List of measuring equipment

	Remarks			with Thermal control Water Bath 4 sets			2 sets				
ment	Specification			Electromotive Force:1.0193V at 20°C Accuracy: ±50ppm	Max. Generation of Terminal EMFs: $\leq 0.01 \mu \text{ V}$	Voltage: 10V, 1.018V, 1V Stability:±0.5 ~ ±12.0ppm	DC V: $\pm 100mV \sim \pm 1000V$ Accuracy: 0.01%		Output:0 to 35VDC, 0 to 500ADC Stability(A): 0.05%	Current Rating:300A(0.333mΩ) 0.01mA(10kΩ)	Range: 1V to 1000VDC Accuracy: ±25ppm
of measuring equipment	Equipment Name(Jpn.)			在新聞	標準電池切換器	驾压 模准	マルチメーター		按短化稿 廢	蔡华抵抗	聯營鶴田宇
List Quantity of electric	Equipment Name(Eng.)			Standard Cell	Channel Switch for Standard Cell	Voltage Standard	Multimeter		Stabilized Source	Standard Shunt	Differencial Voltmeter
Quanti	8		H	111	112	113	114	12	121	122	123
						A ~ 2	53				

List of measuring equipment

No O	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
13				
131	High Voltage Source	箔電压電源	Output:0 to 60kV, 0 to 50mADC Stability(A): $\pm 0.01\%$	
132	High Voltage Divider	高橇圧分圧器	Input Resistance: 2000 MS Readability: 10,000 to 1	
133	Differencial Voltmeter	激動電圧計	Range: 1V to 1000VDC Accuracy: ±25ppm	
~				
21				
211	AC/DC Voltage and Current Supply	交流/直流電圧電流電源	Output(V): 0 to 1100V (AC,DC) Output(A): 0 to 2A(DC) 0 to 2A(AC 10Hz to 50kHz)	
212	Power Amplifier	電力増幅器	Output: 20A (AC,DC) Accuracy: 0.025%	
213	Current Shunt	電流抵抗	Range: 200μ A to $100 A (AC/DC)$ Accuracy: $\pm 0.01\%$	
214	Differencial Voltmeter	送動電圧計	Range: 1V to 1000VDC Accuracy: ±25ppm	

List of measuring equipment

No O	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
22				
221	AC Standard Voltage Source	交流電圧機準	Max. Voltage: 120V(10Hz-1MHz) Accuracy: 1 nV to 100μ V	·
222	Power Amplifier	電力增福器	Output: 100 to 1099.99V Resolution: 1mV	
223	AC/DC Comparator	交流直流比較器	Range(V): 225mV to 1100V(RMS) Range(F): DC, 10Hz to 100MHz	
224	Digital Voltmeter	テジタル電圧計	Range: 200mV to 1000V Resolution: 1 μ V	
23				
231	AC/DC Voltage and Current Supply	交流/直流電圧電流電源	Output(V): 0 to 1100V (AC,DC) Output(A): 0 to 2A(DC) 0 to 2A(AC 10Hz to 50kHz)	
232	Power Amplifier	電力抽幅器	Output: 20A (AC,DC) Accuracy: 0.025%	
233	Current Shunt	葛 沅抵抗	Range: 200μ A to $100 \mathrm{A}(\mathrm{AC/DC})$ Accuracy: $\pm 0.01 \%$	
234	Differencial Voltmeter	差數電压計	Range: 1V to 1000VDC Accuracy: ±25ppm	

List of measuring equipment

No	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
က				
311	Standard Resistor	被草抵抗	Resistance: 1 Ω Accuracy: 0.0005%	3 sets
	Standard Resistor	撤掃抵抗	Resistance: 10 kの Accuracy: ±lppm	3 sets
	Standard Resistor	敷料 拓抗	Resistance: 0.001 Ω Accuracy: ±0.02%	2 sets
	Standard Resistor	標準抵抗	Resistance: 0.01Ω Accuracy: ±0.02%	2 sets
	Standard Resistor	蘇^強抵抗	Resistance: 0.1 \(\Omega\) Accuracy: \(\pm 0.002\)	2 sets
	Standard Resistor	藤華拓抗	Resistance: 100kΩ Accuracy: ±0.002%	2 sets
	Standard Resistor	藤ン 本地 大地 大地	Resistance: 10Ω Accuracy: ±0.02%	1 sets
	Standard Resistor	蘇陣抵抗	Resistance: 100 Ω Accuracy: ±0.002%	1 sets
	Standard Resistor	藜	Resistance: 10 kΩ Accuracy: ±0.005%	1 sets
312	Oil Bath	智 坦	Range: 0 to 65°C Stability: 0.002°C	2 sets

List of measuring equipment

Remarks 2 sets 2 sets 2 sets sets sets sets N Measuring range:1k Ω to 100M Ω Resolution: $20\,\omega$ Max.Current: 100A Max.Switching Frequency: 0.5Hz Standard Value: $100 k\Omega / \text{step}$ Standard Value: 10 km /step Standard Value: 1kの/step Transfer Accuracy:エ1ppm Transfer Accuracy: 土 lppm Transfer Accuracy: ± 1ppm 0 to 200A Specification Range:10 $^{-8}$ to 10 $^{\circ}$ Ω Accuracy: \pm 0.2ppm Stability: \pm 0.2ppm Resistance: 0.001 Ω Resistance: 10 kΩ Accuracy: ±0.02% Accuracy: 0.0005% Accuracy: ±1ppm Resistance: 1 Ω Output Range: Drift: 0.03% Equipment Name(Jpn.) 1 柘坑運航嶽 拓抗校校整新 和抗公数整治 旅游新花花 強御和打 蘇強衛抗 \mathfrak{m} 脂瓣脂 O 內被聯 O Ω 超 Temperature Bridge(DCCB) Comparator Resistance & Equipment Name(Eng.) Resistance Transfer Standard Resistor Resistance Transfer Resistance Transfer Standard Resistor Standard Resistor Measurement Set High Resistance Direct Current Current Source Standard Standard Standard Switch 414 413 412 411 314 313 2

List of measuring equipment

S _O	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
ហ				TRAL
511	Power Source	調力調製	Output(V): 0.01mV to 1200V Output(A): 6mA to 0.5A	3 sets
512	Digital Power Meter	テジタル鶴力計	Range(V): 3 to 600V Range(A): 100mA to 30A	2 sets(single phase) 2 sets(three phase)
513	Digital Multimeter	テジタルマルチメーター	Range: ± 100mV to ± 1000V(DC) Range: 1V to 500V(AC)	2 sets
Q				
611	Digital LCR Meter	テジタルL C R メーター	Range(L): 100nH to 1000H Range(C): 1pF to 1F	3 sets
612	Standard Capacitance	泰	Capacitance: 1pF, 10pF, 100pF, 1000pF,	
613	Standard Capacitance	索替谷嗪	Capacitance:0.01 μ F, 0.1 μ F, 1 μ F	
7				
71				
711	Measuring Receiver	アドージー	RF Power Range:+30dBm ~-20dBm Frequency Range:0.1MHz~2.6GHz	
712	Distortion Meter	なずる計		

