

Fig. 23 Geochemical anomaly map of stream sediments (4)

--71--

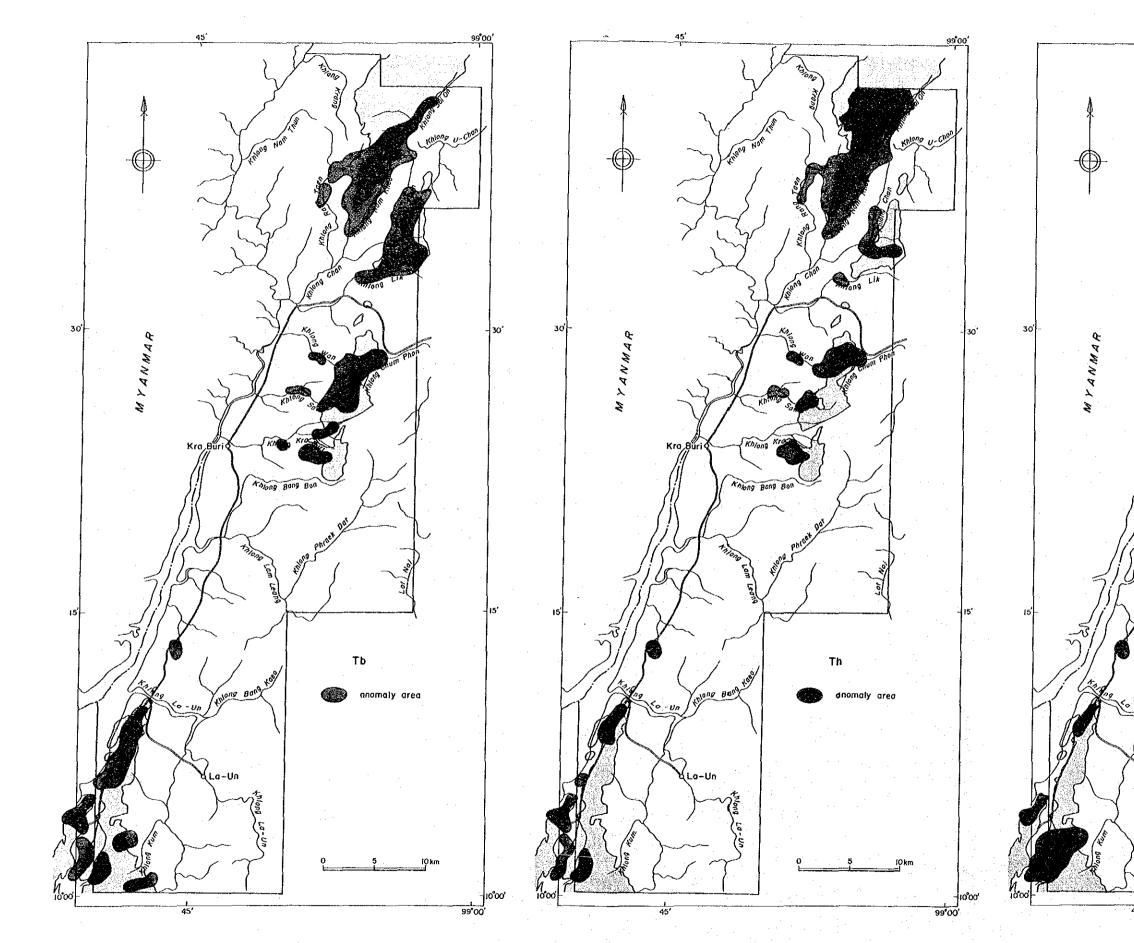
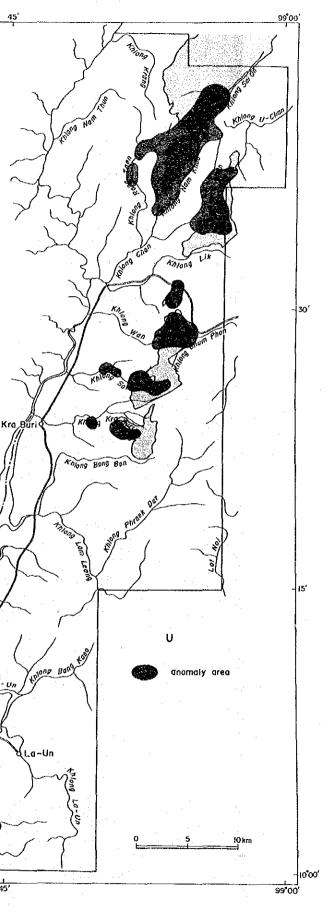



Fig. 23 Geochemical anomaly map of stream sediments (5)

-72-

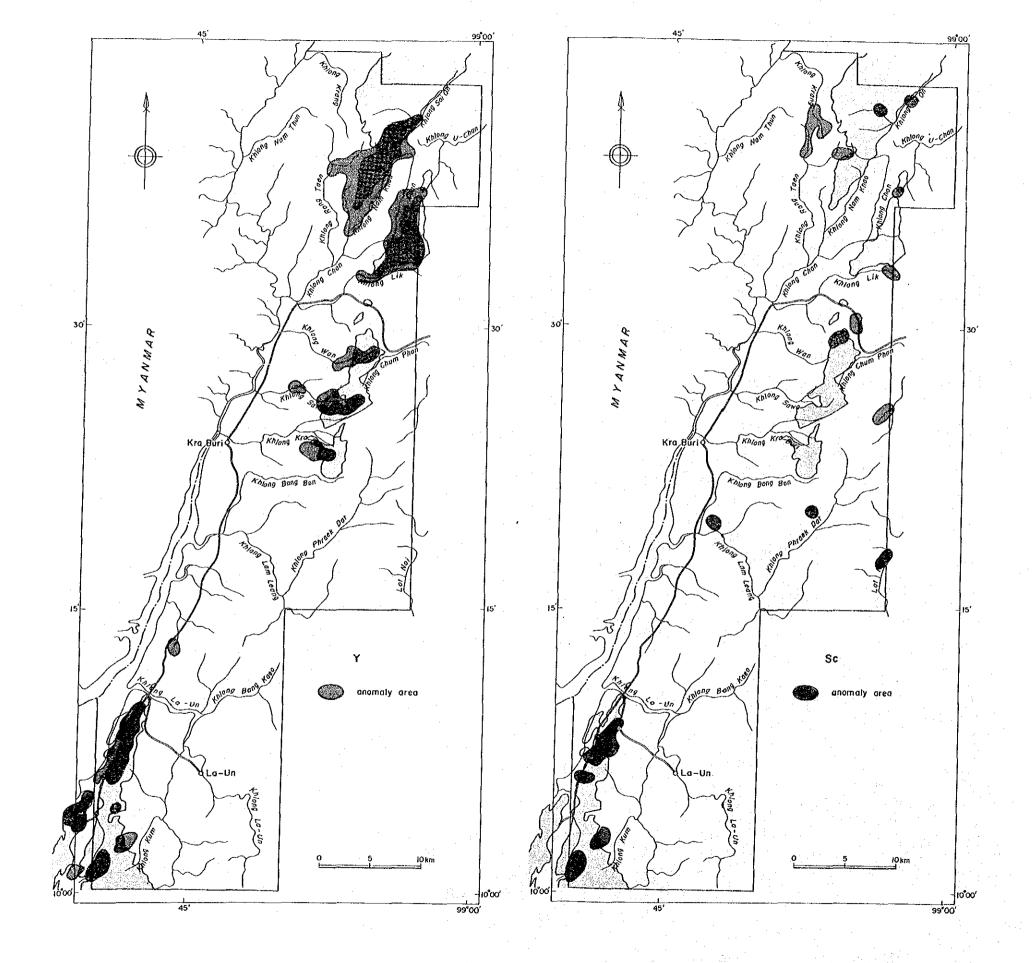


Fig. 23 Geochemical anomaly map of stream sediments(6)

Anomaly zones overlie the whole areas of the northern granite bodies. In the Central mass, anomaly zones are in the Khlong Wan, Khlong Phlu Yai, and upper stream of the Khlong Kra Buri on the west, and middle streams of the rivers. In the Southern mass, An anomaly area is spread in the west, but only small-scale anomaly zones of U, Tb, Y are situated in the east in spite of anomalies of Sn and W are distributed there. A small-scale high intensity anomaly zone is in the upper stream of the Khlong Bang Yai Lang, at the northern end of the Khao Fachi Silicified Zone.

Small-scale anomaly zones for Eu are situated in the Northern east mass in the northern area, Central mass, and the northern part of the Southern mass. Other than those, some samples in the background areas show high contents of the element, over the average figure. These are probably brought from the plagioclase in the sedimentary rocks.

Contents of Mo are clearly higher in the sedimentary areas than in the granite areas, indicating the element is primary rich in the sedimentary rocks. No granite activity associated with molybdenum mineralization has presumably occurred in the area.

Anomaly zones for Au spread over the area as spots. It appears that samples of high Au contents are arrayed in the direction of NNE-SSW, suggesting us that the mineralization has been brought into sheared zones parallel to the Ranong Fault.

3-2 Soil Samples

3-2-1 Sampling

 (\cdot)

A geochemical sampling program has been performed for the soil in the granite areas to estimate contents of following elements, Sn, W, Ta, Nb, rare earths, U, Th, Y, and Sc, after the geological survey was completed. The sampling areas have been selected mainly in the granite distribution areas, together with surrounding sedimentary rock areas to obtain background values. In addition to those, an alteration zone and a sulphide dissemination zone have been selected. Soil sections on road cutting have been observed prior to take samples, and incases no cutting exists the surface has been dug to take samples from the B or C-horizons.

About 2 to 3 kg of soil has been sampled at each point. After dried up, they have been sieved by 80 mesh screens, and the final products have been divided in two portions, one for the Thailand team and the

-74-

other for the Japanese team. The samples for the Japanese team have been chemically assayed. The total number of the samples is 207.

3-2-2 Pathfinder Elements

()

The same 17 elements as those in the case of the stream sediments have been selected, i.e., Sn, W, Ta, Nb, Ag, Mo, Ce, Eu, La, Lu, Nd, Sm, Tb, Th, U, Y, Sc. The assay method and detection limits for each element are also same as those for the stream sediment geochemistry.

3-2-3 Analysis of Geochemical Data

Table 10 shows the maximum, minimum, and average values, and standard deviation for each element, and Table 11 shows the correlation coefficient between each element.

Element	Unit	Max.	Min.	Average	Av.ant-log	Std.Dev.		
Sn	ppm	174	<5	1.2043	16.01	0.5759		
W	ppm	210	<4	0.8613	7.27	0.4214		
Ta	ppm	31	<1	0.5082	3.22	0.3784		
Nb	ppm	111	8	1.4814	30.30	0.2050		
Au	ppb	14	<5	0.4528	2.84	0.1542		
Мо	ppm	15	INT	-0.5170	0.30	0.7421		
Ce	ppm	770	20	2.1840	152.76	0.2876		
Eu	ppm	2.8	< 0.2	-0.1850	1.53	0.3378		
La	ppm	320	9	1.7287	53,54	0.3100		
Lu	ppm	3.78	0.06	-0.2358	0.58	0.2390		
Nd	ppm	220	<5	1,5297	33.86	0.3487		
Sm	ppm	35	0.8	0.8050	6.38	0.3244		
Tb	ppm	4.6	< 0.5	-0.2610	0.55	0.4235		
Th	ppm	300	11	1.7842	60.84	0.3309		
U	ppm	34	1.5	0.9407	8.72	0.2791		
Ϋ́.	ppm	182	3	1,4648	29.16	0.2917		
Sc	ppm	26	4.8	1.0703	11.76	0.1396		

Table 10 Geochemical basic statistic quantities of soil samples

The correlation coefficients between each element show same tendency as those in the stream sediment geochemistry, although slightly weaker. Sc generally shows negative correlations with other elements, on the other hand W shows no correlations with Nb, Rare earths, Th, U, and Y. It probably

 $\begin{array}{c} \mathbf{1}\\ \mathbf{0}\\ \mathbf{0}\\$
 Tb

 0.0278

 0.0347

 0.0347

 0.0167

 0.0113

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0133

 0.0145

 0.0145

 0.0145

 0.0145

 0.0145

 0.0145
 Sm 271 0.271 Lu 0.233 0.233 0.233 0.233 0.233 0.315 0.315 0.315 0.140 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.257 0.373 0.373 0.357 0.357 0.357 La 10,000 10, Eu 0. 214 0. 186 0. 187 0. 187 0. 187 0. 184 0. 184 0. 187 0. 184 0. 184 0. 184 0. 184 0. 187 0. 184 0. 184 0. 184 0. 184 0. 184 0. 186 0. 188 0. 139 0. $\begin{array}{c} \text{C} \\ \text{$ Model No. 100 Mo $\begin{array}{c} 1a\\ 0.520\\ 0.520\\ 0.520\\ 0.523\\ 0.233$

Table 11 Geochemical correlation coefficients of soil samples

()

indicates that the geochemical characters of the soil samples are strongly controlled by the rocks of the ground, and the concentration of the minor elements in the rocks varies place by place. On the contrary, minor elements are much concentrated in stream sediments, and possibly show strong correlations each other.

Figure 24 shows columnar sections of geological profiles and soil sampling locations in the cuttings facing the road lead to the TV transmission station on the north of Ban Bang Non in the southwestern end of the area. Table 12 shows the contents of the minor elements in the four sampling points. No significant difference showing leaching or concentration of elements in the A, B, and C soil horizons is recognized in the results. The elements, Sn, Nb, Ta, and rare earths are contained in insoluble minerals such as cassiterite, monazite, xenotime, therefore they hardly move in the soil. The maximum values of minor elements' contents in the weathered soils in the area range from 0.8 to 3.3 times of those of the granites of the area. It indicates that rare earth elements are not much concentrated in the soil.

	al ^{de} la composition de la c	Sampling Point										
Element	unit	1	2	3	4							
Sn	ppm	89	87	108	104							
W	ppm	6	7	<4	<4							
Ta	ppm	8	10	9	10							
Nb	ppm	53	55	50	62							
Au	ppm	7	<5	<5	<5							
Ce	ppm	340	250	280	270							
Eu	ppm	0.2	<0.2	<0.2	<0.4							
La	ppm	27	30	22	32							
Lu	ppm	0.6	0.5	0.6	1.08							
Sm	ppm	16	16	12	19							
Tb	ppm	<0.5	<0.5	<0.5	1.2							
Th	ppm	160	130	120	200							
U	ppm	. 11	12	10	15							
Y	ppm	33	26	24	48							
Sc	ppm	11	8.6	8.8	12							

Table 12 Geochemical data of soil profile in Ban Bang Non

Figure 25 shows the grade distribution of the minor elements in the soil. The grade distributions of Sn, W, Nb, and Ta are significantly concordant each other, as shown in the correlation coefficients. Highly concentrated parts are in the southern end of the Northern west mass in the northern area and the southern end of the Southern mass. Anomalies for Nb appear, in addition to there, in the northern end of the

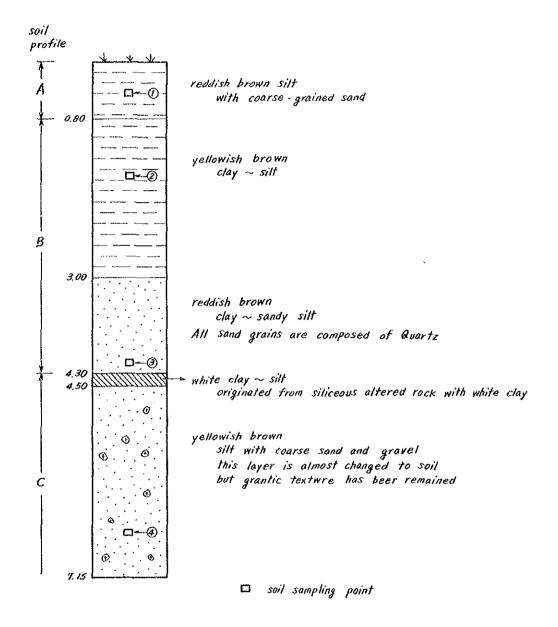


Fig. 24 Soil profile in Ban Bang Non

~

diversity.

C.S.S.

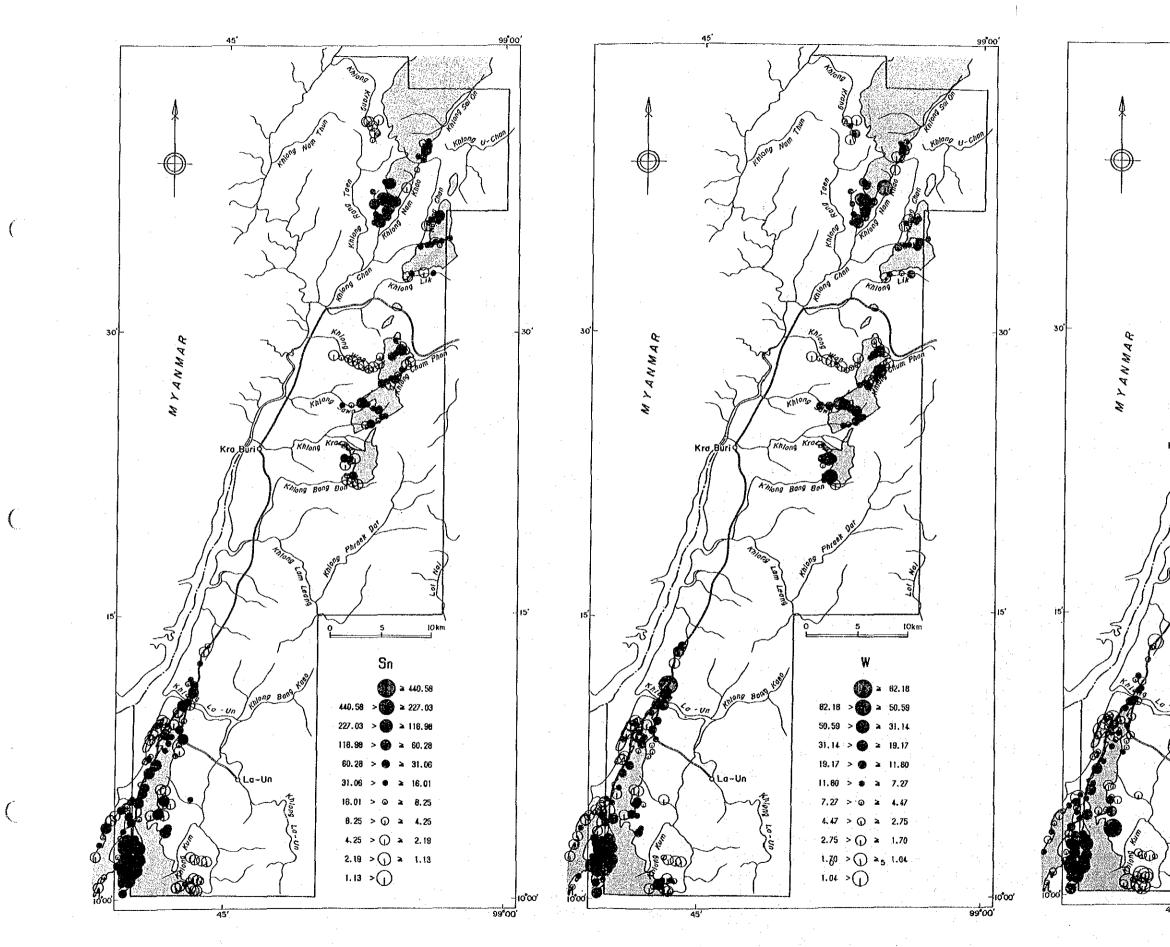
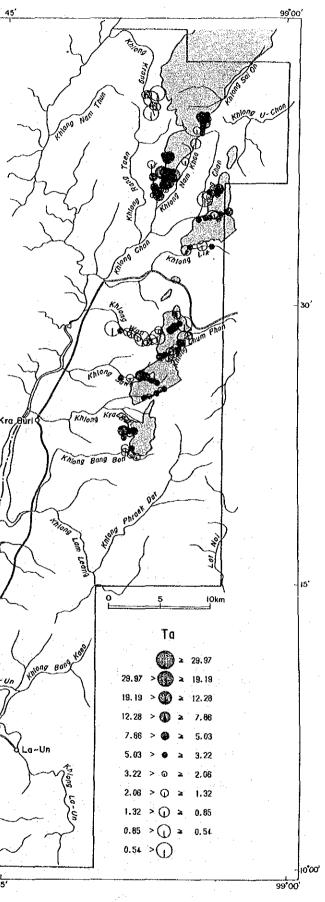
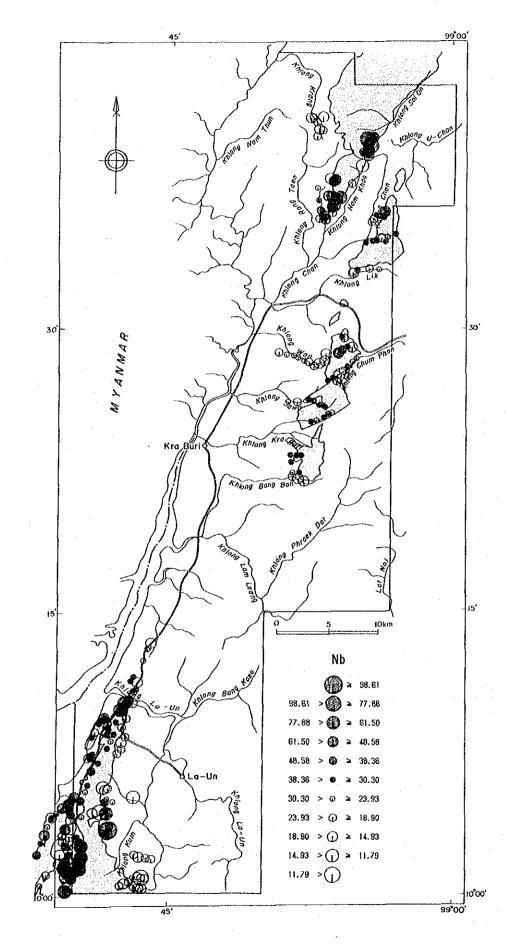




