Table 3.1.15 COALFIELDS-WISE, MODE-WISE COAL MOVEMENT

(Unit : million tons)

COALFIELD	RAIL	ROAD	MGR	OTHER	ATOT
MAKUM	0.73	0.22			0.9
RANIGANJ	17.72	3.72			21.4
MUGMA-SALANPUR	4.00	0.92			4.9
RAJMAIIAL		:	2.85		2.8
JHARIA	16.37	5.53			21.9
(MIDDLINGS)	1.40	17.		0.50	1.9
GIRIDIH	0.68	0.08			0.7
EAST BOKARO	3.44	0.63	0.16	0.93	5.1
(MIDDLINGS)	0.60	0.20		0.15	0.9
WEST BOKARO	0.70	0.69			1.3
RAMGARH	1.03		11.		1.0
(MIDDLINGS)	0.41	0.03			0.4
SOUTH KARANPURA	5.33	2.15			7.4
(MIDDLINGS)	0.60				0.6
NORTH KARANPURA	8.77	0.65	ati a a se a Proposition agrico		9.4
SINGRAULI	7.69	0.30	15.28	2.29	25.5
CENTRAL INDIA	12.50	2.49		0.50	15.4
KORBA	3.51	0.84	10.00	4.84	19.1
TALCHER	4.60	0.62	2.40	1.72	9.3
IB VALLEY	9.07	0.12			9.1
VARDHA VALLEY	8.26	2.93		1.78	12.9
PATHARKHERA		1.21	1	1.48	2.6
JMRER	1.48				1.4
KAMPTEE-SILEWARA		0.70	0.87	1.23	2.8
PENCH-KANHAN	2.42	0.60		. :	3.0
(MIDDLINGS)	0.14				0.1
					0.0
TOTAL CIL	108.30	24.40	31.56	14.77	179.0
(MIDDLINGS)	3.15	0.23	0.00	0.65	4.0
OOUBLE MOVEMENT	3.04				3.0
				1	

SOURCE: ANNUAL PLAN 1990-91, DEPARTMENT OF COAL

Table 3.1.16 COAL PRICE INCLUSIVE OF ALL ELEMENTS

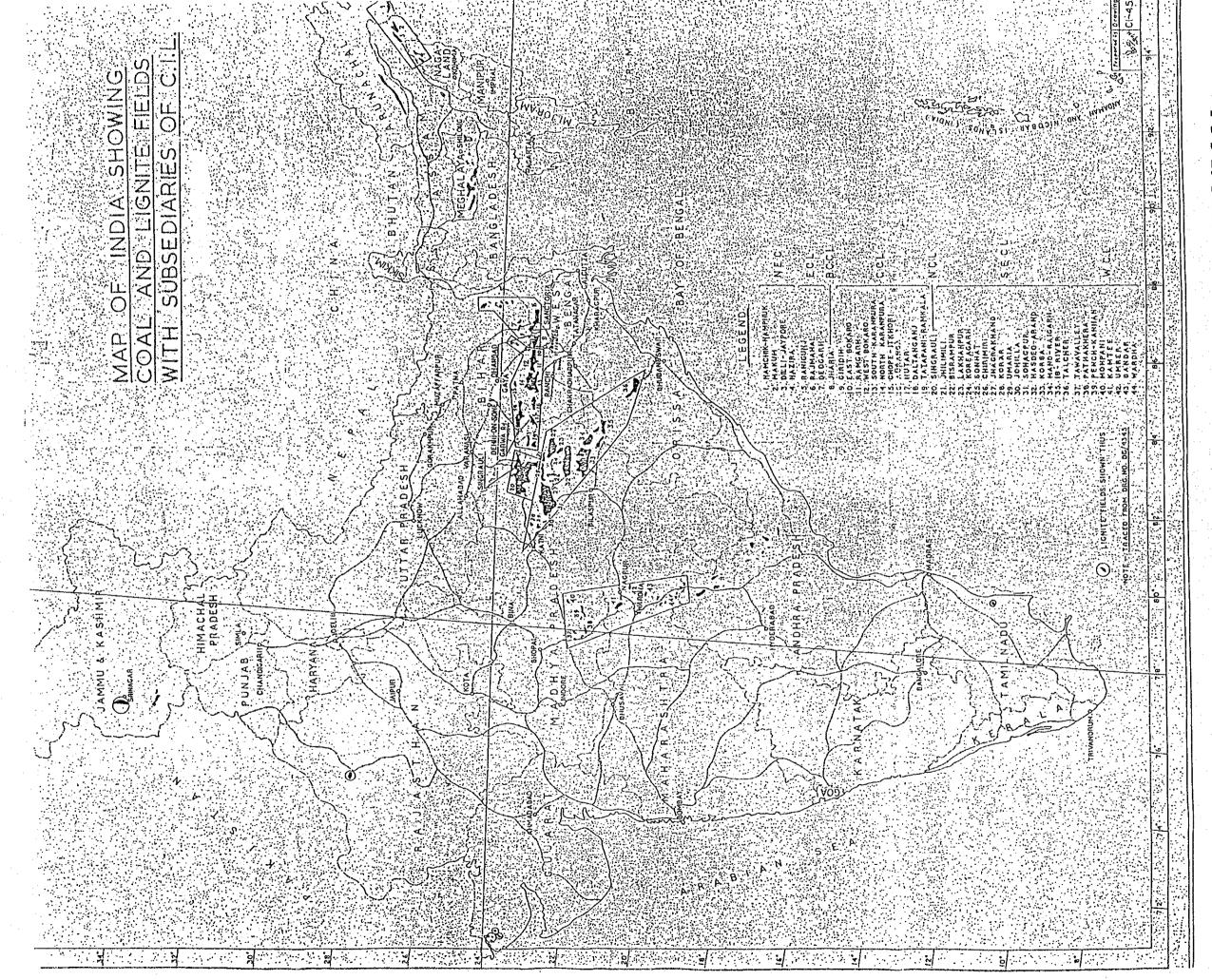
NOL	Sales within U.Pradesh	12% TAX		403.20	327.34	299.94	\r. 757					116.5	7.5.7.7	117.6				
NCL	Sales within M.Pradesh	12% Tex		416.61	481.85 442.65	388.61	204.09					120.4	119.9 120.8	121.1 122.2 124.8	125.2		:	
SBCL	Collieries in Orissa	4% TAX		474.76 438.36 386.36	448.76 412.36	360.38 286.73 237 85	183.56			523.38		111.8	111.6	112.3	112.6			707
SECL	Collieries in M.Pradesh	4% TAX		468.81 432.41 382.12	442.81 406.41	356.12 284.55 230.47	184.47			517.43 434.23		109.8 110.3	110.2	110.9	113.2			2.09.4
TOM	Collieries Collierie In Maharashtra M.Pradesh	4% TAX		455.16 418.76 369.77	429.16 392.76	343.77 273.76 219.68	176.02					106.6 106.8 106.9	106.8	107.1 107.4 108.2	108.0 109.6			
HCE.	Collieries in M.Pradesh	4% TAX		468.13 431.73 381.55	442.13 405.73	355.55 284.10 230.02	184.21			516.75 433.55		109.6 110.1 110.3	110.0 110.6	110.8 111.4 113.3	113.0			109.2
TOO	Sales within Bihar	12% TAX		680.74 625.86 552.61	641.54 586.66	513.41 408.58 327.04	262.30	1038.07 858.73 754.26	628.26 487.14 454.66			159.4 159.7 159.7	159.6	159.9 160.2 161.1	160.9 162.5	158.7 159.1 159.5 159.9	150.8	
Tode	Sales Within Bihar	7% TAX 8% TAX			4 .			995.85 1005.16 834.07 841.86 724.71 731.48	f	1]			152.3 153.7 152.8 154.2 153.2 154.6 153.8 155.2		
BCCL	Sales within West Bengal	7% TAX 8% TAX			£ 5	3		988.68 997.92 826.90 834.62 717.54 724.25		- (151.2 152.6 151.4 152.9 151.7 153.1 152.0 153.4		- ;
BCL	Sales Within Bihar	8% TAX 16% TAX		653.35 701.75 600.43 644.91 530.88 570.20 431.09 463.02	861.15 504.31	333.10	193.44					153.0 164.3 153.2 164.5 153.4 164.8 154.0 165.4		1.6				
<u>.</u>	Sales Within West Bengal	6% TAX 12% TAX		642.04 678.38 590.10 623.50 520.78 550.26 421.56 445.42	539.18 584.30	406.22 322.67	259.95 187.82					150.4 158.9 150.5 159.1 150.5 159.0 150.6 159.1	83 B3					
TOE	Sa Wi	1% TAX 6	Price	611.76 6 562.27 5 496.21 5 401.88 4								143.3 143.4 143.4 143.5			- 1			
		BASIC	ď	427.00 392.00 346.00 280.00	402.00 367.00	255.00 203.00	.63.00 117.00	654.00 I 546.00 473.00	II 393.00 III 303.00 IV 283.00	473.00	=	•				ا ا		
•		GRADE		LONGFLAME A NON-COKING B COAL C	OTHER THAN A LONGFLAME B	COAL B		COAL SG 1	1 98 1 98 1 98	SC-1 SC-1	f	LONGPLAME A B C	≪ æ	ပ ြာ များ၊	£ 5	200		1 58 58 1 50 58

Table 3.1.17 COAL PRICE AND COST OF PRODUCTION IN CIL

				(Unit : Rs/t)
	Cost of	Production	Average	Pit-head Price
1974-75		58.82	. :	44.73
1978-79		95.09	100	62.23
1979-80		110.04		101.18
1980-81		123.12		128.02
1984-85		190.63		183.00
1985-86		213.63	1 1	210.00
1986-87		221,54	F - 1	210.00
1987-88		236.07		219.00
1988-89		248.15		219.00

NOTE: Average pit-head price has been revised to 249 Rs/t with effect from 1.1.1989.
SOURCE: REPORT 1988-89, DEPARTMENT OF COAL

Table 3.1.18 FOB PRICE OF METALLURGICAL COAL


* <u></u>	<u> </u>				(Uni	t : US\$/t)
EXPORTER	AUSTRALIA			U.S.A.		
IMPORTER	JAPAN	EEC	AVERAGE	JAPAN -	EEC	AVERAGE
1980	48.81	45.48	48.40	63.32	56.70	60.12
1981	54.47	52.44	54.25	64.44	62.13	63.27
1982	57.05	54.82	57.65	66.58	67.17	67.31
1983	55.76	46.64	54.34	62.89	59.79	61.17
1984	50.25	43.76	49.09	59.01	56.96	57.78
1985	45.96	41.30	44.78	56.52	55.36	55.63
1986	44.82	40.89	44.38	54.59	51.75	52.70
1987	40.18	37.96	40.00	51.31	48.27	48,98
1988	40.04	37.65	40.31	47.76	48.53	48.69
1989	44.10	43.72	44.77	48.31	50.01	49.91

SOURCE: COAL INFORMATION 1990, 1EA/ORCD

Table 3.1.19 CIF PRICE OF METALLURGICAL COAL

			1.	1 July 198		(Unit	:: US\$/t)
IMPORTER	JAPAN			4.5	1 1 1 1 1		
EXPORTER	AUSTRALIA	CANADA	U.S.A.	S. AFRICA	U.S.S.R.	CHINA	AVERAGE
1980	59.59	62.16	81.27	53.14	58.10	55.81	66.40
1981	65.54	64.59	83.06	63.70	64.32	64.95	71.06
1982	68.22	70.77	83.96	67.17	71.02	68.64	74.42
1983	63.36	70.16	78.82	57.88	59.98	56.10	67.76
1984	59.04	69.53	70.94	50.98	52.25	52.16	63.09
1985	54.36	67.51	68.67	49.62	54.69	51.17	59.77
1986	52.82	66.65	64.71	46.99	52.73	47.22	57.42
1987	48.27	65.43	64.05	43.35	48.63	43.31	53.97
1988	48.30	67.36	60.34	42.55	50.13	46.05	55.05
1989	52.58	69.73	63.34	47.68	54.65	52.08	58.39
IMPORTER	EEC						
EXPORTER	AUSTRALIA	U.S.A.	S.APRICA	POLAND	CANADA	U.S.S.R.	AVERAGE
1980	62.01	68.80	67.53	63.90	75.57	59.03	66.82
1981	73.83	77.32	72.09	72.95	76.26	64.54	75.94
1982	72.05	75.99	73.28	75.13	80.48	73.41	75.32
1983	60.70	67.13	56.04	61.63	69.12	62.97	64.53
1984	57.57	62.29	46.00	70.00	60.80	47.09	61.05
1985	58.84	62.64	43.08	60.81	62.43	42.28	60.64
1986	56.24	59.46	38.51	60.54	56.44	50.37	57.99
1987	52.90	56.85	35.54	54.74	54.24	54.39	55.25
1988	53.14	57.28	44.17	54.77	52.84	50.69	55.63
1989	54.17	58.44	37.38	56.76	57.21	53.64	57.20

SOURCE: COAL INFORMATION 1990, 1EA/OECD

COAL AND LIGNITE FIELDS WITH SUBSIDIARIES OF C.I.L. O.F. MAP 3.1.1 Figure

CHARACTERISTICS AND RESERVES OF CANDIDATE COALS FOR TRIAL SRC PRODUCTION Table 3.2.1

		*SAMLA Coal	ASSAM Coal	*ASSAM Coal	*ARGADA-SIRKA Coal	*Lignite	TALCHER Coal	*Oil Agglomerated
۶	Items	(Raniganj) West_Bengal	High sulphur Assam	Low sulphur Assam	(South Karanpura) Bihar	(South Arcot.	(Bottom) Orissa	Middlings from
	Proximate Analysis							
-	Ash content, %	12 - 15	L 10	8.2			10 - 15	35 - 40(note 2)
	Moisture, % (air dry basis)	7 - 10	1.5 - 2	2.8		15 - 20	⊗ I :-	
	Volatile matter, %	31 - 33	44 - 45	38.7	-		35 - 37	19 - 22
	Fixed carbon, %	By diff.	By diff.	50.3	By diff.		44 - 47	By diff.
	Fuel ratio	1C		1.3		-	4-4 1-4	2.3
	(fixed carbon/volatile matter)							
2	Ultimate Analysis				- :			
	(dry mineral matter free basis)							
	Carbon, %	79 - 82	79 - 80	81.82		÷	N.A.	85.5 - 86.0
	Hydrogen, %	5.2 - 5.4		5.05			A	2.2
	Nitrogen, %	2.2 - 2.4	1.3 - 1.5	1.01		٠.,	-A	1.8 - 2.0
1.	Sulphir %	0.4 - 0.5	1 000	4.6			~	8 0 1 8 0
-	Oxygen, %	11 - 12	- C - 9	10.07	9 - 10	22 - 23	- N	2
								,
دري	Petrographic Composition			-				
	(mineral matter free basis)							
	Vitrinite, %	80 - 85	85 - 90	87.8			≈	40 - 50
	Exinite, %	3 - 4	5 - 10	2.8			• ∞	2 - 3
	Inertinite, %	10 - 12	က တ	4.0	28 - 32		45 - 50	40 - 48
	Average reflectance of	0.63	N.A.	0.63	4.		< 0.5	0.1
	vitrinite							~ · · · · · · · · · · · · · · · · · · ·
4	Tentative Reserves	200	100	(note 1)	600	3300		(note 4)
	(million tonnes)							

Notes: 1. This coals are being supplied to steel plants as a blendable coal for coke making. Present supply to steel plants is around 225 Mt/y.

2. The ash can be initially reduced to around 22 - 24% from these middlings by oil agglomeration using anthracene oil as bridge.

3. Huminite

4. Huge quantities of middlings are generated from various coal washeries in India. Steady supply can be ensured.

5. * marked coals were selected as candidate coals for SRC production test.

COAL PRICE FOR SRC PLANT AT ROURKELA STEEL PLANT (ESTIMATE) (1/2) Table 3.2.2

(Rs /t)	REMARKS	see Note	* 3 see Note 3	see Note	* 5 see Note 5 * 6 see Note 6	* 7 see Note 7	see Note	* 9 see Note 10	XII see Note III	¥ \$	*14 see Note 14	*15 see Note 15				
	PRICE (F)		787.89	776. 68	779.88	950.00 ^{*11}		630. 28	622. 44	90.619		1440.28	1550.00^{*11}	887.00		
	RAILWAY FREIGHTDVERALL (E)+	from ASANSOL 298 km		137,00*14			îtob Barkakana	282 km	133.00*14		from MARGHERITA	643.00*14 +10.00*15		from NEYVELI 1701 km	612.00*14	
	TOTAL (E)=(C)+(D)		650.89	639. 68	642.88			497.28	489. 44	486.08		787.28				
	SALES TAX (D)	SALES TAX 4%*5	25.03 625.86x4%	24. 60 615. 08x4%	24.72 618.16×4%		SALES TAX 8% _{*8} C. S. T. 4%*8	53.28 444.00×12%	52, 44 437, 00×12%	52.08 434.00x12%	SALES TAX 4%*12	30.28 757.00×4%				
	SUB TOTAL (C)=(A)+(B)		625.86	615.08	618.16			444.00	437.00	434.00		757.00				
	ROYALTY, CESSES (B)	CESS 35% CESS 5% CESSCESSCESS	153, 615 21.945 1.000.40 3.50 438.9X35% 438.9X5%	150, 92 21, 56 1, 000, 40 3, 50 431, 2X35% 431, 2X5%	151, 69 21, 67 1, 000, 40 3, 50 433, 4X35% 433, 4X5%		_{L*} Sassao				CESS*12 LAND CESS*12	3.50 100.00				
		ROYALTY*5	6.50	6.50	6.50		ROYALTY ^{*7}	70.00	70.00	70.00	ROYALTY*12	6.50	:			·
	BASIC PRICE (A)		438.90 399 x 1.1*4	431. 20 392 × 1. 1*4	433.40*3 (389+5)×1.1*			374, 00	367.00	364,00		647,00 460+(22-5)×11*10		275.00*13		
	PRODUCT		STEAM	SLACK *2	ROM (-250mm)	WASHED COAL		STEAM	SLACK	ROM (-250mm)		RAW COAL	WASHED COAL			
	NAME OF COAL GRADE/LOCATION	SAMLA COAL	LONG FLAME *1 GRADE "B" *1		W. BENGAL STATE		ARGADA -SIRKA COAL		GRADE "B.**6	BIHAR STATE	ASSAM COAL *9		ASSAM STATE	NEYVELI LIGNITE	TAMIL NADU STATE	

Table 3.2.2 COAL PRICE FOR SRC PLANT AT ROURKELA STEEL PLANT (2/2)

Note 1. Refer to Annex 3.1.2 (8/22) Note 1 and (11/22) Note 2. Slack coal shall be applied to non-coking coal for coke production with SRC. Note 3. Refer to Annex 3.1.2 (8/22). Notes 6-(ii) Note 4. Refer to Annex 3.1.2 (10/22) Notes 20 Note 5. Figures of royalty, cesses and sales tax were given by ECL.	Note 6. Refer to Annex 3.1.2 (15/22) Ash + Moisture = 21.3 UHV = 5960 kcal/kg Note 7. Royalty was to be increased and cesses were to be eliminated in Bihar and Orissa States from August, 1991. Rate of royalty is not decided yet, but is proposed to be increased at 70.00 Rs/t.	Note 8. Refer to Annex 3.1.2 (16/22)	Note 9. It was decided at the meeting during 2nd on site survey that ash content of Assam coal should be 4-6% (average 5%) for the feed material of SRC plant because sample coal having 2.1% ash is not considered to be representative coal.	; i;	Note 12. The figures of Royalty, Cess, Land Cess and Sales Tax in case of Assam coal were given by CMPDIL during 2nd on site survey, 1991.	N o t e 13. Price of Neyveli Lignite were given by NLC during 1st on site survey in September to October, 1990.	N o t e 14. Revised railway freights were given by MECON during 2nd on site survey in 1991 due to 10% increase of 1990's tariff.	Note 15. Refer to Annex 3.1.2 (9/22) 10-(ii). It is assumed in Assam case, that a distance is not more than 10 kms and loading charge is 10.00 Rs/t.
---	--	--------------------------------------	--	------	--	---	--	--

Table 3.3.1 ANALYTICAL DATA FOR COAL (1/2)

