In case bailey bridge is used as long-lived urgent measures, its maintenance costs are taken into account as shown in Chapter 15.2.4.

6) Discount Rate:

15% per annum

15.2.2 Cost

The construction costs discussed in Chapter 4 are the financial costs and do not include the costs for design and construction supervision. In the cost-benefit analysis, the following economic cost is used:

Construction Cost	100%
- Tax	- 15%
+ Design and Construction Supervision Cost	+5%
Economic Cost	90%

Traffic Benefit 15.2.3

1) Traffic Benefit

Traffic benefit was calculated as follows depending on the disaster occurrence pattern:

Disaster occurrence pattern-1: TCd-TCo or TCt - TCo depending on before or

after completion of urgent measures

Disaster occurrence pattern-2:

TCt - TCo

Disaster occurrence pattern-3:

TCt - TCo

Disaster occurrence pattern-4:

TCd -TCo or TCd -TCt depending on perma-

nent measures or urgent measures to be eva-

luated

Disaster occurrence pattern-5:

TCd - TCo

where,

traffic costs in damaged condition $TC_d =$

traffic costs in temporarily restored condition $TC_t =$

traffic costs in original/completely restored condition

2) Traffic Costs in Original Condition

Basic Traffic Costs

The basic traffic costs were provided by PMO-FS, as shown in Table 15.2-1.

TABLE 15.2-1 BASIC TRAFFIC COSTS EXCLUDING TAX

(As of December 1990)

	Running Cost	Fixed Cost	Time Cost
	(P/Km)	(#/hour)	(P/hour)
Car Jeepney Bus Truck Tricycle Motorcycle	2.59 1.55 3.50 4.48 0.73 0.61	7.14 35.46 48.60 52.20 14.64	30.06 44.10 158.70 0 8.28 14.46

Actual Traffic Costs

The actual traffic costs are estimated according to the di-system concerning running costs and the dt-system with regard to fixed and time costs. The di-values and operating speed for different surface conditions are shown in Tables 15.2-2 and 15.2-3, respectively.

TABLE 15.2-2 di-VALUES IN KM PER ACTUAL KM

	Surface Type							
Surface Condition	PCC	Bitu- minous	Gravel	Earth				
Good	0	0.14	0.29	-				
Fair	0.17	0.38	0.60	-				
Bad	0.43	0.65	0.87	1.20				
Very Bad	0.89	1.04	1.20	1.56				

TABLE 15.2-3 OPERATING SPEED IN KM/HOUR

		Surface Type	
Surface	PCC	Bituminous Gravel	Earth
Condition	OV TC MC	OV TO HE OV TO HE	OV TC MC
Good	65 40 60	63 38 55 60 35 50	
Fair	55 35 50	53 33 45 50 30 40	
Bad	30 20 20	30 20 20 30 20 20	20 10 10
Very Bad	20 10 10	20 10 10 20 10 10	10 5 5

Note: OV: Car/Jeepney/Bus/Truck

TC: Tricycle MC: Motorcycle

Actual traffic costs are calculated as follows:

$$TC_0 = \sum_i v_i TC_{0i} L$$

$$TC_{oi} = BRC_i (1 + dl) + (BFC_i + BTC_i)/S_i$$

traffic costs in original condition, in P TCo where. volume of vehicle type i ٧i length of road section, in km L unit traffic cost for vehicle type i, in P/km TC_{oi} basic running cost for vehicle type i, in P/km **BRC**i basic fixed cost for vehicle type i, in P/hour BFC: basic time cost for vehicle type i, in P/hour BTC: dl-value corresponding to surface type and condition, in dl km/km operating speed for vehicle type i corresponding to surface type and condition, in km/hour

3) Traffic Costs in Damaged Condition

During the period from disaster occurrence till completion of urgent measures, the road is left in damaged condition. Traffic costs in damaged condition depend on magnitude of traffic interruption and availability of detour road in case that the traffic is fully interrupted. This situation is divided into the following four cases:

Case-1: Traffic interruption in full width, detour road available

Case-2: Traffic interruption in full width, no detour road

Case-3: Traffic interruption in one lane

Case-4: Traffic interruption in shoulder

Case-1: Traffic Interruption in full width, detour road available

Traffic costs were estimated assuming that all traffic make detour, thus:

$$\begin{array}{lll} TC_d &=& \Sigma \ \text{Vi TC}_{di} \ \text{L}_d \\ & \text{i} \\ & \text{where,} & TC_d &=& \text{traffic costs in damaged condition, in P} \\ & \text{Vi} &=& \text{volume of vehicle type i} \\ & \text{TC}_{di} &=& \text{unit traffic cost along detour road depending on its surface type and condition for vehicle type i, in P/km} \\ & \text{L}_d &=& \text{length of detour road, in km} \\ \end{array}$$

Case-2: Traffic Interruption in full width, no detour road

Due to interruption for motorized vehicles, either substutive transport means such as animal, walking and boat will be taken, or trips will be given up. Extra traffic costs in the former case and a loss due to impediment for normal socio-economic activities in the latter case are considered as the costs savable in with case, or benefit. For simple quantification, the loss due to trip suspension was, in this Study, substituted by the traffic costs which would be expended if the latent traffic demand would be met by taking substitutive transport means.

Thus, the following assumptions were made in calculating the traffic costs in damaged condition:

- Traffic demand is the same as before the disaster occurred in terms of number of passengers and commodity tonnage.
- For meeting the traffic demand, animal and walking/head loading on land and banca boat on water are used as substitutive transport means.

The Procedure for calculating the traffic costs is as follows:

(a) The route for substitutive transport means is assumed and travel distances on land and on water are determined.

- (b) Number of passengers and commodity tonnage are calculated based on traffic volume by vehicle type, assuming the average occupancy and load and passenger/commodity share shown in Table 15.2-4.
- (c) For transportation on land, numbers of animals and persons for carrying the passengers and commodity calculated in (b) above are estimated assuming the average occupancy and load shown in Table 15.2-4 and half-and-half animal/person share (half passengers are carried by animals and half passengers walk; half commodity is carried by animals and remaining by person).
- (d) For transportation on water, only banca boats are used. Likewise as above, number of banca boats is estimated.
- (e) Based on the numbers of animals/persons/banca boats and their respective travel distances, traffic costs are calculated assuming the unit traffic costs shown in Table 15.2-5.

TABLE 15.2-4 AVERAGE OCCUPANCY AND LOAD AND PASSENGER/ COMMODITY SHARE

	Average	Average	% Share					
	Occupancy (passenger/ vehicle)	Load (ton/ vehicle)	Passenger	Commodity				
Car	3.4	1.0	65	35				
Jeepney	13.0	1.0	76	24				
Bus	28.0	2.0	100	0				
Truck	8.0	5.0	10	90				
Tricycle	2.9	0.3	69	31				
Motorcycle	1.7	0.15	80	20				
Animal	2.5	0.2	-	-				
Walking	1.0	0.03	-	-				
Boat	4.0	0.3	-	<u> -</u>				

TABLE 15.2-5 TRAFFIC COSTS FOR SUBSTITUTIVE TRANSPORT MEANS

Hode	Traffic Cost (P/km)
Animal	11.0
Walking	3.0
Banca Boat	10.0

Case-3: Traffic Interruption in One Lane

This case is possible only for 2-lane road because 1-lane road in which one lane is damaged is categorized as case-1 or case-2.

In the damaged section where only one lane is passable, vehicle operating speed is remarkably suppressed resulting in extra traffic costs. Taking such situation into consideration, traffic costs in damaged condition were calculated on the following assumptions:

dl-value

same as before disaster

operating speed:

5 km/hr

additional costs for deceleration/acceleration: equivalent to 0.2 km's basic running cost

Case-4: Traffic Interruption in Shoulder

In the portion where shoulder is damaged (falling in or covered by obstacles), motorists are forced to reduce the speed. Taking this effect into consideration, traffic costs were calculated on the following assumptions:

dl-value

same as before

operating speed:

10 km/hr or 5 km/hr in case of 2-lane road or 1-lane

road, respectively

additional costs for deceleration/acceleration:

equivalent to 0.1 km or 0.2 km's basic running cost in case of 2-lane road or 1- lane road, respectively

4) Traffic Costs in Temporarily Restored Condition

After completion of urgent measures, at least one lane is secured for traffic but the road is not restored yet in full width. Incompleteness of the road section results in reduction in the vehicle operating speed and extra traffic costs accordingly.

Taking the effect of speed reduction into account, traffic costs in temporarily restored condition were calculated on the following assumptions:

	dl-Value	Operating Speed	Additional Costs for Deceleration/ Acceleration
Bailey Bridge	1.0 km per actual km	5 km/hr	0.2 km's basis run- ning cost
2-lane road, shoulder damaged	same as before disaster	10 km/hr	0.1 km's basic run- ning cost
other cases than above	same as before disaster	5 km/hr	0.2 km's basic run- ning cost

15.2.4 Maintenance Benefit

The restoration costs needed in without case and savable in with case are considered as a part of benefits. This benefit is, in this study, called maintenance benefit.

The contents of the maintenance benefit depend on the disaster occurrence pattern described in 15.2.1 2).

1) Disaster Occurrence Pattern-1

In without case, urgent measures will be taken every time when disaster occurs, while in with case, disaster will not recur resulting in the savings of costs for urgent measures. Such savings were counted as maintenance benefit. Costs for the urgent measures for the first occurrence of disaster was not included in the benefit because the first urgent measures will be taken also in with case.

