FLOOD DAMAGE ANALYSIS

1. INTRODUCTION

The flood damage analysis in this stage was conducted focussing on the maximum inundation areas of priority projects for the Feasibility Study which were identified in the Master Plan Study, namely, the Upper Agno Project and the Pantal-Sinocalan Project.

The objectives of the flood damage analysis were the additional study on the actual flooding condition in the Pantal-Sinocalan River Basin as well as the estimation of the annual average flood damage under the condition without project as the basis for the planning and the evaluation of flood control measures for two (2) projects mentioned above.

In the previous stage, the flood damage analysis was conducted with the same purposes but it covered all the study area, namely all the Agno River Basin and the Allied River Basin. The main activities in the previous study are as follows:

- (1) Preparation of flood maps for the 1972 and 1984 floods, both of which brought about serious flood damage to the entire study area;
- (2) Estimation of the maximum inundation area which has 2,465 km² and covers fifty-two (52) cities/municipalities in Regions I and III;
- (3) Division of the maximum inundation area into 2,465 meshes of 1.0 km square for the estimation of flood damage;
- (4) Estimation of assets such as the number of houses/buildings, area of agricultural land use which is classified into eight (8) commodities and fishpond, and length of railway, roads and irrigation canals in all the meshes;

- (5) Determination of the damage value and estimation of damage rate of each asset, which are functions of inundation depth and duration;
- (6) Estimation of the indirect damage which consists of suspension of economic activities, additional transportation cost and costs for rescue/relief activities in addition to the direct damage mentioned above;
- (7) Estimation of the flood damage corresponding to seven (7) probable floods with return periods of 1.05, 2, 5, 10, 25, 50 and 100-year; and
- (8) Computation of annual average flood damage based on the probable flood damage.

Based on the result of the previous study, additional study with the following contents was conducted in the stage of the Feasibility Study to attain the objectives mentioned above.

- (1) Preparation of the flood map in the Pantal-Sinocalan River Basin for the 1989 September flood based on the interview survey along the Pantal-Sinocalan River and the flood map prepared by the AFCS;
- (2) Estimation of the maximum inundation area for the Upper Agno Project and the Pantal-Sinocalan Project;
- (3) Count/measure of number, acreage and length of assets consisting of houses/buildings, agricultural commodities, and infrastructures in 1.0 km meshes made on the maps of 1:25,000 scale which were newly prepared for the Feasibility Study;
- (4) Adjustment of city/municipal total assets distributed in the related meshes with the statistical data published by the related agencies;

- (5) Review of floor space of houses/buildings by the new maps with a scale of 1:5,000 as the basis for estimation of the damage value in Dagupan City and Calasiao in which the floor space are judged wider than the average in the study area estimated in the previous study;
- (6) Computation of the flood damage from the revised mesh data, as well as of the unit value and damage rate for each asset on seven (7) probable floods; and
- (7) Estimation of the annual average flood damage based on the probable flood damage consisting of the direct damage and the indirect damage.

2. FLOODING CONDITION OF THE PANTAL-SINOCALAN RIVER BASIN

In the Master Plan Study, flood maps delineating the inundation areas of the 1972 and 1984 floods were prepared by the Study Team in cooperation with the AFCS. In both floods, water of the Agno River overflowed particularly in the upper reaches and ran into the Allied Rivers; thus, bringing about tremendous damage in most of the low-lying Allied River Basins and in areas along the Agno River and its tributaries.

In the 1989 September flood, heavy rainfall of some 5-year return period occurred only in the Allied River Basins. Consequently, the flood map is judged to be very helpful to formulate the flood control measures for the Pantal-Sinocalan River under the condition that the flooding of the Upper Agno River is prevented by the measures which will also be formulated in this Study.

Fig. 2.1 presents the inundation area due to the flooding Pantal-Sinocalan River in the 1989 September flood, which was the determined by the Study Team through site visits and interview-surveys as well as the information from the AFCS Office. The inundation area totaled 55.19 km² covered about 6.03 km² in the and the flood Urdaneta and 49.16 km² municipality of in the municipalities of Sta. Barbara, Calasiao and Dagupan City. Water depths varied from 0.50 m in residential and urban centers and 2.0 m in low-lying areas.

3. IDENTIFICATION OF TARGET ASSETS

3.1 Maximum Inundation Area

The maximum inundation areas of the two (2) Priority Projects selected for the Feasibility Study are located in the following river basins.

Project	Maximum Inundation Area
Upper Agno	Upper Agno (180 Km ²) (upstream from Bayambang) Pantal-Sinocalan (879 Km ²) Cayanga-Patalan (205 Km ²)
Pantal-Sinocalan	Pantal-Sinocalan (879 Km ²)

The maximum inundation area related to the Upper Agno Project has 1,264 km² and extends in thirty (30) municipalities and two (2) cities, while that of the Pantal-Sinocalan Project has 879 km² and includes fifteen (15) municipalities and two (2) cities, as tabulated in Table 3.1 and shown in Fig. 3.1.

The same mesh partition employed in the previous study was applied in this study, but grouping of the meshes into blocks, which are units to evaluate the flood control effects, was made more precisely so that the effects of the planed flood control facilities can be evaluated in more detail. The following table tabulates the number of blocks of three (3) maximum inundation areas.

Maximum Inundation Area	Number of Blocks
Upper Agno River Basin	6
Pantal-Sinocalan River Basin	24
Cayanga-Patalan River Basin	3

3.2 Houses and Buildings

Maps with a scale of 1:25,000 were prepared newly for the Feasibility Study along the Upper Agno River and the Pantal-Sinocalan River. Based on the new maps, the dots which show the location of houses/buildings were the number of houses/building in meshes covered by counted to revise the new maps. In this revision, the adjustment was made total number in related twenty-three (25) that the cities/municipalities is equal to that in Table 3.2 which are estimated based on the census of the population. Based on the revised number of schools and commercial buildings were distributed to each assuming that the number of school and commercial buildings is proportional to the population.

Fig. 3.3 indicates the population distribution per meshes and Table 3.3 lists the population and number of houses, schools and commercial buildings per blocks in the maximum inundation areas for the Priority Projects.

As shown, the total population in the maximum inundation area for the Upper Agno Project is 1,064.9 thousand, while that for the Pantal-Sinocalan Project is 756.0 thousand. Among them, the municipality with the highest population is Dagupan City with 111.2 thousand persons, followed by San Carlos City with 101.0 thousand persons included in the maximum inundation areas of both the projects.

3.3 Agricultural Commodities and Fish Culture

The agricultural land use was revised from the acreage measured on the with a scale of 1:25,000. Adjustments were made so that the and fishpond in acreage of each commodity twenty-five (25) cities/municipalities are almost equal to the land use tabulated in obtained from the City/Municipality Profile of Table 3.4, which was provincial offices of the Department of 1989/1990 furnished by the Agriculture. Agricultural commodities are classified into irrigated paddy, rainfed paddy, sugarcane, corn, tobacco, root crop, legume crops to estimate flood damage. Root crop, legume and other crops include the following crops:

Root Crop: Camote, Casava, Gabi, Garlic, Onion, Peanut, Togue,
Turnip

Legume: Beans, Mungo

Other Crops: Ampalaya, Black pepper, Cotton, Eggplant, Guaple,
Jute, Okra, Pechay, Squash, Sweet Melon, Sweet
Potato, Tomato, Upo, Watermelon, Yam

Fig. 3.4 indicates the distribution of the agricultural land use per meshes and Table 3.5 shows the agricultural land use summarized according to blocks in the maximum inundation areas for the Priority Projects. Out of the 1264 $\rm km^2$ of total maximum inundation area, agricultural land accounts for 62.3% or 788.0 $\rm km^2$, and paddy fields total 586.0 $\rm km^2$, occupying 74.4% of the total agricultural land.

3.4 Infrastructures

The infrastructures for which length was measured on the new maps were roads, railways and irrigation canals. The roads indicated in the new maps of 1:25,000 were classified into the four (4) classifications; namely, national, provincial, city/municipal and barangay roads, based on the road map of Pangasinan area prepared by the DPWH. The lengths of these roads in each mesh were obtained as summarized in Table 3.6. The lengths of railways and irrigation canals were similarly measured on the new maps, as shown also in Table 3.6. Fig. 3.5 indicates the total length of those infrastructures of all meshes in the maximum inundation area.

- 4. PROBABLE DAMAGE AND ANNUAL AVERAGE FLOOD DAMAGE
- 4.1 Estimation Method of Flood Damage
- 4.1.1 Damage to Houses/Buildings

Flood damage to houses/buildings was estimated according to the following formulae:

Residential House Damage = (Number of Houses) x (Unit Value of House Structure) x (Damage Rate)

Household Effects Damage = (Number of Houses) x (Household Effect
Value/House) x (Damage Rate)

Non-Residential Building Damage = (Number of Building) x (Unit Value of Building Structure) x (Damage Rate)

the unit values of residential house As non-residential and 48,700 pesos and buildings, 269,000 pesos were used respectively in Dagupan City and Calasiao, while 29,600 pesos and 154,000 pesos were applied in other area as tabulated below. The cost per square meter of each class/quality, depreciation, distribution and average floor space in other area were obtained from related agencies in previous study. However, in Dagupan City and Calasiao where the floor space of houses/buildings are wider than that in other area, the floor space was measured on the maps with a scale of 5,000 which were made newly for the Feasibility Study and the unit value mentioned above was determined newly in this study as tabulated below.

				Urb	an Area	Oth	er Area
	Unit	Depreci-	Distri-	Floor	Damage	Floor	Damage
Class/	Cost	ation	bution	Space	Value	Space	Value
Quality	(P/m2)	(%)	(%)	(m2)	(P/Unit)	(m2)	(P/Unit)
Residential House							
- High Quality	3,900	50	4.3	80	6,708	55	4,612
- Mid. Quality	2,400	50	50.3	60	36,216	35	21,126
- Low Quality	850	50	45.4	30	5,789	20	3,859
Total			100.0		48,713		29,597
Non-residential B	uilding						
- High Quality	3,900	50	11.0	210	45,045	120	25,740
- Mid. Quality	2,400	50	89.0	210	224,280	120	128,160
Total			100.0		269,325		153,900
			18 miles				

The unit value of household effects was set at 8,000 pesos and calculated as shown in the following table.

Class	Cost	Depreci- ation	Distri- bution	Damage Value
	(P/Unit)	(%)	(%)	(P/Unit)
- High	43,000	50	4.3	925
- Middle	22,000	50	50.3	5,533
- Low	6,500	50	45.4	1,476
Total			100.0	7,933

The inventory stock/equipment value was estimated at 83,000 pesos based on the information furnished by the DPWH and an insurance company, as well as the questionnaire carried out at the sites. The damage rate of each item mentioned above are tabulated in Table 4.1.

4.1.2 Agricultural Damage

Agricultural damage consists of damage to crops, fishponds and livestock as discussed hereinafter.

(1) Crop Damage

The degree of damage on crops varies from month to month, depending on the cropping pattern and the time when flooding occurs. Therefore, annual damage value should be taken and this is estimated as aggregate of the expected net income and accumulated expenditure for the production spent until the time when flood takes place, where flood frequency and cultivated area in each month have to be taken into account, as expressed by the following formula.

Dec.

Crop Damage => (Area) x (Damageable Value/ha) x (Damage Rate)

i⇒Jan.

where:

Damageable Value = $(RP \times FF \times (RA \times DC + NI))$

RP = Ratio of area planted on the month to total area for the crop

FF = Flood frequency on the month

- RA = Ratio of damageable cost accumulated from the planting till the month to the total damageable cost
- DC = Damageable cost which is obtained from the production cost by deducting cost for harvesting and processing
- NI = Net income obtained from multiplying yield with price and deducting production cost

Crop	Damageable Value
·	(P/ha)
Irrigated Paddy	9,452
Rainfed Paddy	4,726
Sugarcane	7,093
Corn	115
Tobacco	61
Root Crop	2,675
Legume	484
Other Crops	193

The damageable value of each crop mentioned above are shown in Table 4.2, together with cropping pattern and other figures, while damage rates are shown in Table 4.3 classifying the crops into paddy, upland crop and tobacco.

(2) Fishpond

Damage to fishpond consists of the damage to the fish stock and the facilities, and is calculated as follows:

Fish Stock Damage = (Area) x (Fish Value/ha) x (Damage Rate)

Facility Damage = (Area) x (Damageable Value) x (Damage Rate)

The fish value was set at 16,600 pesos/ha as shown in the following table, while the damageable value of facility (dike) was assumed at 80,000 pesos/ha, based on interview survey with BFAR, DA and fishpond operators.

Stage	Pieces	Prices	Value
	of Fish	of Fish	of Fish
	(Pc./ha)	(Peso/Pc.)	(Peso/ha)
Fry	3,000	0.6	1,800
Middle	2.700	5.7	15,429
Last	2,400	13.5	32,420
Average			16,543

Regarding the damage rate for the fish stock, it is assumed that when the inundation depth exceeds 10.0 cm above pond banks, 90% of the fish stock is lost, while the damage rate for the facilities is assumed to vary from 0.5% to 40% corresponding to the return period of floods as shown in Table 4.4.

(3) Livestock

Damage to livestock was estimated at 7% of the crop damage based on the actual damage records of the five (5) floods that occurred between 1974 and 1986.

4.1.3 Damage to Infrastructures

Flood damage to roads, railways and irrigation canals was estimated as follows:

Damage = (Length) x (Unit Value) x (Damage Rate)

Regarding the water supply facility and telecommunication facility, the following equation was applied:

Damage = (Number of Population) x (Unit Value/Person) x (Damage Rate)

The unit values of road, railway, irrigation canal, water supply facility and telecommunication facility were obtained from the interview-survey with DPWH, PNR and NIA, as follows:

Item	Unit Value
Martin Ma	(Peso)
National Road	1,490/m
Provincial Road	1,172/m
City/Municipal Road	1,172/m
Barangay Road	352/m
Railway	2,800/m
Irrigation Canal	638/m
Water Supply Facility	350/Person
Telecom. Facility	10/Person

The damage rate for infrastructures was determined based on the flood damage record of each infrastructure. Table 4.4 presents the damage rates which vary with the extent of flooding.

4.1.4 Indirect Damage

The indirect damage consists of loss on economic activity, additional transportation cost due to the change of traffic route and rescue/relief activity cost.

The loss on economic activity was obtained by the following equation.

Loss on Economic Activity = (Suspension Days of Economic Activity) x

(Number of Affected Persons) x (GRDP per
Capita) / (Economic Activity Days)

Suspension days of economic activity was assumed as shown in the following table, corresponding to the magnitude of floods based on the interviews with officials of the AFCS and the DPWH, as well as the inhabitants. GRDP per capita in 1989 was 9,480 pesos, and as the economic activity days of a year, 300 was assumed.

The additional transportation cost was assumed constant at 590,000 pesos in spite of the magnitude of the flood based on the information obtained from the AFCS and the DPWH, while the rescue/relief activity cost was estimated at 5% of the total direct damage according to the actual percentage for the seven (7) floods that occurred during 1972 to 1988.

The following table shows three (3) kinds of indirect damages, total indirect damage and percentage of total indirect damage to the total direct damage, all of which were estimated for the maximum inundation area of the Master Plan.

Return	Economic	Affected	Indirect	Indirect	Indirect	Indirect	Direct	Indirect D./
Period	Susp.	Persons	Damage 1	Damage 2	Damage 3	Damage	Damage	Direct D.
(Year)	of Days	(1000 ₽)	(Mi1. ₽)	(Mil. P)	(Mil. ₽)	(Mil. P)	(Mil. ₽) (%)
1.05	1	937	29.6	0.6	32.3	62.5	646.4	9.7
2	2	1,055	66.7	0.6	49.0	116.3	979.6	11.9
5	6	1,175	222.8	0.6	75.6	299.0	1,512.0	19.8
10	9	1,369	389.3	0.6	98.6	488.5	1,969.8	24.8
25	14	1,406	622.0	0.6	127.5	750.1	2,549.8	29.4
50	18	1,435	816.2	0.6	150.1	966.9	3,001.4	32.2
100	21	1,557	1.033.2	0.6	174.6	1,208.4	3,492.4	34.6

Note: Indirect Damage 1: Loss on economic damage

Indirect Damage 2 : Additional transportation cost
Indirect Damage 3 : Rescue/relief activity cost

Based on the above results, the indirect damage in the maximum inundation area for the Priority Projects is assumed to be proportional to the total direct damage.

4.2 Probable Flood Damage and Annual Average Flood Damage

The probable flood damage corresponding to the floods in seven (7) probabilities was calculated separately for the maximum inundation areas of the Upper Agno Project and the Pantal-Sinocalan Project by the method mentioned before. The annual average flood damage was estimated by the following formula based on the flood damage for each probable discharge.

where:

D(Qi-1), D(Qi): flood damage caused by floods with Qi-1 and Qi discharge, respectively.

P(Qi-1), P(Qi): Probabilities of occurrence of Qi-1 and Qi discharges, respectively.

: number of floods applied

4.2.1 Maximum Inundation Area for the Upper Agno Project

The probable flood damage to the maximum inundation area for the Upper Agno Project, including the indirect damage, is tabulated in Table 4.5 and the annual flood damage per blocks is indicated in Table 4.6. A flood of 10-year return period affects 793 thousand persons in the flooded area of 919 Km² and causes the damage of 1,196 million Pesos at the 1989 price level. The annual average flood damage is estimated at 457.7 million Pesos at the same price level.

4.2.2 Maximum Inundation Area for the Pantal-Sinocalan Project

probable flood damage and annual average flood damage The in inundation for the Pantal-Sinocalan Project the maximum area respectively. Because of a flood of 4.8, indicated in Tables 4.7 and thousand persons are affected and flood 745 return period, is estimated at 985 million pesos in the flooded area of 868 ${\rm Km}^2$ at the 1989 price level. The annual average flood damage is estimated at 504.4 million Pesos at the same price level.

