</u>	
	YSL =			
	YVU = 13.4 YVL = 144.9 YVC = 39.9	,		
-	$YVU = \frac{13.4}{YVL} = \frac{144.9}{YVC} = \frac{39.9}{4}$ Axial force		NOV. AG T	
-	YVU = 13.4 YVL = 144.9 YVC = 39.9		NCR = 4.7	ton ton ton
•	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage	••••••••••••	.NCR = 4.7 .NTM = 14.6	ton ton
•	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change		NCR = 4.7	ton
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change	Concrete	$ \text{NCR} = \underbrace{4.7}_{14.6} $ $ \text{Upper} $	ton ton Lower
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²):	Concrete	.NCR = 4.7 .NTM = 14.6 Upper Flange	ton ton Lower Flange
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²):	Concrete Base Slab	NCR = 4.7 NTM = 14.6 Upper Flange - 1,720	ton ton Lower Flange 1,218
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding	Concrete Base Slab	NCR = 4.7 NTM = 14.6 Upper Flange - 1,720 - 70	ton ton Lower Flange 1,218
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage	Concrete Base Slab	NCR = 4.7 NTM = 14.6 Upper Flange - 1,720 - 70 - 289	Lower Flange 1,218 762 71
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep	Concrete Base Slab - 30.0 3.4 2.4	NCR = 4.7 NTM = 14.6 Upper Flange -1,720 -70 -289 -64 -203	ton ton Lower Flange 1,218 762 71 16 49