Moisture Total moisture (wt%) 20.4 Coal Coal Lignite Middlings OA Coal Analysis Methon Middlings Middlings OA Coal OA Co									
Total moisture (wt%) 20.4 16.6 11.5 56.4 1.7 JIS M Adherent moisture (wt%) 10.9 14.5 8.4 46.3 0.0 JIS M Ash content (wt%) 10.7 2.4 3.4 18.8 1.7 1.0 JIS M Ash content (wt%) 33.6 41.9 33.6 41.6 32.2 20.8 Fixed carbon (wt%) 43.1 53.6 41.9 36.1 36.1 45.1 51.8 Adherent moisture (wt%) 33.6 41.9 33.6 41.6 32.2 20.8 Fixed carbon (wt%) 80.6 83.5 82.8 71.1 86.5 84.0 JIS M Adherent with 80.6 83.5 82.8 71.1 86.5 86.2 JIS M Adherent with 11.4 7.9 9.4 5.0 1.4 1.9 Adherent moisture (wt%) 2.4 1.2 1.5 0.9 1.4 1.9 Oxygen (wt%) 2.4 1.2 1.5 0.9 0.9 1.4 0.8 Oxygen (wt%) 2.4 1.2 1.5 0.9 0.9 1.4 0.8 Oxygen (wt%) 5.5 91.4 50.1 92.5 41.2 JIS M Finite (%) 5.5 3.7 8.3 1.9 41.2 JIS M Adherals (%) 8.1 1.6 11.0 2.7 11.8 JIS M Reflectance (Ro) (%) 0.63 0.72 0.78 0.42 1.18 JIS M	Analytical Item				ADA-SIRKA Coal	NEYVELI Lignite	0A Middlings	Deciled OA Coal	Analysis Method
Ash content (wt%) 10.7 2.4 3.4 18.8 1.7 1.0 JIS M Sh content (wt%) 12.6 2.1 17.9 3.5 21.0 26.4 21.8 21.0 26.4 41.9 33.6 41.9 33.6 41.9 32.2 20.8 73.6 41.9 33.6 41.9 32.2 20.8 73.6 41.9 32.2 20.8 73.6 41.9 32.2 20.8 73.6 41.0 6610 8930 8400 JIS M salue (ad basis) (kcal/kg) 7870 8380 7940 6610 8930 8400 JIS M salue (ad basis) (kcal/kg) 7870 83.5 82.8 71.1 88.5 4.9 6.2 JIS M salue (wt%) 5.1 5.8 5.4 5.0 6.2 JIS M salue (wt%) 0.5 1.6 0.9 0.7 1.4 1.9 1.9 1.9 1.9 1.9 1.9 1.0 0.8 1.0 0.9 1.4 50.1 92.5 1.4 1.1 1.9 1.8 Minerals (%) 8.1 1.6 1.0 2.7 1.0 1.8 JIS M salue (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (%) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.63 0.72 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) 0.72 0.78 0.78 0.42 1.1 1.18 JIS M salie (RO) 0.72 0.78 0.74 1.1 1.18 JIS M salie (RO) 0.74 1.1 1.18 JIS M salie (RO) 0.74 1.1 1.18 JIS M salie (Moisture Tota (As received) Adhere	il moisture (wt%) ent moisture(wt%)		16.6 14.5	11.5 8.4	56.4 46.3	1.7		:≊:
xa1/kg) 7870 8380 7940 6610 8930 8400 JIS M xa1/kg) 80.6 83.5 82.8 71.1 86.5 86.5 86.2 JIS M xa1 5.1 5.8 5.4 5.0 6.5 4.9 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 <td>nalysi Vol</td> <td></td> <td></td> <td>2.4 2.1 53.6</td> <td>3.4 17.9 33.6 45.1</td> <td>18.8 3.5 36.1</td> <td>1.7 21.0 32.2 45.1</td> <td>26.4 20.8 51.8</td> <td>25</td>	nalysi Vol			2.4 2.1 53.6	3.4 17.9 33.6 45.1	18.8 3.5 36.1	1.7 21.0 32.2 45.1	26.4 20.8 51.8	25
%) 80.6 83.5 82.8 71.1 86.5 86.5 86.2 JIS M 5.1 5.8 5.4 5.0 6.5 4.9 4.9 4.9 3.1 11.4 7.9 9.4 22.3 4.2 6.2 3.1 1.2 1.5 0.7 1.4 1.9 48 47 44 141 -15 M 72.8 91.4 50.1 92.5 41.2 JIS M 5.5 3.7 8.3 1.9 0.9 13.6 3.3 30.6 2.9 41.3 8.1 1.6 11.0 2.7 16.6 0.63 0.72 0.78 0.42 1.18 JIS M	Calorific Value (d	af basis) (kcal/kg)		8380	7940	6610	8930	8400	. 25
48 47 44 141 -15 M 72.8 91.4 50.1 92.5 41.2 JIS M 5.5 3.7 8.3 1.9 0.9 13.6 3.3 30.6 2.9 41.3 8.1 1.6 11.0 2.7 16.8 0.63 0.72 0.78 0.42 1.18 JIS M	Ultimate Analysis (daf basis)		80.0 6.11.0 6.1.4.4.0	83.7.2.2.2.2.1.1.7.2.2.5.1.6.1.6.1.6.1.0.0.0.0.0.0.0.0.0.0.0.0.0	%2.00.00 4.4.00	71.1 5.0 22.3 0.7 0.9	88.60.44.11.00.00.00.00.00.00.00.00.00.00.00.00.	86.2 6.2 0.1 0.8	2
72.8 91.4 50.1 92.5 41.2 JIS M 5.5 3.7 8.3 1.9 0.9 13.6 2.9 41.3 8.1 1.6 11.0 2.7 16.6 0.63 0.72 0.78 0.42 1.18 JIS M	Grindability (HGI)		48	47	44	141		1	25.7
0.63 0.72 0.78 0.42 1.18 JIS M	Petrographic Analysis	ا بو ہ	72.8 5.5 13.6 8.1	91.4 3.7 3.3	50.1 8.3 30.6 11.0	92.5 1.9 2.9 2.7		41.2 0.9 41.3 16.8	≥i
	Mean Maximum Reflec	tance (Ro) (%)		0.72	0.78	0.42	-	1.18	≱∷

Table 3.3.1 ANALYTICAL DATA FOR COAL (2/2)

Analytical Item		SAMLA Coal	ASSAM Coal	ARGADA-SIRKA Coal	NEYVELI Lignite	OA Middlings	Analysis Method
Size Analysis (wt%) (As received)	+50(mm) 50-40 40-30 30-25 25-20 20-15 15-10 10- 5 5- 3 8- 2 2- 1 1- 0.5 Total	10.0 1.0.0 1	1 17 2 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	32.3	4.4 4.4 100.0	JIS W 8801
Coal Ash Analysis (moisture free basis)	Si02 A1203 Fe203 Ca0 Mgo Na20 K20 S03 P205 Ti02	61.4 4.63 4.63 1.36 0.37 1.87 1.87	40.6 20.34 3.66 2.15 2.95 0.16 0.16	51.0 7.54 1.0 1.19 1.23 1.90	24.0 19.33 11.28 17.01 4.36 0.67 0.19 0.05 1.20	58.3 28.07 6.55 0.97 0.12 1.34 0.26 0.26 0.76	JIS M 8815

Table 3.3.2 RESULT OF SINK-AND-FLOAT TEST (1/4)

Name of Sample: SAMLA Coal Particle Size: -25mm

a	٠
Gasoline	
.=	
0	
ଊ	
æ	
ت	
+	
	٠
Ф	
en	
Ψ	
roethy	•
-	
7	
ដ	
5	
~	
~	
ach	
54	
ټ	ċ
Tet	
<u> </u>	
sed	
ب	
S	
=	
quid	
Ξ	
2	
.목	
一:	
_	
S	

	-	T]	1		T	1]	<u> </u>	T]
 '''''	h/i		14.7	20.2	23.4	42.3	49.6	0.0						
; ved	100 - 2 W		70.2	35.9	23.9	4.6	3.1	0.0						
<u>-</u> =	Total W . A - ZW . A		1032.8	724.8	558.8	194.6	153.7	0.0						
₽0	ZWA/ZW		2.5	9.0	7.2	9.6	8.6	+						
4	МЗ		29.8	64.1	76.1	95.4	6.96	100.0						
9	ΣW·A		75.1	383.1	549.1	913.3	954.2	1107.9			-:		e eva.	
q	V - M		75.1	308.0	166.0	364.2	40.9	153.7					Characteristic Curve Specific Gravity Curve	
၁	∑Wn-1 +Wn/2		14.9	47.0	70.1	85.8	36.2	98.4					Character Specific	
q	Ash (%)		2.5	9.0	13.8	18.9	27.3	49.6			16.9		** f,k	
ಡ	Weight (%)		29.8	34.3	12.0	19.3	1.5	3.1		98.1	1.9		Float Curve Sink Curve	
*	Specific Gravity		-1.30	$1.30 \sim 1.35$	$1.35\sim1.40$	1.40~1.50	$1.50 \sim 1.60$	+1.60		+297 μ m	-297 µm		% f,g Fl % i,j Sl	

Table 3.3.2 RESULT OF SINK-AND-FLOAT TEST (2/4)

Name of Sample: ASSAM Coal Particle Size: -25mm

S.G.Liquid used Tetrachloroethylene + Gasoline

]
•	h/i		29.6	36.4	45.5	53.3	57.4	0.0				
Ī	100 -24		3.3	2.5	1.8	1.4	1.2	0.0				
Ţ.	Total W·A -2W·A		97.4	90.9	81.9	74.7	68.8	0.0			: '	
g	SWA/SW	:	1.3	1.3	1.4	1.5	1.5	2.2				
<u>.</u>	Σ#.		96.7	97.5	98.2	98.6	8 86	100.0				
a	Σ₩·A		122.8	129.2	138.3	145.5	151.3	220.2			e I'Ve	
ਰ	₩ • À	: : : :	122.8	6.4	9.0	7.2	5.8	68.9			Characteristic Curve Specific Gravity Curve	
ပ	ΣWn-1 +Wn/2		48.4	97.1	97.9	98.4	98.7	99.4			Character Specific	
Ω	Ash (%)		1.3	8.0	12.9	18.0	29.0	57.4		4.3	%% %,c f,k	
લ	Weight (%)		96.7	0.8	0.7	0.4	0.2	1.2	90.7	6.3	Float Curve Sink Curve	
Ϋ́X	pecific Gravity		-1.30	$1.30 \sim 1.35$	$1.35 \sim 1.40$	1.40~1.50	1.50~1.60	+1.60	+297µm	-297 μ m	* f,g FI * i,j Si	

Table 3.3.2 RESULT OF SINK-AND-FLOAT TEST (3/4)

Name of Sample: ARGADA-SIRKA Coal Particle Size: -25mm S.G.Liquid used Tetrachloroethylene + Gasoline

, X	a	q	ပ	ъ	υ	¢.	₽0	4	e,(
Specific Gravity	Weight (%)	Ash (%)	ΣWn-1 +Wn/2	W · A	SW·A	Ω Σ	EWA/EW	Total W·A	100 -∑₩	h/i
-1.30	12.2	2.3	6.1	27 8	27.8	12.2	2.3	1836.3	87.8	20.9
$1.30 \sim 1.35$	23.4	9.7	23.9	178.8	206.6	35.6	5.8	1657.5	64.4	25.7
$1.35 \sim 1.40$	12.5	12.7	41.9	158.9	365.5	48.1	7.6	1948.6	51.9	. 28.9
1.40~1.50	25.6	18.9	6.09	483.8	849.3	73.7	11.5	1014.8	26.3	38.6
$1.50 \sim 1.60$	12.4	29.0	79.9	359.0	1208.3	86.1	14.0	655.8	13.9	47.2
+1.60	13.9	47.2	93.1	655.8	1864.1	100.0	18.5	0.0	0.0	0.0
+297 µ m	94.6									
-297 μ m	5.4	21.9						:		
				-						
* f,g Flc	Float Curve Sink Curve	% b, c	Character Specific (Characteristic Curve Specific Gravity Curve	.ve					

Table 3.3.2 RESULT OF SINK-AND-FLOAT TEST (4/4)

S.G.Liquid used Tetrachloroethylene + Gasoline Name of Sample: NEYVEL-LIGNITE Particle Size: -25mm S

	h/i	4.7	55 8	7.2	56.5	62.5	0.0				
	100 - 2 H	56.0	33.7	22.6	 	1.3	0.0				
,cı	Total W.A.	261.8	195.9	161.8	84.8	81.2	0.0				
b.0	SWA/SW	2.7	2.8	2.8	3.0	3.0	es.			:	
C4X	Σ Z	44.0	66.3	77.4	98.5	98.7	100.0				
9	Σ₩·A	120.1	186.1	220.2	297.2	300.8	382.0				e rve
ซ	₩.	120.1	66.0	34.1	77 0	3.5	81.2				Characteristic Curve. Specific Gravity Curve
υ	∑ Wn-1 +Wn/2	22.0	55.2	71.8	88.0	98.6	99.4				Character Specific
۵	Ash (%)	2.7	3.0	3.1	3.6	17.7	6.23		5.1		% % F,k
ત્ય	Weight (%)	0.44	22.3	11.1	21.1	0.2	1.3	0.38	14.0		Float Curve Sink Curve
¥	Specific Gravity	 -1.30	$1.30 \sim 1.35$	$1.35 \sim 1.40$	1.40~1.50	$1.50 {\sim} 1.60$	+1.60	 +297 µm	—297 μ m		** f, g Fl

Table 3.3.3 ANALYTICAL DATA FOR ANTHRACENE OIL

Analytical Item	Value	Method
Moisture (%)	0.0	JIS K 2425
Ultimate Carbon	91.0	JIS M 8813
Analysis Hydrogen	6.5	
(%) Oxygen	1.1	
Nitrogen	0.7	
Sulphur	0.4	
Specific Gravity (20/20°C)	1.068	JIS K 2425
Caking index(at 35°C)	6.1	Brookfield Viscometer
fa (NMR)	0.90	Brown-Ladner method ¹⁾
fa (IR)	0.89	Brown method ²⁾
Molecular weight	180	Vapor pressure Osmometer
Gross calorific value(kcal/kg)	9400	JIS M 8814
Distillation IBP	198.0°C	ASTM D 1160
characteristics 5vol%	226.0°C	
(recovered 10vol%	233.0°C	
temperature) 20vol%	243.0°C	
30vo1%	250.0°C	
50vo1%	274.0°C	
70vol%	308.0°C	
90vo1%	333.0°C	
EP EP	356.0°C	

¹⁾ J.K. Brown, W.R. Ladner, Fuel, Vol. 39.87 (1960)

²⁾J.K. Brown, J. Chem. Soc., 744 (1955)

Table 3.3.4 ANALYTICAL DATA FOR CATALYST

Analytica Item		Value	Analytical	
Item		Value	1	and the second s
			Method	
Moisture	(%)	0	JIS M 8811	
Ultimate	С	< 0.05	JIS M 8813	
Analysis	H	< 0.01		
(%)	N ₁	< 0.01		
	Si	0.03	JIS M 8815	
	A 1	0.03		
	Fe	68.33		
	Ca	< 0.01		
	Mg	0.09		
	Na	< 0.01	·	
	K	< 0.01		
	S	26.53		
	P • • • • • • • • • • • • • • • • • • •	0.01		
	Ti	< 0.01		
Ignitio	n loss	2.36	JIS M 8812	
(%	5)			

ANALYTICAL METHODS Table 3.3.5

Method S M 8813 S K 2425 S M 8814 S M 8814 S M 8815 OWN-Ladner method "1 OWN method "2 OWN Ladner method "1 S K 2425 S K 2425 S K 2425 S K 2425 Ookfield Viscometer									
1 SRC Residue SRC* Coal Filtrate	nalytical Ite				mple			etho	
Itimate Analysis		011	ದ್ದ	esidu	¥ 0 ₩	0	iltrat		
					ampi	1.0			1.
Troximate Analysis	ltimate Analysi	0	.0	0	0		The state of the s	IS M 881	
Moisture only 0	roximate Analysi		0	0	0			IS K 242	
alorific Value alorific Value balanch Sof Major lements of Ash a (NMR) a (NMR) c (NMR)	(Moisture onl					0		IS M 881	
Analysis of Major Elements of Ash fa (NMR) fa (NMR) O O O Brown-Ladner method ** Brown Ladner ** Brow	alorific Value	0	0	0	0			IS M 881	7
Elements of Ash fa (NMR) O O	Analysis of Majo			0				IS M 881	
fa (NMR) fa (IR) COOO Molecular Weight Softening Point Content Specific Gravity Distillation Characteristic Vanor-Ladner method *** Brown-Ladner method *** Brown-Ladner method *** Brown-Ladner method *** Vapor Pressure Osmonete JIS K 2425 JIS K 2425 O O JIS K 2425 ASTM D 1160 Characteristic	lements of As								
Second to Second to Second to Second to Second to	a (NM	0	0					rown-Ladner metho	el S
lecular Weight O O Usmomete ftening Point O O US Wapor Pressure Osmomete ftening Point O O US Wapor Pressure Osmomete Usent-Insoluble O O O O US Wapor Wapor Pressure Osmomete Ivent-Insoluble O O O O US Wapor Wa	a (IR	0	0					rown method *2	
ftening Point Vent-Insoluble Livent-Insoluble O O JIS K 2425 Natent ecific Gravity O O O JIS K 2425 stillation ASTM D 1160 Stockfield Viscometer	olecular Weigh	0	0	· · ·	-,			apor Pressure Asmom	4
lvent-Insoluble O JIS K 2425 ntent O JIS K 2425 ecific Gravity O O stillation O ASTM D 1160 aracteristic O Brookfield Viscomete scosity O O	oftening Poin		0		0	* ,		S K 2425))
ontent pecific Gravity O O O O JIS K 2425 istillation O Haracteristic O O O Brookfield Viscomete	lvent-Insolubl		0		0			S K 242	
pecific Gravity O O O O JIS K 2425 istillation O O ASTM D 1160 haracteristic O O O D Brookfield Viscomete	onten								-
istillation O haracteristic O O Brookfield Viscomete	pecific Gravit	0	0		0	0	0	S K 242	
haracteristic o Second Niscomete	istillati	0						SIM D 11	
iscosity O O Scomete	haracteristi				. :				
	iscosit	0	1			0	0	rookfield Viscomete	Eu

J.K.Brown, W.R.Ladner, Fuel, Vol. 39,87 (1960) J.K.Brown, J.Chem.Soc., 744 (1955) SRC sample for coke production test

Table 3.3.6 TEST-1 CONDITIONS

(Tetralin Solvent, Initial Pressure 100Kg/cm²G, Coal-Solvent Ratio=1/2)

taleone respons	Conditions		SAMLA	ASSAM	ARGADA-	NEYVELI	0 A
Residence	Reaction	Amount of	Coal	Coal	SIRKA	Lignite	Middlings
Time	Temperature	Catalyst			Coal		
(minutes)	(℃)	Added (wt%)					
60	380	0	0	Ö	0	0	0
60	380	3	0	0	0	Ο	O
60	410	0	0	0	O 2	0	0
60	410	3	0	0	0	O	0
60	430	0	0	0	O .		0
60	430	3	0	0	0	0	0
90	380	0	0	0	O-	· O: ·	0
90	380	3	0	0	O	0	0
90	410	0	O	0	0	0	, , , , , , , , , , , , , , , , , , ,
90	410	3	O ^{r s}	0	O	, O	0
90	430	0	O. I	, O '	0	0	0
90	430	3	0	0	0	0	0

Table 3.3.7 TEST-2 CONDITIONS

(Coal-Solvent Ratio=1/2)

				r cono maore)-1/ <i>11/</i>			
Residence		onditions Reaction	Amount of	Hydrogen Partial		A Coal Anthracene		SAM Coal n Anthracene
Time (minutes)	Pressure (Kg/cm²G)	Temperature (°C)	Catalyst Added(wt%)	Pressure (%)		Oil		Oil
30	100	430	3	100	0	0	, , 0	O
120	100	430	3	100	0	0		0
60	80	430	3	100	0	Ο	0	0
60	120	430	3	100	0	О	0	0
60	100	360	3	100	0	0	0	0
60	100	450	3	100	O	0	0	O
60	100	430	6	100	0	0	0	O
60	100	430	3	70	O) : O	Ο	0
60	100	430	3	80	0.1	0	0	0
60	100	430	3	90	0	0	0	0
60	100	380	3	100	*	0	*	0
60	100	410	3	100	*	0	*	, O
60	100	430	0	100	*	0	*	Ö
60	100	430	3	100	*	0	*	O
90	100	430	3	100	*	0	*	0

N.B.) * Tests marked with asterick were completed in the TEST-1.

Table 3.3.8 YIELDS (AVERAGE VALUES) OF ASSAM COAL AFTER FOUR RECIRCULATIONS OF SOLVENT

FUUK KEU	IRCULATIONS OF SOLVENT
Product	Yield (daf coal base,wt%)
Gas C 1	2. 7 1. 5
C 3 C 4 C O C O 2 H 2 S	1. 0 0. 4 0. 5 1. 3 0. 3
Sub-total Water	7. 7
Oil SRC Unreacted Coal	19.9 71.3
Total Hydrogen Consumption Grand Total	-2.6 100.0

SAMPLES FOR ANALYSIS AND PRODUCTION CONDITIONS (1/2) Table 3.3.9

	Initial Catalyst H2 -Partial Pressure Addition Pressure	100Kg/cm²G 3wt% 100%	100Kg/cm²G 3wt% 100%	100Kg/cmg 3wt% 100%	100Kg/cmG 3wt% 100%	100Kg/cdG 3wt% 100%	100Kg/cmfG 3wt% 100%	100Kg/cmg 3wt% 100%	100Kg/cmG 3wt% 100%	100Kg/cmcG 3wt% 100%	100Kg/cm ⁶ 3wt% 100%	100Kg/cm2G 3wt% 100%	100Kg/cmG 3wt% 100%		ROOT ROME DESTROY	o*ta 3¤t%
	Residence In	60min 1	60min 1	60min 1	60min 1	60min 1	60min 1	60min 1	60min 1	60min 1	60min 1	60min 1	60min 1	60min 1	_	-
	Reaction Temperature	4301	430C	430t	430°C	430°C	410%	430°C	450%	410℃	430°C	450°C	430°C	430%		430T
	Solvent	Tetralin	Tetralin	Tetralin	Tetralin	Tetralin	Anthracene Oil	Anthracene Oil	Anthracene Oil	Anthracene Oil	Anthracene Oil	Anthracene Oil	Anthracene Oil	Recycle Oil I		Recycle Oil II
	Coa1	ASSAM coal	SAMLA coal	NEYVELI lignite	ARGADA-SIRKA coal	O. A. middlings	ASSAM coal	ASSAM coal	ASSAM coal	SAMLA coal	SAMLA coal	SAMLA coal	ASSAM coal	ASSAM coal		ASSAM coal
	Experimental Number	A1106	A1206	A1306	A1406	A1506	A2122	A2124	A2116	A 2 2 2 2	A2224	A 2 2 1 6	A3101	A3107		A3123
-			(→ tr	. ∾ ⊱	, p			[(r) လ [· ⊨	¹		J	- ED V) (

SAMPLES FOR ANALYSIS AND PRODUCTION CONDITIONS (2/2)

