2.5 Engineering Study

1) Summary

The first section of 1.4 km follows the existing PWD road alignment in hilly terrain and the remaining 7.7 km passes on flat terrain in a straight line. The applied minimum radius of curvature is 500 m. Vertical grade is moderate through the whole alignment. The maximum gradient is 1.9 % in hilly terrain.

The minimum height of embankment in flat terrain is planned to be 2.5 m to avoid flooding damages in rainy season. Embankment over 5 km on Chumphon city side is protected by block sodding against flooding.

Total thickness of pavement is 45 cm with surface course of 10 cm, base course of 15 cm and subbase course of 20 cm. Two reinforced concrete bridges are planned in a total length of 40 m.

An intersection with Route 41 is planned to be signalized and another intersection with Route 327 is planned to be not signalized.

NC-1	Description
Changwat Name or Location Road Class Cross Section (m) Surface Type Bridge: New Length: Total New Reconstruction	: Chumphon : Chumphon City Link, J.Rt.4 - J.Rt.327 : F1 : 2.5 + 7.0 + 2.5 (6.0 : PWD) : SA / ASC / SA : 2 sites, 40 m : 9.1 km : 7.7 km : 1.4 km (PWD)
AADT ('96/'01/'06)	: 8,300 / 13,200 / 18,700
Financial Cost NPV B/C EIRR	: 110.2 million baht (in 1990 price) : 322 million baht (12% discount rate) : 6.3 (12% discount rate) : 69.9 %

(): Existing Condition

2) Design Standard and Conditions

(1) Design Criteria

Road Class : F1

Design Speed : 70 - 90 km/h

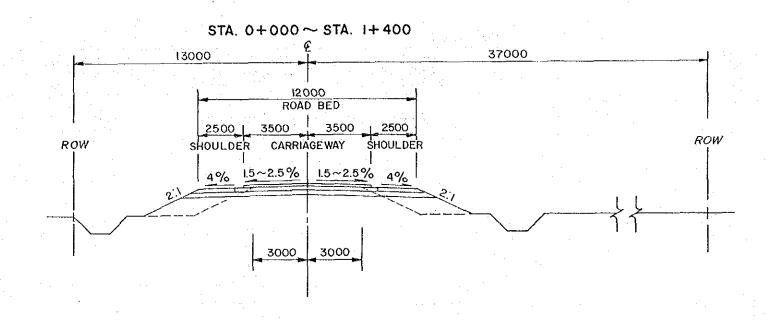
Geometric Design Criteria

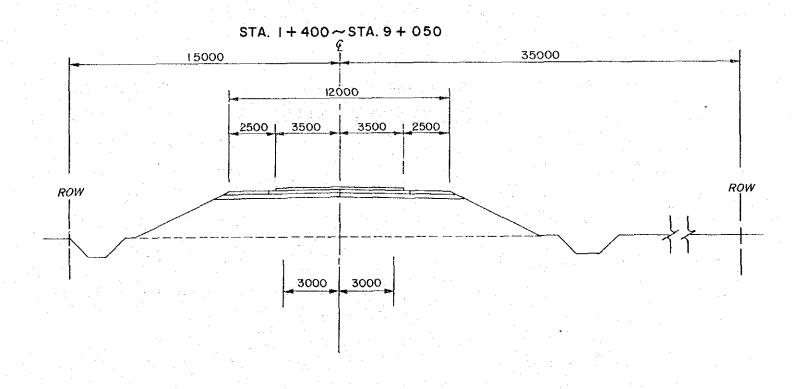
ر الله الله الله الله الله الله الله الل	Design Speed (km/h)							
Description -	90	80	70					
Minimum Radius of Curvature (m)	280	220	160					
Minimum Stopping Sight Distance (m)	150	120	100					
Maximum Gradient (%)	6	7	7					
Minimum Gradient for Drainage (%)	0.3	0.3	0.3					

(2) Pavement Design Conditions

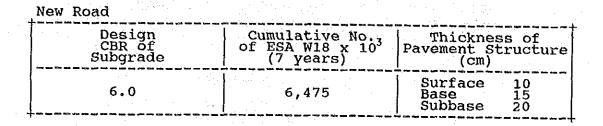
Design CBR : 6 %
Design Method : AASHTO
Design Period : 7 years

(3) Drainage Design Conditions


Rainfall Intensity: Rainfall Intensity Duration


Curve at Chumphon Observatory

Return Period : Culvert-----10 years


: Minor Bridge---20 years


3) Typical Cross Section

4) Pavement Design

2.6 Construction Cost

Table 2.5.1 CONSTRUCTION COST

1) CONSTRUCTION QUANTITIES AND COSTS

(Project NC -1 Length = 9.050 Km)
(Improved Length 9.050 Km)

