Summary of Microscopic Observation (Sedimentary Rocks)

		0.000																			
			İ		De	Detrital	Material	a.				· i		Matix	.	: i	Ö	econda	Secondary Minerals	erals	+
Saliple 10.	to.	Qtz	Kf	P1	Chl	Mus	g	Gar	Mnz	Zir	Bi	Ca C	Qt2	Se Cr	Chi ciy	7 Opq	౮	æ	ਲ	Qtz	anoxi
A007	Altered Sandstone	0	0	1						-				4	4			0			
A008	Altered Sandstone	0			:					Į			◁	◁		<u>}</u>		0			
A009	Altered Sandstone	0		* 5					1	1		· ·		V	∇			0			
A031	Limestone	0		i		l	0			1		0		1							
A041	Siltstone	(O)	◁	◁		1	1				, I	◁		4	∇	-	1				
B006,	Carbonated Food				·		1			-		14				◁	-	_			Dolomite > 90%
B012	Limestone	◁		- I			0			:		(O)									
B014	Sandy Limestone	0								i		(O)				0					
R032	Graywacke	0	0	0			1					7	4	7	4	\triangleleft					
2	Siltstone	0	\triangleleft	◁		◁	0		<u> </u>	1	◁					-			 		
B051	Sandstone	0	0	0		. ∇	· ·				4					7					
C001	Oolitic Limestone	△					0					©							-		
C005	Sandstone	0	0	. ⊘										4	4						
E002	Sandstone	0	0	0				Ø	ı	1	◁				4						
6013	Silicified Sandstone	0	0	0		◁					J		<u></u>			4					
6022	Sandstone	0	0	0	◁	◁				1	◁	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1		7	4						
H001	Sandstone	0	0	0		◁			<u> </u>	 J	4		⊲.	7	- □	4			◁		
	Qtz : Quartz	9	Gar : Garnet	arnet			Kf :	: Potassium feldspar	ium fe	ldspar	· · · · · · · · · · · · · · · · · · ·		Zir:	Zir : Zircon			PI :	Plagi	Plagioclase	ä١	
	Bi : Biotite		Chl : Chlorite	hlorit	υ		: som	Mus : Muscovite	ite			•	% 	Se : Sericite	झ		IJ	: Calcite	a a		

- : rare

△ : minor

Common : Common

○ : abundant

Opq : Opaque minerals

Mnz : Monazite

Cly: Clay

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (1)

Sample	Rock Name	Macroscopic Features	Identified Miner	als and Material
Number	(Geologic Unit)	Microscopic Features	Detrital Material	Matrix
А007	ALTERED SANDSTONE (Mzm)	WhiteFine-grainedMassive compact	(90~95%) • Quartz = 85%, < 0,2mm angular ~subangular	 Interstitial sericite Clay minerals
		• Well-sorted	monocrystalline grain • Alkali feldspar	
			= 10% partly or totally altered to	
			sericite Plagioclase rare	
;			• Rutile • Zircon	
A008	ALTERED SANDSTONE (Mzm)	 Light brownish gray Medium-grained 	(= 90%) • Quartz > 80%, < imm angular	 Interstitial sericite Opaque
·		 Silicified Small cavities- bearing 	to subangular sericite along cracks and	(limonite) • Quartz
		• Limonite stained • Poorly-sorted	grain boundary Zircon Opaque (limonite)	
A009	ALTERED SANDSTONE (Mzm)	 Light brownish gray with white quartz veinlets 	(85~90%) • Quartz > 85%, < 2mm angular	QuartzSericiteOpaque
		 Medium-grained Quartz veinlets 1mm wide, small drooze-bearing 	to subangular monocrystalline grains dusty appearance	• Clay minerals
		 Compact Poorly sorted Partly sheared 	sericite along cracks and grain boundary Zircon rare	
			• Monazite (?) rare	
A031	LIMESTONE (K)	 Light brownish gray Including oncoids 	• Oncoid = 5% < 5mm • Bioclast < 5%	 Micritic carbo- nate
		(φ=1-10mm) and shell crust	• Detrital quartz = 20% < 0.1mm • Detrital	
		• Spherical to ellipsoidal grains, consist-	plagioclase rare • Muscovite rare	
		ing of micrite are oncoids	• Zircon rare	

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (2)

Sample	Rock Name	Macroscopic Features	Identified Miner	als and Material
Number	(Geologic Unit)	Microscopic Features	Detrital Material	Matrix
(CONT.)		· Bioclasts (Brachiopod shell?)		
A041	SILTSTONB (MyC1)	 Brownish gray Thin clear lamination Quartz veinlets (w=0.5~5mm) Host rock of Mkangombe North metalliferous vein Poorly sorted Parallel alignment of opaquerich layer Thin quartz vein (0.1~2mm thick) = 10% 	(20~30%) • Quartz = 20%, 0,1mm angular • Plagioclase < 5%, < 0.1mm • Alkali feldspar < 5%, 0,1mm • Muscovite rare • Biotite rare • Opaque rare • Carbonate rare	 Sericite Clay minerals Opaque Carbonate Limonite
B006'	CARBONATED WOOD (Mzm)	 Dark gray Compact Including white carbonate film (W < 1mm) and pyritic concretion (φ = 0.5~ 2mm) 	• No detrital material	 Dolomite > 90%, 0.1mm irregular shape dusty appearance Cavity filling calcite < 10%, 0.2mm clear crystal
		• Granular dolomite		 Unidentified brown material 5% parallel alignment Opaque Limonite
B012	LIMESTONE (K)	 Light brownish gray Massive compact Spheroidal calcite, φ=1~8mm Heterogenious rock consisting of ① Bioclasts ② Oncoids ③ Lithoclastic fragments 	 Quartz = 5% angular Plagioclase rare Oncoids = 50%, < 7mm Bioclasts totally replaced by sparitic calcite echinoderms = 5%, φ = 1mm Lithoclastic 	 Micritic carbonate Partly sparitic calcite

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (3)

Rock Name	Macroscopic Features	Identified Miner	als and Material
Unit)	Microscopic Features	Detrital Material	Matrix
and Color of the C		fragment = 10% micritic calcite with detrital quartz	
SANDY LIMBSTONE (K)	 Light brown Black dendritic mineral Massive compact Dusty carbonate (sparite) predominant 	• Quartz ≒ 20%, < 0.2mm angular	• Dusty Carbonate = 70%, < 0.2mm parts of grain boundary are coated by opaque (limonite)
	 No oncoid, ooids or bioclast Clear clacite vein associated with opaque (limonite) 		
GRAYWACKE (MyCm)	 Light brown Massive compact Grit, φ < 2mm 	(70~80%) • Quartz ≒ 30% angular-sub- angular	CarbonateOpaquePlagioclaseQuartz
	• Poorly sorted	 Plagioclase = 20% angular subangular Alkalifeldspar = 30% angular subangular microcline, per- 	• Chlorite
		thite partly altered to sericite Calcite rare, well rounded Limonite	
		 Rock fragments rare granitic rock 	
SILTSTONE (MyCM)	Olive green Massive compact	(= 90%) • Quartz = 70%, < 0.05mm	
	 Rough parallel alignment of muscovite and biotite flakes 	rounded Carbonate = 10% rounded~ subrounded	
	Geologic Unit) SANDY LIMESTONE (K) GRAYWACKE (MyCm)	SANDY LIMBSTONE (K) - Light brown - Black dendritic mineral - Massive compact - Dusty carbonate (sparite) predominant - No oncoid, ooids or bioclast - Clear clacite vein associated with opaque (limonite) SRAYWACKE (MyCm) - Light brown - Massive compact - Grit, $\phi < 2mm$ - Poorly sorted - Well sorted - Rough parallel alignment of muscovite and biotite flakes	Compact Comp

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (4)

Sample Rock Nam		Identified Minera	als and Material
Number (Geologi Unit)	Microscopic Features	Detrital Material	Matrix
(CONT.)	spar grains	• Biotite flake = 5%, < 0.05mm, chloritized • Plagioclase = 5% • Alkalifeldspar = 5% • Zircon rare • Opaque rare • Monazite rare	
		• Limonite	
B051 SANDSTONE (MKm)	 Light brown Very fine-grained Massive compact No lamination and grading Well sorted Weak parallel alignment of muscovite and biotite flakes 	(90~95%) • Quartz = 50%, < 0.1mm angular ~ subangular • Alkalifeldspar = 30%, < 0.1mm angular~sub- angular, partly altered to sericite • Plagioclase = 10%, < 0.1mm angular~sub- angular~sub- angular	
		MuscoviteBiotiteOpaque	
COO1 SANDY ÖÖLITIC LIMESTONB	 Light brownish gray Massive compact Fine grains of dark gray detrital quartz No lamination and stratification 	• Quartz < 10%, 0.4mm some quartz are nuclei of öoids • Zircon rare • Lithoclasts rare	• Sparitic calcite
	• Spherical to ellipsoidal grains with concentric laminae are öoids. Some öoids make compound grains. • Peloids present. • Bioclast and oncoids (= 3mm) present.		

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (5)

Sample	Rock Name (Geologic	Macroscopic Features	Identified Miner	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
. C005	SANDSTONE (Mzm)	 Light brown (weathering color) Massive compact No lamination and grading Well sorted 	(80~90%) • Quartz = 70%, < 1mm, sub- angular~sub- rounded • Plagioclase = 5%, < 1mm • Alkalifeldspar = 10%, < 1mm partly altered to sericite	 Sericite Chlorite Clay minerals Opalque, partly to totally altered to limonite
R002	SANDSTONE (Mzm)	 Light brown with black spots Very fine-grained Massive compact No lamination and grading Well sorted 	(90~95%) • Quartz = 70%, < 0.3mm sub- angular~sub- rounded • Alkalifeldspar = 20%, < 0.3mm • Plagioclase = 10% • Garnet < 5% • Opaque < 5% • Apatite • Biotite • Zircon • Monazite ?	• Opaque = 5% • Muscovite
G013	SILICIFIBD SANDSTONE (MyCu)	 Light brown Very fine-grained White quartz veinlets with small drooze, w < 1mm Weakly brecciated Well sorted Parallel alignment of muscovite and biotite flakes Angular sandstone fragments (breccia) φ=1mm~2cm 	Sandstone fragments (80%) • Quartz = 60%, < 0.1mm angular • Plagioclase = 20%, < 0.1mm • Alkalifeldspar = 20%, < 0.1mm • Muscovite • Biotite • Opaque	• Quartz < 0.3mm angular, sutured crystal boundary
G022	SANDSTONE (MyCu)	 Light olive gray Very fine-grained Massive compact Obscure lamination Well sorted 	(60~70%) • Quartz = 80%, < 0.1mm angular • Plagioclase = 10% • Alkalifeldspar	 Chlorite Clayminerals Sericite Carbonate

Microscopic Observation of Rocks in Thin Section (Sedimentary Rocks) (6)

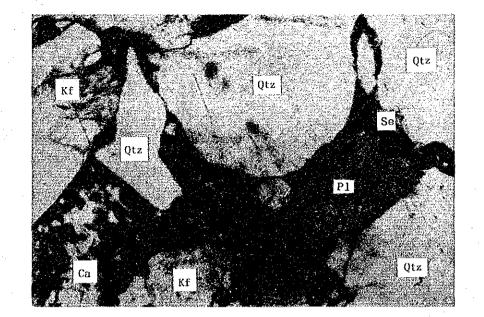
Sample	Rock Name (Geologic	Macroscopic Features	Identified Miner	als and Material
Number	Unit)	Microscopic Features	Detrital Material	Matrix
			 10% Muscovite Chlorite Zircon Biotite 	
Н001	SANDSTONE (MyCu)	 Light brownish gray Very fine-grained Massive compact Mottling, φ=1~ 3mm Obscure lamination Well sorted 	(90~95%) • Quartz = 70%, < 0.2mm angular • Alkalifeldspar = 10%, < 0.2mm • Plagioclase = 10%, < 0.2mm • Muscovite • Biotite chloritized	 Sericite, along grain boundary Chlorite Opaque
		 Parallel align- ment of muscovite and biotite flakes 	ZirconMonaziteApatiteOpaque	6.4 (* 13.4) 1 (* 13.4)
				İ
	·	4		
	*-			

Photomicrographs of Rocks in Thin Section (Sedimentary Rocks)

Abbreviations

Minerals

Qtz: quartz Kf: potassium feldspar


Pl : plagioclase Bi : biotite

Mus: muscovites Ca: calcite

Se : sericite

Others

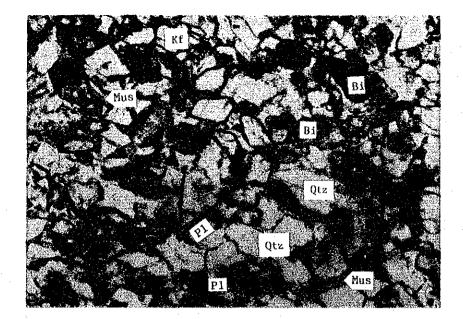
Od : Öpid Opq : opaque minerals

one polar

crossed polars

0. 1mm

Sample No.: B032


Formation : Maji-ya Chumvi F.

(middle)

Location : Northwest of Gulanze

Rock name : Graywacke

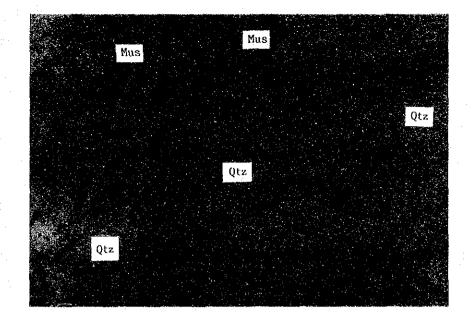
Photomicrographs (thin section)

one polar

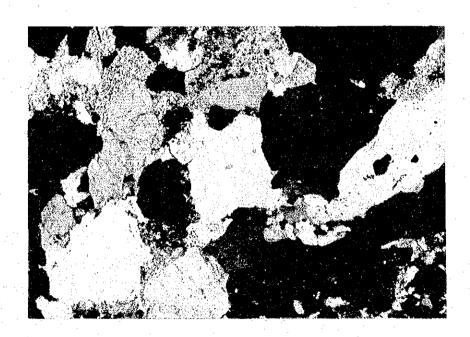
crossed polars

0. 05mm

Sample No.: B051


Formation : Mariakani F.

(middle)


Location : West of Ribe

Rock name : Sandstone

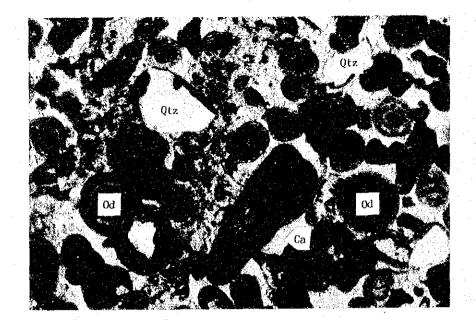
Photomicrographs (thin section)

one polar

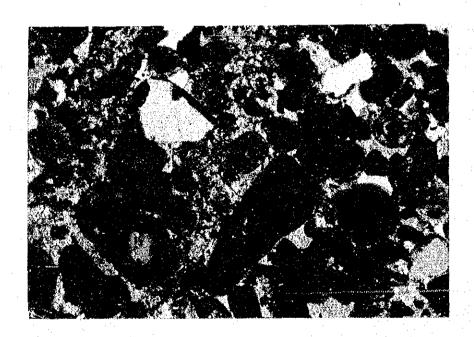
crossed polars

0. 1mm

Sample No.: A008


Formation: Mazeras F.

(middle)


Location : Changombe

Rock name : Altered Sandstone

Photomicrographs (thin section)

one polar

crossed polars

0. 1mm

Sample No.: COO1

Formation: Kambe F.

Location : Mwarakaya

Rock name: Oolitic Limestone

Photomicrographs (thin section)

APPENDIX 2

MICROSCOPIC OBSERVATION OF ORES
IN POLISHED SECTION

Summary of Microscopic Observation of Ores in Polished Section

Sample Number	Sampling Area	Ore Type	Ça	Sp	ď	Py Mc		Po	۵	ခ၁	EF Gt	G	Lc	MI	Q2	W	Mt
A034	Mrima-Jombo	Carbonatite						◁		◁	×	×			0		
A035	Mkangombe	Quartz vein			\triangleleft	×			◁		\triangleleft	0	×	0	0	Ø	
A037	ditto	ditto	◁		◁	×					×	×	×				
A043	ditto	ditto			4	×			◁			◁	×			△	
A044	ditto	ditto				×		· · · ·	◁		◁	0	×	0	0		×
B006	Jibana	Sandstone		◁		0							. 1		0	,_,	
B006*	Jibana	Silicified wood				0											
B010	Ganze	Iron concretion				×					0	. <	◁		10		
B038	Mrima-Jombo	Carbonatite			- 1	×		◁		◁	×	×	×				
F009	Mrima-Jombo	ombo Iron concretion					×				0	4	4				

Ga: galena Sp: sphalerite Cp: chalcopyrite
Py: pyrite Mc: marcasite Po: pyrrhotite
Cv: covellite Cc: chalcocite Hm: hematite
Gt: goethite Lc: lepidochrosite MI: malachite
Qz: quartz Mh: maghemite Mt: magnetite

⑤: abundant ○: common △: little ×: rare

Results of microscopic mineral identification of ore specimens on polished sections

1) Sample, weathered carbonatite, Mrima-Jombo Area, number A034

Chiefly composed of white diaphanous minerals with sparse disseminations of gains or aggregates of strongly magnetic black and dark brown minerals by unaided eye.

Under the microscope, black minerals are of pyrrhotite-associated chalcopyrite, dark brown minerals are of iron hydroxide minerals. Primary metallic minerals wholly consist of pyrrhotite properly, associated with secondary minerals. Secondary minerals are of iron hydroxide minerals, such as goethite and lepidochrocite, and chalcocite, hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show diaphanous minerals, chalcocite, iron hydroxide minerals, pyrrhotite and hematite. Pyrrhotite, less than 80 microns long and euhedral-to subhedral-granular, is observed in chalcocite or diaphanous minerals. Chalcocite is generally observed in forms of 50 microns long, 1 millimetre the longest, replacing pyrrhotite or replaced by iron hydroxide minerals or in diaphanous minerals. Hematite is undefinedly granular of less than several microns long, subhedral- to anhedral-lathy, replaced by iron hydroxide minerals or in those minerals by sparse dissemination.

2) Sample, base metallic minerals quartz vein ore, Mkangombe North, Mkangombe Area, number A035

Observed by unaided eye to show random dissemination and/or indistinct banded texture. Chiefly composed of quartz, limonite, covellite, malachite and etc.. Magnetism is observed in brown textural bands.

Under the microscope, the specimen is chiefly composed of iron hydroxide minerals and quartz. Primary metallic minerals consist of chalcopyrite with minor quantity of pyrite. Secondary minerals consist of iron hydroxide minerals such as goethite and lepidochrocite, maghemite, covellite and hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show iron hydroxide minerals, quartz, chalcopyrite, maghematite, covellite, hematite and pyrite. Primary minerals are replaced by secondary minerals, while minerals of earlier crystallization are replaced by those of later crystallization. Chalcopyrite is observed in iron hydroxide minerals of anhedral granular forms, 300 microns long is the longest, to show a marginal replacement or fine veining/network veining replacement textures entirely by maghematite and covellite or partly by goethite and lepidochrocite. Pyrite, subhedral- or anhedral-granular, less than 30 microns long, is minorly observed sparse-disseminatedly in iron hydroxide minerals. Maghemite, shown in association with covellite, is observed in the form of marginal replacing materials of chalcopyrite or isolated disseminations in iron hydroxide minerals. Hematite, which is shown with similar behaviour to that of chalcopyrite, generally less than 10 microns long, while, 30 microns long is the longest, is generally observed isolatedly in iron hydroxide minerals in the forms of irregular xenomorph. Iron hydroxide minerals chiefly consist of goethite, minorly associated with lepidochrocite.

Under the microscope, general crystallization order of those minerals from early to late stages order is quartz-pyrite, chalcopyrite, hematite-covellite, maghemite and goethite-lepidochrocite.

3) Sample, base metallic minerals quartz vein ore, Mkangombe North, Mkangombe Area, number A037

Coarse-grained metallic mineral crystals, about 10 millimetres long, are observed in quartz by unaided eye. Minerals with magnetism are not discernible.

Under the microscope, the specimen chiefly consists of quartz and diaphanous minerals. Primary metallic minerals consist of galena and chalcopyrite, associated with minor quantity of pyrite. Secondary minerals consists of iron hydroxide minerals, such as goethite and lepidochrocite, covellite and hematite. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, galena, chalcopyrite, iron hydroxide minerals, covellite,

hematite and pyrite. Quartz is euhedral to subhedral, about 1 millimetre long in average. Galena, margins of which or cleavages are irregularly replaced by covellite, goethite and etc., is 15 millimetres long the longest. Chalcopyrite, anhedral-granular of 0.5 millimetre long the longest, is shown to be replaced by a similar mode to that in galena, i.e., replaced by covellite, goethite and etc., in crystals margins or along cleavages. Hematite, less than 500 microns long and anhedral-granular, is observed in iron hydroxide minerals in small quantity of disseminations, in banded or concentric manners with iron hydroxide minerals. Pyrite, less than 10 microns long and anhedral-granular, is observed sparse-disseminatedly in iron hydroxide minerals. Covellite with marginal replacement textures is observed to be replacing galena with iron hydroxide minerals.

Under the microscope, general crystallization order of those minerals from early to late stages order is quartz-pyrite, chalcopyrite-galena, hematite-covellite, and goethite-lepidochrocite.

4) Sample, base metallic minerals-quartz vein ore, Mkangombe North, Mkangombe Area, number A043 Chiefly composed of quartz by unaided eye, with strongly magnetic metallic minerals of irregular disseminations and speckled aggregates, in association with fine veinings of limonite.

Under the microscope, quartz grains are disseminated by primary metallic minerals, marginal and/or inner parts of which are replaced by fine veinings of covellite, maghematite and etc.. Those are further wholly intersected by fine veins of iron hydroxide minerals. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, chalcopyrite-magnetite, covellite, maghemite, iron hydroxide minerals and pyrite. Primary metallic minerals consist of chalcopyrite, magnetite and pyrite. Chalcopyrite, less than I millimetre long, is observed to be marginally replaced by maghemite and covellite, and further to be outer-surrounded by iron hydroxide minerals. Magnetite is irregularly anhedral, several microns long, and is isolatedly observed in quartz or chalcopyrite crystals. Iron hydroxide minerals, chiefly consist of goethite, are observed in the forms of fine veinings of 50 microns wide the largest, to replace magnetite and chalcopyrite in association with diaphanous minerals or in the forms of granules of less than 50 microns long in quartz crystals.

Under the microscope, general crystallization order of those minerals from early to late stages order is pyrite, chalcopyrite-magnetite, quartz, maghemite-covellite and goethite-lepidochrocite.

5) Sample, base metallic minerals quartz vein ore, Mkangombe North, Mkangombe Area, number A044
A brecciated quartz ore with fragmental limonite, magnetic black minerals and fine veins of malachite and covellite by unaided eve.

Under the microscope, chiefly consists of iron hydroxide minerals and quartz. Primary metallic minerals properly consist of small quantity of pyrite and magnetite. Primary metallic minerals are replaced by secondary iron hydroxide minerals, such as goethite, lepidochrocite and etc., in undefined forms of less than 20 microns long. Hematite shows banded or colloform structures and is granularly disseminated, several microns long, in iron hydroxide minerals, such as goethite, lepidochrocite and etc.. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, iron hydroxide minerals, malachite, hematite, magnetite and pyrite. Iron minerals are observed in fragmental forms in quartz crystals. Diaphanous minerals, presumed to be of malachite, are observed to intersect quartz crystals in the forms of fine veins, 100 microns wide the largest. Those locally form concentrated parts, 0.5 millimetre wide. Covellite is properly observed concentratedly by unaided eye in cavities filled up by malachite.

6) Sample, pyrite-bearing sandstone, Jibana Area, number B006 Composed of quartz and diaphanous minerals with overall parallel bandings, associated with disseminated metallic minerals by unaided eye. Under the microscope, the sample is chiefly composed of quartz and diaphanous minerals, as similar to an identification by unaided eye, and is disseminated by primary metallic minerals, properly consist of sphalerite and pyrite. General relative quantitative ratios of those minerals in decreasing order of quantity show quartz, diaphanous minerals, pyrite and sphalerite. Pyrite, about 200 microns long, is anhedral and undefinedly granular to replace quartz and sphalerite. Sphalerite, 300 microns long the largest, is irregularly anhedral to subhedral to be replaced by pyrite.

Under the microscope, general crystallization order of those minerals from early to late stages order is quartz-diaphanous minerals, sphalerite and pyrite.

- 7) Sample, pyrite-bearing petrified wood, Jibana Area, number B006'
 - Pyrite shows a lenticular form, 100 to 200 microns long and some 50 microns wide, or fine veining, less than 1 micron wide, or anhedral-granular aggregates of vein-form, about 200 microns long and some 0.5 micron wide. Lenticular and fine-veining forms of pyrite assemblage are extended in respective parallel directions to be considered to be of a replacement texture. Pyrite is exclusively identified as the metallic mineral in the specimen.
- 8) Sample, iron oxide ore, Ganze Area, number B010 Chiefly consists of hematite, with very sparse association with very fine-grained pyrite, less than 1 micron long. Diaphanous minerals, presumed to be of quartz, are observed.
- 9) Sample, carbonatite, Mrima-Jombo Area, number B038

Chiefly composed of white diaphanous minerals with sparse disseminations of black mineral grains with magnetism by unaided eye.