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change. Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference	Concrete Base Slab - 30.0 3.4 2.4	NCR = $\frac{4.7}{14.6}$ Upper Flange - 1,720 - 70 - 289 - 64	ton ton Lower Flange 1,218 762 71
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change. Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress	Concrete Base Slab 30.0 3.4 2.4 - 1.0	NCR = 4.7 NTM = 14.6 Upper Flange -1,720 -70 -289 -64 -203 -1,720 -1,765	ton ton Lower Flange 1,218 762 71 16 49 1,218 2,625
-	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change. Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1)	Concrete Base Slab 30.0 - 3.4 - 2.4	NCR = 4.7 NTM = 14.6 Upper Flange -1,720 -70 -289 -64 -203 -1,720	ton ton Lower Flange 1,218 762 71 16 49 1,218
	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2) Allowable stress	Concrete Base Slab - 30.0 3.4 2.4 - 1.0 - 30.0 - 77.1	NCR = 4.7 NTM = 14.6 Upper Flange - 1,720 - 70 - 289 - 64 - 203 - 1,720 - 1,765 - 1,790 - 2,100	ton ton Lower Flange 1,218 762 71 16 49 1,218 2,625 1,980 2,100
	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change. Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2)	Concrete Base Slab 30.0 3.4 2.4 - 1.0 30.0	NCR = 4.7 NTM = 14.6 Upper Flange - 1,720 - 70 - 289 - 64 - 203 - 1,720 - 1,765 - 1,790	ton ton Lower Flange 1,218 762 71 16 49 1,218 2,625 1,980
	YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2) Allowable stress (8) = (1) + (2) + (3) + (4)	Concrete Base Slab - 30.0 3.4 2.4 - 1.0 - 30.0 - 77.1 - 24.1	NCR = 4.7 NTM = 14.6 Upper Flange - 1,720 - 70 - 289 - 64 - 203 - 1,720 - 1,765 - 1,790 - 2,100 - 2,143	ton ton Lower Flange 1,218 762 71 16 49 1,218 2,625 1,980 2,100 2,066

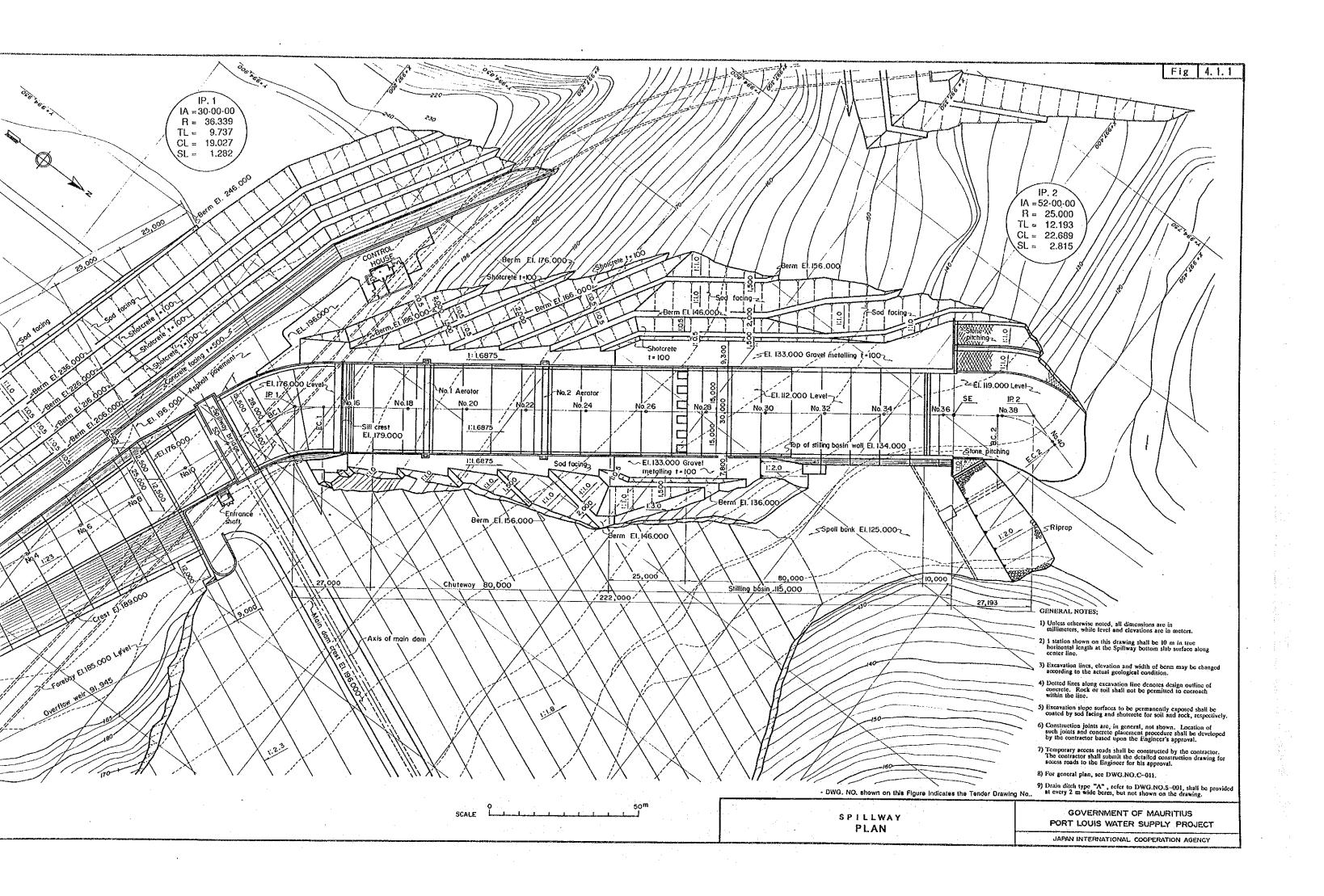
Table 4.4.9: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. 2 MAIN GIRDER, NO. 3 SECTION)

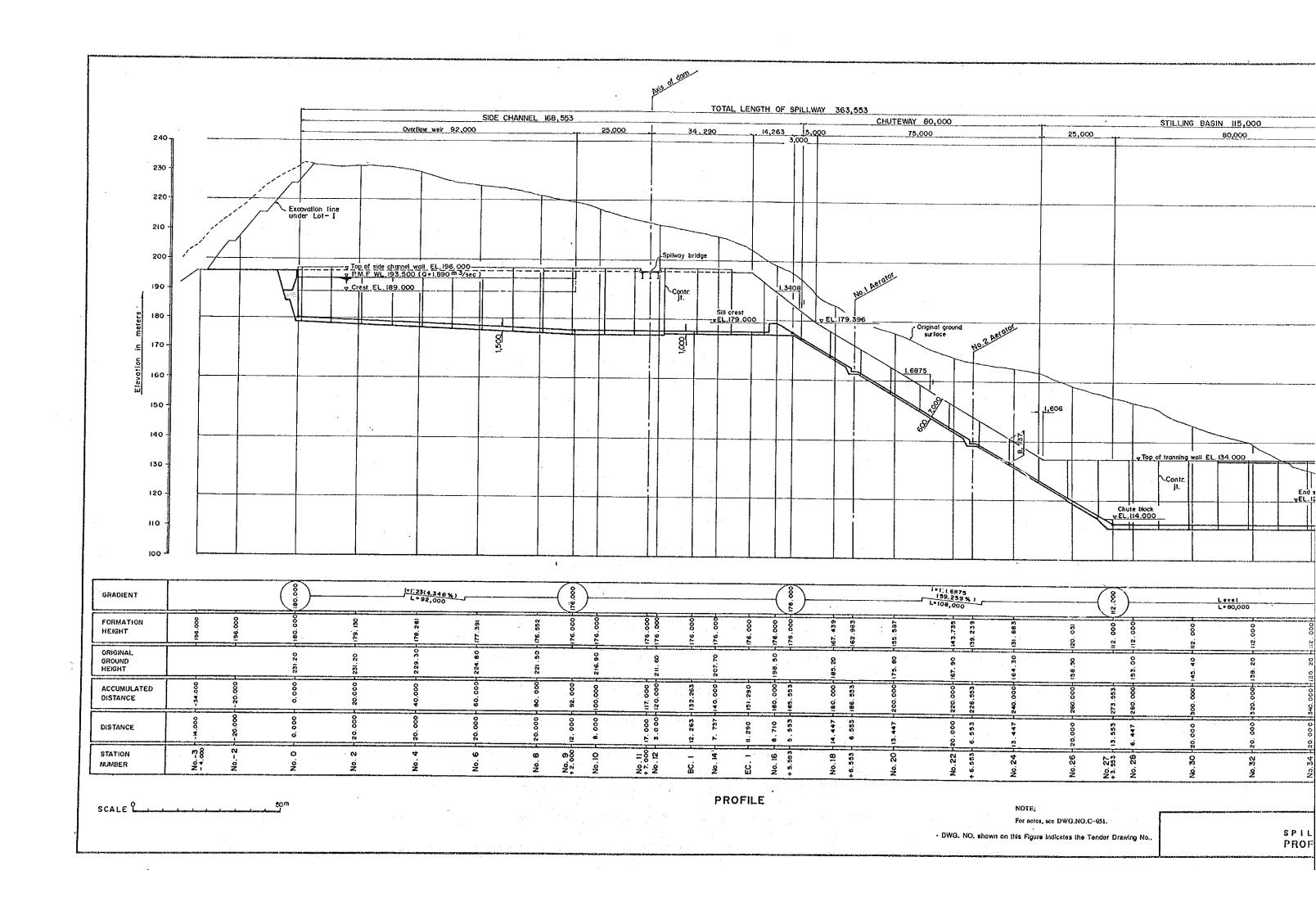
-	Bending moment before compounding	*************	MS = .99.75	t•m
-	Bending moment after compounding			t•m
-	Bending moment by dead load after compo			t•m
-	Base slab thickness			cm
-	Haunch			cm
-	Effective base slab width			cm
-	Distance between fixed points of flange		P = 490.0	cm
•	Section and sectional area of steel girder:		•	
	• Upper flange : 230 • Web : 1,550	(mm) x 10 x 9 x 11	Sectional Area (23.0 (SM5 139.5 (SM5 30.8 (SM5	60Y) 60Y)
	TOTAL		<u>193.3</u>	
-	Sectional area and moment of inertia of are	a: .		