=30200020 20202 0245000000000000000000000000000000		zzzzzzzzz Financial		areassassas Financial		mic cost		ial Value
ITEM	Unit	Unit Cost Baht	Quantity	Total cost	%	1000 Baht	%	000 Baht
EARTH WORK Clearing & Grubbing Roadway Excavation(classified) Embankment(Borrowed Material) Slope Protection(Stripe Sodding) (Sodding) (Shot Concrete) (Concrete Block) Sand Mat Excavate Existing	SQ.M CU.M SQ.M SQ.M SQ.M SQ.M SQ.M	1 85 100 6 9 500 450 100	283,050 318,133 94,177 0 7,783	283 0 31,813 565 0 0 3,502	83	**********	90	
Thickness Over 10cm (2Lay) SUB TOTAL	SQ.M	14	,	36,164		30,016		27,014
SUBBASE AND BASE Subbase(Soil Aggregate) Base Coarses(Crush Stone) Shoulder(Soil Aggregate) SUB TOTAL	CU.M CU.M CU.M	190 270 190	10,001	2,700		6,980	50	3,490
SURFACE Asphaltic Prime coat Asphaltic Tack coat Asphalt concrete Surfacing SUB TOTAL	SQ.M SQ.M CU.M	13 7 1,900	63,070	441	83	11,032	50	5,516
(D= 800 m) (D=1000 m) (D=1200 m)	М М М	1,300 1,780 2,445 3,575 1,540	108	192 528 0	83		50	
(D=700m*2) RC Box Culvert(1-1.80*1.80 m) (1-2.10*2.10 m) (1-2.40*2.40 m) RC Bridge Wideing RC Bridge (W=14.0 m) PC Bridge (W=14.0 m)	M M M SQ.M M	5,000 5,900 9,600 89,600 140,000	43 0 0 0 40 0	189 0 0 0 0 3,584				
Bearing Unit Of Bridge SUB TOTAL	Ls	500,000		1,000 6,365		5,283		2,641
INTERSECTION I-Intersection (Signal) I-Intersection (Unsignal) SUB TOTAL	ls Ls	800,000 80,000	1	800 80 880	90	792	90	713
TOTAL (a)	 -			65,110		54,103		39,375
Miscellaneous Works [(a)*7%]	Ls	1		4,558		3,787		2,756
CONTRACT AMOUNT (b)				69,667		57,890		42,131
PHYSICAL CONTINGENCIES [(b)*10%] (c)	Ls	1		6,967		5,789		4,213
ENGINEERING & SUPERVISION (((b)+(c))*10%1 (d) LAND ACQUISITION & COMPENSATION	Ls	. 1		7,663	85	6,514	0	0
Land Acquisition (Average) Conpensation TOTAL (e)	SQ.M Ls	5,200,000	422,300 1	20,735 5,200 25,935	100	20,735 5,200 25,935	100	20,735 5,200 25,935
PROJECT COST [(b)+(c)+(d)+(e)]				110,232		96,128		72,279
AVERAGE COST PER KM	#352 5 55		******	12,180	INNDSEE:	222222200	:252222	::#=====

2) MAINTENANCE COST

Project Road No. NC -1	Na≃	9,300 Baht/Km/year
(Existing Road)	Km=	1.162
	Length =	1.410 Km

Laterite Surface

	ITCHO		Existing		
	ITEMS		Condition	Factor	
1.	A.D.T	A1	101-150	0.13	
2.	Width Of Embankment (Surface & Shoulder)	A3	6.0 m	0.00	
3.	R-O-W Width	в1	. 20 m	0.00	
4.	Traffic Service Operation Topography	82	0 ~ 3 %	0.05	
5.	Drainage Topography	В3	0 - 3 %	0.00	
6.	Bridge Quantity (m/Km)	84	1~20	0.02	
7.	NO. Of Lanes	٠.	2		

Ks (Existing) = $1+0.7(A1+A3)+0.3(B1+B2+B3+B4)$ =	1,112	
Maintenance cost + Overhead = KS * Km * Na * 1.28 =	15,382	Baht/Km/year
Total Cost (Financial) = Length *(Baht/Km/year)=	21,688	Baht/year
(Economic) = =	18,001	Baht/year

Project Road No, NC	-1	Na=	8,200 Baht/Km/year
(Proposed Road)		Km=	1.001
•	Length	=	9.050 Km

Asphalt Pavement

٠.			Proposed Road	1
	ITEMS		Condition	Factor
==== 1.	Surface /Bace Type	====≃ X1	AC	0.00
2.	Subgrade CBR	X2	4 %	0.50
3.	A.O.T	Х3	>5,700	2,25
4	Service Life (year)	Х4	NEW	0.00
5.	Pavement Width (m)	X5	7 m	0.19
6.	R-O-W Width (m)	Y1	50 m	0.05
7.	Shoulder,Access,Median Width (m)	Y2	2.50 m	0.05
8.	Traffic Service Operation Topography	¥3	0 - 3 %	0.00
9.	Drainage Topography	γ4	0 - 3 %	0.00
10.	Bridge Quantity (m/Km)	Y 5	4	0.00
11.	NO. Of Lanes		2	

