

第4章 洪水吐

4.1 概要

洪水吐の形式及び位置は、以下のような比較検討によって決められる。

- 一 洪水吐の導流部は、開水路シュートタイプをして分流トンネルで導流するトンネルタイプが考えられる。以上の2タイプにおける検討結果として、トンネルタイプのように洪水の制御に関しての安全性に欠け、またその上建設費用が大きくなること等を考慮すれば、今回のようなプロジェクトでは開水路シュートタイプがより良いと考えられる。
- 洪水吐の位置は、右岸側か左岸側が考えられる。しかしながら、地形状態を考慮すると左岸側に位置する。また、特に建設費用が安くなることからより良いと考えられる。
- 洪水吐調節施設は、次のような3タイプが考えられる: (i) ゲートタイプ、(ii) 無調節タイプ(ゲート無)、(iii) (i)と(ii) の組合せタイプ。プロジェクトでは、安全性の面から無調節(ゲート無)タイプを採用する。つまり、洪水時にゲートの操作ミスかその機能不良によること等の事故の発生による洪水を避け、より安全性をもとめたためである。
- 無調節堰のタイプは、横越流型を採用する。つまり、明らかに掘削量が少なく経済 性にすぐれているからである。

減勢工は、エンドシルを持つ水平水叩き式(減勢池を持つ減勢工)、跳水式、傾斜水叩き式 をしてローラーバケット式等を比較検討した結果、水平水叩き式を採用する。

- (i) 跳水式、傾斜水叩き式及びローラーバケット式の3タイプは、水平水叩き式に比べ 減勢工の底部の掘削量が過剰に多い。つまり、それらの水理学的機構により、河川下 流部の水位より十分低い所に減勢工の底部を設置しなければならないことにある。以 上より、上記の3タイプは経済的でないと考えられる。
- (ii) スキージャンプ式は、水脈の射出のエネルギー拡散を行うために大きな減勢池が必要となる。その大きさは、長さ100m幅30mそして深さ13mぐらいとなる。このタイプは、その建設費において減勢池タイプの減勢工のおよそ93%で建設でき、わずかながら経済性には富んでいるものの、しかしながら、このタイプはものすごい水脈の射出による河岸及び河床の著しい洗掘を引き起こすことが考えられる。できるならば、このようなタイプはさけるのが望ましいと思われる。

4.2 水理設計

可能最大洪水流量は、以下のように解析される。

確率年	最大洪水流量	比 流 量	クリーガー値
(年)	(m³/sec)	(m³/sec/km²)	С
10	440	8	17
20	520	9	19
100	1.040	18	37
200	1, 200	22	46
]能最大洪水時	1,890	35	72

上記の可能最大洪水時の流量曲線は図-4.2.1に示される。

洪水吐の計画洪水流量は、洪水吐の必要余裕高を安全側に設定するために可能最大洪水流量の 1,890m³/秒とする。しかしながら、滅勢工の設計においては、その計画洪水流量は 100年確率洪水で設定する。これは、滅勢工は、100 年確率洪水までの洪水流量エネルギーを完全に減勢させることを目的としているわけである。

つまり、洪水流量エネルギーの不十分な減勢効果によって減勢工が破壊したとしても、 プロジェクト全体の致命的欠点にはならず、 100年確率洪水流量で設計した方が経済的観 点からより良いと考えられることに基づいている。

しかしながら、可能最大洪水時に滅勢工の側壁を越流してはならない。つまり、洪水時 の過大な越流は、主ダムを破壊する可能性がある。

供水吐の基本設計は水理解析を通して行われ、その当初設計案を図ー4.2.2 に示す。供水吐は最重要構造物であることから、基本設計の確認または必要な調整を行う目的で水理模型実験を実施した。

水理模型実験の結果はモデルテスト・レポートに詳述されているが、模型実験が指摘した主な事項は以下の通りである。

(1) 洪水吐流入部両サイドの形状修正

基本設計では流入部両サイドに収流が生じ、越流流量の減少が生じる。そのため、流入 部両サイドに長さ12mの導流壁を貯水池方向に設ける必要がある。また、この導流壁端の 形状は半径4.5mの半円形とする。 以上の形状修正によって、流量係数(C)と越流水深(H)の関係は次式で表わされる。

 $C = -0.0301 \cdot H^2 + 0.2645 \cdot H + 1.5827$

供水時水位がEL. 193.5m (H = 4.5 m)の時、流量係数(C)は2.16となる。

(2) 越流堤頂長の修正

上記の流入部の改善を行ってもなお越流容量が不足である。越流堤頂長を当初計画の90 mから2 m増加すれば十分に必要容量を満足することになり、その修正が必要である。洪水時水位がEL. 193.5mの越流流量は以下のようになる。

Q = C · B · H $^{3/2}$ = 2.16 × 92.0 × 4.5 $^{3/2}$ = 1.897 m 3 /sec

(3) トランジション部の改善

望ましいフルード数は0.5以下であることから、トランジション部下流端のシルは4.0 mの高さとすべきだが、越流堤での完全越流を保持するために、3.0 mの高さとする必要がある。また、シルによる減勢効果を高めるために、シルの位置はトランジション曲がり部より下流に設ける必要がある。さらに、トランジション部の長さが不足しているために、曲がり部で収流が生じシュートウェイの流況が望ましくないので、長さを延長するとともに曲がり部をさらになめらかな曲線とする必要がある。

以上を考慮した設計変更後のトランジション部の形状は、図-4.2.3に示されている。 この改善後の形状によると、シュートウェイの衝撃波そして減勢池の偏心跳水はなくなり、 十分な減勢効果が得られる。

(4) サイド・チャンネルの底勾配の調整

模型実験の結果として、シル頂部の高さがサイド・チャンネル上流端より約1.0 m高い時、その流況は十分満足されることが判明されている。それ以降、シル頂部が2 m 嵩上げされることによってサイド・チャンネルの上流端も2 m 上げられ、その標高はEL 180.0 m となり、サイド・チャンネルの底勾配は1:23が妥当であると考えられる。

(5) 減勢工の深さ (減勢工下流端のシル高) の修正

各種の減勢工深さについて実験した結果、計画洪水流量 1.040 m³/秒(100年確率洪水) に対して、減勢工の深さ9 mは潜流となりがちであり、深さ7 mでは跳水のために流況が 望ましくないことがわかる。その深さは 8.0mとすることが最も望ましい跳水を生ずる。

但し、可能最大洪水流量1,890m³/secに対しては、跳水は完全ではなく上記のどの深さでも撹流する。深さ8m及び9mにおいては跳水はかなり安定しているものの、深さ7.0mでは減勢池に射流を生じ、跳水はかなり不安定となる。

以上の結果、減勢池の深さは8.0 mが妥当である。この条件下では、水は強く跳びはねまた撹流による断続的な水面の変動により、時々越流することが考えられるため、減勢工の側壁をより高くする必要がある。

(6) シュート・ブロックの設置

減勢工の入口にシュート・ブロックを設けると跳水が非常に安定するとともに、減勢工内の水位変動も安定する。高さ2m、幅2.5mのシュート・ブロックを6個設置すると効果的である。故に、減勢工の側壁は、シュート・ブロックの高さによって最小高さが決められるわけである。

(7) シュート・ウェイの側壁の高さ

可能最大洪水流量 1.890m³/秒を余裕高1.5 m以上をもって安全に流下させるシュート・ウェイの側壁高は 7.0mである。

以上の模型実験結果に基づいて、洪水吐の最終設計を図-4.2.3 に、またその設計にお ける水理条件を図-4.2.4 から図-4.2.9 に示す。

4.3 構造解析

4.3.1 安定解析

4.3.1.1 概要

洪水吐は、開水路シュートをもつ横越流式で、その形状は長さ約 364m、幅約30mそして高さ75mである。

洪水吐は、以下の構造物より構成される。

- (i) サイド・チャンネル
- (ii) シュート・ウェイ
- (iii) 減勢池 (減勢工)

これらの構造物は、アンカーバーをともなう鉄筋コンクリート構造物である。

以下に、これらの構造物の安定解析を示す。

4.3.1.2 設計値

構造物の安定解析に使用する設計値は、設計基準及び現場試験結果に基づいて決める。 その要約を以下に示す。

(1) 単位体積重量

材料	•	単位体積重量(t/m³)
コンクリート		2. 40
水		1.00
埋め戻し材	(湿潤)	1. 94
	(水中)	1. 23
ダム盛土用中央コア材	(湿潤)	1. 72
	(水中)	0.80
ダム盛土用ロック材 及び捨石材	(湿潤)	2. 14
	(水中)	1. 37

(2) 内部摩擦角 (φ) 及び粘着力 (C)

材料	ø (度)	C (t/m²)
埋め戻し材 (自由排水状態)	36	0
基礎岩盤:強風化部分	35	20
微風化部分	40	190
ダム盛土用中央コア材	30	0
ダム盛土用ロック材及び捨石材	40	0

(3) コンクリートとの摩擦係数

	_		材	料	係数
<u>. </u>	_	コンク	リート	とコンクリート	0.65
-		コンク	1 1 – F	と岩	0.55

(4) 弾性係数 (E) 及びポアソン比 (P)

	. 材	料	E (kg/cm²)	Р
鉄筋コ	ンクリート	$(\sigma_{28} = 180 \text{kg/cm}^2)$	2. 40 × 10 ⁵	0.2
	•	$(\sigma_{28} = 210 \text{kg/cm}^2)$	2.55×10^{s}	0.2
鋼鉄	(鉄筋)		2.1 × 10 °	0.3

- 注) 1) σ 28は、材令28日における圧縮強度を意味する。
 - 2) 鉄筋コンクリート $\sigma_{28}=210 \, \mathrm{kg/cm^2}$ は、洪水吐の橋梁だけに適用される。

(5) 地震係数

水平地震係数 Kh=0.05 垂直地震係数 Kv=0

(6) 許容応力度

(A) 鉄筋コンクリート

設計基準強度		許容	応 力 度	(kg/cm²)	
(kg/cm²)	圧 縮	引張り	せん断*	付 着	支 圧
180	60	_	4.8	14	54
210	70		4, 25/8, 5	16	63

*印の許容せん断応力度は、左側の値が梁そして右側の値はスラブを表わしている。

(B) 鋼 鉄(鉄筋)

引張応力度 (極限)

3,000kg/cm²

(C) 基礎岩盤

支圧応力度

 $100 \, t/m^2$

4.3.1.3 設計基準

洪水吐の安定解析は、擁壁の設計基準に従う。そして、その要約を以下に示す。

(1) 死荷重

死荷重は、載荷している土、水及びその他の荷重と構造物の自重をいう。次式に従って

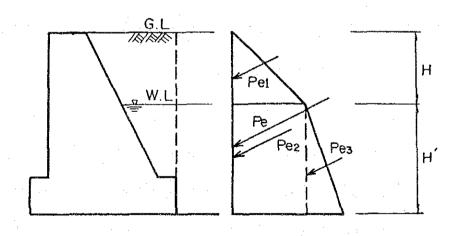
計算される。

ここに、W : 死荷重 (t)

Uw: 単位重量(t)

V: 体積 (三次元による計算の場合) A: 面積 (二次元による計算の場合)

上記の死荷重にかかる地震力は、次式で計算される。


$$W s = K h \cdot W$$

ここに、Ws: 地震力 (t)

Kh:水平地震係数

(2) 土 圧

構造物にかかる土圧は、以下のように表わされる。

$$P e = P e_1 + P e_2 + P e_3$$

= $\frac{1}{2} K \gamma_{wet} H^2 + K \gamma_{sub} H H' + \frac{1}{2} K \gamma_{sub} H'^2$

ここに、 Pe :土 圧 (t)

K :土压係数

γwet:湿潤単位体積重量 (t/m³)

ү sub: 水中単位体積重量 (t/m³)

H:地盤面から地下水位までの高さ (m)

H′:地下水位から基礎地盤面までの高さ(m)

下記に示すクーロンの土圧係数を本構造計算の土圧計算に適用する。

(A) 常 時

$$Ka = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}\theta \cdot \cos(\theta + \delta) \cdot \left(1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \alpha)}{\cos(\theta + \delta) \cdot \cos(\theta - \alpha)}}\right)^{2}}$$

ここに、 heta : 壁背面と鉛直面とのなす角

φ : 土のせん断抵抗角

δ : 壁背面と土との間の壁面摩擦角

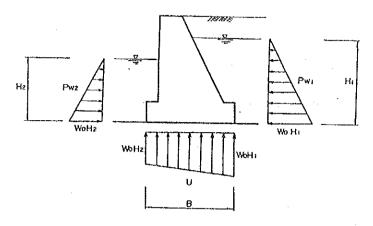
α: 地表面と水平面とのなす角

(B) 地震時

$$Kae = \frac{\cos^{2}(\phi - \theta_{0} - \theta)}{\cos\theta_{0} \cdot \cos^{2}\theta_{0} \cdot \cos(\delta + \theta + \theta_{0}) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \alpha - \theta_{0})}{\cos(\delta + \theta + \theta_{0}) \cdot \cos(\theta - \alpha)}}\right]^{2}}$$

 $z = tan^{-1}Kh/(1-Kv)$

Kh: 水平地震係数 Kv: 垂直地震係数


θ,φ,δ及びα: 上記と同様

壁面摩擦角(δ)は、条件に従って以下のように与えられる。

δ
φ
$\phi/2$
φ/3
0

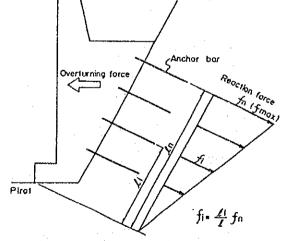
(3) 水 圧

構造物にかかる水圧は、以下のように表わされる。

静水圧
$$Pw_1 = \frac{1}{2}W_0H_1^2$$
 $Pw_2 = \frac{1}{2}W_0H_2^2$

(t)

ここに、Pw₁、Pw₂:静水圧


U: 揚圧力 (t)

W。:水单位体積重量 (t/m³)

(4) アンカーバーの抵抗力

剛度なコンクリート構造物において、各アンカーバーの反力は、転倒中心点からの距離

に比例する。

最上部のアンカーバーの期待できる最大抵抗力は、

 $f \max = \sigma_{su} \cdot As$

ここに、 f max : 最大抵抗力 (kg)

σsu : 棒鋼の極限引張応力度 (kg/cm²)

As : 棒鋼の断面積 (cm²)

アンカーバー	σ_s (kg/cm ²)	As(cm²)	f max(t)
D 25	3.000	5.067	15. 201
D 29	3,000	6.424	19. 272
D 32	3,000	7.942	23, 826

全抵抗モーメントは、次式によって計算される。

$$M \, r \, a = \sum_{i=1}^{n} f \, i \cdot L \, i = \sum_{i=1}^{n} \frac{f \, n}{L \, n} \cdot L \, i^{\, 2}$$

ここに、 Mra : アンカーバーの全抵抗モーメント (t・m)

fi : アンカーバー1本当りの抵抗力 (t)

Li : 転倒中心からアンカーバーまでの距離 (m)

fn: 最上部のアンカーバーの抵抗力(t)

Ln : 転倒中心から最上部アンカーバーまでの距離 (m)

n: アンカーバーの総本数

(5) 安定計算

(A) 滑動に対する検討

滑動に対する安定は、以下のように安全率を計算して判定する。

$$F s = \frac{f \Sigma V + r A + H a}{\Sigma H}$$

ここに、 Fs : 滑動に対する安全率

ΣV : 全鉛直力 (t) ΣH : 全水平力 (t)

r : せん断力 (=20t/m²:土質試験結果)

