Engineering Study 3.5

AD-1-1 1)

Summary (1)

The horizontal alignment of the additional two lanes is designed to follow the existing alignment on the left side. Route 4135 is to be widened to the right side. The vertical alignment also follows the existing alignment. Existing pavement is overlaid by 5.0 cm for Route 401 and 7.5 cm for Route 4153. Pavement for additional two lanes comprises surface course of 7.5 cm, base course of 15 cm and subbase course of 20 cm, 42.5 cm in total.

For additional two lanes, five bridges are proposed in parallel with the existing ones. The longest bridge crossing the Ta Pi river is 204 meters long. Although the existing Ta Pi river bridge is under standard for proposed road class, widening is not proposed because the existing truss bridge prevents widening and railway uses the same bridge as well.

Two three-leg intersections with Route 41 and Route 4008 are proposed to be signalized. To facilitate traffic flow at the intersection with Route 4213, the bypass (Rt.401-0700) is directly connected to Rt.401-0801.

AD-1-1	Description
Changwat	
	: Rt.4153/4008/401, J.Rt.41 - J.Rt.4010
Road Class	
Cross Section	: Rt.4153<2.5 + 7.0 + 1.5> x 2
	(2.0 + 6.0 + 2.0)
	: $Rt.401 < 2.5 + 7.0 + 1.5 + (2.5 + 7.0 + 2.5)$
Surface Type	: SA / ASC / SA (SA / ASC / SA)
Bridge:New	: 5 sites, 594 m
	ork : 5 sites, 594 m
Length: Total	: 40.5 km
	lork : 8.6 km
	1 2 Lanes : 31.9 km
Widening	: 8.5 km
AADT ('96/'01/'06	5) : 9,800 / 15,100 / 21,900
Financial Cost	: 375.6 million baht (in 1990 price)
NPV	: 1,792 million baht (12% discount rate)
B/C	: 8.8 (12% discount rate)
EIRR	: 57.3 %

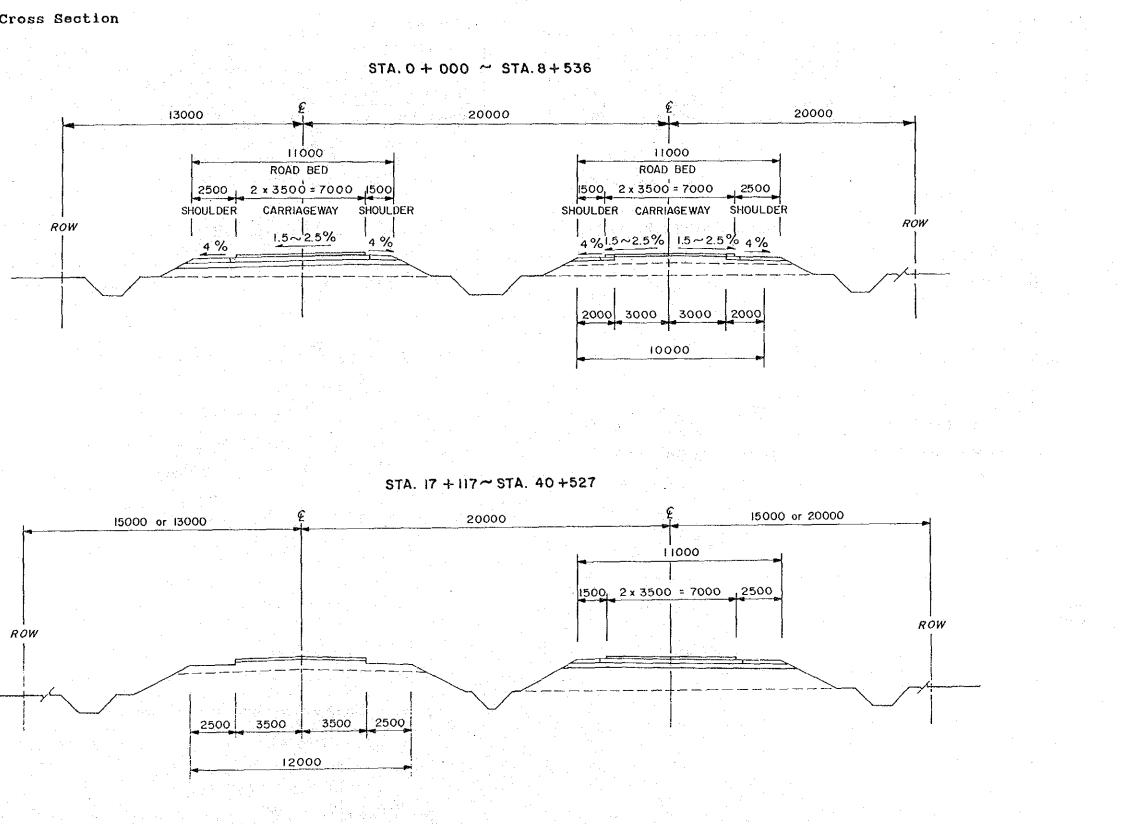
(): Existing Conditions

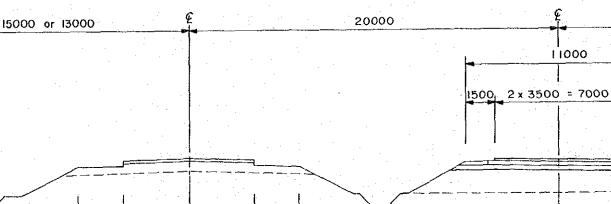
Design Standard and Conditions (2)

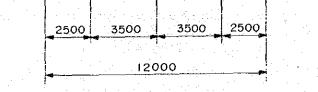
(a) Design Criteria

3 - 4

Road Class	: SD	
Design Speed	: 70 - 90)

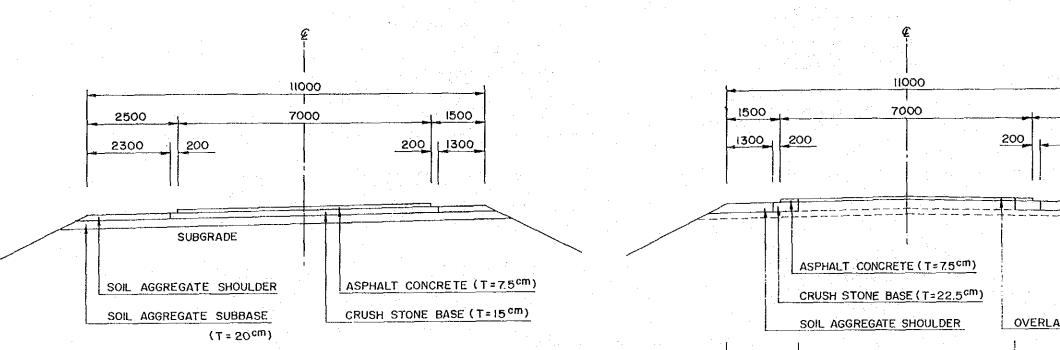

Geometric Design Criteria

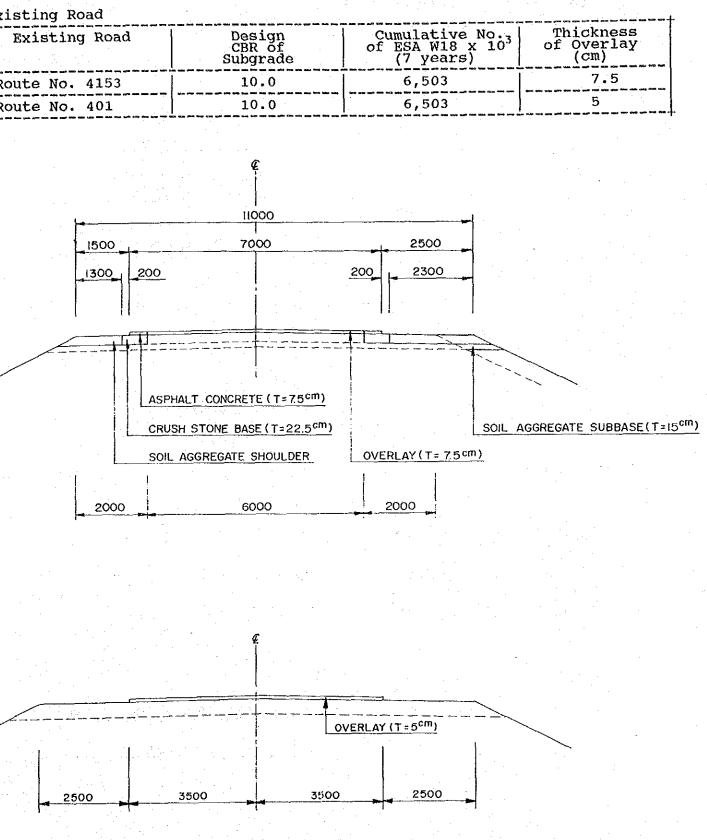

	یا ہے۔ میں پہلی جبار دی میں جبار جب رہی کہ ایک رہے جب میں میں جبار جبار ہی خط نہیں ہوا دی کہ پارل کرنے کہ جبی ک	Desig	yn Speed (km/h)
De	escription -		80	70
linimum	Radius of Curvature (m)		220	160
linimum	Stopping Sight Distance (m)	150	120	100
laximum	Gradient (%)	6	7	. 7
linimum	Gradient for Drainage (%)	0.3	0.3	0.3
	 (b) Navigational Clearance Navigational clearance Vertical : 5.6 m Horizontal : 30.0 m (c) Pavement Design Condition 		e Tapi riv	ver
· ·	Design CBR : 10 Design Method : AA Design Period : 7) % ASHTO years		
	(d) Drainage Design Conditi Rainfall Intensity : (Rainfal	l Intensit Songkhla (y Durati)bservato
		: Minor B	1(ridge2(ridge3() years


km/h

n

(3) Typical Cross Section





(4) Pavement Design

	New Road			Ex
-	Design CBR of Subgrade	Cumulative No.3 of ESA W18 x 10 ³ (7 years)	Thickness of Pavement Structure (cm)	
	10.0	6,503	Surface 7.5 Base 15 Subbase 20	

Existing Road		
Existing Road	Design CBR of Subgrade	Cumu of ES (7
Route No. 4153	10.0	6
Route No. 401	10.0	6

2) AD-1-2

(1)Summary

The project is an alternative route for a part of AD-1-1 with a view to providing a direct access to Surat Thani Airport from Surat Thani city instead of constructing additional two lanes on Route 4153.

The alternative section originates at the airport and ends at the junction with Route 401 (Surat Thani Bypass) with a length of 16.7 km. The whole section passes on a flat terrain in the Ta Pi river basin.

Height of the embankment is planned to be 2.0 m in minimum height to avoid flooding damages in rainy season. The project area is covered by a soft alluvium layer with the depth of about 20 m. Sand drain method is proposed to cope with the ground settlement caused by embankment load.

The pavement comprises surface course of 7.5 cm, base course of 15 cm and subbase course of 20 cm, 42.5 cm in total.

Four bridges are to be constructed on this section, 431 m in total length. A bridge crossing the Ta Pi river and another crossing the Phumphin river are long bridges of about 200 meter length.

