

one polar

crossed polars

0. 05mm

Sample No.: B035 Location : Northwest of Jombo Hill Rock name : Monchiquite

Photomicrographs (thin section)

0. O5mm

Sample No.: B036 Location : Northwest of Jombo Hill Rock name : Soda Minett

one polar

crossed polars

Photomicrographs (thin section)

one polar

crossed polars

0, 1mm

Sample No.: B041 Location : Jombo Hill Rock name : Nepheline Syenite

Photomicrographs (thin section)

Rocks)		:
ion (Sedimentary Rocks		
, L		
ervati	÷	·
Summary of Microscopic Obs		
ð.		
Summary		

M-F.	alon						Dolomite > 90%						- - -						-		
	N						Dol Dol					: .	· · · ·						-		
lerais	Qtz							* a													
Secondary Minerals	CPI										1					• ••••••		<	Plagioclase	te	
econda	S	0	Ö	0.			· · · · ·						· ·							Calcite	
S.	ଞ୍ଚ															,			: Id	 ष्ठ	
	0pq		 	I .			4		0			\triangleleft		1		\triangleleft		⊲			
х т Н	Cly	\triangleleft		∇		⊲	· (4	\triangleleft		⊲				
Matix	ChI								- 1					⊲			\triangleleft	4	rcon	: Sericite	
×.	ઝ	⊲	Ø	\bigtriangledown		⊲								4			⊲		r : Zircon		
	Qtz		4	4											1	Ø		\triangleleft	Zir	Š	
	ප				0	⊲		Ô	0				0				\bigtriangledown	· .			
	Bi					и 13 4 - 4					\triangleleft	\bigtriangledown				\triangleleft	\triangleleft	4	ម		
	Zir		I	ŀ					·		Ì		1		I		Ι	1	: Potassium feldspar		rals
: - -	¥nz			1					:		}							١	sium fi	vite	: Opaque minerals
31	Gar						·						·		Q				Potas	Mus : Muscovite	Opaque
Materi	Ca				0	1		©'		1	0		0						Kf :	: snW	: bď()
Detrital Material	Mus				1						_<	4				\triangleleft	⊲	\triangleleft			
Det	ch1																⊲				
	P1	1			1	4	·	t de d Las		0	⊲	Ó	 .	\triangleleft	0	0	0	0	rnet	Chl : Chlorite	Mnz : Monazite
4 - 71 +	Кf	0								0		0		0	0	0	0	0	Gar : Garnet	ର ୮	o∦i : 2
	Qtz	Ø	0	0	Ó	1 ©.			0	0	0	0		0	.0	0	0	0	ß	ଟ	Mn
	Kock name			undstone			I Wood									Silicified Sandstone			Z	te	
-	ROCI	Altered Sandstone	Altered Sandstone	Altered Sandstone	Linestone	Siítstone	Carbonated Wood	Linestone	Sandy Linestone	Graywacke	Siltstone	Sandstone	Oolitic Limestone	Sandstone	Sandstone	Silicified	Sandstone	Sandstone	Qtz : Quartz	Bi : Biotite	Cly : Clay
	sample no.	A007	A008	A009	A031	A041	B006'	B012	B014	B032	B037	B051	C001	C005	E002	6013	6022	100H			

,

Sample	Rock Name	Macroscopic Features	Identified Miner	als and Material
Number	(Geologic Unit)	Microscopic Features	Detrital Material	Matrix
A007	ALTERED SANDSTONE (Mzm)	 White Fine-grained Massive compact 	(90∼95%) • Quartz ≒ 85%, < O.2mm angular ∼subangular	 Interstitial sericite Clay minerals
		• Well-sorted	 subangulat monocrystalline grain Alkali feldspar 10% partly or totally altered to sericite Plagioclase rare Rutile Zircon 	
A008	ALTERED SANDSTONE (Mzm)	 Light brownish gray Medium-grained Silicified Small cavities- bearing Limonite stained Poorly-sorted 	<pre>(= 90%) • Quartz > 80%, < 1mm angular to subangular sericite along cracks and grain boundary • Zircon • Opaque (limonite)</pre>	 Interstitial sericite Opaque (limonite) Quartz
A009	ALTERED SANDSTONE (Mzm)	 Light brownish gray with white quartz veinlets Medium-grained Quartz veinlets < 1mm wide, small drooze-bearing Compact Poorly-sorted Partly sheared 	<pre>(85~90%) • Quartz > 85%, < 2mm angular to subangular monocrystalline grains dusty appearance sericite along cracks and grain boundary • Zircon rare • Monazite (?) rare</pre>	 Quartz Sericite Opaque Clay minerals
A031	LIMESTONE (K)	 Light brownish gray Including oncoids (φ=1-10mm) and shell crust Spherical to ellipsoidal grains, consist- ing of micrite are oncoids 	 Oncoid = 5% < 5mm Bioclast < 5% Detrital quartz = 20% < 0.1mm Detrital plagioclase rare Muscovite rare Zircon rare 	• Micritic carbo nate

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (1)

A-13

÷

Sample	Rock Name (Geologic	Macroscopic Features	Identified Miner	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
(CONT.)		 Bioclasts (Brachiopod shell?) 		
Λ041	SILTSTONE (MyCl)	 Brownish gray Thin clear lamination Quartz veinlets (w=0.5~5mm) Host rock of Mkangombe North metalliferous vein Poorly sorted Parallel align- ment of opaque- rich layer Thin quartz vein (0.1~2mm thick) = 10% 	<pre>(20~30%) • Quartz = 20%, 0.1mm angular • Plagioclase < 5%, < 0.1mm • Alkali feldspar < 5%, 0.1mm • Muscovite rare • Biotite rare • Opaque rare • Carbonate rare</pre>	 Sericite Clay minerals Opaque Carbonate Limonite
B006'	CARBONATED WOOD (Mzw)	 Dark gray Compact Including white carbonate film (W < 1mm) and pyritic concretion (φ = 0.5~ 2mm) Granular dolomite 	• No detrital material	 Dolomite > 90%, < 0.1mm irregular shape dusty appea- rance Cavity filling calcite < 10%, < 0.2mm clear crystal Unidentified brown material < 5% parallel alignment Opaque Limonite
B012	LIMESTONE (K)	 Light brownish gray Massive compact Spheroidal calcite, φ=1~ 8mm Heterogenious rock consisting of Bioclasts Oncoids Lithoclastic fragments 	 Quartz = 5% angular Plagioclase rare Oncoids = 50%, < 7mm Bioclasts totally replaced by sparitic calcite echinoderms = 5%, φ=1mm Lithoclastic 	 Micritic carbonate Partly sparitic calcite

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (2)

Microscopic	Observation	പ	Rocks in	n Th	in S	ection	(Sedimentary	Rocks	(3)
				-	•			·.	• .

Sample	Rock Name (Geologic	Macroscopic Features	Identified Miner	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
(CONT.)			fragment ≒ 10% micritic calcite with detrital quartz	
B014	SANDY LIMESTONB (K)	 Light brown Black dendritic mineral Massive compact 	• Quartz == 20%, < 0.2mm angular	 Dusty Carbonate ⇒ 70%, < 0.2mm parts of grain boundary are coated by
;		 Dusty carbonate (sparite) predominant No oncoid, ooids or bioclast Clear clacite vein associated with opaque 		opaque (limonite)
		(limonite)		
B032	GRAYWACKE (MyCm)	 Light brown Massive compact Grit, φ < 2mm Poorly sorted 	 (70~80%) Quartz = 30% angular-sub- angular Plagioclase = 20% angular- subangular Alkalifeldspar = 30% angular-sub- angular microcline, per- thite partly altered to sericite Calcite rare, well rounded Limonite Rock fragments rare granitic rock 	 Carbonate Opaque Plagioclase Quartz Chlorite
B037	SILTSTONE (MyCM)	 Olive green Massive compact Well sorted Rough parallel alignment of muscovite and biotite flakes Imbrication of quartz and feld- 	<pre>(= 90%) • Quartz = 70%, < 0.05mm rounded~sub- rounded • Carbonate = 10% rounded~ subrounded • Muscovite flake = 5%, < 0.05mm</pre>	

Sample	Rock Name (Geologic	Macroscopic Features	Identified Minera	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
(CONT.)		spar grains	 Biotite flake = 5%, < 0.05mm, chloritized Plagioclase = 5% Alkalifeldspar = 5% Zircon rare Opaque rare Monazite rare Limonite 	
B051	SANDSTONE (MKm)	 Light brown Very fine-grained Massive compact No lamination and grading Well sorted Weak parallel alignment of muscovite and biotite flakes 	 (90~95%) Quartz = 50%, < 0.1mm angular ~subangular Alkalifeldspar = 30%, < 0.1mm angular~sub- angular, partly altered to sericite Plagioclase = 10%, < 0.1mm angular~sub- angular Muscovite Biotite Opaque 	
COO1	SANDY ÖOLITIC LIMESTONE	 Light brownish gray Massive compact Pine grains of dark gray detrital quartz No lamination and stratification Spherical to ellipsoidal grains with con- centric laminae are öoids. Some öoids make compound grains Peloids present Bioclast and oncoids (= 3mm) present 	 Quartz < 10%, Quartz are quartz are nuclei of öoids Zircon rare Lithoclasts rare 	• Sparitic calcite

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (4)

A~16

Sample	Rock Name (Geologic	Macroscopic Features	Identified Miner	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
C005	SANDSTONE (Mzm)	 Light brown (weathering color) Massive compact No lamination and grading Well sorted 	<pre>(80~90%) • Quartz ≒ 70%, < 1mm, sub- angular~sub- rounded • Plagioclase ≒ 5%, < 1mm • Alkalifeldspar ≒ 10%, < 1mm partly altered</pre>	 Sericite Chlorite Clay minerals Opalque, partly to totally altered to limonite
E002	SANDSTONE (Mzm)	 Light brown with black spots Very fine-grained 	to sericite (90~95%) • Quartz = 70%, < 0.3mm sub-	• Opaque = 5% • Muscovite
· · · · ·		 Massive compact No lamination and grading 	angular∼sub- rounded • Alkalifeldspar ≒ 20%, < 0.3mm	
		• Well sorted	 Plagioclase = 10% Garnet < 5% Opaque < 5% Apatite 	
			• Biotite • Zircon • Monazite ?	
G013	SILICIFIED SANDSTONE (MyCu)	 Light brown Very fine-grained White quartz veinlets with small drooze, w < 1mm Weakly brecciated Well sorted Bernilel alignation 	Sandstone frag- ments (80%) • Quartz = 60%, < 0.1mm angular • Subangular • Plagioclase = 20%, < 0.1mm • Alkalifeldspar = 20%, < 0.1mm • Muscovite	• Quartz < 0.3mm angular, suture crystal boundary
		 Parallel align- ment of muscovite and biotite flakes Angular sandstone fragments (breccia) φ=1mm~2cm 	• Muscovite • Biotite • Opaque	
G022	SANDSTONE (MyCu)	 Light olive gray Very fine-grained Massive compact Obscure lamination 	(60~70%) • Quartz ≒ 80%, < 0.1mm angular • Plagioclase ≒ 10%	 Chlorite Clayminerals Sericite Carbonate

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (5)

A--17

. .

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (6)

Sample	Rock Name	Macroscopic Features	Identified Miner	als and Material
Number	(Geologic Unit)	Microscopic Features	Detrital Material	Matrix
			 ≒ 10% Muscovite Chlorite Zircon Biotite 	
H001	SANDSTONE (MyCu)	 Light brownish gray Very fine-grained Massive compact Mottling, φ=1~ 3mm Obscure lamina- tion Well sorted Parallel align- ment of muscovite and biotite flakes 	<pre>(90~95%) • Quartz ≒ 70%, < 0.2mm angular • Alkalifeldspar</pre>	 Sericite, alon, grain boundary Chlorite Opaque
	<u> </u>	TIAKES	• Upaque	
· .				

Photomicrographs of Rocks in Thin Section

(Sedimentary Rocks)

Abbreviations

Minerals

1. y	Qtz	:	quartz		 Kf	: potassium feldspar
	P1	•	plagioclase		Bi	: biotite
	Mus	;	muscovites		Ca	: calcite
			· · · · · ·	· .	Se	: sericite

Others

Od : Öoid

Opq : opaque minerals

0, 1mm

Sample No.: B032 Formation : Maji-ya Chumvi F. (middle) Location : Northwest of Gulanze Rock name : Graywacke

crossed polars

one polar

Photomicrographs (thin section)

one polar

crossed polars

0. 05mm

Sample No.: B051 Formation : Mariakani F. (middle) Location : West of Ribe Rock name : Sandstone

Photomicrographs (thin section)

crossed polars

one polar

0. 1mm

Sample No.: A008 Formation : Mazeras F. (middle) Location : Changombe Rock name : Altered Sandstone

Photomicrographs (thin section)

one polar

crossed polars

0.1mm

I.

Sample No.	:	C001
Formation	:	Kambe F.
		()
Location	:	Mwarakaya
Rock name		Oolitic Limestone
		· · · · ·

Photomicrographs (thin section)

APPENDIX 2

MICROSCOPIC OBSERVATION OF ORES IN POLISHED SECTION Summary of Microscopic Observation of Ores in Polished Section

Mt \triangleleft Х Мh \triangleleft \triangleleft Ο 0 3 Ö 0 0 \bigcirc Ĩ Ó Ο Cp: chalcopyrite Po: pyrrhotite Hm: hematite MI: malachite Mt: magnetite 3 \triangleleft 3 x × × x X \triangleleft Ο \triangleleft $\mathcal{G}_{\mathcal{G}}^{\mathcal{L}}$ × \odot × \triangleleft X Hm 0 \triangleleft \triangleleft \bigcirc Х х Х 8 0 \triangleleft \triangleleft \triangleleft 2 \triangleleft Sp: sphalerite Mc: marcasite Cc: chalcocite Lc: lepidochrosite Mh: maghemite Ъ \triangleleft \triangleleft Mc X Ο Ο Ρ Х х Х Х × Х Cp \triangleleft \triangleleft \triangleleft Sp \triangleleft g \triangleleft Ga: galena Py: pyrite Cv: covellite Gt: goethite Qz: quartz Iron concretion Iron concretion Silicified wood Ore Type Carbonatite Carbonatite Quartz vein ditto ditto ditto Sandstone Mrima-Jombo Mrima-Jombo Mrima-Jombo Sampling Jibana Jibana Mkangombe Area ditto Ganze ditto ditto Sample Number A034 A035 B006 B038 F009A043 B006 B010 A037 A044

X: rare ∆: little O: comnon

O: abundant

A-25

Results of microscopic mineral identification of ore specimens on polished sections

1) Sample, weathered carbonatite, Mrima-Jombo Area, number A034

2)

3)

Chiefly composed of white diaphanous minerals with sparse disseminations of gains or aggregates of strongly magnetic black and dark brown minerals by unaided eye.

Under the microscope, black minerals are of pyrrhotite-associated chalcopyrite, dark brown minerals are of iron hydroxide minerals. Primary metallic minerals wholly consist of pyrrhotite properly, associated with secondary minerals. Secondary minerals are of iron hydroxide minerals, such as goethite and lepidochrocite, and chalcocite, hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show diaphanous minerals, chalcocite, iron hydroxide minerals, pyrrhotite and hematite. Pyrrhotite, less than 80 microns long and euhedral- to subhedralgranular, is observed in chalcocite or diaphanous minerals. Chalcocite is generally observed in forms of 50 microns long, 1 millimetre the longest, replacing pyrrhotite or replaced by iron hydroxide minerals or in diaphanous minerals. Hematite is undefinedly granular of less than several microns long, subhedral- to anhedral- lathy, replaced by iron hydroxide minerals or in those minerals by sparse dissemination.

Sample, base metallic minerals-quartz vein ore, Mkangombe North, Mkangombe Area, number A035

Observed by unaided eye to show random dissemination and/or indistinct banded texture. Chiefly composed of quartz, limonite, covellite, malachite and etc.. Magnetism is observed in brown textural bands.

Under the microscope, the specimen is chiefly composed of iron hydroxide minerals and quartz. Primary metallic minerals consist of chalcopyrite with minor quantity of pyrite. Secondary minerals consist of iron hydroxide minerals such as goethite and lepidochrocite, maghemite, covellite and hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show iron hydroxide minerals, quartz, chalcopyrite, maghematite, covellite, hematite and pyrite. Primary minerals are replaced by secondary minerals, while minerals of earlier crystallization are replaced by those of later crystallization. Chalcopyrite is observed in iron hydroxide minerals of anhedral granular forms, 300 microns long is the longest, to show a marginal replacement or fine veining/network veining replacement textures entirely by maghematite and covellite or partly by goethite and lepidochrocite. Pyrite, subhedral- or anhedral granular, less than 30 microns long, is minorly observed sparse-disseminatedly in iron hydroxide minerals. Maghemite, shown in association with covellite, is observed in the form of marginal replacing materials of chalcopyrite or isolated disseminations in iron hydroxide minerals. Hematite, which is shown with similar behaviour to that of chalcopyrite, generally less than 10 microns long, while, 30 microns long is the longest, is generally observed isolatedly in iron hydroxide minerals in the forms of irregular xenomorph. Iron hydroxide minerals chiefly consist of goethite, minorly associated with lepidochrocite.

Under the microscope, general crystallization order of those minerals from early to late stages order is quartz-pyrite, chalcopyrite, hematite-covellite, maghemite and goethite-lepidochrocite.

Sample, base metallic minerals-quartz vein ore, Mkangombe North, Mkangombe Area, number A037

Coarse-grained metallic mineral crystals, about 10 millimetres long, are observed in quartz by unaided eye. Minerals with magnetism are not discernible.

Under the microscope, the specimen chiefly consists of quartz and diaphanous minerals. Primary metallic minerals consist of galena and chalcopyrite, associated with minor quantity of pyrite, Secondary minerals consists of iron hydroxide minerals, such as goethite and lepidochrocite, covellite and hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, galena, chalcopyrite, iron hydroxide minerals, covellite,

hematite and pyrite. Quartz is euhedral to subhedral, about 1 millimetre long in average. Galena, margins of which or cleavages are irregularly replaced by covellite, goethite and etc., is 15 millimetres long the longest. Chalcopyrite, anhedral-granular of 0.5 millimetre long the longest, is shown to be replaced by a similar mode to that in galena, i.e., replaced by covellite, goethite and etc., in crystals margins or along cleavages. Hematite, less than 500 microns long and anhedral-granular, is observed in iron hydroxide minerals in small quantity of disseminations, in banded or concentric manners with iron hydroxide minerals. Pyrite, less than 10 microns long and anhedral-granular, is observed to be replacing galena with iron hydroxide minerals.

Under the microscope, general crystallization order of those minerals from early to late stages order is quartz-pyrite, chalcopyrite-galena, hematite-covellite, and goethite-lepidochrocite.

Sample, base metallic minerals-quartz vein ore, Mkangombe North, Mkangombe Area, number A043

Chiefly composed of quartz by unaided eye, with strongly magnetic metallic minerals of irregular disseminations and speckled aggregates, in association with fine veinings of limonite.

Under the microscope, quartz grains are disseminated by primary metallic minerals, marginal and/or inner parts of which are replaced by fine veinings of covellite, maghematite and etc.. Those are further wholly intersected by fine veins of iron hydroxide minerals. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, chalcopyrite-magnetite, covellite, maghemite, iron hydroxide minerals and pyrite. Primary metallic minerals consist of chalcopyrite, magnetite and pyrite. Chalcopyrite, less than 1 millimetre long, is observed to be marginally replaced by maghemite and covellite, and further to be outer-surrounded by iron hydroxide minerals. Magnetite is irregularly anhedral, several microns long, and is isolatedly observed in quartz or chalcopyrite crystals. Iron hydroxide minerals, chiefly consist of goethite, are observed in the forms of fine veinings of 50 microns wide the largest, to replace magnetite and chalcopyrite in association with diaphanous minerals or in the forms of granules of less than 50 microns long in quartz crystals.

Under the microscope, general crystallization order of those minerals from early to late stages order is pyrite, chalcopyrite-magnetite, quartz, magnemite-covellite and goethite-lepidochrocite.

5)

4)

Sample, base metallic minerals-quartz vein ore, Mkangombe North, Mkangombe Area, number A044

A brecciated quartz ore with fragmental limonite, magnetic black minerals and fine veins of malachite and covellite by unaided eye.

Under the microscope, chiefly consists of iron hydroxide minerals and quartz. Primary metallic minerals properly consist of small quantity of pyrite and magnetite. Primary metallic minerals are replaced by secondary iron hydroxide minerals, such as goethite, lepidochrocite and etc., in undefined forms of less than 20 microns long. Hematite shows banded or colloform structures and is granularly disseminated, several microns long, in iron hydroxide minerals, such as goethite, lepidochrocite and etc.. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, iron hydroxide minerals, malachite, hematite, magnetite and pyrite. Iron minerals are observed in fragmental forms in quartz crystals. Diaphanous minerals, presumed to be of malachite, are observed to intersect quartz crystals in the forms of fine veins, 100 microns wide the largest. Those locally form concentrated parts, 0.5 millimetre wide. Coveilite is properly observed concentratedly by unaided eye in cavities filled up by malachite.

6)

minerals by unaided eye.

Sample, pyrite-bearing sandstone, Jibana Area, number B006 Composed of quartz and diaphanous minerals with overall parallel bandings, associated with disseminated metallic

Under the microscope, the sample is chiefly composed of quartz and diaphanous minerals, as similar to an identification by unaided eye, and is disseminated by primary metallic minerals, properly consist of sphalerite and pyrite. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, diaphanous minerals, pyrite and sphalerite. Pyrite, about 200 microns long, is anhedral and undefinedly granular to replace quartz and sphalerite. Sphalerite, 300 microns long the largest, is irregularly anhedral to subhedral to be replaced by pyrite.

Under the microscope, general crystallization order of those minerals from early to late stages order is quartz-diaphanous minerals, sphalerite and pyrite,

7) Sample, pyrite-beasing petrified wood, Jibana Area, number B006'

Pyrite shows a lenticular form, 100 to 200 microns long and some 50 microns wide, or fine veining, less than 1 micron wide, or anhedral-granular aggregates of vein-form, about 200 microns long and some 0.5 micron wide. Lenticular and fine-veining forms of pyrite assemblage are extended in respective parallel directions to be considered to be of a replacement texture. Pyrite is exclusively identified as the metallic mineral in the specimen.

Sample, iron oxide ore, Ganze Area, number B010

8)

9)

Chiefly consists of hematite, with very sparse association with very fine-grained pyrite, less than 1 micron long. Diaphanous minerals, presumed to be of quartz, are observed.

Sample, carbonatite, Mrima-Jombo Area, number B038

Chiefly composed of white diaphanous minerals with sparse disseminations of black mineral grains with magnetism by unaided eye.

Under the microscope, black minerals are of chalcocite associated with pyrrhotite. Primary metallic minerals consist of pyrrhotite and small quantity of pyrite, while, pyrite is replaced by chalcocite. Secondary minerals are of chalcocite, hematite and iron hydroxide minerals, such as goethite and lepidochrocite. General relative quantitative ratios of those minerals in decreasing order of quantity show diaphanous minerals, chalcocite, pyrrhotite, hematite, iron hydroxide minerals and pyrite. Pyrrhotite, less than 100 microns long and euhedral- to subhedral-granular, is disseminatedly observed in diaphanous minerals. Chalcocite, about 500 microns long generally and 800 microns long the longest, shows pseudomorphs to replacing pyrite, while, marginal parts of that are replaced by iron hydroxide minerals. Hematite, less than several microns long, undefinedly granular or subhedral- to anhedral-lathy, is replaced by iron hydroxide minerals or disseminated in those.

10) Sample, iron oxide ore, Mrima-Jombo Area, number F009

Hematite and marcasite, which are with colloform-type texture in cavities and lathy, less than 100 microns long, are properly observed.