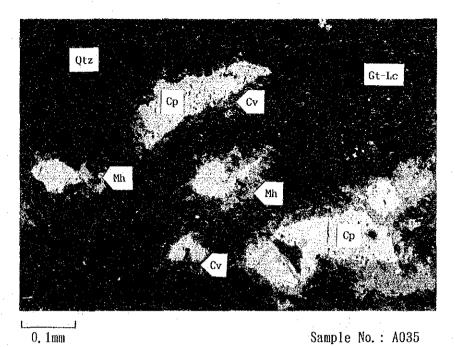
Under the microscope, black minerals are of chalcocite associated with pyrrhotite. Primary metallic minerals consist of pyrrhotite and small quantity of pyrite, while, pyrite is replaced by chalcocite. Secondary minerals are of chalcocite, hematite and iron hydroxide minerals, such as goethite and lepidochrocite. General relative quantitative ratios of those minerals in decreasing order of quantity show diaphanous minerals, chalcocite, pyrrhotite, hematite, iron hydroxide minerals and pyrite. Pyrrhotite, less than 100 microns long and euhedral- to subhedral-granular, is disseminatedly observed in diaphanous minerals. Chalcocite, about 500 microns long generally and 800 microns long the longest, shows pseudomorphs to replacing pyrite, while, marginal parts of that are replaced by iron hydroxide minerals. Hematite, less than several microns long, undefinedly gramular or subhedral- to anhedral-lathy, is replaced by iron hydroxide minerals or disseminated in those.

10) Sample, iron oxide ore, Mrima-Jombo Area, number F009

Hematite and marcasite, which are with colloform-type texture in cavities and lathy, less than 100 microns long, are properly observed.

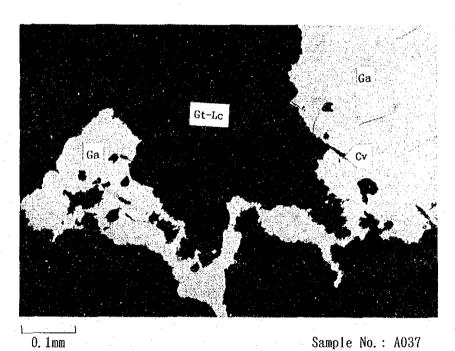
Photomicrographs of Ore Minerals in Polished Section

Abbreviations


Minerals

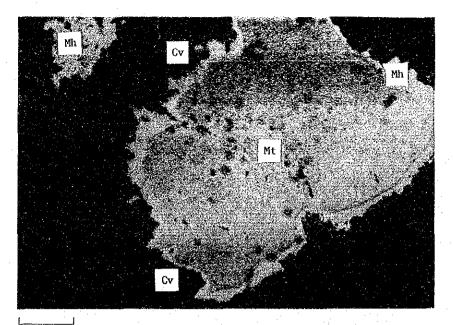
Ga : galena Cv : covellite

Cp : chalcopyrite Mt : magnetite


Ge: goethite Mh: maghemite

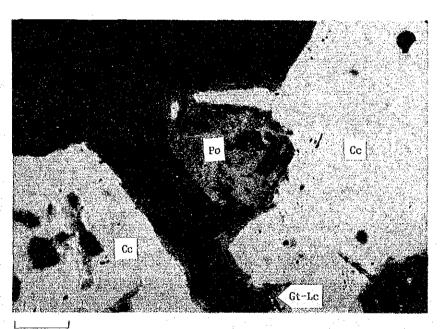
Lc : lepidochrosite Qtz : quartzt

Sample No.: A035


Location : Mkangombe North

Sample No.: A037

Location : Mkangombe North


Photomicrographs (Polished section)

0. 1mm

Sample No.: A043

Location : Mkangombe North

0. 1mm

Sample No.: B038

Location : Mrima Hill

Photomicrographs (Polished section)

	Other tests/ Remarks		tion									Polished section.	:		-	Polished section, Assay	
		Assay	Thin section	Kessy		ÁSSAY	,	,		Assay		Poíisher				Po! ishor	
	р 9	1															
	A D.B											0	٥			4	:
(1)	111						ļ										
ON (1)	λnτ																
H-4	Rut	-	1									٥					
ACT	, eg 3											٥					
ద	Hemi												:		₫		
Tri (tri	-014 308																
ΙQ	193													0	©		*
A.Y	\$ u ¥	ž				:		7			0					,	
PK	þ,											:					
×	Che.	i.							:						:	٥	:
OF	Spha			1	712.							·	-			Ø	:
											٥			0	0		
SUMMARY	Hono- Get	-				,						•					? = uncertain.
MA	Anke	-										,	◁	÷			a nuce
UM	Pis											. :	٥				ě.
S	ر د ه ر							:					©				- H C&Ce.
	و پ پ			∇	∇	٥	◁	٥	٤	1			•				i
ന	600	(O)		٥			1							Ė			∆ mainor.
IX	K-62								- -	-							4
O Z	0 t z	0	0	0	0	0	©	0	0	0	٥.	0	Q		0	0	ğı.
С L	0 (c ·						1		, 1								O = common.
AP	Kao	₄														0	l
	Ser						:						,		,		ndant.
v 5 -	#/s		4	i	,	1	ı		◁	◁	1						🛇 = abundant.
	Rock Type	Fe- Nodule	Altered	Altered	Altered	Altered	Altered	Altered rock	Altered	Altered	e.o	Carbona -1 to	Carbona -xite	Pb-are	r. e.	Vein	(S)
	Location	Jibana	ad a	Ribe	adi# ≪	Ribe	Ribe	Riba	wib.	\$ \$ \$	Kinagoni	7	Er in	Mkangombe	Kangombe	Kkangombe	
	Sample	A 0 0 5	A 0 0 7	A 0 1 3	A 0 1 &	A 0 1 5	A 0 1 6	A 0 1 7	A 0 1 8	A 0 2 0	A 0 3 3	A 0 3 4	A D 3 6	A 0 3 8	A 0 4 0	A 0 4 4	

S/Masericite/kontmoilfonite mixed-layer minoral, Sermsericite, Kaomkeolinite, Dicmdickite, Otzmquartz, K-famk-feldsper, Memimorphite, Pympyrite Goengoethite, Hemmhematite, Calmcalcite, Sidmsiderite, Ankemankerite, Monohoal-monohydrocalcite, Cermcerussite, Jammjarosite, Angmanglesite Gai-gaiena, Sphamsphalerite, Chalmchalcopyrite, Rutmrutile, Antmanatase, Titmtitanite, Apampatite, Gibmgibbsite, Piuguampluaboguamite

abbreviation:

A-32

	Other tests/ Remarks			Polished section, Assey	Polished section, Assay	Assay	Assay	Ássay	Thin section, Polished section	Assay	Аясау	Assay	Assay	Thin section	Assay	Ássay	
	a															1	
	A P 8								0								
(2)	1 .			Q													
Z	Ant			4													
O I	Rut																
CJ	Heni Jar Rut											1					-
R.	Keni				1				1						,		
DIFFRACTION (2)	Plu-		٥							∢	ı						
D	200																
> 1	An g	0	0														
X-RAY	PY.			0				,	2							:	
₽ 4	Chel			- ; · ·													
O Fr	Spha															;	
	- 08	0															
1 R	nono hca (٥			? = uncertain.
/ W /	Sid Anke								Ø					Ø			in a contract of
SUMMARY									0					₫		-	
,	- e 3								0	- 4				Ø			187.9.
က	9 T.																
×	909				©											0	Oncommon, Amminor,
DI	K-†s														0		å
Z H	0 t z	0	0	0	◁	0	0	Ø	◁	0	Ø	0	0		0	0	Markon.
<u>ቤ</u>	D i c					0	0	0						1		/	0
Ą	KBO			△						1	!	◁	< 4				ı,
	ŝ		0	i	· · ·	!	1			<u> </u>	I 	-	•		٥		🔘 = abundant.
. "	R / S							צס	4 4		c	-	-	9.0		•	Ø
	Rock Type	6.0	å	Sand- stane	Fe- Nodule	Altered rock	Altered rock	Altered	Carbone -tite	-Gos3#n	Gossen	6033an	Gossan	Carbona -tite	Yein	Fe- Nodu le	
	Location	Kinagoni	Kinagoni	Jibana	Ganze	Jibena	Jibana	J. Spans	Mr. 184	Ribe	Ribe	Ribe •	Ribe	#	Mkangoaba	## C	
	Sample Number	A 0 4 5	A 0 4 6	B 0 0 6	B 0 1 0	8015	B 0 2 2	B 0 2 9	B 0 3 8	8043	B 0 4 6	B 0 4 8	8050	F 0 1 0	6025	H 0 1 0	

abbreviation: S/Wescricite/montmorilionite mixed-layer mineral. Seprescricite. Kacekaolinite, Dicedickite, Otzequertz, K-fesk-feldspar, Meminembanatite, Pympyrite Goegoethite, Hemebmanite, Calembanatite, Salvesiderite, Anke-mankerite, Monoboal-monochydrocalcite, Cerroenzsite, Jar-jarosite, Angmenglesite Gei-gaiena, Sphaesphalerite, Chalmante, Ruterutile, Ant-mastac, Tit-titanite, Apamapatite, Gib-gibbsite, Plugumepiuabogummite

APPENDIX 4 CHEMICAL ANALYSIS OF ORE SAMPLES

Ser.	Sample	Au	S %	Ag	Cu	Fe	Mn	Pb	Zr
No.	No.	g/tonne	Total	ppm	%	*	%	%	9
1	A005	<0.07	0, 012	2	0, 005	27, 3	0. 354	0. 122	0. 094
2	A013	< 0.07	0.067	. 2	0.008	17, 80	0,003	0, 052	0.007
3	A015	<0.07	0,047	2	0.003	9.10	0.005	0.043	0.00
4	A020	< 0.07	0.017	80	<0.001	2, 36	0.001	0, 014	0.002
5	A035	< 0.07	0.214	20	>3, 00	4.44	0.011	0.120	0, 743
6	A037	< 0.07	9.42	12	0, 109	0.41	0.041	>3, 00	0, 003
7	A042	< 0.07	0.050	4	0, 491	0, 89	0.006	0, 095	1, 980
8	A043	<0.07	0.101	4	0. 290	0, 72	0.005	0.063	1. 13:
9	A044	<0.07	0.147	8	2, 97	1. 92	0.011	0.043	0. 376
10	B006	< 0.07	2, 21	4	0.010	2, 68	0.013	0.009	0, 006
11	B010	<0.07	0,009	<2		>50.0	0.426	0.007	0, 022
12	B015	< 0.07	0.026	2	0.001	2, 66	0.009	0,004	0.002
13	B022	< 0.07	0.275	<2	0.001	3. 19	0,001	0.007	0, 002
14	B029	<0.07	1, 400	<2	<0.001	4, 42	0.006	0.002	0, 002
15	B033	<0.07	0.007	<2	<0.001	0.59	0,021	<0.001	0.001
16	B043	< 0.07	0. 229	<2	0.002	9.00	0.080	0.006	0.004
17	B046	< 0.07	0.050	<2	<0.001	1, 80	0.003	0.002	0.00
18	B048	<0.07	0,028	2	<0.001	1, 52	0.002	0.002	<0.00
19	B049	<0.07	0.030	<2	<0.001	0.68	0.002	0.002	<0.00
20	B050	<0.07	0.038	<2	<0.001	0.98	0.002	0.001	<0.001
21	C005	< 0.07	0.007	<2	<0.001	3, 51	0.079	0.003	0,000
22	D001	< 0.07	0.007	<2	<0.001	0.47	0.003	0.001	0, 002
23	D002	< 0.07	0. 166	<2	0,072	5. 43	0.005	0, 001	0. 24
24	D003	<0.07	0.009	<2	0.004	0.30	0,001	<0.001	0, 00
25	F009	< 0.07	0.068	76	0.006	30.0	>3.00	0,014	1. 01
26	G003	<0.07	0.011	2	0.010	31. 9	0, 177	0.037	0.13
27	G006	<0.07	0.033	10	<0.001	2. 11	0.033	0,001	0. 00
28	G008	<0.07	<0.001	4	<0,001	0.23	0.010	<0.001	<0.00
29	G024	<0.07	0.023	<2	0.009	1.94	0.036	0,004	0. 024
30	G025	<0.07	0.013	<2	0.001	2, 79	0.006	0,002	0.004
31	H010	<0.07	<0.001	<2	0.005	35. 9	0.098	0.004	0, 00'

APPENDIX 5

CHEMICAL ANALYSIS OF SOIL SAMPLES

**********						-			(M 44 de 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18			
Ser.	•	Au	Ag	As -	Ba	Cu	Fe	Hg	Mn	Pb	Zn	S
No,	No.	ppb	ppm	ppm	ppm	ppm	% :	ppm	ppm	ppm	ppn	, %
4	01001	J-1	رم د م	· · · · · · · · · · · · · · · · · · ·	4 - 0	7	1 00	- /1	0000	4.4	OΩ	0.000
1	GA001	<1	<0.2	<5	150	7	1.89	<1	2080	14	28	0.002
2	GA002	<1	<0.2	<5	110	4	2.14	<1	470	16	20	0.006
3	GA003	<1	<0.2	<5	30	2	0.92	<1	230	10	10	<0.001
4	GA004	<1 :	<0.2	5	100	5	1. 42	<1	1035	8	16	
5	GA005	<1	<0.2	<5	10	1	0.41	<1	150	6	2	0.004
6	GA006	<1	<0.2	<5.	30	2	1.32	<1	995	16	10	<0.001
7	GA007	<1	<0.2	<5	40	3	2.41	<1	630	10		0.005
8	GA008	<1	<0.2	<5	30	1	1.03	<1	665	20	8	< 0.001
9	GA009	<1	<0.2	<5	20	1	0.32	<1	55	8	4	< 0.001
10	GA010	<1	<0.2	<5	10	<1.	0.32	<1	40	4	2	0.004
11	GA011	<1	<0.2	10	60	4	1.08	<1	555	14	22	0.005
12	GA012	<1	<0.2	<5	20		0.36	<1	30	2	- 2	0.003
13	GA013	. <1	<0.2	<5	50	1	0.88	<1	40	8	. 8	0.005
14	GA014	<1	<0.2	<5	50	2	0.68	<1	85	. 8	8	0.003
15	GA015	<1	<0.2	<5	10	1	0.36	<1	45	8	4	<0.001
16	GA016	<1	<0.2	<5	<10	∵ <1	0.29	1	110	4	- 2	0.005
17	GA017	<1	<0.2	<5	10	<1	0.43	<1	440	10	2	0.004
18	GA018	<1	<0.2	<5	530	11	2.83	<1	370	10	32	0.008
19	GA019	<1	<0.2	10	170	7	2. 29	<1	175	12	12	0.006
20	GA020	<1	<0.2	<5	150	. 7	1.74	<1	1160	26	14	0.001
21	GA021	<1	<0.2	15	420	9	1.39	<1	1940	18	24	0.009
22	GA022	· <1	<0.2	<5	300	7	1.97	<1	795	22	14	0.010
23	GA023	<1	<0.2	5	20	1	0.74	<1	155	12	4	0.002
$\frac{24}{24}$	GA024	<1	<0.2	<5	20	<1	0.44	√√1	15	2	2	0.005
25	GA025	<1	<0.2	<5	500	$1\overline{1}$	1. 91	<1	1855	$1\overline{6}$	$\overline{24}$	0.010
$\tilde{26}$	GA026	<1	<0.2	<5	620	13	2. 76	<1	840	16	28	0.009
27	GA027	<1	<0.2	<5	400	$\overline{10}$	2.14	<1	700	8	24	0.010
28	GA028	<1	<0.2	<5	100	9	2.48	<1	860	12	16	0.006
29	GA029	· <1	<0.2	10	60	· š	3.68	<1	2690	16	56	0.011
30	GA030	<î.	<0. 2	10	30	š	4.74	⟨1	2170	$\tilde{16}$	66	0.008
31	GA031	<1	<0.2	<5	40	4	4.01	<1	2760	10	54	0.000
32	GA032	<1	<0.2	5	50	4	3.86	<1	2540	18	68	0.001
33	GA033	<1	<0.2	15	40	3	3, 60	<1	1600	22	70	0.005
34	GA034	<1	<0.2	<5	100	5	1.89	<1	1505	36	56	0.005
35	GA035	<1	<0.2	10	80	8	2.18	<1	2690	22		<0.013
						3	4. 90					
36	GA036	<1	<0. 2 <0. 2	20 5	30 10	⟨1	0.30	(<u>1</u>	2760 70	22		<0.001 <0.001
37	GA037	<1	<0.2	<5		<1		<1 <1		4	2	
38	GA038	<1			10	<1	0.19		10	$\frac{2}{2}$	2	0.001
39	GA039	<1	<0.2	<5	<10		0.11	<1	5	Z 0	<2	0.001
40	GA040	<1	<0.2	<5	<10	<1	0.30	<1	15	8	2	<0.001
41	GA041	<1	<0.2	<5	10	2	1.20	<1	280	6	6	0.002
42	GA042	<1	<0.2	<5	20	1	0.68	1	190	10	6	<0.001
43	GA043	<1	<0.2	<5	50	1	0.52	<1	400	18		<0.001
44	GA044	<1	<0.2	<5	30	1	0.50	<1	435	8		< 0.001
45	GA045	<1	<0.2	5	20	<1	0.31	<1	70	4		<0.001
46	GA046	<1	<0.2	<5	30	. 2	0.58	<1	150	8		< 0.001
47	GA047	<1	<0.2	<5	10	1	0.39	<1	130	6		<0.001
48	GA048	<1	<0.2	5	180	4	0.99	<1	2260	12		<0.001
49	GA049	<1	<0.2	5	20	1	0.46	<1	165	12		<0.001
50	GA050	<1	<0.2	<5	60	2	0.98	<1	60	14		<0.001
51	GA051	<1	<0.2	5	.20	<1	0. 25	<1	35	2		<0.001
52	GB001	<1	<0.2	25	90	8	11.35	<1	6240	28		<0.001
53	GB002	<1	<0.2	10	130	7	8.66	<1	5960	34		< 0.001
54	GB003	<1	<0.2	15	110	6	6.42	<1	6120	8	126	<0.001

GANZE AREA

Ser.	Sample No.	Au ppb	Ag ppm	As ppa	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppm	. S
-									Harana American			- Copension
55 50	GB004	<1	<0.2	15	130	7	6.65	<1	6720	8		<0.001
56	GB005 GB006	<1	<0.2	<5	90 410	20 9	1.60 1.18	<1	570	10	38	0,005
57 58	GB007	<1 <1	<0.2 <0.2	10 5	410 50	12	1. 75	<1 <1	910 890	26 26	60 64	0, 010 0, 001
59	GB008	<1	<0.2	<5	30	12	1. 51	<1	355	14	20	0.010
60	GB009	<1	<0.2	5	210	20	2. 19	<1	6 55	22	26	0.010
61	GB010	<1	<0.2	10	50	12	2.65	<1	645	10	18	0.000
	GB010	₹1	<0.2	.5	40	. 8	3. 21	$\langle 1 \rangle$	1045	16	36	<0.001
63	GB012	<1	<0.2	<Š	40	ğ	3. 53	<1	990	8	88	< 0.001
64	GB013	<1	<0.2	25	- 60	11	4. 23	<1	1220	$1\overset{\circ}{2}$	108	<0.001
65		$\langle \bar{1} \rangle$	<0.2	10	50	15	3.60	<1	1365	~ 20	154	<0.001
66	GB015	<1	<0.2	10	70	20	2.85	<1	1135	16	46	0.003
67	GB016	· 41	<0.2	5	60	16	2.63	<1	910	24	26	< 0.001
88	GB017	<1	<0.2	5	530	. 1	0.77	<1	120	6	2	0.006
69	GB018	<1	<0.2	- 5	10	. 1	1.36	<1	275	18	8	0.002
70	GB019	<1	<0.2	<5	4470	5	1.37	<1	235	24	18	1.340
71	GB020	<1	<0.2	<5	510	6	1.07	<1	215	4	6	0.022
72	GB021	<1	<0.2	. <5	70	17	2.95	<1	355	18	14	0.005
73	GB022	<1	<0.2	5	60	17	3. 23	<1	495	8		<0.001
74	GB023	<1	<0.2	<5	140	30	3.37	<1	940	14		<0.001
75 .	GB024	<1	<0.2	5	120	: 4	2.81	<1	200	14		<0.001
76	GB025	<1	<0.2	15	90	2	1.28	<1	645	6		<0.001
77	GB026	<1	<0.2	10	90	4	1.69	<1 41	560	12		<0.001
78	GB027	<1	<0.2	- 5	100	2	1.17	<1	485	14		<0.001
79	GB028	<1	<0.2	5	30	1	0.85	1	435	4	6	
80	GB029	<1 21	<0. 2 <0. 2	<5 5	50 50	<1 1	0. 41 0. 58	(1	150 265	4	2	<0.001
81 82	GB030 GB031	<1 <1	<0.2	10	80	1	0.50	<1 <1	255	<2 2	4	0. 001 <0. 001
83	GB032	<1	<0. 2	<5	50 50	1	0. 51	<1	240	6	4	<0.001
84	GB033	<1	<0.2	<5	120	4	1. 20	<1	430	12	12	
85	GB034	<1	<0.2	<5	<10	<1	0. 22	<1	10	<2	2	
86	GB035	<1	<0.2	. 5	<10	<1	0. 19	<1	5	<2	<2	<0.001
87	GB036	⟨1	<0.2	<5	<10	<1	0. 12	⟨1	<5	$\stackrel{\sim}{\stackrel{\sim}{\sim}}$	<2	0.002
88	GB037	⟨1	<0.2	<5	<10	<1	0.09	<1	<5	4	2	
89	GB038	₹1	<0.2	<5ઁ	<10	<1	0. 24	<1	15	$\dot{\hat{2}}$		<0.001
90	GB039	<1 <	<0.2	<5	<10	<1	0.07	<1	₹5	<2	<2	
91	GB040	<1	<0.2	<5	<10	<1	0.12	<1	- 5	<2	<2	
92	GB041	<1	<0.2	<5	<10	<1	0.17	<1	10	<2	<2	
93	GB042	· <1	<0.2	<5	40	1	1.19	<1	355	16	6	
94	GB043	<1	<0.2	<5	<10	<1	0.30	<1	85	<2	2	
95	GB044	<1	<0.2	<5	20	. 2	0.86	<1	270	4	8	<0.00
96	GB045	<1	√<0 . 2	<5	<10	<1	0.17	<1	5	<2	<2	<0.00
97	GB046	<1	<0.2	<5	10	1	0.90	1	340	14	8	
98	GB047	<1	<0.2	<5	50	3	1,65	<1	375	8	14	
99	GB048	<1	<0.2	<5	220	4	1.33	<1	250	10	6	
100	GB049	<1	<0.2	<5	50	1	1.11	<1	25	10	6	
101	GB050	<1	<0.2	10	70	3	1.30	<1	645	14		<0.00
102	GB051	<1	<0.2	5	20	1	0.54	<1	125	6	2	
103	GB052	<1	<0.2	<5	40	1	0.72	<1	335	8	.8	
104	GB053	<1	<0.2	<5	390	14	3. 72	<1	735	38		<0.00
105	GB054	<1	<0.2	<5	1010	3	1.07	<1	795	16	10	
106	GB055	<1	<0.2	<5	800	12	2.85	<1	1240	24	46	
107	GB056	<1	<0.2	<5	1270	14	2.46	<1	3240	18	50	
108	GB057	<1	<0.2	<u> 15</u>	230	3	2.75	<1	1085	30	30	<0.00

					in contract to the state of the							
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
100	CBUEO	/1	<0.2	5	30	2	1. 12	<1	325	16	10	<0.001
109	GB058	<1	<0.2			$\overset{Z}{2}$	2.08		110	$\frac{10}{20}$		<0.001
110	GB059	<1		20	40	Z		<1				<0.001
111	GB060	<1	<0.2	5	120	$\frac{3}{2}$	1.86 2.22	<1	1840	28 22		<0.001
112	GB061	: 4	<0.2	25	50			<1	880			<0.001
113	GB062	<1	<0.2	15	70	6	1. 91 0. 50	<1 21	465	14		0.001
114 115	GB063	\ \langle 1	≤ 0.2	<5	<10	<1	2. 22	<1 <1	$\begin{array}{c} 30 \\ 1135 \end{array}$	4 14	4	<0.001
	GB064	<1	<0.2 <0.2	5 10	140 1820	8 18	3. 19	<1	840	4	42	0.015
116 117	GB065 GB066	<1	<0.2	15	300	. 8	2. 42	<1	950	16		<0.001
118	GB067	<1 <1	<0.2	5	890	15	2. 58	<1	1720	12		0.003
119	GB068	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.2	• 5	250	7	2.06	<1	4790	22	120	0.010
120	GB069	<1	<0.2	10	40	5	1.79	<u> </u>	1325	14	52	
121	GB070	<1	<0.2	. 5	50	8	1. 94	<1	575	22		0.002
122	GB070	<1	<0. 2	< 5	120	11	1.08	ζ <u>1</u>	205	14		<0.001
123	GB072	<1	<0.2	30	40	12	4. 28	<1	865	12		<0.001
124	GB073	<1	<0.2	<5	500	1	0.35	<1	95	4	2	0.003
125	GB074	<1	<0.2	5	30	i	0.38	<1	125	<2	4	and the second second
126	GB075	<1	<0.2	<5	90	1	0. 27	<1	60	8	<2	<0.001
127	GB076	<1	<0.2	5	80	<1	0. 28	<1	15	2		< 0.001
128	GB077	<1	<0.2	<5	330	<1	0.04	41	85	<2		0.010
129	GB078	<1	<0.2	5	50	1	0.60	<1	85	8		<0.001
	GB079	<1	<0. 2	<5	<10	<1	0.17	: <1	20	<2		<0.001
131	GB080	<1	<0. 2	< 5	10	1	0.61	⟨1	160	8		<0.001
132	GB081	<1	<0.2	<5	10	<1	0. 29	<1	40	4		<0.001
133	GB082	<1	<0.2	<5	20	₹1	0. 13	<1	10	<2		<0.001
134	GB083	<1	<0.2	<5	80	$\tilde{4}$	1. 27	<1	530	6		0.002
135	GB084	; (1	<0.2	5	20	i	0.50	<1	75	2		<0.001
136	GB085	<1	<0.2	<5	<10	<1	0.19	<1	25	2	<2	0.001
137	GB086	<1	<0.2	<5	30	1	0.48	<1	180	12	6	0.002
138	GB087	<1	<0.2	<5	<10	<1	0.13	<1	10	<2	<2	0.002
139	GB088	<1	<0.2	<5	10	<1	0.31	<1	25	<2	2	<0.001
140	GB089	· <1	<0.2	5	<10	<1	0.23	<1	20	<2	- 6	0.002
141	GB090	<1	<0.2	< 5	<10	<1	0.24	<1	10	<2	2	0.007
142	GB091	<1	<0.2	<5 .	<10	<1	0.31	<1	150	<2	2	0.004
143	GB092	<1	<0.2	- 5	20	. 1	0.36	<1	95	6	4	0.004
144	GB093	<1	<0.2	. 5	10	<1	0.27	<1	10	4	2	0.005
145	GB094	<1	<0.2	<5	30	<1	0.27	<1	40	4	2	0.002
146	GB095	<1	<0.2	<5	40	1	1.18	<1	275	4	18	0.003
147	GB096	<1	<0.2	10	30	2	0.74	<1	270	12	10	0.014
148	GB097	<1	<0.2	<5	210	9	2. 27	<1	1425	26		0.006
	GB098	<1	<0.2	15	160	3	1.14	<1	1210	8	12	0.001
	GB099	· <1	<0.2	15	60	6	2.38 0.57	<1	400	6	. 14	<0.001
151	GB100	<1	<0.2	્ <5	30	3	0.57	<1	200	8		<0.001
152	GB101	<1	<0.2	<5	2440	12	1, 70	<1	2750	18	38	0.034
153	GC001	<1	<0.2	5	380	12	2. 32	1	895	14	22	0.003
154		(1	<0.2	10	570	15	3.52	1	315	12		0.004
155	GC003	<1	<0.2	5	410	11	1. 92	<1	1650	22	22	
156	GC004	<1	<0.2	5	70	. 7	1.63	<1	115	14		0.002
157	GC005	<1	<0.2	<5	10	: < <u>1</u>	0. 24	<1	30	2		0.003
158	GC006	<1	<0.2	<5	20	1	0.76	<1	65	6	4	
159	GC007	<1	<0.2	<5	10	< <u>1</u>	0.32	<1	20	4		0.002
160	GC008	<1	<0.2	<5	<10	<1	0.15	<1	< 5	· <2	<2	
161	GC009	<1	<0.2	. 5	10	1	0.27	<1	60	2	2	
162	GC010	<1	<0.2	<5	1080	1_	2.10	<1	<u>55</u>	<u>16</u>	<u>16</u>	0.020