			~~~~~				<u>,</u>
H ₂ -Partial Pressure	100%	100%	100%	100%	100%	100%	100%
Catalyst Addition	3#t%	3wt%	341%	341%	3#t%	3#t%	3#t%
Initial Pressure	100Kg/cmG 3wt%	100Kg/cmG	100Kg/cmg	100Kg/cmg	100Kg/cmd	100Kg/cmG	100Kg/cmg
Residence Time	60min	SOmin	60min	60min	60min	60min	.60min.
Reaction Temperature	4100	4300	4500	4100	430°C	450t	430°
Solvent	Anthracene 0il	Anthracene 0il	Anthracene Oil	Anthracene 0il	Anthracene 011	Anthracene 0il	Anthracene 0il
Coa1	ASSAM coal	ASSAM coal	ASSAM coal	SAWLA coal	SAMLA coal	SAMLA coal	ASSAW coal
Experimental Number	S 2 1 2 2 ASSAM coa	\$2124	\$2116	S 2 2 2 SAWLA coal	\$ 2 2 2 4	\$2216	S 3 1 0 1 ASSAM coa
	U	りなく	) (	) 4 S	<u>-</u>	л го 	

Table 3.3.10 ANALYSIS OF PRODUCED OIL (1)

			·	<del></del>	·r			·		···						
Viscosity	(cP)	7 7		, <u> </u>					? C			o ur o ∞			- c	
Specific	Gravity (at 20%)	0.973	0.975	186	0 973	0.967	1 058	1 051	1 039	1. 06n	1 057	1.056	1 051	1 048	850	1. 038
Calorif. Value	(dry base) (kcal/kg)	0666	9970	0066	10020	10100	9480	9500	9500	9450	9470	9470	9430	9520	9520	9530
(dry;wt%)	F. C.	1	1		1	1		!	J				1	1		
Proximate Analysis	у. ж.	1	1				1		1					1		1
Proximate	Ash	1	. !	1	i	1		-	1	1	1	1	1 1	1		1
wtk)	0	0.6	1.8	0.4	2.7	0.3	0.4	1.5	1.8	2.1	0.9	0.8	0.7	1.4	1.5	2.3
( daf ;wt%	S	0.1	0.0	0.1	0.0	0.1	0.4	0.4	0.3	0.4	0.3	0.3	0.4	0.3	0 3	0.3
alysis	z	0, 1	0.2	0.1	0.1	0.1	0.7	0.7	0.7	0.7	0.7	8.0	0.7	9.0	9 0	0.5
Ultimate Analysis	Ħ	9.0	8.6	8.6	.5 5	9. 2	7.2	7.1	6.9	6	7.1	7.0	7.1	7.4	7.6	7.7
ült	Ö	90.2	89. 4	89.8	88.7	90.3	91.3	90.3	90.3	90.5	91.0	91.2	91.1	90.3	90.0	89.2
Test Condition	Solvent Temp.	Tetralin 430°	Tetralin 430°	LIGNITE Tetralin 4300	Tetralin 430%	O. A. midd. Tetralin 430°C	Anth. 0il 4100	Anth, 0il 430%	Anth. 011 4500	Anth. 011 41.00	Anth. 01.1 430t	Anth. 0il 450°C	Anth. 0il 4300	Recycle I 430%	Recycle II 430%	Recycle III 4300
Test	Coa!	ASSAM	SAMLA	LIGNIT	ARGADA		ASSAM	ASSAU	ASSAY	SABLA	SAMLA	SAMLA	ASSAM	ASSAW	ASSAM	ASSAN
011	Exper, NO.	A1106	A1206	A1306	A1406	A1506	A 2 1 2 2	A2124	A2116	A 2 2 2 2	A2224	A2216	A3101	A3107	A3123	A3131

Table 3.3.11 ANALYSIS OF PRODUCED OIL (2)

<u></u>					,	·		, <del></del>				·		1	F	
	/vol%)	/86.0	/89.0	/89.5	/89.4	/88.0	/76.0	/80.0	/76.5	/83.9	/87. 2	/86.1	/80.0	/80.5	/80.5	/81.0
<u> </u>	3P (%	450	450	451	451	450	450	450	450	450	450	450	450	450	450	450
ture: T	80vo1%	245	215	229	212	211	1	437	1	370	345	352	437	429	438	422
1 tempera	70vc1%	212	209	211	208	206	353	337	351	332	327	327	337	344	349	348
(recovered temperature; t	50vol%	207	207	207	206	204	309	588	302	295	288	290	299	304	308	308
	30vo1%	206	206	205	205	204	265	260	256	257	254	251	260	264	263	264
aracteri	20vol%	205	205	204	205	204	250	247	240	243	241	239	247	245	244	244
Distillation Characteristics	10vo1%	204	205	202	204	203	236	233	224	231	223	227	233	230	228	228
Distill	5vo1%	203	204	-202	203	202	230	225	218	224	221	221	225	222	219	219
	IBP	193	197	190	195	188	207	186	176	193	190	181	186	188	184	186
Molecular	בר אוויר בי אוויר	220	220	210	220	230	180	180	180	170	170	170	180	180	180	180
	I R	0.54	0.57	0.59	0.54	0.53	0.82	0.80	0.81	0.84	0.84	0.84	0.81	0.75	0.72	0.69
ta ta	H-NYR	0.63	0.65	0.67	0.63	0.59	0.84	0.82	0.83	0.86	0.85	0.84	0.82	0.78	0. 76	0.73
Test Condition	Solvent Temp.	Tetralin 430°	Tetralin 430%	LIGNITE Tetralin 430%	Tetralin 430%	0. A. midd. Tetralin 4300	Anth. 011 410°	Anth. 0il 430%	Anth. 0il 4500	Anth. 011 410°C	Anth. 011 430%	Anth. 011 450%	Anth, OIL 430°C	Recycle I 4300	Recycle I 430C	Recycle II 4300
Test (	Coa1	KYSSY	SAKLA	LIGNITE	ARGADA	O.A.mid	NYSSY	ASSAW	ASSAM	SAMLA	SAMLA	SAMLA	ASSAN	ASSAM	ASSAW	ASSAM
OIL	Exper. NO.	A1106	A1206	A1306	A1406	A1506	A2122	A2124	A2116	A2222	A 2.2 2 4	A2216	A3101	A3107	A3123	A3131

Table 3.3.12 ANALYSIS OF SRC (1)

SRC	Test (	Test Condition	UIT	timate Analysis	alysis	(daf w	wt% )	Proximate		Analysis (dry; wt%)	Calorif, Value	Specific	Softening
Exper. NO.	Coal	Solvent Temp.	ပ	压	Z	တ	0	Ash	V. Ж.	بع د	(dry base) (kcal/kg)	Gravity (at 201)	Point (°C)
A1106	ASSAM	Tetralin 430°C	87.9	6.3	1.3	0.7	3.8	1	38.3	61.7	0868	1.217	169
A1206	SAMLA	Tetralin 4300	87.4	9	2.6	0 2	3. 5		37.9	62.1	8830	1.217	178
A1306	LIGNITE	Tetralin 4300	86. 2	5.4	1.0	0.4	6.0		43.8	56.2	8770	1. 208	145
A1406	ARGADA	ARGADA Tetralin 430°C	88. 5	6.3	1.8	0.3	3.1	1	40.0	0.09	8820	1.220	171
A1506	O.A.mido	0.A.midd.Tetralin 430°C	89. 5	9. 6	1.6	1.2	1.1	l T	39.2	60.8	9230	1.204	163
A2122	ASSAM	Anth. 0il 410°C	87.9	6.2	1.5	8.0	3 8	 	37. 2	62.8	8730	1.239	- 231
A2124	ASSAW	Anth, 0il 430%	88.5	5.6	1.6	0.7	3.8	1	31.0	0.69	8780	1. 250	207
A2116	ASSAN	Anth. 0il 450°	89.9	5.2	1.7	9 0	2.6	1	30.9	69. 1	8820	1.267	171
A 2 2 2 2	SAMLA	Anth. 0il 410%	87.3	5.5	2.9	0.2	4.1	1	35.9	54.1	8670	1.255	231
A2224	SAMLA	Anth. 0il 430°C	88. 4	5.5	3.0	0.2	2.9	i i	29.3	7.0.7	8720	1.262	225
A2216	SAMLA	Anth, 011 450°C	89. 4	5.1	3.0	0.2	2.3	<b>I</b>	28.6	71.4	8770	1.274	208
A3101	ASSAN	Anth. 011 430°	88.5	5.7	1.6	1 0	3.5	1	32.7	67.3	8810	1.250	200
A3107	ASSAM	Recycle I 430%	88.0	5.9	1.6	0.7	∞ က	1 1	27.3	72.7	8830	1.240	198
A3123	ASSAM	Recycle II 430°C	87.9	ე. მ	1.6	0.7	3.9	l I	35.0	65.0	8840	1. 236	191
A3131	ASSAM	Recycle M 430%	88. 4	6.1	1.6	0.7	3.2	. ] ]	35. 2	64.8	8830	1. 235	192

Table 3.3.13 ANALYSIS OF SRC (2)

SRC	Test Condition	ros Y		Molecular	Solvent-Insoluble		Content(wt%)
Exper. NO.	Coal Solvent Temp.	H-NYR	IR	1 I S I C	I H	II	Q I
A1106	ASSAM Tetralin 430%	0.71	0.75	560	87.5	16.1	<0.1
A1206	SAMLA Tetralin 430%	0.72	0.75	450	95.1	22.7	0.1
A1306	LIGNITE Tetralin 430°C	0.70	0.71	410	86.2	11.6	0.1
A1406	ARGADA Tetralin 430°C	0.72	0.75	440	88.9	17.9	0.1
A1506	O.A.midd.Tetralin 430°C	0. 70	0.75	520	84.3	17.5	<0.1
A2122	ASSAM Anth. 0:1 4100	0.71	0.74	730	96.5	40.9	0.1
A2124	ASSAM Anth. 011 430%	0.75	0.78	590	96.0	37.9	0.1
A2116	ASSAM Anth. 0:1 450%	0.83	0.84	490	93,8	35.7	0.1
A2222	SAMLA Anth. 0:1 410%	0.74	0.78	009	97.9	55.2	0.1
A2224	SAMLA Anth. 0il 430°C	0.78	0.81	510	96.8	49.6	0.1
A2216	SAMLA Anth. 011 450°C	0.82	0.85	470	96.3	44.9	0.1
A3101	ASSAM Anth. 011 4300	0.75	0.79	700	95.7	37.0	<0.1
A3107	ASSAM Recycle I 430°C	0.74	0.77	640	89.5	31.8	<0.1
A3123	ASSAM Recycle II 430%	0.75	0.76	620	89.8	30.4	0.1
A3131	ASSAM Recycle II 4300	0.73	0.76	590	91.0	30.5	0.1

Table 3.3.14 ANALYSIS OF RESIDUE (1)

RESIDUE	Test	Test Condition	nit	timate An	Analysis	( daf ;wt%	t% )	Proximate	Analysis	(dry; wt%)	Calorif, Value
Exper. NO.	Coa1	Solvent Temp.	O O	田	Z	S	0	Ash	V. M.	F. C.	(dry base) (kcal/kg)
A1106	ASSAW	Tetralin 430°C	රී 64. 5	4.1	1.5	17.9	12.0	74.8	10.0	15.2	2440
A1206	SAMLA	Tetralin 430%	80. 6	4.6	2.3	4.6	7.9	61.9	11.7	26.4	3020
A1306	LIGNITE	l Tetralin 430°C	າ 73.5	5.6		11.0	8.8	81.0	19.0	<0.1	1980
A1406	ARGADA	Tetralin 4300	ຕ 75. 5	4.7	1.5	رب م	14.6	61.5	13.1	25.4	2820
A1506	0. A. mid	O. A. midd. Tetralin 4300	t 85.0	4.9	1.8	2.7	5.6	51.8	13.7	34.5	3900
A2122	ASSAM	Anth. 011 410°	r 33.9	3.4	0.8	21.8	40.1	85.1	8.4	6.5	1540
A2124	ASSAM	Anth. 0il 4300	c 40.2	3.6	1.2	21.2	33.8	83.8	7.7	80 FC	1790
A2116	ASSAM	Anth. 0il 450°	0.69° c	4.0	1.5	18.8	6.1	72.0	10.0	18.0	2860
A2222	SAMLA	Anth. 0il 410°	c 84.1	4.6	2.7	3.4	5.2	50.3	14.2	35.5	3980
A 2 2 2 4	SAMLA	Anth. 011 4300	C 84.4	4.6	2.6	 7	4.7	52.5	12.9	34.6	3840
A2216	SAMLA	Anth. 0il 450°	C 85.4	4.4	2.6	3.7	6 6	52.3	10.6	37.1	3890
A3101	ASSAN	Anth. 0il-430%	c 26.3	4.2	0.9	23. 2	45.4	85.8	8.7	ເນ	1580
A3107	ASSAM	Recycle I 4300	38.2	4.4	1.0	21.7	34.7	85.6	7.5	6.9	1680
A3123	ASSAM	Recycle II 430°C	0 33.0	3.8	0.9	21.8	40.5	86.6	7.3	6.1	1580
A3131	ASSAM	Recycle III 430%	35.1	4.0	0.8	21.9	38. 2	86.6	7.4	6.0	1320

Table 3.3.15 ANALYSIS OF RESIDUE (2)

Table 3.3.16 ANALYSIS OF SRC FOR COKE PRODUCTION TEST

SRC Sample		Test Condition	<u> </u>	Ult	Ultimate Analysis	alysis	( daf ; wt% )	t% )	Proximate	Proximate Analysis (dry; wt%)	(dry; wt%)	Calorif, Value
Exper. NO.	Coa1	Coal Solvent Ter	Temp.	၁	н	N,	ဟ	0	Ash	V. X.	F. C.	(dry base) (kcal/kg)
\$2122	ASSAM	S 2 1 2 2 ASSAM Anth. 011 4100	410t	87.1	6.4	1.5	0.9	4.1		37.3	82.7	8750
S 2 1 2 4	ASSAM	S 2 1 2 4 ASSAN Anth. 0il 4300	430°	87.9	.s	1.6	0.8	3.9	1	32.9	67.1	8800
S 2 1 1 6 ASSAM	ASSAM	Anth. 0il 450	<u>د</u> ع	89.6	5.4	1.7	0.6	2.7	1	28.5	71.5	8800
\$2222	SAMLA	SAMLA Anth. 0il 4100	410°C	86.8	5.9	2.9	0.3	4.1	li. I	32.3	67.7	8640
\$2224	SAMLA	SAMLA Anth. 0il 430%	430£	87.9	5.5	3.1	0.2		1	28.5	71.5	8690
\$2216	SAMLA	S 2 2 1 6 SAMLA Anth. 0il 450	450°C	89.3	5.2	3.2	0.2	2.1	1	26.7	73.3	8670
83101	ASSAM	S 3 1 0 1 ASSAM Anth. 011 430	430t	87.6		1,6	0.7	4.6		32.3	67.7	8740

:				•		* 14.			
	Solvent-Insoluble Content(#t%)	I O	0.1	0.1	0.1	0.1	0.1	0.2	0.2
	Insoluble C	TI	36.5	34.6	39.0	50.2	50.4	41.4	35.0
	Solvent-I	H	96.5	92.7	96. 1	98.3	98.5	98.2	95.3
	Softening	( 0, )	227	208	193	245	224	209	210
	Specific	(at 20t)	1.225	1.240	1.262	1.234	1.257	1.264	1.250
	Test Condition	Coal Solvent Temp. (at 200	ASSAM Anth. 0il 410°C	S 2 1 2 4 ASSAM Anth, 0il 430t 1.240	ASSAM Anth. 0il 450%	SAMLA Anth. 011 4100	SAMLA Anth. 011 430%	SAMLA Anth. 0il 450%	ASSAM Anth. 0il 430% 1.250
	SRC Sample	Exper. NO.	\$2122	\$2124	\$2116	82222	\$2224	S 2 2 1 6 SAMLA	S 3 1 0 1 ASSAM

Table 3.3.17 ANALYSIS OF COAL SOLUTION AND FILTRATE

Coal         Solvent Temp, Moisture(wt%)         Sp. Gr. (2007)         Vis. (cP)         Sp. Gr. (2007)           6         ASSAM         Tetralin 430°         1.3         1.027         11.1         1.014           6         SAMIA         Tetralin 430°         2.3         1.054         14.2         1.003           6         LIGNITE         Tetralin 430°         3.5         1.014         11.0         1.002           6         ARGADA         Tetralin 430°         0.5         1.067         18.3         1.002           7         ASSAM         Anth. 011 410°         1.1         1.105         72.9         1.111           8         ASSAM         Anth. 011 430°         1.3         1.089         38.8         1.096           8         SAMIA         Anth. 011 430°         1.9         1.138         51.4         1.096           8         SAMIA         Anth. 011 450°         2.1         1.136         45.5         1.091           9         SAMIA         Anth. 011 450°         2.3         1.136         32.5         1.095           1         ASSAM         Anth. 011 450°         2.3         1.131         32.5         1.095           2         SAMIA </th <th>Coal Sol.</th> <th>Test C</th> <th>Condition</th> <th></th> <th>Coal Solution</th> <th></th> <th>Filtrate</th> <th>a te</th>	Coal Sol.	Test C	Condition		Coal Solution		Filtrate	a te
11 0 6         ASSAM         Tetralin 430¢         1.3         1.027         11.1         1.014           12 0 6         SAMIA         Tetralin 430¢         2.3         1.054         14.2         1.003           13 0 6         LIGNITE         Tetralin 430¢         3.5         1.014         11.0         1.002           14 0 6         ARGADA         Tetralin 430¢         1.5         1.067         18.3         1.002           15 0 6         LIGNITE         Tetralin 430¢         0.5         1.067         18.3         1.002           15 0 6         ARGADA         Tetralin 430¢         0.5         1.065         8.5         0.985           21 2 2         ASSAM         Anth. 0il 450¢         1.3         1.089         38.8         1.096           2 2 2 2         SAMLA         Anth. 0il 450¢         1.3         1.186         45.5         1.096           2 2 2 2         SAMLA         Anth. 0il 450¢         2.1         1.186         45.5         1.096           2 2 2 2         SAMLA         Anth. 0il 450¢         2.3         1.186         38.8         1.095           3 1 0 1         ASSAM         Anth. 0il 450¢         2.3         1.181         38.8         1.095	zitiate kper. NO.	Coa1	lvent		Sp. Gr. (20°)	Vis. (cP)		Vis. (cP)
12 06         SAMLA Tetralin 430°         2.3         1.054         14.2         1.003           13 06         LIGNITE Tetralin 430°         3.5         1.014         11.0         1.000           14 06         ARGADA Tetralin 430°         1.5         1.067         18.3         1.002           15 06         0.A.midd. Tetralin 430°         0.5         1.015         8.5         0.985           2 1 2 2         ASSAM         Anth. 0il 430°         1.1         1.099         38.8         1.096           2 1 2 4         ASSAM         Anth. 0il 450°         1.3         1.089         38.8         1.096           2 2 2 2         SAMLA         Anth. 0il 450°         2.1         1.186         45.5         1.086           2 2 2 4         SAMLA         Anth. 0il 450°         2.3         1.181         32.5         1.086           2 2 1 6         SAMLA         Anth. 0il 450°         2.3         1.181         32.5         1.086           2 2 1 6         SAMLA         Anth. 0il 450°         2.3         1.181         32.5         1.088           3 1 0 1         ASSAM         Rath. 0il 450°         1.2         1.099         34.9         1.089           3 1 2 3         ASSA	110	ASSAW	tralin	1.3	1.027		1.014	8.0