AD-1-2	Description
Changwat	: Surat Thani
Name or Location	: Access Link to the Airport : Surat Thani airport - J.Rt.4010
Road Class	: S1, SD (F3 and S1)
Cross Section(m):	S1: $2.5 + 7.0 + 2.5$
	SD: $<2.5 + 7.0 + 1.5 > + (2.5 + 7.0 + 2.5)$
	: SA / ASC / SA
	: 8 sites, 821 m
	rk : 4 sites, 390 m
Length: Total	: 43.3 km
Without W	ork : 3.3 km
New	: 16.6 km
Additiona	1 2 Lanes : 23.4 km
AADT ('96/'01/'06) : 7,400 / 10,000 / 15,000
Financial Cost	: 468.6 million baht (in 1990 price)
NPV	: 1,804 million baht (12% discount rate)
B/C	: 7.7 (12% discount rate)
EIRR	: 58.1 %

(2) Design Standard and Conditions

(a) Design Criteria

ass	:	Nev	v]	Lin
	:	Add	li	tior
Speed	:	70		90
			: Add	: Addi

Geometric Design Criteria

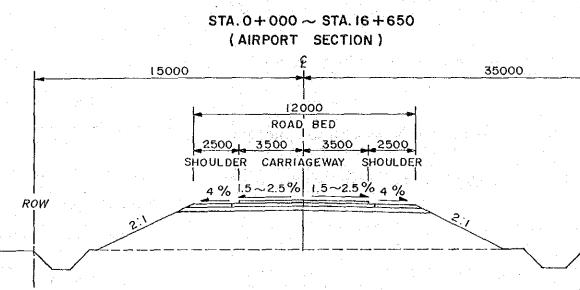
Design Speed (km/h) Description یو بد به مزد بن ب -----80 70 90 _____ ----------220 160 Minimum Radius of Curvature (m) 280 Minimum Stopping Sight Distance (m) 150 120 100 7 6 7 Maximum Gradient (%) 0.3 0.3 0.3 Minimum Gradient (%)

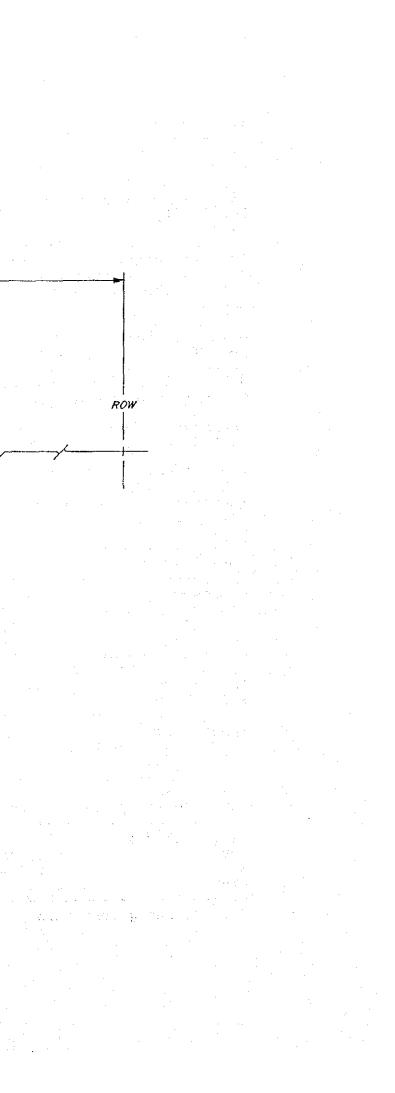
	(b)	Navigatio	onal Cl	earand	ce	
			cional in rive		ance	e fo
		Vertica	al :	5.6	m	
		Horizon	ntal :	30.0	m	
	(C)	Pavement	Design	Cond	itic	ons
		Design	CBR		e •	10 9
	· ·		Method		:	AASI
	1. 1.		Period		:	7 Y
	(đ)	Drainage	Design	Cond	itic	ons
		Rainfa	ll Inte	nsity		Rai 1 1rve
		Return	Period		:	Cu1
		÷			:	Min
					:	Maj
•			÷.			

(): Existing Condition

3 - 7

k ---- S1 nal Two Lane -- SD km/h

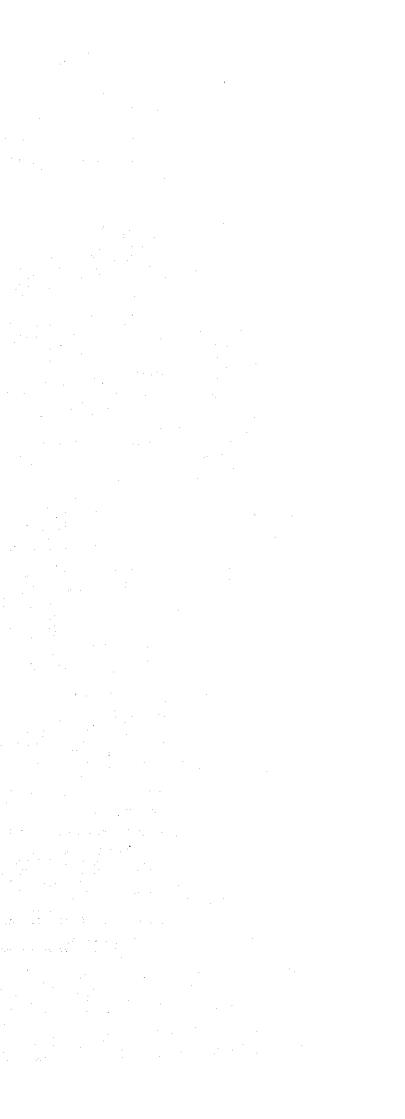

or the Tapi river and the


% SHTO. vears

nfall Intensity Duration at Songkhla Observatory

vert-----10 years or Bridge---20 years or Bridge---30 years

(3) Typical Cross Section



(4) Pavement Design

New RoadDesign
CBR of
SubgradeCumulative No.3
of ESA W18 x 10°
(7 years)Thickness of
Pavement Structure
(cm)10.06,503Surface 7.5
Base 15
Subbase 20

SOIL AGGREGATE SHOULDERASPHALT CONCRETE (T = 7.5 cm)SOIL AGGREGATE SUBBASECRUSH STONE BASE (T = 15 cm)(T = 20 cm)(T = 20 cm)

3.6 Construction Cost

Table 3.5.1 CONSTRUCTION COST

1) AD 1-1

(1) CONSTRUCTION QUANTITIES AND COSTS

(Project AD -1-1 Length = 40,527 Km) (Improved Length 31,946 Km)

	Unit	Financial Unit Cost		Financial Total cost	Econo	mic cost	Resid	ual Value
	1.1	Baht		1000 Baht	. %	1000 Baht	%	1000 Baht
ARTH WORK Clearing & Grubbing Roadway Excavation(classified) Embankment(Borrowed Material) Slope Protection(Stripe Sodding) (Sodding) (Shot Concrete) (Concrete Block) Excavate Existing	SQ.M CU.M CU.M SQ.M SQ.M SQ.M SQ.M	1 85 100 9 500 450	681,412 0 450,270 207,673 0 0	681 0	83		90	
Thickness Over 10cm (2Lay) Sand Mat (t=0.5m) Sand Drain (0 0.40cm) SUB TOTAL	SQ.M SQ.M N	14 100 200		684 1,946 7,786 57,371		47,618		42,856
SUBBASE AND BASE Subbase(Soil Aggregate) Base Coarses(Crush Stone) Shoulder(Soil Aggregate) SUB TOTAL	CU.M CU.M CU.M	190 295 190	37,425	14,534 11,040 3,298 28,873	83	23,964	50	11,982
SURFACE Asphaltic Prime coat Asphaltic Tack coat Asphalt concrete Surfacing Overlay (5cm,7.5cm) SUB TOTAL	SQ.M SQ.H CU.M CU.M	13 7 1,900 1,900		3,168 1,478 32,462 22,431 59,539	83	49,417	50	24,708
STRUCTURES(Equivalent) RC Pipe Culvert(D= 600 m) (D= 800 m) (D=1200 m) (D=1200 m) (D=1200 m2) (D=1.0m*2) (D=1.0m*3) (D=1.2m*2) RC Box Culvert(1-1.80*1.00 m)	M M M M M M M M M	1,300 1,780 2,445 3,575 2,600 4,900 14,700 7,200 3,200	124 160 249 33 31 60 20 14	161 285 609 118 81 294 294 101 54	83		50	
(2-2.10*2.10 m) (2-2.40*2.70 m) (3-2.50*1.25 m) (3-2.50*1.70 m) (4-2.50*2.50 m) RC Bridge Wideing RC Bridge (W=13.0 m) PC Bridge (W=13.0 m)	M H M SQ.H M	10,000 12,800 12,300 14,700 24,800 9,600 83,200 130,000	17 17 45 17	170 218 554 250 347 0 14,976 27 300				· · · ·
PC Bridge (W=13.0 m,L>50 m) PC Bridge (U=13.0 m,L>50 m) Bearing Unit Of Bridge SUB TOTAL	M K Ls	195,000 500,000	204 5	27,300 39,780 2,500 88,091		73,115		36,558
NTERSECTION T-Intersection (Signal) T-Intersection (Unsignal) Four-Leg Intersection (Unsignal) SUB TOTAL	Ls Ls Ls	800,000 80,000 100,000	2 1 3	1,600 80 300 1,980	90	1,782	90	1,604
TOTAL (a)				235,853		195,896		117,708
iscellaneous Works [(a)*7%]	Ls	1	•	16,510	· .	13,713		8,240
DNTRACT AMOUNT (b)		····		252,362		209,609		125,948
IVSICAL CONTINGENCIES [(b)*10%] (c)	Ls	1 I		25,236		20,961	. ·	12,595
IGINEERING & SUPERVISION [((b)+(c))*10%] (d) ND ACQUISITION & COMPENSATION Land Acquisition (Average) Compensation TOTAL (e)	LS SQ.M LS	1 244 3,800,000	272,701 1	27,760 66,485 3,800 70,285	85 100 100	23,596 66,485 3,800 70,285	0 100 100	0 66,485 3,800 70,285
ROJECI COST [(b)+(c)+(d)+(e)]				375,643		324,450		208,827
VERAGE COST PER KM			1 - 1 - 1	11,759	· .			• · · · ·