\or	Sample	Au	Лg	Λs	Ba	Cu	Fe	Hg	Mn	Pb	Zn	S
Ser.	No.	pb pb	bba	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
163	GC011	<1	<0.2	<5	<10	· <1	0. 19	<1	25	4	2	0.002
164	GC012	<1	<0.2	<5	20	$\cdot \cdot \cdot 1$	0.48	<1	60	2	4	0.001
165	GC013	<1	<0.2	<5	10	<1	0.20	<1	75	<2		<0.001
166	GC014	<1	<0.2	10	270	10	1, 80	<1	1235	14		<0.001
	GC015	<1	<0.2	5	420	5	2.34	<1	55	4		<0.001
168	GC016	<1	<0.2	5	160	. 3	1.77	<1	215	. 18		<0.001
169	GC017	<1	<0.2	5	650	. 9	2. 33	<1	1525	14		0.007
170	GC018	<1	<0.2	5	120	3	1.41	<1	185	6		<0.001
171	GC019	\1	<0.2	· <5	260	12	2, 22	<1	565	8		<0.001
172	GC020	< <u>1</u>	<0.2	<5	20	1	0.80	· <1	145	10		<0.001
173	GC021	4	<0.2	. <5	20	1	0.63	<1	390	8		<0.001
174	GC022	<1	<0.2	5	110	4	1. 24	⟨1	1000	8		<0.001
175	GC023	(1	<0.2	<5 <5	30	<1 2	0.36	< <u>1</u>	35	4	4	0.003
176	GC024	<1 /1	<0.2 <0.2	<5 5	50		1.10	<1 21	240	8	12	
177 178	GC025 GC026	<1 <1	<0.2	5 10	20 470	<1 7	0. 31 1. 31	<1 <1	160 800	2 8		<0.001
179	GC020	\1 <1	<0.2	<5	20	. 1	0.36	<1	20	<2		<0.001 <0.001
180	GC028	λ <u>ι</u>	<0.2	<5	10 10	<1	0. 21	<1	$\frac{20}{20}$	2		<0.001
181	GC029	ί.	<0.2	<5	40	1	0.50	<u> </u>	65	<2	8	0.001
182	GC030	<1	<0.2	10	680	21	2. 72	<1	560	22	32	0.012
183	GC031	<î	<0.2	₹5	510	15	2. 82	<1	1045	4	18	0.014
184	GC032	< <u>1</u>	<0.2	<5	230	13	2.66	1	1595	16	24	
185	GC033	<1	<0.2	5	70	- 5	2. 09	<1	170	8	10	0.008
186	GC034	< <u>ī</u>	<0.2	<5	190	6	3.09	<1	525	6	$\tilde{12}$	0.002
187	GC035	۲Ï	<0.2	5	480	23	2. 20	<1	1775	20	46	0.007
188	GC037	<î	<0.2	5	20	1	0.65	<1	200	12	2	0.004
189	GC038	<1	<0.2	5	20	1	0.65	<1	245	14	4	0.004
190	GC039	<1	<0.2	5	10	1	0.96	<1	215	12	. 6	0.004
191	GC040	< 1	<0.2	5	20	1	0. 72	<1	100	8	4	0.002
192	GC041	<1	<0.2	<5	20	1	0. 67	<1	515	14	4	0.005
193	GC042	<1	<0.2	5	10	<1	0.59	<1	385	12	2	0.003
194	GC043	<1:	<0.2	<5	10	1	0.61	<1	315	- 8	4	0.003
195	GC044	<1	<0.2	<5	10	1	0.61	<1	110	8	2	0.004
196	GC045	<1	<0.2	<5	10	1	0.79	<1	555	14	4	0.003
197	GC046	 <1	<0.2	5	10	1	0.70	<1	500	18	2	
198	GC047	<1	<0.2	5	20	3	1.30	<1	620	16	10	
	GC048	<u><1</u> :	<0.2	<5 <5	20	1	0.97	<1	520	10	6	0.004
200	GC049	<u>(1</u>	<0.2	<5	20	1	1.03	<1	325	14	6	0.001
201	GC050	<u>(1</u>	<0.2	<5	20	· 2	1.11	= <1	170	10	6	
202	GC051	<1	<0.2	<5 <5	20	- 2	1.01	<1	435	12	4	
203	GC052	<1 /1	<0.2	<5 10	10	$\frac{1}{4}$	0.85	<1	325	8	4	
204	GC053	<1 <1	<0.2	10 <5	70 20	4	2, 81	41 (1	500	20	20	
205 206	GC054 GC055	⟨1	<0. 2 <0. 2	<5	50	4	1. 21 0. 83	<1	605 95	16		0.003
200	GC056	\\ <1	<0.2	ຸ່ວ 5	60	4	1. 79	<1	610	2 8		0.002
208	GC057	\1 <1	<0.2	5	840	7	2. 26	<1	1685	18	22	
209	GC058	<u><1</u>	<0.2	; < 5	40	1	1. 24	<1	605	22		<0.005 <0.001
210		₹	<0.2	<5	20	1	0.79	<1	505	8		0.001
211	GC060	<1	<0.2	5	10	1	0.37	<1	470	8	9	0.001
212	GC061	₹1	<0.2	<5	<10	<1	0.36	<1	55	. 6	2	
	GC062	₹	<0.2	<5	10	\(\frac{1}{1}\)	0.40	<1	60	4		<0.002 <0.001
214	GC063	$\vec{\langle 1}$	<0.2	5	80	` ` 3	1, 83	<1	450	4		<0.001
215	GC064	₹1	<0.2	<5	350	12	1.79	⟨1	1405	22	40	
216	GC065	<1 −	<0.2	<5	140	. 5	2, 22	<1	375	18		<0.001

¥UAN	LE AKEAX						٠			2.0		
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppn	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppm	\$ %
217	GC066	<1	<0.2	<5	60	2	1.17	<1	645	24	10	0.004
218	GC067	<1	<0.2	<5	50	2	0.70	<1	35	6	4	0.008
219	GC068	<1	<0.2	<5	50	- 3	1.88	<1	320	14		<0.001
220	GC069	<1	<0.2	5	130	6	1. 75	<1	1380	12	16	<0.001
221	GC070	<1	<0.2	<5	70	3	1.09	<1	635	10	10	0.005
222	GC071	<1	<0.2	<5	140	5	1. 74	<1	1155	12	14	0.002
223	GC072	<1	<0.2	<5	<10	<1	0.36	<1	25	2		<0.001
224	GC073	<1	<0.2	<5	<10	1	0.42	<1	50	2	2	0.003
225	GC074	<1	<0.2	5	<10	<1	0.39	<1	55	<2	2	0.002
226	GC075	<1	<0.2	<5	10	1	0. 75	<1	80	6	4	0.002
227	GC076	<1	<0.2	<5	10	2	1. 33	<1	400	14	4	0.005
228	GC077	<1	<0.2	<5	<10	1	0.46	<1	55	<2	2	0.003
229	GC078	<1	<0.2	<5	<10	1	0.61	<1	70	4	2	0.002
230	GC079	<1	<0.2	<5 <5	20	1	1.16	<1	325	8	4	0.005
231	GC080	<1 <1	<0.2	<5 <5	20	<1	0. 26	<u>(1</u>	115 360	2		0.003 <0.001
232	GC081	<1	<0. 2 <0. 2	<5 <5	20 20	1	0. 52 0. 45	<1 <1	80	$\frac{4}{2}$		<0.001
233 234	GC082 GC083	<1 <1	<0. 2	<5	20	1	0.45	<1	215	6	4	0.003
235	GC084	<1	<0.2	<5 <5	<10	<1	0. 40	<1	100	6	9	<0.003
236	GC085	<1	<0.2	<5	<10	<1	0.32	<1		<2		<0.001
237	GC086	<1	<0.2	<5	10	1	0.41	<1	265	<2		<0.001
238	GC087	<1	<0.2	₹5	20	1	0.41	ं	145	<2		<0.001
239	GC088	<1	<0.2	<5	10	<1	0. 37	<1	370	6		<0.001
240		₹1	<0.2	5	30	3	0.89	<1	125	8		0.002
241	GC090	<1	<0.2	· 5	800	::. 7	2. 55	<1	120	1 0	3Ž	0. 013
242	GC091	<1	<0.2	<Š	10	i	0.47	<1	170	6	4	0.007
243	GC092	<1	<0.2	<5	30	1	0.30	<1	135	6	4	0.005
244	GC093	<1	<0.2	10	340	10	2. 76	<1	325	24	36	0.010
245	GD001	<1	<0.2	₹5 <5	10	1	0.96	· 41	130	10	6	0.003
246	GD002	· · · <1	<0.2	5	140	9	2.81	. d 🗘	765	16	28	0.005
247	GD003	<1	<0.2	<5	70	2	1. 26	<1	640	18	18	0.003
248	GD004	<1	<0.2	< 5	390	12	2.61	. 4	1080	6	26	0.001
249	GD005	<1	<0.2	<5	450	13	3. 32	<1	235	4	18	0.004
250	GD006	<1	<0.2	5	1540	17	2.85	<1	195	6	26	0.030
251	GD007	1	<0.2	5	140	9	2. 76	<1	525	2		<0.001
	GD008	<1	<0.2	<5	10	2	1.06	<1		10		₹0. 001
253	GD009	<1	<0.2	5	20	5	2. 19	<1	140	12		0.002
	GD010	<1	<0.2	<5	20	3	1.01	<1	215	12		<0.001
255	GD011	<1	<0.2	<5	60	6	1.84	<1	230	<2	8	<0.001
256	GD012	<1	<0.2	15	60	12	2.50		665	10	22	<0.001
257	GD013	<1	<0.2	45	1080	38	12.55		>10000	26	1515	0.027
258	GD014	<1	<0.2	<5	100	. 8	11.95	Ω	>10000	12		0.010
259	GD015	<1	<0.2		120	11.	12.05		>10000	10		0.007
260	GD016	<1	<0.2	<5	50	1	0.56	<1		4		<0.001
261	GD017	<1	<0.2	<5 <5	60	4	1.07	<1	650	4		<0.001
262	GD018	<1	<0.2	₹ 5	40	$\frac{1}{2}$	0.46	<1		4		<0.001
263	GD019	3 <1	<0. 2 <0. 2	<5 5	90 40	<1 <1	0. 92 0. 66	<1 <1	35 20	10 6		<0.001 <0.001
264	GD020	<1		<5	10	<1	0. 30	<1	20 5	4		
265 266	GD021 GE001	<1	<0. 2 <0. 2		10	1	0. 50	<1	70	6	9	0.003 <0.001
	GEOO1	<1	<0.2	1 7	10	2	0. 32	<1	35	6		<0.001
	GEOOZ GEOO3	<1	<0. 2	<5	10	1	0. 40	41	115	2		<0.001
	GEOO4	<1	<0.2	<5	50	3	0. 98	<1	60	<2		0.003
270		<1	<0.2	<5	230	14	2. 71	<1		10		0.008
410	VHVUU	<u> </u>	`V• 4	٠,0				- 1 July	0.10	10	20	V. UUQ

Ser. Sample No.	*GAN.	CE AKEA*												
272 68007														
272 (60007		271	GE006	<1	<0.2	<5	280	10	1, 67	<1	1440	10	22	0, 003
273. 68008														
274 68009														
2776 68010								5						
276 68011 2			GE010			5		3						
277 68012		276	GE011			5	90			. • <1	2060		98	
278 66013		277	GE012	<1	<0.2	. 15	10	3	3. 79	· <1	1045		64	<0.001
280 6E015 C1 C0, 2 C5 E00 6 3, 75 C1 1880 20 92 C0, 001				<1				4	3.65	<1			70	0.001
281 GE016									3.92					
282 6E017									3. 75					
283 GE018														
284 GE019														
285 GE020												8		
286 GE021														
287 GE022						: <5								
288 GE023														
289 GE024								3				4		
290 GE025	•											Z		
291 GE026								9						
292 GE027								J						
293 GE028								2 7						
294 GE029														
295 GE030														
296 GE031						25		. 8						
297 GE034														
298 GE035					<0.2									
299 GE040					<0.2	$\overline{15}$			11. 85					
300 GE041														
301 GE042														
302 GE043						10								
304 GE045			GE043			5		9	3. 19	<1				
305 GE047			GE044		<0.2		20	11		<1		. 8		
306 GE048														
307 GE049				<1										
308 GE050 <1														
309 GE051 <1					<0.2			14	>15.00					
310 GE052 <1			GE050		<0.2			6	5.27	<1				
311 GE053 <1					<0.2				1.27	<1				
312 GE054 <1					<0. Z				1.55					
313 GE055 <1					<0, Z			5	1.31	< <u>1</u>				
314 GE056 <1					<0. Z				1.02					
315 GE057					<0. Z			2	0.98					
316 GE058 <1					<0. Z				0.04					
317 GE059 <1					∠0. 2							0		
318 GF001 <1					70.4									
319 GF002 <1									3 63 T'TI					
320 GF003 <1					√0. 2 √0. 9									
321 GF004					. (n. 2									
322 GF005 <1 <0.2 <5 20 <1 0.70 <1 20 4 16 <0.001 323 GF006 <1 <0.2 <5 220 18 3.35 <1 35 8 36 0.005	-													
323 GF006 <1 <0.2 <5 220 18 3.35 <1 35 8 36 0.005														

. 01111							<u> </u>					
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
325	GF008	<1	<0.2	<5	2560	18	4.86	<1	715	28	24	0.072
326	GF009	<1	<0.2	10	200	7	2. 59	₹1	360	16	22	0.004
327	GF010	<1	<0.2	5	630	18	3. 48	$\langle 1 \rangle$	20	6	28	0.014
000	GF011	<1	<0.2	÷ <5	390	19	2. 45	⟨1	345	18	34	0.002
329	GF012	<1	<0.2	10	210	13	2. 40	<1	355	4	20	0.002
330	GF013	ζ <u>ι</u>	<0.2	10	80	10	2, 25	$\langle 1 \rangle$	100	<2		<0.001
331	GF014	. <1	<0.2	5	40	. 6	1. 51	<1	670	<2	12	
332	GF015	<1	<0.2	- 15	40	6	1.97	<1	65	<2	14	< 0.001
333	GF016	<1	<0.2	<5	40	11	2, 83	<1	105	10	20	< 0.001
334	GF017	<1	<0.2	20	40	$\tilde{6}$	4. 86	<1	2080	6	262	0.003
335	GF018	<1	<0.2	15	40	5	5. 49	Ö	2750	8	172	0.002
336	GF019	<1	<0.2	<5	20	7	5. 05	⟨1	1390	20	78	0.001
337	GF020	<1	<0.2	5	60	7	9. 71	<1	7000	12	124	
338	GF021	$\vec{\dot{1}}$	<0.2	15	80	9	9. 19	<1	5410	14	98	< 0.001
339	GF022	<1	<0.2	₹5	10	<1	0.32	<1	40	4	2	
340	GF023	· : <1	<0.2	<5	30	ì	0.50	⟨1	70	2	_	<0.001
341	GF024	<î	<0.2	Š	250	Â.	2.09	<1	105	12		0.002
$3\tilde{4}\tilde{2}$	GF025	<1	<0.2	<Š	10	· <1	0.30	<1	65	2		< 0.001
343	GF026	<1	<0.2	10	140	7	2.06	<1	150	10		<0.001
344	GF027	<1	<0.2	<5	100	3	1. 29	<1	60	8		<0.001
345		<1	<0.2	<5	240	6	0. 99	<1	1005	12		0.002
346	GF029	ΚÎ	<0. 2	<5	10	∵≺ĭ	0.44	⟨1	65	<2		<0.001
347	GF030	<1	<0.2	<5	20	ī	0.80	<1	65	4		<0.001
348		<u><1</u>	<0.2	<5	$\bar{30}$	1	0.67	<1	120	10		<0.001
349		<1	<0.2	. <5	30	$\bar{1}$	0.47	<1	45	<2	4	
350	GF033	<1	<0.2	<5	10	<1	0.36	<1	30	8	2	< 0.001
351	GF034	<1	<0.2	<5	<10	<1	0.23	<1	40	<2	2	
352	GF035	<1	<0.2	<5	20	1	0.58	¹³⁴ <1	610	12	4	
353	GF036	<1	<0.2	<5	20	1	0.44	<1	45	8	4	<0.001
354	GF037	<1	<0.2	. <5	50	2	0.70	<1	265	6	10	<0.001
355	GF038	<1	<0.2	- 5	40	2	1,07	<1	215	12	14	<0.001
356	GF039	<1	<0.2	<5	20	1	0.48	<1	55	4	6	<0.001
357	GF040	<1	<0.2	5	30	1	0.77	<1	175	6	8	<0.001
358	GF041	<1	<0.2	<5	60	4	1.77	<1	840	4	20	<0.001
	GF042	<1	· <0. 2	10	460	8	2, 82	Nor <1	400	18	38	< 0.001
	GF043	<1	<0.2	<5	1860	13	2, 59	<1.	815	26	44	0.035
361	GF044	<1	<0.2	10	160	9	3.41	<1	585	18	28	<0.001
362	GF045	<1	<0.2	10	560	17	3.67	<1	795	12	52	<0.001
363	GF046	<1	<0.2	5	190	6	1.55	<1	200	6	12	<0.001
364	GF047	<1	<0.2	· · <5	120	15	2. 42	<1	40	6		<0.001
365	GF048	<1	· <0 . 2	<5	210	12	1.63	<1	2210	14		0.015
366	GF049	<1	<0.2	25	590	35	7.31		>10000	144		<0.001
367	GF050	<1	<0.2	20	260	43	4.17	<1	4880	64		<0.001
368	GF051	<1	<0.2	<5	70	12	3.49	<1	1305	8		<0.001
369	GF052	<1	<0.2	<5	10	<1	0. 29	<1	90	6	2	
370	GF053	<1	<0.2	<5	10	<1	0.19	<1	15	6	2	
371	GF054	<1	<0.2	<5	20	2	0. 91	<1	195	12	8	
	GF055	: <1	<0.2	5	50	1	0.81	<1	25	10	10	
373	GF056	<1	<0.2	<5	<10	<1	0.35	<1	25	8	2	
	GF057	<1	<0.2	<5	10	<1	0.69	<1	30	10	2	0.005
375	GF058	<1	<0.2	<5	10	<1	0. 57	<1	35	<2		0.008
376	GF059	√1 .	<0.2	<5	10	<1	0.55	<1	60	6	2	0.005
377	GF060	<1	<0.2	<5	20	. <1	0.64	<1	40	14	2	
378	GF061	<1	<0.2	<5_	30	3	1.17	<1	75	10	6	0.005

Ser. No.	Sample No.		Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
379	GF062	-	<1	<0.2	10	460	7	2. 42	<1	1065	32	38	0.018
380	GF063		<1	<0.2	<5	520	7	1.45	$\langle \hat{1} \rangle$	885	14	26	0. 014
381	GF064		<Ĩ	<0.2	<5	150	3	1.09	< <u>1</u>	490	190	44	0.007
382	GF065		<1	< 0.2	<5	260	1	0.95	··· <1	340	18	6	0.002
383	GF066		3	<0.2	<5	80	1	1.02	<1	85	18	10	0.001
384	GF067		<1	<0.2	<5	430	10	1.26	<1	2210	28	28	0.006
385	GF068		<1	<0.2	5	1850	- 13	3.08	<1	860	46	54	0.032
386	GF069		<1	<0.2	<5	60	2	0.65	<1	690	2		<0.001
387	GF070		<1	<0.2	<5	10	<1	0. 29	<1	60	2	2	0.008
388	GF071		<1	<0.2	<5	10	3	1.59	<1	245	14	8	0.013
389	GF072		<1	<0.2	<5	20	1	0.71	<1	265	10	6	0.005
390	GF073		<1	<0.2	<5	40	1	0.69	<1	320	10	8	0.004
391	GF074		<1	<0.2	<5	20	<1	0.39	<1	80	2	4	0.006
392	GF075 GF076		<1	<0.2 <0.2	<5 5	100	3	1.58	<1	575	24	8	0.006
393 394	GF077		<1 <1	<0.2	<5	10 <10	2 2	1.08 1.99	1 <1	90 95	10 16	4	0.007
395	GF078		<1	<0. 2	<5 <5	70	2	1. 69	<1	1055	10	4	0.006 0.002
396	GG001		<1	<0.2	5	1880	$1\overset{2}{3}$	2.96	$\langle 1 \rangle$	1275	12 22	50	0. 002
397	GG002		<1	<0.2	<5	20	1	0.72	<1	100	10	6	0. 020
398	GG002	•	<1	<0.2	<5	330	4	1.74	<1	640	22	22	0.007
399	GG004		⟨1	<0.2	5	710	4	2.37	<1	1830	26	30	0.009
400	GG005		⟨1	<0.2	. 5	20	$\hat{1}$	0.54	\vec{a}	30	8	2	
401	GG006		<1	<0.2	<5	840	9	2. 44	⟨î	140	16	30	0.011
402	GG007	-	<1	<0.2	<5	500	6	1. 99	<1	1330	18	22	0.011
403	GG008		<1	<0.2	. 5	50	$\tilde{2}$	0.76	<1	200	8	10	0.001
404	GG009		<1	<0.2	5	220	2	0.93	⟨Ĩ	620	$1\dot{6}$	12	0.005
405	GG010		<1	<0.2	<5	120	1	0.36	<1	35	8	2	0.008
406	GG011		<1	<0.2	<5	70	<1	0.23	<1	10	4	2	0.006
407	GG012		<1	<0.2	<5	120	6	2.23	<1	910	20	22	0.008
408	GG013	•	<1	<0.2	10	210	10	2.95	<1	700	14	30	0.013
409	GG014	-	<1	<0.2	<5	120	4	1.30	<1	645	16	10	0.005
410	GG015		<1	<0.2	<5	40	1	0.54	<1	30	4	4	0.004
411	GG016		<1	<0.2	5	50	1	0.79	<1	80	2	. 8	0.002
412	GG017		<1	<0.2	<5	90	- 5	1.06	<1	550	14	16	0.003
413	GG018		<1	<0.2	<5	120	6	1.86	<1	645	4	22	0.004
414	GG019		<1	<0.2	10	20	<1	0.44	<1	85	2		<0.001
415 416	GG020 GG021		<1 <1	<0.2	<5 <5	30	1	1.16 1.01	<1	325	8		<0.001
417	GG021 GG022		<1	<0. 2 <0. 2	<5 10	30 60	2 4	1.42	<1	150 205	8	12	0.002
418	GG023		<1	<0.2	5	30	3	2.09	<1 <1	450	12	8	<0.001
419	GG024		<1	<0.2	. 5	10	2	0.88	<1	115	14		0.002
420	GG025	-	₹1	<0.2	<5	10	<1	0.56	<1	295	8 8	2	
421	GG026	. :	<1	<0.2	<5	10	1	0. 43	<1	120	2	4	
422	GG027		<1	<0.2	5	370	$\tilde{2}$	1.99	<1	55	16		0.001
423	GG028		<1	<0.2	. <5	10	<1	0.50	<1	100	6		<0.004
424	GG029		<1	<0.2	<5	100	3	0.84	<1	420	8	10	
425	GG030		<1	<0.2	<5	40	2	1, 08	<1	410	18	8	
426	GG031		<1 ✓	<0. 2	<5	10	ĩ	0.43	⟨1	75	2		<0.001
427	GG032		$\sqrt{1}$	<0.2	<5	$\tilde{40}$	ī	0.44	<1	20	2	4	
428	GG033		<1	<0.2	<5	30	1	0.55	<1	35	<2	6	
429	GG034		<1	<0.2	<5	30	2	0.77	<1	125	4	8	
430	GG035		⟨1	<0.2	<5	80	4	2. 28	⟨1	385	16		<0.001
431	GG036		<1	<0.2	5	20	1	0.68	<1	205	2	6	<0.001
432	GG037		<1	<0.2	<5	90	3	1.05	<1	140	8.		<0.001