1.3 06       LIGNITE Tetralin 430°C       3.5       1.014       11.0       1.000       1.000         1.4 06       ARGADA Tetralin 430°C       1.5       1.067       18.3       1.002       1.002         1.5 0.6       0.A.midd. Tetralin 430°C       0.5       1.015       8.5       0.985       1.111       1.1         2.1 2.2       ASSAM Anth. 0il 410°C       1.1       1.099       38.8       1.095       1.111       1         2.1 2.4       ASSAM Anth. 0il 450°C       1.3       1.089       18.5       1.096       1         2.2 2.2       SAWLA Anth. 0il 450°C       2.1       1.136       45.5       1.096       1         2.2 2.4       SAWLA Anth. 0il 450°C       2.1       1.136       32.5       1.086       1         3.1 0.1       ASSAM Anth. 0il 450°C       2.3       1.131       32.5       1.089       1.085         3.1 0.1       ASSAM Recycle 1430°C       1.1       1.099       34.9       1.089       1.089         3.1 3.1       ASSAM Recycle II 430°C       1.1       1.082       35.0       1.086       1.077       38.0       1.076	2 0	SAMLA	Tetralin 430°C	2.3	1.054		1.003	: :
1 4 0 6         ARGADA Tetralin 430°         1.5         1.067         18.3         1.002           1 5 0 6         0.A midd. Tetralin 430°         0.5         1.015         8.5         0.985           2 1 2 2         ASSAM         Anth. 0il 410°         1.1         1.099         38.8         1.095           2 1 2 4         ASSAM         Anth. 0il 450°         1.3         1.089         18.5         1.090           2 2 2 2         SAMLA         Anth. 0il 450°         2.1         1.138         51.4         1.096           2 2 2 2         SAMLA         Anth. 0il 450°         2.1         1.136         45.5         1.096           2 2 2 4         SAMLA         Anth. 0il 450°         2.3         1.131         32.5         1.089           3 1 0 1         ASSAM         Anth. 0il 450°         2.3         1.131         32.5         1.089           3 1 0 7         ASSAM         Anth. 0il 450°         1.1         1.092         34.9         1.089           3 1 2 3         ASSAM         Recycle II 430°         1.1         1.082         34.9         1.089           3 1 3 1         ASSAM         Recycle III 430°         1.1         1.082         34.9         1.089 <td>3 0</td> <td>LIGNITE</td> <td>tralin</td> <td>3.5</td> <td>1.014</td> <td></td> <td>1.000</td> <td>6.9</td>	3 0	LIGNITE	tralin	3.5	1.014		1.000	6.9
1 5 0 6       0.A.midd. Tetralin 430°       0.5       1.015       8.5       0.985       1.111       1.105       72.9       1.111       1.1         2 1 2 4       ASSAM       Anth. 0il 430°       1.1       1.099       38.8       1.095       1.090         2 1 1 6       ASSAM       Anth. 0il 450°       1.3       1.089       18.5       1.090       1.090         2 2 2 2       SAMLA       Anth. 0il 450°       2.1       1.136       45.5       1.091       1.086         2 2 1 6       SAMLA       Anth. 0il 450°       2.3       1.131       32.5       1.086       1.086         3 1 0 1       ASSAM       Anth. 0il 450°       2.3       1.131       32.5       1.086       1.089         3 1 0 1       ASSAM       Anth. 0il 450°       1.2       1.099       38.8       1.095       1.089         3 1 0 1       ASSAM       Recycle 1430°       1.1       1.082       34.9       1.089       1.089         3 1 3 1       ASSAM       Recycle II 430°       1.1       1.077       36.0       1.076       1.076	4 0	ARGADA	tralin		1.067		1.002	
2 1 2 2         ASSAM         Anth. 0il 410°         1.1         1.105         72.9         1.111         1           2 1 2 4         ASSAM         Anth. 0il 430°         1.1         1.099         38.8         1.090         1.095           2 1 1 6         ASSAM         Anth. 0il 450°         1.3         1.089         18.5         1.090         1.090           2 2 2 2         SAMLA         Anth. 0il 450°         2.1         1.136         45.5         1.091         1.086           2 2 2 4         SAMLA         Anth. 0il 450°         2.3         1.131         32.5         1.088         1.088           2 2 1 6         SAMLA         Anth. 0il 450°         2.3         1.131         32.5         1.088         1.088           3 1 0 1         ASSAM         Recycle 1430°         1.1         1.099         38.8         1.089         1.089           3 1 2 3         ASSAM         Recycle II 430°         1.1         1.082         35.0         1.089         1.077         36.0         1.076         1.076	5 0	O.A.midd	Tetralin	0.5	1.015			ت. 
2 1 2 4         ASSAM         Anth. 0il 430°C         1.1         1.099         38.8         1.095           2 1 1 6         ASSAM         Anth. 0il 450°C         1.3         1.089         18.5         1.090           2 2 2 2         SANLA         Anth. 0il 450°C         2.1         1.136         45.5         1.096           2 2 2 4         SANLA         Anth. 0il 450°C         2.3         1.131         32.5         1.088           2 2 1 6         SANLA         Anth. 0il 450°C         2.3         1.131         32.5         1.088           3 1 0 1         ASSAM         Anth. 0il 450°C         1.2         1.099         34.9         1.089           3 1 2 3         ASSAM         Recycle 1430°C         1.1         1.082         35.0         1.082           3 1 3 1         ASSAM         Recycle II 430°C         1.1         1.077         36.0         1.076	212		th, 0il	1.1	1.105			109.0
2 1 1 6       ASSAN       Anth. 0il 450°       1.3       1.089       18.5       1.090         2 2 2 2       SANLA       Anth. 0il 410°       1.9       1.138       51.4       1.096       1.096         2 2 2 2       SANLA       Anth. 0il 430°       2.1       1.136       45.5       1.091       1.088         2 2 1 6       SANLA       Anth. 0il 450°       2.3       1.181       32.5       1.088       1.095         3 1 0 1       ASSAN       Anth. 0il 430°       1.2       1.099       38.8       1.095       1.089         3 1 0 7       ASSAN       Recycle II 430°       1.1       1.082       34.9       1.089         3 1 2 3       ASSAN       Recycle II 430°       1.1       1.082       35.0       1.082         3 1 3 1       ASSAN       Recycle II 430°       1.1       1.082       35.0       1.082	212	ASSAM	Anth, 0il 430°	Ţ.Ţ	1.099		1.095	42.5
2 2 2 2       SAMLA       Anth. 0il 410°       1.9       1.138       51.4       1.096       1.096         2 2 2 4       SAMLA       Anth. 0il 430°       2.1       1.136       45.5       1.091       1.088         2 2 1 6       SAMLA       Anth. 0il 450°       2.3       1.131       32.5       1.088       1.088         3 1 0 1       ASSAM       Anth. 0il 430°       1.2       1.099       38.8       1.095       1.089         3 1 2 3       ASSAM       Recycle II 430°       1.1       1.082       35.0       1.082       1.082         3 1 3 1       ASSAM       Recycle III 430°       1.1       1.077       36.0       1.076       1.076	211	ASSAN	Anth. 0il 450°C	1.3	1.089		1.090	20.0
2 2 2 4       SAMLA       Anth. 0il 430°       2.1       1.136       45.5       1.091       7.091         2 2 1 6       SAMLA       Anth. 0il 450°       2.3       1.131       32.5       1.088       1.088         3 1 0 1       ASSAM       Anth. 0il 430°       1.2       1.099       38.8       1.095       1.089         3 1 0 7       ASSAM       Recycle II 430°       1.1       1.082       34.9       1.089         3 1 2 3       ASSAM       Recycle II 430°       1.1       1.082       1.082       1.082         3 1 3 1       ASSAM       Recycle III 430°       1.1       1.077       36.0       1.076	222	SAMLA	Anth. 0:1 4100	1.9	1.138		1.096	43.4
2 2 1 6       SAMLA       Anth. 0il 450°       2.3       1.131       32.5       1.088         3 1 0 1       ASSAM       Anth. 0il 430°       1.2       1.099       38.8       1.095         3 1 0 7       ASSAM       Recycle 1 430°       1.1       1.092       34.9       1.089         3 1 2 3       ASSAM       Recycle 1 430°       1.1       1.082       35.0       1.082         3 1 3 1       ASSAM       Recycle 1 430°       1.2       1.077       36.0       1.076	2 2 2		th. 0il	2.1	1.136	l l	1.091	27.8
3 1 0 1       ASSAM       Anth. 0il 430°C       1.2       1.099       38.8       1.095         3 1 0 7       ASSAM       Recycle I 430°C       1.1       1.092       34.9       1.089         3 1 2 3       ASSAM       Recycle II 430°C       1.1       1.082       35.0       1.082         3 1 3 1       ASSAM       Recycle III 430°C       1.2       1.077       36.0       1.076	221	SAMLA	th. 0i1		1.131			21.1
3 1 0 7         ASSAM         Recycle 1 430°T         1.1         1.092         34.9         1.089           3 1 2 3         ASSAM         Recycle II 430°T         1.1         1.082         35.0         1.082           3 1 3 1         ASSAM         Recycle III 430°T         1.2         1.077         36.0         1.076	310	ASSAW	th. 0i1		1.099			42.5
3123 ASSAM Recycle II 430	310	ASSAM	Recycle I 430°	1.1	1.092		1.089	43.9
3131 ASSAN RecycleM 430% 1.2 1.077 36.0 1.076	312	ASSAЖ	Recycle II 430°C	1.1	1.082		1.082	42.1
	313	ASSAM	Recycle M 430°	1.2	1.077	36.0	1.076	44.5

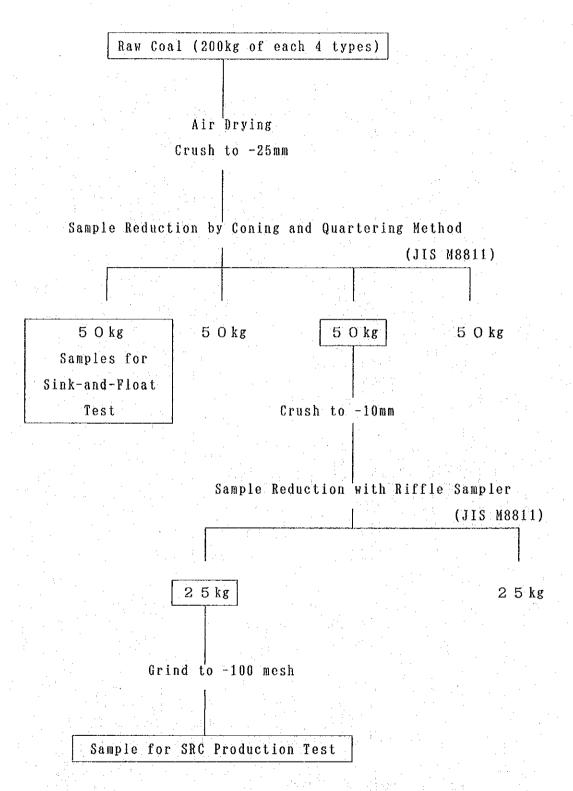



Figure 3.3.1 SAMPLE REDUCTION METHOD FOR COAL SAMPLES

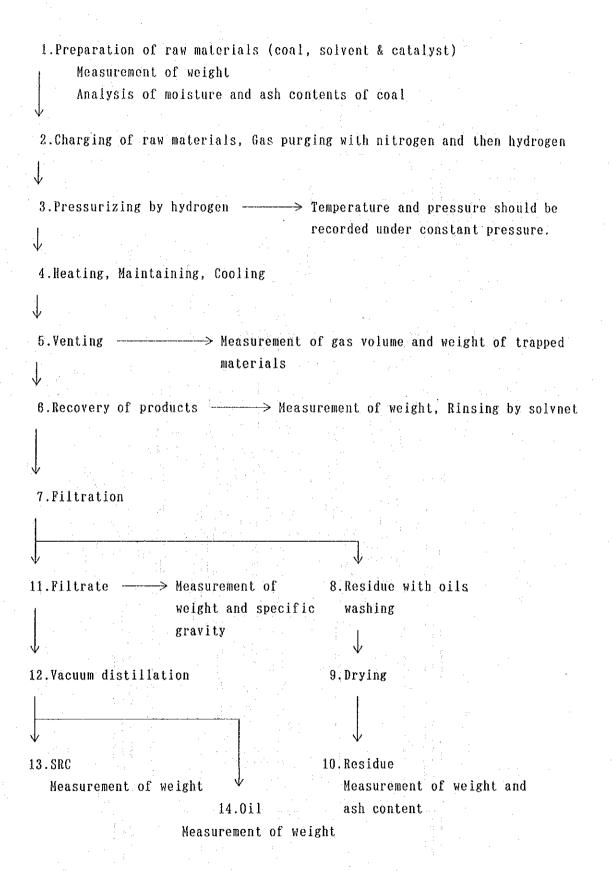



Figure 3.3.2 FLOW DIAGRAM OF SRC PRODUCTION TEST

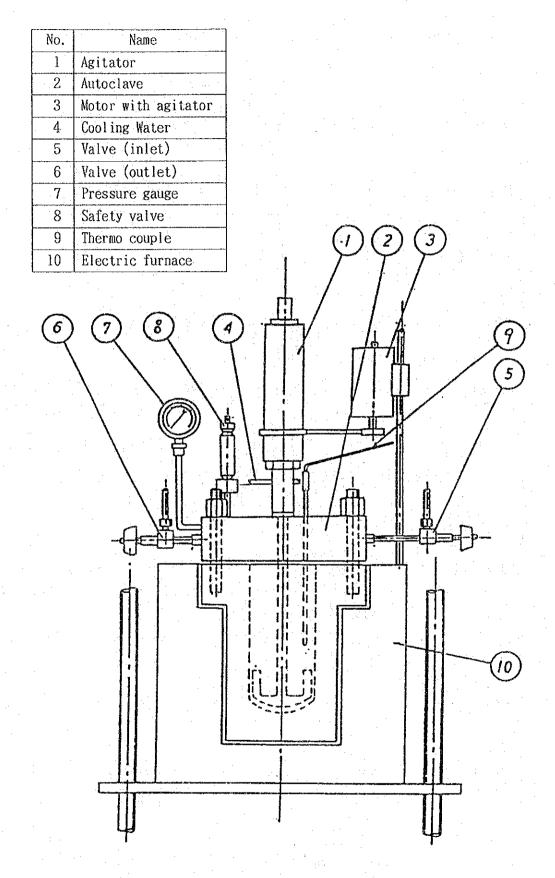



Figure 3.3.3 AUTOCLAVE APPARATUS

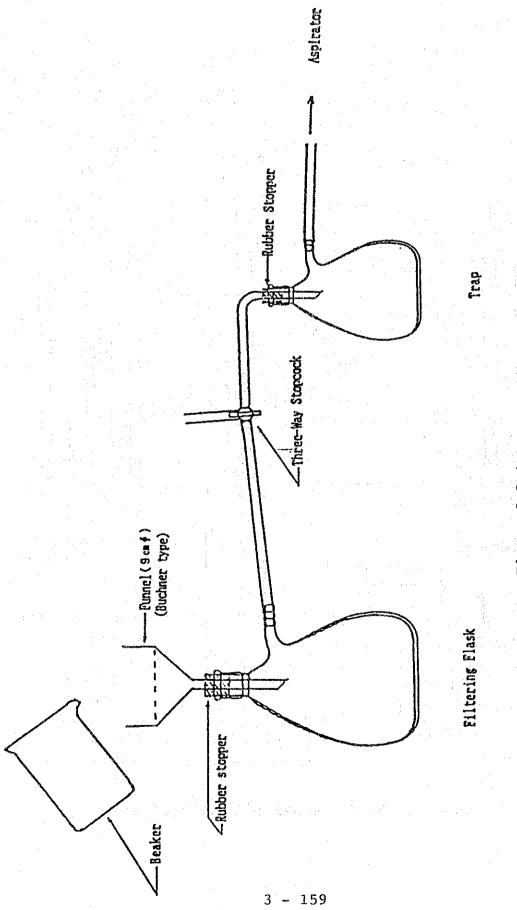



Figure 3.3.4 FILTERING APPARATUS

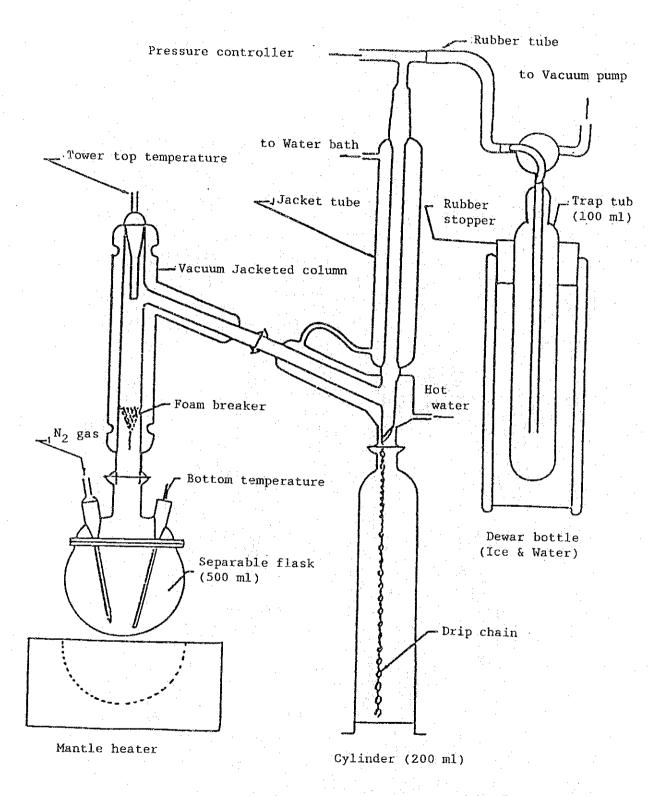



Figure 3.3.5 FULLY AUTOMATIC VACUUM DISTILLATION APPARATUS

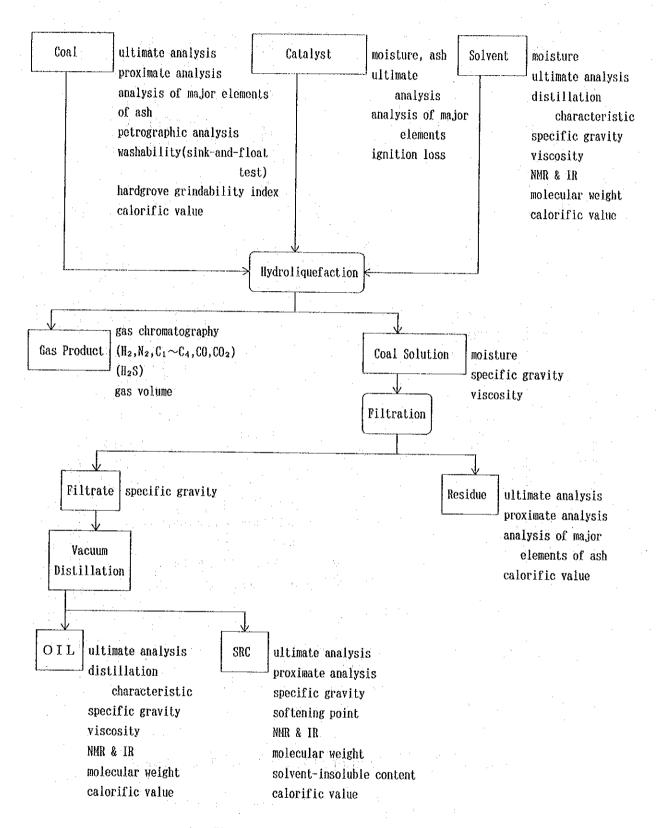



Figure 3.3.6 ITEMS OF ANALYSIS

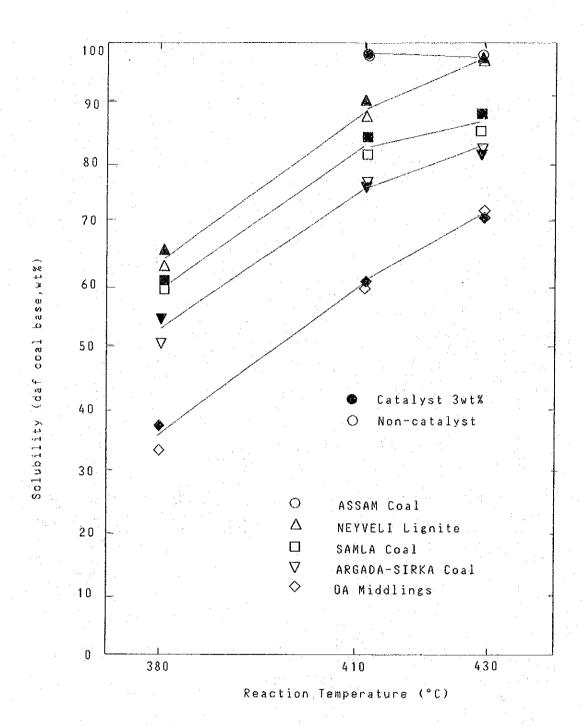



Figure 3.3.7 SOLUBILITY OF VARIOUS COALS

(Condition:Tetralin-60min-100Kg/cm²G)

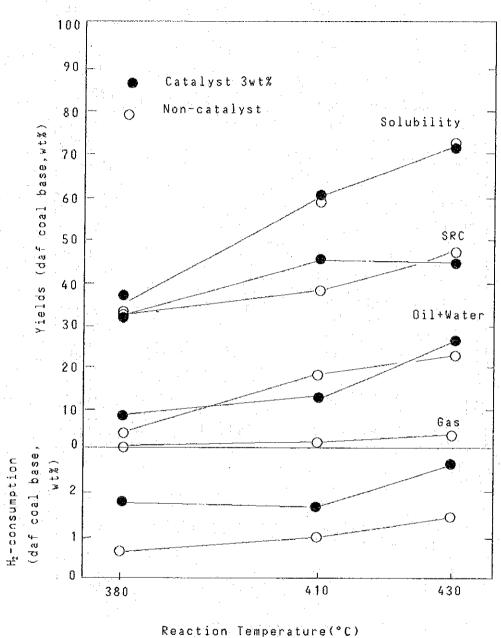
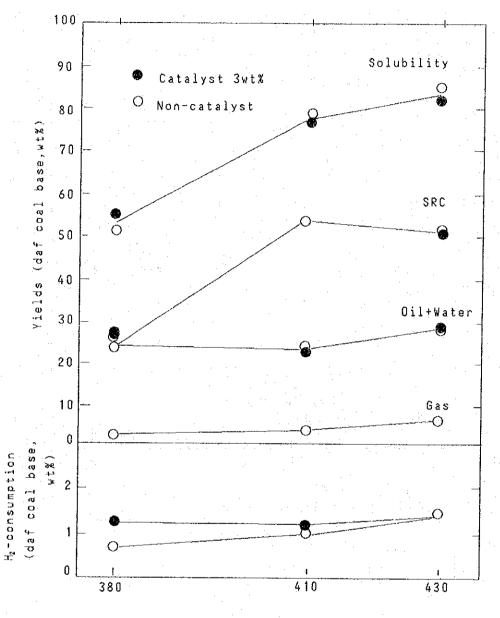
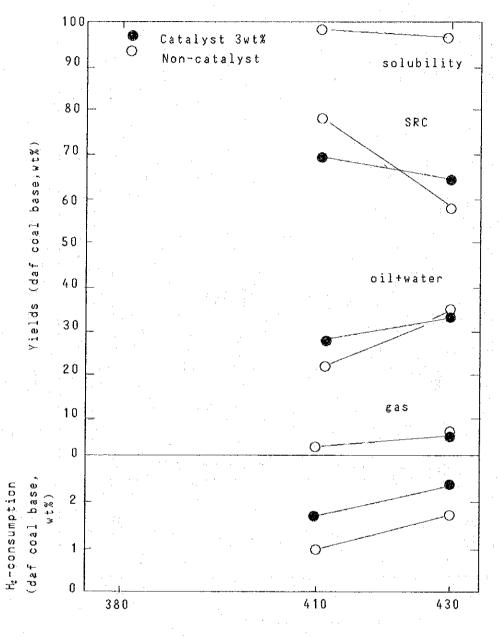




Figure 3.3.8 YIELDS OF OA MIDDLINGS


(Condition: Tetralin-60min-100Kg/cm2G)



Reaction Temperature(°C)

Figure 3.3.9 YIELDS OF ARGADA-SIRKA COAL

(Condition: Tetralin-60min-100Kg/cm²G)



Reaction Temperature(°C)

Figure 3.3.10 YIELDS OF ASSAM COAL

(Condition: Tetralin-60min-100Kg/cm²6)

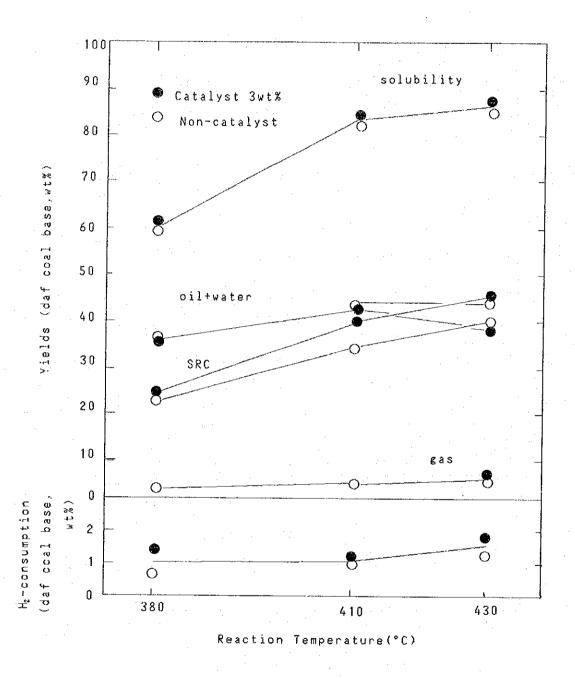



Figure 3.3.11 YIELDS OF SAMLA COAL

(Condition: Tetralin-60min-100Kg/cm²G)



Figure 3.3.12 YIELDS OF NEYVELI LIGNITE

(Condition:Tetralin-60min-100Kg/cm²G)

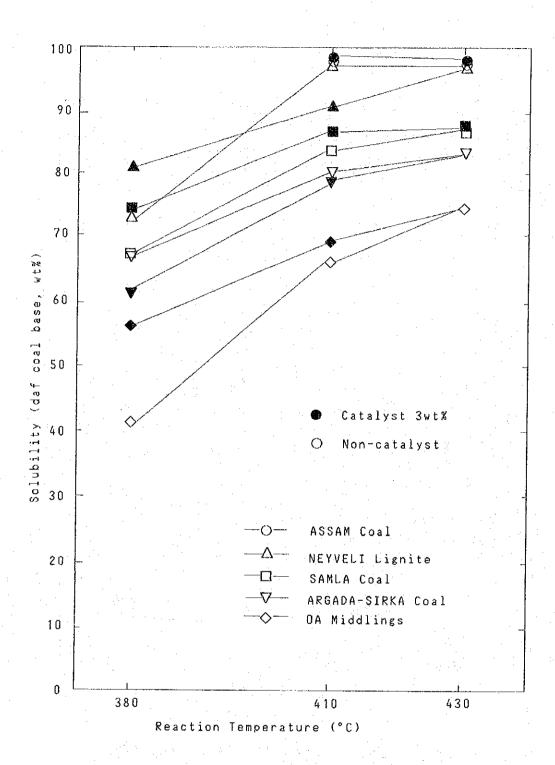



Figure 3.3.13 SOLUBILITY OF VARIOUS COALS

(Condition: Tetralin-90min-100Kg/cm²G)

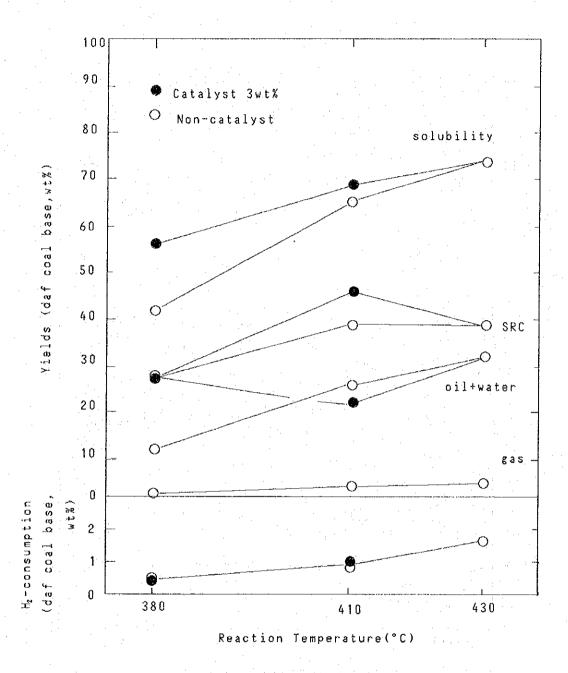



Figure 3.3.14 YIELDS OF OA MIDDLINGS

(Condition:Tetralin-90min-100Kg/cm2G)

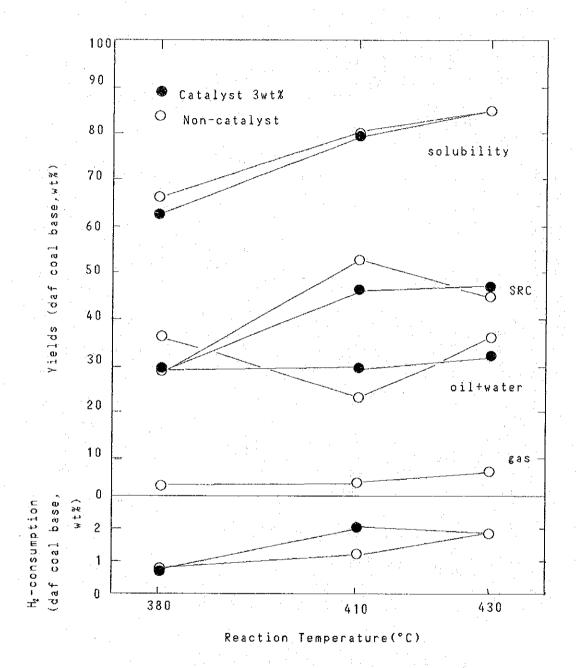



Figure 3.3.15 YIELDS OF ARGADA-SIRKA COAL

(Condition:Tetralin-90min-100Kg/cm²G)

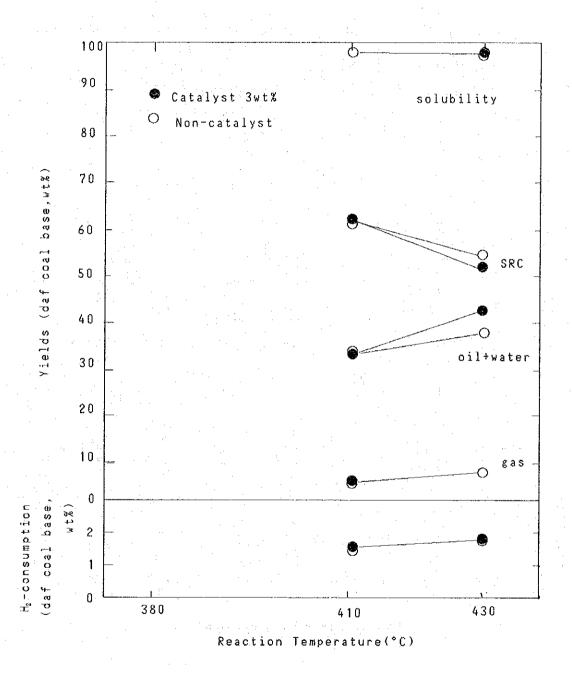



Figure 3.3.16 YIELDS OF ASSAM COAL

(Condition: Tetral in -90 min -  $100 \, \text{Kg/cm}^2 \, \text{G}$ )

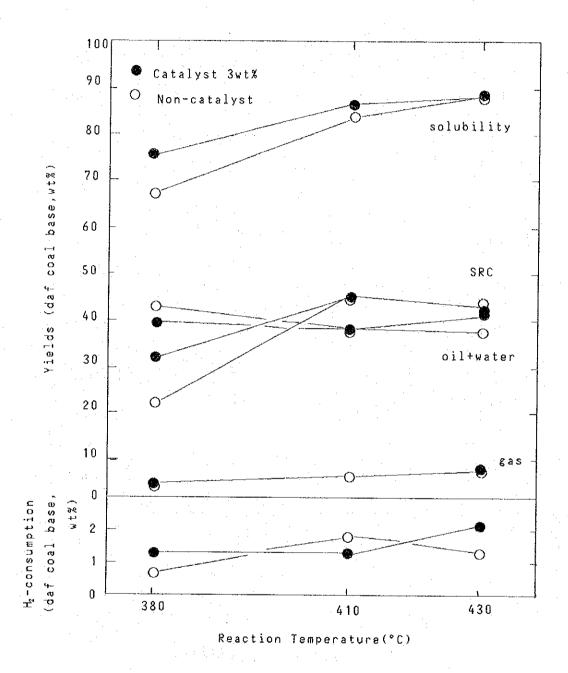



Figure 3.3.17 YIELDS OF SAMLA COAL

(Condition: Tetralin-90min-100Kg/cm²G)

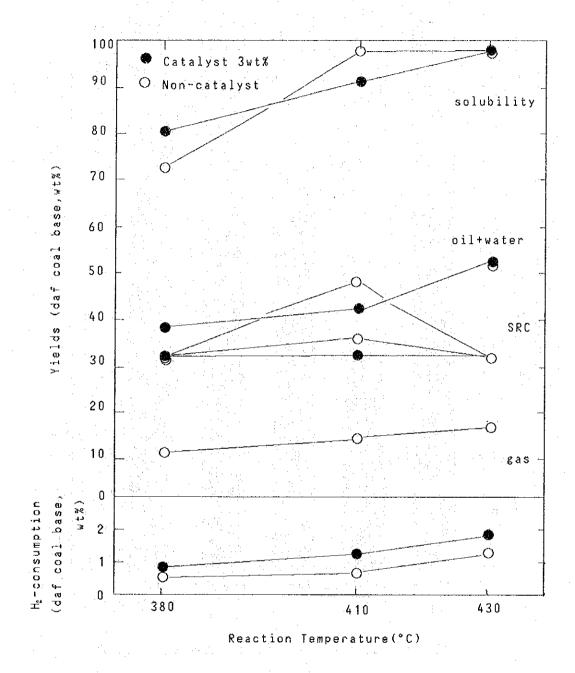



Figure 3.3.18 YIELDS OF NEYVELI LIGNITE

(Condition: Tetralin-90min-100Kg/cm²G)

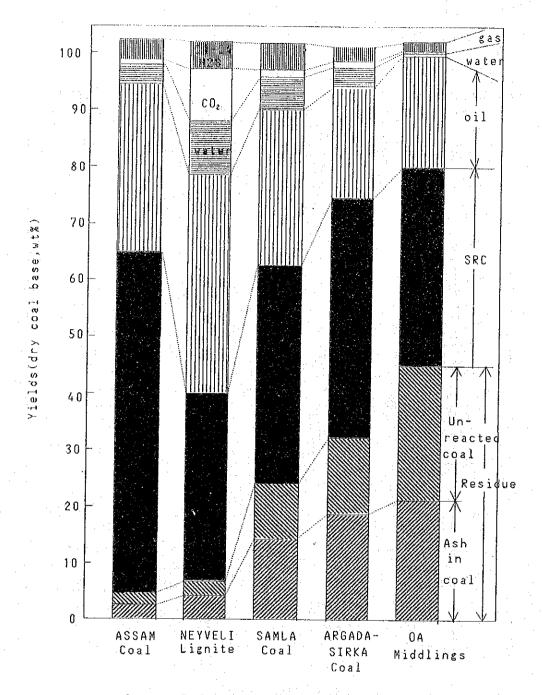



Figure 3.3.19 YIELDS OF VARIOUS COALS

(Condition:Tetralin-430°C-60min-100Kg/cm²G)

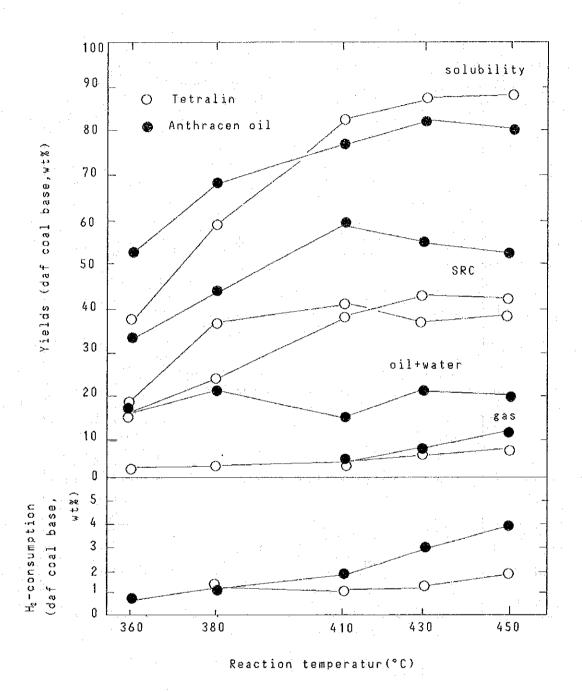



Figure 3.3.20 INFLUENCE OF REACTION TEMPERATURE (SAMLA COAL)

(Condition: 60min-100Kg/cm2G-3wt%-100%)

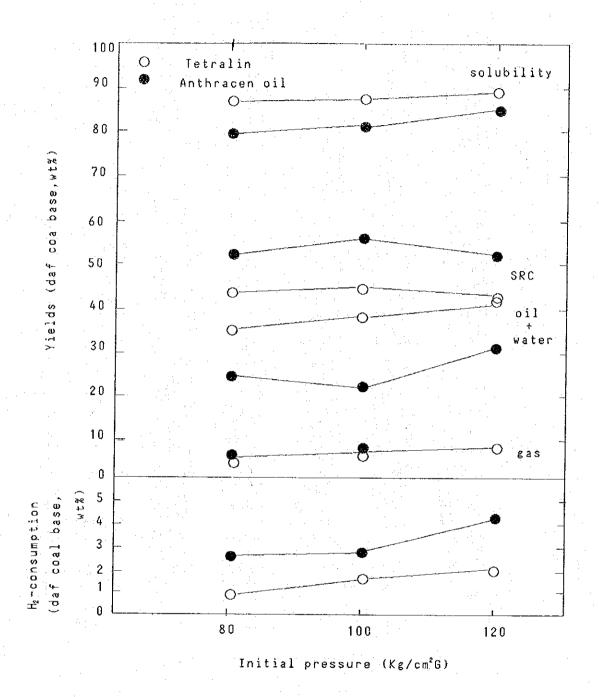



Figure 3.3.21 INFLUENCE OF INITIAL PRESSURE (SAMLA COAL)

(Condition: 430°C-60min-3wt%-100%)

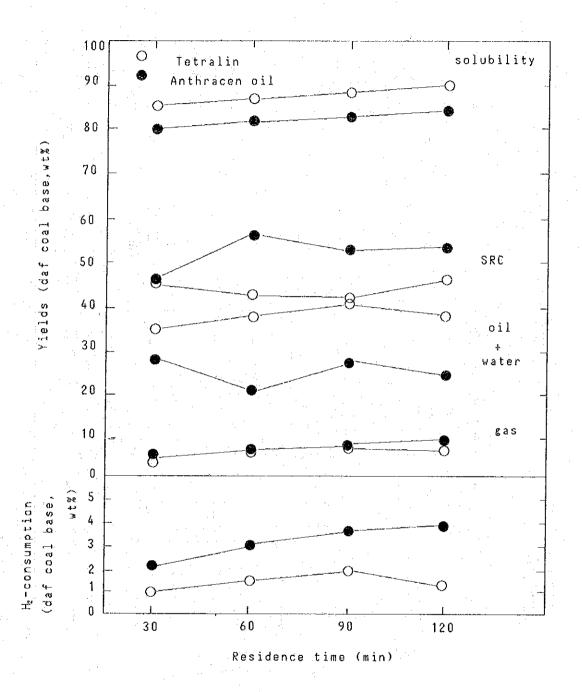



Figure 3.3.22 INFLUENCE OF RESIDENCE TIME (SAMLA COAL)

(Condition: 430°C-100Kg/cm2G-3wt%-100%)

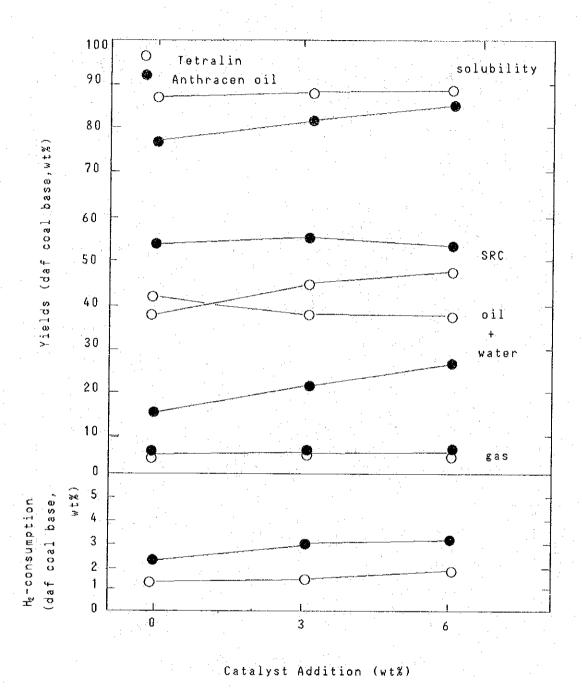



Figure 3.3.23 INFLUENCE OF CATALYST ADDITION (SAMLA COAL)

(Condition: 430°C-60min-100Kg/cm²G-100%)

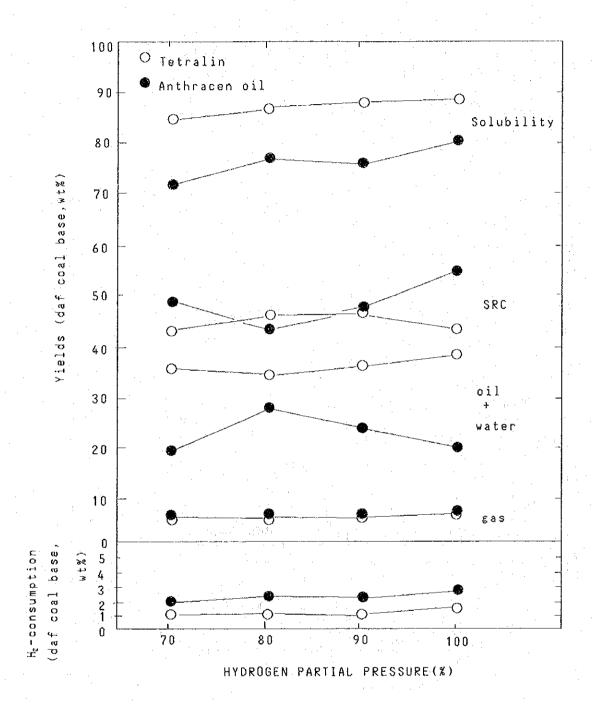



Figure 3.3.24 INFLUENCE OF HYDROGEN PARTIAL PRESSURE (SAMLA COAL)

(Condition:  $430^{\circ}\text{C}-60\text{min}-100\text{Kg/cm}^2\text{G}-3\text{wt\%}$ )

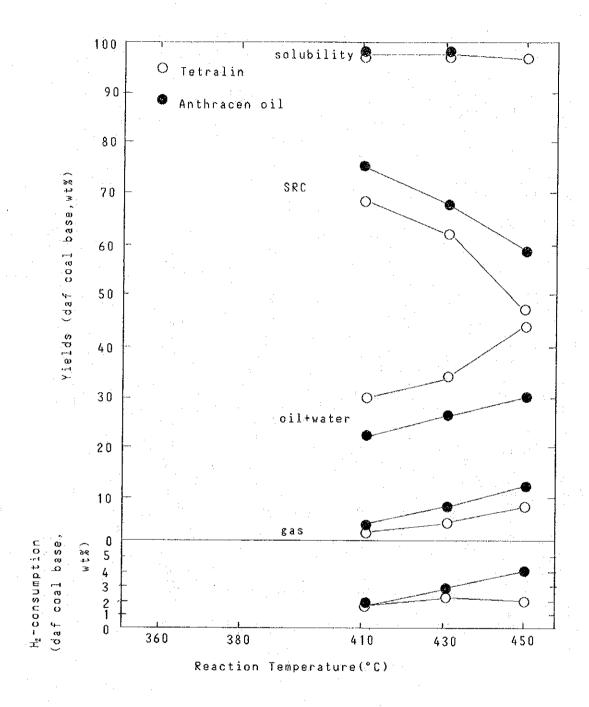