· •

3 - 10

	ing Road)	Km≃			
	Leng	th ≓	40.527	Km	
Asphal	t Pavement				
	12=====================================				
			Proposed Road		
	ITEMS		Condition	Factor	
				,	
1.	Surface /Bace Type	X1	AC	0.00	
2.	Subgrade CBR	X2	4 %	0.50	
3.	A.D.T	X3	>5,700	2.25	
4.	Service Life (year)	X4	4	0.20	
5.	Pavement Width (m)	X5	6 m	0.05	
6. 7.	R-O-W Width (m)	Y1 Y2	40 m	0.00	
/.	Shoulder,Access,Median Width (m)	12	2.00 m	0.00	
8.	Traffic Service Operation	۲3	0-3%	0.00	
	Topography		an an be	4100	
9.	Drainage Topography	Y4	0-3%	0.00	
10.	Bridge Quantity (m/Km)	Y5	9	0.00	
11.	NO. Of Lanes		. 2		
\$ 8 2223	***************************************	2524220	\$22225722257222	***********	
Ka	- 410 E4V41V71V71V71V	UE . V4 .		2 500	
Ka	= 1+0.5(X1+X2+X3+X4+ enance cost + Overhead= Ka				Poht /k
Mainte				20,200	DOILLYN
	Cost (Financial) = Leng	th */R	abt/Km/vear)=	1 064 492	Babt/v
	Cost (Financial) = Leng (Economic) =	th *(Ba	aht/Km/year)= =	1 064 492	Baht/y
	Cost (Financial) = Leng	th *(Ba	aht/Km/year)=	1,064,492 883,528	Baht/y
	Cost (Financial) = Leng	th *(Ba	aht/Km/year)=	1 064 492	Baht/y
Total	Cost (Financial) = Leng (Economic) =	th *(Ba	aht/Km/year)= =	1,064,492 883,528	Baht/y Baht/y
Total Projec	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1	th *(Be Na=	aht/Km/year)= = 8,200	1,064,492 883,528 Baht/Km/yea	Baht/y Baht/y
Total Projec	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 used Road)	th *(Ba Na= Km=	aht/Km/year)= ≡ 8,200 1.001	1,064,492 883,528 Baht/Km/yea	Baht/y Baht/y
Total Projec	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1	th *(Ba Na= Km=	aht/Km/year)= = 8,200	1,064,492 883,528 Baht/Km/yea	Baht/y Baht/y
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 used Road) Leng t Pavement	th *(Ba Na= Km= th =	sht/Km/year)= = 8,200 1.001 40.527	1,064,492 883,528 Baht/Km/yea Km	Baht/y Baht/y r
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 used Road) Leng	th *(Ba Na= Km= th =	sht/Km/year)= = 8,200 1.001 40.527	1,064,492 883,528 Baht/Km/yea Km	Baht/y Baht/y r
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = t Road No, AD -1-1 bsed Road) Leng t Pavement	th *(Ba Na= Km= th =	sht/Km/year)= = 8,200 1.001 40.527	1,064,492 883,528 Baht/Km/yea Km	Baht/y Baht/y r
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 used Road) Leng t Pavement	th *(Ba Na= Km= th =	<pre>sht/Km/year)=</pre>	1,064,492 883,528 Baht/Km/yea Km	Baht/y Baht/y r
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 sed Road) Leng t Pavement	th *(8¢ %a= Km≓ th =	eht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition	1,064,492 883,528 Baht/Km/yea Km Factor	Baht/y Baht/y r
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 sed Road) Leng t Pavement ITEMS	th *(8¢ Na= Km≈ th =	eht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition	1,064,492 883,528 Baht/Km/yea Km Factor	Baht/y Baht/y r
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 sed Road) Leng t Pavement	th *(8¢ %a= Km≓ th =	sht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition	1,064,492 883,528 Baht/Km/yea Km Factor 0,00	Baht/y Baht/y r
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = t Road No, AD -1-1 bed Road) Leng t Pavement ITEMS Surface /Bace Type Subgrade CBR A,D.T	th *(86 Na= Km= th = 	sht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition AC	1,064,492 883,528 Baht/Km/yea Km Factor	Baht/y Baht/y r
Total Projec (Propo Asphal	Cost (Financial) = Leng (Economic) = t Road No, AD -1-1 bed Road) Leng t Pavement ITEMS Surface /Bace Type Subgrade CBR A.D.7 Service Life (year)	th *(86 Na= Km# th = X1 X2	<pre>sht/Km/year)=</pre>	1,064,492 883,528 Baht/Km/yea Km Factor 0.00 0.50	Baht/y Baht/y r
Total Projec (Propo Asphal 	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 beed Road) Leng t Pavement TTEMS Surface /Bace Type Subgrade CBR A.D.7 Service Life (year) Pavement Width (m)	th *(Ba Na≠ Km≈ th = x1 x2 x3 x4 x5	aht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition AC 4 % >5,700 NEW 7 m * 2	1,064,492 883,528 Baht/Km/yea Km Factor 0,00 0.50 4.50	Baht/y Baht/y r
Total Projec (Propo Asphal 	Cost (Financial) = Leng (Economic) = t Road No, AD -1-1 sed Road) Leng t Pavement ITEMS Surface /Bace Type Subgrade CBR A.D.T Service Life (year) Pavement Width (m) R-O-W Width (m)	th *(Ba Na= Km# th = X1 X2 X3 X4 X5 Y1	sht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition AC 4 % >5,700 NEW 7 m * 2 50 m	1,064,492 883,528 Baht/Km/yea Km Factor 560 0.00 0.50 0.00 0.38 0.05	Baht/y Baht/y r
Total Projec (Propo Asphal 	Cost (Financial) = Leng (Economic) = tt Road No, AD -1-1 sed Road) Leng t Pavement ITEMS Surface /Bace Type Subgrade CBR A.D.T Service Life (year) Pavement Width (m) R-O-W Width (m) Shoulder, Access, Median	th *(Ba Na≠ Km≈ th = x1 x2 x3 x4 x5	aht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition AC 4 % >5,700 NEW 7 m * 2	1,064,492 883,528 Baht/Km/yea Km Factor 0.00 0.50 4.50 0.00 0.38	Baht/y Baht/y r
Total Projec (Propo Asphal 	Cost (Financial) = Leng (Economic) = et Road No, AD -1-1 sed Road) Leng t Pavement ITEMS Surface /Bace Type Subgrade CBR A.D.T Service Life (year) Pavement Width (m) R-O-W Width (m) Shoulder, Access, Median Width (m)	th *(Ba Km# th = X1 X2 X3 X4 X5 Y1 Y2	aht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition AC 4 % >5,700 NEW 7 m * 2 50 m 2.50m * 2	1,064,492 883,528 Baht/Km/yea Km Factor 0,00 0,50 4,50 0,00 0,38 0,05 0,10	Baht/y Baht/y r
Total Projec (Propo Asphal 	Cost (Financial) = Leng (Economic) = t Road No, AD -1-1 bed Road) Leng t Pavement ITEMS Surface /Bace Type Subgrade CBR A.D.T Service Life (year) Pavement Width (m) R-O-W Width (m) Shoulder, Access, Median Width (m) Traffic Service Operation	th *(Ba Km# th = X1 X2 X3 X4 X5 Y1 Y2	sht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition AC 4 % >5,700 NEW 7 m * 2 50 m	1,064,492 883,528 Baht/Km/yea Km Factor 560 0.00 0.50 0.00 0.38 0.05	Baht/y Baht/y r
Total Projec (Propo Asphal 	Cost (Financial) = Leng (Economic) = t Road No, AD -1-1 bed Road) Leng t Pavement ITEMS Surface /Bace Type Subgrade CBR A.D.T Service Life (year) Pavement Width (m) R-O-W Width (m) Shoulder, Access, Median Width (m) Traffic Service Operation Topography	th *(Ba Na= Km# th = X1 X2 X3 X4 X5 Y1 Y2 Y3	<pre>sht/Km/year)=</pre>	1,064,492 883,528 Baht/Km/yea Km Factor 0.00 0.50 4.50 0.00 0.38 0.05 0.10 0.60	Baht/y Baht/y r
Total Projec (Propo Asphal 	Cost (Financial) = Leng (Economic) = t Road No, AD -1-1 bed Road) Leng t Pavement TEMS Surface /Bace Type Subgrade CBR A.D.7 Service Life (year) Pavement Width (m) Shoulder, Access, Median Width (m) Traffic Service Operation Topography Drainage Topography	th *(Ba Na= Km# th = X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4	aht/Km/year)= = 8,200 1.001 40.527 Proposed Road Condition AC 4 % >5,700 NEW 7 m * 2 50 m 2.50m * 2 0 - 3 % 0 - 3 %	1,064,492 883,528 Baht/Km/yea Km Factor 0.00 0.50 4.50 0.00 0.38 0.05 0.10 0.00 0.00 0.00	Baht/y Baht/y r
Total Projec (Propo Asphal 	Cost (Financial) = Leng (Economic) = t Road No, AD -1-1 bed Road) Leng t Pavement ITEMS Surface /Bace Type Subgrade CBR A.D.T Service Life (year) Pavement Width (m) R-O-W Width (m) Shoulder, Access, Median Width (m) Traffic Service Operation Topography	th *(Ba Na= Km# th = X1 X2 X3 X4 X5 Y1 Y2 Y3	<pre>sht/Km/year)=</pre>	1,064,492 883,528 Baht/Km/yea Km Factor 0.00 0.50 4.50 0.00 0.38 0.05 0.10 0.60	Baht/) Baht/) r

and and the product which the standard standard and

(3) CONSTRUCTION SCHEDULE Cost and Benefit Flows of the Project Project AD 1-1 Project; AD-1-1 (Two Section) Second Year Third Year year and First Year Year Const- Mainte-Total VOC _____ Month Cost Saving ruction nance 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Work Items 1 2 3 Cost Cost Land Acquisition -----1991 Ò 0 Ő £ 1992 ·0 Û 0 n Preparatory Works 1993 1994 1995 1996 1997 150,106 97,653 222202 150,106 97,653 0 n Ó n 76,692 0 447 447 447 447 447 447 74,077 74,077 447 447 76,692 Earth Works . 0 -----76,692 447 447 447 447 447 447 74,077 447 447 447 36,724 49,848 62,971 76,095 89,218 102,342 106,797 111,251 115,706 120,160 n Pavement Works 1998 1999 Bridge Works 2000 2001 2002 2003 -----Miscellaneous Works *======= ------2003 2004 2005 2006 2007 2008 2009 -0 ----Clearing -Up 124,615 124,615 124,615 124,615 124,615 447 ********************* 447 447 Percentage Of 447 447 34 % 26 % Disbursement (%) 40 % 2010 447 447 124,615 0 ----324,451 80,336 404,787 1,494,187 7 Total -----

EIRR NPV (1;12%) B/C (1;12%) =

3 - 11

ECONOMIC EVALUATION

4)

(unit ; 1000 Baht)

Time Saving	Balance	Benefit= Cost =	Sensi Analysis 0.8 1.2
0 0 0 0 205,436 252,827 300,218 347,608 394,999 442,390 442,390 4496,821 551,252 605,682 660,113 714,544 714,544 714,544 714,544	0 (150, 106) (97, 653) (76, 692) 241, 713 302, 227 362, 742 423, 256 483, 771 544, 285 603, 170 662, 056 647, 311 779, 827 838, 712 838, 712 838, 712		0 (180, 127) (117, 184) (92, 030) 193, 191 241, 603 290, 015 338, 426 386, 838 435, 249 482, 357 529, 466 488, 218 623, 682 670, 791 670, 791 670, 791 670, 791
,830,066	8,919,466		6,973,658
=	57.25 1,791,945 8.82	 Κ	45.50%

2) AD 1-2

(1) CONSTRUCTION QUANTITIES AND COSTS

(Project AD -1-2 Length = 43.327 Km) (Improved Length 40.060 Km)

ITEM	Unit	Financial Unit Cost	Quantity	Financial Total cost		mic cost		lual Value
***************************************	3225 ²²² 3	Baht			~	1000 Baht		
EARTH WORK Clearing & Grubbing Roadway Excavation(classified) Embankment(Borrowed Material) Slope Protection(Stripe Sodding)	SQ.M CU.M CU.M SQ.M	85	4 6/2 607	10/ 400	83		90	•
Stope Froteer(instring) (Sodding) (Shot Concrete) (Concrete Block) Sand Mat (t=0.5m) Sand Drain (0 0.40cm) SUB TOTAL	SQ.M SQ.M SQ.M SQ.M M	500	i 0	1,928 0 10,627 2,140 9,355 129,695		107,647		96,882
SUBBASE AND BASE Subbase(Soil Aggregate) Base Coarses(Crush Stone) Shoulder(Soil Aggregate) SUB TOTAL	CV.M CU.M CU.M	190 295 190	43.556	18,510 12,849 3,191 34,550	83	28,677	50	14,338
SURFACE Asphaltic Prime coat Asphaltic Tack coat Asphalt concrete Surfacing Overlay (5cm) SUB TOTAL	SQ.M SQ.M CU.M CU.M	13 7 1,900 1,900		3,775 1,128 39,144 15,308 59,355	83	49,265	50	24,632
(D= 800 m) (D=1000 m) (D=1200 m) (D=600m*2) PC Roy Culvert(1-1 80*100 m)	 	1,300 1,780 2,445 3,575 2,600 3,200 4,208	422 737 88 31	1,802 315 81 54	83		50	•
(2-2.10*2.10 m) (2-2.40*2.70 m) (2-2.50*1.50 m) RC Bridge Wideing RC Bridge (W=13.0 m) (W=14.0 m)	M M SQ.M M M M Ls	10,000 12,800 9,600 83,200 89,600 130,000 140,000 195,000 500,000	17 17 14 0 180 31 120 160 240	218 126 0 14,976 2,778 15,600 22,400	-	91,083		45,542
NTERSECTION T-Intersection (Unsignal) Four-Leg Intersection (signal) Four-Leg Intersection (Unsignal) SUB TOTAL	LS LS LS	80,000 1,000,000 100,000	2 1 3	160 1,000 300 1,460	90	1,314	90	1,183
TOTAL (a)				334,798		277,985		182,577
iscellaneous Works [(a)*7%]	LS	-1		23,436		19,459		12,780
DNTRACT AMOUNT (b)				358,234	·	297,444		195,357
YSICAL CONTINGENCIES [(b)*10%] (c)	Ls	1		35,823		29,744		19,536
VGINEERING & SUPERVISION [((b)+(c))*10%] (d) AND ACQUISITION & COMPENSATION Land Acquisition (Average) Componention	Ls SQ.M	1 25 10,800,000	975,385	39,406 24,385 10,800	85 100 100	33,495 24,385 10,800	0 100 100	0 24,385
Compensation TOTAL (e)	Ls	10,000,000		35,185		35,185		10,800 35,185
ROJECT COST ((b)+(c)+(d)+(e))			1	468,648		395,868	· · · · ·	250,077
VERAGE COST PER KM				11,699		******		