Ka :	= .	1+0.5(X1+	X2+X3	5+X4+X5	+¥1+Y2+Y3+	+Y4+Y5)≃	2.520	
Mainte	nance	cost + Over					26,476	Baht/Km/yea
Total (Cost	(Financial)	=	Length	*(Baht/Kr	m/year)≔	239,611	Baht/year
	((Economic)	=			=	198,877	Baht/year

Overlay Cost (2004) = 8,270,976 Baht

3) CONSTRUCTION SCHEDULE

Project NC-1

(One Section)

					 .::::::::::::::::::::::::::::::::::			m2:	:=:4:		===	s=2:	====	:===	:==:	:=52	===	225	===	===	. s = :	:===	:===
year and	[Fir	st	Yea	r			•						Sec	ond	Ye	ar				·.
Month Work Items	1	2 3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
Lend Acquisition		2==b:	= .																				
Preparatory Works			===	===	22 =	:																	
Earth Works						===	===	251	==:	===	===	2521	2										
Pavement Works																===	===	===	== =	===	=	٠.	
Bridge Works			-		:					##	===:	535:	:===	1252		===	===	: '					
Miscellaneous Works						===	=#2	====	:22:	=				====	===	2=5			z==	251			
Clearing -Up																					:	(===	.===
Z=====================================	2225		- ====	s==	• ===	- 22	===	===	•	• ===:	===	===		• ===	•	===	-	, 222	===	•	:==:	•	
Percentage Of Disbursement (%)	i i							38	%			•								62	%		
	====	222=1	.9==	===	===	=z=	===	===	===	==:	252:	===		===	===	===	===	z==	===	===		===	===

4) ECONOMIC EVALUATION

Cost and Benefit Flows of the Project Project; NC-1

						(unit ; 100	0 Baht)	
Year	Const- ruction Cost		Total Cost	VOC Saving	Time Saving	Balance	Benefit= Cost=	Sensi. Analysis 0.80 1.20
			*					
1991	n	o	. 0	0	n	O		O
1992	ŏ	ŏ	ō	Ō	ŏ	Ō		0
1993	Ŏ	ō	Ŏ	Ō	ŏ	Ō		0
1994	61,170	. 0	61,170	0	Ó	(61,179)		(73,404)
1995	34,958		34,958	0	. 0	(34,958)		(41,949)
1996	0		181	20.077	46,660	66,556		53,173
1997	0	181	181	19,312	73,124	92,255	100	73,731
1998	0	181	181	18,547	99,587			94,290
1999	0	181	181	17, 781	126,051	143,651		114,849
2000	0	181	181	17,016	152,514	169,350		135,407
2001	0	181	181	16,251	178,978			155,966
2002	0	181	181	14,344	143,182	157,345		125,804
2003	0	181	181	12,436	107,387	119,642		95,641
2004	0	8,452	8,452	10,529	71,591	73,668		55,554
2005	0	181	181	8.621	35,796	44,236		35,317
2006	0	181	181	6,714	0	6,533		5,154
2007	0	181	181	6,714	. 0	6,533		5,154
2008 -	0	181	181	6,714	0	6,533		5,154
2009	0	181	181		0	6,533		5,154
2010	0	181	181	6,714	0	6,533		5,154
Total	96,128	10,985	107,113	188,484	1,034,870	1,116,242		850,148
					IRR =	69.92%		52.76%