2) Disaster Occurrence Pattern-2

Since urgent measures are assumed to be taken only one time in both without and with cases, no maintenance benefit accrues, except the following cases:

i. Another disaster anticipated

In case that another disaster is anticipated at neighboring area and the permanent measures are preventive thereof, costs for the urgent measures to be taken after the second disaster were counted as maintenance benefit.

ii. Use of bailey bridge as urgent measures

In with case, cost of bailey bridge was estimated at the depreciation basis because it will be used only for a short period and thereafter it may be re-used for other portions, while in without case, the bailey bridge is assumed to be used throughout the whole analysis period and its full cost is counted accordingly. As well as the difference in the costs of bailey bridge between without and with cases, annual maintenance costs of the bailey bridge which are assumed to be 5% of its full cost were taken as maintenance benefit.

3) Disaster Occurrence Pattern-3

In without case, urgent measures will be taken after a disaster occurred and thereafter the urgent measures will be reconstructed repeatedly for preventing recurrence of disaster. The reconstruction costs of the urgent measures, which are savable in with case, were counted as maintenance benefit.

4) Disaster Occurrence Pattern-4

Since no measures are taken in without case, no maintenance benefit accrues.

In case bailey bridge is subjected to the evaluation, its annual maintenance cost which are assumed to be 5% of its initial construction cost were counted as negative benefit.

5) Disaster Occurrence Pattern-5

in the substitution of the

In without case, road facilities will collapse in future and restored thereafter. The restoration costs, which are savable in with case, were counted as maintenance benefit.

If some urgent measures are taken prior to permanent measures in with case, the costs for such urgent measures are considered as a part of cost.

On the same basis as in cost calculation, 90% of the restoration costs were used in the benefit calculation.

Commence of the Commence of th

and the second of the second o

tha be explain the explanation of the contraction o

la a versione de la companya de la c

Albert Control of the Control of the

15.2.5 Economic Evaluation

1) Evaluation Cases

The economic evaluation was made on the following cases:

Other Disasters than Temporary Bridge Washout

Permanent measures were evaluated against the condition where only urgent measures are taken or do-nothing condition as the case may be.

Temporary Bridge Washout

The following two cases were examined:

- Evaluation of bailey bridge construction against do-nothing condition under disaster occurrence pattern-4
- Evaluation of concrete bridge construction against the condition of being restored by bailey bridge under disaster occurrence pattern-2

The former case is considered as restoration to the original condition, while the latter case as its upgrading.

2) Evaluation Results

The results of economic analysis for individual spots are presented in Appendix 15-1, including assumptions, benefit stream and economic indicators such as net present value, benefit/cost ratio and internal rate of return.

Tables 15.2-6, 15.2-7 and 15.2-8 summarize the analysis results for the disaster spots in Benguet, Batangas and Leyte, respectively.

These results show that implementation of the restoration measures proposed in Chapter 14 (all inclusive of permanent measures except for Spots L-4 and L-6 where only urgent measures were proposed) are all economically feasible, while upgrading schemes in Spots L-4 and L-6 are unfeasible.

TABLE 15.2-6 SUMMARY OF ECONOMIC EVALUATION (BENGUET)

	r		7										
	EIRR(%)	(2	(inf)	53.4 (inf)	(inf)	(inf)	(inf) 93.8	(inf)	160.6 160.6	785 725 725 725 735 735 735 735 735 735 735 735 735 73	304.0	$\langle \inf_{inf} \rangle$	38.6 121)
	heasures		P4-8 P6-2	P19-1 P16-3 P18-1 P2-5 93-2	2 2		P6-2 P16-1	1-2 F6-2		3-1. 1-8 DAL9	P16-3 2 2	6.3 8.3	P6-2 P16-3
	Permanent Restoration Measures	of Work	P2-2 P4	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		P16-3	722-22-22-22-22-22-22-22-22-22-22-22-22-	vice c	NO) O	ممم	300	ດເນື	i
	nt Resto	Type	P1-1	7777 7777 7777 777 777 777 777 777 777	P6-9	76-2 186-2 186-2	70.0 1 1 1	1010 1 1 1	1 1 1	1010 111 113 100		P6-2	P20 P20 1 1 1
	Permane	Cost(Mp)	0.531	11.257 0.125 0.492	0.170	0.049	200	000	000	2000 1000 1000 1000	0.149	0.122	.0.0 .00 .00 .00 .00 .00 .00 .00 .00 .0
	es							٠.		:			04-1
	Measur	Work				U4-3			+ :			*	U3-2
	Restoration Measures	Type of Wo	01-2	u3-1	. U3-1	1 . U3-2	111	4	114-3	U1-2		01-2	U3-1
		_	U1-1	U1-1 U7-1	U1-1	01-4		22. 12. 12. 12.	U1-1	245 1111	55 55 55 55 55 55 55 55 55 55 55 55 55	111	21.1
	Urgent	Cost (Mp)	0.044	0.004	0.023	0.015	000	00	0.007	0.013	00	00	00
	Traffic Inter-	ruption	Full Width	Full Width One-lane Speed Down	One-lane	Shoulder Full Width	. . .	One-lane Full Width	Shoulder Full Width	One-lane Shoulder	Shoulder Full Width	Full Width	Shoulder Full Width
	Disas- ter	Pattern	+-4	4.⊢ €0	.	က္	നല		—ന		ν, , , ,	нα	ო⊣
	Ulsas- ter	Type	ا د ا	Rd-D CLV-D L-SL	O - F	면 다 	표단 소 타기	E-F D-FL	OW!	POT PT PT PT PT PT PT PT PT PT PT PT PT PT	1 L	D-FL PBr-A	CLV-D D-FL
	AADT	7	1042	1042 1042 1042	180	180	180	127	5 G	- LO	1 H.C	1042 588 588	588 127
7 - 0	Koad Name		Baguio-Itogon Rd	1 T 1 000 000 1 T 1	Baguio-Bokod Rd	- op	Kapangan-Acop Rd	၊ ၊ ၀၀:	albungan-kapangan Kd - do -		9.8	bagulo-itogon ka Abatan-Mankayan Rd	F do F Kapangan-Acop Rd
1000	No.	- 1		Bt-2 Bt-1	Bt-14	発売		n L L L	900 111	WWW TT TI TI TI TI TI TI TI TI TI TI TI TI	1000 1000 1000 1000 1000 1000 1000 100	941 100 100 100 100 100 100 100 100 100 1	Bt-7
L			*	* * *	*	* *	* *)	+ * *	* * *	* * *	* *	* *	*

Note * Evaluation of permanent measures against urgent measures or do-nothing 1) AADT : excluding tricycle & motorcycle 2) EIRR : (inf) = infinite because first year benefit exceeds cost

TABLE 15.2-7 SUMMARY OF ECONOMIC EVALUATION (BATANGAS)

r																		
	EIRR(%)	2)	(inf)	0.70	\int\ \int\	(inf)	(inf)	(inf)	29.2	701	int ((inf)	24.0 10.0	20 m 20 m 20 m	77.70	(inf)		35.1
	Permanent Restoration Measures	Cost(Mp) Type of Work		62	7 0 0 0 1 1 1 0			7.10 1.10 1.110	P6-9 P15-1 P17-2	P1-1 P2-2	9 i 9 i	P6-2 P16-3	P6-10 P1	صر ا س	1.(/3 Pb=5 1.201 p1_3 p2_0 p9_4 p10_1	+ 21 2 2 2 C T 1	1.074 P1-3 P6-2 P15-1 P16-2	0.267 P2-4 P6-6 P19-3
	irgent Restoration Measures Pe	of Work Co.	U3-2 0		w.c	77-1	U3-2 U4-3 0		<u> </u>	0		J3-2			U4~3		G6-3	U4-2 0
	Restoratio	Type	_	1-5h		<u> </u>	U1-4 U	U1-1	06-2		1.4	U1-4		U1-4	٠.	_	06-2 U6-2	U1-5 U
	Urgent	Cost(Mp)	0.005	0000	700	0.004	0.011	0.008	3 375	0.004	300			000	0.020	0.503	0.204	0.126
	Traffic		One-lane	Full Width	Shoulder Full Width	Full Width	One-lane	Full Width	Full Width	Shoulder	Shoulder	Shoulder	Full Width	Full Width	Shoutder	Full Width	Full Width	Full Width
	Disas-	Pattern	3	លេខ		1, —1	: က :	- -1	7 1.	⊣ ¢	. (1)	က	י חו	ıΩ¢	o -⊲	۲۷	· 63	2
		Type	ы	PBr-D	ηц	114	E-F	FALL	PBr-A	ָ בּוּ		Rd-D	PBr-D	TBr-D	7412 1412 1412 1412 1412 1412 1412 1412	TBr	TBr-W	SPW-D
	1992	1 1 1 1	508	4128	000	169	1333	1333	_		000	413	103	4. 200 300	4 0 0 0 0	100	109	101
	Road	Same	8	C		op - do	Batangas-Lobo Rd	i op i	- op -	12.15	Laurel-lailsay n	Tubig-Agoncill	Bugaa	Sn.Luis-Bato R	Rave	Pinagbayanan Rd		Lipa-Balete Rd
	Spot) 2.	'''	9-88 * *	200 200 100 100 100 100 100 100 100 100		* Bs-28	* Bs-30	57.35	7.1 F	* Ba-42	114		111		**	* Bs-62	* Bs-66
l			L.,															

* Evaluation of permanent measures against urgent measures or do-nothing ** Evaluation of urgent measures against do-nothing 1) AADT : excluding tricycle & motorcycle 2) EIRR : (inf) = infinite because first year benefit exceeds cost Note *