List of measuring equipment

NO NO	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
713	Impedance Transformer	インピーダンストランス	Frequency Range:DC to 1,000MHz Impedance: 50 Ω —— 75 Ω	3 sets
714	Measuring Receiver	トジージフ		
715	Distortion Meter	まやもつ		
72				
721	Impedance Transformer	インピーダンストランス	Frequency Range:DC to 1,000MHz Impedance: 50 Ω —— 75 Ω	3 sets
722	Selective Level Meter	選択性レベルメーター	Frequency: 200Hz to 6.4MHz Level Range: -120 to +30dBm	
723	Selective Level Meter	風吹笛レベルメーター	Frequency: 200Hz to 6.4MHz Level Range: -120 to +30dBm	
73				
731	Standard Signal Generator	费净信号発生器	Frequency: 100kHz ~1040MHz Resolution: 10Hz	
732	Precision Attenuater Set	精的フッテネータセット	Standard Value: 3,6,10,20dB Impedance: 50Ω	2 sets
733	3 Precision Attenuater Set	熱的アッチボータセット	Standard Value: 3,6,10,20dB Impedance: 50ගි	2 sets

Quantity of electric

No	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
734	Measuring Receiver	アジーベー		
735	Impedance Transformer	インピーダンストランス	Frequency Range:DC to 1,000MHz Impedance: 50 Ω 75 Ω	3 sets
736	Impedance Transformer	インピーダンストランス	Frequency Range:DC to 1,000MHz Impedance: 50 Ω 75 Ω	3 sets
74				
741	Standard Signal Generator	横	Frequency: 100kHz ~1040MHz Resolution: 10Hz	
742	Precision Attenuater Set	精密アッテネータセット	Standard Value: 3,6,10,20dB Impedance: 50Ω	2 sets
743	Precision Attenuater Set	精密アッテネータセット	Standard Value: 3,6,10,20dB Impedance: 50Ω	2 sets
744	Impedance Transformer	インピーダンストランス	Frequency Range:DC to 1,000MHz Impedance: 50 Ω —— 75 Ω	3 sets
745	Selective Level Meter	選択性レベルメーター	Frequency: 200Hz to 6.4MHz Level Range: -120 to +30dBm	
75				
751	Frequency Synthesizer	国 放数 シンカ サイ ガ	Frequency: 1 m Hz ~ 50MHz Accuracy: 5ppm	

Quantity of electric

S S	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
752	Thermal Converter	熱変換器	Frequency Range: 5Hz to 50MHz Voltage Range:0.5 to 1000V	6 sets
753	Thermal Tranfer Standard	熱效效療物		
754	Level Meter	レベルメーター		
755	DC Reference Standard	直流極遠		
76				
761	Frequency Synthesizer	蹈紋数ツンカヤム史	Frequency: 1 μ Hz $^-$ 50MHz Accuracy: 5ppm	
762	Electron	4 新田 年		
77				
177	i Selective Level Meter	協打性レベルメーター	Frequency: 200Hz to 6.4MHz Level Range: -120 to +30dBm	
81				
811	.1 Frequency Synthesizer	阿汝教ツンカキムチ	Frequency: $1\mu~{ m Hz}\sim~50{ m MHz}$ Accuracy: $5{ m ppm}$	

Quantity of electric

No.	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
812	Variable Resistor	回效 超充	Range: 0.100 to 1,111,210 Ω	3 sets
	Variable Resistor	回效构抗	Range: 0 to 1,111,110MΩ	
	Variable Resistor	回效瓶抗	Range: 0.1 to 111,111 Ω	3 sets
	Variable Resistor	可效抵抗	Range: 1 to 1,111,110 Ω	3 sets
813	Thermal Convertor	然 数数 部	Frequency Range: 5Hz to 50MHz Voltage Range:0.5 to 1000V	6 sets
814	Thermal Tranfer Standard	熱変換標準		
85				
821	RF Power Transfer Standard	阿周汝鶴力效 极概避	Frequency: 0.01 \sim 18GHz Impedance: 50 Ω	2 sets
822	Power Meter	龜力計	Range: 10 µ W to 25mW Accuracy: ±0.3%	3 sets
823	Digital Voltmeter	デジタル電圧計	Range(DC V): 200mV to 1000V Range(AC V): 200mV to 1000V	
83				

Quantity of electric

No	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
831	RF Power Level Control Unit	高周波電力コントロール・ユニット	Level Range: 0.5 to 10mW Accuracy: ±0.1%	
832	RF Power Transfer Standard	高周夜電力変換磁準	Frequency: 0.01 \sim 18GHz Impedance: 50 Ω	2 sets
833	Synthesized Signal Generator	シグナルシンセサイザ	Range: 10MHz to 8GHz Accuracy: ±5MHz	
834	RF Power Transfer Standard	高周波電力変換標準	Frequency: $0.01\sim18 { m GHz}$ Impedance: $50~\Omega$	
16				
911	RF Impedance Analyzer	高周波インヒータンス。アナライサ	Frequency Range: 1MHz to 1GHz Accuracy: ±3ppm	
912	Convertor	ニンバーター		
92				
921	LF Impedance Analyzer	低周波インヒータンス・アナライサ	Frequency Range: 5 Hz to 13MHz Accuracy: ±50ppm	
93				
931	1 Sweep Generator	メイーブ・ジャネレータ	Frequency Range:10MHz to 8GHz Accuracy: ±3ppm	

List of measuring equipment Quantity of electric

No	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
932	D.U.T	D.U.T		
933	Adaptor	アダプター		
934	RF Detector	高陽波デテクター		
935	Scalar Network Analyzer Horizontal	スカラーネットワーク	Oynamic Range: 76dB Channel: 2	
936	Ink Jet Printer	プリンター		
ਸ਼ਲ				
a11	Calibration Generator	キャリブレーション・ジェネレータ		
a12	Time Mark Generator	946-7-9-7221-9		

List of measuring equipment

8	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
	Standard Resistor	微语抵抗	Resistance: 0.01Ω Accuracy: ±0.02%	2 sets
	Standard Resistor	樹華抵抗	Resistance: 0.1 Ω Accuracy: $\pm0.002\%$	2 sets
	Standard Resistor	蘇晉 梅花	Resistance: 100kΩ Accuracy: ±0.002%	2 sets
	Standard Resistor	黎 斜 拓 拉	Resistance: 10Ω Accuracy: ±0.02%	l sets
	Standard Resistor	泰	Resistance: $100~\Omega$ Accuracy: $\pm0.002\%$	l sets
	Standard Resistor	模类抵抗	Resistance: 10 kΩ Accuracy: ±0.005%	1 sets
415	Extender	エクステンダー	Ratio: 1000:1/100:1/10:1 Max.Input Current:100A(1000:1)	