TABLES

Table 3.1 CITIES/MUNICIPALITIES IN MAXIMUM INUNDATION AREA

+ · · · · · · · · · · · · · · · · · · ·	· Admidudas	Max	imum Inundati	on Area (Kı	m2)
Name of City/ Municipality	Administ- rative Area (Km2)	Upper Agr & Allied	no Upper Agno	Pantal- Sinocalan	, ,,
Alcala	36.5	13	13	0	0
Asingan	66.6	67	30	37	0
Basista	15.6	16	0	16	0
Bautista	126.3	6.	6	0	Ó
Bayambang	75.2	57	17	40	0
Binalonan	77.6	61	0	41	20
Binmaley	61.2	62	0	62	0
Calasiao	53.4	54	. 0	54	0
Laoac	40.5	41	0	0	41
Lingayen	67.7	29	0	29	0
Malasiqui	127.	92	4	88	0
Manaoag	27.2	19	0	0	19
Mangaldan	44.8	45	0	30	15
Mapandan	30.	30	0	19	11
Pozorrubio	136.6	32	. 0	0	32
Rosales	68.4	8	8	0	. 0
San Fabian	92.4	11	0	0	11
San Jacinto	39.1	28	0	0	28
San Manuel	133.7	52	36	16	0
San Nicolas	210.2	1	1	0	Õ
Sta. Barbara	77.4	69	0	69	ő
Sta. Maria	69.5	28	28	0	0
Sto. Tomas	8.3	5	5	Ö	0
Sison	97.7	12	0	0	12
Tayug	51.3	15	15	0	0
Urbiztondo	81.8	58	0	58 ⁻	. 0
Urdaneta	121.	111	0	105	. 0
Villasis	75.8	60	16	44	0
Dagupan City	37.2	38	0	38	0
<i>D</i> agupan City San Carlos City		133	0	133	0
	140.5	133	_	133	0
Camiling Rosario	72.8	10	1 0	0	10
Total		1264	180	879	205

Table 3.2 POPULATION AND NUMBER OF HOUSES
IN CITIES/MUNICIPALITIES OF MAXIMUM INUNDATION AREA
OF UPPER AGNO AND PANTAL-SINOCALAN RIVER BASINS

City/ Municipality	Area (Km2)	Popu- lation	House (No.)	School (No.)	Commer- cial (No.)
Alcala	13	17788	2965	55	36
Asingan	67	41103	6851	77	79
Basista	16	19984	3331	39	38
Bautista	6	5512	919	8	11
Bayambang	57	60140	10023	133	117
Binalonan	41	20856	3478	44	43
Binmaley	62	54312	9052	120	103
Calasiao	54	58175	9696	102	114
Lingayen	29	40944	6825	79	79
Malasiqui	92	57714	9619	117	108
Mangaldan	30	35435	5905	65	70
Mapandan	. 19	13273	2212	37	26
Rosales	8	6434	1072	14	13
San Manuel	52	22082	3680	46	42
San Nicolas	1	438	7.3	1	1
Sta. Barbara	69	39151	6525	78	76
Sta. Maria	28	12154	2026	36	23
Sto. Tomas	5	9540	1590	23	19
Tayug	15	6980	1163	18	14
Urbiztondo	58	26409	4401	39	52
Urdaneta	105	76489	12748	106	154
Villasis	60	38111	6352	66	74
Dagupan City	38	111196	18533	161	223
San Carlos City	133	101029	16839	338	195
Camiling	1	1308	218	2	3
Total	1059	876557	146096	1804	1713

Table 3.3 POPULATION AND NUMBER OF HOUSES IN BLOCKS OF MAXIMUM INUNDATION AREA

•					Commer-
	Area	Popu-	House	School	cial
Block No.	(Km2)	lation	(No.)	(No.)	(No.)
Jpper Agno Ri	ver Bas:	 in	***************		
90	7	444	74	0	0
95	37	16322	2720	34	33
120	73	29826	4971	74	58
130	5	3152	525	6	6
140	55	66481	11081	163	132
170	3	3737	623	7	8
Sub-total	180	119962	19994	284	237
Pantal-Sinoca	lan Rive	er Basin			
30	37	19279	3214	40	37
50	12	9433	1572	19	19
51	25	12459	2077	23	25
52	23	13085	2180	26	25
53	13	9604	1602	17	18
54	7	41796	6966	63	84
55	. 3	6870	1145	10	13
56	80	96330	16055	166	192
57	37	58401	9733	119	116
60	15	9814	1636	18	21
61	15	10812	1802	22	22
62	35	25631	4274	41	-53
63	31	22460	3742	34	42
64	20	11151	1858	25	20
65	41	36140	6022	53	73
. 70	80	71102	11848	196	137
71	108	63867	10644	140	124
72	20	15013	2503	51	29
73	49	30871	5146	90	59
74	53	36469	6079	74	67
75	20	36483	6080	66	71
80	35	18330	3056	30	35
81	- 65	47522	7923	93	90
82	55	53673	8945		104
Sub-total	879	756595			1476
Total	1059	876557	146096	1804	1713
ayanga-Patala					
10	34	39568	6594	80	33
40	15	16249	2708	20	31
20	156	132553	22092	233	259
Sub-total	205		31394		323
rand Total	1264	1064927	177490	2146	2036

Table 3.4 AGRICULTURAL LAND USE IN CITIES/MUNICIPALITIES IN MAXIMUM INUNDATION AREA OF UPPER AGNO AND PANTAL-SINOCALAN RIVER BASINS

		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		111111111	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1 3 4 8	Paddy				Отре	S N					
City/ Municipality	Area (Km2)	Irri. Paddy (ha)	Rainfed Paddy (ha)	Sub- total (ha)	Sugar- cane (ha)	Corn (ha)	Tobacco (ha)	Root Crop (ha)	Legume (ha)	Other Crops (ha)	Sub- total (ha)	Fish Pond (ha)	Total (ha)
Alcala	13	334	996	1300	0	. 0	o	C					
Asingan	67	4038	150	4188	0	121	0	45	130	260	556	o r-	4751
Basista	9	0	1176	1176	0	69	0	0	75	, «o	152	• 1 -1	1330
Bautista	9	13	134	147	0	219	0	9	0	œ	233	0	380
Bayambang	57	190	3828	4018	0	1279	10	180	63	103	1635	47	5700
Binalonan	41	620	1179	1799	164	86	0	41	16	29	411	г - 1	2211
Binmaley	62	0	800	800	0	15	0	75	0	70	127	2515	3442
Calasiao	54	598	2616	3214	0	29	0	ო	27	29	126	28	3368
Lingayen	29	0	468	468	0	117	0	47	13	12	189	778	1435
Malasiqui	92	288	3851	4139	0	694	113	79	4	207	1097	13	5249
Mangaldan	ဓ	301	1569	1870	81	202	0	161	123	205	772	153	2795
Mapandan	19	96	489	583	113	54	0	36	20	37	254	16	853
Rosales	œ	432	137	269	0	σn	īΩ	14	7	81	32	0	109
San Manuel	55	2048	28	2076	0	7.4	9	163	84	30	411	0	2487
San Nicolas	Н	9	0	Ŷ	0	0	0	0	Н	0	H	6	7
Sta. Barbara	69	553	3563	4116	0	135	0	4	115	202	456	0	4572
Sta. Maria	28	525	846	1371	0	223	234	48	477	242	1224	0	2595
Sto. Tomas	'n	370	86	468	7	0	17	0	0	ι Ω	29	0	497
Tayug	15	583	187	770	0	21	0	O	9	16	106	്ന	879
Urbiztondo	28	0	2246	2246	0	732	0	87	29	9/	924	13	3183
Urdaneta	105	6967	1438	6407	0	74	37	0	1087	828	2026	0	8433
Villasis	9	1130	3073	4203	0	200	580	55	160	245	1540	0	5743
Dagupan City	ထ္ထ	0	305	305	0	0	0	99	10	0	76	1342	1723
San Carlos City	133	ന	4598	T094	0	74	0	85	73	227	456	151	5208
Camiling	Ħ.	Q	7	œ.	0	7	0	0	0	0	7	O.	10
Total	1059	17101	33747	50848	365	4767	1056	1168	2644	2835	12835	5078	68761

AREA	
INUNDATION	
IN MAXIMUM	
SLOCKS	
USE IN	
LAND	
AGRICULTURAL	
Table 3.5	

	[e] (e]	131 2003 5164 4977 210	2872	25	55889	761	1877 7438 719	10034	78795
	Total (ha)	250	128		558	687	37.	ij	787
	Fish Pond (ha)	0000HH	28	11011 1000 1001 11010 11	5050	5078	131	142	5220
	Sub- total (ha)	302 302 1619 1323 148	3454	357 277 286 180 180 200 200 200 200 200 200 200 200 200 2	9381	12835	345 1565 234	2144	14979
i	Other Crops (hā)	337 337 168 0	570	221 221 221 231 231 231 231 231 231 231	2265	2835	58 258 94	410	3245
	Legume (ha)	200 300 300 300 300 300 300 300 300 300	700	7 1 1 1 2 2 2 3 2 4 2 2 3 3 4 2 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 3 4 3 3 3 4 3 3 3 3 4 3	1944	2644	289 62 62	412	3056
S	Root Crop (ha)	117 728 720 746 746	266	22 22 22 22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	902	1168	36 108 33	177	1345
Отре	Tobacco (ha)	303 106 106 2	674	11 00 000 00 11 1 00 00 00 00 00 00 00 0	607	1056	158 143 14	315	1371
	Corn (ha)	315 315 938 141	1462	2000 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3305	4767	32 548 22	602	5369
	Sugar- cane (ha)	090000	7	00000000000000000000000000000000000000		365	219	228	593
	Sub- total (ha)	3539 3539 367 367 363 363 61	9390	17423 17423 17424 17646 17646 17646 17653 17653 17653 17653 17653 17653 17653 17653 17653 17653 17653 17653 17653 17653 17653	41458	50848	1532 5862 354	7748	58596
Paddy	Rainfed Paddy (ha)	2568 2568 2568 53	4188	8444 446 446 446 446 446 446 446 446 446	95	33747	335	10	37783
14	Irri. Paddy (ha)	sin 87 1654 2107 281 1065	5202	100 1739 1739 1739 1739 1711 1711 1711 1711	8	17101	ver Basin 1062 2512 138	3712	20813
	Area (Km2)	River Ba. 7.3 7.3 5.5 5.5 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	180	861 1087 1087 1087 1087 1087 1087 1087 108	879	0.5	ង្គ្រីសិល		1264
	Block No.	Upper Agno R 95 120 130 140	Sub-tat	Pantal—Sinoca, 50 50 50 50 50 50 50 50 50 50 50 50 50	Sub-total	Total	(88 - 10 10 10 40 40	Sub-to	Grand Total

Tabel 3.6 INFRASTRUCTURES IN BLOCKS
IN MAXIMUM INUNDATION AREA

	A subsection		Road	(Km)		Rail-	Irri.
Block No.	Area (Km2)				Bar.	way (Km)	Canal (Km)
Upper Agno	River	Basin					
90	7	0.0	0.1	0.0	0.1	0.0	0.0
95	37	0.0	9.6	1.7	6.8		
120	73				29.3	0.0	
130	· · _. 5	3.5	0.0	0.0	1.2	0.0	
140		20.7	10.0	19.5	40.1	2.2	
170	3	1.1	0.0	0.0	0.0	1.0	
Sub-total	180		31.0		77.5	3.2	57.8
Pantal-Sinc	calan	River B	asin				
30	37			3.3	29.7	0.0	26.1
50					7.8		
51	25				19.2		8.9
52	23				25.7		6.9
53	13				11.2		1.7
54	. 7	2.9	0.7	9.4	13.4	0.9	0.0
55	3	1.1	0.0	0.0	4.4	0.0	0.0
56	80			11.9		76	29.7
57	37	9.8			40.2	0.0	0.0
60	15		7.1	2.3	18.1	0.0	7.4
61					16.1	0.0	8.7
62		5.4			47.8	0.0	14.1
63	31				49.4		
64	20				25.0		
65	41			4.1			4.8
: 70	80	11.2	27.4		93.0		0.0
· 71	108	4.3	22.8	9.2	63.5	5.9	0.0
72	20	1.3	2.9	1.0	8.4	2.4	0.0
73	49	0.0	9.5	4.9	33.6	3.4	0.0
74	53	8.7	7.0	2.8	22.4	0.0	0.0
75		8.6	5.3	2.7	23.7	0.0	0.0
80	35	1.2	11.8	1.0	13.5	0.0	26.9
81	65				51.3		0.5
82					77.8		5,4
Sub-total	879	122.1	240.7	124.2	830.2	26.9	175.9
Total	1059	159.5					
Cayanga-Pata	alan Ri	ver Bas	in				
10	34	2.0	6.5	3.4	22.9 177.9	0.0	12.5
20	156	46.8	53.2	26.4	177.9	1.0	27.8
40	15	4.0	2.4	1.3	177.9 9.7	2.0	0.3
			~		210.5		40.6
							1 1 1 1 1 1 1 1 1 1

Table 4.1 DAMAGE RATES OF HOUSE/BUILDING

	[2]	Tood Damag	Flood Damage Rate (1)	
Properties	Flood Level	Flood Lev	el Above Flo	Flood Level Flood Level Above Floor Level (m)
	Floor Level	Less than	0.5 - 1.0	More than
House/Building Structure Ground Slope	F	 1 1 3 3 6 6 6	1	t t t t t t t t t t t t t t t t t t t
Less than 0.1 %	3.0	5.3	7.2	11.7
0.1 - 0.2 %	3.0	8	12.6	19.2
More than 0.2 %	3.0	12.4	21.0	33.0
Indoor Movables				
Residential Household Effects	ı	8.6	19.1	36.6
Non-residential Depreciable assets		18.0	31.4	44.3
Inventory Stock	•	12.7	27.6	39.8
		1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4.2 DAMAGEABLE VALUE OF CROPS (1/2)

Month	~	Jan.	Feb.	Mar.	. Apr	May	/ Jun.	Jul.	Aug.	Sep.	0ct.	Nov.	Dec.
A. Cropping Calende			2nd						_ر_مشتخصصبيوو	1st			
B. Planted Area	(%) 1st Crop						25	75	100	100	75	25	· -
C. Accumulated Cost	2nd Crop (%) 1st Crop)	100		25		16	38	54	74	85	25 98	75
D. Flood Frequency	2nd Crop	54 0	74 0		98 0		0.08	0.25	0.29	0.13	0.13	16 0.08	38 0
E. Yield F. Price G. Production Cost	(ton/ha) (P/ton) (P/ha)	4.5 3.780 8.215	~ ~ ~ ~ ~ ~	H. Net I. Dam	Income ageable			(P/há) (P/ha)	8,795 6,115				
J. Damageable Value	(P/ha)	9,452										*****	
Name of Crops : Rail	nfeded Paddy												
Month		Jan.	Feb.	Mar.	Apr.		Jun.	Jul.	Aug.	Sep.	Oct.	Hov.	Dec.
A. Cropping Calender	,												
B. Planted Area	(%)		٠.				- 25	75	100	100	75	25	-
C. Accumulated Cost							16	38	54	74	85	98	
D. Flood Frequency		0	0	0	0	0.04	0.08	0.25	0.29	0.13	0.13	0.08	0
E. Yield F. Price G. Production Cost	(ton/ha) (P/ton) (P/ha)	2.8 3,780 7,650		H. Net I. Dama	Income geable	(P/ha) (P/ha)	2,934 5,910					******	
J. Damageable Value	(P/ha)	4.726						•				·	·
Name of Crops : Corn						. •		i					
Month		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
A. Cropping Calender													
B. Planted Area	(%)	100	95	55	> 7			٠	٠.			25	75
C. Accumulated Cost	1.	64	89	96	100			*				18	39
D. Flood Frequency		0	0	0	0	0.04	0.08	0.25	0.29	0.13	0.13	0.08	0
E. Yield F. Price G. Production Cost	(ton/ha) (P/ton) (P/ha)	3.0 4,080 7,731	<u></u>	H. Net I. Dama		Cost	(P/ha) (P/ha)						
J. Damageable Value	(P/ha)	115		Negligi	bly sm	11							
							****		******			****	
Name of Crops : Suga	rcane				\$4 MA 44 ML ES 400 E								
Month		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	0ct.	Nov.	Dec.
A. Cropping Calender		-			i					<u> </u>			
B. Planted Area	(%)	40	55	65	75	95	100	100	100	100	93	75	60
C. Accumulated Cost		8	16	20	29	38	47	62	70	77	92	95	100
). Flood Frequency	(%)	0	0	0	0	0.04	0.08	0.25	0.29	0.13	0.13	0.08	0
. Yield . Price . Production Cost	(ton/ha) (P/ton) (P/ha)	60 235 11,400		H. Net I. Dama			(P/ha) (P/ha)	2,700 6,600				*****	
a. Production cost													

Table 4.2 DAMEGEABLE VALUE OF CROPS (2/2)

													.,
Month		Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	0ct.	Nov.	Dec.
A. Cropping Calende												_	
B. Planted Area	(%)	100	100	100	95	8						8	95
C. Accumulated Cost	: (%)	45	60	75	90	100						15	30
D. Flood Frequency	(%)	0	0	0	0	0.04	0.08	0.25	0.29	0.13	0.13	0.08	0
E. Yield F. Price G. Production Cost	(ton/ha) (P/ton) (P/ha)			H. Net I. Dama			(P/ha) (P/ha)					· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •
J. Damageable Value	(P/ha)	61		Negligi	bly sma	all 							
Name of Crops : Roo	t Crop (pean	ut)		٠									
Month		Jan.	Feb.	Mar.		May	Jun.	Jul.	Aug.		Oct.	Nov.	Dec.
A. Cropping Calende							No Seas	onable					
D. Dlantad Aven	(e)	100	100	100	100	100	no seas	Olianie			100	100	100
	(%) · (%)	50	50	50	50	50					50	50	50
C. Accumulated Cost		0	0	0	0	0.04	0.08	0.25	0,29	0.13		0.08	0
D. Flood Frequency E. Yleld		1.5		H. Ket			(P/ha)	7,600					
F. Price G. Production Cost	(D/ton)			I. Dama		Cost	(P/ha)						
J. Damageable Value	(P/ha)	2,675											
Name of Crops : Leg		Jan.	Feb.	Mar.	Apr.		Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
A. Cropping Calende	r												
n ni-t-d A	(0.)	100	100	50	•	•						50	100
B. Planted Area	(%)	100	100	30								JU	100
C Assumulated Coat	. /01	60	RΛ	100								20	40
and the second second	100	60	80 0	100 0	. 0	0.04	0.08	.0.25	0.29	0.13	0.13	20 0.08	40 0
D. Flood Frequency E. Yield F. Price	(%) (ton/ha) (P/ton)	0 1.5 14,650	0		Income	0.04 	0.08 (P/ha) (P/ha)	0.25 9.925 10890	0.29	0.13	0.13	20 0.08	
D. Flood Frequency E. Yield F. Price G. Production Cost	(%) (ton/ha) (P/ton) (P/ha)	0 1.5	0	0 H. Net	Income geable	Cost	(P/ha) (P/ha)	9,925 10890	~ (= 40 db ab ac ac ac			0.08	
D. Flood Frequency E. Yield F. Price G. Production Cost	(%) (ton/ha) (P/ton) (P/ha)	1.5 14,650 12,050	0	0 H. Net	Income geable	Cost	(P/ha) (P/ha)	9,925 10890	0.29			0.08	
D. Flood Frequency E. Yield F. Price G. Production Cost J. Damageable Value	(%) (ton/ha) (P/ton) (P/ha) (P/ha)	0 1.5 14,650 12,050 484	0	0 H. Net	Income geable	Cost	(P/ha) (P/ha)	9,925 10890	~ (= 40 db ab ac ac ac			0.08	
D. Flood Frequency E. Yield F. Price G. Production Cost J. Damageable Value	(%) (ton/ha) (P/ton) (P/ha) (P/ha)	0 1.5 14,650 12,050 484	0	O H. Net I. Dama	Income	Cost	(P/ha) (P/ha)	9,925 10890				0.08	
D. Flood Frequency E. Yield F. Price G. Production Cost J. Damageable Value Name of Crops : Veg	(%) (ton/ha) (P/ton) (P/ha) (P/ha)	0 1.5 14.650 12.050 484	0	O H. Net I. Dama	Income	Cost	(P/ha) (P/ha)	9,925 10890				0.08	0
D. Flood Frequency E. Yield F. Price G. Production Cost J. Damageable Value Name of Crops: Veg Month A. Cropping Calende	(%) (ton/ha) (P/ton) (P/ha) (P/ha) etables (Egg	0 1.5 14.650 12.050 484	0	0 H. Net I. Dama	Income	Cost	(P/ha) (P/ha)	9,925 10890				0.08	0
D. Flood Frequency E. Yield F. Price G. Production Cost J. Damageable Value Name of Crops: Veg Month A. Cropping Calende	(%) (ton/ha) (P/ton) (P/ha) (P/ha) etables (Egg	0 1.5 14.650 12,050 484 plant) Jan.	0 Feb.	0 H. Net I. Dama	Income	Cost	(P/ha) (P/ha)	9,925 10890				0.08	0ec.
D. Flood Frequency E. Yield F. Price G. Production Cost J. Damageable Value Name of Crops: Veg Month A. Cropping Calende B. Planted Area C. Accumulated Cost	(%)	0 1.5 14,650 12,050 484 plant) Jan.	Feb.	0 H. Net I. Dama Mar. 50	Income geable	Cost	(P/ha) (P/ha)	9,925 10890				0.08 Nov.	Dec.
C. Accumulated Cost D. Flood Frequency E. Yield F. Price G. Production Cost J. Damageable Value Name of Crops: Veg Month A. Cropping Calende B. Planted Area C. Accumulated Cost D. Flood Frequency E. Yield F. Price G. Production Cost	(%)	0 1.5 14.650 12,050 484 plant) Jan. 100 60	Feb. 100 80	0 H. Net I. Dama Mar. 50 100 0	Income geable Apr. O	Cost May	(P/ha) (P/ha) Jun.	9,925 10890 Jul.	'Aug	Sep.	Oct.	0.08 Nov. 8 20	Dec. 95