Photomicrographs of Ore Minerals in Polished Section

Abbreviations

Minerals

Ga	:	galena	Cy	:	covellite
Cp	:	chalcopyrite	Mt	:	magnetite
Cc	:	chalcocite	Hm	:	hematite
Ge		goethite	Mh	;	maghemite
Lc	:	lepidochrosite	Qtz	:	quartzt

0. 1mm

Sample No.: A035 Location : Mkangombe North

Sample No.: A037 Location : Mkangombe North

Photomicrographs (Polished section)

0, 1mm

Sample No.: A043 Location : Mkangombe North

0. 1mm

Sample No.: B038 Location : Mrima Hill

Photomicrographs (Polished section)

•		· · · · · ·	معضمه	r 	,	<u> </u>		,									
	Other tests/ Remarks	Áessy	Thin section	Åssey		Assay				Assay		Poi i shed section				Polished section, Assay	-
	Gib	1															
	4 p.a						-	1				Ø	٩.			٩	
3	11+			:					-								
	A n't																
T I O N	Rut		1							:		Þ					
A C 1	Jer				:							⊲					I
P4	Keni														٩		1
նեւ [հել	Ptu- gum							:						.,			
П П	Cer		·	·										0	0	i.	
Y	4 n g			:							0	:					:
RAY	۶, py					-											
M	Chal															4	
Ľ۲,	Spha					:										٥	-
0	6 a l						;				٥			0	0		-
RV	Hono- hcal																rtain.
UMMARY	i d Anke												⊲				? ∞ uncertain.
M D	Sid	i		1	· · · ·								⊲				
ပ္	Call.										:		0	1			- = 1810.
	Kee.			4	⊲	⊲	4	. ∠	ج	t	·						ï
3		0		٩			1.										inor.
ΙX	K-†s																∆ ≖nainor.
END	0 î z	Ø	۲	0	0	0	Ó	Ø	0	0	~	0	A		۵	Ø	5
<u>م</u> (Dic	*****	:				1						·				O == connan.
A P	X = 0	4	. 1									1				ò	
-	Ser		n de la composición de la comp										: *		1		ndant.
	S/H		۵	. (1				4	⊲							© = abundan t.
	Rock Type	Fe- Nodule	Aitered rock	Altered rock	Altered rock	Altared rock	Altered rock	Altered rock	Altered	Altered rock	Ore .	Carbona -tite	Carbona -1ite	Pb-ore	Vein	Vein	
	Location	libana	Riba	Ribe	Ribe	Ribe	Ribe	Ribe	Ribe	Ribo	Kînaponi		Arima Co	Vikangombe F	lík angombe	ilk angombe	
	Sample Number	A 0 0 5	A 0 0-7	A 0 1 3	A 0 1 4	A 0 1 5	A 0 1 6	A 0.1.7	A 0 1 8	A 0 2 0	× 0 3 3	A 0 3 4	A 0 3 5	A 0 3 8 W	A040 K	A 0 4 4	

ŧ (٤ ۴ ¢ ¢ ; ç • -¢

S/M-sericite/mentmorillonite mixed-layer mineral, Ser=sericite, Kao=kaolinite, Dic=dickite, Qtz=quartz, K-fa=K-feldspar, Hemi=hemimorphite, Py=pyrite Goesgoethite, Hemehematite, Cai=calcite, Sid=siderite, Anke=ankerite, Mondhcal=monohydrocalcite, Cor=cerussite, Jar=jardsite, Ang=anglezite Gal=gaiena, Spha=sphalerite, Chai=chalcopyrite, Rut=rutile, Ant=anatase, Jit=titanite, Apa=apatite; Gib=gibbsite, Plugum=plumbogummite b abbreviation:

٢

T

Т

Т Т T T

l.	ľ					AF	РРЕ	Q N 3	X 1.0	ζ 3		S	МЛ	SUMMARY	RY	ОF	· .	X – R A Y	RΑ	1	DI	ង ស្រុ	DIFFRACTION	ст	01		(2)	•		
σz	Sample Number	Local ion	Rock Type	S / N	Ser	K a o	Dic	Qtz	K-fs	G Ø . 8	E O T	C & L	Sid	Anke	lieno- hcal 6	6 1 5	Spha	Chal	Py A	Ane C	۲. د ع	Plu- Bung	Homi	Jar R	Rut A	AntT	Tit Ape	pe Gib		Other tests/ Reparks
<u> </u>	045	Kînagoni	0.e					٥							·	0				0	 									
_<	045	Kinagoni	Gre		0			0							 :	 				0		. ⊲								
63	006	Jibana	Sand- stone		I	٩		Ø						 .					0							4	0		<u>å</u>	Polished section, Assay
<u>с</u> р	010	6anz e	Fe- Nodule	1 - 1 2 - 1				4		0									<u> </u>		<u> </u>	<u>}</u>							8	Polished section, Assay
<u>م</u>	015	Jibana	Alterad rock		1		0	۲							[[`] -								A25	Atsay
a	022	J ibena	Altered rock		1		0	0								·						÷			·				** **	hssay
80	029	Jibana	A itered rock		i		0	0										 											4Se	Yessy
4 0	038	Hrima.	Carbona -1 1 1 8					٩				۲	0	Ø														Ó	Thic	Thin section, Polished section
60	043	Ribe	Gessan		-	-		Ø							t i i						-	4							Ast	Assay
en	1046	Ribe	Gessan					0				,										· t							¥37	Assey
m	3048	Ribe	Gossan			. ⊲		Ö														- 							ks:	Assay
60	0.5.0	Ribe	Cotsan Cotsan			٩	Т	Ø					· · · ·								-						. <u></u>		¥2.	Assay .
и.	0 1 0	it ina	Carbona -tite				1.12					Ø	₽.	Ø	۵. ۲			in de la composition de la com	а 1919 1						 				<u>ب</u>	Thin section
φ	5025	Kk angombe	Vein		4		 	٥	0		÷ .						<u>-</u>	. :											¥.	Assay
π	010	<u> Eriae</u>	Fe- Nodule					٥		0					e e														4St	Assay
1				4 - 0	- 🕲 - abundant.		O == comeon	с цо	4	∆ = Minor.		Presar	5	m uncertein.	rrein.		·													

1 8 1

٦ ĩ Т Υ

abbraviation: S/Warsticite/aontmorillonite mixed-layer minerol. Sersericite, Xaomtaclinite. Dicedickite, Otzequertz, K-fawk-feldspar, Heumhemimorphite, Pympyrite Goewgoethite, Hemmhematite, Calwoalcite, Sidwsiderite, Antemankerite, Monohcalmaonehydrocalcite. Cerecerussite, Jarwierosite, Angmanglesite Galmgeiena, Sphawsphalerite, Chalmchopyrite, Rutmuntase, Titmitianite, Apamapatite, Gipmgibbsite, Plugummplumbogummaite

٦ T

T

APPENDIX 4 CHEMICAL ANALYSIS OF ORE SAMPLES

Ser. No.	Sample No.	Au g/tonne	S % Total	Ag ppm	Cu %	Fe %	Mn %	Pb %	Zn %
1	A005	<0.07	0.012	2	0,005	27.3	0. 354	0, 122	0.094
2	A013	<0.07	0.067	2	0.008	17.80	0,003	0.052	0.007
3	A015	<0.07	0,047	2	0.003	9.10	0,005	0.043	0.004
4	A020	<0,07	0,017	80	<0.001	2.36	0,001	0.014	0.002
5	A035	<0,07	0.214	20	>3,00	4.44	0,011	0.120	0.743
6	A037	<0.07	9.42	12	0, 109	0.41	0.041	>3.00	0.003
7	A042	<0.07	0.050	4	0.491	0.89	0.006	0.095	1,980
8	A043	<0.07	0.101	4	0.290	0.72	0.005	0.063	1, 135
9	A044	<0.07	0.147	8	2.97	1.92	0.011	0.043	0.376
10	B006	<0.07	2.21	4	0,010	2.68	0.013	0.009	0,006
11	B010	<0.07	0.009	<2		>50.0	0.426	0.007	0.022
12	B015	<0.07	0.026	- 2	0.001	2.66	0.009	0.004	0,002
13	B022	<0.07	0.275	<2	0,001	3.19	0.001	0.007	0.002
14	B029	<0.07	1.400	<2	<0.001	4.42	0.006	0.002	0.002
15	B033	<0.07	0.007	<2	<0.001	0.59	0.021	<0.001	0.001
16	B043	<0.07	0,229	<2	0.002	9,00	0, 080	0,006	0,004
17	B046	<0.07	0,050	<2	<0.001	1.80	0.003	0.002	0.001
18	B048	<0.07	0.028	2	<0.001	1.52	0.002	0.002	<0.001
19	B049	<0.07	0,030	<2	<0.001	0, 68	0,002	0.002	<0.001
20	B050	<0.07	0.038	<2	<0.001	0, 98	0.002	0.001	<0.001
21	C005	<0,07	0.007	<2	<0.001	3, 51	0.079	0,003	0.006
22	D001	<0, 07	0.007	<2	<0,001	0.47	0.003	0.001	0.002
23	D002	<0.07	0.166	<2	0.072	5.43	0.005	0.001	0,245
24	D003	<0,07	0.009	<2	0,004	0, 30	0.001	<0.001	0.005
25	F009	<0.07	0.068	76	0,006	30.0	>3.00	0.014	1,015
26	G003	<0.07	0.011	2	0,010	31.9	0.177	0.037	0.135
27	G006	<0.07	0.033	10	<0.001	2.11	0.033	0.001	0.003
28	G008	<0.07	<0.001	4	<0.001	0, 23	0.010	<0.001	<0.001
29	G024	<0.07	0.023	<2	0.009	1.94	0, 036	0.004	0.024
30	G025	<0.07	0.013	<2	0.001	2.79	0.006	0.002	0.004
31	H010	<0.07	<0, 001	<2	0,005	35.9	0.098	0.004	0.007

APPENDIX 5

CHEMICAL ANALYSIS OF SOIL SAMPLES

GANZE AREA

RESULTS OF GEOCHEMICAL ANALYSIS

							ومحمد عندا ويوالي المحمد والمرابع المرابع		a and the second se	*****		
er. No,	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Nn ppm	Pb ppm	Zn ppm	9
1	GA001	<1	<0.2	<5	150	7	1.89	<1	2080	14	28	0. 002
2	GA002	<1	<0.2	<5	110	4	2.14	<1	470	16	20	0.000
3	GA003	<1	<0.2	<5	30	2	0.92	<1	230	10	10	<0.001
4	GA004	<1	<0.2	5	100	5	1.42	<1	1035	. 8	16	0.00
5	GA005	<1	<0.2	<5	10	-1	0.41	<1	150	6	2	0.00
6	GA006	<1	<0.2	<5	30	- 2	1.32	<1	995	16	10	<0.00
7	GA007	<1	<0.2	<5	40	3	2.41	<1	630	10	12	0.00
8	GA008	<1	<0.2	<5	30	1	1.03	<1	665	20	8	<0.00
9	GA009	<1	<0.2	· <5	20	1	0.32	·<1	55	8	4	
10	GA010	<1	<0.2	<5	10	<1	0.32	<1	40	. 4	2	0.00
11	GA011	<1	<0.2	10	60	4	1.08	<1	555	14	22	0,00
12	GA012	<1	<0.2	<5	20	1 .	0.36	<1	30	2	2	0.00
13	GA013	<1	<0.2	<5	50	. 1	0.88	<1	40	8	8	0.00
14	GA014	<1	<0.2	<5	50	2	0.68	<1	85	8	8	0.00
15	GA015	<1	<0.2	<5	10	1	0.36	<1	45	8	- Ž	<0.00
16	GA016	<1	<0.2	<5	<10	<1	0.29	1	110	4	2	0.00
17	GA017	<1	<0.2	<5	10	<1	0.43	<1	440	10	2	0.00
18	GA018	<1	<0.2	<5	530	11	2.83	<1	370	ĩŏ	$3\overline{2}$	0,00
19	GA019	<1	<0.2	10	170	7	2.29	<1	175	12	12	0.00
20	GA020	<1	<0.2	<5	150	7	1.74	<1	1160	26	14	0.00
21	GA021	<1	<0.2	15	420	9	1, 39	<1	1940	18	24	0.00
22 -	GAO22	<1	<0.2	<5	300	7	1.97	<1	795	22	14	0.01
23	GA023	<1	<0.2	-5	20	1	0.74	<1	155	12	4	0.00
24 24	GA024	<1	<0.2	<5	20	<1	0.44	<1	15	2	2	0.00
25	GA025		<0.2	<5	500	11	1.91	$\langle 1 \rangle$	1855	16	24	0.00
2 <i>5</i> 26	GA025	<1	<0.2	<5	620	13	2. 76	<1	840	16	24	0.00
20 27	GA020 GA027	<1	<0.2	<5	400	10	2, 14	<1	700	. 8	20	0.00
28	GA028	<1	<0.2	<5	100	9	2.48	<1	860	12	16	0.00
20 29	GA028	<1	<0.2	10	60	3	2. 40 3. 68	<1	2690	16	56	0.00
			<0.2		30	3	<i>4.</i> 74		2030		66	0.01
30	GA030	<1		10	40		4. 14	<1	2760	16		
31	GA031	<1	<0.2	<5		4				10	54	0.00
32	GA032	<1	<0.2	5	50	4	3.86	<1	2540	18	68	0.00
33	GA033	<1	<0.2	15	40	3	3.60	<1	1600	22	70	0.00
34 ·	GA034	<1	<0.2	<5	100	5	1.89	<1	1505	36	56	0.01
35	GA035	<1	<0.2	10	80	8	2.18	<1	2690	22	90	
	GA036	<1	<0.2	20	30	3	4,90	<1	2760	22		<0.00
37	GA037	<1	<0.2	5	10	<1	0.30	: <1	70	4	2	<0.00
38	GA038	<1	<0.2	<5	10	<1	0.19	<1	10	2	2	0.00
39	GA039	<1	<0.2	<5	<10	<1	0.11	<1	5	2	<2	
40	GA040	<1	<0.2	<5	<10	<1	0,30	<1	15	8		<0.00
41	GA041	<1	<0.2	<5	10	2	1.20	<1	280	6		0.00
42	GA042	<1	<0.2	<5	20	- 1	0.68	1	190	10		<0.00
13	GA043	<1	<0.2	<5	50	1	0.52	<1	400	18		
44	GA044	<1	<0.2	<5	30	- 1-	0.50	<1	435	8		<0.00
15	GA045	<1	<0.2	5	20	< <u>1</u>	0.31	<1	70	4		<0.00
16	GA046	<1	<0.2	<5	30	2	0.58	<1	150	8		<0.00
17	GA047	<1	<0.2	<5	10	1	0.39	<1	130	6		<0.00
18	GA048	<1	<0.2	5	180	4	0.99	<1	2260	12		<0,00
19	GA049	<1	<0.2	5	20	1	0.46	<1	165	12		<0.00
50	GA050	<1	<0.2	<5	60	2	0, 98	<1	60	14		<0.00
51	GA051	<1	<0.2	5	20	<1	0.25	<1	35	2		<0.00
52	GB001	<1	<0.2	25	90	8	11.35	<1	6240	28		<0.00
53	GB002	<1	<0.2	10	130	7	8.66	<1	5960	34		<0.00
54	GB003	<1	<0.2	15	110	6	6, 42	<1	6120	8		<0.00

GANZE AREA

RESULTS OF GEOCHEMICAL ANALYSIS

GAN	ZE AREA										. • •	
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppa	Pb ppm	Zn ppm	S %
re.	CD004	/1			100	17	0 0C		0700			0.001
55	GB004	<1	<0.2	15	130	7	6.65	<1	6720	8		(0.001
56	GB005	<1	<0.2	<5	90	20	1.60	<1	570	10	38	0.005
57 58	GB006	<1 <1	<0.2 <0.2	10	410	9 12	1.18 1.75		910	26	60	0.010
59	GB007 GB008	<1	<0.2	5 <5	50 30	12	1.51	<1 <1	890 355	26		(0.001 0.010
60	GB008 GB009	<1	<0.2	5	210	20	2.19	. <1	655	14 22	20	0.010
61	GB010		<0.2	10	50	12	2. 15		645	10		0.000
62	GB010	<1	<0.2	5	40	8	3.21	<1	1045	16		(0. 001) (0. 001)
63	GB012	4	<0.2	<5	40	: <u>9</u>	3.53	. <1	990	8		(0.001
64	GB013	<1	<0.2	25	60	11	4.23	<1	1220	12		(0.001
65	GB014	<1	<0.2	10	50	15	3.60	<1	1365	20		0.001
66	GB015	<1	<0.2	10	70	20	2.85	<1	1135	16		0.003
67	GB016	<1	<0.2	5	60	16	2.63	<1	910	24	26 <	(0.001
68	GB017	<1	<0.2	5	530	1	0.77	<1	120	6	2	0.006
69	GB018	<1	<0.2	5	1.0	1	1.36	<1	275	18	8	0.002
70	GB019	<1	<0, 2	· <5	4470	5	1.37	<1	235	24	18	1.340
71	GB020	<1	<0.2	<5	510	6	1.07	<1	215	4	6	0.022
72	GB021	<1	<0.2	<5	70	17	2.95	<1	355	18	14	0.005
73	GB022	<1	<0.2	5	60	17	3.23	<1	495	8		<0.001
74	GB023	<1	<0.2	<5	140	30	3.37	<1	940	14		<0.001
75	GB024	<1	<0.2	: 5	120	4	2, 81	<1	200	14		<0.001
76	GB025	<1	<0.2	15	90	2	1.28	<1	645	6		<0.001
77	GB026	<1	<0.2	10	. 90	4	1.69	<1	560	12		<0.001
78		<1	< 0.2	5	100	2	1.17	<1	485	14		<0.001
79	GB028	<1	<0.2	5	30	1	0.85	1	435	4		<0.001
80	GB029	<1	<0.2	<5	50		0.41	<1	150	4		<0.001
81	GB030	<1	<0.2	5	50	1	0.58	<1	265	· <2	4	0.001
82	GB031		<0.2	10	80 50	1	0.51	<1	255	2		<0.001
83	GB032 GB033	<1	<0.2	<5 <5	120	$\frac{1}{4}$	0.61	<1	240	6		<0.001
84 85	GB033	· · <1 · <1	<0.2 <0.2	<5 <5	<10	<1	1.20 0.22	<1 <1	430 10	12 <2		0.001
86	GB035	<1	<0.2	5	<10	<1	0. 22	<1	5	<2		<0.001 <0.001
87	GB035	<1	<0.2	<5	<10		0.19	<1	<5	<2		0.001
88	GB037	<1	<0.2	<5	<10	<1	0.09	<1	<5	4	2	0.002
89		<1	<0.2	<5		<1	0.24	<1	15	2		<0.001
90	GB039	<1	<0.2	<5	<10	<1	0.07	<1	<5	<2	<2	0.001
91	GB040	<î l	<0.2	<5	<10	1	0.12	<1	5	<2	<2	0.001
92	GB041	<1	<0.2	<5	<10	<1	$0. \tilde{17}$	<1	10	<2		0.002
93	GB042	<1	<0.2	<5	40	1	1.19	. <1	355	16		<0.001
94	GB043	<1	< 0.2	<5	<10	- <1	0.30	<1	85	<2		<0.001
95	GB044	<1	<0. 2 <0. 2 <0. 2 <0. 2 <0. 2	<5	20	2	0.86	<1	270	4		<0.001
96	GB045	<1	<0.2	<5	: <10	<1	0.17	<1	5	<2		<0.001
97	GB046	<1	<0.2	<5	10	1	0.90	1	340	14		<0.001
98	GB047	<1	<0.2	<5		3	1.65	<1	375	8		0.002
99	GB048	<1	<0.2	<5	220	- 4	1, 33	<1	250	10		0.004
100	GB049	<1	<0.2	<5	50	1	1.11	<1	25	10	6	
	GB050	<1	<0.2	10	70	. 3	1.30	<1	645	14	12	<0.001
102	GB051	<1	<0.2	5	20	1	0.54	<1	125	6	2	0.001
	GB052	<1	<0.2	<5	40	1	0.72	<1	335	· 8.	8	<0.001
104	GB053	<1	<0.2	<5	390	14	3.72	<1	735	38	32	<0.001
	GB054	. <1	<0.2	<5	1010	3	1.07	<1	795	16	10	0.008
	GB055	<1	<0.2	<5	800	12	2.85	<1	1240	24		0.012
107	GB056	<1	<0.2	<5	1270	14	2.46	<1	3240	18	50	0.013
<u>108</u>	GB057	<1	<0.2	15	230	3	2.75	<1	1085	30	30	<0.001
·					·	A37				•		

RESULTS OF GEOCHEMICAL ANALYSIS

GANZE AREA

TUNI	46 адеат						7. dauga kalak karana 10. 00				
Ser. No.	Sample No,	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn S ppm %
109	GB058	<1	<0.2	5	30	2	1.12	<1	325	16	10 < 0.001
110	GB059	ă	<0.2	20	40	$\tilde{\tilde{2}}$	2.08	<1	110	$\hat{20}$	16 <0.001
111	GB060	<1	<0.2	5	120	ĩ	1.86	<1	1840	28	28 <0.001
112	GB061	<1	<0.2	25	50	2	2.22	ं रो	880	22	12 <0.001
113	GB062	<1	<0.2	15	70	6	1.91	1	465	14	10 < 0.001
114	GB063	<1	<0.2	. <Š	<10	<1	0.50	<1	ĨĨŎ	4	4 0.001
115	GB064	<1	<0.2	5	140	8	2.22	. < <u>1</u> .	1135	14	24 < 0.001
116	GB065	<1	<0.2	10	1820	18	3.19	<1	840	4	42 0.015
117	GB066	<1	<0,2	15	300	8	2.42	<1	950	16	30 < 0.001
118	GB067	<1	<0.2	5	890	15	2,58	= I <1	1720	12	46 0.003
119	GB068	<1	<0.2	.5	250	1	2.06	<1	4790	22	120 0.010
120	GB069	<1	<0.2	10	40	5	1.79	···· <1	1325	14	52 0.002
121	GB070	1	<0.2	5	50	8	1.94	. <1	575	22	50 0.018
122	GB071	1>	<0.2	<5	120	11	1.08	<1	205	14	14 <0.001
123	GB072	<1	<0.2	30	40	12	4.28	<1	865	12	70 < 0.001
124		<1	<0.2	<5	500	1	0.35	<1	95	4	2 0.003
125	GB074	<1	<0.2	5	30	1	0.38	<1	125	<2	4 <0.001
126	GB075	1>	<0.2	. <5 .	.90	1	0.27	⇒ <1	60	8	<2 <0.001
127	GB076	- <1	<0.2	5	80	<1	0.28	<1	15	2	2 < 0.001
128		<1	<0.2	<5	330	<1	0.04	<1	85	<2	<2 0.010
129	GB078	<1	<0.2	5	50	1	0.60	<1	85	8	6 < 0. 001
130	GB079	<1	<0.2	<5	<10	<1	0.17	<1	20	<2	2 < 0.001
131	GB080	<1	<0.2	<5	10	: 1	0.61	<1	160	8	4 < 0.001
132	GB081	<1	<0.2	<5	10	<1	0.29	(1 -	40	- 4	2 < 0.001
133	GB082	<1	<0.2	<5	20	<1	0, 13	<1	10	. <2	<2 <0.001
134	GB083	<1	<0.2	<5	80	4	1.27	<1	530	6	12 0.002
135	GB084	<1	<0.2	5	20	1	0.50	<1	75	2	4 < 0.001
136	GB085	<1	<0.2	<5	<10	<1	0.19	<1	25	2	<2 0.001
137	GB086	<1	<0.2	<5	30	1	0.48	: <1	180	12	6 0.002
138	GB087	<1	<0.2	<5	<10		0.13	<1	10	<2	<2 0.002
139	GB088	<1	<0.2	<5	10	<1 <1	0.31 0.23	<1 <1	25	<2	2 <0.001 6 0.002
140	GB089		<0.2	5 <5	<10 <10		0.23		20 10	<2 <2	6 0.002 2 0.007
141 142	GB090 GB091	<1 <1	<0.2 <0.2	<5	<10	<1	0.24	 <1 	150	<2	2 0.001
	GB091 GB092	<1	<0.2	5	20	1	0.31	<1	95	6	4 0.004
143	GB092 GB093	<1	<0.2	5	10	<1	0.27	<1	10	4	2 0.005
144 145	GB093 GB094	<1	<0.2	<5	30	$\langle 1 \rangle$	0.27		40	4 4	2 0.003
145	GB095	<1	<0.2	<5	40	1	1 18	<1	275	4	18 0.002
	GB096	<1	<0.2	10	30	2	0.74	<1	270	12	10 0.014
	GB097		<0.2	<5	210	9	2.27	<1	1425	26	28 0.006
149	GB098	<1	<0.2	15	160	3	1.14	<1	1210	8	12 0.001
	GB099	<1	<0.2	15	60	6	2, 38	<1	400	6	14 < 0.001
151		<1	<0.2	<5	30	° 3	0.57	<1	200	8	6 <0.001
152	GB101	<1	<0.2	<5	2440	12	1.70	<1	2750	18	38 0.034
153	GC001	<1	<0.2	5	380	12	2.32	1	895	14	22 0.003
154	GC002	<1	<0.2	10	570	15	3.52	1	315	12	34 0.004
155	GC003	<1	<0.2	5	410	ā 11	1.92	ा र ाँ	1650	22	22 0.052
156	GC004	<1	<0.2	5	70	7	1.63	 	115	14	12 0.002
157	GC005	<1	<0.2	<5	10	<1	0.24	<1	-30	2	2 0.003
158	00000	<1	<0.2	<5	20	1	0.76	<1	65	6	4 0.003
159		<1	<0.2	<5	10	<1	0, 32	<1	20	4	2 0.002
	GC008	1>	<0.2	<5	<10	<1	0.15	<1	<5	<2	<2 0.002
161	GC009	<1	<0.2	5	10	· 1	0.27	<1	60	2	2 0.001
162	GC010	<1	<0.2	<5	1080	1	2.10	<1	55	16	16 0.020

RESULTS OF GEOCHENICAL ANALYSIS

Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppn	S X
163	GC011	<1	<0.2	<5	<10	<1	0.19	<1	25	4	2	0.002
164	GC012	<1	<0.2	<5	20	- 1	0.48	<1	60	2	. 4	0.001
	GC013	<1	<0.2	<5	10	. <1	0.20	<1	75	<2	<2	<0.001
168	GC014		<0.2	10	270	10	1.80	4	1235	- 14		<0.001
167	GC015	<1	<0.2	5	420	5	2.34	<1	55	4		<0.001
168	GC016 GC017	<1 <1	<0.2	5 5	160 650	· 3	1.77	<1	215	18		<0.001
	GC017 GC018	<1	<0.2 <0.2	5 5	120	9 3	2.33 1.41	<1 <1	$\begin{array}{r}1525\\185\end{array}$	14 6	32 14	0.007 <0.001
171	GC018	<1	<0.2	<5	260	12	2.22		565	8		<0.001
172	GC020	· < <u>1</u>	<0.2	<5	200	1	0.80		145	10		<0.001
173	GC021	<1	<0.2	<5	20	1	0.63	<1	390	8		<0.001
174	GC022	<1	<0.2	5	110	4	1.24	<1	1000	8		<0.001
175	GC023	<1	<0.2	<5	30	· <1	0, 36	<1	35	4		0.003
	GC024	<1	<0.2	<5	50	2	1.10	<1	240	8	12	<0.001
177	GC025	<1	<0.2	5	20	· <1	0.31	<1	160	2		<0.001
178	GC026	<1	<0.2	10	470	7	1.31	- <1	800	8	20	<0.001
179,	GC027	<1	<0.2	<5	20	. 1	: 0. 36	<1	20	<2		<0.001
180	GC028	<1	<0.2	<5	10	<1	0.21	<1	20	2	<2	<0.001
181	GC029	<1	<0.2	<5	40	. 1	0.50	<1	65	<2	. 8	0.001
182	GC030	- 19 - 1	<0.2	10	680	21	2.72	<1	560	22	32	0.012
183	GC031	<1	<0.2	. <5	510	15	2.82	: <1	1045	4	18	0.014
184	60032	<1 <1	<0.2	. <5	230	. 13	2.66	1	1595	16	24	0.011
185	GC033	<1	<0.2	5	70	. 5	2.09		170	8	10	0.008
186	GC034	· <1	< 0.2	<5	190	· 6	3.09	<1	525	6	12	0.002
187 188	GC035 GC037	<1 <1	<0.2 <0.2	5	480 20	23	2.20 0.65	<1	1775	20	46	0.007
189	GC037	<1	<0.2	5	20	- 1	0.65	<1 <1	200 245	12 14	2 4	0.004
190	GC039	<1	<0.2	5	10	1	0.05		245	14	46	0.004
191	GC039	<1	<0.2	5	20	1	0. 30	<1	100	8	4	
	6C041	<1	<0.2	<5	20	. 1	0.67	<1	515	14	4	
193	GC042	1	<0.2	5	10	<1	0.59	<1	385	12	2	0.003
194	GC043	<1	<0.2	<Š	10	1	0.61	<1	315	8	4	0.003
195	GC044	<1	<0.2	<5	10	1	0.61	<1	110	8	2	0.004
196	GC045	. <1	<0.2	<5	10	1	0.79	<1	555	14	4	
197	GC046	-<1	<0.2	5	10	1	0.70	<1	500	18		0.003
198	GC047	a (1	<0.2	5 5	20	3	1.30	<1	620	16	10	0.002
199	GC048	<1			20	1	0.97	<1	520	10	6	0.004
	GC049	<1	<0.2	<5	20	1	1.03	<1	325	14	- 6	0. 001
201	GC050	<1	<0.2 <0.2	<5	20	2 2	1.11	<1	170	10	6	0.004
202	GC051	1	<0.2	<5	20	: 2	1.01	<1	435	12		0.004
	GC052	<1	<0.2	<5	10	- 1	0.85	(1	325	8		0.002
	GC053	<1	<0, 2 <0, 2	10	ii 70	4	2.81	. <1	500	20	20	
	GC054		(SQ. Z ∠0. 2	<5	20	1	1.21	(1	605	16		0.003
	GC055	<1	<0.2 <0.2	<5 5	50 60	: 4	0.83	<1	95 610	2	10	
207 208	GC056 GC057	<1 <1	<0.2	5 5	60 840	4	1.79 2.26	<1 <1	610 1685	8 18	14 22	
	GC058	<pre><1</pre>	<0.2	<5			1.24	/4	605			0.003 <0.001
210	GC058	<1	<0.2		40 20	.: 1	0.79	<1	505 505	22		0.00
211		<1	<0.2		10	. 1	0.19		470	8	2	
	GC061	<1	<0.2	<5	<10	<1	0.36	<1	55	6	2	0.00
213	GC062		<0.2	<5	10	<1	0.30	<1	60	4		<0.00
214	GC063	<1	<0.2	5	80	3	1, 83	<1	450	4		<0.00
215	GC064	<1	<0.2	<5	350	12	1.79	্ ব	1405	22	40	
	GC065	<1	<0.2	. <5	140	· · 5	2.22	<1	375	18		<0.00