NPV (i;12% 322043 B/C (i;12% 6.3

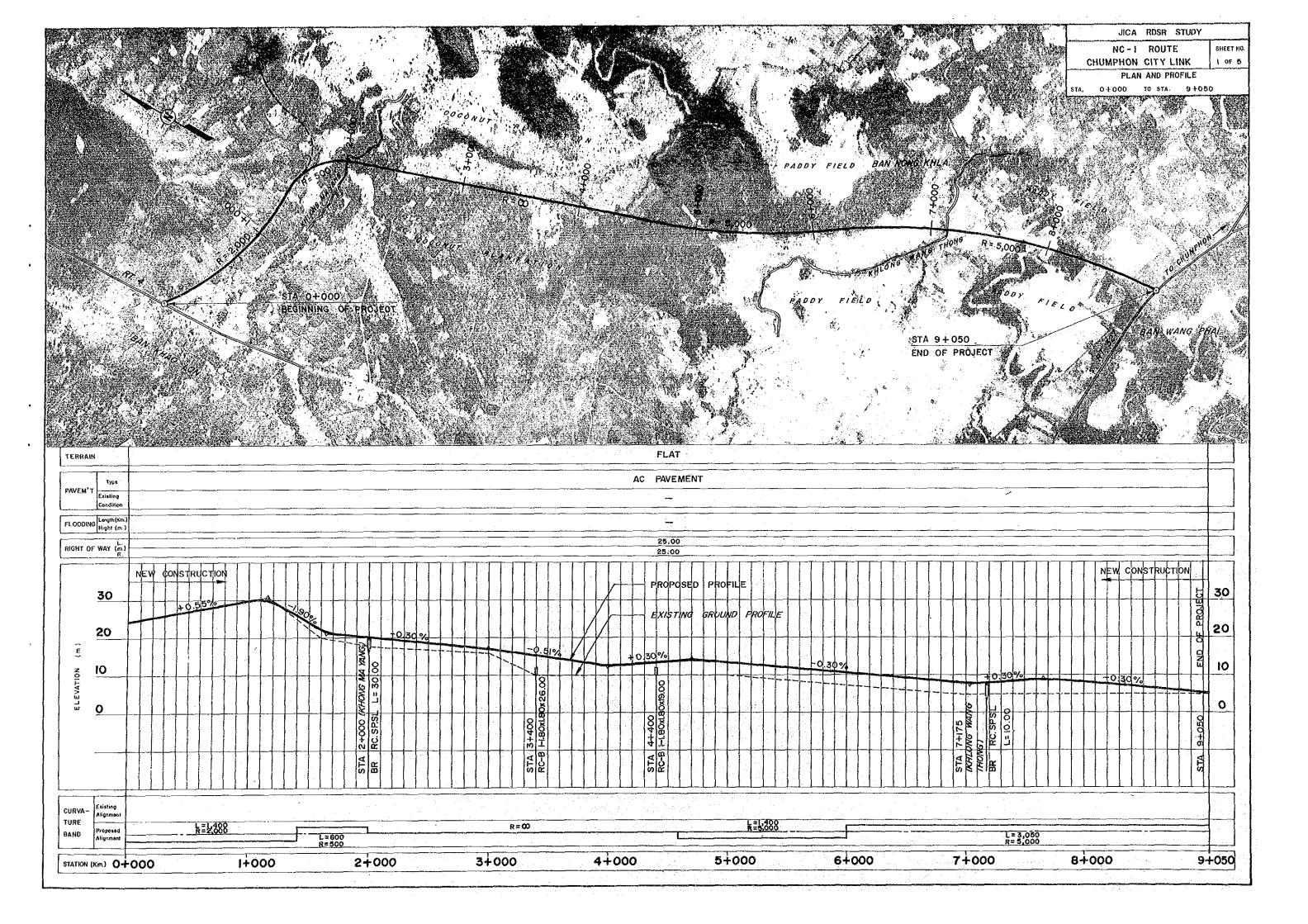
Drawings 2.7

Drawing

SHEET NO.	LIST OF DRAWINGS
1.	Plan and Profile
2.	Plan of Intersection
3.	(A) Reinforced Concrete Slab Bridge
4.	Box Culvert
5.	Pipe Culvert

ABBREVIATION AND SYMBOLS FOR PROFILE AND PLAN

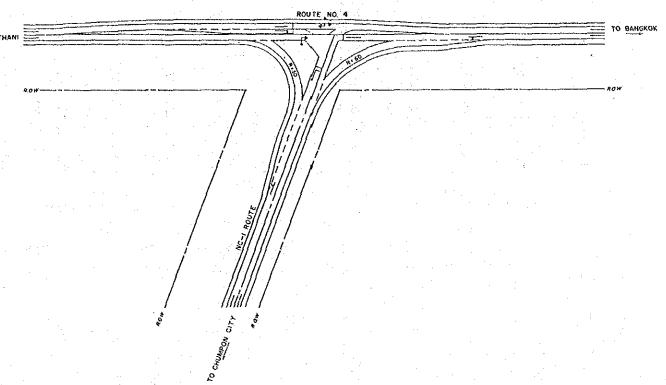
: Alignment of Proposed Route : Proposed Bridge : Proposed Box Culvert _ <u>∆</u>HMΓ : High Water Level : Water Level No. : Number R : Radius of Curvature L

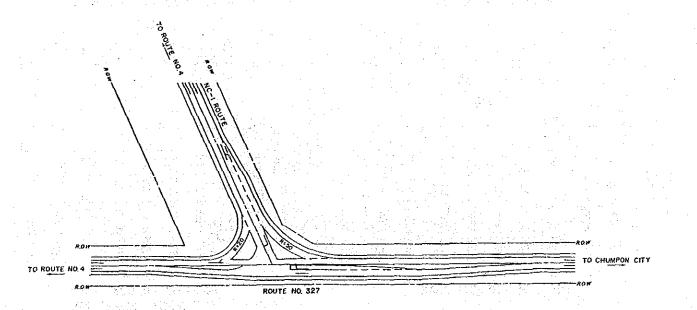

: Length of Curve

: Reinforced Concrete Bridge BR.RC.SP.SL L (Bridge Length)