A: 擁壁底部接地面積 (m²)

Ha: アンカーバーの抵抗力(t)(水平方向)

(B) 転倒に対する検討

転倒に対する安定は、次式によって検討する。

$$F s = \frac{\Sigma M r}{\Sigma M t}$$

ここに、 Fs : 転倒に対する安全率

ΣMr: 全抵抗モーメント (t・m) ΣMt: 全転倒モーメント (t・m)

(C) 基礎の地耐力に対する検討 基礎の支持応力度は、以下のように計算する。

$$q = \frac{\sum V}{B} < q_a$$

ここに、 q : 基礎の最大支持力度 (t/m)

q。: 基礎の許容支持力度 (t/m)

ΣV : 全鉛直力 (t) B : 基 礎 幅 (m)

(D) 安全率·

 安定解	近項目	常時	地震時*
 滑	動	1. 5	1. 2
転	倒	1. 5	1. 2
(補強	擁壁)	.* 	

*印は、地震時及び洪水時とする。

4.3.1.4 解析

サイド・チャンネル、トランジション部、シュートウェイそして減勢池の側壁の安定解析は、表-4.3.1から表-4.3.12に示す。

安定解析の解析ケース及び荷重状態は、以下に要約し示す。また、断面の名称等は、洪 水吐設計図に示されているものを引用している。

解析断面	荷重ケース			荷	重	状	能
(a) サイド・チャンネル (断面 C-C)	ケース「						・チャンネルの側壁ま サイド・チャンネルに
		_	水圧は貯力	×池 0	の高力	k位J	以上の状態で作用
	ケースⅡ	<u>-</u>	地震時				
			その他の乳	€件1	まケ・	- ス	「と同様

(b) トランジション 部 ケースI (断面 G-G) 水圧は側壁の裏側にのみ作用 ケースⅡ 胡鹤姐 - 地震力は側壁にかかり、ケース【同様に水圧 は側壁の裏側にのみ作用 (c) シュートウェイ ケースI 一常時 (断面 A-A) - 側壁には水圧は作用しない。つまり、側壁裏 側の水位は排水システムによって低下させら れている状態 ケースⅡ - 地震時 ケースIの状態で地震力作用 (d) 减勢池 ケースI (断面 E-E) - 側壁の減勢池側及び裏側の水位は、EL.120.0 mでバランスしている状態 ケースⅡ - 地震時 - ケース I の状態で地震力作用 - 洪水時 ケースⅡ

- 減勢池内の水位はBL,120.0m (水理模型実験 結果によると、洪水時の減勢池側水位は、 EL. 120.0m以下に下がらないため)
- 減勢池側壁裏側の水位はEL.126.0m(EL.126.0 m以上の水は排水孔より排出されるため)
- ケースI (e) 減勢池 (断面 1-1) 減勢池内には水圧を考慮せず、側壁裏側に土 圧及び水圧を考慮
 - ケースⅡ - 地震時
 - 上記ケースIの条件下で、地震力を考慮

(2) 側壁のアンカーバー長の検討

アンカーバーは、岩盤に開けられたアンカー孔周辺のせん断強さ及びアンカーバーとモルタルの付着強さによって検討される。また、その必要長は、アンカーバーにかかる荷重によって決められる。

直径64mmのアンカー孔そしてD29mmのアンカーバー(鉄筋)と仮定すると、アンカーバーの必要長は以下のように計算され求められる。

 $F_1 = \pi \cdot D_1 \cdot \tau_1 \cdot L = 3.14 \times 6.4 \times 2 \times 100 = 4,019 \text{ kg/m}$ $F_2 = \pi \cdot D_2 \cdot \tau_2 \cdot L = 3.14 \times 2.9 \times 14 \times 100 = 12,748 \text{ kg/m}$

ここに、 F₁: アンカー孔1m当りの周辺せん断強さ (kg/m)

 F_2 : アンカーバー1 m当りのアンカーバーと

モルタルの付着強さ (kg/m)

D₁: アンカー孔の直径 (cm)

D₂: アンカーバーの直径 (cm)

τ、: アンカー孔周辺のせん断強さ (= 2 kg/cm²:強風化岩)

τ₂: アンカーバーとモルタルの付着強さ (=14kg/cm²)

L : アンカーバー長 (100cm)

上記より、アンカー孔周辺のせん断強さは、アンカーバーとモルタルの付着強さに比べかなり小さく、よって、アンカーバーの必要長はアンカー孔周辺のせん断強さによる抵抗力によって決まる。

アンカーバー必要長は、次式によって計算される。

 $L = L_o + F \max / (\pi \cdot D_1 \cdot \tau_1)$

ここに、 L : アンカーバー必要長 (m) 🗀

Fmax: アンカーバーにかかる最大引抜力 (kg)

D₁: アンカー孔の直径 (64×10⁻³m)

τι: アンカー孔周辺のせん断強さ (2×10⁴kg/m²)

L。: 掘削による岩のゆるみ長 (0.5m)

アンカーバーの必要長は、

鉄筋 D29アンカーバーの場合

$$L = 0.5 + 19.272 \times 10^{\circ} / (3.14 \times 64 \times 10^{-3} \times 2 \times 10^{4})$$

= 5.295 (m)

鉄筋 D 25アンカーバーの場合

$$L = 0.5 + 15.201 \times 10^{3} / (3.14 \times 64 \times 10^{-3} \times 2 \times 10^{4})$$

= 4.282 (m)

(3) サイド・チャンネル・スラブのアンカーバーの検討

サイド・チャンネル・スラブは、サイド・チャンネルが空の状態では揚圧力の影響を受け、その揚圧力に抵抗するためにアンカーバーを設置する。アンカーバーは、鉄筋 D 29を 1 m間隔とする。

可能最大洪水後におけるアンカーバーにかかる引抜力、アンカーバーの引張応力度及び アンカーバーの必要長は、以下のように計算される。

アンカーバーにかかる引抜力

自 重 : $W = 1.0 \text{m} \times 1.0 \text{m} \times 1.5 \text{m} \times 2.4 \text{t/m}^3 = 3.6 \text{ t}$

揚圧力 : $U = (193.5 - 176.0) t/m^2 \times 1.0 m \times 1.0 m = 17.5 t$

実質作用力 : F = U - W = 17.5 - 3.6 = 13.9 t

アンカーバーの引張応力度

 $\sigma_s = F / As = 13,900 \text{kg} / 6.602 \text{cm}^2 = 2,105 \text{kg/cm}^2$

F s = 3, $000 \angle 2$, 105 = 1, 43 > 1, 2

アンカーバーの必要長

アンカー孔周辺のせん断強さによってその必要長は、以下のように計算される。

$$L = L_0 + F / (\pi \cdot D_1 \cdot \tau_1)$$

$$= 0.5 + 13.900 / (3.14 \times 64 \times 10^{-3} \times 2 \times 10^{4})$$

$$= 3.96 \text{ m}$$

(4) 減勢池スラブのアンカーバーの検討

減勢池スラブは、可能最大洪水後に残留している揚圧力によって影響を受けるため、それに抵抗するアンカーバーを設置する。アンカーバーは、鉄筋D32を1.5 m間隔とする。

アンカーバーにかかる引抜力、アンカーバーの引張応力度及びアンカーバーの必要長は、 以下のように計算される。

アンカーバーにかかる引抜力

荷重状態としては、可能最大洪水時には滅勢池内の水位はEL.132.0mまで上がり、洪水後はEL.120.0m(エンド・シル頂部)まで水位低下するものとする。しかしながら、洪水後においても減勢池スラブには水位EL.132.0mの水位における揚圧力が作用しているとする。

故に、 自 重 : W=(2.4×1.5+1.0×8.0)×2.25=26.10 t

揚圧力 : U = (132-112) × 2.25=45,0 t

実質作用力 : F=U-W=45.0-26.10=18.9 t

アンカーバーの引張応力度

 $\sigma_s = F / As = 18,900 \text{kg} / 8.038 \text{cm}^2 = 2,351 \text{ kg/cm}^2$

 $F s = 3.000 \times 2.351 = 1.28 > 1.2$

アンカーバーの必要長

アンカー孔周辺せん断強さによって、その必要長は以下のように計算される。

 $L = L_0 + F / (\pi \cdot D_1 \cdot r_1)$

 $= 0.5 + 18.900 / (3.14 \times 64 \times 10^{-3} \times 2 \times 10^{4})$

 $= 4.7 \, \mathrm{m}$

(5) 流入部の検討

流入部の安定解析は、表-4.3.13から表-4.3.15に示されている。

安定解析は、以下のような3ケースの荷重状態で行う。

(i)常時

貯水池の水位は、高水位EL. 189.0mとして、流入部の越流堰には5,5 mの揚圧力が作用するものとする。(EL. 189.0-EL. 183.5=5.5m)

(ii) 地震時

常時の条件下で地震力を考慮する。

(iii) 可能最大洪水後

洪水時の残留水圧による揚圧力10.0mが作用するものとする。 (EL, 193.5-EL, 183.5=10.0m) 検討の結果、アンカーバーは可能最大洪水後の荷重状態に支配されることが判明する。よって、アンカーバーは鉄筋 D 29を 2.0 m間隔で設置する。また、アンカーバーの必要長は、アンカー孔周辺のせん断強さによって L=5. 295 m と計算されるが、現実的に L=5.5 m とする。

4.3.2 鉄筋コンクリート応力度検討

洪水吐の側壁に関する鉄筋コンクリートの応力度検討は、データ・ブックの計算結果からの曲げモーメント、せん断力及び軸力に基づいて行う。その結果を表 - 4.3.16から表 - 4.3.20に示す。

応力度の検討において、地震時及び洪水時はその許容応力度の割り増しを50%行う。

構造形体を考慮して、最小鉄筋量はD19@200 とする。

4.4 橋 梁

4.4.1 概要

洪水吐は、ダムサイトの左岸取付部に位置し、その形式は開水路シュートをもつ横越流 式である。

橋梁は、ダム天端高EL.196.0mに開水路シュートを渡るように設ける。橋長は29.8mで、 そのスパーン長は29.0mとする。橋梁は経済性を考慮して、車輛がすれ違える最小幅とし て、その有効幅を6.0mとする。

橋梁は、車輛設計荷重を14.0 t に設定した二等橋として設計する。二等橋とした理由は、 将来このダム堤頂を道路として使用するかもしれないという考えがあるが、もし一般交通 用道路として使用することになったとしても幹線としてではなく、支線道路となるためで ある。

橋は合成桁として設計する。即ち、鋼製桁とコンクリート・スラブが一体となって荷重 に対して働くものである。この項では、合成桁の解析を主に行う。また、その他の詳細設 計についてはデータ・ブックを参照されたし。

4.4.2 設計条件

橋梁の設計条件は、日本道路協会の道路橋示方書に基づいており、以下にその要約を示す。

_	橋	長	29,8m
<u> </u>	スパーン	長	29. 0 m
	等	級	二等橋
_	上部エタ	1プ	合成桁
_	橋	幅	7. 2m
	有効幅	<u> </u>	6. 0 m
_	舗装厚	<u></u>	50mm
	床版厚		180mm
_	許容応力	度	
•	コンクリ	ートの許容圧縮応力度	77.1kg/cm² (*)
•	鉄筋の許	容引張り応力度 (SS41)	1,400kg/cm² (**)
•	鋼材の許	容圧縮及び引張り応力度 (SM50Y)	2.100kg/cm² (**)
	経筋の熱	容せん断応力度 (SS41)	800kg/cm² (**)
_	3/ 10) 4/ 01		
		容せん断応力度 (SM50Y)	1,200kg/cm² (**)

- (*) 床版のコンクリートの設計基準強度は $\sigma_{cx}=270 \, kg/cm^2$ より小さくてはならなく、その許容圧縮応力度も上記の 1/3.5倍以上とする。
- (**) 上記の許容応力度もまた、日本道路協会の道路橋示方書による。
- コンクリートの許容圧縮応力度の割増し 荷重の組合せに、版のコンクリートと鋼桁との温度差を考慮する場合は、そのコンクリートの許容圧縮応力度を15%割増しする。
- 鋼材の許容応力度の割増し鋼材の許容応力度は、以下のように割増しする。

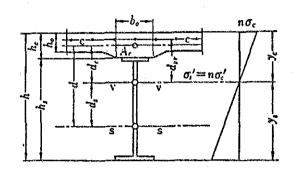
	荷重の組合	ì t			割増し係数 (%)
1	クリープの影響と乾 影響を除く主荷重	燥収新	首の		0
0		圧	縮	緑	15
2 .	主 荷 重	引	張	縁	0
	主荷重+床版と鋼	圧	縮	縁	30
3	桁の温度差	引	張	縁	15
	th 111 ++ ==	圧	縮	縁	25
4	施工時荷重	引	張	縁	25

- 床版と鋼桁の温度差 10℃ - 水平地震係数 Kh=0.05

— 風 速 40m/sec

4.4.3 設計計算

(1) 合成桁の解析


図-4.4.1に合成桁の骨組図、横断面及び寸法を示す。合成桁は、3 主桁(G-1.G -2 , G-3) と 7 横桁から構成される。

コンクリート床版と鋼桁の合成前及び合成後の荷重図を、それぞれ図ー4.4.2及び図ー4.4.3 に示す。橋梁は、自動車荷重T-14を基準とする2等橋であり、その活荷重を考慮する。主桁を設計する場合の活荷重は、次のとおりとする。車道部分には1橋につき1個の線荷重と等分布荷重よりなるし荷重を負載するものとする。し荷重は、考えている点または部材に最も不利な応力が生じるように、橋の幅5.5 mまでは線荷重Pおよび等分布荷重p(主載荷荷重)を、残りの部分にはそれらのおのおのの1/2(従載荷荷重)を負載するものとする。故に、荷重の組合せは、図に示されているように上記の活荷重に死荷重を組合せたものとなる。

解析は、表-4.4.1から表-4.4.12に示す。表-4.4.1から表-4.4.3には、フレーム解析によって得られた骨組みに生ずる曲げモーメント、せん断力及び反力を示す。また、表-4.4.4から表-4.4.12には、合成桁の各部における応力度を示す。図-4.4.4から図-4.4.6には、合成桁に関する全ての解析結果を図に示す。これによれば、全ての応力度は許容応力度内にあることがわかる。

(2) 応力度の検討に関する計算式

曲げモーメントによる応力度

ここに、 V-V : 合成中立軸

: コンクリート床版の重心軸

S - S: 鋼桁の重心軸

: コンクリート床版の断面積

As : 鋼桁の断面積

n = Es/Ec : コンクリートと鰯のヤング係数比 (n = 7.0)

応力度は、以下のように計算される。

 $\sigma_c = M \cdot y_c / I_v$ $\sigma_{c'} = M \cdot y_{c'} / I_v$

 $\sigma_s = n \cdot M \cdot y_s / I_v$

ここに、 σc : 床版上縁の応力度

σc': 床版下縁の応力度

σs : 鋼桁の引張り側の縁応力度

σs': 鋼桁の圧縮側の縁応力度

Iv: 合成中立軸 V-Vに関する合成断面二次モーメント

 $I v = I s + \frac{1}{n} \cdot I c + A s \cdot d s^{2} + \frac{1}{n} \cdot A c \cdot d c^{2}$