Table 4.3 DAMAGE RAIES OF CROPS

Crops Duration Inundation Depth Above Ground Level (m) Less than (days) 0.5 - 1.0 1.0 1.0 Paddy 1 to 2 21 24 37 34 50 6 64 50 64 50 64 50 64 64 50 71 71 74 74 12 81 81 81 81 81 81 81 81 81 81 81 81 81	(days) (days) 1 to 2 3 to 4 5 to 6 Longer than 7 Crops 1 to 2 3 to 4 5 to 6 Longer than 7	Depth Above Ground Long an Mos 24 44 50 71	sevel (m) ore than 1.0 37 54 64
Less than (days) 0.5 0.5 - 1.0 1 to 2 2 21 3 to 4 3 to 6 1 to 2 2 73 3 to 4 5 to 6 1 to 2 2 74 44 50 71 Crops 1 to 2 2 to 6 5 to 6 7 1 Crops 1 to 2 2 7 1 50 Longer than 3 100	(days) 1 to 2 3 to 4 5 to 6 Longer than 7 Crops 1 to 2 3 to 4 5 to 6 Longer than 7	0.5 - 1.0 24 44 50 71	ore than 1.0 37 37 54 64 74
1 to 2 21 24 44 5 to 6 36 50 Longer than 7 50 71 Crops 1 to 2 27 35 57 14 67 15 100 Longer than 7 67 74 Longer than 3 100	1 to 2 3 to 4 5 to 6 Longer than 7 Crops 1 to 2 3 to 4 5 to 6 Longer than 7	24 44 50 71	37 54 64 74
1 to 2 21 24 3 to 4 30 44 5 to 6 36 50 Longer than 7 50 71 Crops 1 to 2 27 35 3 to 4 42 48 5 to 6 54 67 Longer than 7 67 74 Longer than 3 100	1 to 2 3 to 4 5 to 6 Longer than 7 Crops 1 to 2 3 to 4 5 to 6 Longer than 7	24 44 71 71	37 54 64 74
3 to 4 30 44 5 to 6 36 50 Longer than 7 50 71 Crops 1 to 2 27 35 3 to 4 42 48 5 to 6 54 67 Longer than 7 67 74 Longer than 3 100	3 to 4 5 to 6 Longer than 7 Crops 1 to 2 3 to 4 5 to 6 Longer than 7	44 50 71	54 64 74
S to 6 36 50	S to 6 Longer than 7 Crops 1 to 2 3 to 4 5 to 6 Longer than 7	50 71	64 74
Longer than 7 50 71 Crops 1 to 2 27 35 3 to 4 42 48 5 to 6 54 67 Longer than 7 67 74 Longer than 3 100 75	Longer than 7 Crops 1 to 2 3 to 4 5 to 6 Longer than 7	72	74
Crops 1 to 2 27 35 3 to 4 42 48 5 to 6 54 67 Longer than 7 67 Longer than 3 100	Crops 1 to 2 3 to 4 5 to 6 Longer than 7	•	
1 to 2 27 35 3 to 4 42 48 5 to 6 54 67 Longer than 7 67 74 Longer than 3 100	1 to 2 3 to 4 5 to 6 Longer than 7		
3 to 4 42 48 5 to 6 54 67 Longer than 7 67 74 Longer than 3 100	3 to 4 5 to 6 Longer than 7	35	51
5 to 6 54 67 Longer than 7 67 74 1 50 2 75 Longer than 3 100	5 Longer	48	29
Longer than 7 67 74 1 50 2 75 Longer than 3 100	Longer	67	81
1 2 Longer than 3 1) () () () () ()	7.4	16
1 2 than 3 1			
2 than 3			
than 3			
	than 3		

Nationwide Flood Control Plan and River Dredging Program, 1982, JICA Technical Standard for River and Sabo Works, Panay River Basin-wide Flood Control Study, 1985, JICA Resources Development, 1987, JICA Ministry of Construction, Japan

The Kelantan River Basin Flood Control Project, Malaysia, JICA, 1988 : Damage rate for tobacco is based on the the study results of Note

Table 4.4 DAMAGE RATES OF FISH POND FACILITY AND INFRASTRUCTURES (Unit 2)

+ -				Return Period	eriod		
דרמווו	1.05-Yr. 2-Yr.	2-Yr.	5-Kr.	10-Yr.	25-Yr.	5-Yr. 10-Yr. 25-Yr. 50-Yr. 100-Yr.	100-Yr.
Fish Pond Facility	0.1		4.5 13.0		26.0	18.0 26.0 34.0 40.0	40.0
Road	0.5	4.0		0.6 0.9	12.0	16.0	18.0
Railway	2.0	11.0	20.0	26.0	36.0	43.0	50.0
Irrigation Facility	3.0	5.0		9.0 12.0	15.0	20.0	23.0
Water Supply Facility	1.0	5.0	15.0	20.0	30.0	35.0	40.0
Telecommunication Facility	2.0	12.0	24.0		27.0 36.0	43.0	20.0

Note: The damage rates shown above are assumed mainly based on the available damage records.

Table 4.5 PROBABLE FLOOD DAMAGE IN MAXIMUN INUNDATION AREA FOR UPPER AGNO PROJECT

Unit: Million Pesos

Y4		I	Return P	eriod (Ye	ar)		
Item -	1.05	2	5	10	25	50	100
1. Affected People(1000 person)	61	150	474	793	803	817	840
2. Affected Area (km2)	109	223	684	919	939	953	986
3. Direct Damage				v			
(1) Agricultural Damage							
- Crops	30	58	108	138	156	164	174
- Livestocks	2	4	8	10	11	11	12
- Fishpond	0	21	77	147	151	218	243
Sub-total	32	83	192	294	317	393	428
(2) Non-agricultural Damage		-		•			
- Residential Bldg.	46	102	250	394	510	601	675
- Non-residential Bldg.	12	27	62	91	139	176	205
Sub-total	58	129	313	485	649	777	880
(3) Infrastructures							
- Road/Bridge	0	7	39	88	119	161	189
- Railways	0	1	10	18	28	35	40
- Irrigation Facility	0	1	9	16	19	26	31
- Water Supply Facility	0	3	25	55	84	100	118
- Telecommunication	1	0	1	2	- 3	4	4
Sub-total	2	12 ,	84	179	254	325	383
Total	92	224	589	958	1,220	1,495	1,691
. Indirect Damage	9	27	117	238	359	481	585
Grand Total	101	250	 705	1,196	1,579	1,976	2,277

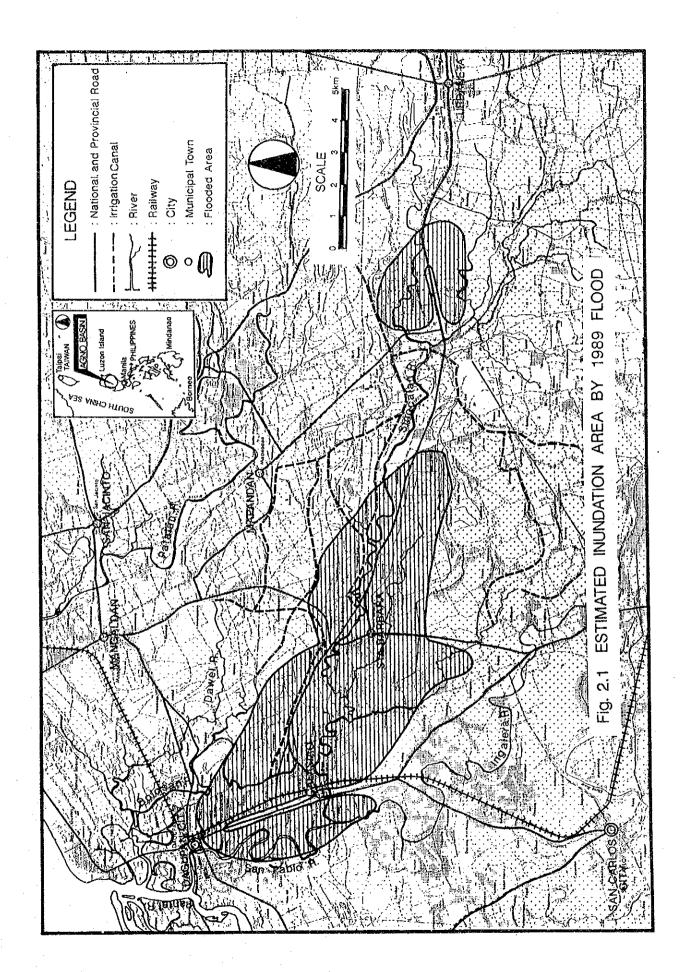
Table 4.6 ANNUAL AVERAGE FLOOD DAMAGE IN MAXIMUM INUNDATION AREA FOR UPPER AGNO PROJECT

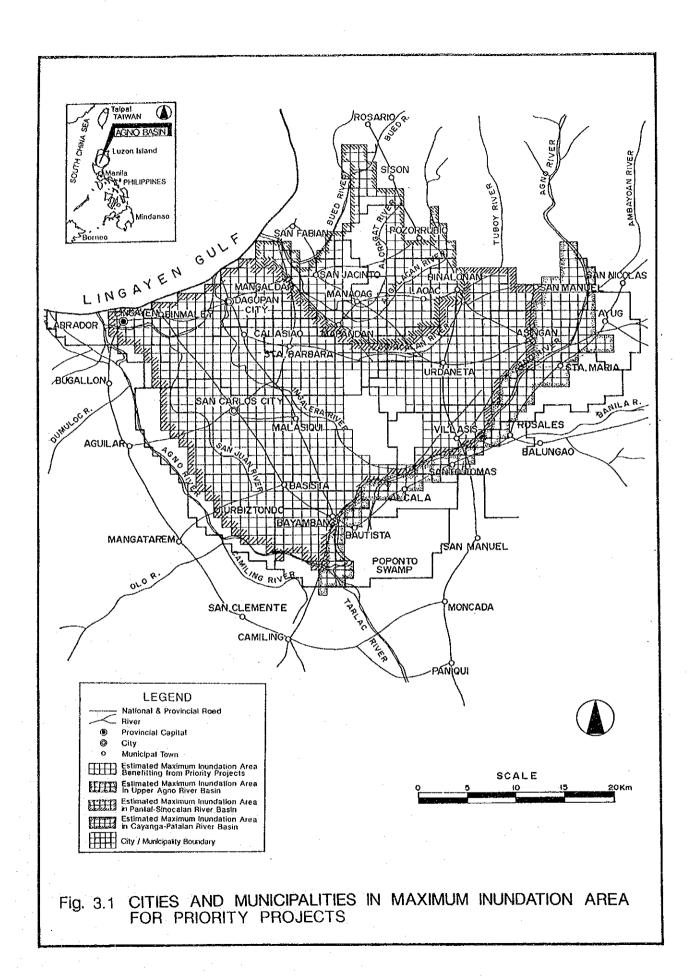
Unit:Million Pesos

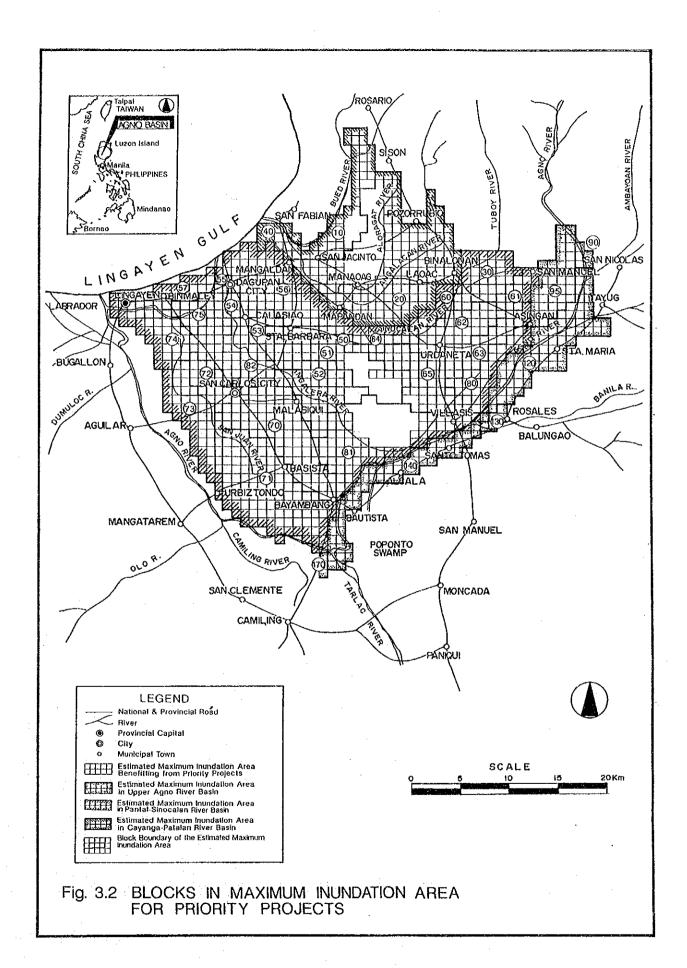
			R	eturn Peri	od (Year)		
Block	1.05	2	E	10	 25	ra	***
No.			. 5			50 	100
Upper Agno R	iver Basir	1					
90	0.0	0.7	1.2	1.3	1.5	1.5	1.5
95	0.0	6.3	11.8	14.1	15.6	16.3	16.7
. 120	0.0	15.0		33.8	38.3	40.1	41.1
130	0.0	1.0	2.1	2.7	3.2	3.3	3.4
140	0.0	30.9	61.0	73.7	82.5	85.7	87.5
170	0.0	0.1	0.7	1.1	1.5	1.6	1.7
Sub-total	0.0	54.0	104.9	126.7	142.6	148.5	151.9
Pantal-Sinoc	alan River	Basin					
30	0.0	0.5	2.3	3.4	4.2	4.5	4.7
50		0.0	0.4	1.0	1.7	2.0	2.2
51		0.0	0.1	0.8	1.6	2.0	2.2
52		0.0		0.1			
53		0.0		0.7		1.5	1.7
54	0.0	0.1	0.3	1.7	3.8	4.8	5.5
55	0.0	0.1	0.4	1.0	1.6	1.9	2.1
56	0.0	1.0	7.1	15.5	24.5	28.3	30.7
57	0.0	1.0	3.8	8.0	13.3	16.0	17.7
60	0.0	0.0	1.6	2.8	3.7	4.0	4.2
61	0.0	0.0	0.7	1.3	1.8	2.0	2.1
62	0.0	0.0	2.6	5.6	8.5	9.7	10.4
63	0.0	0.5	3.5	5.4	6.8	7.3	7.7
64	0.0	0.0		2.5	3.8		4.7
65	0.0	0.0		5.1		9.7	
70	0.0	2.3		15.6	19.8	21.8	22.8
70 71	0.0	3.0	13.7	20.0	24.7	26.6	27.6
72	0.0	0.1	2.1	3.4	4.5	5.0	5.4
72	0.0	0.6	8.0	13.7	18.1	20.0	
							21.1
74 75	0.0	1.5 0.6	10.1 3.1	16.8 6.0	22.3 9.4	24.8	26.3
75 80	0.0	5.6		19.6		11.0	12.1
						23.4	23.9
81 82	0.0 0.0	3.1 0.7		11.4 3.2	14.4 4.3	15.8 4.9	16.7 5.4
Sub-total			100.2		224.7	251.4	267.8
Cayanga-Pata							
10	0.0	0.1	0.2	0.3	0.4	0.5	0.5
20	0.0	1.6	10.3				25.6
40	0.0	2.8	7.0	9.0	10.7	11.4	
Sub-tota I	0.0	4.5	17.5	26.4	33.5		37.9
гоtа ì	0.0	79.1	222.7	317.6	400.9	436.3	457.7

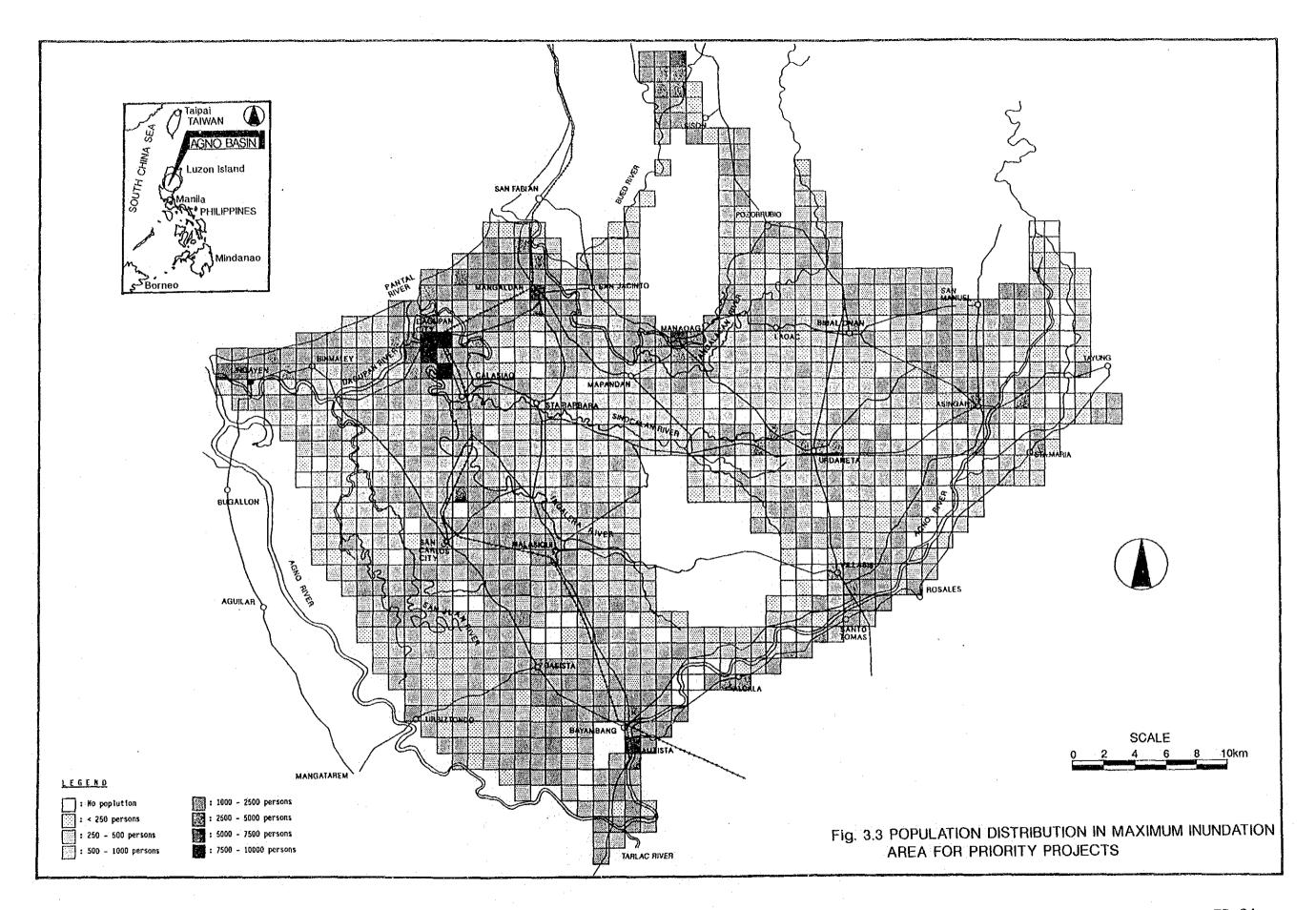
Table 4.7 PROBABLE FLOOD DAMAGE IN MAXIMUN INUNDATION AREA FOR PANTAL-SINOCALAN PROJECT