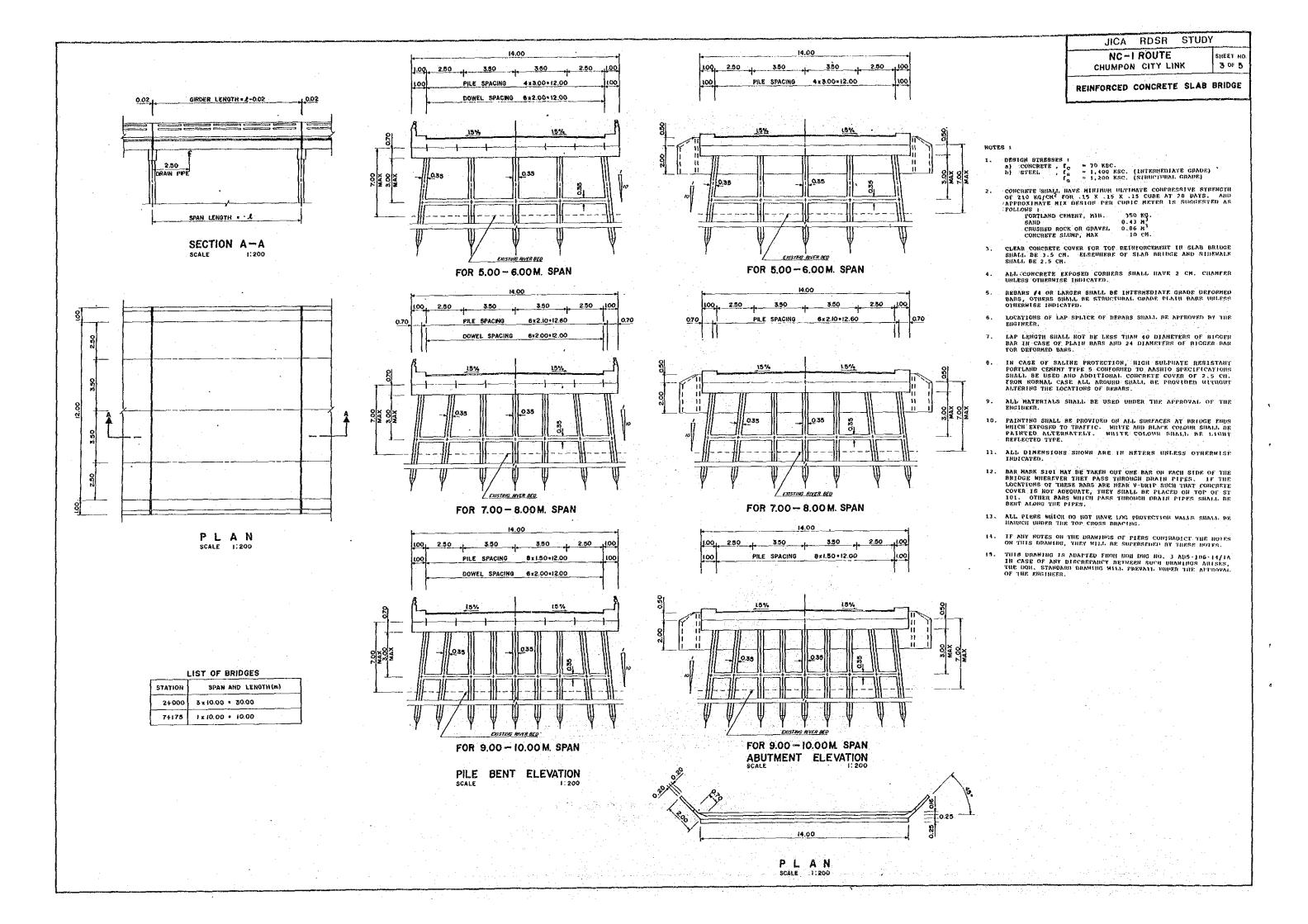
BR.PC.GRDR L : Prestressed Concrete Bridge (Bridge Length)

BR.ST.SP.TR L : Steel Bridge (Bridge Length)


RC-B m - n x a x b x i : Box Culvert (No. of Locations - No. of Cells x Clear Span x Depth x Length)