RESULTS OF GEOCHEMICAL ANALYSIS

GANZE AREA

										<u> </u>			
Ser. No.	Sample No.		Au opb	Ag ppm	As ppm	Ba ppn	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
433	GG038		<1	<0.2	<5	80	3	1, 26	<1	870	18	10 <0.00)1
434	GG039		<1	<0.2	<5	30	1	0.62	<1	930	10	4 < 0.00)1
435	GG040		<1	<0.2	<5	20	1	0.87	<1	545	14	6 < 0.00)1 :
436	GG041		<1	<0.2	5	20	1	1.08	<1	385	22	6 < 0.00)1
437	GG042		<1	<0.2	<5	10	<1	0.09	<1	10	<2	<2 <0.00	
438	GG043		<1	<0.2	< 5	90	3	0.97	<1	2140	20	20 < 0.00	
439	GG044		<1	<0.2	<5	360	7	2, 62	1	1010	16	38 < 0.00	
440	GG045		<1	<0.2	5	20	1	0.94	<1	115	12	6 < 0.00	
441	GG046		<1	<0.2	< 5	10	. <1	0.50	<1	90	<2	2 < 0.00	
442	GG047		<1	<0.2	5	420	10	1.92	<1	1550	18	28 0.00)2
443	GG048		<1	<0.2	<5	70	1	0.74	<1	400	6	4 < 0.00	
444	GG049	. :	<1	<0.2	<5	70	<1	0.42	<1	125	<2	2 < 0.00	
445	GG050		8	<0.2	<5	30	<1	0.30	<1	200	4	4 0.00	
446	GG051	1	<1	<0.2	<5	60	1	0.67	<1	485	6	8 0.00	
447	GG052		<1	<0.2	10	90	2	0.90	<1	575	8	12 0.00	
448	GG053	٠,	<1	<0.2	5	190	6	2.68	<1	795	$\check{2}$	32 0.00	
449	GG054	100	<1	<0.2	<5	30	1	0.75	<1	150	6	4 0.00	
450	GG055		<1	<0.2	<5	50	2	0.56	1	70	6	6 0.00	
451	GG056		<1	<0.2	<5	. 100	2	0.72	<1	425	2	10 0.00	

JIBANA AREA

Ser. No.	Sample No.	Au ppb		As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn S ppm %
1	JA001	<1	<0.2	<5	120	4	0, 90	<1	760	6	10 <0.001
2	JA002	<î		5	70	2	0. 91	Κì	425	8	8 < 0.001
3	JA003	<1 ✓1	<0.2	10	260	4	2. 56	⟨1	1430	26	22 0.002
4	JA004	<1		20	100	$\hat{2}$	3. 53	<1	1380	22	14 < 0.001
5	JA005	<i< td=""><td></td><td>5</td><td>60</td><td><math>\ddot{\tilde{2}}</math></td><td>3.34</td><td><1</td><td>1330</td><td>18</td><td>12 < 0.001</td></i<>		5	60	$\ddot{\tilde{2}}$	3.34	<1	1330	18	12 < 0.001
6	JA006	⟨1	<0.2	Š	50	3	3. 55	<1		10	14 < 0.001
7	JA007	<1		20	180	10	4. 29	<1	2190	18	32 < 0.001
8	JA008	⟨1		Š	190	9	3. 52	<1	700	16	26 <0.001
9	JA009	<1		<Š	170	6	3.61	<1	1995	16	28 < 0.001
10	JA010	<1	<0.2	10	20	Š	2.62	<1	510	12	18 < 0.001
11	JA011	<1		<5	$\overline{70}$	4	3. 29	<1	1055	16	18 < 0.001
12	JA012	<1		20	90	2	2. 08	<1	455	$\tilde{24}$	22 <0.001
13	JA013	<1		5	120	$\sim ilde{7}$	1. 27	<1	1080	12	24 0.001
14	JA014	<1		5	340	3	1. 27	<1	495	<2	10 0.002
15	JA015	<1		<5	40	1	0.47	<1	90	8	4 < 0.001
16	JA016	<1		5	30	$\tilde{1}$	0.58	<1	60	6	4 0.002
17.	JA017	<1		<5	110	12	1.87	<1	310	16	60 0.001
18	JA018	<1		5	140	6	2. 26	<1	355	6	18 < 0.001
19	JA019	<1		<5	100	7	2.14	· <1	1760	10	20 < 0.001
20	JA020	<1		<5	40	4	1.66	<1	1265	16	10 < 0.001
21	JA021	· <1		5	40	7	2.61	<1	1875	12	280 0.007
22	JA022	<1		5	30	9	4. 22	<1	3120	20	156 <0.001
23	JA023	<1		10	160	11	6. 78	<1	4470	120	220 <0.001
24	JA024	<1		10	150	. 9	10.35	<1	5230	58	114 < 0.001
25	JA025	. ⟨1		10	80	6	6.98	<1	3900	38	108 < 0.001
26	JA026	<1		25	660	13	13.15		>10000	198	410 < 0.001
27	JA027	<1		<5	270	9	6.62	<1	4430	130	394 < 0.001
28	JA028	<1		20	230	19	9.45	<1	6790	122	858 < 0.001
29	JA029	: <1		10	100	10	6.03	<1	4470	110	392 < 0.001
30	JA030	<1	<0, 2	5	690	19	8.99	<1	7400	130	1050 < 0.001
31	JA031	<1		20	90	. 17	9.31	<1	7330	166	992 < 0.001
32	JA032	<1	<0.2	35	5510	35	13.00	<1	>10000	2420	732 < 0.001
33	JA033	<1	<0.2	20	60	12	8, 24	<1	5210	36	482 < 0.001
34	JA034	<1	<0.2	200	510	22	14, 45	<1	7170	114	2110 <0.001
35	JA035	<1		95	290	30	12, 05	<1	5500	94	1960 < 0.001
36	JB001	<1		20	. 20	13	3.45	<1	4910	10	138 < 0.001
37	JB002	<1	<0. 2	<5	- 30	18	2.75	<1	2160	8	66 < 0.001
38	JB003	<1	<0.2	<5	10	12	2.77	<1	2180	12	62 < 0.001
39	JB004	<1		<5	<10	11	2, 57	<1	1430	6	42 0.002
40	JB005	<1	<0, 2	15	<10	8	2.37	<1		22	26 0.003
41	JB006	<1		5	10	13	3.49	<1	1715	6	52 0.002
42	JB007	<1	<0.2	5	20	10	2.31	<1	1190	36	68 0.001
43	JB008	<1	<0.2	<5	30	10	3.85	<1	1900	26	140 <0.001
44	JB009	<1	<0.2	10	60	10	5.43			32	252 < 0.001
45	JB010	<1	<0.2	15	90	18	6.71	<1		48	374 < 0.001
46	JB011	<1	<0.2	20	60	22	6. 25			70	246 <0.001
47	JB012	<1	<0.2	15	500	16	6.75	<1		78	254 < 0.001
48	JB013	<1	<0.2	20	330	19	4. 23	<1		82	268 < 0.001
49	JB014	<1	<0, 2	15	100	11	2. 23	<1		24	24 < 0.001
50	JB015	<1		20	100	13	2.52			34	32 < 0.001
51	JB016	<1		20	30	10	3. 26	<1		12	48 < 0.001
52	JB017	<1	<0.2	5	40	17	3.32	<1		24	30 < 0.001
53	JB018	<1		5	60	16	3. 29	<1		30	62 < 0.001
54	JB019	<1		25	70	13	2.83	<1		56	66 < 0.001

JIBANA AREA

ga galak direktanan												
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
55	JB020	<1	<0.2	15	110	12	2. 46	<1	1640	244	38	<0.001
56	JB021	<1	<0.2	10	30	6	3.57	<1	2360	22		<0.001
57	JB022	<1.	<0.2	25	390	3	1. 92	<1 ✓	160	64		<0.001
58	JB023	⟨1	< 0.2	<5	840	š	0.83	<1	40	16		<0.001
59	JB024	<1	<0.2	5	220	3	0.63	<1	680	14		<0.001
60	JB025	<1	< 0.2	5	750	1	0.45	<1	150	18		0.015
61	JB026	<1 ✓	<0.2	· · · · 5	2890	8	1.03	<1	1050	22		0.062
62	JB027	: <1	<0.2	<5	160	2	0.73	<1	435	10		<0.001
63	JB028	<1	<0.2	15	170	4	1, 19	<1	715	26		< 0.001
64	JB029	<1	<0.2	5	90	7	1.81	<1	780	16	26	<0.001
65	JB030	<1	<0.2	10	340	11	2, 03	<1	320	10	20	<0.001
66	JB031	<1	<0.2	15	140	4	2.03	<1	2590	24	34	<0.001
67	JB032	<1	<0.2	5	90	3	2. 45	<1	885	30	38	<0.001
68	JB033	<1	<0.2	10	170	4	2. 35	<1	750	22		<0.001
69	JB034	<1	<0.2	5	240	3	2.20	<1	1030	6		<0.001
.70	JB035	· <1	<0.2	20	280	4	4.11	<1	920	20		<0.001
71	JB036	<1	<0.2	20	270	3	4. 22	<1	1585	14		<0.001
72	JB037	<1	<0.2	5	220	3	4. 45	<1	3010	16		<0.001
73	JB038	<1	<0.2	<5	90	3	2.81	<1	1940	24		<0.001
74	JB039	<1	<0.2	<5	80	3	2.86	<1	1175	12		<0.001
75	JB040	<1	<0.2	20	60	9	8. 62	<1	4360	30		<0.001
76	JB041	<1	<0.2	20	50	12	6.67	<1	4320	30		<0.001
77	JB042	<1	<0.2	20	60	16	5. 62	<1	4800	10		<0.001
78	JB043	<1	<0.2	35	60	19	4, 33	<1	2960	22		<0.001
79	JB044	<1	<0.2	15	40	20	5. 22	<1	3390	16		<0.001
80	JB045	<1	<0.2	10	50	20	4.66	<1	3020	26		<0.001
81	JB046	<1	<0.2	5	40	19	5. 22	<1	3830	26		<0.001
82	JB047	<1	<0.2	5 5	40 30	15	4, 86	<1	4760	26		<0.001
83	JB048	<1	<0.2		.00	25	7, 11	<1	4000	56		<0.001
84	JB049	<1	<0. 2 <0. 2	15	30	26 25	6. 53 6. 26	<1	6720	28		0,005
85 86	JB050 JB051	<1 <1	<0.2	15 30	60 70	29	6.98	(1 (1)	4290 3900	16 24		<0.001 <0.001
87	JB051 JB052	<1	<0.2	30 15	270	6	1.97	<1	145	34		<0.001
88	JB053	<1	<0.2	<5	1330	1	0.76	<1	85	12	4	
89	JB054	<1	<0.2	5	130	3	0.76	<1	175	8		<0.001
90	JB055	<1	<0.2	<5	1770	2	0.65	<1	185	<2		0.033
91	JB056	$\stackrel{\circ}{\stackrel{\circ}{\sim}}$	<0.2	<5	280	2	0.45	<1	230	12	2	
92	JB057	⟨1	<0.2	5	10	8	2. 21	<1	1025	10		<0.001
93	JB058	<1	<0.2	<5	<10	5	0.97	<1	1550	10		<0.001
94	JB059	<1	< 0.2	10	10	7	2.02	<1	2570	4		0. 005
95	JB060	<1	<0.2	5	40	18	2.57	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	4370	22	224	
96	JB061	<1	<0.2	15	20	Î0	3, 30	<1	1410	30		<0.001
97	JB062	<1	<0.2	20	80	5 <u>9</u>	4, 89	$\langle 1 \rangle$	485	14		<0.001
98	JB063	<1	<0.2	<5	130	61	4.94	<1	1405	<2		<0.001
99	JB064	<1	<0.2	15	260	74	5. 49	⟨1	1555	4		<0.001
100	JB065	<1	<0.2	15	70	70	5. 74	यं	1515	10		<0.001
101	JB066	<1	<0.2	10	140	70	5. 95	₹1	1575	2		<0.001
102	JB067	<1	<0.2	₹5	100	79	6.31	<1	595	<2		<0.001
103	JB068	<1	<0. 2	15	90	52	5. 38	⟨î	1350	10		<0.001
104	JB069	<1	<0.2	20	90	60	6.36	<1	1155	$3\overset{\circ}{2}$		<0.001
105	JB070	<1	<0.2	<5	130	82	5.06	<1	675	8		<0.001
106	JB071	<1	<0.2	<5	90	62	5, 57	<1	1630	8		<0.001
107	JB072	<1	<0.2	20	130	70	5.95	<1	1,375	<2		<0.001
108	JB073	<1	<0.2	20	140	88	6, 90	<u> </u>	1505	14		<0.001

-	ANA ANDA				t .		ń.	٥.	<i>P</i>	** .		***************************************	ď	
No.	Sample No.		Au ppb	Ag ppm	As ppm		Ba pm	Cu ppm	Fe %	lig ppm	Min ppm	Pb ppm	Zn ppm	\$ %
109	JB074		<1	<0.2	<5	1	30	64	6. 19	<1	1280	4	78	<0.001
110	JB075		<1	<0.2	<5		.30	57	5.10	<1	150	<2	78	<0.001
111	JB076		<1	<0.2	15		20	55	4. 70	<1	. 95	6		< 0.001
112	JB077		<1	<0.2	<5	1	.30	52	4.85	<1	755	10		< 0.001
113	JB078		<1	<0, 2	<5		90	54	5. 28	<1	480	10		<0.001
114	JB079		<1	<0.2 <0.2	15		.30	46	4.13	<1	505	6		<0.001
115 116	JB080 JB081		<1 <1	<0.2	<5 15		.10 80	46 43	4, 93 4, 05	<1 <1	590 580	16 _. 6		<0.001 <0.001
117	JC001		<1	<0.2	<5		.10	44	4. 67	<1	590	10		<0.001
118	JC002		₹1	<0.2	5		20	12	4. 56	<1	2500	26		<0.001
119	JC003		√1	<0.2	15		40	11	4.09	⟨1	1985	12		<0.001
120	JC004		<1	<0.2	20	1	20	21	6.08	<1	4530	$\frac{1}{26}$		<0.001
121	JC005		<1	<0.2	10	. 1	.60	10	1.59	<1	2510	50	134	0.011
122	JC006	:	<1	<0.2	10		60	7	4.65	<1	2680	50	74	0.008
123	JC007		. <1	<0.2	10		.10	5	1.88	<1	1100	64	22	0.010
124	JC008		<1	<0.2	<5		30		1.51	<1	180	26	8	
125	JC009		<1	<0.2	<5		30	1	0. 27	<1	25	8	2	0.004
126	JC010		<1	<0.2	<5		10	<1	0. 23	<1	10	<2	<2	0.005
127 128	JC011 JC012		1 <1	<0. 2 <0. 2	10 <5		10 80	5	1. 32 0. 91	2	410	12	12 2	0.007
129	JC012 JC013		<1	<0.2	<5 <5		50 50	1	0. 55	<1 <1	15 65	22 28	4	0.007 0.004
130	JC013		<1	<0.2	<5		90	<1	0.33	<1	10	20 20	<2	
131	JC015		<1	<0.2	· <5		180	2	0.63	<1	245	10	2:	0.005
132	JC016		<1	<0. 2	⟨Š		300	1	0.72	<1	30	12	$\frac{2}{2}$	0.046
133	JC017		<1 ✓1	<0.2	<5		60	1	0.27	<1	30	$\tilde{<}2$	$ ilde{ ilde{2}}$	0.003
134	JC018		<1	<0.2	. <5	2	988	4	1.60	1		18	8	0.002
135	JC019		<1	<0.2	<5		330	6	2.70	<1		10	16	0.002
136	JC020		<1	<0.2	<5		300	7	4. 45	<1	720	38	36	0.003
137	JC021	٠.	<1	<0.2	10		100	U	1.39	<1	635	20	20	
	JC022		<1	<0.2	25		20	8	3. 26	<1	440	36		<0.001
139	JC023		<1	<0.2	10		310	8	3. 94	<1		32		<0.001
140 141	JC024 JC025	. ,	<1 <1	<0. 2 <0. 2	<5 <5		120 260	4	1.65 3.05	<1			18	<0.001
141	JC025 JC026		<1	<0.2	10		270 270	8	2. 95	<1 <1	550 1930	20 28	28 38	0.006
	JC027		<1	<0.2	5		320	5	2. 78	<1	1540	22	26	0.002
	JC028	 	<1	<0.2	5		210	5	1.52	<1		14	30	
	JC029		<1	<0.2	10		30	2	1. 28	<î				<0.004
	JC030	:	<1	<0.2	<5		10	$\overline{2}$	0.73	<1		10		< 0.001
147	JC031		<1	<0.2	5		250	5	1.51	<1		60	40	0.008
148	JC032		<1	<0.2	15	£	230	9	3.40				44	
149	JC033		<1	<0.2	<5		150	6	3.47	<1		94	52	0.005
150	JC034		<1	<0.2	10		730	16	4.40			44	272	
151	JC035	:	<1	<0.2	25		110	13	6.35			84	146	0.008
152	JC036		<1	<0.2	15		170	17	3. 14	<1		44	170	
153	JC037		<1	<0.2		1	00 60	9	2.45		905	36	32	
154 155	JC038 JD001	•	<1		<5 <5		60 80	8 2	2. 19 0. 87				32	
	JD002			<0.2	∠ F		80 : 130 :	4						<0.001
157	JD002	1	<1	<0.2	<5		100	2	1.03					0.002 <0.001
	JD003		<1		<5 <5		120	4	2, 03					<0.001
159	JD004 JD005		<1		· <5		30	2	0.47					<0.001
160	JD006		⟨1	<0.2	<5		200	4	2. 56					0.001
161	JD007		<1	<0.2		·	80	2	0.81				8	
162	JD008		<1	<0.2	<5	.]	130	3	2.96					0.009

JIBANA AREA

							CALCATTURE OF THE OTHER			and in a sure of the same		er/miniment
Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Ma Ppm	Pb ppm	Zn ppm	\$ *
163	JD009	<1	<0.2	<5	110	3	2. 50	<1	715	26	16	0.003
164	JD003 JD010	<1	<0.2	5	150	2	2, 14	<1	745	22	16	0.004
165	JD010 JD011	<1	<0.2	10	150	6	2.85	<1	715	20	20	0.005
166	JD011	<1	<0.2	<5	70	1	0.91	<1	180	12		<0.001
167	JD012	1	< 0.2	<5	60	1	0.53	<1	100	8		<0.001
168	JD014	<1	<0.2	<5	20	î	0.49	<1	330	8	4	0.002
169	JD014 JD015	<1	<0.2	5	160	$\hat{3}$	3. 14	<1	730	22	18	0.005
170	JD016	⟨1	<0.2	5	200	9	3. 24	<1	895	26	38	0.001
171	JD017	<1	<0.2	5	170	2	1.57	<1	740	12	14	0.004
172	JD018	<1	<0.2	5	240	4	3, 32	<1	1545	26		<0.001
173	JD019	<1	<0.2	10	140	9	2.68	: <1	780	26		<0.001
174	JD020	<1	< 0.2	5	150	5	2.20	.<1	785	26		<0.001
175	JD021	<1	< 0.2	20	230	3	3, 50	<1	515	32	30	<0.001
176	JD022	3	<0.2	10	190	. 6	-2.07	<1	635	26	.44	<0.001
177	JD023	<1	<0.2	15	290	. 8	2.89	:- <1	1090	22	42	<0.001
178	JD024	<1	<0.2	<5	130	1	0.95	· · · <1	485	22	6	<0.001
179	JD025	<1	<0.2	10	1680	: 3	2. 33	<1	755	20	12	0.012
180	JD026	<1	<0.2	10	20	: ₂ 2	1.67	<1	115	14		<0.001
181	JD027	<1	<0.2	5	40	3	2.06	<1	100	22	10	0.010
182	JD028	<1	<0.2	10	70	. 3	2.03	<1	115	10	14	0.006
183	JD029	<1	< 0.2	10	100	3	1.90	<1	545	14	8	0.006
184	JD030	<1	<0.2	<5	190	2	1.03	<1	80	10	4	0.006
185	JD031	<1	<0.2	<5	510	3	1.04	<1	105	14	- 8	0.010
186	JD032	<1	<0.2	15	140	5	3.73	<1	390	26	34	0.006
187	JD033	<1	<0.2	<5	280	11	3.68	<1	1340	18	60	0.004
188	JD034	<1	<0. 2 <0. 2	10 10	250 380	. 3	4, 04 4, 72	<1 <1	945	26	30	0.003
189 190	JD035 JD036	<1 <1	<0.2	<5	30	3	0.30	<1 <1	1575 110	32		0.007 <0.001
191	JD030 JD037	<1	<0.2	<5	140	3	2. 27	<1	430	6 22	18	0.005
192	JD038	<1	<0.2	<5	50	1	0.57	<1	55	8	6	0.003
193	JD039	7	<0.2	· Š	440	• 3	0.81	$\sim \tilde{\vec{\alpha}}$	215	6	8	0.001
194	JD040	<1	<0.2	<5	1590	2	0.65	<1	25	26	4	0. 034
195	JD041	<1	<0.2	<5	60	4	1. 16	<1	580	98	12	0.004
196	JD042	<1	< 0. 2	<5	10	<1	0.33	<1	5	4	2	0.004
197	JD043	<1	<0.2	<5	30	. 1	0.73	<1	120	30	$\ddot{6}$	0.006
198	JD044	<1	<0.2	<5	30	4	0.54	<1	565	26	38	
199	JD045	<1	<0.2	<5	280	. 3.	1.09	<1	595	42	34	0.004
200	JD046	<1	<0.2	<5	210	4	1.82	<1	90	70	18	0.004
201	JD047	<1	<0.2	<5	40	3	0.99	<1	465	58	22	0.007
202	JE001	<1	<0.2	<5	120		0.78	<1	790	10	4	0.007
203	JE002	<1	<0.2	<5	430	2	0.84	<1	160	14	_	0.006
204	JE003	<1	<0.2	<5	2160	4	0.79	<1	885	12	6	0.050
205	JE004	<1	<0.2	<5	30	1	0.50	<1	310	12	2	<0.001
206	JE005	<1	<0.2	5	70	2	1.19		1615	34		0.004
207	JE006	<1	<0.2	5	40	7	1.84	<1	135	36		0.006
	JE007	· (1	<0.2	5	150	3	1.85	<1		6		<0.001
	JE008	(1	<0.2	<5	480	3	0.62	<1	450	8		0.003
210	JE009	<1	<0.2	5	480	6	3, 31	<1	1000	26		0.001
211	JE010	<1	<0.2	5 10	190	5	2.89	4	560	22	20	
212	JE011	<1 <1	<0.2	10 5	300 360	4	3.64	<1 <1	1175	22	22	0.002
213 214	JE012 JE013	<1 <1	<0.2 <0.2	10	330	4 5	4. 28 4. 97	<1	3460	16	22 96	0.002
214 215	JE013 JE014	<1		<5	290	3	2.08	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1895 1140	26 20		<0.001 0.004
216	JE014 JE015	<1	<0.2	<5	110	<1	0.39	<1	30	12	2	
44.17	ARATA	····		<u>``</u>		1.6	V. 00	<u> </u>		1.4		V. VV4

JIBANA AREA

Ser.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	. Mn . ppm	Pb ppm	Zn ppm	\$ %
217	JE016	<1	<0.2	<5	60	1	0.49	<1	170	12	4	0.001
218	JF001	<1	<0.2	- 15	60	20	4. 55	<1	3050	24		<0.001
219	JF002	3	<0.2	10	50	14	6.00	<1	4000	10		<0.001
220	JF003	<1	<0.2	15	80	65	6.58	<1	325	2		<0.001
221	JF004	<1	<0.2	10	140	58	5. 95	<1	1030	12	84	0.018
222	JF005	<1	<0.2	20	100	64	5.83	<1	1385	12	68	0.020
223	JF006	<1	<0.2	20	220	53	5. 46	<1	1335	8	56	0.012
224	JF007	<1	<0. 2 <0. 2	5	120	68	6.33 2.17	<1	1315	4	68	0.008
225 226	JF008 JF009	<1 <1	<0.2	<5 20	190 90	10 55	6. 29	<1 <1	$\frac{290}{1115}$	12	24 82	0.007
227	JF010	<1	<0.2	10	130	59	5. 59	<1	1545	10 4	04 104	0. 013 0. 017
228	JF011	<1	<0.2	<5	100	74	5. 89	<1	1645	8		<0.001
229	JF012	⟨1	<0.2	20	70	44	5. 28	<1	830	10	76	0.004
230	JG001	<1	<0.2	$\overline{15}$	190	7	3. 24	<1	1070	26	38	0.005
231	JG002	<1	<0.2	₹5	100	. 3	1.42	<1	320	16	10	0.004
232	JG003	<1	<0.2	10	230	4	2.29	<1	655	30	24	0.005
233	JG004	<1	<0.2	<5	1500	5	1.49	<1	430	18	14	0.024
234	JG005	<1	<0.2	<5	100	. 3	1.55	<1	190	10	8	0.004
235	JG006	· <1	<0.2	10	260	2	1.98	<1	60	12	12	0.003
236	JG007	<1	<0.2	<5.	50	1	0.56	<1	425	10	4	0.003
237.	JG008	<1	<0.2	15	260	4	0.83	<1	380	22	18	0.006
238	JG009	<1	<0.2	10	1690	4	0.98	<1	295	56	20	0.018
239	JG010	<1	<0.2	5	340	1	1.75	<1	25	20	10	0.006
240	JG011	<1 <1	<0.2	10 10	140 270	1 10	$\frac{1.19}{2.07}$	<1	45	34	8	0.005
241 242	JG012 JG013	<1	<0. 2 <0. 2	10	290	<1	2. 97 1. 54	<1 <1	1270 15	64 56	76 8	0.007 0.006
243	JG014	<1	<0.2	<5	140	1	0.76	<1	20	54	·6	0.005
244	JG015	ंदी	<0.2	<5	190	1	1. 32	<1	85	50	10	0.004
245	JG016	ζĺ	<0.2	15	280	10	2.85	<1	1290	74	78	0.002
246	JG017	⟨1	<0.2	$\tilde{1}\tilde{5}$	340	. 9	4.59	<î	3140	36	156	0.002
247	JG018	<1	<0.2	30	400	24	8.41	<1	6620	24	206	
248	JG019	- <1	<0.2	25	420	22	7.04	<1	5180	22		<0.001
249	JG020	<1.	<0.2	30	200	21	9.69	<1	7650	26	190	0.003
250	JG021	<1	<0.2	20	70	26	4.85	1	2230	20	126	0.003
251	JG022	<1	<0.2	5	80	31	3.89	<1	750	22		<0.001
	JG023	1	<0.2	15	70	74	6. 42	<1	1480	2		<0.001
	JG024	: < <u>1</u>	<0.2	20	170	59	6.47	<1	870	10		< 0.001
	JG025	<1	<0.2	20	60	58	6. 25	1		. 8		<0.001
	JG026	<1	<0.2	25	140	55	6.19	<1	1570	8		<0.001
	JG027	(1	<0.2	20	190	53	6.39	<1	1090	6		<0.001
	JG028	<u>(1</u>	<0.2	15	150	61	6.35	1	750	10		<0.001
258 259	JG029	<1	<0.2 <0.2	20	160	45 45	5.41	<1	185	. 6		<0.001
260	JG030 JG031	1 <1	<0. 2	15 10	140 160	45 55	5. 35 6. 20	<1	120	4		<0.001
200	TOOT	<u> </u>	NU. 4	TO	100	JJ	6. 20	<u>/T</u>	1110	2	90	<0.001