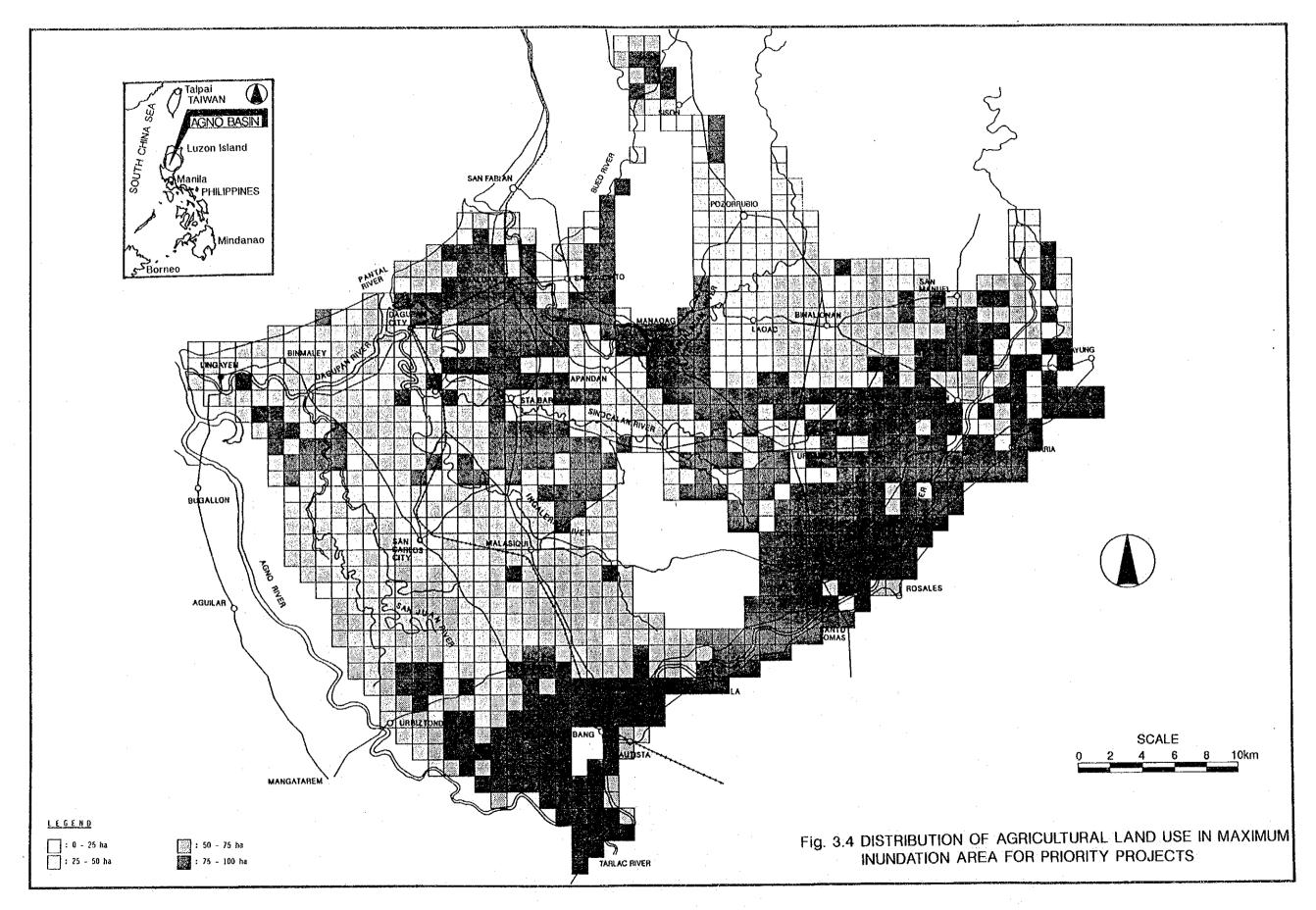
Unit: Million Pesos

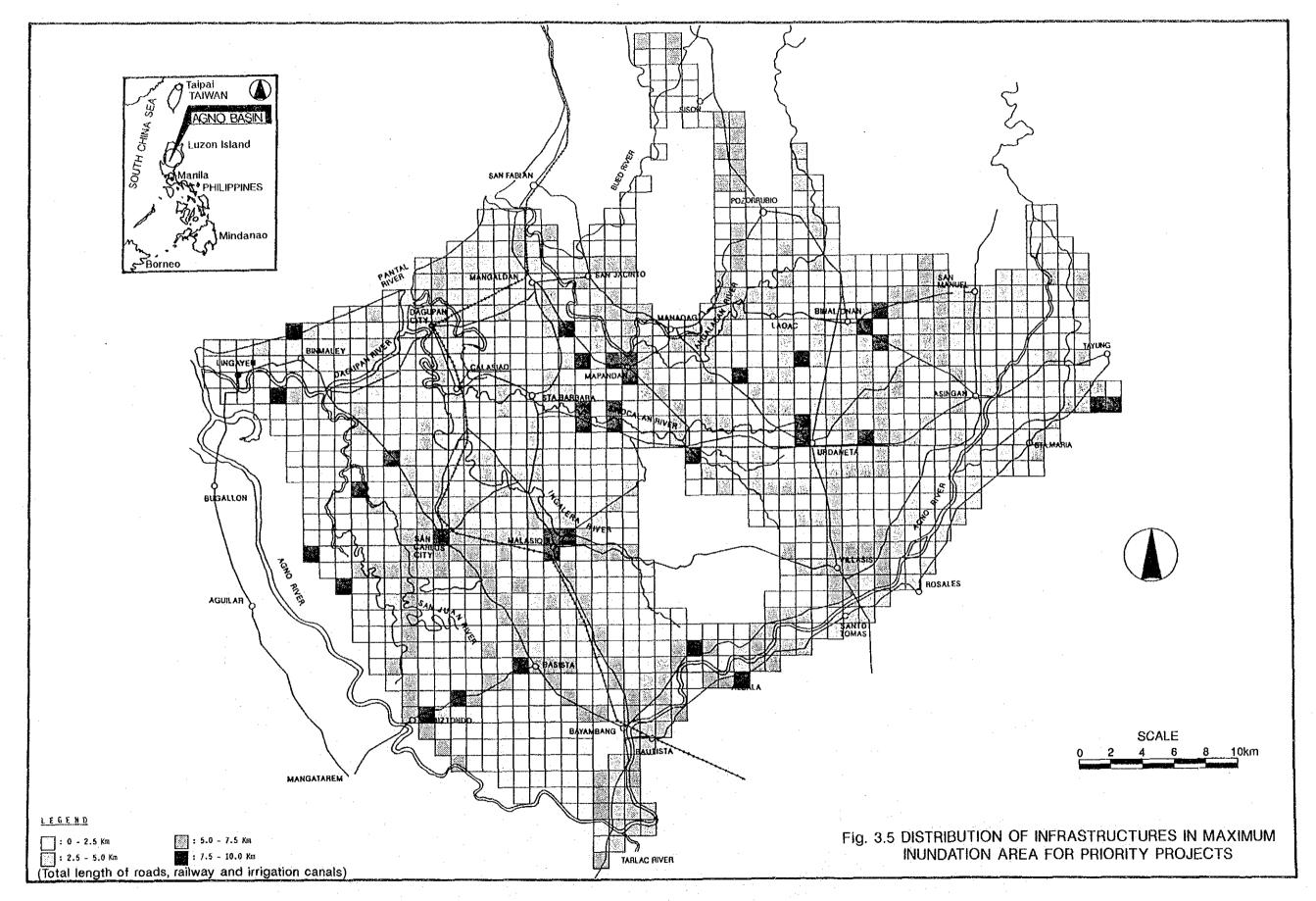

¥.1		f	Return Pe	riod (Yea	er)		
Item -	1.05	2	5	10	25	50	100
1. Affected People (1000 person)	0	719	741	745	746	749	749
2. Affected Area (km2)	0	831	861	868	869	873	873
3. Direct Damage						•	
(1) Agricultural Damage	•			:			
- Crops	0	127	127	127	130	134	138
- Livestocks	0	9	9	. 9	9	9	g
- Fishpond	0	25	107	143	145	210	21!
Sub-total	0	161	243	279	284	354	362
(2) House/Building Damage			÷				
- Residential Bldg.	0	199	253	285	338	393	446
- Non-residential Bldg.	0	27	46	57	82	102	127
Sub-total	0	226	299	343	420	495	573
(3) Infrastructures							
- Road/Bridge	0	34	53	80	107	143	161
- Railways	0	8	15	20	27	32	38
- Irrigation Facility	0	5	10	13	17	22	26
- Water Supply Facility	0	13	39	. 52	78	92	105
- Telecommunication	0	1	2	2	3	3	4
Sub-total	0	61	118	167	232	293	333
Total	.0	448	660	789	936	1,141	1,267
. Indirect Damage	0	53	131	196	271	368	439
Grand Total	0	501	791	985	1,206	1,509	1,706


Table 4.8 ANNUAL AVERAGE FLOOD DAMAGE IN MAXIMUM INUNDATION AREA FOR PANTAL-SINOCALAN PROJECT


Unit:Million Pesos


n. 1			Re	eturn Perio	od (Year)		
Block No.	1.05	2	5	10	25	50	100
30	0.0	2.6	7.4	9.6	11.2	11.9	12.3
50	0.0	1.4	3.8	4.8	5.7	6.1	6.
51	0.0	2.6	6.5	8.1	9.2	9.7	10.
52	0.0	2.0	5.1	6.3	7.2	7.6	7.
53	0.0	1.7	4.4	5.5	6.3	6.6	6.
54	0.0	3,5	9.3	11.7	13.5	14.2	14.
55	0.0	0.8	2.6	3.5	4.1	4.4	4.
56	0.0	15.8	42.4	54.8	63.8	67.5	69.
57	0.0	5.5	18.4	25.2	30.7	33.2	34.
60	0.0	2.3	5.6	7.0	7.9	8.3	8.
61	0.0	1.7	4.9	6.5	7.7	8.2	8.
62	0.0	4.4	11.7	15.1	17.6	18.5	19.
63	0.0	3.7	9.4	11.9	13.7	14.5	14.
64	0.0	2.2	6.0	7.6	8.8	9.2	9.
65	0.0	4.2	10.9	14.0	16.4	17.4	18.
70	0.0	8.8	23.0	29.0	33.5	35.4	36.
71	0.0	11.4	29.4	37.0	42.2	44.3	45.
72	0.0	2.0	5.3	6.9	8.1	8.6	8.
73	0.0	5.5	14.8	19.1	22.6	24.1	25.
74	0.0	6.1	19.4	27.0	32.8	35.3	36.
75	0.0	3.5	11.5	15.6	18.7	20.1	21.
80	0.0	8.0	19.9	24.4	27,4	28.5	29.
81	0.0	6.8	17.8	22.4	25.4	26.6	27.
. 82	0.0	6.7	18.0	23.1	26.8	28.3	29.
tal	0.0	113.2	307.5	396.1	461.3	488.5	504.


FIGURES



SD.

8. SD SEDIMENT CONTROL PLAN

SD: SEDIMENT ANALYSIS

SUMMARY

- (1) The increase of sediment yield caused by the earthquake is assumed to be negligible from the results of field investigations, although devastation of watershed caused by the 1990 earthquake was observed in the Viray and Dipalo river basins.
- (2) As for sedimentation in the Poponto Swamp, heavy sedimentation with a depth of 1 to 2 m has been taking place since 1972 in areas such as the lowest portion below EL. 10 m and the areas near the sources of sediment which are the Agno and Tarlac rivers.
- (3) The design sedimentation volume for 50 years of the Poponto Swamp was estimated at 260 million m³. However, in order to prepare for an excessive sedimentation, the monitoring of sedimentation in the swamp was also recommended in this Study. A total of 35 sites were selected as measuring sites.
- (4) The river mouth of the Pantal-Sinocalan River has been naturally maintained with a width of 200-300 m.
- (5) It is assessed that the proposed priority project will not aggravate the existing condition of the river mouth. Overtopping of floodwater will not take place during a flood less than the design flood insofar as the river mouth is maintained under the existing condition.
- (6) According to the results of the sediment balance and riverbed fluctuation analyses, the proposed river channel for the Upper Agno River is more stable than the existing one. In particular, scouring at the Carmen stretch will be considerably mitigated by widening the stretch.
- (7) As for the Pantal-Sinocalan River, the existing river channel is comparatively stable except the upper stretches upstream of Binalonan. The proposed river channel is also expected to be as stable as the existing one in spite of the major improvement works such as the construction of the bypass channel and the widening of the channel.

SD: SEDIMENT ANALYSIS

TABLE OF CONTENTS

			Page
SUM	MARY		SD.S1
TABI	LE OF CONT	ENTS	SD.i
LIST	r of table	S	SD.iii
LIS	r of figur	ES	SD.iv
ABBI	REVIATIONS		SD.v
1.	INTRODUCT	ION	SD.1
2.	REVIEW OF	PRESENT CONDITION OF SEDIMENTATION IN STUDY AREA	SD.2
	2.1 Sed	iment Yield after Earthquake	SD.2
	2.2 Sed	imentation in Poponto Swamp	SD.2
	2.3 Riv	er Mouth Clogging of Pantal River	SD.3
3.	SEDIMENT	BALANCE ANALYSIS	SD.5
	3.1 Meth	odology	SD.5
	3.1.1		
	3.1.2	Simulation Model	SD.5
	3.2 Upp	er Agno River System	SD.8
	3.2.1		
	3.2.2		
	3.2.3	Sedimentation of Poponto Swamp	SD.8
	3.3 Pan	tal-Sinocalan River System	SD.9
	3.3.1	System Model	SD.9
	3.3.2	Stability of Proposed River Channel	SD.9

		Page
4.	RIVERBED FLUCTUATION ANALYSIS	SD.10
	4.1 Purpose of Riverbed Fluctuation Analysis	SD.10
	4.2 Methodology	SD.10
	4.2.1 Simulation Model	SD.10
	4.2.2 Condition	SD.11
5.	4.3 Results of Simulation	
J.	5.1 Stability of Proposed Channel	
	5.1.1 Upper Agno River	SD.13
	5.1.2 Pantal-Sinocalan River	SD.13
	5.2 Sedimentation in Poponto Swamp	SD.13
	5.3 River Mouth Clogging of Pantal River	SD.14

LIST OF TABLES

No.		Page
2.1	SUMMARY OF FIELD INVESTIGATION ON SEDIMENT YIELD	SD.16
3.1	ASSUMED CONDITION OF SEDIMENT BEHAVIOR BY MODEL	SD.17
3.2	CONSTANTS OF RATING CURVE FOR EXISTING UPPER AGNO RIVER	
	CHANNEL	SD.18
3.3	CONSTANTS OF RATING CURVE FOR PROPOSED AGNO RIVER CHANNEL	
	(PRIORITY PROJECT)	SD.18
3.4	RIVER BED FLUCTUATION OF UPPER AGNO RIVER	SD.19
3.5	SIMULATED ANNUAL SEDIMENT BALANCE FOR EXISTING UPPER AGNO	
	RIVER CHANNEL (1982-1986)	SD.20
3.6	SIMULATED ANNUAL SEDIMENT BALANCE FOR EXISTING BALANCE FOR	3
	EXISTING UPPER AGNO RIVER CHANNEL	SD.21
3.7	SIMULATED ANNUAL SEDIMENT BALANCE FOR PROPOSED UPPER AGNO	
	RIVER CHANNEL (PRIORITY PROJECT, WITHOUT SAN ROQUE DAM) .	SD.21
3.8	SIMULATED ANNUAL SEDIMENT BALANCE FOR PROPOSED UPPER AGNO	
0 0 0	RIVER CHANNEL (PRIORITY PROJECT, WITH SAN ROQUE DAM)	SD.21
3.9	CONSTANTS FOR RATING CURVE FOR EXISTING PANTAL-SINOCALAN	
	RIVER CHANNEL	SD.22
3.10	CONSTANTS FOR RATING CURVE FOR PROPOSED PANTAL-SINOCALAN	
	RIVER CHANNEL (PRIORITY PROJECT)	SD.22
3.11	SEDIMENT BALANCE FOR EXISTING PANTAL-SINOCALAN RIVER	. '
	CHANNEL	SD.23
3.12	SEDIMENT BALANCE FOR PROPOSED PANTAL-SINOCALAN RIVER	
	CHANNEL (PRIORITY PROJECT)	SD.23

LIST OF FIGURES

No.		Page
2.1	AGNO RIVER BASIN MAP	SD,24
2.2	RESULT OF INTERVIEW ON SEDIMENTATION IN POPONTO SWAMP	
	AREA	SD.25
2.3	LOCATION OF DREDGING AREA	SD.26
2.4	CROSS SECTION PROFILE AT RIVER MOUTH OF PANTAL RIVER	SD.27
3.1	RELATIONSHIP BETWEEN PARTICLE SIZE AND RIVER BED	
	GRADIENT	SD.28
3.2	UPPER AGNO RIVER SYSTEM SEDIMENT BALANCE MODEL	SD.29
3.3	RESULT OF SEDIMENT BALANCE SIMULATION	
	(EXISTING CONDITION)	SD.30
3.4	UPPER AGNO RIVER SYSTEM SEDIMENT BALANCE	SD.31
3.5	SEDIMENT BALANCE DIAGRAM	SD.32
3.6	PANTAL-SINOCALAN RIVER SYSTEM SEDIMENT BALANCE MODEL	SD.33
3.7	PANTAL-SINOCALAN RIVER SYSTEM SEDIMENT BALANCE	SD.34
4.1	DESIGN HYDROLOGRAPH	SD.35
4.2	RESULT OF RIVER BED FLUCTUATION ANALYSIS	
	(FRAMEWORK PLAN)	SD.36
4.3	RESULT OF RIVER BED FLUCTUATION ANALYSIS	
	(PRIORITY PROJECT)	SD.37
5.1	PROPOSED MEASUREMENT SITE FOR SEDIMENTATION IN	
	POPONTO SWAMP AREA	SD.38