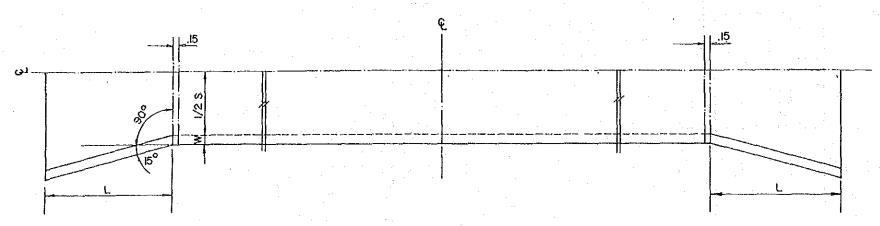

JICA RDSR STUDY

NC-1 ROUTE SHEET NO CHUMPON CITY LINK 2 OF 5

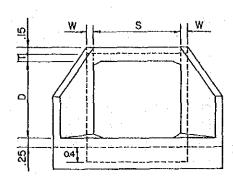


Intersection with Rt.41 Scale 1:2000

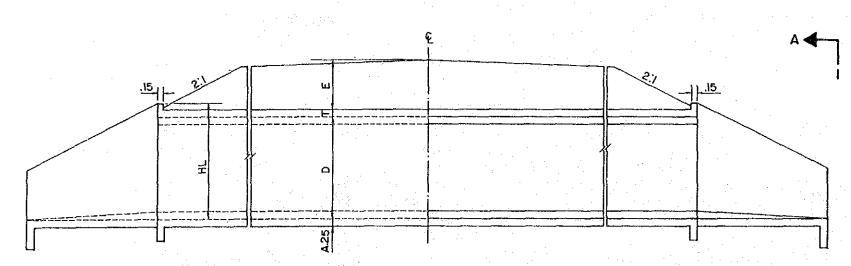
Intersection with Rt.327 Scale 1:2000

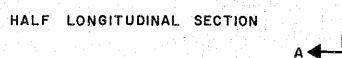


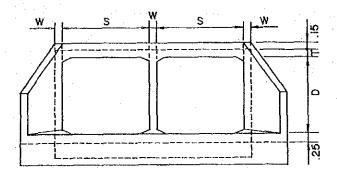
	R	α	Y	-		1	1	١	Æ	D	Т
1	D	U.	Λ		U	u	ь.	٠,	/ C	П	. 1


JICA RDSR STUDY

NC-I ROUTE SHEET NO.
CHUMPON CITY LINK 4 OF 5

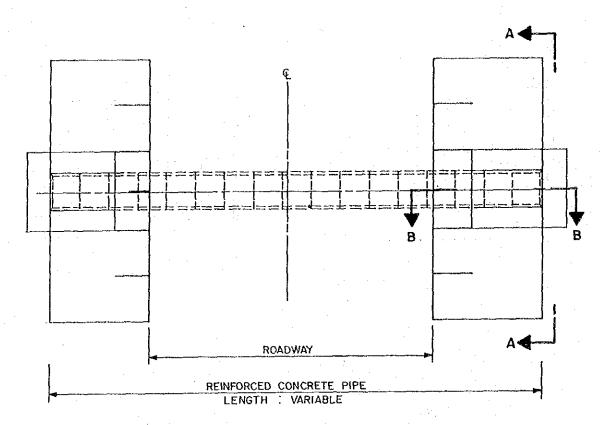

BOX CULVERT


HALF LONGITUDINAL PLAN

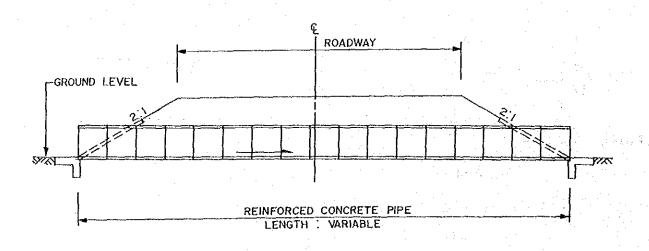


SINGLE TYPE

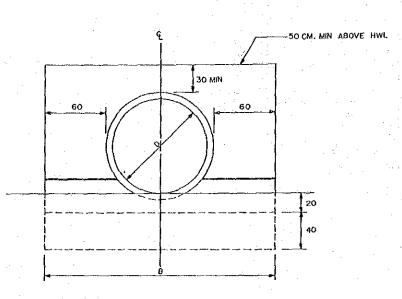
HALF LONGITUDINAL ELEVATION

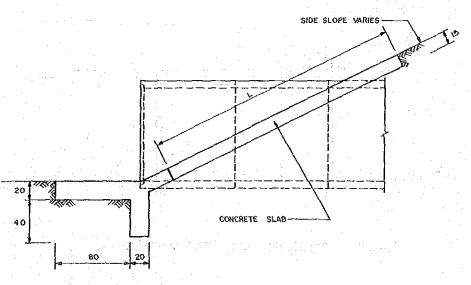

DOUBLE TYPE

SECTION A-A


Ţ	21	D	F	C	111	V	F	₹٣

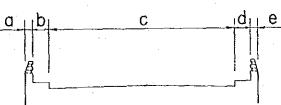
JICA RDSR STI	JDY
NC-I ROUTE	SHEET NO. 5 OF 5


PIPE CULVERT


PLAN

PROFILE

SECTION A-A


SECTION 8-8

List of Bridge

LIST OF BRIDGES (NC-1:F1)

(Fig.)	Remarks	Span and Length (m)	Width (a+b+c+d+e:m)	Structural System	Materials	Station
	New construction	3*10.0=30.0	0.3+0.7+12.0+0.7+0.3=14.0	SP.SL	RC	2+000
	New construction	1*10.0=10.0	0.3+0.7+12.0+0.7+0.3=14.0	SP.SL	RC	7+175

RC: Reinforced Concrete Bridge
(2) Structural System
SP.SL: Simply Supported Slab