WILD	e anear												
Ser.	Sample No.		Au pb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S. %
1	RA001		<1	<0.2	<5	140	5	2. 75	<1	155	28	20	0.005
$\hat{\hat{2}}$	RA002		⟨1	<0.2	<5	90	5	2.47	⟨1	770	88	166	<0.001
3	RA003		3	3. 4	10	320	5	1.27	· · · <1	140	280		0. 025
4	RA004		⟨1	0. 2	<5	410	18	2. 48	<1	1120	134		0.007
5	RA005		<1	<0.2	5	4200	10	3. 79		>10000	68		0.006
6	RA006		⟨1	0. 2	<5	70	7	1. 35	<1	335	12		0.005
7	RA007		⟨1	<0.2	<5	200	15	2.97	<1	615	12		0.006
8	RB001		⟨1 .	<0.2	5	100	4	1.16	1	425	16		0.002
9	RB002		<1	<0.2	<5 √5	70	3	0.62	<1	860	12		0.001
10	RB003		<1	<0.2	. : <5	20	1	0.31	<1	75	2		<0.001
11	RB004		<1	<0.2	<5	20	1	0.33	<1	140	8		< 0.001
12	RB005		<ī	<0.2	<5	40	1	0.43	<1	265	10		0.003
13	RB006		<1	<0.2	<5	60	2	0.96	<1	790	26	12	
14	RB007		<1	<0.2	20	170	2	1.45	<1	130	28	6	0.012
15	RB008		<1	1.0	10	140	2	1.11	<1	20	50	8	0.015
16	RB009		<1	1.2	5	290	1	0.73	<1	10	126	. 8	0.013
17	RB010	- : :	<1	1.4	35	100	- 8	2. 26	<1	905	718	. 80	0.019
18	RB011	2.5	<1	<0.2	<5	170	53	4.36	<1	140	6	44	0.002
19	RB012		<1	<0.2	<5	440	47	4.13	<1	165	20	100.	0.002
20	RB013		<1	<0.2	15	150	45	4.15	2	320	12	38	0.003
21	RB014		<1	<0.2	5	300	59	5. 01	1	555	24	58	<0.001
22	RB015		<1	<0.2	15	210	56	4.97	<1	715	6		<0.001
23	RB017		<1	<0.2	·. <5	10	1	0.25	<1	∃ 60	2		0.004
24	RB018		<1	<0.2	<5	140	7	1.74	<1	330	8		<0.001
25	RD001		<1	<0.2	<5	140	5	2.36	<1	415	18		<0.001
26	RD002		<1	<0.2	<5	30	1	0.45	· · · <1	240	4		0.003
27	RD003		<1	<0.2	<5	140	9	2.97	<1	640	16	24	
28	RD004		<1	<0.2	<5	90	3	1.66	<1	595	22		0.004
29	RD005		<1	<0.2	5	50	7	2.03	<1	920	58		0.006
30	RD006		<1	<0.2	<5	150	8	1.84	<1	140	12		0.004
31	RD007		<1	<0.2	. 15	70	64	5.38	<1	665	4		<0.001
32	RD008		<1	<0.2	<5	120	6	1.37	<1	260	16	10	0.003
33	RD009		<1	<0.2	<5	100	2	0.75	<1	100	12	<2	
34	RD010		<u>(1</u>	<0.2	<5	100	2	0.59	<1	445	10		0.003
35	RD011		<1	<0.2	<5	240	38	3.82	3	220	14	50	0.003
36	RD012		<1	<0, 2	<5	220	55	6. 16	~. < <u>1</u>	1040	20		0.003
37	RD013		<1 <1	<0.2	20	250	57	5. 88	5	1010	6	62	0.004
38	REOO1		<1	<0.2	20	180	7	2, 63	<1	665	10	24	0.003
39	REOO2		<1	<0.2	<5 E	170	8 5	2. 04 2. 44	<1	520	10		0.005
40	REOO3		<1 ~1	<0.2	5	220 180	7		<1	350	22 c		<0.001
41	RE004 RE005		<1 <1	<0. 2 <0. 2	<5	70		0.65	1 3	385 535	6 10		0.001
42			<1 <1	\0. \d	10 15	70	5 2	2.79	<1	585	18		0.007
43 44	REOO6 REOO7		\ <u>\</u>	<0.2 <0.2	<5	210	10	2. 04 1. 91	<1	470	68	38	
45	REOO!		\1 <1	Z0. 2	<5	40	3	1.27	2	190	8	18 6	0. 003 0. 006
46	REO09		<1	<0.2 <0.2	<5	70	6	2. 16	<1	255	6	8	0.007
47	REO10		<1	<0.2	<5	150	10	1.44	<1	605	6	12	0.001
48	REO10		\1 <1	<0.2	<5		3	1. 37	$\frac{1}{1}$	190	14	16	0.006
49	REO12		<1	<0.2	<5	150	57	4.84	<1	245	6	48	0.006
50	RF002		<1	<0.2	5	90	2	1.06	\vec{c}	105	<2	12	0.000
51	RF003		<1 <1		<5	100	1	0.70	1	200	8	8	<0.003
52	RF004		<1	<0.2	<5	70	1	0.63	<1	345	8		<0.001
53	RF005		<u><1</u>	<0.2	₹5	150	3	1.60	3	165	8	20	0.001
54	RF006		⟨1	<0.2	Š	60	2	0.55	1	245	2		<0.002
U-1	*** 0 0 0					<u>~~</u>	<u></u> _	2,00			, <u>u</u>		VOL VUL

RIBE AREA

Ser. No.	Sample No.	Au ppb	Ag ppin	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Min ppm	Pb ppm	Zn ppm	S %
55	RF007	<1	<0.2	<5	60	2	0.66	<1	130	10	.8	0.001
56	RF008	<1	<0.2	<5	70	3	1.23	<1	190	10	14	<0.001
57	RF009	<1	<0.2	5	240	10	3.54	<1	310	18	48	<0.001
58	RF010	<1	<0.2	<5	140	6 3	2.40	<1	200	4	26	<0.001
59	RF011	<1	<0.2	<5	70	3	1.26	1	135	10	- 8	<0.001
60	RF012	<1	<0.2	< 5	150	4	2.14	<1	255	16	20	<0.001
61	RF013	<1	<0.2	10	120	4	1.81	<1	500	12	22	0.007
62	RF014	<1	< 0.2	10	140	13	3, 65	<1	350	22	46	0.006
63	RF015	<1	<0.2	5	60	5	2.05	1	510	22	20	0.005
64	RF016	<1	<0.2	10	120	8	2, 88	<1	440	22	28	0.007
65	RF017	<1	<0.2	15	130	3	3.48	<1	195	24	22	0.009
66	RG002	. <1	<0.2	<5	110	4	1.98	1	315	24	24	0.008
67	RG003	<1	<0.2	5 5	130	5	1.98	2	250	10	28	0.009
68	RG004	<1	<0.2		210	8	4.63	<1	1375	40	52.	<0.001
69	RG005	<1	<0.2	25	170	25	3. 20	<1	945	. 16	44	0.011
70	RG006	<1	<0.2	10	- 190	19	2. 21	<1	650	- 14	60	0.008
71	RG007	<1	<0.2	10	140	61	5. 21	: <1	165	12	78	0.004
72	RG008	<1	<0.2	10	170	34	3.37	<1	175	. 10	60	0.005
73	RG009	. <1	<0.2	10	530	43	4. 23	<1	725	24	64	0,006
74	RG010	<1	<0.2	90	390	54	5.00	<1	890	22	64	<0.001
75	RC013	<1	<0.2	<5	180	73	- 5.87	<1	2580	12	- 50	<0.001
76	RG014	<1	<0.2	10	110	· 78	5. 73	<1	1620	- 18	76	<0.001
77	RG015	<1	<0.2	<5	180	75	5. 99	<1	2990	12	80	<0.001
78	RG018	<1	<0.2	₹5	110	77	5.96	<1	1680	6	66	<0.001
79	RG019	<1	<0.2	<5	140	70	5.69	<1	1295	4	74	<0.001
80	RG020	<1	<0.2	<5	100	75	6.19	1	1315	<2	68	<0.001
81	RG021	<1	< 0.2	20	110	71	6.17	<1	1940	8	86	
82	RG022	<1	<0.2	<5	<u>550</u>	63	6.12	<1	1955	8	92	<0.001

Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	\$ %
1	MB001	<1	<0.2	5	70	2	0.90	<1	180	4	8	<0.001
2.	MB002	<1	<0.2	<5	120	2	0. 79	- 1	75	4	8	<0.001
3	MB003	<1	<0.2	5	110	5	1.48	· <1	65	10		<0.001
4	MB004	<1	<0.2	10	80	3	1. 28	<1	40	6		<0.001
5	MB005	<1	<0.2	<5 ⋅	40	<1	0.63	<1	70	4		<0.001
6	MB006	<1	<0.2	<5	40	1	0.60	<1	40	6		<0.001
7	MB007	<1	<0.2	<5	60	. 2	0.80	<1	140	4		<0.001
8	MB008	<1	<0.2	<5	140	4	1. 13	<1	80	8	14	
9	MB009	<1.	<0.2	<5	90	3	1. 33	<1	85	8	14	
10	MB010	<1	<0.2	<5	110	2	1.11	<1	70	4		<0.001
11	MB011	<1	<0.2	<5	100	2	0.91	<1	210	6		<0.001
12	MB012	<1	<0.2	5	70	1	0.78	<1	110	8		<0.001
13	MB013	<1	<0.2	<5 <5	160	2	1.08	<1	95 20	2	12	<0.001 <0.001
14	MB014	<1	<0.2	<5	70	2	0. 82 1. 24	⟨1 ⟨1	30 35	2		<0.001
15	MB015	<1	<0.2 <0.2	10 <5	160 70	3	0.85	<1	135	. 4		<0.001
16	MB016	<1 <1	<0. 2	5	100	4	1. 27	(1	45	4		<0.001
17 18	MB017 MB018	<1	<0. 2	<5	50	1	0. 73	$\langle 1 \rangle$	75	2		<0.001
19	MB019	<1	<0.2	10	80	3	1.65	$\vec{\alpha}$	105	12		<0.001
20	MB020	<1	<0.2	<5	40	1	0, 47	<1	100	2		<0.001
21		<1	<0.2	<5	60	1	0.59	<1	10	2	4	<0.001
22	MB022	<u>(1</u>	<0. 2	5	50	$\hat{2}$	0.74	~ <1	25	4		<0.001
23	MB023	· <1	<0.2	<5 ∶	70	1	0.85	<1 ✓1	15	: 4		< 0.001
24	MB024	<1	<0.2	5	40	ī	0.50	<1	10	2	4	<0.001
25	MB025	<Ϊ	<0.2	<5 ⋅	220	ī	0. 91	<1	170	$\tilde{6}$	8	0.003
26	MB026	⟨1	<0.2	<5	180	$\bar{1}$	0.61	<1	30	4		<0.001
$\overline{27}$	MB027	<1	<0.2	5	30	1	0.68	<1	50	4	6	<0.001
28	MB028	<1	<0.2	15	130	6	1. 27	<1	35	4	16	<0.001
29	MB029	<1	<0.2	5	100	4	0.99	<1	: 55	2	14	<0.001
30	MB030	<1	<0.2	<5	180	6	1.54	<1	205	10	18	<0.001
31	MB031	<1	<0.2	10	530	12	1. 75	<1	345	12		<0.001
32	MB032	<1	<0.2	<5	540	<1	0.38	<1	5	2	2	<0.001
33	MB033	<1	<0.2	<5	140	1	0.62	<1	130	8	6	<0.001
34	MB034	<1	<0.2	<5	160	1	0, 92	<1	15	2	6	<0,001
35	₩B035	<1	<0.2	<5	50	1	0. 71	<1	10	2	_	<0.001
36	MB036	<1	<0.2	<5	60	1	0.42	<1	10	4		<0.001
37	MB037	<1	<0.2	20	80	1	1. 54	<1	25	6		<0.001
38	MB038	<1	<0.2	10	120	4	1. 32	<1	50	14		<0.001
39	MB039	<1	<0.2	15	180	7	2. 47	<1	50	4	24	<0.001
40	MB040	<1	<0.2	5	50	2	0.86	<1	45	4		<0.001
41	MB041	<1	<0.2	<5	40	<1	0.65	<1	65	6	8	
42	MB042	<1	<0.2	<5	30	1	0.40	<1	65	2		<0.001
43	MB043	<1	<0.2	5	50	<1	1. 11 0. 68	<1	20	8	8	0.001 <0.001
44	MBO44	<1	<0.2	<5 ·	30	<1 21		<1	10	2		
45 46	MB045	<1 <1	<0. 2 <0. 2	<5 <5	30 40	<1 1	0. 54 0. 59	<1 <1	30 45	<2 6		0.003
46 47	MB046 MB047	<1 <1	<0.2	<5 5	100	1	0. 99	<1	340	. 4		0.003
48	MB048	<1	<0. 2	5 5	40	1	1.00	<1	30	2		<0.003
40 49	MB049	<1	<0.2	5	50	$\overset{1}{2}$	1. 18	<1	95	6		0.001
49 50	MB050	<1	<0.2	5	90	2	1. 19	<1	45	10		<0.001
50 51	MB051	<1	<0. 2	5	230	1	1. 32	<1	45	8	12	
52	MB052	<u><1</u>	<0.2	<5	40	<1	0.36	<1	5	<2	16	<0.001
53	MB053	<1	<0.2	<5	330	2	1. 69	<1	210	6	1./	<0.001
54	MB054	₹1	<0.2	₹5	270	ä	0.94	<1	265	6	8	

Ser. No.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
55	MB055	<1	<0.2	<5	40	1	0.80	<1	15	<2	8	<0.001
56	MB056	$\overline{\mathbf{I}}$	<0.2	<5	40	ĩ	0.68	<1	15	$\overline{2}$		
57	MB057	<1	<0.2	5	90	4	1.46	⟨1	20	6		
58	MB058	<1	<0.2	5	510	10	1, 50	<1	330	10		<0.001
59	MB059	<1	<0.2	10	320	9	1.34	· <1	405	10	18	<0.001
60	MB060	- <1	<0.2	10	410	16	2.42	- <1	275	8		<0.001
61	MB061	7	<0.2	10	220	10	1.79	<1	130	6	24	
62	MB062	<1	<0.2	5	690	21	2, 44	<1	445	10		<0.001
63	MB063	<1	<0.2	15	540	18	2. 56	<1	420	12	42	<0.001
64	MB064	<1	<0.2	10	360	17	2. 26	<1	530	12	32	0.001
65	MB065	<1	<0.2	5	260	14	2.06	· <1	400	12	32	0.002
66	MB066	<1	<0.2	10	310	12	1. 99	<1	315	12	30	<0.001
67	MB067	<1	<0.2	10	260	9	1.55	<1	550	10	22	0.002
68	MB068	1	<0.2	10	660	15	2. 45	<1	295	10		<0.001
69 70	MB069 MB070	1	<0. 2 <0. 2	15	110 340	14	2. 19 2. 02	<1 . <1	315 245	10		<0.001
71	MB071	<1	<0. 2	5 5	230	9	1. 78	<1	120	4	18	<0.001 <0.001
72	MB072	<1	<0.2	. 5	590	3	0.90	<1	150	6 2	10	
73	MB073	<1	<0.2	₹5	280	10	1.66	<1	220	6		<0.001
74	MB074	2	<0.2	5	820	13	1.88	<1	440	12		<0.001
75	MB075	ĩ	<0.2	: 10	300	15	2. 74	<1	420	12		<0.001
76	MB076	<î	<0.2	10	740	24	2. 62	<1	560	14		<0.001
77	MB077	î	<0.2	5	310	$\overline{10}$	1.69	<1 ✓1	225	10		<0.001
78	MB078	ĩ	<0.2	10	400	$\tilde{12}$	2. 02	<1	320	14		<0.001
79	MB079	<1	<0.2	10	370	$\overline{16}$	2. 29	<1	445	14		<0.001
80	MB080	<1	<0.2	5	120	- 1	0.84	<1	25	2	8	
81	MB081	<1	<0.2	. 5	230	8	1.27	: 2	85	10	14	
82	MB082	<1	<0.2	5	170	4	0.97	1	45	6	10	0.007
83	MB083	<1	<0.2	<5	180	6	1.30	<1	30	2	10.	0.008
84	MB084	<1	<0.2	<5	90	4	1.00	· <1	55	8	10	0.003
85	MB085	<1	<0.2	<5	740	18	1. 78	1	380	14	30	0.017
86.	MB086	<1	<0.2	5	340	: 8	1.84	<1	135	12	24	0.007
87	MB087	<1	<0.2	· · <5	60	3	1.08	<1	65	6	12	0.003
88	MB088	<1	<0.2	<5	150	8	1.48	1	90	12	18	0.004
89	MB089	<1	<0.2	<5	80	3	1.07	2	40	<2		<0.001
90	MB090	<1	<0.2	<5	120	4	1.10	<1	50	10		<0.001
91	MB091	<1	<0.2	<5 <5	90	1	0.74		95	4	4	
92 93	MB092 MB093	<1 <1	<0. 2 <0. 2	<5 5	50 160	<1 10	0. 39 1. 38	· 2	30	4	2	
94	MB094	1	<0. 2	5	540	26	3. 02		370 530	10 18		<0.001 <0.001
95	MB095	<1		<5	370	11	1. 99	$\frac{1}{2}$	385	16		<0.001
96	MB096	₹1	<0.2	< 5	330		2. 22	<1		12		<0.001
97	MB097	<1	<0.2	<5	130		1. 04	<1	115	10	12	
98	MB098	<1	<0.2	<5	720	16	2.85	<u> </u>		12		< 0.003
99	MB099	<1			850		2. 82	<1	280	12		<0.001
100	MB100	√1		<5	310	10	1.64	$\hat{1}$		12	30	
101	MB101	⟨1	<0. 2	5	250	25	2.86	î			62	
	MB102	$\langle \hat{1} \rangle$	<0.2	5	260	29	3. 70	<1	480	22	56	
103	MB103	<1	<0.2		310	19	2.15	<u>(1</u>	475	18	56	
104	MB104	<1	<0.2	: 5	170	13	1. 92	<1	330	10	38	
105	MB105	<1	<0.2	<5	240	11	1.59	<1	240	18	22	
106	MB106	<1	<0.2	10	230	13	1, 92	<1	150	12	32	
107	MB107	<1	<0.2	5		19	1,99	<1	450	20	24	
108	MB108	<1	<0.2	<u><5</u>	140	5	1.01	<1	125	6	10	

Ser.	_		Au	Ag	As	Ba	Cu	Fe	Hg	Mn	Pb	Zn	
No.	No.		ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	*
109	MB109		<1	<0.2	<5	120	5	0. 92	<1	65	6	10	0.005
110	MB110		<1	<0, 2	5	400	15	1.70	<1	210	16	28	<0.001
111	MB111		<1	<0.2	<5	480	18	1.93	<1	225	12	32	0.004
112	MB112		<1	<0, 2	<5	190	13	1. 48	<1	250	12	22	0.003
113	MB113		<1	<0.2	<5	260	23	2. 33	<1	1175	8	34	<0.001
114	MB114	•	<1	<0.2	<5	.60	17	2.14	<1	480	8	26	0.001
115	MB115		<1	<0.2	15	180	7	1.05	<1	75	6	22	0.004
116	MB116		<1	<0.2	<5	270	18	2.05	<1	910	36	224	0.003
117	MB117		<1	<0.2	<5	410	8 12	1.34 1.99		340	4	16	0.006
118 119	MB118 MB119		<1 <1	<0. 2 <0. 2	5 5	350 110	5	1, 99	<1 <1	470 40	18 6	20 6	0.007 0.003
120	MB120		<1	<0.2	5	170	4	1.04	<1	130	4	8	0.003
121	MB121		<1	<0.2	<5	120	6	0.94		25	<2	10	0.003
122	MC001		₹1	<0.2	10	130	4	1. 12	<1	50	6	10	0. 012
123	MC002	,	⟨1	<0.2	₹5	80	5	1.30	- <u>(1</u>	50	. ž	14	0.008
124	MC003		<1	<0.2	<5	80	5	1. 27	<1	175	8		0.014
125	MC004		<1	<0.2	5	140	9	1.57	<1	170	16	12	0.012
126	MC005		<1	<0.2	<5	500	26	3.84	<1	810	18	40	
127	MC006		<1	<0.2	10	270	16	2.94	<1	920	30	18	0.018
128	MC007		<1	<0.2	<5	310	24	3. 23	<1	465	16	34	0.018
129	MC008	-	<1	<0.2	<5	230	15	2.37	<1	390	20	16	0.010
130	MC009		<1	<0.2	<5	360	13	2.05		355	18	18	0.007
131	. MC010		<1.	<0.2	<5	280	13	2, 22		270	10	18	0.013
$\begin{array}{c} 132 \\ 133 \end{array}$	HC011 HC012		<1 1	<0. 2 <0. 2	<5 <5	440 370	19 19	3, 49 3, 29	- (1 - (1	530 360	22 16	32 26	0.015 0.013
134	MCO12		<1	<0.2	<5 5	700	30	6. 17		3790	56		0.013
135	MCO14		<1	<0. 2	5 5	60	: 8	1, 43		515	10		0.017
136	MC015		⟨1	<0.2	<5	500	27	3.96		365	10		0.011
137	MC016		<1	<0.2	√5	320		3. 45		440	18		<0.001
138	MC019		<1	<0.2	<5	360		3.44	<1	275	12		<0.001
139	MC020		<1	<0.2	<5	320	24	3.65	· <1	375	22		<0.001
140	MC021		<1	<0.2	10	290		5, 05	<1	930	28		<0.001
141	MC022		<1	<0.2	10	470	27	3. 77	<1		12	34	0.014
142	MC023		<1	<0.2	10	340		3. 49	<1	570	20	30	
143	MC024		<1	<0.2	5	240	18	2. 98	<1	430	22	22	0. 010
144	MCO25		1	<0.2	15	390		3.64		460	24	32	0.010
145 146	MC026 MC027		<1 <1	<0. 2 <0. 2	5 20	140 310		1, 97 3, 06		365 625	12	34 22	0.012
140	MC027		<1	<0.2	5	290	25	3.63		445	18 26	34	
148	MC029		<1	<0. 2	5		27	4, 03	<1	375	20	40	0.010
149	MC030		⟨1	<0. 2	5	650	28	5. 68	\vec{a}	1530	30	52	
150	MC031		<1	<0. 2	5	340	25	4.09	<1	860	34	36	
151	MC032		<1	<0.2	<5	410	30	4.72		725	22	40	0.006
152	MC033		<1	<0.2	5	410	26	3.47	<1				0.004
153	MC034	:	<1		<5	200	9	1.40	<1	470	12	18	0.008
154	MC035		<1	<0.2	10	310	20	3. 32	<1	585	22	22	0.010
155	MC036		1	<0.2	20	470	39	5. 15		455	18		<0.001
156	MC037		<1	<0. 2 <0. 2	<5 F	470	29			980	24		0.010
157	MC038		<1	<0.2	5	310	20	2, 99	1	480			0.010
158	MC039		<1 1	<0. 2 <0. 2	. 5 5	380 540	21 25	3, 33 4, 10					0.011
159 160	MC040 MC041	. '	<1	<0.2	5 <5	290	25 25	4. 10 3. 49	<1 <1	630 415	22 18	32 28	0.008 0.007
161	MC041 MC042		<1	<0.2	5	100	3	0. 78	<1	175	4		0.007
162	MC042		<1	<0. 2	10	100	4	1. 35		140	10		0.000
100	.40040			· · · · · · · · · · · · · · · · · · ·		100		1, 00	·	170	TA		V. V.U