	• Composite section : AV = 8'	12) 50 IC 13.3 IS 72 IV	$\begin{array}{rcl} = & \underline{604.926} \\ = & \underline{2.114.354} \end{array}$)
-	Geometrical moment of area of concrete (QC = 104,844	cm ³
-	Distance and section modulus (See Fig. 4.	4.7):		
	Distance (cm)	Section	Modulus (cm ³)	
	D = <u>99.6</u>	WSU =	7,408	
	DS =	WSL = WYU =		
	DC = <u>22.1</u> YSU = 81.7	WVL≃		
	$YSL = \frac{75.4}{}$			
	$ \begin{array}{ccc} $			
_	Axial force		. •	
	Due to drying schrinkage Due to creep Due to temperature change		NCR = <u>1.0</u>	ton ton ton
	Stress (kg/cm²):		**	·,
		Concrete Base Slab	Upper Flange	Lower Flange
	(1) Stress before compounding		- 1,346	1,244
	(2) Stress after compounding	- 19.3	- 18	667
	(3) Stress due to drying schrinkage	2.3	- 301	116
	(4) Stress due to creep	0.7	- 17	6
	(5) Stress due to temperature difference	- 0.1	- 204	77
	(6) = (1)	-	- 1,346	1,244
	Allowable stress		- 1,379	2,625
	(7) = (1) + (2)	- 19.3	- 1,365	1,911
	Allowable stress	<u>- 77.1</u>	- 2,100	2,100
	(8) = (1) + (2) + (3) + (4)	- 16.3	- 1,682	2,033
	Allowable stress	<u>- 77.1</u>	- 2,415	2,100
	(9) = (1) + (2) + (3) + (4) + (5)	- 16.4	- 1,886	2,110
	Allowable stress	- 88.7	- 2,730	2,415

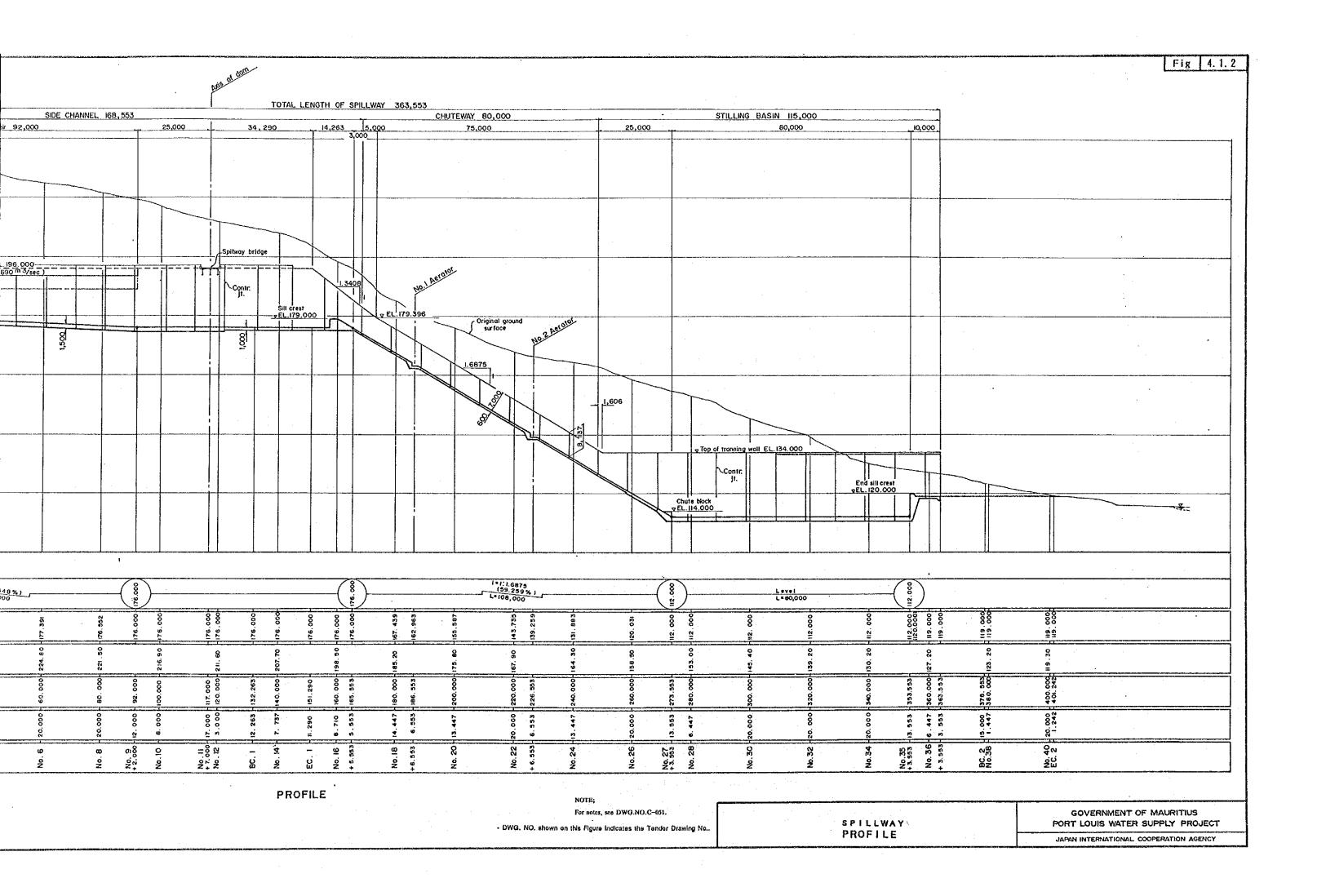
Table 4.4.10: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. <u>3</u> MAIN GIRDER, NO. <u>1</u> SECTION)

- :	Bending moment before compounding	************		
	Bending moment after compounding			
	Bending moment by dead load after comp	-		
	Base slab thickness			
	Haunch			•
	Distance between fixed points of flange			
	Section and sectional area of steel girder:			
	_	. ()	Castianal Aras	(am2)
	• Upper flange : <u>230</u>	1 (mm) x <u>11</u>		50Y)
	• Web : 1,550 • Lower flange : 280	x <u>9</u> x <u>11</u>		50Y) 50Y)
	TOTAL		195.6	,
. :	Sectional area and moment of inertia of ar	ea:	122.0	
		nal Area m²)	Moment of Inc of Area (cm	
			$C = \frac{110,832}{620,099}$	
			V = 1.951,186	1
	Geometrical moment of area of concrete		QC = <u>97.226</u>	cm ³
•]	Distance and section modulus (See Fig. 4	.4.7):		
	Distance (cm)	Section	Modulus (cm3)	
	$D = \underline{94.7}$	WSU		
	DS =	WSL : WVU		•
	YSU = 80.8	WVL		
	YSL = 76.4			
	$YVC = \frac{32.7}{}$			
- 4	Axial force			
	Due to drying schrinkage		.NSH = 17.1	ton
	Due to creep Due to temperature change		$NCR = \frac{2.5}{12.0}$ $NTM = \frac{12.0}{12.0}$	ton ton
- S	tress (kg/cm²):			
		Concrete Base Slab	Upper Flange	Lower Flange
	(1) Stress before compounding		- 1,327	1,255
	(2) Stress after compounding	- 21.8	- 46	687
	(3) Stress due to drying schrinkage	3.1	- 297	110
	(4) Stress due to creep	1.9	- 42	16
	•	- 0.6	- 207	75
,	(5) Stress due to temperature difference	- 0.0	- 207	