Fig. 25 Content distribution map of soil samples(1)

-79-

(

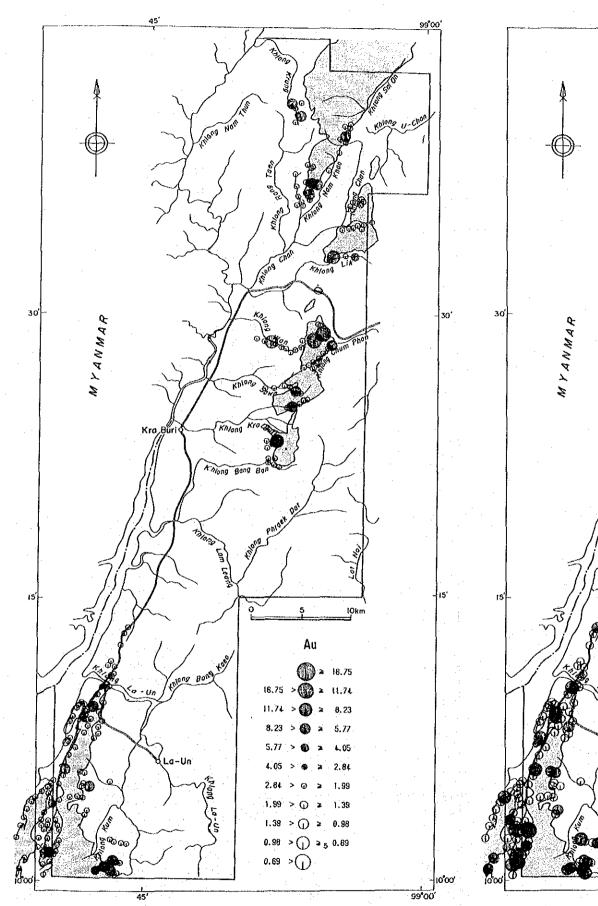
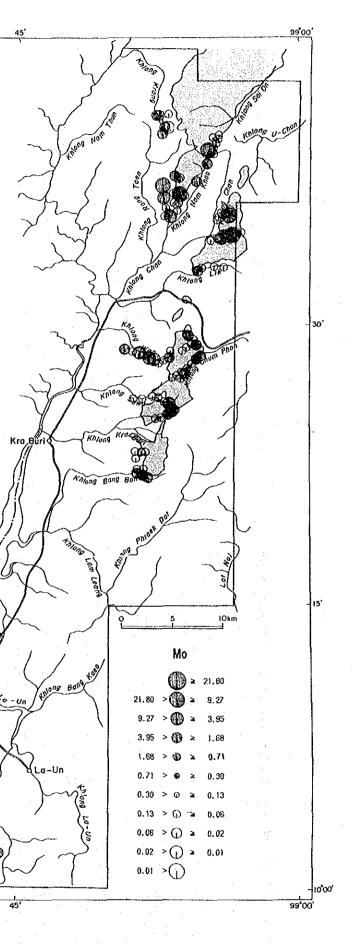



Fig. 25 Content distribution map of soil samples (2)

-80-

----- ·

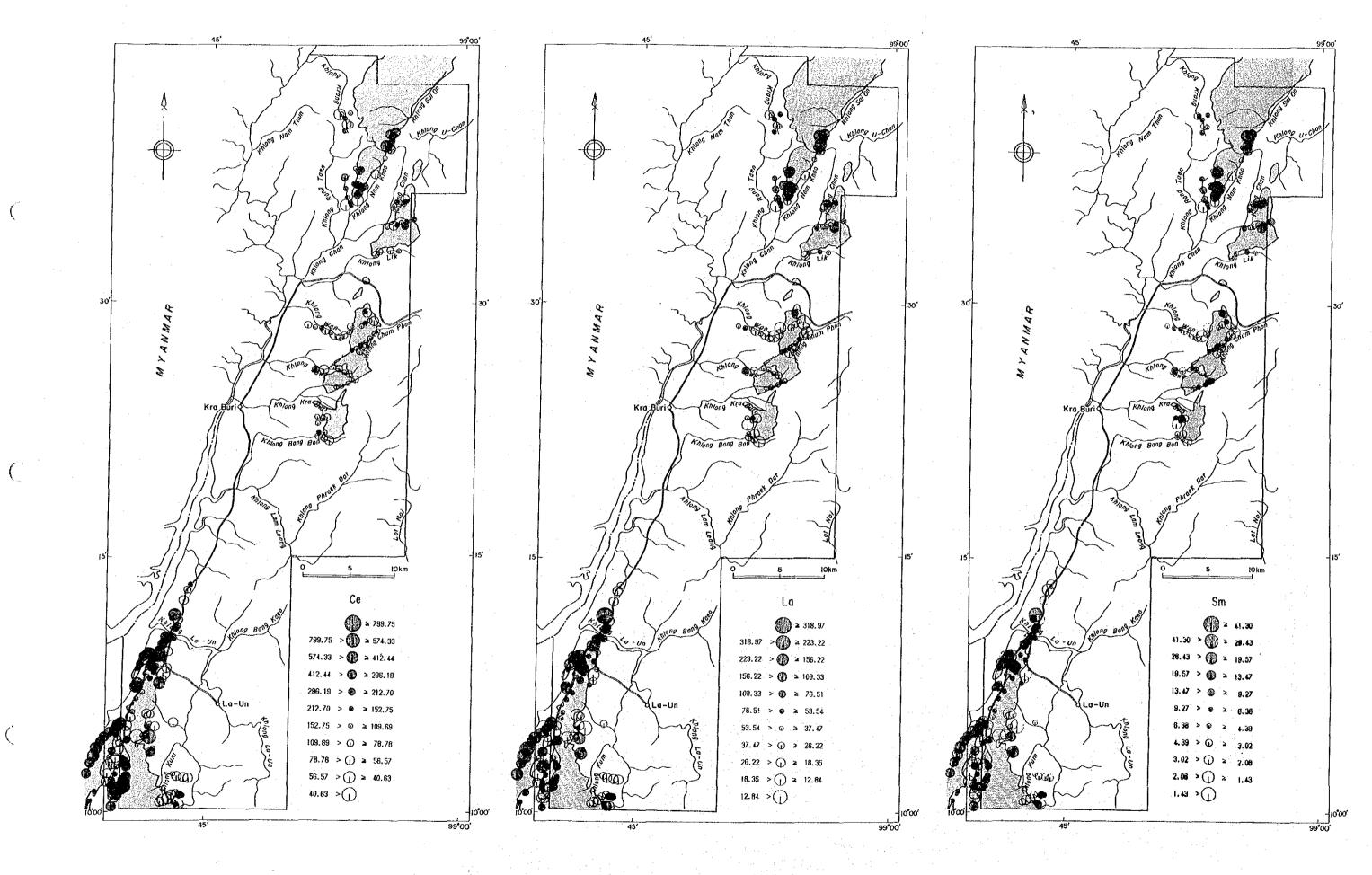
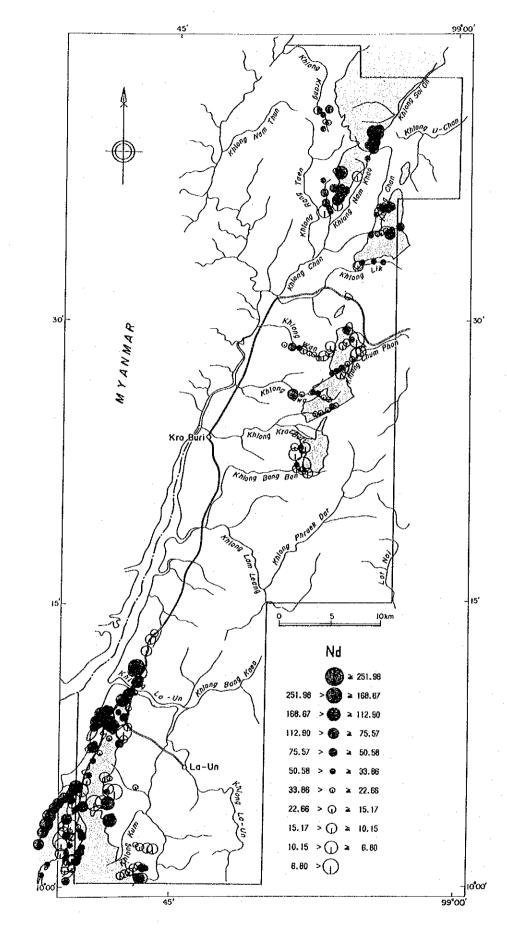



Fig. 25 Content distribution map of soil samples (3)

(

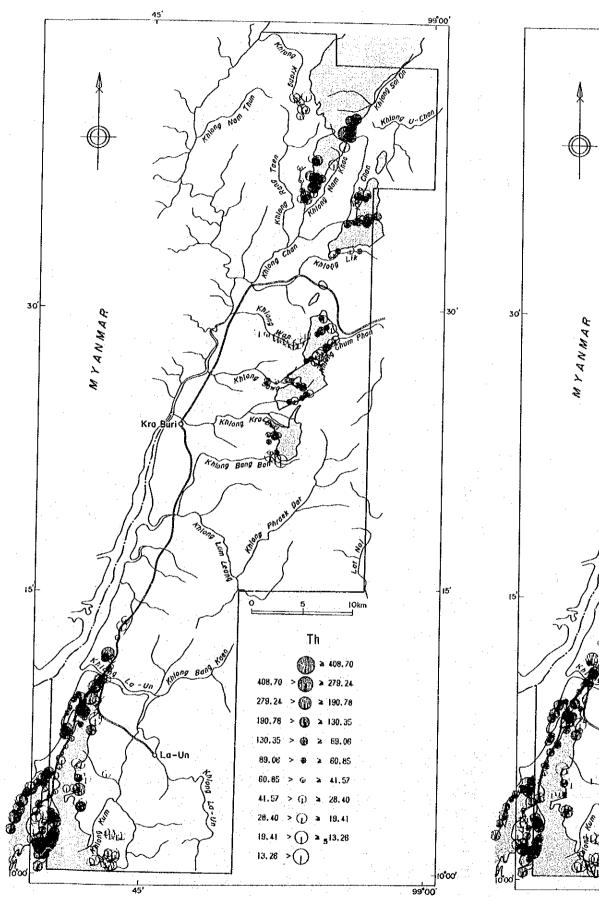
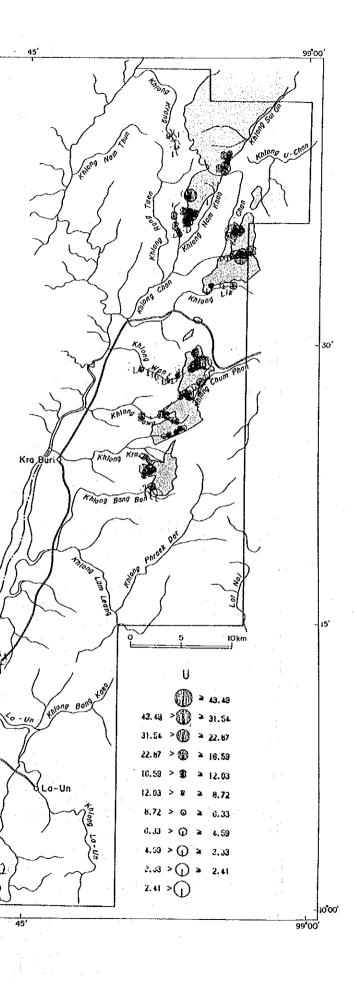
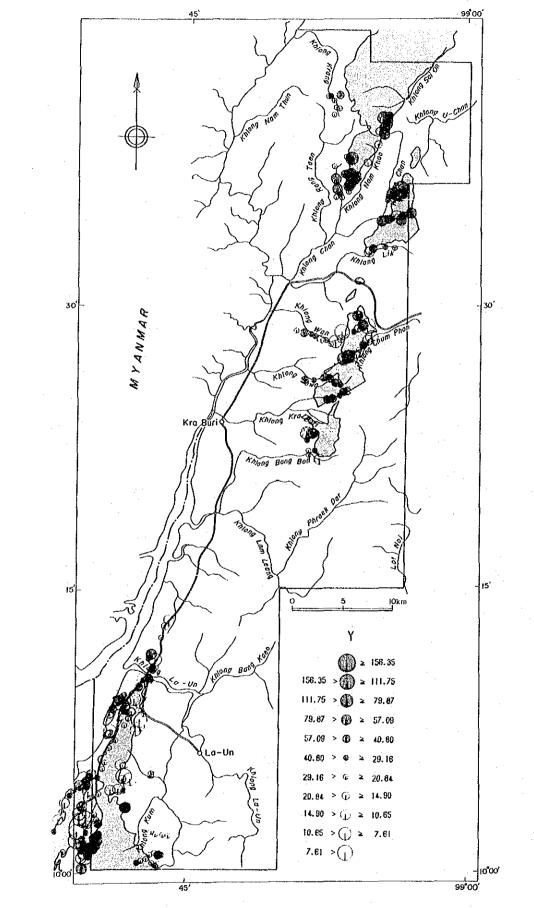




Fig. 25 Content distribution map of soil samples (4)

C

(

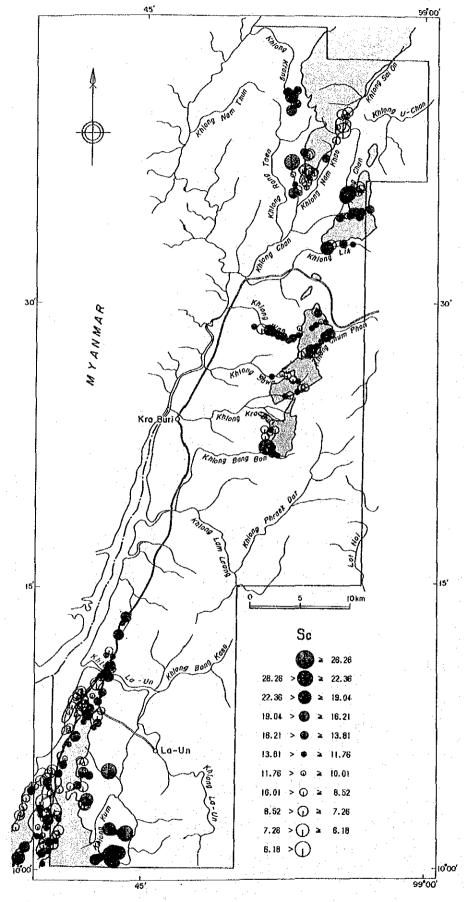


Fig. 25 Content distribution map of soil samples (5)

-83--

Northern west mass in the northern area and in the old working area for primary ores in the east side of the Southern mass. These elements are of relatively low grade in the Northern east mass in the northern area and Central mass.

The elements, Ce, Tb, La, Nd, Sm, Th, and U, show similar distribution patterns, showing high concentration along the western rim of the Southern mass, and partly overlapped with Sn group's elements. This group's elements are of low concentration in the Northern east mass in the northern area and Central mass.

The elements, Y and Lu, show duplicated high values together with the Sn group elements. A highly concentrated anomaly exists in the Northern east mass in the northern area. This is shown by a soil sample in the metamorphosed muscovite granite zone, and its accompanied Sn value is as high as 109 ppm. A high contents sample also appears in the Central mass.

The elements, Mo, Eu, and Sc, show high values in the granite, and some high content samples are scattered in the sedimentary rock areas.

Among the minor elements in the soil samples, Sn, W, Ta, Nb, Ce, Tb, La, Nd, Sm, Th, U, Y, and Lu are derived from the heavy minerals in the granites, accordingly show high contents in the granite areas. Ce, Tb, La, Nd, Sm, Th, and U are also highly concentrated into the Khao Fachi Silicified Zone, indicating some potential for the existing of subsurface granite bodies.

The soil in the area is about 20 m in thickness, except that of the deeply weathered Northern east mass, which contains low Sn and rare earth elements. Some well differentiated muscovite granite rich in Y and Sn appears in the granite mass. This mass is situated in a low hilly area, thus the rocks are poorly exposed. Further geological survey is needed to know the detailed geology of the rocks.

Two samples taken from the basal clay in the old working in a branch of the Khlong Nam Khao show lower contents in all elements than those of the samples from the granite areas.

3-3 Panned Samples

3-3-1 Sampling and Analyzed Elements

Panned samples have been taken every four stream sediment samples at the same time. About 20 liters

of sand has been reduced to 50 grams by panning using large panning pans at the sampling sites, then concentrated again at the base camp. The final products are 4 to 30 grams in weight, and many of them are less than 10 grams. Additional sampling has been performed when it is necessary. The total number of the samples taken is 560. After observation by a stereo-microscope and a ultra-violet light, 129 samples have been chemically analyzed. Samples of ore concentrate from the Ratana Krathu Mine are included in.

The elements analyzed are; Sn, W, Ta, Nb, Au, Mo, Ce, Eu, La, Lu, Nd, Sm, Tb, Th, U, Y, and Sc, same 17 elements as those for the stream sediment samples, and additional 6 rare earth elements, Di, Er, Gd, Ho, Pr, and T. The assay method for the rare earth elements is of the neutron radioactivation analysis, and the detection limits for each element are; 10 ppm for Di, Gd, and Ho, 100 ppm for Er, and 500 ppm for Pr and Tm.

3-3-2 Megascopical Observation

()

The panned samples have been megascopically observed at first. The identified minerals are of cassiterite, wolframite, scheelite, zircon, garnet, tourmaline, ilmenite, monazite, xenotime, rutile, and anatase. Figure 26 shows the weight of each concentrated sample from the unit volume of one cubic meter and the distribution of each mineral. Areas rich in heavy minerals are surrounding areas of the Northern west mass and the Southern mass, the old working areas for secondary deposits. Little heavy minerals are contained in the stream sediments in the eastern branches of the Khlong Chan, on the other hand much of them are in the western branches. Small-scale old workings are scattered along the Khlong Chan. The minerals have probably been brought from the western branches as well as the main stream. Much amount of cassiterite sands is distributed around the Northern west mass and Southern mass, especially in the old working areas on the eastern side of the mass. The upper streams of the Ratana Krathu Mine area contain much amount of heavy minerals. A little amount of cassiterite is distributed in the stream selice of the Khlong Phraek Dat, and along the Khlong Lik.

Some amounts of wolframite minerals are observed in the surrounding area of the Southern mass, especially around the Ratana Krathu Mine. On the other hand, scheelite minerals are largely distributed

-85-

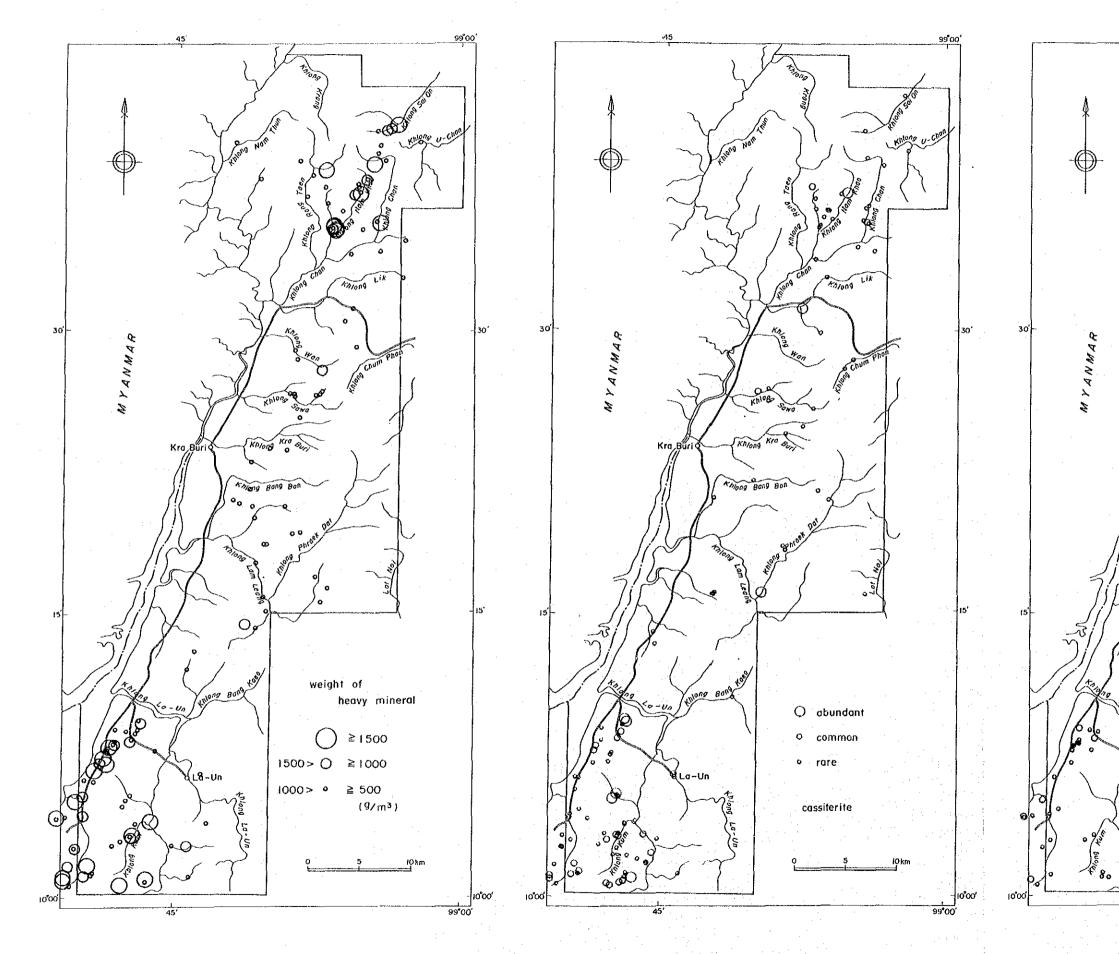
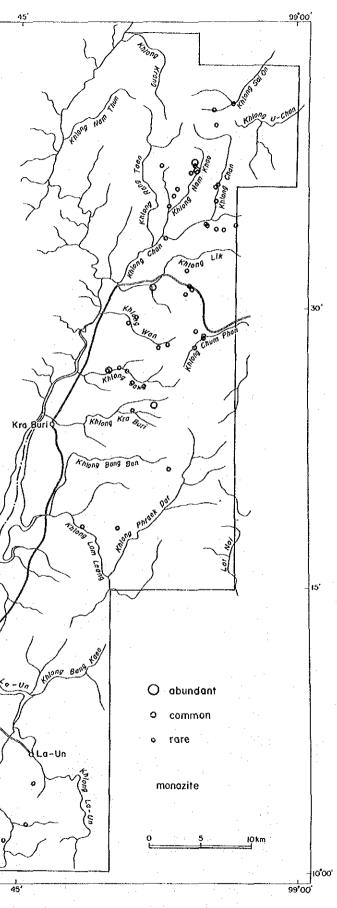
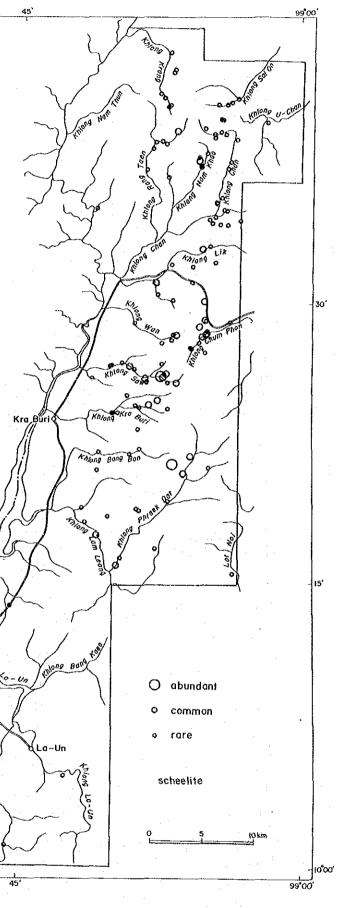



Fig. 26 Distribution of Heavy minerals (1)



-86-

Fig. 26 Distribution of Heavy minerals (2)

.