List of measuring equipment

No	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
a13	Leveled Sine Wave Generator	正弦核発生器	Frequency Range:250kHz-250MHz	
a14	75ΩTEE Adaptor	75Ω TEE 7 8 7 8 -		
a15	75Ω BNC Adaptor	75Ω BNC 7 ダプター		
al6	Probe	ブローブ		
a17	RF Voltmeter	高周波電圧計	Voltage Range: 200μ V to 3V Frequency range:10Hz to 2.5GHz	
a2				
a21	Synthesizer	シンセサイザー	Frequency: 5 Hz to 109.9kHz Frequency Accuracy: ±1%	
a22	Differential Voltmeter	差動電圧計		
a3				
a 31	Wow Flutter Meter Calibrator	ワウメーター校正装置	Center Frequency: 3000,3150Hz	
a32	Wow Flutter Meter	ワウメーター	Frequency range:10Hz-30OkHz	

List of measuring equipment

Remarks 2 sets 2 sets Frequency range:20Hz to 20kHz Distortion Range: -90 to -10dB Fundamental Frequency: 10Hz to Frequency: 5MHz Stability: ≤1 X 10-°/month Frequency: 100kHz $\sim 1040 \mathrm{MHz}$ Resolution: 10Hz Standard Value: 3,6,10,20dB Impedance: 50Ω Standard Value: 3,6,10,20dB Impedance: 50Ω Specification 159,9KHz Equipment Name(Jpn.) Ŀ. . • Ų 4 ワデル併学校旧報館 ⟨> \$ į **蘇海師島聚升器** シルルー * ł 阿叔教撒科 1 フシーズー ワウメータ > 数例レ 人的類 Precision Attenuater Set Precision Attenuater Set Equipment Name(Eng.) Rubidium Frequency Standard Measuring Receiver Wow Flutter Meter Distortion Meter Calibrator Standard Signal Generator c11514 O \Box 513 519 **b**111 a32 ក្ន Ş **a**31 44

List of measuring equipment quantity of electric

Specification Remarks		Frequency:0.1,1,5,10MHz Voltage: 1Vrms	Frequency: 10mHz to 550MHz		100kHz ~ 1040MHz 10Hz	Standard Value: 3,6,10,20d8 2 sets Impedance: 50Ω	DC to 1000Mhz 50Ω	Standard Value: 3,6,10,20dB 2 sets Impedance: 50Ω	ange:1GHz 3 sets		
Spec	Output: 23V	Output Frequency:0.1, Output Voltage: 1Vrms	Frequency: 1		Frequency: 100kH Resolution: 10Hz	Standard Val Impedance:	Frequency: C Impedance:	Standard Val Impedance:	Frequency Range:1GHz		
Equipment Name(Jpn.)	パワーユニット	面被数效效器	岡波数カウンター		被增信号発生器	精密アッテネータセット	ステップアッテネータ	精密アッテネータセット	オシロスロープ	レシーバー	
Equipment Name(Eng.)	Power Unit	Frequency Converteor	Frequency Counter		Standard Signal Generator	Precision Attenuater Set	Step Attenuater	Precision Attenuater Set	Oscilloscope	Measuring Receiver	
N _O	c12	c13	c14	c2	c21	c22	c23	c24	c25	226	5

List of measuring equipment

No	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
c31	Standard Signal Generator	標準信号発生器	Frequency: 100kHz ~1040MHz Resolution: 10Hz	
c32	Low Frequency Generator	低周被数信号発生器		
633	Spectrum Analyzer	スペクトラムアナライザー	Frequency: 100MHz to 1.5GHz	
c34	Measuring Receiver	レジーバー		
ਚਿੰ				
411	Standard Signal Generator	標準信号発生器	Frequency: 100kHz ~1040MHz Resolution: 10Hz	
d12	Precision Attenuater Set	精密アッテネータセット	Standard Value: 3,6,10,20dB Impedance: 50Ω	2 sets
di di	Impedance Transformer	インピーダンストランス	Frequency: DC to 1000MHz Impedance: 5075Ω	S sers
914	. Impedance Transformer	インピーダンストランス	Frequency: DC to 1000MHz Impedance: 5075Ω	3 sets
d15	5 Precision Attenuater Set	精密アッチネークセット	Standard Value: 3,6,10,20dB Impedance: 50Ω	2 sets
97.0	6 Measuning Receiver	レジーズー		

List of measuring equipment Quantity of electric

Remarks 2 sets 2 sets 2 sets 6 sets Frequency Range: 5Hz to 50MHz Voltage Range:0.5 to 1000V Standard Value: 3,6,10,20dB Impedance: 50Ω Frequency: 100kHz ~1040MHz Resolution: 10Hz Standard Value: 3,6,10,20dB Impedance: 50Ω Frequency: 200Hz to 6.4MHz Level Range: -120 to +30dBm Frequency: 1 # Hz to 50MHz Frequency: DC to 1000Mhz Impedance: 50Ω Specification Accuracy: 5 ppm ړ, Equipment Name(Jpn.) 4 1 j **距祝敷ツソカキ ナ 脳** お れ ア バ ラ メ ー か 1 ットネ **極海面 哈郑**任器 **植物レッド** 水 ッププ **紫郑敬歔褔** 學學光順 **整彩被**器 國所蘇斯 アイ Precision Attenuater Set Thermal Tranfer Standard DC Reference Standard Equipment Name(Eng.) DC Reference Standard Frequency Synthesizer Selective Level Meter Thermal Converter Standard Signal Generator Step Attenuater Generator **d**24 934 423 **d**25 133 d32 933 d22 පු 2 d21 엉

List of measuring equipment

No	Equipment Name(Eng.)	Equipment Name(Jpn.)	Specification	Remarks
d36	Differential Voltmeter	差勁電圧計		
d37	OC Reference Standard	圓洗嬌 檋	Standard Value: 3,6,10,20dB Impedance: 50Ω	2 sets
g38	Impedance Transformer	インピーダンストランス	Frequency: DC to 1000MHz Impedance: 5075Ω	3 sets
d39	Selective Level Meter	避択箱レベルメーター	Frequency: 200Hz to 6.4MHz Level Range: -120 to +30dBm	

The following table shows the estimated cost for materials and equipment by quantity in physical state.