((6) = (1)	-	- 1,327	1,255
-	Allowable stress		- 1,412	2,625
((7) = (1) + (2) Allowable stress	- 21.8 - 77.1	- 1,373 - 2,100	1,942 2,100
	•			
((8) = (1) + (2) + (3) + (4) Allowable stress	- 16.8 - 77.1	- 1,712 - 2,415	2,068 2,100
((9) = (1) + (2) + (3) + (4) + (5) Allowable stress	- 17.5 - 88.7	- 1,918 - 2,730	2,143 2,415


Table 4.4.11: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. <u>3</u> MAIN GIRDER, NO. <u>2</u> SECTION)


Bending moment after compounding	_	Bending moment before compounding		MS = 182.18	i tem
Bending moment by dead load after compounding	_				
Haunch	-	Bending moment by dead load after comp	ounding	MVD = <u>27.76</u>	tim
Effective base slab width	-				cm
- Distance between fixed points of flange	-				, cm
Section and sectional area of steel girder: * Upper flange :	-				
*Upper flange : 2.80 x 14 39.2 (SM50Y) *Web : 1.550 x 2 14 39.2 (SM50Y) *Lower flange : 440 x 19 83.6 (SM50Y) *TOTAL 262.3 *Sectional area and moment of inertia of area: Sectional Area	-	•		P = 490.0	cm
• Upper flange : 280 x 14 39.2 (SM50Y) • Web : 1.550 x 9 139.5 (SM50Y) • Lower flange : 440 x 19 83.6 (SM50Y) TOTAL 262.3 - Sectional area and moment of inertia of area: Sectional Area	•				
Sectional area and moment of inertia of area: Sectional Area		• Upper flange : 280 • Web : 1,550	x 14	39.2 (SM 139.5 (SM	50Y) 50Y)
Sectional Area		TOTAL		262.3	
Concrete section : AC = \(\frac{4.105}{4.105} \) IC = \(\frac{110.832}{10.832} \) **Steel girder section : AS = \(\frac{2.452.3}{2.62.3} \) IS = \(\frac{987.001}{9.870.01} \) **Composite section : AV = \(\frac{8.49}{2.849} \) IV = \(\frac{3.032.152}{3.032.152} \) **Geometrical moment of area of concrete (AC x DC)QC = \(\frac{134.244}{3.032.152} \) Capacitation in modulus (See Fig. 4.4.7): \[\textstyle = \frac{105.8}{10.832} \] WSU = \(\frac{10.703}{10.703} \) DS = \(\frac{73.1}{3.1} \) WSL = \(\frac{14.936}{14.936} \) DC = \(\frac{32.7}{3.2.7} \) WVU = \(\frac{158.724}{21.783} \) YSL = \(\frac{66.1}{66.1} \) YVU = \(\frac{19.1}{19.1} \) YVC = \(\frac{41.7}{41.7} \) **Axial force **Due to drying schrinkage** **Due to drying schrinkage** **Due to rerep** **Due to temperature change** **Due to temperature change** **NCR = \(\frac{3.3}{3.3} \) ton Due to temperature change** **NTM = \(\frac{15.1}{3.1} \) ton **Stress (kg/cm²):* **Concrete Upper Base Slab** **Flange** (1) Stress before compounding** - \(\frac{7.702}{1.702} \) \(\frac{1.220}{1.220} \) (2) Stress after compounding** - \(\frac{3.24}{1.704} \) \(\frac{104}{758} \) (3) Stress due to drying schrinkage** 4.1 \(\frac{2.84}{1.704} \) \(\frac{6.7}{1.702} \) \(\frac{1.220}{1.220} \) (4) Stress due to temperature