Ser.	Sample No.	A qq			Ba ppm	Cu ppm	Fe %	Hg mqq	Mn ppm	Pb ppm	Zn ppm	S %
	110,	PP	o pro	· ppm	- PVIII	Ppm		{2 F 211	PM	ppm	Ppm	N
163	MC044	<			60	1	0. 95	1	25	6	. 6	0.005
164	MC045	: <			300	7	1.09	<1	140	. 8	12	0.011
165	MC046	<			280	13	2. 38	<1	545	16	16	0.012
166	MC047	<			120	8	1. 45	<1	120	8	12	0.013
167	MC048	<			100	10	1. 27	<1	685	- 6	16	0.014
168	MC049		1 <0.2		140	21	2. 31	<1	1835	12	32	0.005
169	MC050	. <			180	16	2. 10	<1	225	14	36	0.015
170	MC051	<			140	16	1. 95	<1	465	14	68	0.009
171	MC052	. <			150	15	2.88	<1	330	16	36	0.018
172	MC053 MC054	· · · · · ·			170	11	1. 87 2. 92	(1	295	12	30	0.012
173 174	MC055		1 <0.2 1 <0.2		270 180	27 20	2. 53	<1 <1	360 395	14	60	0.012
175	MC056		1 < 0.2		190	15	2. 00	<1	370	14 10	46 38	0. 011 0. 012
176	MC057				190	18	2. 24	<1	225	8	38	0. 012
177	MC060		1 <0.2		150	15	2. 13	<1	500	8	22	0.010
178	MC061	100			130	17	2. 19	<1	515	18	40	0.006
179	MC062	`			170	10	1. 71	<1	270	2	22	0.005
180	MC063		1 <0.2		340	15	2. 15	<1	335	6	18	0.007
181	MC064		1 <0.2		110	18	1. 95	<1	890	18	30	0.008
182	MC065		1 <0.2		500	13	1. 98	<1	835	10	28	0.014
183	MC066		1 <0.2		340	27	3. 20	4	480	14	62	0.008
184	MC067		1 <0.2		140	1	0.77	<1	35	10	4	0.006
185	MC068	<	1 < 0.2		190	3	0.72	<1	60	6	4	0.005
186	MC069	<		₹ <5	130	6	1.50	1	70	8	10	0.009
187	MC070	. <			180	7	1.19	<1	255	2	20	0.003
188	MC071	. <	1 < 0.2		350	26	3. 95	<1	505	14	34	0.006
189	MC072		1 <0.2		370	25	4.01	<1	1305	34	30	0.006
190	MC073		1 <0.2		310	22	3. 72	<1	415	24	24	0.007
191	MC074		1 <0.2		490	26	4. 35	<1	1185	38	28	0.005
192	MC075		1 < 0.5		710	30	6. 21	<1	2670	60	28	0.005
193	MC076		1 <0.2		270	18	4.11	<1	710	32	24	0.007
194	MC077		1 <0.2		750	27	3.03	<1	880	22	38	0.014
195	MC078		1 <0.2		170	6	1. 10	<1	250	8	20	0.005
196	MC079				70	6	1. 46	<1	60	8	6	0.005
197	MC080		1 < 0.5	_	70	2	0.73	<1	95 es	6	4.	0.003
	MC081		1 < 0.2		180	7	1.52	(1	55 75	10	16	0.008
199 200	MC082 MC083		1 <0.2 1 <0.2	2 5 2 <5	220 50	16 1	3. 25 0. 97	<1 <1	75 15	12 10	30 6	0.003 0.005
201	MC084		1 < 0.7		120	2	1. 55	<1	35	10	10	
201	MC085		1 < 0.7	2 10	230	5	1. 28	<1	30 70	10	16	0.005 0.005
203	MC086		1 < 0.5		110	4	1. 18	\(\frac{1}{4}\)		12	12	0.005
204	MC087		1 < 0.5		100	3	1. 09			6	42	0.000
205	MC088		1 <0.		260	14	1.87	<1		12	20	0.004
206	MC089		1 < 0.2		460	16	1.88	<1		18	22	0.014
207	MC090		$\tilde{1}$ <0.			9	1. 48			8	10	0.014
208			1 <0.2	2 <5	230	20	2. 90			20	40	0.010
209	MC092		1 <0.2		270	10	1. 55			10	18	
	MD001		1 <0.5			16	1. 69	<ĭ		6	38	0.013
$\overline{211}$	MD002		1 <0.2		240		$\hat{2}.70$			18	60	0.015
212	MD003		1 <0.5	2 <5	160	14	1.90	<1		14	28	
213	MD004		1 < 0.5	₹ <5	290	23	2. 36	<1			50	0.019
214	MD005		(1 < 0.5)	2 <5	420	18	1. 92	<1		16	42	
215	MD006	<	1 < 0.5	2 <5	100	7	0. 99	<1	695	12	20	
216	MD007	* <	1 < 0.5	2 <5	100	12	1.85	<1	2310	18	26	

		******								entrimani			
Ser. No.	Sample No.		Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	Hg ppm	Mn ppm	Pb ppm	Zn ppm	S %
217	MD008	-	/1	<0.2	<5	300	26	3. 78	<1	705	26	34	0. 013
218	MD009		<1	<0. 2	<5	430	27	4. 02	<1	595	30	34	0.013
		-	(1 : 〈1	<0.2	<5	340	17	2.33	<1	755	20	28	0.012
$\begin{array}{c} 219 \\ 220 \end{array}$	MD010			<0.2		360	22	3. 42		620	24	24	0.013
	MD011		<1	<0. 2	<5 E		23	3. 4Z	$\frac{1}{2}$	790	30	24	0. 011
221 222	MD012		<1	<0. 2	5	370 200	23	3. 09	(1 (1	540	28	38	0.014
223	MD013 MD014		<1 <1	<0. 2	<5 <5	260	25 21	3, 01	$\langle 1 \rangle$	585	22	36	0.013
224	MD014 MD015		<1	<0.2	<5	260	30	3, 53	<1	550	18	58	0. 012
225	MD015		<1	<0. 2	5	90	73	1. 39	<1	470	18	464	0.009
226	MD010		<1	<0.2	10	150	10	1.76	<1	280	8	28	0.014
227	MD018		(1		<5	80	5	0.88	<1	100	10	12	0.004
228	MD019		<1	<0.2	<5	150	7	0. 91		60	4		0.004
229	MEOO1		<1	<0.2	5	360	18	2. 44	⟨1	530	10	42	0.012
230	MEOO2		3	<0.2	<5	230	- 13	2. 14	<1	550	16	28	0. 010
231	MEOO2		<1	<0.2	<5	240	. 8	1. 92	<1	645	4	24	0.010
232	MEOO4		<1	<0. 2	10	210	11	2. 33	<1	300	10	26	0.009
233	ME005		<1	<0.2	<5	190	8	1. 52	i ki	145	10	18	0.004
234	MEOO6		<1	<0.2	<5	170	6	1.17	1	195	8	12	0.007
235	ME007		<1	<0.2	<5	230	11	2. 22	<1	1530	10	30	0.004
236	MEOO8		<1	<0.2	<5	130	4	1. 01	<1	135	6	12	0.005
237	ME009		<1	<0.2	<5	190	6	1.30		80	12		0.011
238	ME010		<1	<0.2	<5	170	12	2. 08	₹ <u>1</u>	275	10		<0.001
239	MEO11		<1	<0. 2	<5	230	6	1. 22	<1	200	12	16	0.001
240	MEO12	•	<1	<0.2	₹5	90	š	0. 94	্র	155	10	14	0.015
241	ME013		<1	<0.2	<5	120	. Š	1. 94	ব	105	14	22	0.008
242	ME014		<1	<0.2	<5	110	5	1. 33	<1		6	12	0.006
243	MEO15		<1	<0.2	10	320	12	2. 22	√1	220	12	28	0.008
244	ME016		. 4	<0.2	<5	120	4	1. 24	<1	80	10	12	0.007
245	ME017		<1	<0.2	5	190	6	1.31	1	70	8	14	0.005
246	ME018		<1	<0.2	<5	110	6	1.30	<1	45	2	.14	0.006
247	ME019		<1	<0.2	√5	140	. 8	. 1.65	<1	120	10	20	0.003
248	ME020		<1	<0.2	< 5	190	. 10	2.06	2	225	12	28	0.003
249	ME021		<1	<0.2	· <5	180	3	0.73	2	85	2	6	0.002
250	ME022		<1	<0.2	<5	260	. 19	2. 75	<1	310	16	30	0.011
251	ME023		<1	<0.2	< <5	: 30	1	0.47	<1	25	2	4	<0.001
252	ME024		<1	<0.2	<5	220	11	1, 99	1	95	<2		0.005
253	ME025		<1	<0.2	10	220	31	6.82	<1	2300	56		0.003
254	ME026		<1	<0.2	<5	180	4	0.84	1	450	10		<0.001
255	ME027		<1	<0.2	<5	40	2	0.80	<1	50	4		<0.001
256	ME028		<1	<0.2	5	100	3	1. 07	<1	60	6		<0.001
257	ME029		<1	<0.2	<5	150	6	1. 25	1	60	6		<0.001
258	ME030		<1	<0.2	<5	320	11	1.84	<1		6		0.003
259	ME031	•	<1	<0.2	<5	190	. 8	1.70	<1	405	8		0.001
260	MEO32		<1	<0.2	<5	110	7	1.88	<1	95	12		0.002
261	ME033		<1	<0.2	<5	20	1	0. 59	1	115	4		<0.001
262	ME034		<1	<0.2	5	60	1	1.02	<1	275	10		<0.001
263	MEO35		<1	<0.2	<5	10	1	0.44	1	30	8		<0.001
264	MEO36			<0.2	<5 <5	60	2	0.90	<1	140	10		<0.001
265	MEO37		<1	<0.2	<5 <5	70	3 2	0.96	$\frac{1}{21}$	90	8		<0.001
266	MEO38		<u> </u>	<0.2	<5 <5	70		0. 74 3. 49	<1	180	4		<0.001
267	ME039		<1	<0. 2 <0. 2	<5 <5	700 120	31 2	0. 95	1	205 165	18		<0.001
268 260	ME040 ME041		<1 <1	<0.2	<5 <5	240	9	1.82	<1	115	12	22	<0.001 0.002
269 270	MEO41		<1	<0.2	5	260	26	4, 45	<1	785	40	38	0.002
410	511044		/1	. V. L	<u> </u>	- 400	- 410	3, 40	. 71	100	-10	90	0.000

****											t feleriterin de demons	
Ser.	Sample No.	Au ppb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppm	S %
271	ME043	1	<0.2	15	- 550	38	6, 95	<1	4310	92	40	0.003
272	ME044	<1	<0.2	< 5	290	25	3. 95	ं यें	625	26	28	0.005
273	NE045	<1	<0.2	₹5	280	23	3.71	₹1	440	18		<0.001
274	ME046	2	<0. 2	₹5	460	26	3. 81	<1	420	$\frac{10}{22}$		<0.001
275	MEO47	$\bar{\mathbf{q}}$	<0. 2	<5	460	32	6, 71	⟨1	3920	56		<0.001
276	ME048	<1	<0.2	<5	310	14	3. 02	<1	160	18	20	0.004
277	ME049	· <1	<0.2	<5	400	15	2.50	. 1	260	10	28	0.009
278	ME050	<1	<0.2	<5	250	24	4.17	<1	295	26	28	<0.001
279	ME051	<1	<0.2	<5	270	23	3.93	<1	345	22	34	<0.001
280	ME052	- <1	<0.2	<5	560	29	3.86	. ≺1	325	18		<0.001
281	ME053	<1	<0.2	<5	250	19	3.70	<1	235	16	28	0.003
282	ME054	<1	<0.2	<5	370	20	3. 03	1	375	16		<0.001
283	ME055	<1	<0.2	<5	250	19	2.83	<1	330	16		<0.001
284	ME056	1	<0.2	<5	110	- 8	1. 47	3	115	4		<0.001
285	ME057	<1	<0.2	<5	130	9	1. 27	<1	90	6		<0.001
286	ME058	<1	<0.2	<5	170	13	2. 21	. 1	635	14		<0.001
287	MF001	<1	<0.2	<5	30	2	0.68	<1	70	6		<0.001
288	MF002	(1	<0.2	<5	70	4	1.59	<u>(1</u>	80	8		<0.001
289 290	MF003 MF004	(1 (1	<0. 2 <0. 2	<5 <5	60 90	$\frac{3}{2}$	0. 90 0. 81	. <1 <1	50 140	2 4		<0.001 <0.001
291	MF004 MF005	<1	<0. 2	<5	70	1	0. 76	\1 \1	30	4	6 4	0.003
292	MF006	<1	<0.2	5	50	<1	0. 73	<1	20	10	4	0.003
293	MF007	<1	<0.2	<5	60	1	0. 63	<1	40	. 10		<0.001
294	MF008	₹1	<0.2	<5	110	5	1. 48	<1	70	14	18	0.001
295	MF009	<1	< 0. 2	<5 ⋅	210	5	1. 56	⟨1	100	14		<0.001
296	MF010	<1	<0.2	10	820	9	1.19	<1	450	12		0.010
297	MF011	<1	<0.2	10	90	6	1.21	<1	105	2		<0.001
298	MF012	<1	<0.2	<5	80	. 3	0.90	<1	30	10	6	0.001
299	MG001	<1	<0.2	10	310	16	2.81	. <1	870	26	36	0.013
300	MG002	<1	<0, 2	- 5	250	18	3.04	<1	460	24	36	<0.001
301	MG003	<1	<0.2	15	180	8	1. 55	<1	90	8		<0.001
302	MG004	<1	<0.2	<5	270	19	3. 18	<1	285	14	30	0.004
303	MG005	1	<0.2	<5	300	16	2. 11	<1	210	6		<0.001
304	MG006	<1	<0.2	<5	180	9	1. 78	<1	135	10		<0.001
305	MG007	<1	<0.2	<5	580	20	2. 69	<1	195	18		<0.001
306	MG008	$\langle 1 \rangle$	<0.2	<5 <5	120	. 4	1. 25	<1	50	8		<0.001
307 308	MG009 MG010	<1 <1	<0. 2 <0. 2	<5 <5	810 250	20 8	2. 25	· <1	290	20		<0.001
309	MG010	<1	<0. 2	<5	350	4	1. 52 1. 26	1 <1	185 250	10 14		<0.001 <0.001
310	MG012	. (1	<0.2	<5	190	12	1. 85	<1	230	8		<0.001
311	MG012	$\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}}{\stackrel{\circ}{\stackrel{\circ}}$	<0.2	5	210	11	2. 15	<1	145	10		<0.001
312	MG014	र्वे	<0.2	<5	530	17	3. 41	<1	980	22		<0.001
313	MG015		<0.2	5	140	5	1. 41	<1	100	10		<0.001
314	MG017	<1	<0.2	<Š	810	13	1.80	<1	315	14		0.017
315	MG018	<1	<0.2	10	400	7	1. 33	$\overline{2}$	95	12	16	
316	MG019	<1	<0.2	<5	20	<1	0.58	<1	10	6		<0.001
317	MG020	<1	<0.2	<5	110	1	1.06	<1	65	8		<0.001
318	MG021	<1	<0.2	5	140	6	1. 27	<1	- 55	8		<0.001
319	MG022	<1	<0.2	<5	250	8	1.54	<1	75	10		<0.001
320	MG023	<1	<0.2	<5	230	9	1.30	<1	150	10	16	<0.001
321	MG024	<1	<0.2	<5	40	<1	0. 50	<1	. 5	2	2	<0.001
322	MG025	<1	<0.2	<5	30	<1.	0.61	<1	5	8	2	<0.001
323	MG026	<1	<0.2	5	50	1	0.50	<1	60	- 6		<0.001
324	MG027	<1	<0.2	<5	60	1	<u>0.69</u>	<1	25	8	4	<0.001

Ser. No.	Sample No.		Au pb	Ag ppm	As ppm	Ba ppm	Cu ppm	Fe %	llg ppm	Mn ppm	Pb ppm	Zn ppm	S %
325	MG028		<1	<0.2	5	70	2	0. 90	<1	120	10	10	<0.001
326	MG029		<Ī	<0. 2	· <5	50	i	0.82	<1	205	10	8	<0.001
327	MG030		<î	<0.2	<5	70	Ž	0.88	<1	25	10	4	< 0.001
328	MG031		<1	<0.2	<5	150	3	0.88	<1	35	10	8	<0.001
329	MG032		<1	<0.2	5	640	9.	1.75	<1	370	14		< 0.001
330	MG033		<1	<0.2	<5	20	<1	0.23	<1	10	6		< 0.001
331	MG034		<1	<0.2	5	80	2	1.06	<1	20	10	8	0.006
332	MG035		<1	<0.2	<5	40	<1	0.34	· <1	5	2	2	<0.001
333	MG036		<1	<0.2	5	240	18	5. 11	<1	990	20	54	0.016
334	MG037		<1	<0.2	5	230	27	6. 21	<1	930	34	52	0.014
335	MG038		<1	<0.2	<5	230	13	3. 17	<1	595	16	42	0.002
336	MG039		< 1	<0.2	<5 <5	250	14	3, 23	<1	560	18	34	<0.001
337	MGO40			<0. 2 <0. 2	<5	190 150	28 12	3. 56 1. 65	다 (1 · (1 ·	700 490	24	38	<0.001 <0.001
338 339	MG041 MG042		<1 <1	<0. 2	5 <5	270	23	3. 34	<1	705	14 22		<0.001
340	MG043		\1 <1	<0. 2	5	360	26	3. 66	<1	260	12		<0.001
341	MG043		₹1	<0.2	15	110	35	12. 65	\dag{1}	215	40		<0.001
342	MG045		₹1	<0.2	20	270	25	3. 68	<1	335	22		<0.001
343	MG046	· · · · · · .	<1	<0.2	Š	270	18	2. 33	<1	280	18		<0.001
344	MG047		<1	<0.2	5	540	14	2. 92	$\tilde{1}$	610	18		<0.001
345	MG049		<1	<0.2	20	640	11	1. 47	<1	255	16	14	0.002
346	MG050		<1	<0.2	<5	130	5	1. 26	<1	45	12	12	< 0.001
347	MG051		<1	<0.2	5	200	4	0.82	<1	175	12	8	<0.001
348	MG052		<1	<0. 2	<5	550	7	1. 21	<1	65	8	14	<0.001
349	MG053		<1	<0.2	<5	70	2	0.79	<1	30	12	6	<0.001
350	MG054		<1	<0.2	<5	180	7	1. 14	<1	200	14	12	0.004
351	MG055		<1	<0.2	5	650	10	1. 74	<1	335	16	18	0.009
352	MG056		<1	<0.2	5	330	14	1. 53	<1	155	10	20	0.006
353	MG057		<1	<0.2	<5	160	10	1, 65	<1	215	14	22	<0.001
354	MG058		<1	<0.2	5 15	170 900	21 22	3. 22	<1	855	20	56	< 0.001
355	MG059 MG060		<1 <1	<0. 2 <0. 2	15 10	230	17	1. 85 2. 55	<1 <1	385 240	6 24		0. 031 <0. 001
356 357	MG061		\1 <1	<0. 2	5	140	10	1, 16	<1	285	12		<0.001
358	MG062		<1	<0.2	<5	210	14	1. 17	$\langle 1 \rangle$	535	10		<0.001
359	MH001		<1	<0.2	15	310	19	2. 12	$\langle \hat{1} \rangle$	1410	26		<0.001
360	MH002		<î	<0.2	₹5	320	18	4. 47	ব	1285	108		<0.001
361	MH003		<1	< 0.2	10	120	$\overline{13}$	1. 91	<1	205	16		<0.001
362	MH004		<1	<0.2	5	800	24	2.04	1	965	20		0.011
363	MH005		<1	<0.2	<5	380	23	3, 53	1	840	44		<0.001
364	MH006		<1	< 0.2	<5	110	12	1.72	<1	60	18		<0.001
365	MH007		<1	<0.2	5	140	7	1.06	<1	65	8	16	<0.001
366	MH008		<1	<0.2	<5	230	14	2. 48	<1	450	18		<0.001
367	₩H009		<1	<0.2	15	170	10	1, 52	<1	130	10		<0.001
368	MH010		<1.	< 0.2	<5	200	7	1. 08	<1	145	14		0.003
369	MH011		<1	<0.2	5	210	18	4. 51	<1	1130	44	30	
370	MH012		<u>(1</u>	<0.2	10	140	10	2, 79	<1	150	18	18	
371	MH013		〈 1	<0.2	15 15	160	8	1.30	4	310	18		<0.001
372	MHO14		(1 (1	<0. 2 <0. 2	15 <5	110 290	8 7	1. 45 1. 10	(1 (1	210	20		<0.001
373 374	MH015 MH016		<1 <1	<0. 2	5	230	10	1. 10	<1 <1	105 100	16 12		<0.001
375	MHO17		<1	<0.2	15	380	21	3. 25	<1	400	14		<0.001 <0.001
376	MH018		<1	<0.2	20	370	21	4. 07	<1	570	32		<0.001
377	MH019		λ <u>1</u>	<0.2	10	310	30	6. 17	<1	1675	64		<0.001
U11	MH020		<1 <1	<0.2	< 5	180	13	2. 10	<1	_255	10		<0.001

Ser. Sample Au	THILL	NOOMDE A	IX ENGLY						mountage Westernamen.					
SEC MINO22														
380 Mi0023	379	MH021		<1	<0.2	15	200	13	2. 44	<1	340	22	30	<0.001
381 H0024														
383 M10025														
384 MH026														
385 MH028									1. 98					
386 MH028														
387 MH029														
388 MI030														
389 MR031														
390 MI0032								0 5						
391 MIO33														
392 MI034														
393 MI036														
394 MI036														
395 MI0037								$\tilde{6}$. 8		
396 MIO38						<5								
397 MH039														
398 MH040			. •											
400 MH042	398	MH040	1	<1	<0.2		40	. 1	0. 54	<1				
401 MH043												10	12	<0.001
402 MH044														
403 MH045														
404 MH046														
405 MH047														
406 MH048														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								2						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								10						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	415				<0.2	15	110	8		<1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	416	MH058		<1		<5				<1		12	22	<0.001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· .											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$:.						1. 93					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									1.50			22		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									1,02					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
431 MH073 <1 <0.2 10 260 25 2.96 <1 520 24 46 <0.001														
100 111001 4 40 0 45 000 0 4 50														
	432	MH074			<0. 2		200		1.58	<1	160	20	18	0. 001

MKANGOMBE AREA

Ser.	Sample No.		Au ppb	Ag ppm		As ppa	Ba ppm	Cu ppm	4.			Pb ppm	Zn S ppm %
433	M11075	-	<1	<0.2	-	<5	470	14	1.86	<1	260	10	28 <0.001
434	MH076		<1	<0.2		<5	90		1.65	<1	170	12	18 < 0.001
435	MII077	1	<1	<0.2		5	120	6	1, 45	<1	105	10	22 < 0.001
436	MH078		<1	<0.2		10	100	5	1.54	√1	70	18	16 < 0.001
437	ин079		<1	<0.2		10	70	2	0.93	<1	30	4	8 < 0.001
438	MH080		<1	<0.2	•	5	80	2	0.88	<1	160	10	10 < 0.001
439	MH082		<1	<0.2	. :	<5	60	<1	0.48	<1	170	4	2 < 0.001
440	ин083		<1	<0.2		<5	50	2	0.83	<1	125	12	8 < 0.001
441	MH084		<1	<0.2		.5	40	1	0.97	<1	115	<2	8 < 0.001
442	MH085	1	<1	<0.2		5	40	. 1	1.01	<1	15	10	6 < 0.001
443	MH086		<1	<0.2		<5	130	. 5	1.10	<1	65	12	16 < 0.001
444	MH087		<1	<0.2		<5	90	3	1.16	<1	220	8	14 < 0.001
445	MH088		<1	<0.2		<5	40	1	0.76	1	90	6	4 < 0.001
446	MH089		<1	<0. 2		<5	90	3	0.93	<1	40	8	10 < 0.001
447 :	MH090	1	<1	<0.2	1	<5	60	. 2	0.97	· · · <1	60	10	10 < 0.001
448	MH091	÷	<1	<0.2		25	150	7	1. 57	<1	50	4	18 < 0.001
449	MH092		<1	<0.2		<5	70	3		<1	50	4	10 < 0.001
450	MH093	.11	<1	<0.2	:	<5	40	·· <1		<1	10	6	2 < 0.001
451	MH094	٠.	<1	<0.2		<5	70	1	0.73	<1	15	- 8	4 < 0.001
452	ин095		<1	<0.2		5	430	7	1, 14	. <1	240	6	20 0.002

MRIMA-JOHBO AREA

Ser. No.	Sample No.	Au ppb	Ba ppm	Cu ppm	Fe %	Mn ppm	ppm ppm	Pb ppm	Sr ppm	Zn ppm
1	HB001	<1	1980	11	2. 13	310	190	16	171	20
$\hat{2}$	HB002	<1	180	8	2. 09	80	60	20	42	18
$\bar{3}$	HB003	<1	150	ÿ.	1.87	90	80	14	15	18
4	HB004	<1	260	8	1. 71	370	70	$\hat{1}\hat{0}$	67	22
5	ПВ005	<1	180	11	2. 19	75	40	$\overline{14}$	51	16
6	HB006	<1	500	29	3.11	1015	130	18	173	30
7	HB007	<1	240	24	3.03	950	110	18	154	30
8	HB008	<1.	140	14	2. 32	265	100	14	25	16
9	HB009	<1	170	14	2.48	270	190	10	24	26
10	HB010	<1	150	9	1.51	90	80	8	11	16
11	HB011	<1	170	23	2.55	400	150	10	53	12
12	HB012	<1	130	8	1.48	185	100	12	14	8
13	HB013	<1	110	22	2. 43	400	210	12	45	12
14	HB014	1	80	18	3.06	130	140	2	16	10
15	HB015	<1	110	11	1.90	275	160	10	25	14
16	HB017	<1.	80	4	1. 31	250	150	22	8	14
17	HB018	<1	70.	6	1.55	245	150	12	9	16
18	HB019	1.	140	16	2.62	510	230	16	17	30
19	HB020	<1.	60	6	1.11	505	190	30	. 12	24
20	HB021	<1	160	11	2.31	270	230	14	12	18
21 22	НВ022 НВ023	<1 <1	90 60	6	1.08 1.07	245 115	110 110	14 <2	13	12
23	HB024	<1	70	3	0.97	135	160	12	5 • 7	8 12
24	HB025	<1:	100	4	1.00	145	100	8	11	8
25	HB026	<1	170	9.	1. 68	330	170	- 8	22	20
26	HB027	₹1	220	10	1.93	195	110	10	18	20
27	HB028	<1	60	2	0.70	25	40	6	5	6
28	HB029	<1	50	1	0.81	20	30	4	6	4
29	HB030	⟨1	140	9	1. 92		130	8	$2\overset{\circ}{2}$	18
30	HB031	<1	30	2	0.71	70	50	10	6	6
31	HB032	<1	110	3	0.72	185	160	6	$1\overset{\circ}{0}$. 8
32	HB033	. 4	40	ī	0.41		100	4	2	4
33	HB034	<1	40	1	0.84	25	60	10	2	4
34	HB035	<1	50	1	0.81	25	70	12	5	6
35	HB036	<1	30	1	0.40	90	70	2	1	4
36	HB037	<1	40	1	0.39	120	50	8	. 3	4
37	HB038	<1	140	- 7	1.86	500	210	12	23	20
38	HB039	<1	60	1	0.66	85	60	12	1	6
39	HC001	<1	170	. 9	1.89	1140	240	14	35	14
40	HC002	<1	170	9	3. 21	1520	200	12	36	12
41	нс003	<1	1080	18	3. 42		390	14	73	44
42	HC004	<1	120	6	1. 26	595	120	6	12	6
43	HC005	<1	160	8	2. 57		190	4	34	12
44	HC006		330	10	2.63	920	300	12	48	16
45	HC007	<1	440		3.72	860	430	22	. 85	36
46	HC008	<1	340	12	3. 28		310	.8	61	16
47	HC009		170		1.69		200	8	51	14
48	HC010	<1	460	7	2. 57	310	100	14	42	28
49	HC011	<1 21	250	9	2. 28	350	230	8	35	24
50	HC012		160	8	1. 98	315	180	18	16	16
51	HCO13	<1 /1	980	11	2. 04		220	18	23	20
52 53	HC014	<1	290	9 5	2. 40 1. 67	445	180	12	14	30
.1.1	HC015	<1	280	5 2	0.66	165 30	80	14	35	16