RESULTS OF GEOCHEMICAL ANALYSIS

GANZE AREA

404m	LC ANDAM											
Ser. No.	Sample No.	A pp		As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	\$ %
217	GC066	. <	1 <0.2	<5	60	2	1.17	1>	645	24	10	0.004
218	GC067	· · · · · · · · · · · · · · · · · · ·		<5	50	$\overline{2}$	0.70	<1	35	6	4	0.008
219	GC068	<		<5	50	3	1.88	1> 1	320	14	6	<0.001
220	GC069	· · · <			130	6	1.75	<1	1380	12		<0.001
221	GC070			<5	70	3	1.09	े <1	635	··· 10	10	0.005
222	GC071	<		<5	140	5	1.74	<1	1155	12		0.002
223	GC072	<		<5	<10	<1	0.36	: <1	25	2	2	<0.001
224	GC073	. <		<5	<10	1	0.42	· <1	50	2	2	0.003
225	GC074	· · · · · · · · · · · · · · · · · · ·		- 5	<10	<1	0.39	<1	55	<2	2	0.002
226	GC075	<hr/>		<5	10	. 1	0.75	<1	80	6	4	0.002
227	GC076	<		<5	10	2	1.33	<1	400	14	4	0.005
228	GC077	· <		<5	<10	1	0.46	<1	55	<2	2	0.003
229	GC078	. <		<5	<10	1	0.61	<1	70	4	2	0.002
230	GC079	<		<5	20	1	1.16	1>	325	8	4	0.005
231	GC080	<		<5	20	<1	0.26 0.52		115	2	2	0.003
232	GC081	<		<5	20	1		··· <1	360	4	· · · ·	<0.001
233	GC082			<5 75	20 20	1	0.45 0.46	<1 <1	80 215	6	6	<0.001 0.003
234	GC083 GC084			<5 <5	<10	<1	0.40		100	6	4	<0.003
235 236	GC084 GC085	<		<5	<10	<1	0.32	<1	110	<2	2	<0.001
237	GC085	· · · · · · · · · · · · · · · · · · ·		<5	10	1	0. 41	1	265	<2	4	<0.001
238	GC087			<5	20	i	0.40	<1	145	<2	2	<0.001
239	GC088	· ` `		<5		<1	0.37	<1	370	6	2	<0.001
240	GC089	- R		5	30	3	0.89	<1	125	8	8	0.002
241	GC090	- R		5	800	7	2.55	<1	120	10	32	0.013
242	GC091			<Š	10	1	0.47	<1	170	6	4	0.007
243	GC092	<		<5	30	ĩ	0.30	<1	135	6	4	0.005
244	GC093	<		10	340	10	2.76	<1	325	24	36	0, 010
245	GD001	<		ິ <5	10	1	0.96	<1	130	10	6	0,003
246	GD002	<	1 <0.2	- 5	140	9	2.81	<1	765	16	28	0.005
247	GD003	· <		<5	70	2	1.26	< <u>1</u>	640	18	18	0.003
248	GD004	<		<5	390	12	2.61	<1	1080	6	26	0.001
249	GD005	· <		<5	450	13	3.32	<1	235	4	18	0.004
250	GD006	<		5	1540	17	2.85	<1	195	6	26	0.030
251	GD007		1 <0.2	5	140	9	2.76	<1	525	2	28	<0.001
252	GD008	· · · · ·		<5	10	2	1.06	<1	100	10		<0.001
253	GD009	· · · <		5	20	5	2.19	<1	140	12	22	0.002
254	GD010	· · · · · ·		<5	20	3	1.01 1.84	<1 /1	215	12 <2	12	<0.001
255 256	GD011 GD012	<		<5 15	60 60	12	2.50	<1 <1	230 665	10		<0,001 <0.001
257	GD012 GD013			45	1080	38	12.55		>10000	26	1515	0. 027
258	GD013 GD014	· · <			1000	. 8	11.95		>10000	12	82	0.021
259	GD014 GD015			<5	120	11	12.05	<1		10	82	0.007
260	GD016	· · · · · · · · · · · · · · · · · · ·		<5	50	1	0.56	<1	510	4	4	<0.001
261	GD017	∵ ~		<5	60	4	1.07	্র	650	4	14	<0.001
262	GD018	<		<5	40	1	0.46	<1	315	4		<0.001
263	GD019		3 <0.2	<5	90	<1	0.92	<1		10		<0.001
264	GD020	· <		5	40	<ī <	0.66	1	20	6	4	<0.001
265	GD021			<5	10	<1	0.30	<1	5	4	<2	0.003
266	GE001	<	1 <0.2		10	. 1	0, 52	<1	70	6	2	<0.001
267	GE002		1 <0.2	<5	10	. 2	0.73	<1	35	6	2	<0.001
268	GE003	<		<5	10	1	0.40	<1	115	2		<0.001
		(C		<5	50	3	0.98	<1	60	<2		0.003
<u>270</u>	GE005	<u> </u>	l <u><0.2</u>	<5	230	14	2.71	<1	615	10	26	<u>0.008</u>

GANZE AREA

RESULTS OF GEOCHEMICAL ANALYSIS

GAN	ZE AREA										- 10- ¹¹⁻ 19-10-10-10-1-1-5-10-1	
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
271	GEO06	<1	<0.2	<5	280	10	1.67	<1	1440	10	22	0.003
272	GE007	<1	<0.2	<5	2350	17	3.41	<1	1380	$\tilde{22}$		0.040
273	GE008	<1	<0.2	<5	770	5	2.06	<1	740	8		0.010
274	GE009	<1	<0.2	<5	230	5	2.15	<1	195	10		0.004
275	GEOIO	<1	<0.2	5	30	š	3.04	. <1	1205	28		0.001
276	GE011	2	<0.2	. 5 5	90	7	3.89	ব	2060	22		0.005
277	GE012	<1	<0.2	15	10	3	3.79	. <1	1045	12		0.000
278	GEO13	<1	<0.2	10	20	. 4	3.65	. <1	1280	2		0.001
279	GE014		<0.2	<5	70	4	3. 92	<1	2450	12		(0.001)
219	GE014 GE015	<1	<0.2	<5	60	6	3. 32 3. 75					
	GE015 GE016		20.0		120		5. 15 2. 40	<1	1880	20		(0, 001)
281		<1	<0.2	<5		8		<1	40	6		0.002
282	GE017	<1	<0.2	<5	160	3	0.92	(1	190	12		0.001
283	GE018	<1	<0.2	. <5	10	1	0.63	<1	45	- 8		0.001
284	GE019	<1	<0.2	<5	60	4	1 11	<1	675	8		0.001
285	GE020	. (1	<0.2	<5	: 10	1	0.57	<1	45	6	4	0.002
286	GE021	<1	<0.2	<5	230	2	1.43	<1	655	22	16	0.001
287	GE022	<1	<0.2	5	50	3	0.79	<1	45	4		0.001
288	GE023	<1	<0.2	<5	40	1	0.74	<1	45	2		0. 001
289	GE024	<1	<0.2	<5	10	5	0.99	1	45	2		(0. 001
290	GE025	<1	<0.2	<5	20	3	0.91	<1	165	<2	· 8 <	:0. 001
291	GE026	<1	<0.2	<5	10	2	0.56	<1	165	<2		(0, 001
292	GE027	<1	<0.2	<5	80	7	2.97	<1	1910	12	130 <	(0. 001
293	GE028	<1	<0.2	10	50	7	3.59	<1	3830	10	168 <	(0. 001
294	GE029	<1	<0.2	5	70	7	3.48	. <1	2080	16	124	0.001
295	GE030	<1	<0.2	25	20	. 8	4.89	<1	1335	2		0.008
296	GE031	<1	<0.2	<5	20	8	2.35	<1	510	14	54	0.001
297	GE034	<1	<0.2	25	90	9	10.95	<1	9700	4	96	0.008
298	GE035	<1	<0.2	15	100	8	11.85	· · · · · · · · · · · · · · · · · · ·	8670	<2		<0.001
299	GE040	<1	<0.2	15	120	10	12.45	<1	7370	<2		0.001
300	GE041	<1	<0.2	15	30	6	10.55	<1	5080	12	136	0.005
301	GE042	<1	<0.2	ĨŎ	30	· Ő	3.91	- <î	1445	10	42	0.003
302	GE043	<1	<0.2	Ĵ.	50	ğ	3.19	র	1180	8		<0.001
303		<1	<0.2	5 5	20	11	4.05	ं रो	720	8	34	0.001
304	GE045	<1	<0.2	10	30	10	1.82	4	125	8	10	0.002
305		<1	<0.2	25	190	48	4.76	<1	230	10		<0.002
306	GE048	<1	<0.2	15	80		>15.00		>10000	<2		0.00
307	GE049	<1	<0.2	25	50		>15.00		>10000	14		0.002
308	GE050	<1	<0.2	10	20	6	5.27			<2		
	GE051		20.2	<5	20	. 5	1 97	<1				<0.00
309			<0.2 <0.2	5	20 60		1.27		780	<2		<0.00
310	GE052 GE053		20.0			4	1.55	<1	1355	10		<0.00
311		<1	<0.2 <0.2	<5	100	5	1.31	<1	380	18		0.00
312	GE054	<1	NU. Z	10	190	8	1.52	<1	40	<2		0.00
313		<1	<0.2	<5	20	2	0.98	<1	60	10		<0.00
314	GE056	<1	<0.2	<5	20	2	0.54	<1	240	14		<0.00
315		<1	<0.2	<5	20	1	0.40	<1	240	6		<0, 00
316		<1	<0.2	<5	<10	<1	0.30	<1	45	2		<0.00
317		<1	<0.2	<5	30	2	1.17	<1	445	14		<0.00
318	GF001	<1	<0.2	<5	260	17	3.83	<1	70	10		0.01
319	GF002	<1	<0.2	<5	290	15	3.25	<1	545	14		<0, 00
320	GF003	<1	<0.2	<5	670	3	3.15	<1	200	16		0,01
321	GF004	<1	<0.2	<5	50	- 4	1.86	· <1	220	20		<0.00
322	GF005	<1	<0.2	<5	20	<1	0.70	<1 <1		4		<0, 00
323	GF006	<1	<0.2	<5	220	18	3.35	<1	35	. 8		0,00
324		<1	<0.2	<5	160	5	1.81	<1	225	ő		<0.00
						A-41						
							· ·					

RESULTS OF GEOCHEMICAL ANALYSIS

GANZE AREA

GAN	ZE AREA								a de la dela	an an a		
Ser.	Sample	Au	Ag	As	Ba	Cu	Fe	llg	Kn	Pb	Zn	S
No.	No.	ppb	ppm	ppm	ppa	ppm	%	ppm	ppm	ppm	ppm	%
325	GF008	<1	<0.2	<5	2560	18	4, 86	<1	715	28	24	0.072
326	GF009	<1	<0.2	10	200	7	2.59	<1	360	16	22	0.004
327	GF010	<1	<0.2	5	630	18	3.48	- <1	20	6	28	0.014
328	GF011	<1	<0.2	<5	390	19	2.45	<1	345	18	34	0.002
329	GF012	<1	<0.2	10	210	13	2.40	<1	355	4	20	0.003
330	GF013	<1	<0.2	10	80	10	2.25	<1	100	<2	16	<0.001
331	GF014	<1	<0.2	5	40	6	1.51	<1	670	<2		<0.001
332	GF015	<1	<0.2	15	40	6	1.97	<1	65	<2		<0.001
333	GF016	<1	<0.2	<5	40	- 11	2.83	<1	105	10	20	<0.001
334	GF017	<1	<0.2	20	40	6	4.86	<1	2080	6	262	0.003
335	GF018	<1	<0.2	15	40	5	5.49	<1	2750	8	172	0.002
336	GF019	<1	<0.2	<5	20	- 7	5.05	<1	1390	20	78	0.001
337	GF020	<1	<0.2	5	60	7	9.71	<1	7000	12		<0.001
338	GF021	<1	<0.2	15	80	9	9.19	<1	5410	14		<0.001
339	GF022	<1	<0.2	<5	10	<1	0.32	<1	40	4		<0.001
340	GF023	: <1	<0.2	<5	30	1	0.50	4	70	2		<0.001
341	GF024	<1	<0.2	5	250	4	2.09	<1	105	12	20	0.002
342	GF025	1	<0.2	<5	10	<1	0.30	<1	65	2		<0.001
343	GF026		<0.2	10	140	1 7	2.06	<1	150	10	22	<0.001
344	GF027	1	<0.2	· <5	100	3	1.29		60	8	12	<0.001
345:	GF028	<1	<0.2	<5	240	6	0.99 0.44		1005 65	12 <2	16	0.002 <0.001
346	GF029	<1	<0, 2 <0, 2	<5	10 20	<1	0. 44	<1 <1	65	4		<0.001
347	GF030	1	<0.2	<5 <5	20 30	1	0.67	<1	120	10	4	<0.001
348 349	GF031 GF032	<1 <1	<0.2	<5	30 30	· 1	0. 47	<1	45	<2	4	
350	GF032		<0.2	<5	10	<1	0.36	ें रो	30	8	-	<0.001
351°	GF035 GF034		<0.2	<5	<10	· <1	0.23	<1	40	<2		<0.001
352	GF035	· <1	<0.2	<5	20	1	0.58	<1	610	12		<0.001
353	GF036	<1	<0.2	<5	20	1	0.44	1	45	8		<0.001
354	GF037	□ <1	<0.2	<5	50	2	0.70	4	265	····6		<0.001
355	GF038	$\langle 1$	<0.2		40	2	1.07	1	215	12		<0.001
356	GF039	<1	<0.2	<5	20	- 1	0.48	<1	55	. 4		<0.001
357	GF040	<1	<0.2	5	30	1	0.77	<1	175	6	8	<0.001
358	GF041	<1	<0.2	<5	60	$\hat{4}$	1.77	<1	840	4		<0.001
359		<1	<0.2	10	460		2.82	<1	400	18		<0.001
360	GF043	<1	<0.2	<5	1860	13	2.59	<1	815	26		0.035
361	GF044	<1	<0.2	10	160	9	3.41	<1	585	18		<0.001
362		\sim $\sqrt{1}$	<0.2	10	560	17	3.67	<1	795	12		<0.001
363	GF046	<1	<0.2	5	190	6	1.55	<1	200	6		<0.001
364	GF047	· <1	<0.2	<5	120	15	2.42	<1	40	6		<0.001
365	GF048	<1	<0.2	<5	210	12	1.63	<1	2210	14	50	0.015
	GF049	<1	<0.2	25	590	35	7.31	<1	>10000	144	794	<0.001
	GF050	· · · <1	<0.2	20	260	43	4.17	<1		64	340	<0.001
	GF051	- <1	<0.2	<5	70	12	3.49	<1	1305	8	36	<0.001
369	GF052		<0.2	<5	10	- <1	0.29	<1	90	6	2	0.003
370		<1	<0.2	<5	10	- <1	0.19	<1	15	6		0.006
371	GF054	<1	<0.2	<5	20	2	0.91	<1	195	12	8	0.004
372	GF055	<1	<0.2	5	50	1	0, 81	<1	25	10	10	0.009
373	GF056		<0.2	<5	<10	<1	0.35	<1	25	8	2	0.007
374	GF057	<1	<0.2	<5	10	<1	0.69	<1	i i 30	10	2	0.005
375	GF058	1	<0.2	<5	10	<1	0.57	<1	35	<2	2	0.008
376	GF059	<1	<0.2	< <5	10	<1	0.55	<1	60	• 6	2	0.005
377	GF060	··· <1	<0.2	<5	20	<1	0.64	<1	40	14	2	0.007
378	GF061	<1	<0.2	<5	30	3	1.17		75	10	6	0.005
<u> </u>										· · · · ·		

GANZE AREA

RESULTS OF GEOCHENICAL ANALYSIS

Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	n ppm	Pb ppm	Zn ppm	
379	GF062	<1	<0.2	10	460	7	2.42	<1	1065	32	38	0. (
380	GF063	<1	<0.2	<\$	520	7	1.45	<1	885	14	26	-0. (
381	GF064	<1	<0.2	<5	150	3	1.09	<1	490	190	44	0. (
382	GF065			<5	260		0.95					0.0
		<1	<0.2			1		<1 	340	18	6	
383	GF066	3	<0.2	<5	80	1	1.02	<1	85	18	10	0. (
384	GF067		<0.2	<5	430	10	1.26	<1	2210	28	28	0.1
385 -	GF068	<1	<0.2	5	1850	13	3.08	<1	860	46	54	0. (
386	GF069	<1	<0.2	. <5	60	2	0.65	- <1	690	2	6	<0.1
387 -	GF070	<1	<0.2	<5	10	<1	0.29	<1	60	2	2	0. (
388	GF071	<1	<0.2	<5	10	3	1.59	<1	245	14	8	0.1
389	GF072	<1	<0.2	<5	20	1	0.71	<1	265	10	6	0, (
390	GF073	<1	<0.2	<5	40	1	0.69	<1	320	10	8	0.1
391	GF074	<1	<0.2	⊂<5	20	· <1	0.39	<1	80	Ž	4	0.
392	GF075	<1	×0. 2	<5	100	. 3	1.58	<1	575	24	- 8	0.
393	GF076	<1	<0.2	5	10	2	1.08	1		10	· · · · ·	0.
000			10.2	J /E		. 0			90		4	
394	GF077	<1	<0.2		<10	2	1.99	<1	95	16	4	0.
395	GF078	<1	<0.2	<u> </u>	70	2	1.69	<1	1055	12	- 8	0.
396	GG001	<1	<0.2	. 5	1880	13	2.96	<1	1275	22	50	0.
397	GG002	: <1	<0.2	<5	20	1	0.72	<1	100	10	6	0.
398	GG003	<1	<0.2	<5	330	4	1.74	< <u>1</u>	640	22	22	0.
399	GG004	<1	<0.2	5	710	4	2.37	<1	1830	26	30	0.
400	GG005	<1	<0.2	5	20	1	0.54	<1	30	8	2	0.
401	GG006	<1	<0.2	.<5	840	<u>9</u>	2.44	<1	140	16	30	0.
402	GGOD7	<1	<0.2	<5	500	ő	1.99	$\langle 1$	1330	18	22	0.
402	GG008			5	50	0 0	0.76			10		
		<1	<0.2			2 2		<1	200	8	10	0.
404	GG009	<1	<0.2	5	220	Z	0.93	<1	620	16	12	0.
405	GG010	<1	<0.2	<5	120	1	0.36	<1	35	8	2	0.
406	GG011	<1	<0.2	<5	70	<1	0.23	<1	10	4	2	0.
407	GG012	<1	<0.2	<5	120	6	2.23	<1	910	20	22	0.
408	GG013	<1	<0.2	10	210	10	2.95	<1	700	14	30	0.
409	GG014	<1	<0.2	<5	120	4	1,30	<1	645	16	10	0.
410	GG015	<1	<0.2	<5	40	1	0.54	<1	30	4	4	0.
411	GG016	<1	<0.2	5	50	ĺ	0.79	<1	80	2	8	0.
412	GG017	<1	<0.2	<5	90	5	1.06	<1	550	14	16	0.
413		<1		<5	120	6						
	GG018		<0.2				1,86	<1	645	4	22	0.
414	GG019	`< <u>1</u>	<0.2	10	20	<1	0.44	<1	85	2		<0.
415	GG020	<1	<0.2	<5	30	. 1	1.16	<1	325	8		<0.
416	GG021	<1	<0.2	<5	30	2	1.01	<1	150	8	12	0.
417	GG022	<1	<0. 2 :	10	60	4	1.42	<1	205	12		<0.
418	GG023	<1	<0.2	5	30	3	2,09	<1	450	14	8	
419	GG024	<1	<0.2	5	10	2	0.88	<1	115	8		<0.
420	GG025	<1	<0.2	<5	īŏ	<1	0.56	<1	295	8		×0.
421	GG026	<1	<0.2	<5	10	1	0.43	<1	120	2		<0.
422	GG020	<1	<0.2	5	370	2	1.99	<1	55			
	GG021		20.9							16 c		0.
423		<1	<0.2	<5	10	<1	0.50	<1	100	6		<0.
424	GGD29	<1	<0.2	<5	100	3	0.84	<1	420	8	10	
425	GG030	<1	<0.2	<5	40	2	1.08	- <1	410	18	. 8	
	GG031	<1	<0.2	<5	10	- 1	0.43	<1	75	2	4	<0.
427	GG032	<1	<0.2	<5	40	1	0.44	<1	20	2	- 4	
428	GG033	<1	<0.2	<5	- 30	1	0.55	<1	$\overline{35}$	<2		<0.
429	GG034	<1	<0.2	<5	30	$\tilde{2}$	0.77	<1	125	4	- Q	<0.
430	GG035	<1	<0.2	<5	80	4	2.28	<1	385	16		<0.
431	GG036	<1	<0.2	5	20	1	0.68		205			
		<1	<0.2	 _<5	20 90	1				2		<0.
432	<u>GG037</u>	<u></u>	10.6	0	30	3	<u>1.05</u>	<1	140	8	12	<0.
	· ·		1 A.									

