TABLE 2.7 ANNUAL DATA COLLECTION RATE OF THE CONTROL OFFICE

				1 - E - E - E - E - E - E - E - E - E -							
	······································	Year	1982	1933	1984	1935	1986	1987	1988	1989	Potal
	Station Name	Period	Jui-Jec	Jan-Jec	Jan-Dec	Jan-Dec	Jac-Dec-	Jaa-Dec	Jan-èec	ian-Kay	
	Stacion		. <u></u>		······			<u> </u>	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
(1) Binga Dansite	Access count	1235	1985	:170	1651	2354	2004	2237	[112]	14449
	- •	Data received	158	540	313	4	-26	117	1502	536	3489
		Annual rata	132400	រ៉ះំតំខ្ល	233320	220	110	1655ee	225588	248 a a	
		Collectica rate	13.122	27.193	31.36X	0.13%	1.101	5.84X	56.931	18.201	23, 34
13	Saa Roone	Access count	1235	1935	1770	1851	5324	2004	2000	1112	- [[443
•		Cata received	1444 1444	1969	1763	1300	123	1573	C161	:075	[3263
		Anaral 731a	(43Taa	: []\$fee	3137an	2087au	: 1059ee	11328	2003ae	33818	
		Colléctica rate	20.073	°¢ 11	39,33%	70 00*	20.403	78.747	34.521	26.57%	91.30
13	stalbarbara	ACCESS COURT	1235	1936	1770	1851	2354	2004	2236	1112	14448
		Data received	1272	1319	1767	1047	115 i	1861	2213	1109	14382
	·	Anguai sala	129.36	1086 e a	3203ee	2630an	2248ne	1202au	206048	445×m	
		Collection rate	38.39%	<u>99.35%</u>	29.33%	09.767	22.37%	-90, 96 ,	99.431	99.73X	39.54
14) Carsea	Access count	1235	1986	1769	1851	2354	2004	2235	1112	14446
1		Jaza received	1175	1919	1751	1648	:352	[994	3376	1119	14333
		laasai ciia	381au	932au	207236	243466	2057.5m	.979eg	145868	331 cm	a station
		Collection rate	39.073	19.651	98.98%	99.32%	39.22	19. DI	19. jl.	99.32%	90 Sõ
15	Yaya	Access count	1285	1986	1769	1651	2354	2004	2285	1112	14446
	,	Jaca received	1273	1973	1767	1547	2325	1907	2273	- 1111	14282
		Annual cala	946	964ea	1913en	2245ze	3344aa	115448	1867an	555au	. •
		Collection rate	99.375	39.50X	99,39X	39.75X	28.313	161.18	99.47.	19,915)8.26
(\$)	l-Tihad	Access conat	1235	3561	1786	1650	353	2004	2203	1112	14439
(v)	1 1100	lata receited	1257	1975	1760	1647	2349	1992	2258	1104	14362
		lanuai raia	[13728	1184	2244	2132au	2139ee	il!San	2063au	448 e a	
-		Collection rate	98.50%	99.4SI	99.66%	99.32.	99.831	99.40X	39.341	99.231	99.17
laton Lon	al Canding Stati						~ ····				
auce sere {f	ci duging deuci. 1 kinas iseciis	locess coant	1230	1968	1729	1611	2326	1980	2254	1102	14250
(1)	Buiga buissibe	Data received	211	Û	13	2	0	. 0	37	0	323
		Collection rate	16.181	0.901	9.75%	0.12:	0.00:	0.90X	4.10I	9.00X	2.21
12	annos ace l	lecess conat	1230	1963	1720	1611	2322	1980	2254	1102	14246
14,	l agn rodae	Data zeceizen	1223	1481	1655	1103	1752	323	1971	\$74	10597
		Collection care	25.343	75.051	35.72%	58.47.	75.38X	41.573	37.14%	52.09%	74.39
12	Sto harnara	locess count	1230	1268	1729	1611	4:32	1980	2254	1102	14246
Į ū) atarbarara	Asts received	1211	1962	1723	1610	2321	1970	2214	1100	14208
		- Cailaction seta	- 90 107	49.781	99.94%	99.941	99.961	99.491	99.56X	39.32%	99.72
11			1556	1062	1729	1611	2122	1982	2254	1102	14248
13	j varaen	Access source	1130	220	730		0 .	- 1)	0	2745
		Pallantian min	27 179	15 17	12 224	6 66r	0.001	0.001	9.00 z	0.005	19.27
10	h 74		1970	1063	1720	1611	2122	1980	2254	1102	14216
(\$	i taxa	Access could	1920	1990	1797	1111	2726	1201	2250	1102	14091
		yata recelved	0630	10 114	00 309	00 014	30 157	45 517	00 17*	100 307	12 01
		collection rate	13.405	1009	33,00%	1011	-9-34A 9199	1000	2251	1102	1121
- (6	j Janaga	ACCESS COURC	1640	1900	1756	1011	6766 9910	190V. 10C7	1644 1	1000	11016
		Jata received	1253	1950	1160	1900 00 00-	ፍደፍል «ስኮ ሳስ»	00.31m 1201	U 0.00	1050	23 62
		Collection rate	98.511	99.09I	39.77%	33.937	331101	13.115 1000	400+U 1340	10.JLA	11010
(6	Tibag	Access count	1220	1968	1128	1011		1320	5434 A	313	19010
		Data received	ш	55	175	38	· · · · ·	1 40-	0 30-	9 3 30≃	9 au 111 -
		CONTRACTOR AND	1 177	2 20*	- 10 13%	2 367	it di 🛛	- 1. 30°	11. UUX	0.995	1 M