SUMMARY OF ECONOMIC EVALUATION (LEYTE) TABLE 15.2-8

88	2)	\$ 27.7 \$ 11.7	0.0 inf)	122 1123 114 115 115 115 115 115 115 115 115 115	inf) inf) inf)	225 225 25 25 25 25 25 25 25 25 25 25 25	71.88	62.9 inf)	19.0
EIRR(%		```	V	6/~			20		33
res			P6-2	P2-5 P6-2	P16-2 P3-2	P6-2	P6-2	P2-55	P19-
Measures			P2-5	P6-2 P2-4 P2-4	P19-1 P4-2 P2-2	P16-2 P6-2 P4-6	P4-2	P2-4 P4-2 P2-2	P16-2
Restoration	f Work	· 	P2-4	P1919-3 P2-1 P2-3	10000000000000000000000000000000000000	2000 2000 2000 2000 2000 2000 2000 200	P2-5	P2-2 P2-2 P1-3	9-9d
ŀ	Type o	P15-1	P15-1 P2-1	20042000000000000000000000000000000000	7000000 7000000 700111 1000111	4601128 4611128	0.01 0.11 0.00 0.00 0.00 0.00 0.00 0.00		F0-6 F2-4
Permanent	Cost(Mp)	၂ က .	0.101	00.274 00.2330 8034 00.2334	0.028 1.829 0.131 0.131	00000	0	0.053	0.222
,,,		U7-1- U7-1 U7-1	4 1		E4-3			4 12 12 12 12 12 12 12 12 12 12 12 12 12	
Measures		U6-3 U6-3 U6-3	U6-3 U3-2		U3-2				٠.
	of Work	U6-2 U6-2 U6-2		U1-2 U1-2 U7-1	U3-2 U2-2 U2-2	UI-2 UI-2	U4-1	U4-3	U4-2
Restoration	Type c	U1-4 U1-4	U1-4 U1-4	011-1 011-1 04-1 1-1-1	011-14 011-14 011-14	1777	U1-1 U3-1	U2-2 U1-1 U1-1	U1-5
Urgent Re	Cost(Mp)	5.824 2.618 2.127		00000	000000000000000000000000000000000000000	00000 000040 400000 400000	85	0000	0.051
	ruption	Full Width Full Width Full Width	7	One-lane Full Width One-lane Full Width	Full Width Full Width One-lane One-lane	One-lane Full Width Full Width One-lane	Shoulder	Shoulder Full Width Full Width	Full Width
Disas-	rer Pattern	ः च (प्रेचः			തപ്പ	म्य इन स्ने सुर हन ।		മണ	2.
Disas-	Type 1	TBr-w TBr-w TBr-w	TBr-W CLV-D	SPW-D FALL FM-Rd FM-Rd	78r-A D-FL E-F L-SL	CPR-ALL	C-770	西へひ 1 1 1 かがが	SPW-D
1992		22.00	204	102 162 223 223	132 409 409	00000000000000000000000000000000000000	ာတ ဘီတ	တတ္ တတ္	54
Road		Barugo-Bagacay Rd do - Babatogon-StaCruz Rd	- do Palompon-Matagob Rd	Ormoc-LakeDanao Rd Kananga-Milagros Rd Calubian Rd Sanisidro-Tabango Rd Cabugcayan Rd	Culaba-Kawayan Rd do - Baybay-Liberacio Rd do -		Abuyog-Nebga Ka	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sto.Domingo Rd
Spot	.00		-1-1- -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	77777 11111 2222 1122 02120	7777 88844 8886	77777 11177 00867 00888	1-8 8 81	17-17-17-18-24-28-28-28-28-28-28-28-28-28-28-28-28-28-	T-90
		* *	* *	****		****	* *	***	* -

Note * Evaluation of permanent measures against urgent measures or do-nothing ** Evaluation of urgent measures against do-nothing 1) AADT: excluding tricycle & motorcycle 2) EIRR: (inf) = infinite because first year benefit exceeds cost

PART V PROJECT IMPLEMENTATION

CHAPTER 16 DISASTER MANAGEMENT SYSTEM

16.1 ORGANIZATION FOR DISASTER MANAGEMENT

16.1.1 Overall Organization

Under direction and control of the National Disaster Coordinating Council (NDCC), all emergency operations are exercised by the all concerned Departments, local government units, as well as non-government organizations and private sectors. Overall organization for disaster management is shown in Figure 16.1-1.

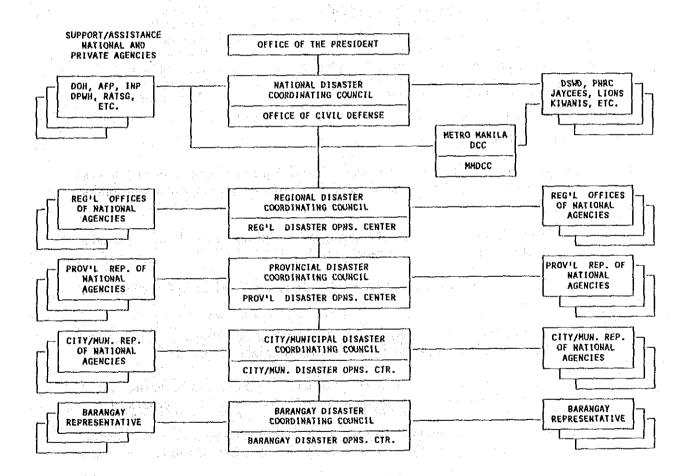


FIGURE 16.1-1 OVERALL ORGANIZATION FOR DISASTER MANAGEMENT

16.1.2 National Disaster Coordinating Council (NDCC)

Member of NDCC

Secretary,	Department of National Defense	- Chairman
Secretary,	Department of Public Works and Highways	- Member
Secretary,	Department of Transportation and	
	Communications	 Member
Secretary,	Department of Social Welfare and	
	Development	 Member
Secretary,	Department of Agriculture	 Member
Secretary,	Department of Education, Culture and	
	Sports	- Member
Secretary,	Department of Finance	- Member
Secretary,	Department of Labor and Employment	- Member
Secretary,	Department of Trade and Industry	- Member
Secretary,	Department of Health	- Member
Secretary,	Department of Environment and Natural	
	Resources	- Member
Secretary.	Department of Local Government	- Member
Secretary,	Department of Budget and Management	- Member
Secretary,	Department of Justice	- Member
Director,	Philippine Information Agency	- Member
	xecutive Secretary	- Member
Chief of Staff,	Armed Forces of the Philippines	- Member
	neral, Philippine National Red Cross	- Member
Administrator	, Office of Civil Defense	- Member and
1		Executive

Tasks of NDCC

- Advises the President on the status of disaster preparedness programs, disaster operations and rehabilitation efforts undertaken by the government and the private sector;
- Establishes policy guidelines on emergency preparedness and disaster operations involving rescue, relief and rehabilitation;
- Establishes priorities in the allocation of funds, services, disaster equipment and relief supplies;
- Advises the lower-level Disaster Coordinating Councils through the Office of Civil Defense in accordance with the guidelines on disaster management;
- Recommends to the President the declaration of a state of calamity in areas extensively damage; and submits proposals to restore normalcy in the affected areas;
- Creates an Action Group composed of permanent representatives from the memberdepartments and other government agencies with the Executive Officer as head; and
- Utilizes the facilities and services of the Office of Civil Defense in Camp Aguinaldo, Quezon City, in discharging its functions.

16.2 DPWH STANDARD OPERATION PROCEDURE

16.2.1 DPWH Disaster Coordinating Body

The Department of Public Works and Highways (DPWH) organizes the Disaster Coordinating Body at the Central Office as well as field offices from Regional down to District/City levels. Standard organization of the Disaster Coordination Body is shown in Figure 16.2-1.

Major tasks of DPWH in the overall context of disaster operation are as follows:

- Restores destroyed public works such as flood control, water works, roads, bridges, and other vertical and horizontal facilities/structures;
- Provides heavy and light equipment for rescue and recovery operations;
- Makes available existing communications facilities for disaster operations;
- Assists in providing transportation facilities to transport relief supplies, personnel and disaster victims;
- Provides warning to the public on impending releases of water from dams under its control; and
- Organizes reaction teams in the department proper as well as in all bureaus and offices under it.

Functions of the staff and teams in the Disaster Coordinating Body are as follows:

Administrative Staff

Provide the administrative supports (personnel acquisition, clerical, reporting, recording, financials, etc.) and supplies including equipment.

Communication Staff

 Provide networks in telephone, telegram, radio system, courier and postal service for DPWH Disaster Preparedness and Control Units, and DPWH assistance to other Government Agencies and Disaster Coordinating Council.

Transportation Staff

Provide transport assistance to DPWH Units and Councils/Agencies that need assistance.