Figure 3.3.25 INFLUENCE OF REACTION TEMPERATURE (ASSAM COAL)

(Condition: 60min-100Kg/cm²6-3wt%-100%)

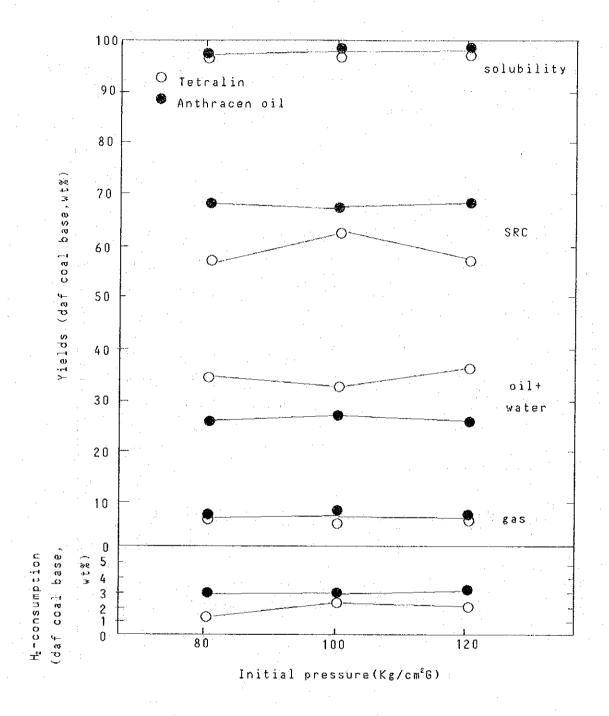



Figure 3.3.26 INFLUENCE OF INITIAL PRESSURE (ASSAM COAL)

(Condition: 430°C-60min-3wt%-100%)

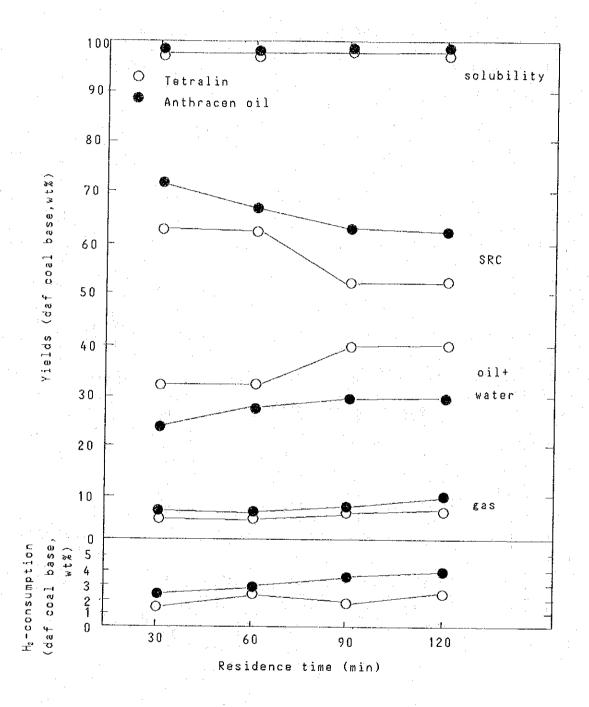



Figure 3.3.27 INFLUENCE OF RESIDENCE TIME (ASSAM COAL)

(Condition: 430°C-100Kg/cm²G-3wt%-100%)

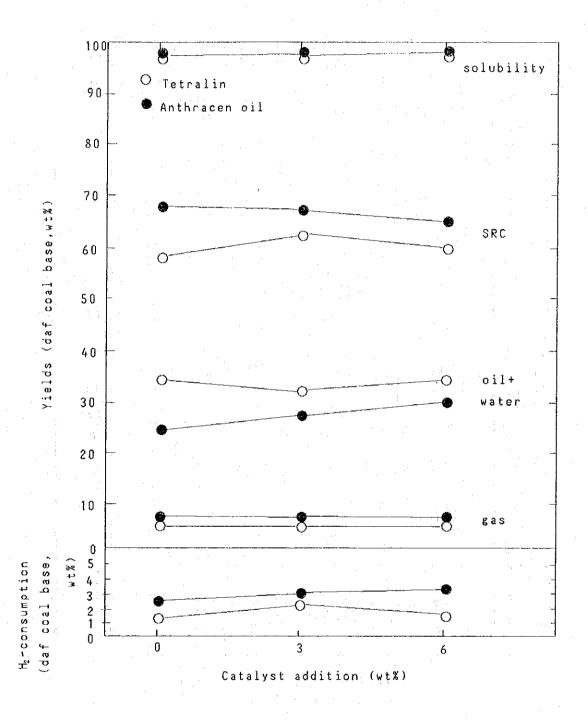



Figure 3.3.28 INFLUENCE OF CATALYST ADDITION (ASSAM COAL)

(Condition: 430°C-60min-100Kg/cm2G-100%)

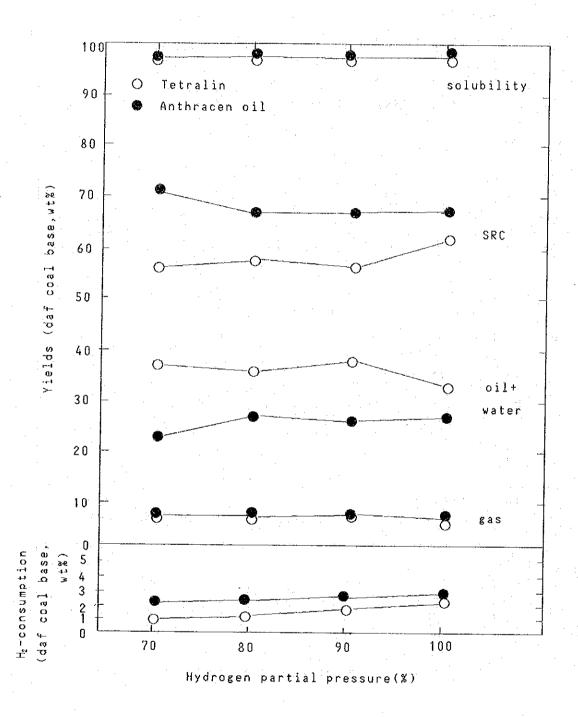



Figure 3.3.29 INFLUENCE OF HYDROGEN PARTIAL PRESSURE (ASSAM COAL)

(Condition: 430°C-60min-100Kg/cm²G-3wt%)

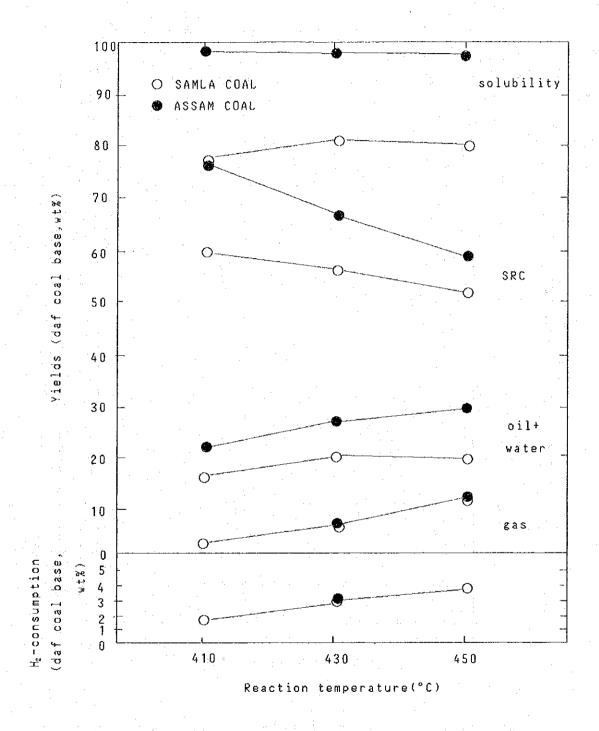



Figure 3.3.30 YIELDS OF SAMLA AND ASSAM COAL

(Condition: Anthracene oil-60min-100Kg/cm2G-3wt%-100%)

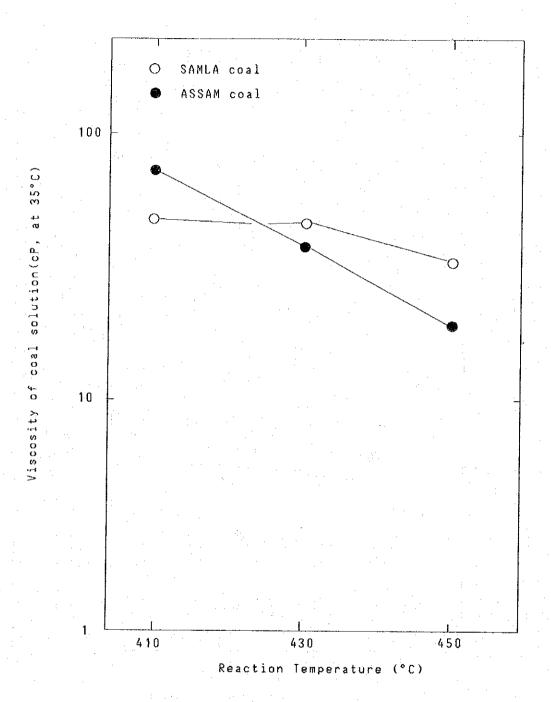



Figure 3.3.31 RELATION BETWEEN REACTION TEMPERATURE
AND VISCOSITY OF COAL SOLUTION

(Condition: Anthracen oil-60min-100Kg/cm2G-3wt%-100%)

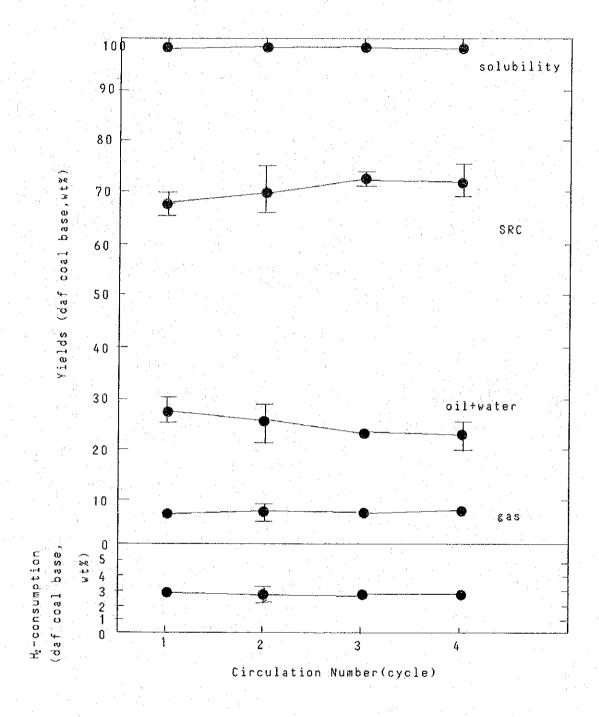



Figure 3.3.32 RELATION BETWEEN CIRCULATION NUMBER OF SOLVENT AND YIELDS OF ASSAM COAL

(Condition: 430°C-60min-100Kg/cm2G-3wt%-100%)



### Chapter 4 COKE PRODUCTION TEST USING SRC

### 4.1 Objectives and Scope of Study

To evaluate, through coke production tests, the effects of blending SRC with the coal used at the Indian steel plant which is scheduled to employ SRC.

- (I) To determine whether SRC increases the coke strength (performative evaluation of SRC as a caking additive) and to select the SRC feed stock coal.
- (II)To determine the possibility of blending non-coking coal with SRC for the substitute of coking coal (maintaining existing levels of coke strength).

This chapter describes the following:

- (1) Experimental Method of Coke Production Test (evaluation method)
- (2) Current Situation of Coke Production at the steel plant which is scheduled to use SRC. (present coke strength)
- (3) Coke Production Test using SRC (1) to determine the effect of increase of coke strength by using SRC and to select the SRC feedstock coal.
- (4) Coke Production Test using SRC (2) to determine the possibility of blending non-coking coal with SRC for the substitution of coking coal.

## 4.2 Experimental Method of Coke Production Test

- 4.2.1 Methods for Evaluating Coke Strength
  - (1) Policy on Evaluation of Coke Strength

As the amount of SRC for the coke production tests is very small, the production test was conducted using a 500 g Carbonization Test Oven.

It is possible to forecast the performance in an actual coke oven by an initial conversion of the coke strength by the 500 g carbonization oven tests to Simulated Coke Oven (SCO) strength. Since the relation of SCO to actual oven coke strength is already established the standard equations are then used for this stage of conversion. Conversion procedures are as follows:

Roga-drum strength (500 g carbonization test basis)
| conversion equation 1
Roga-drum strength (SCO basis)
| conversion equation 2
DI150 (SCO basis)
| conversion equation 3
DI150 (actual oven basis)
| conversion equation 4
M10 (actual oven basis)

(2) Examination of Conversion Method Used in Coke Production Test

In order to find the conversion equation 1 relating to the Roga-drum strength in the 500 g carbonization test oven and SCO as well as the conversion equation 2 relating to the SCO Roga-drum strength and the  ${\rm DI}_{15}^{150}$  strength, coke production tests were carried out by

500 g carbonization oven and by SCO. These tests were carried out using the same coal feed as currently used in the steel plant which is scheduled to use SRC. Also in order to cover a wide range of coke strength, supplementary carbonization tests were conducted on coal charges from three steel plants of Nippon Steel Corporation.

#### 1) Coke Production Test

The blending ratio of the coal charges used in carbonization tests is shown in Table 4.2.1. Tests were conducted on three varieties of coal charges having a 30%, 25% and 20% content of imported coal respectively. The properties of these coal charges are shown in Table 4.2.2.

Table 4.2.3 shows the results of the coke production tests using SCO. Table 4.2.4 shows the results of the coke production tests obtained using the 500 g carbonization test oven.

2) Relations between Coke Strength Indexes (Conversion Equations)

The relations between the Roga-drum strength of 500 g carbonization oven coke and the Roga-drum strength of SCO coke are shown in Figure 4.2.1. Figure 4.2.2 shows the relations between the Roga-drum strength of SCO coke and  $\mathrm{DI}_{15}^{150}$  (150 revolutions 15 mm index). From these results the following conversion equations 1 and 2 were obtained.

Conversion Equation 1

Roga-drum strength (SCO)

= 0.665 x Roga-drum strength (500 g oven) + 33.7

500g oven: 500g carbonization oven

Conversion Equation 2  $DI_{15}^{150} (SCO)$ = 0.936 x Roga-drum strength (SCO) + 0.4

The conversion equations 3 and 4 have already been established as follows:

Conversion Equation 3  $DI_{15}^{150}$  (actual oven) = 0.884 x  $DI_{15}^{150}$  (SCO) + 11.9

Conversion Equation 4  $M_{10}$  (actual oven)  $= -0.43 \times DI_{15}^{150}$  (actual oven) + 42.5

# 4.2.2 Testing Methods

- (1) Method of Carbonization Test
  - 1) 500 g Carbonization Oven Test

Amount of coal

charge:

500 q

Bulk density of

coal:

 $0.72 \text{ g/cm}^3$ 

Heating pattern:

Temperature of external walls of coking chamber is raised at

a rate of 3°C/min.

Coking time:

After temperature in the centre of the coal layer reaches 950°C it is maintained for one hour and then the content is discharged.

2) SCO Carbonization Test

Dimensions of carbonization

chamber:

425W X 410H X 620L(mm)

Material of

heating walls: Heating pattern: Carborundum bricks The same control of temperature increase as that of an actual

oven is used in the heating

pattern.

- (2) Methods of Testing Coke Strength
  - 1) Roga-Drum Strength Test (coke strength test)

Test Apparatus:

Strength tester for

measurements of Roga-index

(JIS M 8801)

Coke particle size: 10-20 mm

Sample quantity:

50 q

Revolutions:

3,000 rev. (50 rpm x 60 min)

Strength index:

+ 6mm wt%

2) Drum Strength (DI) Test

Using JIS K 2151.

3) Micum Strength Test

Using ISO R556.

4) CSR (Coke Strength after Reaction with CO2)

According to a testing method of Nippon Steel Corporation.

5) CRI (Coke Reactivity Index)

According to a testing method of Nippon Steel Corporation.

- (3) Other Testing Methods of Coal and Coke
  - 1) Proximate Analysis
    Using JIS M 8812.
  - 2) Ultimate Analysis
    Using JIS M 8813.
  - 3) Coal Property
    Using JIS M 8801
  - 4) Coke Property
    Using JIS K 2151.
- (4) List of Japanese Industrial Standard (JIS) Applied to This Coke Production Test

K2151-1977 Methods for Testing of Coke
K8801-1979 Methods for Testing of Coal
M8812-1984 Methods for Proximate Analysis of Coal and
Coke
M8813-1988 Methods for Ultimate Analysis of Coal and
Coke

# 4.3 Situation of Coke Production in India

# 4.3.1 Coke Production in the Steel Plant Scheduled to Use SRC

The Rourkela Steel Plant concerned in the present project for SRC use is one of the five steel plants controlled by SAIL (Steel Authority of India Ltd.) and is the fourth among these in terms of production scale.

# (1) Outline of Coal Feedstock

The coal feedstock for the coke ovens consists of prime coking coal, medium coking coal and imported coal. Six brands of prime coking coal and six brands of medium coking coal are used.

In India imported coal is blended at a ratio of 20% to 30% to obtain the necessary coke quality.

As general reference, Table 4.3.1 shows the intake of coal over one year between April, 1988 and March 1989.

#### (2) Outline of Facilities

# 1) Coal Preparation Plant

There are two tipplers which unload coal from coal wagons at a rate of 10 wagons per hour.

Approximately 70,000 tons of coal can be stored in the coal yard. Coal preparation plants are one for a 1 million ton crude steel production unit and another for a 0.8 million ton crude steel production unit. Each coal preparation plant has a twin line pulverizer. Each line is equipped with a double roll crusher and two hammer mills.

The coal preparation plant for the 1 million ton unit is equipped with a double roll crusher and a

hammer mill on standby. There are nine blending bunkers of which seven are used for blending and the remaining two are prepared to serve as service bunkers.

The coal preparation plant for the 0.8 million ton unit is equipped with two service bunkers which can operate at the same time.

## 2) Coke Ovens

There are at present four batteries of coke ovens operating, No. 1 Battery and No. 2 Battery having 70 ovens each while No. 4 Battery and No. 5 Battery have 80 ovens each. The oven volume is L 13,590 mm x H 4,500 mm x W 400 mm and is an underjet compound regenerative type. The dates of building and rebuilding for the coke ovens are shown in Table 4.3.2. Table 4.3.3 indicates the specifications of the coke ovens.

#### (3) Production

The annual production situation between April, 1989 and March 1990 is shown in Tables 4.3.4, 4.3.5, 4.3.6 and 4.3.7.

#### (4) Quality of Produced Coke

1) The Quality of the Coke of the Rourkela Steel Plant (daily operation data and analytical data at the Rourkela Steel Plant)

The variation of coke quality over a five day period shown in operational daily reports were examined in order to investigate the quality standards of coke at the Rourkela Steel Plant. (refer to Table 4.3.8)

2) The Quality of the Coke of the Rourkela Steel Plant (Japanese analytical data)

Coke test samples collected at the Rourkela Steel Plant in the presence of the study team during the 1st on-site survey in September to October, 1990 were tested in Japan (Nippon Steel Corporation). Results of these tests are shown in Table 4.3.9.

3) Target Quality of the Coke for Evaluating an Addition of SRC

In view of the daily report data of the Rourkela Steel Plant (Table 4.3.8) and the analysis results of the RSP sample coke (Table 4.3.9), the target values shown in Table 4.3.10 upper column of coke quality were envisaged to evaluate the performance of SRC addition. This target values were revised as shown in the down column of the same table according to the proposal of Indian counterpart.

4.3.2 Coal Feedstocks and Cokes of the Steel Plant Scheduled to Use SRC

#### (1) Coal Feedstock

The samples of the coal obtained during the 1st onsite survey in India were analyzed in Japan and these properties are shown in Table 4.3.11.

The ash content of Indian coal is high and it has the property of weak dilatation although the fluidity is not low.

#### (2) Coke

Test results of the coke of Rourkela Steel Plant are shown in Table 4.3.12. For reference, the results of tests on coke from three steel plants of Nippon Steel Corporation are also shown in Table 4.3.12.

The ash content of the coke produced by RSP is more than double that produced by Nippon Steel Corporation. The DI (30 revolutions) and  $\rm M_{40}$  are slightly lower when compared to the coke produced by Nippon Steel Corporation but the DI (150 revolutions) and  $\rm M_{10}$  are considerably worse. It means the strength against surface breakage is poorer than that against volume breakage. Therefore, the performance of SRC as a caking additive is expected to prove effective for improvement of coke strength.

The CSR is also low when compared to the coke produced by Nippon Steel Corporation. The CRI is not high and the reason why the CSR is low is considered that the abrasion strength is poor.

The coke size is comparatively large. However since the sampling point of the test coke is unclear it is not possible to compare this directly with the size of the coke produced by Nippon Steel Corporation.

The same characteristics of Indian coke noted above are also found in the results of the SCO carbonization test mentioned in 4.2.1 (2). The DI in this case is increased by raising the blending ratio of imported coal which increases the caking property and an improvement of coke strength can be expected as a result of using SRC.

However, the dilatation of the three blended coals is not much lower than that of the coal charges of three steel plants of Nippon Steel Corporation and the fluidity is actually higher. This is thought to be the result of the high ash content.