(Unit: thousand yen)

Quantity in physical state	Estimated cost of materials and equipment
Length	93,000
Mass	62,000
Volume	62,000
Force	5 4, 0 0 0
Pressure	18,000
Temperature	68,000
Luminous intensity	150,000
Quantity of electric	281,000
Total	788,000

ANNEX 7-1

EFFECTS OF STANDARDIZATION IN EACH DEPARTMENT OF A COMPANY

- 1. Procuring department
- (1) The following effects can be expected by reducing the number of types of materials to be purchased;
 - * Increase of a quantity of materials purchased at once, and reduction of purchase price
 - * Reduction of material stock
 - * Reduction of dead stock
 - * Reduction of area for storing stock and required facilities
 - * Reduction of need to transport materials
 - * Expansion of a range of users' option
 - * Reduction of a volume of expensive and special products to be purchased
 - * Easiness in planning for purchase
 - * Reduction of waiting time for articles out of stock
 - * Simplification of format of forms and slits
 - * Higher efficiency in works for placing orders, purchase and acceptance

- (2) The following effects can be expected by standardizing works for purchase and placing orders to external vendors
 - * Easiness in planning for purchase
 - * Reduction of works for communications because of well communications with external vendors
 - * Reduction of waiting time for articles out of stock
 - * Reduction of returned articles
 - * Simplification of format of forms and slits
- 2. Designing department
- (1) The following effects can be expected by reducing the number of products and parts to be purchased;
 - * Improvement in designing technique standard
 - * Reduction of designing misses and faulty products
 - * Reduction of time required for completion of a design package and a smooth production plan
 - * Timely allowance in designing jobs, which allows improvement of existing products and development of new products
 - * Easiness in management of drawings and designing documents
 - * High efficiency in designing jobs
- (2) The following effects can be expected by standardizing designing jobs:
 - * Reduction of designing misses and defective products

- * Reduction of time required for completion of a design package and a smooth production plan
- * Easiness in management of drawings and designing documents
- * High efficiency in designing jobs
- 3. Manufacturing department
- (1) The following effects can be expected by reducing the number of types of products and parts to be purchased;
 - * Longer production period and higher production rate
 - * Mechanization and automation of facilities, and improvement in product quality and efficiency
 - * Employment of dedicated facilities and processes, which insures improvement in product quality and efficiency
 - * Reduction of semi-finished articles
 - * Reduction of tools and measurement equipment to be owned and stored
 - * Easiness in training employees, which insures better skill of and higher safety for workers
 - * Easiness in production management, which contributes to improvement in product quality and realization of stable production
- (2) The following effects can be expected by standardizing manufacturing works;
 - * Easiness in training workers, which contributes to improvement of workers' skill and higher safety for them

- * Reduction of defective products
- * Easiness in improvement of works
- * Easiness in production management, which contributes to improvement of product quality and stable production
- * Reduction time required for adjusting production facilities and reduction of down time
- * Reduction of failure frequency in production facilities
- * Reduction of waiting time
- * Higher efficiency in production
- 4. Inspecting department
- (1) The following effects can be expected by reducing the number of types of products and parts;
 - * Increase of inspection lot size and relative reduction of a number of inspection processes
 - * Reduction of time required for adjusting facilities for testing and measurement and reduction of down time of facilities
 - * Employment of dedicated facilities for testing and measurement, which insures improvement in measurement precision and efficiency
 - * Reduction of inspection misses
 - * Reduction of stocks waiting for inspection
 - * Easiness in training examiners, which contributes to improvement of examiners' skill and realization of higher safety for workers

- (2) The following effects can be expected by standardizing the inspection jobs;
 - * Easiness in training inspectors, which contributes to improvement of inspectors' skill and realization of higher safety for workers
 - * Reduction of inspection misses
 - * Easiness in improving measuring method
 - * Correct criteria for inspection and easy management
 - * Reduction of time required for adjusting facilities for testing and measurement and reduction of down time
 - * Improvement in management of precision of facilities for testing and measurement
 - * Reduction of waiting time
 - 5. Facility maintenance department
 - (1) The following effects can be expected by employing dedicated facilities or reducing the number of types of facility;
 - * Improvement in product quality
 - * Higher efficiency in works
 - * Reduction of disasters and accidents in plants
 - * Reduction of facilities to be owned
 - * Reduction of stocked spare parts such as units for services
 - * Easiness in maintenance work

- * Reduction of cost and labor required for maintenance
- * Improvement of maintenance personnel's skill
- * Reduction of failures
- * Reduction of down time due to failures
- (2) The following effects can be expected by standardizing the works for facility maintenance:
 - * Possibility to systematically carry out maintenance work
 - * Correct selection of facilities
 - * Easiness in maintenance work, which allows efficient performance of works
 - * Easiness in management of spare parts
 - * Reduction of time and labor required for maintenance
 - * Easiness in training maintenance personnel
 - * Reduction of failures
 - * Reduction of down time due to failures
 - * Reduction of troubles due to poor maintenance
 - * Improvement of product quality
 - * Higher efficiency in works
 - * Reduction of accident in plants

- 6. Marketing department
- (1) The following effects can be expected by reducing the number of types of products and parts:
 - * Rapid delivery
 - * Reduction of stocked products
 - * Reduction of area and facilities required for storing stocks
 - * Rationalization in packing
 - * Rationalization in transportation
 - * Concentrated efforts for marketing and sales
 - * Efficient advertisement
 - * Easiness in treatment of claims by customers and better services
 - * Reduction of troubles and misunderstandings in transaction
 - * Easiness in training sales people
 - * Easiness in evaluation of sales performance record
 - * Simplification of marketing and higher efficiency
- (2) The following effects can be expected by standardizing Jobs for marketing and selling;
 - * Reduction of troubles and misunderstandings in transaction
 - * Easiness in treatment of claims by customers and better services
 - * Easiness in training sales people

- * Easiness in evaluation of sales performance record
- * Simplification of jobs for marketing and higher efficiency in the jobs

7. Managing department

The following effects can be expected by standardizing jobs for management;

- * Managers can be liberated from routine jobs and devote themselves to important works requiring decision making by managers.
- * Better communications for direction of management policies and development of team work spirit in a company, which contribute realization of better human relations in the company
- * Clarification of responsibility and power, and reduction of redundant efforts by each person in the company
- * Reduction of troubles, misunderstandings and misses in jobs
- * Higher job efficiency
- * Simplification of forms and slits

ANNEX 8-1-(1)

RESULTS OF QUESTIONNAIRE TO INDUSTRIES

- Outline of the Survey
- 1.1 Purpose of the Survey

As part of the industrial standard consolidation plan in the Republic of Chile, and in order to grasp the actual situation of application of national standards in local industries, actual situation of quality control, and needs for certification and measurement systems, we carried out questionnaire to industries using a questionnaire sheet in the first survey at the site, in addition to the survey through interview.

1.2 Method for Carrying Out the Survey and The Period of Implementation

Object: 300 manufacturers in Chile

Sampling: Industries listed in the industry directory owned by INN were classified to the following 8 types, and the 300 industries were proportionately allocated to the job types.

Method for implementation: The questionnaire was mailed to each industry. Respondents were asked to enter necessary information in the questionnaire and send it back.

Period of implementation:

Start of distribution - Middle of March, 1991

End of recovery - End of June, 1991

Percentage of recovery: 38% (115 sheets recovered)

1.3 Contents of the Questionnaire

The survey items are as described below.

- (1) Attribute of industry (Questions from No. 100 to No.109 in the attached questionnaire)
- (2) For national standards in Chile (2000 Norma Chilenas) (Questions from No. 200 to No. 206)
- (3) Unified certification system (Questions from No. 300 to No.309)
- (4) TQC (Questions from No. 400 to No. 410)
- (5) Testing and inspection (No. 500 to No.508)
- 2. Outline of the Results

2.1 Attributes of Industries

Attributes of the industries were as described below. About 70% of the respondent companies have their head quarters in the Capital, and also nearly 70% of the industries were founded in 1970 or before. Percentages of industries employing 300 or more workers, those with the capital of more than 300 million peso, and those with the annual production of 2 billion peso are more than 50%, so there are many large scale industries among the respondent industries.