-87-

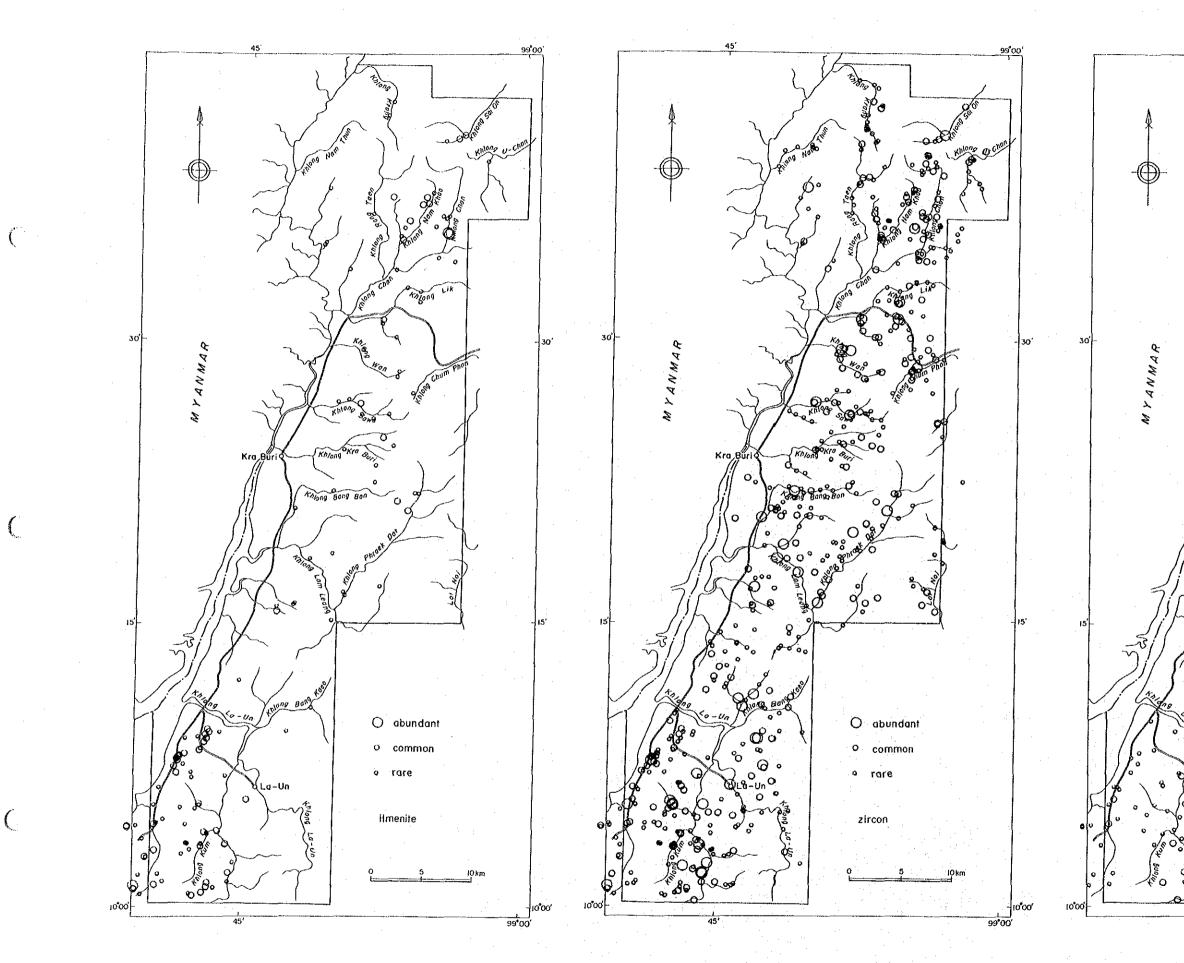
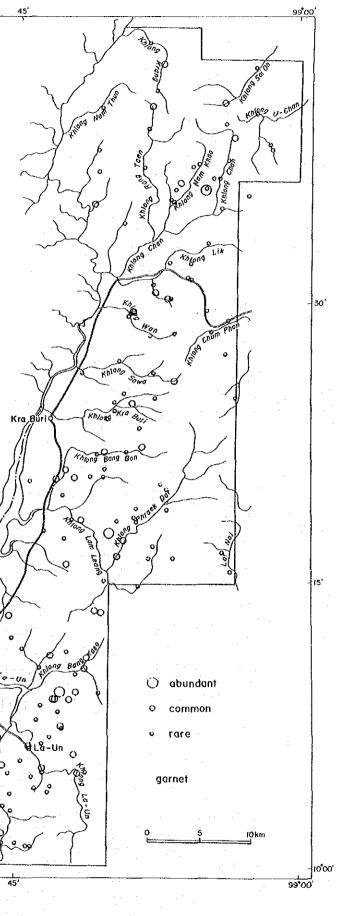



Fig. 26 Distribution of Heavy minerals (3)

and a second second

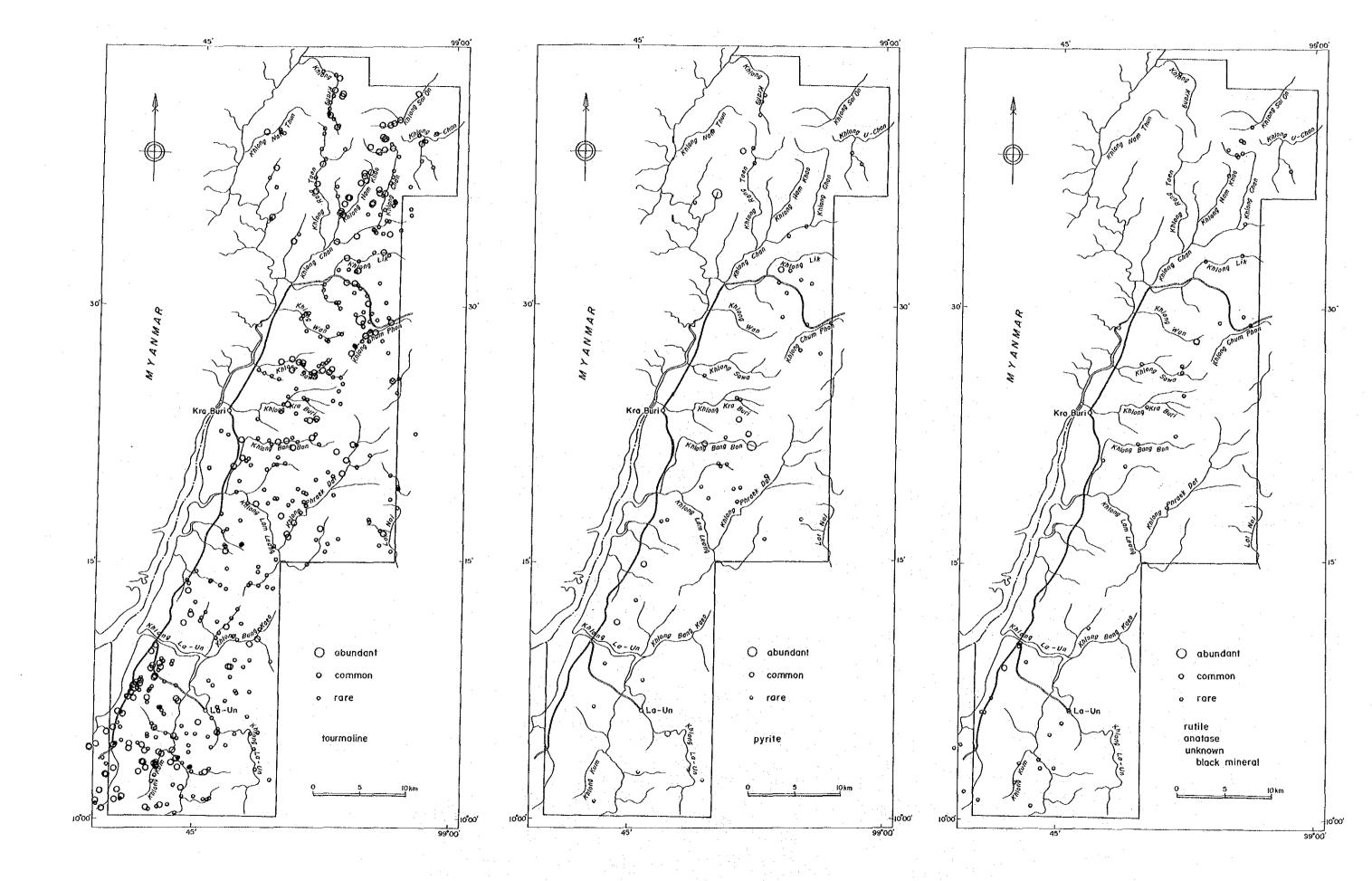


Fig. 26 Distribution of Heavy minerals (4)

around all granite bodies, among them especially around the Central mass. The samples from the old working area in the upper stream of the Khlong Phraek Dat contain much amount of cassiterite, showing 2 to 3 mm in grain size.

A small amount of monazite and xenotime are contained in the surrounding areas of the granite bodies. In the Southern mass, they are more concentrated on the western side than eastern side. In the Central mass, they are concentrated in the streams flowing out from the center body.

The distribution of ilmenite shows the same pattern as that of monazite and xenotime, also appeared in the old working area in the upper stream of the Khlong Phraek Dat.

Little amount of rutile and anatase is contained in the surrounding areas of the granites, showing less frequency.

Zircon, tourmaline, and garnet spread over the area, especially in the sedimentary rock areas. Most of them are of well-rounded grains supposedly originated from sedimentary Origin. Near the granite bodies, euhedral crystals and rounded grains are mixed in some places.

Cassiterite, monazite, and xenotime are concentrated in the foot areas of the mountains, such as the old working areas of secondary tin deposits. These heavy minerals are commonly transported far way, thus topographic features are of important factor for mineral prospecting.

3-3-3 Results of Chemical Analysis

(]

Among the elements assayed, Mo shows out of detection, and Tm shows out of detection limit. Table 13 shows the principal statistics of the contents of the 21 elements assayed. The figures shown on the table are of converted to the equivalent values of grams per one cubic meter.

Table 14 shows the correlation coefficients among the 21 elements. The group consisting of Sn, W, Ta, and Nb, and the group consisting of rare earth elements, Th, Y, and U show strong positive correlations in the group elements, but no correlation exists between the two group's elements.

The principal constituent elements are concentrated in the south end of the Northern west mass and the south end of the Southern mass, the old working area and around the Ratana Krathu Mine. On the other hand, rare earth elements are concentrated around the northern masses, however some slightly high anomalous samples are scattered in the northern coast, north of the Southern mass, showing different

-90---

pattern from that of the tin group elements. The rare earth elements show different distribution from that of Th, U, and Y, which show low concentration in the Southern mass.

Element	Unit	Max.	Min.	Average	Av.ant-log	Std.Dev.
Sn	g/m ³	1,800	0.12	1.0713	11.78	0.8592
W	g/m ³	115	<0.032	-0.5558	0.28	0.8811
Ta	g/m ³	22.55	0.00332	-0.2516	0.56	0.6844
Nb	g/m ³	44,705	0.04204	0.2320	1.71	0.6181
Au	mg/m ³	10.65	0.00546	-1.2102	0.06	0.5283
Ce	g/m ³	25.6	0.0384	0.1672	1.47	0.5698
Eu	g/m ³	0.06	<0.005	-2.8414	0.001	0.6502
La	g/m ³	18.4	0.0256	0.0312	1.07	0.5775
Lu	g/m ³	0.417	0.000023	-1.8177	0.02	0.9768
Nd	g/m ³	8.16	0.0064	-0.3396	0.46	0.5778
Sm	g/m ³	2.24	0.00528	-0.8434	0.14	0.5867
Tb	g/m ³	0.87	<0.05	-1.2626	0.05	0.6185
Th	g/m ³	22.4	0.0272	-0.0072	0.98	0.5940
U	g/m ³	15.6	<0.01	-0.3749	0.42	0.6703
Y Sc Dy	g/m ³ g/m ³ g/m ³	79.425 0.345 12.64	0.01 0.1568 0.00117 0.01168	-0.3749 0.4898 -1.6948 -0.4239	0.42 3.09 0.02 0.38	0.5849 0.4722 0.7009
Er	g/m ³	7.5	<0.5	-0.7140	0.19	0.6439
Gd	g/m ³	8.61	0.0112	-0.4913	0.32	0.6455
Ho	g/m ³	3.196	<0.05	-1.0120	0.10	0.7097
Pr	g/m ³	32	<2.5	-0.2711	0.54	0.5746

Table 13 Geochemical basic statistic quantities of Panne	I Samples
--	-----------

3-3-4 EPMA analysis

()

(Ì)

()

Some rare earth elements contained in heavy mineral were analyzed with EPMA. Four polished thin sections were selected for analysis. One is GH-001 at an old working along Khlong Nam Khao, northern survey area. One is GH-008 at Khlong Lam Leang, center of survey area. One is SAITHONG-1 at an old working on the west of Southern mass. Another is RATANA-3 at the Ratana Krathu mine on the east of Southern mass.

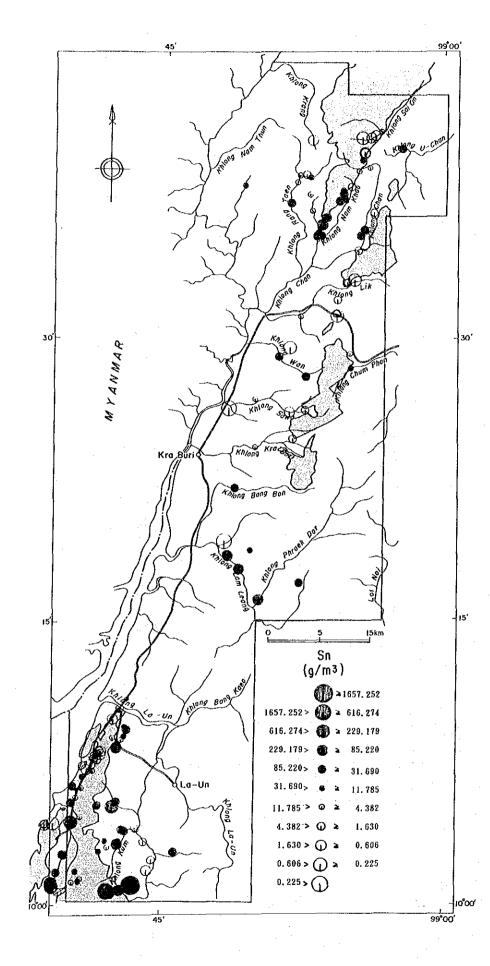
1. Analytical method

EPMA analysis was carried out with energy dispersion method.

Analytical instrument is Tracor Northern-made EDAX TN-5400 attached with JEOL-made EPMA JXA-7300. Measured condition is as follows: accelerating voltage 20kV, sampled current $4.00 \times$

ፈ	0.173	0.206	0.452	0.589	0.481	0.828	0.465	0.834	0.584	0. 789	0. 831	0. 837	0.842	0. 768	0.851	0.476	0.875	0.833	0.903	0.846	1.000
움	0.094	0.165	0.502	0.651	0.461	0.833	0,404	0.834	0.733	0, 780	0.864	0.941	0.872	0.859	0.945	0.544	0. 384	0.933	0.948	I. 000	0.846
33	0. 158	0.180	0.485	0.623	0. 503	0. 887	0.439	0. 897	0. 666	0,840	0. 905	0.938	0.920	0. 859	0.948	0.488	0. 970	0.917	1.000	0.948	0.903
Er	0.081	0. 143	0.498	0.647	0.416	0.804	0.406	0.817	0.734	0.747	0.837	0.912	0.854	0.871	0.927	0.580	0.931	1.000	0.917	0.933	0.833
ል	0.110	0.170	0.502	0.640	0.490	0.862	0.427	0.863	0.719	0.817	0.890	0.953	0.900	0.863	0.948	0.530	1.000	0.931	0.970	0.984	0.875
З	0.413	0. 571	0.744	0. 731	0.525	0. 556	0.458	0. 559	0.352	0.549	0.528	0.572	0.544	0. 496	0.542	1.000	0. 530	0.580	0.488	0.544	0.476
Υ	0.125	0. 175	0. 508	0.692	0.467	0. 815	0.394	0.817	0.719	0. 757	0.850	0.925	0.862	0.847	1.000	0.542	0.948	0.927	0.948	0.945	0.851
n	0. 154	0.232	C. 580	0.662	0.426	0. 808	0.317	0.835	0.712	0.740	0.862	0.891	0.854	1. 000	0.847	0.496	0.863	0.871	0.859	0.859	0.768
Τh	0. 166	0.178	0.509	0.587	0.479	0.923	0.481	0.924	0.674	0.878	0.921	0.918	1.000	0.854	0.862	0.544	0.900	0.854	0.920	0.872	0.842
đ	0.091	0. 179	0.521	0.612	0.449	0.919	0.494	0.913	0. 784	0.871	0. 955	1.000	0.918	0.891	0.925	0.572	0.953	0.912	0.938	0.941	0. 837
હ	0. 107	0.194	0.492	0. 545	0.420	0.970	0.521	0.961	0. 736	0.933	1.000	0.955	0.921	0.862	0.850	0.528	0.890	0.837	0.905	0.864	0. 831
PN	0.139	0.188	0.428	0. 457	0.456	0.978	0.610	0.963	0.672	1.000	0.933	0.871	0.878	0.740	0.757	0.549	0.817	0.747	0.840	0. 780	0. 789
Γn	-0. 321	-0, 190	0.158	0.273	0.093	0.698	0.393	0.667	1.000	0.672	0.736	0. 784	0.674	0.712	0.719	0.352	0.719	0. 734	0.666	0.733	0.584
Ę.	0.204	0.231	0.492	0.538	0.492	0.989	0.556	1.000	0.667	0.963	0.961	0.913	0.924	0.835	0.817	0. 559	0.863	0.817	0.897	0.834	0.834
ផ	0.065	0.090	0. 158	0. 160	0.250	0.590	1.000	0.556	0.333	0.610	0.521	0.494	0.481	0. 317	0.39	0.458	0.427	0, 406	0.439	0,404	0.465
ප	0.158	0.200	0.466	0.512	0.468	1.000	0.590	0.989	0.698	0.978	0.970	0.919	0.923	0.808	0.815	0. 556	0.862	0, 804	0.887	0.833	0.828
ÂU	0.472	0.487	0.549	0.588	1.000	0.468	0.250	0.492	0.093	0.456	0.420	0.449	0.479	0.426	0.467	0.525	0.490	0.416	0.503	0.461	0.481
ą	0. 564	0. 703	0. 926	1.000	0.588	0.512	0. 160	0. 538	0. 273	0.457	0. 545	0.612	0.587	0.662	0.692	0. 731	0.640	0.647	0.623	0.651	0. 589
Ta	0.695	0.790	1.000	0.926	0.549	0.466	0.158	0.492	0.158	0.428	0.492	0.521	0.509	0.580	0.508	0.744	0.502	0.498	0.485	0.502	0.452
35	0.661	1.000	0.790	0. 703	0.487	0.200	0.090	0.231	-0.190	0. 188	0.194	0.179	0.178	0.232	0.175	0.571	0, 170	0. 143	0.180	0. 165	0.206
ß	1.000	0.661	0.695	0.564	0.472	0.158	0.065	0.204	-0.321	0.139	0, 107	0.091	0.166	0.154	0.125	0.413	0.110	0.081	0.158	0.094	0.173
	웒	3	Ta	Ð	Αu	ථ	ෂ	el	ia.	R	Я	£	ų	n	Y	ઝ	8	占	3	£	ፚ

Table 14 Geochemical correlation coefficients of panned samples


-92-

.