List of Culvert

LIST OF BOX AND PIPE CULVERT

	Out Vicion	CULVERT	SIZE (m)	NO. of	CU	LVERT LENG	TH (m)	
STATION	CULVERT	PIPE BOX		LOCATIONS		EXTENDED	NEW	
	ТҮРЕ	NO. of ROW x DIAMETER	NO. of CELLS (CLEAR SPAN x DEPTH)	LUCATIONS	EXISTING	CONST- RUCTION	CONST- RUCTION	
0+000-3+000 3+000-5+000 3+400 4+400	Pipe Pipe Pipe Pipe Box Box	1x⊙0.60 1x⊙1.00 1x⊙0.80 1x⊙0.60	1(1.80x1.80) 1(1.80x1.80)	15 4 2 2 1 1			20.0 30.0 30.0 30.0 26.0 19.0 24.0	
5+500-7+500 7+500-9+000	Pipe Pipe Pipe Pipe	1x⊙0.60 1x⊙1.00 1x⊙0.80 1x⊙0.60		4 2 2			24.0 24.0 24.0 24.0	

Chapter 3

Surat Thani Additional Lane (AD-1)

3. Surat Thani Additional Lane (AD-1)

3.1 Natural Conditions and Land Use

The project is to construct additional two lanes along Route 401 around Surat Thani city from the intersection with Route 41 in the west to the one with Route 4142 in the east over a total distance of 41 kilometers. A part of the project highway passes through the Tapi River basin which tends to have soft ground especially near the estuary.

The area receives the north-east monsoon during the period of November - January. Mean annual rainfall is 1,600 mm. The project highway is located in a flatland. General Geology belongs to clay silt.

Agricultural land use is prevailing in the project area, accounting for 95 % of the whole area. Paddy field is the most popular land use along the highway. Residential land use has been developing in a corridor between Phumphin and Surat Thani.

Residential Land	5	8
Paddy Field	50	8
Rubber Plantation	10	ક
Orchard & Vegetable	35	옿

Land price is in the range of B20,000 - 1,000,000 per rai with annual rate of hike at around 10 % in recent years. The highest land price was marked in the outskirts of Surat Thani municipality.

AD-1-2: The alternative route is planned in the northern part of the existing Route 401 directing to Surat Thani Airport. Most of the land along the route is used for paddy production. Land price is in the range of B16,000 - 40,000 per rai.

3.2 Socio-Economic Conditions

Population in the project area reached 271,900 persons in 1989 as shown in Table 3.2.1. Phumphin had the highest population density of 343 persons per square kilometer, followed by Surat Thani and Kanchanadit. During the period 1980 - 1989, Phumphin attained the highest population growth rate of 2.4 %.

Agriculture sector had the highest employment share of 66 %, followed by service sector of 19 % and manufacturing sector of as high as 15 %. Employment share of manufacturing sector was outstandingly high when compared with those of the other project areas.

Table 3.2.1 POPULATION IN AD-1 CORRIDOR

	Phumphin	М.	Surat Thani	Kanchanadit
Area (km2)	242.5		1,201.0	1,650.0
Total Pop. (1989)	83,217		112,646	76,102
Pop. Density (per km)	2) 343		94	46
Pop. Growth Rate (%	per annum)			
1980-89	2.44		1.78	1.72

3.3 Traffic Conditions

The project covers a section of about 41 kilometers from the intersection between Route 41 and 4153 to the intersection between Route 401 and 4142, including Route 4153 (F3 Standard), 4008 (SD) and 401 (SD/S1/S3) but excluding the newly completed four lane highway section (SD about 9 kilometers) of Route 4008 and 401. The present AADT surpassed the design traffic capacity on about three-fourth of the project highway section.

The roadside OD survey carried out near the Tha Thong Bridge on Route 401 revealed that 22 % of trucks on the highway carried construction materials, 20 % manufactured products, 10 % minerals, and 9 % petroleum products. Most of the construction materials comprising mainly sand and gravel were carried by 6 and 10 wheeled trucks. Nearly 100 % of minerals and 50 % of petroleum products were carried by 10 wheeled trucks. As to trip purposes of passengers, 58 % of cars was for private purpose trip and 34 % for work and business trip. Percentage share of tourism purpose trip was the third highest following Phuket and Phangnga though the share was as low as 8 %.

The project aims to increase the traffic capacity of the above mentioned sections by constructing additional two lanes along the existing highways (Project No. AD-1-1). As an alternative to the project, however, the study takes account of the new highway proposed by the Department of Town and Country Planning (DTCP) connecting Surat Thani Airport directly to Surat Thani city to the north of the existing highways. It is assumed in this case that the existing highways remain as they are now (Project No. AD-1-2).

The future traffic volume of AD-1-1 was estimated as shown in Fig. 3.3.1. Traffic volume in 1996 was estimated at 16,100 AADT on Route 4153 and 4008, 9,000 - 10,700 AADT on Surat Thani Bypass, and 14,000 AADT on the immediate east section of Surat Thani Bypass on Route 401. The increasing traffic volume on Route 4153 implies that the improvement of Route 4153 will induce substantial traffic diversion from Route 401 which crosses mountain area.

The future traffic volume of AD-1-2 was estimated as shown in Fig. 3.3.2. Traffic volume in 1996 was estimated at 7,400 - 7,500 AADT on the new DTCP highway and 6,000 AADT on Route 4153.