60% of all industries are exporting at least a portion of their products, while percentage of companies exporting more than half of their products is somewhat less than 10%.

(1) Types of industry

Total	1.1.1.	companies	(100.0%)
Textile	9	companies	(8.1%)
Cement	6	companies	(5.4%)
Foods	28	companies	(25.2%)

Chemicals	-28	companles	105 000
Metal		companies	(25.2%) (15.3%)
Electricity		companies	(2.7%)
Paper		companies	(3.6%)
Others		companies	(14.4%)
Region where th	e respondents	industries	are loc:

(2)tries are located

Capital Region	76 companies (68.5%)
1st to 7th Region	16 companies (14.4%)
8th and 9th Region	12 companies (10.8%)
No answer	7 companies (6.3%)

(3) Year of foundation

1979 or before	76	companies	(68.5%)
1971 - 1980	21	companies	(18.9%)
1981 - 1985	8	companies	(7.2%)
1986 and after	6	companies	(5.4%)

(4) Number of employees

up to 50 people	16	companies	(14.4%)
51 - 100 people	15	companies	(13.5%)
101 - 300 people	29	companies	(26.1%)
301 and over	51	companies	(45.9%)

(5) Capital

- 150 million peso	18 companies (16.2%)
150 - 300 million peso	7 companies (6.3%)
300 million peso	75 companies (67.6%)
No answer	11 companies (9.9%)

(6) Annual production

up to 400 million peso 19 com	apanies	(17.1%)
400 million - 2 billion peso 27 com	npanies	(24.3%)

2 billion peso and over 52 companies (46.8%) No answer 13 companies (11.7%)

(7) Profit rate against sales

up to 5% 24 companies (21.6%)
5 - 10% 36 companies (32.4%)
10% and over 24 companies (21.6%)
No answer 27 companies (24.3%)

(8) Export vs production ratio

 No export
 36 companies (32.4%)

 up to 50%
 57 companies (51.4%)

 50% and over
 9 companies (8.1%)

 No answer
 9 companies (8.1%)

2.2 National Standards in Chile)

(1) Recognition

Responses to the question concerning recognition of national standards in Chile are as follows.

"Know well"

"Know a portion of it, or only the name

"Don't know"

81 companies (73.0%)

24 companies (21.6%)

2 companies (1.8%)

So it can be said that their recognition is very high. Especially, the recognition in the foods industry is very high.

(2) Usage

Responses to the question concerning usage of the national standards are as shown below. This result shows that about three quarters of all industries are more or less dependent on the national standards. Usage of the national standards in the foods industry is far higher than that in other industries.

"Using as standards" 34 companies (30.6%)
"Using as references" 48 companies (43.2%)
"Not using" 25 companies (22.5%)

To the companies not using the national standards, the reason was asked, and the result was as follows.

"Don't know the existence of the national standards itself" 2 companies (8.0%)
"Didn't know the national standards applicable to our products" 7 companies (28.0%)
"Level of the contents of the national standards is too low" 4 companies (16.0%)

(3) Evaluation

82 companies answered that they were using the national standards, and these companies were asked to evaluate the national standards. As a general impression, most of the companies think that the national standards are "useful" and also their evaluation of applicability of the national standards to industries in Chile is On the other hand, some complaints concerning the very high. range and easiness-to-use of the national standards are observed. As for the level, most of the companies using the national standards answered that the level was "appropriate". As for accessibility of information on the national standards, about 90% of the respondent companies answered that they could get the information easily. So it can be said that at least companies using the national standards now are generally satisfied with the standards. No large difference between types of industry can not be observed.

A. General impression

"Useful"

"A little useful"

"Not useful at all"

O company

(0.0%)

B. Applicability to the current Chilean industries
"Appropriate" 76 companies (92.7%)
"Not appropriate" 5 companies (6.1%)

C. Range

"Wide" 63 companies (76.8%)
"A little narrow" 16 companies (19.5%)
"Too narrow" 1 company (1.2%)

D. Easiness-to-use

"Easy to use" 68 companies (82.9%)

"A little difficult" 14 companies (17.1%)

"Too difficult" 0 company (0.0%)

E. Level

"High" 13 companies (15.9%)

"Appropriate" 69 companies (84.1%)

"Low" 0 company (0.0%)

F. Accessibility to information on national standards

"Easy" 71 companies (86.6%)

"Difficult" 10 companies (12.2%)

"Very difficult" 1 companies (1.2%)

- 2.3 Unified Certification System
- (1) Recognition of a national certification system of INN

Responses to the question concerning recognition of a national certification system are as follows.

 "Know well"
 11 companies (9.9%)

 "Know a little"
 52 companies (46.8%)

 "Don't know"
 43 companies (38.7%)

So the certification system is known to somewhat more than half of all industries. The recognition is relatively low in textile, metal and paper industries.

14 companies actually made an application for the conformity to the national certification system (3 companies in chemical and metal industries respectively, and 1 company in cement and foods industry respectively, and 4 companies in other industries).

(2) Certification system, evaluation of examination

A question as to procedure of examination was asked to the 14 companies which made an application for the mark, and 13 companies answered that "the criteria and procedure for the examination is appropriate". On the other hand, only 9 companies said "Good" to knowledge and experience of auditors, 3 companies said "Not so good", and 2 companies said "Not good at all". For examination fee, only 2 companies said "Appropriate", 8 companies said "A little high", and 4 companies said "Too high".

For the certification system itself and its administration, 7 of 14 companies said "The system and its administration are good", 6 companies said "The system is good, but its administration is bad", and 1 company said "Both of the system and administration are bad".

2.4 TQC and Quality Control

(1) Introduction of TQC

How TQC has been introduced was studied, and the following results were obtained.

"Aware of the importance, but not introduced yet"

29 companies (26.1%)

"Not necessary, so not introduced" 0 company (0.0%)

Thus, all industries are aware of the importance of TQC, and more than 70% of the industries have actually introduced TQC. The introduction ratio are high in textile, foods and paper

industries.

To the industries which are aware of the necessity of TQC but have not introduced it yet, the reasons were asked, and the result is as follows.

"No knowledge and capability for TQC" 7 companies (24.1%)
"Scare equipment and facilities for
introduction of TQC" 12 companies (41.4%)
"Increase of cost due to introduction of QC" 6 companies (20.7%)

Many companies in the chemical industry anwered that "equipment and facilities for TQC are scarce".

(2) Result of TQC

To 81 companies which have already introduced TQC, the questions as to what effects they expected before introduction of TQC and how the effects were achieved were asked, and the result is as follows. 4 choices of "Good", "Not good", "Rather worse" and "Not clear" were prepared for evaluation of improvement because of introduction of TQC, and 3,2,1, and 0 points were assigned to each choice respectively for calculating the weighted mean.