Is: 鋼桁の重心軸S-Sに関する断面二次モーメント

Ic: 床版の重心軸C-Cに関する断面二次モーメント

クリープによる応力度

クリープによる応力度は、次式によって計算される。

$$\sigma_{cu} = \frac{Nc}{Ac} - \frac{Mc}{Ic} \cdot Ycu$$

$$\sigma_{ct} = \frac{Nc}{Ac} - \frac{Mc}{Ic} \cdot YcI$$

$$\sigma_{su} = \frac{Ns}{As} - \frac{Ms}{Is} \cdot Ysu$$

$$\sigma_{sl} = \frac{Ns}{As} - \frac{Ms}{Is} \cdot YsI$$

$$Nc = -Ns = -Nco(1-e^{-F\phi_1})$$

$$N co = -N so = -\frac{d c A c}{n I v} \cdot M o$$

$$Ms = d \cdot Nc$$

$$Mc = \frac{H}{1-F} (e^{-F \phi_1} - e^{-\phi_1})$$

ここに、σου : クリープによる床版上縁の応力度

σει: クリープによる床版下縁の応力度

σς。 : クリープによる鋼桁の圧縮側の縁応力度

σ ει : クリープによる鋼桁の引張側の縁応力度

Nc, Ns : クリープによる床版及び鋼桁の重心軸に作用する

增加分軸力

Mc, Ms : クリープによる床版及び鋼桁の重心軸に作用する

增加分軸力

Nco, Nso: 床版及び鋼桁の重心軸に作用する初期軸力

Mco. Mso: 床版及び鋼桁の重心軸に作用する初期曲げモーメント

Ycu: 床版の重心軸から上縁までの距離

Ycl : 床版の重心軸から下縁までの距離

Ysu : 鋼桁の重心軸から圧縮側の縁までの距離 Ysl : 鋼桁の重心軸から引張側の縁までの距離

φ, : クリープ係数 (φ,=2.0)

-Mo : 合成桁に作用する曲げモーメント

$$F = \frac{1}{1 + \frac{Ac}{n As} + \frac{Acd^{2}}{1 c + n Is}}$$

$$H = \frac{Ic}{n Is} \cdot d \cdot F \cdot Nco$$

温度差による応力度(床版と鋼桁)

温度差による応力度は次式によって計算される。

$$\pm \sigma_{cu} = \frac{Nc}{Ac} - \frac{Mc}{Ic} \cdot Y cu$$

$$\pm \sigma_{cl} = \frac{Nc}{Ac} + \frac{Mc}{Ic} \cdot Y cl$$

$$\pm \sigma_{su} = \frac{Ns}{As} - \frac{Ms}{Is} \cdot Y su$$

$$\pm \sigma_{sl} = \frac{Ns}{As} + \frac{Ms}{Is} \cdot Y sl$$

$$Nc = -Ns = \frac{\alpha t Es}{\frac{n}{Ac} + \frac{1}{As} + \frac{n d^{2}}{Ic+n Is}}$$

$$Mc = Nc \cdot d \cdot \frac{Ic}{Ic + n Is}$$

$$Ms = Nc \cdot d \cdot \frac{n \cdot l \cdot c}{l \cdot s + n \cdot l \cdot s}$$

ここに、 σ : 温度差による増加分応力度

 α : (1.2×10^{-5})

t : 床版と鋼桁の温度差 (t=10℃)

Nc: 温度差による床版の重心軸に作用する増加分軸力

Mc: 温度差による床版の重心軸に作用する増加分曲げモーメント

Ns: 温度差による鋼桁の重心軸に作用する増加分軸力

Ms: 温度差による鋼桁の重心軸に作用する増加分曲げモーメント

コンクリート床版の乾燥収縮による応力度

コンクリート床版の乾燥収縮による応力度は次式によって計算される。

$$\sigma_{su} = \frac{Ns}{\Lambda s} - \frac{Ms}{Is} \cdot Ysu$$

$$\sigma_{sl} = \frac{Ns}{As} + \frac{Ms}{Is} \cdot Ys1$$

$$\sigma_{eu} = \frac{Nc}{Ac} - \frac{Mc}{Ic} \cdot Ycu$$

$$\sigma_{cl} = \frac{Nc}{Ac} + \frac{Mc}{Ic} \cdot Ycl$$

$$Ns = Nc = \frac{\epsilon_s \cdot Es}{\frac{n\phi + \frac{1}{As} + \frac{n\phi d^2}{Ic + n\phi Is}}$$

$$M\,s \;=\; \frac{n\;\phi\;\;I\;s}{I\;c+\;n\;\phi\;\;I\;s} N\;c\;\cdot\;d$$

$$Mc = \frac{Ic}{Ic + n \varphi Is} Nc \cdot d$$

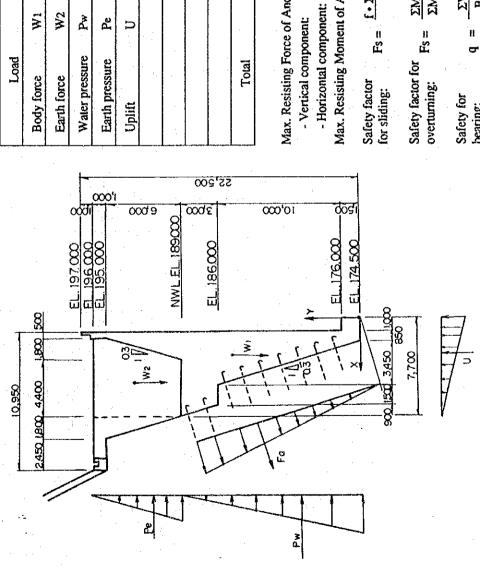
$$n_{\varphi} = n (1 + \frac{\varphi_2}{2})$$

($\phi_2 = 4.0$)

ここに、σ : 乾燥収縮による増加分応力度

εs : 最終収縮度 (εs = 18×10⁻⁵)

Nc, Mc: 乾燥収縮による床版の重心軸に作用する増加分軸力及び


曲げモーメント

Ns, Ms: 乾燥収縮による鋼桁の重心軸に作用する増加分軸力及び

曲げモーメント

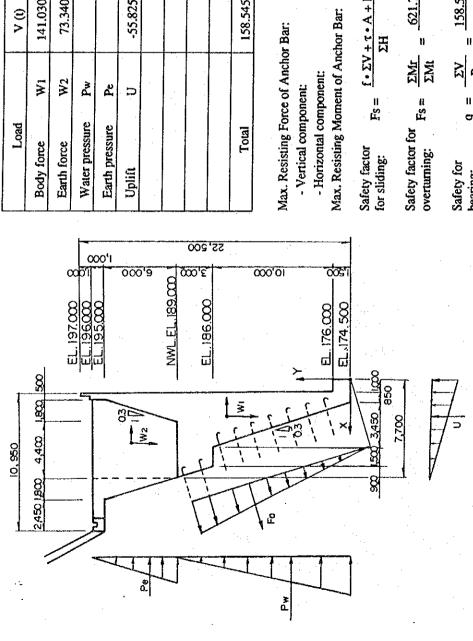
付

荷重ケース [洪水吐安定解析結果 表一4.3.

Load	:	(e) ^	(E) H	(m) X	Y (m)	Mv (tm) MH (tm)	MH (t.m)
Body force	Wı	141.030		2.848		401.645	
Earth force	W2	73.340		4.955		363.419	
Water pressure	Pw		105.125		4.833		508.104
Earth pressure	Pe		11.407	-	16.833		192.023
Uplift	· U	-55.825		2.567		-143,284	
. •.							
Total		158.545	116.532			621.779	700.128

Fa = 66.093 (t) (1.5m pitch) Va = 18.992 (t)Max. Resisting Force of Anchor Bar:

Max. Resisting Moment of Anchor Bar: Ma = 713.008 (Lm) Ha = 63.306 (t)


 $[\mathbf{f} \cdot \Sigma \mathbf{V} + \tau \cdot \mathbf{A} + Ha] = \frac{0.55 \times 158.545 + 20 \times 3.35 + 63.306}{2.55 \times 158.545 + 1.5} = 1.87 > 1.5$ Σ H

621.779 + 713.008 700.128 II ΣMr ΣMt

bearing:

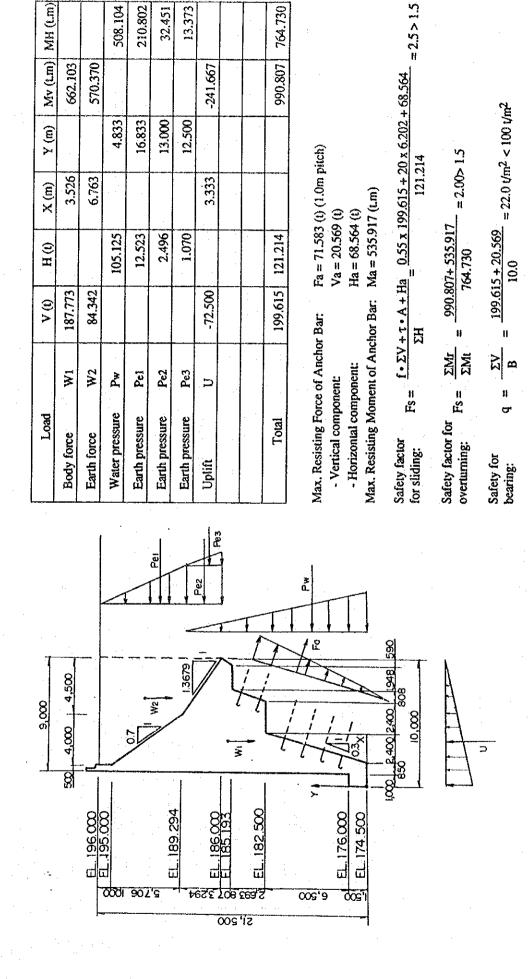
Note: As for Section name, see Figures of spillway structure design.

(断面C-C、荷重ケース 洪水吐安定解析結果 表一4.3.2

Load		Θ>	(i) H	X (m)	Y (m)	Mv (tm)	Mv (tm) MH (tm)
Body force	Wı	141.030	7.052	2.848	10.312	401.645	72.713
Earth force	W2	73.340	3.667	4.955	18.213	363.419	66.788
Water pressure	Pw		105.125		4.833		508.104
Earth pressure	Pe		12.469		16.833		209.889
Uplift	U	-55.825		2.567		-143.284	
	-						
Total		158.545	128.312			621.779	857.494

Fa = 66.093 (t) (1.5m pitch)

Va = 18.992 (t)

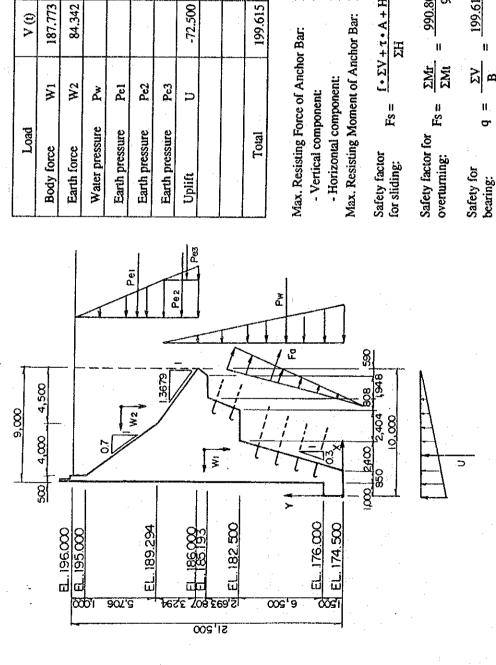

Ma = 713.008 (Lm)Ha = 63.306 (t)

 $f \cdot \Sigma V + \tau \cdot A + Ha = \frac{0.55 \times 158.545 + 20 \times 3.35 + 63.306}{...} = 1.7 > 1.2$ Σ H

= 1.56 > 1.2 621.779+713.008 857.494 $\frac{158.545 + 18.992}{-} = 23.06 \, t/m^2 < 100 \, t/m^2$ bearing:

Note: As for Section name, see Figures of spillway structure design.

荷重ケース」 (兩面 G - G、 拱水吐安定解析結果 ဌာ - 4.3. 类


764.730

508.104

210.802 32.451 13.373

Note: As for Section name, see Figures of spillway structure design.

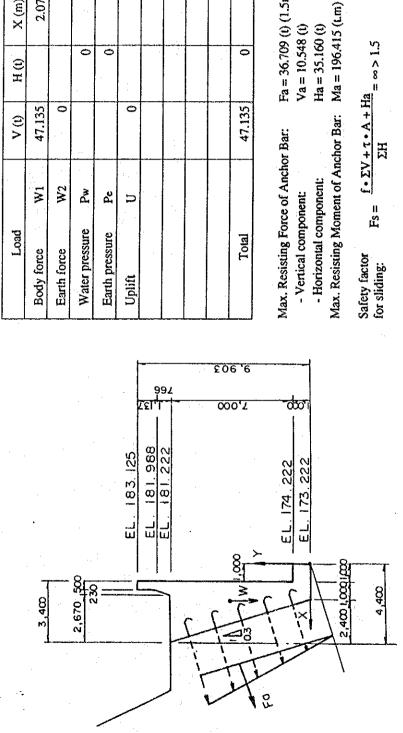
 \Box ĸ 1 荷重ケ <u>ر</u> ا (新岡 G 供水吐安定解析結果 ₹Ţ က √; 1 表

508.104 236.091 36.344 Mv (t.m) | MH (t.m) 102.013 75.221 14.977 972.750 662.103 570.370 990,807 -241.667 17.837 10.866 4.833 16.833 13.000 12.500 Y (m) 3.526 6.763 3.333 X (m) 9.389 4.217 14.025 2.796 1.198 105.125 137.091 (E) 187.773 84.342 199.615

Fa = 71.583 (t) (1.0m pitch)

Va = 20.569 (t)

Ma = 535.917 (t.m)Ha = 68.564 (t)


= 2.2 > 1.2f · EV + t · A + Ha 0.55 x 199.615 + 20 x 6.202 + 68.564

= 1.57 > 1.2990.807 + 535.917

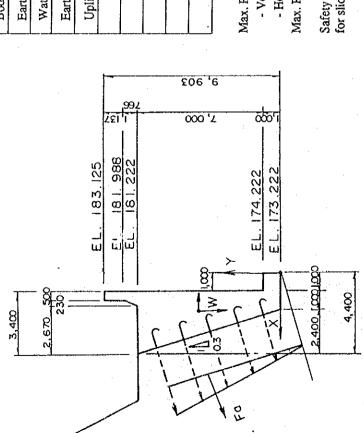
 $= 22.0 \text{ ym}^2 < 100 \text{ ym}^2$ 199.615 + 20.569

Note: As for Section name, see Figures of spillway structure design.

A、荷重ケース ļ (断面 W 洪水吐安定解析結果 رغا <u>4</u>. ઝ 表

Load	V (t)	H (t)	X (m)	Y (m)	Y (m) Mv (Lm) MH (Lm)	MH (Lm)
Body force W1	47.135		2.073		97.700	
Earth force W2	0				0	
Water pressure Pw		0				0
Earth pressure Pe		0				0
Uplift U	0				0	
Total	47.135	0			97.700	0

Fa = 36.709 (t) (1.5m pitch)


Va = 10.548 (t)Ha = 35.160(t)

SMt SMt Safety factor for overturning:

 $= 13.1 \text{ y/m}^2 < 100 \text{ y/m}^2$ 47.135 + 10.548 ≥ m Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

١ ٢ 荷重ケ - A . (断面A 洪水吐安定解析結果 ယ 表一4.3.