-FF.37-

TABLE 2.8 FFWS TASK DISTRIBUTION

	No	Agency	Tasks to FFHS Activity
	1	PAGASA	(a)Flood forecasting in major basins using the existing FFWSs. (b)Issuance and dissemination of flood bulletins through its
		·	own channels and OCD's channels. (c)Issuance of warning of weather disturbances by typhoons, storms and depressions, including heavy rainfall given
			impetus by the monsoon through the same channels as above. (d)Monitoring of operaitonal condition of system equipment. (e)Monitoring of rainfall/water level data transmitted from
			(f)Request to NIA/NAPOCOR regarding warning operation based on forecasting, as well as appropriate reservoir operation.
			(g)Assistance in maintenance services of system equipments installed by FFWSDO.
			<pre>(h)Provision of information of weather condition. (i)O/M of FFWS equipment.</pre>
	- <u>'</u>	NIA	(a)Dam reservoir operation mainly for irrigation purpose.
	.		(b)Reservoir water release based on the assessment of inflow from upstream areas, telemetered data from gauging stations
		• •	established by FFWSDO.
			(c) issuance of dam discharge warning.
			(a) warning, using warning stations regarding dam discharge warning, using warning facilities provided by FFWSDO. (a) Warning operations regarding flood warning issued by PACACA
		i	at its request.
	. 19	14	(f)0/M of FFWS00 equipments for the dam operated by NIA.
	3 11	APOCOR	(a)Dam reservoir operation mainly for power generaiton purpose.
		· · ·	(b)Reservoir water release based on the assessment of inflow from upstream areas, telemetered data from gauging stations established by FFWSDO.
			(c)Issuance of dam discharge warning.
	•	• .*	(e)Warning operations regarding flood warning issued by PFWS00.
			at its request. (f)O/M of FFMSDO equipments for the dam operated by NAPOCOR.
	4	DPWH	(a)0/M of flood control facilities/structures.
			(b)River management. (c)Monitoring of rainfall/waterlevel data transmitted from
			Pampanga, Agno, Bicol and Cagayan river basins. (d)O/M of system equipments installed by Pampanga FFWS,
			ABC system and FFWSDO.
	5	NWBR	(a)Coordination in reservoir operation among water use purposed in view of beneficial water use.
		· .	(b)Coordination in framework change regarding water resources development/management.
	6	OCD	(a)Coordination in formulating warning dissemination system
			in normal time. (b)Relaying warning information received from warning agencies to the tasked agencies and to POCC/POCC operation conten
			in case of emergencies.
			(c)Coordination and monitoring of disaster management activity conducted by national/local governments and private sector
			through DCC set-up, before, during and after disaster. (d)Assessment of disaster situations during emergency.
			(e)Organizing DCCs in normal time.
·			(1)of a of system equipments installed by reason.

TABLE 3.1 THE AGNO RIVER INTEGRATED FFWS COST ESTIMATIE

Item No.	Description	Equipment Cost	Civil Work	Total
1.	Construction Cost	•		
1-1	Direct Cost			
1-1.1 1-1.2 1-1.3 1-1.5 1-1.5 1-1.6 1-1.7 1-1.8 1-1.9 1-1.10 1-1.11 1-1.12 1-1.13 1-1.14 1-1.15 1-1.15 1-1.16	Agno River FFWS San Roque FOS Moriones FOS Balog-Balog FOS Mt.Ampucao Repeater Station Mt.Malabobo Repeater Station St.Ignacia Repeater Station Binga Dam Office Cabanatuan Repeater Station NIA FFWS Center PAGASA FFWS Center (DIC) OCD Monitor Station DFWH FFWS Center Municipal Warning System Measuring Equipment Spare Parts	698,408 440,906 466,218 91,014 76,308 63,634 15,618 1,956 5,000 24,326 6,312 23,267 94,524 34,726 204,790	$\begin{array}{c} 91,400\\ 37,600\\ 40,600\\ 40,600\\ 500\\ 10,200\\ 4,100\\ 200\\ 500\\ 200\\ 500\\ 200\\ 500\\ 3,900\\ 5,000\\ 5,000\\ 5,000\\ 5,000\\ \end{array}$	789,808 478,506 506,818 506,818 91,514 86,508 67,734 15,818 2,056 5,200 24,826 6,512 23,767 98,424 39,726 209,790
• •	Total of Direct Cost	2,713,225	240,600	2,953,825
1-2	Indirect Cost	636,775	160,900	797,675
	Total of Construction Cost	3,350,000	401,500	3,751,500
- 2	Engineering Service		,	750,000
3	Contingency			675,000
	GROUND TOTAL			5,176,500

Unit : 1000 Yen

			Unit : 100	0 Yen
Item No.	Description	Equipment Cost	Civil Work	Total
1.	Construction Cost	ει, — 1 - β. α.σ. η γ. σ. σ 103 το σ.	and produced for a second set of the second set of the second second second second second second second second	— ▲
1-1	Direct Cost			
1-1.11-1.21-1.31-1.41-1.51-1.61-1.71-1.81-1.9	Agno River FFWS Mt.Ampucao Repeater Station Mt.Malabobo Repeater Station Binga Dam Office PAGASA FFWS Center (DIC) DFWH FFWS Center Municipal Warning System Measuring Equipment Spare Parts	530,886 91,014 76,308 15,618 24,326 23,267 94,524 34,726 85,594	54,050 500 10,200 200 500 3,900 5,000 6,985	584,936 91,514 86,508 15,818 24,826 23,767 98,424 39,726 92,579
	Total of Direct Cost	976,263	81,835	1,058,098
1-2	Indirect Cost	244,066	20,459	264,525
	Total of Construction Cost	1,220,329	102,294	1,322,623
2	Engineering Service	÷		264,525
3	Contingency			238,072
	GROUND TOTAL			1,825,220