ABBREVIATIONS

1. NAME OF PHILIPPINE GOVERNMENT AGENCIES

AFCS	Agno River Flood Control System				
ARIS	Agno River Irrigation System				
DENR	Department of Environment and Natural Resources				
DOTC	Department of Transportation and Communication				
DPWH	Department of Public Works and Highways				
GOP	Government of the Philippines				
LATRIS	Lower Agno and Totonogen River Irrigation System				
NAPOCOR	National Power Corporation				
NAMRIA	National Mapping and Resource Information Authority				
NIA	National Irrigation Administration				
OCD	Office of Civil Defense				
PENRO	Provincial Environment and Natural Resources Office				
РМ	Project Manager				
PMO	Project Management Office				
PNR	Philippine National Railways				
TASMORIS	Tarlac River and San Miguel - O'Donnel River Irrigation				
	System				

2. NAME OF JAPANESE GOVERNMENT AND OTHER OFFICIAL AGENCIES AND ORGANIZATION

GOJ	Government of Japan
JICA	Japan International Cooperation Agency
мос	Ministry of Construction, Japan
OECF	Overseas Economic Cooperation Fund, Japan
IIN	United Nations

3. MEASUREMENT UNITS

(Length)		(Weight)	
nm	millimeter(s)	gr(grs)	gramme(s)
cm	centimeter(s)	kg(kgs)	kilogramme(s)
m.	meter(s)	ton(s)	ton(s), eq'vt to
			1,000kg
km	kilometer(s)		

```
(Area)
                                              (Time)
 mm^2
               square millimeter(s)
                                              sec
                                                            second(s)
  cm^2
               square centimeter(s)
                                             min
                                                            minute(s)
 m^2
               square meter(s)
                                             hr(hrs)
                                                            hour(s)
 km^2
               square kilometer(s)
                                             dy(dys)
                                                            day(s)
  ha(has)
               hectare(s)
                                             mth(mths)
                                                            month(s)
                                             yr(yrs)
                                                            year(s)
(Volume)
 cm<sup>3</sup>
              cubic centimeter(s)
 m^3
              cubic meter(s)
 ltr
              liter(s)
```

SD: SEDIMENT ANALYSIS

1. INTRODUCTION

The sediment analysis was performed to formulate a sediment control plan related to the selected priority projects. The main study items are as follows:

- a) To review the present condition of sedimentation.
- b) To conduct sediment balance analysis in order to estimate sedimentation in Poponto Swamp and to study stability of proposed river channels of the Upper Agno River and the Pantal-Sinocalan River.
- c) To conduct detailed riverbed fluctuation analysis for the Upper Agno River stretches of which dikes have been proposed to be moved backward.
- d) To formulate a sediment control plan on the basis of the studies mentioned above.

2. REVIEW OF PRESENT CONDITION OF SEDIMENTATION IN STUDY AREA

2.1 Sediment Yield After Earthquake

In July 1990 a huge earthquake of magnitude 7.8 on the Richter scale took place in Central Luzon. This earthquake did not only damage structures such as bridges and buildings but also devastated mountain slopes. According to the disaster survey report on the Kennon Road prepared by DPWH, slope failure, rock and debris fall and landslide significantly increased after the earthquake along the road in the Bued River Basin. The riverbed rose significantly due to the sediment flow from these new sources.

The mountain areas upstream of the priority project areas such as the Agno, Ambayoan, Viray-Dipalo, Banila, Tarlac and Tuboy river basins may have been affected also by the earthquake (Fig. 2.1), and sediment yield of the basins may have increased. Field investigations were, therefore, conducted to verify the sediment yield rate. In the field investigations, the riverbeds were inspected at the outlets of valleys up to their alluvial fans. The results of the field investigations are summarized in Table 2-1.

No remarkable effect of the earthquake was observed in the Agno, Ambayoan, Banila, Tarlac and Tuboy rivers insofar as the riverbed conditions are concerned. The riverbed elevation of these rivers has been almost unchanged by the earthquake. As for the Viray and Dipalo rivers, their riverbeds rose due to debris flow from the devastated mountain slopes so high that the irrigation dams have been completely buried in some 5 m of sediment.

The sediment yield rates of the two devastated river basins of Viray and Dipalo are estimated to have increased to a considerable extent by the effect of the earthquake. The mountainous area of the two river basins (111 km²) is, however, less than 4% of that of the whole Upper Agno River Basin upstream of Wawa (2,863 km²) of which sediment yield is related to the priority project area. As far as the project area of the Upper Agno River stretch and the Poponto Swamp is concerned, it is evaluated that the devastation of the two river basins does not lead to a significant change of sedimentation condition. Therefore, the design sediment yield rate estimated in the Master Plan Study may be applied again without any revision for the Feasibility Study.

2.2 Sedimentation in Poponto Swamp

The Poponto swamp has been evaluated as a natural retarding basin in the Master Plan Study. A major part of floodwaters from the Upper Agno River is proposed to be led to the swamp by the proposed diversion facility, and it may result in an increase of sedimentation in the swamp.

Field investigations and interviews were conducted in this Feasibility Study to know the present condition of sedimentation in the Poponto swamp. The accumulative depth of sedimentation in the period from 1972 to 1991 for each interview site is shown in Fig. 2.2.

The heaviest sedimentation for the last 20 years was experienced during the flood of July 1972, when the maximum water level in the swamp reached to about EL. 16 m. The flood deposited a 1 m layer of sand and silt on some lower areas near the Agno and Tarlac rivers.

Heavy sedimentation has been taking place in areas such as the lowest portion below EL. 10 m and the areas near the sources of sediment which are the Agno and Tarlac rivers. In such areas, the accumulative depth since 1972 has reached up to 1 to 2 m.

2.3 River Mouth Clogging of Pantal River

Excessive sedimentation at a river mouth may block river flow and be a cause of overbanking. Moreover, it may hinder navigation of fishing boats. As for the Pantal River, a sand bar is developing from the left side and the water depth at the river mouth is as shallow as only 1 m although a 60 m wide portion with the maximum depth of from 7 to 8 m exist (Fig. 2.1) along the left shore. In this Feasibility Study field investigations and interviews were additionally conducted to assess the river mouth condition.

The results of the investigations are summarized as follows:

a) The width of the river mouth has been naturally maintained at about 200 to 300 m in spite of seasonal fluctuations that it is wider in the rainy season and narrower in the dry season.

- b) In the dry season the water depth sometimes becomes shallow due to sedimentation, however, the river mouth has never been closed completely. Motorized fishing boats navigate along the deeper portion of the channel.
- c) AFCS introduced the Dredge Visayas I to the Dagupan stretch of the Pantal-Sinocalan River in 1986. Since then, the Visayas I has been dredging the channel as shown in Fig. 2.3. In the stretch with a length of 2 km which is suffering from sedimentation, some 90,000 m³ of sediment have been removed yearly. The purpose of the dredging is to maintain the required carrying capacity of the channel to prevent overtopping of floodwater from the banks.

3. SEDIMENT BALANCE ANALYSIS

Sediment balance simulation was carried out for both the Upper Agno River System and the Pantal-Sinocalan River System. The purposes of the simulation are as follows:

- a) To estimate the design sedimentation volume of the Poponto natural retarding basin.
- b) To study the stability of the proposed river channels for the priority projects.

3.1 Methodology

3.1.1 Simulation Case

Sediment balance analysis was carried out in two cases for each river system, the existing condition and the condition with the proposed priority project. The case of the priority project of the Upper Agno River System was, moreover, divided into the two cases of with and without the proposed San Roque Dam.

Case No.	River System	Condition	Remarks
1-1	Upper Agno	Existing Condition	
1-2-1	-ditto-	Priority Project	Without San Roque Dam
1-2-2	-ditto-	-ditto-	With San Roque Dam
2-1	Pantal-Sinocalan	Existing Condition	
2-2	-ditto-	Priority Project	

3.1.2 Simulation Model

The applied simulation model, which is the same as the one applied in the Master Plan Study, consists of subbasin, dam reservoir, confluence, river channel, irrigation system, diversion and natural retarding basin models. In order to construct the sediment discharge rating curves, the following empirical formulae were adopted according to the components of sediment:

Component	Applied Formula		
Bed Load	Sato-Kikkawa-Ashida's Formula		
Suspended Load	Lane-Kalinske's Formula		
Wash Load	100% passage but some % are trapped in lower stretch*		

^{* 5%} of wash load is assumed to be trapped and deposited in the lowest stretches of the Pantal and Dagupan rivers.

The behavior of sediment assumed by the models is summarized in Table 3.1 and the river system diagrams for the Upper Agno and Pantal-Sinocalan are shown in Figs. 3.2 and 3.6. In addition, some important conditions for the simulation are discussed hereinafter.

(1) Sediment Yield

In accordance with the discussion in 2.1, it is assumed that the increase of the sediment yield caused by the earthquake is negligible. Therefore, the design sediment yield rates estimated in the Master Plan Study were again adopted. The annual sediment yield for the basins related to the priority project areas are as follows:

Basin	Annual Sediment Yield (mil. m ³ /yr.)	Remarks
Upper Agno River	16.57	Tributaries included
Tarlac River	7.66	
Tuboy River	0.83	Sediment source to Pantal-Sinocalan

(2) Trap Efficiency of Poponto Swamp

The design sedimentation volume in the Poponto Swamp was estimated by applying a trap efficiency of 90% for the following reasons:

a) According to the Brune's curve which was based on the sedimentation records of dam reservoirs, the trap efficiency of the swamp changes in a range of 0 to 90% in accordance with its water level as shown in the following table. The value of 90% is the safest value.

Water Level (EL.m)	Storage Capacity C (mil. m ³)	Annual Inflow I (mil. m ³)	C/I	Trap Efficiency (%)
10.0	0	6,500	0.000	0
12.0	50	6,500	0.009	30 - 60
14.0	200	6,500	0.037	60 - 85
16.0	470	6,500	0.086	75 - 90

- b) The result of hydraulic analysis shows that the rise of the high water level due to the design sedimentation obtained by using a trap efficiency of 90% is as small as 40 cm. The high water level is not influenced so much by the sedimentation volume.
- c) Periodical measurement of ground level is proposed to monitor sedimentation in the swamp in order to prepare for excessive sedimentation of more than the design sedimentation.

(3) Riverbed Material

The regression lines based on the observed data in the Agno River were applied to determine the particle size of riverbed materials because the observed data are insufficient in number. Fig. 3.1 shows the regression lines between particle size and riverbed gradient of the Agno River.

(4) Flow Discharge and Period of Simulation

Flow discharge at each reference point was determined on the basis of the estimated daily discharge at San Roque for 27 years from 1960 to 1986. The sediment balance simulation was also carried out for the period of 27 years.

3.2 Upper Agno River System

3.2.1 System Model

The river channel upstream of the Poponto swamp was divided into 10 stretches as shown Fig. 3.2. The main features and constants of sediment discharge rating curves for these stretches are presented in Tables 3.2 and 3.3.

3.2.2 Stability of Proposed River Channel

The results of simulation are presented in Tables 3.5 and 3.6 and Figs. 3.3 and 3.4. The sediment balance was also obtained by comparing the two records of cross section profiles which were surveyed in 1981 and 1989 as tabulated in Table 3.4. The results are summarized as follows:

- a) The simulation results show that the applied model well simulates appropriately the movement of sediment under the existing condition (Fig. 3.3).
- b) Widening of the Poponto Floodway and the Carmen stretch of the Upper Agno River is proposed under the priority project. The low water channel is proposed to be widened to 150 m. The stability of the river channel is expected to be improved by the proposed river channel improvement. In particular, scouring of the Carmen stretch and sedimentation of the lower stretch will be considerably mitigated by widening the channel.
- c) The effect of the San Roque Dam appears at the uppermost stretch. The supply of sediment from the mountainous area is trapped by the dam reservoir, but it results in degradation of the riverbed in the lower stretches.

3.2.3 Sedimentation of Poponto Swamp

The Poponto Swamp is proposed to be utilized as a natural retarding basin, and most of the floodwaters from the Upper Agno River will be led to the swamp. The design sedimentation volume in the swamp was estimated by the sedimentation balance simulation, taking into consideration the proposed San Roque and Balog-Balog dams.

Fig. 3.5 shows the results of simulation, and the annual sediment volume estimated at $5,143,000 \text{ m}^3/\text{year}$. If the design life of 50 years is considered, the design sedimentation volume of 260 million m³ is obtained.

3.3 Pantal-Sinocalan River System

3.3.1 System Model

The Pantal-Sinocalan River channel was divided into thirteen (13) stretches for the existing condition and fourteen (14) stretches for the priority project. The system model diagram is shown in Fig. 3.6 and the main features and constants for sediment discharge rating curves for these divided stretches are presented in Tables 3.10.

3.3.2 Stability of Proposed River Channel

The results of simulation are presented in Tables 3.11 and 3.12 and Fig. 3.7, and are summarized as follows:

- a) The river channel is comparatively stable even under the existing condition except the sedimentation stretches upstream of Binalonan.
- b) The major improvement work for the Pantan-Sinocalan River is the construction of a bypass channel from Calasiao to the Dagupan River. The existing narrow and meandering channel is also to be widened to 100-200 m and cut short. As for the proposed channel, the tendency of the riverbed fluctuation is almost the same as the existing condition.
- c) Sedimentation in the Dagupan River stretch of which riverbed is very deep at present is expected under the proposed project. It may result in smoothing of the riverbed.

4. RIVERBED FLUCTUATION ANALYSIS

4.1 Purpose of Riverbed Fluctuation Analysis

The right dike of the Poponto Floodway is proposed to be set back by 350 m to widen the channel from the original 850 m to 1,200 m. Also in the Carmen stretch, which has been a so-called bottleneck of the Agno River, the right dike is proposed to be set back to widen the channel from 650-900 m to 900 m.

The riverbed fluctuation simulation was carried out to assess the effect of widening the river channel at the above stretches in the aspect of stability of the channel.

4.2 Methodology

4.2.1 Simulation Model

The simulation model consists of non-uniform flow calculation and sediment discharge calculation. The following equation was used for calculating the riverbed fluctuation based on the longitudinal imbalance of sediment discharge.

$$DZ = Z_{t+1} - Z_{t} = (Q_{R1} - Q_{R2}) \times Dt / B / DX / (1 - \lambda)$$

Where,

DZ : Riverbed fluctuation in duration t

Z : Riverbed height

 Q_{R1},Q_{R2} : Sediment volume flowed through upstream and downstream

sections

B : River width which caused riverbed fluctuation

λ : Porosity of riverbed sandDX : Distance between sections

The calculating procedure is as follows:

a) At first, non-uniform flow calculation for the initial riverbed is done by using the flow discharge at time t to obtain the friction velocity \mathbf{U}_{\star} at each section.

- b) The sediment discharge volume at each section is calculated by the sediment discharge formula.
- c) Then, the riverbed height \mathbf{Z}_{t+1} after time \mathbf{D}_t by using the abovementioned equation.
- d) The above procedure is repeated sequentially up to n times in order to obtain the riverbed height at time tn.

4.2.2 Condition

(1) Simulation Case

The riverbed fluctuation simulation was conducted in 4 cases to clarify the widening effect of river channels; namely, two conditions for the Framework Plan and two for the priority project, as follows:

Case No.	River Channel	Width of H.W.C (m)	Width L.W.C (m)	Flood Scale
1-1	Framework Plan	Proposed	180	100-year Flood
1-2	-ditto-	Existing	180	-ditto-
2-1	Priority Project	Proposal	150	10-year Flood
2-2	-ditto-	Existing	150	-ditto-

(2) Calculation Stretch

The calculation stretch with a length of 27 km was set from the Poponto Swamp to Asingan (FW 310 - AG361).

(3) Sediment Discharge Formula

Bed and suspended loads were considered as components of sediment which cause riverbed fluctuation, while wash load was excluded. As in the sediment balance analysis, Sato-Kikkawa-Ashida's Formula and Lane-Kalinske's Formula were applied to calculate sediment discharge for bed and suspended loads, respectively.

(4) Water Discharge

For the Framework Plan and the priority project, 100-year flood and 10-year flood hydrographs were applied, respectively (Fig. 4.1).

4.3 Results of Simulation

The results of simulation are presented in Figs. 4.2 and 4.3, and are summarized as follows:

- a) The widened channel bed is more stable than the existing channel in most stretches.
- b) The most significant effect appears in the Carmen stretch. The riverbed subsidence of 160 cm at the section AG-343 is improved by as much as 80 cm under the Framework Plan, although the effect is not so clear in the cases of the priority project.
- c) Riverbed subsidence is expected in the narrow stretches of AG328-AG330 and AG347-AG352. In order to mitigate the subsidence completely in the stretches, the river channels are required to be widened as wide as the upper stretches; namely, widening by some 300 m and 1,500 m are required for the two narrow stretches, respectively.

5. SEDIMENT CONTROL PLAN

5.1 Stability of Proposed Channel

5.1.1 Upper Agno River

Widening of the Poponto Floodway and the Carmen stretch of the Upper Agno River is proposed under the priority project. The low water channel is proposed to be widened to 150 m.

According to the results of the sediment balance and the riverbed fluctuation analyses, the proposed river channel is more stable than the existing one. In particular, scouring at the Carmen stretch will be considerably mitigated by widening the stretch.

5.1.2 Pantal-Sinocalan River

The major improvement work for the Pantal-Sinocalan River is the construction of a bypass channel from Calasiao to the Dagupan River. The existing narrow and meandering channel is also to be widened to 100-200 m and cut short.

According to the results of the sediment balance analysis, the existing river channel is originally stable except the upper stretches upstream of Binalonan. The proposed river channel is also expected to be as stable as the existing one in spite of the major improvement works.

5.2 Sedimentation in Poponto Swamp

The Poponto Swamp is proposed to be utilized as a natural retarding basin, and most of the floodwaters from the Upper Agno River will be led to it together with sediment. The design sedimentation volume in the Poponto Swamp was estimated at 260 million m^3 for 50 years in this Study.

The value of 260 million m³ was obtained on the basis of some assumptions such as sediment yield rates and trap efficiency, although the value is considered to be the safest value at present. Therefore, in order to prepare for excessive sedimentation of more than the design value, monitoring of sedimentation in the swamp is required.

The monitoring is recommended in the following manner:

- a) Concrete posts with a scale will be erected at selected sites as shown in Fig. 5.1.
- b) The ground levels will be measured with the posts, periodically at the end of the rainy season every year.
- c) In addition to the periodical measurement, the ground levels shall be measured immediately after a big flood.
- d) A phased installation schedule of the concrete posts is recommended to ease financial difficulties. A total of 35 posts will be installed in two phases; 9 of them will be installed under the first phase at the selected sites where heavy sedimentation is expected. The installation and measurement shall be carried out as soon as possible even prior to the commencement of the improvement works of the floodway and the natural retarding basin.
- e) The remaining 26 posts shall be installed under the second phase, which may be during the improvement works. The measurements at the total of 35 sites, which were selected as a site per 4 km², will make it possible to estimate the sedimentation volume in the Poponto Swamp.