3.3 Surat Thani Additional Lane (AD-1)

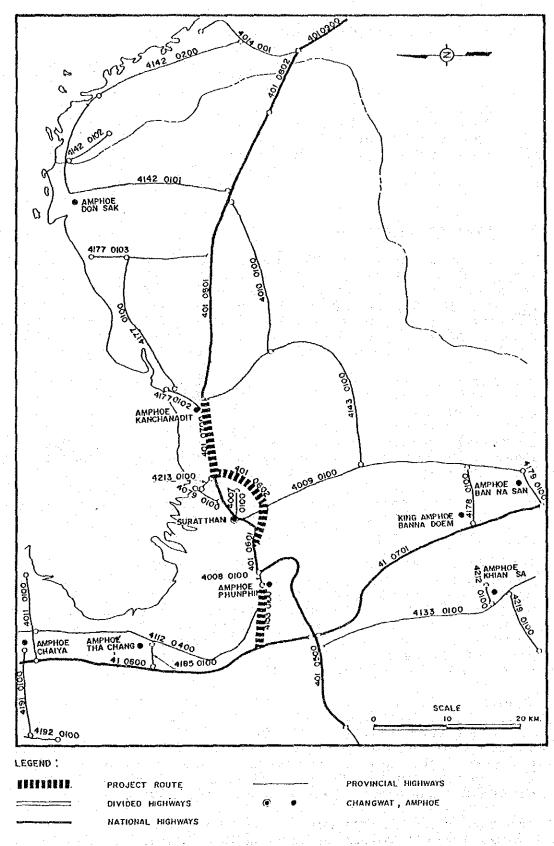


Fig. 3.1.1 SURAT THANI ADDITIONAL LANE (AD-1-1)

Fig. 3.1.2 SURAT THANI ALTERNATIVE ROUTE (AD-1-2)

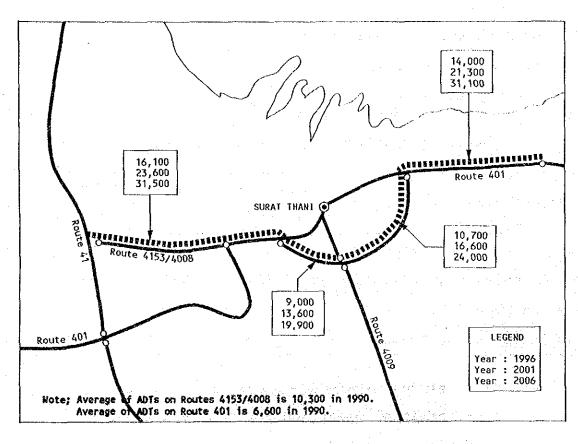


Fig. 3.3.1 TRAFFIC VOLUME ON AD-1-1

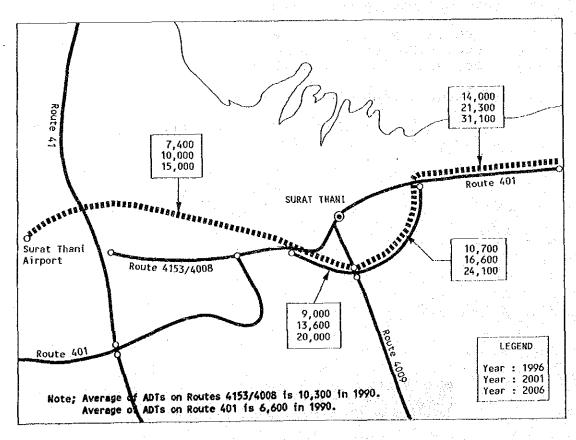


Fig. 3.3.2 TRAFFIC VOLUME ON AD-1-2

3.4 Project Evaluation

1) AD-1-1

The EIRR was calculated at as high as 57.3 % though it was 34.2 % in the pre-feasibility study. This is mainly due to the shortening of the project length from 60.3 kilometers to 32.0 kilometers just concentrating on the sections adjacent to Surat Thani city with greater traffic than the sections distant from the city.

This project is judged viable. Due to a substantial amount of land acquisition cost, however, the viability would be influenced to a considerable extent by the land price hike in the future if the implementation delays.

The highway lies in a flat land mostly with paddy and orchard fields. No significant effects on environment is envisaged because the highway follows the existing alignment without any intrusion into new land. Pavement of soil aggregate shoulders, near city area in particular, will be a good way to reduce accidents by leading motorcycle traffic to the shoulders.

2) AD-1-2

The unique purpose of this project compared with that of AD-1-1 is to offer better transport linkage between Surat Thani Airport and Surat Thani city. The EIRR was calculated at 58.1 %, slightly higher than that of AD-1-1. This alternative project is judged viable as well.

It is likely that better linkage between the airport and the city would contribute to stimulate economic development in the vicinity of Surat Thani city. AD-1-2 would be preferable to AD-1-1 in view of the possible contribution to the economic development.

The new section lies in a flat terrain in the Ta Pi river basin. No significant effects on environment is envisaged though drainage system should be well developed so as not to disturb water flow.