

Sample No. : B035
Location : Northwest of Jombo Hill
Rock name : Monchiquite

[^0]

Sample No.: B036
Location : Northwest of Jombo Hill
Rock name : Soda Minett

Photomicrographs (thin section)

Sample No. : B041
Location : Jombo Hill
Rock name : Nepheline Syenite

Photomicrographs (thin section)
Summary of Microscopic Observation (Sedimentary Rocks)

Sample No.	Rock Name	Detrital Material											Matix						Secondary Minerais				Note
		Qtz	Kf	P1	Chl	Yus	Ca	Gar	4nz	Zir	Bi		Ca	Qtz	Se	Chl	Cly	Opq	Ca	Se	Chl	Qtz	
A007	Altered Sandstone	©	\bigcirc	-						-					\triangle		\triangle			\bigcirc			
A008	Altered Sandstone	(0)								-				\triangle	\triangle			-		0			
A009	Al tered Sandstone	O							-	-				\triangle	\triangle		\triangle	-		\bigcirc			
${ }^{\text {A }} 031$	Limestone	0		-		-	©			-			©										
${ }^{2} 041$	Siitstone	©	\triangle	\triangle		-	-				-		\triangle		\triangle		\triangle	-					
B006'	Carbonated Mood												\triangle					\triangle					Dolomite > 90\%
B012	Limestone	\triangle		-			©			:			©										
B014	Sandy Limestone	©								7			©					\bigcirc					
B032	Graywacke	©	©	©			-						\triangle	\triangle		\triangle		\triangle					
B037	Siltstone	©	Δ	\triangle		\triangle	0		-	-	\triangle										-		
B051	Sandstone	©	©	\bigcirc		\triangle					\triangle							\triangle					
C001	Oolitic Limestone	\triangle					\bigcirc			-			©										
C005	Sandstone	©	\bigcirc	\triangle											\triangle	\triangle	\triangle	-					
E002	Sandstone	©	©	\bigcirc				\triangle	-	-	\triangle						\triangle						
G013	Silicified Sandstone	©	©	©		\triangle					Δ			\bigcirc				\triangle					
G022	Sandstone	©	\bigcirc	0	\triangle	\triangle				-	\triangle		\triangle		\triangle	\triangle	\triangle						
H001	Sandstone	©	\bigcirc	\bigcirc		\triangle			-	-	\triangle			\triangle		\triangle		\triangle			\triangle		
	Qtz : Quartz Bi : Biotite Cly : Clay		Chi :	Conazi			Kf Hus Opq	Pota	ssium	felds					Se : Sericite		Ca : Calcite						

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks)

Sample	Rock Name (Geologic Unit)	Macroscopic Features Microscopic Features	Identified Minerals and Material	
Number			Detrital Material	Matrix
A007	ALTERED SANDSTONE (Mzig)	- White - Fine-grained - Massive compact \qquad - Well-sorted	($90 \sim 95 \%$) - Quartz -85% <. 0.2 mm angular ~subangular monocrystalline grain - Alkali feldspar $\therefore 10 \%$ partly or totally altered to sericite - Plagioclase rare - Rutile - Zircon	- Interstitial sericite - Clay minerals
A008	ALTERED SANDSTONB (Mzm)	- Light brownish gray - Medium-grained - Silicified - Small cavitiesbearing - Limonite stained \qquad - Poorly-sorted	$(\fallingdotseq 90 \%)$ - Quartz > 80% $<1 \mathrm{~mm}$ angular to subangular sericite along cracks and grain boundary - Zircon - Opaque (limonite)	- Interstitial sericite - Opaque (limonite) - Quartz
A009	ALTERED SANDSTONE (Mzin)	- Light brownish gray with white quartz veinlets - Medium-grained - Quartz veinlets < 1 mim wide, small drooze-bearing - Compact - Poorly-sorted - Partly sheared	($85 \sim 90 \%$) - Quartz>85\%, <2mm angular to subangular monocrystalline grains dusty appearance sericite along cracks and grain boundary - Zircon rare - Monazite (?) rare	- Quartz - Sericite - Opaque - Clay ninerals
A031	LIMESTONE (K)	- Light brownish gray - Including oncoids ($\phi=1-10 \mathrm{~mm}$) and shell crust - Spherical to ellipsoidal grains, consisting of micrite are oncoids	- Oncoid $=5 \%$ < 5 mm - Bioclast < 5% - Detrital quartz $\therefore 20 \%<0.1 \mathrm{~mm}$ - Detrital plagioclase rare - Muscovite rare - Zircon rare	- Micritic carbonate

Mieroscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (2)

	Rock Name (Geologic Unit)	Macroscopic Features Microscopic Features	Identified Minerals and Material	
Number			Detrital Material	Matrix
(CONT.)		- Bioclasts (Brachiopod shell?)		
A041	$\begin{aligned} & \text { SILTSIONE } \\ & (\mathrm{MyCl}) \end{aligned}$	- Brownish gray - Thin clear lamination - Quartz veinlets ($w=0.5 \sim 5 \mathrm{~mm}$) - Host rock of Mkangombe North metalliferous vein - Poorly sorted - Parallel alignment of opaquerich layer - Thin quartz vein $(0.1 \sim 2 \mathrm{~mm}$ thick) $=10 \%$	(20~30\%) - Quartz $\leftrightharpoons 20 \%$, 0.1 mm angular - Plagioclase < 5%, < 0.1 mm - Alkali feldspar < 5%, 0.1ma - Muscovite rare - Biotite rare - Opaque rare - Carbonate rare	- Sericite - Clay ninerals - Opaque - Carbonate - Limonite
B006'	$\begin{aligned} & \text { CARBONATED } \\ & \text { YODD } \\ & \text { (Mzal) } \end{aligned}$	- Dark gray - Compact - Including white carbonate film (W < 1 mm) and pyritic concretion ($\phi=0.5 \sim$ 2mm) - Granular dolomite	- No detrital material	- Dolomite > 90%, < 0.1 mm irregular shape dusty appearance - Cavity filling calcite < 10%, < 0.2 mm clear crystal - Unidentified brown material < 5% parallel alignment - Opaque - Limonite
B012	LIMESTONE (K)	- Light brownish gray - Massive compact - Spheroidal calcite, $\phi=1 \sim$ 8min - Heterogenious rock consisting of (1) Bioclasts (2) Oncoids (3) Lithoclastic fragments	- Quartz $\leftrightharpoons 5 \%$ angular - Plagioclase rare - Oncoids $\leftrightharpoons 50 \%$, $<7 \mathrm{~mm}$ - Bioclasts totally replaced by sparitic calcite echinoderms $\leftrightharpoons 5 \%, \phi=1 \mathrm{~mm}$ - Lithoclastic	- Micritic carbonate - Partly sparitic calcite

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (3)

$\begin{aligned} & \text { Sample } \\ & \text { Number } \end{aligned}$	Rock Name (Geologic Unit)	Macroscopic Features Microscopic Features	Identified Minerals and Material	
			Detrital Material	Matrix
(COMT.)			```fragment }=10 micritic calcite with detrital quartz```	
B014	SANDY LIMESTONB (K)	- Light brown - Black dendritic mineral - Massive compact - Dusty carbonate (sparite) predominant - No oncoid, ooids or bioclast - Clear clacite vein associated with opaque (limonite)	Quartz -20%, < 0.2 mm angular	Dusty Carbonate $\leftrightharpoons 70 \%,<0.2 \mathrm{~mm}$ parts of grain boundary are coated by opaque (limonite)
B032	GRAYWACKE (MyCm)	- Light brown - Massive compact - Grit, $\phi<2 \mathrm{~mm}$ - Poorly sorted	(70~80\%) - Quartz $=30 \%$ angular-subangular - Plagioclase $=$ 20\% angularsubangular - Alkalifeldspar乞 30% angular-subangular microcline, per thite partly altered to sericite - Calcite rare, well rounded - Limonite - Rock fragments rare granitic rock	- Carbonate - Opaque - Plagioclase - Quartz - Chlorite
B037	SILTSTONE (MyCM)	- Olive green - Massive compact - Hell sorted - Rough parallel alignment of muscovite and biotite flakes - Imbrication of quartz and feld-	$(\because 90 \%)$ - Quartz $=70 \%$ < 0.05 man rounded~subrounded - Carbonate \leftrightharpoons 10\% rounded~ subrounded - Muscovite flake $\leftrightharpoons 5 \%,<0.05 \mathrm{~mm}$	

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (4)

Sample Number	Rock Name (Geologic Unit)	$\frac{\text { Macroscopic Features }}{\text { Microscopic Features }}$	Identified Minerals and Material	
			Detrital Material	Matrix
(CONT.)		spar grains	- Biotite flake $\fallingdotseq 5 \%$, < 0.05 mm , chloritized - Plagioclase 气 5\% Alkalifeldspar = 5% - Zircon rare - Opaque rare - Monazite rare - Limonite	
B051	SANDSTONE (MKn)	- Light brown - Very fine-grained - Massive compact - No lamination and grading - Well sorted - Heak parallel alignment of muscovite and biotite flakes	(90~95\%) - Quartz $=50 \%$, $<0.1 \mathrm{~mm}$ angular \sim subangular - Alkalifeldspar $\leftrightharpoons 30 \%$, < 0.1 mm angular~subangular, partly altered to sericite - Plagioclase $=$ 10%, < 0.1 mm angular~subangular - Muscovite - Biotite - Opaque	.
C001	SANDY ÖOLITIC LIMESTONE	- Light brownish gray - Massive compact - Pine grains of dark gray detrital quartz - No lamination and stratification - Spherical to ellipsoidal grains with concentric laminae are ooids. Some ooids make compound grains - Peloids present - Bioclast and oncoids ($\leftrightharpoons 3 \mathrm{~mm}$) present	- Quartz < 10%, 0.4 mm some quartz are nuclei of opoids - Zircon rare - Lithoclasts rare	- Sparitic calcite

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks)

Sample	Rock Name (Geologic Unit)	Macroscopic Features Microscopic Peatures	Identified Minerals and Material	
Number			Detrital Material	Matrix
C005	$\begin{aligned} & \text { SANDSTONE } \\ & \text { (Mza) } \end{aligned}$	- Light brown (weathering color) - Massive compact - No lamination and grading - Well sorted	($80 \sim 90 \%$) - Quartz $\leftrightharpoons 70 \%$, < 1 mm , sub-angular~subrounded - Plagioclase \because 5%, < 1 mm - Alkalifeldspar $\therefore 10 \%$ < 1 mm partly altered to sericite	- Sericite - Chlorite - Clay minerals - Opalque, partly to totally altered to limonite
E002	$\begin{aligned} & \text { SANDSTONE } \\ & \text { (Mzm) } \end{aligned}$	- Light brown with black spots - Very fine-grained - Massive compact - No lamination and grading - Well sorted	(90~95\%) - Quartz $=70 \%$, < 0.3 mm sub-angular~subrounded - Alkalifeldspar $\because 20 \%,<0.3 \mathrm{~mm}$ - Plagioclase 10% - Garnet < 5% - Opaque < 5% - Apatite - Biotite - Zircon - Monazite?	- Opaque $\leftrightharpoons 5 \%$ - Muscovite
G013	SILICIFIED SANDSTONE (MyCu)	- Light brown - Very fine grained - White quartz veinlets with sinall drooze, w < 1 1 mm - Weakly brecciated - Well sorted - Parallel alignment of muscovite and biotite flakes - Angular sandstone fragments (breccia) $\phi=1 \mathrm{~mm} \sim 2 \mathrm{~cm}$	Sandstone frag- ments (80\%) - Quartz $\because 60 \%$, < 0.1 mm angular \sim subangular - Plagioclase \leftrightharpoons 20%, < 0.1 mm Alkalifeldspar $\ddots 20 \%$ \ll 0.1 m - Muscovite - Biotite - Opaque	- Quartz < 0.3 nm angular, sutured crystal boundary
G022	SANDSTONE (MyCu)	- Light olive gray - Very fine-grained - Massive compact - Obscure lamination - Hell sorted	$(60 \sim 70 \%)$ - Quartz $=80 \%$, < 0.1 ma angular - Plagioclase $=$ 10\% - Alkalifeldspar	- Chlorite - Clayminerals - Sericite - Carbonate

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (6)

Sample Number	Rock Name (Geologic Unit)	Macroscopic Features Microscopic Features	Identified Minerals and Material	
			Detrital Material	Matrix
			$\approx 10 \%$ - Muscovite - Chlorite - Zircon - Biotite	
H001	SANDSTONE (MyCu)	- Light brownish gray - Very fine-grained - Massive compact - Mottling, $\phi=1 \sim$ 3 mm - Obscure Iamination - Well sorted - Parallel alignment of muscovite and biotite flakes	($90 \sim 95 \%$) - Quartz $\leftrightharpoons 70 \%$, < 0.2 mm angular - Alkalifeldspar $\fallingdotseq 10 \%,<0.2 \mathrm{~mm}$ - Plagioclase \fallingdotseq 10%, < 0.2 mm - Muscovite - Biotite chloritized - Zircon - Monazite - Apatite - Opaque	- Sericite, along grain boundary - Chlorite - Opaque

Photomicrographs of Rocks in Thin Section

(Sedimentary Rocks)

Abbreviations

Minerals

Qtz : quartz	
P1 : plagioclase	Kf $:$ potassium feldspar
Mus : muscovites	Bi : biotite
	Ca : calcite
	Se : sericite

0thers
Od : Öoid
Opq : opaque minerals

crossed polars
0.1 ma

Sample No. : B032
Formation : Maji-ya Chumvi F.
Location : Northwest of Gulanze
Rock name : Graywacke

Photomicrographs (thin section)

0.05 mm

Sample No. : B051
Formation : Mariakani F.
(middle)
Location : West of Ribe
Rock name : Sandstone

Photomicrographs (thin section)

crossed polars
0.1 mm

Sample No. : A008
Formation : Mazeras F.
(middle)
Location : Changombe
Rock name : Altered Sandstone

Photomicrographs (thin section)

0.1 mm

Sample No. : C001
Formation : Kambe F.
($)$
Location : Mwarakaya
Rock name : Dolitic Limestone

Photomicrographs (thin section)

APPENDIX 2

MICROSCOPIC OBSERVATION OF ORES
IN POLISHED SECTION
Summary of Microscopic Observation of Ores in Polished Section

Sample Number	Sampling Area	Ore Type	Ga	Sp	Cp	Py	Mc	Po	Cv	Cc	Hm	Gt	Lc	M1	Qz	Mh	Mt
A034	Mrima-Jombo	Carbonatite						\triangle		\triangle	\times	\times			\bigcirc		
A035	Mkangombe	Quartz vein			\triangle	\times			Δ		\triangle	(\times	0	(0)	\triangle	
A037	ditto	ditto	\triangle		\triangle	\times					\times	\times	\times				
A043	ditto	ditto			\triangle	\times			Δ			\triangle	\times			\triangle	\triangle
A044	ditto	ditto				\times			\triangle		\triangle	\bigcirc	\times	\bigcirc	(0)		\times
B006	Jibana	Sands tone		\triangle		\bigcirc									©		
B006'	Jibana	Silicified wood				0									\bigcirc		
B010	Ganze	Iron concretion				\times					(0)	\triangle	\triangle		\bigcirc		
B038	Mrima-Jombo	Carbonatite				\times		\triangle		\triangle	\times	\times	\times				
F009	Mrima-Jombo	Iron concretion					\times				©	\triangle	\triangle				

> Cp: chalcopyrite
Po: pyrrhotite
Hm: malachite
M: mactite
x : rare
$\begin{array}{ll}\text { Ga: galena } & \text { Sp: sphalerite } \\ \text { Py: pyrite } & \text { Mc: marcasite } \\ \text { Cv: covellite } & \text { Cc: chalcocite } \\ \text { Gt: goethite } & \text { Lc: lepidochrosite } \\ \text { Qz: quartz } & \text { Mh: maghemite }\end{array}$
(0): abundant \bigcirc : common

Results of microscopic mineral identification
of ore specimens on polished sections

1) Sample, weathered carbonatite, Mrima-Jombo Area, number A034

Chiefly composed of white diaphanous minerals with sparse disseminations of gains or aggregates of strongly magnetic black and dark brown minerals by unaided eye.
Under the microscope, black minerals are of pyrrhotite-associated chalcopyrite, dark brown minerals ate of iton hydroxide minerals. Primary metallic minerals wholly consist of pyrrhotite properly, associated with secondary minerals. Secondary minerals are of iron hydroxide minerals, such as goethite and lepidochrocite, and chalcocite, hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show diaphanous minerals, chalcocite, iron hydroxide minerals, pyrrhotite and hematite. Pyrrhotite, less than 80 microns long and euhedral- to subhedralgranular, is observed in chatcocite or diaphanous minerals. Chalcocite is generally observed in forms of 50 microns long, 1 millimetre the longest, replacing pyrrhotite or replaced by iron hydroxide minerals or in diaphanous minerals. Hematite is undefinedly granular of less than several microns longs subhedral- to anhedral- lathy, replaced by iron hydroxide minerals or in those minerals by sparse dissemination.
2) Sample, base metallic minexals-quartz vein ore, Mkangombe North, Mkangombe Area, number A035

Observed by unaided eye to show random dissemination and/or indistinct banded texture. Chiefly composed of quartz, limonite, covellite, malachite and etc.. Magnetism is observed in brown textural bands.
Under the microscope, the specimen is chiefly composed of iron hydroxide minerals and quartz. Primary metallic minerals consist of chalcopyrite with minor quantity of pyrite. Secondary minerals consist of iron hydroxide minerals such as goethite and lepidochrocite, maghemite, covellite and hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show fron hydroxide minerals, quaria, chalcopyrite, maghematite, covellite, hematite and pyrite. Primary minerals are replaced by secondary minerals, while minerals of earlier crystallization are replaced by those of later crystallization. Chalcopyrite is observed in iron hydroxide minerals of anhedral granular forms, 300 microns long is the longest, to show a marginal replacement or fine veining/network veining replacement textures entirely by maghematite and covellite or partly by goethite and lepidochrocite. Pyrite, subhedral- or anhedralgranular, less than 30 microns long, is minorly observed sparse-disseminatedly in iron hydroxide minerals. Maghemite, shown in association with covellite, is observed in the form of marginal replacing materials of chalcopyrite or isolated disseminations in iron hydroxide minerals. Hematite, which is shown with similar behaviour to that of chalcopyrite, generally less than 10 microns long, while, 30 microns long is the longest, is generally observed isolatedly in iron hydroxide minerals in the forms of irregular xenomorph. Iron hydroxide minerals chiefly consist of goethite, minorly associated with lepidochrocite.

Under the microscope, general crystallization order of those minerals from early to late stages order is quartz-pyrite, chalcopyrite, hematite-covellite, maghemite and goethite-lepidochrocite.
3) Sample, base metallic minerals-quartz vein ore, Mkangombe North, Mkangombe Area, number A037

Coarse-grained metallic mineral crystals, about 10 millimetres long, are observed in quartz by unaided eye. Minerals with magnotism are not discernible.
Under the microscope, the specimen chiefly consists of quartz and diaphanous minerals. Primary metallic minerals consist of galena and chalcopyrite, associated with minor quantity of pyrite, Secondary minerals consists of iron hydroxide minerals, such as goethite and lepidochrocite, covellite and hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, galena, chalcopyrite, iron hydroxide minerals, covellite,
hematite and pyrite. Quartz is ethedral to subhedral, about 1 millimetre long in avarage. Galena, matgins of which or cleavages are irregularly replaced by covellite, goethite and etc., is 15 millimetres long the longest. Chalcopyrite, anhedral-gtanular of 0.5 millimetre long the longest, is shown to be replaced by a similar mode to that in gatena, i.e., replaced by covellite, goethite and etc., in crystals margins or along cleavages. Hematite, less than 500 microns long and anhedral-granular, is observed in iron hydroxide minerals in small quantity of disseminations, in banded or concentric manners with iron hydroxide minexals. Pyrite, less than 10 microns long and anhedral-granular, is observed sparsedisseminatedly in iron hydroxide minerals. Covellite with marginal replacement textures is observed to be replacing galena with iron hydroxide minerals.
Under the microscope, general crystallization order of those minerals from early to late stages order is quartz-pyrite, chalcopyrite-galena, hematite-covellite, and goethite-lepidochrocite.

Sample, base metallic minerals-quartz yein ore, Mkangombe North, Mkangombe Area, number A043
Chefly composed of quartz by unaided eye, with strongly magnetic metalic minerais of irregular disseminations and speckled aggregates, in association with fine veinings of limonite.
Under the microscope, quartz grains are disseminated by primary metallic minerals, marginal and/or inner patts of which are replaced by fine veinings of covellite, maghematite and etc.. Those are further wholly intersected by fine veins of iron hydroxide minerals. General relative quantitative xatios of those minerals in deereasing oxder of quantity show quartz, chalcopyrite-magnetite, covellite, maghemite, iron hydroxide minerals and pyrite. Primary metallic minerals consist of chalcopyrite, magnetite and pyxite. Chalcopyrite, less than 1 millimetre long, is observed to be marginally replaced by maghemite and covellite, and further to be outer-surrounded by iron hydroxide minerals. Magnetite is irregularly anhedral, several microns long, and is isolatedly observed in quartz or chalcopyrite crystals. Iron hydroxide minerals, chiefly consist of goethite, are observed in the forms of fine veinings of 50 microns wide the largest, to replace magnetite and chalcopyrite in association with diaphanous minerals or in the forms of granules of less than 50 microns long in quartz crystals.
Under the microscope, general crystallization order of those minerals from early to late stages order is pyrite, chal-copyrite-magnetite, quartz, maghemite-covellite and goethite-lepidochrocite.

5) Sample, base metallic minerals-quartz vein ore, Mkangombe North, Mkangombe Area, number A044

A brecciated quartz ore with fragmental limonite, magnetic black minerals and fine veins of malachite and covellite by unaided eye.
Under the microscope, chiefly consists of iron hydroxide minerals and quartz. Primary metalic minerals properly consist of small quantity of pyrite and magnetite. Primary metallic minerals are replaced by secondary iron hydroxide minerals, such as goethite, lepidochrocite and etc., in undefined forms of less than 20 microns long. Hematite shows banded or colloform structures and is granulatly disseminated, several microns long, in iron hydroxide minerals, such as goethite, lepidochrocite and etc.. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, iron hydroxide minerals, malachite, hematite, magnetite and pyrite. Iron minerals ate observed in fragmental forms in quartz crystals. Diaphanous minerals, presumed to be of malachite, are observed to intersect quartz crystals in the forms of fine veins, 100 microns wide the largest. Those locally form concentrated parts, 0.5 millimetre wide. Covellite is properly observed concentratedly by unaided eye in cavities filled up by malachite.
6) Sample, pyrite-bearing sandstone, Jibana Area, number $B 006$

Composed of quartz and diaphanous minerals with overall parallel bandings, associated with disseminated metallic minerals by unaided eye.

Under the microscope, the sample is chiefly composed of quartz and diaphanous minerals, as similar to an identification by unalded eye, and is disseminated by primary metallic minerals, properly consist of sphaterite and pyrite. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, diaphanous minerals, pyrite and sphalerite. Pyrite, about 200 microns long, is anhedral and undefinedly granular to replace quartz and sphalerite. Sphalerite, 300 microns long the largest, is irregularly anhedral to subhedral to be replaced by pyrite.

Under the microscope, general crystalization order of those minerals from early to late stages order is quartz-diaphanous minerals, sphalerite and pyrite.
7) Sample, pyrite-beaing petritied wood, Jibana Area, number B006'

Pyrite shows a lenticular form, 100 to 200 microns long and some 50 microns wide, or fine veining, less than 1 micron wide, or anhedral-granular aggregates of vein-form, about 200 microns long and some 0.5 micron wide. Lenticular and fine-veining forms of pyrite assemblage are extended in respective parallel directions to be considered to be of a replacement texture. Pyrite is exclusively identified as the metallic mineral in the specimen.
8) Sample, iron oxide ore, Ganze Area, number $\mathbf{B 0 1 0}$

Chiefly consists of hematite, with very sparse association with yery fine-grained pyrite, less than 1 micron long. Diaphanous minerals, presumed to be of quatz, are observed.
9) Sample, carbonatite, Mrima-Jombo Area, number B038

Chiefly composed of white diaphanous minerals with sparse disseminations of black mineral grains with magnetism by unaided eye.
Under the microscope, black minerals are of chaleocite associated with pyrrhotite. Primary metallic minerals consist of pyrrhotite and small quantity of pyrite, while, pyrite is replaced by chalcocite. Secondary minerals are of chalcocite, hematite and iron hydroxide minerals, such as goethite and lepidochrocite. General relative quantitative ratios of those minerals in decreasing order of quantity show diaphanous minerals, chalcocite, pyrrhotite, hematite, iron hydroxide minerals and pyrite. Pyrshotite, less than 100 microns long and euhedral- to subhedral-granulax, is disseminatedly observed in diaphanous minerals, Chalcocite, about 500 microns long generally and 800 microns long the longest, shows pseudomorphs to replacing pyrite, while, marginal parts of that are replaced by iron hydroxide minerals. Hematite, less than several microns long, undefinedly granular or subhedral- to anhedral-lathy, is replaced by iron hydroxide minerals or disseminated in those.
10) Sample, iron oxide ore, Mrima-Jombo Area, number F009

Hematite and marcasite, which are with colloform-type texture in cavities and lathy, less than 100 microns long, are properly observed.