5.3 River Mouth Clogging of Pantal River

As discussed in 2.3, the river mouth of the Pantal-Sinocalan River has been naturally maintained with a width of 200-300 m. Under the existing condition a problem of river mouth clogging has never taken place.

It is assessed that the proposed river improvement plan of the priority project will not aggravate the existing condition of the river mouth from the following reasons:

a) The river improvement plan of the proposed priprity project follows the existing condition of the river mouth, although a bypass channel is proposed to be excavated from Calaciao to the Dagupan River. The flow regime will never be changed even after the completion of the project because neither dam nor floodway will be provided. The project, therefore, will not aggravate the existing condition of the river mouth which has been naturally maintained.

b) In addition, the design high water level for the stretch of the river mouth was decided on the basis of the non-uniform flow calculation applied for the existing cross section. If it is considered that the cross section survey was conducted in the dry season when the river channel became narrow and shallow, overtopping of floodwaters will not take place during a flood less than the design flood insofar as the river mouth is maintained under the existing condition.

However, in order to monitor the transition of the river mouth, periodical topographical survey shall be carried out. A cross section survey at the river mouth is recommended to be done once a year, at least, at the end of the dry season.

TABLES

Table 2.1 SUMMARY OF FIELD INVESTIGATION ON SEDIMENT YIELD

Remarks			Numerous landslides took place on the mountain slopes and resulted in debris flow along the valley with heavy rainfall. The intake dam was reportedly buried in gravel carried by two floods in August 1991.	The situation is same as that of the Viray River. The intake dam was reportedly buried in gravel by two floods in August 1991.		According to NIA, the watershed of the Balog-Balog Dam has not been affected by the earthquake. A significant increase of sediment inflow to the TASMORIS has not been reported since the event of the earthquake.	
Change of River Bed After Earthquake	No significant change is found along the stretch from San Roque Dam site to the ARIS dam.	The river bed near the intake dam of the Ambayoan River Irrigation System is partially covered with mud but the river bed elevation is almost same as what it used to be before the earthquake.	The intake dam of the Viray River Irrigation System is completely buried in gravel. The depth of the accumulative sedimentation after the earthquake is estimated at more than 5 meters.	As same as the Viray River, the intake dam of the Dipalo River Irrigation System is completely buried in gravel. The depth of the accumulative sedimentation after the earthquake is estimated at some 5 meters.	Mud and logs are scattered on the river bed along the stretch in the alluvial fan but the river bed has not been raised significantly.	No change is found along the stretch near the intake dam of the Tarlac River Irrigation System.	No change is found along the stretch in the alluival fan.
Mountainous Sediment Yield Area Rate <1 (km2) (m3/yr/km2)	8,100	12,200	3,500	6,100	5,300	7,900	7,200
Mountainous Area (km2)	1,310	413	99		. 88	1.76	11.5
River Basin	Upper Agno	Ambayoan	Vinay	Dipalo	Banila	Tanlac	Tuboy

Note:<1 : Estimated in the Master Plan Study

Table 3.1 ASSUMED CONDITION OF SEDIMENT BEHAVIOR BY MODEL

Mode 1	Bed Load	Suspended Load	Wash Load
Sub-bas in	Qy = C x Qw x Qw Qy : Sediment y Qw : Water disc C : Constant e Sediment yield is assume	ield harge stimated from sediment yi d to be composed of 50% o	eld rate
	(bed + suspended load)	and 50 % of wash load.	
Dam Reservior	100 % trapped	100 % trapped	Trapped according to trap efficiency by Brune's curve
Conf luence	100 % passage	100 % passage	100 % passage
River Channel	Sato-Kikkawa & Ashida's formula	Lane-Kalinke's formula	100 % pass in upper stretches but some % are trapped in lower stretches. <1
Diversion to Irrigation System	No inflow	Qsi = Qsu x Qwi/Qwu Qsi : Sediment inflow Qsu : Sediment discharge at upper ref. poin Qwi : Water inflow Qwu : Water discharge at upper ref. poin	t same same same same same same same same
Diversion to Floodway	Qsi = Qsu x Qwi/Qwu Qsu : Sediment inflow Qsu : Sediment discharge of upper ref. poin Qwi : Water inflow Qwu : Water discharge at upper ref. point	t.	Same as bed load
Retarding Basin (Popont Swamp)	Same as dam reservior mo	del. Trap efficiency of 9) % is applied.

Note : <1 : 5 % of wash load is assumed to trapped and deposited in the lowest stretch of the Pantal River.

Table 3.2 CONSTANTS OF RATING CURVE FOR EXISTING UPPER AGNO RIVER CHANNEL

No.	Stretch	Section Nos	Length (km)	Grad of	iient	Width of H.W.C.	Width of L.W.C.	Bed Load (To	n/day)	Suspended Load	(Yon/day)	Remark
			(((())		er Bed	(m)	(m)	ALPHA	BETA	ALPKA	BETA	ncial x
C- 1 Ag	no R. (1)	AG281 - AG298	10.1	1/	2000	210	80	0.953	0.91	0.130	1.67	
C- 2 Ag	no R. (2)	AG299 - AG309	6.3	1/	1800	1630	100	0.518	1.08	0.171	1.53	
C- 3 Ag	no R. (3)	AG321 - AG340	9.6	1/	1700	1450	118	0.659	1.05	0.176	1.47	
C- 4 Ag	no R. (4)	AG341 - AG346	2.6	1/	1500	750	140	1.667	0.99	0.504	1.55	
C- 5 Ag	no R. (5)	AG347 - AG351	2.7	1/	1400	970	98	1.219	1.01	0.683	1.38	
C- 6 Ag	no R. (6)	AG352 - AG367	8.4	1/	1300	2470	81	0.936	1.08	0.395	1.35	
C- 7 Ag	no R. (7)	AG368 - AG414	7.9	1/	600	2640	140	2.780	1.17	0.003	1.71	
C- 8 Ag	no R. (-8)	AG415 - AG423	5.0	1/	400	1960	107	2.360	1.25	0.010	1.64	
C- 9 Ag	no R. (9)	AG453 - AG460	3.7	1/	300	1550	43	0.970	1.35	1.326	1.32	
C-10 Ag	no R. (10)	AG461 - AG475	7.5	1/	200	1340	49	2.248	1.36	0.714	1.51	-
CF FL	000 WAY	FW314 - FW320	3.8	1/	1600	850	45	1.738	0.94	2.662	1.15	
CT Ta	rlac R.	TA212		1/	1600	1000	120	1.318	1.03	1.174	1.45	
CB Ba	nila R.	BN375		1/	1000	650	30	0.752	1.15	0.058	1.46	-
CV VI	ray-Dipalo R.	VP424		1/	400	390	70	0.111	1,46	0.127	1.79	
CA An	bayoan R.	AM444		1/	200	540	110	0.007	2.14	0.414	1.57	

Table 3.3 CONSTANTS OF RATING CURVE FOR PROPOSED UPPER AGNO RIVER CHANNEL (PRIORITY PROJECT)

Ko.	Stretch	Section Nos	Length (km)	Grad of	lient	Width of H.W.C.	Width of L.W.C.	Bed Load (To	n/day)	Suspended Load	(Ton/day)	- Remark
•					er Bed	(m)	(m)	ALPHA	BETA	ALPHA .	BETA	
C- 1 /	Agno R. (1)	AG281 - AG298	7.0	1/	1850	250	100	1.007	0.93	0.099	1.68	
C- 2 /	Agno R. (2)	AG299 - AG309	6.3	1/	1850	1630	100	0.592	1.04	0.203	1.50	
C- 3 /	Agno R. (3)	AG321 - AG340	9.6	1/	1600	1450	150	0.738	1.04	0.389	1.50	
C- 4 /	Agno R. (4)	AG341 - AG346	2.6	1/	1600	900	150	1.338	1.01	0.476	1.53	
C- 5 /	Agno R. (5)	AG347 - AG351	2.7	1/	1600	970	150	0.655	1.01	0.291	1.52	•
C- 6 /	Agno R. (6)	AG352 - AG367	8.4	1/	1300	2470	. 150	1.051	1.03	0.203	1.47	
C- 7 /	Agno R. (7)	AG368 - AG414	7.9	1/	600	2640	150	2.656	1.13	0.004	1.77	
C- 8 /	Agno R. (8)	AG415 - AG423	5.0	1/	400	1960	107	2.360	1.25	0.010	1.64	Same as existing
C- 9 /	Agno R. (9)	AG453 - AG460	3.7	1/	300	1550	43	0.970	1.35	1.326	1.32	Same as existing
C-10 /	Agno R. (10)	AG461 - AG475	7.5	1/	200	1340	49	2.248	1.36	0.714	1.51	Same as existing
CF I	FLOOD WAY	FW314 - FW320	3.8	1/	1600	1200	150	0.790	1.03	0.477	1.48	
CT 1	Tarlac R.	TA212		1/	1600	1000	120	1.318	1.03	1.174	1.45	Same as existing
C8 E	Banila R.	8N375		1/	1000	650	30	0.752	1.15	0.058	1.46	Same as existing
CV V	Viray-Dipalo R.	VP424		1/	400	390	70	0.111	1.46	0.127	1.79	Same as existing
CA /	Ambayoan R.	AM444		1/	200	540	110	0.007	2.14	0.414	1.57	Same as existing

Table 3.4 RIVER BED FLACTUATION OF UPPER AGNO RIVER

,	Stretch	Length	Çeepest Rive (n)			Channel 1. m)		ation of the River Bed tevel	Deformation of Volume of low Mater Channal	Quantity of Extracted River Bed Materials	Quantity of Dredging /Excavation	Total	Sediment	Yo lune
		(a)	as of 1981	as of 1989	81 of 1981	as of 1989	(n)	(m/year)	(cu. m)	(cu. m)	(cu. p)	(cu. h)	(cu. m/yr)	(cu. #/yr/
	AG- 180	1,000	4.90	5.09	973,200	957,600	0.19	0,03	(34,400)			(34,400)	(4,914	1) (4
	AG- 282	1,500	5.40	51.3	1,019,950	1,099,125	-0.08	10.0-	(59,175)			(59,175)		(5,
	AG- 285 AG- 287	1,000	6.20 7.80	8.32	206,600 687,900	753,625 603,625	1.82 0.52	0.26 0.07	(47,025) 84,275			(47,025) 84,275	(6,718 12,039	
C- 1		1,000	8.10	7.94	658,100	660,270	-0.16	-0.02	(2,170)			(2,170)	(310	
	AG- 291	800	7.60	8.94	457,424	551,616	1.14	0.15	(94,192)			(54, 192)	(13,450	
	AG- 293 AG- 295	1,000 1,100	8.15 9.90	9.63 9.82	607,780 725,450	657,000 685,740	1,48 -0.68	0.21 -0.01	(49,220) 39,710			(49,220) 39,710	(7,03) 5,673	
	AG- 297	1,400	10-10	7.62	962,920	1,510,110	-2.48	-0.35	(547, 190)		•	(547,190)	(78,170	
	C- 1 101A	9,800			6,769,324	7,478,711			(709,387)	************		(709,387)	(101,341) (10.
	A6- 299	1,000	10.10	10.95	793,120	1,074,450	0.85	0.17	(281,330)			(281,330)	(40, 190	
. 2	AG- 301 AG- 303	1,000	11.09 12.20	11.52 10.58	668,340 401,300	638,680 594,280	-1.52	-0.22	29,650 (192,980)			29,660 (192,980)	4,237 (27,569	
_	AG- 305	1,050	13.37	13.50	409,248	385,980	0.13	0.02	23,258	•		23,268	3,324	
	AG- 307 AG- 309	750 900	13.50 15.40	13.83 13.81	215,040 284,688	197,850 403,560	0.33 -1.59	0,05 -0.23	17,190 (118,872)			17,190 (118,872)	2,456 (16,982	
	C- 5 TOTAL				2,771,735	3,294,800			(523,064)			(523,054)	(74,723) (13.
	AG- 322	1.100	15.30	14.70	331,760	483,340	-0.60	-0.03	(151,580)		· · · · · ·	(151,580)	(21,654) (19.
	AG- 324	1,100	15.65	15 33	193,500	379,500	-0.32	-0.05	(185,900)			(185,900)	(26,557) (24.
	AG- 326 AG- 328	900 900	15.90 16.80	14.41 16.20	336,740 574,371	421,200 490,500	-1.49 -0.60	-0.21 -0.09	(84,960) 83,871			(84,960) 83,871	(12,137 11,982	
- 3	AG- 330	1,300	16.85	17.30	550,407	443,950	0.45	0.06	106,457			106,457	15,208	
	AG- 333	1,309	18-25	18.30	482,170	346,125	0.05	0.01	136,045			136,045	19,435	15.0
	AG- 336 AG- 338	1,200	18.84	18.27 19.48	441,100 637,200	257,850 396,360	-0.57 1.21	-0.03 0.17	103.250 240,640			183,250 240,840	26,179 34,406	26. 28.
	C- 3 TOTAL	8,800			3,546,848	3,218,825			328,023	***********		328,023	46,860	5.:
	AG- 340	1,000	19.15	18.49	695,000	737,400	-0.65	-0.09	(41,400)			(41,400)	(5,914) (5.
	AG- 342	1,000	20.06	70.10	869,000	874,400 579,270	0.04	0.01	(5,400) (52,670)			(5,400) (52,570)	(771 (7,524	
- 4	AG- 344	1,000	21.40	20.41	526,600		-0.73							••••••
•••	C- 4 TOTAL				2,091,600	2,191,070			(99,470)			(99,470)	(14,210	• • • • • • • • • • • • • • • • • • • •
- 5	AG- 347 AG- 349	1,000	21.79 22.50	20.99 21.40	541,800 576,000	589,250 527,100	-0.89 -1.10	-0.13 -0.16	(47,450) 48,900			(47,450) 48,900	(6,719) 6,986) (6.8 7.0
	AG- 351	950	21.90	22.60	226,252	344,470	0.70	0.10	(118,218)			(118,218)	(16,888) (17.8
	C- 5 TOTAL	2,950			1,344.652	1,469,820			(116,768)			(116,768)	(16,631) (5.7
	AG- 353	900	24.54	23.07	325,206	280,800	-1.47	-0.21	44,405			44,406	6,344	7.0
	AG- 355 AG- 357	1,000	24.92 25.63	24.13 25.11	691,680 500,700	483,500 375,000	-0.79 -0.52	-0.11 -0.07	208,180 125,700			208,180 125,700	29,740 17,957	29.1 18.0
	AG- 359	1,400	25.34	26.80	403,480	165,250	1.46	0.21	237,230			217,230	33,890	24.
	AG- 352	1,000	25.90	28.10	355,000	222.500	2.20	0.31	137,500			132,500	18,929	18.9
	AG- 367 AG- 367	1,300 900	26.50 29.85	28.70 29.90	405,080 511,665	298,675 113,400	1.90 0.05	0.27 0.01	106,405 397,665	4		106,405 397,665	15,201 56,809	11.7 63.1
	C- 6 TOTAL	7,500			3,192,211	1,940,125			1,252,085			1,252,085	178,869	23.8
	AG- 369	1,600	31,40	32.80	627,319	225,060	1.40	0.20	402.259			402,259	57,456	52.2
	AG- 403	900	32.50	33.60	363,455	537,300	1.10	0.16	(173,844)			(173,844)	(24,835)	
. ,	AG- 405 AG- 408	1,450 900	35.75 36.25	35.20 38.30	638,073 333,045	792,280 228,690	-0.55 2.05	0.03	(154,207) 104,355			(154,207) 104,355	(22,030) 14,908) (15.2 16.6
	AG- 410	1,100	36.60	38.40	361,350	110,110	1.80	0.26	251,240		54,279	196,951	28,137	25.6
	AG- 412	1,500	38.00	42.08	583,3\$0	114,900	4.08	0.58	469,350			469,350	67,050	44.7
	C- 7 101AL	6,956			2,906,592	2,007,440			899,153			899,153	128,450	16.5
-	AG- 416	1,600	44.20	45.00	471,520	229,312	0.80	0.11	242,208		,	242,208	34,601	21.6
. 8	AG- 418 AG- 422	1,000	47.40 54.60	46.98 51.52	59,500 159,300	177,120 213,480	-0.42 -3.08	-0.66 -0.44	(117,620) (54,180)	٠		(117,620) (54,180)	(16,803) (7,740)	
	C- 8 TOTAL				690,320	619,912			70,465		••••••	70,408	10,058	
	AG- 453	1,100	55.70	57.30	901,862	308,990	0.60	0.09	592,873		:	592,873	84,695	77.0
	AG- 455	1,000	\$7.80	58.90	1,307,875	376,690	1.10	0.16	931,275	1.0		931,275	133,039	133.0
9	AG- 457 AG- 459	1,000 900	61.15 63.10	61.72 64.18	1,175,550	271,600 97,020	1.08	0.01 0.15	905,050 904,140	•		905,050 904,140	129,293 129,163	129.3 143.5
	C- 9 TOTAL	4,000			4,387,548	1,054,210			3,333,338	:		3,333,333	476,191	119.0
	AG- 451	1,000	65.20	67.49	1,641,500	ø	2.29	0.33	1,641,500			1,641,500	234,500	234.5
	AG- 463	1,000	60.55	71.30	2,061,500	0	2.75	0.39	2,061,500			2,061,500	294,500	294.5
	AG- 465 AG- 467	990 1,900	72.50 78.22	78.80 81.10	573,800 495,000	0 196,380	6.30 2.88	0.90 0.41	573.800 298.620			573,800 298,620	81,971 42,660	91.1 22.5
	AG- 471	900	91.90	90.33	260,390	195,390	-1.57		280,390			280,390	40,056	
	AG- 473	550	91,20	95.91	•		2.71	0.39				0	0	0.0
	C-10 TOTAL				5,052,190	195, 380		:	4,855,810			4,855,810	693,687	111.0

Table 3.5 SIMULATED ANNUAL SEDIMENT BALANCE FOR EXISTING UPPER AGNO RIVER CHANNEL (1982 - 1986)

Remark	Balance	Sediment	(1000 m 3/yr)	rt Capacity (Sediment Transpo	Width of L.W.C.	Width of H.W.C.	1ent	Grad of	Length (km)	Section Nos	Stretch	No.
	(m3/yr/m)	(1000 m3/yr)	TOTAL	W.L.	B.M.L.	(m)	(m)	r Bed	Rive				
	-6.6	-67	3326	3149	177	80	210	2000	1/	10.1	AG281 - AG298	Agno R. (1)	
	-3.7	-23	3260	3149	111	100	1630	1800	1/	6.3	AG299 - AG309	Agno R. (2)	- 2
	21.7	208	3262	3174	88	118	1450	1700	1/	9.6	AG321 - AG340	Agno R. (3)	- 3
	-43.8	-114	3470	3174	296	. 140	750	1500	1/	2.6	AG341 - AG346	Agno R. (4)	- 4
	-30.4	-82	3356	3174	182	98	970	1400	1/	2.7	AG347 - AG351	Agno R. (5)	- !
	7.4	52	3182	3086	96	81	2470	1300	1/	8.4	AG352 - AG367	Agno R. (6)	- (
	4.4	34	3314	3156	158	140	2640	600	1/	7.9	AG368 - AG414	Agno R. (7)	- :
	12.6	63	3182	2991	191	107	1960	400	1/	5.0	AG415 - AG423	Agno R. (8)	- 8
	77.8	288	1749	1557	. 192	43	1550	300	1/	: 3.7	AG453 - AG460	Agno R. (-9)	- 9
	137.6	1032	2049	1627	422	49	1340	200	1/	7.5	AG461 - AG475	Agno R. (10)	~1(
	-0.3	-1	26	25	1	45	850	1600	1/	3.8	FW314 - FW320	FLOOD WAY	F

Table 3.6 SIMULATED ANNUAL SEDIMENT BALANCE FOR EXISTING UPPER AGNO RIVER CHANNEL

No.	Stretch	Section Nos	Length (km)		fient	Width of H.W.C.	Width of L.W.C.	Sediment Transp	ort Capacity	(1000 m ³ /yr)	Sediment	Balance	Remark
					er Bed	(m)	(m)	8.4.1.	. W.L.	. TOTAL	(1000 m ³ /yr)	(m3/yr/m)	Touch K
C- 1 A	gno R. (1)	AG281 - AG298	10.1	1/	2000	210	80	253	5380	5633	-100	-9.9	
C- 2 A	Igno R. (2)	AG299 - AG309	6.3	1/	1800	1630	100	152	5380	5532	-29	-4.6	
C- 3 A	Igno R. (3)	AG321 - AG340	9.6	1/	1700	1450	118	127	5681	5808	384	40.0	
C- 4 A	ono R. (4)	AG341 - AG346	2.6	1/	1500	750	140	511	5681	6192	-254	-97.7	
C- 5 A	ono R. (5)	AG347 - AG351	2.7	1/	1400	970	98	257	5681	5938	-117	-43.3	
- 6 A	gno R. (6)	AG352 - AG367	8.4	1/	1300	2470	81	134	5527	5661	122	14.5	
- 7 A	gno R. (7)	AG368 - AG414	7.9	1/	600	2640	140	214	5611	5825	54	6.8	•
- 8 A	Igno R. (8)	AG415 - AG423	5.0	1/	400	1960	107	264	5322	5586	115	23.0	
	gno R. (9)	AG453 - AG460	3.7	1/	300	1550	43	274	2806	3080	437	118.1	
-10 A	gno R. (10)	AG461 - AG475	7.5	1/	200	1340	49	593	2853	3446	1957	260.9	
≆ F	LOOD WAY	FW314 - FW320	3.8	1/	1600	850	45	8	302	310	-11	-2.9	٠.