TABLE 4.1 THE AGNO RIVER PRIORITY FFWS COST ESTIMATIE

-FF,41-

-FF.43-

-FF.45-

-FF.46-

	LEGEND	FLOOD FORECASTING POINT																		
	Olirectry Affected	ł				AG	NO	R	VE	RB	AS	IN		1	AI	_L	ED	RI	VE	:8
	O L Indicactory Affactad							[]							- 5					
]		间		·9		8							01 12	3	1.1			
				8	R	E.		10L	¥.	BE	10	ដ	ပ္ပ	0 T	ដា	ð	C J I S	3-1	DAG	À
				HN I	Ľ,	AVA			SNEC SNEC	1	2013	SPI		14	ż		41	9	54.5	5) [1
			· .	3	<u>о</u>	ណី		5	ã	ŝ	e	Ì۲.	а с	Ċ,	63 01	in m	4. PC	С м		N N
	HUITCIPILAPY	PROJECTED	TOPUL ATION	-	10	01	14	0	φ		<u></u>	6		=	<u> </u>		<u> </u>	L <u>==</u>	L <u>e</u>	<u> </u>
		1990	2010	ĺ																
	1. DAGUPAH		148 000	0	0				[T			·			6	6	0	<u>, </u>	0	С
	2. HAURALDAH	60,000	78,000	-	-			<u> </u>							Ť			6	6	6
	3. BINHALEY	55,000	71,000	ō	0	0	0	0	0										-	<u> </u>
	h. LIIRAYEN	71,000	98,000	0	0	0	0	0	0	:								[
	5. CALASIAO	59,000	ອີ້,ດິນບ	0	0			-							0	٢	0			[
	O. SPA. BARBARA	43,000	55,000	0	0		:								0	0	Ċ,			
	7. MAHAOAG	46,000	60,000	0		:												0	0	6
. •	8 FAPANDAN	23,000	30,000	0											Line		·	0	0	6
	9. INZORRUBIO	45,000	57,000					 												
	10. LAOAC	24,000	33,000	0														· .		L
Z ⊄	11. BIHALONAN	40,000	48,000	0		L.		l								0		<u> </u>		ļ
	12. SAN MARDEL	34,000	44,000	0	<u> </u>											<u> </u>			 	L.,
Z	13. SAU NECOLAS	59,000	32,000	0						0					<u> </u>		•		L	<u> </u>
· <u></u> ·		30,000	37,0180	0						<u>0</u>	0					ļ	L	<u> </u>		_
01		22,000	28,000	\square			[<u> </u>		0							_		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			31,000															0	0	└
2		20.000	40,000															·		ļ
<u>م</u>	19. R083AL423	111000	55 (100		6	-					÷	8								
<u>م</u>	20. VILLASIS	- 46,000	55,000		6					~		9	1		-					
	2). URDAIDEPA	87,000	116 000	Ы	-					-								<u> </u>		
	22. BUGAFLOR	46,000	60 000	<b>F</b>	0	a	0	0	6					h		$\vdash$				
	23. AGUILAR	26,000	34,000	$\vdash$	0	õ	ŏ	ŏ					<u>.</u>	<u>.</u>						-
	24. SAN CARLOS	117,000	153.000	$\square$	lō	0	0	0						⁻			0			
	25. EMASIQUI	83,000	107,000		Ō	Ļ,	-	-						ŀ		<u> </u>	6	-		
	26. BASISTA:	20,000	26,000		0				- {				••••					<u> </u>		1.
	27. URBIZTORDO	34,000	47,000		0	0	6	0						<b> </b>	<b> </b>			<u> </u>		
	28. BAYANBANG	75,000	90,000		0	0	0						 					[		$\vdash$
	29. BAUTISPA	21,000	27,000		6	0									†					<u> </u>
	30. ALCALA	29,000	37,000		0										İ					<u> </u>
	31. SID. TAMAS	10,000	12,000		0		/		1		I			·					L	1
с О	32. SAN MANULL.	16,000	20,000		0							0								
∢	33. SAH CLEARAFE	8,000	10,000						.					0						1
_	34. CALLETING	60,000	69,000											۲						
£	35. PAHTQUI	62,000	73,000										0							
4	s6. GERONA	61,000	79,000										6							
H	37. TARLAC	152,000	206,000	· -			· -						0							

Fig. 3.4 RELATION BETWEEN FLOOD FORECASTING POINT AND AFFECTED MUNICIPALITY

-FF.47-





-FF.49-

1.21.5



# 10. DS DESIGN OF STRUCTURES

#### DS:DESIGN OF RELATED STRUCTURES SUMMARY

- (1) The design of related structures as described in this sectoral report on the Study of Agno River Basin Flood Control was conducted through the following procedure:
  - (a) Assessment of flood damage on river facilities and structures.
  - (b) Decision on the basic design concept for related structures.
  - (c) Structural planning and design of related structures.
  - (d) Calculation of work quantities.
- (2) The analysis on the causes of flood damage to flood control facilities and related structures was made on the basis of the flood damage records shown in Tables 2.1, 2.2 and 2.3 and in Fig. 2.1. The results of the analysis are summarized as follows:
  - (a) Most of the damage caused by floods are found on dikes, riverbanks and groins. The average cost of restoration works estimated at P70 million in this three years correspond to almost three times the annual average cost of flood control projects in five years.

فليود وكردار فالوار فبأدار والالات

- (b) There are some sections with unstable slopes and water colliding fronts without revetment and groin in the typical cross sections of dike shown in Figs. 2.2 and 2.3, which are considered as the causes of bank failure in the past.
  - (c) It was determined that the upper reaches of the Agno River, the Dipalo River which is a tributary of the Agno River, and the left bank side of the middle reaches of the Agno River have been damaged in almost every year.
  - (d) The main causes of bank failure consist of scouring of dike materials of silty sand and the strong tractive force to the existing groin of dry masonry during floods. Another cause of dike failure is the

insufficient compaction at the junction between the existing dike and the newly constructed one.

- (e) The causes of bridge damage were determined as follows:
  - Insufficient clearance.
    - Drift current due to decrease of flow area by structure.
    - Unsuitable location of abutment.
    - No revetment and foot protection around abutment to protect dike from failure due to scouring.

The mechanism of bridge failure is illustrated in Fig. 2.4.

(3) The design work in this study was made based on the following criteria with reference to the river improvement works recently implemented in the Study Area:

- (a) Technical Standard for River and Sabo Facilities prepared by the Ministry of Construction of Japan.
- (b) Design Guidelines, Criteria and Standards (Vol. I & II) prepared by the DPWH.