difference** - \(\frac{1.702}{1.765} \) \(\frac{1.220}{2.625} \) (7) = (1) + (2) \(\frac{3.24}{1.806} \) \(\frac{1.977}{1.71} \) \(\frac{2.100}{2.100} \) \(\frac{2.100}{2.100} \) (8) = (1) + (2) + (3) + (4) \(\frac{-26.6}{-2.134} \) \(\frac{-2.134}{2.055} \) \(\frac{2.055}{2.025} \) (9) = (1) + (2) + (3) + (4) + (5) \(\frac{-28.2}{2.338} \) \(\frac{-2.038}{2.103} \)	-	Sectional area and moment of inertia of are	ea:		
* Concrete section : AC = 4.10.5 IC = 110.832 * Steel girder section : AS = 262.3 IS = 987.001 * Composite section : AV = 84.9 IV = 3.032.152 Geometrical moment of area of concrete (AC x DC)QC = 134.244 cm³ Distance and section modulus (See Fig. 4.4.7): Distance (cm)					
Distance and section modulus (See Fig. 4.4.7): Distance		 Concrete section : AC = 4. Steel girder section : AS = 2 	105 I 62.3 I	C = 110.832 S = 987.001	<u> </u>
Distance (cm) Section Modulus (cm²)	-	·		QC = <u>134,244</u>	cm ³
D= 105.8	-	Distance and section modulus (See Fig. 4	.4.7):		
D= 105.8		Distance (am)	Canal and	. M. Juliu (3)	
DS = 73.1					
YSU = 92.2 YSL = 66.1 YVU = 19.1 YVL = 139.2 YVC = 41.7 - Axial force • Due to drying schrinkage				= 14.936	
YSL = 66.1 YVU = 19.1 YVL = 139.2 YVC = 41.7 - Axial force • Due to drying schrinkage					
YVL = 139.2 YVC = 41.7 - Axial force • Due to drying schrinkage		$YSL = \underline{66.1}$			
YVC = 41.7 - Axial force • Due to drying schrinkage					
• Due to drying schrinkage			*		
*Due to temperature change NCR = 3.3 ton ton *Due to temperature change NTM = 15.1 ton Stress (kg/cm²): Concrete Basc Slab Flange Flange (1) Stress before compounding - 1,702 1,220 (2) Stress after compounding - 32.4 - 104 758 (3) Stress due to drying schrinkage 4.1 - 284 67 (4) Stress due to creep 1.7 - 44 10 (5) Stress due to temperature difference - 1.6 - 205 48 (6) = (1) - 1,702 1,220 Allowable stress 1,765 2,625 (7) = (1) + (2) - 32.4 - 1,806 1,977 Allowable stress - 77.1 - 2,100 2,100 (8) = (1) + (2) + (3) + (4) - 26.6 - 2,134 2,055 Allowable stress - 77.1 - 2,415 2,100 (9) = (1) + (2) + (3) + (4) + (5) - 28.2 - 2,338 2,103	_	Axial force			
Concrete Base Slab Upper Flange Lower Flange (1) Stress before compounding - 1,702 1,220 (2) Stress after compounding - 32.4 - 104 758 (3) Stress due to drying schrinkage 4.1 - 284 67 (4) Stress due to creep 1.7 - 44 10 (5) Stress due to temperature difference - 1.6 - 205 48 (6) = (1) 1,702 1,220 Allowable stress 1,765 2,625 (7) = (1) + (2) - 32.4 - 1,806 1,977 Allowable stress - 77.1 - 2,100 2,100 (8) = (1) + (2) + (3) + (4) - 26.6 - 2,134 2,055 Allowable stress - 77.1 - 2,415 2,100 (9) = (1) + (2) + (3) + (4) + (5) - 28.2 - 2,338 2,103		Due to creep		$.NCR = \overline{3.3}$	ton