MAINTENANCE BUDEGE CALCULATION (2)

	ct Road No, AD ~1~2 ting Road) Length	Na≍ Km≍ I =	1.001	Baht/Km/year Km	
Aspha	lt Pavement		1	1	
22232)	ITEMS		Proposed Road		
÷ ;			Condition	Factor	÷.,
97253	\$222%\$222 ² \$222222222222222222222222222	****			
1.	Surface /Bace Type	X1	, AC	0.00	
2.	Subgrade CBR	X2	4 %	0.50	
3.	A.D.T	X3	>5,700	2.25	
4.	Service Life (year)	X4	4	0.20	
5.	Pavement Width (m)	X5	6 m	0.05	
6.	R-O-W Width (m)	¥1	40 m	0.00	
7.	Shoulder,Access,Median Width (m)	Y2	2.00 m	0.00	
8.	Traffic Service Operation Topography	¥3	0 - 3 %	0.00	
9	Drainage Topography	¥4	0-3%	0.00	
10.	Bridge Quantity (m/Km)	Y5	9	0.00	
11.	NO. Of Lanes		2		
	= 1+0.5(X1+X2+X3+X4+X enance cost + Overhead= Ka ' Cost (Financial) = Length (Economic) =	⁺Km	* Na * 1.28 =	2.500 26,266 Ba 700,704 Ba 581,585 Ba	

Proje	ct Road No, AD -1-2	Na=	8
(Prop	osed Road)	Km=	1
	Lengt	า =	26
		=	16
Aspha	lt Pavement		
35223	***************************************	:5322	Proposed :
	ITEMS		
	11113		Conditi
=====	***************************************	****	571111 7 722
1.	Surface /Bace Type	X1	AC
2.	Subgrade CBR	X2	4 %
3.	A.D.T	X3	>5,70
4.	Service Life (year)	X4	NEW
5.	Pavement Width (m)	X5	.7 m *
6.	R-O-W Width (m)	¥1	50 m
7.	Shoulder,Access,Median Width (m)	¥2	2.50m *
8.	Traffic Service Operation Topography	Y3	0 - 3
9.	Drainage Topography	Y4	0 - 3
10.	Bridge Quantity (m/Km)	Y5	16
11.	NO. Of Lanes		4
=====		222##	

8,200 Baht/Km/year 1.001 26.677 Km (4 Lanes) 16.650 Km (2 Lanes) Road (4 Lanes) Proposed Road (2 Lanes) ion Factor Conditio Factor 0.00 AC 0.50 4 % 4.50 >5,700 0.00 NEW 0.38 7 m 0.00 0.00 2.25 0.00 0.19 00 2 0.05 50 m 0.05 m 2 0.10 2.50m 0.05 0.00 0 - 3 % % 0.00 0.00 0 - 3 % 0.00 8 0.00 16 0.00 2 (2 Lanes) 2,520 26,476 Baht/Km/year 1,496,093 Baht/year 1,241,757 Baht/year (4 Lanes) 3.765 39,557 1+0.5(X1+X2+X3+X4+X5+Y1+Y2+Y3+Y4+Y5)= Ka = Maintenance cost + Overhead= Ka * Km * Na * 1.28 = Total Cost (Financial) = Length *(Baht/Km/year) (Economic) =

Overlay Cost (2004)

3 - 12

= 63,978,056 Baht

(3) CONSTRUCTION SCHEDULE

Project AD 1-2

(Two Section)

3 - 13

year and	First Year						Second Year					Third Year											
Month Work Items	1 2 3	4 5	6	78	9 10	11 12	1 1	2 3	4 5	6	78	9 10	0 11	12	1	2	34	5	6	78	9 10	11 1	2
	=======================================	======		*****		22292	*****				122231		====	:===	====	===	====	zzrs	220			E Z230	zz
	i. '																						. • *
Land Acquisition	=========	*														•							
Preparatory Works]																						
	i					1.1																	
Earth Works	ļ		Ξ		******	======	226222	.====;		0383	=====	=====	=====	.===									
Pavement Works	1					•	· .					==			====		====	12222	s=±:		232		
	İ				•															÷			
Bridge Works			=	======		32222			=====	====	=====	=====	**===			22 D			≓≂				
	ĺ																						
liscellaneous Works			=:		******				EZZ	====	==				===	E E E	2 22		=:		===		
learing -Up;				+								•									==		22
	• • •	• •	• •	• •	• - •	- •	• •	• •	•	• •	•	• •	•	•	• . •	•	•	۰ ،		•	•••	• •	
Percentage Of	#######################################		=====		*****	*****		222222	====	*= # #	20520	22223				==5:	====:	====	2223				26
rcentage ut					3 %						-												

Cost and Benefit Flows of the Project Project; AD-1-2

ECONOMIC EVALUATION

4)

Year	Const- ruction	Mainte- nance	Total Cost	VOC Saving	Tíme Saving	Balance	Sensi Analysis
	Cost	Cost		547113	our (ng	Bene	fit= 0.8
							st = 1.2
1991	: 0	0	0	C .	0	0	0
1992	0	0	. 0	0	. 0	0 1	0
1993	120,044	0	120,044	0	0	(120,044)	(144,053)
1994	167,547	0	167,547	. 0	0	(167,547)	(201,057)
1995	108,278	0	108,278	0	· · · · 0	(108,278)	(129,934)
1996	. 0	660	660	55,757	232,970	288,067	230,189
1997	. 0	660	660	68,400	285,470	353,210	282,304
1998	0	660	660	81,043	337,971	418,354	334,419
1999	. 0	660	660	93,687	390,471	483,498	386,534
2000	0	660	660	106,330	442,972	548,641	438,649
2001	. 0	660	660	118,973	495,472	613,785	490,764
2002	0	660	660	125,230	513,217	637,786	509,965
2003	0	660	660	131,487	530,961	661,788	529,166
2004	0	63,978	63,978	137,744	548,706	622,472	472,386
2005	0	066	660	144,001	566,450	709,791	567,569
2006	. 0	660	660	150,258	584,195	733,793	586,770
2007	0	660	660	150,258	584,195	733,793	586,770
2008	· 0	660	660	150,258	584,195	733,793	586,770
2009	0	660	660	150,258	584,195	733,793	586,770
2010	. 0	660	660	150,258	584,195	733,793	586,770
Total	395,870	73,221	469,090	1,813,942	7,265,635	8,610,487	6,700,753
				EIRR = NPV (i:12% B/C (i:12%		58.11% 1,804,446 7.71	45.36%

(unit ; 1000 Baht)

3.7 Drawings

1) AD-1-1 Drawing

SHEET NO.	LIST OF DRAWINGS
1 5.	Plan and Profile
6.	Plan of Intersection
7.	(A) Bridge for Maenam Ta Pi
8.	(B) Bridge for Khlong Ma Kham Tia
9.	(C) Briege for Khlong Tha Thong
10.	(D) Reinforced Concrete Slab Bridge
11.	Box Culvert
12.	Pipe Culvert

	:	Propos
	:	Propos
		High W
<u></u>	:	Water
No.	÷	Number
R	:	Radius
L	;	Length
BR.RC.SP.SL L	:	Reinfo (Bridg
BR.PC.GRDR L	:	Prestr (Bridg
BR.ST.SP.TR L	:	Steel
RC-Bm-nxaxbxi		Box Cu (No. o