The size of coke from Indian coal is larger compared to that of Nippon Steel Corporation. However, this size seems to represent the size at around the wharf and before cutter of the coke oven. It is anticipated that the coke size at the time of blast furnace charging will not be such large since tests showed that Indian coke undergoes considerable size reduction by impact of handling before furnace.

# 4.4 Coke Production Test Using SRC (1)

# 4.4.1 Objective

The objective of this test is (I) of that indicated in 4.1, that is, to examine whether an addition of SRC increases coke strength, to evaluate the performance of SRC as a caking additive and to select the feed coal for production of SRC.

#### 4.4.2 Test Method

Six samples of SRC were produced in a 0.5 1 autoclave with the following coals and production conditions.

A1 Samla 410 °C A2 Samla 430 °C A3 Samla 450 °C B1 Assam 410 °C B2 Assam 430 °C B3 Assam 450 °C	Code	Coal	Reaction Temperature of SRC production
A2       Samla       430 °C         A3       Samla       450 °C         B1       Assam       410 °C         B2       Assam       430 °C	A1	Samla	410 °C
B1 Assam 410 °C B2 Assam 430 °C	A2	Samla	
B2 Assam 430 °C	A3	Samla	450 °C
	В1	Assam	410 °C
B3 Assam 450 °C	B2	Assam	430 °C
	В3	Assam	450 °C

Two alternative base blends were postulated in view of the projected use of SRC in India. In the first the imported coal was not blended at all and only Indian coals were used according to the following blend (India V):

	Bhojudih	Sudamdih	Chasnala	Kargali	Swang Rajrappa
India V	30	20	10	20	10

The second base blend consisting of 90% of India III (with an imported coal of 20%) shown in Table 4.2.1 mixed with 10% non-coking coal is chosen in order to pre-examine blending non-coking coal. This is titled India IV (that is 90% India III plus 10% non-coking coal).

The coke production test is carried out using a 500 g carbonization oven and the Roga-drum strength of the coke is evaluated. Further, the changes in caking property resulting from the blending of SRC are examined.

#### 4.4.3 Test Results

Figures 4.4.1 and 4.4.2 indicate the test results. The followings are commented for the test objectives from this results.

- (1) Regarding an effectiveness of SRC additions to increase coke strength, it was verified as shown in Figure 4.4.2 that an addition of SRC to the Indian blended coal resulted in an increase in the coke strength.
- (2) Regarding a performance of SRC as a caking additive, an increase in fluidity and improvement of dilatation are verified as a result from an addition of SRC as shown in Figure 4.4.1.
- (3) Regarding a selection of a feed coal for production of SRC, the present test results do not reveal any clear difference in performance of SRC addition due to the different varieties of SRC.

For reference, Figure 4.4.3 shows DI₁₅¹⁵⁰ which was obtained at the tests conducted in Japan during 1977-82 using four kinds of SRC manufactured from four different coals. The then figure also indicates that no significant difference is noticed in performance of SRC addition irrespective of SRC from different coals.

# 4.5 Coke Production Test using SRC (2)

# 4.5.1 Objective

The objective of this test is to evaluate the possibility of blending non-coking coal with SRC for the substitute of coking coal.

#### 4.5.2 Test Method

The blending ratio of coal blend used in the carbonization tests are shown in Table 4.5.1. According to the current coal blending ratio which is used in Rourkela Steel Plant, the base blend (A1) is decided as 30% of prime coking coal, 40% of medium coking coal and 30% of imported coal. "A" series tests were conducted in order to examine a substitute for coking coal by means of substitute of SRC and Indian non-coking coal for the imported coal which are reduced from the base blend of coal. Samla coal was used as non-coking coal. Furthermore in order to evaluate the possibility of enlargement of imported coal reduction, the substitute of medium coking coal instead of non-coking coal for imported coal was tested with an addition of SRC. This is termed as "B" series test.

SRC used were one produced from Assam coal by using 0.5 l autoclave.

Coke production tests are conducted using 500g carbonization oven.

Two kinds of coal blends, namely one is base blend "A1", the other is "A5" (10% of Samla coal and 5% of SRC) were tested by SCO.

#### 4.5.3 Test Results

Table 4.5.2 shows the properties of single coals. Compared with the coals used in the evaluation test for performance of SRC addition on the coke strength described

in the previous section, the imported coal has a little bit higher coalification. (Refer to Table 4.3.11) The properties of coal blend, properties of 500 g carbonization coke and properties of SCO carbonization coke are shown in Table 4.5.3, Table 4.5.4 and Table 4.5.5 respectively.

Test results of "A" series which were conducted by substitution of Samla coal and SRC for the imported coal are shown in Figure 4.5.1. It is presumed from this figure that blending of SRC and Samla coal at a ratio of 1 to 2 can substitute for the imported coal. Even though no tests were conducted this time, it is supposed to be possible to substitute for all of imported coal (30%) by using 10% of SRC addition.

This test result is nearly same as the test result on the non-coking coal of lower coalification which was conducted in Japan during 1977-82 to study the possibility of using non-coking coal with an addition of SRC. Coke structure obtained by carbonization of non-coking coal having lower coalification is mostly optically isotropic texture. By the interaction in a carbonization process when the said coal is carbonized with SRC, optically anisotropic texture increases and coke strength is improved and reactivity is lowered. These performance were noticed by the previous research work.

The other hand it was indicated from the test result of "B" series (as shown in Table 4.5.4) to be able to obtain the same strength as the present coke strength by addition of 6% of SRC in case of substitute of medium coking coal for all of imported coal (30%). Although use of medium coking coal will result in increase of ash content in produced coke and be inferior to use of non-coking coal in view of cost position, performance of saving imported coal is larger.

At the SCO carbonization test, the respective coke strength of "A1" blend (base) and "A5" blend (10% of Samla coal and 5% of SRC) were more or less similar (Table 4.5.5). This result corresponds with that of 500 q

carbonization test. The objective of SRC addition is to improve abrasion resistance of coke. The effectiveness in this respect has been proved by the 500 g carbonization test. Accordingly, it is reasonable to presume that whether or not the coke strength can be maintained as before, is judged by the 500 g carbonization test result.

When the coke strength of SCO coke (DI $_{15}^{150}$  = 73.9) obtained by the base blend "A1" is converted to the value in terms of M $_{10}$  by conversion equations 3 and 4 shown in the Chapter 4.2.1, (2) 2), it becomes 9.3. This means this coke strength easily reaches to the target strength of M $_{10}$   $\leq$  10.0 shown in Table 4.3.10. Accordingly it can be presumed that the coke strength of 500 g carbonization test indicated the same or higher value than that of the base blend coke, reaches to the target strength.

Although tests of substitute of SRC and non-coking coal for Indian prime coking coal have not been conducted, it is anticipated that the possibility of substitute for Indian prime coking coal is similar to the case of the imported coal in consideration of analytical data of coals and test results of substitute of imported coal. However it can not be expected to save foreign currency as the case of imported coal and to decreases coke production cost.

## 4.6 Additional Study on Blending for Coke Production

During the 3rd visit of India (January, 1992), JICA was requested by Indian counterparts to conduct the additional study on blending for coke production.

JICA had done all techno-economic calculations in accordance with previously agreed Rourkela blend as the base blend. Indian side requested JICA to study the following two more cases:

#### Case-I:

Indian side paid its attention to the coking test results of B2 and B3 blends where no imported coal was used but more medium coking coal was used and thereby coke strength could be improved with addition of SRC in a blend. Consequently, Indian side requested JICA to conduct the study of two more blends viz. B5 and B6. These composition are given below:

	(C2)	(C1)
Bhojudih	5 %	15 %
Sudamdin	1 - <del>M</del>	10 %
Chasnala	5 %	5 %
Kargali	20 %	10 %
Swang	20 %	10 %
Rajrappa	32.5%	27 %
High Volatile (Assam)	5 %	10 %
Imported	7.5%	8 %
SRC	5 %	5 %

(Note: In this report, C2 and C1 are named instead of B5 and B6 respectively and these are termed C series blend.)

#### Case-II:

Indian side felt that the base blend may be changed in future considering the requirement of hot metal industry in private sector. For the future hot metal industry, low

volatile medium coking (LVMC) coal [Bituminous coal rank, VM: 18-20 %, Ash: 22-25 %, Ro: 1.1] will be used in admixture with imported coal. Considering the quality requirement of the coke for the hot metal manufacture, it is expected that the ratio of imported coal and LVMC coal will be around 50:50. From the study of B2 and B3 blends by JICA, it was noted by Indian side that addition of SRC will accommodate more medium coking coal in the sole Indian coking coal blend. With such consideration, Indian side felt that a good percentage of imported coal can be cut down by addition of SRC and LVMC coal in the ratio of 1:4. Typical blends were indicated below.

Name of coal	Base case	e-I Base ca	se-II	Blend	with	n SRC
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(P1)	(P2)	(P3)
Imported %	60	50		39	30	25
LVMC (washed) %	40	50		58	65	70
SRC %	NIL	NIL	•	3	5	5

(Note: These blends are termed as P series.)

After return to Japan, JICA team has studied the above blending for coke production. However, because of no technical data such as test results and coal analysis data available, it is impossible for it to make the confident technical assessment. Therefore it should be noted that the following comments are quite preliminary.

#### Case-I (1): C1 Blend

This blend is a partially modified blend from A5 one, that is, imported coal is substituted for medium coking coal by 7 % and Samla coal for Assam coal by the whole 10 %. Since a coking property of Assam coal is better than that of Samla coal, this blend is considered being able to keep the same level of coke strength as A5 blend.

# Case-I (2): C2 Blend

This blend is to be the one which reduces from B3 blend an

admixture of prime coking coal and increases those of imported coal and Assam coal. Since Assam coal has a considerable level of coking property, this blend is considered being able to keep the same level of coke strength as B3 blend.

#### Case-II:

Use of low volatile medium coking (LVMC) coal. It is impossible to assess the technical effect accurately because of no analysis data of LVMC coal available. If Base case-I and II would be sufficient with respect to coke strength, three kinds of blend with SRC (P1,P2,P3) may be possible to adopt in light of the fact that coke strengths of A1 and B3 blends are mostly the same.

The financial and economic analysis on the above cases is conducted in the Chapter 8.

Table 4.2.1 BLENDING RATIO (%, d) OF COAL CHARGES FOR CARBONIZATION TESTS

Coal	Prime	coking	coal	Mediu	ım coking	coal	ŧ
Coal Blend	Bhojudih	Sudamdih	Chasnala	Kargali	Swang	Rajrappa	
India	2.0	14	g	T.	7.5	7.5	3 0
India II	22.5	8, 10, H	6.7	ب ت ت	7.5	7.5	.25
India	25	17.5	7 . 5	1.5	10	100	20

Table 4.2.2 PROPERTIES OF COAL CHARGES FOR CARBONIZATION TEST

Product Proximate Quality Analysis	Prox. Anal.	roximate Analysis	TS	FSI		Flui	Fluidity	1			Dilatation			:
Coal Blend	Ash	MA.	(%,q)		Softening Temperature (°C)	Max. Fluidity Tempera- ture(°C)	Solidifi- cation Tempera- ture (°C)	Log Maximum Fluidity	Softening Temperature (°C)	Temperature of Maximum Contraction (°C)	Temperature of Maximum Dilatation (°C)	Cont rac- tion (%)	Dilata- tion (%)	Total Dilata- tion (%)