Abbreviations

Minerals

Ga : galena	Cv : covellite
Cp : chalcopyrite	Mt : magnetite
Cc : chalcocite	Hom : hematite
Ge : goethite	Mh: maghemite
Lc : lepidochrosite	Qtz : quartzt

$L_{0.1 \mathrm{~mm}}$
Sample No. : A037
Location : Mkangombe North

Photomicrographs (Polished section)

——_
0.1 mm

Sample No. : B038
Location : Mrima Hill

Photomicrographs (Polished section)
APPENDIX 3 SUMMARY OF X-RAY DIFFRACTION (1)

Sample Number	Location.	Roek	5/4	Sor	$\mathrm{K}=0$	Dic	0.2	k-fs	600	$\mathrm{K} E \mathrm{D}$	Cat	siod	Anke	$\begin{array}{c\|} \hline \text { Mono- } \\ h \in s i l \end{array}$	6a!	Spha	Chal	Py	Ang	Cos	Plu- guma	Hemi	Jer	Ru:	Ant	Tit	ADS	sib	Other rests/ Ranarks
A 005	Jibana	FeNodule			\triangle		©	\because	©	\because		.	\therefore	:						-						-	Azsay ...
A 0007	Ribe	Altered rock	Δ		-		(2)		.	-														-		\cdots			Thin section
A013	Riso	$\begin{gathered} \text { Alterad } \\ \text { rock } \end{gathered}$	-				(2)	\cdots	Δ	Δ		\cdots	\cdots			-		.	\cdots					- .					Assoy
A 014	Ribe	$\begin{array}{r} \text { Arered } \\ \text { rock } \end{array}$	-				©			Δ								\because									-		
A015	Ribe	Altared rock	-	- .	.		(2)		-	Δ	\ldots		\because			.	\ldots						\cdot						Assay . ${ }^{\text {a }}$
A 016	Ribe	$\begin{array}{r} \text { Arersd } \\ \text { rock } \\ \hline \end{array}$	-			-	©		-	Δ	...				\cdots						.							.	-
A 017	Rite	$\begin{array}{r} \text { Aiterod } \\ \text { rock } \end{array}$.				©			Δ		.	.								.								
A 018	Ribe	$\begin{array}{r} \text { Atorad } \\ \text { rock } \end{array}$	Δ				(2)			?								.	.							.			-
A 020	Ribo	$\begin{array}{r} \text { A! torod } \\ \text { rock } \end{array}$	\triangle				©			-										\cdots									Assay . .
A 033	Kinaponi	Oro	.				?	.							Δ				(2)										
A034	Mrima	Carbona -tito	-				0						.		\cdots								Δ	\triangle			©		Poitshod section
A035	Hrisa	$\begin{array}{r} \text { Carbona } \\ -\mathrm{i} \text { its } \end{array}$...			Δ				(1)	Δ	Δ														Δ		
A0.38	Wkangoabe	Pb-ara											.		(1)					(2)									
A040	Mkangombe	Voin		-			©								©					©		Δ							
A044	Ukangombe	Yoin			0		(앙									(앙	Δ							.			Δ		Polished section, hssay

(c) $=$ abundant. $\quad O=$ comanon. $\quad \Delta=$ minor. $\quad-=$ rare. $?=$ uncertain.

APPENDIX 3 SUMMARY OF X-RAY DIFFRACTION (2)

Sample	Location	Rock	5/4	Sor	KaO	Dic	0: 2	k-fs	60.e	Hen	Cal	Sid	Anke	$\begin{array}{\|c\|c\|} \hline \text { Mone } \\ \text { heal } \end{array}$	6al	Spho	Chal	Py	$\mathrm{AnO}^{\text {a }}$	cor	$\xrightarrow{\text { Plu- }}$	Homi	Jar	Rut	A\#:	71:	Apo	Gib	Other zests/ inmarks
4045	xinagoni	0 Oe					-								0				©						\cdots				\cdots - .
A 046	Kimagoni	Oro		0	-		(2)										..		0		\triangle							
8006	Jibgna	Sandstone		-	Δ		©											0							Δ	0			Potished section, kssay
Q010	Ganze	F_{t} Hodule					Δ		©		\cdots						\cdots												Polishad section, Assay
E0: 5	Jibana	Niterad rock		-		0	©																						Atsay \quad.
802\%	Jibana	Altored rock		-		0	©											\cdots	-	\ldots	\cdots								nssay
B 029	Jibane	$\begin{gathered} \text { Altorso } \\ \text { rock } \end{gathered}$		-		0	©					.							\ldots										Assay
- 038	Hrims	$\begin{gathered} \text { Carbona } \\ -t i t e \end{gathered}$					Δ				©	(2)	©														©		Thin secrion, Polishad seczion
8043	Rite	Gossan		-	-		©							\cdots		\cdots	\cdots	\because			Δ								issay
8046	Ribe	G0333an		-	-		(2)				.										-								Assay
8048	Rite	Gossan		-	Δ		©														-					..	-		kssay . .
8050	Ribe	gossan		-	\triangle		(0)																						assay \quad \%
FO10	Urine	$\begin{array}{r} \text { carbona } \\ \text {-tite } \end{array}$									©	\triangle	©	Δ										.		.-			Thin section
6025	Mkangonbe	Vein		Δ			©	©																					Assay
H010	${ }^{\text {Y }}$ rima	$\mathrm{Fe}-$ Nodule					(6)		-					\cdots															kssay …

[^1]A-33

APPENDIX 4 CHEMICAL ANALYSIS OF ORE SAMPLES

Ser. No.	Sample No.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{~g} / \text { tonne } \end{array}$	$\begin{array}{r} \text { S \% } \\ \text { Total } \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} M \mathrm{n} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \% \end{gathered}$	$2 n$ $\%$
1	A005	<0.07	0.012	2	0. 005	27.3	0.354	0.122	0.094
2	A013	<0.07	0.067	2	0.008	17.80	0.003	0.052	0.007
3	A015	<0.07	0.047	2	0.003	9.10	0.005	0.043	0.004
4	A020	<0. 07	0.017	80	<0. 001	2.36	0.001	0.014	0.002
5	A035	<0. 07	0.214	20	>3.00	4. 44	0.011	0.120	0.743
6	A037	<0. 07	9. 42	12	0.109	0.41	0.041	>3.00	0.003
7	A042	<0. 07	0.050	4	0.491	0.89	0.006	0.095	1. 980
8	A043	<0. 07	0. 101	4	0.290	0.72	0.005	0.063	1. 135
9	A044	<0.07	0.147	8	2.97	1. 92	0.011	0.043	0.376
10	B006	<0.07	2.21	4	0.010	2.68	0.013	0.009	0.006
11	B010	<0.07	0.009	<2	0.005	>50.0	0.426	0.007	0.022
12	B015	<0.07	0.026	2	0.001	2.66	0.009	0.004	0.002
13	B022	<0.07	0.275	<2	0.001	3. 19	0.001	0.007	0.002
14	B029	<0. 07	1. 400	<2	<0. 001	4. 42	0.006	0.002	0.002
15	B033	<0. 07	0.007	<2	<0.001	0.59	0.021	<0. 001	0.001
16	B043	<0.07	0.229	<2	0.002	9.00	0.080	0.006	0.004
17	B046	<0.07	0.050	<2	<0.001	1. 80	0.003	0.002	0.001
18	B048	<0.07	0.028	2	<0.001	1. 52	0.002	0.002	<0. 001
19	B049	<0. 07	0.030	<2	<0.001	0.68	0, 002	0.002	<0.001
20	B050	<0. 07	0.038	<2	<0. 001	0.98	0.002	0.001	<0. 001
21	C005	<0.07	0.007	<2	<0.001	3.51	0.079	0.003	0.006
22	D001	<0. 07	0.007	<2	<0. 001	0.47	0.003	0.001	0.002
23	D002	<0. 07	0.166	<2	0.072	5.43	0.005	0.001	0.245
24	D003	<0. 07	0.009	<2	0.004	0.30	0.001	<0. 001	0.005
25	F009	<0.07	0.068	76	0.006	30.0	>3.00	0.014	1. 015
26	G003	<0.07	0.011	2	0.010	31.9	0.177	0.037	0.135
27	6006	<0.07	0.033	10	<0. 001	2.11	0.033	0.001	0.003
28	G008	<0.07	<0. 001	4	<0.001	0.23	0.010	<0. 001	<0. 001
29	G 024	<0. 07	0.023	<2	0.009	1. 94	0.036	0.004	0.024
30	G025	<0.07	0.013	<2	0.001	2. 79	0.006	0.002	0.004
31	H010	<0.07	<0.001	<2	0.005	35.9	0.098	0.004	0.007

APPENDIX 5

CHEMICAL ANALYSIS OF SOIL SAMPLES

Ser. No,	Sample No.	$\underset{\mathrm{ppb}}{\mathrm{Au}}$	$\underset{\mathrm{ppan}}{\mathrm{Ag}}$	$\underset{\mathrm{ppn}}{\mathrm{As}}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\underset{\text { ppon }}{\mathrm{Hg}}$	$\underset{\text { npm }}{\substack{\mathrm{Kn} \\ \hline}}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Zn}}$	
1	ga001	<1	<0. 2	<	150	7	1.89	<1	2080	14	28	0.002
2	GA002	<1	<0, 2	<5	110	4	2.14	<1	470	16		0.006
3	GA003	<1	<0.2	<5	30	2	0.92	<1	230	10		<0. 001
4	GA004	<1	<0.2	5	100	5	1. 42	<1	1035	8	16	0.007
5	GA005	<1	<0.2	<	10	1	0.41	<1	150	6		0.004
6	GA006	<1	<0.2	<	30	2	1.32	<1	995	16		<0.001
7	G4007	<1	<0.2	<5	40	3	2.41	<1	630	10		0.005
8	ga008	<1	<0.2	<5	30	1	1.03	<1	665	20		<0. 001
9	G4009	<1	<0.2	<	20	1	0.32	<1	55	8		<0.001
10	GA010	<1	<0.2	< 5	10	<1	0.32	<1	40	4		0.004
11	GA011	<1	<0.2	10	60	4	1.08	<1	555	14	22	0.005
12	GA012	<1	<0.2	<5	20	1	0.36	<1	30	2	2	0.003
13	GA013	<1	<0.2	く5	50	1	0.88	<1	40	8	8	0.005
14	GA014	<1	<0.2	<5	50	2	0.68	<1	85	8	8	0.003
15	GA015	<1	<0.2	<5	10	1	0.36	<1	45	8		<0.001
16	GA016	<1	<0. 2	<5	<10	<1	0.29	1	110	4	2	0.005
17	Ga017	<1	<0.2	<5	10	<1	0.43	<1	440	10	2	0.004
18	GA018	<1	<0.2	<5	530	11	2.83	<1	370	10	32	0.008
19	GA019	<1	<0.2	10	170	7	2. 29	<1	175	12	12	0.006
20	GA020	<1	<0.2	<5	150	7	1.74	<1	1160	26	14	0.001
21	GA021	<1	<0.2	15	420	9	1.39	<1	1940	18	24	0.009
22	Gi022	<1	<0.2	<5	300	7	1.97	<1	795	22	14	0.010
23	GA023	<1	<0.2	5	20	1	0.74	<1	155	12	4	0.002
24	GA024	<1	<0. 2	<5	20	<1	0.44	<1	15	2	2	0.005
25	GA025	<1	<0.2	<	500	11	1.91	<1	1855	16	24	0.010
26	GA026	<1	<0.2	<5	620	13	2. 76	<1	840	16	28	0.009
27	GA027	<1	<0.2	< 5	400	10	2.14	<1	700	8	24	0.010
28	G4028	<1	<0.2	<5	100	9	2. 48	<1	860	12	16	0.006
29	GA029	<1	<0.2	10	60	3	3. 68	<1	2690	16	56	0.011
30	GA030	<1	<0.2	10	30	3	4.74	<1	2170	16	66	0.008
31	GA031	<1	<0. 2	<5	40	4	4.01	<1	2760	10	54	0.001
32	GA032	<1	<0.2		50	4	3.86	<1	2540	18	68	0.002
33	GA033	<1	<0.2	15	40	3	3.60	<1	1600	22	70	0.005
34	GA034	<1	<0. 2	< 5	100	5	1.89	<1	1505	36		0.015
35	GA035	<1	<0.2	10	80	8	2. 18	<1	2690	22		<0.001
36	GA036	<1	<0.2	20	30	3	4.90	<1	2760	22		<0.001
37	GA037	<1	<0.2	5	10	<1	0.30	<1	70	4		<0, 001
38	G4038	<1	<0.2	<5	10	<1	0.19	<1	10	2	2	0.001
39	G4039	<1	<0. 2	<5	<10	<1	0.11	<1	5			0.001
40	G6040	<1	<0.2	<5	<10	<1	0.30	<1	15	8		<0.001
41	GM041	<1	<0.2	<5	10	2	1.20	<1	280	6		0.002
42	GA042	<1	<0.2	<5	20	1	0.68	1	190	10		<0. 001
43	GA043	<1	<0.2	<5	50	1	0.52	<1	400	18		<0. 001
44	GA044	<1	<0.2	<5	30	1	0.50	<1	435	8		<0. 001
45	ga045	<1	<0.2	5	20	<1	0.31	<1	70	4		<0. 001
46	61046	<1	<0.2	<5	30	2	0.58	<1	150	8		<0.001
47	GA047	<1	<0.2	<5	10	1	0.39	<1	130	6		<0.001
48	GA048	<1	<0.2	5	180	4	0.99	<1	2260	12		<0. 001
49	GA049	<1	<0.2	5	20	1	0.46	<1	165	12		<0.001
50	GA050	<1	<0.2	<5	60	2	0.98	<1	60	14	12	<0.001
51	Gn051.	<1	<0.2	5	20	<1	0. 25	<1	35	2		<0. 001
52	GB001	<1	<0.2	25	90	8	11.35	<1	6240	28		<0.001
53	GB002	<1	<0.2	10	130	7	8.66	<1	5960	34		<0. 001
54	GB003	<1	<0.2	15	110	6	6.42	≤ 1	6120	8	126	<0.001

GANZE AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	Ag ppa	As ppm	Ba ppm	$\underset{\mathrm{ppa}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	Hg ppm	Mn ppa	Pb ppm	2n ppm	\%
55	GB004	<1	<0.2	15	130	7	6.65	<1	6720	8	134	<0. 001
56	GB005	<1	<0.2	<5	90	20	1.60	<1	570	10	38	0.005
57	GB006	<1	<0.2	10	410	9	1.18	<1	910	26		0.010
58	GB007	<1	<0.2	5	50	12	1.75	<1	890	26		<0. 001
59	GB008	<1	<0.2	<5	30	12	1.51	<1	355	14		0.010
60	GB009	<1	<0.2	5	210	20	2.19	<1	655	22	26	0.006
61.	GB010	<1	<0.2	10	50	12	2.65	<1	645	10		0.001
62	GB011	<1	<0.2	5	40	8	3.21	<1	1045	16		<0.001
63	GB012	<1	<0.2	く5	40	9	3.53	<1	990	8		<0. 001
64	GB013	<1	<0.2	25	60	11	4.23	<1	1220	12	108	<0. 001
65	CB014	<1	<0.2	10	50	15	3. 60	<1	1365	20		<0. 001
66	GB015	<1	<0. 2	10	70	20	2.85	<1	1135	16		0.003
67	GB015	<1	<0.2	5	60	16	2.63	<1	910	24		<0. 001
68	GB017	<1	<0. 2	5	530	1	0.77	<1	120	6		0.006
69	GB018	<1	<0.2	5	10	1	1.36	<1	275	18		0.002
70	GB019	<1	<0.2	<5	4470	5	1.37	<1	235	24	18	1.340
71	GB020	<1	<0.2	<5	510	6	1.07	<1	215	4	6	0.022
72	GB021	<1	<0.2	<5	70	17	2.95	<1	355	18		0.005
73	GB022	<1	<0. 2	5	60	17	3.23	<1	495	8		<0.001
74.	GB023	<1	<0.2	<5	140	30	3.37	<1	940	14		<0. 001
75	GB024	<1	<0.2	5	120	4	2.81	<1	200	14		<0.001
76	GB025	<1	<0.2	15	90	2	1.28	<1	645	6		<0. 001
77.	GB026	<1	<0.2	10	90	4	1. 69	<1	560	12		<0. 001
78	GB027	<1	<0.2	5	100	2	1.17	<1	485	14		<0. 001
79	GB028	<1	<0. 2	5	30	1	0.85	1	435	4		<0.001
80	GB029	<1	<0.2	<5	50	<1	0.41	<1	150	4		<0.001
81	cb030	<1	<0. 2	5	50	1	0.58	<1	265	<2		0.001
82	GB031	<1	<0. 2	10	80	1	0.51	<1	255	2		<0. 001
83	GB032	<1	<0. 2	<5	50	1	0.61	<1	240	6		<0.001
84	GB033	<1	<0.2	<5	120	4	1.20	<1	430	12		0.001
85	GB034	<1	<0.2	<5	<10	<1	0.22	<1	10	<2		<0. 001
86	GB035	<1	<0.2	5	<10	<1	0.19	<1	5	<2		<0.001
87	GB036	<1	<0. 2	<5	<10	<1	0.12	<1	<5	<2		0.002
88	GB037	<1	$\leqslant 0.2$	<5	<10	<1	0.09	<1	< 5			0.004
89	CB038	<1	<0.2	<5	<10	<1	0.24	<1	15	2		<0.001
90	CB039	<1	<0.2	<5	<10	<1	0.07	<1	<5	<2		0. 002
91	GB040	<1	<0.2	<5	<10	<1	0.12	<1.		<2	<2	0.001
92	CB041	<1	<0.2	<5	<10	<1	0.17	<1	10	<2		0. 002
93	GB042	<1	<0.2	<5	40	1	1.19	<1	355	16		<0.001
94	GB043	<1	<0.2	<5	<10	<1	0.30	<1	85	<2		<0. 001
95	GB044	<1	<0.2	<5	20	2	0.86	<1	270	4		<0. 001
96	GB045	<1	<0.2	<5	<10	<1	0.17	<1	5	<2		<0. 001
97	GB046	<1	<0.2	<5	10		0.90	1	340	14		<0.001
98	GB047	<1	<0.2	<5	50	3	1.65	<1	375	8		0.002
99	CB048	<1	<0.2	<5	220	4	1.33	<1	250	10		0.004
100	GB049	<1	<0.2	<5	50	1	1.11	<1	25	10		0.004
101	GB050	<1	<0.2	10	70	3	1. 30	<1	645	14		<0. 001
102	GB051	<1	<0. 2	5	20	1	0.54	<1	125	6		0.001
103	GB052	<1	<0.2	<5	40	1	0. 72	<1	335	8		<0.001
104	GB053	<1	<0.2	<5	390	14	3.72	<1	735	38		<0.001
105	GB054	<1	<0. 2	<5	1010	3	1.07	<1	795	16	10	0.008
106	GB055	<1	<0.2	<5	800	12	2.85	<1	1240	24	46	0.012
107	GB056	<1	<0.2	<5	1270	1.4	2.46	<1	3240	18		0.013
108.	CB057	<1	<0.2	15	230	3	2.75	<1	1085	30		<0. 001

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	As ppia	Ba ppm	Cu ppm	$\begin{array}{r} \mathrm{Fe} \\ \% \end{array}$	Hg ppin	m pyn	Pb ppm	Zn ppm	$\begin{aligned} & \mathrm{S} \\ & \text { \% } \end{aligned}$
109.	GB058	<1	<0.2	5	30	2	1.12	<1	325	16		<0. 001
110	GB059	<1	<0. 2	20	40	2	2.08	<1	110	20		0.001
111	GB060	<1	<0.2	5	120	3	1. 86	<1	1840	28		0.001
112	GB061	<1	<0.2	25	50	2	2.22	<1	880	22		<0. 001
113	GB062	<1	<0.2	15	70	6	1.91	<1	465	14	10	<0. 001
114	GB063	<1	<0.2	<5	<10	<1	0.50	<1	30	4	4	0.001
115	GB064	<1	<0. 2	5	140	8	2.22	<1	1135	14		<0.001
116	GB065	<1	<0.2	10	1820	18	3.19	<1	840	4	42	0.015
117.	GB066	<1	<0, 2	15	300	8	2. 42	<1	950	16		<0. 001
118	GB067	<1	<0.2	5	890	15	2. 58	<1	1720	12	46	0.003
119	GB068	<1	<0.2	5	250	7	2. 06	<1	4790	22	120	0. 010
120	G3069	<1	<0.2	10	40	5	1.79	<1	1325	14	52	0.002
121	GB070	<1	<0.2	5	50	8	1.94	<1	575	22	50	0.018
122	GB071	<1	<0.2	<	120	11	1. 08	<1	205	14		<0. 001
123	G8072	<1	<0.2	30	40	12	4. 28	<1	865	12		<0. 001
124	CB073	<1	<0.2	<	500	1	0.35	<1	95	4	2	0.003
125	GB074	<1	<0.2	5	30	1	0.38	<1	125	<2		<0.001
126	GB075	<1	<0.2	<5	90	1	0.27	<1	60	8		<0. 001
127	GB076	<1	<0.2	5	80	<1	0.28	<1	15	2		<0. 001
128	GB077	<1	<0.2	<5	330	<1	0.04	<1	85	<2	<2	0.010
129	GB078	<1	<0.2	5	50	1	0.60	<1	85	8		<0. 001
130	GB079	<1	<0.2	<5	<10	<1	0.17	<1	20	<2		<0. 001
131	GB080	<1	<0.2	<5	10	1	0.61	<1	160	8		<0.001
132	GB081	<1	<0.2	<5	10	<1	0.29	<1	40			<0. 001
133	GB082	<1	<0.2	<5	20	<1	0.13	<1	10	<2		<0.001
134	GB083	<1	<0.2	<5	80	4	1.27	<1	530	6	12	0. 002
135	GB084	<1	<0.2	5	20	1	0.50	<1	75	2		<0. 001
136	GB085	<1	<0.2	<5	<10	<1	0.19	<1	25	2	<2	0.001
137	GB086	<1	<0.2	<5	30	1	0.48	<1	180	12	6	0.002
138	GB087	<1	<0.2	<5	<10	<1	0.13	<1	10	<2	<2	0.002
139	GB088	<1	<0. 2	<5	10	<1	0.31	<1	25	<2		<0. 001
140	GB089	<1	<0.2	5	<10	<1	0.23	<1	20	<2	6	0.002
141	GB090	<1	<0. 2	<5	<10	<1	0.24	<1	10	<2	2	0.007
142	GB091	<1	<0.2	<5	<10	<1	0.31	<1	150	<2	2	0.004
143	GB092	<1	<0.2	5	20	1	0.36	<1	95		4	0.004
144	Gb093	<1	<0.2	5	10	<1	0.27	<1	10	4	2	0.005
145	CB094	<1	<0.2	<5	30	<1	0.27	<1	40	4	2	0.002
146	Gb095	<1	<0.2	<5	40	1	1.18	<1	275	4	18	0.003
147	GB096	<1	<0.2	10	30	2	0.74	<1	270	12	10	0.014
148	GB097	<1	<0.2	<	210	9	2.27	<1	1425	26	28	0.006
149	GB098	<1	<0.2	15	160	3	1.14	<1	1210	8	12	0.001
150	GB099	<1	<0.2	15	60	6	2.38	<1	400	6		<0. 001
151	GB100	<1	<0.2	<5	30	3	0.57	<1	200	8		<0.001
152	GB101	<1	<0.2	<5	2440	12	1.70	<1	2750	18	38	0.034
153	GC001	<1	<0.2		380	12	2.32	1	895	14	22	0.003
154.	GC002	<1	<0.2	10	570	15	3.52	1	315	12	34	0.004
155	GC003	<1	<0.2		410	11	1.92	<1	1650	22	22	0.052
156	GC004	<1	<0.2	5	70	7	1.63	<1	115	14	12	0.002
157	GC005	<1	<0.2	<5	10	<1	0.24	<1	30	2	2	0.003
158	GC006	<1	<0.2	<5	20	1	0.76	<1	65	6	4	0.003
159	ac007	<1	<0.2	<5	10	<1	0,32	<1	20	4	2	0.002
160	GC008	<1	<0.2	<5	<10	<1	0.15	<1	<5	<2	<2	0.002
161	6C009	<1	<0.2	5	10	1	0.27	<1	60	2	2	0.001
162	6C010	≤ 1	<0.2	<5	1080	1	2.10	<1	55	16	16	0.020

GANE AREA

Ser. No.	Sample No.	$\stackrel{\mathrm{Au}}{\mathrm{ppb}}$	Ag ppm	As ppm	Ba ppa	Cu ppm	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	IIg ppm	Mn ppa	Pb ppin	Zn ppm	$\%$
163	GC011	<1	<0. 2	<	<10	<1	0.19	<1	25	4	2	0.002
164	GC012	<1	<0.2	<5	20	1	0.48	<1	60	2	4	0.001
165	GC013	<1	<0. 2	<5	10	<1	0. 20	<1	75	<2		0.001
166	GC014	<1	<0.2	10	270	10	1.80	<1	1235	14		<0. 001
167	GC015	<1	<0.2	5	420	5	2.34	<1	55	4		0.001
168	GC016	<1	<0.2	5	160	3	1.77	<1	215	18		0.001
169	GC017	<1	<0.2	5	650	9	2.33	<1	1525	14		0.007
170	GC018	<1	<0.2	5	120	3	1.41	<1	185	6		0. 001
171	GCD19	<1	<0.2	<5	260	12	2.22	<1	565	8		<0, 001
172	6C020	<1	<0.2	<5	20	1	0.80	<1	145	10		<0. 001
173	GC021	<1	<0.2	<5	20	1	0.63	<1	390	8		0.001
174	$\mathrm{GCO2}^{2}$	<1	<0.2	5	110	4	1.24	<1	1000	8	12	0.001
175	GC023	<1	<0.2	<5	30	<1	0. 36	<1	35	4	4	0.003
176	GC024	<1	<0.2	<5	50	2	1.10	<1	240	8		0. 001
177.	GC025	<1	<0.2	5	20	<1	0.31	<1	160		4	<0. 001
178	GC026	<1	<0.2	10	470	7	1.31	<1	800	8		0.001
179	GC027	<1	<0.2	<5	20	1	0.36	<1	20	<2	2	<0. 001
180	GC028	<1	<0.2	<5	10	<1	0.21	<1	20	2	<2	0.001
181	6 6029	<1	<0.2	<	40	1	0.50	<1	65	<2	8	0.001
182	GC030	<1	<0.2	10	680	21	2.72	<1	560	22	32	0.012
183	6C031	<1	<0.2	<5	510	15	2.82	<1	1045	4	18	0.014
184	GC032	<1	<0.2	<5	230	13	2.66	1	1595	16	24	0.011
185	GC033	<1	<0. 2	5	70	5	2. 09	<1	170	8	10	0.008
186	CC034	<1	<0.2	<5	190	6	3.09	<1	525	6	12	0.002
187	GC035	<1	<0.2	5	480	23	2.20	<1	1775	20	46	0.007
188	GC037	<1	<0.2	5	20	1	0.65	<1	200	12	2	0.004
189	6C038	<1	<0. 2	5	20	1	0.65	<1	245	14	4	0.004
190	GC039	<1	<0.2	5	10	1	0.96	<1	215	12	6	0.004
191	- 6040	<1	<0.2	5	20	1	0.72	<1	100	8	4	0.002
192.	6 C 041	<1	<0.2	<5	20	1	0.67	<1	515	14		0.005
193	GC042	<1	<0. 2	5	10	<1	0.59	<1	385	12	2	0.003
194	6 C 043	<1	<0.2	<5	10	1	0.61	<1	315	8	4	0.003
195	GC044	<1	<0.2	<5	10	1	0.61	<1.	110	8	2	0.004
196	CCO_{5}	<1	<0.2	<5	10	1	0.79	<1	555	14	4	0.003
197	GC046	<1	<0. 2	5	10	1.	0.70	<1	500	18	2	0.003
198	GC047	<1	<0.2	5	20	3	1.30	<1.	620	16	10	0.002
199	GC048	<1	<0.2	<5	20	1	0.97	<1	520	10	6	0.004
200	6C049	<1	<0.2	<5	20	1	1.03	<1	325	14	6	0.001
201.	CC050	<1	<0.2	<5	20	2	1.11	<1	170	10	6	0.004
202	6C051	<1	<0.2	<5	20	2	1.01	<1	435	12	4	0.004
203.	GC052	<1	<0.2	<5	10	1	0.85	<1	325	8	4	0.002
204.	GC053	<1	<0.2	10	70	4	2.81	<1	500	20	20	0.016
205	CC054	<1	<0.2	<5	20	1	1.21	<1	605	16	6	0.003
206	6C055	<1	<0.2	<5	50	4	0.83	<1	95	2	10	0.002
207	GC056	<1	<0.2	5	60	4	1.79	<1	610	8	14	0.002
208	GC057	<1	<0.2	5	840	7	2.26	<1	1685	18	22	0.003
209	¢C058	<1	<0.2	<5	40	1	1. 24	<1	605	22	6	<0.001
210	GC059	<1	<0.2	<5	20	1	0.79	<1	505	8	4	0.001
211	¢C060	<1	<0.2	5	10	1	0.37	<1	470	8	2	0.005
212	GC061	<1	<0. 2	<5	<10	<1	0.36	<1	55	6	2	0.002
213	GC062	<1	<0.2	<5	10	<1	0.40	<1	60	4		<0. 001
214	¢С063	<1	<0.2	5	80	3	1.83	<1	450	4	20	<0.001
215	GC064	<1	<0.2	<5	350	12	1.79	<1	1405	22	40	0.006
216	GC065	<1	<0.2	<5	140	5	2.22	<1	375	18	14	<0. 001