0

 \bigcirc

(`)

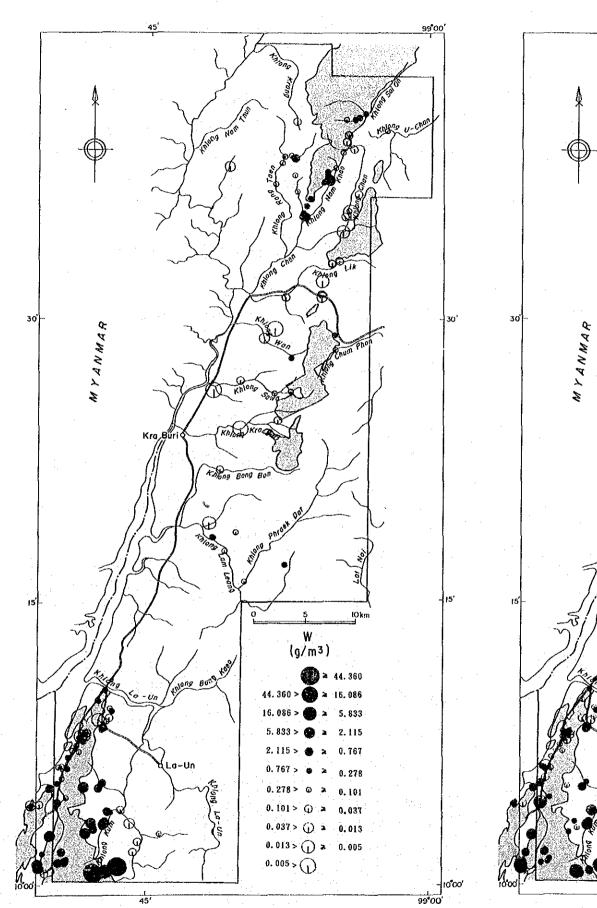
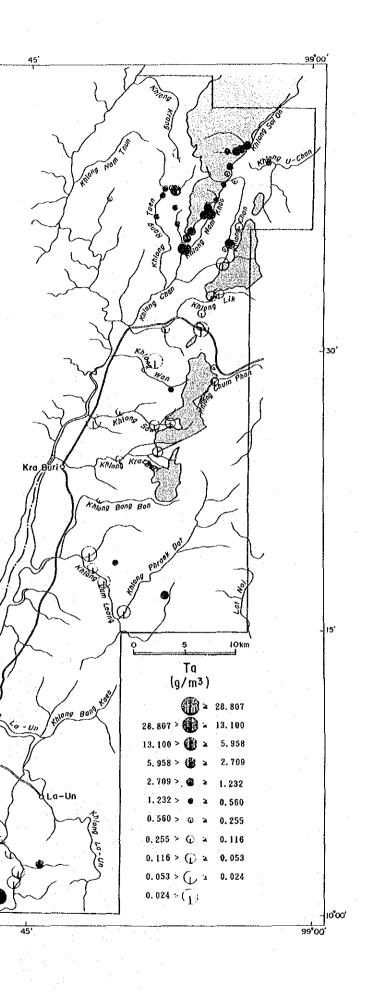
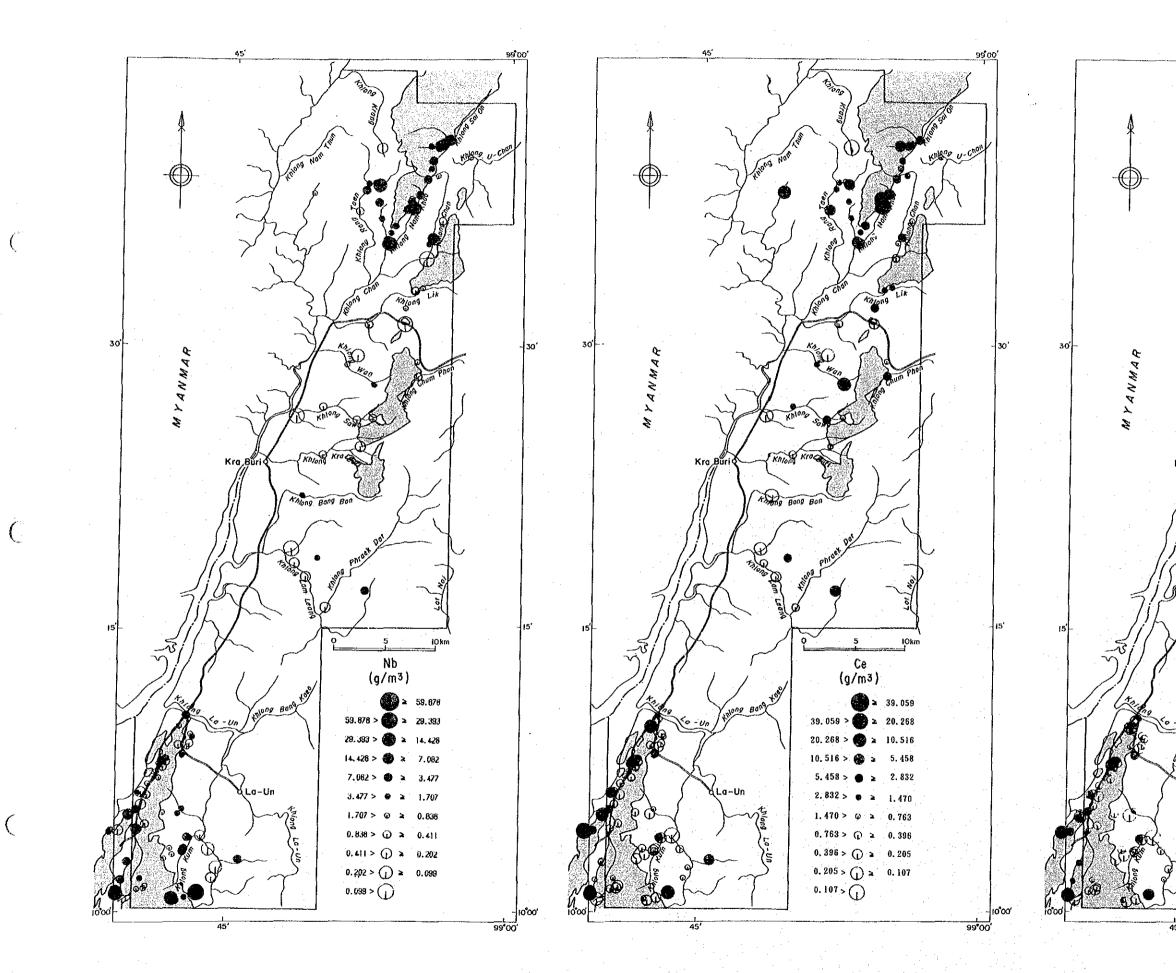
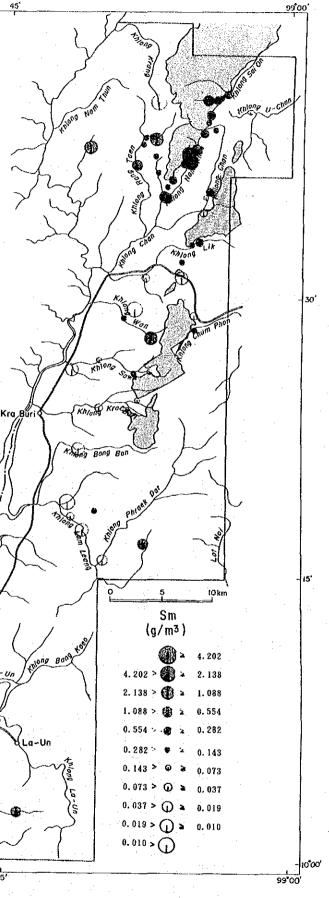
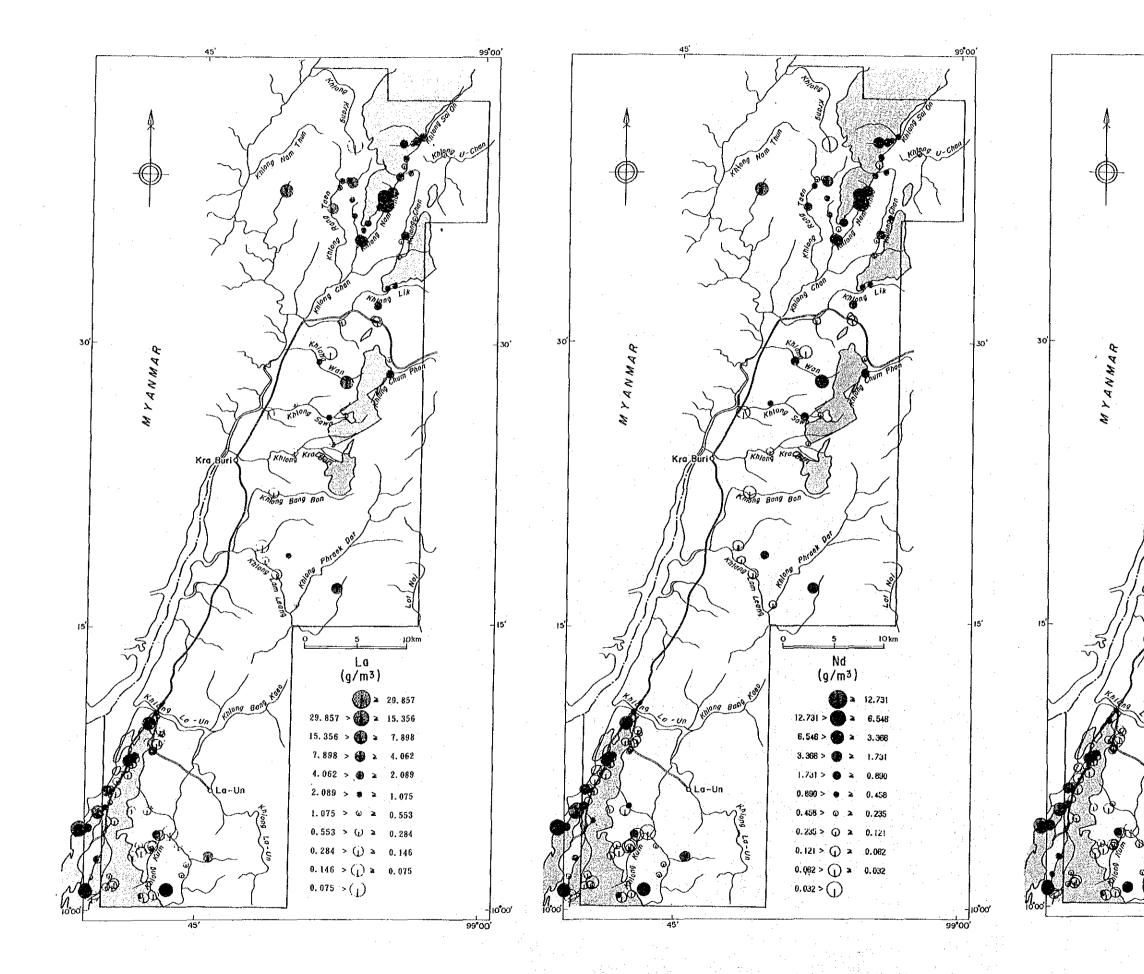
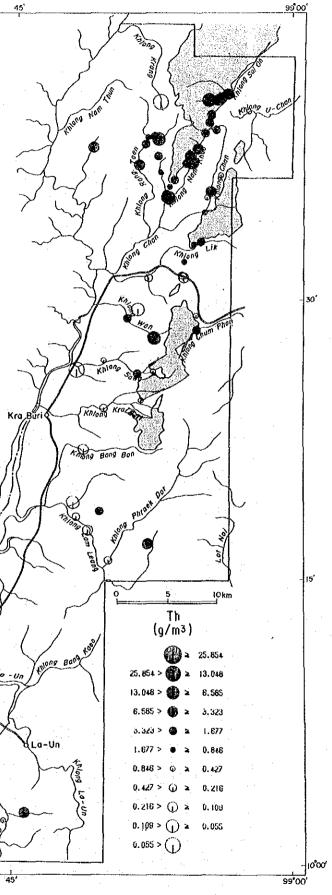



Fig. 27 Content distribution map of panned samples (1)

-93-

-90--


Fig. 27 Content distribution map of panned samples (2)

(

. ~

---95---

Fig. 27 Content distribution map of panned samples (3)

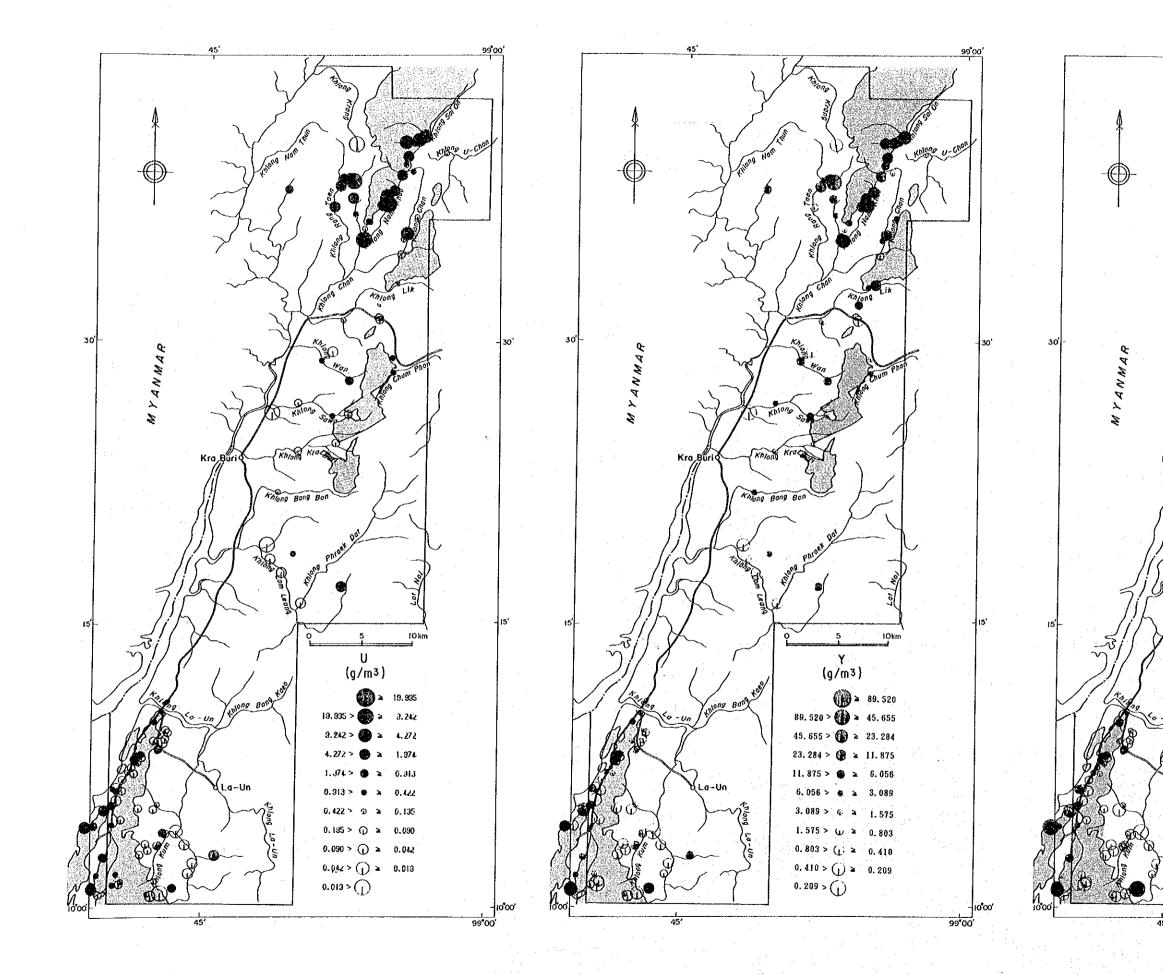
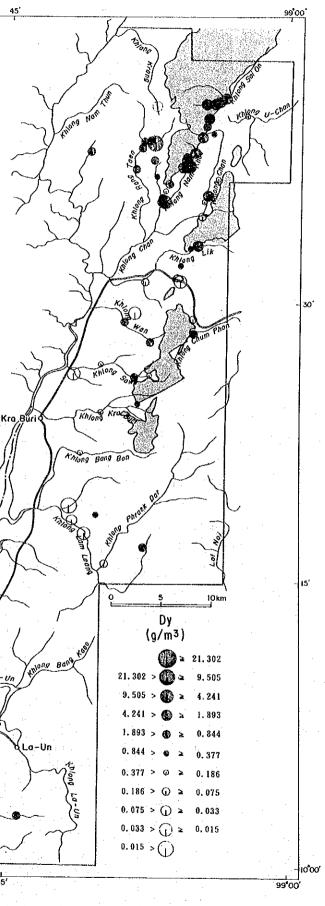



Fig. 27 Content distribution map of panned samples (4)

--96---

...-

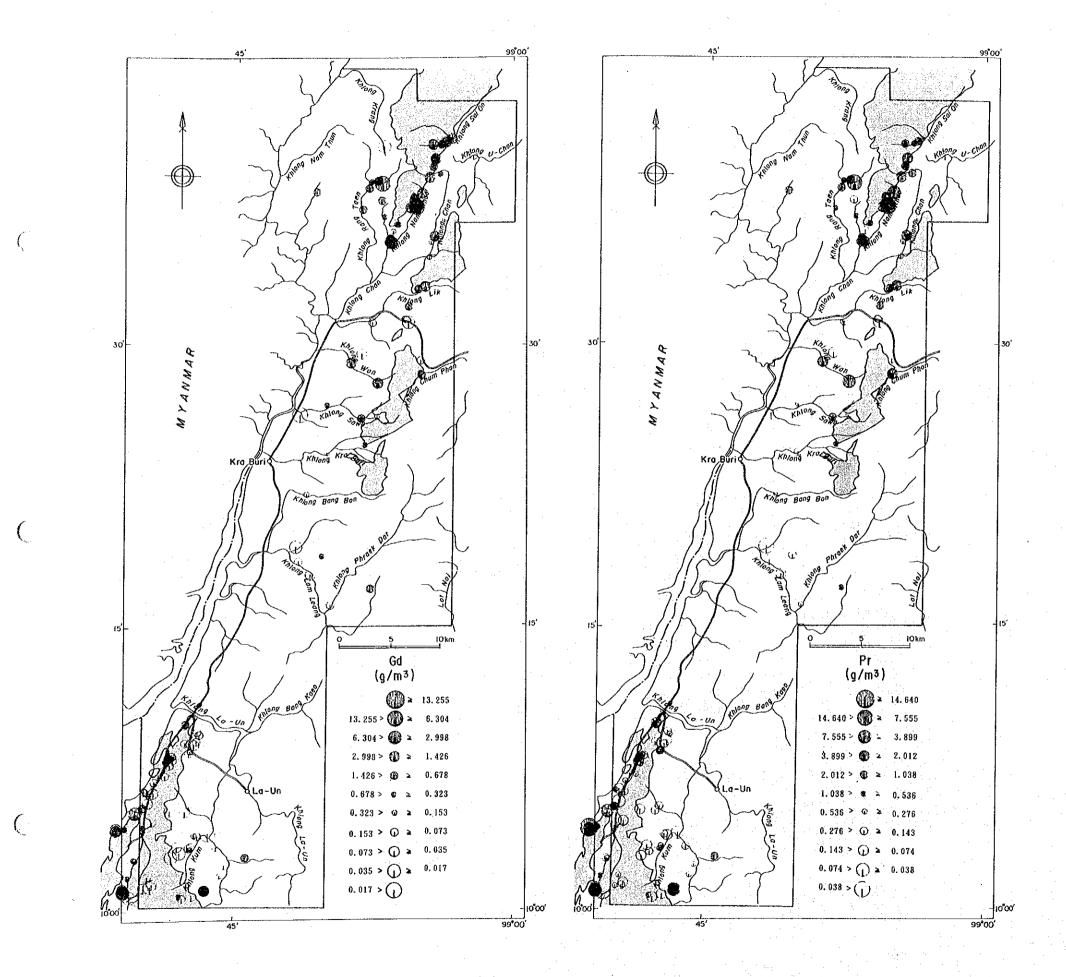


Fig. 27 Content distribution map of panned samples(1)

10⁻¹⁰ A, X-ray take off angle 40°, diameter of electron beam 10mm, applied time 100 seconds.

Several points for each of minerals were qualitatively analyzed. A set of characteristic X-ray spectrums were selected for each mineral, and were quantitatively measured according to the result.

At qualitative analysis each spectrums were weighted as the applied time of 400 seconds for increasing accuracy of analysis. Quantitative calculation was carried out by the course of the ZAF correction method using internal spectral data.

2. Result of measurement

()

100

 $\left(\right)$

Analytical data shows in appendix 6. The measured minerals were cassiterite, monazite, xenotime, polycrase, rutile and zircon. Ilumenite could not be measurable because spectral peak of Ti is very close to peaks of La and Ce. Additionally tourmalines were attempted to measure qualitatively, but rare earth elements were not detected.

(1) cassiterite (SnO₂)

Cassiterites in the survey area are divided into two groups under microscope. One shows high birefrigence and colourless to light amber colour under opened nicol. Another shows light amber to light yellowish green colour under opened nicol and shows anomalous interference colour like chlorite under crossed nicol. The former occurs around Northern and Central mass and contains low amount of minor elements. The later occurs around Southern mass and contains 0.n to n% in Ti,Ta and Ni.