The result show that all of the respondent industries introduced QC expecting "improvement of product quality" and achieved fully satisfactory results. In addition, the percentages of companies which expected repercussion effects of improvement in product quality such as stabilization of product quality", "reduction of rejected products", and "reduction of claims" are high, and the companies have achieved satisfactory results. The only item in which the company has not achieved any good results is "reduction of employees", but the percentage of companies which expected the effect before introduction of TQC is rather low.

Expected effects

Result (3 point for the best)

b. c. d. e.	Improvement in product quality Stabilization of product quality Resource saving Reduction of rejected products Reduction of production cost Reduction of time required for	78 54 71	companies companies companies companies	(96.3%) (66.6%) (87.7%)	2.9 points 2.7 2.6 2.8 2.7
h.	shipment Reduction of claims Reduction of employees Increase of sales	71 33	companies companies companies companies	(87.7%) (40.7%)	2.6 2.8 1.6 2.8

(3) Current situation of implementation of QC

Main bodies responsible for introduction of QC in companies which have already introduced QC are as follows.

"Top management"	21 companies (25.9%
"Middle management"	58 companies (71.6%
"Quality control engineers"	46 companies (56.8%
"Groups such as QC circles"	28 companies (34.6%

So, it may be said that QC in Chile is, different from that in Japan, carried out mainly by management.

Standards used in QC are as follows.

"Chilean national standards"	51	companies	(63.0%)
"Specification of clients"	4.1	companies	(50.6%)
"Standards of foreign countries"	53	companies	(65.4%)
"In-house standards"	61	companies	(75.3%)

So it may be said that many companies are using their in-house standards.

The QC technique used most frequently is use of check sheets as shown below, and about 90% of industries have introduced this method. Then, control charts are used. No difference is observed between types of industries.

"Check sheet"	73 companies	(90.1%)
"Histogram"	20 companies	(24.7%)
"Control chart"	58 companies	(71.6%)
"Scatter diagram"	19 companies	(23.5%)
"Pareto diagram"	6 companies	(7.4%)
"Cause and effect diagram"	6 companies	(7.4%)
"Stratification"	4 companies	(4.9%)
"Others"	8 companies	(9.9%)

(4) Education of employees

Responses to the question concerning the method for implementation of QC education in companies are as follows.

"Training in each job shop"	36 companies (44.4%)
"Invitation of tutors from outside"	16 companies (19.8%)
"Participation in seminars outside	
the companies"	64 companies (79.0%)
"No specific method"	21 companies (25.9%)

The percentage of industries which have introduced QC but do not provide their employees with any specific education amounts to a quarter.

(5) Requests to the government

A question as to requests each company has to the Chilean Government in relation to QC was made, and the following responses were obtained. Not direct assistance to industries, but initiative by the government to diffuse QC throughout the country is expected more strongly by the industries.

"Financial assistance for introduction	e de la companya de
of equipment for testing"	19 companies (17.1%)
"Improvement of level of seminars for	
training"	34 companies (30.6%)
"Nation-wide campaign for improvement	
of product quality"	87 companies (78.4%)

"Improvement of level of national standards" 24 companies (21.6%)
"Consolidation and improvement of a
certification system" 23 companies (20.7%)

2.5 Testing and Inspection

(1) Testing and inspection systems

A question was made for availability of specialists for testing and inspection in respondent companies, and the following results were obtained. The table below shows the number of companies in each type of industry which answered that they have specialists in each job type for testing and inspection.

		Specialists	Engineers	Skilled workers
A11 1:	li com.	70	70	67
		(63.1%)	(63.1%)	(60.4%)
Employees >= 301 people	45	41	36	32
		(91.1%)	(80.0%)	(71.1%)
Employees 101 - 300 people	e 27	18	21	23
		(66.7%)	(77.8%)	(85.2%)
Employees <= 100 people	24	11.	13	12
		(45.8%)	(54.2%)	(50.0%)
Textile	9	6	6	7
. 5		(66.7%)	(66.7%)	(77.8%)
Cement	6	6	6	5
o o morro		(100.0%)	(100.0%)	(83.3%)
Foods	28	15	6	4
1000		(53.6%)	(21.4%)	(14.3%)
Chemical	28	20	18	18
		(71.4%)	(64.3%)	(64.3%)
Metal	17	8	11	8
110 0312		(47.1%)	(64.7%)	(47.1%)
Electricity	3	3	3	3
13200012020		(100.0%)	(100.0%)	(100.0%)
Paper	4	3	2	2
IMPAI		(75.0%)	(50.0%)	(50.0%)
Others	16	7	8	(50.0%)
o onor o		(43.8%)	(50.0%)	(50.0%)

The industries employing more employees have more specialists and engineers for testing and inspections. On the other hand, The percentage of industries employing skilled workers for testing and inspections is the highest in medium-scale industries having 101 to 300 employees. The percentages of industries having specialists in the fields of textile, cement, chemicals and electricity are

high, while the percentage is low in the food industry.

As for equipment for testing and inspection owned in each company, 61 companies (55.0%) answered "Satisfactory", and the percentage is higher than that of industries which said "Short" (34 companies, 30.6%). 60% or more of companies in the metal industry said "Short".

Also, 27 companies said "A portion of the jobs for testing and inspection are consigned to external parties", and the percentage is 24.3% of all. The percentage is high in the food and metal industries.

(2) Contents and current situation of implementation

The standards which respondent companies depend on are as follows.

"Standards of public or private organizations"

7 companies (6.3%)

"Chilean national standards"

61 companies (55.0%)

"Foreign standards or international standards"

75 companies (67.6%)

"Others"

19 companies (17.1%)

Companies in the chemical industry generally depend on foreign and international standards, while companies in the textile, cement and foods industries depend on national standards at the same level as or a higher level than on foreign and international standards.

As for sections in production process where QC is carried out, the percentage of industries which answered that the QC are carried out in the final stage is the highest.

"Process to accept raw materials"

75 companies (67.6%)

"Intermediate process"

74 companies (66.7%)

"Final process"

86 companies (77.5%)

"Outside the production line"

32 companies (28.8%)

More than 60% of industries have independent laboratories for testing and inspection in their sites (plants).

"Have labo."

70 companies (63.1%)

"No labo."

35 companies (31.5%)

The percentage of industries having a laboratory in the chemical industry is around 80%.

Responses to a question as to their own technical level of testing and inspection are as follows.

 "Very good"
 30 companies (27.0%)

 "Relatively good"
 47 companies (42.3%)

 "Good"
 28 companies (25.2%)

 "Bad"
 2 companies (1.8%)

So it may be said that the companies are generally satisfied with their own technology. Self-evaluation is especially high in the cement and food industries.

(3) Education of employees

Responses to a question concerning education of employees for measurement control are as follows. Very few companies are providing education in this field.

"Outside seminar" 33 companies (29.7%)
"In-company seminar" 10 companies (9.0%)
"No course" 62 companies (55.6%)

ANNEX 8-1-(2) QUESTIONNAIRE TO CHILEAN COMPANIES

Please circle the appropriate items or specify your reply, if necessary.