The standard design section of the river dike which is one of the most important structure among the flood control facilities in the Study Area is shown in Fig. 4.1.

(4) Structural plan and design were made for the following related structures.

(a) Related Structures for River Improvement Plan

River Dike, Revetment, Groin, Water Gate, Sluiceway, Bridge.

- (b) Related Structures for Floodway Plan Floodway Dike, Revetment.
- (c) Related Structures for Flood Control Dam Plan Dam, Spillway, River Diversion Facilities.

-DS.S2-

- (d) Related Structures for Retarding Basin Plan
   Retarding Basin Dike, Overflow Weir, Drainage Gate, Control Gate,
   Wier.
- (c) Related Structures for Other Flood Control Facilities
   Fixed Weir on Agno River, Closing Dike in Bued River, Sabo Dam.

-DS.S3-

### DS : DESIGN OF RELATED STRUCTURES

# TABLE OF CONTENTS

	and the second	Page
	SUMMARY	DS.S1
	TABLE OF CONTENTS	DS.i
	LIST OF TABLES	DS.iii
	LIST OF FIGURES	DS.iv
	ABBREVIATIONS	DS.v
		.1
	1. INTRODUCTION	DS.1
	1.1 General	DS.1
	1.2 Objectives	DS.1
	en en de la contraction de la construction de la construction de la construction de la construction de la const	· .
	2. ASSESSMENT OF FLOOD DAMAGE ON RIVER FACILITIES AND STRUCTURES	DS.2
	(2, 2, 2, 0) = (1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	
	2.1 Record of Flood Damage on River Facilities and Structures	DS.2
	2.2 Analysis on Causes of Damage	DS.2
	2.3 Requirement of Damage Prevention Measures	DS.3
	3. BASIC DESIGN CONCEPT OF RELATED STRUCTURES	DS.5
		•
	3.1 Scope of Basic Design	DS.5
	3.2 Design Criteria	DS.6
	3.3 Typical Design Sections	DS.6
. •	4. STRUCTURAL PLAN AND DESIGN OF RELATED STRUCTURES	DS.7
		· .
	4.1 Structural Plan and Design of River Improvement	DS.7
	4.1.1 Dike	DS.7
	4.1.2 Revetment	D5.8
	4.1.3 Groin	DS.8
	4.1.4 Sluice Way	DS.9
	4.1.5 Water Gate	DS.9
	4.1.6 Bridge	DS.10

-DS.i-
4.2 Stru	ctural Plan and Design of Floodway	DS.10
4.2.1	Dike	DS.10
4.2.2	Revetment	DS.10
4.3 Stru	ctural Plan and Design of Flood Control Dam	DS.10
4.3.1	Dam	DS.10
4.3.2	Spillway	DS.11
4.3.3	River Diversion Facilities	DS.11
4.4 Stru	ctural Plan and Design of Retarding Basin	DS.12
4.4.1	Dike	DS.12
4.4.2	Overflow Weir	DS.12
4.4.3	Drainage Gate	DS.13
4.4.4	Control Gate Weir	DS.13
4.5 Stru	ctural Plan and Design of Other Flood Control	I
Faci	lities	DS.13
4.5.1	Fixed Weir on Agno River	DS.13
4.5.2	Closing Dike in Bued River	DS.14
4.5.3	Sabo Dam	DS.14
· .		· . · · .
5. WORK QUAN	TITIES	DS.15

TABLES

FIGURES

÷

#### LIST OF TABLES

No.		Page
2.1	LIST OF DESTRUCTIVE TYPHOON IN THE AGNO RIVER BASIN	
1. J.	(1962-1988)	DS.16
2.2	SUMMARY OF FLOOD CONTROL FACILITIES DAMAGED BY FLOODS	DS.17
2.3	SUMMARY OF BREACHES/GAPS AND SCOURS CAUSED BY FLOODS	
1. A. A. A.	(1984-1988)	DS.18
2.4	SUMMARY OF ACCOMPLISHMENT OF RIVER CONTROL WORKS	
	(1972-1988)	DS.24
5.1	SUMMARY OF WORK QUANTITIES OF MORIONES DAM AND LOWER	
	O'DONNELL DAM COMBINE PLAN	DS.25
5.2	SUMMARY OF WORK QUANTITIES OF THE FIXED WEIR ON AGNO RIVER	DS.26
5.3	SUMMARY OF WORK QUANTITIES OF THE CLOSING DIKE IN	
· .	BUED RIVER	DS.26
5.4	SUMMARY OF MAJOR DIMENSION OF PROPOSED SABO DAM	DS.27