ABBREVIATION AND SYMBOLS FOR PROFILE AND PLAN

: Alignment of Proposed Route

sed Bridge

sed Box Culvert

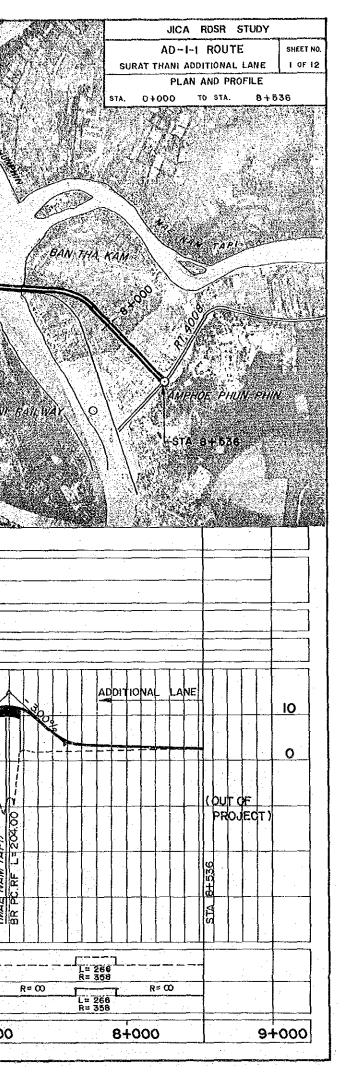
Water Level

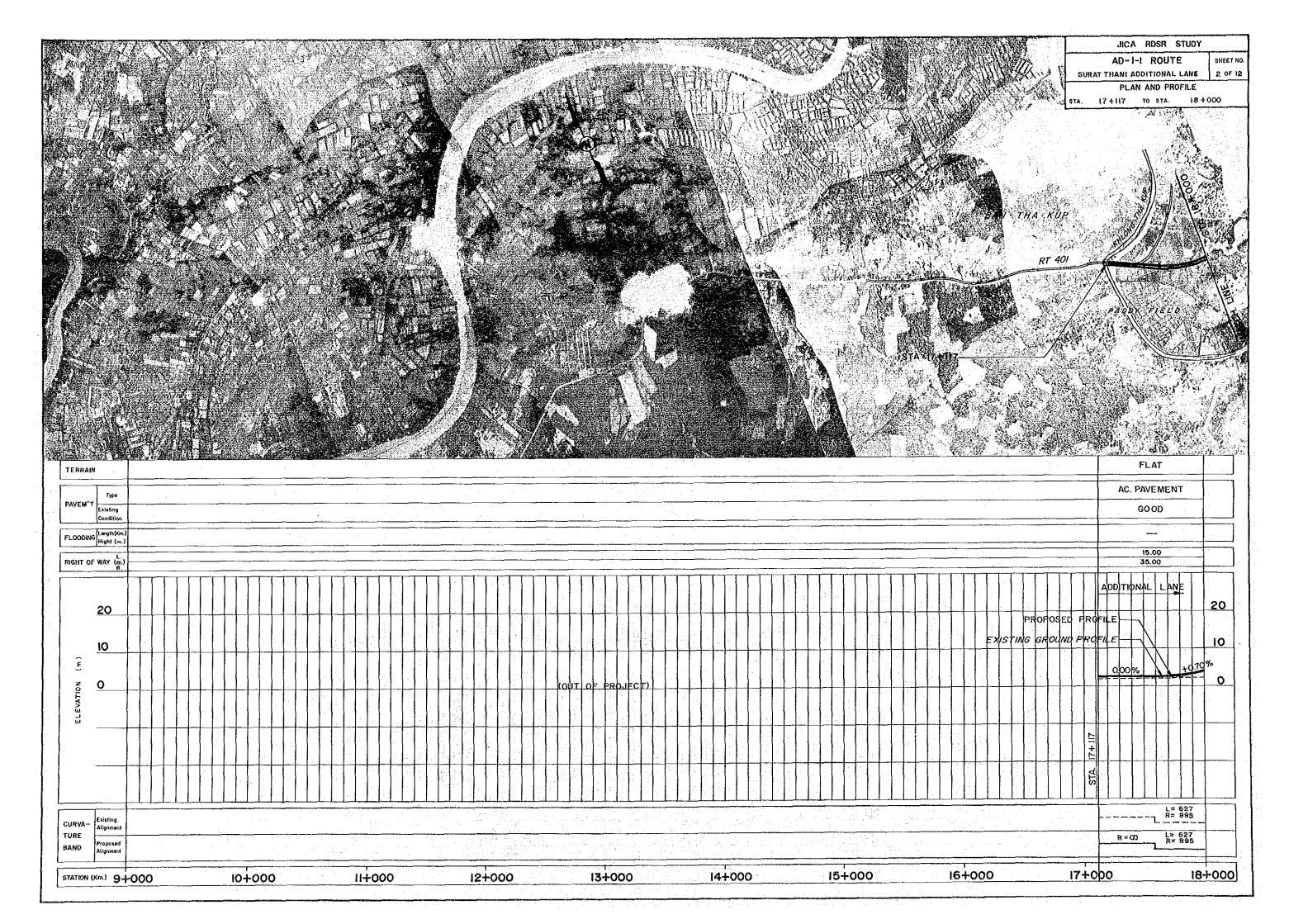
Level

•

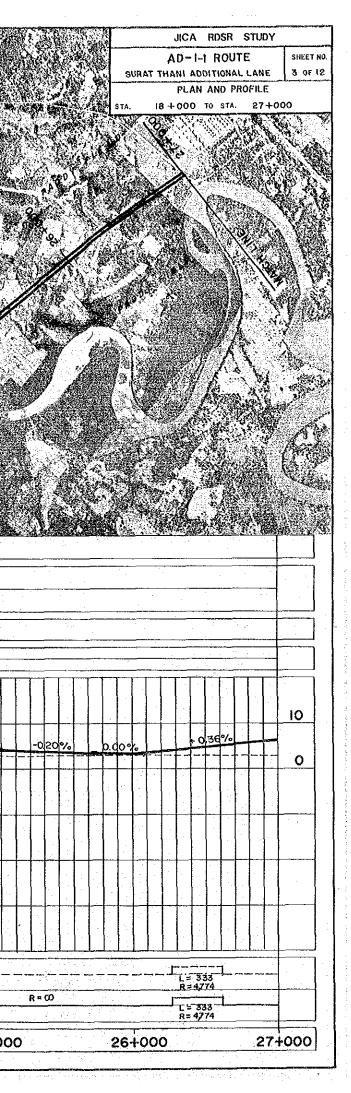
of Curvature

of Curve

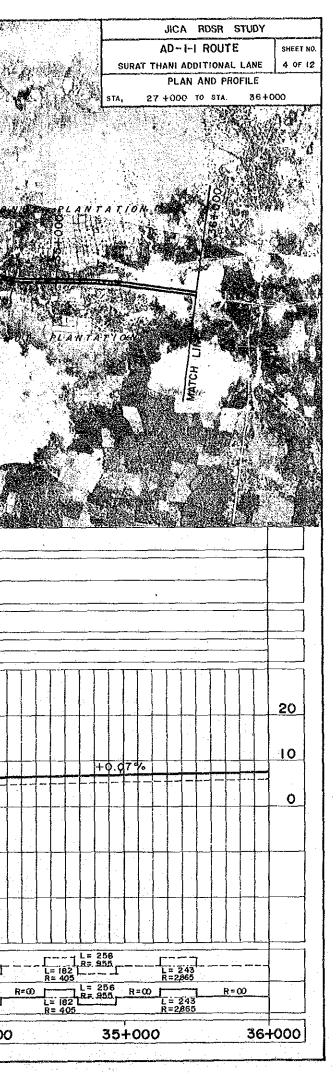

orced Concrete Bridge ge Length)

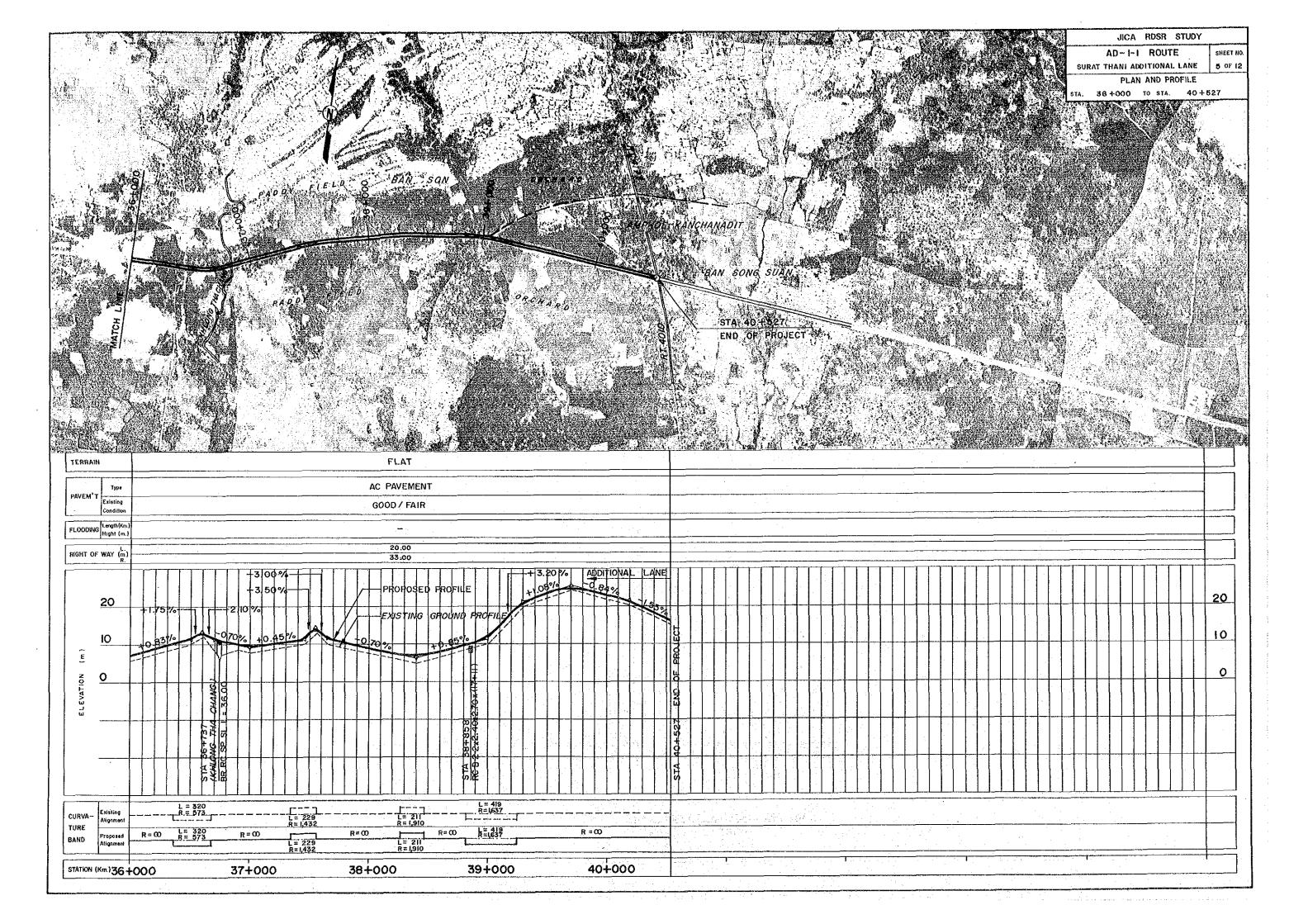

ressed Concrete Bridge ge Length)

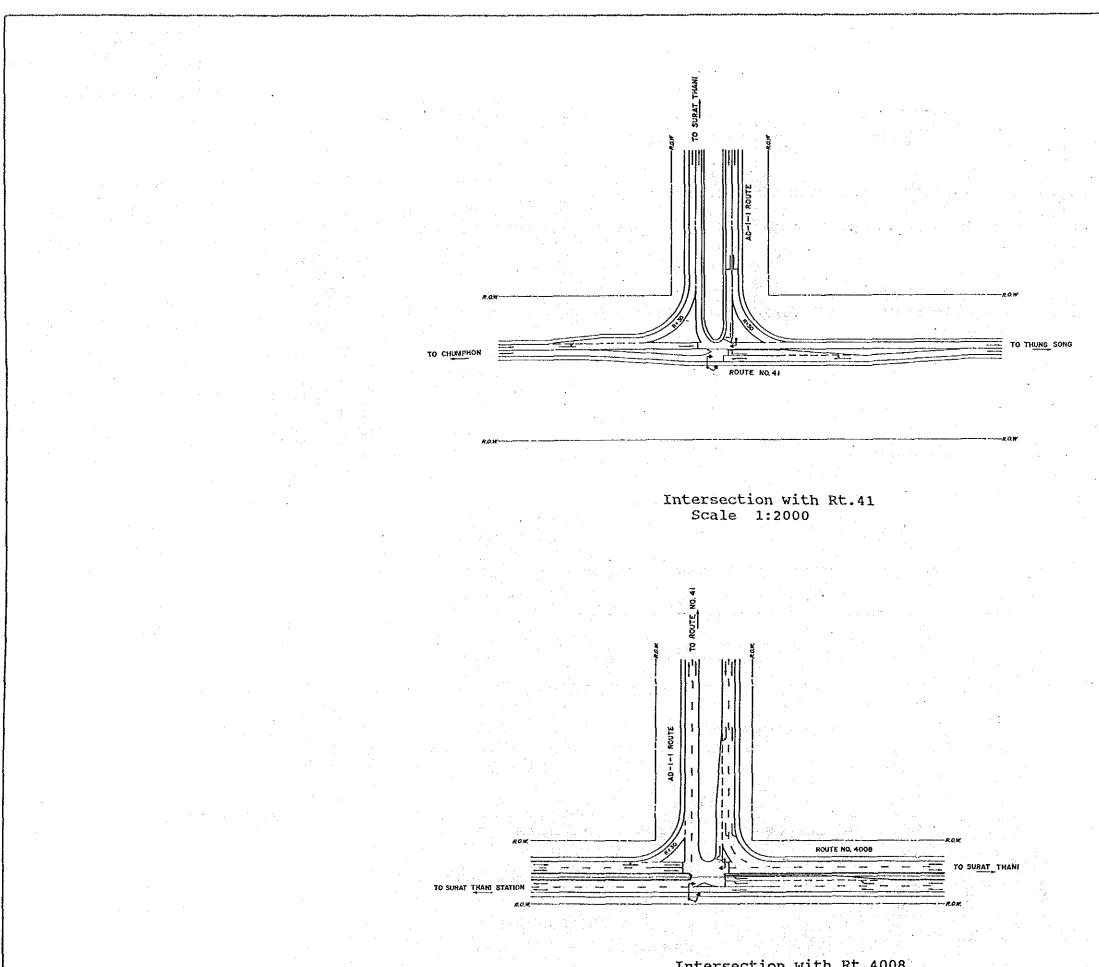
Bridge (Bridge Length)


Box Culvert (No. of Locations - No. of Cells x Clear Span x Depth x Length)

INKE	Froposad	R = 00	L = 443 R = 2,865		R = 00	R= 191	L= 225 B=286 =157 L= 190 =100 R=241
CURVA-	Existing Alignment						L = 225 B = 296 = (57 L = 190 L
ELEVATION (m)	<u>0</u>			EXIS	POSED PROFILE 7/1/G GROUND PROFILE 0.30 % 0.00 % 0	0.8% 5.14 85-85-3x520x120x120x120x120x120x120x120x120x120x1	STA 7+178 STA 7+178 (MAE NAM 7AP!)
RIGHT O	FWAY (m.) R				33.00 20.00		
PAVEM'	Existing Condition G Length (Km.) Hight (m.)				FAIR -		
TERRAI	Тура				AC PAVEMENT	 	
					FLAT		
		STA OHODO			BAN DON NIANG		
		8			STATION AND HAILWAY		
		Ver 20		mound and the set			
						RIVER SE	CAT AND