India I	18.6	18.6 24.8	0.56	ıĊ	394	441	481	3.25	347	438	475	24	31	55
India II	19.8	19.8 24.6	0.57	ហ	407	452	486	3.05	376	437	471	20	28	48
India II	19.3	19.3 24.3 0.57	0.57	, rc	406	457	487	2.93	392	438	470	22	17	39

Table 4.2.3 TEST RESULTS OF SCO CARBONIZED COKE

Product Proximate	Proxim	ate	TS		Size D	Size Distribution (%)	tion (%	6		Mean	Drum	Roga-	CRI	CSB BSS	True	Apparent Poro-	Poro-	SIf	ISH
Quality Analysis(%,d)	Analysi	(s(%,d)								Size	Strength	drum	<u> </u>		Specific	Specific Specific sity		React-	
Coal Blend	Ash	RΛ	(%, d)	(%,d) 125~100 100~75 75~50 50~38 38~25 <25mm	100~75	75~50	38 ~00	38~25	<25mm	(廻)	D1159 D139	Strength			Gravity	Gravity	38	ivity (%, AG)	
India I	23.7	9.4	0.5	15.4	37.1	35.4	7.7	1.1	3.3	76.1	74.0 91.0	78.0	24.6	24.6 41.4	2.04	1.12	45.1	10.5	47.4
India II	24.5	0.4		21.4	43.1	23.3	7.7	규	3.4	80.5	72.9 91.8	75.2	25.0	25.0 40.8	2.03	0.96	52.7	6.5 F.C.	47.8
India M	25.1	0.5	0.2	17.3	36.6	33.0	7.7	9.8	4.6	76.3	70.5 89.4	77.1	24.1	24.1 41.2	2.03	0.98	51.7	13.2	46.9
Yawata	11.4	1.0	9.0	2.3	21.2	47.9	17.2	. re . co	ت ت	61.2	83.9 95.0	87.7	28.7	28.7 57.0	1.97	1.01	48.9	18.0	46.7
Nagoya	11.5		0.5	2.6	19.5	46.8	18.0	7.0	6.1	60.1	82.6 93.8	89.4	28.6	28.6 60.6	1.97	1.01	48.9	16.5	44.8
Kimitsu	11.6	0.9	0.5	1.0	15.1	51.6	19.3	80.	5.2	58.2	83.2 94.2	87.8	30.3	30.3 54.2	1.97	1.02	48.3	14.8	46.3

Table 4.2.4 TEST RESULTS OF 500g CARBONIZATION OVEN COKE

Product Quality Coal	Roga-drum Strength	True Specific Gravity	Apparent Specific Gravity	Porosity (%)	JIS Reactivity (%,AG)	MSI
Blend	0010110011	414.103	dittilly	(10)	(N) IIU)	
India I	65.6	2.04	0.87	57.4	28.2	43.6
India H	63.6	2.03	0.88	57.1	29.2	43.2
India M	76.7	2.04	1.08	47.1	28.0	44.4
Yawata	83.2	1.96	0.97	50.3	33.5	42.3
Nagoya	81.3	1.96	0.94	52.2	34.0	39.6
Kimitsu	81.8	1.95	0.94	51.9	34.2	41.1

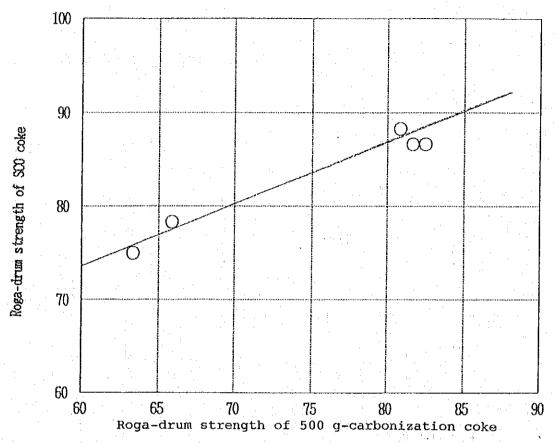



Figure 4.2.1 RELATIONSHIP BETWEEN ROGA-DRUM STRENGTH OF SCO COKE AND THAT OF 500 G-CARBONIZATION COKE

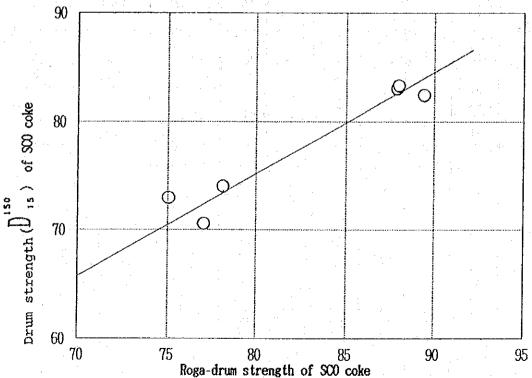



Figure 4.2.2 RELATIONSHIP BETWEEN DRUM STRENGTH AND ROGA-DRUM STRENGTH OF SCO COKE

4 - 24

Table 4.3.1 COKING COAL USED AT ROURKELA STEEL PLANT

(Apr., 1988 - Mar., 1989)

Coal Varie	ety	Amount Used (t)
Prime Coking Coal	Dugda Coal	31,485
	Bhojudih Coal	317,564
	Chasnala Coal	74,284
	Sudamdih Coal	202,087
	Patherdih Coal	24,137
	Moonidih Coal	101,699
<u>kana kana dan kana</u>	Sub-total	751,256
Medium Coking Coal	Kargali Coal	146,744
	Kathara Coal	40,435
	Swang Coal	106,616
	Gidi Coal	130,685
	Nandan Coal	3,074
	Rajrappa Coal	260,457
	Sub-total	688,011
Imported Coal (Australia)		518,108
Total		1,957,375

Table 4.3.2 SCHEDULE FOR CONSTRUCTION AND OPERATION OF COKE OVENS AT ROURKILA STEEL PLANT

Battery No.	Date of Commissioning	Capital Repair	Rebuilding	Capital Repair
IA (35 ovens)	22.3.'60 Otto	1.12.'72~19.4.'74	6.4.'77~16.4.'78 MECON	30.4.'83~7.3.'84
IB (35 ovens)	5.4.'60 Otto	'73~'75	2.4'82~30.1.'85 MECON	
IIA (35 ovens)	3.12.'58 Otto	<u>-</u>	16.4.'74~18.8.'76 MECON	11.'85~5.'87
IIB (35 ovens)	5.1.'59 Otto	'73~'78	18.4.'79~26.1.'82 MECON	-
IVA (40 ovens)	30. 12. '66 Otto	'76~'77	15.4,'84~28,1,'87 RSP thro HSCL	2
IVB (40 ovens)	5.2.'69 Otto	'77~'78	15.4.'84~18.3.'88 RSP thro HSCL	
VA (40 ovens)	28.9.'74 Otto	5.'77~12.'78	-	<u></u>
VB (40 ovens)	26, 12, '83 Otto	1.'90~12.'90		-

Note: Battery No.3 (70 ovens) is under rebuilding.

Table 4.3.3 SPECIFICATIONS OF COKE OVENS IN ROURKEIA STEEL PLANT

Battery No.	No. of subbatteries per battery	No. of ovens per battery	Oven dimension
I	2	35 x 2	13,590 x 4,500 x 400mm
I	2	35 x 2	13,590 x 4,500 x 400mm
IV	2	40 x 2	13,590 x 4,500 x 400mm
V	2	40 x 2	13,590 x 4,500 x 400mm

Table 4.3.4 AMOUNT OF COAL CHARGES OF ROURKELA STEEL PLANT COKE OVENS
(Apr., 1989 - Mar., 1990)

	Amount (t)	Share of Total
Prime Coking Coal	707,940	38.0%
Medium Coking Coal	647,120	34.7%
High Volatile Coal	24,450	1.3%
Imported Coal	483,480	26.0%
Total	1,862,990	100.0%

Table 4.3.5 PROPERTIES OF COAL CHARGES OF

ROURKELA STEEL PLANT COKE OVENS

(Apr., 1989 - Mar., 1990)

Moisture	6.46 wt%
Ash Content (dry)	17.01 wt%
Volatile Matter (dry)	25.05 wt%

Table 4.3.6 COKE YIELD OF ROURKELA STEEL PLANT

(Apr., 1989 - Mar., 1990)

		Amount per Oven	Yield per Coal Charge (%)
Coal Charge (dry ba	usis)	16.75 t∕oven	. : <u> </u>
Coke Yield	Total Yield	12.72 t/oven	75.9%
	Hard Coke	10.60 t∕oven	63.3%
	Nut Coke	0.76 t/oven	4.5%
	Breeze Coke	1.36 t/oven	8.2%

Table 4.3.7 PROPERTIES OF ROURKELA STEEL PLANT COKE

(Apr., 1989 - Mar., 1990)

Moisture	5.5	wt%
Ash Content	22.7	wt%
Volatile Matter	0.8	wt%
$M_{40}$	80.6	%
M ₁₀	11.2	%

Table 4.3.8 VARIATION OF COKE QUALITY (FROM DAILY REPORTS OF RSP)

Date	Coke As	h Content (v	v t %)		
of Production	Max.	Min.	Avg.	M ₄₀ (%)	M ₁₀ (%)
'90.9.17	22.8	20.9	22.1	80.6	10.6
18	22, 6	21.0	22.0	80.8	10.8
19	22.9	22.3	22.6	80.8	11.6
20	22.6	21.4	22.3	78.6	13.0
21	25, 3	22.6	24.1	80.4	11.6
Average	<u></u> -	—	22.6	80.1	11.5

Table 4.3.9 ANALYTICAL DATA OF ROURKELA STEEL PLANT COKE (TEST IN JAPAN)

(SAMPLES COLLECTION: September, 1990)

Samples	Ash	Volatile	Total	M40	M ₁₀
	Content(wt%) (dry base)	Matter (wt%) (dry base)	Sulphur(wt%) (dry base)	(%)	(%)
Rourkela coke	24,6	1.0	0.6	80.2	11.6

Table 4.3.10 COKE QUALITY TARGETS TO DETERMINE PERFORMANCE OF SRC ADDITION

Coke Quality	Ash Content(wt%) (dry base)	Volatile Matter (wt%) (dry base)	Mso (%)	M ₁₀ (%)	CSR (%)	CRI (%)
Target Values  Determined in September, 1990	≦23.0	≦1.0	≧80.0	<b>≦</b> 11.5		
Target Values Revised in September, 1991	22.5±0.5	≦0.9	≧83.0	≦10.0	50~55	25~30

Table 4.3.11 PROPERTIES OF SINGLE COALS

	Proximate					Г										
	Analysis	ξ. Σ.	5	timate %, de	Ultimate Apalysis		ISI	Fluidity	ty				Dilatation	ď	٠,	:
<del> </del>	Ash VM	(%, d)	ى د	in the second	N N	0	Softening Temperature (°C)	Max. Fluidity Tempera- ture (°C)	Solidifi- cation Tempera- ture (C)	Log Maximm Fluidity	Softening Tempera- ture (C)	Contraction	Tempera- ture of Maximum Dilata- tion	Contraction (%)	Dilata- tion (%)	Total Dilata- tion (%)
1	22.6 21.7		0.54 85.6 5.1		1.90.6	8 8	3 415	463	490	2.28	398	442	467	18	∞	83
	22.6 21.7	0.53	3 86.6	5.1 1.9	.906.	.r. ∞	3 412	453	482	2.48	348	445	465	20	-2	81
	20.5 23.2	- 1	8.8	5.32	0.5286.85.32.00.6	5.34	1 420	462	488	1.69	365	442	467	28	∞	82
	23.3 23.9		0.55 84.9	5.3	1.80.6	7.42	2 416	451	482	2.39	357	437	450	22	-14	∞
	20.1   27.2		0.60 84.1	5.4	1.90.6	8.0	3.5 405	448	471	2.39	<b>8</b> 8 €	434	447	20	φ	12
	23.1 28.7	0.60	82.7	5.6	1.7 0.7	9.3 2.	2.5 400	440	471	2.86	393	437	450	21	-18	60
Imported coal	8.6 28.3	: :	0.62 86.2	5.4 2.2	.2 0.7	5.5	9 402	451	494	3.20	37.1	412	505	22	242	792
Argada-Sirka	17.9 32.9		0.70 79.4	5.5 1.	.5 0.8	5.5 1.5 0.8 12.8 1	387				392	480		30	ଚ୍ଚ	0
	14.0 34.6	- 1	0.48 78.5	5.5	2.4 0.5	13.1		(Coal briquetting not possible)	g not possi	ible)	315	480	1	14	-14	0
	2.2 41.6	1.67	81.9	5.9 1.	2 1.7	8 8 8	397	448	470	2.30	338	420	449	30	59	88
	3.9 51.2	1.21	69.0	5.0	0.6 0.9	24.50		(Coal briquetting not possible)	g not possi	ible)	315	480	1	12	-12	0
0/A Middlings	21.3 33.6	1.17	86.1	6.5	1.6 1.5	4.3 1	368				334	419	1	10	-10	0
												, , , , , , , , , , , , , , , , , , , ,	-			

Table 4.3.12 TEST RESULTS OF ACTUAL OVEN COKE

IS I		43.4	47.6	44.8	45.9
JIS Reac-	tivity (%,AG)	29.5	23.2	22.0	29.5
Appa- Poro- JIS rent sity Rea	88	41.8	48.2	10	48.5
Appa-	Spe- cific Gra- vity	1.16	1.01	96.0	1.00
1	Spe- Spe- cific cific Gra- Gra- vity vity	2.00 1.16	1.95 1.01	1.96 0.96	1.95 1.00
CSR		26.8 44.7	60.1	30.4 55.9	29.4 55.4
CRI	· · · · · · · · · · · · · · · · · · ·	26.8	27.9 60.1	30.4	29.4
I type	Strength	11.6 78.4	7.8 86.4	8.4 85.8	8.5 85.4
Micum Strength	M40 M10 (%)				
Micum		80.2	86.6	85.0	84.3
Drum Strength	DI 15 DI 5	67.5 90.4	96.3	85.1 96.0	95.6
Drum	DI 150	67.5	86.1	85.	85.1
Mean Size	( <b>E</b>	67.0	51.4	48.0	52.2
	<25mm	1.2	1.6	1.4	1.9
(%)	38~25	1.0	19.7	28.0	18.5
ĺ	50~38	23.0	34.9	33.1	32.6
Size Distribution	75~50	41.7	35.1	33.4	38.1
Size ]	100~75	27.6	8.3	4.1	8.2
	(%,d)  125~100  100~75  75~50  50~38  38~25	بع ع	0.4	0.0	0.7
ST	(%, d)	9.0	0.6	0.5	0.5
nte .s(%,d)	W.	1.0	<del></del> :	0.0	0.5
Proximate Analysis(%,d)	Ash	24.6	11.5	11.6	11.6
		India (RSP)	Yawata	Nagoya	Kimitsu

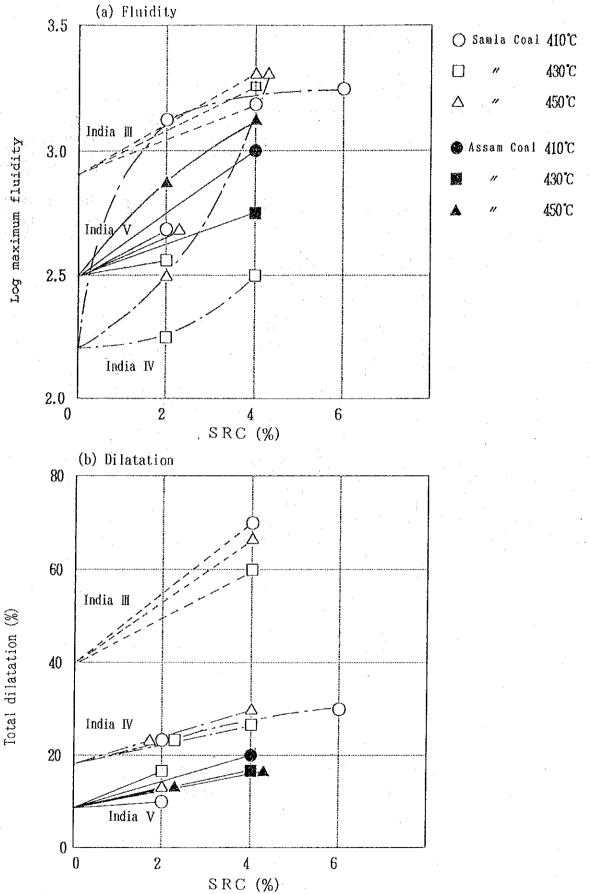



Figure 4.4.1 EFFECT OF SRC ADDITION ON CAKING PROPERTIES 4-33

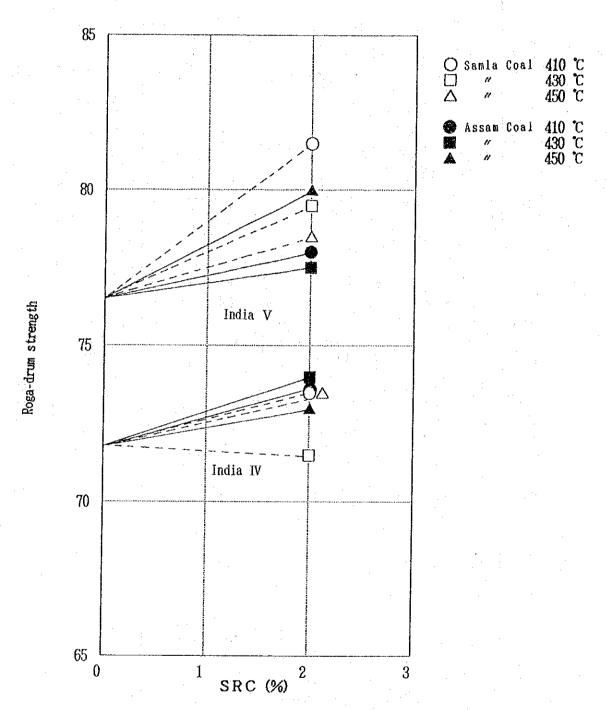



Figure 4.4.2 EFFECT OF SRC ADDITION ON ROGA-DRUM STRENGTH

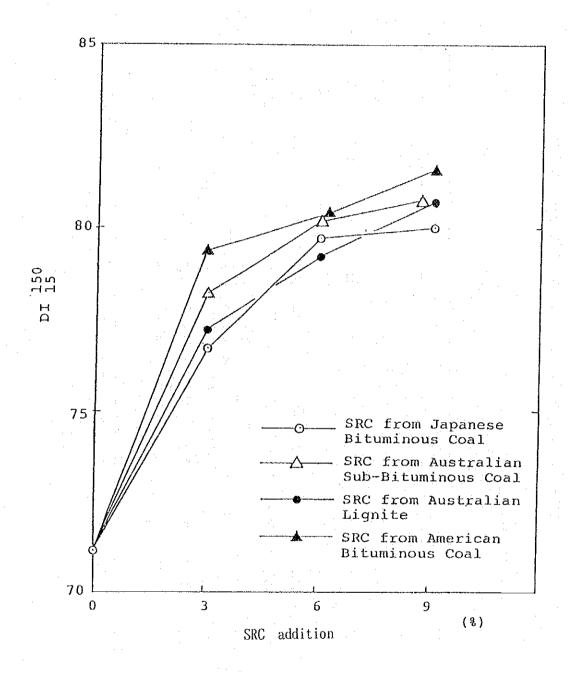



Figure 4.4.3 COKE STRENGTH BEFORE REACTION WHEN SRC MANUFACTURED FROM FOUR KINDS OF COAL WHERE ADDED TO STANDARD COAL FOR TEST

Table 4.5.1 BLENDING RATIO (%) OF COAL BLEND USED IN THE CARBONIZATION TEST

Brand Name		A1	A2	A3	A4	A5	A6	A7	A8	A9	B1	B2	83
Bhojudih		15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	14,55	14.
Sudandih	•	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	9.70	9.4
Chasnala	1.114	9.0	5.0	5.0	5.0	5.0	5.0	5.0	G	5.0	22	4.85	4.7
Kargali		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	20.0	19.40	18.8
Swang		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	20.0	19.40	18.8
Rajrappa		20.0	20.0	20.0	20.0	20.0	20.0	20.0	20-0	20.0	30.0	29.10	28.2
Imported Coal		30.0	22.5	20.0	17.5	15.0	12.5	10.0	7.5				
Samla	: 1		5.0	5.0	10.0	10.0	10.0	15.0	15.0	22.5			
SRC			2.5	5.0	2.5	5.0	7.5	5.0	7.5	7.5		3.00	8.0
		-											

Table 4.5.2 PROPERTIES OF SINGLE COALS

					Flu	Fluidity					Dilatation				
	Proximate	Proximate Analysis	TS	Softening	Softening Max. Flui- Solidifi-	Solidifi-		Softening	Tempera-	Tempera-			Total		
Brand Name		(%, d)	(è, d)		dity Temp-	dity Temp- cation Log. Max. Tempera-	Log. Max.	Tempera-		ture of Max. ture of Max.	Contraction	Dilatation Dilatation	Dilatation	Æ	I
	Ash	MΛ		ture	erature	Tempera-	Fluidity	ture	Contraction	Dilatation	<del>%</del>	(§	\ <del>%</del>	ક્ક	98
				(°C)	(C)	ture (°C)		(၃)	(S)	δ		<u> </u>			
Bhojudih	24.00	20.3	0.50	420	463	495	2.07	388	452	470	21	L-		1.32 44.1	44.i
Sudamdih	24.20	21.7	0.56	481	449	488	3.08	370	438	448	25	-17	∞	1.20	47.9
Chasnala	17.80	24.8	0.51	400	441	479	2.64	383	442	463	23	ကို	20	1.16	50.9
Kargali	19.50	24.4	0.60	414	452	491	2.62	373	439	448	25	-19	တ	1.15	49.9
Swang	21.80	22.3	0.55	395	446	481	3.30	373	435	471	23	23	46	1.19	51.3
Rajrappa	20.90	29.5	0.71	394	429	465	3.29	370	438	448	25	-17	œ ,	0.85	48.7
Imported Coal	1 9.10	23.8	0.57	413	458	493	2.61	392	440	480	25	2	103	1.19	41.1
Samla	13.80	34.6	0.45	(Coal	(Coal Briquettin	ing Not Possible)	ible)	365	480	. 1	16	-16	0	0.56	27.5

Table 4.5.3 PROPERTIES OF COAL BLEND FOR 500g CARBONIZATION TEST

	Total	Dilatation	, (%)		40	35	33	16	17	21	တ			14	5	18	
		Dilatation	(%)		16	10		8	ဇှ	T	133	-15	-25	디	4-	4.	
ion		Contraction Dilatation Dilatation	88		24	25	25	24	23	22	24	23	25	25	23	22	
Dilatation	Tempera-	ture of Max.	Dilatation	(Q)	455	464	463	457	453	456	453	451	436	459	456	454	
	Tempera-	ture of Max.	Contraction	<u>ည</u>	439	427	426	436	428	423	435	426	436	443	425	430	
	Softening	Tempera-	ture	ည့	388	355	364	370	365	343	366	347	363	385	343	364	
		Log. Max.	Fluidity		 2.85	3.35	3.53	2.95	3.37	3.94	3.24	3.62	3.56	2.83	3.41	4.70	
lity	Flui- Solidifi-	Temp-cation	Темрега-	ture (°C)	493	478	492	494	490	479	488	478	470	476	486	480	
Fluidity	1 .	dity Temp-	erature	(ఎ.)	 458	439	447	453	446	429	446	430	428	441	450	435	
	Softening Max.	Tempera-	ture	(၃)	411	384	394	406	397	363	396	377	374	397	403	370	
	TS	(%, d)			0.59	0.59	0.59	0.58	0.58	0.57	0.57	0.59	0.59	09.0	0.61	0.62	
	Analysis	()	N.A.		24.2	25.7	25.6	25.7	26.6	27.0	26.7	27.2	28.0	24.5	25.3	25.7	
	Proximate Analysis	(%, d)	Ash		18.0	17.8	17.7	18.3	18.0	18.0	18.4	18.2	18.7	21.8	20.9	20.4	
		No.			A1	42	A3	A4	A5	46	A7	8 <del>1</del>	A9	찚	B2	33	

Table 4.5.4 RESULTS OF 500g CARBONIZATION TEST

	rrovillate	D 0	C T	ROSA-DIUM	lrue	Apparent	Porosity	ن ا ا	₩   
No.	Analysis	sis	• .	Strength	Specific	Specific		Reactivity	
	(%,	d)	(%, d)		Gravity	Gravity	(%)	(%, AG)	
	Ash	MΛ			:				:
A 1	23.2	0.7	0.4	70.9	2.01	1.03	48.7	18	25.6
A2	23.2	9.0	0.4	72.8	2.02	1.07	47.0	20	25.4
A3	23.3	0.8	0.2	75.5	2.02	1.13	44.1	21	25.3
A4	23.4	0.7	0.4	65.8	2.02	1.00	50.4	25	26.9
A5	23.8	0.5	0.4	71.3	2.05	1.10	46.4	26	25.9
A6	23.5	0.8	0.5	72.8	2.02	1.14	43.6	24	24.6
A.7	24.2	9.0	0.4	65.3	2.02	1.01	49.8	31	25.8
A8	23.7	9.0	0.5	711.7	2.01	1.08	46.2	2.7	25.4
A 9	24.8	0.7	0.4	63.8	2.02	1.05	48.3	လ သ	27.0
<u>B</u> 1	27.9	0.5	0.4	67.6	2.05	1.05	48.9	21	26.9.
B2	26.5	0.7	0.5	68.8	2.04	1.08	47.2	17	25.9
83	26.4	0.7	0.5	70.2	2.05	1.04	49.0	10	25.4

Table 4.5.5 RESULTS OF SCO TEST

	Proximate	roximate Analysis TS	ST		Size Di	Size Distribution (%)	%) u			Mean Size		Drum Strength	GRI	SS