## LIST OF FIGURES

No.		Page
2.1	LOCATION OF BREACHES/GAPS AND SCOURS CAUSED BY FLOODS	. 1.
1	(1984-1988)	DS.29
2.2	LOCATION MAP OF REPRESENTATIVE POINTS FOR RIVER DIKES	DS.30
2.3	TYPICAL CROSS SECTIONS OF EXISTING DIKE	DS.31
2.4	ILLUSTRATION OF CAUSES OF BRIDGE DESTRUCTION	DS.35
4.1	STANDARD DESIGN SECTION OF RIVER DIKE	DS.36
4.2	STANDARD DESIGN SECTION OF LOW-WATER CHANNEL	DS.37
4.3	STANDARD DESIGN SECTION OF HIGH-WATER CHANNEL	DS.38
4.4	STANDARD DESIGN OF GROIN FOR LOW-WATER CHANNEL (TYPE-A)	DS.39
4.5	STANDARD DESIGN OF GROIN FOR LOW-WATER CHANNEL (TYPE-B)	DS.40
4.6	STANDARD DESIGN OF GROIN FOR HIGH-WATER CHANNEL (TYPE-A)	DS.41
4.7	STANDARD DESIGN OF GROIN FOR HIGH-WATER CHANNEL (TYPE-B)	DS.42
4.8	STANDARD DESIGN OF SLUICE WAY (TYPE-A)	DS.43
4.9	STANDARD DESIGN OF SLUICE WAY (TYPE-B)	DS.44
4.10	STANDARD DESIGN OF WATER GATE (TYPE-A)	DS.45
4.11	STANDARD DESIGN OF WATER GATE (TYPE-B)	DS.46
4.12	STANDARD DESIGN OF BRIDGE	DS.47
4.13	STANDARD SECTIONS OF BINALONAN FLOODWAY	DS.48
4.14	LOCATION MAP OF DAM SITE AND SWAMPY AREA	DS.49
4.15	TYPICAL SECTIONS OF EXISTING AND PROPOSED DAM	DS.50
4.16	LAYOUT PLAN OF MORIONES AND LOWER O'DONNELL COMBINE DAM PLAN	
	(MORIONES SITE)	DS.52
4.17	LAYOUT PLAN OF MORIONES AND LOWER O'DONNELL COMBINE DAM PLAN	
	(LOWER O'DONNELL SITE)	DS.53
4.18	STANDARD DESIGN SECTION OF RETARDING BASIN	DS.54
4.19	STANDARD DESIGN OF OVERFLOW WEIR FOR RETARDING BASIN	DS.55
4.20	DRAINAGE GATE OF RETARDING BASIN	DS.56
4.21	CONTROL GATE WEIR FOR POPONTO RETARDING BASIN	DS.57
4.22	AGNO FIXED WEIR ON DIVERSION POINT	DS.58
4.23	STANDARD DESIGN SECTION OF BUED CLOSING DIKE	DS.59
4.24	STANDARD DESIGN OF SABO DAM	DS.60
5.1	LOCATION MAP OF PROPOSED SABO DAM SITES	DS.61

#### ABBREVIATIONS

#### 1. NAME OF PHILIPPINE GOVERNMENT AGENCIES

AFCS	Agno Flood Control System
ARIS	Agno River Irrigation System
DENR	Department of Environment and Natural Resources
DOTC	Department of Transportation and Communications
DPWH	Department of Public Works and Highways
GOP	Government of the Philippines
LATRIS	Lower Agno and Totonogen River Irrigation System
NAPOCOR	National Power Corporation
NAMRIA	National Mapping and Resource Information Authority
NIA	National Irrigation Administration
OCD	Office of Civil Defense
PENRO	Provincial Environment and Natural Resources Office
PM	Project Manager
PMO	Project Management Office
PNR	Philippine National Railways
SMORIS	San Miguel - O'Donnell River Irrigation System

2. NAME OF JAPANESE GOVERNMENT AND OTHER OFFICIAL AGENCIES AND ORGANIZATION

Government of Japan
Japan International Cooperation Agency
Ministry of Construction, Japan
Overseas Economic Cooperation Fund, Japan
United Nations

# 3. MEASUREMENT UNITS

(Length	)	(Weight)	
mm	millimeter(s)	gr(grs)	gramme(s)
cm	centimeter(s)	kg(kgs)	kilogramme(s)
m	meter(s)	ton(s)	ton(s),eq'vt to
		·	1,000 kg
km	kilometer(s)		

(Area)		(Time)	
mm ²	square millimeter(s)	sec	second(s)
cm ²	square centimeter(s)	min	minute(s)
m ²	square meter(s)	hr(hrs)	hour(s)
km ²	square kilometer(s)	dy(dys)	day(s)
ha(has)	hectare(s)	mth(mths)	month(s)
,		yr(yrs)	year(s)

(Volume) cm³

. m³

ltr

cubic centimeter(s) cubic meter(s) liter(s)

-DS.vi-

#### 1. INTRODUCTION

#### 1.1 General

The Agno river basin which is situated at the northwestern portion of Luzon Island, Republic of the Philippines, has been suffering from damage caused by recurrent floods. Under these circumstances, JICA has been undertaking the Study of Agno River Basin Flood Control since March 28, 1989 to formulate the Master Plan to mitigate flood damage.

This sectoral report presents the design of related structures which is one of the components of the study.

#### 1.2 Objectives

The assessment of flood damage on river facilities and structures was conducted to determine the best preventive measure and adopt the most suitable design for structures in the Study Area.

The study on the design of related structures was carried out to obtain the work quantities for flood control facilities such as river improvement, floodway, dam, retarding basin, fixed weir, closing dike and sabo dam. The work quantities served as the basis for the cost estimate and the cost and benefit analysis.

and a start of the second s

presidente de la construcción de la construcción de la construcción de

2. ASSESSMENT OF FLOOD DAMAGE ON RIVER FACILITIES AND STRUCTURES

2.1 Record of Flood Damage on River Facilities and Structures

Flood damage records of flood control facilities and related structures caused by major floods in recent years brought by typhoons listed in Table 2.1 are shown in Tables 2.2 and 2.3 and in Fig. 2.1.

2.2 Analysis on Causes of Damage

The construction of flood control facilities in the Study Area had proceeded as shown in Table 2.4. Most of the damage caused by floods are found on dikes, banks and groins. The average cost of restoration works estimated at P70 million in these three years corresponds to almost three times the annual average cost of flood control projects in five years.

The repeated restoration works to prevent damage caused by flood in the Study Area have adopted the typical cross sections of dike shown in Figs. 2.2 and 2.3. However, there are some sections with unstable slopes and water colliding fronts without revetment and groin which are considered as the causes of bank failure in the past.

From the study on bank failure sites caused by recent floods (refer to Fig. 2.1 and Table 2.3), it was determined that the upper reaches of the Agno River, the Dipalo River which is a tributary of the Agno River, and the left bank of the middle reaches of the Agno River have been subject to damage in almost every year.

Since not only dikes but also groins are damaged in these reaches, it is considered that the main causes of bank failure consist of scouring of dike materials of silty sand and the strong tractive force to the existing groin of dry masonry during floods. Another cause of dike failure is the insufficient compaction at the junction between the existing dike and the newly constructed one. The causes of bridge damage are considered as follows:

- Insufficient of clearance.

- Drift current due to decrease of flow area by structure.

- Unsuitable location of abutment.

- No revetment and foot protection around abutment to prevent dike from failure due to scouring.