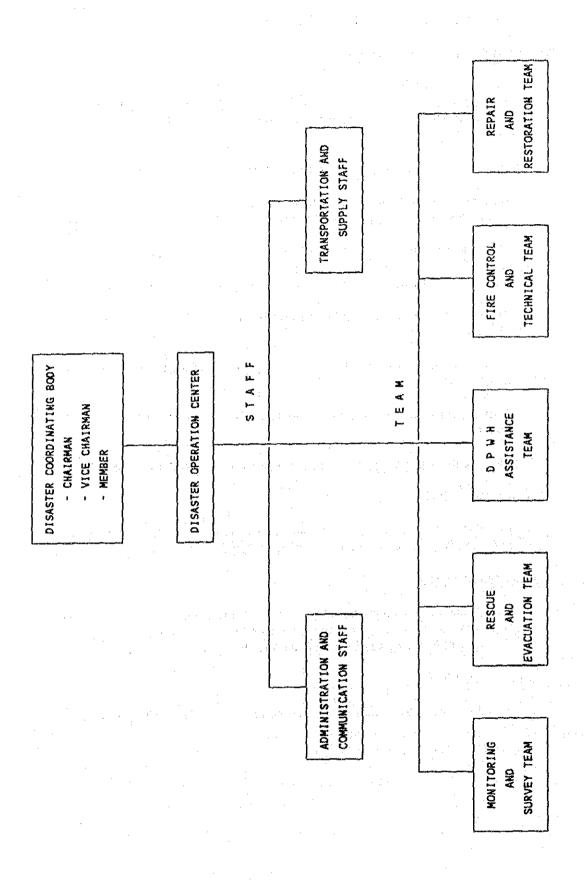


FIGURE 16.2-1 STANDARD DPWH DISASTER COORDINATING BODY

Monitoring and Survey Team

- Monitors impending disasters, and at the first sign of disaster, sound alarm to activate appropriate Teams.
- Surveys damages to infrastructure and transmit relevant reports to DPWH Manila within 24 hours.
- Monitors all emergency and post emergency activities of various Teams, particularly the Repair and Restoration Team, and prepare/submit corresponding reports.

Rescue and Evacuation Team

When requested during emergencies by appropriate agencies thru the DPWH Coordination Body, shall assist in the:

- Rescue operations in locating injured or trapped persons and moving them to places where they can be cared for.
- Evacuation operations by providing available personnel and equipment to expedite controlled movement of evacuees.

DPWH Assistance Team

When requested thru the DPWH Coordinating Body by appropriate agencies during emergencies, shall assist in the:

- Dismantling/demolitions of obstructions to rescue operations specially related to the fire and earthquakes.
- Relief operations of Red Cross/Social Services by providing vehicles and personnel.
- Salvage and Recovery Operations in coordination with other agencies by providing vehicles and personnel.

Fire Control and Technical Team

- Controls fire in office building or assist in controlling fire in adjoining buildings.
- Controls and maintain operation of essential utilities such as water and power supply.
 Also provides cooperation to technical experts in disarming explosive devices, minimizing the effects of both natural and man-made disasters through physical, chemical, biological and radiological counter or preventive measures.

Restoration and Repair Team

 Repairs and restore damaged roads, bridges and other public infrastructure within the area of jurisdiction.

16.2.2 DPWH Standard Operation Procedure

Standard operation procedure before, during and after the calamity is summarized in Table 16.2-1.

At the first sign or warning of typhoon or other calamity, the Operation Centers at the Central and respective field office are activated and placed on 24 hours operation by three (3) shifts until after the calamity.

DPWH Field Offices in the calamity stricken areas shall undertake the following:

Before Typhoon or Any Other Calamity

- 1) Road sections prone to damages caused by calamities are identified.
- Permanent inspectors who are capable of assessing damages and estimating with a high degree of accuracy the cost of restoration work are assigned to identified disaster prone road sections.
- At the warning or indication of an impending typhoon or calamity, the designated inspectors proceed to their assigned section.
- 4) Undertake preparatory work to mitigate effects of calamity.

During Typhoon or Any Other Calamity

- 1) Undertake emergency work
- 2) Prepare situational reports and submit them to District/City Engineer, Regional Director and the Secretary by the fastest means of communication. The situational report shall include the following:
 - Type/nature, location and extent of damage
 - Where traffic is disrupted, possible detour routes
 - What restoration activities are being done
 - · Estimated date for opening to traffic
 - Rough estimate of costs of restoration
 - Request and nature of assistance if warranted
- 3) Provide relief and information to the public.
- 4) Request DPWH Central Office for disaster-related assistance.
- 5) Implement orders, directives and instructions from DPWH Central Office.

TABLE 16.2-1 STANDARD PROCEDURE BEFORE, DURING AND AFTER CALAMITY

	DPWH Central Office Operation Center for Disaster	DPWH Regional/District/City Offices Operation Center for Disaster
Before typhoon or other calemity	Team Leader assembles the Team for a pre- disaster conference and strategy. Alert thru telex Regional Directors and advise them to activate Operation Center and Disaster Crews.	 Identify road disaster-prone sections and assign permanent inspectors to these sections. Activate Operation Center and Disaster Crews. Designated inspectors proceed to assigned sections. Undertake preparatory work to mitigate effects. Anticipate relief action needed and information to Central Office.
During typhoon or other calamity	 Receive situational reports from field offices. Receive request for disaster-related assistance from NDCC or other government agencies including DPWH field offices. Transmit orders, directives, instructions of National Disaster Coordinating Body of DPWH to field Disaster Coordinating Bodies. Coordinate with Public Affairs Office for dissemination of relevant disaster related information to Media. Prepare memorandum for the Secretary 2 or 3 times during the 24-hour period to appraise him of the situational reports. 	Undertake emergency work. Provide relief and information to the public. Prepare situational reports. Request DPWH Central Office Operation Center for disaster-related assistance. Implement orders, directives, instructions from DPWH Central Office Operation Center.
After typhoon or other calemity	Consolidates the Initial Damage Assessment Report and submit to the Secretary. Upon approval by the Secretary, Quick Response Fund is released. Within 2 Weeks Consolidates the Final Detailed Report and submit to the National Disaster Coordinating Council. Request of release of Calamity Fund is submitted to the President for approval thru National Disaster Coordinating Council.	 Within 24-hours, undertake an initial damage assessment of at least Priority I group and report them to District Engineer. Within 48-hours, District Engineer transmit the initial report to the Secretary thru BOM covering at least Priority I Group. Within 5 days, the District Engineer submits to the Regional Director the Final Detailed Report on the damages for all 3 Priority groups including realistic cost estimates. Within 2 days after receipt of the District Reports, the Regional Director reviews and validates the damages covered by the Final Report and submits the summarized reports to the Secretary thru BOM.

After Typhoon or Any Other Calamity

 Immediately assess the damages. Damages shall be categorized into three (3) priority groups as follows:

Priority I: Involves immediate rehabilitation of collapsed bridges, cut road sec-

tions, breached seawalls and dikes to quickly restore mobility and en-

sure safety of the affected areas.

Priority II: Involves ordinary repair works such as patching potholes and resurfac-

ing of washed-out roads and slightly destroyed flood control.

Priority III: Involves minor repair work and/or improvement to prevent further dete-

rioration such as repair of road section.

 Within 24 hours, the initial assessment report covering at least Priority I group of damages is prepared and submitted to District/City Engineers.

- 3) Within 48 hours, the District/City Engineer transmits the initial assessment report to the Secretary of DPWH thru the Bureau of Maintenance by the fastest means of communication.
- 4) Within 5 days, the District/City Engineer submits to the Regional Director the final detailed report on the damages covering all three (3) Priority groups with pictures and the realistic cost estimates for the restoration of the damaged facilities.
- 5) Within 2 days after receipt of the District/City Engineer's report, the Regional Director reviews and validates the damages reported and submits the summarized report to the Secretary of DPWH thru the Bureau of Maintenance.

The Central Office of DPWH undertakes the following:

- Consolidates the initial assessment report and submit it to the Secretary. Upon approval of the report by the Secretary, Quick Response Fund is released.
- 2) Within 2 weeks after receipt, consolidates the final detailed report and submit it to the Secretary of DPWH and the National Disaster Coordinating Council.
- Prepare a letter requesting release of Calamity Fund and submit it to the President for approval thru the National Disaster Coordinating Council.

16.3 CALAMITY FUND

Calamity Fund is appropriated by the General Appropriations Fund and is utilized for the following purposes:

- For maintenance and other operating expenses, particularly for aid, relief and rehabilitation services to people/areas affected by calamity.
- For capital outlays to repair, restore and reconstruct damaged structures.

Fund will be directly appropriated to implementing agencies in accordance with the recommendation of the National Disaster Coordinating Committee upon approval of the President.

To effect timely and expeditious response for the immediate repair/restoration of calamity damaged infrastructure facilities, "Quick Response Fund" which represents twenty percent (20%) of capital outlay is authorized under Calamity Fund and is immediately released to DPWH.

Guidelines for releasing, utilizing and monitoring Quick Response Fund are prescribed as follows:

- 1) Priority in the release of the Quick Response Fund is for the emergency repair/restoration of critically damaged infrastructure facilities to restore mobility and ensure safety in the affected areas, such as:
 - Cut or closed road section
 - Collapsed bridges and washout-out approaches
 - Breached river control and shore protection
 - Unroofed school buildings and other public buildings
- 2) The District/City Engineers shall submit thru the Regional Director and the Director of Bureau of Maintenance to the Secretary, the calamity damaged report within two (2) days after the occurrence of the calamity which should incorporate the following:
 - Brief description and location
 - Extent of damage
 - Pictures
 - Programs of work with detailed estimate
- 3) The Regional Director shall review and validate the damage reports and submit to the Secretary his recommendation within two (2) days after receipt of the reports from the District/City Engineers which will be the basis in the release of Quick Response Fund.

- 4) The Regional Director and District/City Engineers shall be held responsible for the integrity, validity and accuracy of the reports.
- 5) The District/City Engineers shall submit thru the Regional Director and then the Director of Bureau of Maintenance to the Secretary, the monthly accomplishment report including statements on utilization of the "Quick Response Fund" until completion of the projects.
- 6) The Director of Bureau of Maintenance shall compile and collate all monthly progress reports for submittal by the Secretary to the National Disaster Coordinating Council.