Table 3.7 SIMULATED ANNUAL SEDIMENT BALANCE FOR PROPOSED UPPER AGNO RIVER CHANNEL (PRIORITY PROJECT, WITHOUT SAN-ROQUE DAM

No.	Stretch	Section Mos	Length	Grad of	lient	Width of H.W.C.	Width of L.W.C.	Sediment Transpor	rt Capacity	(1000 m ³ /yr)	Sediment	Ba lance	Remark
		.*	(km)		er Bed	(m)	(m)	B.M.L.	W.L.	TOTAL	(1000 m ³ /yr)	(m3/yr/m)	NORDEK .
C- 1 /	\gno R. (1)	AG281 - AG298	7.0	1/	1850	250	100	11	710	721	-2	-0.3	
C- 2 /	Agno R. (2)	AG299 - AG309	6.3	1/	1850	1630	100	9	710	719	28	4.4	
C- 3 /	Agno R. (3)	AG321 - AG340	9.6	- 1/	1600	1450	150	295	5681	5976	133	13.9	
C- 4 /	Agno R. (4)	AG341 - AG346	2.6	1/	1600	900	150	.428	5681	6109	-185	-71.2	
C- 5 A	Agno R. (5)	AG347 - AG351	2.7	1/	1600	970	150	243	5681	5924	-105	-38.9	
C- 6 A	Agno R. (6)	AG352 - AG367	8.4	1/	1300	2470	150	132	5527	5659	42	5.0	
- 7 6	Agno R. (7)	AG368 - AG414	7.9	1/	665	2640	150	174	5611	5785	93	11,8	
C- 8 A	Vgno R. (8)	AG415 - AG423	5.0	1/	400	1960	107	264	5322	5586	115	23.0	Same as existing
C~ 9 #	Agno R. (9)	AG453 - AG460	3.7	1/	300	1550	43	274	2806	3080	437	118.1	- Ditto -
C-10 /	\gno R. (10)	AG461 - AG475	7.5	1/	200	1340	49	593	2853	3446	1957	260.9	- Ditto -
CF F	LOOD WAY	FW314 - FW320	3.8	1/	1600	1200	150	258	4971	5229	0	0.0	

Note: Width of L.W.C. means width of low water channel bed.

Table 3.8 SIMULATED ANNUAL SEDIMENT BALANCE FOR PROPOSED UPPER AGNO RIVER CHANNEL (PRIORITY PROJECT, WITH SAN-ROQUE DAM

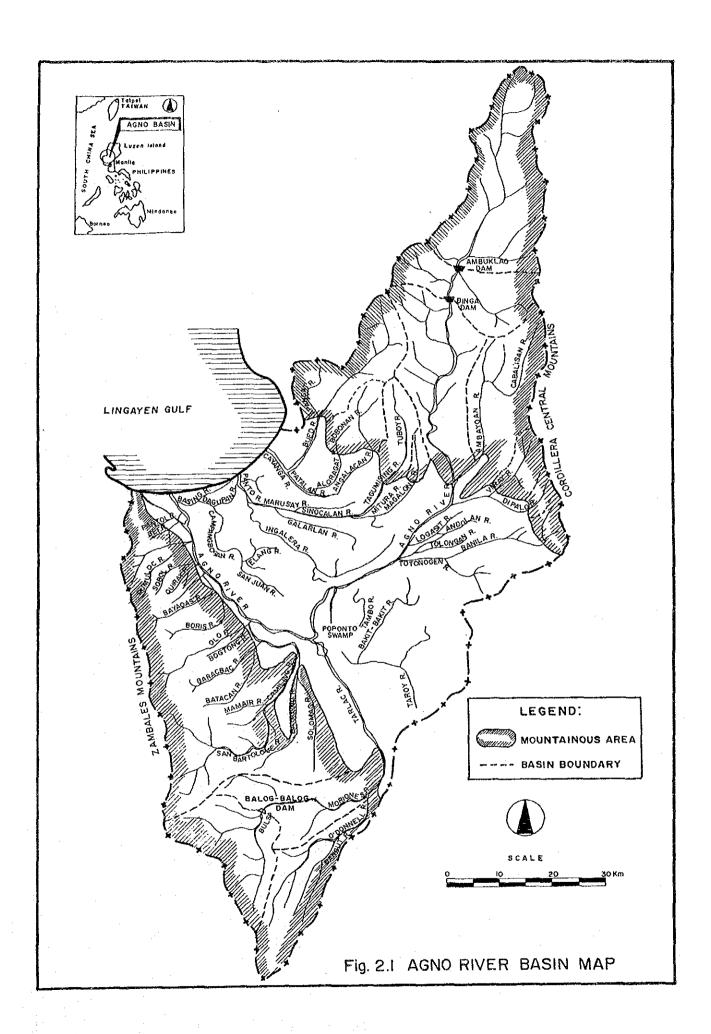
Remark	Balance	Sediment	1000 m 3/yr)	rt Capacity (Sediment Transpo	Width of L.W.C.	Width of H.W.C.	adient		Nos Length (km)	Section Nos	. Stretch
	(m3/yr/m)	(1000 m ³ /yr)	TOTAL	W.L.	B.M.L.	(m)	(m)	ver Bed	•	(Kis)		
3	-0.3	-2	406	395	11	100	250	/ 1850	7.0	G298 7.	AG281 - AG29	1 Agno R. (1)
1	4.4	28	404	. 395	. 9	100	1630	/ 1850	5,3	6309 6.	AG299 - AG30	2 Agno R. (2)
9	13.9	133	3452	3157	295	150	1450	1600	9.6	G340 9.	AG321 - AG340	3 Agno R. (3)
2	-71.2	-185	3585	3157	428	150	900	1600	2.6	G346 2.	AG341 - AG346	4 Agno R. (4)
9	-38.9	-105	3400	3157	243	150	970	1600	2.7	6351 2.	AG347 - AG35	5 Agno R. (5)
	5.0	42	3134	3002	132	150	2470	1300	3.4	G367 8.	AG352 - AG363	6 Agno R. (6)
3 ·	11.8	93	3226	3052	174	150	2640	665	7.9	6414 7.	AG368 - AG414	7 Agno R. (7)
O Same as ext	23.0	115	3028	2764	264	107	1960	400	5.0	G423 5.	AG415 - AG423	8 Agno R. (8)
l - Ditto	118.1	437	521	247	274	43	1550	300	3.7	G460 3.	AG453 - AG460	9 Agno R. (9)
l.	-79.1	-593	703	110	593	49	1340	200	7.5	G475 7.	AG461 - AG475	10 Agno R. (10)
)	0.0	0	3020	2762	258	150	1200	1600	3.8	W320 3.	FW314 - FW320	FLOOD WAY

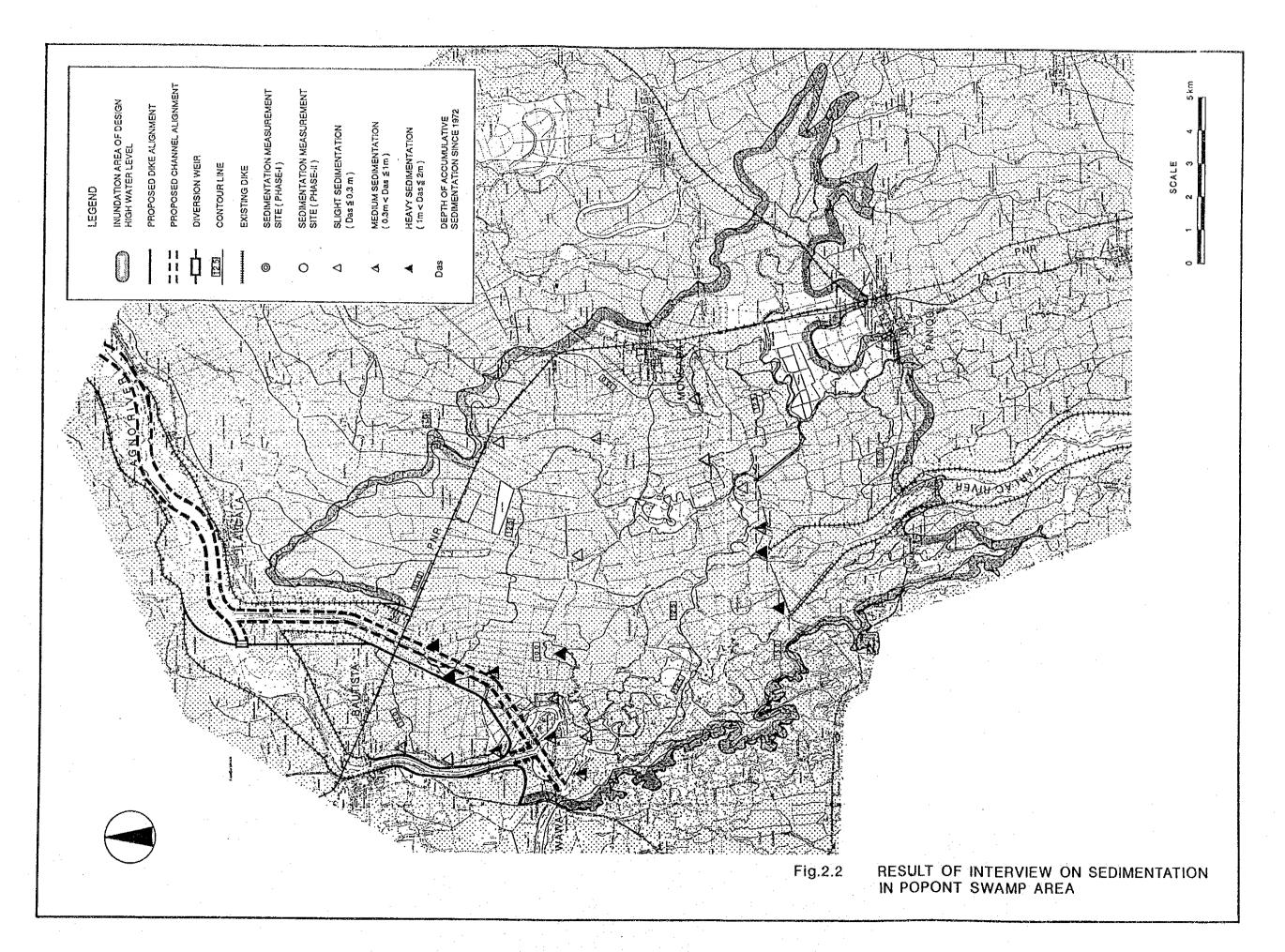
Table 3.9 CONSTANTS OF RATING CURVE FOR EXISTING PANTAL-SINOCALAN RIVER CHANNEL

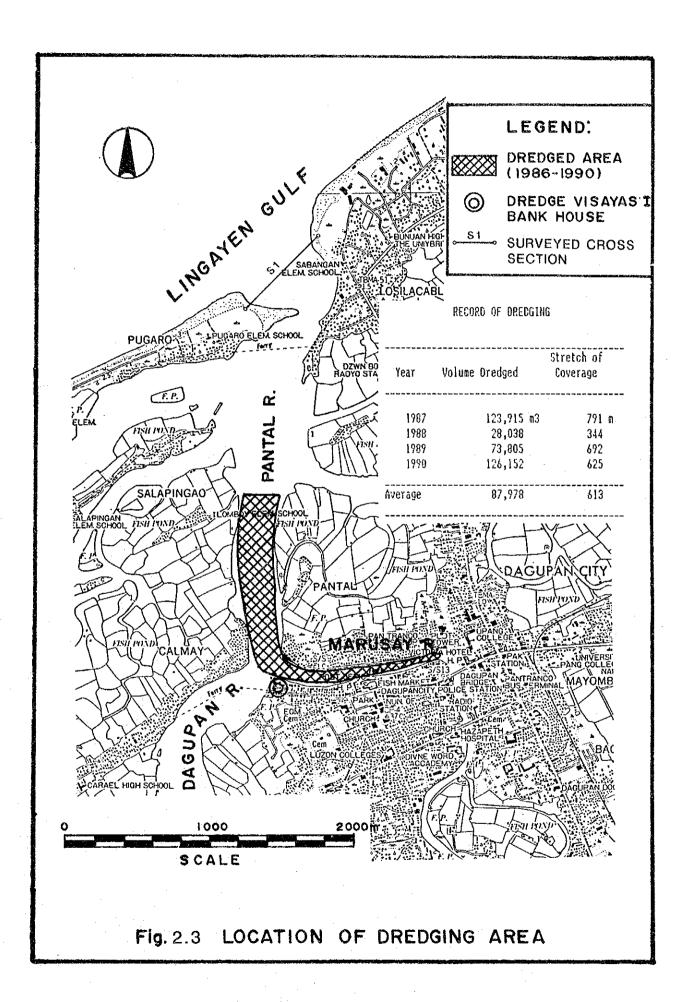
No.	Stretch S	ection Nos	Length (km)	Grad of	1ent	Width of H.W.C.	Width of L.W.C.	Bed Load (To	on/day)	Suspended Lo		lay) Remark
			(,,,,,)		r Bed	(m)	(m)	ALPHA	BETA	ALPHA	BETA	INDIANT II
C- 1	Pantal R. S	1 - S 6	2.6	1/	3000	348	58	0.290	0.98	0.052	1.77	5 % of wash load is trappe
Č- 2	Marusay R. S	7 - S14	2.2	1/	2800	92	52	0.349	0.95	0.066	1.83	.,,
C- 3	Sinocalan R. (1) S	S15 - S21	7.5	1/	2700	71	33	0.418	0.94	0.147	1.77	
C- 4	Simocalan R. (2) S	22 - \$34	6.4	1/	2500	43	16	0.524	0.93	0.410	1.71	
C- 5	Simocalan R. (3) S	35 - \$43	4.5	1/	2300	45	25	0.627	0.93	0.260	1.75	
C- 6	Sinocalan R. (4) S	44 - \$49	3.0	1/	2000	51	23	0.737	0.94	0.267	1.72	
C- 7	Sinocalan R. (5) S	50 - 559	8.7	. 1/	1800	62	26	1.629	0.96	0.318	1.75	
C- 8	Sinocalan R. (6) S	60 - 565	6.3	1/	1300	61.	25	2.112	1.01	0.270	1.78	
C- 9	Tagamusing R. (1) S	66 - 573	8.4	1/	1100	59	17	3,152	1.09	0.218	1.80	
C-10	Tagamusing R. (2) S	74 - 578	5.5	1/	600	49	17	2.223	1.35	0.007	2.09	
C-11	Tagamusing R. (3) S	78 - 580	2.2	1/	400	70	28	0.078	2.24	0.007	2.03	
C-12	Tuboy R. (1)		7.0	1/ '	. 200	500	10	0.186	2.17	0.452	1.49	
C-13	Tuboy R. (2)		3.5	1/	100	500	5	33.584	1.37	2.724	1.26	
C-14	DAGUPAN R.			1/	2500	300	50	0.482	0.97	0.154	1.77	
C-15	INGALERA R.			1/	2200	20	15	0.645	0.91	0.245	1.82	•
C-16	BINGCO R.			1/	2000	20	10	0.730	0.92	0.449	1.73	
C-17	MACALONG R.			1/	1800	10	. 7	0.837	0.83	0.475	1.71	
C-18	MITURA R.			1/	1200	15	10	1.397	0.93	0.242	1.78	

Table 3.10 CONSTANTS OF RATING CURVE FOR PROPOSED PANTAL-SINOCALAN RIVER CHANNEL (PRIORITY PROJECT)

No.	Stretch	Section Nos	Length (km)	Gradient of	Width of H.W.C.	Width of L.W.C.	Bed Load (To	on/day)	Suspended Lo	ad (Ton/d	lay) Remark
				River Bed	(m)	(m)	ALPHA	BETA	ALPHA	BETA	
C- 1	Pantal R.	S 1 - S 6	2.8	1/ 2350	550	60	0.364	1.07	0.104	1.72	5 % of wash load is trappe
8P-1	BYPASS (1)	D O - D 3	1.9	1/ 2350	400	60	0.440	1.04	0.117	1.74	- Ditto -
BP-2	BYPASS (2)	P 1 - P 7	3.3	1/ 2350	220	40	0.550	0.99	0.180	1.76	
3-3	Sinocalan R. (1)	P 7 - S21	0.6	1/ 2350	220	40	0.554	0.99	0.183	1.75	
C- 4	Sinocalan R. (2)	S22 - S34	5.3	1/ 1850	200	30	1.155	0.98	0.263	1.71	
- 5	Sinocalan R. (3)	S35 - S43	3.8	1/ 1850	200	30	0.898	0.99	0.204	1.72	
- 6	Sinocalan R. (4)	S44 - S49	1.9	1/ 1850	200	30	1.132	1.00	0.254	1.72	
- 7	Sinocalan R. (5)	S50 - S59	7.9	1/ 1600	150	30	1.064	1.02	0.377	1.72	4.4
- 8	Simocalan R. (6)	S60 - S65	5.1	1/ 1150	100	25	1.987	1.05	0.208	1.75	
- 9	Tagamusing R. (1)) S66 - S73	7.8	. 1/ 900	100	17	2.201	1.24	0.011	2.05	
-10	Tagamusing R. (2) S74 - S78	5.5	1/ 600	49	17	2.223	1.35	0.007	2.09	Same as existing
-11	Tagamusing R. (3	S78 - \$80	2.2	1/ 400	70	28	0.078	2.24	0.007	2.03	- Ditto -
-12	Tuboy R. (1)	•	7.0	1/ 200	500	10	0.185	2.17	0.452	1.49	- Ditto -
-13	Tuboy R. (2)		3.5	1/ 100	500	5	33.584	1.37	2.724	1.26	- Ditto -
-14	DAGUPAN R.			1/ 2500	300	50 -	0.482	0.97	0.154	1.77	- Ditto -
-15	INGALERA R.			1/ 2200	20	15	0.645	0.91	0.245	1.82	- Ditto -
-16	BINGCO R.			1/ 2000	. 20	10	0.730	0.92	0.449	1.73	- Ditto -
-17	MACALONG R.			1/ 1800	10	7	0.837	0.83	0.475	1.71	- Ditto -
-18	MITURA R.	*		1/ 1200	15	10	1.397	0.93	0.242	1.78	- Ditto -