GANZE AREA

RESULTS OF GEOCHEMICAL ANALYSIS

			· · · · · · · · · · · · · · · · · · ·		·					1	· · · · · ·
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	ppm	Pb ppm	Zn S ppm %
433	GG038	<1	<0.2	<5	80	3	1.26	<1	870	18	10 < 0.001
434	GG039	<1	<0.2	<5	. 30	1	0,62	∵ <1	930	10	4 <0.001
435	GG040	<1	<0.2	<5	20	1	0,87	. <1	545	14	6 < 0. 001
436	GG041	<1	<0.2	- 5 .	20	1	1.08	· · <1 .	385	22	6 < 0. 001
437	GG042	<1	<0.2	<5	10	<1	0.09	<1	10	<2	<2 <0.001
438	GG043	<1	<0.2	<5	90	- 3	0.97	<1	2140	20	20 < 0. 001
439	GG044	. <1	<0.2	<5	360	- 7	2.62	<u>1</u>	1010	16	38 < 0.001
440	GG045	<1	<0.2	5	20	1	0.94	<1	115	12	6 <0.001
441	GG046	<1	<0.2	<5	10	· <1	0.50	<1	90	··· <2 ·	2 < 0.001
442	GG047	<1	<0.2	5	420	10	1.92	sta ≺1	1550	18	28 0.002
443	GG048	<1	<0.2	<5	70	: 1	0.74	<1	400	6	4 < 0.001
444	GG049	<1	<0.2	<5	70	<1	0.42	<1	125	<2	2 < 0.001
445	GG050	8	<0.2	<5	30	<1	0.30	<1	200	. 4	4 0.005
446	GG051	<1	<0.2	<5	60	1	0.67	. <1	485	6	8 0.006
447	GG052	<1	<0.2	10	90	2	0.90	<1	575	8	12 0.005
448	GG053	<1	<0, 2	5	190	6	2,68	<1	795	2	32 0.008
449	GG054	<1	<0.2	<5	30	1	0.75	<1	150	6	4 0.001
450	GG055	<1	<0.2	<5	50	2	0.56	1	70	6	6 0.005
451	GG056	<1	<0,2	<5	100	2	0.72	<1	425	2	10 0.002
47-01-0-0-		1					1			1.5	

JIBANA AREA

RESULTS OF GEOCHEMICAL ANALYSIS

No.	No.	ppb	Ag ppm	As ppm	Ba ppn	Cu ppm	Fe %	llg ppm	Nn ppm	Pb ppm	Zn ppm	\$ •
1	JA001	<1	<0.2	<5	120	4	0.90	<1	760	6	10 <	
2	JA002	<1	<0.2	5	70	. 2	0.91	<1	425	8), 001
3	JA003	<1	<0.2	10	260	4	2.56	<1	1430	26), 002
4	JA004	<1	<0.2	20	100	2	3.53	<1	1380	22	14 <(
5	JA005	<1	<0.2	5	60	2	3.34	<1	1330	18	12 <0	
6	JA006	<1	<0.2	5	50	3	3.55	<1	1415	10	14 <0	
-7-	JA007	<1	<0.2	20	180	10	4.29	<1	2190	18	32 <0	
8	JA008	<1	<0.2	5	190	9	3.52	<1	700	16	26 <0	
9 10	JA009 JA010	<1 <1	<0.2 <0.2	<5 10	170 20	65	3.61 2.62	· <1	1995	16	28 <0), UUI \ 001
11	JA010	<1	<0.2	<5	70	5 4	3.29	<1 <1	510 1055	12 16	18 <0 18 <0	
12	JA012	<1	<0.2	20	90	2	5.25 2.08	<1	455	24		
13	JA012	<1	<0.2	5	120	7	1.27	<1	1080	12), 001
14	JA014	<1	<0.2	5	340	3	1.27		495	<2		0.001
15	JA015	<1	<0.2	<5	40	- 1	0.47	<1	90	8). 001
16	JA016	<1	<0.2	5	30	1	0.58	<1	60	6). 002
17	JA017	<1	<0.2	<5	110	12	1.87	<1	310	16). 001
18	JA018	<1	<0.2	5	140	6	2.26	<1	355	Ĝ	18 <	
19	JA019	<1	<0.2	<5	100	7	2.14	. <1	1760	10	20 <0	
20	JA020	<1	<0.2	<5	40	4	1.66	<1	1265	16	10 <(
21	JA021	<1	<0, 2	5 5	40	S. 7	2.61	<1	1875	12	280 (), 007
22	JA022	<1	<0, 2		30	9 G	4.22	<1	3120	20	156 <0). 001
23	JA023	<1	<0.2	10	160	<u> </u>	6.78	<1	4470	120	220 <(). 001
24	JA024	<1	<0.2	10	150	9	10.35	<1	5230	58	114 <(
25	JA025	<1	<0.2	10	80	6	6.98	<1	3900	38	108 <(
26	JA026	<1	<0.2	-25	660	13	13.15	<1	>10000	198	410 <(
27	JA027	<1	<0.2	<5	270	9	6.62	: <1	4430	130	394 <(
28	JA028	<1	<0.2	20	230	19	9.45	. <1	6790	122	858 <(
29	JA029	<1	<0.2	10	100	10	6.03		4470	110	392 <(
30 31	JA030 JA031	<1 <1	<0.2 <0.2	5 20	690 90	19 17	8.99 9.31	: <1 : <1	7400 7330	130		
32	JA032	<1	<0.2	35	5510	35	$\frac{9.31}{13.00}$		>10006	166 2420	992 <(732 <(
33	JA033	<1	<0.2	20	60	12	8.24	<1	5210	2420 36	482 <(
34	JA035	<1	<0.2	200	510	22	14.45		7170	114	2110 <	
35	JA035	<1	<0.2	95	290	30	12.05	ं रो	5500	94	1960	
36	JB001	<1	<0.2	20	20	13	3.45	<1	4910	10	138 <	
37	JB002	<1	<0.2	<5	30	18	2.75	<1	2160	8	66 <	
- 38	JB003	<1	<0.2	<5	10	12	2.77	<1	2180	12	62 <	
39	JB004	<1	<0.2	<5	<10	11	2.57	<1	1430	6		0, 002
40	JB005	<1	<0.2	15	<10	8	2.37	<1	900	22		0. 00:
41	JB006	<1	<0.2	. 5 5	10	13	3.49	<1	1715	6	52	0. 002
42	JB007	<1	<0.2		20	10	2.31	<1	1190	36	68	0. 00
43	JB008	<1	<0.2	<5	30	10	3.85	<1	1900	26	140 <	
44	JB009	<1	<0.2	10	60	10	5.43	<1	3730	32	252 <	
45	JB010	<1	<0.2	15	90	18	6.71	<1	4640	48	374 <	
46	JB011	<1	<0.2	20	60	22	6.25	<1	3020	70	246 <	
47	JB012	<1	<0.2	15	500	16	6.75	<1	3270	- 78	254 <	
48	JB013	<1	<0.2	20	330	19	4.23	1	3340	82	268 <	
49	JB014	<1	<0.2	15	100	11	2.23	<1	895	24	24 <	
	JB015	<1	<0.2	20	100	13	2.52	1	570	34	32 <	
51	JB016	<1	<0.2	20	30	10	3.26	<1	2050	12	48 <(
52 52	JB017	<1	<0, 2 <0, 2	5 5	40	17	3.32	12	1255	24	30 <	
53 54	JB018 JB019	<1 <1	<0.2	25	60 70	16 13	3.29 2.83	<1 <1	4170	30 56	62 <	
- 54	10019		NU, 4	<u>4</u> J		61	2.00		1760	56	66 <(v. vv

JIBANA AREA

											ور المحمد ال	أستعر ومعادر ورواح
Ser, No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppm	\$ %
55	JB020	<1	<0.2	15	110	12	2,46	<1	1640	244	38	<0.001
56	JB021	<1	<0.2	10	30	6	3, 57	<1	2360	22		<0.001
57	JB022	<1	<0.2	$\tilde{25}$	390	3	1.92	<1	160	64		<0.001
58	JB023	<1	<0.2	< 5	840	ğ	0, 83	<1	40	16	- 4	<0.001
59	JB024	ं रो	<0.2	5	220	3	0.63	<1	680	14	4	<0.001
60	JB025	<1	<0.2	· 5	750	ĩ	0.45	<1	150	18	2	
61	JB026	<1	<0.2	5	2890	. 8	1.03	<1	1050	22	14	0.062
62	JB027	<1	<0.2	<5	160	2	0.73	<1	435	10		<0.001
63	JB028	<1	<0.2	15	170	4	1.19	<1	715	26		<0.001
64	JB029	<1	<0.2	5	90	7	1.81	<1	780	16		<0.001
65	JB030	<1	<0.2	10	340	11	2.03	<1	320	10		<0.001
66	JB031	<1	<0.2	15	140	- 4	2.03	<1	2590	24		<0.001
67	JB032	<1	<0.2	5	90	3	2.45	· <1	885	30		<0.001
68	JB033	$\sqrt{1}$	<0.2	10	170	4	2.35	· <ī	750	22	26	<0.001
69	JB034	1>	<0.2	5	240	3	2.20	<1	1030	6		<0,001
70	JB035	<1	<0.2	20	280	4	4.11	<1	920	20		<0.001
71		<1	<0.2	20	270	3	4.22	<1	1585	14		<0.001
$\overline{72}$	JB037	1	<0.2	. Š	220	3	4.45	<1	3010	16		<0.001
73	JB038	<1	<0.2	<5	90	- 3	2.81	<1	1940	24		<0.001
74	JB039	<1	<0.2	<5	80	3	2.86	<1	1175	12		<0.001
75		: <1	<0.2	20	60	9	8.62	. <î	4360	30		<0.001
76	JB041	1	<0. 2	20	50	12	6.67	<1	4320	30		<0.001
77	JB042	<1	<0.2	20	60	16	5.62	<1	4800	10		<0.001
78	JB043	<1	<0.2	35	60	19	4.33	<1	2960	22		<0.001
79	JB044	<1	<0.2	15	40	$\tilde{20}$	5.22	<1	3390	$\tilde{16}$		<0.001
80	JB045	<1	<0.2	10	50	20	4.66	<1	3020	26		<0.001
81	JB046	<1	<0.2	5	40	19	5.22	<1	3830	26		<0.001
82	JB047	<1	<0.2	- 5-	40	15	4.86	া ব	4760	26		<0.001
83	JB048	1>	<0.2	· 5	30	25	7.11	<1	4000	56		<0.001
84	JB049	<1	<0.2	15	30	26	6, 53	<1	6720	28		0.005
85	JB050	<1	<0.2	15	60	25	6.26	<1	4290	16		<0.001
86	JB051	<1	<0.2	30	70	29	6.98	1	3900	24		<0.001
87	JB052	<1	<0.2	15	270	6	1.97	· · · <1	145	34		<0.001
88	JB053	<1	<0.2	<5	1330	1 i	0.76	<1	85	12		0.032
89	JB054	<1	<0.2	5	130	3	0.64	<1	175	8		<0.001
90	JB055	<1	<0.2	<5	1770	2	0.65	<1	185	<2	Ž	
91	JB056	<1	<0.2	<5	280	2	0.45	<1	230	12		0.001
92	JB057	<1	<0.2	5	10	8	2.21	<1	1025	10		<0.001
93	JB058		<0.2	<5	<10	8 5	0.97	<1	1550	10		<0.001
94	JB059	<1	<0.2	10	10	7	2.02	1	2570	4	46	
95	JB060	<1	<0.2	5	40	18	2.57	<1	4370	22	224	0.004
96	JB061	<1	<0.2	15	20	10	3.30	<1	1410	30	58	<0.001
.97	JB062	<1	<0.2	20	* -	59	4.89	<1	485	14	56	<0.001
98	JB063	<1	<0.2	· <5	130	61	4.94	(Î	1405	<2		<0.001
99	JB064	<1	<0.2	15	260	74	5.49	<1	1555	4		<0.001
100	JB065	<1	<0.2	15	70	70	5.74	··· <1	1515	10	62	<0.001
101	JB066	<1	<0.2	10	140	70	5,95	<1	1575	2		<0.001
102	JB067	<1	<0.2	<\$š	ÎOŎ	79	6.31	<1	595	<2		<0.001
103	JB068	<1	<0.2	15	90	52	5.38	<1	1350	10		<0.001
104	JB069	<1	<0.2	20	90	60	6.36	<1	1155	32		<0.001
105	JB070	<1	<0.2	<5	130	82	5.06	<1	675	8		<0.001
106	JB071	<1	<0.2	<5	90	62	5.57	<1	1630	8		<0.001
107	JB072	<1	<0.2	20	130	70	5.95	े रो	1375	<2		<0.001
108	JB073	· · · · · · · · · · · · · · · · · · ·	<0.2	20	140	88	6.90	ं रो	1505	14		<0.001
				<u> </u>								<u>v. v.</u>

JIBANA AREA

•

RESULTS OF GEOCHEMICAL ANALYSIS

ፈገገቡ	лил албат										·
Ser. No.	Sample No.	Au ppb	Ag ppn	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppn	Nn ppn	Pb ppa	Zn S ppm %
109	JB074	<1	<0.2	<5	130	64	6.19	<1	1280	4	78 < 0.001
110	JB075	<1	<0.2	<5	130	57	5.10	<1	150	⊴ <2	78 < 0.001
111	JB076	<1	<0.2	15	320	55	4.70	<1	95	6	62 < 0.001
$\overline{112}$	JB077	<1	<0.2	<š	130	52	4.85	<1	755	1Ŏ	90 <0.001
113	JB078	<1	<0.2	<5	90	54	5.28	<1	480	10	88 < 0.001
114	JB079	<1	<0.2	15	130	46	4,13	<1	505	6	82 < 0.001
115	JB080	<1	<0.2	<5	110	46	4.93	<1	590	16	52 <0.001
116	JB081	<1	<0.2	15	80	43	4.05	<1	580	6	56 <0.001
117	JC001	<1	<0.2	· <5 ·	110	44	4.67	<1	590	10	48 < 0. 001
118	JC002	<1	<0.2	5	20	12	4.56	<1	2500	26	200 <0.001
119	JC003	<1	<0.2	15	40	11	4.09	<1	1985	12	144 <0.001
120	JC004	<1	<0.2	20	120	21	6.08	· <1	4530	26	364 < 0.001
121	JC005	· <1	<0.2	10	160	10	1.59	<1	2510	50	134 0.011
122	JC006	<1	<0.2	10	60	7	4.65	1	2680	50	74 0.008
123	JC007	<1	<0.2	10	110	5	1.88	. <1	1100	64	22 0.010
124	JC008	<1	<0.2	· <5	130	2	1.51	<1	180	26	8 0.007
	JC009	<1	<0.2	<5	30		0.27	<1	25	8	2 0.004
	JC010	<1	<0.2	<5	10	9 (1	0.23	. <1	10	<2	<2 0.005
127	JC011	1	<0.2	10	210	5	1.32	2	410	12	12 0.007
128	JC012	<1	<0.2	<5 7	80	1	0.91	<1	15	22	2 0.007
129	JC013	<1	<0.2	<5	150	1	0.55	<1	65	28	4 0.004
130	JC014	<1	<0.2	<5	90 480	<1 2	0.34 0.63		10	20	<2 <0.001
131	JC015 JC016	<1 <1	<0.2 <0.2	<5	2600	2 1	0. 72	. <1	245	10	2 0.005
$\frac{132}{133}$	JC010 JC017	\sim	<0.2	: <5 <5	2000	1	0.12	<1 <1	30 30	12 <2	2 0.046 2 0.003
	JC017	<1	<0.2	<5	280	4	1.60	1	420	18	8 0,002
$134 \\ 135$	JC018		<0.2	. <5	330	6	2.70	<1	420 600	10	16 0.002
136	JC019 JC020	<1	<0.2	<5	300	. 7	4.45	<1	720	38	36 0.003
137	JC021	<1	<0.2	10	100	5	1.39	<1	635	20	20 < 0.003
138	JC022	<1	<0.2	25	120	8	3, 26	<1	440	36	40 < 0. 001
139	JC023	<1	<0.2	10	310	8	3.94	. <1	650	32	38 < 0.001
	JC024	<1	<0.2	<5	120	4	1:65	<1	395	20	18 < 0.001
141	JC025	<1	<0.2	. <5	260	4	3.05	<1	550	20	28 0.006
142	JC026	<1	<0.2	10	270	8	2.95	<1	1930	28	38 0.002
143	JC027	<1	<0.2	5	320	5	2.78	<1	1540	22	26 0.002
	JC028	4	<0.2	5	210	5	1.52	<1	1375	14	30 0.004
145	JC029	<1	<0.2	10	130		1.28	<1	1240	16	12 < 0.001
146		<1	<0.2	<5	110	. 2	0.73	<1	395	10	8 < 0.001
147		<1	<0.2	- 5	250	5	1.51	<1	970	60	40 0.008
	JC032	<1	<0.2	15	230	9	3.40	<1	220	142	44 0.002
	JC033	<1	<0.2	<5		6	3.47	. <1	610	94	52 0.005
150	JC034	<1	<0.2	10	730	16	4.40	` <1	3080	44	272 0.007
151	JC035	<1	<0.2	25	110	13	6.35	<1	1115	84	146 0.008
	JC036	<1	<0.2	15	170	17	3.14	<1	2980	44	170 0.003
153	JC037	<1	<0.2	10	100	9	2.45	2	905	.36	32 0.005
154	JC038	· <1	<0.2	<5	60		2.19	<1	1300	- 36	32 0.005
155	JD001	<1	<0.2	<5	80	2	0.87	· <1	500	8	6 < 0.001
	JD002	<1	<0.2	<5	130	: 4	2.34	··· 2	485	1.8	20 0.002
157	JD003	<1	<0.2	<5	100	2	1,03	<1	365	12	6 <0.001
158	JD004	<1	<0.2	<5	120	4	2.03	<1	835	20	16 < 0.001
1.59	JD005	<1	<0.2	<5	30	2	0.47	. <1	225	4	4 < 0.001
160	JD006	<1	<0.2	<5	200		2.56	<1	605	14	16 0.003
161	JD007	· <1	<0.2	<5	80	2	0.81	<1	300	10	8 0.005
<u>162</u>	JD008	<1	<0.2	<5	. 130	3	<u> </u>	<1	320	24	<u>18 0.009</u>

JIBANA AREA

RESULTS OF GEOCHEMICAL ANALYSIS

Ser. Sample Au Ag As Ba Cu Pe Hg ppm ppm	*)18	апа акелж													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														· · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	163	JD009		<1	<0.2		<5	110	. 3	2, 50	<1	715	26	16	0,003
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		JD011		<1	<0.2										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			÷.,	<1					. 1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	167	JD013	11	<1					1	0.53	<1	100		4	<0.001
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		JD014		<1									8	- 4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							5								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							5		9						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			÷.,												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2						9						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						• •									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						÷., .									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						· ·									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1.									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 3	2,00					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						÷.,									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	190	JD036		<1	<0.2	į.				0.30	<1	110		2	<0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									· 3·					18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						- '									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1			-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			197						· •						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					20.2					1.09					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		20.2					1.04 0.00					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					10.2	•				0.99					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.10					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.04					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						- 									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									$\frac{1}{2}$					2 8	0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			·				5								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							5								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			11		<0.2	• ,			3.						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					<0.2					3. 31					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										2.89			22		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· .		<0.2					3.64			22		
214 JE013 <1								360		4. 28	<1				
215 JE014 <1 <0.2 <5 290 3 2.08 <1 1140 20 16 0.004							10			4.97					
	215	JE014				•				2.08	<1	1140	20		
	<u>216</u>	JE015		<1	<0.2		<5	110	<u> <1</u>	0.39	<u> <1</u>	30	12		

JIBANA AREA

4) I D	ана акбат	• ·										
Ser. No,	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
217	JE016	<1	<0.2	<5	60	1	0.49	<1	170	12	4 0.0	001
218	JF001	.<1	<0.2	15	60	20	4.55	<1	3050	24	220 <0.0)01
219	JF002	- 3	<0.2	10	50	14	6.00	<1	4000	10	124 <0.0)01
220	JF003	1	<0.2	15	- 80	65	6.58	<1	325	2	64 <0.0)01
221	JF004	<1	<0.2	10	140	58	5.95	<1	1030	12	84 0.0)18
222	JF005	· <1	<0.2	20	100	64	5.83	<1	1385	12	68 0.0)20
223	JF006	<1	<0.2	20	220	53	5.46	- <1	1335	8	56 0.0)12
224	JF007	<1	<0.2	5	120	68	6.33	<1	1315	- 4	68 0.0)08
225	JF008	<1	<0.2	<5	190	10	2.17	<1	290	12	24 0.0)07
226	JF009	<1	< 0.2	20	90	55	6.29	<1	1115	10	82 0.0)13
227	JF010	<1	<0.2	10	130	59	5.59	<1	1545	4	104 0.0)17
228	JF011	<1	<0.2	<5	100	74	5.89	<1	1645	8	74 <0.0	001
229	JF012	: <1	<0.2	20	70	44	5.28	<1	830	10	76 0.0	
230	JC001	<1	<0.2	15	190	7	3.24	<1	1070	26	38 0.0	
231	JG002	1	<0.2	<5	100	i 3	1.42	<1	320	16	10 0.0	
232	JG003	- <1	<0.2	10	230	- 4	2.29	<1	655	- 30	24 0. (
233	JG004	<1	<0.2	<5	1500	5	1.49	<1	430	18	14 0.0	
234	JG005	<1	<0.2	<5	100	3	1.55	<1	190	10	8 0.0	
235	JG006	<1	<0.2	10	260	2	1.98	<1	60	12	12 0.0	
236	JG007	<1	<0.2	<5	50	- 1	0.56	<1	425	10	4 0.6	
237	JC008	<1	<0.2	15	260	- 4	0.83	<1	380	22	18 0.6	
238	JG009	· <1	<0.2	10	1690	4	0.98	<1	295	56		018
239	JG010	1	<0.2	5	340	1	1.75	<1	25	20		006
240	JG011	<1	<0.2	10	140	1	1, 19	<1	45	$\overline{34}$		005
241	JG012	<1	<0.2	10	270	10	2.97	<1	1270	64		007
242	JG013	· <1	<0.2	10	290	<1	1.54	<1	15	56		006
	JG014	<1	<0.2	<5	:140	1	0.76	<1	20	54		005
244	JG015	<1	<0.2	<5	190	1	1.32	<1	85	50		004
245	JG016	<1	<0.2	15	280	10	2.85	<1	1290	74		002
246	JG017	<1	<0.2	15	340	9	4.59	<ī	3140	36		002
247	JG018	4	<0.2	30	400	24	8.41	$\bar{\mathbf{A}}$	6620	24	206 <0.	
248	JG019	· · · · · · · · · · · · · · · · · · ·	<0.2	25	420	22	7.04	<1	5180	22	266 < 0.	
249	JG020	<1	<0.2	30	200	21	9.69	<1	7650	$\overline{26}$		003
250	JC021	<1	<0.2	20	70	26	4.85	1	2230	20		003
251	JG022	<1	<0.2	5	80	31	3.89	<1	750	22	50 < 0.	
252	JG023	1	<0.2	15	70	74	6.42	<1	1480	2	72 <0.	
253	JG024	ं रो	<0.2	20	170	59	6.47	<1	870	10	90 <0.	
	JG025	<1	<0.2	20	60	58	6.25	1	1125	8	88 <0.	
255	JG026	<1	<0.2	25	140	55	6.19	<1	1570	8	72 <0.	
256	JG025	<1	<0.2	20	190	53	6.39	<1	1090	6	92 <0.	
257	JG021	<1	<0.2	15	150	61	6.35	1	750	10	52 <0. 74 <0.	
258	JG028	<1	<0.2	20	160	45	5.41	1	185			
258 259	JG029 JG030	1	<0.2	15	140	45	5.35	<1	185	6	92 <0. 76 <0	
	JG030 JG031	<1	<0.2	10	140	40 55				4	76 <0.	
<u>260</u>	10091	<u></u>	10.4		100	00	6.20	<1	1110	2	<u>90 <0.</u>	001

RIBE AREA

RESULTS OF GEOCHEMICAL ANALYSIS

	E AKEAX						This is a second with the second					
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	\$ %
1	RA001	<1	<0.2	<5	140	5	2.75	<1	155	28	20 0.	005
2	RA002	<1	<0.2	<5	90	. 5	2.47	<1	770	88	166 <0.	
3	RA003	3	3.4	10	320	5	1.27	1>	140	280	72 0.	
4	RA004	<1	0.2	<5	410	18	2.48	<1	1120	134		007
5	RA005	<1	<0.2	5	4200	10	3.79		>10000	68		006
. 6	RA006	<1	0.2	<5	70	<u>7</u>	1.35	<1	335	12		005
7	RA007	<1	<0.2	<5	200	15	2.97	<1	615	12		006
8	RB001	<1	<0.2	5	100	4	1.16	1	425	16		. 002
9	RB002	<1	<0.2	<5	70	: 3	0.62	<1	860	12		001
	RB003	<1	<0.2	<5	20	1	0.31	<1	-75	2		001
	RB004	<1	<0.2	<5	20	1	0.33	1	140		6 <0.	
12		<1	<0.2	<5	40	1	0,43	<1	265	10		. 003
13	RB006	<1	<0.2	<5	60	2	0,96	<1	790	26		006
14	RB007	<1	<0.2	20	170	2	1.45	<1	130	28		012
15	RB008	<1	1.0	10	140	2	1.11 0.73		20	50		015
16	RB009		1.2	5	290	1 8	2, 26	<1 <1	10 905	126 718	80 0	013
17	RB010 RB011	<1	1.4 <0.2	35 <5	100 170	53	2, 20 4, 36	<1	905 140	6		. 019
18 19	RB011	<1	<0.2	<5	440	47	4. 13	<1	140	20		. 002
20	RB012 RB013	<1	<0.2	15	150	45	4.15	2	320	12	38 0	
21	RB014	<1	<0.2	5	300	59	5.01	1	555	24	58 <0.	
22	RB015	<1	<0.2	15	210	56	4.97	<1	715	6	54 <0.	
23	RB017	<1	<0.2	< 25	10	1	0.25	<1	60	2		004
24	RB018	. <1	<0.2	<5	140	$\hat{7}$	1.74	<1	330	8	28 <0.	
25	RD001	<1	<0.2	<5	140	5	2.36	<1	415	18	30 <0.	
26	RD002	<1	<0.2	<5	30	1	0.45	<1	240	4	2 0	
27	RD003	. <1	<0.2	< <5	140	9	2,97	<1	640	16	24 0,	
28	RD004	<1	<0.2	<5	90	3	1.66	-	595	22	14 0.	004
29	RD005	<1	<0.2	5	50	. 7	2, 03	<1	920	58	24 0	
	RD006	<1	<0.2	; <5	150	8	1.84	<1	140	12	20 0	
31	RD007	star <1	<0.2	15	70	64	5.38	. <1	665	4	64 <0.	
32	RD008	<1	<0.2	<5	120	6	1.37	<1	260	16	10 0	
33	RD009	<1	<0.2	<5	100	· 2	0.75	<1	100	12	<2 0	
34	RD010	<1	<0.2	<5	100	2	0, 59	<1	445	10	4 0	
35	RD011	<1	<0.2	<5	240	38	3.82	3	220	14	50 0	
36	RD012	<1	<0.2	<5	220	55	6.16	<1	1040	20	32 0	
37	RD013	<1	<0.2	20	250	57	5.88 2.63	5	1010	6		004
38	REO01	<1	<0.2	20	180	7	Z, 03	<1	665 520	10		. 003
39	REOO2	. <1	<0.2	<5	170	.: 8 E	2.04	. (1	040	10	34 0	. 000
40	RE003	<1	<0.2	5	220	: ·5.	2,44	<1	350	22	38 <0	
41	REOO4	<1 <1	<0.2 <0.2	<5	180	. 7	0.65 2.79	1 3	385 535	6 18		. 001
42	RE005 RE006	<1	<0.2	10	70 70	· 5 2	2. (J 2 N/	<1	585		38 0	. 007
43			<0.2	15 <5	210	10	2.04 1.91	<1	470	68 8		
44 45	RE007 RE008	<1 <1	<0.2	<5	40	3	1. 27	2	410 190	0 8	18 0 6 0	. 00a . 006
49 46	RE009	<1	<0.2	<5	40	6	2.16	<1	190 255	6 6		. 000 . 007
40 47	RE010	<1	<0.2	<5	150	10	1. 44	<1	605	6		. 008
48	RE011	<1	<0.2	<5	10	3	1.37	1	190	14		. 006
49	RE012	<1	<0.2	. <5	150	57	4.84	<1	245	6		. 006
50	RF002	<1	<0.2	5	.90	2	1,06	<1	105	<2		. 003
51	RF003	<1	<0.2	<5	100	ī	0.70	1	200	8		. 001
52	RF004	<1	<0.2	<5	70	ī	0.63	ं र्रो	345	8		. 001
53	RF005	<1	<0.2	<5	150	Ĩ	1.60	3	165	··· 8	20 0	
54	RF006	<1	<0.2	5	60	2	0.55	1	245	2	8 <0	

	5 ANDAT										·····			
Ser. No.	Sample No.		Au ppb	Ag ppm	 pi	ls)m	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppm	8
55	RF007		<1	<0.2		(5	60	2	0.66	<1	130	10		0. 001
56	RF008		<1	<0.2	•	(5	70	3	1.23	<1	190	10		0.001
57	RF009		<1	<0.2		5	240	10	3.54	<1	310	18		0.001
58	RF010		<1	<0.2		(5	140	6	2.40	<1	200	4		0.001
59	RF011		<1	<0.2		(5	70	3	1.26	1	135	10		0.001
60	RF012		<1	<0.2		(5	150	4	2.14	<1	255	16		0.001
61	RF013		<1	<0.2		L0.	120	4	1.81	<1	500	12		0.001
62	RF014		<1	<0.2		10	140	13	3.65	<1	350	22		0.000
63	RF015		<1	<0.2		5	60	5	2.05	1	510	22	20	0.00
64	RF016	1.1	<1	<0.2		0	120	8	2.88	<1	440	22		0.001
65	RF017		<1	<0.2		15	130	3	3.48	<1	195	24		0.00
66	RG002		<1	<0.2		(5	110	4	1.98	1	315	24		0.008
67	RG003		<1	<0.2		5	130		1.98	2	250	10	28	0.00
68	RG004		<1	<0.2		5	210	8	4.63	<1	1375	40		0.00
69	RG005		<1	<0.2		25	170	25	3.20	<1	945	16		0.01
70	RG006		<1	<0.2		lO	190	19	2.21	<1	650	14		0.00
71	RG007	•	<1	<0.2		0	140	61	5.21	<1	165	12		0.00
72	RG008		<1	<0.2		10	170	34	3.37	<1	175	10		0.00
73	RGOO9	1	<1	<0.2		0	530	43	4.23	<1	725	24		0.00
74	RG010		<1	<0.2		90	390	54	5.00	<1	890	22		0.00
75	RG013		<1	<0.2		<5	180	73	5.87	<1	2580	12		0.00
76	RG014		<1	<0.2		10	. 110	78	5.73	<1	1620	18		0.00
77	RG015	1	<1	<0.2		<5	180	75	5.99	<1	2990	12		0.00
78	RG018		<1	<0.2		<5	110	77	5.96	<1	1680	6		0.00
79	RG019	•	<1	<0.2		<5	140	70	5.69	<1	1295	4		0.00
80	RG020		. <1	<0.2		<5	100	75	6.19	1	1315	<2		<0.00
81	RG021		<1	<0.2		20	110	71	6.17	<1	1940	. 8		<0.00
82	RG022		<1	< 0.2		<5	550	63	<u>6.12</u>	<1	<u> 1955</u>	8	92 <	< <u>0.00</u>