Base Slab Flange Flange (1) Stress before compounding - 1,702 1,220 (2) Stress after compounding - 32.4 - 104 758 (3) Stress due to drying schrinkage 4.1 - 284 67 (4) Stress due to creep 1.7 - 44 10 (5) Stress due to temperature difference - 1.6 - 205 48 (6) = (1) - - 1,702 1,220 Allowable stress - - 1,765 2,625 (7) = (1) + (2) - 32.4 - 1,806 1,977 Allowable stress - - 77.1 - 2,100 2,100 (8) = (1) + (2) + (3) + (4) - 26.6 - 2,134 2,055 Allowable stress - - 77.1 - 2,415 2,100 (9) = (1) + (2) + (3) + (4) + (5) - 28.2 - 2,338 2,103	-	Stress (kg/cm²):	Ġ.		
(2) Stress after compounding -32.4 -104 758 (3) Stress due to drying schrinkage 4.1 -284 67 (4) Stress due to creep 1.7 -44 10 (5) Stress due to temperature difference -1.6 -205 48 (6) = (1) -1,702 1,220 Allowable stress -1,765 2,625 (7) = (1) + (2) -32.4 -1,806 1,977 Allowable stress -77.1 -2,100 2,100 (8) = (1) + (2) + (3) + (4) -26.6 -2,134 2,055 Allowable stress -77.1 -2,415 2,100 (9) = (1) + (2) + (3) + (4) + (5) -28.2 -2,338 2,103					
(3) Stress due to drying schrinkage 4.1 -284 67 (4) Stress due to creep 1.7 -44 10 (5) Stress due to temperature difference -1.6 -205 48 (6) = (1) -1,702 1,220 Allowable stress -1,765 2,625 (7) = (1) + (2) -32.4 -1,806 1,977 Allowable stress -77.1 -2,100 2,100 (8) = (1) + (2) + (3) + (4) -26.6 -2,134 2,055 Allowable stress -77.1 -2,415 2,100 (9) = (1) + (2) + (3) + (4) + (5) -28.2 -2,338 2,103	- '	(1) Stress before compounding	-	- 1,702	1,220
(4) Stress due to creep 1.7 -44 10 (5) Stress due to temperature difference -1.6 -205 48 (6) = (1) - 1,702 $1,220$ Allowable stress - 1,765 $2,625$ (7) = (1) + (2) -32.4 $-1,806$ $1,977$ Allowable stress -77.1 $-2,100$ $2,100$ (8) = (1) + (2) + (3) + (4) -26.6 $-2,134$ $2,055$ Allowable stress -77.1 $-2,415$ $2,100$ (9) = (1) + (2) + (3) + (4) + (5) -28.2 $-2,338$ $2,103$		(2) Stress after compounding	- 32.4	- 104	758
(5) Stress due to temperature difference -1.6 -205 48 (6) = (1) $-1,702$ $1,220$ Allowable stress $-1,765$ $2,625$ (7) = (1) + (2) -32.4 $-1,806$ $1,977$ Allowable stress -77.1 $-2,100$ $2,100$ (8) = (1) + (2) + (3) + (4) -26.6 $-2,134$ $2,055$ Allowable stress -77.1 $-2,415$ $2,100$ (9) = (1) + (2) + (3) + (4) + (5) -28.2 $-2,338$ $2,103$					
(6) = (1) - 1,702 1,220 Allowable stress - 1,765 2,625 (7) = (1) + (2) - 32.4 - 1,806 1,977 Allowable stress - 77.1 - 2,100 2,100 (8) = (1) + (2) + (3) + (4) - 26.6 - 2,134 2,055 Allowable stress - 77.1 - 2,415 2,100 (9) = (1) + (2) + (3) + (4) + (5) - 28.2 - 2,338 2,103			-		