Ser. No.	Sample No.		Nb ppm	y ppm	Ce ppm	Eu ppm	La ppm	Lu ppm	Nd ppm	Sm ppm	Tb ppm	Th ppm	ppm	Yb ppm
1	HB001	.,	25	32	86. 0	1.00	37. 0	0.60	25	5, 90	0. 50	10. 0	3.0	3. 80
$\tilde{2}$	HB002		25	33	68. 0	1.00	36.0	0.50	25	7. 20	0.50	11.0	2.0	2.90
3	HB003		24	30	76. 0	1.00	34. 0	0.60	20	5.80	1.10	13.0	4.0	3. 60
4	HB004		$\overline{28}$	38	90. 0	1.50	49. 0	0.60	30	8. 70	1.00	12. 0	3.0	3, 50
5	HB005		31	31	94. 0	1.00	45.0	0.50	30	7. 10	1.00	13.0	3.0	3. 20
6	HB006		57	34	166.0	3. 50	71.0	0.60		10.90	0.80	17.0	3.0	3.50
7	HB007		43	33	136. 0	2.50	62. 0	0.50		10, 30	1.80	13.0	2.0	3.00
8	HB008		39	39	126.0	1.50	64. Ŏ	0.50		11.00	0.60	18. 0	3.0	3. 80
9	HB009		30	34	124. 0	1.50	47. 0	0.50	30	7.30	2.00	14.0	4. 0	3.60
10	HB010		29	31	100.0	1.00	46. Ŏ	0.50	30	6.90	0.70	13.0	3. Ŏ	3.40
11	HB011		46	$3\hat{6}$	120.0	2.00	75. Ď	0.60		12.60	1.00	15. Ů	3. ŏ	4.00
12	HB012		23	27	66. 0	0.50	42.0	0.50	25	6.80	0.60	11.0	3.0	3. 40
13	HB013		44	35	114.0	2. 50	71.0	0.60		12.00	0. 90	14.0	2.0	3.80
14	HB014		45	34	102. 0	1.50	63. 0	0.50		10.60	0.60	12. 0	2.0	3. 70
15	HB015		27	32	86.0		54.0	0.70		8. 90	2.60	15. 0	3.0	4. 10
16	HB017	200	26	36	98. 0	1.00	42.0	0.70	25	6.00	1.30	16.0	4.0	4.40
17	HB018		26	37	74. 0	1.00	39. 0	0.70	25	6. 10	0.70	18. 0	4.0	4, 50
18			26	49	96. 0	1.00	57.0	0.90	35	9. 10	0.40	19. 0	5.0	5. 40
19	HB020	1.	24	47.	94. 0	1.00	53.0	0.80	30	8. 10	0. 90	17.0	5.0	4, 90
20	HB021		27	43	120.0	1.50	63. 0	0.90	35	9. 30	0. 90	19.0	6.0	5. 40
	HB022			47	92. 0	1.00	55.0	0.90	35.	9. 50 8. 50	1. 20			
21			28	38	90.0	1.00	55.0	0.80	30			18.0	5.0	5. 70
22	HB023		23			1. 50	67.0	0.80		7.70	0.60	19.0	4.0	5. 10
23	HB024		23	43	120.0				45	9. 70	1.10	25.0	6.0	5. 40
24	HB025		21	23	34.0	0.50	21.0	0.50	10	3.00	0. 20	10.0	4.0	2, 80
25	BB026		29	31	58.0	0.50	31.0	0.70	30	4.80	0.30	15.0	5.0	3.60
26	HB027		27	34	74.0	1.00	36.0	0.60	25	5. 90	0.10	14.0	5.0	4,00
27	HB028		22	24	32. 0	<0.05	17.0	0.40	10	2.80	0. 20	10.0	4.0	2.60
28	HB029		20	20	26. 0	0. 50	14.0	0.40	10	3. 40	0.40	9.0	3.0	2.60
29	HB030		26:	32	70.0	1,00	31.0	0.60	25	4, 80	0.40	13.0	4.0	4.30
30	HB031		18	23	38. 0	0.50	14.0	0.50	15	2. 20	0.30	10.0	4.0	3. 20
31	HB032		10	18	32.0	<0.05	10.0	0.30	5	2.00	0.10	6.0	3.0	2. 10
32	HB033		13	20	22.0	<0.05	9.0	0.40	10	1.20	0.30	8.0	3.0	2. 20
33	HB034		17	22	38. 0	<0.05	11.0	0.40	20	2.50	0.30	9. 0	2.0	2. 40
34	HB035		17	24	54. 0	<0.05	18.0	0.40	15	3. 30	0.40	11.0	3.0	2.80
35	HB036		15	24	40.0	0.50	16.0	0.50	25	2.50	0.30	10.0	4.0	3. 20
36	HB037		14	23	40.0	<0.05	11.0	0.50	10	1.80	<0.05	9.0	4.0	3.00
37	HB038		32	. 36	84. 0	0. 50	33. 0	0.60	30	5. 50	0.90	12.0	3.0	3.40
38	HB039		16	28	52.0	<0.05	17.0	0.60	20	2.80	0.20	14.0	5.0	3, 90
39	HC001		31	38	170.0	1. 50	68.0	0.70		10.00	0.80	30.0	5.0	4.80
40	HC002		54	39	154.0	2.00	88. 0	0.70		11.10	0.60	30.0	5.0	4, 80
41	HC003	•	96	58	226.0	3.00	147.0	0.90		16.00	1.70	31.0	4.0	5.40
42	HC004		39	40	178.0	1.00	82.0	1.00	70	12.30	1.20	38.0	7.0	6, 10
43	HC005		34	45	120.0	2.00	67.0	0.90	45	10,00	1.50	27.0	5.0	5, 50
44	HC006		42	40	124.0	1.50	65.0	0.80	45	9.60	0.90	27.0	5.0	5.00
45	HC007		68	57	202.0	2.00	102.0	0.80	75	13.00	1.30	32.0	5.0	5.00
46	HC008		42	43	120.0	1.50	68.0	0.70	45	9.40	0.50	22.0	5.0	4.10
47	HC009		43	50	144.0	1.50	73.0	0.90	45	9.40	1.40	27.0	6.0	5. 90
48			29	44	104.0	1.50	56.0	0.60	35	8. 20	1.00	17.0	4.0	4, 20
49	HC011		31	47	120.0	1. 50	61.0		45	8.60	1.40	20. 0	5, 0	5. 30
50	HC012		30	35	90.0	1.00	45. 0	0.70	25	7. 00	0.60	16.0	5. 0	4. 40
51	HC013		42	38	114.0	1. 50	57.0	0.70	30	7. 70	0.30	16.0	5.0	4.60
52	HC014		22	41	76.0	1.50	49. 0	0.70	25	7. 40	0.80	13. 0	4.0	4. 60
53	HC015		26	34	60.0	1.00	38. 0	0.60	20	6. 20	0.40	13. 0	4.0	3. 80
				22	42. 0	0.50	23. 0	0.50	15	3. 40				3. 10
<u>54</u>	HC016		24	22	4Z. U	υ . 50	ZJ. U	<u>v. əv</u>	15	<u> 3. 40</u>	0.10	8.0	4.0	3

MRIHA-JONBO AREA

#KI	MA-JUMB) AKE	A								
Ser,	Sample		Au	Ba	Cu	Fe	Мn	P	Pb	Sr	Zn
No,	No.		ppb	ppm :	ppm	. %	ppm	ppm	ppm	ppm	ррш
55	HC017		<1	370	9	2. 19	325	200	16	28	18
56	HC018		<1	640	6	2.04	1450	270	10	41	$\tilde{36}$
57	HC019		₹Î.	130	5	0.81	850	150	$\tilde{12}$	$\hat{19}$	10
58	HC020		<Î	160		2. 28	745	200	16	37	22
59	HC021		à	180	9	1. 34	755	230	10	43	14
60	HC022		<1	140	7	1.63	605	160	12	28	16
61	HC023		⟨ί :	180	6	1. 58	815	170	8	37	$\overset{10}{20}$
62	HC024			180	9	2. 13	635	260	12	32	18
63	RC025		<1	310	12	2. 18	740	350	16	53	30
64	HC026		<1	210		1.85	410	270	8	44	14
65	HC027		<1 ∙	210	10	2. 75	585	320	20	40	18
66	HC028		: <1	190	7	1. 93	845	150	12	24	12
67	HC029		<1	110	13	3. 90	855	320	12	19	14
68	HC030		⟨1	50	3	1.04	150	90	6	11	6
69	HC031		1	130	9	2. 36	835	250	10	30	20
70	HC032		<î	60	5	2. 16	235	220	8	15	.8
71	HC033		<1		7	2. 77	325	220	10	18	10
72	IIC034		<1	210	8	2. 20	360	350	10	78	14
73	HC035		<1	60	2	1.00	380	170	16	ğ	8
74	HC036		4 1	170	4		515	330	14	39	12
75	HC037		<1	120	4	2. 03	350	250	14	16	12
76	HC038		<1	160	8	1. 45	35	110	$1\dot{2}$	15	10
77	HC039		⟨1	120	9	1. 75	25	60	. 8	11	$\tilde{10}$
78	HC040		⟨1	160	6	1. 33	45	60	10	19	6
79	HC041		<1	220	8:	1. 72	270	. 80 _.	14	$\overline{52}$	12
80	HC042	300	< <u>1</u>	260	13	2. 49	220	170	$\overline{10}$	35	$\tilde{14}$
81	HC043	100	<1	40	8		140	80	6	7	14
82	HC044		<1	200	13	2. 27	275	190	10	25	20
83	HC045		<1	120	8	1. 72	110	90	2	7	24
84	HC046		< <u>1</u>	100	10	1. 85	190	130	10	13	20
85	HC047		<1 ✓	190	10	1. 78	200	80	14	22	$\frac{20}{20}$
86	HC048	1,3	<1	180	7:	1. 67	135	90	8	10	16
87	HC049		<1	230	11	2.63	590	190	· 8	$\overset{1}{2}\overset{\circ}{2}$	14
88	HC051		<1	140	<1	0. 24	10	60	4	$1\overline{3}$	<2
89	HC052		2	10	1	0. 12	10	40	<2	2	⟨2
90	HC053		<1	10	1	0. 23	20	40	4	5	2
91	HC054		<1	40	ī	0.49	285	70	4	10	4
92	HC055	2	5	310	19	4. 46	1170	270	20	69	$4\overset{3}{2}$
93	HC056		38	720	19	7. 07	2560	500	48	92	140
94	HC057		94	2160	26	6. 81	3210	830	108	169	396
. 95	HC058	·	17	4400	27	11. 95	7300	1450	216	241	532
96	HC059	. `	17	4510	30	10.85	6700	1580	214	266	520
97	HD001		<1	710	9	2. 03	335	170	18	82	32
98	HD002	1 1	1	340	10.	2. 03		170	18	76	20
	HD003	*	۲Ì	360	8	1.89	640	200	16	48	14
100	HD004		ΚÎ	210	12	1.82	480	220	22	72	20
101	HD005		<1	310	8	1. 20	570	90	16	45	14
102	HD006		2	490	9:	1. 99	885	260	20	65	22
103	HD007		<1	140	5	1. 29	425	140	12	39	12
103	HD008		8	810	19	9 57	2090	470	24	110	60
105			12	960	20	2. 57 4. 51	2380	510	34	100	
106	HD010		16	620	15	4. 77	2070	410	34 46	84	122
107	HD010		10	420	15.	5. 07	1645	310	38	64 53	88 54
108	IID011		21	2660	21		3270	750			54
T00	שוטעונ		41	4000	41	0. 10	0410	100	<u>78</u>	<u>154</u>	186

1.141.57	MII JOMD	V 111	MATTER STATE OF THE STATE OF TH									عملت عالما		
Ser.	Sample No.		ppm Nb	y Ppm	Ce ppm	Eu ppm	La ppm	Lu ppm	Nd ppm	Sm ppm	Tb ppm	Th ppm	U ppm	Yb ppm
55	HC017		43	44	104.0	0. 50	51.0	0.80	30	6.70	1. 20	16.0	5.0	4. 70
56	HC018		84	43	136. 0	2.00	64. 0	0.70	30	8.00	0.80	14. 0	5.0	4. 80
57	HC019		36	30	64.0	1.00	27. 0	0.70	15	4. 10	0.90	11. Ő	4.0	3. 90
58	HC020		39	49	116.0	1.50	55. 0	0.80	30	7.60	0.50	16.0	6.0	5. 40
59	HC021		55	42	114. 0	1.50	57. 0	0.80	35	7. 10	1.00	12. 0	6.0	5, 00
60	HC022		35	36	88. 0	1.00	42.0	0.80	25	4. 80	0.50	14. 0	5. 0	4. 80
61	HC023		32	38	84.0	1. 50	41.0	0.70		5. 50	1.50	13. 0	4.0	4. 40
62	HC024		34	43	110.0	1. 30	49. 0	0. 70	35	7. 50	0.80	15. 0	5.0	4. 40
63	HC025		39	43	122. 0	2. 30		0.80	45	8.60	1.40	15. 0	4. 0	5. 10
64	HC026	٠	43	40	128. 0	1.80	55.0	0.80		6. 50	1. 20	15. 0	5. 0	5. 00
65	HC027		40	37		1. 80	60.0	0.70		8.00	1. 20	17. 0	4.0	4. 50
66	HC028	1	49	41		2. 10	74.0	0.80	55	9.80	1.00	24. 0	4.0	5. 20
67	HC029		55	50	160.0	2. 80	84. 0	0.80	60	12.00	1.50	24. 0	4.0	5. 10
68	HC030		42	37	118. 0		55. 0	0.80	45		1. 20	24. 0	5.0	4. 90
69	HC031		$5\overline{2}$	51			93. 0	1.00	80	12.30	1.40	31.0	7. 0	6. 40
70	HC032		45	38	154.0		64.0	0.70	50	8. 70	1.00	23. 0	4.0	4. 60
71	HC033		44	41	168. 0	1.00	72. 0	0.80	60	9.40	1.40	30.0	5. 0	5. 20
72	HC034		106	55	202. 0	2. 50		0.80	90	13.80	1.30	26. 0	6.0	5. 00
73	HC035		26	39	122.0	1.50		0.70	50	8.10	0.90	18.0	4.0	4, 40
74	HC036		36	49	152. 0	2.00		0.90	55	10.00	0.80	24. 0	6.0	5. 90
75	HC037	٠.	32	41	144. 0	1.50	62. 0	0.80	50	9. 10	1. 20	22. 0	4.0	4. 90
76	HC038		27	28	90.0	0.50		0.70	30	6.30	0.50	13. 0	3.0	4. 10
77	HC039	14.3	27	29	88.0		40.0	0.70	35	7.00	0.80	14. 0	4.0	3. 80
78	HC040		23	28	76. 0		38. 0	0.80	30	6.60	0.70	12. 0	4. 0	4. 60
79	HC041		35	33	84.0	1.50	53. 0	0.60	50	8.80	0.80	13. 0	3. 0	3. 70
80	HC042	1.0	25	31	110.0	1.50	45. 0	0.50	40	8. 20	0.50	13. 0	3. 0	3. 40
81	HC043	,	26	32	80.0	1.00	39.0	0.70	30	5. 90	1,50	16. 0	5.0	4. 10
82	HC044		$\tilde{25}$	38	82. 0	0.50	46.0	0.70	35	8. 40	0.50	16. 0	4.0	3. 90
83	HC045	٠.	$\frac{1}{20}$	27	82. 0	0.50	39.0	0.60	35	6.40	0.30	15. 0	3.0	3.70
84	IICO46		23	27	66.0	0.50	27.0		20	4.80	0.50	12.0	4.0	3. 20
85	HC047		25	27	80.0	1.00	37.0	0.50	30	6.40	0.50	12.0	4.0	3. 10
86	HC048	:	24	36	68. 0	1.50	44.0	0.60	35	7.30	0.70	15.0		3.80
87	HC049		32	42	134.0	2.00	61.0	0.70	55	11.00	3.00	18.0	3.0	4.60
88	HC051		38	25	78.0	0.50	35.0	0.70	30	4.80	0.30	14. 0	4.0	4.60
89	HC052		45	21		0.50	24.0	0.80	20	4.00	0.30	11.0	5.0	5. 30
90	HC053		55	25	76.0	0.50	34.0	1.00	30	5. 30	0.50	16.0	6.0	6.00
91	HC054		77	25	124.0	1.00	56.0	0.80	25	5. 40	0.90	22. 0	5.0	5. 30
92	HC055	. :	147	- 88	274. 0	4.00	210.0	1.30	125	19.00	2.30	73.0	5.0	8, 80
93	HC056	:	444	280	784.0		769.0	2.60	285	60.30	6.90	231.0	6.0	20. 20
94	HC057		496		1108.0	27.00	894.0	3.30		83. 10	10.90	264. 0	4.0	25. 20
95	HC058		1075		2874	47.00		4.30		174.90	13.10	405.0	3.0	34.60
96	HC059	÷.	1060		3310	54.50		5.30	1140	187.90		413. 0	9.0	40.30
97	HD001		125	69	230.0		146.0	0.90	95	18.00	1.60	22. 0	4.0	6.00
98	HD002		53	53	126.0	2.50	75.0	0.80	50	9.50	1.40	16.0	2.0	5. 50
99	HD003	:	77	46		1.50		0.80	50	9. 70	1.40	16.0	4.0	4. 90
100	HD004	• •	97	40		2.00	97.0	0.80		9.80	1.60	16.0		4. 70
101	HD005	٠.	61	35			71.0	0.70	35	7. 70	0.60	13.0	3.0	4, 20
102	HD006		$7\tilde{2}$	51	154.0	1.50	85. 0	0.90	45	8.70	2.10	26. 0	5.0	5. 70
103	HD007		67	46	176.0	1. 50	90.0	1.30	50	9.50	1. 20	29. 0	7. Ŏ	7. 60
104	HD008		160	93	236. 0	5.00	227. 0	1.40	105	20, 80	2. 00	64. 0	6. Ö	9. 10
105	HD009		353	185		13.50		1.90	250	47. 10	4.10	125. 0	4.0	13.50
106	HD010		369	200	714. 0	16.00	666. 0	2.00	285	44.60	5. 40	191. 0	6.0	15. 40
107	HD011		284	140	512.0	9.00	542.0	1.50	220	32. 40	4. 40	128. 0	4.0	10. 80
108	HD012		491	240	1072. 0	14.00	838. 0	2. 10	335	54. 30	7.00	217. 0	3.0	15. 20
TAN	200 VIU	-	10 L	~	1 V	~ 4. 00	22070			~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V		-0. 40

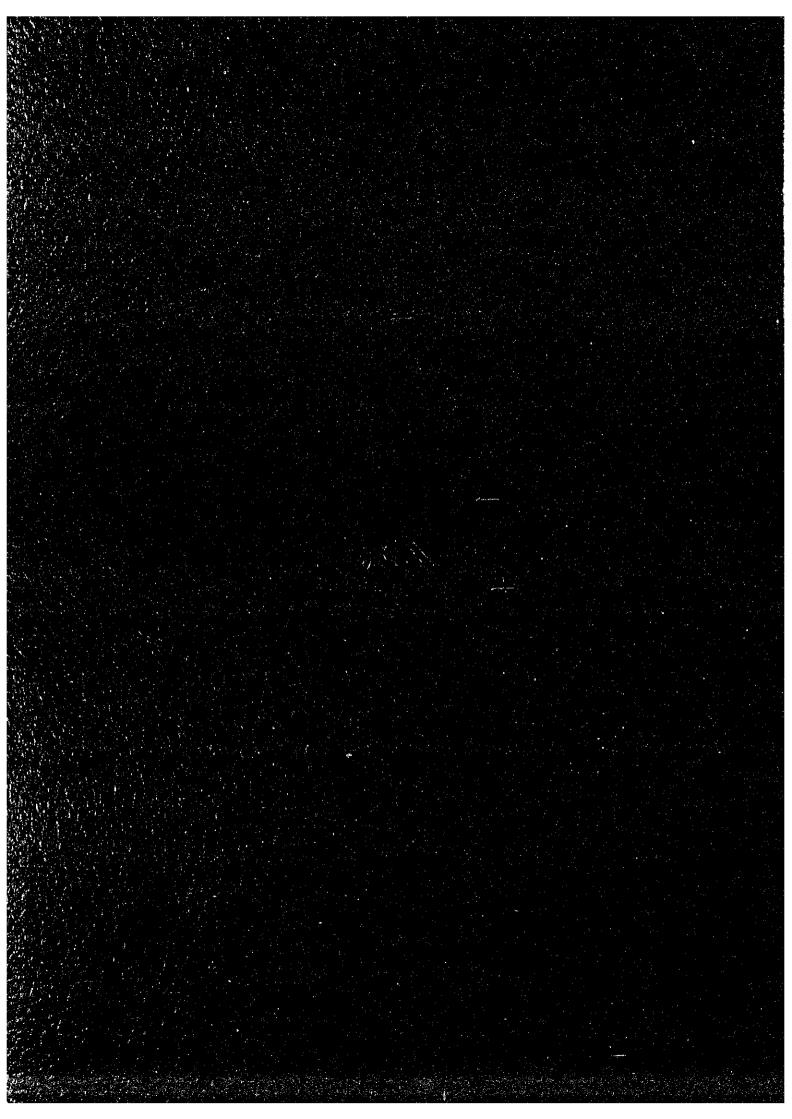
MRINA-JONBO AREA

Ser. No.	Sample No.	Au ppb	Ba ppm	Cu ppm	Fe %	ppm ppm	P. ppm	Pb ppm	Sr ppm	Zn ppm
109	HD013	7	340	12	3. 22	915	300	20	68	36
110	HD014	<1	250	13	3.06	805	290	16	63	48
111	HD015	<1	150	7	1, 64	820	210	22	46	32
112	HD016	<1	130	-9	1.14	610	160	82	39	52
113	HD017	<1	160	13	2. 47	615	210	68	42	70
114	HD018	<1	150	9 .	2. 18	760	230	10	42	26
115	HD019	<1	70	4	1. 17	510	110	6	26	8
116	HD020	<1	140	13	4. 16	485	300	4	60	24
117	HD022	<1	340	10	2, 47	1285	380	18	80	42
	HD023	1	240	9	2.30	1050	300	18	63	34
119	HD024	9	1040	17	6. 09	2890	990	58	307	230
120	HD025	9	1350	36	3. 34	1835	3830	28	760	292
121	HD026	6	750	10	4. 13	2460	470	30	100	150
122	HD027		>10000	36	12.65	9800	9720	170	2590	2940
123	HD028	20	2460	26	8. 69	4540	1690	66	501	666
124	HD029	13	1980	24	7. 21	3790	1380	56	309	358
125	HD030	3	560	16	2.99	1290	620	32	120	94
126	HD031	2	430	15	1, 85	1285	380	18	101	48
127 128	HD032 HD033	<1 <1	170 160	- 8 - 5	1.44	710	160	16	36	14
129	HD034	<1	240	12	1.47	400	200	12	33	10
130	HD035	<1	240 240	15	2. 01 2. 71	800 790	290	. 10	36	18
131	HD036	<1	450	16	2. 79	1735	410 260	22	60	26
132	HD037	\(\frac{1}{4}\)	260	6	1. 31	930	240	18 16	53	36
133	IID038	<1	200	9	1. 64	1070	280	6	47 31	16 22
134	HD039	⟨1	150	A	1. 45	540	220	16	31 22	14
	IID040	<1	200	5	1. 11	675	140	8	25	12
136	HD041	<1	60	2	0.74	455	80	4	10	4
137	HD042	<1	100	- 4	0.91	505	120	8	13	8
138	HD043	< 1	60	2	0. 45	295	- 80	4	. 8	4
139	HD044	<1	70	$\bar{2}$	0.36	135	- 90	6	11	4
140	HD045	<1	120	8	1, 47	610	200	10	20	16
141	HD046	<1	140	ě	1.34	640	130	10	$\frac{20}{29}$	12
142	HD047	<1	$\tilde{1}40$	4	1. 10	670	130	18	11	10
143		<1	330	2	0.85	215	70	$\overline{12}$	95	6
	HE001	<1	70	2	0.68	80	110	2	9	6
	HE002	<1	. 110	. 4	0.76	325	100	$1\overline{2}$	13	8
	HE003	<1	80	3	1.12	70		4	9	8
	REOO4	<1	160	6.	1.65	195	180	2	21	10
148	HE005	<1	240	9	2. 19		170	8	36	14
149	HE006	<1	170	6 :	1.43	135	90	4	22	8
150	HE007	<1	340	. 9	2.02		50	6	82	18
151	HE008	<1	210	8	2, 33	315	340	6	43	22
152	HE009	<1	200	7	1.45	630	130	4.0	37	16
153	HE010	<1	420		2.60	405	100	12	102	28
154	HEO11		270	51	9. 23	1540	1600	. 4	145	58
155	HE012	<1	310	43	8. 28	1610	1700	10	143	64
	HE013		840	83	8.38	2000	2930	8	244	108
157	HE014	_	450	76	11.00	1515	4000	2	134	92
	HE015	<1	370	61	8. 53	1930	1820	10	129	72
	HE016	1	190	28	5. 33	665	480	. 8	99	- 26
	HE017	3	920	174	12.00	2400	5710	4	636	90
161	HE018	4	760		11. 30	2270	2850	8	201	118
<u>162</u>	HE019	2	710	82	9. 57	1980	1470	. 2	158	70