(2) rutile (TiO₂) and anatase (TiO₂)

It is known that rutile and anatase contain rare earth elements in large quantities. Nevertheless the spectral peak of Ti is close to ones of La and Ce, then their quantitative values are low confidence.

These minerals are commonly observed in RATANA-3 of Ratana Krathu mine. These are principal carrier of rare earth elements.

(3) zircon (ZrSiO₄)

Zircon contains small amount of Hf and Ta.

(4) monazite ($(Th,Ln)PO_4$)

Monazite is a phosphate mineral composing of thorium and rare earth elements. Monazites in GH-001 contain about 12% of ThO2 and in SAITHONG-1 about 8 to 12%.

Analytical values of yttrium in monazite are lacking in trust. Because characteristic peaks of Y and P

---98---

are extremely close to each other and automatically calculated into two oxides, in spite of Y contents in monazite is very lower than one of P.

Geochemical anomalies of light rare earth elements in the survey area seem to be caused by monazite.

(5) xenotime (LnPO₄)

()

P

()

Xenotime is a phosphate mineral composed mainly Y and heavy rare earth elements. This mineral abundantly exists in SAITHONG-1 on the West of Southern mass. Main component of xenotime is Y, and next abundance is Yb, Er and Dy in the survey area.

Geochemical anomalies of heavy rare earth elements seem to be attribute to this mineral.

(6) polycrase $((Ln,U,Th)(Nb,Ta,Ti)_{2}O_{s})$

Polycrase and euxenite are each end member of solid solution, the former has high contains in niobium and tantalum and the latter is highly titanium. This mineral commonly occurs in GH-001. It shows tabular habit and dark reddish brown under opened nicol with maximally 1mm length in size. Also it has high reflection under reflected microscope.

Analyzed mineral in the survey area is polycrase because of high Ti contents and have Nb=17-22% and Ta=8-10%.

Geological anomaly of Nb and Ta overlapping with anomaly of rare earth elements is caused by this mineral.

3-4 Discussion

The results of the three kinds of geochemical surveys show that the anomaly zones of those three methods are well coincident each other, although the soil geochemical anomalies are limited in the location of the granite bodies. The contents of the elements analyzed reflect the heavy minerals' distribution derived from the granite bodies, and the large geochemical halos are concentrated around the old working areas for secondary accumulated ore deposits.

In the survey, the 17 elements for the soil and stream sediment survey, and the 23 elements for the panning survey have been selected as the pathfinder elements. The elements showing geochemically high

anomalies are grouped into two, the tin group consisting of Sn, W, Ta, and Nb, and the rare earths group consisting of Ce, La, Lu, Nd, Sm, Tb, Th, U, and Y. In the panning survey, Dy, Er, Gd, Ho, and Pr are added in the rare earths group.

<u>A</u>

Ô

In the northern area, the tin group anomaly zones are extensively distributed in the old working area along the Khlong Nam Khao in the southern end of the Northern west mass, and in the old working area along the Khlong Chan between the Northern west and Northern east masses. In addition, some smallscale anomaly zones are in the upper streams of the Khlong Chan and Khlong Phrae Ka Muang. The only one anomaly zone of W is situated along the Khlong Krang on the west side of the Northern west mass, where scheelite minerals are distributed. On the other hand, the anomaly zones of the rare earths group show more extensive than those of the tin group, over the Northern west and Northern east masses including the old working areas, although each element shows slightly different behaviour. This phenomenon indicates that the rare earth elements tend to be concentrated into the early stage granites rather than the later stage well differentiated facies. The rare earths group elements are presumably still being supplied.

In the Central mass, the anomaly zones by both groups are situated in the westward flowing streams from the mass, one is on the boundary between the granite and sedimentary rocks, and the other is in the area changing from the hilly area to the alluvial plain. Some other stream sediment anomaly zones are on the north and northeastern sides of the granite mass. The Central mass is characterized by the Sn and W anomaly zone, not being accompanied by Ta, Nb, and rare earths anomaly, in the upper stream of the Khlong Phraek Dat, far way to the southeast of the mass. The Sn anomaly zone especially widely spreads in the area 5 km x 3 km. This anomaly probably has been brought by the quartz veins in the sedimentary rocks, and suggests that subsurface granite bodies possibly exist underneath there.

In the Southern mass, The tin group's anomaly zones are largely distributed on the southern areas of the granite, from the Ban Bang Non district in the southeastern corner of the area to the Ratana Krathu Mine and old working area in the Khlong Kum basin. On the other hand, the rare earths group's anomaly zones are distributed on the western side of the granite, and only some high contents samples are scattered along the streams on the eastern side of the granite. This is probably caused by the different geological environment on both sides, although both sides show topographically similar steep slopes. On the eastern

-100-

side, sedimentary rocks still remain on the flank, indicating the depth of the erosion of the granite is still shallower than that of the eastern side, and such difference probably caused the different eroded mineral supply to the surrounding sedimentary basins. The large plain area is distributed on the eastern side, however on the western side, the flat plain is narrow except in the Bang Non district, and the tin group's minerals could be rapidly transported to the sea.

In the Khao Fachi Silicified Zone in the northern extension area of the Southern mass, the both group's anomaly zone overlies the zone. It also suggests that some subsurface granite bodies probably exist underneath there.

The Au anomaly zones sporadically scatter over the area, however, the samples showing over the average value tend to align to the trend of NNE-SSW, parallel to the dominant fault line.

Eu and Sc are of low contents in the geochemical samples, and only small-scale anomaly zones are mainly situated in the granite bodies, but the slightly high contents samples are sporadically distributed in the sedimentary rock areas.

Almost all samples show the Mo contents of less than detection limit, however all samples showing values over the detection limit are in the sedimentary rock areas. It is inferred that molybdenum mineralization is probably not associated with the granites in the area.

Judging from the above mentioned factors, following areas are selected as high potential areas.

For Sn, W, Nb, and Ta

Best potential area;

the old working area to the south of the Southern mass.

Other potential area;

the surrounding areas of the Northern west and Northern east masses in the northern area.

the surrounding areas of the Southern mass.

the offshore to the west of the Southern mass.

For Rare earth elements, Th, U, and Y

Best potential area;

the surrounding areas of the Northern west and Northern east masses in the northern area.

-101

the western side of the Southern mass, coastal area.

Other potential area;

the western side of the Central mass.

For the concealed tin and rare earths primary ores

High potential area;

())

the western side of the upper stream of the Khlong Phraek Dat.

the Khao Fachi Silicified Zone.

PART III CONCLUSION AND RECOMMENDATION

 \bigcirc

Chapter 1 Conclusion

In this survey, the geological survey and geochemical prospecting have been performed to select potential areas for minerals from the area of 1,500 square kilometers around the Kra Buri Town, the Peninsular Thailand. The conclusions of the survey are as follows.

1. The tin mineralization in the Malay Peninsula is associated with the granitic activities since Mesozoic age. The granites intruded into the sedimentary formations from Silurian-Devonian to Jurassic time in the area are of Cretaceous age.

2. These granites are stock-like, and divided into four bodies, the West mass and East mass in the northern area, Central mass, and Southern mass.

3. The granites belong to the S-type, ilmenite series granite, and classified into the tin-granite based on their principal chemical components and tin contents.

4. The minor element components of granitic rocks are divided into two groups, the tin group comprising Sn, W, Ta, and Nb, and the rare earths group comprising rare earth elements, Th, U, and Y, based on their chemical behavior. Each granite mass has different ratio of the two groups' contents.

5. In the geochemical investigation, the behavior of the path-finder elements is summarized into the two groups.

6. Following four promising areas have been selected, being based on the results of the integrated interpretation of the geochemical characteristics, mineral occurrences, and alteration zones.

Northern west mass

 $\langle \rangle$

The mass shows geochemically high contents of both tin and rare earths groups. This fact shows that this mass has high potentiality germinating tin and rare earth ores. Particularly high geochemical anomaly of the tin group in the southern part. The rare earths group's anomaly overlies whole area of the granite. There is potential for tin ores containing rare earth elements.

② Southern mass

The mass geochemically shows high potentiality for both tin and rare earths groups as same as the Northern west mass. Wide spread of the high geochemical anomaly of the tin group in the southern part. Anomalies of the rare earths group are largely distributed along the west rim of the mass. There is high potential for tin ores containing Nb and Ta in the southern part, and for rare earths ores in the western

-103--

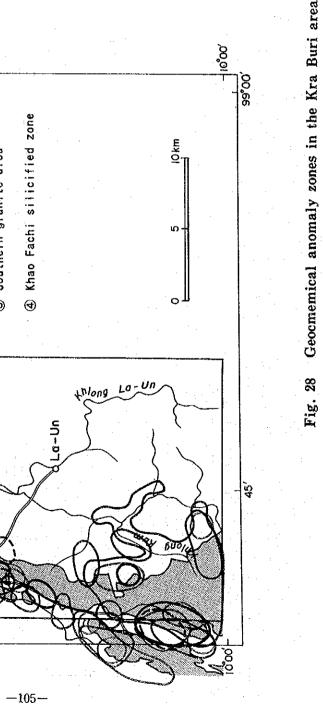
part.

()

1

③ Central mass

The potentiality of the both geochemical groups is low in the mass. However the two group's duplicated anomaly are in the western side of the mass, along a river. There is potential for rare earths ores containing tin there. A large geochemical anomaly of Sn and W as well is distributed in the southeastern side of the mass, where many quartz veins exist. There is some potential for subsurface primary ores on the top of a concealed granite body.


④ Khao Fachi Silicified Zone

This is a silicified zone accompanied with white clay derived from sedimentary rocks in the mouth of the River La-Un. A soil geochemical anomaly of the rare earth group and a stream sediment geochemical anomaly of the both tin and rare earth groups are duplicated in the area. The zone is in the northern extension of the Southern mass. There is potential for subsurface primary ores on the top of a expected concealed granite body.

Chapter 2 Recommendations for the Second Phase Survey

Four promising areas for Sn, Nb, Ta, rare earths, Th, U, and Y have been selected based on the results of this year's surveys. It is recommended that detailed geological and geochemical survey programs to be conducted in the selected four areas to narrower the targets, and at the same time geophysical survey programs to be conducted to ensure the existence and scale of concealed granite cupolas.

Geochemical anomaly zone -6d Sn-W-Nb-Ta â Sn - Ta - Nb Sn - Nb - Ta REE (~Th - L Ч Sn group Stream sediments Sn - Nb samples Ta - Nb Nb – Ta T-h-U ν- υ REE ВШ òoil samples Sn Sn Ė × ×. Panned 9°0° area ① Northern west granite Southern granite area Central granite area Promising area \odot PUX 201 Lom Leon 4080 K hong ž YAMNAYM 30 <u>`</u>2

REFERENCE

Aranyakanon, P., 1961. The cassiterite deposit of Haad Som Pan, Ranong province, Thailand. Royal Department of Mines, Thailand, 182pp.

Chappell, B.W. and White, A.J.R., 1974. Two contrasting granite types. Pacf. Geol., no.8, p.173-174.

DMR, 1985. Geological map of Thailand,1:250,000, Changwat Chumphon and Amphoe Kra buri. Geological survey division, Department of Mineral Resources.

DMR, 1989. Geophysical series,1:50,000, Aeromagnetic map, survey A, sheet 4729-4730. Department of Mineral Resources.

DMR, 1989. Geophysical series, 1:250,000, Airborne gamma-ray spectometric map, surveys B and C, sheet NC 47-6, 47-7, 47-10. Department of Mineral Resources.

Garson, M.S., Young, B., Mitchell, A.H.G. and Tait, B.A.R., 1975. The geology of the tin belt in Peninsular Thailand around Phuket, Phangnga and Takua Pa. Overseas memoir No.1, Inst. Geol. Sci., London.

Govett, G.J.S., 1983. Handbook of exploration geochemistry, Volume 2. Statistic and Data Analysis in Geochemical Prospecting. ELSEVIER SCIENTIFIC PUBLISHING COMPANY, 437p.

Hutchison, C.S., 1983. Multiple Mesozoic Sn-W-Sb granitoids of southeast Asia. Geol. Soc. of America, Memoir 159, 35-60.

Hutchison, C.S. and Taylor, D., 1978. Metallogenesis in SE Asia. Jour. Geol. Soc. London, 135, 407-428.

Ishihara, S., 1977. The magnetite-series and ilmenite-series granitic rocks. Mining Geol., 27, 293-305.

Ishihara, S., 1981. The granitoid series and mineralization. Econ. Geol. 75th Anniversary vol., 458-484.

Ishihara, S. and Mochizuki, T., 1980. Uranium and Thorium contents of Mesozoic granites from Peninsular Thailand. Bull.Geol.Surv.Japan, 31(8), 369-376.

Ishihara, S., Sawata, H., Shibata, K., Terashima, S., Arrykul, S. and Sato, K., 1980. Granites and Sn-W deposits of Peninsular Thailand. Mining Geol. Spec. Issue, 8, 223-241.

Lepeltier, C., 1969. A simplified statistical treatment of geochemical data by graphical representation. Econ.Geol., 64, 538-550.

Sawata, H., 1971. Mineral resources around the lower Mekong, 4. Tin, Chishitu News, G.S.J., 199, 52-63. (in Japanese)

Sinclair, A.J., 1976. Application of probability graphs in mineral exploration. Special volume No.4, The Association of Exploration Geochemists.

Sirinawin, S., Putthapibann, P. and Mantajit, N., 1983. Some aspects of tin granite and its relationship to tectonic setting. Geol. Soc. America 159, 77-85.

Suensilpong, T., Tate, N.M., Pollard, P.J. and Taylor, R.G., 1986. Resource evaluation of primary tin potential of the Phuket-Ranong region, southwestern Thailand - A district analysis. Project of the Southeast Asia tin research and development centre, ESCAP, United Nations, 88p.

Taylor, S.R., 1964. Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta, 28, 1273-1285.

-106-

Tischendorf, G., 1977. Geochemical and petrographic characteristics of silic magmatic rocks associated with rare element mineralization. G.S. of Czechoslovakia, 2, 41-96.

White, A.J.R., 1979. Mantle source type granite. G.S.A., Abstr, 11, 539.

Sec. 1

.

White, A.J.R. and Chappell, B.W., 1977. Ultrametamorphism and granitoid genesis. Tectonophy., 43, 7-22.

APPENDICES

 \bigcirc

O

 \bigcirc

	ris																		
	Reterics			0 augus															
	r G			0			٥										0		
Ē	S	0			0	0			0	0	0	0	0		0			•	
Mine	욻		0					0			0	ļ	0	0				0	
Cal	광		0														-		
Secondary Minerel	£	°			0	0	•			•	0	<u> </u>		•	•	•	0		
	8																		
eral	Ϋ́	•									•	•			0			-	_
Hin	8	•	•		0		0	0		0		<u> </u>		•		0			ŀ
Г. g	3		°		•	°		0		0			^						-
Accessory Mineral	Zr Ap Sp				0			0			0	0 0	0	0 0	0			0	-
_		°	•	0 0	•	0		0 0	0	•	•	0		0	0	0	•		L
	Ca TI			Ĕ.				Ť	- ·			<u> </u>		Ť					-
	ਹ ਸ਼																		-
E I	68																		
liner	Am (0					0	-					╞
pal 1	Ns	0		0	0	0	0		0	0			-	0	0				ŀ
Principal Mineral	118	•	0		0	•		0	0	0	0	0	0	0	0	0	0	0	r
ት	Ъ	0	0		0	0	0	0	0	0	0	0	0	0	0			0	ŀ
	ľď	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Γ
	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۲	
	Texture	mylonitic	decussate		granitic	granitic		decussate	granitic	granitic	cataclastic	granitic	schistose	granitic	granitic			mylonitic	
	Location	Khlong Nam Kheo branch	Whilong Lik branch	Khlong Lan Liang branch	Whlong Chan branch	Eniong Chan branch	Khiong Nan	Rhlong Ni branch	Khlong Kun branch	Khlong Kun branch	Khlong ¥an branch	Rhiong Wan branch	Khlong Wan branch	Khlong Phlu Yai	Kalong Phlu Yai	Khlong Phra Yang branch	Khlong Phra Yang branch	Khao the Khloo	
	Rock Name	two sica granite	pseuritic hornfels	sandstone	two mica granite	two mica granite	sandstone	psamitic bornfels	muscovite tourmaline granite	two wice granite	AR-016 biotite granite	AR-DI7 biotite granite	psameitic schistose hornfels	AR-019 two mica granite	two mica granite	sandstone	sandstone	biotite granite	
		ឌ	AR-005	A2-007	AE-008	AR-009	110-BV	A8-012	A8-014	AR-015	016	-017	AB-018	019	AR-020	AB-024	AR-025	A8-025	Ţ
Control	Sampte No.	AE-003	-a	형	AR-	\$	÷.	3	a.	ä	2	<u>è</u>	2	1	Ŕ	1	ģ	2	

Appendix 1 Microscopic observation of rock thin sections

Abbreviations ; Qziquartz, P1:plagioclase, Kf:potassium feldspar, B1:blotite, Mzimuscovite, Amiamphibole, Gaigarnet, Chichlorite, Alialianite, T1:tourmaline, Zrizircon, Apiapatita, Spisphene, Opiopeque mineral, Caicalcite, Bpiepidote, Frirock fragment

.

Symbols: @:abundant, O:conmon.

o :rare

(i)

(j)

Û

0

Appendix 1 Microscopic observation of rock thin sections

						['r i no	Principal Minera	neral			ert	88	Accessory Mineral	Miner	18	Sec	rdary.	Secondary Mineral	eral		
No.	Seeple No.	Rock Nage	Location	Texture	14 20	2	Bi	Ms Am	3	ភ	13	T! Zr	Zr Ap	ß	8	V	N ZO	Ms Ca	<u>କ</u>	뎡	Li Ri	Remarks
19	BE-161	sundy hormfels	Khlong Kum branch	decussate	。 (0)	0	0	0			Ľ	0			0				°	0		
ន	BR-166	B&-166 two mice granite	Kalong Kum branch	wionitic	0	0	0	0				0 0	0		0			0		0		
21	B8-168	two mica granite	Milong Kun branch	cataciastic	0 @	0	0	0				•			0					•		
ន	BR-199	the mica granite	Khlong Chumphon branch	granitic	00	0	0	0				°	•		0			0		0		
ន	80-230	22-230 two mice granite	Khlong Beng Bon	ceteclastic	00	0	٥	0				0		0	٥					0		
3	B&-272	B&-272 two mica granite	Ban Hin Dat Nua	∎ylonîtîc	0	0	0	0				0	0		0	·····	. ·	0		0		
ន	BR-298	BR-298 two mica granite	Khlong Kra Buri branch	granitic	00	0	0	0				•	0	0	٥		-	•		°		
8	CB-038	CE-038 mudy sandstone	Khlong Hin Sai		° O	0	0	0			0	0			٥				<u> </u>			
12	C&-087	sandstone	Khlong Chan breach		°	0		0			0			0	0							
R	CE-109	Buidstone	Khlong Uchan branch		0						0											
ន	CR-129	pegnatite	Khlong Bang Si Kim	granoblastic	0	0	0		0		~	。 0	0		0	0				°		
ន	CB-137	sendy hornfels	Khlong Bang Si Kim	decussate	° ©		0	0						0	0							
31	CR-140	CR-140 two mica granite	Khiong Bang Si Kim	ceteclestic	0 ©	0	0	0]		0		<u> </u>	-		•		
8	C8-147	two mica granite	Rong Rian Ban Sai Deeng	<pre>wylonitic</pre>	0	0	•	0				<u> </u>	_		0		-	0		0		
ន	CR-181	two mica granite	Khlong Bang Non branch	∎ylonītic	0 ©	0	0	•				•			٥			0		0		
স্ত	CR-194	two mica granite	Khiong Phlu Yai	granitic	0	0	0	•				-		0			Ť	-		•		
я	<u>DR-078</u>	DR-D78 two mice granite	Khlong Chan branch	∎ylonitic	0	0	•	0				°			٥							
ห	DB-096	DB-096 mudstone	Khlong Bang Khong Thong		0	_		0				_		•	0		{	의				

Abbreviations ; Qz:quartz, Pl:plagioclase, Kf:potassium feldspar, Bi:biotite, Mz:muscovite, Am:amphibole, Ga:garnet, Ch:chlorite, Al:allanite, 1]:touramline, Zr:zircon, Ap:apatite, Sp:sphene, Op:opeque mineral, Ca:calcite, &p:epidote, Pr:rock fragment

Symbols; ©:sbundant.

o : rare

Otcomon.