RESULTS OF GEOCILEMICAL ANALYSIS
GANZE AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\underset{\text { ppm }}{\mathrm{Ag}}$	As	$\begin{aligned} & \mathrm{Ba} \\ & \mathrm{pym} \end{aligned}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \mathrm{Hn} \\ & \mathrm{ppm} \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & \mathrm{ppm} \end{aligned}$	$\underset{\text { ppin }}{2 n}$	$\%$
217	GC066	<1	<0. 2	<5	60	2	1.17	<1	645	24	10	0.004
218	GC067	<1	<0. 2	<5	50	2	0.70	<1	35	6	4	0.008
219	GC068	<1	<0.2	<5	50	3	1.88	<1	320	14		<0.001
220	CC069	<1	<0.2	5	130	6	1.75	<1	1380	12	16	<0.001
221	Gc070	<1	<0.2	<5	70	3	1.09	<1	635	10	10	0.005
222	GCO71	<1	<0.2	< 5	140	5	1.74	<1	1155	12	14	0.002
223	6c072	<1	<0.2	<5	<10	<1	0.36	<1	25	2	2	<0.001
224	6c073	<1	<0.2	<5	<10	1	0.42	<1	50	2	2	0.003
225	6C074	<1	<0.2	5	<10	<1	0.39	<1	55	<2	2	0.002
226	6C075	<1	<0.2	<5	10	1	0.75	<1	80	6	4	0.002
227	GC076	<1	<0.2	<5	10	2	1.33	<1	400	14	4	0.005
228	GC077	<1	<0.2	<	<10	1	0.46	<1	55	<2	2	0.003
229	GC078	<1	<0.2	<5	<10	1	0.61	<1	70	4	2	0.002
230	GC079	<1	<0.2	<	20	1	1.16	<1	325	8	4	0.005
231	GC080	<1	<0.2	<5	20	<1	0.26	<1	115	2	2	0.003
232.	GC081	<1	<0.2	<5	20	,	0.52	<1	360	4	6	<0. 001
233.	GC082	<1	<0.2	<5	20	1	0.45	<1	80	2	6	<0. 001
234	6C083	<1	<0.2	<5	20	1	0.46	<1	215	6	4	0.003
235	6C084	<1	<0.2	<5	<10	<1	0.60	<1	100	6	2	<0. 001
236	GC085	<1	<0.2	<5	<10	<1	0.32	<1	110	<2	2	<0. 001
237	GC086	<1	<0.2	<5	10	1	0.41	<1	265	<2	4	<0. 001
238	GC087	<1	<0.2	<5	20	1	0.40	<1	145	<2	2	<0. 001
239	6C088	<1	<0.2	<5	10	<1	0.37	<1	370	6	2	<0. 001
240	GC089	<1	<0. 2	5	30	3	0.89	<1	125	8	8	0.002
241	GC090	<1	<0.2	5	800	7	2.55	<1	120	10	32	0.013
242	GC091	<1	<0.2	<5	10	1	0.47	<1	170	6	4	0.007
243	6C092	<1	< 0.2	<5	30	1	0.30	<1	135	6	4	0.005
244	GC093	<1	<0.2	10	340	10	2.76	<1	325	24	36	0.010
245	GD001	<1	<0.2	<5	10	1	0.96	<1	130	10	6	0.003
246	GD002	<1	<0.2	5	140		2.81	<1	765	16	28	0.005
247	GD003	<1.	<0. 2	<5	70	2	1.26	<1	640	18	18	0.003
248	GD004	<1	<0. 2	<5	390	12	2.61	<1	1080	6	26	0.001
249	GD005	<1	<0.2	<5	450	13	3. 32	<1	235	4	18	0.004
250	GD006	<1	<0.2	5	1540	17	2.85	<1	195		26	0.030
251	GD007	1	<0.2	5	140	,	2.76	<1	525			<0.001
252	GD008	<1	<0.2	<5	10	-	1.06	<1	100	10	8	<0.001
253	CD009	<1	<0.2	5	20	5	2.19	<1	140	12	22	0.002
254	GD010	<1	<0.2	<5	20	3	1.01	<1	215	12		<0.001
255	GD011	<1	<0.2	<5	60	6	1.84	<1	230	<2	8	<0.001
256	CD012	<1	<0.2	15	60	12	2.50	<1	665	10	22	<0. 001
257	GD013	<1	<0.2	45	1080	38	12.55	<1	>10000	26	1515	0.027
258	GD014	<1	<0.2	<5	100	8	11.95	<1	>10000	12	82	0.010
259	GD015	<1	<0.2	<5	120	11	12.05	<1	>10000	10	82	0.007
260	GD016	<1	<0.2	<5	50		0.56	<1	510			<0. 001
261	GD017	<1	<0.2	<5	60	4	1.07	<1	650			<0.001
262	GD018	<1	<0.2	<5	40	1	0.46	<1	315	4		<0.001
263	GD019	3	<0.2	< 5	90	<1	0.92	<1	35	10		<0.001
264	GD020	<1	<0.2	5	40	<1	0.66	<1	20	6		<0.001
265	GD021	<1	<0.2	<5	10	<1	0.30	<1	5	4	<2	0.003
266	GE001	<1	<0.2	<5	10	1	0. 52	<1	70	6		<0.001
267	GE002	<1	<0.2	<5	10	2	0.73	<1	35	6		<0. 001
268	GE003	<1	<0.2	<5	10	1	0. 40	<1	115	2		<0. 001
269	GE004	<1	<0. 2	<5	50	3	0.98	<1	60	<2	6	0.003
270	GE005	<1	<0.2	<5	230	14	2.71	≤ 1	615	10	26	0.008

GANZE AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppan} \end{array}$	$\begin{gathered} \text { As } \\ \text { ppm } \end{gathered}$	$\begin{aligned} & \text { Ra } \\ & \text { ppa } \end{aligned}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppm} \end{gathered}$	Mn ppa	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Zn} \\ \mathrm{ppm} \end{gathered}$	
271	GE006	<1	<0.2	<5	280	10	1.67	<1	1440	10		0.003
272	GE007	<1	<0. 2	<5	2350	17	3.41	<1	1380	22	72	0.040
273	GE008	<1	<0.2	<5	770		2.06	<1	740	8	16	0. 010
274	GE009	<1	<0. 2	<5	230	5	2.15	<1	195	10	12	0.004
275	GE010	<1	<0.2	5	30	3	3.04	<1	1205	28	68	0.001
276	GE011	2	<0.2	5	90	7	3.89	<1	2060	22		0. 005
277	GE012	<1	<0. 2	15	10	3	3.79	<1	1045	12		<0. 001
278	GE013	<1	<0.2	10	20	4	3.65	<1	1280	2		0.001
279	GE014	<1	<0.2	<5	70	1	3.92	<1	2450	12		<0. 001
280	GE015	<1	<0.2	<5	60	6	3.75	<1	1880	20		<0. 001
281	GE016	<1	<0. 2	<5	120	8	2.40	<1	40	6		0.002
282	GE017	<1	<0.2	<5	160	3	0.92	<1	190	12		<0.001
283	GE018	<1	<0.2	<5	10	1	0.63	<1	45	8		<0.001
284	GE019	<1	<0.2	<5	60	4	1.11	<1	675	8		<0.001
285	GE020	<1	<0.2	<5	10	1	0.57	<1	45	6		0.002
286	GE021	<1	<0. 2	<5	230	2	1.43	<1	655	22		0.001
287	GE022	<1	<0.2	5	50		0.79	<1	45	4		<0. 001
288	GE023	<1	<0.2	<5	40	1	0.74	<1	45	2		<0. 001
289	GE024	<1	<0.2	<5	10	5	0.99	1	45	2		<0. 001
290	GE025	<1	<0.2	<5	20	3	0.91	<1	165	<2		<0. 001
291	GE026	<1	<0.2	<5	10	2	0.56	<1	165	<2		<0. 001
292	GE027	<1	<0.2	<5	80	7	2.97	<1	1910	12		<0.001
293	6E028	<1	<0.2	10	50	7	3.59	<1	3830	10		<0.001
294	GE029	<1	<0.2	5	70	7	3.48	<1	2080	16	124	<0. 001
295	GE030	<1	<0.2	25	20	8	4.89	<1	1335	2		0.008
296	GE031	<1	<0.2	<5	20	8	2.35	<1	510	14	54	0.001
297	GE034	<1	<0.2	25	90	9	10.95	<1	9700	,		0.006
298	GE035	<1	<0.2	15	100	8	11.85	<1	8670	<2		<0.001
299	GE040	<1	<0.2	15	120	10	12.45	<1	7370	<2	270	0.001
300	GE041	<1	<0. 2	15	30	6	10.55	<1	5080	12	136	0.005
301	GE042	<1	<0.2	10	30	6	3.91	<1	1445	10		0.003
302	GE043	<1	<0. 2	5	50	9	3.19	<1	1180	8		<0.001
303	GE044	<1	<0.2	5	20	11	4.05	<1	720	8		0.001
304	GE045	<1	<0.2	10	30	10	1.82	<1	125	8		0.002
305	GE047	<1	<0.2	25	190	48	4.76	<1	230	10		<0.001
306	GE048	<1	<0.2	15	80		15.00		>10000	<2	476	0.008
307	GE049	<1	<0.2	25	50	14	>15.00	<1	>10000	14	398	0.002
308	GE050	<1	<0.2	10	20	6	5.27	<1	2040	<2		<0.001
309	GE051	<1	<0. 2	<5	20	5	1. 27	<1	780	<2		<0.001
310	GE052	<1	<0.2	5	60	4	1.55	<1	1355	10		<0.001
311	GE053	<1	<0. 2	<5	100	5	1.31	<1	380	18		0.001
312	GE054	<1	<0.2	10	190	8	1.52	<1	40	<2		0.003
313	GE055	<1	<0,2	<5	20	2	0.98	<1	60	10		<0. 001
314	GE056	<1	$\leqslant 0.2$	<5	20	2	0.54	<1	240	14		<0. 001
315	GE057	<1	<0.2	<5	20	1	0.40	<1	240	6		<0. 001
316	GE058	<1	<0.2	<	<10	<1	0.30	<1	45	,		<0. 001
317	GE059	<1	<0.2	<5	30	2	1.17	<1	445	14		<0.001
318	GF001	<1	<0.2	< 5	260	17	3.83	<1	70	10		0.016
319	GF002	<1	<0.2	<5	290	15	3.25	<1	545	14		<0. 001
320	GF003	<1	<0.2	<5	670	3	3.15	<1	200	16		0.010
321	GF004	<1	<0.2	<5	50	4	1.86	<1	220	20		<0. 001
322	GF005	<1	<0.2	<	20	<1	0.70	<1	20	4		<0.001
323	GF006	<1	<0.2	<5	220	18	3.35	<1	35	8	36	0.005
324	Gr007	<1	<0.2	<5	160	5	1.81	<1	225	6		<0.00

GANZE AREA

Ser. No.	Sample No.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	Ag	As ppmi	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{pan} \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{aligned} & \mathrm{Fe} \\ & \quad \% \end{aligned}$	Hg ppm	Hn ppm	Pb ppm	$2 n$ ppm	\%
325	GF008	<1	<0. 2	<5	2560	18	4.86	<1	715	28	24	0.072
326	GF009	<1	<0. 2	10	200	7	2. 59	<1	360	16	22	0.004
327	GF010	<1	<0. 2	5	630	18	3.48	<1	20	6	28	0.014
328	GF011	<1	<0.2	< 5	390	19	2.45	<1	345	18	34	0.002
329	GF012	<1	<0.2	10	210	13	2. 40	<1	355	4	20	0.003
330	GF013	<1.	<0. 2	10	80	10	2.25	<1.	100	<2		<0. 001
331	GFO14	<1.	<0. 2	5	40	6	1.51	<1	670	<2	12	<0. 001
332	GF015	<1	<0.2	15	40	6	1.97	<1	65	<2	14	<0. 001
333	GF016	<1	<0. 2	<5	40	11	2.83	<1	105	10	20	<0. 001
334	GF017	<1	<0.2	20	40	6	4.86	<1	2080	6	262	0.003
335	GF018	<1	<0.2	15	40	5	5. 49	<1	2750	8	172	0.002
336	GF019	<1	<0.2	<5	20	7	5. 05	<1	1390	20	78	0.001
337	GF020	<1	<0.2	5	60	7	9.71	<1	7000	12		<0. 001
338	GF021	<1	<0.2	15	80	9	9.19	<1	5410	14	98	<0.001
339	GF022	<1	<0.2	<5	10	<1	0.32	<1	40	4		<0. 001
340	GF023	<1	<0.2	<5	30	1	0.50	<1	70	2	6	<0. 001
341	GF024	<1	<0. 2	5	250	4	2.09	<1	105	12		0.002
342	GF025	<1	<0.2	<5	10	<1	0.30	<1	65	2		<0. 001
343	GF026	<1	<0. 2	10	140	7	2.06	<1	150	10	22	<0. 001
344	GF027	<1	<0.2	<5	100	3	1. 29	<1	60	8	12	<0. 001
345	CF028	<1	<0.2	<5	240	6	0.99	<1	1005	12	16	0.002
346	GF029	<1	<0. 2	<5	10	<1	0.44	<1	65	<2		<0. 001
347	CF030	<1	<0.2	<5	20	1	0.80	<1	65	4	4	<0. 001
348	Gf031	<1	<0.2	<5	30	1	0.67	<1	120	10	4	<0. 001
349	GF032	<1	<0.2	<	30	1	0.47	<1	45	<2		<0. 001
350	GF033	<1	<0.2	<5	10	<1	0.36	<1	30	8		<0. 001
351	GF034	<1	<0.2	<5	<10	<1	0.23	<1	40	<2		<0. 001
352	GF035	<1	<0.2	<	20	1	0.58	<1	610	12	4	0.001
353	GF036	<1	<0.2	<5	20	1	0.44	<1	45	8		<0. 001
354	GF037	<1	<0.2	<5	50	2	0.70	<1	265	6	10	<0. 001
355	GF038	<1	<0.2	5	40	2	1.07	<1	215	12		<0.001
356	GF039	<1	<0.2	<5	20	1	0.48	<1	55	4		<0. 001
357	GF040	<1	<0.2	5	30	1	0.77	<1	175	6		<0. 001
358	GF041	<1	<0.2	<5	60	4	1.77	<1	840	4		<0.001
359	GF042	<1	<0.2	10	460	8	2.82	<1	400	18	38	<0.001
360	6F043	<1	<0.2	<5	1860	13	2.59	<1	815	26	44	0.035
361	GF044	<1	<0.2	10	160	9	3.41	<1	585	18		<0.001
362	GF045	<1	<0.2	10	560	17	3.67	<1	795	12	52	<0.001
363	GF046	<1	<0.2	5	190	6	1.55	<1	200	6		<0.001
364	GF047	<1	<0. 2	<5	120	15	2.42	<1	40	6	16	<0.001
365	GF048	<1	<0.2	<5	210	12	1.63	<1	2210	14	50	0.015
366	GF049	<1	<0.2	25	590	35	7.31	<1	10000	144	794	<0. 001
367	GF050	<1	<0.2	20	260	43	4.17	<1	4880	64	340	0.001
368	GF051	<1	<0.2	<5	70	12	3.49	<1	1305	8	36	<0. 001
369	GF052	<1	<0.2	<5	10	<1	0.29	<1	90	6	2	0,003
370	G7053	<1	<0.2	< 5	10	<1	0.19	<1	15	6	2	0.006
371	GF054	<1	<0.2	< 5	20	2	0.91	<1	195	12	8	0.004
372	GF055	<1	<0.2	5	50	1	0.81	<1	25	10	10	0.009
373	GF056	<1	<0.2.	<5	<10	<1	0.35	<1	25	8	2	0.007
374	GF057	<1	<0.2	<5	10	<1	0.69	<1	30	10	2	0.005
375	GF058	<1	<0.2	< 5	10	<1	0.57	<1	35	<2	2	0.008
376	GF059	<1	<0. 2	<5	10	<1	0.55	<1	60	6	2	0. 005
377	GF060	<1	<0. 2	<5	20	<1	0.64	<1	40	14	2	0.007
378	GF061	<1	<0.2	< 5	30	3	1.17	<1	75	10	6	0.005

RESULTS OF GEOCHEHICAL ANALYSIS
＊GANZE AREA＊

Ser． No．	Sample No．	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { As } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Baa} \\ \mathrm{ppm} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$		$\begin{gathered} \mathrm{Hn}_{\mathrm{n}} \\ \mathrm{ppn} \end{gathered}$	Pb ppm	$\begin{gathered} \mathrm{Zn} \\ \mathrm{ppm} \end{gathered}$	S
379	GF062	＜1	＜0．2	10	460	7	2.42	＜1	1065	32	38	0.016
380	6 F 083	＜1	＜0． 2	＜5	520	7	1.45	＜1	885	14	26	0.014
381	GF064	＜1	<0.2	＜5	150	3	1.09	＜1	490	190	44	0.007
382	GF065	＜1	＜0． 2	＜5	260	1	0.95	＜1	340	18	6	0.002
383	GF066	3	＜0．2	＜5	80	1	1.02	<1	85	18	10	0.001
384	GF067	＜1	<0.2	＜5	430	10	1.26	＜1	2210	28	28	0.006
385	GF068	＜1	＜0．2	5	1850	13	3.08	＜1	860	46	54	0.032
386	GF069	＜1	＜0． 2	く5	60	2	0． 65	＜1	690	2	6	＜0． 001
387	GF070	＜1	<0.2	＜5	10	＜1	0.29	＜1	60	2	2	0.008
388	GF071	＜1	<0.2	＜5	10	3	1.59	＜1	245	14	8	0.013
389	GF072	＜1	＜0．2	＜5	20	1	0.71	＜1	265	10	6	0.005
390	GF073	＜1	＜0．2	＜5	40	1	0.69	＜1	320	10	8	0.004
391	GF074	＜1	<0.2	＜5	20	＜1	0． 39	＜1	80	2	4	0.006
392	$6 \mathrm{CO75}$	＜1	<0.2	＜5	100	3	1． 58	＜1	575	24	8	0.006
393	GF076	＜1	＜0．2	5	10	2	1.08	1	90	10	4	0.007
394	6F077	＜1	＜0．2	＜5	＜10	2	1.99	＜1	95	16	4	0.006
395	GF078	＜1	＜0．2	＜5	70	2	1.69	＜1	1055	12	8	0.002
396	GG001	＜1	＜0．2	5	1880	13	2.96	＜1	1275	22	50	0.028
397	GG002	＜1	＜0．2	＜5	20	1	0． 72	＜1	100	10	6	0.004
398	C6003	＜1	＜0． 2	＜5	330	4	1.74	＜1	640	22	22	0.007
399	GG004	＜1	＜0．2	5	710	4	2.37	＜1	1830	26	30	0.009
400	GG005	＜1	＜0． 2	5	20	1	0.54	＜1	30	8	2	0.004
401	GG006	＜1	＜0．2	＜5	840	9	2． 44	＜1	140	16	30	0.011
402	G6007	＜1	＜0．2	＜5	500	6	1.99	＜1	1330	18	22	0.011
403	GG008	＜1	＜0．2	5	50	2	0.76	＜1	200	8	10	0.001
404	G6009	＜1	＜0． 2	5	220	2	0.93	＜1	620	16	12	0.005
405	G6010	＜1	＜0．2	く5	120	1	0.36	＜1	35	8	2	0.008
406	GG011	＜1	＜0．2	＜5	70	<1	0.23	＜1	10	4	2	0.006
407	GG012	＜1	<0.2	く5	120		2.23	＜1	910	20	22	0.008
408	GG013	＜1	＜0． 2	10	210	10	2.95	<1	700	14	30	0.013
409	G6014	＜1	＜0．2	＜5	120	4	1.30	＜1	645	16	1.0	0.005
410	G6015	＜1	＜0．2	＜5	40	1	0.54	＜1	30	4	4	0.004
411	GG016	＜1	＜0．2	5	50	1	0.79	＜1	80	2	8	0.002
412	GG017	＜1	＜0．2	＜	90	5	1.06	＜1	550	14	16	0.003
413	GG018	＜1	＜0．2	＜5	120	6	1.86	<1	645	，	22	0.004
414	GG019	＜1	＜0． 2	10	20	＜1	0.44	＜1	85	2		＜0． 001
415	GG020	＜1．	＜0． 2	＜	30	1	1.16	＜1	325	8		＜0． 001
416	GG021	＜1	＜0．2	＜	30	2	1.01	＜1	150	8		0.002
417	GG022	＜1	＜0．2	10	60	4	1． 42	＜1	205	12		＜0． 001
418	G6023	＜1	＜0．2	5	30	3	2.09	＜1	450	14	8	0.002
419	G6024	＜1	<0.2	5	10	2	0.88	＜1	115	8		＜0． 001
420	G6025	＜1	＜0．2	＜5	10	＜1	0.56	＜1	295	8		＜0． 001
421	GG026	＜1	＜0．2	＜	10	1	0.43	<1	120	2	4	＜0．001
422	G6027	＜1	<0.2	5	370	2	1.99	＜1	55	16	12	0.004
423	G6028	＜1	<0.2	＜5	10	＜1	0.50	＜1	100	6	2	＜0．001
424	GG029	＜1	＜0．2	＜5	100	3	0.84	＜1	420	8	10	0.002
425	GG030	＜1	<0.2	＜5	40	2	1.08	＜1	410	18	8	＜0．001
426	6 G 031	＜1	＜0．2	＜5	10	1	0.43	＜1	75	2	4	＜0． 001
427	GG032	＜1	<0.2	＜5	40	1	0.44	＜1	20	2	4	＜0． 001
428	GG033	＜1	<0.2	＜5	30	1	0.55	＜1	35	＜2	6	＜0． 001
429	GG034	＜1	＜0．2	＜5	30	2	0.77	＜1	125	4	8	＜0．001
430	GG035	＜1	<0.2	＜5	80	4	2.28	＜1	385	16	18	＜0． 001
431	GG036	＜1	＜0．2	5	20	1	0.68	＜1	205	2	6	＜0． 001
432	G6037	＜1	<0.2	＜5	90	3	1.05	<1	140	8	12	＜0．001

RESULTS OF GEOCHEHICAL ANALYSIS

GANZE AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	Ag	$\begin{gathered} \mathrm{As} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \text { ppin } \end{gathered}$	$\underset{\mathrm{pu}}{\mathrm{Cu}}$	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{Hg} \\ & \mathrm{ppm} \end{aligned}$	$\begin{aligned} & \text { mn } \\ & \mathrm{ppm} \end{aligned}$	Pb ppa	$\begin{aligned} & \mathrm{Zn} \\ & \mathrm{ppm} \end{aligned}$	S 4
433	GG038	<1	<0.2	<5	80.	,	1.26	<1	870	18		<0.001
434	GG039	<1	<0. 2	<5	30	1	0.62	<1	930	10		<0.001
435	G6040	<1	<0. 2	<5	20	1	0.87	<1	545	14		<0. 001
436	GG041	<1	<0. 2	5	20	1	1.08	<1	385	22		<0.001
437	GG042	<1	<0. 2	<5	10	<1	0.09	<1	10	<2		<0. 001
438	GG043	<1	<0. 2	<5	90	3	0.97	<1	2140	20		<0. 001
439	G6044	<1	<0.2	<5	360	7	2.62	1	1010	16	38	<0. 001
440	GG045	<1	<0.2	5	20	1	0.94	<1	115	12		<0.001
441	GG046	<1	<0.2	<5	10	<1	0.50	<1	90	<2	2	<0. 001
442	GG047	<1	<0.2	5	420	10	1.92	<1	1550	18	28	0.002
443	GG048	<1	<0.2	<5	70	1	0.74	<1	400	6		<0. 001
444	GG049	<1.	<0.2	<5	70	<1	0.42	<1	125	<2		<0. 001
445	GG050	8	<0. 2	<5	30	<1	0.30	<1	200	4	4	0.005
446	GG051	<1	<0.2	<5	60	1	0.67	<1	485	6	8	0.006
447	GG052	<1	<0.2	10	90	2	0.90	<1	575	8	12	0.005
448	G6053	<1	<0.2	5	190	6	2.68	<1	795	2	32	0.008
449	GG054	<1	<0.2	<5	30	1	0.75	<1	150	6	4	0.001
450	GG055	<1	<0.2	<5	50	2	0.56	1	70	6	6	0.005
451	GG056	<1	<0. 2	<5	100	2	0.72	<1	425	2	10	0.002

JIBANA AREA

| Ser. Sample | Au | Ag | As | Ba | Cu | Fe | Ig | Mn | Pb | Zn | S | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. | No, | ppb | ppm | ppm | ppa | ppm | $\%$ | ppm | ppm | ppm | ppm | $\%$ |