Load		(i) A		H(t) X(m)	Y (m)	Y (m) Mv (tm) MH (tm)	MH (t.m)
Body force	W1	47.135	2.357	2.073	4.733	97.700	11.153
Earth force	W2	0				0	
Water pressure	Pw		0				0
Earth pressure	Pe		0	-			0
Uplift	υ	0				0	
Totai		47.135	2.357			97.700	11.153

Fa = 36.709 (t) (1.5m pitch)Va = 10.548 (t)Max. Resisting Force of Anchor Bar:

Vertical component:

- Horizontal component:

Max. Resisting Moment of Anchor Bar: Ma = 196.415 (Lm) Ha = 35.160 (t)

 $f \cdot \Sigma V + \tau \cdot A + Ha = 0.55 \times 47.135 + 20 \times 2.0 + 35.16 = 42.9 > 1.2$ ΣН FS II Safety factor for sliding:

 $\frac{97.700 + 196.415}{26.37} = 26.37 > 1.2$ 11.153 ZW ZW Safety factor for Fs = overturning:

 $= 13.11 \text{ t/m}^2 < 100 \text{ t/m}^2$ 47.135 + 10.548 ≥ m Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

荷重ケース [] (断面臣一臣、 供水吐安定解析結果 4.3 表

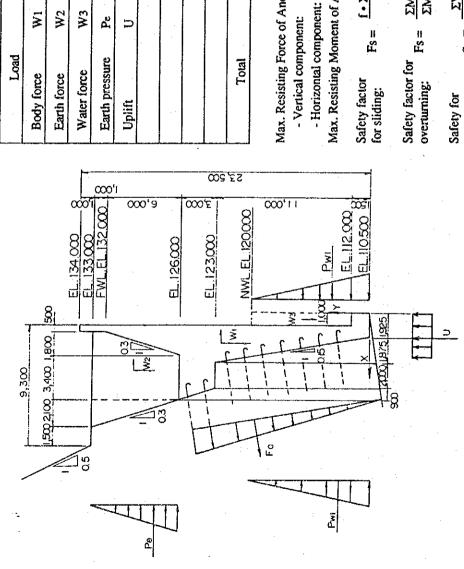
~	-						
203 431	468.240			11.407	140.840		Total
				٠.	-		
				-			
	53.307		1.675		-31.825	D	Uplifi
203.431		17.833		11.407		Pe	Earth pressure
	4.000		0.500		8.000	W3	Water force
	266.147		4,448		59.830	W2	Earth force
	251.400		2,398		104.835	W1	Body force
Mv (tm) MH (tm)	Mv (Lm)	Y (m)	X (m)	H(t)	(i) A		Load

Fa = 70.787 (t) (1.5m pitch)

Va = 20.341 (t)Ha = 67.802 (t)

Max. Resisting Moment of Anchor Bar: Ma = 773.896 (Lm)

f · ΣV + t · A + Ha 0.55 x 140.840 + 20 x 3.925 + 67.802 11.407 468.240+773.896 203.431


 $=24.1 \text{ Vm}^2 < 100 \text{ Vm}^2$ 140.840+ 20.341 bearing:

6.7

SECTION AND LOADING CONDITION

Note: As for Section name, see Figures of spillway structure design.

荷重ケースⅡ (断面区一区、 供水吐安定解析結果 表一4.3.8

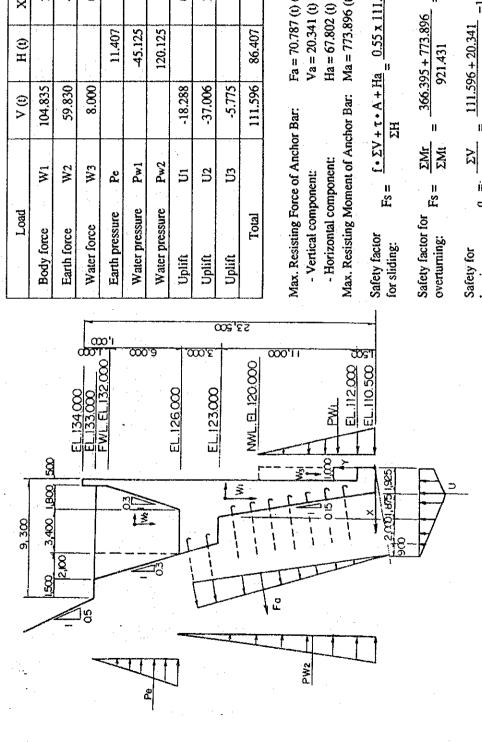
Load		V (t)	H (t)	X (m)	Y (m)	Mv (Lm) MH (Lm)	MH (t.m)
Body force	W1	104.835	5.242	2.398	12.034	251.400	63.079
Earth force	W2	59.830	2.992	4.448	19.261	266.147	57.620
Water force	W3	8.000		0.500		4.000	
Earth pressure	Pe		12.469		17.833		222.357
Uplift	D	-31.825		1.675		-53.307	
					·		
			-				
Total		140.840	20.702			468.240	343.057

Fa = 70.787 (t) (1.5m pitch)Va = 20.341 (t)Max. Resisting Force of Anchor Bar:

- Vertical component:

Ha = 67.802 (t)

Ma = 773.896 (Lm)Max. Resisting Moment of Anchor Bar:


 $[1 \cdot \Sigma V + \tau \cdot A + Ha] = \frac{0.55 \times 140.840 + 20 \times 3.925 + 67.802}{2.2} = 10.81 > 1.2$ ΣH FS

468.240+ 773.896 343.057 ZWI ZWI FS Safety factor for

 $=24.1 \text{ ym}^2 < 100 \text{ ym}^2$ 140.840+ 20.341 6.7 bearing:

Note: As for Section name, see Figures of spillway structure design.

K ļ 荷重ケ Ē I (断面区 洪水吐安定解析結果 ರಾ က ৺ 1 表

366.395 Fa = 70.787 (t) (1.5m pitch) 86.407

921.431

-7.411 130.139

860.896

-17.602

0.963 3.517 1.283

120.125 45.125 11.407

203.431 -142.896

17.833 3.167 7.167

MH (t.m)

Mv (Lm)

Y (m)

X (m)

H(C)

251.400

2.398 4.448 0.500

266.147 4.000

> Max. Resisting Moment of Anchor Bar: Ma = 773.896 (Lm) Ha = 67.802(1)

f · ZV + t · A + Ha 0.55 x 111.596 + 20 x 3.925 + 67.802 = 2.4 > 1.2 86.407

= 1.24 > 1.2366.395 + 773.896 921.431

 $=19.7 \text{ ym}^2 < 100 \text{ ym}^2$ 111.596 + 20.3416.7 H Œ Ĥ Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

荷重ケース [] [加] [] [] 表一4.3.10 供水吐安定解析結果

							,	
	Load		V (t)	H (t)	X (m)	Y (m)	Mv (Lm) MH (Lm)	MH (t.m)
	Body force	W1	105.720		2.907		307.276	
2,000	Earth force	W2	22.002		5.558		122.285	
2,200 3,300 2,200	Water pressure	Pw		2.000	:	0.667		1.333
8,	Earth pressure	Pel		5.820		3.667		21.340
	Earth pressure	Pe2		1.484		1.000		1.484
	Earth pressure	Pe3		0.593		199.0		0.396
	Uplift	U	000'L-		3.500		-24.500	
033		٠	:					
- Social Str.	Total		120.722	9.897			405.061	24.553

FWL. EL. 132000

တာ'င

∞0,7

000,81

EL. 134000

Fa = 0Max. Resisting Force of Anchor Bar:

- Vertical component:

Va = 0

- Horizontal component:

Ha = 0Max. Resisting Moment of Anchor Bar:

Ma = 0

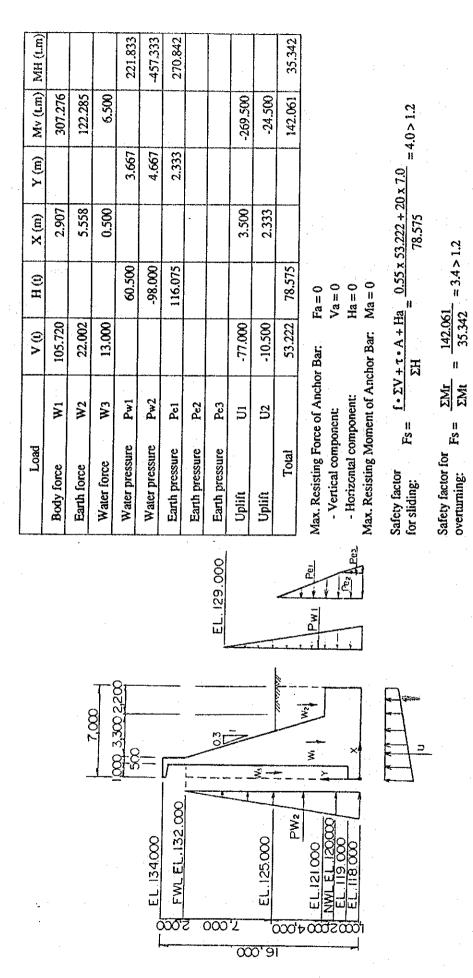
f • EV + t • A + Ha 0.55 x 120.722 + 20 x 7.0 9.897 FS= Safety factor for sliding:

 $\frac{405.061}{24.553} = 16.5 > 1.5$ EMt EMt Safety factor for overturning:

 $=22.4, 12.1 \text{ t/m}^2$ $\frac{+6\times0.348}{7.00}$ ਮੂ= ਸੂ= ਸ਼ Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

表一4.3.11 洪水吐安定解析結果(断面1-1、荷重ケース11)


ائي.			Load		V (t)	(1) H	X (m)	Y (m)	Mv (t.m)	Mv (tm) MH (tm)
			Body force	W1	105.720	5.286	2.907	4.916	307.276	25.988
	2,000		Earth force	W2	22.002	1.100	5.558	5.152	122.285	5.668
	1,000 3,300 2,200		Water pressure	Pw		2.000		0.667		1.333
	200		Earth pressure	Pel		6.362		3.667		23.326
EL 134.000			Earth pressure	Pe2		1.622	-	1.000		1.622
8 FWL EL 132.000			Earth pressure	Pe3		0.649		0.667		0.432
			Uplift	U	-7.000		3.500		-24.500	
	<u></u>									
EL.125.000		*	Total		120.722	17.018			405.061	58.369
		P								
8 EL 121 000			Max. Resisting Force of Anchor Bar: - Vertical component:	ce of Ancho		Fa=0 Va=0				
7		FW. FE. Res	- Horizontal component:	nponent:		Ha = 0				
]	Max. Resisting Moment of Anchor Bar:	ment of And		Ma = 0				
	- n		Safety factor for sliding:	$F_S = \frac{f \cdot \Sigma V}{I}$	$f \cdot \Sigma V + \tau \cdot A + Ha = \frac{0.55 \times 120.722 + 20 \times 7.0}{17.018}$	a = 0.55 x	120.722 +		= 12.1 > 1.2	0)
· .			Safety factor for everturning:	$Fs = \frac{\Sigma Mr}{\Sigma Mt}$	= 58.369	$\frac{51}{9} = 6.94 > 1.2$	> 1.2	•		

000'91

 $q = \frac{\Sigma}{B} \left[1 + \frac{6e}{B} \right] = \frac{120.722}{7.00} \left[1 + \frac{6 \times 0.628}{7.00} \right] = 26.5, 8.0 \text{ } \mu\text{m}^2$ Safety for bearing:

Note: As for Section name, see Figures of spillway structure design.

表一4.3.12 洪水吐安定解析結果(断面1-1、荷重ケース皿)

SECTION AND LOADING CONDITION

$q = \frac{2xV}{B} = \frac{2x53.222}{6.015} = 17.7 \text{ y/m}^2 < 100 \text{ y/m}^2$

Safety for

bearing:

Note: As for Section name, see Figures of spillway structure design.

表-4.3.13 越流堰安定解析結果(常時)

•			••••••••••••••••••••••••••••••••••••••	à M			
9.50	0.70 4.80 2.00 2.00	EL.189.0	ww w w w w w w w w w w w w w w w w w w	W. + W2	nd	7	¥Fa

Load		V (t)	H (t)	(m) X	Y (m)	Mv (cm)	MH (Lm)
Body force	W1	1.21		0.47		0.57	
	W2	30.36		5.10		154.84	
	W3	22.08		3.90	4.833	86.11	508.104
	W4	18.40		6.50	16.833	119.60	192.023
Water force	Ww	8.00		8.50		68.00	
Water pressure	Pw		-15.13		1.38		-27.63
Uplift	Ú	-52.25			4.50		-235.13
-							
Total		27.80	-15.13			429.12	-262.76

Max. Resisting Force of Anchor Bar: Fa = 48.18 (1)(1.5mpitch)

Max. Resisting Moment of Anchor Bar: Ma = 216.81 (t.m)

Safety factor Fs = $\frac{f \cdot \Sigma V + \tau \cdot A + Ha}{\Sigma H} = \frac{0.55 \times 27.8 + 20 \times 9.5}{15.13} = 13.6 > 1.5$

Safety factor for $F_S = \frac{\Sigma M_L}{\Sigma M_1} = \frac{429.12 + 216.81}{262.76} = 2.46 > 1.5$

Safety for $q = \frac{\Sigma V}{B} = \frac{27.80 + 48.18}{9.5} = 8.0 t/m^2 < 100 t/m^2$

Note: As for Section name, see Figures of spillway structure design.

表一4.3.14 越流堰安定解析結果(地震時)

	≋	≱			Max. Max		Safe
				<u>}</u>			
		یے ب		444			
Т	0	EL. 189.0	∞ t	091	3		
	200 200	리	*			->	
22	5.0		<u>₹</u>	W2 W2		->	F.
9.50	4.80	`	\× L			->	
	070						
<u>J</u> _	<u>이</u>		 ≻	-≩√•			

Load		(1) A	(i) H	X (m)	Y (m)	Mv (Lm)	MH (Lm)
Body force	W1	1.21	-0.06	0.47	0.50	0.57	-0.03
	W2	30.36	-1.52	5.10	0.75	154.84	-1.14
	W3	22.08	-1.10	3.90	2.83	86.11	-3.11
	W4	18.40	-0.92	6.50	3.50	119.60	-3.22
Water force	Ww	8.00		8.50		68.00	
Water pressure	Pw		-15.13		1.83		-27.63
	Pd		-0.467		3.10		-1.45
Uplift	Ū	-52.25			4.50		-235.13
:							
Total		27.80	-19.20			429.12	-271.71

Max. Resisting Force of Anchor Bar: Fa = 48.18 (1)(1.5mpitch)
Max. Resisting Moment of Anchor Bar: Ma = 216.81 (1.m)

Safety factor Fs = $\frac{f \cdot \Sigma V + \tau \cdot A + Ha}{\Sigma H} = \frac{0.55 \times 27.8 + 20 \times 9.5}{19.20} = 10.7 > 1.5$

Safety factor for $Fs = \frac{\Sigma Mr}{\Sigma Mt} = \frac{429.12 + 216.81}{271.71} = 2.38 > 1.$

Safety for $q = \frac{\Sigma V}{B} = \frac{27.80 + 48.18}{9.5} = 8.0 t/m^2 < 100 t/m^2$

Note: As for Section name, see Figures of spillway structure design.