MKANGONBE AREA

er. No.	Sample No.		Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppm	9
1	MB001		<1	<0.2	5	70	2	0. 90	<1	180	4		0.001
$\overline{2}$	MB002		<1	<0.2	<5	120	2	0.79	1	75	4		0. 001
3	MB003		<1	<0.2	5	110	5	1.48	<1	65	10		0, 001
4	MB004		<1	<0.2	10	80	3	1.28	<1	40	6	18 <	0.001
5	MB005		<1	<0.2	<5	40	· · . < <u>1</u>	0.63	<1	70	4		0.001
6	MB006		<1	<0.2	<5	40	1	0.60	<1	40	6		0.001
7	MB007		<1	<0.2	<5	60	2	0.80	<1	140	4		0.00)
8	MB008		<1	<0.2	<5	140	4	1.13	<1	80	8		0.001
9.	MB009		<1	<0.2	<5	90	3	1.33	<1	85	8		0.001
10	MB010		_ <1	<0.2	<5	110	2	1.11	<1	70	4		0.00
11	MB011	••	<1	<0.2	<5	100	2	0.91	<1	210	6		0.001
12	MB012		<1	<0.2	5	70	1	0.78	<1	110	8		0.00
13	MB013		<1	<0.2	<5	160	2	1.08	<1	95	2		0.00
14 1 E	MB014		<1	<0, 2 <0, 2	<5	10	2	0.82 1.24	<1 <1	30 35	2		0.001 0.001
15 16	MB015 MB016	· ·	<1 <1	<0.2	10	160 70	3	0.85	$\langle 1 \rangle$	135	6 4		0.001
17	MB017		<1	<0.2	<5 5	100	4	1.27	<1	45	4		0.001
18	MB018		<1	<0.2	<5	50	1	0.73		. 75	2		0.00
19	MB019	÷	<1	<0.2	10	80	3	1.65	<1	105	12	18 <	
20	MB020		ঁ বাঁ	<0.2	<5	40	1	0.47	<1	100	2		0.00
21	NB021		<1	<0.2	<5	60	1	0 . 59	<1	10	$\tilde{2}$		0.00
22	MB022	· .	<1	<0.2	5	50	$\overline{2}$	0.74	<1	25	4	8	0.00
23	MB023		্র	<0.2	<Š	70	· Ī	0.85	<1	15	··· 4		0.00
4	MB024		<1	<0.2	5	40	1	0.50	<1	10	2		0.00
15	MB025		<1	<0.2	<5	220	1	0.91	<1	170	6		0.00
26	MB026		<1	<0.2	<5	180	1	0.61	<1	30	4	4 <	0.00
170	MB027	•	<1	<0.2	5	30	1	0.68	<1	50	4		0.00
8	MB028		<1	<0.2	15	130	6	1.27		35	- 4		0.00
9	MB029		<1	<0.2	5	100	4	0.99	<1	55	2		0.00
0	MB030		<1	<0.2	<5	180	6	1.54	<1	205	10		0.00
11	MB031		<1	<0.2	10	530	12	1.75	<1	345	12		0.00
2	MB032		<1	<0.2	<5	540	<1	0.38	<1	5	2		0.00
13	MB033		<1	<0.2	<5	140	1	0.62	<1	130	. 8.		0.00
4	MB034		<1	<0.2	<5	160	1	0.92	<1	15	. 2		0,00
5	MB035		<1	<0.2	<5	50	1	0.71	<1	10	2		0.00
6	MB036		<1	<0. 2 <0. 2	<5 20	60	1	0.42	<1	10	4	10	0.00
17 18	MB037 MB038		<1 <1	<0. 2 <0. 2	20 10	80 120	1	1, 54 1, 32	<1 <1	25 50	6 14	1/ 1	0.00 0.00
9	MB039			<0.2	15	180	7	2.47	<1	50	14 4		0.00
0	MB040		4	<0.2	5	50	2	0.86	<1	45	4		0.00
1	MB040 MB041		1	<0.2	<5	40	. <1	0.65	<1	65	6	. 8	0.00
2	MB042		<1	<0.2	<5	30	1	0.40	<1	65	2		0.00
3	MB043		<1	<0.2	5	50	<1	1.11	<1	20	8		0.00
4	MB044		<1	<0.2	<5	30	<1	0.68	<1	10	ž		0.00
5	MB045		<1	<0.2	< <5	30	<1	0.54	<1	30	<2	4	0.00
6	MB046		<1	<0.2	<5	40	1	0.59	<1	45	6	· 6 <	0.00
7	MB047		<1	<0.2	5	100	1	0.91	<1	340	4		0.00
8	MB048		<1	<0.2	5	40	- 1	1.00	1 <1	30	2	° 6 <	0.00
9	MB049		- <1	<0.2	. 5	50	2	1.18	<1	95	6		0.00
iQ	MB050		_<1	<0.2	5	90	2	1.19	<1	45	10		0.00
1	MB051		<1	<0.2	5	230	1	1. 32	<1	45	8		0.00
2	MB052		<1	<0.2	<5	40	<1	0.36	<1	5	<2	2 <	0.00
i3	MB053		<1	<0.2	<5	330	2	1.69	<1	210	6	14 <	0.00
54	MB054		<1	<0.2	<5	270	3	0.94	<1	265	6		0.000

NKANGONBE AREA

Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	
55	MB055	<1	<0.2	<5	40	1	0.80	4	15	<2	8	<0.0
56	MB056	<1	<0.2	<5	40	1	0.68	<1	15	2		<0.0
57	MB057	<1	<0.2	5	90	- 4	1.46	<1	$\overline{20}$	6		<0.0
58	MB058	<1	<0.2	5	510	10	1.50	<1	330	10		<0.0
59	MB059	<1	<0.2	10	320	9	1.34	<1	405	10		<0.0
60	MB060	<1		10	410	16	2, 42	<1	275	8		<0.0
61	MB061	. 7	<0.2	10	220	10	1.79	<1	130	6	24	0.0
62	MB062	- <1	<0.2	5	690	21	2.44	<1	445	10		<0.0
63	NB063	1>	<0.2	15 -	540	18	2.56	<1	420	12		<0.0
64	MB064	<1	<0.2	10	360	17	2.26	<1	530	12	32	0.0
65	MB065	<1	<0.2	5	260	14	2.06	<1	400	12	32	0.0
66	NB066	<1	<0.2	10	310	12	1.99	<1	315	12		<0.0
67	MB067	<1	<0.2	10	260	- 9	1.55	<1	550	10	22	0.0
68	MB068	1	<0.2	10	660	15	2.45	<1	295	10	32	<0.0
69	MB069	$\overline{1}$	<0.2	15	110	14	2.19	<1	315	10		<0.0
70	MB070	$\overline{1}$	<0.2	5	340	- 11	2.02	<î	245	4		<0.0
71	MB071	<1	<0.2	- 5	230	-9	1.78	<î	120	6		<0.0
72	MB072	<1	<0.2	5	590	Š	0.90	<1	150	ž	10	0.0
73	MB073	<1	<0.2	<5	280	10	1.66	<1	220	. 6		<0. Õ
74	MB074	$\tilde{2}$	<0.2	5	820	13	1.88	<1	440	12		<0.0
75	MB075	ĩ	<0.2	10	300	15	2.74	<1	420	12		<0.0
76	MB076	<1	<0.2	10	740	24	2.62	<1	560	14		<0.0
77	MB077	1	<0.2	5	310	10	1.69	<1	225	10		<0.0
78	MB078	1	<0.2	10	400	12	2.02	<1	320	14		<0.0
79	MB079	<1	<0.2	10	370	16	2.29	<1	445	14		<0.0
80	MB080	<1	<0.2	5	120	1	0.84	<1	25	2		<0.0
81	MB080		<0.2	. 5	230	8	1.27	2	2.5 85	10		0.0
82	MB081	<1	<0.2	5	170	. 4		1	45	6	14 10	0.0
83	MB083	<1	<0.2	<5	180	-	1.30	<1	30	2		
84	MB084		<0.2	<5	90	. 4	1.00	<1	50 55	8	10 10	
85	MB085	<1	<0.2	<5	740	18		-1	380			
86			<0.2	5	340	8	1. 18			14	30	
	MB086	<1	<0.2	<5		: <u>3</u> 1		<1	135	12	24	
87	MB087		<0.2		: 60. 150	а 8		<1	65	6	12	
88	MB088	<1		<5	150			1	90	12	18	
89	MB089		<0.2	<5 ∠⊑	80	3	1.07	2	40	<2		<0.0
90	MB090	<1	<0.2	<5	120	4	1.10	<1	50	10		<0. (
91	MB091	<1	<0.2	<5	90	1	0.74	1	95 80	4		0.0
92	MB092	<1	<0.2	° <5∍	50	<1	0.39	2	30	4		0.0
93	MB093	<1	<0.2	5	160	10	1.38	<1	370	10		<0.0
	MB094	1	<0.2	5	540		3.02	<1	530	18		<0. (
95	MB095	<1	<0.2		370			<1	385	16		<0.1
.96	MB096	<1	<0.2	<5	330	. 14	2.22	<1	320	12		<0. (
97	MB097	<1		<5	130	3	1.04	<1	115	10	12	
98	MB098	. <1		<5	720	16	2.85	<1	365	12		<0.(
99	MB099	<1 ≞		15	850		2.82	<1	280	12		<0, (
100	MB100	<1	<0.2	<5	310	.10	1.64	1	275	12	30	
	MB101	<1	<0.2	5	250	25	2.86	- 1	405	20	62	
	MB102		<0. 2 <0. 2 <0. 2 <0. 2	5	260		3.70	<1	480	22	56	
103	MB103	<1	<0.2	<5		19	2.15	. <1 -	475	18	56	0.(
	MB104		<0.2	<5 :			1.92	<1	330	10	38	
105	MB105	<1	<0.2		240		1.59	· <1	240	18	22	0. (
106	MB106	<1	<0.2	10			1.92	<1	150	12	32	0.0
107	MB107	<1.	<0.2		590		1.99	<1	450	20	24	
108	MB108	<1	<0.2	<5	140	5	1.01	<u><1</u>	125	6	10	0.0
	· · ·									· .		
	•				· A	53						

MKANGOMBE AREA

*MXA	NGOMBE ARE	*		· .		3 T			· .	• • •			
Ser.	Sample	Au	Ag	As	Ba	Cu	Fe	llg	Mn	РЪ	Zn	S	
No.	No.	ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	*	
100	101100		20.0	15	100	E	0 00	/1	65	C	10	0.005	
109	MB109	<1	<0.2	<5	120	5 15	0. 92 1. 70	. <1 - ≺1	210	6 16		0.005 0.001	
110	MB110 MB111	<1 <1	<0.2 <0.2	5 <5	400 480	18	1. 93	<1	225	10		0.001	
111 112	MB112		<0.2	<5	190	13	1.48	<1	250	12		0.003	
112	MB112		<0.2		260	23	2.33	\sim	1175	8		<0.003	
114	MB113	<1	<0.2	<5	60		2.14		480	8		0.001	
115	MB115		<0.2	15	-			<1	75	6		0.004	
116	NB116	<1	<0.2	<5	270	18	2.05	<1	910	36	224	0.003	
117	MB117	र्व	<0.2	<5	410	8	1.34	1	340	4	16		
118	MB118	· <1	<0.2	5	350	12	1.99	<1	470	18	20	0.007	
119	MB119	<1	<0.2	5		5	1.04	<1	40	6	6	0.003	
120	MB120	<1	<0.2	5	170	4	1.00	<1	130	4	8	0.003	
121	MB121	<1	<0.2	<5	120	6	0.94	° <1		<2	10	0.008	
122	MC001	<1	<0.2	10	130	4	1.12	<1	50	6	10	0.012	
123	MC002	<1	<0.2	<5	80	5	1.30	<1	50	2	14	0.008	
124	MC003	<1	≥<0 . 2	<5	80	- 5	1.27	<1.	175	8	12	0.014	
125	MC004	<1	< 0. 2	5	140	9	1.57	· <1	170	16	12	0.012	
126	MC005	<1	<0.2	<5	500	26		··· <1	810	18	40	0.006	
127	MC006	<1	<0.2	10	270	16	2, 94	<1	920	30		0.018	
128	MC007	<1	<0.2	<5	310	24	3. 23	<1	465	16		0.018	
129	MC008	<1	<0.2	<5	230	15	2, 37	<1	390	20		0.010	
130	MC009	<1	<0.2	<5	360	13	2.05	<1	355	18		0.007	
131	MC010	<1	<0.2	<5	280	13	2, 22	1	270	10			
	MC011	<1	<0.2	<5	440	19	3, 49	· (1	530	22	32		
133	MC012	1	<0.2	<5	370 700	19 30	3.29 6.17	에 (1) 이 (1)	360 3790	16 56	26 36	0.013 0.017	
134 135	MC013 MC014	<1 <1	<0.2 <0.2	5 5	60			<1	515	10	20	0.017	
135	MC014 MC015	<1	<0. 2	<5	500	27	3.96		365	10	42	0.011	
137	MC016	<1	<0.2	<5	320	23	3. 45	<1	440			<0.001	
138	MC019	<1	<0.2	<5	360	-24	3, 44	<1	275	12		<0.001	
139	MC020	<1	<0.2	<5	320	24	3.65		375	22	32	<0.001	
140	MC021	<1	<0.2	10	290	- 33	5.05	<1	930	28		<0.001	
141	MC022	<1	<0.2	10	470	27	3.77	<1	555	12	-34	0.014	
142	MC023	<1	<0.2	10	340	25	3.49		570	20		0.014	
	MC024	<1	<0.2	5	240	18	2.98	·	430	22	22	0.010	
144	MC025	1		15	390	25	3.64	<1	460	24	32	0.010	
145	MC026	<1	<0.2	5	140	14	1.97	<1	365	12	34		
146	MC027	<1	<0.2		310	17	3.06	<1	625	18		0.019	
147	MC028	<1	<0.2	. 5	290	25	3. 63		445	26	- 34	0.010	
	MC029	<1	<0.2 <0.2	5	430		4.03	<1	375		40	0.006	
149	MC030	: <1	<0.2	5		28	5,68	<1	1530	30	52	0.012	
150	MC031	<1	<0.2	5		25	4.09	<1	860	34	36		2
151	MC032	<1		<5	410	30	4. 72	<1	725	22	40	0.006	
152	NOOD	1			410	26	3.47	(1)	455			0.004	
153	MCO34 NCO35	$\frac{1}{2}$	<0.2	<5		9 20	1.40 3.32	<1		12		0.008	
154	MC035 MC036	<1 1	<0.2 <0.2	10 20	310 470	20 39	5. 54 5. 15	<1 <1		22 18		0.010	
155	MC036 MC037	<1	<0.2	<5	470		4. 46	1		24		0.001	
157	MC037	<1	<0.2	5	310	20	2.99	1	480	24		0.010	
	MC039	<1	<0.2	5	380	20	3.33			26		0.010	
159	MC040	1		5	540	25		1	630	22	32		
$155 \\ 160$	MC041	- <1	<0.2	<5	290	25			415	18	28	0,000	
161	MC042	<1	<0.2	5	100	3	0.78		175	4	10	0.005	
162	MCQ43	<1		10	100	4	1, 35	<1	140	10		0.010	
	and the second								····				-

NKANGONBE AREA

RESULTS OF GEOCHEMICAL ANALYSIS

Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Rg ppm	Mn ppm	Pb ppm	Zn ppm	S %
163	MC044	<1	<0.2	5	60	1	0, 95	1	25	6	6	0.005
164	MC045	<1	<0.2	<5	300	7	1.09	<1	140	8	12	0.011
65	MC046	<1	<0.2	10	280	13	2.38	<1	545	16	16	0.012
166	MC047	<1	<0.2	5	120	8	1.45	<1	120	8	12	0.013
67	MC048	<1	<0.2	10	100	10	1.27	<1	685	6	16	0.014
68	MC049	1	<0.2	<5	140	21	2.31	<1	1835	12	32	0.005
	MC050 MC051		<0.2 <0.2	<5 5	180 140	16 16	2.10 1.95	<1	225 465	14	36	0.015 0.009
170 171	MC052	<1 <1	<0.2	5	140	15	2.88	(1 (1	405 330	14 16	68 36	0.009
172	MC053	<1	<0.2	<5	170	11	1.87	$\langle 1 \rangle$	295	12	- 30	0.010
	: MC054	<1	<0.2	15	270	27	2.92	<1	360	14	60	0.012
74	MC055	<1	<0.2	<\$	180	20	2.53	<1	395	14	46	0.011
175	MC056	<1	<0.2	< <5	190	15	2.00	<1	370	10		0.012
176	MC057	<1	<0.2	10	190	18	2.24	<1	225	8	38	0.013
177	MCOGO	<1	<0.2	5	150	15	2.13	· · < <u>1</u>	500	8	22	0.010
178	MC061	<1	<0.2	<5	130	17	2.19	· <1	515	18	40	0.006
179	MC062	<1	<0.2	<5	170	10	1.71	<1	270	2	22	0.005
180	MC063	<1	<0.2	<5	340	15	2.15	<1	335	6	18	0.007
	MC064	<1	<0.2	10	110	18	1.95	<1	890	18	30:	0.008
82	MC065	<1	<0. 2 <0. 2	<5	500	13	1.98	<1	835	10	28	0.014
183 184	MC066 NC067	1	<0.2	5 5 <5	340 140	27	3.20 0.77	<1 <1	480 35	14	62 4	0.008 0.006
185 185	MC068	<1	<0.2	<5	190	1	0.72	<1	60	10 6	4	0.000
186	MC069	<1	<0.2	<5	130	6	1.50	1	70	. 8	10	0.009
187	MC070	- <1	<0.2	<5	180	7	1.19	1	255	2	20	0.003
88	MC071	4		·· <5	350	26	3.95	4	505	14	34	0.006
	MC072	1	<0.2	<5	370	25	4.01	<ī.	1305	34	30	0.006
190	MC073	1	<0.2	5	310	22	3.72	1	415	24	24	
191	MC074	1	<0.2	30	490	26	4.35	<1	1185	38	28	0.005
192	MC075	<1	<0, 2	<5	710	30	6.21	<1	2670	60	28	0.005
[93	MC076	<1	<0.2	<5	270	18	4.11	<1	710	32	24	0.007
194	MC077	1	<0.2	<5	750	27	3. 03	<1	880	22	38	0.014
195	MC078	<1	<0.2	<5	170	6	1.10	<u></u> (1	250	8	20	0.005
196	MC079	<1	< 0.2	<5	70	• 6	1.46		60	8	6	0.005
197	MC080 MC081	<1	<0.2 <0.2	<5 <5	70 180	2	0.73		95 65	6 10	4	0.003
198 199	MC082	<1 <1	<0.2	<5 5	220	16	1.52 3.25	<1 <1	65 75	10 12	16 30	0.008
200	MC082			<5	50	10	0.97	<1	15	10	- 6	0.005
201	MC084	<1	<0.2	10	120	2	1, 55	<1	35	10	10	0.005
202	MC085	<1	<0.2	<5	230	5	1.28	<1	70	10	16	0.005
203	MC086	<1	<0.2	<5	110	4	1.18	<1	70	12		0.006
204	MC087	<1	<0.2	<5	100	3	1.09	<1	130	6	42	
205	MC088	<1	<0.2	<5	260	14	1.87	<1	210	12	20	0.010
206	MC089	1>	<0.2	15	460	- 16	1, 88	<1	345	18	22	
207	MC090	<1	<0.2	5	120	9	1. 48	:: (1)	55	8	10	0. 008
208:	MC091	<1		<5	230	20	2.90	1	645	20	40	0.010
209	MC092	<1	<0.2	<5	270	10	1.55	3	215	10	18	
210	MD001	<1		່ <5	180	16	1.69	<1	235	6	38	
211	MD002	<1		5		21	2.70	· <1	635	18	60	
212	MD003	<1	<0.2	<5	160	14	1,90	<1.	375	14	28	
213	MD004	<1	<0.2	<5	290	23	2.36	<1	865	20	50	
214 215	MD005 MD006	<1 <1	<0.2 <0.2	∵ <5 <5	420 100	18 7	1.92 0,99	<1 21	1205 695	16	42	
210 216	MD007	<1	<0.2	<5	100	12	1.85	<1 <1		12 18	20 26	
510	MPOUL	<u> </u>	<u> </u>	<u></u>	100	14		/1	2010	10		0.00

NKANGOMBE AREA

Ser. No.	Sample No.	:	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppm	S %
217	MD008		<1	<0.2	<5	300	26	3. 78	<1	705	26	34	0.013
218	MD009		ব	<0.2	∴ <5	430	27	4.02	<1	595	30	34.	0.012
219	MD010	£ -	<1	<0.2	Š	340	17	2.33	. 1	755	20	28	0.013
220	MD011		<1	<0.2	°∘ <5	360	22	3.42	<1	620	24	24	0.011
221	MD012		<1	<0.2	5	370	23	3.85	<1	790	30		0.014
222	ND013		<1	<0.2	<5	200	23	3.09	<1	540	28	38	0.013
223	MD014	1.1	<1	<0.2	<5	260	21	3.01	<1	585	. 22	36	0.012
	ND015		<1	<0.2	<5	260	30	3, 53	<1	550	18	58	0.014
225	MD016		· <1	<0.2	5	90	73	1.39	<1	470	18	464	0.009
226	MD017		<1	<0.2	10	150	10	1.76	<1	280	8	28	0.014
227	HD018		<1	<0.2 <0.2	<5	80 150	5 7	0.88 0.91	<1 <1	100 60	10 4	12 10	0.004 0.008
228 229	MD019 ME001		<1 <1	<0. 2 <0. 2	<5 5	360	18			530	10	42	0.003
230	MEOOL MEOO2			<0.2	<5	230	13			550	16	28	0.012
231	ME002			<0.2	<5	230	8	1.92	<1	645	4	24	0.010
232	ME004		<1	<0.2	10	210		2.33	4	300	10	26	0.009
233			<1	<0.2	. <5	190	8	1.52	4	145	10	18	0.004
234	ME006		$\langle \hat{1} \rangle$	<0.2	<Š	170	6	1.17	1	195	8	12	0.007
235	ME007		<1	<0.2	<5	230	11	2.22	<1	1530	10	30	
	MEOOS		<1	<0.2	<5	130	4	1.01	. 1	135	6	12	0.005
237	ME009		<1	<0.2	ິ <5	190	6	1. 30	1	80	12	14	0.011
238	ME010		<1	<0.2	<5	170	12	2.08	1	275	10		
239	NE011		<1	<0.2	: <5	230	6	1. 22	<1	200	12		0.001
240	ME012		<1	<0.2	<5	90	3	0.94	<1	155	10	14	
241	ME013	•	<1	<0.2	<5	120	5	1.94	<1	105	14		0.008
242	MEO14		<1	<0.2	<5	110	5	1.33	<1	60	6		0.006
243	ME015		<1	<0.2 <0.2	10 5	320 120	12 4	2.22 1.24	<1 <1	220 80	12 10	28 12	0.008 0.007
244 245	ME016 NE017	· ·	<1 <1	<0.2	5	120	6	1. 24	1	80 70	8	14	0.007
245	MEO18			<0.2	<5	110	. 6	1. 30	<1	45	2		0.005
247	ME019		. <1	<0.2	<5	140	8	1.65	<1	120	10	20	0.003
248	MEO20	· · · · · · · · · · · · · · · · · · ·	<1	<0.2	്<5	190	10	2.06	2	225	12	28	0.003
249	ME021		<1	<0.2	<5	180	3	0.73	2	85	2	6	0.002
250	ME022		<1	<0.2	<5	260	19	2.75	<1	310	16	30	0.011
251	ME023	· .	<1	<0.2	<5	- 30	1	0.47	<1	25	2	4	<0.001
252	ME024		<1	<0.2	<5	220	11	1.99	1	95	<2	26	0.005
253	ME025		<1	<0.2	10	220	31			2300	56		0.003
254	MEO26		<1	<0.2	: <5	180	4		1	450	10		<0.001
255	MEO27		<1	<0.2	°. <5	40	2	0, 80	<1	50	4		<0.001
256	ME028		<1	<0.2	- 5	100	3	1.07	<1	60	6		<0.001
257	MEO29		<1	<0.2	<5	150	6	1.25	1	60	6 		<0.001
258	ME030		<1	<0.2	<5 (5	.320	11	1.84	<1	165 405	6.		0.003
259 260	ME031 ME032		<1 <1	<0. 2 <0. 2	<5 <5	190 110	7	1.70 1.88	- ≺1 - ↓ ≺1	405 95	8 12		0.001 0.002
261	ME033	1.1	<1	<0.2	<5	20	1	0.59	1	115	4		<0.001
262	ME034		<1	<0.2	5	60	1	1.02	<1	275	10		<0.001
	ME035		<1	<0.2	<5	10	1	0.44	1	30	8		<0.001
264	ME036		$\langle 1 \rangle$	<0.2		60	$\overline{2}$	0.90	<i <1<="" td=""><td>140</td><td>10</td><td></td><td><0.001</td></i>	140	10		<0.001
265			<1	<0.2	<5	70	3	0.96	1	90			<0.001
266	ME038	1.	<1	<0, 2	<5	70	2	0.74	· <1	180	4		<0.001
267	MEO39		<1	<0.2	<5	700	31	3. 49	1	205	18		<0.001
268	ME040		<1	<0.2	<5	120	2 2	0, 95	<1	165	4	10	<0.001
269	ME041		<1	<0.2	<5	240	9	1. 82		115	12	22	0.002
270	ME042		<1	<u> <0.2</u>	5	260	<u>26</u>	4.45	<u> </u>	785	40	38	0.008