THILL!	MA-JUMDU	'AN	ንለক		·	ومدرو مستنسمين								
	Sample	*	Nb	Y		Eu	La	Lu	Nd	Sm	Tb	Th	u U	Yb
No.	No.		ppm	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppa
109	HD013		126	71	266.0	4.50	266.0	1.00	115	15.50	2.10	64.0	6.0	7.10
110	HD014		65	60	254.0	2. 50	121.0	0.90	65	11.90	1. 20	35.0	6.0	5. 90
111	HD015		49	55	192. 0	2, 50		1.20	65	8.70	1.30	26.0	7.0	8, 00
112	HD016		42	45	150.0	2.00	65.0	1.00	45	7.40	1.50	19.0	6.0	6. 50
113	HD017		45	50	214. 0		103. 0	1.00	70		1. 40	26.0	6.0	6. 50
114	HD018		41	50	226. 0	2.00	89.0	1.00	75	11.40	1.80	34.0	7.0	6.80
115	HD019		43	43	190.0		77. 0	1,00	55	9.80	1.00	31.0	7.0	6. 20
116	HD020		46	33	132, 0	0.50	64.0	0.80	40		1.10	28.0	5.0	4.30
117	HD022		225	84	238. 0	7.00		1.10	170	26.60	1.60	35.0	5.0	7. 20
118	HD023		218	80	222.0		252.0	1.00	155	23.90	1.50	32.0	3.0	6. 20
119	HD024	•	727	270	1120. 0 300. 0		1240. 0 373. 0	2.80 1.10	650 205	98. 50 36. 20	6. 40 2. 70	92. 0 58. 0	6. 0 4. 0	16. 30 7. 40
120 121	HD025 HD026		301 284	100 115	380.0	9. 50	460.0	1. 10	203	40.00	3.00	79.0	2.0	7. 40
122	HD020		2600	880		93. 50		3. 30		433. 4		158.0	14.0	29. 70
123	TIDAGA		804	320	1546, 0		1574.0	2, 40		121. 50	7.00	149.0	8.0	16. 50
124	HD029		547	250	836. 0		794. 0	2. 30	410		5. 40	104. 0	7.0	15. 10
125	HD030		217	97	244. 0	8.00	268. Ö	1.10	160	25.30	2. 70	47.0	3. ŏ	8. 00
126	HD031		174	82	170. ŏ	5. 00	170.0	1.10	110	16. 90	1. 50	33. ŏ	6. ŏ	7. 70
127	HD032	4	54	43	106.0	2.00		0.80	40	7.10	1.40	15.0	6.0	5.30
128	HD033		32	34	90.0	1.00	39. 0	0.50	30	5.70	0.40	13.0	3.0	3.60
129	HD034		42	43	110.0	1, 50		0.70	40	6.60	0.70	15.0	6.0	4.80
130	HD035		54	43	126.0	2.00	55.0	0.70	50	8.10	1.40	16.0	6.0	4. 90
131	HD036		74	54	158, 0	3.00	78.0	0.90	75	13.00	1.00	18.0	6.0	6. 10
132	HD037		39	44	140.0	1.50	56.0	0.80	45	8, 90	1, 20	17.0	6.0	5, 70
133	HD038	:	39	48	144.0	1. 50	59.0	0.80	55	9.20	2. 90	18. 0	6.0	5. 30
134	HD039		25	38	114.0	1.50	41.0		35	6.50	1.30	14.0	5.0	4. 70
135	HD040		24	43	92. 0	1.00	41.0	0.90	30	6.00	1.00	13. 0	6.0	5. 10
136	HD041		25	28	60.0	0. 50	22.0	0.70	15	3.00	0.40	9.0	4.0	3.60
137	HD042		28	37	90.0	1. 50	41.0	0.90	30	5.80	1, 50	14.0	6.0	4. 90
138	HD043		21	23	42.0	<0.05	18.0	0.60	15	2. 20	0.10	7.0	4.0	3. 40
139	HD044		19	23	36.0	<0.05	17.0	0.60	10	1.90	<0.05	7.0	3.0	3. 20
140	HD045		28	31 25	80.0	0.50	36.0	0.80	25°	4.60	0.60	12.0	5.0	4, 40
141	HD046		30 27	35 43	78. 0 134. 0	1.00 1.50	41. 0 68. 0	0.80 0.90	25 50	5, 20 9, 00	0. 40 0. 50	15. 0 20. 0	6. 0 5. 0	4, 60 5, 10
142 143	HD047 HD048		26	36	104.0	1.50	55. 0	0. 60	35	7.30	0.70	16.0	4.0	4.00
143	HEOO1		24	19	40.0	0.50	17. 0	0.50	20	2.60	0. 30	10.0	5.0	3, 10
145	HEOD2		29	26	60.0	0.50		0.50	20	3. 60	0.30	11.0	4.0	3. 20
146	HE003		25 25	24	46. 0	0. 50	18.0	0.40	10	2. 40	0. 20	10. 0	3.0	2. 20
147	HE004		36	30	72. 0	1.00	33.0	0.50	25	5. 10	1.60	12. 0	3.0	3. 10
148	HE005		35	35	76. 0	1.00	39. 0	0.50	25		0.30	10.0	3.0	3. 00
149	HE006		26	27	68.0	0.50	28.0	0.50	20	4.40	0.40	10.0	3.0	3.00
150	HE007		34	51	114.0	2.00	62.0	0.60	50	10.60	0.90	18.0	4.0	4.00
151	HE008		37	32	100.0	1.00	40.0	0.50	35	5.70	1. 20	15.0	4.0	3.40
152	HE009		35	36	90.0	1.00	41.0	0.50	40	7. 20	0.50	13.0	3.0	3.40
153	HE010		54	44	126.0	2.00	60.0	0.50	45	10.60	1. 20	17.0	4.0	3.80
154	HE011		105	50	266. 0	6.00	109, 0	0.60		19.80	2.70	14.0	1.0	3.90
155	HE012		125	50	244.0			0.60	85		2. 10	13.0	2.0	4. 10
156	HE013		163	61	300.0	5.00		0.60		19.90	2. 10	18.0	3.0	4. 10
157	HE014		127	63	338. 0	6.00	139.0	0.70	120	26. 10	2. 40	13.0	1.0	5. 20
158	HE015		87	41	242. 0	5.00	83.0	0.40	75		1.80	12.0	1.0	3. 30
159	HE016		76	46	176.0	4.00	92.0	0.70	65	13.00	1. 30	21.0	3.0	4. 50
160	HE017		165	79	446.0		195.0	0.60	150	32.60	4. 50	17.0	2.0	4.60
161	HE018		161	75	326. 0	5, 50	156.0	0.80	120	23.00	2.60	17.0	2.0	4. 90
<u> 162</u>	HE019		154	67	244.0	<u>5. 50</u>	<u>128. 0</u>	0.70	85	17.50	<u>1.40</u>	<u>16. 0</u>	3.0	<u>4. 30</u>

MRIMA-JOMBO AREA

Can	Comple	<u>.</u>	D.	٠	E-	V.	D	n.	O.,	7
Ser. No.	Sample No.	Au ppb	Ba ppm	Cu ppm	Fe %	Mn ppm	P mqq	Pb ppm	Sr ppm	Zn ppm
		PPO	ppm	Ppm		РРЩ	Ppu Ppu	Ppm	PP	Phu
163	HE020	4	980	108	10.25	2710	2580	6	220	132
164	HE021	3	530	96	10.85	2180	1570	4	159	88
165	HE022	3	580	81	12.30	2340	3240	14	157	116
166	HE023	<1	890	95	13. 10	2220	5670	14	236	104
167	HE024	1	700	112	14.00	1970	4270	2	213	116
168	HE025	<1	160	15	3. 20	595	420	16	44	22
169	HE026	2	670	57	9.61	1535	3510	12	217	92
170	HE027	<1	580	18	4, 93	1375	210	20	36	18
171 172	HE028 HE029	<1 <1	520 300	20 22	2. 51 1. 89	1240 1000	970 290	16	141	46 38
173	HE030	4	1320	28	4. 18	1145	1110	12 22	$\begin{array}{c} 66 \\ 202 \end{array}$	40
174	HE031	5	1180	17	9. 02	2810	1450	38	466	200
175	HE032	3	1160	17	8. 88	2770	1460	34	461	198
176	HE033	6	1180	21	7. 04	2310	1280	34	351	174
177	HE034	7	2220	29	9. 25	3390	2600	46	770	344
178	HE035	8	1740	30	8.03		2100	46	554	380
179	HE036	4	2110	27	6.68	2670	2200	64	614	468
180	HE037	$\dot{3}$	670	13	2. 18	1220	450	18	93	38
181	HE038	4	380	15	3. 12	1055	420	16	118	34
182	HE039	5	1830	31	3. 71	915	1280	26	223	62
183	HE040	1	1450	23	4.02	1525	1070	38	240	60
	HE041	4	1660	83	11.65	2290	2940	28	584	170
185	HE042	3	1580	54	5.86	1770	2570	20	331	130
186	HE043	2	980	30	3.63	1715	1030	26	236	134
187	HE044	3	1550	19	3. 24	1730	1080	54	218	100
188	HE045	2	1140	24	4. 36	2060	1090	62	209	94
189	HE046	<1.	910	14	3. 23	1045	710	38	152	52
190	HE047	<1	290	7	1. 25	525	360	10	74	20
191	HE048	<1	310	. 8	2.04	780	260	12	50	22
192	HE049	<1	590	15	2. 24	710	390	10	81	34
193	HE050	<1	170	8	1. 91	635	360	16	45	22
194	HE051	<1	200	12	2. 62	820	340	8	53	34
195	HF001	- 6	1240	17	6. 76	4370	830	38	241	190
196	HF002	9	1540	24	9. 25	3960	1330	48	375	386
197	HF003		3760 3060	31	8.30	4290	2460	56	557	406
198 199	HF004 HF005	12 9	4160	21 28	8. 98 6. 12	5320 4560	1800 9680	72 50	383 998	534 782
	HF006	19	9300	36	11. 85	8480	8690	130	1340	2140
201	HF007		>10000	47	13. 15		>10000	148	3390	1530
202	HF008	14	3450		8. 04	5500	2250	70	573	532
	HF009	12	1880	27	10. 15	6320	1490	70	421	966
204	HF010	13	3720	23	10.40	5950	1400	74	433	688
	HF011	8	3500	23	6. 78	5020	1700	54	906	1180
206	HF012		1940	20		4250	1010	46	300	602
	HF013	. · · · · · · · · · · · · · · · · · · ·	1270	20		2930	730	38	194	376
	HF014	6	1540	14	5. 33	3510	1400	40	306	292
209	HF015	2	430	9	1. 74	980	310	20	87	42
	HF016	: 3	290	12	2.87	685	400	18	66	34
211	HF017	\triangleleft 1	480	10	1.38	1095	970	12	194	36
212		<1	280	5	1.43	1250	280	10	41	24
213	HF019	<1	400	5	0.96	565	350	14	59	18
214	HF020	1	230	10	2. 36	775	340	. 14	42	20
215	HF021	<1	160	9	1. 25	620	260	14	47	18
<u>216</u>	HF022	1_	470	19	3.31	1470	310	14	140	36


ተጠቢ ፤	MA"JUMDU	inn	<u></u>									O. E. Konton D. O. Konton D.		
Ser. No.	Sample No.		Nb ppm	Y ppm	Ce ppm	Eu ppm	La ppm	Lu ppm	Nd ppm	Sm ppm	Tb ppm	Th ppm	U ppm	Yb ppm
163	HE020		172	90	262.0	6.00	138. 0	0.90	100	21.00	2.50	16.0	2.0	6. 50
164	HE021		169	73	270. 0		153.0	0.70	125	21. 50	2. 20	16. 0	2.0	4. 50
165	HE022	:	188	85	390.0		199.0	0.90	165	31.80	3. 20	22.0	3. 0	6.40
166	HE023	4	177	89	530.0	11.00	217. 0	0.90	195	36.60	3.80	18.0	2.0	6.30
167	HE024		163	75	398.0	8.00		1.00	175	32.40	3.30	18.0	2.0	5. 50
168	HE025	1	55	44	142.0	2, 00	69.0	0.70	50		0.60	21.0	5.0	4. 20
169	HE026		120	62	296.0	6.50	144.0	0.70	135	25.20	2. 50	16.0	2.0	4.50
170	HE027	÷	49	38	278.0	1.00	67.0	0.70	50		0.90	24. 0	6.0	4, 70
171			97	51	174.0	2. 50		0.80	65	11. 20	1. 30	24. 0	6.0	5. 60
172	HE029		92	52	138.0		84.0	0.90	60	10.30	1.30	28. 0	6.0	6.30
173	HE030		137	55			141.0	0.80		15. 30	1. 10	28. 0	5.0	5, 00
174	HE031		1825	330			1334. 0	2.40		140. 40	7. 40	103. 0	8.0	18. 50
175	HE032		736	195	674.0	14.00	584. 0	1.80	310		4.50	66.0	6.0	11.80
176	HE033		1075	290		22. 50	880.0	2. 20		96. 10	5.80	99. 0 68. 0	11. 0 7. 0	17. 00 13. 60
177 178	HE034 HE035		740 843	240 290		14.00	756. 0 1050. 0	2.00 2.00		67. 20 88. 20	4. 60 5. 30	58. 0	12. 0	14.90
179	HE036		315	130			394. 0	1.40		33.00	2. 80	44.0	5.0	8. 60
180	HE037	4	109	54	134.0	2. 50	103. 0	0.70		10.40	1.00	19.0	4.0	4. 90
181	HE038		138	61	140. 0	1. 50	136. 0	0.90		14. 50	1. 90	25. 0	5. 0	
182	HE039		169	64	208. 0	5. 00		0.70		17. 70	1. 30	26.0	5.0	5. 40
183	HE040		147	65	370.0	3.50		0.70		18. 20	1.80	35. 0	6.0	5. 10
184	HE041	4	389	99		10.50	400.0	1.00	250		3. 70	27. 0	6.0	7. 40
185	HE042		243	86	366.0	5. 50	251.0	1.10	135		2. 20	34.0	5.0	6. 90
186	HE043	· .	206	85	370.0	4.50		1.10	115	20.50	1.80	33.0	4.0	7.10
187	HE044	:	144	78	294.0	5.00	199.0	.0.90	105	22,00	1.60	34.0	3.0	5. 90
188	HE045		126	63	396.0	5.00	182.0	0.80	95	17.90	2.40	29.0	4.0	5.00
189	HE046		90	51	190.0	2.00	96.0	0.80	55	10.90	0.70	19.0	5.0	4.60
190	HE047		53	40		1.00	46.0	0.70	35	7. 50	0.50	14.0	4.0	3. 90
191	HE048		50	47	128.0	1.50	58. 0	0.90	45		0.80	14.0	5.0	5. 10
192	HE049		68	46	184.0	2.50	90.0	0.70	45	10. 20	1.00	18. 0	4.0	4. 60
193	HE050		37	39	112.0	1.00	56. 0	0.60	35		0. 70	14.0	4.0	4. 40
194	HE051		39	42	126.0	2.00	55.0	0.60	35	7.60	1.00	13.0	4.0	4. 70
195	HF001		1110 1400		1270. 0 1310. 0	21.00	865. 0 1358. 0	1. 40 2. 90	475	99.50 144.10	7.00	70. 0 92. 0	5. 0 5. 0	12.80
$\frac{196}{197}$	HF002 HF003		1135		1340.0	18. 50		2. 10		116.60	7. 90 8. 10	107. 0	6.0	17. 90 18. 20
198	HF004		1520		1790.0			3. 50		173. 20		169.0		25. 90
199	HF005		847		1190.0		715. 0	1.90		90.40		121.0		15. 50
200	HF006		1905		5204	55.00		4. 40		317.1	10.60	227. 0	8.0	29. 70
201	HF007		2020		4864	74.00		3. 70		308. 3		277. 0	16.0	33, 30
202	HF008		800		1858.0		1440.0	2.40		122. 20		132.0	7.0	17. 20
203	HF009		1015		2874	51.00		2.30		223.9		155.0	1.0	20.30
204	HF010		1345		2914	77.00		4, 70		261.7		173.0	4.0	25.30
205	HF011		805	330	1980.0	32.00	1380.0	2.40	870	125.40	7.90	80.0	6.0	17.00
206	HF012		685	210	1310.0		1000.0	1.40		90.50	6. 10	69.0	5.0	11. 30
207	HF013		570	210	822.0		784. 0	1.90		71.70	5, 40	96.0		12. 40
208	HF014		666		1124.0		926. 0	2. 30		99.10	7. 70	89.0	5.0	17. 70
209	HF015		133	80	154.0		163.0	1.00	405	17.50	2.00	30.0	4.0	6.50
	HF016		164	81	192.0	5. 50		1.00	140		2. 30	37. 0	3.0	6. 50
211	HF017		113	57 50	118.0		126. 0	0.90	75		1.50	19.0	4.0	5. 50
212	HF018		138	56	140.0		141.0		80	14.00	1.60	23.0	4.0	5. 40
	HF019		63 58	32 41	108.0	2. 00 2. 00	60. 0 67. 0		50 55	7. 10 9. 90	0.90	16. 0	4.0	3.80
$\begin{array}{c} 214 \\ 215 \end{array}$	HF020 HF021	-	58	41 32	124. 0 106. 0	2.00	60.0		40	9. 90 7. 70	0.80 0.70	20. 0 17. 0	6. 0 3. 0	5. 10
216	HF022		91	3 <i>6</i> 48	178.0	2. 50	100. 0		70	13.40	0. 10	24. 0	4.0	3. 80 3. 80
410	.11 V <i>UU</i>		UJ.	70	110, U	51. 00	7000	V+ UV	10	10, 70	V: UU	41. V		0.00

MRIMA-JONBO AREA

Ser.	Sample No.		Au ppb	Ba ppm	Cu ppm	Fe %	ppm Nn	P ppm	Pb ppm	Sr ppm	Zn ppm
217	HF023		<1	190	9	2. 00	665	150	10	84	20
218	HF024		<1	90	12	2. 13	500	300	12	24	20
219	HF025		3	440	59	8, 88	1275	960	10	82	66
220	HF026		1	80	9.	2. 58	410	270	2	23	14
221	HF027		<1	260	6	1,60	870	290	8	45	34
222	HF028	-	<1	130	9 -	2. 10	740	320	8	30	14
223	HF029		. 1	520	11	2.41	740	500	18	91	52
224	HF030	1.1	<1	110	4	0. 79	310	150	8	23	8
225	HF031		<1	370	13	1. 78	470	280	10	47	20
226	HF032		<1	140	7	1. 21	510	260	4	33	22
227	HF033	100	<1	310	13	1.67	255	220	6	27	14
228	HF034		<1	170	8	-1.29	230	70	6	34	10
229	HF035	1.	<1	140	7	1.36	60	70	6	19	8
230	HF036		<1	190	12	1.89	160	110	12	31	18
231	HF037	7.	<1	190	11	1.87	210	140	6	33	14
232	HF038	:	<1	260	10	1. 78	150	170	4	41	14
233	HF039		3	130	5	1.44	115	120	6	17	10
234	HF040		<1	170	10	1.42	395	260	4	22	14
235	HF041		<1.	190	11	1. 71	125	110	10	22	14
236	HF042	5.00	<1	290	7	1.54	255	210	12	22	20
237	HF043	1000	<1	220	10	2.57	255	120	20	20	16
238	HF044		<1	150	6°	1.73	90	60	8	15	16
239	HF045	2.5	<1	120	6	1. 20	125	260	6	23	18
240	HF046		<1	230	10	2, 27	365	260	10	22	20
241	HF047	1	<1	170	8	1.85	120	110	2	18	12
242	HF048		<1	220	9	2.01	205	190	8	30	24
243	HF049		<1	250	20	2.97	615	310	4	56	24
244	HF050		<1	320	35	9.06	1425	1270	14	90	72
245	HF051		<1	360	39	9.01	1090	1120	. 8	70	60
246	HF052		<1	390	60	10.70	1560	1990	10	91	64
247	HF053	4	<1	330	44	9.48	1140	1060	6	94	52
248	IIII001	1 1	1	190	25	5.37	680	520	16	50	- 22
249	HH002		<1	1140	28	4.04	1055	750	6	76	. 38
250	HH003		2	360	36	4. 10	800	650	8	50	32
251	HH004		<1	390	35	3.05	1100	530	6	49	26
252	HH005	s [10	2	990		12.00	1950	2780	8	300	96
253	HH006		4	720	147	11. 15	2200	3320	12	282	90
254	HH007	200	3	390	151	10.70	2130	3560	6	189	90
255	HH008	- 1	3	420	98	8. 69	2110	1770	: 8	146	84
256	нн009		2	820	78	9.85	1790	920	4	133	92
257	HH010	di t	3	390	45	8. 13	1495	620	$2\overline{0}$	96	66
258	HH011		4	210	$\widetilde{25}$	4. 38	790	410	10	49	32
259	HH012		3	280	23	2. 53	1560	140	<2	138	36
260	HH013		ΚĬ	400	15	2. 11	445	320	4	84	22
261	HH014		3	240	14	3. 49	625	180	. 12	84	26
262	HH015		<1	190	- 11	2, 36	1975	210	10	53	22

MRIMA-JOMBO AREA

Ser. No.	Sample No.		Nb ppm	Y ppm	Ce ppm	Eu ppm	La ppm	Lu ppm	Nd ppm		Tb ppm	Th ppm	U ngq	Yb ppm
217	HF023	Cancerto della a	64	37	126.0	2.00	70.0	0.60	55	9.80	0.80	20. 0	5.0	4. 10
218	HF024		45	46	124.0	1.50	65.0	0.80	45	8.80	1. 20	23. 0	6.0	5.00
219	HF025		143	66	274. 0	7.00	159.0	0.60	100	22.40	2. 10	21.0	4.0	4.60
220	HF026		44	38	118.0	2.00	62.0	0.70	55	8.60	0.80	20.0	5.0	4. 50
221	HF027	:	62	43	216.0	2.00	87.0	0.80	75	10.70	1. 20	27.0	4.0	5. 10
222	HF028		41	45	174.0	1.50	65.0	0.90	75	9, 50	1.10	23. 0	5.0	5. 50
223	HF029		104	72	352.0	4. 50	177.0	1.20		18.30	2. 40	36.0	7.0	7. 90
224	HF030		44	31	118.0	1.00	44.0	0.70	45	6. 40	1.40	18. 0	5.0	4. 30
225	HF031		48	43	170.0	1.50	77.0	0.70	70		1. 20	17.0	3.0	4. 50
226	HF032		43	35	136.0	1.50	50.0	0.70	60		1.30	14.0	4.0	4. 20
227	HF033		33	33	84.0	1.50	43.0	0.60	50	7. 10	1. 70	10.0	3.0	3.60
228	HF034		31	25	68. 0	1.00	34.0	0.50	35	5.30	0.60	10.0	2.0	3. 20
229	HF035		33	25	70.0	1.00	32.0	0.50	45	5.60	0.60	10.0	3.0	3. 40
230	HF036		40	26	74.0	1.00	40.0	0.70	25	5.30	1.00	10.0	4.0	3.60
231	HF037		34	27	68.0	1.00 1.00	39. 0 40. 0	0.70 0.80	30 25	6. 10 6. 00	0.60 1.10	12.0	4.0	3. 80 4. 30
232	HF038		32 26	32 33	70. 0 68. 0		32. 0	0.70	15	4. 70	0.50	15. 0 12. 0	5. 0 4. 0	4. 20 4. 20
233 234	HF039 HF040		26 31	ээ 37	92. 0	1.00	40.0	0. 10	25	6. 30	0. 60	15.0	5.0	4. 20
235	HF041	* -	$\frac{31}{27}$	30	74. 0	0.50	38.0	0.60	30	6. 40	0.60	10.0	3.0	3. 50
236	HF041		28	30	80.0	1.00	41.0	0.60	25	6.80	0.70	11.0	4. 0	3. 70
237	HF043	1.	25	36	132. 0	0.50	31.0	0, 80	20	4. 90	0. 70	14.0	6.0	4. 50
238	HF044	-	24	30	52. 0	0.50	26. 0	0.70	25	5. 40	0.60	13.0	4. 0	4. 10
239	HF045		18	21	40.0	<0.05	16.0	0.60	15	3. 00	0.40	9.0	4.0	3. 40
240	HF046	1	$\hat{30}$	34	102. 0	1.50	45. 0	0.50	40	7. 50	1, 20	15. 0	3. 0	3. 50
241	HF047		29	31	76. 0	1.00	35.0	0.60	35	7. 10	0. 90	11.0	4. 0	3. 30
242	HF048		27	30	122.0	1.00	42.0	0.60	35	7.00	1.60	14.0	4, 0	3. 70
243	HF049		49	42	136. 0	3.00	64. 0	0.70		10.90	1. 40	17. ŏ	3. Ŏ	3. 90
244	HF050		107	56	256.0	6.50	121.0	0.60	90	17.90	2.40	17.0		4.40
245	HF051		86	52	254.0	5.00	110.0	0.60	95	17.80	2. 10	12.0	1.0	3.70
246	HF052		104	55	228.0	6.50	121.0	0.70	105	18.30	3.40	12.0	2.0	4, 50
247	HF053		109	54	270.0	6, 00	127.0	0.60	100	19.30	1, 70	13.0	2.0	4.30
248	HH001		73	42	200.0	4.00	100.0	0.70	85	14.40	2.80	23.0	4.0	4.60
249	HH002		66	48	180.0	3.00	93.0	0.80	70	16. 10	1.60	23. 0	4.0	4.80
250	HH003	-	109	47	192.0	3.00		0.70	. 85	17.80	2.90	24.0	4.0	4. 40
251	ни004		96	54	218.0	4, 00	118.0	0.90		19.30	1.60	28.0	6.0	5.60
252	HH005	e.	236	110			296.0	0.90		43.70	3. 10	21.0	3.0	7. 10
253	HH006		198	94	396.0	9.00	231.0	0.90	155	34. 50	2. 90	20.0	5. 0	6.00
254	HH007		297	94	374.0	9.50		0.90		31. 50	3.00	19.0	6.0	6.00
255	800HH		301	87	268.0	7. 50	195.0	0.90	140	28. 20	3.00	18.0		6. 20
256	HH009		209	86	258.0	7.50	175.0	0.80	120		4, 60	18.0	4.0	5. 60
257	HH010		159	80	236.0	6.50	154.0	1.00	125	25. 10	2. 50	24. 0	4.0	6.40
258	HH011		90	54	148.0	2. 50	102.0	0.70	70	15.60	1. 20	21.0	4.0	4.60
259	HH012		71	32	154.0	3.50	78. 0	0.50		11.40	1.80	14.0	2.0	3. 30
260	НН013		36	33	82.0	1.50	42.0	0.50	30	7. 30	0.80	9.0	2.0	3. 70
261	HH014		63	37	122.0	2.50	60.0	0.50	50		1.00	20.0	3.0	3. 70
262	HH015		68	45	146.0	3.00	74.0	0.70	65	12.40	1.80	23.0	4.0	4.50