(1) IDENTIFICATION OF YOUR COMPANY

- 101. Name of the company
 Address
 Telephone
- 102. Contact person Position
- 103. Region: I. II. III. IV. V. VI. VII. VIII. IX. X. XI,
 XII. Metropolitan

104. Year of establishment

- 1. 1970 or before
- 2. 1871 1980
- 3. 1981 1985
- 4. 1986 or later

105. Number of employees

- 1. Fewer than 20 people
- 2. 21 50 persons
- 3. 51 100 persons
- 4. 101 300 persons
- 5. More than 300 persons

106. Capital

- 1. Less than \$30,000,000
- 2. \$30.000.001 \$150.000.000
- 3. \$150,000,001 \$300,000,000

4. More than \$300,000,000

107. Production in 1990, if permissible

- 1. Less than \$40,000,000
- 2. \$40,000,001 \$400,000,000
- 3. \$400,000,001 \$2,000,000,000
- 4. More than \$2,000,000,000

107.a Profit/sales ratio

- 1. 0% or less
- 2. Up to 2.5%
- 3. Up to 5.0%
- 4. Up to 7.5%
- 5. Up to 10.0%
- 6. More than 10%

107.b Proportion of exports, in % of 1990 production

- 1. 0%
- 2. 1 10%
- 3. 11 25%
- 4. 26 50%
- 5. 51 75%
- 6. 76% or more

108. Type of business

- 1. Textile, manufacture
- 2. Cement
- 3. Food processing
- 4. Chemical
- 5. Metallurgy
- Metallomechanical
- 7. Electric machinery
- 8. Electronic machinery and appliances
- 9. Nonelectric and nonelectronic machinery

- 10. Leather
- 11. Paper, pulp
- 12. Furniture
- 13. Wood processing
- 14. Others (please specify)
- 109. Relationship between your company and other foreign companies with whom you have contact (Circle all applicable items.)

The foreign company is:

- 1. A supplier of raw materials
- 2. A supplier of parts and components
- 3. One of our clients
- 4. A market researcher who works for us as well as for an associate exporter
- 5. A company which provides us with technical assistance
- 6. A company with which technical assistance is shared
- 7. A joint venture
- 8. Others (please specify)
- (2) QUESTIONNAIRE REGARDING NCh

INN has established approximately 2,000 Chilean Standards (NCh) up to this time.

The objectives of NCh are the following:

- 1) To improve the quality of products
- 2) To increase productivity
- 3) To protect the health and safety of consumers and to protect the environment
- 201. Are you familiar with NCh?
 - 1. Yes, very
 - 2. Yes, somewhat or only the initials

- 3. No
- 202. Do the standards established by your company take into account those of NCh?
 - 1. Yes (as a basic model)
 - 2. Yes (as reference)
 - 3. No
- 203. What is the reason that you indicated "3" in Question 202? (If you answered 1 or 2 in 202, go on to Question 204.)
 - 1. Do not know of the existence of the NCh Standards.
 - 2. Am not familiar with the pertinent NCh Standards.
 - 3. Am familiar with pertinent NCh Standards, but the level of quality of these is far too high to apply them.
 - 4. Am familiar with pertinent NCh Standards, but the level of quality of these is far too low to apply them.
 - 5. Other reason, explain.

Those who responded in the affirmative to Question 202 should please answer Questions 204 and 205.

- 204. How do you evaluate the NCh Standards which you use?
 - A. General impression
 - 1. Very useful
 - 2. Useful
 - 3. Of little use
 - 4. Useless
 - B. Corresponds with the situation of the Chilean industrial sectors
 - 1. Greatly corresponds
 - 2. Corresponds
 - 3. Does not correspond
 - 4. Does not correspond at all

- C. Scope
- 1. Quite extensive
- 2. Relatively extensive
- 3. Somewhat limited
- 4. Too limited
- D. Facility of use
- 1. Easy to use
- 2. Relatively easy to use
- 3. Relatively difficult
- 4. Very difficult
- E. Level
- 1. Too high
- 2. Somewhat high
- 3. Appropriate
- 4. Somewhat low
- 5. Too low
- F. Information of Chilean Standards
- 1. Difficult to obtain information
- 2. Relatively easy to obtain information
- 3. Relatively difficult to obtain information
- 4. Very difficult to obtain information
- 205. What would you require of INN activities? (Circle all applicable items.)
 - 1. More information regarding NCh Standards
 - 2. More NCh Standards publications
 - 3. More comments from the industrial sectors should be considered during the drawing up of NCh Standards
 - 4. NCh Standards should be established more promptly
- 206. Write requests or comments related to the drawing up of new NCh Standards, if any, (apart from those indicated in Questions 201 205).

(3) CERTIFICATION SYSTEM

There is a national system of certification run by INN. In addition, there are various other systems of certification operating in the country.

- 301. Were you aware of the national system of certification run by INN?
 - 1. Yes (very well)
 - 2. Yes (but not well)
 - 3. No
- 302. Mave you applied for a license to use a stamp of conformance (or quality), corresponding to any system of certification in operation in Chile?
 - 1. Yes
 - 2. No
- 302.a Indicate what system or organization
- 302.b Did you obtain the stamp?
 - 1. Yes
 - 2. No
- 303. In case unsuccessful, what was the reason for which the license was denied?
 - 1. Insufficient quality-control activities
 - 2. The quality of the products do not comply with NCh Standards or corresponding technical specifications
 - 3. Others
- 304. Comments regarding the evaluation (auditors) carried out by the certifying organization handling the system

- 1. The criteria and procedures were impartial and approved
- 2. The evaluation was not just or appropriate due to unclear stipulations
- 3. The severe criteria and complicated applied were too difficult for my company
- 305. What is your opinion in regard to the auditors who carry out the evaluation of the company? Their knowledge and experience appear to be:
 - 1. Sufficient
 - 2. Relatively good
 - 3. Not very good
 - 4. Absolutely insufficient
- 306. What is your opinion in regard to the fees for evaluation?
 - 1. Completely reasonable
 - 2. Somewhat high
 - 3. Far too high
- 307. What is your opinion regarding the system of certification and operation?
 - 1. The system is well organized and its operation is excellent
 - 2. The system is good but not the operation
 - 3. Neither the system nor the operation are good

The following question should be answered by a company which responded negatively in 302.

- 308. Why haven't you presented an application for a seal of certification?

 (Circle all applicable items.)
 - 1. There were no pertinent NCh Standards which could be applied to your products

- 2. We did not expect to increase sales using the system of certification in effect
 - 3. The system of certification in effect could not be clearly understood due to very complicated procedures
 - 4. It was considered that our products would not be controlled with sufficient quality control and neither did the product have sufficient quality
 - 5. NCh Standards were not used in our production
 - 6. Our customers did not request it
 - 7. Judging from the Chilean public's interest, we believe that the stamp of certification on the products did not add any merit
- 309. Other comments regarding the system of certification indicated previously, if any

(4) TOTAL QUALITY CONTROL

In highly-industrialized countries, total quality-control activities have been diligently put into practice, in public as well as private corporations. The putting into practice of quality control improves the quality and reduces costs, and, as a result, the expansion of the market and prosperity of the company can be anticipated. Consequently, this also improves the national economic level.