(2)

L							pr in	i sa l	Peincinal Mineral	_		Γ	ACK 1	0550	Acressory Mineral	ners.	-	Secon	1 ap	Secondary Mineral	1 aug	-	
No.	Sample No.	Rock Name	Location	Texture	02 PI	I Kf	Bi	Ş	An Ca	5	ଞ	11	Zr	đ	- S	IV do		Qz Ms	3	3	C.	L. H	Rearies
3	DR-125	sandy hornfels	Khlong Bang Non	decussate	0	 	0	0	0						0						٥		
8	D&-132	wionite	Khlong Beng Non	sylonitic	0	0	°	0					0		0			0			0		
ສ	DE-143	psammitic schist	Khao Phiu Yai	schistose	° O		•	•			0				0	0							
40	DR-195	DR-195 two mice granite	Khlong Nam Khao branch	wlonitic	° ©	0	°	0					0			0		0			٥		
41	DE-200	beo mica granite	Whitong Name Khao branch	granitic	0	0	0 (0					0	0	0	0		•		ן 	0		
42	07-40	DSE-40 two mice granite	Khiong Chumphon branch	granitic	0	0 0	。 (۰					0	0		0		0			0		
\$	058-72	0SR-72 sendstone	Whiong Rawi branch		0	0 0		0				0	0					0		 	0	0	
\$	FB-020	PR-020 two mica granite	Khlong Chumphon branch	aylonitic	0	0	0	0			-		0	0	0	0		0			0		
\$2	G8-031	two mica granite	Whlong Chan	myionitic	0	0	0	0				0	0	0	0	0 0	0	•			0		
\$	68-032	GE-032 two mica granite	Milong Chan	guionitic	0 ©	0 0	°	•					0	0		0		0			0		
47	G2-165	two mica granite	Khao Hin Chang	mylonitic	0 ©	0 0	•	0]	0	0	•	0	° 0	-	_			٥		
48	HR-071	saudy mudstone	Milong Chumphon branch		0			0		•						•							
49	晤-093	HR-093 two mice granite	Inlong Set Takuat branch	mylonitic	0	© 0	<u> </u>	0					0	0	0	0		•			•		
8	. HE-110	HE-110 two mice granite	Khlong Kra Buri	sylonitic	0 ©	© 0	<u> </u>	0					0	•	0	0		•	_	_	0		
ត	HB-120	HE-120 two mice granite	Khiong Kra Buri	aylonîtîc	0	0 0	<u> </u>	0	_				0	•		~		0			٥		
8	HSR-26	HSR-26 two mics granite	Khlong New Khao branch	wlonitic	0	@ 0	0	0					0	•	0	•		<u> </u>			0		
					-					_	_		_			-			-			4	

0

0

0

0 0

。 。 ② 〇 〇

RSR-32 two mica tourwaline granite [Khiong Nam Khao branch | granitic

នេ

sections
thin
of rock thir
ő
observation
Microscopic o
Micro
i
Appendix

Abbrevistions ; Qziquartz, Pliplagioclase, Kfipotassium feldspar, Blibiotite, Mzimuscovite, Amiamphibole, Gaigarnet, Chichlorite, Aliallanite, Tlitourmeline, Zrizircon, Apiapatíte, Spisphene, Opiopaque mineral, Caicalcite, Bpiepidote, Prirock fragment

O: conson. ©:abundant, Symbols;

o :rare

(3)

.

Ċ

Sp. No.	AR-020	BR-199	BR-230	BR-232	DSR-040) HR-110	AR-014	AR-015	AR-026	CR-147	CR-181
Si02	74.85	69.65	75.59	78.23	74.67	74.18	78.20	75.00	74.80	71.59	71.95
Ti02	0.24	0.33	0.23	0.25	0.12	0.23	0.07	0.11	0.21	0.64	0.27
A1203	12.76	13.41	12.01	11.10	13.40	13.70	12.42	13.74	13. 10	13.10	13.59
Fe203	0.00	2.17	0.44	0.11	0.31	0.00	0.12	0.42	0. 15	1.81	0.49
FeO	1.93	0.49	1.91	1.75	1. 18	1.90	0.85	0.76	1.30	2.11	2.22
Mn0	0.05	0.05	0.04	0.03	0,02	0.04	0.05	0.06	0.03	0.07	0.04
MgO	0.42	0.69	0.42	0.39	0.16	0.32	0.08	0.12	0. 19	1.11	0.35
CaO	0.78	1.04	0.27	0.13	0.57	0.67	0.14	0.18	0.44	0.76	0.74
Na2O	2, 81	2.99	2, 43	1.73	3.88	2.40	3. 44	3.00	2. 58	2.33	2.30
K20	5.24	5.20	5.20	5.32	4.06	5.92	3.64	5.88	5.78	4,50	5.56
P205	0.14	0.12	0.10	0.08	0.04	0.08	0.06	0.08	0.12	0.22	0.12
BaO	0.04	0.04	0.04	0.03	0.00	0.04	0.00	0.01	0.02	0.05	0.03
loi	1.05	1.71	0.98	0.92	0.79	1.12	0.97	0.89	1.08	1.78	1.30
total	100.31	97.89	99.66	100.07	99.20	100.60	100.04	100.25	99.80	100.07	98.96
			• • • • • • • • • • • • • • • • • • •		Norm					~	
Q	35.04	29.41	39. 31	45. 89	34.42	34.39	43.35	34.25	35. 87	37.45	34.00
С	1.36	1.23	2.11	2.43	1.68	2.29	2.71	2.30	2.07	3. 51	2.71
or	30.97	30.73	30.73	31.44	23.99	34, 99	21.51	34.75	34.16	26.59	32.86
ab .	23.78	25.30	20.56	14.64	32.83	20.31	29.11	25.39	21.83	19.72	19.46
an	3.03	4.45	0.76	0.18	2.57	2.87	0.30	0.39	1.44	2.42	2.94
ne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
dì	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
hđ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0. 00	0.00	0.00
en	1.05	1.72	1.05	0.97	0.40	0.80	0.20	0.30	0.47	2.76	0.87
fs	3.24	0.00	2.84	2.71	1.75	3.18	1.44	0.98	1.97	1.45	3.30
fo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mt	0.00	0.79	0.64	0.16	0.45	0.00	0.17	0.61	0.22	2.62	0.71
ht	0.00	1.63	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
il	0.46	0.63	0.44	0.47	0.23	0.44	0.13	0.21	0.40	1.22	0.51
ru	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ар	0.32	0.28	0.23	0.19	0.09	0.19	0.14	0.19	0.28	0.51	0.28
total	99.23	96.15	98.65	99.13	98.41	99.45	99.07	99.35	98.71	98. 26	97.64
D. I.	89.79	85.44	90.06	91. 97	91.24	89.69	93. 97	94.39	91.86	83. 76	86.32
		C	entral s	stock					sout	h mass	

Appendix 2 Chemical analysis data of major elements in granitic rocks (1)

Sp. No.	DR-078	DR-195	DR-200	GR-032	HSR-032	HSR-026	AR-008	AR-009	AR-016	AR-017	AR-01
Si02	73.42	74.67	71.55	73.42	72, 91	73.20	75.01	75.55	73. 17	73.81	72.99
T i 02	0.28	0.15	0.25	0.15	0.21	0.21	0.23	0. 15	0.29	0.28	0.22
A1203	14,42	13.79	13.35	13. 81	13.69	13.36	12.70	12,83	13.54	13.35	13.38
Fe203	0.03	0.78	0.19	0.05	0.00	0.00	0.48	0, 31	0.01	0. 19	0.23
FeO	1.48	0.58	1.57	1.30	1.85	1.48	1.48	1.12	2.02	2.02	1.53
Mn0	0.03	0.03	0.04	0.04	0.03	0.03	0.03	0.05	0.05	0.06	0.04
MgO	0.31	0.19	0.34	0.24	0.31	0.22	0.35	0.25	0.60	0.56	0.33
CaO	0.81	1.09	0.90	0.85	0.97	0.46	0, 23	0.36	1.31	1,44	0.46
Na20	2.09	3.10	2.33	2.66	2.49	2.67	2.01	2.77	3.06	2.88	1.82
K20	6.26	5.52	5.94	5.28	5.94	5.64	5.42	5.18	5.40	5, 24	6.02
P205	0.08	0.08	0. 10	0.10	0.12	0.12	0.08	0.08	0.10	0, 12	0.10
Ba0	0.02	0.01	0.02	0.01	0.02	0.02	0.04	0.02	0.04	0.03	0.03
loi	1.44	0.65	0.88	0.96	0.88	0.93	1.68	1.11	1.06	0. 76	1.66
total	100.67	100.64	97.46	98.87	99.42	98.34	99.74	99. 78	100.65	100. 74	98.81
•• • · ·					-Norm						
Q	34.28	33.01	32.01	34.85	32.06	33.99	40.84	37.93	29. 74	31.94	37.08
C	2.91	0.92	1.68	2.41	1.67	2.30	3.27	2.19	0.49	0, 59	3.25
or	36.99	32.62	35.10	31.20	35.10	33.33	32.03	30.61	31. 91	30.97	35.58
ab	17.69	26.23	19.72	22.51	21.07	22.59	17.01	23.44	25, 89	24.37	15.40
an	3.53	4.90	3.85	3.58	4.06		0.69	1.30	5.92	6.41	1.68
ne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0, 00	0.00	0.00
di	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
hđ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0, 00	0.00	0.00
en	0.77	0.47	0.85	0.60	0.77	0.55	0.87	0.62	1.49	1, 39	0, 82
fs	2.29	0.23	2.39	2.17	3.11	2.43	2.00	1.65	3, 31	3.20	2, 33
fo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
mt	0.04	1.13	0. 28	0.07	0.00	0.00	0.70	0.45	0.01	0.28	0.33
ht	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
il	0.53	0.28	0.47	0.28	0.40	0.40	0.44	0.28	0.55	0.53	0.42
ru	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ap	0.19	0.19	0.23	0.23	0.28	0.28	0.19	0.19	0.23	0.28	0.23
total	99.22	99.98	96.57	97.90	98.53	97.40	98.03	98.66	99.56	99.96	97.13
D. I.	88.96	91.86	86. 83	88.56	88. 23	89.91	89. 88	91.98	87.54	87.28	88.06
		northe	ern west	Mass			northern mass		с	entral s	tock

Appendix 2 Chemical analysis data of major elements in granitic rocks (2)

ite

Appendix	2	Chemical a	analysis	data	of	major	elements	in	granitic rocks	(3)

Sp. No.	DR-132	GR-165	HR-093	AR-004	AR-027	AR-029	AR-011	AR-007	AR-024	AR-025
Si02	73.80	72.64	74.10	89.57	78.59	86.24	89.97	94.27	88.04	92.01
T i 02	0.14	0.31	0.34	0.17	0.43	0.37	0.12	0.10	0.28	0.18
A1203	13.54	13.86	13.52	4.50	7.83	7.47	4.26	2, 89	7.72	4.92
Fe203	0.49	0.85	0.97	0.07	4, 98	0.39	0.55	0.23	0.11	0.09
Fe0	1.13	1.03	1.48	0.70	2.47	0.27	0.80	0.80	0.50	0.68
MnO	0.01	0.04	0.04	0.00	0.00	0.00	0.01	0.00	0.00	0.00
MgO	0.12	0.41	0.51	0.10	0.39	0.32	0.21	0.16	0.26	0. 19
CaO	0.13	0.96	0.04	D. 05	0.07	0.02	0.06	0.03	0.05	0.03
Na2O	2.37	2.39	0.63	0.05	0.05	0.02	0.20	0.02	0.06	0.02
K20	6.60	6.40	5.90	1.00	1.94	1.56	1.44	0.98	2,06	1.38
P205	0.08	0.12	0.14	0.00	0.08	0.04	0.00	0.00	0.04	0.02
Ba0	0.02	0.03	0.04	0.01	0.02	0.01	0.01	0.01	0.01	0.01
loi	1.08	0.97	2.83	1.93	3.19	1.88	0.78	0.83	1.68	1.15
total	99.51	100.01	100.54	98.12	100.03	98.58	98.39	100.29	100.80	100.67

					Norm					
Q	33.84	31.55	46.44	84.76	70. 29	79.68	82.47	89.58	79.25	85. 91
С	2.44	1.52	6.10	3.24	5.65	5.75	2.26	1.74	5.39	3. 38
or	39.00	37.82	34.87	5, 91	11.46	9.22	8.51	5.79	12.17	8.16
ab	20.05	20.22	5.33	0.42	0.42	0.17	1.69	0.17	0.51	0.17
an	0.16	4.03	0.00	0.27	0.00	0.00	0.32	0.17	0.00	0.04
ne	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
di	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0. 00	0.00
hđ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
en	0.30	1.02	1.27	0, 25	0.97	0.80	0.52	0.40	0.65	0.47
fs	1.46	0.75	1.43	0.95	0.00	0.00	0.84	1.11	0.36	0.88
fo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
fa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nt	0.71	1.23	1.41	0.10	6.71	0.00	0.80	0.33	0.16	0.13
ht	0.00	0.00	0.00	0.00	0.35	0.39	0.00	0.00	0.00	0.00
11	0.27	0.59	0.65	0.32	0.82	0.57	0.23	0.19	0.53	0.34
ru	0.00	0.00	0.00	0.00	0.00	0.07	0,00	0.00	0.00	0.00
ар	0.19	0.28	0.32	tr.	0.19	0.09	tr.	tr.	0.09	0.05
total	98.42	99.02	97.81	96.21	96.87	96.73	97.62	99.48	99.12	99.52
υĩ	00.00	00 50	00.04							

D.I. 92.89 89.59 86.64

south mass

altered rock

```
orthoquarzite
```

4 D

Appendix 3 Chemical analysis data of minor elements in grantic rocks

(]}

T:

;2 ;2	Sample Number	1.000 litv	Ž	Ŷ	Xo	a	++	12		5	3	1	Ē	1 - - -	1 4 X	ā	Ramariyo
2			3		2				-	3	-	┈╂	-+	-+	-+	-	
	RATANA-1	Ratana Krathu mine	0			0	0	0	0		0			0		0	
2	RATANA-2	Ratana Krathu mine	0			0		0			0			0			
က	RATANA-3	Ratana Krathu mine	0		0	0	0	0			0			0		0	
7	RATANA-4	Ratana Krathu mine	0	0	0	0		0			0		0	0			
ഹ	BAN BANG NON-1	Ban Bang Non mining area	0	0	0			0	0			0	0	0		•	
0	SAI THONG-1	Sai Thong mine	0	0		0			0				0	0			
~	EH-006	Khlong Kum	0	0		0	0		0	0			0	0			
∞	FH-001	Bang Phra mine	0			0	0	0	0					0			
တ	FH-004	Bang Si Kim mine	0		0			0	0	0		0		0			
9	FH-005	Khlong Chan	0		0			0	0					0	0	0	
=	FH-014	Khlong Rang Taen branch	0	0	0			0	0					0			
12	GH-001	Khlong Nam Khao	0	0		0			0				0	0			
13	GH-008	Khlong Phraek Dat	0	0		0	0	\odot									
14	KH-003	Khlong Sawa	0	0			0	-1	0		-	[0	•			

Appendix 4 Microscopic observation of ore polished sections

Abbreviations; Cs:cassiterite, Mz:monazite, Xe:xenotime, Ru:rutile, At:anatase, Zr:zircon, II:ilmenite, Sp:sphene, Wo:wolfranite, SI:scheelite, Ga:garnet, T1:tourmaline, Qz:quartz, Kf:potassium feldspar, P1:plagioclase

o :rare

O:common.