表一4.3.15 越流堰安定解桥結果(洪水後)

				May May	Safe
		82			
9.50	0.70 4.80 2.00 2.00 EL.189.0	OO D	GT 7M 1M		Fa

Load	(i) A	(i) H	X (m)	Y (m)	Y (m) Mv (Lm) MH (Lm)	MH (t.m)
Wı	1.21		0.47		<i>15</i> 0	
W2	30.36		5.10		154.84	
W3	22.08		3.90	4.833	86.11	
W4	18.40		6.50	16.833	119.60	
Ww	8.00		8.50		68.00	
Pw		-15.13		1.83		-27.63
						:
מ	-95.00			4.50		427.50
	-14.95	-15.13			429.12	455.13

Max. Resisting Force of Anchor Bar: Fa = 48.18 (1)(1.5mpitch)
Max. Resisting Moment of Anchor Bar: Ma = 216.81 (Lm)

Safety factor Fs =
$$\frac{\tau \cdot A}{\Sigma H}$$
 = $\frac{20 \times 9.5}{15.13}$ = 12.6> 1.2

Safety factor for $F_S = \frac{\Sigma Mr}{\Sigma Mt} = \frac{429.12 + 216.81}{455.13} = 1.42 > 1.2$

表-4.3.16 鉄筋コンクリート応力度検討 (洪水吐、断面C-C)

Load			Inte	Internal force	Ce			Sectio	Sectional dimension	nsion					
Cond-	Cond- Member	Spot	Spot Direc-	Σ	σ.	z	q	٦	ם	ס	ö	p/.p	M=M+Nu	M=M+Nu M'/bd^2 Q/bd	O/bd
tion			tion	(t.m)	=	Ξ	(cm)	(cm)	(mo)	(mo)	(cm)		(f.m)	(t.m) (kg/cm2) (kg/cm2)	(kg/cm2)
Nor.	EL.189			26.60	11.40		100	230		220			26.6	0.55	0.518
Seis.	EL.189			33.94	13.75	-	100	230		220			33.94	0.701	0.625
Nor.	Toe			16.98 33.96	33.96		100	150		140			16.98	0.866	2.426
Seis.	Тое			16.98	33.96	•	100	150		140			16.98	0.866	2.426
											:				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,			,								

		Sectional area of reinforcing bar	forcing bar		= du	Coeff. from Nomogram	rom Non	nogram	Stre	Stress (kg/cm2)	n2)
f=M/N+u	f/d	As	As'	As'/As n.As/bd	n.As/bd	Ö	S	Z	SiGc≖	SIGs=	Tau=
		(cm2)	(cm2)						CM//bd/2	CM/bd^2 nSM/bd^2	pq/DZ
		D19@200 = 14.33	-		0.010	0.010 15.9	105	1.05	8.7	866	0.5
		D19@200 = 14.33			0.010	0.010 15.9	105	1.05		1104	0.7
		D19@200 = 14.33			0.015	13.2 70.3	70.3	1.06	11.4	914	2.6
		D19@200 = 14.33			0.015	0.015 13.2 70.3 1.06	70.3	1.06	11.4	914	2.6
·								·			

n=Es/Ec=15, Allowable stress: SiGca=60 & 90(*) kg/cm2, SiGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2
* : Allowable stresses marked with (*) are applied for the sesmic and flood conditions.

表-4.3.17 鉄筋コンクリート応力度検討(洪水吐、断面G-G、A-A)

	Ö	72)		ro.	ရ		T]		1	 סַ						
	pq/O	(kg/cr		0.015	1.189					m2)	Tau=	ZQ/bd		2.5	ε.		habane per cit	
	M'/bd^2	(kg/cm2) (kg/cm2)		0.839	0.660					ss (kg/cm2)		nSM'/bd^2		885	442			
	M'=M+Nu	(t.m)		16.45	5.35					Stress	SIGc=	CM/bd^2		11.0	7.2			-
	d'/d									nogram	Z			1.06	1.07			
	ġ.	(cm)					ŧ			Coeff. from Nomogram	တ			2.07	44.6			
ension	О	(cm)		140	06					Coeff.	L			13.2	10.9			
Sectional dimension	ח	(cm)								= du	As'/As n.As/bd			0.015	0.024		:	
Section	ч	(сш)		150	100						As'/As				-			
	q	(cm)		100	100								-				-	
	Z	(1)		•						bar	As	(cm2)	-					
rce	Ö	(1)		32.90	10.70	: 1				inforcing								
Internal force	M	(t.m)		16.45	5.35					Sectional area of reinforcing				4.33	4.33			
Int	Direc-	tion								tional ar	As	(cm2)	-	D19@200=14.33	D19@200=14.33	: :.		
	Spot			ဝ ဝ	A-A					Sec				D19	D19			:
							. :		i		f/d							
	Cond- Member			Тое	Toe	-					ַם.							
Load	Cond-	tion	Nor.	& Seis	Seis.		: :: ::- ::-				f=M/N+u							

Allowable stress: SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 *: Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

表-4.3.18 鉄筋コンクリート応力度検討 (洪水吐、断面E-E)

Load			Inte	Internal force	е			Sectional	ì	dimension					
Cond- Member	mber	Spot	Spot Direc-	Σ	o	z	Ω	ų		О	o,	۵,,۵	M'=M+Nu	M'/bd^2	Q/bd
tion			tion	(t.m)	Ξ	Ξ	(cm)	(cm)	(cm)	(cm)	(cm)		(t.m)	(kg/cm2) (kg/cm2)	(kg/cm2)
Nor.&								1		: :					
Flood EL.126.00	126.00			26.60	11.40		100	230		220			26.6	0.55	0.518
Seis. El.	EL.126.00			34.34	13.79	-	100	230		220			34.34	0.71	0.627
Nor.&			-									-		and the control of th	
Seis.	Toe			12.50	25.00		100	150		140			12.5	0.638	1.786
Flood	Toe			11.80	23.60		100	150		140			11.8	0.602	1.686
						•	_	-							
		Sec	Sectional area	ea of reinforci	Ē	bar			= du	Coeff. 1	from Nomogram	nogram	Stre	Stress (kg/cm2)	т2)
n+N/W=J	f/d		As			As,		As'/As	As'/As n.As/bd	ပ	S	Z	SIGC=	SIGs=	Tau=
			(cm2)			(cm2)						:	CM'/bd^2	nSM'/bd^2	ZO/bd
	:	:				:									
	:	D19	D19@200=14.33	4.33					0.01	15.9	105	1.05	8.7	866	0.5
		D19	D19@200=14.33	4.33					0.01	15.9	105	1.05	11.3	1117	0.7
			• ;					:							
		D19	D19@200=14.33	4.33					0.015	13.2	70.3	1.06	8.4	673	1.9
		D19	D19@200=14.33	4.33				·	0.015	13.2	70.3	1.06	6.7	634	.8

n=Es/Ec=15, Allowable stress : SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 *: Allowable stresses marked with (*) are applied for the sesmic and flood conditions.

鉄筋コンクリート応力度検討 (洪水吐、断面 I - I(1))

Cond- Member Spot Lion Direc- M M Q tion (t.m) (t) Nor. EL.121.0 Back 4.96 3.72 Seis. EL.121.0 Back 23.60 7.46 Flood EL.121.0 Front 134.11 26.71	O (t) 3.72	z £	р (сш)	-			_				
tion (1.m) Back 4.96 Back 23.60 Front 134.11	3.72				Э	ס	.p	p/.p	M'=M+Nu M'/bd^2 Q/bd	M'/bd^2	Q/bd
Back 4.96 Back 23.60 Front 134.11	3.72	T	T	(cm)	(cm)	(cm)	(cm)		(t.m)	(t.m) (kg/cm2) (kg/cm2)	kg/cm2)
Back 23.60 Front 134.11		-	100	380		370			4.96	0.036 0.101	0.101
Front	7.46		100	380		370			23.6	0.172	0.202
	26.71		100	380		370			134.11	0.98	0.722
				1		****	* ***********************************				

		Sectional area of reinforcing bar	nforcing bar		= du	Coeff.	Coeff. from Nomogram	nogram	Stre	Stress (kg/cm2)	n2)
f=M/N+u	1/d	As	As'	As'/As	As'/As n.As/bd	၁	S	7	SIGc=	SIGs=	Tau=
		(cm2)	(cm2)						CM/bd^2	nSM7/od^2	ZQ/bd
		D19@200=14.33			0.006	20	173	173 1.03	0.7	94	0.1
		D19@200=14.33			0.006	20	173	1.03	3.4	447	0.2
		D19@200=14.33			900.0	20	173	1.03	19.6	2542	0.7
				:	:						

Allowable stress: SIGca=60 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 *; Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

表-4.3.20 鉄筋コンクリート応力度検討 (洪水吐、断面1-1(2))

Load	. (Inte	Internal force	Ce			Sectional	nal dime	dimension				-vac-re	
mper	Spot	Spot Direc-	≥ ;	σ	Z į	٩	Œ	>	ס	ō	g','g	M=M+Nu		Q/bd
	1	Tion	(r.m)	3	€	(cm)	(cm)	(cm)	(Cm)	(Cm)		(t.m)	(kg/cm2) (kg/cm2)	(kg/cm2)
Toe	Low		9.81	19.42	,	100	100		9.0			9.81	1.211	2.158
Toe	Low		11.66	22.93	•	100	100	ı	06			11.66	1.44	2.548
Toe	Upper		0.76	4.6	•	100	100		06			0.76	0.094	0.178
						-								
	Sec	Sectional area	🕇	reinforcing	har			- 60	Coeff	Coeff from Nomogram	a cabo	100	Stroco (balomo)	mo;
f=M/N+u f/d		As			As'		As'/As	As'/As n.As/bd	0	S	Z	SIGC=		Tau=
		(cm2)			(cm2)							CM'/bd^2	nSM7/bd^2	ZQ/bd
	D15	D19@200=14.33	1.33					0.024	10.9	44.6	1.07	13.2	810	2.3
	D15	D19@200=14.33	1.33	,			:	0.024	10.9	44.6	1.07	15.7	963	2.7
	D15	D19@200=14.33	1.33					0.024	10.9	44.6	1.07	0.1	63	0.2
		7												

Allowable stress : SIGca=50 & 90(*) kg/cm2, SIGsa = 1,800 & 2,700(*) kg/cm2, TAUa = 8 &12(*) kg/cm2 *: Allowable stresses marked with (*) are applied for the sesmic and flood conditions. n=Es/Ec=15,

表-4.4.1 合成桁 (主桁) の曲げモーメント表

	***				Ur	it : t•m
Nodal Point	D.L (B.C)	D.L (A.C)	L.L Max. (A.C)	L.L Min. (A.C)	Max. (A.C)	Min. (A.C)
No. 1 Main Girder	(G-1):				<u> </u>	
1	- 0.0	- 0.0	0.0	~ 0.0	0.0	- 0.0
4	100.1	22.5	66.8	- 3.7	89.3	17.7
	100.1	22.5	66.8	- 3.7	89.3	17.7
7	162.5	32.1	114.6	- 7.6	146.7	22.3
	162.5	32.1	114.6	- 7.6	146.7	22.3
10	182.2	27.8	137.3	- 11.4	165.1	12.9
	182.2	27.8	137.3	- 11.4	165.1	12.9
13	162.5	32.1	114.6	- 7.6	146.7	22.3
	162.5	32.1	114.6	- 7.6	146.7	22.3
16	100.1	22.5	66.8	- 3.7	89.3	17.7
	100.1	22.5	66.8	- 3.7	89.3	17.7
19	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
No. 2 Main Girder	(G-2)•		•			
2	0.0	0.0	0.0	- 0.0	0.0	- 0.0
5	98.0	10.5	80.1	- 0.0	90.6	10.4
.	98.0	10.5	80.1	- 0.0	90.6	10.4
8	161.2	26.1	122.7	- 0.0	148.8	26.1
U	161.2	26.1	122.7	- 0.0	148.8	26.1
11	184.6	46.5	128.2	- 0.0	174.7	46.5
11	184.6	46.5	128.2	- 0.0	174.7	46.5
14	161.2	26.1	122.7	- 0.0	148.8	26.1
144	161.2	26.1	122.7	- 0.0	148.8	26.1
17	98.0	10.5	80.1	- 0.0	90.6	10.4
17	98.0	10.5	80.1	- 0.0	90.6	10.4
20	0.0	0.0	0.0	- 0.0	0.0	- 0.0
	······································	 				
No. 3 Main Girder			0.0			
3	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0
6	100.1	22.5	66.8	- 3.7	89.3	17.7
	100.1	22.5	66.8	- 3.7	89.3	17.7
9	162.5	32.1	114.6	- 7.6	146.7	22.3
	162.5	32.1	114.6	- 7.6	146.7	22.3
12	182.2	27.8	137.3	- 11.4	165.1	12.9
	182.2	27.8	137.3	- 11.4	165.1	12.9
15	162.5	32.1	114.6	- 7.6	146.7	22.3
	162.5	32.1	114.6	- 7.6	146.7	22.3
18	100.1	22.5	66.8	- 3.7	89.3	17.7
the second	100.1	22.5	66.8	- 3.7	89.3	17.7
21	- 0.0	- 0.0	0.0	- 0.0	0.0	- 0.0

Note: B.C: Before compounding
A.C: After compounding
D.L: Moment due to dead load
L.L: Moment due to live load

合成桁 (主桁) のセン断力表 表 - 4.4.2

•					Ц	nit:ton
Nodal Point	D.L (B.C)	D.L (A.C)	L.L Max. (A.C)	L.L Min. (A.C)	Max. (A.C)	Min. (A.C)
No. 1 Main Girder	(G-1):	CONTRACTOR OF THE STREET, STRE	<u>ng a tata Parlamining mga mga pagtang appagagalan</u>		A CANADA AND AND AND AND AND AND AND AND AN	
1	25.5	6.2	16.3	- 0.8	22.5	5.1
4	17.1	3.4	13.2	- 2.0	16.6	0.7
	17.1	3.4	13.2	- 2.0	16.6	0.8
7	8.4	0.5	10.2	- 4.1	10.8	- 4.1
	8.4	0.5	10.2	- 4.1	10.8	- 4.1
10	- 0.4	- 2.3	7.5	- 6.5	7.5	- 8.8
	0.4	2.3	6.5	- 7.5	8.8	- 7.5
13	- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
	- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
16	- 17.1	- 3.4	2.0	- 13.2	- 0.8	- 16.6
	- 17.1	- 3.4	2.0	- 13.2	- 0.7	-16.6
19	- 25.5	- 6.2	0.8	- 16.3	- 5.1	- 22.5
N. O.M.: Clades	(C 1)			•		
No. 2 Main Girder		1.8	21.5	- 0.3	23.2	1.3
2	24.7 17.0	2.7	15.7	- 3.3	18.4	- 1.6
5		2.7	15.7	- 3.3 - 3.3	18.4	- 1.6
0	17.0	3.7	11.0	- 3.3 - 7.4	14.7	- 5.9
8	8.8	3.7 3.7	11.0	- 7.4 - 7.4	14.7	- 5.9
- 1	8.8		7.4	- 11.8	12.1	-10.7
11	0.7	4.7	11.8	- 11.6 - 7.4	10.7	- 12.1
• •	- 0.7	- 4.7 2.7	7.4	- 11.0	5.9	- 14.7
14	- 8.8	- 3.7	7.4 7.4	- 11.0	5.9	- 14.7
1.7	- 8.8	- 3.7	3.3	- 15.7	1,6	- 18.4
17	- 17.0	- 2.7	3.3	- 15.7 - 15.7	1.6	- 18.4
20	- 17.0	- 2.7		- 13.7	- 1.3	- 23.2
	- 24.7	- 1.8	0.3	- 21.3	- 1.3	- /.3.2
No. 3 Main Girder	(G-3):					
3	25.5	6.2	16.3	- 0.8	22.5	5.1
6	17.1	3.4	13.2	- 2.0	16.6	0.7
	17.1	3.4	13.2	- 2.0	16.6	0.8
9	8.4	0.5	10.2	- 4.1	10.8	- 4.1
	8.4	0.5	10.2	- 4.1	10.8	- 4.1
12	- 0.4	- 2.3	7.5	- 6.5	7.5	- 8,8
	0.4	2.3	6.5	- 7.5	8.8	- 7.5
15	- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
- -	- 8.4	- 0.5	4.1	- 10.2	4.1	- 10.8
18	- 17.1	- 3.4	2,0	- 13.2	- 0.8	- 16.6
-,-	- 17.1	- 3.4	2.0	- 13.2	- 0.7	- 16.6
21	- 25.5	- 6.2	0.8	- 16.3	- 5.1	- 22.5