The mechanism of bridge failure is explained as follows:

The destruction of a bridge due to insufficient clearance occurs when the flood water level comes up to almost the superstructure and strong dynamic load works directly to it through the debris such as drift timber caught by it, or, when the flood overflows the superstructure and washes it away (refer to No. 1 in Fig. 2.4).

When abutment is placed in the riverside as shown in No. 2 of Fig. 2.4, flood overflow due to the decrease of flow area causes destruction of a bridge, and scouring of dike by drift current ensues due to constriction. Destruction around abutment occurs when scouring of dike by flood flow ensues due to unsuitable location of abutment as shown in No. 3 of Fig. 2.4. Destruction of a dike consisting mainly of silty sand ensues easily when there is no revetment and foot protection around the abutment as shown in No. 4 of Fig. 2.4.

2.3 Requirement of Damage Prevention Measures

The following damage prevention measures are conceived to be effective in the Study Area. They may be employed singly or in suitable combinations with each other.

(1) Dike with Stability for Design Flood Discharge

Dike materials should be carefully investigate and special attention should be given to the compaction of dike. Revetment and groin should be planned around water colliding fronts. The structural type of existing groins is dry masonry; however, it is necessary to plan another structural type that is stable against floods.

- (2) Flood control dam and retarding basin to reduce flood peak discharge by temporarily storing floodwaters.
- (3) Floodway and diversion facilities to divert parts of flood into another river basin.
- (4) Closing dike to prevent floods from spreading due to bank failure.
- (5) Pumping facilities, sluice way and water gate for the drainage of inland water.

3. BASIC DESIGN CONCEPT OF RELATED STRUCTURES

3.1 Scope of Basic Design

made in this phase of the study.

Basic design shall be carried out for all the structures related to the flood control facilities in the Study Area. The standard design which is stable under general design conditions was applied to the design of related structures, however, the detailed computation for structural analysis is not

Basic design shall be applied to the following related structures:

(1) Related Structures for River Improvement Plan

River Dike, Revetment, Groin, Groundsill, Water gate, Sluice way, Bridge

(2) Related Structures for Floodway Plan

Floodway Dike, Revetment, Diversion facilities

(3) Closing Dike in Allied Rivers

Closing Dike, Revetment, Groin

(4) Related Structures for Flood Control Dam Plan

Dam, Spillway, River diversion facilities

(5) Related Structures for Retarding Basin Plan

Retarding Basin dike, Overflow facilities, Drainage Gate, Pumping stations

(6) Related Structures for Sediment Control Plan

Sabo Dam

#### 3.2 Design Criteria

There are some design criteria for river structures in the Republic of the Philippines. However, actual design works have been conducted on the basis of past experiences and the criteria of foreign countries because of the insufficient data on river structures. Accordingly, the design work in this study was made on the basis of the following criteria with reference to the river improvement works recently implemented in the Study Area.

- (1) Technical Standard for River and Sabo Facilities prepared by the Ministry of Construction of Japan.
- (2) Design Guidelines, Criteria and Standards (Vol. I & II) prepared by DPWH.

3.3 Typical Design Sections

River dike is the most important structure among the flood control facilities in the Study Area. The relationship among the crown width of the dike, freeboard for design flood discharge and standard design section of the dike are shown in Fig. 4.1. The standard design of retarding basin dike which is of the banking type like the river dike is shown in Fig. 4.18. The standard design section of the river dike shall be basically applied to the floodway dike and the closing dike for allied rivers. 4. STRUCTURAL PLAN AND DESIGN OF RELATED STRUCTURES

4.1 Structural Plan and Design of River Improvement

4.1.1 Dike

Standard design sections of river dike corresponding to the dike height are shown in Fig. 4.1. The dike height is determined by adding the freeboard allowance to the design high water level which is reckoned on the design flood discharge. Freeboard which is the margin of height maintained between the top of the dike and the designed flood level to guard against overtopping and wave wash shall be obtained from the table shown in Fig. 4.1.

The crown width of the dike, which may be required to serve as a road for facilitating the transport of materials during the construction stage and maintenance operations, and its relation to the design flood discharge is also shown in Fig. 4.1.

The side slopes on both landside and riverside of the dike are designed as 2:1, as shown in Fig. 4.1. Berms are provided along the slopes of high dikes as an erosion control measure and also to improve the stability of the side slopes. Berms are designed for the riverside and landside, respectively, as follows:

(i) Riverside

When the crest height from the river bed is more than 5.00 m, berms shall be provided at every 5.00 m. Berms shall be 5.00 m deep from the crest elevation with a width of 3.00 m.

(2) Landside

When the crest height from the existing ground is more than 3.00 m, berms shall be provided at every 3.00 m. It shall be 3.00 m deep from the crest elevation with a width of 3.00 m.

#### 4.1.2 Revetment

Revetments are flood control structures constructed along river banks subjected to direct attack of the river flow and along dike slopes for protection against scouring and wave wash. Standard design sections of lowwater channel and high-water channel revetments in relation to the dike height are shown in Figs. 4.2 and 4.3, respectively.

Revetments of low-water channel, which are classified into two types; Type-A and Type-B corresponding to the dike height (See Fig. 4.2), are designed with the use of gabion cylinder of D0.45 m and wooden pile of D0.20 m x 3.00 m in order to suit for variations of the riverbed under the flood flow.

Revetments of high-water channel, which are classified into two types; Type-A and Type-B corresponding to the dike height (see Fig. 4.3), are designed with the use of wet masonry of 0.60 m thick and gabion mattress of 0.50 m  $\times$ 1.20 m  $\times$  3.00 m in order to prevent the dike from scouring under the flood flow.

Slopes of revetments are designed as 2:1 the same as those of the dike.

4.1.3 Groin

Groins are river training structures constructed along the dikes of rivers to deflect or repel the flow for the purpose of training the course of the river channel and to protect the dikes from scouring by inducing siltation in the area. Standard designs of low-water channel and high-water channel groins are shown in Figs. 4.4, 4.5, 4.6, and 4.7.