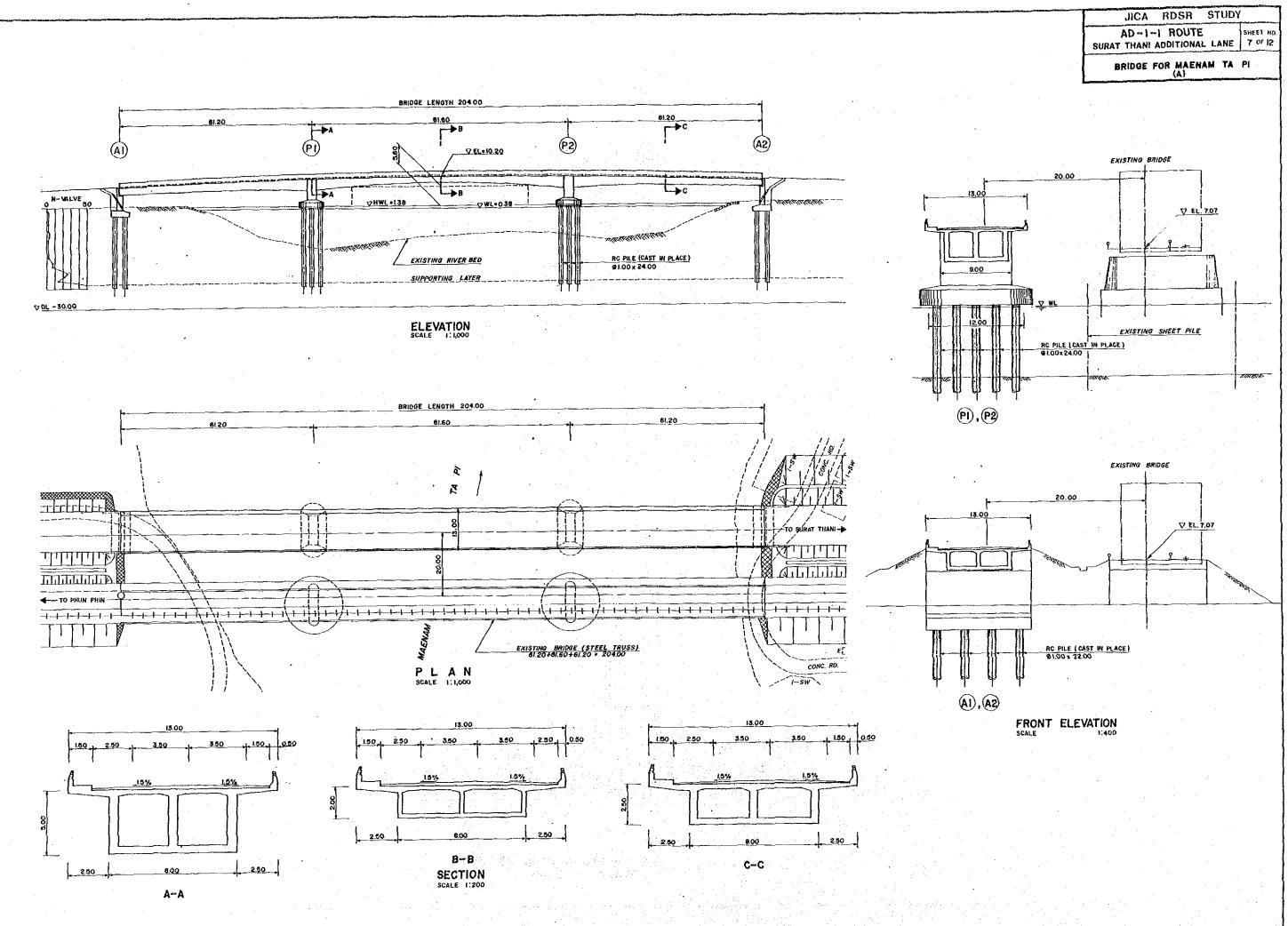


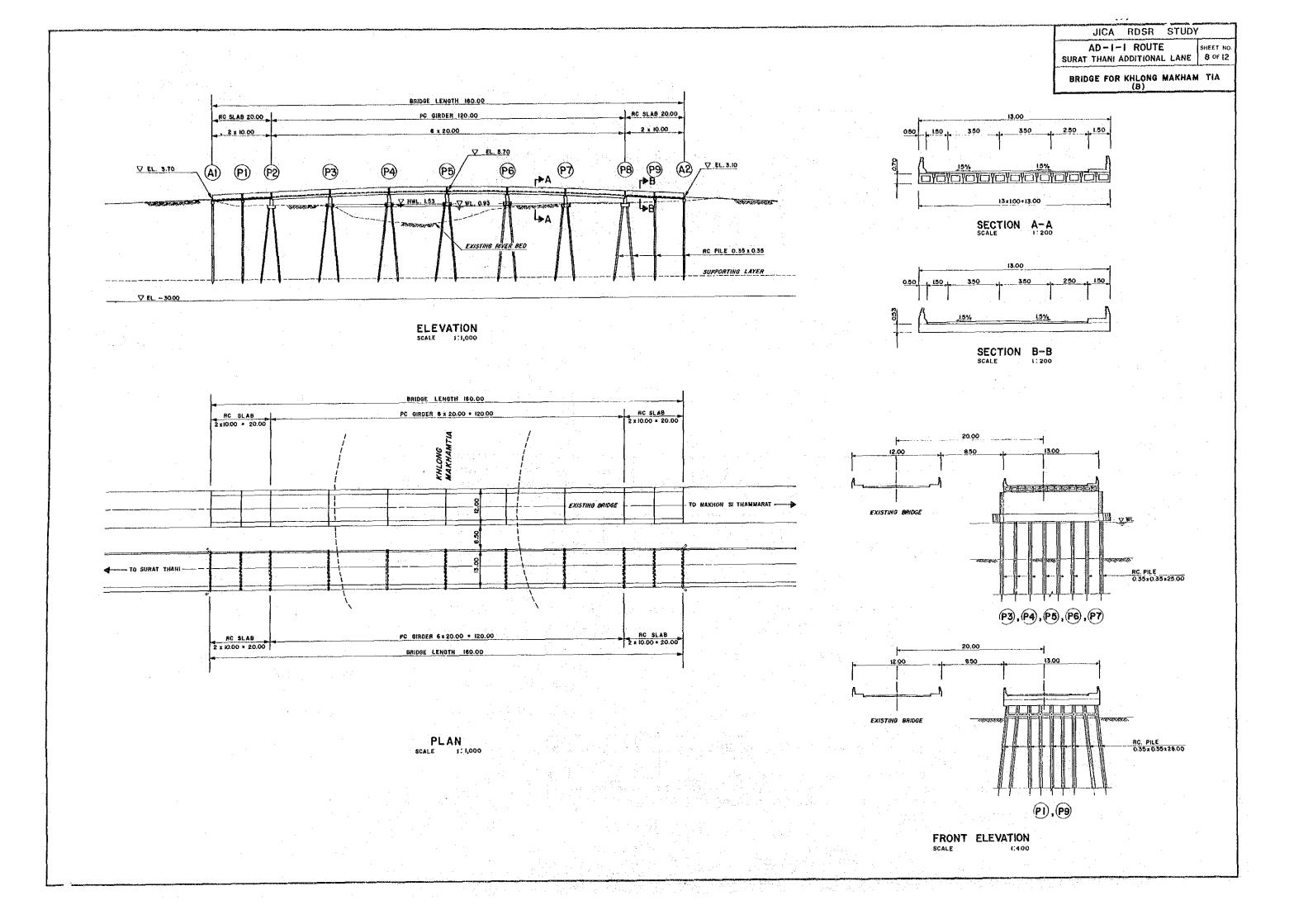

			20+000				SURATH	NI AIRFIELD
	Туре	3)			AC 1	40-4 44-4 		
ELEVATION	<u>10</u>			STA: 20-772 STA: 20-772 IKHI ONE MAKHAN 714.) ER PC/RC SP 17 SP SL	PROFOSED PROFI		95-74 + 0.04 % + 0.8 	
CURV TURE BAND STATE		R = 00	$\begin{array}{c} L = 548 \\ R = 572 \\ L = 548 \\ R = 672 \\$	L = 412 R=1,432 R=0 L = 412 R=1,432 R=1,432 21+000	22+000	R = ∞ 23+000	L= 602 R= 602 L= 602 R= 602 R= 850 24+000	 25+0