CHAPTER 17

IMPLEMENTATION PROGRAM FOR RURAL ROAD RESTORATION PROJECT

17.1 FORMATION OF THE PROJECT

17.1.1 Needs of the Project

1) Government Policy on Highway Sector Development

The government's policies and strategies for highway sector development are as follows:

Priority shall be given to the rehabilitation and restoration of existing facilities to prolong their useful lives, reduce transport operating costs, minimize public inconvenience, and postpone huge investment for their major rehabilitation or replacement. New infrastructure projects shall therefore be selectively undertaken, mainly where they are needed to eliminate the critical bottlenecks that hinder the programmed expansion of production and the provision of basic human needs.

2) Present Status of Rural Road Restoration

Maintenance fund / calamity fund are appropriated for restoration of damaged infrastructure. However, due to lack of the fund, the following problems are often observed:

- Only stopgap measure is taken resulting in repeated occurrence of the same disaster at the same location, as often seen in case of slope failure or debris flow.
- Damaged portion is left unrestored keeping the road section closed to traffic, as seen in washed-out bridge approach.
- Progressive defects in road facilities are left without taking any measure through serious damage is predicted in near future, as seen in bridge foundation being scoured.

3) Proposal of the Project

The rural road restoration project is proposed as a foreign- assisted project with the object of restoring the damaged facilities that are left behind without having been covered by maintenance fund/calamity fund, and reviving the entire road section in which the damage is situated. Thus, the project is just in line with the government policy on highway sector.

17.1.2 Implementation Strategy

1) Type of Loan

The project is composed of many small-scale subprojects. Number and priority of subprojects may vary from time to time depending on natural condition. In order to implement subprojects timely, investment funds shall be flexibly utilized. Therefore, the application of ordinary type of loan may not be practical. Instead, introduction of program type of loan is recommended.

The program type of loan is outlined as follows:

- The program type of loan is a form of assistance for the capital investment needs in a sector in the light of its development perspective, and involves financing of a group of subprojects with the same nature which are consistent with the sector development plan.
- Total amount of loan is determined based on overall implementation program, preferably including a list of candidate subprojects with their preliminary evaluations.
- The selection, formulation and appraisal of subprojects are generally the responsibility of the executing agency. The criteria for the selection and appraisal of subprojects should, however, be specified in advance and mutually agreed upon between the lending institution and the executing agency. The degree of involvement of the lending institution in the selection and appraisal of subprojects may depend upon the maturity and capability of the executing agency.

2) Generation of More Productive Employment

To promote widespread employment, a labor-intensive/equipment supported construction method will be adopted to the fullest extent feasible.

3) Participation of Local Government Units and Rural Communities

In line with the government policy of decentralization, local government units shall be actively participated in the project implementation. Likewise, opportunities of rural communities participation shall be provided as much as practical.

17.2 FRAMEWORK OF THE PROJECT

The project is proposed to be implemented under the following framework:

1) Eligible Roads

Roads to be covered by the project are:

- National secondary road
- Provincial road
- Barangay road

2) Provinces to be covered

40 provinces which were ranked high disaster potential in Chapter 3 are selected as priority provinces to be covered by the project. They are as follows:

CAR : Abra, Benguet, Mountain Province, Ifugao, Kalinga-Apayao

Region I : Ilocos Norte, Ilocos Sur, La Union, Pangasinan

Region II : Batanes, Cagayan, Isabela, Nueva Vizcaya, Quirino

Region III : Bataan, Bulacan, Nueva Ecija, Pampanga, Tarlac, Zambales

Region IV : Aurora, Batangas, Cavite, Laguna, Marinduque, Occidental

Mindoro, Oriental Mindoro, Quezon, Rizal

Region V : Albay, Camarines Norte, Camarines Sur, Catanduanes, Sorsogon

Region VIII: Leyte, Southern Leyte, Eastern Samar, Northern Samar, Samar

Region XI : Surigao del Sur

3) Criteria for Subproject Selection

1. State of Restoration

Any of the following:

- Damage being left unrestored keeping the road section closed to traffic
- Progressive defect in danger of causing serious damage in future even though presently no interference to traffic

 Damage for which only stopgap measure is being taken, needing permanent measure for preventing its recurrence

2. Traffic Demand

Traffic demand shall be more than 100 vehicles per day.

3. Project Scale

Estimated cost shall be more than about 0.5 million pesos, except for the projects to prevent future serious damage, which are eligible irrespectively of cost.

17.3 FUND REQUIREMENT

17.3.1 Proposed Subprojects in Pilot Provinces

In accordance with the selection criteria mentioned above, 19 subprojects were selected in the three pilot provinces as shown in Table 17.3-1. Their total estimated cost is P60 million.

TABLE 17.3-1 SELECTED SUBPROJECTS IN THE PILOT PROVINCES

			1) State of		Estimated Restorat	d Cost of 2) tion (MP)					
Province	Spot No.	Disaster Type	Resto ra- tion	Foreign Compo- nent	Local Compo- nent	Ťax	Total				
	Bt- 2	Rd-D	A	5.391	4.390	1.476	11.257				
	8t-11	L-SL	С	0.261	0.165	0.066	0.492				
Benguet	Bt-27	PBr-W	A	2.013	1.513	0.509	4.035				
	Bt-63	PBr-A	С	0.691	0.525	0.180	1.396				
	Bt-70	D-FL	C	2.705	1.610	0.703	5.018				
	Prov	ince Tota	L .	11.061	8.203	2.934	22.198				
	Bs- 5	PBr-D	В	0.240	0.168	0.064	0.472				
Batangas	8s- 6	PBr-D	В	0.178	0.126	0.050	0.354				
	Bs- 7	PBr-D	В	0.450	0.315	0.120	0.885				
	Bs-33	PBr-A	A	7.679	5.697	1.972	15.348				
	Bs-47	PBr-D	В	0.619	0.169	0.094	0.882				
	Bs-48	PBr-D	В	0.570	0.156	0.086	0,812				
	8s-50	TBr-D	В	0.085	0.071	0.024	0.180				
	8s-51	SM-D	C	0.406	0.253	0.114	0.773				
	Bs-62	TBr-W	8	0.505	0.426	0.123	1.054				
. :	Prov	ince Tota	l	10.732	7.381	2.624	20.760				
	L-39	D-FL	С	0.931	0.654	0.244	1.829				
	L-56	TBr-W	Α	3.355	2.522	0.847	6.724				
Leyte	L-63	TBr-W	A .	1.006	0.756	0.255	2.017				
	L-74	TBr-₩	A	1.845	1.387	0.466	3.698				
	L-76	PBr-A	Α	1.470	1.091	0.374	2.935				
	Ргоч	ince Tota	L	8.607	6.410	2.186	17.203				

Note: 1) State of Restoration:

A: left unrestored keeping road closed

B: In danger of serious damage in future

C: only stopgap measures being taken

2) Estimated Cost:

at 1991 price level

17.3.2 Fund Requirement for the Whole Project

In Chapter 3, provinces were classified with regard to disaster potential and likely type of disaster. Assuming that fund requirements in the provinces belonging to the same group are in proportion to the total length of roads, the fund requirement for the whole project covering 40 provinces was roughly estimated arriving at P577 million as shown in Table 17.3-2.

TABLE 17.3-2 ESTIMATE OF TOTAL PROJECT COST

(at 1991 Price level)

, and the second			Tatel	Cc	nstruction	Cost (MP)	
	Province	_	Length of Road	Foreign	Local		<u>.</u>
	Group	Province (CAR) Resource	(Km) 1757.2	Component	8.203	7 a x	22.198
	,	(CAR) Benguet (CAR) Ifugao	983.2	6.185	4.595	1,640	12.420
	'		2220.6	13.970	10.379	3,703	28.052
		(CAR) Abra (CAR) Hountain Province	799.1	5.027	3,735	1,333	10.095
	H - H		2403.0	15.117	11,232	4.007	30.356
	(High Disaster	(2) Nueva Vizcaya (4) Aurora	630.7	3.969	2.949	1.051	7,969
	Potential, Mountainous)	(4) Aurora (5) Catanduanes	788.0	4.961	3.686	1.314	9.961
	1	(CAR) Kalinga-Apayao	1326.3	8.344	6.199	2.212	16.755
		(2) Quirino	672.6	4.232	3.144	1.121	8.497
		Sub-Total	11580.7	72.866	54,122	19.315	146.303
		(3) Zembeles	1292.9	3.757	2.587	0.922	7.266
	- 1	(8) Southern Leyte	1358.8	3.971	2.735	0.975	7.681
		(8) Semer	753.9	2.254	1,552	0.554	4.360
		(1) Ilocos Sur	2812.2	8.264	5.691	2.030	15.985
	N MF	(1) Ilocos Horte	3071.7	9.016	6.208	2.214	17.438
	(High Disaster	(4) Rizal	1237.2	3,515	2.612	0.931	7.058
	Potential, Mountainous	(5) Albay	1637.6	4,830	3.326	1.186	9.342
	and flat Combined)	(4) Harinduque	665.1	1,932	1.330	0.475	3.737
er e e e e		(4) Oriental Mindoro	1320.4	3.864	2.661	0.949	7.474
	:	(2) Cagayan	3456.8	10.196	7.021	2.505	19.722
		(2) Isabela	3751.0	11.055	7.612	2.716	21.383
•		(8) Northern Samar	940.6	2,791	1.922	0.685	5.398
9 <u>.</u> 5 m	1.	(8) Eastern Samar	1613.3	4.722	3.252	1,160	9.134
		(4) Batangas	3653.6	10.732	7.381	2.647	20.760
		Sub-Total	27555.1	80.899	55.890	19.949	156.738
		(5) Camarines Norte	726.7	1,634	1.219	0.416	3,269
		(4) Occidental Mindoro	1606.5	3.613	2.695	0.917	7,225
4.1		(4) Quezon	2113.5	4.817	3.593	1.224	9.634
		(5) Commarines Sur	3429.5	7.741	5.775	1.967	15.483
		(8) Leyte	3804.7	8,607	6.410	2.186	17,203
		(1) La Union	1228.4	2.752	2.053	0.700	5.505
	H - F (High	(3) Bulacan	2544.6	5.763	4.299	1.464	11.526
	Disaster Potential, Flat)	(11) Surigao dal Sur	1517.4	3,441	2.567	0.873	6.881
·	riai)	(4) Laguna	1470.3	3.355	2,368	0.986	6.709
·		(3) Batean	1074.7	2.408	1.797	0.612	4.817
		(3) Nueva Ecija	3228.3	7.311	5.454	1.858	14.623
	.:	(4) Cavite	1608.3	3.613	2.695	0.917	7.225
		(3) Terlac	2556.2	5.763	4.299	1.464	11.526
	: *	(5) Sorsogon	1025.4	2.322	1,733	0.590	4.645
,		(1) Pengasinan	5063.7	11.440	8.534	2.906	22.880
		(2) Batanes	277.2	0.602	0.449	0.153	1.204
		(3) Pempanga	2379,8	5.419	3,826	1,593	10.838
		Sub-Total	35655.2	80.601	59.766	20.826	161.193
	Total Constr			234.366	169.778	6.009	464.234
İ	Contingency			23.437	16.978	8.593	66,385
		sulting Services (13%)		33.514	24.278	74.692	577.043
	Total Projec	t Cost		291.317	211.034	17.072	2,,,,,,,,