	(%, d) Ash	,d) VM	(%, d)	125~100	100~75	75~50	;~100 100~75 75~50 50~38 38~25 <25mm (mm)	38~25	<25mm	(mm)	DI38	D1150		
Al	A1 23.4	0.7	0.5	4.0	23.4	36.9	36.9 23.1	4.4	4.4 8.2	9.09	91.0	73.9	73.9 23.7 38.8	88.
A5	23.2	0.6		12.3	21.3	39.5	39.5 15.4	4.5	7.0	66.2	01:		73.0 25.3 40.9	40.9
	• .	•			47		 							

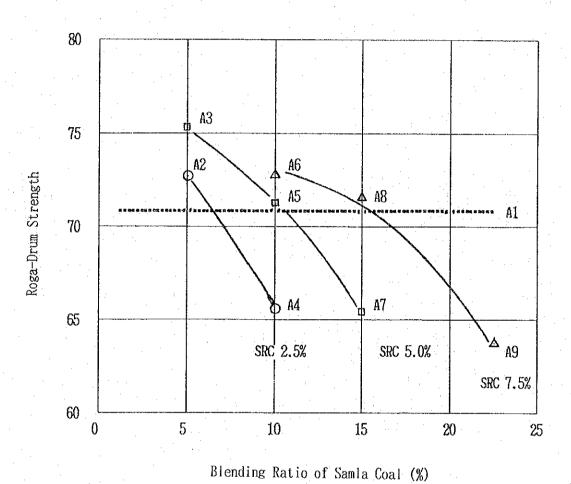



Figure 4.5.1 ROGA-DRUM STRENGTH OF COKE PRODUCED WITH BLENDING SAMLA COAL AND SRC

# Chapter 5 POLLUTION CONTROL STUDY

#### Chapter 5 POLLUTION CONTROL STUDY

#### 5.1 Review of Laws and Regulations for Environmental Protection

# 5.1.1 History of Environmental Protection Policy in India

In India laws for the protection of the environment had already been formulated and enacted in the later half of the 19th century but these were very rarely applied.

In the middle of current century the Factories Act of 1948 and the Industries (Development and Regulation) Act of 1951, containing provisions for regulating the siting of factories in view of environmental protection, were also not sufficient in operation.

Until the early 1970s the main environmental concern was focused on forest destruction, soil erosion and desertification, etc. and industrial pollution was only beginning to be recognized in the large metropolitan areas.

Industrial managers and entrepreneurs at this time did not therefore view environmental pollution as a serious concern.

On the other hand, at the same time in the advanced industrial nations the pollution which had accompanied the rapid industrialization of the 1960s resulted in a dramatic worsening of environmental qualities and the strengthening of legal regulations and control was initiated in response. The United Nations Conference on the Human Environment held in Stockholm in 1972 effected a global recognition of environmental protection issues and concerns.

Also in 1972 the ILO expressed a strong interest in environmental protection issues.

The norms set for the working environment in the Factories Act of India were judged to meet the standards set by the ILO and were found in no way inferior when compared to those of the advanced industrial nations.

Despite this parity an effective response to the problem of industrial pollution was delayed since the actual industrialization of the country not fully evolved.

The core of India's current legal system for environmental protection is embodied in the 1976 constitution amendment which is directly inspired by the Stockholm declaration mentioned above.

In Article 48A of this under the heading "Protection and improvement of environment and safeguarding of forests and wild life" the phrase "The State shall endeavor to protect and improve the environment and to safeguard the forests and the wild life of the country." was inserted. Further, in Article 51A under the heading "Fundamental Duties" which states "It shall be the duty of every citizen of India.", the clause (g) "to protect and improve the natural environment including forests, lakes, rivers and wild life, and to have compassion for living creatures" was added.

Previous to the above, detailed attention had already been accorded to environmental concerns in the Fourth Five Year Development Plan (1969-74) which advocated a development program in harmony with safeguarding the environment.

Until this time environmental regulation had been unsystematically enforced by the authorities of the central government or by individual states. In order to coordinate these various activities a National Committee on Environmental Planning and Coordination (NCEPC) was set up inside the Department of Science and Technology. The duties and functions of the NCEPC were taken over by the Department of Environment (DOE) when this was founded in 1980. At present the DOE is attached to the Ministry of

Environment and Forests.

The principal Indian legislation concerning environmental protection to date are the Water (Prevention and Control of Pollution) Act of 1974, the Air (Prevention and Control of Pollution) Act of 1981 and the Environment (Protection) Act of 1986.

5.1.2 Outline of India's Current Environmental Legislation and Measures

In the present section the outlines of the three above mentioned environmental acts will be considered.

(1) The Water (Prevention and Control of Pollution) Act, 1974

This Act is the counterpart to the Japanese Water Pollution Control Law. The main aims of the Indian Act are stated to be as follows:

- 1) That the Central Government and each individual State shall establish a Board for the Prevention and Control of Water Pollution. This Board is accorded the necessary powers to ensure that problems of water pollution are effectively handled.
- 2) To establish the fines and penalties for offenses or illegal actions.
- 3) To establish water testing laboratories which will be employed to verify the situation regarding water pollution and to set water standards.

The Central Board is responsible for handling problems of water pollution nationwide and is to advise the Central Government in formulating all the policies and plans and their executions. It is also responsible for providing guidance to the State Boards and

ensuring the coordination of their activities, and in the Union Territories the Central Board performs the same duties as the State Boards.

In addition to having the same duties and functions as the Central Board within their respective jurisdiction the State Boards are empowered to enter and inspect factories, to bring charges against any offenses, to issue improvement orders, etc.

Moreover, this Act applies in cases of soil pollution.

(2) The Air (Prevention and Control of Pollution) Act of 1981

This corresponds to the Japanese Air Pollution Control Law.

Although the present Act was passed seven years after the Water Act of 1974 its basic thinking and organization are almost the same as those of the earlier Water Act. The Central and State Boards for the Prevention and Control of Water Pollution were charged with carrying out the duties prescribed in this Air Act of 1981.

However, the present Act identifies twenty industrial sectors which are the main source of air pollution.

- 1) For factories in the above twenty industrial categories it is necessary to obtain the prior approval of the State Board before operations can commence, and operations must conform to the conditions of the approval.
- 2) Factories in the concerned categories are obliged to ensure that waste pollutants do not exceed the norms and levels set by the State Board and are obliged to cooperate with on the entry and inspections by authority officials.

The above duties and obligations are innovations with respect to the conditions of the Water Act of 1974. Further, the present act includes controls on the exhaust gas of automobiles. The Act as it now stands also includes regulations on noise.

(3) The Environment (Protection) Act of 1986

This corresponds to the Japanese Basic Law for Environmental Pollution Control.

Legislation to this point had been focused on specific targets as in the case of the Water Act of 1974 or the Air Act of 1981. However, the need for a comprehensive policy on environmental protection felt by the Indian government provided the main motive for the establishment of the present Act.

Further, the powers of the Central Government with regard to environmental protection were strengthened by this Act.

That is, the Central Government was empowered to establish rules and regulations for environmental protection at a national level. The Central Government was also empowered to issue the following directions

- a) the closure, prohibition or regulation of any industry, operation or process; or
- b) stoppage or regulation of the supply of electricity or water or any other service.

Moreover, fines and penalties were rendered extremely rigorous. The Act also included safety regulations concerning the management and handling of toxic or hazardous substances. The Act is the bases of the Environmental (Protection) Rules of 1986, the Hazardous Waste (Management and Handling) Rules of

1989 and the Manufacture, Storage and Import of Hazardous Chemicals Rule of 1989, etc.

Minimum National Standards (MINAS) were established on the basis of the Environment (Protection) Rule of 1986. It was accepted that individual States could apply more stringent environment quality and emission standards than the MINAS but any relaxation of these standards was prohibited. In fact, however, no State has adopted standards which exceed those of the MINAS in terms of severity. The concrete levels and figures for MINAS are discussed in the following chapter.

## (4) Other Measures

The present section considers the fiscal incentives for promotion of pollution control investment and the various guidelines for environmental safeguard and safety relating to industrial sites which exist in addition to the three Acts outlined above.

1) Fiscal Incentives to Investment in Pollution Control

The following incentive systems are established by the Indian government to promote investment in pollution control.

- (a) Grant of higher rate of depreciation for pollution control equipments and facilities
- (b) Grant of higher rate of investment allowance for pollution control equipments and facilities
- (c) A tax exemption on capital gains arising from the relocation of factories from metropolitan areas to outlying regions.
- (d) Grant of rebate of cess levied on consumption of water used for firms installing waste water

#### treatment facilities.

The above incentives are judged to be sufficiently substantial.

2) Environmental and Safety Guidelines on Industrial Sites

The Ministry of Environment and Forests published its environmental and safety guidelines relating to the location of industrial sites in 1985.

According to these guidelines it is necessary for entrepreneurs in twenty specified industrial sectors to secure the approval of the State or Central Government with regard to the environmental measures (for pollution and safety) envisaged before an industrial licence is granted. For projects requiring the support of the Central Government or of International Agencies it becomes necessary to obtain an approval from the Department of Environment of the Central Government.

Moreover, in the case of special locations entrepreneurs are required to submit an environmental impact assessment report and a plan for environmental management.

The present guidelines aim at freeing those metropolitan areas where there is already an over-concentration of industries and at eliminating areas of high environmental sensitivity from further or even existing industrial sites. The guidelines therefore represent extremely wide ranging and concrete standards for industrial sites.

The demands set by these standards are very rigorous and it would be impossible to meet such exigencies for example in a country like Japan

given its limited national territory and cramped conditions.

(5) Comparison of Legal Provisions concerning Environmental Matters in India and Japan

It is certainly no easy matter to compare the environmental legislation of two countries with such differing legal systems as India and Japan. However, it is our opinion after considerable evaluation that the underlying philosophy and aims of environmental legislation in both cases are similar. Nevertheless there are slight differences in terms of the actual legal provisions in the two cases.

The following are the differences observed.

- 1) The concept of "the accumulative nature of pollution" is still weak in the Indian context. Therefore, although there are regulation standards concerning the concentration of pollutants there are no regulations on overall total volumes of them.
- 2) There seems no adequate provision for the legal compensation of damage done by pollution in India.
- 3) There seems no adequate provision in Indian law for settling of disputes concerning pollution.
- 4) There seems no adequate provision in Indian law concerning the pollution control managing systems in specified factories.

## 5.1.3 Problem Points of Environmental Protection

As mentioned in the previous section a comprehensive legislative system regarding environmental protection already exists in India and this system is observed and