Symbols: ©:abundant,

Ċ

samples
ore
oť
Assay
ഹ
Apenndix

ſ

north up of fhlorg Nam Knao 10.63 0.200 0.448 2.458 4.201 1.156 0.460 1.460 1.463 2.493 2.453 1.440 1.750 0.446 1.475 2.000 4.731 north up of fhlorg Nam Knao 5.000 0.144 0.500 4.731 1.563 1.401 1.750 0.440 2.169 2.083 4.731 north dw of fhlorg Nam Knao 5.000 0.240 1.753 1.563 1.440 1.750 0.440 2.150 2.083 4.731 north dw of fhlorg Nam Knao 5.000 0.244 2.433 1.563 2.433 1.563 2.433 1.563 2.633	sample number	area	mining (area) name	સ્ટ	32	Ta Ta	£	7	La	ઝ	PN	Л	Th	OTH. REE	renerks
	FH-013	north	up. of Khlong Nam Khao	10.625	0.200	0.938	2.435	4.281	1. 125	2.000	0.750	0.475	1.438	2. 489	
	FH-014	north	up.of Khlong Nam Khao	6.000	0.144	0.960	4.075	10.538		1.760	0.480	2,160		4.721	
corth de. of Khlorg Nam Xhao 52.00 0.273 1.560 4.67 1.183 1.930 5.360 morth de. of Khlorg Nam Xhao 52.00 0.273 1.560 1.733 1.937 1.0200 1.739 1.560 morth de. of Khlorg Nam Khao 37.400 0.286 0.121 0.64 3.740 0.734 3.740 0.735 1.739 1.560 1.730 1.560 1.730 1.560 1.	GH-002	north	dw.of Khlong Nam Khao	9.600	0.240	1.120	4.016	10.013		1.920	0.512	0. 704	1.760	5.971	
	GH-003	north	dw.of Khlong Nam Khao	52,000	0.273	1.560	4.674	8.654	1.690	2.340	0. 767	1.183	I. 950	5.350	
north add f kilong Chan $84,375$ 0.244 2.438 3.435 1.236 4.500 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 3.563 1.636 3.563 0.563 0.763 0.763 1.623 0.563 0.763 0.763 0.763 1.623 0.563 0.763	GH-004	north	dw.of Khlong Nam Khao	37.400	0.986	4.420	17.959	24.592	6. 120	8.840	I. 972	10.200	7.140	18.829	
aidle Khlong Same 6.340 0.043 0.121 0.64 3.113 0.200 1.666 0.163 0.166 0.780 1.666 0.780	FH-005	north	nd of khlong Chan	84.375	0.244	2.438	9. 459	16.288	3.563	4.313	1.256	4.500	3.583	9.988	
middle Khlorg Lam Learng 114,800 0.154 0.034 0.220 0.689 0.656 0.550 0.145 0.045 0.338 0.550 south Bang Si Kia mine 4.620 0.137 0.178 0.046 0.285 0.286 0.386 0.386 0.386 0.386 0.146 0.143 0.235 0.386 south Bang Si Kia mine 4.620 0.132 0.210 0.886 0.885 0.286 0.386 0.143 0.235 0.319 0.406 0.113 0.235 0.386 0.386 0.184 0.336 0.319 0.046 0.115 0.335 0.466 0.335 0.466 0.316 0.143 0.255 0.336 0.319 0.046 0.116 0.335 0.346 0.366 0.336 0.316 0.466 0.166 0.175 0.335 south Ban Phra anine 2.300 1.171 1.377 0.556 0.396 0.396 0.316 0.266 0.266 0.266 0.266	KH-003	middle	Khlong Sawa	6.340	0.043	0.121	0.634	3.113	0.920	1.656	0.573	0.160	0.798	1.625	
middle Khlorg Lam Leeng 107.442 0.178 0.646 0.205 0.407 0.200 0.089 0.046 0.181 0.203 south Bang Si Kia mine 4.620 0.132 0.210 0.866 0.885 0.206 0.188 0.046 0.181 0.203 0.407 south Ban Phra mine 74.100 0.533 1.157 2.405 1.385 0.702 0.203 0.473 0.133 0.407 0.233 0.473 south Ban Phra mine 52.888 1.000 1.143 2.501 2.246 1.777 0.233 0.233 0.233 0.243 0.233 0.243 0.233 0.246 0.233 0.243 0.233 0.243 0.234 0.233 0.241 1.557 0.253 0.233 0.243 0.243 0.243 0.243 0.243 0.244 0.244 0.244 0.244 0.245 0.250 0.236 0.236 0.236 0.243 0.243 0.245 0.245 0.246	CH-008	middle	Khiong Lam Leang	114.800	0.154	0.034	0.232	0.689	0.605	0.560	0.143	0.045	0.308	0.560	
south Bang SI Kin mine 4.620 0.122 0.210 0.885 0.286 0.885 0.286 0.168 0.060 0.120 0.147 0.467 south Bang SI Kin mine 74.100 0.523 1.157 2.465 1.357 0.386 0.385 0.143 0.235 0.813 south Ban Phra mine 74.100 0.523 1.157 2.465 1.367 0.832 0.236 0.143 0.235 0.815 south Khlong Kum area 14.440 2.200 1.754 4.684 1.970 0.396 0.611 0.336 0.247 0.235 0.824 south Khlong Kum area 120.000 2.00 1.752 1.778 0.564 0.744 0.336 0.246 0.744 0.196 0.175 0.235 south Rateax Krathu mine 1800.000 2.000 2.760 2.755 1.778 0.564 0.744 0.186 0.765 0.743 south Rateax Krathu mine 1800.000<	GH-009	middle	Khiong lam Leeng	107.442	0.178	0.046	0. 205	0.405	0. 274	0.320	0.089	0.046	0. 181	0.263	
South Bang Si Kin mine 74 10 0.533 1.157 2.405 1.355 0.702 0.832 0.143 0.325 0.813 south Ban Phra mine 74.10 0.533 1.157 2.405 1.071 1.357 0.133 0.143 0.325 0.815 0.105 0.175 0.325 0.815 south Ban Phra mine 52.858 1.000 1.143 2.501 2.246 1.071 1.357 0.535 0.157 0.375 0.326 0.874 0.924 0.	FIF-003	south	Bang Si Kim mine	4.620	0.132	0.210	0.866	0.885	0.258	0.306	0.168	0.060	0, 120	0.407	
South Ban Fhra nine 243 750 1500 2.000 3.056 0.486 0.306 0.319 0.094 0.106 0.175 0.330 south Ran Fhra nine 52.858 1.000 1.143 2.501 2.246 1.071 1.357 0.556 0.250 0.573 1.077 south Khlong Kum area 14.440 2.280 1.254 4.684 1.970 0.390 0.061 0.34 0.247 0.927 0.270 0.773 1.077 south Rhlong Kum area 120.000 2.040 4.573 1.778 0.584 0.744 0.190 0.247 0.924 0.747 0.926 0.871 2.041 Ratara Krathu mine 1800.000 70.000 21.000 37.2415 5.710 1.500 1.660 1.630 0.657 0.281 0.743 0.850 0.650 0.650 0.650 0.743 0.280 0.600 0.650 0.7	FH-004	south	Bang Si Kim mine	74.100	0. 533	1,157	2.405	1.365	0.702	0.832	0.273	0. 143	0.325	0.813	
South Ban Fhra mine 52.858 1.000 1.143 2.501 2.246 1.071 1.357 0.558 0.2579 1.073 south Knlong Kum area 14.440 2.280 1.254 4.684 1.970 0.239 0.561 0.247 0.928 south Knlong Kum area 12.666 0.108 0.465 1.778 0.554 0.744 0.236 0.386 0.871 south Knlong Kum area 126.00 2.040 4.320 4.573 1.778 0.551 0.150 0.247 0.928 south Ratana Krathu mine 1800.000 70.000 2.000 34.415 5.210 2.450 1.500 14.938 -3 south Ratana Krathu mine 1800.000 47.000 21.000 24.60 2.765 1.500 14.938 -3 south Ratana Krathu mine 1800.000 47.000 27.405 2.520 2.450 1.500 1.4308 -4 south Ratana Krathu mine	FH-001	south	Ban Phra mine	243.750	1.500	2.000	3.305	0.486	0.306	0.319	0.094	0.106	0.175	0.339	
South Khlong Kum area 14.440 2.280 1.254 4.684 1.970 0.239 0.380 0.061 0.344 0.247 0.926 asouth Khlong Kum area 120.000 2.040 4.320 4.573 1.778 0.564 0.744 0.240 0.396 0.821 asouth Khlong Kum area 120.000 2.000 4.573 1.778 0.563 0.195 0.101 0.222 0.726 0.821 2 south Ratana Krathu mine 1800.000 70.000 22.000 34.415 5.210 2.103 0.455 0.456 1.779 0.450 1.870 0.386 0.871 2 south Ratana Krathu mine 1800.000 70.000 22.000 37.240 2.765 1.250 0.1500 0.720 0.732 0.753 3 south Ratana Krathu mine 1100.000 115.000 27.60 11.400 3.760 11.400 5.500 10.431 3 south Ban Bang No	FH-002	south	Ban Phra mine	52, 858	1. 000	1. 143	2.501	2.246	1.071	1.357	0.536	0.250	0.579	1. 078	
south Khlorg Kum area 120.000 2.040 4.320 4.579 1.778 0.564 0.744 0.386 0.236 0.821 -1 south Khlorg Kum area 12.0.00 2.040 4.320 4.579 1.778 0.583 0.196 0.101 0.222 0.757 -2 south Ratana Krathu mine 1800.000 70.000 22.000 34.415 5.210 2.450 1.350 0.240 0.732 0.757 -3 south Ratana Krathu mine 1800.000 42.000 21.000 37.415 5.210 2.450 1.500 0.500 14.908 -3 south Ratana Krathu mine 1800.000 42.000 21.000 37.200 1.350 0.650 1.650 1.630 2.043 -4 south Ratana Krathu mine 1100.000 115.000 22.550 44.705 19.045 8.500 11.400 3.496 2.103 1.433	EH-006	south	Khlong Kum area	14.440	2.280	1.254	4.684	1.970	0.209	0.380	0.061	0.304	0.247	0.922	
southKnlong Kum area12.6660.1080.4051.2321.7990.4430.5830.1960.1010.2220.757 \cdot^2 southRatara Krathu mine1800.00070.00022.00034.4155.2102.1002.4501.3500.6501.50014.908 \cdot^2 southRatara Krathu mine1800.00042.00021.00037.2402.7651.2500.9000.4501.50014.908 \cdot^2 southRatara Krathu mine550.000115.00021.00037.2402.7651.2500.9000.4502.043 \cdot^2 southRatara Krathu mine550.000115.00021.00037.2402.76512.0002.45013.0002.6502.043 \cdot^2 southBara Krathu mine1100.000115.00021.00022.55044.70519.05510.50012.0002.60010.430 \cdot^2 southBara Krathu mine1000.000115.00022.55044.70519.05510.50012.0002.60013.346 \cdot^2 southBara Krathu mine1000.000115.00022.55023.02511.78012.0002.60013.346 \cdot^2 southBara Krathu mine3.9200.1367.60022.55530.09211.7802.66017.0002.60017.005 t_0 southBara Krathu mine3.9200.1360.1360.1262.75611.7802.8660.700 t_0	四十007	south	Khlong Kun area	120.000	2.040	4.320	4.579	1.778	0.564	0.744	0.180	0.240	0.396	0.821	
(A-1]southRatara Krathu mine1800.00070.00022.00034.4155.2102.1002.4501.3500.6501.50014.508 $(A-2)$ southRatara Krathu mine1800.00042.00021.00037.2402.7551.2500.9000.4500.3500.6502.043 $(A-3)$ southRatara Krathu mine550.000115.00021.00037.2402.7551.2500.9000.4500.3500.6502.043 $(A-4)$ southRatara Krathu mine550.000115.00021.00027.25044.70519.05510.2002.70011.4003.7001.1005.50010.431 $(A-4)$ southBan Bang Non area296.4002.56044.70519.05510.50012.0002.6601.2305.50013.346 $(A-4)$ southBan Bang Non area296.4002.5647.60022.51529.3258.74011.4003.4962.2805.70017.102 $(A-1)$ southBan Bang Non area3.9200.1360.4081.2022.5547.6002.7652.3102.7002.7022.700 $(A-2)$ southBan Bang Non area3.9200.1360.4081.2022.5540.6540.6560.7280.7380.654 $(A-2)$ southBan Bang Non area3.9200.1360.4081.2022.5540.14001.4003.4960.7280.7880.789 $(A-2)$ <td>EH-008</td> <td>south</td> <td>Khlong Kum area</td> <td>12.666</td> <td>0.108</td> <td>0.405</td> <td>1. 232</td> <td>1.799</td> <td>0.443</td> <td>0.583</td> <td>0.196</td> <td>0. 101</td> <td>0.222</td> <td>0. 757</td> <td></td>	EH-008	south	Khlong Kum area	12.666	0.108	0.405	1. 232	1.799	0.443	0.583	0.196	0. 101	0.222	0. 757	
M-2southRatara Krathu mine1800.000 42.000 21.000 37.240 2.765 1.250 0.900 0.450 0.550 0.650 2.043 $M-4$ isouthRatara Krathu mine 550.000 115.000 21.000 40.255 19.045 8.500 13.000 3.700 1.100 5.500 10.431 $M-4$ isouthRatara Krathu mine 1100.000 115.000 21.000 44.705 19.095 10.500 12.000 2.600 1.100 5.500 10.431 $M-4$ isouthBan Bang Non area 296.400 2.964 7.600 22.515 29.325 8.740 11.400 3.496 2.220 5.700 17.035 $MG-1$ southBan Bang Non area 418.000 4.180 11.780 22.555 30.092 11.400 3.496 2.220 5.700 17.035 $MG-1$ southSai thong mine 3.920 0.136 0.408 1.202 2.754 0.616 1.280 0.768 0.849 $MG-2$ southSai thong mine 3.920 0.136 0.408 1.202 2.754 0.616 0.212 0.768 0.849 $MG-1$ southSai thong mine 3.920 0.649 0.144 1.222 2.754 0.616 0.212 0.768 0.849 $MG-2$ southBan Hin Dat $1.6.5$ 0.144 1.252 2.754 0.664 0.232 0.768 0.768 0.766 <t< td=""><td>RATANA-1</td><td>south</td><td>Ratana Krathu mine</td><td>1800.000</td><td>70.000</td><td>22.000</td><td>34.415</td><td>5.210</td><td>2, 100</td><td>2.450</td><td>L. 350</td><td>0.650</td><td>1.500</td><td>14.908</td><td>middle dressing ore</td></t<>	RATANA-1	south	Ratana Krathu mine	1800.000	70.000	22.000	34.415	5.210	2, 100	2.450	L. 350	0.650	1.500	14.908	middle dressing ore
M-3 south Ratama Krathu mine 550 115.000 21.000 40.255 19.045 8.500 13.000 3.700 1.100 5.500 10.431 M-4 south Ratama Krathu mine 5500 115.000 22.500 44.705 19.045 10.500 12.000 5.500 10.431 W-4 south Ban Bang Non area 296.400 2.954 7.600 22.515 23.255 8.740 11.400 3.496 2.700 17.033 DMG-1 south Ban Bang Non area 218.000 11.780 22.555 30.092 11.400 3.496 2.700 17.033 DMG-1 south Ban Bang Non area 218.000 1.1780 22.555 30.092 11.400 3.496 2.120 17.035 DMG-1 south Sai thong mine 3.920 0.136 1.202 2.256 30.032 11.700 3.496 2.120 17.102 DMG-2 south Sai thong mine 3.920 0.136 1.202 2.256 0.146 0.616 1.202 0.769 0.768 0.768 </td <td>RATANA-2</td> <td>south</td> <td>Ratana Krathu mine</td> <td>1800.000</td> <td>42,000</td> <td>21.000</td> <td>37.240</td> <td>2.765</td> <td>1. 250</td> <td>0.900</td> <td>0.450</td> <td>0.350</td> <td>0.650</td> <td>2.043</td> <td>final dressing ore</td>	RATANA-2	south	Ratana Krathu mine	1800.000	42,000	21.000	37.240	2.765	1. 250	0.900	0.450	0.350	0.650	2.043	final dressing ore
A-4 south Ratara Krathu mine 1100.000 115.000 22.500 44.705 19.055 10.500 12.000 2.500 13.345 south Ban Bang Non area 296.400 2.964 7.600 22.515 29.325 8.740 11.400 3.496 5.700 17.035 NG-1 south Ban Bang Non area 296.400 2.964 7.600 22.515 29.325 8.740 11.400 3.496 5.700 17.035 NG-1 south Ban Bang Non area 418.000 4.180 11.780 12.580 5.323 3.648 9.120 17.102 ONG-2 south Sai thong nine 3.920 0.136 0.408 1.202 2.254 0.616 1.280 0.748 17.102 ONG-2 south Sai thong nine 3.600 0.146 1.202 2.751 0.328 0.664 0.768 0.768 0.709 ONG-2 south Sai thong nine 3.600 0.049 0.146 1.202 2.751 0.328 0.664 0.768 0.769 0.768 0.789	RATANA-3	south	Ratana Krathu mine	950.000	115.000	21.000	40. 295	19.045	8.500	13.000	3.700	1.100	5.500	10.431	wastes of ore
south Ban Bang Non area 296, 400 2,964 7,600 22,515 23,325 8,740 11,400 3,496 2,280 5,700 17. south Ban Bang Non area 418,000 4,180 11,780 22,555 30,092 11,780 15,580 5,320 3,648 9,120 17. DNG-1 south Sai thong mine 3,920 0,136 0,408 1,202 2,254 0,616 1,280 0,416 0,768 0. DNG-2 south Sai thong mine 3,600 0,049 0,144 1,222 2,751 0,329 0,664 0,768 0. 1	RATANA-4	south	Ratana Krathu mine	1100.000	115.000	22.500	44. 705	19.095	10.500	12.000	2,600	1.250	5.500	13.346	low dressing ore
south Ban Bang Non area 418.000 4.180 11.780 22.555 30.092 11.780 15.580 5.320 3.648 9.120 17. DNG-1 south Sai thong mine 3.920 0.136 0.408 1.202 2.254 0.616 1.280 0.416 0.312 0.768 0. DNG-2 south Sai thong mine 3.600 0.049 0.144 1.262 2.751 0.328 0.466 0.732 0.376 1. DNG-2 south Ban Hin Dat 16.5 0.390 0.540 1.455 1.193 0.315 0.120 0.332 0.376 1.	INBE	south	Ban Bang Non area	296.400	2, 964	7.600	22.515	29.325	8. 740	11.400	3.496	2.280	5.700	17.035	
south Sai thong mine 3.920 0.136 0.408 1.202 2.254 0.616 1.280 0.416 0.312 0.768 0. south Sai thong mine 3.600 0.049 0.144 1.262 2.751 0.328 0.664 0.128 0.376 1. south Ban Hin Dat 16.5 0.390 0.540 1.455 1.193 0.315 0.480 0.120 0.376 1.	BBN2	south	Ban Bang Non area	418.000	4.180		22.595	30.092	11.780	15.580	5.320	3.648	9.120		
south Sai thong wine 3.600 0.049 0.144 1.252 2.751 0.338 0.654 0.256 0.128 0.376 1. south Ban Hin Dat 16.5 0.390 0.540 1.455 1.455 1.193 0.315 0.480 0.120 0.033 0.180 0.	SAI THONG-1	south	Sai thong mine	3.920	0.136			2, 254	0.616	1.280	0.416	0.312			
south Ban Hin Dat 16.5 0.330 0.540 1.455 1.193 0.315 0.480 0.120 0.033 0.180 0.	SAI THONG-2	south	Sai thong mine	3.600	0.049			2.751	0.323	0.664	0.256	0.128			
	BANHINDAT	south	Ban Hin Dat	16.5	0.390				0.315	0.480	0.120	0.033			

unit: g/a³

Energy Street

O

Remarks																	middle dressing ore	final dressing ore	waste of ore	low dressing ore		
Τp																				0		
Ms				0	ļ											r						
Qz	0	0	0	0	0	0	•	0	0	0	0		0	0	0	•	•		0	•	0	0
T1	•			0	0			•			0										0	0
11		•	0		0		0	0	0	0	0		0	0	0	•					٥	0
2r	0		•			0	•	0	0			0	0	•	0	0	0			0		
At		0			0			υ					•	0	0		-					
ßu	0	0			•	0				•	0	•		•					0	0		
Xe			·			•		•	0	0					0	0			•	•		
Mz		0	0	•		•				0	0	•	0		0	0			0	0	0	0
SI								•														·
No									٠								٠	•	0	0		
Cs	¢.		·	٠	•	0	0	0	0	0		\odot	0		0	0	\odot	0	0	0	0	0
Location	Khlong Phrae Ka Muang	Khlong Won	Ban Sai Daeng	Khlong Bang Non branch	Khlong Kum	La-Un	Bang Phra mine	Bang Si Kim mine	Khlong Chan	Khlong Rang Taen branch	Khlong Nam Khao	Khiong Phraek Dat	Khlong Lik branch	Ban Hin Chang	Khlong Kra Buri	Khlong Sawa	Ratana Krathu mine	Ratana Krathu mine	Ratana Krathu mine	Ratana Krathu mine	Sai Thong mine	Ban Bang Non mine
Sample Number	AP-119	AP-158	BP-213	DP-228	EH-006	EP-077	FH-001	FH-004	FH-005	FH-014	GH-001	GH-008	GH-010	GP-166	HP-112	KH-003	RATANA-1	RATANA-2	RATANA-3	RATANA-4	Sai Thong	Ban Bang Non
No.	1	2	с С	4	<u>م</u>	9	2-	∞	6	10	11	12	13	14	15	16	17	18	19	8	21	22

Abbreviations; Cs:cassiterite, Wo:wolfranite, Sl:scheelite, Mz:monazite, Xe:xenotime, Ru:rutile, At:anatase, Zr:zircon, Il:ilmenite, Tl:tourmaline, Qz:quartz, Ms:muscovite, Tp:topaz

• :trace

o :rare.

O: common,

©:abundant.

Symbols;

(all

Appendix 6 Results of X-ray diffraction of panned samples

A--10

Append

Ĵ

lix 7 EPMA analysis data of heavy minerals

										(1)
Serial No.	1 -	2	3	4	5	6	7	8	. 9	10
mineral name	cassiterite	cassiterite	cassiterite	nonezite	nonazite	nonazite	monazite	sonazite	xenotine	xenotime
sample No.	RAYANA-3	GH-001	GH-008	GH-001	SAITHONG	SAITHONG	SAITHONG	SAITHONG	SATTHONG	SATTHONG
point No.	2	1	. 1	3	2	7	8	9	5	6
element wt%										
SiO ₂										+
TiO ₂	1.11	0.15	0.91	0.00	0.00	10.00	0.00	0.00		
Fe203*	0.61	0.13	0.00						2.31	0.08
CaO				0.65	1.16	0.69	1.81	0.45		
NIO	1.24	0.00	0.98				·			
P205				18.67	27.60	24.27	26. 81	21.21	44.83	42.91
Sn02	92.71	98 68	97.43							
2r0;		·			<u> </u>		+=			
Hf02					·					
Ta _z O ₅	3. 23	0.91	0.52							
Nb2O5	1.13	0.00	0.00	1.50	0.00	0.87	0.97	0.98	·	
La ₂ 03	0.00	0.00	0.00	. 13. 94	17.30	14.90	14.88	14.23		
Ce ₂ 0,	0.00	0.00	0.00	28.79	29.84	28.05	27, 25	26.43		
Nd₂0₃	0.00	0.00	0.17	12.03	9.93	11.34	11.66	11.58		
Sn2O3	0.00	0.00	0.00	2.83	2.77	3.64	2.07	3.28	1.08	0.77
Tb₂0₃		¹ .							0.00	0.00
Gdz03							•		2.15	1.63
Dy ₂ 0 ₃				·	_ 				4.49	5.50
8r203					·				4.14	5.70
Tu ₂ O ₃				, ·		*			0.00	D. 00
Yb2O3				·					5.64	7.84
Th0 ₂				12.49	8.79	8.88	8.19	13.23	1.71	0.74
UO,				0.89	0.00	0.00	1.16	0.00	1.45	0.77
Y203	0.00	0.00	0.00	8.31	2.71	5.85	5.28	8.73	32.18	34. 15
totsi	100. 03	100.01	100.01	100.10	100.10	98.49	100.08	100.12	99.98	100.09
Number of ions	on (the basis of O	= 2		on	the basis of O	er= 4		on the basi	s of 0 = 4
· ·								·		
Si Ti	0. 021	0.003	0.017	0.000	0.000	0.000	0.000	0.000		
Pe	0.001	+				0.000			0.052	0.002
Ca	0.011	0.005	0.000	0.032	0.050	0.031	0.078	0. 021		
NI	0.025	0.000	0.020							· · · ·
P				0.733	0.949	0.870	0.917	0.800	1.140	1.125
Sn	0.915	0.986	0.968							
Zr						·				[·
Hf										·
Te	0.022	0.006	0.004			·				
ND	0.013	0.000	0.000	0.031	0.000	0.017	0.018	0.020		
La	0.000	0.000	0.000	0.239	0.259	0. 233	0.222	0.234		
Ce	0.000	0.000	0.000	0. 489	0.443	0.435	6.403	0.431		
Nd	0.000	0.000	0.002	0. 199	0.144	0.171	0.168	0.184		
Sn	0.000	0.000	0.000	0.045	0.039	0.053	0.029	0.050	0.011	0.008
Tb						·			0.000	0.000
Gd					·		L	~~~~	0.021	0.017
Dy				'			·	· 	0.043	0.055
Br					·				0.039	0.055
Ta tot		·			·				0.000	0.000
YЪ									0.052	0.074
Th			· ·	0. 132	0.081	0.086	0.075	0.134	0.012	0.005
IJ				0.009	0.000	0.000	0.010	0.000	0.009	0.005
Ŷ	0.000	0.000	0.000	0.205	0.059	0.132	0.114	0.207	0.514	0.563
-	1	1	1	1	1	1	1	1	1	1

*: Total Pe as Pe2O3

A-11

(1)