1	JA001.	<1	<0. 2	<5	120	4	0.90	<1	760	6	$10<0.001$
2	JA002	<1	<0.2	5	70	2	0.91	<1	425	8	$8<0.001$
3	JA003	<1	<0. 2	10	260	4	2.56	<1	1430	26	220.002
4	JA004.	<1	<0. 2	20	100	2	3.53	<1	1380	22	$14<0.001$
5	JA005	<1	<0. 2	5	60	2	3.34	<1	1330	18	$12<0.001$
6	JA006	<1	<0.2	5	50	3	3.55	<1	1415	10	$14<0.001$
7	JA007	<1	<0.2	20	180	10	4.29	<1	2190	18	$32<0.001$
8	JA008	<1	<0.2	5	190	9	3.52	<1	700	16	$26<0.001$
9	JA009	<1	<0. 2	<5	170	6	3.61	<1	1995	16	$28<0.001$
10	JA010	<1	<0.2	10	20	5	2.62	<1	510	12	$18<0.001$
11	JA011	<1	<0.2	<5	70	4	3.29	<1	1055	16	$18<0.001$
12	JA012	<1	<0.2	20	90	2	2.08	<1	455	24	$22<0.001$
13	JA013	<1	<0.2	5	120	7	1.27	<1	1080	12	$24 \quad 0.001$
14	JA014	<1	<0. 2	5	340	3	1.27	<1	495	<2	10.0 .002
15	JA015	<1	<0. 2	<5	40	1	0.47	<1	90	8	$4<0.001$
16	J^016	<1	<0.2	5	30	1	0.58	<1	60	6	40.002
17	JR017	<1	<0. 2	<5	110	12	1. 87	<1	310	16	600.001
18	JA018	<1	<0.2	5	140	6	2.26	<1	355	6	$18<0.001$
19	JA019	<1	<0.2	<5	100	7	2.14	<1	1760	10	$20<0.001$
20	JA020	<1	<0.2	<5	- 40	4	1.66	<1	1265	16	$10<0.001$
21	Jaũz	<1	<0. 2	5	40	7	2.61	<1	1875	12	2800.007
22	JA022	<1	<0.2	5	30	9	4.22	<1	3120	20	$156<0.001$
23	JA023	<1	<0.2	10	160	11	6. 78	<1	4470	120	$220<0.001$
24	JA024	<1	<0. 2	10	150	9	10.35	<1	5230	58	$114<0.001$
25	JA025	<1	<0.2	10	80	6	6.98	<1	3900	38	$108<0.001$
26	JA026	<1	<0. 2	25	660	13	13.15	<1	>10000	198	$410<0.001$
27	JA027	<1	<0.2	<5	270	9	6.62	<1	4430	130	$394<0.001$
28	JA028	<1	<0.2	20	230	19	9.45	<1	6790	122	$858<0.001$
29	J1029	<1	<0.2	10	100	10	6.03	<1	4470	110	$392<0.001$
30	JA030	<1	<0.2	5	690	19	8.99	<1	7400	130	$1050<0.001$
31	JA031	<1.	<0.2	20	90	17	9.31	<1	7330	166	$992<0.001$
32	JA032	<1	<0.2	35	5510	35	13.00	<1	>10000	2420	$732<0.001$
33	JA033	<1	<0.2	20	60	12	8.24	<1	5210	36	$482<0.001$
34	J1034	<1	<0.2	200	510	22	14.45	<1	7170	114	$2110<0.001$
35	JA035	<1	<0.2	95	290	30	12.05	<1	5500	94	$1960<0.001$
36	JB001	<1	<0. 2	20	20	13	3.45	<1	4910	10	$138<0.001$
37	JB002	<1	<0.2	<5	30	18	2. 75	<1	2160	8	$66<0.001$
38	JB003	<1	<0.2	<5	10	12	2.77	<1	2180	12	$62<0.001$
39	JB004	<1	<0.2	<5	<10	11	2.57	<1	1430	6	$42 \quad 0.002$
40	JB005	<1	<0.2	15	<10	8	2.37	<1	900	22	$26 \quad 0.003$
41	JB006	<1	<0.2	5	10	13	3.49	<1	1715	6	520.002
42	JB007	<1	<0.2	5	20	10	2.31	<1	1190	36	$68 \quad 0.001$
43	JB008	<1	<0.2	<5	30	10	3.85	<1	1900	26	$140<0.001$
44	JB009	<1	<0.2	10	60	10	5. 43	<1	3730	32	$252<0.001$
45	JB010	<1	<0. 2	15	90	18	6.71	<1	4640	48	$374<0.001$
46	JB011	<1	<0. 2	20	60	22	6.25	<1	3020	70	$246<0.001$
47	JB012	<1	<0. 2	15	500	16	6.75	<1	3270	78	$254<0.001$
48	JB013	<1	<0.2	20	330	19	4. 23	<1	3340	82	$268<0.001$
49	JB014	<1	<0.2	15	100	11	2.23	<1	895	24	$24<0.001$
50	JB015	<1	<0.2	20	100	13	2. 52	<1	570	34	$32<0.001$
51	JB016	<1	<0. 2	20	30	10	3. 26	<1	2050	12	$48<0.001$
52	JB017	<1	<0.2	5	40	17	3.32	<1	1255	24	$30<0.001$
53	JB018	<1	<0.2	5	60	16	3.29	<1	4170	30	$62<0.001$
54	JB019	≤ 1	<0.2	25	70	13	2.83	≤ 1	1760	56	$66<0.001$

JIBANA AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\underset{\text { ppm }}{\text { As }}$	$\begin{aligned} & \mathrm{Ba} \\ & \mathrm{ppan} \end{aligned}$	$\underset{\text { ppra }}{\mathrm{Cu}}$	Fe	$\begin{gathered} \mathrm{Hg} \\ \mathrm{pym} \end{gathered}$	$\begin{gathered} \mathrm{Mn}_{\mathrm{n}}^{\mathrm{ppm}} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{pp}}$	Zn ppm	$\begin{aligned} & S \\ & 8 \end{aligned}$
55	JB020	<1	<0. 2	15	110	12	2.46	<1	1640	244		<0. 000
56	JB021	<1	<0. 2	10	30	6	3.57	<1	2360	22		<0.001
57.	JB022	<1	<0.2	25	390	3	1.92	<1	160	64		<0:001
58	JB023	<1	<0.2	<5	840	3	0.83	<1	40	16		<0. 001
59	JB024	<1	<0.2	5	220	3	0.63	<1	680	14		<0.001
60	JB025	<1	<0.2	5	750	1	0.45	<1	150	18		0.015
61	JB026	<1	<0.2	5	2890	8	1.03	<1	1050	22		0.062
62	JB027	<1	<0.2	<	160	2	0.73	<1	435	10		<0. 001
63	JB028	<1	<0.2	15	170	4	1.19	<1	715	26		<0.001
64	JB029	<1	<0.2	5	90	7	1.81	<1	780	16		<0. 001
65	JB030	<1	<0.2	10	340	11	2.03	<1	320	10		<0.001
66	JB031.	<1	<0.2	15	140	4	2.03	<1	2590	24		<0.001
67	JB032	<1	<0.2	5	90	3	2.45	<1	885	30		<0. 001
68	JB033	<1	<0.2	10	170	4	2.35	<1	750	22		<0. 001
69	JB034	<1	<0.2	5	240	3	2.20	<1	1030	6		<0. 001
70	JB035	<1	<0.2	20	280	4	4. 11	<1	920	20		<0.001
71	JB036	<1	<0. 2	20	270	3	4.22	<1	1585	14		<0.001
72	JB037	<1	<0.2	5	220	3	4. 45	<1	3010	16		<0.001
73	JB038	<1	<0.2	<5	90	3	2.81	<1	1940	24		<0. 001
74.	JB039	<1	<0.2	<5	80	3	2.86	<1	1175	12		<0.001
75	JB040	<1	<0.2	20	60	9	8. 62	<1	4360	30	112	<0.001
76	JB641	<1	<0.2	20	50	12	6.67	<1	4320	30	126	<0. 001
77	JB042	<1	<0. 2	20	60	16	5.62	<1	4800	10	316	<0. 001
78	JB043	<1	<0.2	35	60	19	4.33	<1	2960	22	236	<0.001
79	JB044	<1	<0.2	15	40	20	5.22	<1	3390	16	370	<0.001
80	JB045	<1	<0.2	10	50	20	4. 66	<1	3020	26	420	<0.001
81	JB046	<1	<0.2	5	40	19	5.22	<1	3830	26	312	<0. 001
82	JB047	<1	<0.2	5	40	15	4.86	<1	4760	26	620	<0.001
83	JB048	<1	<0.2	5	30	25	7.11	<1	4000	56		<0.001
84	JB049	<1	<0.2	15	30	26	6. 53	<1	6720	28	1110	0.005
85	JB050	<1	<0.2	15	60	25	6.26	<1	4290	16		<0.001
86	JB051	<1	<0.2	30	70	29	6.98	<1	3900	24		<0.001
87	JB052	<1	<0.2	15	270	6	1.97	<1	145	34		<0.001
88	JB053	<1	<0.2	<5	1330	1	0.76	<1	85	12		0.032
89	JB054	<1	<0.2	5	130	3	0.64	<1	175	8		<0.001
90	JB055	<1	<0. 2	<5	1770	2	0.65	<1	185	<2		0.033
91	JB056	<1	<0.2	<5	280	2	0.45	<1	230	12		0.001
92	JB05?	<1	<0.2	5	10	8	2.21	<1	1025	10		<0.001
93	JB058	<1	<0.2	<5	<10	5	0.97	<1	1550	10		<0.001
94	JB059	<1	<0.2	10	10	7	2.02	<1	2570	4	46	0.005
95	JB060	<1	<0.2	5	40	18	2.57	<1	4370	22	224	0.004
96	JB061	<1	<0.2	15	20	10	3.30	<1	1410	30		<0.001
97	JB062	<1	<0. 2	20	80	59	4.89	<1	485	14		<0.001
98	JB063	<1	<0.2	<5	130	61	4.94	<1	1405	<2		<0.001
99	JB064	<1	<0.2	15	260	74	5.49	<1	1555	4		<0. 001
100	JB065	<1	<0.2	15	70	70	5.74	<1	1515	10		<0.001
101	JB066	<1	<0.2	10	140	70	5.95	<1	1575	2		<0. 001
102	JB067	<1	<0. 2	<5	100	79	6.31	<1	595	<2		<0. 001
103	JB068	<1	<0.2	15	90	52	5.38	<1	1350	10		<0. 001
104	JB069	<1	<0. 2	20	90	60	6. 36	<1	1155	32		<0.001
105	JB070	<1	<0.2	<5	130	82	5.06	<1	675	8		<0.001
106	JB071	<1	<0.2	<5	90	62	5.57	<1	1630	8		<0. 001
107	JB072	<1	<0. 2	20	130	70	5.95	<1	1375	<2		<0.001
108	JB073	<1	<0.2	20	140	88	6.90	<1	1505	14		<0. 001

Ser. No.	Sample No.	$\underset{\mathrm{ppb}}{\mathrm{Au}}$	$\underset{\text { ppal }}{\mathrm{Ag}}$	$\begin{gathered} \mathrm{As} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppa} \end{array}$	$\underset{\mathrm{ppa}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Hn}_{n} \\ \text { ppan } \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \text { S } \\ & \% \end{aligned}$
109	JB074	<1	<0. 2	<	130	64	6. 19	<1	1280	4		0.001
110	JB075	<1	<0.2	< 5	130	57	5.10	<1	150	<2		0.001
111	JB076	<1	<0.2	15	320	55	4.70	<1	95	6		<0. 001
112	JB077	<1	<0.2	< 5	130	52	4. 85	<1	755	10		<0. 001
113	JB078	<1	<0.2	<5	90	54	5. 28	<1	480	10		0.001
114	JB079	<1	<0.2	15	130	46	4. 13	<1	505	6		<0. 001
115	JB080	<1	<0. 2	< 5	110	46	4. 93	<1	590	16		<0. 001
116	JB081	<1	<0.2	15	80	43	4.05	<1	580	6		<0. 001
117	Jc001	<1	<0.2	<5	110	44	4. 67	<1	590	10		<0.001
118	JC002	<1	<0. 2	5	20	12	4.56	<1	2500	26	200	<0. 001
119	JC003	<1	<0.2	15	40	11	4.09	<1	1985	12		<0. 001
120	JC004	<1	<0. 2	20	120	21	6. 08	<1	4530	26	364	0.001
121	JC005	<1	<0.2	10	160	10	1.59	<1	2510	50	134	0.011
122	JC006	<1	<0.2	10	60	7	4. 65	<1	2680	50	74	0.008
123	JC007	<1	<0.2	10	110	5	1.88	<1	1100	64	22	0.010
124	JC008	<1	<0.2	<5	130	2	1.51	<1	180	26		0.007
125	JC009	<1	<0.2	<5	30	1	0.27	<1	25	8	2	0.004
126	JC010	<1	<0.2	<5	10	<1	0.23	<1	10	<2	<2	0.005
127	JC011	1	<0.2	10	210	5	1. 32	2	410	12	12	0.007
128	JC012	<1	<0.2	<5	80	1	0.91	<1	15	22	2	0.007
129	JC013	<1	<0.2	<5	150	1	0.55	<1	65	28		0.004
130	JC014	<1	<0. 2	<	90	<1	0.34	<1	10	20		<0. 001
131	JC015	<1	<0.2	<5	480	2	0.63	<1	245	10	2	0.005
132	JC016	<1	<0.2	<5	2600	1	0.72	<1	30	12	2	0.046
133	JC017	<1	<0.2	<5	60	1	0.27	<1	30	<2	2	0.003
134	JC018	<1	<0.2	<5	280	4	1.60	1	420	18	8	0.002
135	JC019	<1	<0.2	<5	330	6	2.70	<1	600	10	16	0.002
136	JC020	<1	<0.2	<5	300	7	4.45	<1	720	38		0.003
137	JC021	<1	<0. 2	10	100	5	1.39	<1	635	20		<0. 001
138	JC022	<1	<0.2	25	120	8	3. 26	<1	440	36		<0.001
139	JC023	<1	<0. 2	10	310	8	3.94	<1	650	32		<0. 001
140	JC024	<1	<0.2	<5	120	4	1.65	<1	395	20		<0.001
141	JC025	<1	<0.2	<5	260	4	3.05	<1	550	20	28	0.006
142	JC026	<1	<0.2	10	270	8	2. 95	<1	1930	28	38	0.002
143	JC027	<1	<0.2	5	320	5	2. 78	<1	1540	22	26	0.002
144	JC028	<1	<0.2	5	210	5	1.52	<1	1375	14		0.004
145	JC029	<1	<0.2	10	130	2	1.28	<1	1240	16		<0. 001
146	JC030	<1	<0.2	<5	110	2	0.73	<1	395	10		<0.001
147	JC031	<1	<0.2	5	250	5	1.51	<1	970	60	40	0.008
148	JC032	<1	<0.2	15	230	9	3.40	<1	220	142	44	0.002
149	JC033.	<1	<0.2	<5	150	6	3.47	<1	610	94	52	0.005
150	JC034	<1	<0.2	10	730	16	4. 40	<1	3080	44	272	0.007
151	JC035	<1	<0.2	25	110	13	6.35	<1	1115	84	146	0.008
152	JC036	<1	<0.2	15	170	17	3.14	<1	2980	44	170	0.003
153	JC037	<1	<0.2	10	100	9	2.45	2	905	36	32	0.005
154	JC038	<1	<0.2	<5	60	8	2.19	<1	1300	36		0.005
155	JD001	<1	<0.2	<5	80	2	0.87	<1	500	8		<0. 001
156	JD002	<1	<0.2	<5	130	4	2. 34	2	485	1.8		0.002
157	JD003	<1	<0.2	<	100	2	1,03	<1	365	12		<0. 001
158	JDO04	<1	<0.2	<5	120	4	2.03	<1	835	20		<0. 001
1.59	JD005	<1	<0.2	<5	30	2	0.47	<1	225	4		<0. 001
160	JD006	<1	<0.2	<5	200	4	2.56	<1	605	14	16	0.003
161	JD007	<1	<0.2	<5	80	2	0.81	<1	300	10	8	0.005
162	JD008	<1	<0.2	<5	130	3	2.96	<1	320	24	18	0.009

JIBANA AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { As } \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppal} \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	Fe *	$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	Zn ppin	S
163	JD009	<1	<0.2	<5	110	3	2. 50	<1	715	26	16	0.003
164	JD010	<1	<0.2	5	150	2	2. 14	<1	745	22	16	0.004
165	JD011	<1	<0.2	10	150	6	2.85	<1	715	20	20	0.005
166	JD012	<1	<0.2	<5	70	1	0.91	<1	180	12		<0. 001
167	JD013	<1	<0.2	<5	60	1	0.53	<1	100	8		<0.001
108	JD014	<1	<0.2	<	20	1	0.49	<1	330	8	4	0.002
169	JD015	<1	<0.2	5	160	3	3.14	<1	730	22	18	0.005
170	JD016	<1	<0.2	5	200	9	3.24	<1	895	28	38	0.001
171	J0017	<1	<0. 2	5	170	2	1.57	<1	740	12	14.	0.004
172	JD018	<1	<0. 2	5	240	4	3.32	<1	1545	26		<0. 001
173	JD019	<1	<0. 2	10	140	9	2.68	<1	780	26		<0.001
174	J0020	<1	<0.2	5	150	5	2.20	<1	785	26		<0.001
175	J0021	<1	<0.2	20	230	3	3.50	<1	515	32		<0.001
176	JD022	3	<0.2	10	190	6	2.07	<1	635	26		<0. 001
177	J0023	<1	<0.2	15	290	8	2.89	<1	1090	22		<0.001
178	JD024	<1	<0.2	<5	130	1	0.95	<1	485	22		<0. 001
179	JD025	<1	<0. 2	10	1680	3	2.33	<1	755	20		0.012
180	JD026	<1	<0. 2	10	20	2	1. 67	<1	115	14		<0.001
181	J0027	<1	<0.2	5	40	3	2.06	<1	100	22	10	0.010
182	JD028	<1	<0. 2	10	70	3	2.03	<1	115	10	14	0.006
183	TD029	<1	<0.2	10	100	3	1.90	<1	545	14	$\overline{8}$	0.006
184	JD030	<1	<0.2	<5	190	2	1.03	<1	80	10	4	0.008
185	J0031	<1	<0.2	<5	510	3	1.04	<1	105	14	8	0.010
186	JD032	<1	<0.2	15	140	5	3.73	<1	390	26	34	0.006
187.	JD033	<1	<0. 2	< 5	280	11	3.68	<1	1340	18	60	0.004
188	JD034	<1	<0.2	10	250	3	4. 04	<1	945	26	30	0.003
189	JD035	<1	<0.2	10	380	3	4.72	<1	1575	32	-20	0.007
190	JD036	<1	<0. 2	<5	30	1	0.30	<1	110	6	2	<0. 001
191.	J0037	<1	<0.2	<5	140	3	2.27	<1	430	22	18	0.005
192	JD038	<1	<0.2	<5	50	1	0.57	<1	55	8	6	0.001
193	JD039	7	<0.2	5	440	3	0.81	<1	215	6	8	0.002
194	JD040	<1	<0.2	<5	1590	2	0.65	<1	25	26	4	0.034
195	JD041	<1	<0. 2	<5	60	4	1.16	<1	580	98	12	0.004
196	JD042	<1	<0.2	<5	10	<1	0.33	<1	5	4	2	0.004
197	JD043	<1	<0. 2	<5	30	1.	0.73	<1	120	30	6	0.006
198	JD044	<1	<0.2	<5	30	4	0.54	<1	565	26	38	0.001
199	JD045	<1	<0. 2	<5	280	3	1.09	<1	595	42	34	0.004
200	JD046	<1	<0.2	<5	210	4	1.82	<1	90	70	18	0.004
201	JD047	<1.	<0.2	<5	40	3	0.99	<1	465	58	22	0.007
202	JE001	<1	<0.2	<5.	120	1	0.78	<1	790	10	4	0.007
203	JE002	<1	<0. 2	<5	430	2	0.84	<1	160	14	6	0.006
204	JE003	<1	<0. 2	<5	2160	4	0.79	<1	885	12	6	0.050
205	JE004	<1	<0. 2	<5	30	1	0.50	<1	310	12	2	<0.001
206	JE005	<1	<0.2	5	70	2	1.19	<1	1615	34	8	0.004
207	JE006	<1	<0.2	5	40	7	1.84	<1	135	36	66	0.006
208	JE007	<1	<0. 2	5	150	3	1.85	<1	645	6		<0.001
209	JE008	<1	<0.2	<5	480	3	0.62	<1	930	8	4	0.003
210	JE009	<1	<0.2	5	480	6	3.31	<1	1000	26	26	0.001
211	JE010	<1	<0.2	5	190	5	2.89	<1	560	22	20	0.002
212	JE011	<1	<0.2	10	300	4	3.64	<1	1175	22	22	0.002
213	JE012	<1	<0.2	5	360	4	4. 28	<1	3460	16		0.002
214	JE013	<1	<0.2	10	330	5	4.97	<1	1895	26		<0.001
215	JE014	<1	<0.2	<5	290	3	2.08	<1	1140	20	16	$\bigcirc 0.004$
216	JE015	<1	<0.2	<5	110	≤ 1	0.39	≤ 1	30	12	2	0.002

Ser. No.	Sample No.	$\underset{\mathrm{ppb}}{\mathrm{Au}}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{As} \\ \mathrm{ppm} \end{array}$	Ba ppin	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{X} \end{gathered}$	$\underset{\mathrm{pgm}}{\mathrm{Hg}}$	$\begin{aligned} & \mathrm{Hn} \\ & \mathrm{ppan} \end{aligned}$	$\underset{\mathrm{Pb}}{\mathrm{ppn}}$	Zn ppm	$\begin{aligned} & S \\ & * \\ & * \end{aligned}$
217	JE016	<1	<0.2	<5	60	1	0.49	<1	170	12		0.001
218	JF001	<1	<0.2	15	60	20	4.55	<1	3050	24	220	<0. 001
219	JF002	3	<0. 2	10	50	14	6.00	<1	4000	10		<0. 001
220	JF003	<1	<0.2	15	80	65	6.58	<1	325	2		<0. 001
221	JF004	<1	<0. 2	10	140	58	5.95	<1	1030	12	84	0.018
222	JF005	<1	<0.2	20	100	64	5.83	<1	1385	12	68	0,020
223	JF006	<1	<0.2	20	220	53	5. 46	<1	1335	8	56	0.012
224	JF007	<1	<0.2	5	120	68	6.33	<1	1315	4	68	0.008
225	JF008	<1	<0.2	<5	190	10	2.17	<1	290	12	24	0.007
226	JF009	<1	<0.2	20	90	55	6.29	<1	1115	10	82	0.013
227	JF010	<1	<0.2	10	130	59	5.59	<1	1545	4	104	0.017
228	JF011	<1	<0. 2	<5	100	74	5.89	<1	1645	8	74	<0. 001
229	JF012	<1	<0.2	20	70	44	5.28	<1	830	10	76	0.004
230	J6001	<1	<0.2	15	190	7	3.24	<1	1070	26	38	0.005
231	JG002	<1	<0.2	<	100	3	1.42	<1	320	16	10	0.004
232	JG003	<1	<0.2	10	230	4	2.29	<1	655	30	24	0.005
233	J6004	<1	<0.2	<5	1500	5	1.49	<1	430	18	14	0.024
234	J6005	<1	<0, 2	<5	100	3	1.55	<1	190	10	8	-0.004
235	JG006	<1	<0.2	10	260	2	1.98	<1	60	12	12	0.003
236	JG007	<1	<0. 2	<5	50	1	0.56	<1	425	10	4	0.003
237	J6008	<1	<0.2	15	200	4	0.83	<1	380	22	18	0.006
238	JG009	<1	<0.2	10	1690	4	0.98	<1	295	56	20	0.018
239	JG010	<1	<0.2	5	340	1	1.75	<1	25	20	10	0.006
240	Jcoll	<1	<0.2	10	140	1	1.19	<1	45	34	8	0.005
241	JG012	<1	<0.2	10	270	10	2.97	<1	1270	64	76	0.007
242	JG013	<1	<0.2	10	290	<1	1.54	<1	15	56	8	0.006
243	JG014	<1	<0.2	<5	140	1	0.76	<1	20	54	6	0.005
244	JG015	<1	<0.2	<5	190	1	1.32	<1	85	50	10	0.004
245	JG016	<1	<0.2	15	280	10	2.85	<1	1290	74	78	0.002
246	JG017	<1	<0.2	15	340	9	4.59	<1	3140	36	156	0.002
247	J6018	<1	<0.2	30	400	24	8.41	<1	6620	24	206	<0. 001
248	JG019	<1	<0.2	25	420	22	7.04	<1	5180	22	266	<0.001
249	JG020	<1	<0.2	30	200	21	9.69	<1	7650	26	190	0.003
250	JG021	<1	<0.2	20	70	26	4. 85	1	2230	20	126	0.003
251	JG022	<1	<0.2	5	80	31	3.89	<1	750	22		<0.001
252	JG023	1	<0.2	15	70	71	6. 42	<1	1480	2		<0. 001
253	JG024	<1	<0.2	20	170	59	6.47	<1	870	10		<0. 001
254	JG025	<1	<0.2	20	60	58	6.25	1	1125	8		<0.001
255	JG026	<1	<0.2	25	140	55	6.19	<1	1570	8		<0. 001
256	JG027	<1	<0.2	20	190	53	6.39	<1	1090	6		<0.001
257	JG028	<1	<0.2	15	150	61	6.35	1	750	10		<0.001
258	JC029	<1	<0.2	20	160	45	5.41	<1	185	6		<0, 001
259	J6030	1	<0.2	15	140	45	5.35	<1	120	4	76	<0. 001
260	J6031	<1	<0.2	10	160	55	6.20	<1	1110	2		<0.001