17.4 IMPLEMENTATION PROCEDURE

The project will be implemented in several distinct stages, as shown in Table 17.4-1.

1) Project Preparation

This stage includes the following:

- Formulation of the implementation program based on this Study.
- Inclusion of the project in the DPWH Infrastructure Program and the approval of the project by the Investment Coordination Committee (ICC).
- Loan arrangement including application, negotiation and agreement.

The Project Management Office-Feasibility Studies (PMO-FS) of the Department of Public Works and Highways (DPWH) will be in charge of the project preparation.

2) Subproject Selection

Identification of Subprojects

Subprojects will be initially identified by the Barangay Development Council, then assessed/reviewed successively by the Municipal Development Council, the Provincial Development Council and the Regional Development Council and finally integrated/consolidated in the regional proposal.

Evaluation of Subprojects

The proposed subprojects will be reviewed/evaluated/prioritized in the DPWH Cental Office.

Selection of Subprojects

The priority subprojects will be selected and included in the project.

The PMO-FS will take charge of evaluation and selection of subprojects. Consulting services may be required for assisting it.

3) Detailed Engineering Design

Detailed engineering design includes:

- Engineering survey
- Preparation of plans, specifications and tender documents
- Cost estimate

Detailed engineering design will be carried out by a Project Management Office (PMO), hiring consultants to prepare the design. The PMO to take charge will depends on the lending institution and capacity of the PMO.

4) Tendering

Tendering activities including prequalification of contractors, tender evaluation and award of contract will be conducted by the Prequalification, Bids and Award Committee (PBAC) in cooperation with the PMO in charge.

5) Construction

Construction supervision will be conducted by DPWH Regional Office, District Office or Local Government depending on size of subproject and class of road. The PMO in charge will be responsible for coordination, monitoring and communication with the lending institution.

TABLE 17.4-1 IMPLEMENTATION PROCEDURE AND AGENCIES IN CHARGE

	Program	Program Level		Project Level	
Procedure	Project Preparation	Selection Selection	Detailed Engineering Design	Tendering	Construction
wajor works	Formulation of Implementation Program Inclusion in DPWH Infrastructure Program Loan Arrangement	. Identification of Subprojects . Evaluation of Sub- projects . Selection of Sub- projects	· Engineering Survey · Preparation of Plans/Specifica- tions/Tender Docu- ments · Cost Estimate	Prequalification of Contractors Tender Evaluation Mand of Contract	Control of Construction Schedule, Quantity and Quality Monitoring of Construction Progress
Executing Agency	· DPWN PMO-FS	· DPWH PMO-FS	OMA HMOO .	• БРЫН РВАС • БРЫН РМО	. DPWH PMO (Coordina- tion) . DPWH Regional/ District Office (Construction Super- vision) . Local Government (Construction Super- vision)
Coordina- ting/Nego tiating Agency	· ICC · Lending Institution	. Local Development Council Regional Development Council Lending Institution		· Lending Institution	· Lending Institution
Profes- sional Group		· Consultants	• Consul tants	· Consultants · Contractors	· Consultants · Contractors

Note: 1) General term for Barangay Development Council, Municipal Development Council and Provincial Development Council

17.5 IMPLEMENTATION SCHEDULE

The project is, because of its urgency and feasibility, recommended to be implemented in the earliest possible timing. The assumed implementation schedule and annual fund requirement are presented in Table 17.5-1.

TABLE 17.5-1 IMPLEMENTATION SCHEDULE AND ANNUAL FUND REQUIREMENT

	·			1 9	9 2	 Γ	1 9	9 3	******	 1 9	9 4		1 9	9 5	 Ī	0	t a	ī
Project F	reparation		725,000															
Subproject Selection						Essen												
Detailed	Engineering De	sign						\$100.00G										
Tendering	1																	
Construct	ion																	
	Cost for Consulting Services 2)	Foreign Local Tax Total					11 8 2 22	.1		(3.1 9.5 3.4 6.0			9.2 6.7 2.3 8.2			33. 24. 8. 66.	3
Annual 1) Fund Require- ment	Construction Cost including Contingency	Foreign Local Tax Total								74	3.4 4.8 6.5 4.7		11	4.4 1.9 9.6 5.9		1	57. 86. 66. 10.	7
	Total	Foreign Local Tax Total					11 8 2 22	.2 .1 .9		86	6.5 4.3 9.9 0.7		114	3.6 8.6 1.9 4.1		. 5	91. 11. 74. 77.	0

t) in Million pesos at 1991 price level

cost for consulting services are estimated as follows:

For subproject selection : 1% of construction cost

For detailed engineering design : 5%

For tendering : 1% "

For construction supervision : 6% "

CHAPTER 18

RECOMMENDATIONS FOR FACILITATING RESTORATION WORKS

As previously mentioned, rural roads in the Philippines are situated in the severe natural environment such as mountainous topography, fragile geology, heavy rain, etc., and often hit by natural calamities like typhoons, earthquakes and volcanic eruptions, causing frequent occurrence of road disaster. Road restoration works are however not carried out quickly and properly. One of the problems hindering the proper execution of restoration works is difficulty in procurement of pertinent materials. To get out of such situation and facilitate restoration works, two projects are proposed in this chapter, which are:

- Establishment of gabion factories
- Stockpile of portable bridges for emergency use.

18.1 ESTABLISHMENT OF GABION FACTORIES

18.1.1 Needs of Establishment of Gabion Factories

1) Characteristics of Gabion

Gabions are composed of diamond patterned net made of zinc coated low carbon steel wire and stones or rocks filled therein. Gabions are classified into three types according to shape as shown in Table 18.1-1.

Gabions have the following advantages:

Flexibility

Due to their flexibility, gabions fit irregular site geometry and follow the deformation of ground to a certain extent without any damage unlike other solid structures.

- Permeability

Gabions are excellently permeable and thus advantageous to drainage behind the structure.

Constructability

Gabion work is so easy that a satisfactory work can be expected without difficult quality control. Furthermore, gabion work does not need formwork and cure enabling construction period to be shortened.

Low Cost

Gabion work costs about P1,400 per m³ at 1991 price level, while the cost of class A concrete is about P2,900 per m³. Thus, gabion work is economical.

2) Usage of Gabion

Due to their advantages, gabions were often adopted in the preliminary design for the selected disaster spots as described in Chapter 14. Table 18.1-2 shows the number of disaster spots where gabion was proposed. Out of 62 selected spots, gabions were adopted at 27 spots.

The usage of gabion is summarized as follows:

- Gabions are widely applicable to restoration work as main material for retaining wall, foot protection, catch work, slope breasting, sabo dam, consolidation, spurdike, etc.
- Gabions are usable to restoration work for almost all types of disaster.

Rectangular Gabion
(Mat Gabion)

Cylindrical Gabion

Deformed Gabion

Diagonal, Triangle, Oval, Waving, Flexible, etc.

Paragraphy Application Example

Retaining Walt in Benguet Bt-2

Esisting Asphorit

Paragraphy Malt in Benguet Bt-2

Spurdike in Batangas Bs-33

Wave Protection in Japan (Flexible Type)

TABLE 18.1-1 TYPE OF GABION

TABLE 18.1-2 NUMBER OF SPOTS WHERE GABION IS PROPOSED FOR RESTORATION

		Туре	e of Res	toratio	on Measur	9		
		U4/P6 Retaining Wall	U5/P16 Foot Protection	P8 Catch Work	P14 Consoli- dation	P17 Spur- dike	No. of spots where gabion is adopted	No. of selected spots for F/S
	C-F	1	•	2	-	•	3	12
	E-F	2	2	-	-	-	- 4	9
	FALL	•	ļ <u>-</u>	2	-	٠	2	5
	L-SL	1	2	-	-	-	3	3
	D-FL	-		3	. -	-	3	5
	Rd-D	1	-	-	-	-	1	2
Туре	FM-Rd	1		 -	-		1	4
of Disas	PBr-W	-	-	-	-	-	0	0
	PBr-A	1	-	-	-	1	1	4
ter	PBr-D	-	2	-	1	÷	2	2
	TBr-W	-	1	-	-	-	1	3
	TBr-A	-	1	•	-	-	1	1
	TBr-D	2	-	-		-	1	1
	SPW-D	3	-	\	-	-	3	-3
	CLV-D	. · · 1.	-	-	•		1	6
	SW-D	-	-	+	•	<u>-</u>	0	2
To	tal	13	8	7	1	1	27	62

3) Demand and Supply of Gabion

Table 18.1-3 shows the total quantity of gabion estimated in the preliminary design for the 62 disaster spots.