MKANGOMBE AREA

*MKA	NGOMBE AREA	*									
Ser. No,		Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb mqq	Zn S ppm %
271	ME043	1	<0.2	15	550	38	6.95	<1	4310	92	40 0.003
272	ME044	<1	<0.2	<5	290	25	3.95	<1	625	26	28 0.005
273	NE045	<1	<0.2	<5	280	23	3.71	•. < <u>1</u>	440	18	30 < 0.001
274 275	ME046 NE047	2 <1	<0.2 <0.2	<5 <5	460 460	26 32	3.81 6.71	<1 <1	420 3920	22 56	46 <0.001 66 <0.001
276	MEO48	<1	<0.2	<5	310	14	3. 02		160	18	20 0.001
277	ME049	<1	<0.2	<5	400	15	2.50	1	260	10	28 0.009
278	NE050	<1	<0.2	<5	250	24	4.17	<1	295	26	28 <0.001
279	ME051	<1	<0.2	<5	270	23	3.93	<1	345	22	34 < 0.001
280	NEO52	4	<0.2	<5	560		3.86		325	18	44 < 0.001
281 282	ME053 ME054	<1 <1	<0.2 <0.2	<5 <5	250 370	19 20	3.70 3.03	<1	235 375	16 16	28 0.003 26 <0.001
283	ME055	<1	<0.2	<5	250	19	2.83	4	330	16	30 <0.001
284	ME056	1	< 0.2	<5	110	8	1.47	3	115	4	22 < 0.001
285	ME057	<1	<0.2	<5	130	9	1.27	<1	90	6	20 <0.001
286	ME058	<1	<0.2	<5	170	13	2.21	1	635	14	30 < 0.001
287 288	NF001 NF002	<1 <1	<0.2 <0.2	. <5 <5	30 70	2	0.68 1.59	<1	70 80	6 8	8 <0.001 20 <0.001
289	MF002		<0.2	<5	60	3	0.90	<1	50	2	10 < 0.001
290	MF004	<1	<0.2	່ <5	90	2	0.81	<1	140	4	6 < 0.001
291	MF005	<1	<0.2	<5	70	1	0.76	<1	- 30	4	4 0.003
292	MF006	<1	<0.2	5	50	<1	0.73	<1	20	10	4 0.002
293 294	MF007 MF008	<1 <1	<0. 2 <0. 2	<5 <5	60 110	1 5	0.63 1.48	<1 <1	40 70	10 14	$\begin{array}{ccc} 6 < 0.001 \\ 18 & 0.001 \end{array}$
294	MF009		<0.2	<5	210	5	1.40 1.56	$\langle 1 \rangle$	100	14	18 0.001 24 <0.001
296	MF010	<1	<0.2	10	820	9	1.19	<1	450	12	14 0.010
297	MF011	<1	<0.2	10	90	6	1.21	<1	105	2	10 < 0.001
298	MF012	<1	<0.2	<5	80	3	0.90	<1	30	10	6 0.001
299	MGOO1	<1	<0.2	10	310	16	2.81	<1	870	26	36 0.013
300 301	MG002 MG003	<1 <1	<0.2 <0.2	5 15	250 180	18 8	3.04 1.55	<1 <1	460 90	24 8	36 <0.001 14 <0.001
302	MG004	<1 <1	<0.2	<5	270	. 19	3, 18	4	285	14	30 0.001
303	MG005	1	<0.2	<5	300	16	2.11	<1	210	6	34 <0.001
304	MG006	<1	<0.2	<5	180	9	1.78	<1	135	10	22 < 0.001
305	MG007	<1	<0.2	. <5	580	20	2.69	<1	195	18	26 < 0.001
306 307	MG008 MG009	<1 <1	<0.2 <0.2	<5 <5	120 810	4 20	1.25 2.25		50 290	8 20	12 <0.001
308	MG010	· · · · · · · · · · · · · · · · · · ·	<0.2	<5	250	8	1, 52	<1	185	20 10	28 <0.001 14 <0.001
309	MG011	<1	<0.2	<5	350	4	1.26	<1	250	14	12 < 0.001
310	MG012	<1	<0.2	<5	190	12	1.85	<1	230	. 8	28 < 0.001
311	MG013	<1	<0.2	5	210	11	2.15	<1	145	10	24 < 0.001
312	MG014	: 1	<0.2	<5	530	17	3. 41	<1	980	22	54 < 0.001
313 314	MG015 MG017	<1 <1	<0. 2 <0. 2	5 <5	140 810	5 13	1.41 1.80	1> <1	100 315	10 14	$\begin{array}{ccc} 16 < \! 0.001 \\ 26 & 0.017 \end{array}$
	MG018	<1	<0.2	10	400	7	1.33	2	95	14	16 0.001
316	MG019	<1	<0 . 2	<5	20	<1	0.58	<1	10	6	4 < 0.001
317	MG020	<1	<0.2	<5	110	1	1.06	<1	65	. 8	8 < 0.001
318	MG021	1	<0.2	5	140	6	1.27	<1	55	8	16 < 0.001
319 320	MG022 MG023	<1 <1	<0.2 <0.2	<5 <5	250 230	- 8 9 -	1.54 1.30		75	10	14 < 0.001
320	MG023	<1	<0.2	<5	40	<1	0.50	া বা বি	150 5	10 2	16 <0.001 2 <0.001
322	MG025	 <1 	<0.2	<5	30	<1	0.61	<1	5	8	2 < 0.001
323	MG026	<1	<0.2	5	50	1	0.50	<1	60	6	4 < 0.001
<u>324</u>	MG027	<1	<0.2	<5	60	. 1	0.69	<1	25	8	4 < 0.001

MKANGOMBE	AREA
------------	-------

不開入八	NGUMBE AND	ፈለক										
Ser. No.	Sample No.		Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn S ppm %
325	KG028		<1	<0.2	5	70	2	0, 90	1	120	10	10 < 0.001
326	MGO29		<1	<0.2	<5	50	1	0.82	<1	205	10	8 < 0, 001
327	NGO30		<1	<0.2	<5	70	2	0, 88	<1	25	10	4 <0.001
328	MG031		<1	<0.2	<5	150	3	0.88	· <1	35	10	8 < 0.001
329	MG032	-	<1	<0.2	5	640	9	1.75	<1	370	14	24 < 0.001
330	MG033		<1	<0.2	<5	20	<1	0.23	°; <1	10	6	2 < 0.001
331	MG034		<1	<0.2	5	80	2	1.06	<1	20	10	8 0.006
332	MG035		<1	<0.2	<5	40	<1	0.34	<1	5	2	2 < 0.001
333	MG036		<1	<0.2	5	240	18	5.11	<1	990	20	54 0.016
334	MG037		<1	<0.2	5	230	27	6.21	<1	930	34	52 0.014
335	MG038		<1	<0.2	<5	230	13	3.17	<1	595	16	42 0.002
336	MG039		: <1	<0.2	<5	250	14	3.23	<1	560	18	34 < 0.001
337	MG040		<1	<0.2	· <5	190	28	3.56	<1	700	24	38 < 0.001
338	MG041		<1	<0.2	. 5	150	12	1.65		490	14	28 < 0.001
339	NG042		<1	<0.2	<5 5	270	23	3.34	<1	705	22	34 <0.001 36 <0.001
340	MGD43		<1	<0.2	5	360	26	3.66		260 215	12 40	36 < 0.001
341	MG044	· .	<1	<0.2 <0.2	15	110 270	35 25	12.65 3.68		335	40	36 < 0.001
342	MG045		<1	<0.2	20 5	270	18	2. 33	<1 <1	280	18	26 < 0.001
343 344	MG046 MG047	:	<1 <1	<0.2	5	540	14	2. 92	1	610	10	28 < 0.001
544 345	MG047		<1	<0. 2 <0. 2	20	640	11	1.47	<1	255	16	14 0.002
345 346	MG049			<0.2	- 40 - 45	130	-5	1. 26		45	10	12 <0.001
347	MG050	·	<1	<0.2	5	200	4	0.82	<1	175	12	8 <0.001
348	MG051		ंरी	<0.2	° . <5	550	- 7	1. 21	<1	65	8	14 <0.001
349	MG052 MG053		1>	<0.2	<5	70	2	0.79	<1	30	12	6 < 0. 001
350	MG054	5	<1	<0.2	<5	180	7	1.14	<1	200	14	12 0.004
351	MG055		<1	<0.2	5	650	10	1.74	<1	335	16	18 0.009
352	MG056		<1	<0.2	5	330	14	1.53	<1	155	10	20 0.006
353	MG057		<1	<0.2	<5	160	10	1.65	<1	215	14	22 <0.001
354	MG058		<1	<0.2	5	170	21	3.22	<1	855	20	56 < 0.001
355	MG059		<1	<0.2	15	900	22	1.85	<1	385	-Ğ	32 0.031
356	MGOGO		<1	<0.2	10	230	17	2.55	. <ī	240	24	34 < 0.001
357	MG061		<1	<0.2	5	140	. 10	1.16	<1	285	12	20 < 0.001
358	MG062		<1	<0.2	<5	210	14	1.17	· <1	535	10	18 < 0.001
359	MH001		<1	<0.2	15	310	19	2.12	<1	1410	26	28 < 0.001
360	MH002		<1	<0.2	<5	320	18	4 47	<1	1285	108	10 < 0.001
361	MHOO3		<1	<0.2	10	120	13	1,91	<1	205	16	24 < 0.001
362	MHOO4	. '	<1	<0.2	5	800	24	2.04	. 1	965	20	34 0.011
363	MH005	111	<1	<0.2	<5	380	23	3, 53	1	840	44	98 <0.001
364	MHOO6		<1	<0.2	<5	110	12	1.72	<1	60	18	28 < 0.001
365	MH007		<1	<0.2	- 5	140	7	1.06	. <1	65	8	16 <0.001
366	MH008		<1	<0.2	<5	230	14	2.48	<1	450	18	26 < 0.001
367	MILOO9		<1	<0.2	15	170	10	1.52	<1	130	10	20 < 0.001
368	MH010		<1	<0.2	<5	200	. 7	1.08	· <1	145	14	16 0.003
369	MH011	,	<1	<0.2	5	210	18	4.51	<1	1130	44	30 0.006
370	MH012		<1	<0.2	10	140	10	2.79	<1	150	18	18 0.010
371	MH013		<1	<0.2	15	160	8	1.30	4	310	18	16 < 0.001
372	MH014		<1	<0.2	15	110	8	1.45	<1	210	20	14 <0.001
373	MH015		<1	<0.2	. <5	290	7	1.10	<1	105	16	12 < 0.001
374	MH016		<1	<0.2	5	230	10	1.42		100	12	12 < 0.001
375	MHO17		<1	<0.2	15	380	21	3.25		400	14	34 < 0.001
376	MII018		<1	<0.2	20	370	21	4.07	* < <u>1</u> - ∠1	570	32	24 <0.001
377	MH019		<1	<0.2	10	310	30	6.17	<1	1675	64	40 <0.001
<u>378</u>	MH020	<u> </u>	<1	<0.2	<5	180	13	2.10	<1	255	10	<u>26 <0.001</u>

MKANGONBE AREA

Ì

Ser. No.	Sample No.	A pp		As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Nn ppm	Pb ppm	Zn ppm	S %
379	NIIO21	<	1 <0.2	15	200	13	2.44	<1	340	22	30	<0,001
380	MH022	<		5	600	16	2.26	<1	360	18		<0.001
381	MH023	 		<5	- 260	13	2.24	· <1	190	18		<0.001
382	MH024	1 - K		5	510	10	1.70	<1	220	20		<0.001
383	MH025	<		5	420	12	1.98	1	310	18		<0.001
384 205	MH026 MH027	1 K		10	330	17	2.75		765	30		<0.001
385 386 -	MH027	<pre><</pre>		5 <5	180 200	10 10	1, 43 1, 35	· <1 <1	150 240	4 16		<0.001 0.004
387	MH028 MH029	· · · · · · · · · · · · · · · · · · ·		10	360	10	2, 08		240 310	14		<0.004
388	MHO30	k		5	320		1. 38	ंदा	195	10		<0.001
389	MH031	<		<5	230	5	0.77	1	80	12		0.002
390	MH032	· <	1 <0.2	<5	500	7	1.23	2	310	20		0.015
391	MH033	· · · · · · · ·		i <5	80	- 3	0.80	<1	35	8	22	0.001
392	MH034	<		5	160	- 4	0.88	<1	90	6	12	0.002
393	MH035	<		<5	190	2	0.97	<1	65	4	8	0.002
394	MH036	<pre></pre>		5	220	6	1, 22	<1	85	8	8	0.006
395 - 396	MH037 MH038	< . <		、 <5 <5	160 80	2	0. 79 0. 62	<1 <1	55 125	6 10	6	0.003 <0.001
397				<5	30	1	0.02	<1	30	10 _6		<0.001
398	MH040	, i		<5	40	1	0.52	<1	40	8		<0.001
399	MHO41	Ż		<5	70	î	1.07	ব	100	10		<0.001
400	MH042	. <		<5	20	1	0.37	<1	30	4		<0.001
401	MH043	<	1 < 0.2	<5	80	1	0.70	<1	130	14	6	<0.001
402	MH044	<		<5	40	1	0.55	<1	50	10	6	<0.001
403	MH045	<		5	200	· 4	1.95	<1	120	10		<0.001
404	MH046	×		<5	60	3	0.91	<1	55	6		<0.001
405 406	MH047 MH048	< <		<5 10	50 60	2 2	0.76 0.83	<1 <1	30 55	12 c		<0.001 0.001
400	MH048	<		 <5	140	14	0. 63 4. 17	1	55 175	6 16	6 26	0.001
408	MH050	i k		5	250	15	1.95	<1	215	10	26	0.014
409	MH051	<u>`</u>		<5	140	9	1.88	<1	235	10	26	0.002
410	MH052	<		5	270	25	4.15	<1	2480	58		<0.001
411	MH053	<		<5	140	10	1.66	<1.	185	10	22	0.004
412	MH054	. <		<5	380	18	2.42	<1	645	16		<0.001
413	MH055	. <		<5	100	4	1.31	<1	75	6		<0.001
	MII056	<		<5	260	10	1.80	<1	160	14		<0.001
415 416	MH057 MH058	<pre></pre>		15 5	110 150	8	2.06 2.03	<1 <1	165	14		<0.001
410	MH058	<		<5	190	0 3	0.92	<1	100 25	12 12		<0.001 <0.001
418	MHOGO	<		5	60	4	0.92	<1	20 50	10		<0.001
419	MH061	<		15	350	6	1.20	<1	100	6		<0.001
420	MH062	<hr/>	1 <0.2	<5	270			<1	195	14		<0.001
421	MH063	. 🛸 <	1 <0.2	<5	410	10	1.43	<1	280	12	20	<0.001
422	MH064	. <	1 <0.2	. 20	240	16		<1	515	18	36	<0.001
423	MH065	<	1 <0.2	· · 5	80	11	1.50	<1	775	22	30	0.004
424	MH066	<u> </u>			620	19	1.72	<1 4	1565	22	30	0.008
425 426	MHO67 MHO68	< <		<5 10	100 310	17 20	1.62 1.78		850	- 8		<0.001
420	MH069	<		10 5	390	20	1. 78	<1 <1	955 1170	12 4	24	0.007
428	MH070	. <		5	110	13	1. 12	<1	430	4 10	28	<0.002
429	MH071	· . <			100	15	1.31	<1	580	10		<0.001
430	MH072	<		5	130	14	1.40	<1	550	10	26	<0.001
431	MH073	· <	1 <0.2	10	260	25	2.96	<1	520	24		<0.001
432	MH074	<	1 <0.2	<5	200	8			160	20	18	0.001

MKANGOMBE A	REA
--------------	------

											·					1.1
Ser. No.	Sample No.		Au ppb	Ag ppm	As ppm		Ba ppm	Cu ppm	Fe %		Mn ppm		Pb ppm	Zn ppm		S %
433	MH075		<1	<0.2	<5		470	14	1.86	<1	260	·····	10	28	<0.	001
434	MII076		<1	<0.2	<5		90	. 8	1.65		170		12	18	<0.	001
435	MII077		<1	∴<0 . 2	5		120	6	1.45	<1	105	:	10		<0,	
436	MH078		·· <1	<0.2	10	•	100	5	1.54	<1	70		18	16	<0.	001
437	MH079		<1	<0.2	10		70	2	0, 93	<1	30		4	-8	<0.	001
438	MH080		<1	<0.2	5		80	2	0.88	<1	160	- Ya	10	10	<0.	001
439	MH082		<1	<0.2	. <5		60	<1	0.48	<1	170		4	2	<0.	001
440	MH083		<1	<0.2	<5		50	. 2	0.83	<1	125		12	8	<0.	001
441	MH084		<1	<0.2	5		-40	1	0.97	<1	115	·	×2	- 8	<0.	001
442	MH085		<1	<0.2	5		40	1	1.01	<1	15		10			001
443	MH086		<1	<0.2	<5		130	. 5	1.10	<1	65		12	16	<0.	001
444	MH087		<1	<0.2	<5	• *	90	3	1.16	<1	220		8	14	<0.	001
445	MH088		<1	<0.2	<5		40	1	0.76	1	90		6	• • 4	<0.	001
446	MH089		<1	<0.2	<5		90	3	0, 93	<1	40		8	10	<0.	001
447	MH090		<1	<0.2	- <5		60	2	0.97	- <1	60	2	10	10	<0,	001
448	MH091		1>	<0.2	25		150	7	1.57	<1	50		- 4	. 18	<0.	001
449	MH092		<1	<0.2	<5		70	3	1.19	<1	50	: -	4	10	<0.	001
450	MH093	•	<1	<0.2	<5		40	<1	0, 48	<1	10		6	2	<0.	001 ·
451	MH094		: <1	<0.2	<5	1.1 1.1 1.1	70	1	0.73	<1	15	8.5	8	- 4	<0.	001
<u>452</u>	MH095		<1	<0.2	: 5		430	7	1.14	S <1	240		6	20	0.	002

TOURO AREA*

RESULTS OF GEOCHEMICAL ANALYSIS

	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Sample No. HB001 HB002 HB003 HB004 HB005 HB006 HB007 HB008 HB009 HB010 HB011 HB012 HB013	Au ppb <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Ba ppm 1980 180 150 260 180 500 240 140 170 150	Cu ppm 11 8 9 8 11 29 24 14 14	Fe % 2. 13 2. 09 1. 87 1. 71 2. 19 3. 11 3. 03 2. 32	Hn ppm 310 80 90 370 75 1015 950	P ppm 190 60 80 70 40 130 110	Pb ppm 16 20 14 10 14 18 18	Sr ppm 171 42 15 67 51 173	Zn ppm 20 18 18 22 16 30
	2 3 4 5 6 7 8 9 10 11 12 13 14	HB002 HB003 HB004 HB005 HB006 HB007 HB008 HB009 HB010 HB011 HB011 HB012	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	180 150 260 180 500 240 140 170 150	8 9 8 11 29 24 14 14	2.09 1.87 1.71 2.19 3.11 3.03	80 90 370 75 1015 950	60 80 70 40 130	20 14 10 14 18	42 15 67 51	18 18 22 16
	3 4 5 6 7 8 9 10 11 12 13 14	HB003 HB004 HB005 HB006 HB007 HB008 HB009 HB010 HB011 HB012	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	150 260 180 500 240 140 170 150	8 9 8 11 29 24 14 14	1.87 1.71 2.19 3.11 3.03	80 90 370 75 1015 950	60 80 70 40 130	20 14 10 14 18	42 15 67 51	18 18 22 16
	4 5 6 7 8 9 10 11 12 13 14	HB004 HB005 HB006 HB007 HB008 HB009 HB010 HB011 HB012	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	260 180 500 240 140 170 150	8 11 29 24 14 14	1.71 2.19 3.11 3.03	370 75 1015 950	70 40 130	10 14 18	67 51	22 16
	5 6 7 8 9 10 11 12 13 14	HB005 HB006 HB007 HB008 HB009 HB010 HB011 HB011 HB012	<1 <1 <1 <1 <1 <1 <1 <1	180 500 240 140 170 150	11 29 24 14 14	2.19 3.11 3.03	75 1015 950	40 130	14 18	51	16
	6 7 8 9 10 11 12 13 14	HB006 HB007 HB008 HB009 HB010 HB011 HB011 HB012	<1 <1 <1 <1 <1 <1 <1	500 240 140 170 150	29 24 14 14	3. 11 3. 03	1015 950	130	18		
	7 8 9 10 11 12 13 14	HB007 HB008 HB009 HB010 HB011 HB012	<1 <1 <1 <1 <1 <1	240 140 170 150	24 14 14	3.03	950			110 .	
	8 9 10 11 12 13 14	HB008 HB009 HB010 HB011 HB012	<1 <1 <1 <1	140 170 150	14 14				IX	154	30
	10 11 12 13 14	HB010 HB011 HB012	<1 <1 <1	170 150	14		265	100	14	25	16
	11 12 13 14	HB011 HB012	<1		~	2.48	270	190	10	24	26
	12 13 14	HB012			9	1.51	90	80	8	11	16
	13 14			170	23	2.55	400	150	10	53	12
	14	UDATO .	<1	130	8	1.48	185	100	12	14	8
		HB014	<1 1	110 80	22 18	2.43 3.06	400 130	210 140	12 2	45 [.] 16	12 10
	15	HB015	<1	110	11	1.90	275	160	10	25	10
	16	HB017	<1	80	4	1. 31	250	150	22	8	14
	17	HB018	<1	70	6	1.55	245	150	12	9	16
	18	HB019	1	140	16	2.62	510	230	16	17	30
	19	HB020	<1	60	6	1.11	505	190	30	12	24
· · ·	20 21	HB021 HB022	<1 <1	160 90	11	2.31 1.08	270 245	230 110	14	12	18
	22	HB023	<1	50 60 -	6 3	1.07	115	110	14 <2	13 5	12
n Maria da Arrista Arriga	23	HB024	<1	70	3.	0.97	135	160	12		12
	24	HB025	<1	100	4	1.00	145	100	8	11	- 8
	25	HB026	<1	170	9	1.68	330	170	8	22	20
6 N	26	HB027	<1	220	10	1.93	195	110	10	18	20
	27	HB028	<1	60	2	0.70	25	40	6	5	6
	28 29	HB029 HB030	<1 <1	50 140	1 9	0.81 1.92	20 140	30 130	4	6 22	4 18
	30	HB031	<1	30	2	0.71	70	50	10	6	10 6
and the second	31	HB032	<1	110	3	0.72	185	160	6	1Ŏ	8
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	32	HB033	<1	40	1	0.41	140	100	4	2	4
		HB034	<1	40	1	0.84	25	60	10	2	4
1 - A		HB035	্ ধ	50	1	0.81	25	70	12	5	6
	35 36	HB036 HB037	<1 <1	30 40	1 1	0.40 0.39	90 120	70 50	28	1	4
		HB038	<1	140	7		500	210	12	3 23	4 20
		HB039	<1	60	1	0.66	85	60	12	1	6
		HC001	<1	170		1.89	1140	240	14	35	14
		HC002	<1	170	9	3.21	1520	200	12	36	12
		HC003	1>	1080	18	3.42	2020	390	14	73	44
	42	HC004	<1	120	6	1.26	595	120	6	12	6
4.1	43 44	HC005 HC006	<1 <1	160 330	8 10	2.57 2.63	855 920	190 300	4 12	34 48	12 16
÷* .		HC007	<1	440	18	3. 72	860	430	22	40 85	36
		HCOO8	<1	340	12	3. 28	995	310	8	61	16
	47	HC009	<1	170	10	1.69 2.57	945	200	8	51	14
$ _{\mathcal{M}} = _{\mathcal{M}}$		HC010		460	7	2.57	310	100	14	42	28
	49	HC011		250	9	2.28	350	230	8	35	24
		HC012 HC013	<1	160 980	8 11	1.98 2.04	315 615	180	18	16	16
	51 52	HC013	<1 <1	980 290	9	2.04	445	220 180	18 12	23 14	20 30
	53	HC015	<1	280	- 5	1.67	165	80	14	35	30 16
	54	IICO16	<1	60	2	0.66	_30	50	6	8	4