RIBE AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppn} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{ps}}$	$\begin{gathered} \mathrm{Baa} \\ \mathrm{pqim} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppma} \end{gathered}$	$\underset{\%}{\mathrm{Fe}}$	$\underset{\mathrm{ppm}}{\mathrm{Hg}}$	$\underset{\text { ppom }}{\substack{\text { nn }}}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{zn} \\ \text { ppm } \end{gathered}$	\%
1	Ra001	<1	<0. 2	<	140	5	2.75	<1	155	28		0.005
2	Ra002	<1	<0.2	<5	90	5	2.47	<1	770	88		<0. 001
3	RA003	3	3.4	10	320	5	1.27	<1	140	280		0.025
4	RA004	<1	0.2	<	410	18	2. 48	<1	1120	134	766	0.007
5	RA005	<1	<0.2	5	4200	10	3.79	<1	10000	68	112	0.006
6	Ra006	<1	0.2	<5	70	7	1.35	<1	335	12	14	0.005
7	RA007	<1	<0.2	<5	200	15	2.97	<1	615	12	40	0.006
8	RB001	<1	<0.2	5	100	4	1.16	1	425	16	20	0.002
9	RB002	<1	<0. 2	<5	70	3	0.62	<1	860	12	10	0.001
10	RB003	<1	<0. 2	<5	20	1	0.31	<1	75	2		<0. 001
11	RB004	<1	<0.2	<5	20	1	0.33	<1	140	8		<0. 001
12	RB005	<1	<0.2	<5	40	1	0.43	<1	265	10		0.003
13.	RB006	<1	<0.2	<	60	2	0.96	<1	790	26	12	0.006
14.	RB007	<1.	<0. 2	20	170	2	1.45	<1	130	28	6	0.012
15	RB008	<1	1.0	10	140	2	1.11	<1	20	50	8	0.015
16	8B009	<1	1.2	5	290	1	0.73	<1	10	126		0. 013
17	RB010	<1	1.4	35	100	8	2.26	<1	905	718	80	0.019
18	RB011	<1	<0.2	<5	170	53	4. 36	<1	140	6	44	0.002
19	RB012	<1	<0.2	<5	440	47	4. 13	<1	165	20	100	0.002
20	RB013	<1	<0.2	15	150	45	4.15	2	320	12		0.003
21	RB014	<1	<0.2	5	300	59	5.01	1	555	24		<0. 001
22	RB015	<1	<0. 2	15	210	56	4.97	<1	715	6		<0.001
23	RB017	<1	<0.2	<5	10	1	0.25	<1	60	2	2	0. 004
24	RB018	<1	<0.2	<5	140	7	1.74	<1	330	8		<0. 001
25	RD001	<1	<0.2	<5	140	5	2. 36	<1	415	18		<0. 001
26	RD002	<1	<0.2	<5	30	1	0.45	<1	240	4		0.003
27	RD003	<1	<0. 2	<5	140	9	2.97	<1	640	16		0.005
28	RD004	<1	<0. 2	<5	90	3	1.66	<1	595	22	14	0.004
29	RD005	<1	<0.2	5	50	7	2.03	<1	920	58	24	0.006
30	RD006	<1	<0. 2	<5	150	8	1.84	<1	140	12	20	0.004
31	RD007	<1	<0.2	15	70	64	5.38	<1	665	4		<0.001
32	RD008	<1	<0.2	<5	120	6	1.37	<1	260	16	10	0.003
33	RD009	<1	<0.2	<5	100	2	0.75	<1	100	12	<2	0.004
34	RD010	<1	<0.2	<5	100	2	0.59	<1	445	10	4	0.003
35	RD011	<1	<0.2	<5	240	38	3.82	3	220	14	50	0.003
36	RD012	<1	<0. 2	< 5	220	55	6. 16	<1	1040	20	32	0.003
37	RD013	<1	<0.2	20	250	57	5.88	5	1010	6	62	0.004
38	RE001	<1	<0.2	20	180	7	2.63	<1	665	10	22	0.003
39	RE002	<1	<0.2	<5	170	8	2.04	<1	520	10		0.005
40	RE003	<1	<0. 2	5	220	5	2. 44	<1	350	22		<0.001
41	RE004	<1	<0.2	<5	180	7	0.65	1	385	6	16	0.001
42	RE005	<1	<0.2	10	70	5	2.79	3	535	18	22	0.007
43	RE006	<1	<0. 2	15	70	2	2.04	<1	585	68	38	0.007
44	RE007	<1	<0, 2	<	210	10	1.91	<1	470	8	18	0.003
45	RE008	<1	<0.2	< 5	40	3	1.27	2	190	8	6	0.006
46	RE009	<1	<0.2	<5	70	6	2.16	<1	255	6	8	0.007
47	RE010	<1	<0.2	<5	150	10	1. 44	<1	605	6	12	0.008
48	RE011	<1	<0.2	<5	10	3	1.37	1	190	14	16	0.006
49	RE012	<1	<0.2	<5	150	57	4,84	<1	245	6	48	0.006
50	RF002	<1	<0.2	5	90	2	1.06	<1	105	<2	12	0.003
51	RF003	<1	<0.2	<5	100	1	0.70	1	200	8		<0. 001
52	RF004	<1	<0.2	<5	70	1	0.63	<1	345	8		<0.001
53	RF005	<1	<0.2	<5	150	3	1. 60	3	165	8	20	0.002
54	RF006	<1	<0.2	5	60	2	0.55	1	245	2		<0.001

RIBE AREA

Ser. No.	Sample No.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\underset{\text { ppin }}{\mathrm{Ag}}$	$\stackrel{\text { As }}{\text { ppo }}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{llg}}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{~Pb}}$	2n ppm	$\begin{aligned} & \mathrm{S} \\ & \text { \% } \end{aligned}$
55	RF007	<1	<0.2	く5	60	2	0.66	<1	1.30	10		0.001
56	RF008	<1	<0.2	く5	70	3	1.23	<1	190	10		<0. 001
57	RF009	<1	<0.2	5	240	10	3.54	<1	310	18	48	<0. 001
58	RF010	<1	<0.2	<5	140	6	2.40	<1	200	4		<0. 001
59	RF011	<1	<0.2	<5	70	3	1.26	1	135	10		<0.001
60	RF012	<1	<0.2	<	150	4	2. 14	<1	255	16		<0. 001
61	RF013	<1	<0.2	10	120	4	1.81	<1	500	12	22	0.007
62	RF014	<1	<0.2	10	140	13	3.65	<1	350	22	46	0.006
63	RF015	<1	<0.2	5	60	5	2.05	1	510	22	20	0.005
64	RF016	<1	<0. 2	10	120	8	2.88	<1	440	22	28	0.007
65	RF017	<1	<0.2	15	130	3	3. 48	<1	195	24	22	0.009
66	RG002	<1	<0.2	<5	110	4	1.98	1	315	24	24	0.008
67	RG003	<1	<0.2	5	130	5	1.98	2	250	10	28	0.009
68	RG004	<1	<0.2	5	210	8	4. 63	<1	1375	40		<0. 001
69	R6005	<1	<0.2	25	170	25	3.20	<1	945	16	44	0.011
70	RG006	<1	<0.2	10	190	19	2.21	<1	650	14	60	0.008
71	RG007	<1	<0.2	10	140	61	5.21	<1	165	12	78	0.004
72	R6008	<1	<0.2	10	170	34	3.37	<1	175	10	60	0.005
73.	RG009	<1	<0.2	10	530	43	4.23	<1	725	24		0.005
74	RG010	<1.	<0.2	90	390	54	5.00	<1	890	22		<0.001
75	R6013	<1	<0. 2	<5	180	73	5.87	<1	2580	12		<0.00i
76	RG014	<1	<0.2	10	110	78	5. 73	<1	1620	18		<0. 001
77	R6015	<1	<0. 2	<	180	75	5.99	<1	2990	12		<0. 001
78	RG018	<1	<0.2	<5	110	77	5.96	<1	1680	6		<0.001
79	RG019	<1	<0.2	<5	140	70	5.69	<1	1295			<0. 001
80	RG020	<1	<0. 2	<5	100	75	6. 19	1	1315	<2	68	<0.001
81	R 6021	<1	<0.2	20	110	71	6.17	<1	1940	8	86	<0.001
82	R6022	≤ 1	<0.2	< 5	550	63	6.12	<1	1955	8		<0.001

Ser. No.	Sample No.	$\underset{\mathrm{ppb}}{\mathrm{Au}}$	$\underset{\mathrm{pgm}}{\mathrm{Ag}}$	$\underset{\mathrm{ppm}}{\mathrm{As}}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppan} \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Fe} \\ \% \end{array}$	$\underset{\mathrm{ppmg}}{\mathrm{Hg}}$	$\begin{array}{r} \mathrm{Kn} \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{pbm}}{\mathrm{pb}}$	$\begin{array}{r} \text { Zn } \\ \mathrm{ppm} \end{array}$	\$
1	HB001	<1	<0. 2	5	70	2	0.90	<1	180	4		<0.001
2	MB002	<1	<0.2	<5	120	2	0.79	1	75	4		<0. 001
3	M13003	<1	<0. 2	5	110	5	1.48	<1	65	10		<0. 001
4	MB004	<1	<0.2	10	80	,	1.28	<1	40	6		<0.001
5	MB005	<1	<0.2	<5	40	<1	0.63	<1	70	4		<0.001
6	\% ${ }^{\text {a }}$ 006	<1	<0.2	<5	40	1	0.60	<1	40	6		<0. 001
7	MB007	<1	<0. 2	<5	60	2	0.80	<1	140	4		<0. 001
8	MB008	<1	<0. 2	<5	140	4	1.13	<1	80	8		<0. 001
9	HB609	<1	<0. 2	<5	90	3	1.33	<1	85	8		<0. 001
10	MB010	<1	<0.2	<5	110	2	1.11	<1	70	4		<0.001
11	нB011	<1	<0. 2	<5	100	2	0.91	<1	210	6		<0. 001
12	HB012	<1	<0.2	5	70	1	0.78	<1	110	8		<0. 001
13	HB013	<1	<0.2	<5	160	2	1.08	<1	95	2		<0.001
14	HB014	<1	<0.2	<5	70	2	0.82	<1	30	2		<0. 001
15	MB015	<1	<0.2	10	160	4	1.24	<1	35	6		<0.001
16	MB016	<1	<0. 2	<5	70	3	0.85	<1	135	4		<0.001
17	MB017	<1	<0.2	5	100	4	1. 27	<1	45	4		<0.001
18	MB018	<1	<0.2	<5	50	1	0.73	<1	75	2		<0. 001
19	MB019	<1	<0. 2	10	80	3	1. 65	<1	105	12		<0. 001
20	WB020	<1	<0.2	<5	40	1	0.47	<1	100	2		<0. 001
21	HB021	<1	<0.2	<5	60	1	0.59	<1	10	2		<0. 001
22	MB022	<1	<0.2	5	50	2	0.74	<1	25	4		<0. 001
23	MB023	<1	<0.2	<5	70	1	0.85	<1	15	4		<0. 001
24	HB024	<1	<0.2	5	40	1	0.50	<1	10	2		<0. 001
25	MB025	<1	<0.2	<5	220	1	0.91	<1	170	6		0.003
26	MB026	<1	<0.2	<5	180	1	0.61	<1	30	4		<0.001
27.	MB027	<1	<0. 2	5	30	1	0.68	<1	50	4		<0. 001
28	HB028	<1	<0.2	15	130	6	1.27	<1	35	4		<0. 001
29	HB029	<1	<0.2	5	100	4	0.99	<1	55	2		<0.001
30	MB030	<1	<0.2	<5	180	6	1. 54	<1	205	10		<0.001
31	MB031	<1	<0.2	10	530	12	1. 75	<1	345	12		<0. 001
32	HB032	<1	<0.2	<5	540	<1	0.38	<1	5	2		<0. 001
33	MB033	<1	<0.2	<5	140	1	0.62	<1	130	8		<0. 001
34	MB034	<1	<0.2	<5	160	1	0.92	<1	15	2		<0, 001
35	4B035	<1	<0.2	<	50	1	0.71	<1	10	2		<0. 001
36	MB036	<1	<0. 2	<5	60	1	0.42	<1	10	4		<0. 001
37	MB037	<1	<0.2	20	80	1	1.54	<1	25	6		<0.001
38	MB038	<1	<0.2	10	120	4	1.32	<1	50	14		<0.001
39	MB039	<1	<0. 2	15	180	7	2.47	<1	50	4		<0. 001
40	MB040	<1	<0. 2	5	50	2	0.86	<1	45	4		<0. 001
41	HB041	<1	<0.2	<5	40	<1	0.65	<1	65	6		0.004
42	HB042	<1	<0. 2	<5	30	1	0.40	<1	65	2		<0. 001
43	MB043	<1	<0. 2	5	50	<1	1.11	<1	20			0.001
44	MB044	<1	<0.2	<5	30	<1	0.68	<1	10	2		<0.001
45	M 1045	<1	<0. 2	<5	30	<1	0.54	<1	30	<2		0.003
46	MB046	<1	<0.2	<5	40	1	0.59	<1	45	6		<0.001
47	MB047	<1	<0. 2	,	100	1	0.91	<1	340	4		0.003
48	MB048	<1	<0. 2	5	40	1	1. 00	<1	30	2		<0. 001
49	HB049	<1	<0.2	5	50	2	1.18	<1	95	6		0.001
50	MB050	<1	<0.2	5	90	2	1.19	<1	45	10		<0. 001
51.	MB051	<1	<0.2	5	230	1	1. 32	<1	45	8		0.001
52	MB052.	<1	<0. 2	<5	40	<1	0.36	<1	5	<2		<0.001
53	MB053	<1	<0.2	<5	330	2	1. 69	<1	210	6		<0. 001
54	MB054	≤ 1	<0.2	<5	270	3	0.94	≤ 1	265	6		0.006

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { As } \\ \text { ppn } \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Hg} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	S
55	HB055	<1	<0. 2	<5	40	1	0.80	<1	15	<2	8	<0.001
56	MB056	<1	<0. 2	<5	40	1	0.68	<1	15	2		<0. 001
57	MB057	<1	<0. 2	5	90	4	1.46	<1	20	6		<0. 001
58	M1058	<1	<0.2	5	510	10	1.50	<1	330	10		<0. 001
59	MB059	<1	<0. 2	10	320	9	1.34	<1	405	10		<0.001
60	HB060	<1.	<0. 2	10	410	16	2.42	<1	275	8		<0.001
61	MB061	7	<0.2	10	220	10	1.79	<1	130	6	24	0.005
62	MB062	<1	<0. 2	5	690	21	2.44	<1	445	10		<0. 001
63	MB063	<1	<0. 2	15	540	18	2. 56	<1	420	12		<0. 001
64	4B064	<1	<0. 2	10	360	17	2.26	<1	530	12	32	0.001
65	UB065	<1	<0. 2	5	260	14	2.06	<1	400	12	32	0.002
66	4B066	<1	<0.2	10	310	12	1.99	<1	315	12		<0.001
67	4B067	<1	<0.2	10	260	9	1.55	<1	550	10	22	0.002
68	MB068	1	<0.2	10	660	15	2. 45	<1	295	10		<0. 001
69	MB069	1	<0. 2	15	110	14	2.19	<1	315	10		<0. 001
70	MB070	1	<0. 2	5	340	11	2. 02	<1	245	4		<0. 001
71	MB071	<1	<0. 2	5	230	9	1.78	<1	120	6		<0.001
72	4B072	<1	<0. 2	5	590	3	0.90	<1	150	2	10	0.001
73	YB73	<1	<0. 2	<5	280	10	1. 66	<1	220	6		<0. 001
74	NB074	2	<0. 2	5	820	13	1.88	<1	440	12		<0. 001
75	MB075	1	<0. 2	10	300	15	2.74	<1	420	12		<0.001
76	MB076	<1	<0.2	10	740	24	2. 62	<1	560	14		<0. 001
77	HB077	1	<0.2	5	310	10	1.69	<1	225	10		<0. 001
78		1	<0. 2	10	400	12	2.02	<1	320	14		<0. 001
79	W8079	<1	<0.2	10	370	16	2.29	<1	445	14		<0. 001
80	HB080	<1	<0.2	5	120	1	0.84	<1	25	2		<0. 001
81	MB081	<1	<0. 2	5	230	8	1.27	2	85	10	14	0.008
82	MB082	<1	<0.2	5	170	4	0.97	1	45	6	10	0.007
83	MB083	<1	<0.2	<5	180	6	1.30	<1	30	2	10	0.008
84	MB084	<1	<0. 2	<5	90	4	1.00	<1	55	8	10	0.003
85	MB085	<1	<0.2	<5	740	18	1.78	1	380	14	30	0.017
86	MB086	<1	<0.2	5	340	8	1.84	<1	135	12	24	0.007
87	MB087	<1	<0. 2	<5	60	3	1.08	<1	65	6	12	0.003
88	HB088	<1	<0.2	<5	150	8	1.48	1	90	12	18	0.004
89	MB089	<1	<0.2	<5	80	3	1.07	2	40	<2		<0. 001
90	YB090	<1	<0. 2	<5	120	4	1. 10	<1	50	10	16	<0. 001
91	MB091	<1	<0. 2	<5	90	1	0.74	1	95	4		0.001
92	HB092	<1	<0.2	< 5	50	<1	0.39	2	30	4	2	0.001
93	MB093	<1	<0.2	5	160	10	1.38	<1	370	10		<0.001
94	MB094	1	<0. 2	5	540	26	3. 02	<1	530	18		<0.001
95	MB095	<1	<0.2	<5	370	11	1.99	<1	385	16		<0. 001
96	\#B096	<1	<0.2	<5	330	14	2.22	<1	320	12		<0. 001
97.	MB097	<1	<0.2	<5	130	3	1. 04	<1	115	10	12	0.003
98	HB098	<1	<0.2	< 5	720	16	2.85	<1	365	12		<0. 001
99	HB099	<1	<0.2	15	850	23	2.82	<1	280	12	52	<0.001
100	MB100	<1	<0.2	<5	310	10	1. 64	1	275	12	30	0.017
101	MB101	<1	<0.2	5	250	25	2. 86	1	405	20	62	0.007
102	MB102	<1	<0.2	5	260	29	3. 70	<1	480	22	56	0.009
103	MB103	<1	<0.2	<5	310	19	2. 15	<1	475	18	56	0.006
104	M8104	<1	<0.2	<5	170	13	1.92	<1	330	10	38	0.011
105	MB105	<1	<0.2	<5	240	11.	1.59	<1	240	18	22	0.004
106	MB106	<1	<0.2	10	230	13	1.92	<1	150	12	32	0.008
107	MB107	<1	<0.2	5	590	19	1.99	<1	450	20	24	0.006
108	HB108	<1	<0.2	<5	140	5	1.01	≤ 1	125	6	10	0.004

Ser. No.	Sample No.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	As ppm	$\underset{\mathrm{ppm}}{\mathrm{Ba}}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppn} \end{gathered}$	Fe $\%$	$\begin{array}{r} \text { flg } \\ \text { ppa } \end{array}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Zn} \\ \text { ppon } \end{gathered}$	$\begin{aligned} & S \\ & \% \end{aligned}$
109	MB109	<1	<0.2	く5	120	5	0.92	<1	65	,	10	0.005
110	\#3110	<1	<0. 2	5	400	15	1.70	<1	210	16	28	<0. 001
111	MB111	<1	<0.2	<5	480	18	1.93	<1	225	12	32	0.004
112.	MB112	<1	<0.2	<5	190	13	1.48	<1	250	12	22	0.003
113	HB113	<1	<0.2	<5	260	23	2.33	<1	1175	8	34	<0.001
114	HB114	<1	<0.2	<5	60	17	2. 14	<1	480	8	26	0.001
115	HB115	<1	<0.2	15	. 180	7	1. 05	<1	75	6	22	0.004
116	13116	<1	<0.2	<5	270	18	2.05	<1	910	36	224	0.003
117	HB117	<1	<0.2	<5	410	8	1.34	<1	340	4	16	0.006
118.	MB118	<1	<0.2	5	350	12	1.99	<1	470	18	20	0.007
119	HB119	<1	<0.2	5	110	5	1.04	<1	40	6	6	0.003
120	MB120	<1	<0.2	5	170	4	1.00	<1	130	4	8	0.003
121	4B121	<1	<0.2	<5	120	6	0.94	<1	25	<2	10	0.008
122	MC001	<1	<0.2	10	130	4	1.12	<1	50	6	10	0.012
123	HC002	<1	<0. 2	<5	80	5	1.30	<1	50	2	14	0.008
124	HC003	<1	<0. 2	<5	80	5	1.27	<1	175	8	12	0.014
125	MC004	<1	<0.2	5	140	9	1.57	<1	170	16	12	0.012
126	MC005	<1	<0.2	<5	500	26	3.84	<1	810	18	40	0.006
127	4C006	<1	<0.2	10	270	16	2. 94	<1	920	30	18	0.018
128	4C007	<1	<0.2	<5	310	24	3. 23	<1	465	16	34	0.018
129	HC008	<1	<0. 2	<	230	15	2.37	<1	390	20	16	0.010
130	MC009	<1	<0. 2	<5	360	13	2.05	<1	355	18	18	0.007
131.	HC010	<1	<0. 2	<5	280	13	2. 22	1	270	10	18	0.013
132	HC011	<1	<0.2	<5	440	19	3.49	<1	530	22	32	0.015
133	HC012	1	<0. 2	<5	370	19	3.29	<1	360	16	26	0.013
134	MC013	<1	<0.2	5	700	30	6.17	<1	3790	56	36	0.017
135.	MC014	<1	<0. 2	5	60	8	1. 43	<1	515	10	20	0.011
136	HC015	<1	<0. 2	<5	500	27	3.96	<1.	365	10	42	0.011
137	MC016	<1	<0.2	<5	320	23	3.45	<1	440	18		<0. 001
138	MC019	<1	<0.2	<5	360	24	3. 44	<1	275	12		<0.001
139	HC020	<1	<0. 2	<5	320	24	3. 65	<1	375	22		<0. 001
140	HCO21	<1	<0. 2	10	290	33	5.05	<1	930	28		<0.001
141	МС022	<1	<0. 2	10	470	27	3.77	<1	555	12	34	0.014
142	MC023	<1	<0. 2	10	340	25	3.49	<1	570	20	30	0.014
143	MC024	<1	<0. 2	5	240	18	2.98	<1	430	22	22	0.010
144	MC025	1	<0. 2	15	390	25	3.64	<1	460	24	32	0.010
145	MC026	<1	<0. 2	5	140	14	1.97	<1	365	12	34	0.012
146	MC027	<1	<0.2	20	310	17	3.06	<1	625	18	22	0.019
147	HC028	<1	<0. 2	5	290	25	3.63	<1	445	26	34	0.010
148	MC029	<1	<0. 2	5	430	27	4. 03	<1	375	20	40	0.006
149	HC030	<1	<0.2	5	650	28	5.68	≤ 1	1530	30	52	0.012
150	MC031	<1	<0.2	5	340	25	4.09	<1	860	34	36	0.011
151	MC032	<1	<0. 2	<5	110	30	4. 72	<1	725	22	40	0.006
152	HC033	<1	<0.2	5	410	26	3.47	<1	455	14	46	0.004
153	MC034	<1	<0.2	<5	200	9	1. 40	<1	470	12	18	0.008
154	MC035	<1	<0.2	10	310	20	3.32	<1	585	22	22	0.010
155	MC036	1	<0. 2	20	470	39	5.15	$\leqslant 1$	455	18		<0.001
156	MC037	<1	<0.2	<5	470	29	4. 46	1	980	24	38	0.010
157	MC038	<1	<0. 2	5	310	20	2.99	1	480	22	28	0.010
158	MC039	<1	<0.2	5	380	21	3.33	<1	730	26	26	0.011
159	yC040	1	<0.2	5	540	25	4. 10	<1	630	22	32	0.008
160	MC041	<1	<0. 2	<5	290	25	3.49	<1	415	18	28	0.007
161	MC042	<1	<0. 2	5	100	3	0.78	<1	175	4	10	0.005
162	MC043	<1	<0.2	10	100	4	1.35	<1	140	10	14	0.010

* ${ }^{\text {K KANGORBE RREA* }}$

Ser. No.	Sample No.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{ppla} \end{aligned}$	$\begin{array}{r} \mathrm{As} \\ \mathrm{ppn} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	Hg ppin	$\begin{array}{r} \text { yn } \\ \mathrm{ppm} \end{array}$	Pb ppm	Zn ppm	$\begin{aligned} & S \\ & \% \end{aligned}$
163	MC044	<1	<0. 2	5	60	1	0.95	1	25	6	6	0.005
164	HC045	<1	<0. 2	<5	300	7	1. 09	<1	140	8	12	0.011
165	HC046	<1	<0.2	10	280	13	2.38	<1	545	16	16	0.012
166	MC047	<1	<0. 2	5	120	8	1.45	<1	120	8	12	0.013
167	HC048	<1	<0.2	10	100	10	1.27	<1	685	6	16	0.014
168	HC049	1	<0.2	<5	140	21	2.31	<1	1835	12	32	0.005
169	1 C 050	<1	<0. 2	<5	180	16	2.10	<1	225	14	36	0.015
170	MC051	<1	<0.2	5	140	16	1.95	<1	465	14	68	0.009
171	2C052	<1	<0. 2	5	150	15	2.88	<1	330	16	36	0.018
172	MC053	<1	<0.2	<5	170	11	1.87	<1	295	12	30	0.012
173.	MC054	<1	<0. 2	15	270	27	2.92	<1	360	14	60	0.012
174	HC055	<1	<0. 2	<5	180	20	2.53	<1	395	14	46	0.011
175	MC056	<1	<0. 2	<	190	15	2.00	<1	370	10	38.	0.012
176	HC057	<1	<0.2	10	190	18	2.24	<1	225	8	38	0.013
177	MC060	<1	<0. 2	5	150	15	2. 13	<1	500	8	22.	0.010
178	HC061	<1	<0.2	<5	130	17	2.19	<1	515	1.8	40	0.006
179	MC062	<1	<0. 2	<	170	10	1. 71	<1	270	2	22	0.005
180	MC063	<1	<0. 2	<5	340	15	2.15	<1	335	6	18	0.007
181	HC064	<1	<0. 2	10	110	18	1.95	<1	890	18	30	0.008
182	MC065	<1	<0. 2	<5	500	13	1.98	<1	835	10	28	0.014
183	MC066	1	<0. 2	5	340	27	3.20	<1	480	14	62	0.008
184	WC067	<1	<0. 2	<5	140	1	0.77	<1	35	10	4	0.006
185	MC068	<1	<0.2	く5	190	3	0.72	<1	60	6	4	0.005
186	HC069	<1	<0.2	<5	130	6	1.50	1	70	8	10	0.009
187	HC070	<1	<0. 2	<5	180	7	1.19	<1	255	2	20	0.003
188	HC071	<1	<0.2	<5	350	28	3.95	<1	505	14	34	0.006
189	MC072	1	<0.2	<5	370	25	4.01	<1	1305	34	30	0.006
190	HC073	1	<0. 2	5	310	22	3.72	<1	415	24	24.	0.007
191	MC074	1	<0. 2	30	490	26	4. 35	<1	1185	38	28	0.005
192	MC075	<1	$<0,2$	<5	710	30	6.21	<1	2670	60	28	0.005
193	YC076	<1	<0. 2	<5	270	18	4.11	<1	710	32	24	0.007
194	MC077	1	<0. 2	<5	750	27	3.03	<1	880	22	38	0.014
195	MC078	<1	<0. 2	< 5	170	6	1.10	<1	250	8	20	0.005
196	MC079	<1	<0.2	<5	70	6	1.46	<1	60	8	6	0.005
197	MC080	<1	<0.2	<	70	2	0.73	<1	95	6	4	0.003
198	HC081	<1	<0.2	<5	180	7	1.52	<1	65	10	16	0.008
199	HC082	<1	<0.2	5	220	16	3.25	<1	75	12	30	0.003
200	HC083	<1	<0. 2	<5	50	1	0.97	<1	15	10	6	0.005
201.	MC084	<1	<0.2	10	120	2	1.55	<1	35	10	10	0.005
202	MC085	<1	<0.2	<5	230	5	1.28	<1	70	10	16	0.005
203	HC080	<1	<0. 2	<5	110	4	1.18	<1	70	12	12	0.006
204	MC087	<1	<0. 2	<5	100	3	1.09	<1	130	6	42	0.004
205	\%C088	<1	<0.2	<	260	14	1.87	<1	210	12	20	0.010
206	HC089	<1	<0.2	15	460	16	1.88	<1	345	18	22	0.014
207	HC090	<1	<0.2	5	120	9	1.48	<1	55	8	10	0.008
208	MC091	<1	<0.2	<5	230	20	2. 90	1	645	20	40	0.010
209	3C092	<1	<0. 2	<5	270	10	1. 55	3	215	10	18	0.013
210	yD001	<1	<0.2	<5	180	16	1.69	<1	235	6	38	0.013
211	MD002	<1	<0.2	5	240	21	2. 70	<1	635	18	60	0.015
212	MD003	<1	<0. 2	<5	160	14	1.90	<1	375	14	28	0.019
213	MD004	<1	<0. 2	<	290	23	2.36	<1	865	20	50	0.019
214	MD005	<1	<0.2	<5	420	18	1.92	<1	1205	16	42	0.026
215	MD006	<1	<0. 2	<	100	7	0.99	<1	695	12	20	0.009
216	MD00'7	<1	<0.2	<5	100	12	1.85	≤ 1	2310	18	26	0.007