Allowable stress $ -1,765$ $2,625$ (7) = (1) + (2) -32.4 $-1,806$ $1,977$ Allowable stress -77.1 $-2,100$ $2,100$ (8) = (1) + (2) + (3) + (4) -26.6 $-2,134$ $2,055$ Allowable stress -77.1 $-2,415$ $2,100$ (9) = (1) + (2) + (3) + (4) + (5) -28.2 $-2,338$ $2,103$		(3) Stress due to temperature difference	-,1.0	- 205	48
(7) = (1) + (2)	,				
Allowable stress -77.1 $-2,100$ $2,100$ $(8) = (1) + (2) + (3) + (4) -26.6 -2,134 2,055 Allowable stress -77.1 -2,415 2,100 (9) = (1) + (2) + (3) + (4) + (5) -28.2 -2,338 2,103$					
Allowable stress -77.1 $-2,415$ $2,100$ $(9) = (1) + (2) + (3) + (4) + (5)$ -28.2 $-2,338$ $2,103$					
Allowable stress -77.1 $-2,415$ $2,100$ $(9) = (1) + (2) + (3) + (4) + (5)$ -28.2 $-2,338$ $2,103$		(8) = (1) + (2) + (3) + (4)	- 26.6	- 2,134	2,055
The same of the sa		Allowable stress			
Allowable stress <u>- 88.7 - 2,730 2,415</u>					
		Allowable stress	- 88.7	- 2,730	2,415


Table 4.4.12: STRESS ANALYSIS RESULT OF COMPOSITE GIRDER (NO. <u>3</u> MAIN GIRDER, NO. <u>3</u> SECTION)


and the second s			
- Bending moment before compounding.		MS = <u>101.8</u>	9 t•m
- Bending moment after compounding	••••	MV = <u>90.9</u>	1 i•m
- Bending moment by dead load after com			<u>5</u> t•m
- Base slab thickness) cm
- Haunch		and the second second	-
- Effective base slab width			-
- Distance between fixed points of flange.		P = 490.1	_ cm
- Section and sectional area of steel girder:	*		
• Upper flange : 230 • Web : 1,550 • Lower flange : 280	n (mm) x 11 x 9 x 11	<u>139.5</u> (SN	<u>(cm²)</u> 450Y) 450Y) 450Y)
TOTAL	•	195.6	
- Sectional area and moment of inertia of a	rea:		
Section	nal_Area	Moment of In	ertia
• Concrete section : AC = 4. • Steel girder section : AS =	m²)	of Area (cr = 110,832 = 620,099	<u>n4)</u>
- Geometrical moment of area of concrete	(AC x DC)	QC = 97.22	<u>6</u> cm³
- Distance and section modulus (See Fig.	4.4.7):		
Distance (cm)	Section	Modulus (cm²)	
D=94.7_	WSU =		•
DS =	WSL =		
DC = 23.7 $YSU = 80.8$	WVU= WVL=		
$YSL = \frac{30.3}{76.4}$	1772	133220	
YVU = 9.8			
YVL = <u>147.4</u> YVC = <u>32.7</u>		•	
- Axial force			
Due to drying schrinkage		NSH = 17.1	ton
Due to creep	·	NCR = 2.5	ton
• Due to temperature change		NTM = 12.0	ton
- Stress (kg/cm²):	Concrete	Upper	Lower
	Base Slab	Flange	Flange
(1) Stress before compounding		- 1,328	1,255
(2) Stress after compounding	- 21.8	- 46	687
(3) Stress due to drying schrinkage	3.1	- 297	110
(4) Stress due to creep	1.9	- 42	. 16
(5) Stress due to temperature difference	- 0.6	- 207	75
(6) = (1)	-	- 1,328	1,255
Allowable stress	-	- 1,412	2,625
(7) = (1) + (2)	- 21.8	- 1,373	1,942
Allowable stress	- 77.1	- 2,100	2,100
(8) = (1) + (2) + (3) + (4)	- 16.8	- 1,712	2,068
Allowable stress	- 77.1	- 2,415	2,100
(9) = (1) + (2) + (3) + (4) + (5)	- 17.5	- 1,918	2,144
Allowable stress	- 88.7	2.730	2,415