MRINA-JONBO AREA

No. No. ppm ppm <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th></th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>ppm 5. 90 7. 20 5. 80 8. 70 7. 10 10. 90 10. 30 11. 00 7. 30 6. 90 12. 60 6. 80 12. 00 10. 60</th> <th>Tb ppm 0, 50 0, 50 1, 10 1, 00 1, 00 0, 80 1, 80 0, 60 2, 00 0, 70 1, 00 0, 60 0, 90</th> <th>Th ppm 10. 0 11. 0 13. 0 12. 0 13. 0 13. 0 13. 0 13. 0 14. 0 13. 0 14. 0 13. 0 14. 0 13. 0 14. 0 13. 0</th> <th>U ppm 3. 0 2. 0 4. 0 3. 0 3. 0 3. 0 2. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3</th> <th>Yb ppm 3. 80 2. 90 3. 60 3. 50 3. 20 3. 50 3. 00 3. 80 3. 60 3. 40 4. 00 3. 40</th>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ppm 5. 90 7. 20 5. 80 8. 70 7. 10 10. 90 10. 30 11. 00 7. 30 6. 90 12. 60 6. 80 12. 00 10. 60	Tb ppm 0, 50 0, 50 1, 10 1, 00 1, 00 0, 80 1, 80 0, 60 2, 00 0, 70 1, 00 0, 60 0, 90	Th ppm 10. 0 11. 0 13. 0 12. 0 13. 0 13. 0 13. 0 13. 0 14. 0 13. 0 14. 0 13. 0 14. 0 13. 0 14. 0 13. 0	U ppm 3. 0 2. 0 4. 0 3. 0 3. 0 3. 0 2. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3	Yb ppm 3. 80 2. 90 3. 60 3. 50 3. 20 3. 50 3. 00 3. 80 3. 60 3. 40 4. 00 3. 40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 7.\ 20\\ 5.\ 80\\ 8.\ 70\\ 7.\ 10\\ 10.\ 90\\ 10.\ 30\\ 11.\ 00\\ 7.\ 30\\ 6.\ 90\\ 12.\ 60\\ 6.\ 80\\ 12.\ 00\\ 10.\ 60\\ \end{array}$	$\begin{array}{c} 0.50\\ 1.10\\ 1.00\\ 1.00\\ 0.80\\ 1.80\\ 0.60\\ 2.00\\ 0.70\\ 1.00\\ 0.60\\ 0.90\\ \end{array}$	11. 0 13. 0 12. 0 13. 0 17. 0 13. 0 18. 0 14. 0 13. 0 15. 0 11. 0	$\begin{array}{c} 2.0\\ 4.0\\ 3.0\\ 3.0\\ 2.0\\ 3.0\\ 2.0\\ 3.0\\ 4.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\end{array}$	$\begin{array}{c} 2.90\\ 3.60\\ 3.50\\ 3.20\\ 3.50\\ 3.00\\ 3.80\\ 3.60\\ 3.40\\ 4.00 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.80 8.70 7.10 10.90 10.30 11.00 7.30 6.90 12.60 6.80 12.00 10.60	$\begin{array}{c} 1. \ 10 \\ 1. \ 00 \\ 1. \ 00 \\ 0. \ 80 \\ 1. \ 80 \\ 0. \ 60 \\ 2. \ 00 \\ 0. \ 70 \\ 1. \ 00 \\ 0. \ 60 \\ 0. \ 90 \end{array}$	13.0 12.0 13.0 17.0 13.0 18.0 14.0 13.0 15.0 11.0	$\begin{array}{c} 2.0\\ 4.0\\ 3.0\\ 3.0\\ 2.0\\ 3.0\\ 2.0\\ 3.0\\ 4.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\end{array}$	$\begin{array}{c} 2.90\\ 3.60\\ 3.50\\ 3.20\\ 3.50\\ 3.00\\ 3.80\\ 3.60\\ 3.40\\ 4.00 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.70 7.10 10.90 10.30 11.00 7.30 6.90 12.60 6.80 12.00 10.60	$\begin{array}{c} 1.\ 00\\ 1.\ 00\\ 0.\ 80\\ 1.\ 80\\ 0.\ 60\\ 2.\ 00\\ 0.\ 70\\ 1.\ 00\\ 0.\ 60\\ 0.\ 90\\ \end{array}$	12.0 13.0 17.0 13.0 18.0 14.0 13.0 15.0 11.0	$\begin{array}{c} 3. \ 0 \\ 3. \ 0 \\ 2. \ 0 \\ 3. \ 0 \\ 4. \ 0 \\ 3. \ 0 \\ 3. \ 0 \\ 3. \ 0 \\ 3. \ 0 \\ 3. \ 0 \end{array}$	$\begin{array}{c} 3.\ 50\\ 3.\ 20\\ 3.\ 50\\ 3.\ 00\\ 3.\ 80\\ 3.\ 60\\ 3.\ 40\\ 4.\ 00\\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45.0 0.1 71.0 0.0 62.0 0.1 64.0 0.1 47.0 0.1 46.0 0.1 75.0 0.1 75.0 0.1 71.0 0.1 63.0 0.1 54.0 0.1 42.0 0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 7.\ 10\\ 10.\ 90\\ 10.\ 30\\ 11.\ 00\\ 7.\ 30\\ 6.\ 90\\ 12.\ 60\\ 6.\ 80\\ 12.\ 00\\ 10.\ 60\\ \end{array}$	1.00 0.80 1.80 0.60 2.00 0.70 1.00 0.60 0.90	13.0 17.0 13.0 18.0 14.0 13.0 15.0 11.0	3.0 3.0 2.0 3.0 4.0 3.0 3.0	3. 20 3. 50 3. 00 3. 80 3. 60 3. 40 4. 00
6 HB006 57 34 166. 7 HB007 43 33 136 8 HB008 39 39 126. 9 HB009 30 34 124 10 HB010 29 31 100 11 HB011 46 36 120 12 HB012 23 27 66 13 HB013 44 35 114 14 HB014 45 34 102 15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10. \ 90\\ 10. \ 30\\ 11. \ 00\\ 7. \ 30\\ 6. \ 90\\ 12. \ 60\\ 6. \ 80\\ 12. \ 00\\ 12. \ 00\\ 10. \ 60\end{array}$	0.80 1.80 0.60 2.00 0.70 1.00 0.60 0.90	17.0 13.0 18.0 14.0 13.0 15.0 11.0	3.0 2.0 3.0 4.0 3.0 3.0 3.0	3. 50 3. 00 3. 80 3. 60 3. 40 4. 00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62.0 0.1 64.0 0.1 47.0 0.1 46.0 0.1 75.0 0.1 42.0 0.1 63.0 0.1 54.0 0.1 54.0 0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10. 30 11. 00 7. 30 6. 90 12. 60 6. 80 12. 00 10. 60	1.80 0.60 2.00 0.70 1.00 0.60 0.90	13.0 18.0 14.0 13.0 15.0 11.0	2.0 3.0 4.0 3.0 3.0 3.0	3.00 3.80 3.60 3.40 4.00
8 HB008 39 39 126 9 HB009 30 34 124 10 HB010 29 31 100 11 HB011 46 36 120 12 HB012 23 27 66 13 HB013 44 35 114 14 HB014 45 34 102 15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64.0 0.1 47.0 0.1 46.0 0.1 75.0 0.1 42.0 0.1 71.0 0.1 63.0 0.1 54.0 0.1 42.0 0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.00 7.30 6.90 12.60 6.80 12.00 10.60	0.60 2.00 0.70 1.00 0.60 0.90	18.0 14.0 13.0 15.0 11.0	3.0 4.0 3.0 3.0	3.80 3.60 3.40 4.00
9 HB009 30 34 124 10 HB010 29 31 100 11 HB011 46 36 120 12 HB012 23 27 66 13 HB013 44 35 114 14 HB014 45 34 102 15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.0 0.1 46.0 0.1 75.0 0.1 42.0 0.1 71.0 0.1 63.0 0.1 54.0 0.1 42.0 0.1	i0 30 i0 30 i0 45 i0 25 i0 45 i0 40 i0 30	7.30 6.90 12.60 6.80 12.00 10.60	2.00 0.70 1.00 0.60 0.90	14. 0 13. 0 15. 0 11. 0	4.0 3.0 3.0	3.60 3.40 4.00
10 HB010 29 31 100 11 HB011 46 36 120 12 HB012 23 27 66 13 HB013 44 35 114 14 HB014 45 34 102 15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 21 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.0 0.1 75.0 0.1 42.0 0.1 71.0 0.1 63.0 0.1 54.0 0.1 42.0 0.1	0 30 10 45 10 25 10 45 10 40 10 30	6, 90 12, 60 6, 80 12, 00 10, 60	0.70 1.00 0.60 0.90	13.0 15.0 11.0	3.0 3.0	3.40 4.00
11 HB011 46 36 120 12 HB012 23 27 66 13 HB013 44 35 114 14 HB014 45 34 102 15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 70 30 HB030 26 32 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.0 0.1 42.0 0.1 71.0 0.1 63.0 0.1 54.0 0.4 42.0 0.1	i0 45 i0 25 i0 45 i0 40 i0 30	12.60 6.80 12.00 10.60	1, 00 0, 60 0, 90	15.0 11.0	3, 0	4.00
12 HB012 23 27 66 13 HB013 44 35 114 14 HB014 45 34 102 15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42.0 0.1 71.0 0.1 63.0 0.1 54.0 0.1 42.0 0.1	0 25 0 45 0 40 0 30	6.80 12.00 10.60	0.60 0.90	11.0		
13 HB013 44 35 114 14 HB014 45 34 102 15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38	.0 2.50 .0 1.50 .0 1.00 .0 1.00 .0 1.00	71.0 0.1 63.0 0.1 54.0 0.1 42.0 0.1	0 45 0 40 0 30	12.00 10.60	0.90		. 4 10	5, au
14 HB014 45 34 102 15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32 <td>.0 1.50 .0 1.00 .0 1.00 .0 1.00</td> <td>63. 0 0. 54. 0 0. 42. 0 0.</td> <td>i0 40 10 30</td> <td>10.60</td> <td></td> <td></td> <td></td> <td></td>	.0 1.50 .0 1.00 .0 1.00 .0 1.00	63. 0 0. 54. 0 0. 42. 0 0.	i0 40 10 30	10.60				
15 HB015 27 32 86 16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32	0 1.00 .0 1.00 .0 1.00	54. 0 0. 42. 0 0.	0 30			14.0	2.0	3.80
16 HB017 26 36 98 17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32	.01.00 .01.00	42.0 0.		V 111	0.60	12.0	2.0	3.70
17 HB018 26 37 74 18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32	.0 1.00		M 9C.		2.60	15.0	3.0	4.10 4.40
18 HB019 26 49 96 19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32					1.30	16.0	4.0 4.0	4.40
19 HB020 24 47 94 20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32	. (). ISTRE				0,70	18.0		4. 50 5. 40
20 HB021 27 43 120 21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32		57.00. 53.00.			0.40 0.90	19.0	5.0	4. 90
21 HB022 28 47 92 22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32		63.0 0.			0.90	17.0	5.0	
22 HB023 23 38 90 23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32						19.0	6.0	5.40
23 HB024 23 43 120 24 HB025 21 23 34 25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32		55.0 0			1.20	18.0	5.0	5.70
24HB02521233425HB02629315826HB02727347427HB02822243228HB02920202629HB03026327030HB03118233831HB032101832		55.0 0.		7.70	0.60	19.0	4.0	5.10
25 HB026 29 31 58 26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 20 26 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32		67.0 0.		9.70	1.10	25.0	6.0	5.40
26 HB027 27 34 74 27 HB028 22 24 32 28 HB029 20 26 32 70 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32 32		21.0 0. 31.0 0.		3.00 4.80	0.20 0.30	10.0 15.0	4.0	2.80
27 HB028 22 24 32 28 HB029 20 26 29 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32		36,0 0.1		4. 80 5. 90	0.30	15.0 14.0	5.0 5.0	3.60 4.00
28 HB029 20 20 26 27 70 29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32 32 32 32 33		17.0 0.		2.80	0.20	14.0 10.0	4.0	2.60
29 HB030 26 32 70 30 HB031 18 23 38 31 HB032 10 18 32		14.0 0.4		3.40	0.40	9.0	3.0	-2.60
30 HB031 18 23 38 31 HB032 10 18 32		31.0 0.		<i>4,</i> 80	0.40	13.0	4,0	4.30
31 HB032 10 18 32		14.0 0.		2.20	0, 30	10.0	4.0	3, 20
		10.0 0.			0, 30	6. 0	3.0	2.10
32 HB033 13 20 22		9.0 0.4		1.20	0.30	8.0	3.0	2.10 2, 20
	0 <0.05	11.0 0.4		2.50	0.30	9.0	2.0	2. 40
34 IIB035 17 24 54		18.0 0.4		3.30	0.40	11.0	3.0	2. 80
35 HB036 $15 24 40$		16.0 0.1		2.50	0.30	10.0	4.0	3. 20
	0 <0.05	11.0 0.1				9.0	4.0	3.00
37 HB038 32 36 84		33.0 0.1			0.90	12.0	3.0	3.40
38 HB039 16 28 52		17.0 0.0			0.20	14.0	5.0	3.90
39 HC001 31 38 170					0. 80	30.0	5.0	4.8
40 HC002 54 39 154		88.0 0.1		11.10	0.60	30. Ŭ	5.0	4, 80
41 HC003 96 58 226		147.0 0.1		16.00	1.70	31.0	4.0	5.40
42 HC004 39 40 178		82.0 1.		12.30	1.20		7.0	6.1
43 HC005 34 45 120		67.0 0.		10.00	1.50	27.0	5.0	5, 50
44 HC006 42 40 124		65.0 0.			0, 90	27.0	5.0	5,00
45 HC007 68 57 202		102.0 0.1		13.00	1.30	32.0	5.0	5.00
46 HC008 42 43 120		68.0 0.			0.50	22.0	5.0	4.1
47 HC009 43 50 144		73.0 0.			1.40	27.0	6. Ŭ	5.90
48 HC010 29 44 104		56.0 0.			1.00	17.0	4.0	4.20
49 HC011 31 47 120		61.0 0.	0 45			20.0	5.0	5. 30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		45.0 0.				16.0	ି 5. ୦	4.4
51 HC013 42 38 114	.0 1.50	57.0 0.			0.30	16.0	5.0	4.60
51 HC013 $42 HC014$ $52 HC014$ $22 41$ 76	.01.50 .01.00	49.0 0.			0, 80	13.0	4.0	4.60
53 HC015 $26 34 60$.0 1.50 .0 1.00 .0 1.50					13.0	4.0	3.80
53 HC010 $20 34$ $0054 HC016$ $24 22 42$.0 1.50 .0 1.00 .0 1.50 .0 1.50	38.0 0.		6.20	0.40		. 	ຸ່ມຸມບ

Ser. No.	Sample No.		Au ppb	Ba ppm	Cu ppm	Fe %	Mn ppm	ppm P	Pb ppm	Sr ppm	Zı ppi
55	HC017		<1	370	9	2.19	325	200	16	28	1
56	HC018		<1	640	6	2.04	1450	270	10	41	3
57	HC019		<1	130	5	0.81	850	150	12	19	1
58	HC020		<1	160	6	2.28	745	200	16	37	2
59	HC021		<1	180	9	1.34	755	230	10	43	1
60	HC022	22	- <1 -	140	7 -	1.63	605	160	12	28	1
61	HCO23		<1	180	6	1.58	815	170	8.	37	2
62	HC024		<1	180	9	2.13	635	260	- 12	32	1
63	HC025		<1	310	12	2.18	740	350	16	53	3
64	HC026		<1	210	8	1.85	410	270	8	44	1
65	HC027	· · ·	<1	210	10	2.75	585	320	20	40	1
66	HC028		<1	190	7.	1.93	845	150	12	24	1
67	HC029	1.1.1	<1	110	13	3.90	855	320	12	19	1
68	HCO30		<1	50	3	1.04	150	90	6	11	
69	HCO31		1	130	9	2.36	835	250	10	30	2
70	HC032		<1	60	5	2.16	235	220	8	15	
-71	HC033		<1	80	7	2.77	325	220	10	18	1
72	HC034		<1	210	8	2.20	360	350	10	78	1
73	HCO35		<1	60	2.	1.00	380	170	16	9	1
74	HCO36		<1	170 120	4	1.76	515	330	14	39	1
75 76	HC037 HC038		<1 <1	160	4°. 8	2.03 1.45	350 35	250 110	14 12	16	1 1
77	HC039	2, 5	<1	120	9	1. 45	25	60	12	15 11	
78	HC039 HC040		<1	160	9 6	1. 75	45	60	10	11	1
79	HC040	• • •	<1	220	8	1.72	270	80	10	19 52	1
80	HC041	1 - 1.	<1	260	13	2.49	220	170	10	35	1
81	HC042	- 1999 - 19 19	<1	40	8	1.50	140	80	6	7	- 1
82	HC044		<1	200	13	2.27	275	190	10	25	2
83	HC045		<1	120	10	1.72	110	90	2	7	2
84	HC046	· · ·	<1	100	10	1.85	190	130	10	13	- 2
85	HC047		4	190	10	1. 78	200	80		22	2
86	HC048		1	180		1.67	135	90	8	10	1
87	HC049	÷.,	<1	230	11	2.63	590	190	. 8	22	j
88	HC051		<1	140	<1	0.24	10	60	4	13	<
89	HC052	÷ .	2	10	1	0.12	10	40	<2	2	<
90	HC053		<1	10	- 1.	0. 23	20	40	4	5	
91	HC054		1	40	. 1	0.49	285	70	4	10	
92	11C055		5	310	19	4.46	1170	270	20	69	1
93	HC056		38	720	19	7.07	2560	500	48	92	14
94	HC057		94	2160	26	6. 81	3210	830	108	169	39
95	HC058	. •	17	4400	27	11.95	7300	1450	216	241	53
. 96	HC059		17	4510		10.85	6700	1580	214	266	5
97	HDOO1		<1	710	9	2.03	335	170	18	82	e e
98	HD002		1	340	10	2.03	470	170	18	76	1
99	HD003		<1	360	8	1.89	640	200	16	48	•
100	HD004		<1	310	12	1.82	480	220	22	72	2
101	HD005		<1	310	8	1.20	570	90	16	45	•
102	HD006	÷	2	490	9	1.99	885	260	20	65	1
103	HD007	· · . ·	<1	140	5	1.29	425	140	12	39	
104	HD008		8	810	19	2.57	2090	470	24	110	(
105	HD009	· . ·	12	960	20	4.51	2380	510	34	100	1
106	HD010	· ',	16	620	15	4, 77	2070	410	46	84	;
107	HD011		10	420	15	5.07	1.645	310	38	53	· · •
108	HD012	1. A	21	2660	21	6.76	3270	750	78	154	1

MRIMA-JONBO AREA

ተጠለቷ	MA-JUEDU	/ AB	СЛА								· ·			
Ser. No.	Sample No,	· · ·	Nb ppm	y ppm		Eu ppm	La ppm	Lu ppm	Nd ppm	Sm ppm	Tb ppm	Th ppn	U ppm	Yb ppm
55	HC017		43	44	104.0	0. 50	51.0	0.80	30	6.70	1.20	16.0	5.0	4.70
56	HC018		. 84	43	136.0	2.00	64.0	0.70	30	8.00	0.80	14.0	5.0	4,80
57	HC019		36	· 30	64.0	1,00	27.0	0, 70	15	4.10	0.90	11.0		3, 90
58	HCO20		39	49	116.0	1.50	55.0	0.80	30	7.60	0.50	16.0		5.40
59	HC021	÷	55	42	114.0	1,50	57.0	0.80	35	7.10	1.00	12.0	6.0	5,00
60	HC022	· .	35	36	88.0	1.00	42.0	0.80	25	4.80	0.50	14.0	5.0	4.80
61	HC023	•	32	38		1,50	41.0	0.70	20	5.50	1.50	13.0	4.0	4.40
62	HC024		34	43		1, 30	49.0	0.70	35	7.50	0.80	15.0		4,40
63	HC025	••	39	43		2.30	59.0	0.80	45	8, 60	1.40	15.0	4.0	5.10
64	HC026		43	40			55.0	0.80	25	6.50	1.20	15.0	5.0	5.00
65	HC027		40	37		1, 80	60.0	0.70	50	8.00	1.20	17.0		
66	HC028	•	49	41	136.0	2.10	74.0	0,80	55	9,80	1.00	24.0	4.0	5.20
67	HCO29	:	55	50		2. 80	84.0	0.80	60	12.00	1.50	24.0	4.0	5.10
68	HC030		42	37	118.0	1.50	55.0	0.80	45	8.10	1.20	24. Ŏ	5.0	4.90
69	HC031	1.1	52	51	220.0	2,00	93.0	1.00	80	12.30	1.40	31.0	7.0	6.40
70	HC032		45	38		1.00	64.0	0.70	50	8.70	1.00	23.0	4.0	4.60
71	HC033	:	44	41		1.00	72.0	0.80	60	9.40	1.40	30.0	5.0	5. 20
72	HC034	· .	106			2.50	101.0	0.80	90	13.80	1.30	26.0	6.0	5.00
73	HC035		26			1.50	50.0	0.70	50	8, 10	0.90	18.0	4.0	4.40
74	HC036		36	49		2.00	67.0	0.90	55	10.00	0.80	24.0	6.0	5.90
75	HC037		32	41		1.50	62.0	0.80	50	9.10	1.20	22.0	4.0	4.90
76	HC038		27	28		0,50	41.0	0.70	30	6.30	0.50	13.0	3.0	4.10
77	HC038		27	29	88.0	1.00	40.0	0.70	35	7.00	0.80	14.0	4.0	3.80
78	HC040		23	28	76.0	1.00	38.0	0.80	30	6, 60	0.70	12.0	4.0	4. 60
79	HC040	e de la	35	33	84.0	1.50	53.0	0.60	50	8.80	0.80	13.0	3.0	4.00 3.70
80	HC041 HC042		25	31	110.0	1.50	45.0	0.50	40	8, 20	0.50	13.0	3.0	3.40
81	HC042 HC043		26	. 32	80.0	1,00	39.0	0. 30	30	5, 90	1,50	16.0	5.0	4, 10
82	HC043 HC044		20 25	- 38		0.50	46.0	0.70	35	8.40	0.50	16.0	4.0	3.90
02 83	HC045		20	27	82.0	0.50	39.0	0.60	35	6.40	0.30	15.0	3.0	3. 70
oo 84	HC045		20	27	66.0		27, 0		20	4.80	0.50	12.0	4.0	3. 20
04 85	HC040 HC047		25	27	80.0	1.00	37.0	0.00	30	6.40	0.50	12.0	4.0	3. 10
86 -	HC048		23		68.0	1. 50	44.0	0.60	35	7.30	0.30	12.0	4.0	3. 10 3. 80
87	HC048		32	42	134.0	2.00	61.0	0.00	55	11.00	3.00	13.0	4.0	4,60
88			38	25	78.0	0.50	35.0	0.70	30	4.80	0.30	16.0		4.60
	HC051	-	30 45	20	60.0	0.50	24.0	0. 10	20	4.00			4.0	
- 89 DD	HC052 HC053				76. 0		34.0	1.00	30		0.30	11.0	5.0	5.30
90	HC053 HC054		55 77	25 25	124.0	0, 50 1, 00	56, 0	0.80		5. 40	0.50 0.90		6.0	6.00
91 02	HC054 HC055			88		4.00	210.0	1.30	25 125	5.40 19.00	2.30	22.0	5.0	5.30
92			147					1.50				73, 0	5.0	8.80
93	HC056		11.1			17.00				60.30	6.90		6.0	20. 20
94 DF	HC057		496		1108.0		894.0	3.30	400	83.10	10.90		4.0	25.20
95 00	HC058		1075		2874	47.00		4.30	1140	174.90	13, 10	405.0	3.0	34.60
96	HC059		1060		3310	54.50		5.30		187.90		413.0	9.0	40.30
97	HD001	÷	125		230.0		146.0	0.90		18.00	1.60	22.0	4.0	6.00
98	HD002		53			2.50	75.0	0.80	50	9.50	1.40	16.0	2.0	5.50
99	HD003		77	46		1.50	80.0	0.80	50	9.70	1.40	16.0	4.0	4.90
100	HD004		97	40	156.0	2.00	97.0	0.80		9.80	1.60	16.0	4.0	4.70
101	HD005		61			1.50	71.0	0.70		7.70	0.60	13.0	3.0	4.20
102	HD006	2	72	51	154.0	1.50	85.0	0.90		8.70	2.10	26.0	5.0	5.70
103	HD007		67	46		1.50	90.0	1,30	50	9.50	1.20	29.0	7.0	7.60
104	HD008	2	160			5.00		1.40		20.80	2.00		6.0	9.10
105	HD009		353			13.50		1.90		47.10	4.10		4.0	13.50
106	HD010		369	200			666.0	2.00		44.60	5.40	191.0	6, 0	15.40
107	HD011		284		512.0	9.00	542.0	1.50		32.40	4.40		4, 0	10.80
108	HD012		<u>491</u>	240	1072.0	14.00	838.0	<u>2. 10</u>	335	54.30	7.00	217.0	3.0	15.20

MRIMA-JOHBO AREA

RESULTS OF GEOCHEMICAL ANALYSIS

.