Ser． No．	Sample No．	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Ag}}$	$\begin{array}{r} \mathrm{As} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppa} \end{array}$	Fe \％	$\begin{array}{r} \mathrm{Hg} \\ \mathrm{ppm} \end{array}$	Hn ppn	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppn} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	S
217	MD008	＜1	＜0． 2	く5	300	26	3.78	<1	705	26	34	0.013
218	MD009	＜	<0.2	く5	430	27	4.02	＜1	595	30	34	0.012
219	HD010	＜1	＜0． 2	く5	340	17	2.33	＜1	755	20	28	0.013
220	MD011	＜1	＜0． 2	く5	360	22	3.42	＜1	620	24	24	0.011
221	MD012	＜1	＜0． 2	5	370	23	3.85	<1	790	30	24	0.014
222	HD013	＜1	＜0． 2	<5	200	23	3.09	<1	540	28	38	0.013
223	MD014	＜1	＜0． 2	く5	260	21	3.01	<1	585	22.	36	0.012
224	HD015	＜1	＜0． 2	＜5	260	30	3.53	＜1	550	18	58	0.014
225	MD016	<1	＜0． 2	5	90	73	1． 39	<1	470	18	464	0.009
226	MD017	<1	＜0． 2	10	150	10	1.76	＜1	280	8	28	0.014
227	HD018	<1	＜0．2	＜5	80	5	0.88	＜11	100	10	12	0.004
228	MD019	<1	＜0． 2	＜5	150	7	0.91	＜1	60	4	10	0.008
229	ME001	＜1	＜0． 2	5	360	18	2． 44	＜1	530	10	42	0.012
230	YE002	＜1	＜0．2	＜5	230	13	2.14	＜1	550	16	28	0.010
231.	YE003	<1	<0.2	＜	240	8	1.92	＜1	645	4	24	0.010
232	ME004	＜1	＜0． 2	10	210	11	2． 33	<1	300	10	26	0.009
233	HE005	＜1	＜0． 2	＜5	190	8	1．52	＜1	145	10	18	0.004
234	ME006	＜1	＜0．2	く5	170	6	1． 17	1	195	8	12	0.007
235	ME007	＜1	<0.2	＜5	230	11	2． 22	<1	1530	10	30	0.004
236	ME008	＜1	＜0． 2	＜5	130	4	1.01	＜1	135	6	12	0.005
237	－ E 009	＜1	＜0．2	＜5	190	6	1.30	＜1	80	12	14	0.011
238	HE010	＜1	＜0．2	＜5	170	12	2.08	＜1	275	10		＜0． 001
239	ME011	<1	＜0． 2	＜5	230	6	1.22	＜1	200	12	16	0.001
240	ME012	＜1	＜0．2	＜5	90	3	0.94	＜1	155	10	14	0.015
241	HE013	＜1	＜0． 2	＜	120	5	1.94	＜1	105	14	22	0.008
242	HE014	＜1	＜0． 2	＜5	110	5	1.33	＜1	60	6	12	0.006
243	ME015	<1	＜0． 2	10	320	12	2． 22	＜1	220	12	28	0.008
244	HE016	＜1	＜0． 2	＜	120	4	1.24	＜1	80	10	12	0.007
245	ME017．	＜1	＜0． 2	5	190	6	1.31		70	8	14	0.005
246	WE018	＜1	＜0．2	<5	110	6	1.30	＜1	45	2	14	0.006
247	ME019	<1	＜0．2	<5	140	8	1． 65	＜1	120	10	20	0.003
248	ME020	＜1	＜0．2	＜5	190	10	2.06	2	225	12	28	0.003
249	ME021	＜1	<0.2	<5	180	3	0.73	2	85	2	6	0.002
250	ME022	＜1	＜0． 2	＜5	260	19	2． 75	<1	310	16	30	0.011
251	ME023	＜1	＜0．2	<5	30	1	0.47	＜1	25	2		＜0． 001
252	M C 024	＜1	＜0．2	＜5	220	11	1.99	1	95	＜2	26	0.005
253	ME025	＜1	＜0． 2	10	220	31	6.82	＜1	2300	56	54	0.003
254	ME026	＜1	＜0． 2	＜5	180	4	0.84	1	450	10		＜0． 001
255	ME027	＜1	＜0． 2	＜5	40	2	0.80	<1	50	4		＜0． 001
256	ME028	＜1	＜0． 2	5	100	3	1.07	＜1	60	6		＜0． 001
257	ME029	＜1	＜0． 2	＜5	150	6	1． 25	1	60	6		＜0． 001
258	ME050	＜1	<0.2	＜5	． 320	11	1.84	＜1	165	6	26	0.003
259	ME031	＜1	＜0．2	＜5	190	8	1.70	＜1	405	8	26	0.001
260	ME032	<1	＜0． 2	<5	110	7	1.88	＜1	95	12		0.002
261	ME033	＜1	＜0． 2	＜5	20	1	0.59	1	115	4		<0.001
262	ME034	＜1	＜0． 2	5	60	1	1． 02	＜1	275	10		＜0．001
263	HE035	＜1	＜0． 2	＜5	10	1	0.44	1	30	8		＜0． 001
264	ME036	＜1	＜0． 2	＜5	60	2	0.90	＜1	140	10		＜0．001
265	HE037	<1	＜0． 2	＜5	70	3	0.96	1	90°	8		＜0． 001
266	ME038	＜1	＜0． 2	＜5	70	2	0.74	＜1	180	4		＜0． 001
267	HE039	＜1	＜0．2	＜5	700	31	3． 49	1	205	18		＜0． 001
268	ME040	＜1	＜0． 2	＜5	120	2	0.95	＜1	165	4	10	＜0． 001
269	ME041	＜1	＜0． 2	＜5	240	9	1.82	＜1	115	12	22	0.002
270	ME042	＜1	＜0．2	5	260	26	4． 45	<1	785	40	38	0.008

＊MKANGOMBE AREA＊

Ser． No．	Sample No．	Au ppb	Ag ppm	As ppin	Ba ppm	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	Fe \%	Hg	Kn ppm	Pb ppm	Zn ppm	$\begin{aligned} & S \\ & \% \end{aligned}$
271	HE043	1	＜0． 2	15	550	38	6.95	＜1	4310	92	40	0.003
272	HE044	<1	＜0． 2	＜5	290	25	3.95	＜ 1	625	26		0.005
273	酉045	＜1	＜0． 2	＜5	280	23	3.71	＜1	440	18		＜0．001
274	ME046	2	＜0． 2	<5	460	26	3.81	＜1	420	22		＜0． 001
275	HE047	＜1	＜0． 2	＜5	460	32	6.71	＜1	3920	56		＜0．001
276	HE048	＜1	＜0． 2	く5	310	14	3.02	＜1	160	18	20	0.004
277	HE049	＜1	＜0． 2	<5	400	15	2． 50	1	260	10		0.009
278	WE050	＜1．	＜0． 2	＜5	250	24	4． 17	＜1	295	26		＜0．001
279	KE051	＜1	＜0．2	<5	270	23	3.93	<1	345	22		＜0． 001
280	HE052	＜1	＜0． 2	<5	560	29	3.86	＜1	325	18		＜0．001
281	HE053	<1	＜0．2	＜5	250	19	3.70	＜1	235	16		0.003
282	ME054	＜1	＜0．2	＜5	370	20	3.03	1	375	16		＜0．001
283	ME055	<1	＜0． 2	＜5	250	19	2.83	＜1	330	16		＜0． 001
284	－ 1056	1	＜0． 2	＜5	110	8	1.47	3	115	4		＜0． 001
285	WE057	＜1	＜0． 2	＜ 5	130	9	1． 27	＜1	90	6		＜0．001
286	－ 058	<1	＜0． 2	＜5	170	13	2.21	1	635	14		＜0．001
287	HF001	<1	＜0． 2	＜5	30	2	0.68	<1	70	6		＜0．001
288	WF002	<1	＜0．2	<5	70	4	1． 59	＜1	80	8		＜0．001
289	MF003	<1	＜0． 2	<5	60	3	0.90	＜1	50	2		＜0． 001
290	MF004	＜1	＜0．2	＜5	90	2	0.81	＜1	140	4		＜0．001
291	4F005	<1	＜0． 2	＜5	70	1	0.76	＜1	30	4	4	0.003
292	HF006	<1	＜0． 2	5	50	＜1	0.73	＜1	20	10		0.002
293	MF007	＜1	＜0． 2	<5	60	1	0.63	<1	40	10		＜0．001
294	MF008	<1	<0.2	＜5	110	5	1． 48	＜1	70	14	18	0.001
295	Mr009	＜1	<0.2	<5	210	5	1.56	＜1	100	14		＜0．001
296	HF010	＜1	＜0．2	10	820	9	1.19	<1	450	12		0.010
297.	WF011	<1	＜0． 2	10	90	6	1.21	＜1	105	2		＜0． 001
298	MF012	<1	＜0．2	＜5	80	3	0.90	＜1	30	10	6	0.001
299	MG001	＜1	<0.2	10	310	16	2.81	＜1	870	26		0.013
300	y6002	＜1	＜0． 2	5	250	18	3.04	＜1	460	24		<0.001
301	HG003	＜1	<0.2	15	180	8	1.55	＜1	90	8		＜0．001
302	MG004	＜1	<0.2	<5	270	19	3.18	＜1	285	14		0．004
303	MG005	1	＜0． 2	＜5	300	16	2.11	<1	210	6		＜0． 001
304	\＃G006	<1	<0.2	<5	180	9	1.78	<1	135	10		<0.001
305	MG007	＜1	<0.2	<5	580	20	2． 69	<1	195	18		＜0． 001
306	MG008	<1	<0.2	<5	120	4	1.25	＜1	50	8		＜0．001
307.	W6009	<1	＜0．2	<5	810	20	2． 25	＜1	290	20		＜0． 001
308	Mc010	＜1	<0.2	＜5	250	8	1.52	1	185	10		＜0． 001
309	MG011	<1	<0.2	＜5	350	4	1． 26	＜1	250	14		＜0．001
310	MG012	＜1	<0.2	＜	190	12	1.85	＜1	230	8		＜0． 001
311	MG013	＜1	<0.2	5	210	11	2.15	<1	145	10		＜0．001
312	MG014	＜1	＜0． 2	＜5	530	17	3.41	＜1	980	22		<0.001
313	MG015	＜1	＜0． 2	5	140	5	1.41	＜1	100	10		＜0． 001
314	MG017	＜1	＜0． 2	く5	810	13	1． 80	＜1	315	14	26	0.017
315	M6018	＜1	<0.2	10	400	7	1．33	2	95	12	16	0.001
316	H6019	＜1	＜0． 2	<5	20	＜1	0.58	＜1	10	6		<0.001
317	M6020	＜1	<0.2	<5	110	1	1.06	<1	65	8		＜0． 001
318	MG021	<1	<0.2	5	140	6	1． 27	<1	55	8		＜0． 001
319	YG022	＜1	＜0．2	＜5	250	8	1．54	＜1	75	10		＜0． 001
320	MG023	＜1	＜0． 2	<5	230	9	1.30	＜1	150	10		＜0．001
321	HG024	<1	＜0．2	＜5	40	＜1	0.50	＜1	5	2		＜0．001
322	MG025	＜1	＜0． 2	<5	30	＜1	0.61	＜1	5	8		＜0．001
323	HG026	＜1	<0.2	5	50	1	0.50	＜1	60	6		＜0． 001
324	HGO27	≤ 1	＜0．2	<5	60	1	0.69	≤ 1	25	8		＜0． 001

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \mathrm{Ag} \\ \text { ppan } \end{array}$	As	$\begin{gathered} \mathrm{Ba} \\ \mathrm{Ban} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Hg}}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	Pb ppm	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	\%
325	HG028	<1	<0. 2	5	70	2	0.90	<1	120	10		<0. 001
326	HC029	<1	<0.2	<5	50	1	0.82	<1	205	10		<0.001
327	MG030	<1	<0.2	<5	70	2	0.88	<1	25	10		<0. 001
328	MG031	<1	<0.2	<5	150	3	0.88	<1	35	10		<0. 001
329	MG032	<1	<0. 2	5	640	9	1. 75	<1	370	14		<0.001
330	MC033	<1	<0. 2	<5	20	<1	0.23	<1	10	6		<0. 001
331	MG034	<1	<0. 2	5	80	2	1.06	<1	20	10		0.006
332	MG035	<1	<0. 2	<5	40	<1	0. 34	<1	5	2		<0. 001
333	H6036	<1	<0.2	5	240	18	5. 11	<1	990	20		0.016
334	M6037	<1	<0. 2	5	230	27	6. 21	<1	930	34		0.014
335	H6038	<1	<0. 2	<5	230	13	3.17	<1	595	16		0.002
336	MG039	<1	<0.2	<5	250	14	3. 23	<1	560	18		<0. 001
337	MG040	<1	<0.2	<5	190	28	3.56	<1	700	24		<0. 001
338	MG041	<1	<0.2	5	150	12	1.65	<1	490	14		<0. 001
339	H6042	<1	<0.2	<5	270	23	3.34	<1	705	22		<0. 001
340	M6043	<1	<0.2	5	360	26	3. 66	<1	260	12		<0. 001
341	MG044	<1	<0. 2	15	110	35	12. 65	<1	215	40		<0. 001
342	MG045	<1	<0.2	20	270	25	3.68	<1	335	22		<0.001
343	M6046	<1	<0.2	5	270	18	2.33	<1	280	18		<0. 001
344	M6047	<1	<0.2	5	540	14	2.92	1	810	18		<0.001
345	MG049	<1	<0. 2	20	640	11	1.47	<1	255	16		0.002
346	M6050	<1	<0.2	<5	130	5	1.26	<1	45	12		<0. 001
347	MG051	<1	<0.2	5	200	4	0.82	<1	175	12		<0. 001
348	Mc052	<1	<0. 2	<5	550	7	1.21	<1	65	8		<0. 001
349	MG053	<1	<0.2	<5	70	2	0. 79	<1	30	12		<0. 001
350	MC054	<1	<0.2	<5	180	7	1.14	<1	200	14	12	0.004
351	MG055	<1	<0.2	5	650	10	1.74	<1	335	16	18	0.009
352	M6056	<1	<0.2	5	330	14	1.53	<1	155	10		0.006
353	HG057	<1	<0.2	<5	160	10	1.65	<1	215	14		<0. 001
354	M6058	<1	<0.2	5	170	21	3.22	<1	855	20		<0.001
355	MG059	<1	<0.2	15	900	22	1.85	<1	385	6		0.031
356	M6060	<1	<0.2	10	230	17	2.55	<1	240	24		<0.001
357	MG061	<1	<0.2	5	140	10	1.16	<1	285	12		<0. 001
358	HG062	<1	<0.2	< 5	210	14	1.17	<1	535	10		<0.001
359	MH001	<1	<0.2	15	310	19	2.12	<1	1410	26		<0.001
360	HH002	<1	<0.2	<5	320	18	4. 47	<1	1285	108		<0.001
361	\% H 003	<1	<0.2	10	120	13	1.91	<1	205	16		<0.001
362	MH004	<1	<0.2		800	24	2.04	1	965	20		0.011
363	M $\mathrm{HOO5}$	<1	<0.2	<5	380	23	3.53	1	840	44		<0. 001
364	м $\mathrm{HOOO}^{\text {¢ }}$	<1	<0.2	<5	110	12	1.72	<1	60	18		<0. 001
365	\#H007	<1	<0. 2	5	140	7	1.06	<1	65	8		<0. 001
366	мН008	<1	<0.2	<5	230	14	2. 48	<1	450	18		<0. 001
367	M1009	<1	<0. 2	15	170	10	1.52	<1	130	10		<0.001
368	MH010	<1	<0. 2	<5	200	7	1.08	<1	145	14	16	0.003
369	HH011	<1	<0.2	5	210	18	4.51	<1	1130	44	30	0.006
370	HH012	<1	<0.2	10	140	10	2.79	<1	150	18		0.010
371	M $\mathrm{HO13}$	<1	<0.2	15	160	8	1.30	4	310	18		<0. 001
372	MH014	<1	<0.2	15	110	8	1.45	<1	210	20		<0. 001
373	MH015	<1	<0. 2	<5	290	7	1.10	<1	105	16		<0. 001
374	MH016	<1	<0.2	5	230	10	1. 42	<1	100	12		<0. 001
375	MH017	<1	<0.2	15	380	21	3.25	<1	400	14		<0. 001
376	H11018	<1	<0.2	20	370	21	4.07	<1	570	32		<0. 001
377	HH019	<1	<0.2	10	310	30	6.17	<1	1675	64		<0.001
378	MH020	≤ 1	<0.2	<5	180	13	2.10	<1	255	10		<0.001

HKANGOMBE AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \text { As } \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \text { \% } \end{gathered}$	Hg ррп	Hn ppm	Pb ppm	Zn ppni	$\begin{aligned} & \mathrm{S} \\ & \text { \% } \end{aligned}$
379	K11021	<1	<0.2	15	200	13	2.44	<1	340	22		<0.001
380	HH022	<1	<0. 2	5	600	16	2.26	<1	360	18		<0. 001
381.	WH023	<1	<0. 2	<5	260	13	2. 24	<1	190	18		<0. 001
382	HH024	<1	<0. 2	5	510	10	1.70	<1	220	20		<0.001
383	W11025	<1	<0. 2	5	420	12	1.98	1	310	18		<0. 001
384	M H 026	<1	<0. 2	10	330	17	2.75	<1	765	30		<0. 001
385	MH027	<1	<0.2	5	180	10	1.43	<1	150	4		<0. 001
386	4H028	<1	<0. 2	<5	200	10	1.35	<1	240	16		0.004
387	MH029	<1	<0.2	10	360	17	2.08	<1	310	14		<0.001
388	YH030	<1	<0. 2	5	320	8	1.38	<1	195	10		<0.001
389	YH031	<1	<0.2	<5	230	5	0.77	1	80	12	8	0.002
390	HH032	<1	<0. 2	<5	500	7	1.23	2	310	20	92	0.015
391	MH033	<1	<0. 2	<5	80	3	0.80	<1	35	8	22	0.001
392	MH034	<1	<0. 2	5	160	4	0.88	<1	90	6	12	0.002
393	MH035	<1	<0. 2	<5	190	2	0.97	<1	65	4	8	0.002
394	HH036	<1	<0. 2	5	220	6	1. 22	<1	85	8	8	0.006
395	HH037	<1	<0.2	<5	160	2	0.79	<1	55	6	6	0.003
396	WH038	<1	<0. 2	<5	80	2	0.62	<1	125	10		<0. 001
397	YH039	<1	<0. 2	<5	30	1	0.52	<1	30	6		<0. 001
398	HH040	<1	<0. 2	<5	40	1	0.54	<1	40	8		<0. 001
399	HH041	<1	<0.2	<5	70	1	1.07	<1	100	10		<0. 001
400	HH042	<1	<0. 2	<5	20	1	0.37	<1	30	4		<0. 001
401	MH043	<1	<0.2	<5	80	1	0.70	<1	130	14		<0.001
402	YH044	<1	<0.2	<5	40	1	0.55	<1	50	10		<0.001
403	MH045	<1	<0. 2	5	200	4	1.95	<1	120	10		<0. 001
404	H H 046	<1	<0.2	<5	60	3	0.91	<1	55	6		<0. 001
405	MH047	<1	<0. 2	<5	50	2	0.76	<1	30	12		<0. 001
406	MH048	<1	<0.2	10	60	2	0.83	<1	55	6	6	0.001
407	MH049	<1	<0. 2	<5	140	14	4.17	1	175	16	26	0.014
408	HH050	<1	<0. 2	5	250	15	1.95	<1	215	12	26	0.009
409	WH051	<1	<0. 2	<5	140	9	1.88	<1	235	10	26	0.002
410	HH052	<1	<0.2	5	270	25	4. 15	<1	2480	58		<0.001
411	M1053	<1	<0.2	<5	140	10	1.66	<1	185	10	22	0.004
412	MH054	<1	<0. 2	<5	380	18	2. 42	<1	645	16		<0.001
413	MH055	<1	<0.2	<5	100	4	1. 31	<1	75	6		<0.001
414	M1056	<1	<0.2	<5	260	10	1. 80	<1	160	14		<0.001
415	H H 057	<1	<0.2	15	110	8	2.06	<1	105	14		<0. 001
416	H H 058	<1	<0.2	< 5	150	8	2. 03	<1	100	12		<0. 001
417	UH059	<1	<0.2	<5	80	3	0.92	<1	25	12		<0. 001
418	HH060	<1	<0. 2	5	60	4	0.98	<1	50	10		<0. 001
419	M 0661	<1	<0.2	15	350	6	1. 20	<1	100	6		<0.001
420	MH062	<1	<0. 2	<5	270	12	2,19	<1	195	14		<0. 001
421.	MH063	<1	<0.2	<5	410	10	1. 43	<1	280	12		<0. 001
422	MH064	<1	<0.2	20	240	16	1.93	<1	515	18		<0. 001
423	HH065	<1	<0. 2	5	80	11	1. 50	<1	775	22	30	0.004
424	M ${ }^{\text {H066 }}$	<1	<0.2	<5	620	19	1.72	<1	1565	22	30	0.008
425	НН067	<1	<0.2	<5	100	17	1. 62	<1	850	8		<0.001
426	MH068	<1	<0.2	10	310	20	1. 78	<1	955	12	24	0.007
427	MH069	<1	<0.2	5	390	21	1. 72	<1	1170	4	28	0.002
428	HH070	<1	<0. 2	5	110	13	1.43	<1	430	10		<0. 001
429	MH071	<1	<0. 2	<5	100	15	1.31	<1	580	10		<0. 001
430	MII072	<1	<0.2	5	130	14	1.40	<1	550	10		<0.001
431	M 1073	<1	<0. 2	10	260	25	2.96	<1	520	24		<0.001
432	MH074	≤ 1	<0. 2	<5	200	8	1.58	≤ 1	160	20	18	0.001

Ser. No.	Sample No.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{As} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{ppni}}{\mathrm{Cu}}$	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	$\underset{\text { ppin }}{\text { llg }}$	$\begin{aligned} & \mathrm{Mn} \\ & \mathrm{ppm} \end{aligned}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	Zn ppm	S
433	H11075	<1	<0. 2	<5	470	14	1.86	<1	260	10		<0. 001
434	\%H076	<1	<0.2	<5	90	8	1.65	<1	170	12		<0. 001
435	N1077	<1	<0.2	5	120	6	1. 45	<1	105	10		<0. 001
436	HH078	<1	<0.2	10	100	5	1.54	<1	70	18		<0. 001
437	WH079	<1	<0.2	10	70	2	0.93	<1	30	4		<0.001
438	MH080	<1	<0. 2	5	80	2	0.88	<1	160	10		<0. 001
439	WH082	<1	<0.2	<5	60	<1	0.48	<1	170	4		<0. 001
440	MH083	<1	<0. 2	<5	50	2	0.83	<1	. 125	12		<0.001
441	170084	<1	<0. 2	5	40	1	0.97	<1	115	<2		<0. 001
442	M 1085	<1	<0.2	5	40	1	1.01	<1	15	10.		<0.001
443	M H 086	<1	<0. 2	< 5	130	5	1.10	<1	65	12		<0. 001
444	MH087	<1	<0. 2	<5	90	3	1.16	<1	220	8		<0.001
445	MH088	<1	<0.2	<5	40	1	0.76	1	90	6		<0. 001
446	H1089	<1	<0. 2	<5	90	3	0.93	<1	40	8	10	<0. 001
447	MH090	<1	<0. 2	<5	60	2	0.97	<1	60	10		<0.001
448	M1091	<1	<0. 2	25	150	7	1. 57	<1	50	4		<0.001
449	H H 092	<1	<0.2	<5	70	3	1.19	<1	50	4		<0. 001
450	WH093	<1	<0.2	<5	40	<1	0.48	<1	10	6		<0. 001
451.	HH094	<1	<0. 2	<5	70	1	0.73	<1	15	8		<0. 001
452	WH095	<1	<0.2	5	430	7	1.14	<1	240	6	20	0.002