Note: B.C: Before compounding
A.C: After compounding
D.L: Shear due to dead load
L.L: Shear due to live load

表-4.4.3 支点反力表

				<u>Unit: ton</u>
Nodal Point	D.L (B.C)	D,L (A.C)	L.L Max. (A.C)	Total Reaction Force
No. 1 Main Girder (G-1):				e e
1	25.5	6.2	16.3	48.0
19	25.5	6.2	16.3	48.0
No. 2 Main Girder (G-2):				
2	24.7	1.8	21.5	47.9
20	24.7	1.8	21.5	47.9
No. 3 Main Girder (G-3):	. —			
3	25.5	6.2	16.3	48.0
21	25.5	6.2	16.3	48.0

Note:

B.C : A.C : D.L : L.L : Before compounding After compounding Reaction due to dead load Reaction due to live load

表-4.4.4 合成桁の応力度検討(主桁G-1、断面1)

- Bending moment before compounding	************	MS = 101.88	t•m
- Bending moment after compounding			t•m
Bending moment by dead load after com	= =		•
- Base slab thickness	,		. cm
- Haunch			cm
- Effective base slab width			cm
- Distance between fixed points of flange.		P ≈ <u>490.0</u>	cm
- Section and sectional area of steel girder:			
• Upper flange : 230 • Web : 1,550 • Lower flange : 280	n (mm) x 11 x 9 x 11	139,5 (SM	(cm²) 50Y) 50Y) 50Y)
TOTAL		<u> 195.6</u>	
- Sectional area and moment of inertia of a	rea:		
• Concrete section : AC = 4. • Steel girder section : AS = • Composite section : AV =	195.6 IS 782 IV	Moment of Inc of Area (cm = 110,832 5 = 620,099 7 = 1,951,186	7)
- Geometrical moment of area of concrete	-	QC = <u>97,226</u>	cm ³
- Distance and section modulus (See Fig.4	1.4.7):		•
$\begin{array}{cccc} & & & & & & \\ & D = & & & & & \\ & DS = & & & & & \\ DS = & & & & & \\ DS = & & & & & \\ & & & & & \\ DS = & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	Section WSU = WSL = WVU =	= <u>8,116</u> = <u>199,399</u>	
_		NCH 171	
Due to drying schrinkage Due to creep Due to temperature change		.NCR = 2.5	ton ton ton
- Stress (kg/cm²):	Concrete Base Slab	Upper Flange	Lower Flange
(1) Stress before compounding	•	- 1,327	1,255
(2) Stress after compounding	- 21.8	- 46	687
(3) Stress due to drying schrinkage	3.1	- 297	110
(4) Stress due to creep	1.9	- 42	16
(5) Stress due to temperature difference	- 0.6	- 207	75
(6) = (1) Allowable stress		- 1,327 - 1,412	1,255 2,625
(7) = (1) + (2) Allowable stress	<u>- 21.8</u> - 77.1	- 1,373 - 2,100	1,942 2,100
(8) = (1) + (2) + (3) + (4)	- 16.8	- 1,712	2,068
Allowable stress		A 4 5 &	2,000
•	- 77.1	- 2,415	2,100
(9) = (1) + (2) + (3) + (4) + (5) Allowable stress			

表-4.4.5 合成桁の応力度検討 (主桁G-1、断面2)

~	Bending moment before compounding		MS = 182.18	t•m
-	Bending moment after compounding			t•m
-	Bending moment by dead load after compo			tem
-	Base slab thickness		.TS = 18.0	cm
-	Haunch			cm
-	Effective base slab width		.BS = 228.1	cm
~	Distance between fixed points of flange		.P = <u>490.0</u>	cm
-	Section and sectional area of steel girder:		•	
	• Upper flange : 280 • Web : 1,550 • Lower flange : 440	(mm) . x 14 x 9 x 19	Sectional Area 39.2 (SM: 139.5 (SM: 83.6 (SM:	50Y) 50Y)
	TOTAL		<u> 262.3</u>	
-	Sectional area and moment of inertia of are	a:	1 1 H	
	• Composite section : $AV = 8$	12) 05 IC 52,3 IS 49 IV		<u>.) </u>
-	Geometrical moment of area of concrete (QC = 134.244	cm ³
-	Distance and section modulus (See Fig. 4.	4.7):		
	Distance (cm) D = 105.8 DS = 73.1 DC = 32.7 YSU = 92.2 YSL = 66.1 YVU = 19.1 YVL = 139.2 YVC = 41.7 Axial force	WSU = WSL = WYU = WYL =	14.936 = 158,724	
	Due to drying schrinkage Due to creep Due to temperature change	************	$.NCR = _{3.3}$	ton ton ton
-	Stress (kg/cm²):		•	
		Concrete Base Slab	Upper Flange	Lower Flange
	(1) Stress before compounding		- 1,702	1,220
	(2) Stress after compounding	- 32.4	- 104	758
	(3) Stress due to drying schrinkage	4.1	- 284	67
	(4) Stress due to creep	1.7	44	10
	(5) Stress due to temperature difference	- 1.6	- 205	48
	(6) = (1)		- 1,702	1,220
	Allowable stress	-	- 1,765	2,625
	(7) = (1) + (2)	- 32.4	- 1,806	1,977
	Allowable stress	- 77.1	- 2,100	2,100
	(8) = (1) + (2) + (3) + (4)	- 26.6	- 2,134	2,055
	Allowable stress	- 77.1	- 2,415	2,100
		AA A	0.000	0.400

(9) = (1) + (2) + (3) + (4) + (5)Allowable stress

表-4.4.6 合成桁の応力度検討(主桁G-1、断面3)

	Bending moment before compounding		MS = 101.89	t•m
-	Bending moment after compounding	************	MV = 90.91	t•m
-	Bending moment by dead load after comp	ounding	MVD = <u>22.85</u>	t•m
-	Base slab thickness		TS = 18.0	cm
	Haunch		HH = 6.0	cm
-	Effective base slab width		BS = <u>228.1</u>	cm
-	Distance between fixed points of flange		P = <u>490.1</u>	cm
•	Section and sectional area of steel girder:		4.	
	• Upper flange : 230 • Web : 1.550 • Lower flange : 280 TOTAL	x 11 x 9 x 11	Sectional Area 25.3 (SMS 139.5 (SMS 30.8 (SMS 195.6	50 Y)
	the first control of the first	201	122.7	
-	Sectional area and moment of inertia of are	ear	the state of the state of	
	• Concrete section : AC = 4. • Steel girder section : AS = 1 • Composite section : AV = 7	95.6 IS 82 I	Moment of Inc. of Area (cm² C = 110,832 S = 620,099 V = 1,951,186OC = 97,226	
-	Geometrical moment of area of concrete		QC = <u>21.220</u>	CIN
-	Distance and section modulus (See Fig. 4	.4.7):	10 mg	
	Distance (cm) D = 94,7 DS = 71,0 DC = 23.7 YSU = 80.8 YSL = 76.4 YVU = 9.8 YVL = 147.4 YVC = 32.7	Section WSU WSL: WVU WVL:	= <u>8,116</u> = <u>199,399</u>	
_	Axial force			
	Due to drying schrinkage Due to creep Due to temperature change		NCR = <u>2.5</u>	ton ton ton
-	Stress (kg/cm²):	Concrete Base Slab	Upper Flange	Lower Flange
	(1) Stress before compounding	•	- 1,328	1,255
	(2) Stress after compounding	- 21.8	- 46	687
	(3) Stress due to drying schrinkage	3.1	- 297	110
	(4) Stress due to creep	1.9	- 42	16
	(5) Stress due to temperature difference	- 0.6	- 207	75
	(6) = (1) Allowable stress		- 1,328 - 1,412	1,255 2,625
	(7) = (1) + (2) Allowable stress	- 21.8 - 77.1	- 1,373 - 2,100	1,942 2,100
	(8) = (1) + (2) + (3) + (4)	- 16.8	1,712	2,068
	Allowable stress	- 77.1	- 2,415	2,100
	(9) = (1) + (2) + (3) + (4) + (5)	- 17.5	- 1,918	2,144

Allowable stress

表-4.4.7 合成桁の応力度検討(主桁G-2、断面1)

- Bending moment before compounding	***********	MS = .99.73	t•m
- Bending moment after compounding	•••••	MV = <u>92.14</u>	t•m
- Bending moment by dead load after co			t•m
- Base slab thickness		TS = 18.0	cm
- Haunch			cin
- Effective base slab width		BS = 263.9	cin
- Distance between fixed points of flange		P = 490.0	cm ·
- Section and sectional area of steel girde	r :		
• Upper flange : 23 • Web : 1.55 • Lower flange : 28	0 x 10 0 x 9	Sectional Area 23.0 (SM: 139.5 (SM: 30.8 (SM:	50Y) 50Y)
TOTAL		193.3	
- Sectional area and moment of inertia of	area:		•
• Concrete section : AC = : • Steel girder section : AS = :	193.3 IS 872 IV te (AC x DC)	Moment of Ine of Area (cm: 128,255 = 604,926 = 2,114,354 .QC = 104,844	()
_			
Distance (cm) D = 99.6 DS = 77.5 DC = 22.1 YSU = 81.7 YSL = 75.4 YVU = 4.2 YVL = 152.9	Section WSU = WSL = WVU =	8,018 506,868	
YVC = 31.1 - Axial force			
Due to drying schrinkage Due to creep Due to temperature change		.NCR = 1.0	ton ton
- Stress (kg/cm²):		ALLE	
	Concrete Base Slab	Upper	Lower Flange
(1) Change hafter a second 3	Dase Slav	Flange	•
(1) Stress before compounding		- 1,346	1,244
(2) Stress after compounding	- 19.3	- 18	666
(3) Stress due to drying schrinkage	2.3	- 301	116
(4) Stress due to creep	0.7	- 17	6
(5) Stress due to temperature difference	>e - 0.1	- 204	77
(6) = (1) Allowable stress		- 1,346 - 1,379	1,244 2,625
(7) = (1) + (2) Allowable stress	- 19.3 - 77.1	- 1,364 - 2,100	1,910 2,100
(8) = (1) + (2) + (3) + (4)	- 16.3	- 1,682	2,033
Allowable stress	- 77.1	- 2,415	2,100
(9) = (1) + (2) + (3) + (4) + (5)	- 16,4	- 1,886	2,109
Allowable stress	- 88.7	- 2,730	2,415

表-4.4.8 合成桁の応力度検討 (主桁G-2、断面2)

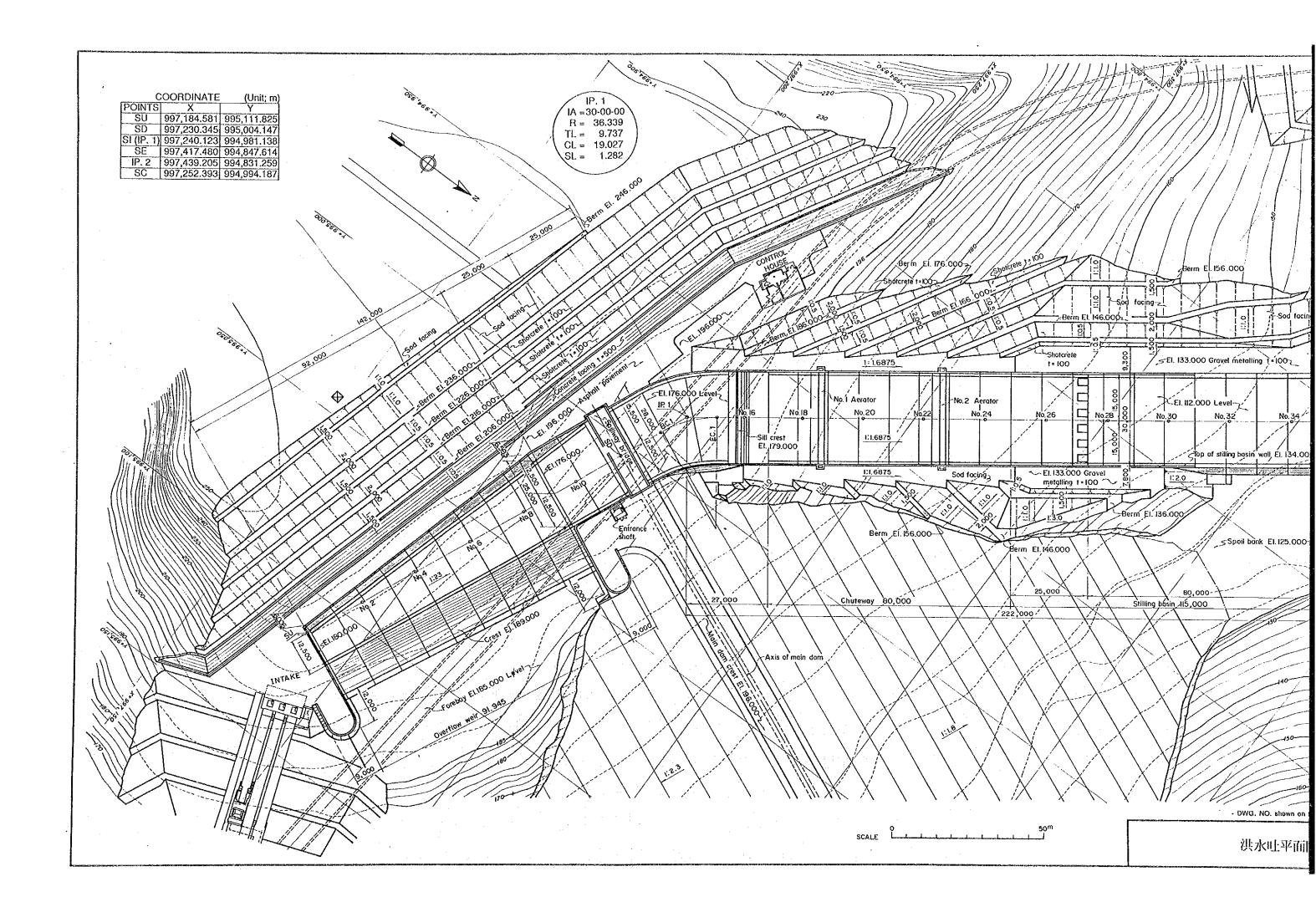
-				
	Bending moment before compounding		MS ≈ <u>184.64</u>	t•m
-	Bending moment after compounding		MV ≈ <u>174.66</u>	t*m
-	Bending moment by dead load after comp	ounding	MVD = 46.45	tem
-	Base slab thickness		TS = 18.0	cm
-	Haunch		HH = <u>9.9</u>	cm
-	Effective base slab width			cm
-	Distance between fixed points of flange		P = 490.0	cm
-	Section and sectional area of steel girder:			
	• Upper flange : 280 • Web : 1.550 • Lower flange : 450	(mm) x 14 x 9 x 19	Sectional Area 39.2 (SM: 139.5 (SM: 85.5 (SM:	50Y) 50Y)
	TOTAL		264.2	
	Sectional area and moment of inertia of are	a:	•	
	• Composite section : AV = 9	1 ²) 50 IC 54.2 IS 43 IV	Moment of Ine of Area (cm; = 128,255 = 995,003 = 3322,056	<u>4)</u>
-	Geometrical moment of area of concrete		.QC = <u>146,672</u>	cm ³
-	Distance and section modulus (See Fig. 4.	4.7):		
	Distance (cm)	Section	Modulus (cm ³)	
	D = 110.2 $DS = 79.3$	WSU = WSL =		
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9	WVU: WVL:	= <u>248.339</u>	
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4	WVU -	= <u>248.339</u>	·
-	DC = 30.9 $YSU = 92.7$ $YSL = 65.6$ $YVU = 13.4$ $YVL = 144.9$ $YVC = 39.9$ Axial force	WVU= WVL=	= <u>248.339</u> = <u>22.923</u>	
-	DC = 30.9 $YSU = 92.7$ $YSL = 65.6$ $YVU = 13.4$ $YVL = 144.9$ $YVC = 39.9$	WVU = WVL =	= 248.339 = 22.923 .NSH = 20.7 .NCR = 4.7	ton ton ton
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage	WVU= WVL=	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6	ton ton
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep	WVU = WVL =	= 248.339 = 22.923 .NSH = 20.7 .NCR = 4.7	ton
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep	WVU = WVL =	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 .Upper	ton ton Lower
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²):	WVU = WVL =	= 248.339 = 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 .Upper Flange	ton ton Lower Flange
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change Stress (kg/cm²):	WVU = WVL = Concrete Base Slab	248.339 22.923 22.923 22.923 22.923 24.7 NCR = 4.7 NTM = 14.6 24.7 Upper Flange -1,720	ton ton Lower Flange 1,218
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding	Concrete Base Slab	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 Upper Flange - 1,720 - 70	Lower Flange 1,218
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage	Concrete Base Slab - 30.0	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 Upper Flange -1,720 -70 -289	Lower Flange 1,218 762
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1)	Concrete Base Slab - 30.0 3.4 2.4	= 248.339 = 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 .NTM = 14.6 .The state of the state	ton ton Lower Flange 1,218 762 71 16 49 1,218
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress	Concrete Base Slab - 30.0 3.4 2.4 - 1.0	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 	ton ton Lower Flange 1,218 762 71 16 49 1,218 2,625
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1)	Concrete Base Slab - 30.0 3.4 2.4	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 .Vpper Flange -1,720 -70 -289 -64 -203 -1,720	ton ton Lower Flange 1,218 762 71 16 49 1,218
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force • Due to drying schrinkage • Due to creep • Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2) Allowable stress	Concrete Base Slab - 30.0 3.4 2.4 - 1.0 - 30.0 - 77.1	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 Upper Flange -1,720 -70 -289 -64 -203 -1,720 -1,765 -1,790 -2,100	ton ton Lower Flange 1,218 762 71 16 49 1,218 2,625 1,980 2,100
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2)	Concrete Base Slab - 30.0 3.4 2.4 - 1.0	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 	ton ton Lower Flange 1,218 762 71 16 49 1,218 2,625 1,980
	DC = 30.9 YSU = 92.7 YSL = 65.6 YVU = 13.4 YVL = 144.9 YVC = 39.9 Axial force Due to drying schrinkage Due to creep Due to temperature change Stress (kg/cm²): (1) Stress before compounding (2) Stress after compounding (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2) Allowable stress (8) = (1) + (2) + (3) + (4)	Concrete Base Slab - 30.0 3.4 2.4 - 1.0 - 30.0 - 77.1 - 24.1	= 248.339 22.923 .NSH = 20.7 .NCR = 4.7 .NTM = 14.6 .NTM = 14.6 .TO .TO .TO .TO .TO .TO .TO .TO	ton ton Lower Flange 1,218 762 71 16 49 1,218 2,625 1,980 2,100 2,066