Groins of both low-water channel and high-water channel are classified into two types: Type-A for general streams and Type-B for the upstream portion of the main Agno River which was repeatedly damaged by flood flow (see Figs. 4.5 and 4.7).

Groins of Type-A 20.00 m long and 2.00 m high are designed with the use of gabion cylinder of D0.45 m for low-water channel or gabion mattress of 0.50 m x 1.20 m x 3.00 m for high water channel and wooden pile of D0.20 m x 3.00 m as a permeable type (see Figs. 4.4 and 4.6). Groins of Type-B 30.00 m long and 2.00 m high are designed with the use of reinforced concrete and gabion cylinder of D0.45 m for low-water channel or gabion mattress of 0.50 m x 1.20 m x 3.00 m for high-water channel as a massive type so as to cope with the flood flow (see Figs. 4.5 and 4.7). The distance between groins of Type-A shall be 30.00 m and that of Type-B shall be 50.00 m.

4.1.4 Sluice Way

Sluice ways are provided for the purpose of drainage or irrigation by use of box culvert with sluice type gate under the dike.

Standard designs of sluice way, which is classified into two types of Type-A and Type-B, are shown in Figs. 4.8 and 4.9, respectively.

Type-A, which has one box culvert of  $1.50 \text{ m} \times 1.50 \text{ m}$  and Type-B, which has two box culverts of  $1.50 \text{ m} \times 1.50 \text{ m}$ , shall be determined based on the discharge from its catchment area and inlet capacity. To prevent the differential settlements, wooden piles of D0.20 m x 5.00 m are provided at the foundation. Steel sheet piles 3.00 m long are designed for the purpose of percolation control.

4.1.5 Water Gate

Water gates are provided to protect the branch catchment area from the backwater flood flow of the main river.

Standard designs of water gate, which is classified into two types; Type-A and Type-B, are shown in Figs. 4.10 and 4.11, respectively. Type-A, which has a roller type gate of 10.00 m x 7.00 m and Type-B, which has a roller type gate of 20.00 m x 8.00 m, shall be determined based on the river improvement plan.

To prevent the differential settlements, reinforced concrete piles of 0.40 m x 0.40 m x 8.00 m and wooden piles of D0.20 m x 5.00 m are provided at the foundation. Steel sheet piles 3.00 m long are designed for the purpose of percolation control.

-DS.9-

4.1.6 Bridge

A number of bridges are planned to be constructed and/or rehabilitated according to the river improvement plan. The standard design is shown in Fig. 4.12 so as to conceptually understand the type of bridge structure.

4.2 Structural Plan and Design of Floodway

4.2.1 Dike

Binalonan Floodway with a total length of 6.80 km is considered from the Toboy River which is the upstream of the Tagamusing River to the Angalacan River in order to divert the flood flow. The floodway will be divided into two sections. They are the upstream portion which is 3.60 km long to divert 550  $m^3/s$  flood discharge and the downstream portion which is 3.20 km long to divert 650  $m^3/s$  flood discharge.

Standard design sections of floodway dike are shown in Fig. 4.13. The structural type of floodway dike is basically the same as the river dike. The floodway, with dike slope of 2:1 and a crown width of 4.00 m, has low-water channel and high-water channels. The low-water channel width for the upstream portion and the downstream portion are 10.00 m and 15.00 m, respectively. The high-water channel width for both portions are 60.00 m.

4.2.2 Revetment

Since the layout of this floodway is planned in alignment, revetments are proposed only for the low-water channel to protect the dike from scouring caused by the flood flow. The structural type of revetments, provided with gabion cylinder of D0.45 m and wooden pile of D0.20 m x 3.00 m, is basically the same type for the river dike, as shown in Fig. 4.13.

4.3 Structural Plan and Design of Flood Control Dam

4.3.1 Dam

Selection of prospective flood Control dams have been studies for 17 dams. Location of these dams are shown in Fig. 4.14 and typical sections of existing

-DS.10-

dams and previously studied dams are shown in Fig. 4.15. Consequently, the Moriones Dam and the Lower O'Donnell Dam which reservoirs are to be connected by a open channel are selected for the Framework Plan as an effective flood control measure. Both dams are planned as a concrete gravity dam. The Moriones Dam which is 53.00 m high and has concrete volume of 277,000  $m^3$ , is shown in Fig. 4.16 and the Lower O'Donnell Dam which is 38.00 m high and has concrete volume of 92,000  $m^3$ , is shown in Fig. 4.17.

The design upstream slope of 0.1:1 and the downstream slope of 0.7:1 are the same for both dams.

Curtain grout and consolidation grout are planned for the foundation treatment which shall be made to increase the bearing capacity and homogeneity of the foundation for the purpose of stabilizing the dam.

and share and

alah yang bertapat

4.3.2 Spillway

Spillways to divert the design flood discharge for 200-year flood are provided for the purpose of stability of the dam itself.

The Moriones Dam has 15 ordinary flood sluices of orifice type with gates and 180.00 m wide free overflow crest (see Fig. 4.16). Flood water from upstream enter into the reservoir and its outflow is to be controlled by these spillway gates.

The Lower O'Donnell Dam which is connected to the Moriones Dam by a open channel has no spillway since it is expected to work as a saddle dam of the Moriones Dam.

and the second states for the states of the s

4.3.3 River Diversion Facilities

To divert the river water during the construction of the dam, upstream and downstream cofferdams and a temporary diversion tunnel are planned.

River diversion facilities of the Moriones Dam are planned with two cofferdams of earthfill type and a temporary diversion tunnel of D6.00 m and 200.00 m long as shown in Fig. 4.16. River diversion facilities of the Lower O'Donnell Dam are planned with two cofferdams of earthfill type and a temporary diversion tunnel of D5.00 m and 240.00 m long as shown in Fig. 4.17.

4.4 Structural Plan and Design of Retarding Basin

4.4.1 Dike

Standard design sections of retarding basin dike in relation to the dike height are shown in Fig. 4.18. The dike height is determined by adding the freeboard of 1.50 m, which is the height maintained between the top of the dike and the designed flood level to guard against overtopping and wave wash, to the design high water level obtained from the result of flood control simulations.