RESULTS OF GEOCHEMICAL ANALYSIS
HRIMA-JOHBO ARBA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{pp} \mathrm{~m} \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{array}{r} \text { In } \\ \text { ppin } \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{p}}$	Pb ppia	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$	7n
1	HB001	<1	1980	11.	2.13	31.0	190	16	171	20
2	HB002	<1	180	8	2.09	80	60	20	42	18
3	HB003	<1	150	9	1.87	90	80	14	15	18
4	H8004	<1	260	8	1.71	370	70	10	67.	22
5	HB005	<1	180	11	2.19	75	40	14	51	16
6	HB006	<1	500	29	3.11	1015	130	18	173	30
7	HB007	<1	240	24	3.03	950	110	18	154	30
8	HB008	<1	140	14	2.32	265	100	14	25	16
9	HB009	<1	170	14	2. 48	270	190	10	24	26
10	HB010	<1	150	9	1.51	90	80	8	11	16
11	HB011	<1	170	23	2.55	400	150	10	53	12
12	HB012	<1	130	8	1.48	185	100	12	14	8
13	HB013	<1	110	22	2.43	400	210	12	45.	12
14	HB014	1	80	18	3.06	130	140	2	16	10
15	IB015	<1	110	11.	1. 90	275	160	10	25	14
16	HB017	<1	80	4	1.31	250	150	22	8	14
17	HB018	<1	70	6	1.55	245	150	12	9	16
18	HB019	1	140	16	2. 62	510	230	16	17	30
19	HB020	<1	60	6	1.11	505	190	30	12	24
20	HB021	<1	160	11	2.31	270	230	14	12	18
21	HB022	<1	90	6	1.08	245	110	14	13	12
22	HB023	<1	60	3	1.07	115	110	<2	5	8
23	HB024	<1	70	3	0.97	135	160	12	7	12
24	HB025	<1	100	4	1.00	145	100	8	11	8
25	HB026	<1	170	9	1.68	330	170	8	22	20
26	HB027	<1	220	10	1.93	195	110	10	18	20
27	118028	<1	60	2	0.70	25	40	6	5	6
28	HB029	<1	50	1	0.81	20	30	4	6	4
29	HB030	<1	140	9	1.92	140	130	8	22	18
30	HB031	<1	30	2	0.71	70	50	10	6	6
31	HB032	<1	110	3	0.72	185	160	6	10	8
32	HB033	<1	40	1	0.41	140	100	4	2	4
33	HB034	<1	40	1	0.84	25	60	10	2	4
34	HB035	<1	50	1	0.81	25	70	12	5	6
35	HB036	<1	30	1	0. 40	90	70	2	1	4
36	HB037	<1	40	1	0.39	120	50	8	3	4
37.	HB038	<1	140	7	1.86	500	210	12	23	20
38	MB039	<1	60	1	0.66	85	60	12	1	6
39	HC001	<1.	170	9	1.89	1140	240	14	35	14
40	HC002	<1	170	9	3.21	1520	200	12	36	12
41	HC003	<1	1080	18	3.42	2020	390	14	73	44
42	HC004	<1	120	6	1. 26	595	120	6	12	6
43	HC005	<1	160	8	2.57	855	190	4	34	12
44	HC006	<1	330	10	2. 63	920	300	12	48	16
45	HCOO7	<1	440	18	3.72	860	430	22	85	36
46	HC008	<1	340	12	3.88	995	310	8	61	16
47	HC009	<1	170	10	1.69	945	200	8	51	14
48	HC010	<1	460	7.	2.57	310	100	14	42	28
49	HC011	<1	250	9	2. 28	350	230	8	35	24
50	HC012	<1	160	8	1.98	315	180	18	16	16
51	HCO13	<1	980	11	2.04	615	220	18	23	20
52	HC014	<1	290	9	2. 40	445	180	12	14	30
53	HC015	<1	280	5	1. 67	165	80	14	35	16
54	$1 \mathrm{C016}$	≤ 1	60	2	0.66	30	50	6	8	4

MRIMA-JOMBO AREA

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Nb} \\ \text { ppal } \end{gathered}$	¢pm	$\begin{gathered} \mathrm{Ce} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Eu} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{La} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { Lu } \\ \text { ppal } \end{gathered}$	$\begin{array}{r} \mathrm{Nd} \\ \mathrm{ppnt} \end{array}$	$\underset{\text { ppro }}{\text { Sin }}$	$\begin{gathered} \mathrm{Tb} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \mathrm{Th} \\ & \mathrm{ppm} \end{aligned}$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{ppm} \end{aligned}$	Yb ppm
1	HB001	25	32	86.0	1. 00	37.0	0.60	25	5.90	0.50	10.0	3.0	3.80
2	HB002	25	33	68.0	1.00	36.0	0.50	25	7.20	0.50	11.0	2.0	2.90
3	HB003	24	30	76.0	1.00	34.0	0.60	20	5. 80	1. 10	13.0	4.0	3. 60
4	HB004	28	38	90.0	1. 50	49.0	0.60	30	8.70	1.00	12.0	3.0	3.50
5	H1005	31	31	94.0	1. 00	45.0	0.50	30	7.10	1.00	13.0	3.0	3.20
6	HB006	57	34	166.0	3.50	71.0	0.60	40	10.90	0.80	17.0	3.0	3.50
7	HB007	43	33	136.0	2.50	62.0	0.50	40	10.30	1.80	13.0	2.0	3.00
8	IB1008	39	39	126.0	1.50	64.0	0. 50	45	11.00	0.60	18.0	3.0	3.80
9	HB009	30	34	124.0	1. 50	47.0	0.50	30	7.30	2.00	14.0	4.0	3.60
10	HBOLO	29	31	100.0	1.00	46.0	0.50	30	6.90	0.70	13.0	3.0	3.40
11	HB011	46	36	120.0	2.00	75.0	0.60	45	12.60	1.00	15.0	3.0	4. 00
12	HB012	23	27	86.0	0.50	42.0	0.50	25	6.80	0.60	11.0	3.0	3.40
13	HB013	44	35	114.0	2.50	71.0	0.60	45	12.00	0.90	14.0	2.0	3.80
14	HB014	45.	34	102.0	1. 50	63.0	0.50	40	10.60	0.60	12.0	2.0	3.70
15	IEB015	27.	32	86.0	1.00	54.0	0.70	30	8.90	2. 60	15.0	3.0	4. 10
16	HB017	26	36	98.0	1.00	42.0	0.70	25	6.00	1. 30	16.0	4.0	4. 40
17	HB018	28	37	74.0	1,00	39.0	0.70	25	6.10	0.70	18.0	4.0	4. 50
18	HB019	26	49	96.0	1.00	57.0	0.90	35.	9.10	0.40	19.0	5.0	5. 40
19	HB020	24	47	94.0	1.00	53.0	0.80	30	8.10	0.90	17.0	5.0	4. 90
20	HB021	27	43	120.0	1.50	63.0	0.90	35.	9.30	0.90	19.0	6.0	5. 40
21	HB022	28	47	92.0	1.00	55.0	0.90	35	8.50	1.20	18.0	5.0	5. 70
22	HB023	23	38	90.0	1.00	55.0	0.80	30	7.70	0.60	19.0	4.0	5.10
23	HB024	23	43	120.0	1.50	67.0	0.80	45	9.70	1.10	25.0	6.0	5. 40
24	HB025	21	23	34.0	0.50	21.0	0.50	10	3.00	0.20	10.0	4.0	2. 80
25	HB026	29	31	58.0	0.50	31.0	0.70	30	4. 80	0.30	15.0	5.0	3. 60
26	H3027	27	34	74.0	1. 00	36.0	0.60	25	5.90	0.10	14.0	5.0	4.00
27	H8028	22	24	32.0	<0.05	17.0	0.40	10	2.80	0.20	10.0	4.0	2. 60
28	HB029	20	20	26.0	0. 50	14.0	0.40	10	3.40	0.40	9.0	3.0	2. 60
29	HB030	26	32	70.0	1.00	31.0	0.60	25	4.80	0.40	13.0	4.0	4. 30
30	HB031	18	23	38.0	0.50	14.0	0,50	15	2. 20	0.30	10.0	4.0	3.20
31	HB032	10	18	32.0	<0.05	10.0	0.30	5	2.00	0.10	6.0	3.0	2. 10
32	HB033	13	20	22.0	<0. 05	9.0	0.40	10	1.20	0.30	8.0	3.0	2. 20
33	HB034	17	22	38.0	<0.05	11.0	0.40	20	2. 50	0.30	9.0	2.0	2. 40
34	118035	17	24	54.0	<0.05	18.0	0.40	15	3.30	0.40	11.0	3.0	2. 80
35	HB036	15	24	40.0	0.50	16.0	0.50	25	2.50	0.30	10.0	4.0	3. 20
36	HB037	14	23	40.0	<0.05	11.0	0.50	10	1.80	<0.05	9.0	4.0	3. 00
37	HB038	32	36	84.0	0.50	33,0	0.60	30	5.50	0.90	12.0	3.0	3.40
38	HB039	16	28	52.0	<0.05	17.0	0.60	20	2.80	0.20	14.0	5.0	3.90
39	HCOO1	31	38	170.0	1.50	68.0	0.70	60.	10.00	0.80	30.0	5.0	4. 80
40	HC002	54	39	154.0	2.00	88.0	0.70	60	11.10	0.60	30.0	5.0	4.80
41	HC003	96	58	226.0	3.00	147.0	0.90	85	16.00	1.70	31.0	4.0	5.40
42	HC004	39	40	178.0	1. 00	82.0	1.00	70	12.30	1. 20	38.0	7.0	6.10
43	HC005	34	45	120.0	2.00	67.0	0.90	45	10.00	1. 50	27.0	5.0	5.50
44	HC006	42	40	124.0	1.50	65.0	0.80	45	9.60	0.90	27.0	5.0	5.00
45	HC007	68	57	202.0	2.00	102.0	0.80	75	13.00	1. 30	32.0	5.0	5. 00
46	HC008	42	43	120.0	1.50	68.0	0.70	45	9.40	0.50	22.0	5.0	4.10
47	HC009	43	50	144.0	1.50	73.0	0.90	45	9.40	1. 40	27.0	6.0	5.90
48	HC010	29	44	104. 0	1.50	56.0	0.60	35	8. 20.	1. 00	17.0	4.0	4. 20
49	HC011	31	47	120.0	1.50	61.0	0.90	45	8.60	1.40	20.0	5.0	5. 30
50	HC012	30	35	90.0	1.00	45.0	0.70	25	7.00	0.60	16.0	5.0	4. 40
51	HCO13	42	38	114.0	1.50	57.0	0.70	30	7.70	0.30	16.0	5.0	4. 60
52	HC014	22	41	76.0	1.50	49.0	0.70	25	7. 40	0.80	13.0	4.0	4. 60
53	HC015	26	34	60.0	1.00	38.0	0.60	20	6.20	0.40	13.0	4.0	3. 80
54.	HC016	24	22	42.0	0.50	23.0	0.50	15	3.40	0.10	8.0	4.0	3.10

WRIMA-JOMBO AREA

Ser. No.	Sample No.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} p \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{ppom}}{\mathrm{Sr}}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$
55	HC017	<1	370	9	2.19	325	200	16	28	18
56	HCO18	<1	640	6	2. 04	1450	270	10	41	36
57	HC019	<1	130	5	0.81	850	150	12	19	10
58	HC020	<1	160	6	2.28	745	200	16	37	22
59	HC021	<1	180	9	1.34	755	230	10	43	14
60	HC022	<1	140	7	1.63	605	160	12	28	16
61	HC023	<1	180	6	1.58	815	170	8	37	20
62	HC024	<1	180	9	2.13	635	260	12	32	18
63	HC025	<1	310	12	2. 18	740	350	16	53	30
64	HC026	<1	210	8	1.85	410	270	8	44	14
65	HC027	<1	210	10.	2.75	585	320	20	40	18
68	HC028	<1	190	7	1.93	845	150	12	24	12
67	HC029	<1	110	13	3.90	855	320	12	19	14
68	HC030	<1	50	3	1. 04	150	90	6	11	6
69	HC031	1	130	9	2.36	835	250	10	30	20
70	HC032	<1	60	5	2.16	235	220	8	15	8
71	HC033	<1	80	7.	2.77	325	220	10	18	10
72	HC034	<1	210	8	2.20	360	350	10	78	14
73	HC035	<1	60	2	1.00	380	170	16	9	8
74	HC036	<1	170	4	1. 76	515	330	14	39	12
75	HC037	<1	120	4	2.03	350	250	14.	16	12
76	IC038	<1	160	8	1.45	35	110	12	15	10
77	HC039	<1	120	9	1.75	25	60	8	11	10
78	HC040	<1.	160	6	1.33	45	60	10	19	6
79	HC041	<1	220	8	1.72	270	80	14	52	12
80	HC042	<1	260	13	2. 49	220	170	10	35	14
81	HC043	<1	40	8	1. 50	140	80	6	7	14
82	HCO44	<1	200	13	2. 27	275	190	10	25	20
83	HCO45	<1	120	8	1.72	110	90	2	7	24
84	HC046	<1	100	10	1.85	190	130	10	13	20
85	HC047	<1	190	10.	1.78	200	80	14	22	20
86	HC048	<1	180	7	1.67	135	90	8	10	16
87.	HC049	<1	230	11	2.63	590	190	8	22	14
88	HC051	<1	140	<1	0.24	10	60	4	13	<2
89	HC052	2	10	1	0.12	10	40	<2	2	<2
90	HC053	<1	10	1	0.23	20	40	4	5	2
91.	HC054	<1	- 40	1	0.49	285	70	4	10	4
92	$11 \mathrm{CO55}$	5	310	19	4.46	1170	270	20	69	42
93	HC056	38	720	19	7.07	2560	500	48	92	140
94	HC057	94	2160	26	6.81	3210	830	108	169	396
95.	HC058	17	4400	27	11.95	7300	1450	216	241	532
96	HC059	17	4510	30	10.85	6700	1580	214	266	520
97	HD001	<1	710	9	2.03	335	170	18	82	32
98	HD002	1	340	10	2.03	470	170	18	76	20
99	HD003	<1	360	8	1.89	640	200	16	48	14
100	HD004	<1.	310	12	1.82	480	220	22	72	20
101	HD005	<1	310	8	1.20	570	90	16	45	14
102	HD006	2	490	9	1.99	885	260	20	65	22
103	HD007	<1	140	5	1. 29	425	140	12	39	12
104	HD008	8	810	19	2.57	2090	470	24	110	60
105	HD009	12	960	20	4. 51	2380	510	34	100	122
106	HD010	16	620	15	4.77	2070	410	46	84	88
107	HD011	10.	420	15	5.07	1.645	310	38	53	54
108	HD012	21.	2660	21	6.76	3270	750	78	154	186

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Nb} \\ \mathrm{ppna} \end{gathered}$	ppm	Ce ppm	$\begin{array}{r} \mathrm{Eu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{La} \\ \mathrm{ppm} \end{array}$	$\underset{\text { ppin }}{ }$	$\begin{gathered} \mathrm{Nd} \\ \mathrm{ppal} \end{gathered}$	Sm ppm	$\begin{gathered} \text { Tb } \\ \text { pp\# } \end{gathered}$	Th ppa	U	Yb pmin
55	HC017	43	44	104.0	0.50	51.0	0.80	30	6.70	1.20	16.0	5.0	4.70
56	HC018	84	43	136.0	2.00	64.0	0.70	30	8.00	0.80	14.0	5.0	4.80
57	HC019	36	30	64.0	1.00	27.0	0.70	15	4.10	0.90	11.0	4. 0	3.90
58	HCO20	39	49	116.0	1.50	55.0	0.80	30	7.60	0.50	16.0	6. 0	5.40
59	HC021	55	42	114.0	1.50	57.0	0.80	35	7.10	1.00	12.0	6.0	5.00
60	HC022	35	36	88.0	1.00	42.0	0.80	25	4.80	0.50	14.0	5.0	4.80
61	HCO23	32	38	84.0	1.50	41.0	0.70	20	5. 50	1.50	13.0	4.0	4.40
62	HC024	34	43	110.0	1.30	49.0	0.70	35	7.50	0.80	15.0	5.0	4. 40
63	HC025	39	43	122.0	2.30	59.0	0.80	45	8.60	1.40	15.0	4.0	5.10
64	HC026	43	40	128.0	1.80	55.0	0.80	25	6.50	1.20	15.0	5.0	5.00
65	HC027	40	37	130.0	1.80	60.0	0.70	50	8.00	1. 20	17.0	4.0	4. 50
66	HCO28	49	41	136.0	2.10	74.0	0.80	55	9.80	1.00	24.0	4.0	5. 20
67	HC029	55	50	160.0	2.80	84.0	0.80	60	12.00	1.50	24.0	4.0	5.10
68	HC030	42	37	118.0	1.50	55.0	0.80	45	8.10	1.20	24.0	5.0	4.90
69	HC031	52	51	220.0	2.00	93.0	1.00	80	12.30	1.40	31.0	7.0	6.40
70	HC032	45	38	154.0	1.00	64.0	0.70	50	8.70	1.00	23.0	4.0	4. 60
71	HC033	44	41	168.0	1.00	72.0	0.80	60	9.40	1.40	30.0	5.0	5. 20
72	HC034	106	55	202.0	2.50	101.0	0.80	90	13.80	1.30	26.0	6.0	5. 00
73	HC035	26	39	122.0	1.50	50.0	0.70	50	8.10	0.90	18.0	4.0	4.40
74	HC036	36	49	152.0	2.00	67.0	0.90	55	10.00	0.80	24.0	6. 0	5.90
75	HC03'7	32	41	144.0	1.50	62.0	0.80	50	9.10	1. 20	22.0	4.0	4. 90
76	HC038	27	28	90.0	0.50	41.0	0.70	30	6.30	0.50	13.0	3.0	4. 10
77	HC039	27	29	88.0	1.00	40.0	0.70	35	7.00	0.80	14.0	4.0	3.80
78	HC040	23	28	76.0	1.00	38.0	0.80	30	6.60	0.70	12.0	4.0	4. 60
79	HC041	35	33	84. 0	1.50	53.0	0.60	50	8.80	0.80	13.0	3.0	3.70
80	HC042	25	31	110.0	1.50	45.0	0.50	40	8.20	0.50	13.0	3.0	3. 40
81	HCO43	26	32	80.0	1.00	39.0	0.70	30	5.90	1.50	16.0	5.0	4.10
82	HC044	25	38	82.0	0.50	46.0	0.70	35	8.40	0. 50	16.0	4.0	3.90
83	HC045	20	27	82.0	0.50	39.0	0.60	35	6.40	0.30	15.0	3.0	3.70
84	HC046	23	27	66.0	0.50	27, 0	0.60	20	4.80	0.50	12.0	4.0	3.20
85	HCO47	25	27	80.0	1. 00	37.0	0.50	30	6.40	0.50	12.0	4.0	3.10
86	HC048	24	36	68.0	1. 50	44.0	0.60	35	7.30	0.70	15.0	4.0	3.80
87	HC049	32	42	134.0	2.00	61.0	0.70	55	11.00	3.00	18.0	3.0	4. 60
88	HC051	38	25	78.0	0.50	35.0	0.70	30	4.80	0.30	14.0	4.0	4. 60
89	HC052	45	21	60.0	0.50	24.0	0.80	20	4.00	0.30	11.0	5.0	5. 30
90	HCO53	55	25	76. 0	0.50	34.0	1.00	30	5.30	0.50	16.0	6.0	6. 00
91	HC054	77	25	124.0	1. 00	56.0	0.80	25	5.40	0.90	22.0	5.0	5.30
92	HC055	147	88	274.0	4.00	210.0	1.30	125	19.00	2. 30	73.0	5.0	8.80
93	HC056	444	280	784.0	17.00	769.0	2.60	285	60.30	6.90	231.0	6.0	20.20
94	HC057	496	390	1108.0	27.00	894.0	3.30	465	83.10	10.90	264.0	4.0	25.20
95	HCO58	1075	610	2874	47.00	2058	4. 30	1030	174.90	13.10	405.0	3.0	34. 60
96	HC059	1060	610	3310	54.50	2484	5.30	1140	187.90	15.00	413. 0	9.0	40.30
97	HD001	125	69	230.0	4.00	146.0	0.90	95	18.00	1. 60	22.0	4.0	6. 00
98	$1 \mathrm{DD002}$	53	53	126.0	2.50	75.0	0.80	50	9.50	1.40	16.0	2.0	5.50
99	HD003	77	46	134.0	1.50	80.0	0.80	50	9.70	1.10	16.0	4.0	4.90
100	HD004	97	40	156. 0	2.00	97.0	0.80	60	9.80	1. 60	16.0	4.0	4. 70
101	HD005	61	35	124.0	1.50	71.0	0.70	35	7.70	0.60	13.0	3.0	4. 20
102	HD006	72	51	154.0	1.50	85.0	0.90	45.	8.70	2.10	26.0	5.0	5. 70
103	HD007	67.	46	176.0	1.50	90.0	1.30	50	9.50	1.20	29.0	7.0	7.60
104	HD008	160	93	236. 0	5.00	227.0	1.40	105:	20.80	2.00	64.0	6.0	9.10
105	HD009	353	185	556.0	13.50	673.0	1.90	250	47.10	4. 10	125.0	4.0	13.50
106	HD010	369	200	714. 0	16.00	666.0	2.00	285	44.60	5.40	191.0	6.0	15.40
107	HD011	284	140	512.0	9.00	542.0	1.50	220	32.40	4.40	128.0	4.0	10.80
108	HD012	491	240	1072.0	14.00	838.0	2. 10	335	54.30	7.00	217.0	3.0	15.20

MRIMA-JOHBO AREA

Ser, No.	Sample No.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppa} \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \text { Mn } \\ \text { pprín } \end{gathered}$	$\begin{array}{r} \mathrm{P} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppn} \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ \mathrm{ppan} \end{gathered}$
109	HD013	7	340	12	3.22	915	300	20	68	36
110	HD014	<1	250	13	3.06	805	290	16	63	48
111	HD015	<1	150	7	1. 64	820	210	22	46	32
112	110016	<1	130	9	1.14	610	160	82	39	52
113	HD017	<1	160	13	2.47	615	210	68	42	70
114	HD018	<1	150	9	2.18	760	230	10	42	26
115	HD019	<1	70	4	1.17	510	110	6	26	8
116	HD020	<1	140	13	4. 16	485	300	4	60	24
117	HD022	<1	340	10	2.47	1285	380	18	80	42
118	HD023	1	240	9	2.30	1050	300	18	63	34
119	H0024	9	1040	17	6.09	2890	990	58	307	230
120	HD025	9	1350	36	3.34	1835	3830	28.	760	292
121	HD026	6	750	10	4.13	2460	470	30	100	150
122	HD027	27	>10000	36	12.65	9800	9720	170	2590	2940
123	HD028	20	2460	26	8.69	4540	1690	66	501	666
124	H0029	13	1980	24	7.21	3790	1380	56	309	358
125	HD030	3	560	16	2.99	1290	620	32	120	94
126	HD031	2	430	15	1.85	1285	380	18	101	48
127	HD032	<1	170	8	1. 44	710	160	16	36	14
128	HD033	<1	160	5	1. 47	400	200	12	33	10
129	HD034	<1	240	12	2.01	800	290	10	36	18
130	HD035	<1	240	15	2.71	790	410	22	60	26
131	HD036	<1	450	16	2. 79	1735	260	18	53	36
132	HD037	<1	260	6	1.31	930	240	16	47	16
133	HD038	≤ 1	200	9	1. 64	1070	280	6	31	22
134	HD039	<1	150	4	1. 45	540	220	16	22	14
135	HDO40	<1	200	5	1.11	675	140	8	25	12
136	HD041	<1	60	2	0.74	455	80	4	10	4
137	HD042	≤ 1	100	4	0.91	505	120	8	13	8
138	HD043	<1	60	2	0.45	295	80	4	8	4
139	HD044	<1	70	2	0.36	135	90	6	11	4
140	HD045	<1	120	8	1. 47	610	200	10	20	16
141	HD046	<1	140	6	1. 34	640	130	10	29	12
142	HD047	<1	140	4	1.10	670	130	18	11	10
143	HD048	<1	330	2	0.85	215	70	12	95	6
144	HE001	<1	70	2	0.68	80	110	2	9	6
145	HE002	<1	110	4	0.76	325	100	12	13	8
146	HE003	<1	80	3	1.12	70	100	4	9	8
147	HE004	<1	160	6	1.65	195	180	2	21	10
148	HE005	<1	240	9	2.19	190	170	8	36	14
149	HE006	$\leqslant 1$	170	6	1.43	135	90	4	22	8
150	HE007	<1	340	9	2.02	445	50	6	82	18
151	HE008	<1	210	8	2.33	315	340	6	43	22
152	HE009	$\leqslant 1$	200	7	1.45	630	130	12	37	16
153	HE010	<1	420	13	2.60	405	100	12	102	28
154	HE011	<1	270	51	9. 23	1540	1600	4	145	58
155	HE012	<1	310	43	8.28	1610	1700	10	143	64
156	HE013	<1	840	83	8.38	2000	2930	8	244	108
157	HE014	1	450	76	11.00	1515	4000	2	134	92
158	HE015	<1	370	61	8. 53	1930	1820	10	129	72
159	HE016	1.	190	28	5.33	665	480	8	99	26
160	ILE017	3	920	174	12.00	2400	5710	4	636	90
161	HE018	4	760	115	11.30	2270	2850	8	201	118
162	IE019	2	710	82	9.57	1980	1470	2	158	70