TABLE 18.1-3 QUANTITY OF GABION IN THE DESIGN OF THE SELECTED SPOTS

Unit: m³

	Benguet	Batangas	Leyte	Total
Rectangular Gabion	8,065	1,723	992	10,780
Cylindrical Gabion	0	1,040	0	1,040
Total	8,065	2,763	992	11,820

Based on the above figures, the demand of gabion for rural road restoration in the whole Philippines was roughly estimated as shown in Table 18.1-4.

Gabions are in great demand: about 400,000 m³ in a year for rural road restoration alone in the whole country.

TABLE 18.1-4 ESTIMATED DEMAND OF GABION FOR RURAL ROAD RESTORATION

Region	Volume of Gabions (m ³)
CAR	130,000
1 :	25,000
11	79,000
111	17,000
IV.	44,000
٧	26,000
VI ·	10,000
ALI	12,000
VIII	19,000
XI	4,000
Χ .	19,000
XI	10,000
XII	5,000
Total	400,000

On the other hand, the gabion supplying capacity in the Philippines is very low.

In view of the above, some political measures for increase of gablon supplying capacity are recommended to be taken.

18.1.2 Implementation Plan

1) Outline of the Project

As the initial step to promote the spread of use of gabions and the development of gabion industry, it is proposed that gabion factories are established by the government and operated and maintained under the Regional Offices of DPWH. Wire net for gabion will be stored and used for construction/restoration projects, directly in case of projects by administration and as government supply material in case of projects by contract.

2) Disposition Plan and Cost Estimate

Based on the estimated demand shown in Table 18.1-4, the disposition plan of the factories is proposed and the project cost is estimated as shown in Table 18.1-5.

TABLE 18.1-5 DISPOSITION PLAN OF FACTORIES AND ESTIMATE OF PROJECT COST

Region to be covered	No. of Factories	No. of Machines	Cost including factory building, machine, and its installation (Million Pesos)
CAR	1	1	16
1/111	1	1	16
11	1	1	16
IV	1	1	16
AVALLI	1	1	16
XI/VII/IX	1	1	16
X/XI/XII	1	1	16
Total	. 7	. 7	112

18.2 STOCKPILE OF PORTABLE BRIDGES FOR EMERGENCY USE

18.2.1 Needs of Stockpile of Portable Bridges

The Philippines has 6,928 bridges with a total length of 235,520 linear meters along the national roads as of 1988, consisting of 181,580 linear meters of permanent bridges and 53,940 linear meters of temporary bridges, as shown in Table 18.2-1. Permanent bridges are made of concrete, steel and similar materials, while temporary bridges are made of bailey, timber, coconut and similar materials. In general, temporary bridges are weak and in danger of collapse or washout.

In the three pilot provinces, bridge or its approach washout was observed at the following number of spots as of November 1990:

•	permanent bridge washout		1
•	permanent bridge approach washout	:	4
0	temporary bridge washout	:	15
•	temporary bridge approach washout	:	3

total : 2

Estimating from the fact that the existing bridges in the three Pilot provinces are about 7% of the total bridges in the Philippines, hundreds of bridges will have been damaged in the whole country.

Those spots that are closed due to bridge washout are in urgent need of being opened to traffic by constructing a temporary bridge. For this purpose, such bridges as are disintegrated into pieces, transported and assembled at site, like bailey bridges, are suitable but there is no stockpile of bailey bridge for emergency use.

The project for procurement and stockpile of portable bridges for emergency use is proposed to cope with the above situation.

18.2.2 Implementation Plan

1) Outline of the Project

The project is to procure and stockpile bridge components for emergency use and to organize working crews with complete set of equipment. The priciples of the project are as follows:

- The bridge components shall be used only for emergency and temporary replacement of bridges damaged by natural calamities.
- Temporary bridges constructed with the bridge components shall be removed immediately after the completion of permanent bridges, since the components are designed only for temporary use, not for permanent use.

- The bridge components shall be properly stored in the designated places (depots) and maintained to be always ready for emergency use.
- The working crew shall be well trained to be skilled in emergency construction of temporary bridges with the bridge components using tools and equipment kept in the depots.

2) Type of Bridge

The requirements of the portable bridges to be constructed quickly are as follows:

- The bridge components shall include parts for substructure as well as for superstructure.
- Number of components shall be as few as possible.
- The components shall be easily transported and assembled only by the tools and equipment kept in the depot.
- The bridge shall be easily diasssembled.
- The components shall be structurally sound to withstand repeated use.
- The bridge shall be capable of supporting more than 10 ton loads.

A preliminary design of portable bridge is shown in Figure 18.2-1 (1) to (5).

TABLE 18.2-1 EXISTING BRIDGES BY CLASSIFICATION (ALONG NATIONAL ROADS ONLY)

				Leng	Length (L.M.)					
	Number		Permanent	ent			Temporary	агу		
Region	Bridges	Concrete	Steel	Total	Bailey	ley	Timber	Tota		TOTAL
NCR	271	12,837.98	495.75	13,333.73 (99%)		97.54		97.54	32	13,431.27
Š	241	2,821.15	2,113.97	4,935.12 (65%)		2,429.20	170.50	2,599.70	(35%)	7,534.82
}= 4	430	10,031.77	8,281.03	18,312.80 (95%)		937.64	92.60	1,030.24	(%5)	19,343.04
5-4 5-4	425	7,220.79	8,165.25	15,386.04 (84%)	·-	,350.48	1,588.10	2,938,58	(16%)	18,324.62
	521	16,285.54	1,862.06	18,147.60 (93%)	·	770.25	627.00	1,397.25	(%)	19,544.86
IV-A	268	10,022.45	2,485.05	(12,507.50 (88%)	_	166.79	458.52	1,625.31	(12%)	14,132.81
IV-B	526	9,009.02	1,309.18	10,318.20 (68	68%) 2,61	2,614.44	2,141.55	66.252.4	(32%)	15,074.19
>	325	9,077.05	1,598.75	10,675.80 (73	73%) 2,42	2,425.80	1,547.34	3,973.14	(27%)	14,648.94
X	909	14,165.73	3,207.80	17,373.53 (72	72%) 4,46	4,463.59	2,163.79	6,627.38	(28%)	24,000.91
Z	485	7,475.61	2,090.16	9,565.77 (73	73%) 2,7	2,717.84	884.31	3,602.15	(27%)	13,167.92
VIII	768	10,997.03	16,202,91	15,204.94 (61	61%) 3,69	,692.94	6,194.37	9,887.31	(36%)	25,092.25
×	560	5,516.34	1,442.39	6,958.73 (80	80%) 1,27	1,214.40	530.10	1,744.50	(20%)	8,703.23
×	965	10,479.69	3,166.59	13,646.28 (75	75%) 2,13	2,137.13	2,525.42	4,662.55	(25%)	18,308.83
×	197	7,013.58	1,535.67	8,549.25 (58	58%) 3,00	3,068.80	3,124.64	6, 193.44	(42%)	14,742.69
XII	319	5,745.04	916.55	6,661.59 (70%)		2,339.11	768.60	2,807.71	(30%)	02.697,6
Total	6,928	138,698.77	42,878.11	181,576.88 (77%)		31,425.95	22,516.84	53,942.79	(23%)	235,519.67
										-