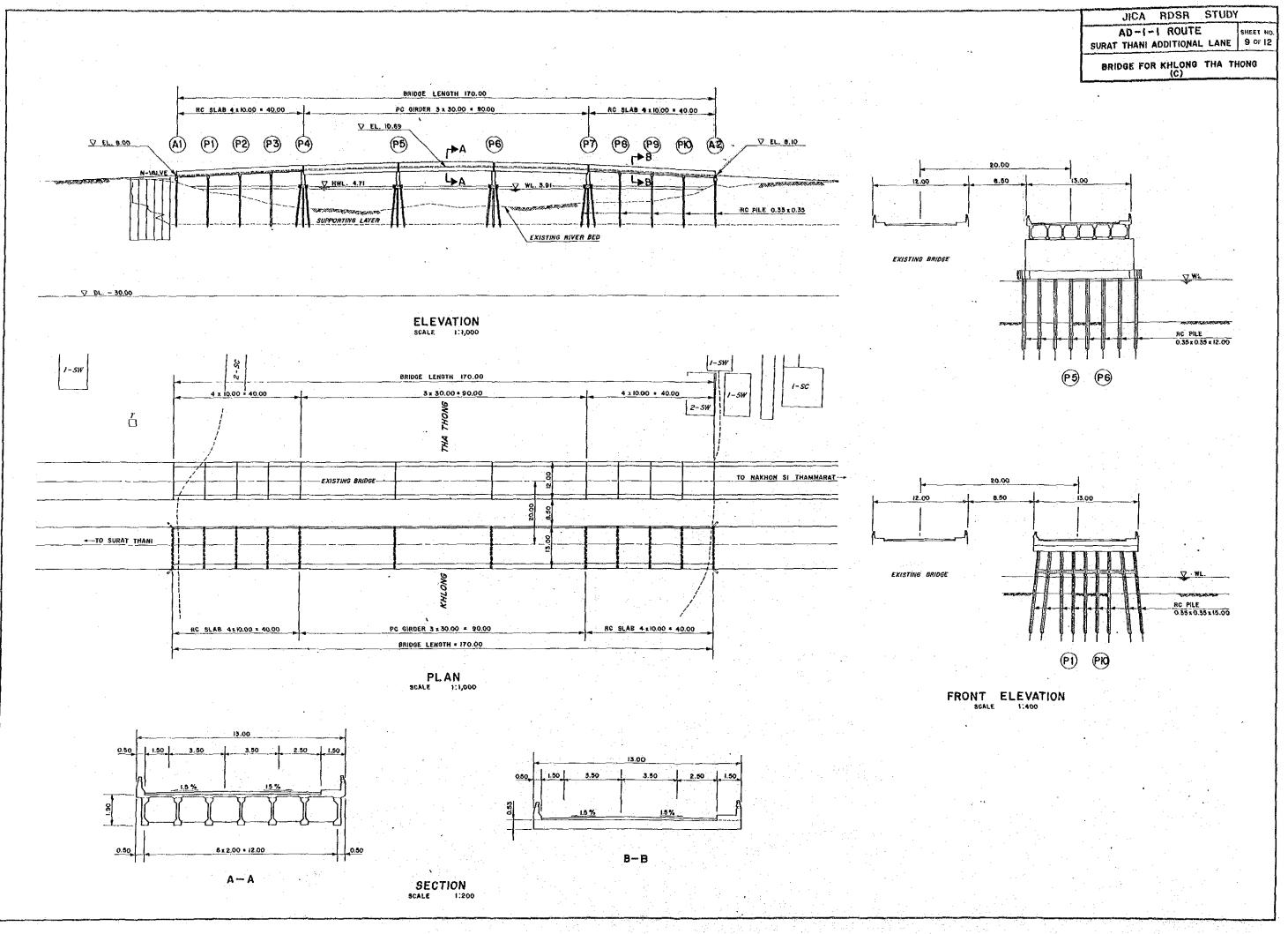


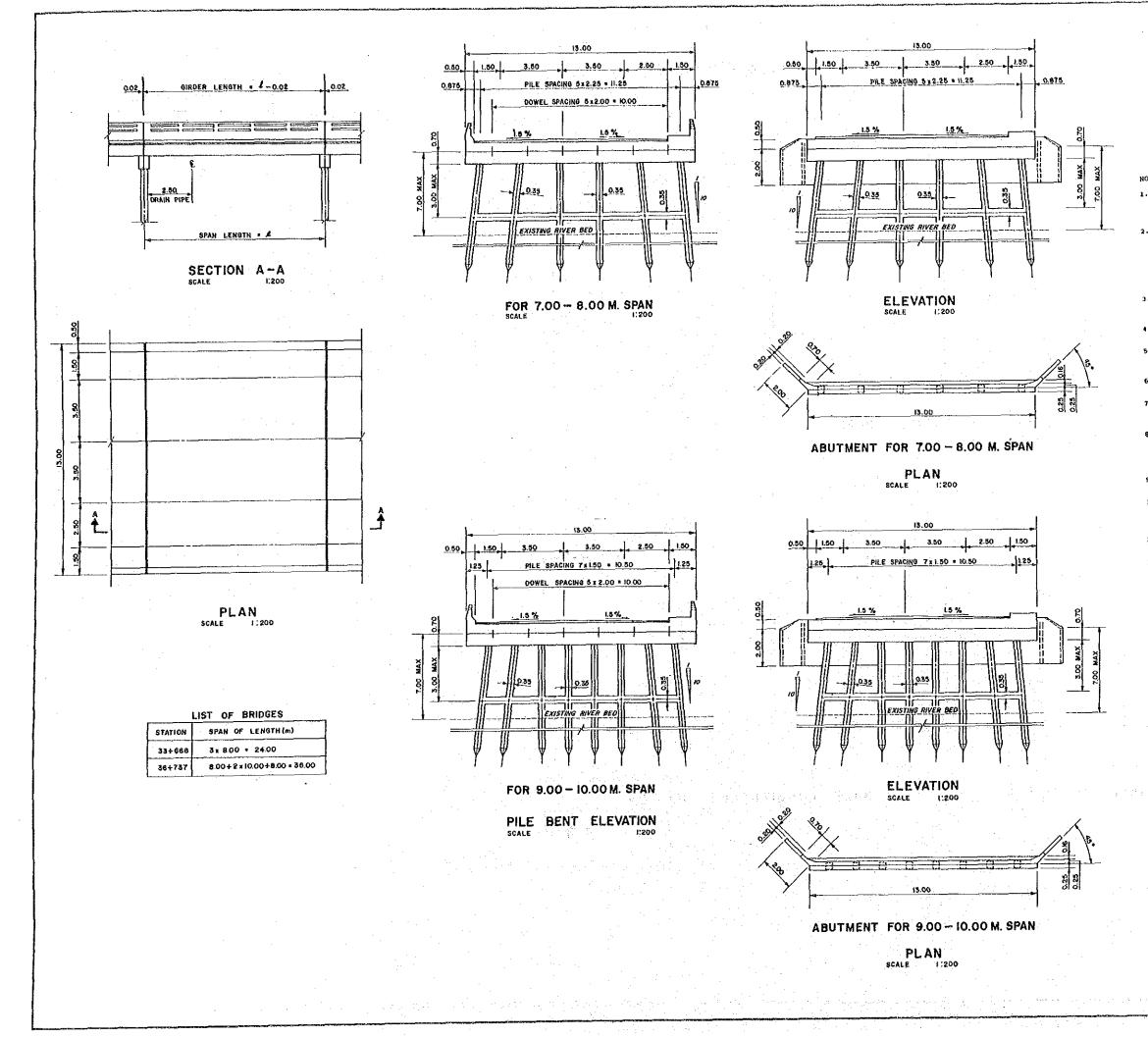
	Alignment	L=251 R=160 R=1,145		30+000	k≣iśłó 3I+000	32+000	<u>R≈ 260</u> 33+000	34+
CURVA~ FURE JAND	Existing Alignment Proposed	R = 0 $R = 0$ $R = 0$ $R = 0$	L = 319 $R = 1,432$ $R = 1,432$ $R = 1,432$ $R = 1,432$	$\begin{array}{c} L=173\\ R=776\\ L=167\\ R=472\\ 00\\ R=776\\ R=472\\ R=776\\ R=776\\ R=472\\ R=0\\ R=0\\ R=0\\ R=0\\ R=0\\ R=0\\ R=0\\ R=0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	R≠00 L= R≠00 R=	564 303 L = 327 R = 260 564 R=00 L = 827 R = 260	L= R=0 R=0 R=2
							564	
	 ,		29+65	WARDNE THA THONG)	STA 21+161 RC-B1+161 RC-B1+11-90×17+11		STA 33 + 462 RC=E 2x2.10/2.10/17.00 STA 33 + 666 STA 33 + 666 BR RG-SP-SL L=-24, 00	
ELEVATION				- CONCH-			6 222.IOXI	
(m) NOI	0	+0.10%						
	10			-0.30%	EXISTING GROUND PRC	0.45 %	15 10 × 800 0 00	
	20				PROFOSED FROFILE			
	F WAY (m.) R,					20.00 33.00		
	Existing Condition G Length(Km. Hight (m.)				GÓ	OD / FAIR		
AVEM'T	Туре				AC PAVEMEI	NT		
ERRAII	NAN N		en la transier d'És		FLAT			
					inter prestore the			
					coconut	PLAN IN CONMISSION		
				Star BAN THA TH				
		2 hogo				322+0 9		
の設定		ine I and a start				eoo.		
	alara Marca		8		COCONUT PLAN	талтом Караларияния и странования и	04+00 04+00 04+00	
						77725		
1. 1. 1. 1.		a la competencia de la compe			all de			

.