MRILA-jOHBO AREA

Ser. No.	Sample No.	Au	Ba ppa	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppa} \end{gathered}$	$\underset{\text { ppan }}{\mathrm{p}}$	$\begin{gathered} \mathrm{pb} \\ \mathrm{pmm} \end{gathered}$	Sr ppa	$\begin{gathered} \mathrm{Zn} \\ \mathrm{ppm} \end{gathered}$
163	HEO20	4	980	108	10.25	2710	2580	6	220	132
164	HE021	3	530	96	10.85	2180	1570	4	159	88
165	HE022	3	580	81	12.30	2340	3240	14	157	116
166	HE023	<1	890	95	13.10	2220	5670	14	236	104
167	HE024	1	700	112	14.00	1970	4270	2	213	116
168	HE025	<1	160	15	3.20	595	420	16	44	22
169	HE026	2	670	57	9. 61	1535	3510	12	217	92
170	HE027	<1	580	18	4.93	1375	210	20	36	18
171	HE028	<1	520	20	2.51	1240	970	16	141	46
172	HE029	<1	300	22	1.89	1000	290	12	66	38
173	HE030	4	1320	28	4.18	1145	1110	22	202	40
174	HE031	5	1180	17	9.02	2810	1450	38	466	200
175	HE032	3	1160	17	8.88	2770	1460	34	461	198
176	HE033	6	1180	21	7.04	2310	1280	34	351	174
177	HE034	7	2220	29	9.25	3390	2600	46	770	344
178	HE035	8	1740	30	8.03	3000	2100	46	554	380
179	HE036	4	2110	27	6. 68	2670	2200	64	614	468
180	HE037	3	670	13	2.18	1220	450	18	93	38
181	HE038	4	380	15	3. 12	1055	420	16	118	34
182	HE039	5	1830	31	3.71	915	1280	26	223	62
183	HE040	1	1450	23	4.02	1525	1070	38	240	60
184	HE041	4	1660	83	11.65	2290	2940	28	584	170
185	HE042	3	1580	54	5.86	1770	2570	20	331	130
186	HE043	2	980	30	3.63	1715	1030	26	236	134
187	HE044	3	1550	19	3.24	1730	1080	54	218	100
188	HE045	2	1140	24	4. 36	2060	1090	62	209	94
189	HE046	<1	910	14	3.23	1045	710	38	152	52
190	HE047	<1	290	7	1.25	525	360	10	74	20
191	HE048	<1	310	8	2.04	780	260	12	50	22
192	HE049	<1	590	15	2.24	710	390	10	81	34
193	HE050	<1	170	8	1.91	635	360	16	45	22
. 194	HE051	<1	200	12	2,62	820	340	8	53	34
195	HF001	6	1240	17	6. 76	4370	830	38	241	190
196	HF002	9	1540	24	9. 25	3960	1330	48	375	386
197	HF003	8	3760	31	8.30	4290	2460	56	557	406
198	HF004	12	3060	21	8.98	5320	1800	72	383	534
199	HF005	9	4160	28	6.12	4560	9680	50	998	782
200	HF006	19	9300	36	11.85	8480	8690	130	1340	2140
201	HF007	27	10000	47	13.15	7350	>10000	148	3390	1530
202	HF008	14	3450	29	8.04	5500	2250	70	573	532
203	HF009	12	1880	27	10. 15	6320	1490	70	421	966
204	HF010	13	3720	23	10.40	5950	1400	74	433	688
205	HF011	8	3500	23	6. 78	5020	1700	54	906	1180
206	HF012	3	1940	20	6.00	4250	1010	46	300	602
207	HF013	9	1270	20	6.02	' 2930	730	38	194	376
208	HF014	6	1540	14	5.33	3510	1400	40	306	292
209	HF015	2	430	9	1.74	980	310	20	87	42
210	HF016	3	290	12	2.87	685	400	18	66	34
211	HF017	<1	480	10	1.38	1095	970	12	194	36
212	HF018	<1	280	5	1. 43	1250	280	10	41	24
213	HF019	<1	400	5	0.96	565	350	14	59	18
214	HF020	1	230	10	2.36	775	340	14	42	20
215	HF021	<1	160	9	1.25	620	260	14	47	18
216	HF022	1	470	19	3.31	1470	310	14	140	36

RRINA-JOMBO AREA

Ser. No.	Sample No,	$\begin{gathered} \mathrm{Nb} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} Y \\ \text { pput } \end{gathered}$	$\underset{\text { ppm }}{\substack{\mathrm{Ce}}}$	$\begin{gathered} \text { Bu } \\ \text { ppin } \end{gathered}$	$\underset{\mathrm{ppm}}{\stackrel{\mathrm{La}}{ }}$	$\underset{\mathrm{ppm}}{\mathrm{Lu}}$	Nd ppa	$\begin{gathered} \text { San } \\ \text { ppm } \end{gathered}$	Tb ppis	Th ppm	U ppm	Yb ppm
163	He020	172	90	262.0	6.00	138.0	0.90	100	21.00	2.50	16.0	2.0	6. 50
164	HEO21	169	73	270.0	6. 50	153.0	0.70	125	21.50	2.20	16.0	2.0	4.50
165	HE022	188	85	390.0	8.50	199.0	0.90	165	31.80	3. 20	22.0	3.0	6. 40
166	HE023	177	89	530.0	11.00	217.0	0.90	195	36.60	3.80	18.0	2.0	6.30
167	HE024	163	75	398.0	8.00	184.0	1.00	175	32.40	3.30	18.0	2.0	5.50
168	HE025	55	44	142.0	2.00	69.0	0.70	50	10.00	0.60	21.0	5.0	4. 20
169	H18026	120	62	296.0	6.50	144.0	0.70	135	25.20	2.50	16.0	2.0	4. 50
170	HE027.	49	38	278.0	1.00	67.0	0.70	50	8.90	0.90	24.0	6.0	4. 70
171	HE028	97	51	174.0	2.50	97.0	0.80	65	11.20	1.30	24.0	6.0	5.60
172	HE029	92	52	138.0	2. 00	84.0	0.90	60	10.30	1. 30	28.0	6.0	6. 30
173	HE030	137	55	208.0	3.50	141.0	0.80	70	15.30	1.10	28.0	5.0	5.00
174	HE031	1825	330	1240.0	33.00	1334.0	2. 40	795	140.40	7.40	103.0	8.0	18.50
175	HE032	736	195	674.0	14.00	584.0	1.80	310	62.80	4. 50	66.0	6.0	11.80
176	He033	1.075	290	1066.0	22.50	880.0	2.20	495	96.10	5.80	99.0	11.0	17.00
177	HE034	740	240	768.0	14.00	756.0	2.00	340	67.20	4. 60	68.0	7.0	13.60
178	He035	843	290	1048.0	18.00	1050.0	2.00	455	88.20	5.30	58.0	12.0	14.90
179	HE036	315	130	330.0	6.00	394.0	1.40	165	-33.00	2.80	44.0	5.0	8. 60
180	HE037	109	54	134.0	2.50	103.0	0.70	55	10. 40	1. 00	19.0	4.0	4.90
181	HE038	138	61	140.0	1.50	136.0	0.90	70	14.50	1. 90	25.0	5.0	5. 70
182	HE039	169	64	208.0	5.00	136.0	0.70	90	17.70	1. 30	26.0	5.0	5. 40
183	HE040	147	65	370.0	3.50	250.0	- 0.70	110	18.20	1.80	35.0	6.0	5. 10
184	HE041	389	99	602.0	10.50	400.0	1.00	250	43.60	3.70	27.0	6.0	7. 40
185	HE042	243	86	366:0	5.50	251.0	1.10	135	26.00	2.20	34.0	5.0	6. 90
186	HE043	206	85	370.0	4. 50	195.0	1. 10	115	20.50	1. 80	33.0	4.0	7.10
187	HE044	144	78	294.0	5. 00	199.0	0.90	105	22.00	1. 60	34.0	3.0	5.90
188	HE045	128	63	396.0	5.00	182.0	0.80	95	17.90	2.40	29.0	4.0	5.00
189	HE046	90	51	190.0	2.00	96.0	0.80	55	10.90	0.70	19.0	5.0	4. 60
190	не047	53	40	84.0	1.00	46.0	0.70	35	7.50	0.50	14.0	4.0	3. 90
191	HE048	50	47	128.0	1.50	58.0	0.90	45	9. 20	0.80	14.0	5.0	5. 10
192	HE049	68	46	184.0	2. 50	90.0	0.70	45	10. 20	1. 00	18.0	4.0	4. 60
193	HE050	37	39	112.0	1.00	56.0	0.60	35	6.90	0.70	14.0	4.0	4. 40
194	HE051	39	42	126.0	2.00	55.0	0.60	35	7.60	1.00	13.0	4.0	4. 70
195	HF001	1110	220	1270.0	21.00	865.0	1. 40	475	99.50	7.00	70.0	5.0	12.80
196	HF002	1400	350	1310.0	29.50	1358.0	2.90	735	144.10	7.90	92.0	5.0	17.90
197	HF003	1135	320	1340.0	18.50	998.0	2. 10	525	116.60	8.10	107.0	6.0	18.20
198	HF004	1520	480	1790.0	40.50	1444.0	3.50	775	173.20	11.00	169.0	8.0	25.90
199	HF005	847	250	1190.0	24.00	715.0	1.90	415	90.40	7.70	121.0	11.0	15.50
200	HF006	1905	670	5204	55.00	3608	4. 40	1465	317.1	10.60	227.0	8.0	29.70
201	HF007	2020	710	4864	74.00	2925	3.70	1865	308.3	18.30	277.0	16.0	33. 30
202	HF008	800	300	1858.0	36.00	1440.0	2. 40	835	122. 20	7.80	132.0	7.0	17.20
203	HF009	1015	440	2874	51.00	2480	2.30	1540	223.9	11.30	155.0	1.0	20.30
204	HF010	1345	500	2914	77. 00	2601	4.70	1745	261.7	14.80	173.0	4.0	25.30
205	HF011	805	330	1980.0	32,00	1380.0	2.40	870	125.40	7.90	80.0	6.0	17.00
206	HF012	685	210	1310.0	22. 50	1000.0	1.40	590	90.50	6. 10	69.0	5.0	11.30
207	HF013	570	210	822.0	20.00	784.0	1.90	480	71.70	5. 40	96.0	4.0	12.40
208	HF014	666	280	1124.0	23.50	926.0	2.30	645	99.10	7.70	89.0	5.0	17.70
209	HF015	133	80	154.0	5. 00	163.0	1.00	405	17.50	2.00	30.0	4.0	6.50
210	HF016	164	81	192.0	5.50	237.0	1.00	140	21.30	2.30	37.0	3.0	6.50
211	HF017	113	57.	118.0	4.00	126.0	0.90	75	13.80	1.50	19.0	4.0	5.50
212	HF018	138	56	140.0	3.50	141.0	1.00	80	14.00	1.60	23.0	4.0	5. 40
213	HiF019	63	32	108.0	2.00	60.0	0.60	50	7.10	0.90	16.0	4.0	3.80
214	HF020	58	41	124.0	2.00	67.0	0.80	55	9.90	0.80	20:0	6.0	5.10
215	HF021	58	32	106.0	2.00	60.0	0.60	40	7.70	0.70	17.0	3.0	3. 80
216	HF022	91	48	178.0	2.50	100.0	0.60	70	13.40	0.9	24. 0	4.0	3. 80

RESULTS OF GEOCHEHICAL ANALYSIS

MRIMA-JOHBO AREA

Ser. No.	Sample №.	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Fe} \\ \% \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{P} \\ \text { ppm } \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Sr}}$	$\begin{array}{r} \mathrm{Zn} \\ \text { ppin } \end{array}$
217	HF023	<1	190	9	2. 00	665	150	10	84	20
218	HF024	<1	90	12	2.13	500	300	12.	24	20
- 219	HF025	3	440	59	8.88	1275	960	10	82	66
220	HF026	1	80	9	2.58	410	270	2	23	14
221	HF027	<1.	260	6	1. 60	870	290	8	45	34
222	HF028	<1	130	9	2.10	740	320	8	30	14
223	HF029	1	520	11	2. 41	740	500	18	91	52
224	HF030	<1	110	4	-0.79	310	150	8	23	
225	HF031	<1	370	13	1.78	470	280	10	47	20
226	HF032	<1	140	7	1. 21	510	260	4	33	22
227	HF033	<1	310	13	1.67	255	220	6	27.	14
228	HF034	<1	170	8	1.29	230	70	6	34	10
229	HF035	<1	140	7	1.36	60	70	6	19	
230	HF036	<1	190	12	1.89	160	110	12	31	18
231	11 F 037	<1	190	11	1.87	210	140	6	33	14
232	HF038	<1	260	10	1. 78	150	170	4	41	14
233	HF039	3	130	5	1.44	115	120	6	17	10
234	HF040	<1	170	10	1. 42	395	260	4	22	14
235	HF041	<1	190	11	1.71	125	110	10	22	14
236	HF042	<1	290	7	1. 54	255	210	12	22	20
237	HF043	<1	220	10.	2.57	255	120	20	20	16
238	HF044	<1	150	6	1.73	90	60		15	16
239	HF045	<1	120	6	1.20	125	260	(1)	23	18
240	HF046	<1	230	10	2. 27	365	260	10	22	20
241	HF047	<1	170	8	1.85	120	110	2	18	12
242	1 FF 048	<1	220	9	2.01	205	190	8	30	24
243	HF049	<1	250	20	2.97	615	310	4	56	24
244	HF050	<1	320	35	9.06	1425	1270	14	90	72
245	HF051	<1	360	39	9.01	1090	1120	8	70	60
246	HF052	<1	390	60	10.70	1560	1990	10	91	6
247	HF053	<1	330	44	9.48	1140	1060	6	94	52
248	HH001	1	190	25	5.37	680	520	16	50	22
249	HH002	<1.	1140	28	4. 04	1055	750	6	76	38
250	HH003	2	360	36	4. 10	800	650	8	50	32
251	HH004	<1	390	35	3.05	1100	530	6	49	2
252	HH005	2	990	139	12.00	1950	2780	8	300	96
253	HH006	4	720	147	11.15	2200	3320	12	282	90
254	HH007	3	390	151	10.70	2130	3560	6	189	90
255	H11008	3	420	98	8. 69	2110	1770	8	145	8
256	HH009	2	820	78	9.85	1790	920	4	133	9
257	HH010	3	390	45	8.13	1495	620	20	96	6
258	HH011	4	210	25	4. 38	790	410	10	49	3
259	НН012	3	280	23	2.53	1560	140	<2	138	3
260	H1013	<1	400	15	2. 11	445	320	4	84	2
261	HH014	3	240	14	3. 49	625	180	12	84	2
262	H1月015.	<1	190	11	2.36	1975	210	10	53	22

* HRTIMA- JOMBO AREA*

Ser. No.	$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Nb}}$	ppm	$\begin{gathered} \mathrm{Ce} \\ \mathrm{ppm} \end{gathered}$	ppin	ppm	ppn	$\begin{gathered} \mathrm{Nd} \\ \text { ppom } \end{gathered}$	$\begin{gathered} \mathrm{Sni} \\ \mathrm{ppm} \end{gathered}$	Tb	$\begin{array}{r} \mathrm{Th} \\ \mathrm{ppm} \\ \hline \end{array}$	vpm	$\begin{gathered} \mathrm{Yb} \\ \mathrm{ppn} \end{gathered}$
217	HF023	64	37	126.0	2.00	70.0	0.60	55	9.80	0.80	20.0	5.0	4. 10
218	HFO24	45	46	124.0	1.50	65.0	0.80	45	8.80	1. 20	23.0	6.0	5.00
219	HFO25	143	66	274.0	7.00	159.0	0.60	100	22.40	2.10	21.0	4.0	4. 60
220	HF026	44	38	118.0	2.00	62.0	0. 70	55	8.60	0.80	20.0	5.0	4. 50
221	HF027	62	43	216.0	2.00	87.0	0.80	75	10.70	1.20	27.0	4.0	5. 10
222	HF028	41	45	174.0	1.50	65.0	0.90	75	9.50	1.10	23.0	5.0	5.50
223	HF029	104	72	352.0	4.50	177.0	1.20	150	18.30	2. 40	36.0	7.0	7.90
224	HF030	44	31	118.0	1.00	44.0	0.70	45	6. 40	1.40	18.0	5.0	4.30
225	IIF031	48	43	170.0	1.50	77.0	0.70	70	10.30	1. 20	17.0	3.0	4. 50
226	HF032	43	35	136.0	1.50	50.0	0.70	60	7.40	1.30	14.0	4.0	4. 20
227	HF033	33	33	84.0	1.50	43.0	0.60	50	7.10	1.70	10.0	3.0	3. 60
228	HF034	31	25	68.0	1.00	34.0	0.50	35	5.30	0.60	10.0	2.0	3. 20
229	HF035	33	25	70.0	1.00	32.0	0.50	45	5.60	0.60	10.0	3.0	3. 40
230	HF036	40	26	74.0	1.00	40.0	0.70	25	5.30	1.00	10.0	4.0	3.60
231	HF037	34.	27	68.0	1.00	39.0	0.70	30	6. 10	0.60	12.0	4.0	3.80
232	HF038	32	32	70.0	1.00	40.0	0.80	25	6. 00	1. 10	15.0	5.0	4. 30
233	HF039	26	33	68.0	1.00	32.0	0.70	15	4.70	0.50	12.0	4.0	4. 20
234	HF040	31	37	92.0	1.00	40.0	0.80	25	6.30	0.60	15.0	5.0	4.80
235	HF041	27	30	74.0	0.50	38.0	0.60	30	6. 40	0.60	10.0	3.0	3. 50
236	HF042	28	30	80.0	1.00	41.0	0.60	25	6.80	0. 70	11.0	4.0	3. 70
237	HF043	25	36	132.0	0. 50	31.0	0.80	20	4.90	0.70	14.0	6.0	4.50
238	HF044	24	30	52.0	0.50	26.0	0.70	25	5. 40	0.60	13.0	4.0	4. 10
239	HF045	18	21	40.0	<0. 05	16.0	0.60	15	3.00	0.40	9.0	4.0	3. 40
240	HF046	30	34	102.0	1.50	45.0	0.50	40	7.50	1.20	15.0	3.0	3.50
241	HF047	29	31	76.0	1.00	35.0	0.60	35	7.10	0.90	11.0	4.0	3. 30
242	HF048	27	30	122.0	1.00	42.0	0.60	35	7.00	1. 60	14.0	4.0	3. 70
243	HF049	49	42	136.0	3.00	64.0	0.70	55	10.90	1. 40	17.0	3.0	3. 90
244	HF050	107	56	256.0	6.50	121.0	0.60	90	17.90	2. 40	17.0	3.0	4. 40
245	HF051	86	52	254.0	5.00	110.0	0.60	95	17.80	2.10	12.0	1.0	3. 70
246	HF052	104	55	228.0	6. 50	121.0	0.70	105	18.30	3.40	12.0	2.0	4,50
247	HF053	109	54	270.0	6. 00	127.0	0.60	100	19.30	1. 70	13.0	2.0	4. 30
248	HH001	73	42	200.0	4.00	100.0	0.70	85	14.40	2.80	23.0	4.0	4. 60
249	НН002	66	48	180.0	3.00	93.0	0.80	70	16.10	1. 60	23.0	4.0	4. 80
250	H11003	109	47	192.0	3.00	118.0	0.70	85	17.80	2.90	24.0	4.0	4. 40
251	HH004	96	54	218.0	4.00	118.0	0.90	90	19.30	1. 60	28.0	6.0	5. 60
252	HH005	236	110	492.0	11.00	296.0	0.90	205	43.70	3.10	21.0	3.0	7.10
253	HH006	198	94	396.0	9.00	231.0	0.90	155	34.50	2.90	20.0	5.0	6.00
254	HH007	297	94	374.0	9. 50	247.0	0.90	145	31.50	3.00	19.0	6.0	6. 00
255	HH008	301	87	268.0	7.50	195.0	0.90	140	28.20	3.00	18.0	4.0	6. 20
256	HН009	209	86	258.0	7.50	175.0	0.80	120	27.10	4. 60	18.0	4.0	5. 60
257	HH010	159	80	236.0	6. 50	154.0	1.00	125	25.10	2.50	24.0	4.0	6. 40
258	HH011	90	54	148.0	2.50	102.0	0.70	70	15.60	1.20	21.0	4.0	4.60
259	HH012	71	32	154.0	3.50	78.0	0.50	55	11.40	1. 80	14.0	2.0	3.30
260	HH013	36	33	82.0	1. 50	42.0	0.50	30	7.30	0.80	9.0	2.0	3. 70
261	HH014	63	37	122.0	2.50	60.0	0.50	50	9.30	1.00	20.0	3.0	3.70
262	HH015	68	45	146.0	3.00	74.0	0.70	65	12.40	1.80	23.0	4.0	4.50

Ser. No.	Sample No.	$\begin{gathered} \mathrm{Nb} \\ \mathrm{ppm} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Y}}$	$\begin{gathered} \mathrm{Ce} \\ \mathrm{ppa} \end{gathered}$	$\begin{array}{r} \text { Eu } \\ \text { pp: } \end{array}$	$\underset{\text { ppain }}{\text { lat }}$	$\begin{array}{r} \mathrm{Lu} \\ \text { ppan } \end{array}$	$\begin{aligned} & \mathrm{Nd} \\ & \mathrm{ppm} \end{aligned}$	$\begin{gathered} \text { Sn } \\ \text { ppn } \end{gathered}$	$\begin{array}{r} \mathrm{Tb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Th} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{ppm} \end{gathered}$	Yb
109	HD013	126	71	266.0	4. 50	266.0	1.00	115	15.50	2. 10	64.0	6.0	7.10
110	HD014	65	60	254, 0	2.50	121.0	0.90	65	11.90	1.20	35.0	6.0	5.90
111	HD015	49	55	192.0	2.50	93.0	1.20	65	8.70	1. 30	26.0	7.0	8.00
112	HD016	42	45	150.0	2.00	65.0	1.00	45	7. 40	1.50	19.0	6.0	6. 50
113	H0017	45	50	214.0	2.00	103.0	1.00	70	9.80	1.40	26.0	6.0	6.50
114	HD018	41	50	226.0	2.00	89.0	1.00	75	11. 40	1.80	34.0	7.0	6.80
115	HD019	43	43	190.0	1.50	77.0	1.00	55	9.80	1.00	31.0	7.0	6.20
116	H1020	46	33	132.0	0.50	64.0	0.80	40	7. 60	1.10	28.0	5.0	4.30
117	HD022	225	84	238.0	7.00	187.0	1.10	170	26.60	1.60	35.0	5.0	7.20
118	HD023	218	80	222.0	6.50	252.0	1.00	155	23.90	1. 50	32.0	3.0	6.20
119	HD024	727	270	1120.0	24. 50	1240.0	2.80	650	98.50	6. 40	92.0	6.0	16.30
120	HD025	301	100	300.0	9. 50	373.0	1.10	205	36. 20	2.70	58.0	4.0	7. 40
121	HD026	284	115	380.0	9.50	460.0	1.10	220	40.00	3. 00	79.0	2.0	7.40
122	HD027	2600	880	7450	93.50	6512	3.30	254	433.4	22.80	158.0	14.0	29.70
123	HD028	804	320	1546.0	27.00	1574.0	2.40	765	121. 50	7.00	149.0	8.0	16. 50
124	HD029	547	250	836.0	19.50	794.0	2,30	410	74.40	5. 40	104.0	7.0	15.10
125	HD030	217	97	244.0	8.00	268.0	1.10	160	25.30	2.70	47.0	3.0	8.00
126	HD031	174	82	170.0	5.00	170.0	1.10	110	'16.90	1.50	33.0	6.0	7.70
127	HD032	54	43	106. 0	2.00	51.0	0.80	40	7.10	1.40	15.0	6.0	5. 30
128	HD033	32	34	90.0	1.00	39.0	0.50	30	5.70	0.40	13.0	3.0	3.60
129	HD034	42	43	110.0	1.50	45.0	0.70	40	6.60	0.70	15.0	6.0	4. 80
130	111035	54	43	126.0	2.00	55.0	0.70	50	8. 10	1. 40	16.0	6.0	4.90
131	HD036	74	54	158.0	3.00	78.0	0.90	75	13.00	1.00	18.0	6.0	6. 10
132	HD037	39	44	140.0	1.50	56.0	0.80	45	8.90	1.20	17.0	6.0	5. 70
133	HD038	39	48	144.0	1. 50	59.0	0.80	55	9.20	2.90	18.0	6.0	5.30
134	HD039	25	38	114.0	1.50	41.0	0.70	35	6.50	1.30	14.0	5.0	4. 70
135	HD040	24	43	92.0	1.00	41.0	0.90	30	6.00	1. 00	13.0	6.0	5.10
136	HD041	25	28	60.0	0.50	22.0	0.70	15	3.00	0.40	9.0	4.0	3.60
137	HD042	28	37	90.0	1.50	41.0	0.90	30	5.80	1.50	14.0	6.0	4.90
138	HD043	21	23	42.0	<0. 05	18.0	0.60	15	2.20	0.10	7.0	4.0	3. 40
139	HD044	19	23	36.0	<0. 05	17.0	0.60	10	1.90	<0.05	7.0	3.0	3. 20
140	HD045	28	31	80.0	0.50	36.0	0.80	25	4.60	0.60	12.0	5.0	4. 40
141	HD046	30	35	78.0	1.00	41.0	0.80	25	5.20	0.40	15.0	6.0	4.60
142	HD047	27	43	134.0	1.50	68.0	0.90	50	9.00	0.50	20.0	5.0	5.10
143	HD048	26	36	104. 0	1.50	55.0	0.60	35	7.30	0.70	16.0	4.0	4. 00
144	HE001	24.	19	40.0	0.50	17.0	0.50	20	2.60	0.30	10.0	5.0	3. 10
145	HE002	29	26	60.0	0.50	24.0	0.50	20	3.60	0.30	11.0	4.0	3.20
146	HE003	25	24	46.0	0.50	18.0	0.40	10	2. 40	0.20	10.0	3.0	2.20
147	HEOO4	36	30	72.0	1.00	33.0	0.50	25	5.10	1.60	12.0	3.0	3.10
148	HE005	35	35	76.0	1.00	39.0	0. 50	25	6.00	0.30	10.0	3.0	3.00
149	HE006	26	27	68.0	0.50	28.0	0.50	20	4. 40	0.40	10.0	3.0	3.00
150	HE007	34	51	114.0	2.00	62.0	0.60	50	10.60	0.90	18.0	4.0	4.00
151	HEOO8	37	32	100.0	1.00	40.0	0.50	35	5.70	1.20	15.0	4.0	3.40
152	HE009	35	36	90.0	1.00	41.0	0.50	40	7.20	0. 50	13.0	3.0	3. 40
153	HE010	54	44	126.0	2.00	60.0	0.50	45	10.60	1.20	17.0	4.0	3.80
154	HE011	105	50	266.0	6. 00	109.0	0.60	100	19.80	2.70	14.0	1.0	3.90
155	HE012	125	50	244.0	5.50	106.0	0.60	85	17.10	2.10	13.0	2.0	4. 10
156	HE013	163	61	300:0	5.00	139.0	0.60	110	19.90	2.10	18.0	3.0	4.10
157	HE014	127	63	338.0	6.00	139.0	0.70	120	26.10	2. 40	13.0	1.0	5. 20
158	HE015	87	41	242.0	5.00	83.0	0.40	75	15.60	1. 80	12:0	1.0	3. 30
159	HE016	76	46	176.0	4.00	92.0	0.70	65	13.00	1.30	21.0	3.0	4.5
160	HE017	165	79	446.0	9. 50	195.0	0.60	150	32.60	4. 50	17.0	2.0	4. 60
161	HE018	161	75	326.0	5.50	156.0	0.80	120	23.00	2. 60	17.0	2.0	4. 90
162	HE019	154	67	244.0	5.50	128.0	0.70	85	17.50	1.40	16.0	3.0	4. 30

[^0]: Photomicrographs (thin section)

[^1]:
 (2) mabundant. $\quad O=$ comon. $\quad \triangle=$ minor.
 S/wsericite/montmorillonite aixod-layer