Serial No.	11	12	13	14	15	16	17
pineral name	polycrase	polycrase	polycrase	zircon	zircon	rutile	rutile
sampie Ro.	GK~001	GH-001	GK-001	SAITHONG	SALTHONG	RATANA-3	SALTHONO
point No.	2	6	7	1	4	3	3
element vtX							
\$i0 ₂				35.08	34.61		
Ti0,	29. 83	30, 58	29.57	0.00	0.00	95.59	96.64
FezO3*	1.21	1.67	1.55			0.11	0.58
CaO							
NIO				0.82	1.14	0.32	0.50
P ₂ 0 ₅							
SnO ₂	·····						
	~~~~						
Zr02				59,05	58.97	1	
HfO ₂	0.05	 R 01		3.09	4.45		
Ta ₂ O ₅	9.65	8.31	8.75	1,61	0.00	0.57	0.00
Nb205	21.77	19.63	17.23	0,00	0.66	0.25	0.35
La _z 0,	2.10	2.56	5.02	0.00	0.00	3.24	2.02
Ce203	9.77	1.09	1.68	0, 15	0.00	0.00	0.00
Nd203	0.00	0.58	0.80	0.21	0.00	0.00	0.00
SE20,	0.00	0.00	0.40	0,00	0.19	0.00	0.00
T6203							
Gd203					]	]	
Dy ₂ O ₃					i		
85,203							
<b>Τ</b> π ₂ Ο,							
YbzO,							
ThO ₂	5.06	4.35	4.44				
U03	20. 72	23.89	23.85				
¥20,	8.94	7,39	6.77			0.00	0.00
total	100.05	100.04	100.05	100.01	100.02	100.08	160.09
Number of	I				<u> </u>		L
ions	on	the basis of =	0	on the bas	IS OF U = 4	on the basis	s of U = 3
Si				1.067	1.057		
Ti	1. 327	1.356	1.356	0.000	0.000	0.981	0.983
Fe	0.054	0.075	0.071			0.001	0.005
Ca							
נא		<b>-</b>		0.020	0.028	0.004	0.005
P							1
Sn							
Zr				0.876	0.878		
Hf				0.027	0. 039		
Ta	0.155	0.134	0. 145	0.013	0.000	0.002	0, 000
ND	0.582	0.527	0. 145	0.000	0.009	0.002	0.002
	0.000			0.000	0.000	0.002	
ſ	340.0	£1 A58		1 0.000		1 4.010	0.010
La 🛛	0.046	0.056	0.113	0.002	0.000	0.000	1 0 000
La Ce	0.017	0.024	0.037	0.002	0.000	0.000	0.000
La Ce Nd	0 <b>. 017</b> 0. 000	0.024 0.012	0.037 0.017	0.002	0.000	0,000	0.000
La Ce Nd Se	0.017 0.000 0.000	0.024 0.012 0.000	0. 037 0. 017 0. 008	0.002 0.000	0.000 0.002	0.000 0.000	0. 000 0. 000
La Ce Nd Su Tb	0.017 0.000 0.000	0.024 0.012	0.037 0.017	0.002	0.000	0,000	0.000
La Ce Nd Sa	0.017 0.000 0.000	0.024 0.012 0.000	0. 037 0. 017 0. 008	0.002 0.000	0.000 0.002	0.000 0.000	0. 000 0. 000
La Ce Nd Sø Tb	0.017 0.000 0.000	0.024 0.012 0.000	0. 037 0. 017 0. 008	0,002 0.000	0.000 0.002	0,000 0.000 	0.000 0.000
La Ce Nd Se Tb Gd	0.017 0.000 0.000	0.024 0.012 0.000	0. 037 0. 017 0. 008	0.002	0.000 0.002 	0,000 0.000	0.000 0.000
La Ce Nd Se Tb Gd Dy	0.017 0.000 0.000 	0.024 0.012 0.000	0.037 0.017 0.008 	0.002	0.000	0.000	0.000
La Ce Nd Se Tb Gd Dy 8r	0.017 0.000 0.000 	0.024 0.012 0.000	0. 037 0. 017 0. 008  	0.002	0.000	0,000 0.060 	0.000 0.000
La Ce Nd Se Tb Gd Dy Br Ts	0.017 0.000 0.000   	0.024 0.012 0.000	0. 037 0. 017 0. 008  	0.002	0.000 0.002	0.000 0.000	0.000
La Ce Nd Sn Tb Gd Dy Br Tn Tn Yb	0.017 0.000 0.000   	0.024 0.012 0.000	0.037 0.017 0.008  	0.002	0.000 0.002	0.000 0.060	0.000

Appendix 7	EPMA	analysis	data	of	heavy	minerals
------------	------	----------	------	----	-------	----------

*: Total Pe as Pe20;

		А	ppen	dix	8 C	hemi	cal	analy	sis	data	of str	eam	sedi	ment	s		(1)
Blezent Units Detection Ituit	SN PPH 5	¥ PPH 4	ТА Ррн 1	НВ Ррм 0	AU PPB 5	но Ррн 5	CB PPN 3	80 PPH 0. 2	LA PPH 1	LU PPH 0.05	ND PPN 5	SH PPH Q. 1	ТВ РРИ 0, 5	тн Ррн 0. 5	U PPH D. 5	Ү РРЖ 0	SC PPH 0.1
1 A-001 2 A-002 3 A-003 4 A-004	273 9 9 <5	45 8 (4 (4	31 2 <1 2	107 24 20 20	6 <5 <5	43 13 9 6	910 81 78 70	1.9 1 0.9	490 43 42 36	11.9 0.47 0.45 0.56	400 27 23 26	73 5.3 5 4.8	16 <0.5 <0.5 <0.5	400 18 19 17	73 2.3 1.8 2.5	473 21 20 19	6.5 8.7 7.6 9.8
5 A~005 5 A-005 7 A~007 8 A-008 9 A-009	<5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(4) (4) (4) 5	41 41 41	16 19 16 17 20	<5 <5 24 <5	(5 (5 7 (5 6	55 76 60 51 76	0,7 1 0,7 0,8 0,9	31 39 29 31 40	0.33 0.41 0.43 0.47 0.51	17 28 22 20 22	3.6 4.8 3.7 3.8 4.7	<0.5 <0.5 <0.5 0.6 <0.5	13 16 14 13 19	1.4 2.6 1.8 2.1 2.6	15 19 17 19 21	8.8 9.9 6.7 5.2 5.8
10 A-010 11 A-011 12 A-012 13 A-013	<5 <5 <5 <5	(4 (4 5 4	1 2 1 1 4	12 15 15 16 13	<5 <5 <5 <5	<5 <5 <5 <5 <5	62 66 86 79 52	0,9 0,7 1,2 1 0,7	31 38 47 43 26	0.44 0.51 0.56 0.5 0.33	20 25 32 32 15	3.7 4.4 5.8 5.3 3.2	<0.5 0.9 <0.5 <0.5 0.6	14 17 18 16 12	2.7 2.6 2.1 2.9 1.6	16 22 25 23 15	6 7.7 9.3 9.3 6.4
14 A-014 15 A-015 16 A-016 17 A-017 18 A-018	6 (5 (5 178	<4 <4 <4 (4 12	2 (1 (1 23	14 12 5 70	5 <5 <5 <5	(5 5 (5 0	78 58 15 400	0.8 0.7 0.3 1.2	39 32 7 210	0.54 0.37 6.17 3.97	30 24 5 170	4.6 4 0.8 32	<0.5 0.7 <0.5 6.6	18 13 4.6 180	2.5 1.2 0.7 29	20 16 5 262	5.4 5.8 4.7
19 A-019 20 A-020 21 A-021 22 A-022 23 A-023	1368 254 420 332 389	13 10 23 7 16	54 23 38 21 36	56 56 81 20 86	8 <5 <5 <5 <5	0 0 0 0	160 520 330 73 610	0.5 0.8 0.9 0.5 0.8	87 280 170 36 330	1, 74 3, 4 2, 33 0, 8 5, 43	62 200 110 25 240	13 41 25 5.4 48	2.6 6.5 4.8 1.2 9.6	68 240 140 29 280	13 29 21 5.5 35	99 217 146 34 346	4 3.6 4.9 2.3 4.5
24 A-024 25 A-025 26 A-026 27 A-027 28 A-028	389 157 <5 <5 <5 <5 <5	10 4 (4 (4	36 22 2 <1	59 17 12 9 11	<5 <5 <5 <5	0 (5 (5	350 64 59 18 53	1 0.6 0.5 0.2 0.5	190 33 31 9 28	3.5 0.7 0.57 0.16 0.42	140 22 25 6 20	48 28 4.1 4.1 1.1 3.2	5.8 <0.5 <0.5 <0.5 <0.5	150 23 17 4.3 13	19 6.6 4 0.8 2.6	222 28 24 3 14	3.2 5 4.1 0.8 1.4
29 A-029 30 A-030 31 A-031 32 A-032	<5 8 <5	4 4 4		12 10 16 10	<5 <5 <5 <5 <5	رج دج دج دج	91 34 51 29	0.6 0.4 0.6 0.4	51 19 29 15	0.54 0.33 0.95 0.38	36 14 20 12	5.9 2.4 3.4 1.9	0.8 0.5 <0.5 0.6	23 8 25 10	3.5 1.4 9.7 3.4	18 11 27 12	1.8 2.6 4.1 2.6
33 A-033 34 A-034 35 A-035 36 A-035 37 A-037	<5 5 19 15 14	4 4 7 9	<1 <1 2 8 7	9 12 11 26 29	<5 <5 <5 <5 <5	(5 6 0 0	23 59 45 73 76	0.3 <0.2 0.6 0.8 0.9	12 30 25 39 38	0.23 0.47 0.94 2.04 2.29	10 25 18 21 32	1.5 3.9 2.8 4.3 4.6	<0,5 <0.5 0.7 1.1 1.1	5. 1 16 26 58 56	1.1 1.7 11 23 24	8 20 24 52 56	2.7 7.1 2.7 4.8 5.2
38 A-038 39 A-039 40 A-040 41 A-041 42 A-042	δ	લ લ લ લ	2 (1 (1 (1	13 1) 12 9 11	<5 <5 <5 <5 <5	(5 (5 (5 (5 (5	29 33 25 42 35	0.4 0.4 0.5 0.5 0.4	13 17 15 22 19	0.57 0.25 0.36 0.29 0.24	9 12 8 16 12	1.6 2 1.9 2.7 2.3	<0.5 <0.5 <0.5 <0.5 <0.5	9.9 6.6 8.3 9.1 7.5	4.8 1.2 1.6 1.2 1.3	15 9 14 12 10	2.4 2.8 3.2 2.3
43 A-043 44 A-044 45 A-045 46 A-046	(5 (5 (5 (5 (5 (5 (5)))))))))))))))))))	(4 19 (4 (4	1 2 (1 (1	11 133 8 11	<5 <5 5 <5	<5 140 <5 <5	60 83 35 61	0.6 0.8 0.5 0.8	33 41 18 34	0.45 0.76 0.33 0.35	20 26 14 28	3.7 4.5 2.3 4	<0.5 0.9 <0.5 0.8	13 24 7.3 12	2 3.6 1.1 1.9	16 26 13 17	1.9 3.1 2.2 5.9
47 A-047 48 A-048 49 A-049 50 A-050 51 A-051	<5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	त द द	त त त त	10 9 8 9 11	<5 <5 <5 <5 <5	<5 <5 5 5 5 5 5	46 47 46 43 54	0.6 0.5 0.7 0.8	25 25 22 22 22 29	0.45 0.44 0.4 0.37 0.46	22 19 18 17 21	3.3 3.3 2.9 3.8	0.8 <0.5 <0.5 <0.5 0.8	11 10 9.5 9.1 12	2.5 1.8 1.8 1.6 2.2	18 17 16 15 20	2.3 3.9 4.3 3.7 5.8
52 A-052 53 A-053 54 A-054 55 A-055	7 <5 <5 <5 7	ત લ લ લ		9 9 10 10 12	<5 <5 <5 <5	(5 (5 (5 (5 (5 (5))))))))))))))))))))))	33 31 49 45 68	0.4 0.5 0.6 0.5 0.8	17 17 26 25 36	0.32 0.34 0.45 0.45 0.5	13 10 16 20 26	2.2 2.1 3.3 3.3 4.5	<0.5 <0.5 0.6 0.7 <0.5	7.7 7.1 10 10 15	1.4 1.5 2.3 2.3	13 13 19 18 18	1.7 1.7 2.3 3.3
56 A-056 57 A-057 58 A-058 59 A-059 60 A-060	7 <5 <5 <5	4 4 4	4 4 4	9 10 8 9	<5 <5 <5 <5 <5	<5 (5 (5 (5	48 38 40 36	0.6 0.4 0.5 0.5	25 21 21 20	0.5 0.37 0.38 0.36	17 16 13 15	3.2 2.7 2.8 2.5	0.6 <0.5 <0.5 <0.5	11 9 8.5 8.6	2.2 1.5 1.6 2	19 14 15 14	2.2 2.4 2.1 2.3
61 X-061 62 X-062 63 X-063 64 X-064 65 X-065	7 (5 (5 (5) (5)	य य य य य	य य य य	9 9 7 10	<5 <5 <5 <5 <5	<5 <5 <5 <5	42 35 51 30 48	0.5 0.5 0.4 0.5	24 18 27 15 26	0.46 0.44 0.52 0.29 0.43	15 17 21 11 21	3 2.4 3.5 1.9 3.2	0.6 0.8 0.5 <0.5 <0.5	11 8.7 12 6.5 11	2 8.1 2.3 1.1 1.8	19 17 22 11 20	2.8 1.7 2.2 1.2 1.6
66 A-065 67 A-067 68 A-068 69 A-069	8 7 <5 6	4 4 4	4 4 4	12 10 8 12	<5 <5 <5 <5	0 <5 <5	100 44 37 51	0.8 0.6 0.4 0.5	57 22 20 28 16	0.68 0.41 0.37 0.43 0.32	38 16 14 21 13	6.7 2.7 2.5 3.5 2.1	<0.5 0.6 <0.5 0.6	23 9.9 9 12 7.5	3.4 1.9 1.9 2 1.2	31 18 15 17 12	2.9 2.7 2.1 2.1
70 A-070 71 A-071 72 A-072 73 A-073 74 A-074	<5 8 <5 6 <5	44444		8 9 15 11 9	(5 (5 (5 (5 (5	555555 5555	30 38 54 53 64	0.4 0.5 0.8 0.5 0.7	19 36 28 34 27	0.39 0.52 0.36 0.46	17 23 19	2.5 4.4 3.5 4.3	<0.5 <0.5 0.6 <0.5 0.8	7.6 16 11 14	1.5 2.9 1.7 2.3 5.6	16 22 16 21	2.5 2.3 4.2 4.3 5.8 4.5
75 λ-075 75 λ-076 77 λ-077 78 λ-078	<5 29 25 28 21 33	<4 5 <4 7 5 11	5 5 4 3 7	33 30 25 17 33	<5 <5 <5 <5 <5	0 0 7 0 0	54 98 180 65 43	0.7 0.7 1.2 0.7 0.8	27 48 98 27 15	1.94 2.88 2.47 1.28 3.07	23 22 32 69 22 9	4.5 7.5 13 4.4 4.7	1.3 2 2.3 0.9 2.2	19 35 71 23 40	5.6 19 14 6.1 13	106 127 117 68 150	5.8 4.5 6.9 4 4.9
79 A-079 80 A-080 81 A-081 82 A-082 83 A-083	31 28 15 23	11 8 <4 <4	11 8 2 4	45 31 16 23	8 <5 <5	0 0 <5 0	54 95 34 110	0.8 0.8 0.4 0.7	19 42 15 47	5.77 4.6 0.93 1.55	12 37 10 35	6.2 9.4 2.5 7.1	3.2 3.4 0.7 1.5	51 48 11 34	23 19 4 6.7	221 193 40 69	4.9 5 2.3 5.7
84 A-084 85 A-085 86 A-086 87 A-087 88 A-088	1292 48 11 65 20	<4 <4 <4 <4 <4	33 5 1 6 3	44 19 9 29 17	<5 <5 <5 5 6	<5 <5 0 0	27 63 28 220 94	0.5 0.7 0.5 0.7 0.7	14 32 13 110 48	0.25 0.81 0.34 1.78 0.8	10 28 9 82 37	2.2 4.6 1.9 16 6.9	0.6 0.8 <0.5 3.3 1.1	7.9 22 7.6 97 37	2, 2 4 12 5, 2	15 35 19 99 42	4.6 3.8 3.9 3.7 5.6
89 A-089 90 A-090 91 A-091 92 A-092	32 74 52 79	<4 <4 8 <4	2 7 5 8	16 15 17 30	<5 <5 <5	<5 0 0 0	35 40 65 200	0.7 0.6 0.4 0.6	18 19 32 100	0.56 0.68 0.83 2.27	13 12 23 76	2.6 2.9 4.7 15	<0.5 0.6 1 3.4	9.2 12 23 97	2, 3 4, 6 4, 5 13	22 30 36 118	3.7 4.1 3.3 3.3
93 A-093 94 A-094 95 A-095 96 A-096 97 A-097	44 175 189 15 10	7 6 (4 (4	559 2 <1	31 26 31 15 10	8 (5 (5 (5	0 0 0 5	190 94 220 95 17	0.5 0.5 0.8 0.8 0.2	98 49 120 41 9	2.04 1.23 2.24 0.75 0.27	75 40 75 29 5	14 7.1 17 5.3 1.1	2.7 1.7 2.9 <0.5 <0.5	91 35 94 27 8. 2	12 4.9 14 4.3 1.2	108 63 123 41 8	2.8 3.5 5.2 1.5
98 A-098 99 A-099 100 A-100 101 A-101 102 A-102	10 58 46 39 93	<4 5 <4 6	1 5 1 2 3	13 12 6 14 18	<5 <5 <5 <5	<5 <5 <5 0	15 35 12 29 47	0.2 0.4 0.2 0.4 0.7	7 17 6 14 24	0.35 0.59 0.29 0.24 0.44	<5 11 <5 11 17	0.9 2.1 0.7 1.6 2.8	<0.5 <0.5 <0.5 <0.5 <0.5	5 11 4.5 6.9 12	1.4 3.2 1.2 1.3 3	13 18 10 9 19	1.5 2.4 1.5 3.4 4.4
103 A-103 184 A-104 105 A-105 108 A-106	93 9 9 10	6 5 <4 <4	ते त त त	12 10 13 13	<5 <5 <5 <5	<5 <5 <5	55 50 91 53	0.9 0.7 1.1 0.7	24 28 26 45 27	0.46 0.38 0.53 0.44	24 19 38 17	3.4 3.1 5.7 3.2	0.7 (D.5 1.1 (0.5	12 11 16 12	2.4 1.9 3 2.1	21 15 26 18	6.7 6.3 7 6.5
107 A-107 108 A-108 109 A-109 110 A-110 111 A-111	<5 <5 <5 5 141	<4 5 6 4 5		13 9 10 9 13	<5 <5 <5 <5	<5 <5 <5 <5	41 38 45 38 24	0.7 0.6 0.6 0.6 0.4	20 19 24 18 12	0.42 0.35 0.35 0.37 0.61	17 14 16 13 5	2,7 2.2 2.8 2.2 1.5	<0,5 <0.5 <0.5 <0.5 <0.5	10 8.9 10 8.9 7.7	1.7 1.0 2.4 2.3 3	16 14 14 15 21	5.2 4.9 5.3 5.5 1.7
								A-l	3								

Contract of

I

	Appe	ndix 8	Chemi	cal a	nalys	is da	ita of	stre	am	sedin	nents			(3)
Bl creant         SH           225         A-225         35           228         A-227         133           229         A-228         13           229         A-229         6           230         A-231         45           231         A-231         45           232         A-232         6           233         A-231         6           234         A-231         6           235         A-231         8           234         A-234         45           235         A-237         8           239         A-239         21           244         A-234         5           235         A-237         8           239         A-239         21           244         A-244         8           243         A-244         8           244         A-244         8           244         A-244         8           249         A-244         8           249         A-244         8           249         A-244         8           249         A-244         8	\$9\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$		ჅႦჇჇႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦ	$\begin{array}{c} C8 R \\ P \\ 2774 \\ 325 \\ 2475 \\ 379 \\ 2774 \\ 3579 \\ 2774 \\ 3579 \\ 2774 \\ 3579 \\ 2774 \\ 3579 \\ 2774 \\ 3579 \\ 2774 \\ 3579 \\ 2774 \\ 3579 \\ 2774 \\ 2313 \\ 2774 \\ 2313 \\ 2733 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ 2774 \\ \mathsf$	BP000000000000000000000000000000000000	LAN30116811297644080336888809911730667112045266673905477782201746385098147060638847062563000572365492006623334112449110122622222222222222222222222222222222	$ \begin{smallmatrix} UH \\ P \\ 0, 4 \\ 1, 302 \\ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $	$\frac{80}{12} + \frac{12}{12} + 12$	SP1.9.2.2.1.2.2.3.1.2.3.2.4.5.4.3.2.3.4.2.1.2.2.3.2.2.1.1.1.1.2.3.2.0.4.9.7.4.5.1.1.1.1.2.2.1.2.2.3.3.2.3.3.4.4.3.9.1.3.1.1.1.1.2.3.2.3.3.2.2.2.2.2.2.2.2.2	↑₽°U3.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	$ \begin{array}{c} TP & 15534876148111118 & 17565919.7451183765519438151338091500264005946891702151112573060522715557600016451426341573292191885666668 & 1111119988111119988111119988111119988111119988111119988111119988111111$	UP213 012101 121221321149481264291961578939322725234442472428582111467228154424662335962351415542123526295752979823322914387162629311494812642919615789393227252344424724281242815442466233596235544155421235262957529798233229	P1531149511359518503221738203021655011214911357142943266444851775552866800283294161131750357399477558703844461899111316420222215156822516794	SP393412332 221 8111221111123112112311 21260132431323342433525487812123 22373543334543334543311111322 3322244284545455555555555555555555555555

()

1 S.T

0

	A	ppend	ix 8	$\mathbf{Ch}$	iemic	al ai	nalys	is da	ita of	stre	am		ients			(4)
Blement         SN Units         PPH           338         B-035         CS           339         B-036         CS           340         B-038         CS           341         B-039         CS           342         B-040         CS           344         B-041         CS           344         B-041         CS           344         B-041         CS           345         B-041         CS           346         B-041         CS           347         B-041         CS           348         B-0415         CS           351         B-0415         CS           352         B-0415         CS           353         B-052         CS           355         B-053         CS           355         B-0562         CS           356         B-0562         CS           357         B-0562         CS           356         B-0662         TS           368         B-0662         TS           368         B-067         39           371         B-0714         114           3738	<b>&gt;</b> だでですができまたでです。 >	TPCCCC+C+CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	$NPN7\\\mathsf{101102223144332444334080911403047053207868206911511301211432246477622121314935979115348312212137882209909214281151130121143244647762212121212121212121212121212121212121$	ĦĨĨĊŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶ	\$\$ \$\$ \$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	272341026628599133801442383321440547996023423232322454449573556669712500000034385097865386599966112377599663237759966323772598632245444495735566685752331000003438509798653325599966112377559996632377228 Cr223410266285575599133801442338332114400547939242334775986213322454544495573555556685752233110000400034385099786533225599966112377559996632377228	EP000000000000000000000000000000000000	LAN 5 18263 3081 61 153 353 333 12 195 14 0 67 3 3 20 3 4 0 0 5 1 2 2 8 8 4 9 3 0 9 4 8 0 2 5 2 7 2 7 1 2 1 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{l} UP \\ PP \\ A \\ O \\ O \\ O \\ O \\ A \\ A \\ C \\ O \\ O$	NPH116438310266033622191187765852044415733136862279383961843618526184369343380072883581002231939210371108372220099432221461899902	HH7169631746962498533946412386635723134278789425893898736238851712549919185541372692827948144441744441744441232222222 11 SP12213334 3344 321 2221234214324 322 322 21242787894258938987362388517125499191855413726928279481444441744441744441232222222 11	TBN 555568557655558885555555555555555555555	$\begin{array}{c} \text{TPP} \{ 6,8,8,7,1,1,1,1,3,3,3,1,1,1,7,6,9,2,3,1,1,1,1,1,2,2,3,1,4,2,2,3,1,1,1,1,1,3,3,3,1,1,1,1,1,1,1,1,1$	UP1110211212121212121222238 5.76455553775513366523442718299212227344381123632771968788132984251912792727362359136 UP11946188862721244447954426911187574582139847573665523442718299212227344381123632771968788132984251912792727362359136	$\begin{array}{c} YH _9 I I I I I I I I$	SP22322436555555556212 32 2 734222222 32222222222224446 6254554 66566 22312223275532465162625224969137353212231323122312 SP76757265313634687123623341288954439934667486574359545314214142464735375533514662155324651626252249691373532187675787

A Market

(and