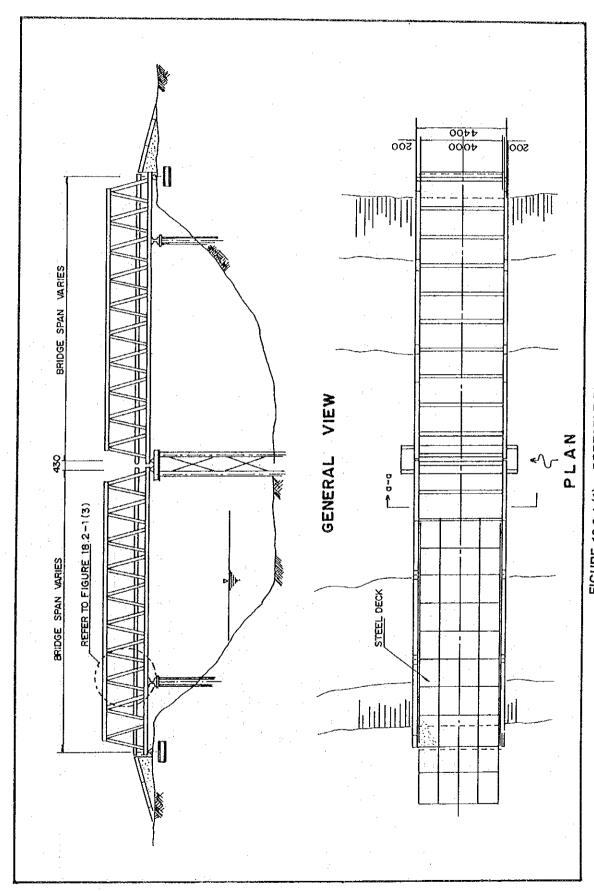


FIGURE 18.2-1 (1) PORTABLE BRIDGE GENERAL VIEW AND PLAN

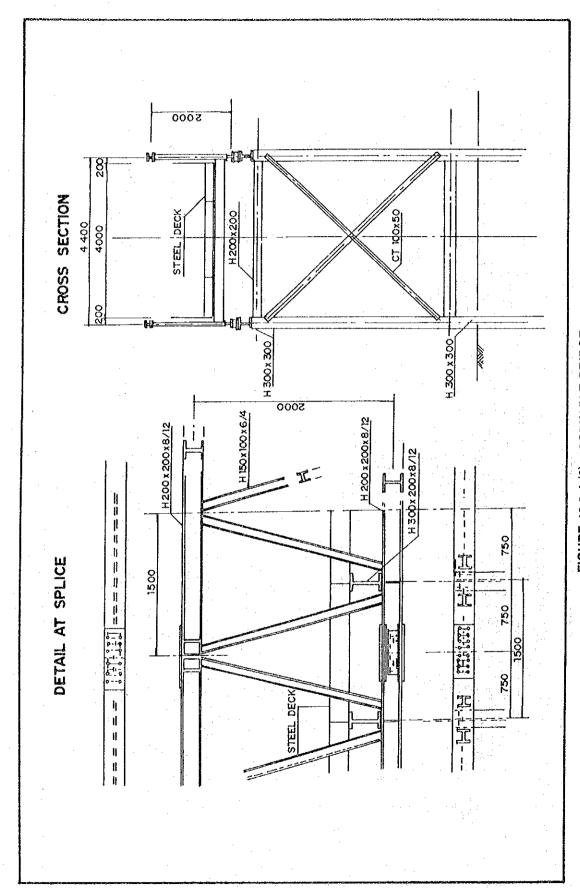


FIGURE 18.2-1 (2) PORTABLE BRIDGE STANDARD PANEL

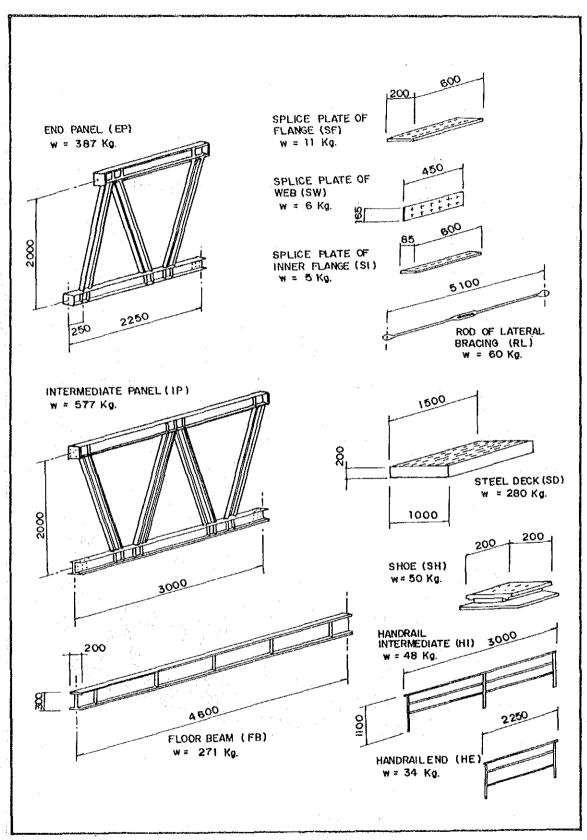


FIGURE 18.2-1 (3) PORTABLE BRIDGE MEMBERS AND PARTS

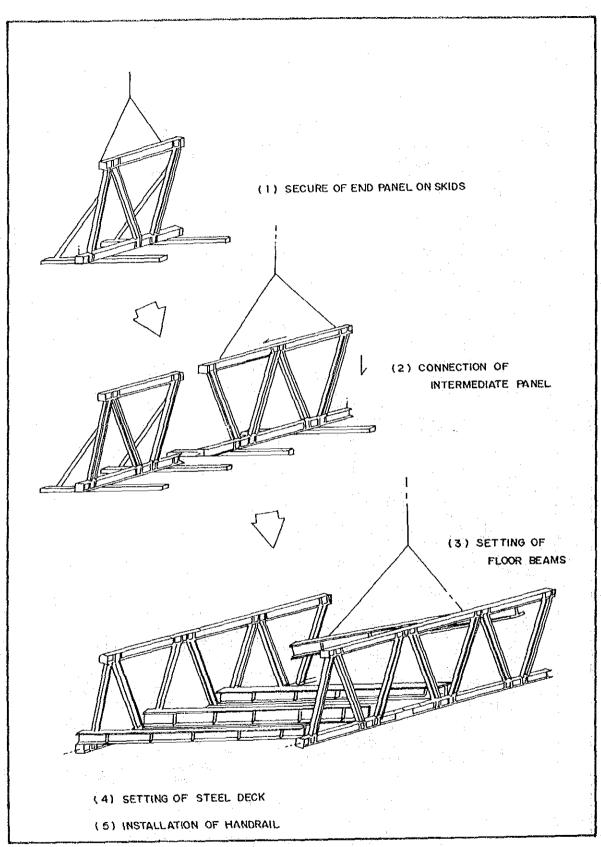


FIGURE 18.2-1(4) PORTABLE BRIDGE
ASSEMBLE SEQUENCE

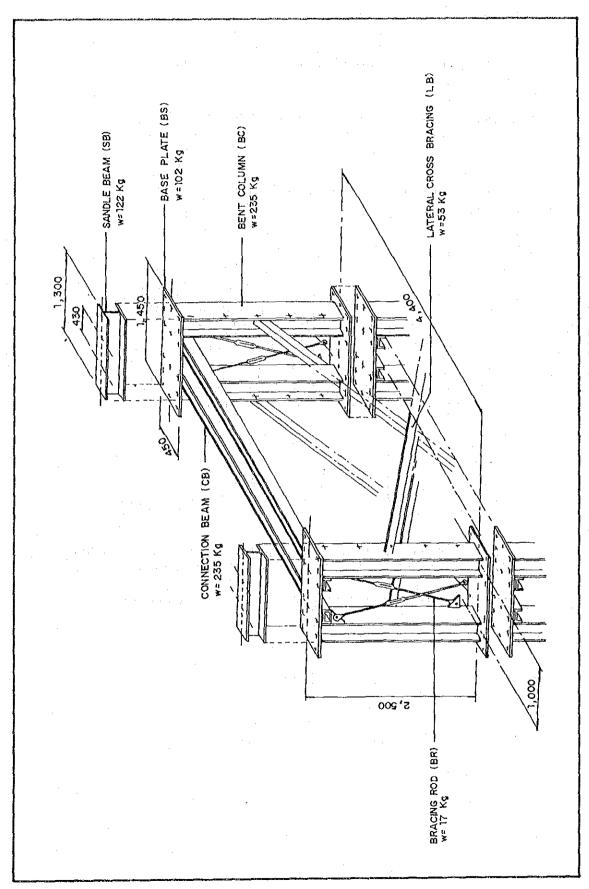


FIGURE 18.2-1 (5) PORTABLE BRIDGE BENT SUPPORT

3) Disposition Plan

Demand of portable bridges by region is roughly estimated based on number of existing temporary bridges and frequency of typhoons, and then the disposition plan is proposed as shown in Table 18.2-2.

TABLE 18.2-2 DISPOSITION PLAN OF PORTABLE BRIDGES

Regions to be covered	No. of Depots	Quantity of Bridge Components
CAR/I	1	10 sets of 19-m span bridge
11	1	10 sets of 19-m span bridge
111	1	10 sets of 19-m span bridge
IV-A	1	10 sets of 19-m span bridge
IV-B	1	10 sets of 19-m span bridge
٧	1	10 sets of 19-m span bridge
ĮV	1	10 sets of 19-m span bridge
VII	1	10 sets of 19-m span bridge
IIIV	2	20 sets of 19-m span bridge
IX/XII	1	10 sets of 19-m span bridge
χ	1	10 sets of 19-m span bridge
XI	1	10 sets of 19-m span bridge
Total	13	130 sets of 19-m span bridge

4) Cost Estimate

The project cost is roughly estimated as shown in Table 18.2-3, amounting to P57 million per depot and totalling to P741 million for the whole country.

The project may be implemented by phasing depending on the availability of fund.

TABLE 18.2-3 ROUGH ESTIMATE OF PROJECT COST

			Unit	Unit Cost	Quantity	Cost	Remarks
1.	Cost per Depot	:					
	Bridge Components	Superstructure Deck Plate Bent Support	m ₂ m	85 18 200	19 m x 10 = 190 m 4 m x 19 x 10 = 760 m 20	16,150 13,680 4,000	14.4 t/bridge 16 t/bridge 1 pc/abutment
		Sub-Total		l		33,830	
	Warehouse	Steel Frame Roofing and Siding Door, etc.	m2 m2 set	5 1 1,050	680 2,600 1	3,400 2,600 1,050	40 t (40 x 17m) Colored Sheet
		Sub-Total			:	7,050	
		20 Ton Truck Trailer	Veh.	1,600	2	3,200	
		10 Ton Truck Crane Nose Manual Winch Wire Rope and	Veh. m set	3,200 100 300	1 12 2	3,200 1,200 600	12 t
		Accessories Rail, Roller,	set	1,000	1	1,000	
		etc. Minor Tools	set set	1,400 100	1 1	1,400 100	
		Sub-Total				10,700	
	Engineering Fee		L.S.			5,158	
	Total					56,738	App. #57 Million
11.	Cost for 13 Dep	ots				741,000	