	MKTI	NA-JOMBO ARE	1								·
	Ser. No.	Sample No.	Au ppb	Ba ppm	Cu ppm	Fe %	Mn ppm	P ppm	Pb ppm	Sr ppm	Zn ppm
	109	HD013	7	340	12	3. 22	915	300	20	68	36
	110	HD013	<1	250	13	3.06	805	290	16	63	48
	111	HD015	<1	150	7	1.64	820	210	22	46	32
		HD016	<1	130	. 9	1.14	610	160	82	39	52
	113	HD017	<1	160	13	2. 47	615	210	68	42	$\tilde{70}$
	114	HD018	<ī]	150	9	2.18	760	230	10	42	26
	115	HD019	<1	70	4	1.17	510	110	6	26	8
	116	HDO20	<1	140	- 13	4.16	485	300	4	60	24
	117	HD022	<1	340	10	2.47	1285	380	18	80	42
	118	HD023	1	240	.9	2.30	1050	300	18	63	34
۰.	119	HD024	9	1040	17	6.09	2890	990	58	307	230
	120	HD025	9	1350	36	3.34	1835	3830	28	760	292
	121	HD026	6	750 >10000	10	4.13	2460	470	30	100	150
	122 123	HD027 HD028	27 20	2460	36 26	12.65 8.69	9800 4540	9720 1690	$\begin{array}{c} 170\\ 66\end{array}$	2590	2940
	123	HD028 HD029	13	1980	20 24	7.21	3790	1380	56	501 309	666 358
	124	HD02.9 HD030	3	560	16	2, 99	1290	620	32	120	94 94
	126	HD031	2	430	15	1.85	1285	380	18	101	48
	127	HD032	<1	170	8	1.44	710	160	16	36	14
	128	HD033	<1	160	5	1.47	400	200	12	33	10
	129	HD034	<1	240	12	2.01	800	290	10	36	18
	130	HD035	<1	240	15	2.71	790	410	22	60	26
	131	HD036	<1	450	16	2.79	1735	260	18	53	36 -
	132	HD037	<1	260	6	1.31	930	240	16	47	16
	133	HD038	<1	200	9	1.64	1070	280	6	31	22
	134	HD039	<1	150	4	1.45	540	220	16	22	14
	135	HD040	<1	200	5	1.11	675	140	8	25	12
•		HD041	<1	60	2		455	80	4	10	4
•	137 138	HD042	<1	100 60	4	0.91	505 295	120	8	13	8
•	130	HD043 HD044	<1 <1	70	2 2	0. 45 0. 36	295 135	80 90	4 6	8 11	4 4
, í	140	HD044 HD045		120	8	1.47	610	200	10	20	4 16
e,	141	HD046	<1	140	. 6			130	10	29	12
	142	HD047	<1	140	4	1.10	670	130	18	11	10
••		HD048	<1	330	2	0.85	215	70	12	95	6
		HE001	<1	70		0.68	80	110	2	9	Ğ
	145	HEOO2	<1	110	4	0.76	325	100	12	13	8
		HE003	<1	80	3		70	100	4	9	8
	147	HEOO4	<1	160	6	1.65	195	180	2	21	10
		HE005	<1	240	9			170	8	÷ •	14
		HEOO6	<1	170	6	1.43	135	90	4	22	8
		HEOO7	<1	340		2.02	445		6	82	18
		HEOO8		210 200	· 8	2.33		340	6	43	22
1		HEOO9		100	13	1.45	630	$\begin{array}{c} 130 \\ 100 \end{array}$	12	37	16
		HEO10 HEO11	<1 <1		51	2.60 9.23		100 1600	12 4	102 145	28 58
		HE012			43		1610	4 800	10	143	50 64
		HE012 HE013		840	83	8.38	2000	2930	8	244	108
		HE013	1	450		11.00	1515		2	244 134	108 92
		HE015		370	61	8. 53	1930	1820	10	129	72
		HE016	1	190	28	5.33	665	480	- 8	99	26
	160	IIE017	3	920	174	12.00	2400	5710	· · · 4	636	90 90
	161	HE018	4	760	115	11.30	2270	2850	8	201	118
	<u>162</u>	<u>HE019</u>	2	710	82	9.57		1470	2	158	70
• •											

MRIMA-JOMBO AREA

RESULTS OF GEOCHEMICAL ANALYSIS

*SK1	BA-JUMBU AKE	A¥								
	Sample	Лu	Ba	Cu	Fe	Mn	Р	РЬ	Sr	Zn
No.	No.	ppb	ppm	ppm	*	ppm	ppn	ppm	ppm	ppm
163	HEO20	4	980	108	10.25	2710	2580	6	220	132
164	HEO21	3	530	96	10.85	2180	1570	4	159	88
165	HE022		580	81	12.30	2340	3240	14	157	116
166	HEO23	<1	890	95	13.10	2220	5670	14	236	104
167	HE024	1	700	112	14.00	1970	4270	2	213	116
168	HE025	<1	160	15	3.20	595	420	16	44	22
169	HE026	2	670	57	9.61	1535	3510	12	217	92
170	HE027	<1	580	18	4.93	1375	210	20	36	18
171	HEO28	<1	520	20	2.51	1240	970	16	141	46
172	HEO29	<1	300	22	1.89	1000	290	12	66	38
173	HEO30	4	1320	28	4.18	1145	1110	22	202	40
174	HEO31	5	1180	17	9.02	2810	1450	38	466	200
175	HE032	3	1160	17	8.88	2770	1460	34	461	198
176	HEO33	6	1180	21	7.04	2310	1280	34	351	174
177	HE034	7	2220	29	9, 25	3390	2600	46	770	344
178	HEO35	8	1740	30	8.03	3000	2100	46	554	380
179	HEO36	4	2110	27	6.68	2670	2200	64	614	468
180	HEO37	3	670	13	2.18	1220	450	18	93	38
181	HE038	- 4	380	15	3.12	1055	420	16	118	34
182	HEO39	5	1830	31	3. 71	915	1280	26	223	62
183	HE040	1	1450	23	4.02	1525	1070	38	240	60
184	HE041	4	1660	-83	11.65	2290	2940	28	584	170
185	HEO42	3	1580	54	5.86	1770	2570	20	331	130
186	HEO43	2	980	30	3.63	1715	1030	26	236	134
187	HE044	3 2	1550	19	3.24	1730	1080	54	218	100
188	HEO45		1140	24	4.36	2060	1090	62	209	94
189	HEO46	<1	910 290	14 7	3.23 1.25	1045 525	710	38	152	52
	HEO47			.8	2.04		360	10	74	20
191 192	HEO48 HEO49	<1 <1	310 590	0 15	2.04	- 780 710	260	12	50	22
192	нео50		170	15	2, 24	635	390 360		81	34 22
193	HE050 HE051	<1	200	12	2, 62	820	340	16 8	45	
194 195	HF001	6	1240	17	6.76	4370	830	38	53 241	34 190
195	HF002	9	1540	24	9.25	3960	1330	30 48	241 375	386
197	HF003	8	3760	31	5. £3 8. 30	4290	2460	40 56	557	406
	HF004	12	3060	21	8.98	5320	1800	72	383	534
199	HF005	- 9	4160	28	6.12	4560	9680	50	998	782
	HF006		9300	36	11.85	8480	8690	130	1340	2140
	HF007		>10000	47	13.15		>10000	148	3390	1530
202	HF008		3450	29	8.04	5500	2250	70	573	532
	HF009	12	1880	27	10.15	6320	1490	70	421	966
	HF010	13	3720	23	10.40	5950		74	433	688
	HF011	8	3500	23	6. 78	5020		54	906	1180
	HF012	3	1940	20	6.00	4250		46	300	602
	HF013	9	1270	20	6.02	2930	730	38	194	376
	HF014	6	1540	14	5.33	3510	1400	40	306	292
	HF015		430	9	1.74	980	310	20	87	42
210	HF016	3	290	12	2.87	685		18	66	
211	HF017	্র		10	1.38	1095	970		194	36
	HF018	<1	280	5	1.43	1250	280	10	41	24
213	HF019	<1	400	5		565	350	14	59	18
	HF020		230	10	2.36	775	340	14	42	20
215	HF021	<1	160	9	1.25	620	260	14	47	18
	HF022	1		19	3. 31	1470	310	14	140	36
					······································		· · · · ·	~~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

NRINA-JONBO AREA

	Sample	Nb	Y	Ce	Eu	La	Lu	Nd	Su	Tb	Th	U .	Yb
No.	No.	ppm	ppm	ppm	ppn	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppn
163	HEO2O	172	90	262.0	6.00	138.0	0.90	100	21.00	2.50	16, 0	2.0	6, 50
164	HE021	169	73	270.0	6.50	153.0	0.70		21.50	2.20	16.0	2.0	4.50
165	HE022	188	85	390.0	8.50	199.0	0.90	165	31.80	3.20	22.0	3.0	6.40
166	HE023	177	89	530.0	11, 00	217.0	0.90	195	36.60	3.80	18.0	2.0	6.30
167	HE024	163	75	398.0	8.00		1.00	175	32.40	3, 30	18.0	2.0	5.50
168	HEO25	55	44	142.0		69.0	0.70	50	10.00	0.60	21.0	5.0	4.20
169	HE026	120	62	296.0	6. 50	144.0	0.70	135	25.20	2.50	16.0	2.0	4.50
170	HE027	49	38	278.0	1.00	67.0	0.70	50	8.90	0.90	24.0	6.0	4.70
171	HEO28	97	51	174.0		97.0	0.80		11.20	1.30	24.0	6.0	5.60
172	HEO29	92	52	138.0	2.00 3.50		0.90 0.80		10.30 15.30	1.30 1.10	28. 0 28. 0	6.0 5.0	6.30 5.00
173 174	HEO30 HEO31	137 1825	55	208.0 1240.0			2,40		140.40	7.40	103, 0	8.0	18,50
175	HEO32	736	195	674.0		584.0	1.80		62.80	4.50	66.0	6.0	11.80
176	HE033	1075		1066.0		880.0	2.20		96.10	5.80	99. O	11.0	17.00
177	HE035	740	240	768.0		756.0	2.00		67.20	4.60	68.0	7.0	13.60
178	HE035	843		1048.0		1050.0	2,00		88.20	5. 30	58.0	12.0	14.90
179	HEO36	315	130	330.0		394.0	1.40	165	33.00	2.80	44.0	5.0	8.60
180	HE037	109	54	134.0	2.50		0.70	55	10.40	1.00	19.0	4.0	4.90
181	HEO38	138	61	140.0		136.0	0.90		14.50	1.90	25.0	5.0	5.70
182	HEO39	169	64	208.0		136.0	0.70		17.70	1.30	26.0	5.0	5.40
183	HE040	147	65		3.50		0.70		18.20	1.80	35.0	6.0	5.10
184	HE041	389	99		10.50		1.00	250	43.60	3.70	27.0	6.0	7.40
185	HEO42	243	86	366, 0	5, 50	251, 0	1,10	135	26.00	2.20	34.0	5.0	6.90
186	HE043	206	85	370.0	4.50	195.0	1.10	115		1.80	33.0	4.0	7.10
187	HE044	144	78	294.0	5.00		0, 90	105	22.00	1.60	34.0	3. 0	5.90
188	HE045	126	63	396.0		182.0	0.80	95	17.90	2.40	29.0	4.0	5.00
189	HEO46	90	51	190.0	2.00		0.80	55	10.90	0.70	19.0	5.0	4.60
190	HE047	53	40	84.0	1.00	46.0	0.70	35	7.50	0.50	14.0	4.0	3.90
191	HEO48	50	47	128.0			0.90	45	9.20	0.80	14.0	5.0	5.10
192	HE049	68	46	184.0	2.50	90.0	0.70	45	10.20	1.00	18.0	4.0	4.60
193	HE050	37	39	112.0	1.00	56.0	0.60	35	6.90	0.70	14.0	4.0	4.40
194	HE051	39	42	126.0	2,00	55.0	0.60	35	7.60	1.00	13.0	4.0	4, 70
195	HF001	1110		1270.0	21.00	865.0	1.40	475	99.50 144.10	7.00	70.0	5.0	12.80
196	HF002	1400		1310.0		1358.0	2.90 2.10		144.10	7.90	92.0	5.0	17.90
197	HF003	1135		1340.0		998, 0 1444, 0			173, 20		107.0 169.0	6.0 8.0	18.20 25.90
198 199	HF004 HF005	1520 847		1790. 0 1190. 0		715.0	3.50 1.90		90, 40		121.0	11.0	15.50
200	HF006	1905		5204	55.00		4.40	1/65	317.1		227.0	8.0	29.70
200	HF007	2020		4864	74.00		3.70		308.3		277.0		33.30
201	HF008	800		1858.0		1440.0	2.40		122, 20		132.0		17.20
202	HF009	1015		2874	51.00		2, 30		223.9		155.0	1.0	20.30
204		1345		2914	77.00		4.70		261.7		173.0	4.0	25.30
205	HF011	805		1980. 0		1380.0	2.40		125.40	7.90	80.0	6. 0	17.00
206	HF012	685		1310.0		1000.0	1.40		90.50	6.10	69.0		11.30
207	HFQ13	570	210	822.0		784.0	1.90	480	71.70	5.40	96.0	4.0	12.40
208	HF014	666		1124.0			2.30	645	99.10	7.70	89.0	5.0	17.70
209	HF015	133	80	154.0	5.00		1.00	405	17.50	2.00	30.0	4.0	6.50
210	HF016	164	81	192.0	5.50		1.00	140	21.30	2.30	37.0	3.0	6.50
211	HF017	113	57.	118.0	4.00	126.0	0,90	75	13.80	1,50	19.0	4.0	5.50
212	HF018	138	56	140.0	3.50		1.00	80	14.00	1.60	23.0	4.0	5.40
213	HF019	63	32	108.0	2.00	60.0	0.60	50	7.10	0, 90	16.0	: 4.0	3.80
214	HF020	58	41	124.0	2.00	67.0	0.80	55	9, 90	0.80	20. 0	6.0	5,10
215	HF021	58	32	106, 0	2.00	60.0	0.60	40	7.70	0, 70	17.0	3.0	3, 80
216	HF022	91	48	178.0	2.50	100.0	0.60	70	13.40	0, 90	24.0	4.0	3.80

.

RESULTS OF GEOCHEMICAL ANALYSIS

and the second second

Ser. No.	Sample No.	 	Au ppb	Ba ppm	Cu ppm	Fe %	Mn ppm	P ppm	Pb ppm	Sr ppm	Zn ppm
217	HF023		<1	190	9	2,00	665	150	10	84	20
218	HF024		<u> </u>	90	12	2.13	500	300	12	24	20
219	HF025	۰.	3	440	59	8,88	1275	960	10	82	66
220	HF026		1	80	9	2, 58	410	270	2	23	14
221	HF027	· · ·	<1	260	6	1.60	870	290	8	45	34
222	HF028		<1	130	9	2, 10	740	320	8	30	14
223	HF029		. 1	520	11	2.41	740	500	18	91	52
224	HF030		<1	110	4	0.79	310	150	8	23	5
225	HF031		<1	370	13	1.78	470	280	10	47	20
226	HF032	÷ 1	<1	140	7	1.21	510	260	- 4	33	22
227	HF033		<1	310	13	1.67	255	220	6	27	14
228	HF034	н. н.,	<1	170	8	1.29	230	70	6	34	10
229	HF035	. •	<1	140	7	1.36	60	70	6	19	· - {
230	HF036	$(x^*,y) \in \mathcal{X}$	<1	190	12	1.89	160	110	12	31	18
231	HF037		<1	190	11	1.87	210	140	6	33	14
232	HF038	1.	<1	260	10	1. 78	150	170	4	41	$1 \overline{1}$
233	HF039		3	130	5	1.44	115	120	6	17	1
234	HF040		<1	170	10	1.42	395	260	4	22	$\tilde{1}$
235	HF041	· · .	<1	190	11	1.71	125	110	10	22	1
236	HF042	4.13	. <1 ·	290	7	1.54	255	210	12	$\overline{22}$	$\hat{2}$
237	HF043		- Ā	220	10	2.57	255	120	20	$\overline{20}$	10
238	HF044	1. a	<1	150	6	1.73	90	60	8	$\overline{15}$	1
239	HF045		<1	120	6	1.20	125	260	6	23	1
240	HF046	÷.,	<1	230	10	2.27	365	260	10	22	2
241	HF047		<1	170	8	1.85	120	110	²	18	ĩ
242	HF048	5	<1	220	ğ.	2.01	205	190	8	30	2
243	HF049		<1	250	2 0	2.97	615	310	4	56	2
244	HF050		র	320	35	9.06	1425	1270	14	90	7
245	HF051		<1	360	39	9.01	1090	1120	8	70	6
246	HF052		<1	390	60	10.70	1560	1990	10	91	ő
247	HF053		<1	330	. 44	9.48	1140	1060	6	94	Š
248	HH001	÷	1	190	25	5, 37	680	520	16	50	2
249	HH002		<1	1140	28	4, 04	1055	750	6	76	Ĩ
250	HH003	12.14	2	360	36	4.10	800	650	8	50	3
251	HH004	an a	<ī	390	35	3. 05	1100	530	6	49	2
252	HH005			990	139			2780	8	300	<u>9</u>
253	HH006		4	720	147				12	282	9
254	HH007	April		390	151	10.70	2130	3560	6	189	9
255	HIIOO8		. 3	420	98	8, 69	2110	1770	8	146	8
256	HH009		2	820	78.	9,85	1790	920	4	133	9 9
257	HH010		3	390	45	8,13		520 620	20	96	9 6
258	HH011		о 4	210	25	4.38	790	410	10	.90 49	. 3
259	HH012		3	280	23	2.53	1560	140	<2	49 138	
260	HH013		- 3 <1	400	15	2. 00	445	320	4	84	3
200 261	HH014	i i i i i i i i i i i i i i i i i i i	3.	240	10	3.49	445 625	520 180	12		2
262	HH015			190	14 11	5.49 2.36	1975	210	12	84 53	2

MRTMA-JOMBO AREA

<u>ምጠዚ</u>	an joano	muar					·						
Ser.	-	Nb	Ŷ	Ce	Eu	La	Lu	Nd	Sm	Tb	ĩh	U	Yb
No.	No,	ppm	ppm	ppn	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
217	HF023	64	37	126.0	2,00	70.0	0.60	55	9.80	0, 80	20, 0	5.0	4.10
218	HF024	45	46	124.0	1.50	65.0	0.80	45	8.80	1,20	23, 0	6.0	5.00
219	HF025	143	66	274.0	7.00	159.0	0.60	100	22.40	2.10	21.0	4.0	4.60
220	HF026	44	38	118.0	2.00	62.0	0.70	- 55 -	8.60	0.80	20.0	5.0	4.50
221	HF027	62	43	216.0	2, 00	87.0	0.80	75	10.70	1.20	27.0	4.0	5.10
222	HF028	41	45	174.0	1.50	65.0	0.90	75	9.50	1.10	23.0	5.0	5.50
223	HF029	104	72	352.0	4.50		1.20	150	18.30	2.40	36.0	7.0	7.90
224	HF030	44	31	118.0	1.00	44, 0	0.70	45	6.40	1.40	18.0	5.0	4.30
225	IIF031	48	43	170.0	1.50	77.0	0.70	70	10.30	1.20	17.0	3.0	4.50
226	HF032	43	35	136.0	1.50	50.0	0.70	60	7.40	1.30	14.0	4.0	4.20
227	HF033	33	33	84.0	1.50	43.0	0.60	50	7.10	1.70	10.0	3.0	3.60
228	HF034	31	25	68.0	1.00	34, 0	0.50	35	5.30	0.60	10.0	2.0	3.20
229	HF035	33	25	70.0	1.00	32.0	0.50	45	5.60	0.60	10.0	3.0	3.40
230	HF036	. 40 . 1	26	74.0	1.00	40.0	0.70	25	5.30	1.00	10.0	4.0	3.60
231	HF037	34	27	68.0	1.00	39.0	0.70	30	6.10	0, 60	12.0	4.0	3.80
232	HF038	32	32	70.0	1.00	40.0	0.80	25	6.00	1.10	15.0	5.0	4.30
233	HF039	26	33	68.0	1.00	32.0	0.70	15	4.70	0.50	12.0	4.0	4.20
234	HF040	31	37	92.0	1.00	40.0	0.80	25	6.30	0.60	15.0	5.0	4, 80
235	HF041	27	30	74.0	0.50	38.0	0.60	30	6.40	0,60	10.0	3.0	3.50
236	HF042	28	30	80.0	1.00	41.0	0.60	25	6.80	0.70	11.0	4.0	3.70
237	HF043	25	36	132, 0	0, 50	31.0	0.80	20	4.90	0.70	14.0	6.0	4.50
238	HF044	24	30	52. 0		26.0	0.70	25	5.40	0.60	13.0	4.0	4.10
239	HF045	18	21	40.0	<0.05	16.0	0.60	15	3.00	0.40	9.0	4.0	3.40
240	HF046	30	- 34	102.0	1.50	45.0	0.50	40	7.50	1.20	15.0	3.0	3, 50
241	HF047	.29	31	76.0	1.00	35.0	0.60	35	7.10	0.90	11.0	4.0	3. 30
242	HF048	27	30	122.0	1.00	42.0	0.60	35	7.00	1.60	14.0	4.0	3.70
243	HF049	49	42	136.0	3.00	64.0	0.70		10.90	1.40	17.0	3.0	3.90
244	HF050	107	56	256.0	6.50	121.0	0.60		17.90	2.40	17.0	3.0	4.40
245	HF051	86	52	254.0	5.00	110.0	0.60		17.80	2.10	12.0	1.0	3, 70
246	HF052	104	55	228.0		121.0	0.70		18.30	3.40	12.0	2.0	4, 50
247	HF053	109	54	270.0	6,00	127.0	0.60		19.30	1.70	13.0	2.0	4.30
248	HHOO1	73	42	200.0	4,00	100.0	0.70	85	14.40	2.80	23.0	4.0	4.60
249	HHOO2	66	48	180.0	3.00	93.0	0.80	70	16.10	1.60	23.0	4.0	4.80
250	HROO3	109	47	192.0	3.00	118.0	0.70	85	17.80	2.90	24, 0	4.0	4.40
251	HHOO4	96	54	218.0		118.0	0.90	90	19,30	1.60	28.0	6.0	5.60
252	HHOO5	236	110			296.0			43, 70	3.10	21.0	3.0	7.10
253	HHOO6	198	94		9.00				34,50	2.90	20.0	5.0	6.00
254	HHOO7	 ,	94	374.0	9.50		0.90		31.50	3.00	19.0	6.0	6.00
255	HHOO8	301	87		7.50	195.0		140	28, 20	3.00	18.0	4.0	6.20
256	HHOO9	209	86	258.0		175.0			27,10	4.60	18.0	4.0	5.60
257	HHO10	159	80. 54:	236.0		154.0	1.00	125	25.10	2.50	24.0	4.0	6.40
258 250	HH011 HH012	90 71	54	148.0			0.70		15.60	1.20	21.0	4.0	4.60
259 260		36	32	154.0 82.0	3.50 1.50	78. 0 42. 0	0.50 0.50	30	11.40 7.30	1.80	14.0	2.0	3.30
260	HH013		33 37	82.0 122.0	1, 50 2, 50	42.0 60.0				0.80 1.00	9.0	2.0	3.70
261	HH014 RH015	63 68	- 45	146.0	2.00	74. 0	0.50 0.70	50 65	9.30		20.0	3.0	3.70
<u>262</u>	RH015	00	40	140, 0	0.00	14.0	0.10	00	12.40	1.80	23.0	4.0	<u>4.50</u>

MRIMA-JOMBO AREA

TRU								-				-		
Ser. No.	Sample No.		Nb ppm	Y ppm	Ce ppm	Eu ppa	La ppm	Lu ppm	Nd ppm	Sm ppm	Tb ppm	Th ppm	U ppm	Yb ppm
109	HD013		126	71	266.0	4.50	266.0	1, 00	115	15.50	2.10	64.0	6.0	7.10
				71					65	11.90	1.20		6.0	5.90
110	HD014		65	60 E C	254, 0	2.50	121.0	0.90 1.20	65	8.70	1. 20	35.0 26.0	7.0	5. 90 8. 00
11	HD015	·	49	55	192.0	2,50	93.0							
12	HD016		42	45	150.0	2.00	65.0	1.00	45	7.40	1.50	19.0	6.0	6.50
13	HD017		45	50	214.0	2,00	103.0	1.00	70	9.80	1.40	26.0	6.0	6.50
114	HD018	,	41	50	226.0	2.00	89.0	1.00	75	11.40	1.80	34.0	7.0	6,80
115	HD019		43	43	190.0	1.50		1.00	55	9.80	1.00	31.0	7.0	6.20
16	HD020		46	33	132.0	0.50	64.0	0.80	40	7.60	1.10	28.0	5.0	4.30
17	HD022		225	84	238.0	7,00	187.0	1.10	170	26.60	1.60	35.0	5.0	7.20
18	HD023	e te la	218	80	222.0	6.50	252.0	1.00	155	23.90	1.50	32.0	3.0	6.20
19	HD024		727		1120.0		1240.0	2.80	650	98.50	6.40	92.0	6.0	16.30
120	HD025		301	100	300.0	9.50		1.10	205	36.20	2.70	58.0	4.0	7.40
121	HD026	÷	284	115	380.0	9.50	460.0	1.10	220	40.00	3.00	79.0	2.0	7.40
22	HD027		2600		7450	93.50		3.30		433. 4	22.80	158.0	14.0	29.70
23	HD028		804		1546.0		1574.0	2.40		121.50	7.00	149.0	8.0	16.50
124	HD029	$\mathcal{L}_{i} = \mathcal{L}_{i}$	547	250	836.0	19.50		2, 30	410	74.40	5.40	104.0	7.0	15.10
125	HD030		217	97	244.0	8.00	268.0	1.10	160	25.30	2.70	47.0	3.0	8.00
126	HD031		174	82	170.0		170.0	1.10	110	16.90	1.50	33. 0	6.0	7.70
27	HD032		54	43	106.0	2.00	51.0	0.80	40	7.10	1.40	15.0	6.0	5.30
128	HD033		32	34	90, 0	1.00	39.0	0, 50	30	5.70	0.40	13.0	3.0	3.60
129	HD034		42	43	110, 0	1.50	45.0	0.70	40	6, 60	0.70	15.0	6.0	4.80
130	HD035		54	43	126.0	2, 00	55.0	0.70	50	8.10	1.40	16.0	6.0	4.90
31	HD036	· '.	74	54	158.0	3.00		0,90	75	13.00	1.00	18.0	6.0	6.10
32	HD037		39	44	140.0	1,50	56.0	0.80	45		1.20	17.0	6.0	5.70
33	HD038		39	48	144.0	1, 50	59.0	0.80	55	9.20	2,90	18.0	6.0	5: 30
34	HD039		25	38	114.0	1.50	41.0	0.70	35	6.50	1.30	14.0	5.0	4.70
35	HD040	÷ .	24	43	92.0	1.00	41.0	0.90	30	6.00	1.00	13.0	6.0	5.10
36	HD041		25	28	60.0	0.50	22.0	0.70	15	3.00	0.40	9.0	4.0	3.60
.37	HD042		$\tilde{28}$	37	90.0	1.50	41.0	0.90	<u>30</u> -	5.80	1.50	14.0	6.0	4.90
.38	HD043		21	23	42.0	<0. 05	18.0	0.60	15	2.20	0.10	7.0	4 . 0	3.40
39	HD044		19	23	36.0	<0.05	17.0	0.60	10	1.90	<0.05	7. 0	3.0	3. 20
40	HD045		28	31	80.0	0.50	36.0	0.80	25	4.60	0.60	12.0	5.0	4.40
40	HD045		30	35	78.0	1.00	41.0	0.80	25	5. 20	0.40	15.0	6.0	4, 60
42	HD040		27	43	134.0	1.50	68. 0	0.90	50	9,00	0.50	20.0	5.0	5.10
.43	HD041		26	36	104.0	1.50	55.0	0.60	35	7.30	0.70	16.0	4.0	4.00
				-						2.60		1. I.		3.10
.44	HEOO1		24	19	40.0	0.50		0.50	20		0.30	10.0	5.0	
.45	HEOO2		29	26	60, 0	0.50	24.0	0.50	20 10	3.60	0.30	11.0	4.0	3.20
46	HE003		25	24	46.0	0.50	18.0	0.40	10	2.40	0.20	10.0	3.0	2.20
47	HEOO4	2	36	30	72.0	1.00	33.0	0.50	25	5.10	1.60	12.0	3.0	3.10
48	HEOOS		35	35	76.0	1.00	39.0	0.50	25	6.00	0.30	10.0	3.0	3. 0(
49	HEOOG		26	27	68.0	0.50	28.0	0.50	20	4.40	0.40	10.0	3.0	3.00
50	HEO07		34	51	114.0	2.00	62.0	0.60	50	10.60	0.90	18.0	4.0	4.00
51	HE008		37	32	100.0	1.00	40.0	0.50	35	5.70	1.20	15.0	4.0	3. 4(
52	HE009		35	36	90.0	1.00		0.50	40	7.20	0.50	13.0	3.0	3, 40
53	HE010		54	44	126.0	2.00		0.50	45	10.60	1.20	17.0	4.0	3.80
54	HE011		105	50	266.0			0.60	100	19.80	2.70	14.0	1.0	3.9(
55	HE012		125	50	244.0	5.50	106.0	0.60	85	17.10	2.10	13.0	2.0	4.1
56	HE013	·	163	-61	300.0	5.00		0.60		19.90	2.10	18.0	3. 0	4.10
57	HEO14		127	63	338.0	6.00	139.0	0.70	120			13.0	1.0	5, 20
58	HE015		87	41	242.0	5.00		0.40		15.60	1.80	12.0	1, 0	3.3
59	HE016		76	46	176.0	4.00		0.70	65		1.30	21.0	3.0	4. 5
60	HE017		165	79	446. 0	9, 50	195.0	0.60	150	32.60	4.50	17.0	2.0	4.60
61	HE018		161	75	326.0	5.50	156.0	0.80	120	23.00	2.60		2.0	4.9
162	HE019		154	67	244.0	5.50		0.70	85	17.50	1.40	16.0	3.0	4.30
.04	UDATO UDATO		10.4	<u>v 1</u>	4114. V	0,00	U, U	VI. I V	0	11.00	U	<u> </u>	0.0	4.0