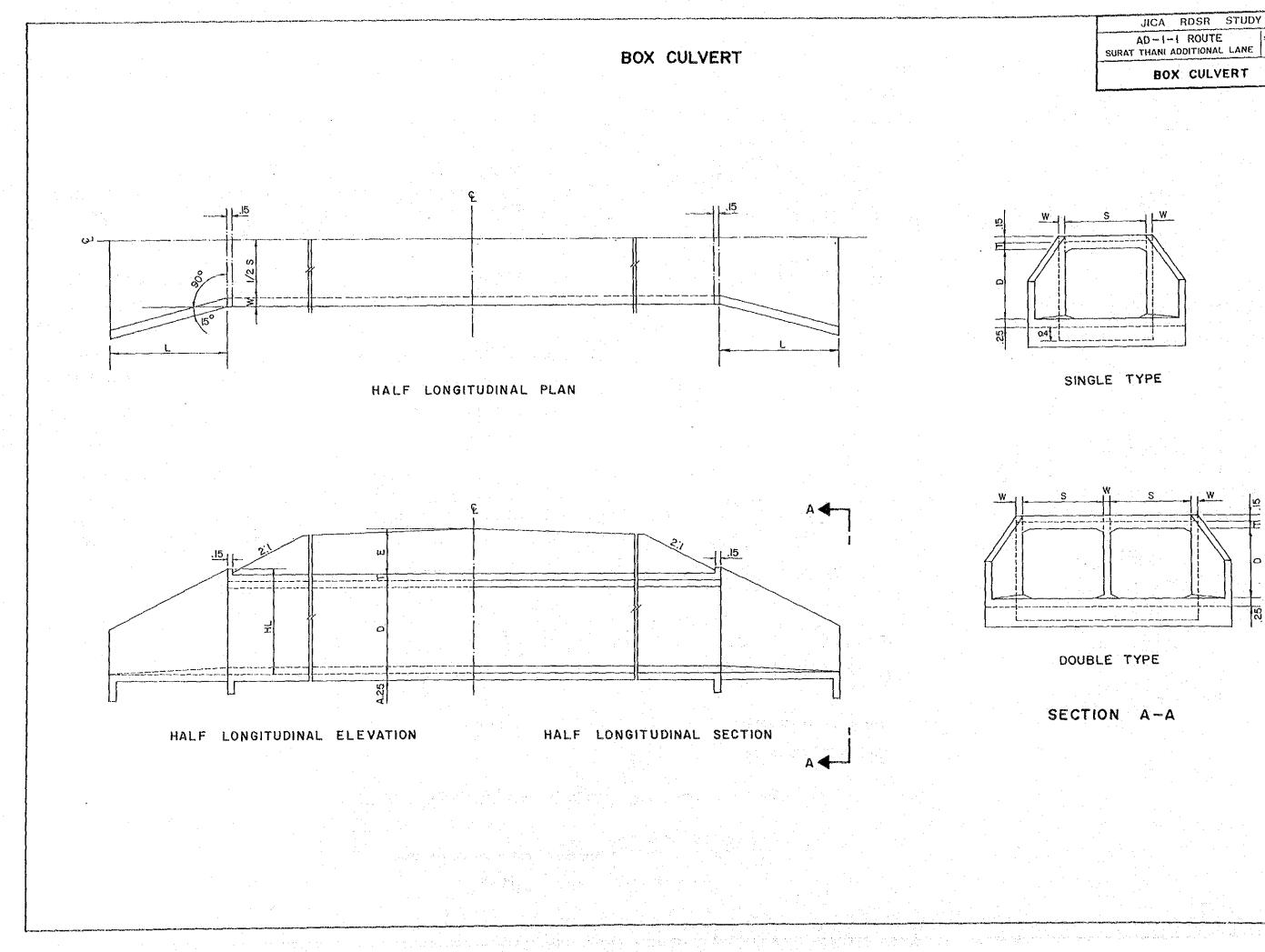


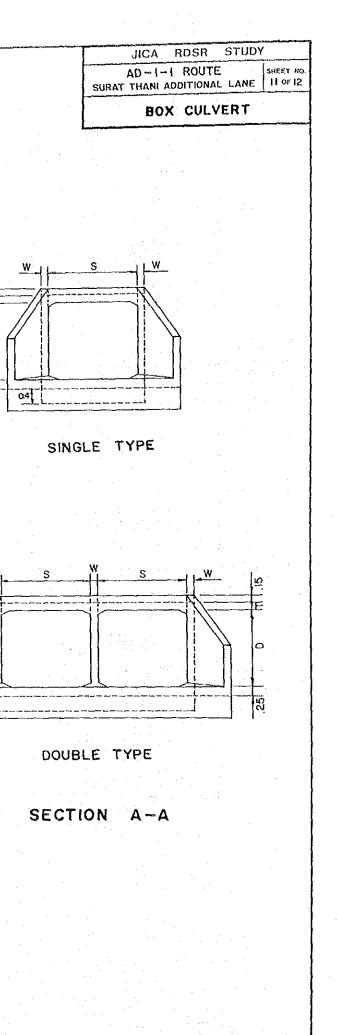


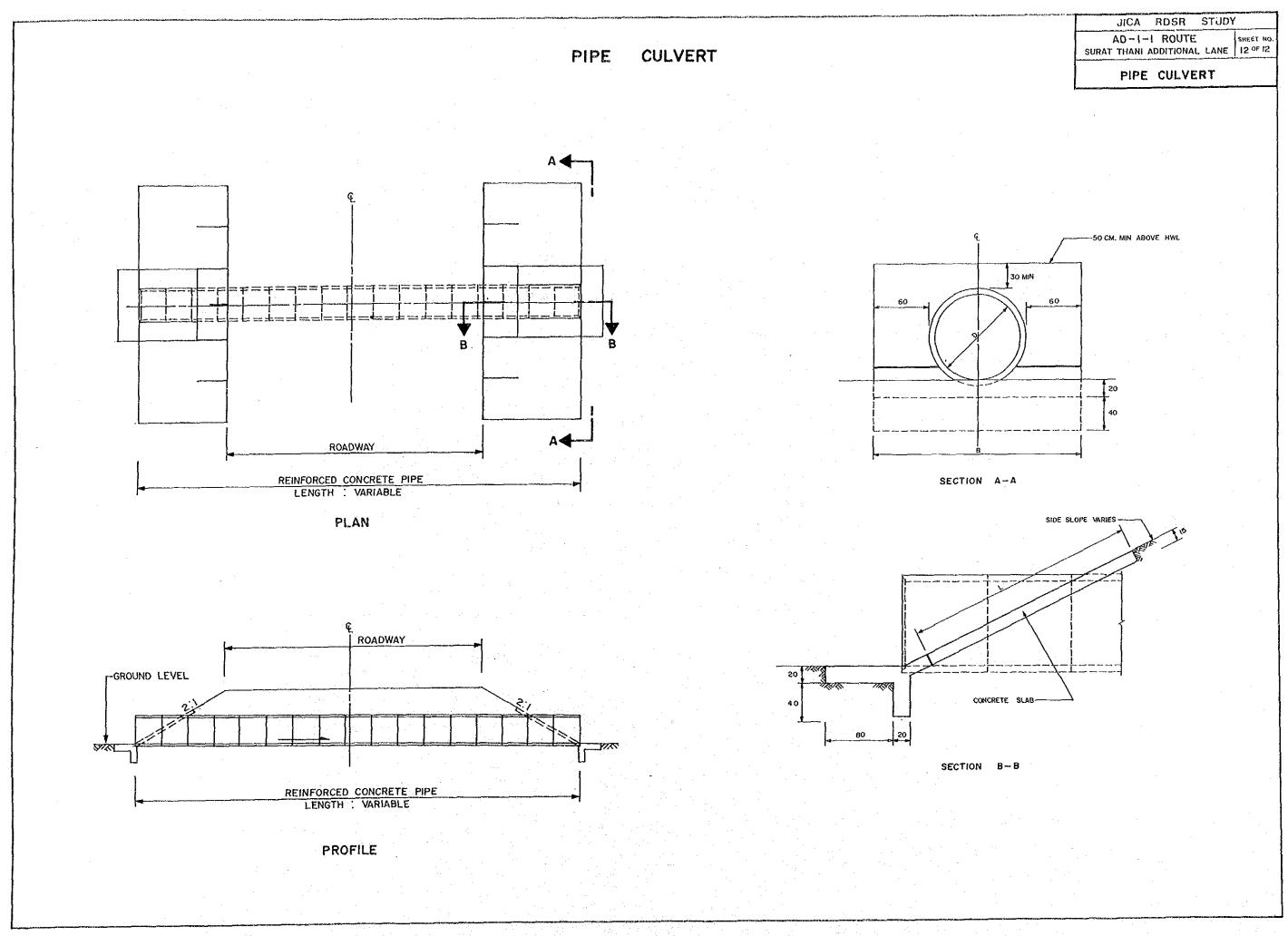



Intersection with Rt.4008 Scale 1:2000

	SURAT	AD - I THAN	- I I ADC	ROUTE	LANE	SHEET NO
		PLAN	OF	INTERS	ECTION	
	· .					
	99 194		••••			
		,				-
					. ·	
				· · ·		
					•	
e tan	-					
		× .				
					•	
·						
						•
				۰.		
н. 2010 г.	an Alta an Alta		÷	.*		
: : - ⁴					· .	
· ·			•			•
e Salation Anna Salation	· · ·	,		· • • • •		
n en						







	UCA RDSR STUD	,
	AD-I-I ROUTE SURAT THANI ADDITIONAL LANE	SHEET NO.
	REINFORCED CONCRETE SLAB (D)	RIDGE
TES : DESIGN STRESSES a) CONCRETE , b) STEEL ,	t f_{c} = 70 KSC. f_{s} = 1,400 KSC. (INTERHEDIATE GRADE) f_{s} = 1,200 KSC. (STRUCTURAL GRADE)	
APPROXIMATE MI	HAVE MINIHUM ULTIMATE COMPRESSIVE STR For .15 X .15 X .15 CUBE AT 28 DAYS. X design per cubic heter 18 suggest	ENGTU AND ED AS
SAND	ЕНЕМТ, МІН. 350 КG. 0.43 Н ³ ICK OR GRAVEL 0.86 M ³ 1.1MP, MAX 10 СН.	
CLEAR CONCRETE SHALL BE 3.5 C SHALL BE 2.5 CH	COVER FOR TOP REINFORCEMENT IN SLAB I N. ELSEWHERE OF SLAB BRIDGE AND SIG	-Shribit
UNLESS OTHERWIS	SE INDICATED.	IANFER
BARS, OTHERS S OTHERWISE INDIC		Mpubb
ENGINEER.	AP SPLICE OF REBARS SHALL BE APPROVED	
. LAP LENGTH SHA DAR IN CASE OF FOR DEFORMED B	LL NOT BE LESS THAN 40 DIAMETERS OF PLAIN BARS AND 24 DIAMETERS OF BIGG ARS.	BIGGER Er bar
PORTLAND CEMEM SHALL BE USED FROM NORMAL C ALTERING THE L	LINE PROTECTION, HIGH SULPHATE RES T TYPE 5 CONFORMED TO AASUTO SPECIFIC AND ADDITIONAL CONCRETE COVER OF C ASE ALL AROUND SHALL BE PROVIDED W OCATIONS OF REBARS.	5 CH. ITHOUT
ALL HATERIALS Engineer.	SHALL BE USED UNDER THE APPROVAL O	OF THE
IO. PAINTING SHALL WHICH EXPOSED PAINTED ALTE REFLECTED TYPE		
11. ALL DIMENSION INDICATED.	NS SHOWN ARE IN HETERS UNLESS OTH	ERWISE
BRIDGE WHEREV LOCATIONS OF T COVER IS NOT I 101. OTHER B BENT ALONG THE	ARS WHICH PASS THROUGH DRAIN PIPES SP 2 PIPES.	NCRETE OF ST IAIL BE
13. ALL PIERS WHICH HAUNCH UNDER T	CH DO NOT HAVE LOG PROTECTION WALLS SI THE TOP CROSS BRACING.	INLL BE
14. IF ANY NOTES O ON THIS DRAWIN	ON THE DRAWINGS OF PIERS CONTRADICT TH IG, THEY WILL BE SUPERSEDED BY THESE N	E NOTES
15. THIS DRAWING	IS ADAPTED FROM DON DWG NO. 3 AD5-10 Y DISCREPANCY RETWEEN SUCH DRAWINGS A DARD DRAWING WILL PREVAIL UNDER THE A	6-14/1A ARISES,
:		
	: 	
e te til ge		2
		н 1
· · ·		


•

========					**********************	=========
Station	Materials	Structural System	Width (a+b+c+d+e:m)	Span and Length (m)	Remarks	(Fig.)
7+178 Ta Pi	ST	SP.TR	RW+0.0+6.0+1.5+0.0=10.0	61.2+81.6+61.2=204.0	Used as existed	
	PC	RF.BX	0.3+1.2+11.0+0.0+0.5=13.0		New construction	(A)
======== 20+712 Makham Ti	PC/RC a	SP.T/SP.SL	0.3+1.2+9.0+1.2+0.3=12.0	2*10.0+6*20.0+2*10.0=160.0		
	PC/RC	SP.T/SP.SL	0.3+1.2+11.0+0.0+0.5=13.0	2*10.0+6*20.0+2*10.0=160.0	New construction	(B)
======== 29+650 Tha Thong	PC/RC	SP.T/SP.SL	0.3+1.2+9.0+1.2+0.3=12.0	4*10.0+3*30.0+4*10.0=170.0	Used as existed	
	PC/RC	SP.T/SP.SL	0.3+1.2+11.0+0.0+0.5=13.0	4*10.0+3*30.0+4*10.0=170.0	New construction	(C)
======= 33+666	======================================	SP.SL	0.3+1.2+8.0+1.2+0.3=11.0	3*8.0=24. 0	Used as existed	
	RC	SP.SL	0.3+1.2+11.0+0.0+0.5=13.0	3*8.0=24.0	New construction	(D)
======= 36+737	RC	SP.SL	======================================	8.0+2*10.0+8.0=36.0	Used as existed	=========
	RC	SP.SL	0.3+1.2+11.0+0.0+0.5=13.0	8.0+2*10.0+8.0=36.0	New construction	(D)
	PC: Pre ST: Ste) Structural SP.SL: SP.T : RF.BX:	Simply Suppor Simply Suppor	rete Bridge ted Slab ted T-shape Girder Supported Box Girder			

.

LIST OF BOX AND PIPE CULVERT

STATION	CULVERT	CULVERT SIZE (m)		NO. of	CULVERT LENGTH (m)				
		PIPE	BOX	LOCATIONS	EXTENDED		NEW		
		NO. of ROW x DIAMETER	NO. of CELLS (CLEAR SPAN x DEPTH)		EXISTING	CONST- RUCTION	CONST- RUCTION		· :
0+180	Pipe	1x⊙0.80		2	16.0	1.0	17.0		
0+400	Pipe	1x00.80		2	11.0	1.0	12.0		
0+600	Pipe	1x00.80		2	12.0	1.0	13.0		1
1+075	Box	1400.00	3(2.50x1.25)	2	13.0	1.0	15.0		
1+525	Pipe	1x00.80	0(5:000000000)	2	14.0	1.0	15.0		
1+825	Box		3(2.50x1.25)	2	13.0	1.0	15.0		
2+475	Pipe	1xO0.80	o (Lijouni i Lo)	2	13.0	1.0	14.0		
2+725	Pipe	1xO1.00			14.0	1.0	15.0		
3+280	Box		4(2.50x2.50)	2	12.0	1.0	14.0	Charles and Charles	
3+440	Pipe	1xO1.00		2	14.0	1.0	15.0		
3+710	Box		3(2.50x1.25)	2	13.0	1.0	15.0		
5+175	Pipe	2xO1.20		2	13.0	1.0	14.0	[*	1111
5+725	Pipe	1xO1.20		2	15.0	1.0	16.0		
6+347	Box		3(2.50x1.70)	2	15.0	1.0	17.0		
7+025	Pipe	1xO1.20		2	16.0	1.0	17.0		
7+565	Pipe	1xO1.00		2	19.0	1.0	20.0	ł	
17+192	Pipe	1xO0.60		2	20.0	1.0	19.0		
17+192	Pipe	1xO0.60		2	22.0	1.0	21.0		1.0
17+295	Pipe	2xO1.00		2	26.0	1.0	25.0		
17+573	Pipe	1xO1.00		2	24.0	1.0	23.0		
17+817	Pipe	1xO0.80		2	19.0	1.0	18.0		
18+255	Pipe	1x⊙0.60		2 2 2	18.0	1.0	17.0		
18+469	Pipe	1xO0.80			19.0	1.0	18.0		
18+768	Pipe	1xO0.60	· ·	2	17.0	1.0	16.0		· · ·
18+967	Pipe	1x⊙0.60		2	19.0	1.0	18.0		
19+095	Pipe	1xO0.80		2	19.0	1.0	18.0	· ·	
19+387	Pipe	1xO0.80	• • •	2	19.0	1.0	18.0		
19+752	Pipe	1xO1.00		2	23.0	1.0	22.0	l e e e	• .
19+896	Pipe	2x⊙1.00		2	23.0	1.0	22.0		
20+293	Pipe	1x⊙0.60		2	19.0	1.0	18.0	l	· · ·
21+732	Pipe	1x⊙1.00	· ·	2	21.0	1.0	20.0		a di kara kata
<u>22</u> +214	Pipe	1xO1.00		2	22.0	1.0	21.0	l .	
22+446	Pipe	1xO1.00		2 2 2 2	21.0	1.0	20.0	and the second second	
22+968	Pipe	1xO1.00	· ·	2	21.0	1.0	20.0	• · ·	
25+125	Pipe	1x⊙1.00		2	17.0	1.0	16.0		n a The second second
25+417	Pipe	1xO1.00		2 2 2	20.0	1.0	19.0		
25+722	Pipe	1xO1.00		2	20.0	1.0	19.0		
27+430	Pipe	2xO1.00		2	14.0	1.0	13.0		•
27+651	Pipe	2x⊙0.60		2	16.0	1.0	15.0		
28+092	Pipe	1x00.60	· ·	2	16.0	1.0	15.0	han berta da	an an an taon an
30+042	Pipe	1x⊙0.80	1/1 00 4 00	2 2	18.0	1.0	17.0		
31+161	Box		1(1.80x1.00)		11.0	1.0	17.0		••••••
33+462	Box		2(2.10x2.10)	2	17.0	1.0	17.0		
36+342	Pipe	3x⊙1.00		2 2 2	21.0	1.0	20.0		
38+142	Pipe	2x⊙0.60		2	17.0	1.0	16.0		
38+442	Pipe	1xO1.00	0/0 AD-0 501		20.0	1.0	19.0		
38+858	Box	1	2(2.40x2.70)	2	11.0	1.0	17.0		