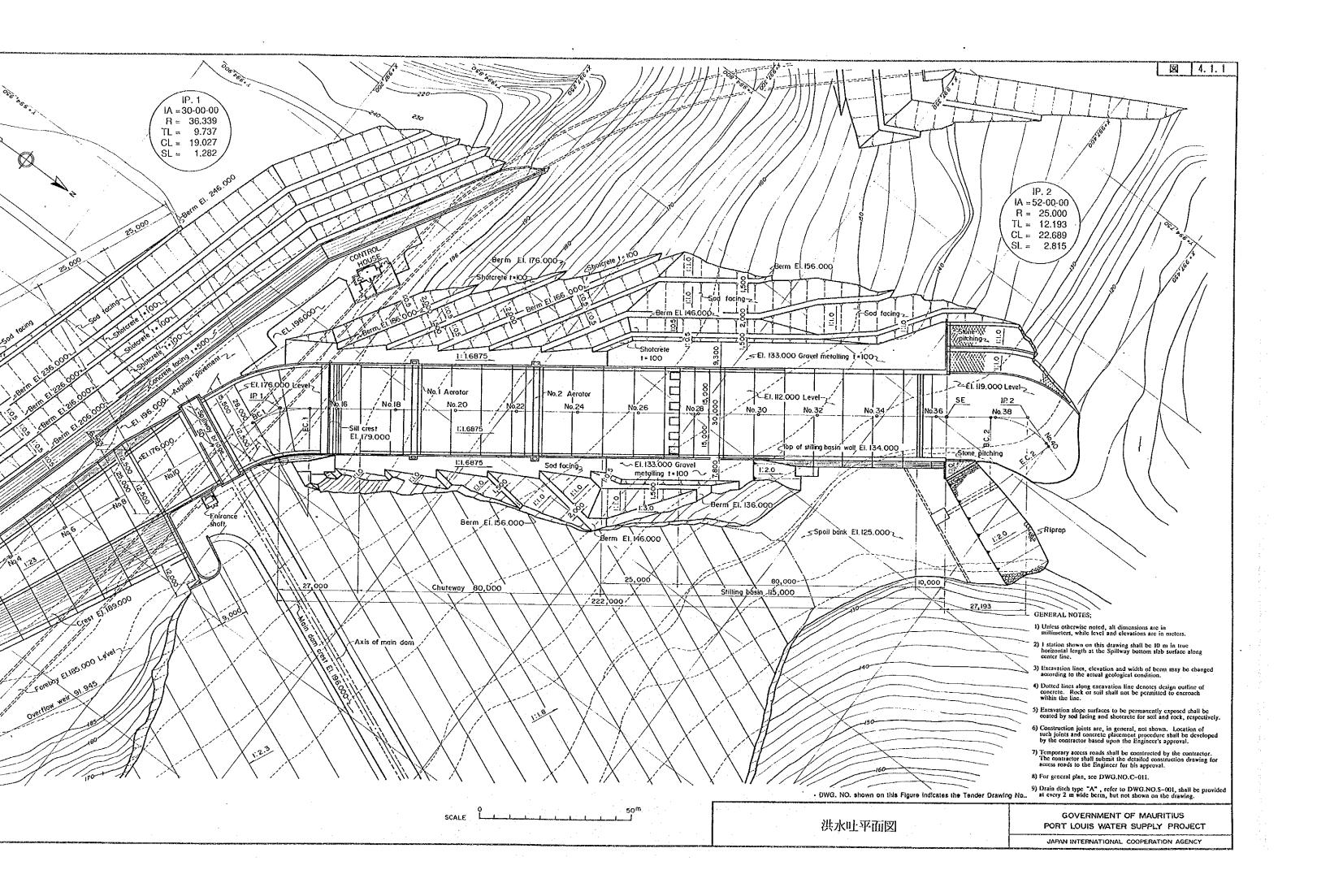
表-4.4.9 合成桁の応力度検討(主桁G-2、断面3)

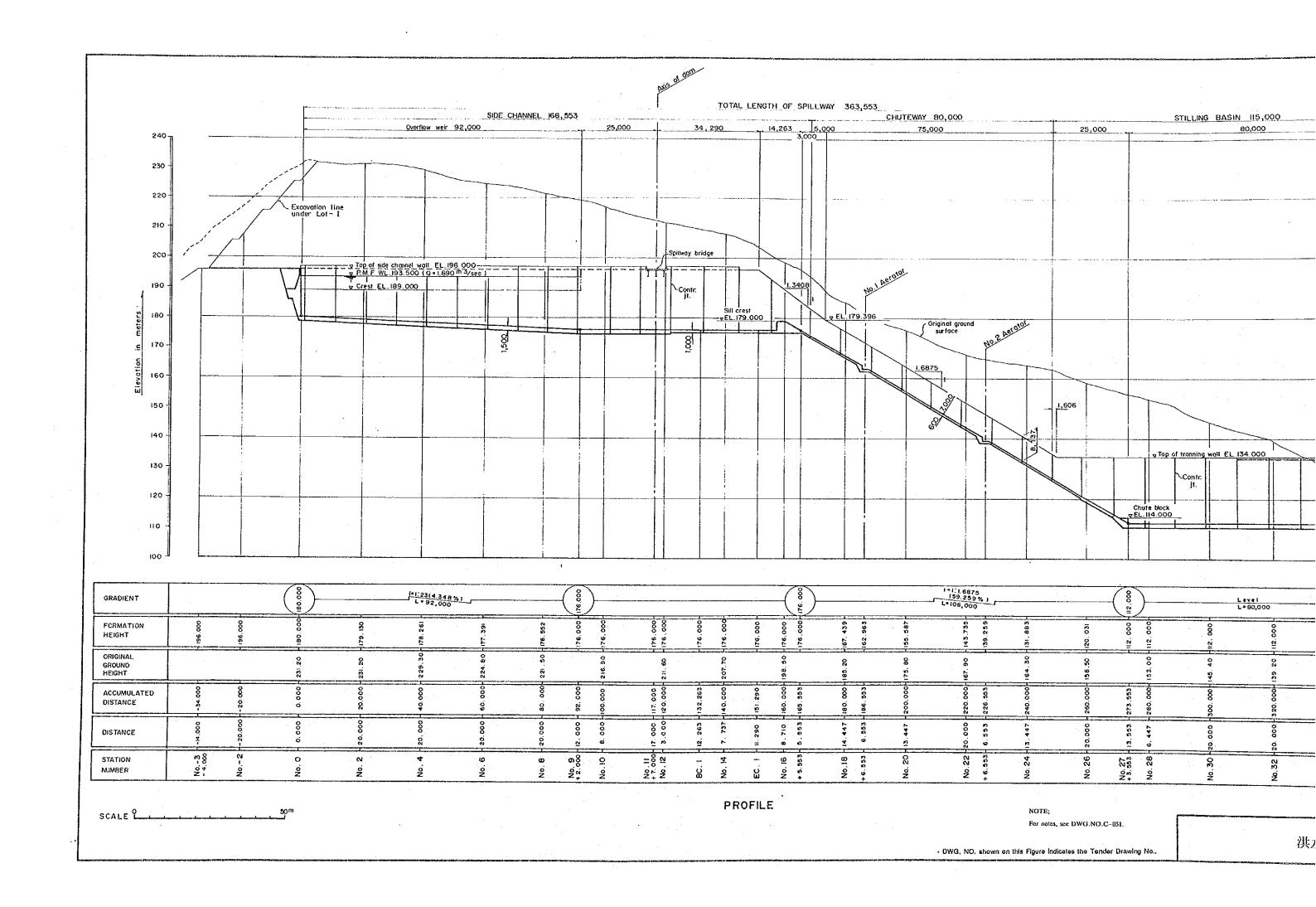
-	Bending moment before compounding			t•m
-	Bending moment after compounding			t•m
•	Bending moment by dead load after compa			t•m
~	Base slab thickness		• • • • • • • • • • • • • • • • • • • •	cm
-	Haunch			cm
•	Effective base slab width			cm .
•	Distance between fixed points of flange		P = 490.0	cm
2	Section and sectional area of steel girder:	•		
	• Upper flange : 230 • Web : 1.550 • Lower flange : 280 TOTAL	(mm) x 10 x 9 x 11	Sectional Area (23.0 (SM5 139.5 (SM5 30.8 (SM5	0Y) 0Y)
	Sectional area and moment of inertia of are	::8:		
			3.5	. •
		1 ²) 50 IC 93.3 IS 72 IV	$= \frac{604.926}{2.114.354}$	Ĺ
-	Geometrical moment of area of concrete (QC = 104.844	cm ³
-	Distance and section modulus (See Fig. 4.	.4.7):	A Section 1985	•
	Distance (cm)	Section I	Modulus (cm ³)	
	D= <u>99.6</u>	WSU =		
	DS =	WSL =	8,018	•
	DC = <u>22.1</u> YSU = 81.7	WVU= WVL=	506.868 13.826	
	$YSL = \frac{-81.7}{75.4}$	W 12-	19,620.	
	$YVU = \underline{\qquad \qquad 4.2}$			
	YVL≈ <u>152.9</u> YVC≈ 31.1		."	
•	Axial force			
	Due to drying schrinkage Due to creep Due to temperature change		NCR = 1.0	ton ton ton
-	Stress (kg/cm²):	Сопстете	Upper	Lower
		Base Slab	Flange	Flange
	(1) Stress before compounding	- grandom til til Paramete B	- 1,346	1,244
	(2) Stress after compounding	- 19.3	- 18	667
	(3) Stress due to drying schrinkage	2.3	- 301	116
	(4) Stress due to creep	0.7	- 17	6
	(5) Stress due to temperature difference	- 0.1	- 204	77
	(6) = (1)	<u> </u>	- 1,346	1,244
	Allowable stress		- 1,379	2,625
	(7) = (1) + (2)	- 19.3	- 1,365	1,911
	Allowable stress	- 77.1	- 2,100	2,100
	(8) = (1) + (2) + (3) + (4)	- 16.3	- 1,682	2,033
	Allowable stress	- 77.1	- 2,415	2,100
	(9) = (1) + (2) + (3) + (4) + (5)	- 16.4	- 1.886	2,110
	Allowable stress	- 88.7	- 2,730	2,415
	· · · · · · · · · · · · · · · · · · ·		and the second s	