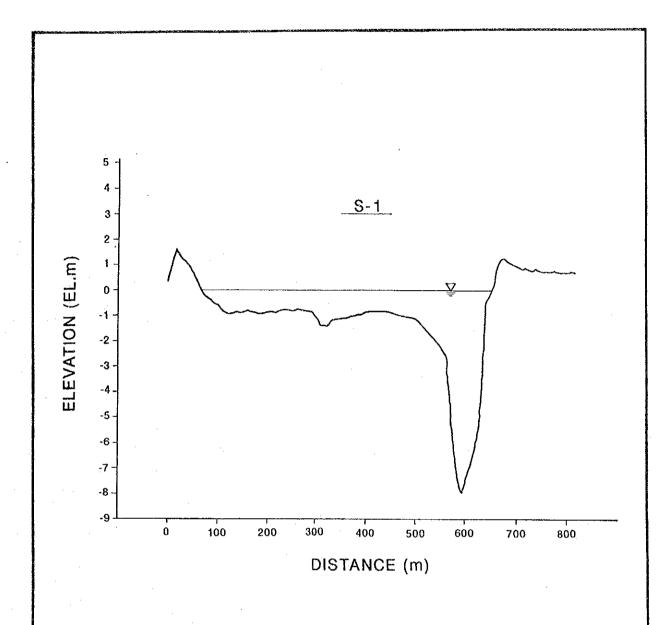
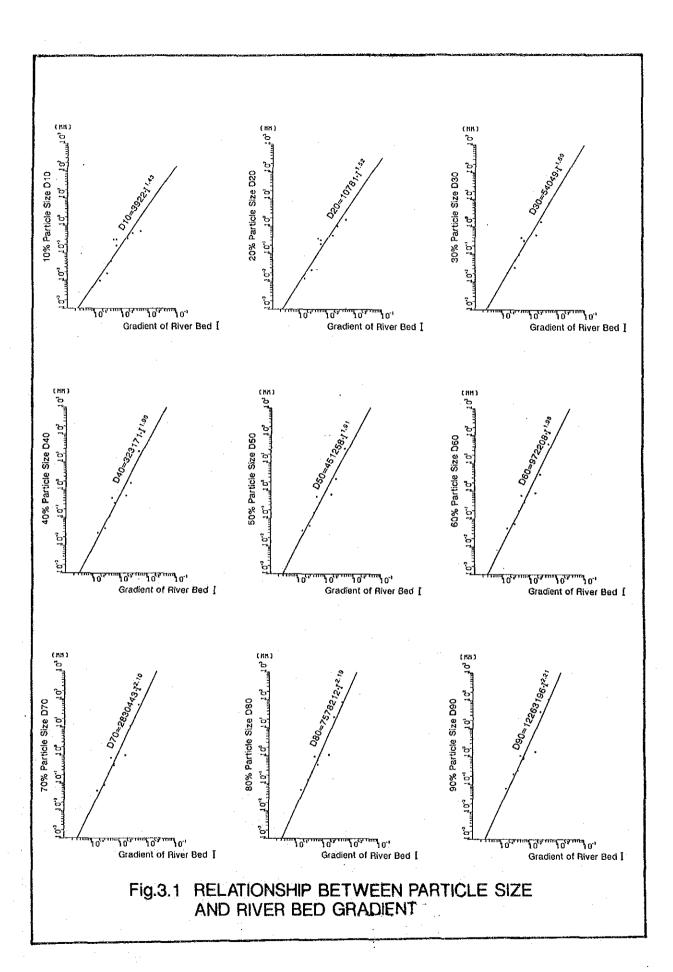
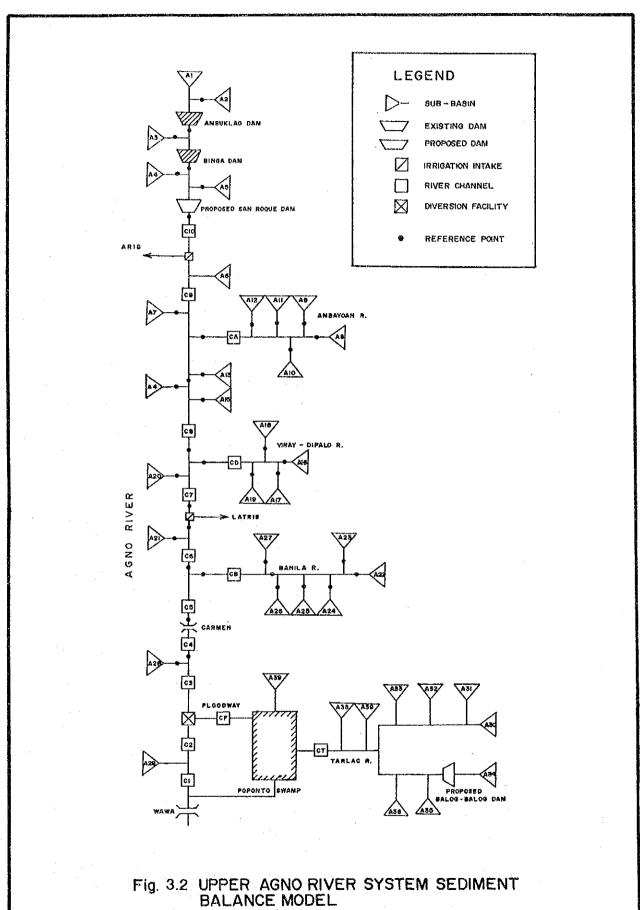
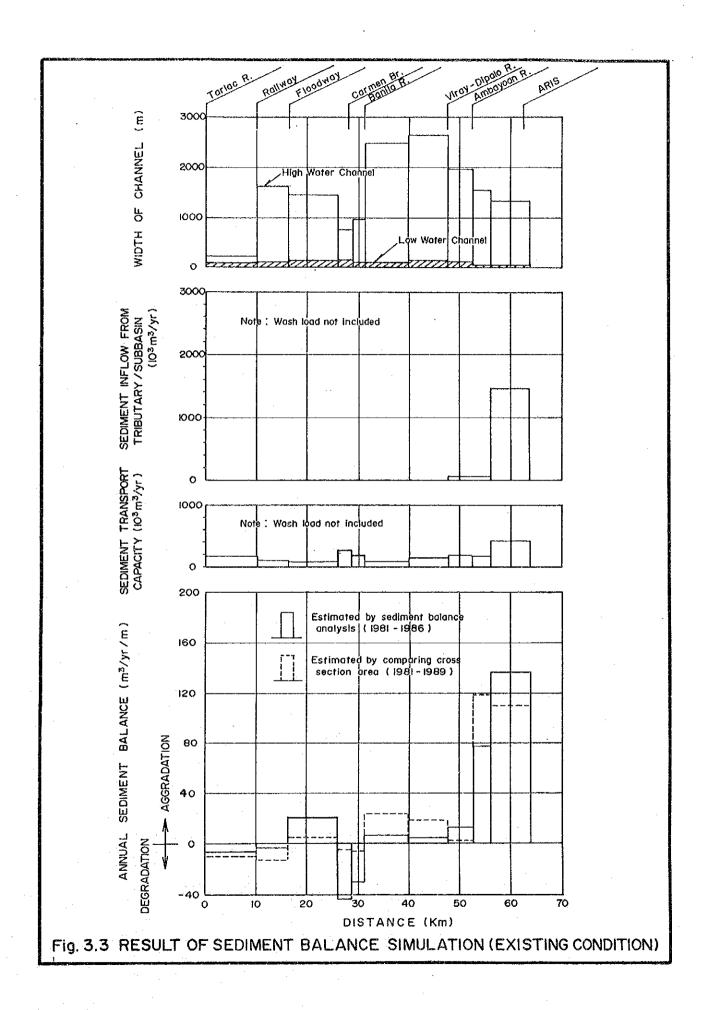
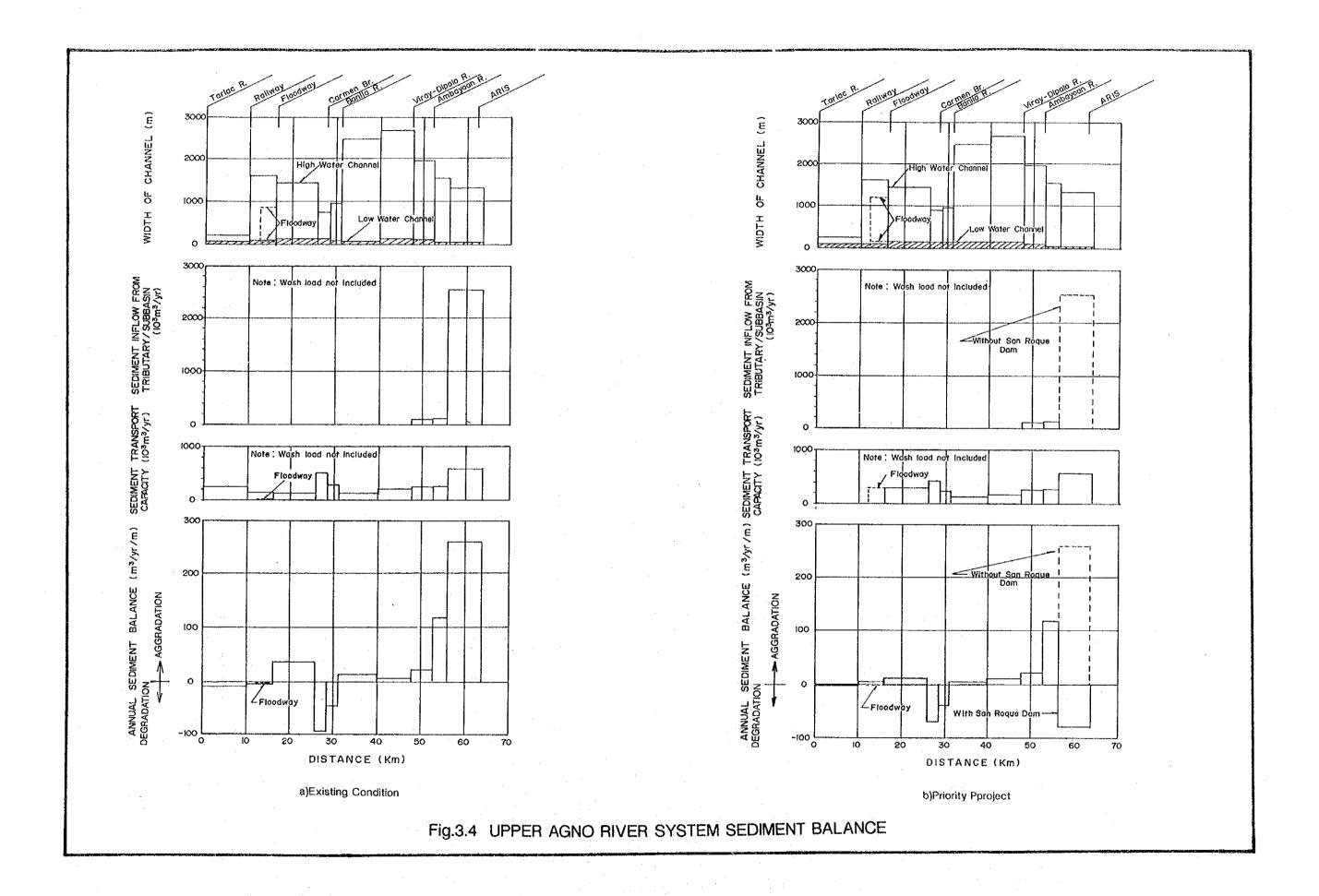

Table 3.11 SEDIMENT BALANCE FOR EXISTING PANTAL-SINOCALAN RIVER CHANNEL

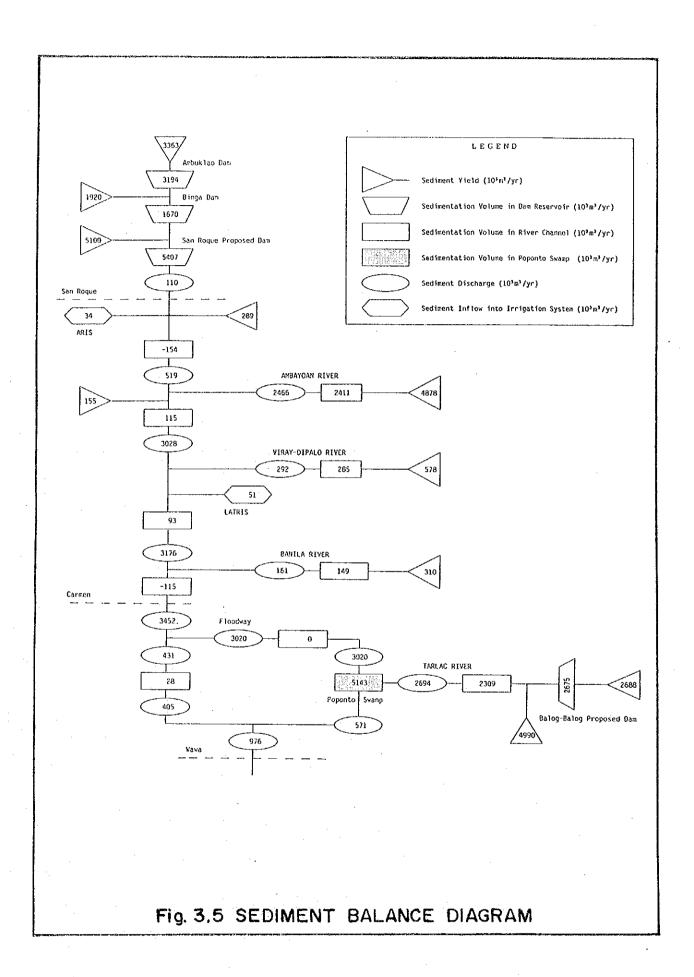

Remark	Balance) Sediment			Sediment Transpo	Width of L.W.C.	Width of H.W.C.	Gradient of	Length (km)	Section Nos	Stretch
110000111	(m3/yr/m)	(1000 m ³ /yr)	TOTAL	W.L.	B.M.L.	(m)	(m)	River Bed			
	6.5	17	481	423	58	58	348	1/ 3000	2.6	S 1 - S 6	1 Pantal R.
	9.1	- 20	478	445	33	52	92	1/ 2800	2.2	S 7 - S14	2 Marusay R.
	2.7	20	498	445	53	33	71	1/ 2700	7.5	S15 - S21 ·	3 Sinocalan R. (1)
	-2.8	-18	506	445	61	16	43	1/ 2500	6.4	S22 - S34	4 Sinocalan ዪ. (2)
	-2.9	-13	487	445	42	25	45	1/ 2300	4.5	S35 - S43	6 Sinocalan R. (3)
	3.7	11	483	453	30	23	51	1/ 2000	3.0	S44 ~ S49	5 Sinocalan R. (4)
	-0.6	-5	494	453	41	26	62	1/ 1800	8.7	S50 - S59	Sinocalan R. (5)
	-1.7	-11	489	453	36	25	61	1/ 1300	6.3	S60 - S65	Sinocalan R. (6)
	-0.2	-2	428	409	19	17	59	1/ 1100	8.4) S66 - S73	Tagamusing R. (1)
	-1.5	-8	426	409	. 17	17	49	1/ 600	5.5) 574 - 578	Tagamusing R. (2)
	18.2	40	418	409	9	28	70	1/ 400	2.2) S78 - S80	Tagamusing R. (3)
	18.0	126	390	375	15	. 10	500	1/ 200	7.0		? Тшbоу R. (1)
	66.9	234	484	359	125	5	500	1/ 100	3.5		Tuboy R. (2)


Table 3.12 SEDIMENT BALANCE FOR PROPOSED PANTAL-SINOCALAN RIVER CHANNEL (PRIORITY PROJECT)

No.	Stretch Section h	os Lengti (km)		radient I	Width of H.W.C.	Width of L.W.C. (m)	Sediment Transport Capacity (1000 m ² 3			Sed frent 8a	8a lance	Remark
			R	iver Bed	(m)		B.M.L.	W.L.	TOTAL	(1000 m ² /yr) (m3	/yr/n)	
C- 1 P	ental R	2.	8 1	/ : 2350	:550	60	79	402	481	- 19	6.8	
BP-1 B	YPASS (1) D 0 - D 3	1.	9 j	/ 2350	400	60	77	423	500	28	14.7	4.5
BP-2 B	YPASS (2) P1 - P7	3.	3 1	/ 2350	220	- 40	64	445	509	-1	-0.3	
C- 3 S	inocalan R. (1) P7 - \$2	1 0.	6 1	/ 2350	220	40	63	445	508	-6	-10.0	•
:- 4 S	inocalan R. (2) S22 - S34	5.	3 1	/ 1850	200	30	45	445	490	-14	-2.6	
~ 5 S	inocalam R. (3) \$35 - \$43	3.	8 1	/ 1850	200	30	32	455	487	0 =	0.0	
- 6 S	inocalan R. (4) S44 - S49	1.	9 1	/ 1850	200	30	32	453	485	. 8	4.2	
- 7 S	inocalan R. (5) \$50 - \$59	7.	9 1	/ 1600	150	30	40	453	493	-12	-1.5	
- 8 5	inocalan R. (6) S60 - S65	5.	1 1	/ 1150	100	25	28	453	481	-9	-1.8	
- 9 Ta	agamusing R. (1) S66 - S73	7.	8 1	/ 900	100	17	13	409	422	3	0.4	\$
-10 Tá	agamusing R. (2) S74 - S78	5.	5 1	/ 600	49	17	17	409	426	-8	-1.5	Same as existin
-11 Ta	agamusing R. (3) S78 - S80	2.	2 1	/ 400	70	28	9	409	418	40	18.2	- Ditto -
-12 Te	uboy R. (1)	. 7.	0 1	/ = 200	500	10	- 15	375	390	126	18.0	- Ditto -
-13 Tu	ıboy R. (2)	3.	5 1	/ 100	500	· 5	125	359	484	234	66.9	- Ditto -

FIGURES


Fig.2.4 CROSS SECTION PROFILE AT RIVER MOUTH OF PANTAL RIVER