- 401. To what extent has total quality control been introduced in your company and what is your opinion in regard to the importance of quality?
 - Total quality control has been introduced in each of the stages of all the company's activities, improving the quality
 - 2. Total quality control has been partially introduced in our company
 - In spite of realizing the importance of improving quality, total quality control has not yet been introduced in our company

4. We do not consider it necessary to improve the quality

The following question is directed toward those who circled 4 in 401.

- 402. What is the reason you do not consider it is necessary to improve the quality?
 - 1. We can maintain a sufficient market share without implementing quality control in our company
 - 2. The Chilean customer's interest is centered on low prices rather on the quality of the products
 - 3. Others

The following questions are directed to those who circled 3 in 401.

- 403. What is the reason for which quality control was not introduced in your company?
 - 1. We do not have the knowledge or facilities related to quality control
 - 2. The infrastructure and other technical conditions are not sufficient to introduce quality control
 - 3. The personnel and costs increase due to the introduction of quality control
 - 4. Personnel are not interested in quality control
 - 5. We have a pessimistic idea in regard to cooperation of personnel
 - 6. Others

The following questions (404 to 409) are directed toward companies who have introduced quality control.

404. What did you expect from the introduction of quality control?

(Circle the applicable items and evaluate each item circled from 1 to 4.)

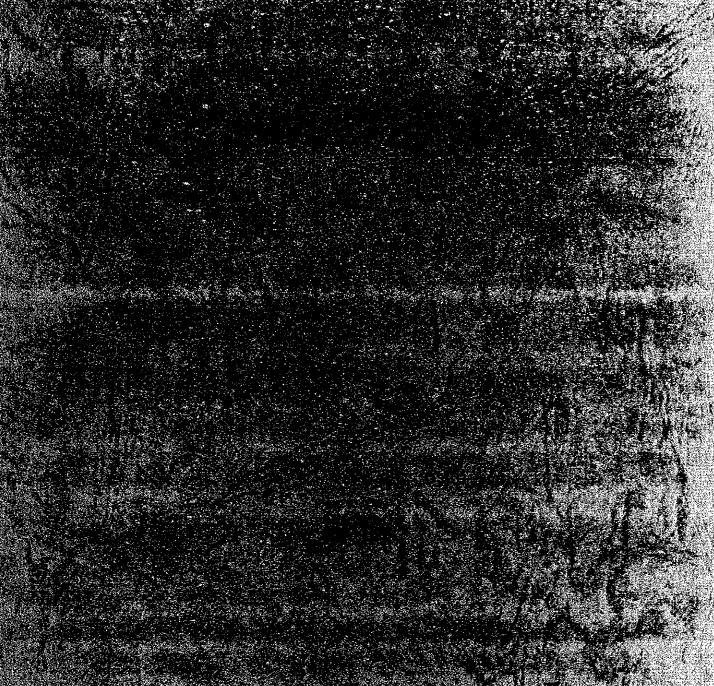
the	e Numbers (1 to 4) in reply to e questions (a to j) indicate ese in the right column spectively	1. 2. 3. 4.	Ui Ne	asa ega	at at	is:	fae e	ory eto at	rj		is	time
a.	Improve the level of quality of the products		(1	•	2	•	3	•	4)	·
b.	Stabilize the level of quality of the products		(1.		2		3		4)	
c.	Save raw materials for production		(1		2		3	•	4	}	
d.	Reduce defects in the final stage		(1		2		3		4)	
e.	Reduce production costs		(1		2		3		4)	
f.	Reduce the time of delivery							3				
g.	Reduce complaints from customers		(1.		2		3		4	}	
h.	Reduce the number of employees		(1	•	2		3	•	4	}	
i.	Increase sales		{	1	٠	2		3		4)	
j.	Others (indicate specific items)		(1	•	2		3	٠	4)	

- Who are the key persons or groups in charge of implementing 405. your company's quality control?
 - 1. Top directors
 - 2. Middle management (directors, managers)
 - 3. Quality-control engineers
 - Groups (for example, quality-control groups)
 - Others (indicate specifically)
- What class of standard or specification is used for quality-406. control activities?
 - NCh Standards 1.
 - 2. Customers' specifications
 - 3. Foreign standards
 - Own standards (company's standards/specifi-cations) 4.
 - Others (indicate specifically) 5.

- 407. In your company, at what stage of the production are quality-control techniques applied?
 - 1. Design stage
 - 2. Subcontracts/supply
 - 3. Production lines
 - 4. Final production stage
 - 5. Storage, shipment, packing stages
- 408. What quality-control techniques do you use in your company?
 - 1. Check sheet
 - 2. Histogram
 - 3. Control charts
 - 4. Scatter diagram
 - 5. Pareto diagram
 - 6. Cause and effect diagram
 - 7. Stratification
 - 8. Others (indicate specifically)
- 409. Do you have any quality-control educational program for the personnel of your company?
 - 1. We have internal training courses for groups, organized and carried out at the worksite
 - 2. We invite outside professors to hold seminars at the company
 - 3. We invite trainees to attend seminars outside the company
 - 4. We have no specific quality-control course
- 410. What would you ask the Chilean Government in regard to the promotion of total quality control?
 - 1. Financial assistance to obtain test equipment
 - 2. Increase the level of training seminars
 - 3. National campaign for increasing public awareness in

regard to quality

- 4. Increase the level of NCh Standards
- 5. Improve the infrastructure of systems of certification


(5) INSPECTION AND TESTS

The inspection/tests and metrology are indispensable for carrying out quality control. Kindly respond to the following questions. (Circle applicable items.)

- 501. How many specialists in inspection/tests are there in your company?
 - 1. Professionals (... persons)
 - 2. Technicians (... persons)
 - 3. Experts (... persons)
- 502. Are there sufficient inspection/test installations/equipment in your company?
 - 1. Satisfactory
 - 2. Lacking
 - 3. Partially externally subcontracted
- 503. Do you periodically carry out the calibration of measuring equipment?
 - 1. Yes. How frequently?
 - 2. No
- 504. What are the inspection/test standards/specifications?
 - Standards of public or private associations (indicate specifically)
 - 2. NCh Standards
 - 3. Foreign standards (indicate specifically)
 - 4. International standards

- 5. Others (indicate specifically)
- 505. At what stage of your production lines do you apply the inspection/test techniques?
 - 1. Material-acceptance stage
 - 2. Intermediate stage
 - 3. Final stage
 - 4. Outside the production line
- 506. Do you have an independent test laboratory in your industry?
 - 1. Yes
 - 2. No
- 507. How do you evaluate the technical level of the inspection/test in your company?
 - 1. Very good
 - 2. Relatively good
 - 3. Regular
 - 4. Bad
- 508. Do you have an educational program for metrology control in your company?
 - 1. We send trainees to outside metrology seminars
 - 2. We have our own metrology seminars
 - 3. We do not have any particular course

Thank you very much for your kind cooperation.