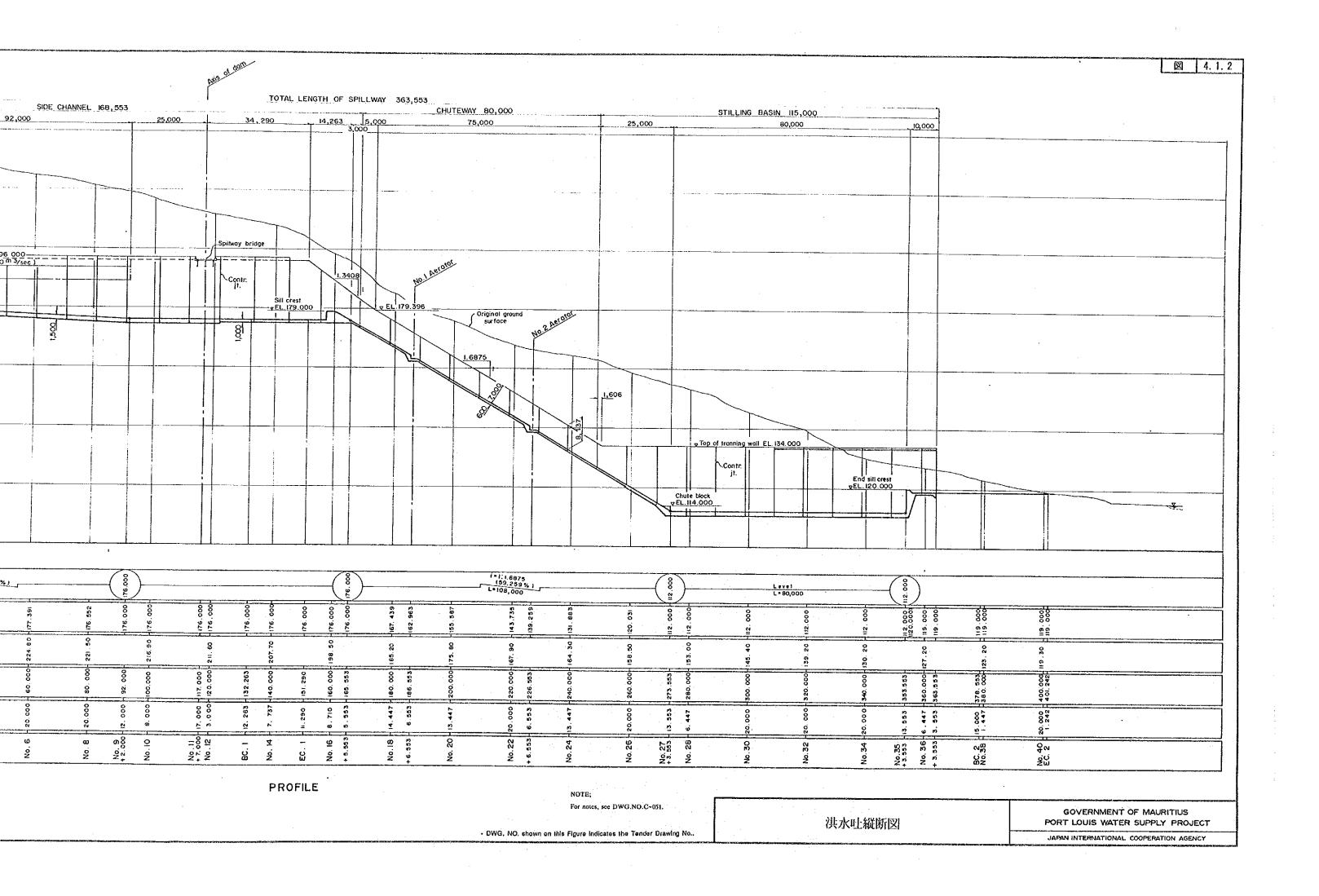
表-4.4.10 合成桁の応力度検討(主桁G-3、断面1)

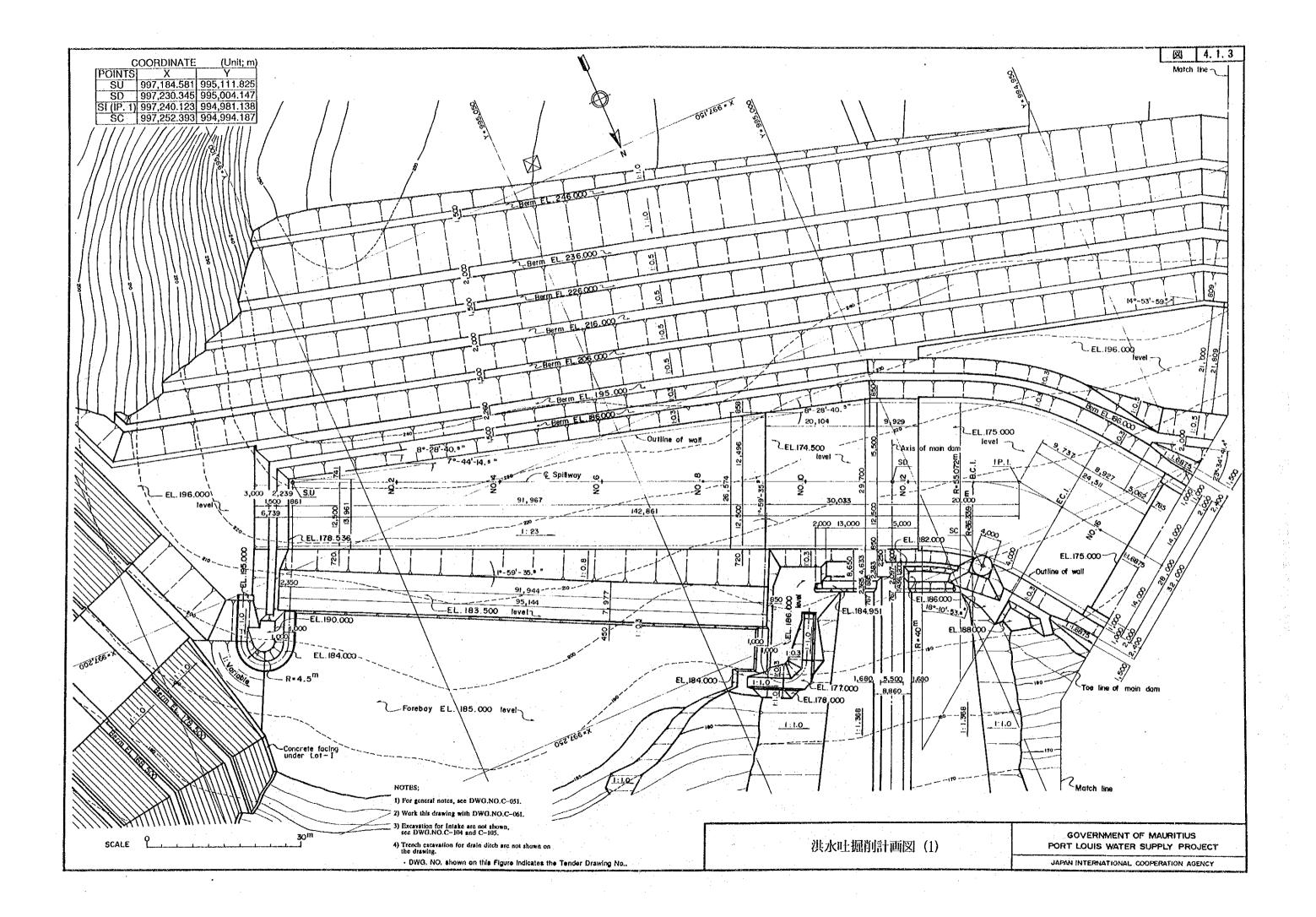
-	Bending moment before compounding		MS = 101.88	t•m
-	Bending moment after compounding		MV = <u>90.90</u>	t•m
-	Bending moment by dead load after comp	counding	MVD = 22.84	t•m
-	Base slab thickness		TS = 18.0	cm
-	Haunch		$HH = _{6.0}$. cm
-	Effective base slab width			cm .
-	Distance between fixed points of flange		P = 490.0	cm
-	Section and sectional area of steel girder:			. ::
	• Upper flange : 230 • Web : 1,550 • Lower flange : 280	x 11 x 9 x 11	139,5 (SM	(cm²) 50Y) 50Y) 50Y)
	TOTAL		<u> 195.6</u>	
-	Sectional area and moment of inertia of ar	ea:	•	
	• Concrete section : AC = 4. • Steel girder section : AS = 1 • Composite section : AV = 7	95.6 IS 82 IV	Moment of Inc of Area (cm = 110,832 = 620,099 = 1,951,186	4)_
-	Geometrical moment of area of concrete		QC = 97,226	cm ³
-	Distance and section modulus (See Fig. 4	l.4.7):	$(x_i, x_i) = x_i = x_i$	•
	Distance (cm)	Section	Modulus (cm ³)	
	$\begin{array}{cccc} D = & & 94.7 \\ DS = & & 71.0 \\ DC = & & 23.7 \\ YSU = & & 80.8 \\ YSL = & & 76.4 \\ YVU = & & 9.8 \\ YVL = & & 147.4 \\ YVC = & & 32.7 \\ \end{array}$	WSU = WSL = WVU = WVL =	8,116 = 199,399	
_	Axial force		÷ *	
	Due to drying schrinkage Due to creep Due to temperature change		.NCR = 2.5	ton ton ton
-	Stress (kg/cm²):	Concrete Base Slab	Upper Flange	Lower Flange
	(1) Stress before compounding	<u>•</u>	- 1,327	1,255
	(2) Stress after compounding	- 21.8	- 46	687
	(3) Stress due to drying schrinkage	3.1	- 297	110
	(4) Stress due to creep	1.9	- 42	16
	(5) Stress due to temperature difference	- 0.6	- 207	75
	(6) = (1) Allowable suess	-	- 1,327 - 1,412	1,255 2,625
	(7) = (1) + (2) Allowable stress	<u>- 21.8</u> - 77.1	<u>- 1,373</u> - 2,100	1,942 2,100
	(8) = (1) + (2) + (3) + (4)	- 16.8	- 1,712	2,068
	Allowable stress	- 77.1	- 2,415	2,100
	(9) = (1) + (2) + (3) + (4) + (5)	- 17.5	- 1,918	2,143
	Allowable stress	- 88.7	<u>- 1,918</u> <u>- 2,730</u>	2,415


表-4.4.11 合成桁の応力度検討(主桁G-3、断面2)


	- Bending moment before compounding	;	MS = 182.18	t•m
	- Bending moment after compounding.		MV = 165.06	t•m
	- Bending moment by dead load after co			t•m
	- Base slab thickness			
	- Haunch			•
	- Effective base slab width			
•	- Distance between fixed points of flang			·
	- Section and sectional area of steel girds			· ·
	• Upper flange :28	<u>ion (mm)</u>	ectional Area 39.2 (SM	
•	• Web : 1,55	<u>0</u> x <u>−</u> <u>9</u>	39.2 (SM 139.5 (SM	
	• Lower flange : 44	<u>0</u> x <u>19</u>	83.6 (SM	50Y)
	TOTAL		<u> 262.3</u>	
·	- Sectional area and moment of inertia of	area:		
	5	. 14		
		ional Area (c.m²)	Moment of Inc of Area (cm	
	• Concrete section : AC =	4.105 IC =	110,832	*
	 Steel girder section : AS = Composite section : AV = 	$\frac{262.3}{849}$ IS =		$\Phi_{k,k} = \{ 1, 2, \dots \}$
	- Geometrical moment of area of concre	-		cm ³
	- Distance and section modulus (See Fig		C = 154,244	VIII-
•	The second secon	,. v).		
	Distance (cm)	Section M	odulus (cm²)	
	D= 105.8	WSU =	10,703	
	$DS = \frac{73.1}{}$	WSL =	14.936	
	DC = 32.7	WVU =	158,724	
	YSU = 92.2 YSL = 66.1	WVL=	21,783	
	YSL = <u>66.1</u> YVU = <u>19.1</u>			
	$YVL = \frac{139.2}{139.2}$			
	$YVC = \frac{41.7}{}$			-
	- Axial force			
	• Due to drying schrinkage	N	SH = 20.8	ton
	Due to creep	N	$CR = \overline{3.3}$	ton ton
	Due to temperature change	N	$\Gamma M = \overline{15.1}$	ton
	- Stress (kg/cm²):			
4		Concrete Base Slab	Upper Flange	Lower Flange
	(1) Stress before common dia a	Dade Oile	•	
	(1) Stress before compounding		- 1,702	1,220
	(4) (4)	20.4	101	758
	(2) Stress after compounding	- 32.4	- 104	
				
	(2) Stress after compounding (3) Stress due to drying schrinkage	4.1	- 284	67
				
	(3) Stress due to drying schrinkage(4) Stress due to creep	4.1	- 284 - 44	67 10
	(3) Stress due to drying schrinkage	4.1	- 284	67
	 (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) 	4.1 1.7 ee 1.6	- 284 - 44 - 205	67 10 48
	 (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference 	4.1 1.7 ee 1.6	- 284 - 44	67 10
	 (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress 	4.1 1.7 ee 1.6	- 284 - 44 - 205 - 1,702 - 1,765	10 48 1,220 2,625
	 (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) 	4.1 1.7 ee 1.6	- 284 - 44 - 205 - 1,702 - 1,765 - 1,806	10 48 1,220 2,625 1,977
	 (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2) Allowable stress 	4.1 1.7 1.6 	- 284 - 44 - 205 - 1,702 - 1,765 - 1,806 - 2,100	10 48 1,220 2,625 1,977 2,100
	 (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2) Allowable stress (8) = (1) + (2) + (3) + (4) 	4.1 1.7 1.6 	- 284 - 44 - 205 - 1,702 - 1,765 - 1,806 - 2,100 - 2,134	10 48 1,220 2,625 1,977 2,100 2,055
	 (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2) Allowable stress (8) = (1) + (2) + (3) + (4) Allowable stress 	4.1 1.7 1.6 	- 284 - 44 - 205 - 1,702 - 1,765 - 1,806 - 2,100	10 48 1,220 2,625 1,977 2,100
	 (3) Stress due to drying schrinkage (4) Stress due to creep (5) Stress due to temperature difference (6) = (1) Allowable stress (7) = (1) + (2) Allowable stress (8) = (1) + (2) + (3) + (4) 	4.1 1.7 1.6 	- 284 - 44 - 205 - 1,702 - 1,765 - 1,806 - 2,100 - 2,134	10 48 1,220 2,625 1,977 2,100 2,055


表-4.4.12 合成桁の応力度検討 (主桁G-3、断面3)


•	Bending moment before compounding \dots	•••••	MS = 101.89	t•m
+	Bending moment after compounding		MV = 90.91	t•m
-	Bending moment by dead load after comp	•		t•m
٠	Base slab thickness		***************************************	cm
-	Haunch			cm
-	Effective base slab width			cm
-	Distance between fixed points of flange		.P = 490.1	cm .
`~	Section and sectional area of steel girder:			
	• Upper flange : 230 • Web : 1,550 • Lower flange : 280	x 11 x 9 x 11	Sectional Area (25.3 (SMS 139.5 (SMS 30.8 (SMS	50Y) 50Y)
	TOTAL		<u>195,6</u>	
-	Sectional area and moment of inertia of are	ea:		
-	• Concrete section : AC = 4. • Steel girder section : AS = 1	nal Area m²) 105 IC 95.6 IS 82 IV (AC x DC)	= <u>620.099</u> = <u>1,951,186</u>	
-	Distance and section modulus (See Fig. 4	.4.7):	1941 1941	
	Distance (cm) D = 94.7 DS = 71.0 DC = 23.7 YSU = 80.8 YSL = 76.4 YVU = 9.8 YYL = 147.4 YVC = 32.7	Section WSU = WSL = WVU = WVL =	8,116 199,399	
-	Axial force			
	Due to drying schrinkage Due to creep Due to temperature change		NCR = 2.5	ton ton ton
-	Stress (kg/cm²):	Concrete	Upper	Lower
		Base Slab	Flange	Flange
	(1) Stress before compounding		- 1,328	1,255
	(2) Stress after compounding	- 21.8	- 46	687
	(3) Stress due to drying schrinkage	3.1	- 297	110
	(4) Stress due to creep	1.9	- 42	16
	(5) Stress due to temperature difference	- 0.6	- 207	75
	(6) = (1)	-	- 1,328	1,255
	Allowable stress		- 1,412	2,625
	(7) = (1) + (2)	- 21.8	- 1,373	1,942
	Allowable stress	<u>-77.1</u>	- 2,100	2,100
	(8) = (1) + (2) + (3) + (4) Allowable stress	- 16.8 - 77.1	- 1.712 - 2,415	2,068 2,100
	(9) = (1) + (2) + (3) + (4) + (5) Allowable stress	- 17.5 - 88.7	- 1,918 - 2,730	2,144 2,415


(t ■