The crown width of the dike, which may be required to serve as a road for facilitating the transport of materials during the construction stage and maintenance operations, is designed as 6.00 m.

The side slopes of the dike should be determined based on the stability calculation by use of soil characteristics. However, in this phase the side slopes on both the retarding basin side and the river landside of the dike are designed as 3:1, while the slope of landside of the dike is designed as 2.5:1 as shown in Fig. 4.18. In case the dike height is higher than 3.00 m, a blanket zone of 10.00 m long and 2.00 m thick is provided at the toe of slope for the purpose of percolation control as a further countermeasure against dike failure.

4.4.2 Overflow Weir

Overflow weir is provided on the retarding basin dike to divert some of the flood discharge to the retarding basin.

The standard design of the overflow weir, with steel sheet piles of 5.00 m long and wooden piles of D0.20 m x 5.00 m are provided for the purpose of percolation control and prevention of differential settlements respectively, is shown in Fig. 4.19. Revetments of 0.60 m thick and gabion mattress of 0.50 m x 1.20 m x 3.00 m are also provided to prevent the dike and the foundation of the toe of slopes from scouring by the diverted flood. Crest length of the overflow weir shall be determined on the basis of the relation between the diverted discharge and the overflow depth.

#### 4.4.3 Drainage Gate

Drainage gate is provided at the downstream of the retarding basin to drain the diverted discharge immediately after the flood. The standard design of the drainage gate, which has five roller type gates of 10.00 m x 7.50 m, in a total span of 50.00 m is shown in Fig. 4.20. Reinforced concrete piles of 0.40 m x 0.40 m x 5.00 m and wooden piles of D0.20 m x 5.00 m are provided to prevent differential settlements at the foundation. Steel sheet piles of 5.00 m long are provided for the purpose of percolation control.

4.4.4 Control Gate Weir

Control gate weir is studied at the downstream of the confluence of the Poponto Floodway and the Tarlac River for the purpose of regulating the flood flow. The control gate weir, which is designed as a concrete structure with ten roller type gates of 15.00 m x 11.30 m in a total span of 150.00 m, has the dike on both sides as shown in Fig.4.21. The dike slope of the retarding basin is 3:1 and it has a blanket zone of 10.0 m long and 2.00 m thick at the toe of upstream slope.

Steel piles of D0.60 m x 20.00 m and reinforced concrete piles of 0.4 m x 0.4 m x 10.00 m are provided to prevent differential settlements at the foundation of the control gate weir. Also, steel sheet piles of 10.00 m long are provided for the purpose of percolation control.

4.5 Structural Plan and Design of Other Flood Control Facilities

4.5.1 Fixed Weir on Agno River

Fixed weir is planned to divert  $8,200 \text{ m}^3/\text{s}$  out of the estimated  $9,200 \text{ m}^3/\text{s}$  of the 100-year flood discharge to the Poponto Floodway. Structural design of the fixed weir is shown in Fig.4.22, and it is designed as overflow type with 2.00 m overflow depth, 250.00 m crest width and 6.50 m height. The weir has the split portion of 5.00 m width in the center for the maintenance flow to the Bayambang stretch of the Agno River.

Reinforced concrete piles of  $0.40 \text{ m} \ge 0.40 \text{ m} \ge 8.00 \text{ m}$  and wooden piles of D0.20 m  $\ge 5.00 \text{ m}$  are provided to increase the bearing capacity of foundation and to prevent differential settlements. Steel sheet piles of 5.00m long are provided for the purpose of percolation control.

#### 4.5.2 Closing Dike in Bued River

Closing dike of 2.00m high and 2.00km long is planned in the upstream left bank of the Bued River to protect the downstream area from the damaging flood flows.

The structural type of this dike, with a slope of 2:1 and a crown width of 4.00 m, is basically the same as the river dike as shown in Fig. 4.23. Revetments of wet masonry type of 0.60 m thick and foot protections by gabion mattress of 0.50 m x 1.20 m x 3.00 m are provided to prevent the dike from scouring. Also, steel sheet piles of 5.00 m long are provided for the purpose of percolation control.

#### 4.5.3 Sabo Dam

Sabo dams are planned to trap and control the sediment produced in the mountain areas. Standard design of sabo dam, with a height of 20.00 m and crest length of 100.00 m, is shown in Fig. 4.24. Although the dam height is designed as 20.00 m in this section, it can be changed according to the dam site and sediment volume. The sabo dam plan is described in detail in the sectoral report on sediment analysis.

الأربابة فالروادي المعاور المتكر ومراجع والهور

-DS.14-

#### 5. WORK QUANTITIES

Work quantities of related structures for each flood control plan were calculated through the facilities planning. These work quantities are summarized in CP: CONSTRUCTION PLAN AND COST ESTIMATE.

In addition to these work quantities, more detail work quantities of the Moriones Dam and Lower O'Donnell Dam, fixed weir in the Agno River, closing dike in the Bued River are shown in Tables 5.1 to 5.3.

Major dimensions of proposed sabo dams which are studied in sediment analysis are shown in Table 5.4 and location of these dams are illustrated in Fig. 5.1.



No.	Year	Name of Typhoon	Date	Remarks
1	1962	Kate	July 18-27	۵۰۰ ۲۵۰۵ (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹۹۵) (۱۹
2	. 717	Wanda	Aug. 25-Sept.3	. *
3	· · · · · · · · · · · · · · · · · · ·	Amy	Sept. 3-Sept. 8	
4	1963	Diding	June 24-30	
5	1964	Seniang	Aug. 2-11	
6	2.501	Aring	Sept. 3-13	
7	1965	Milina	Ju v 10 - 18	
8	1966	None	0411 10 10	a second seco
ğ i	1967	Trining	Oct. 14-20	
ถ์ -	1968	Didang	July 23-29	
ĩ	1000	Huaning	Ang $18-25$	
ົ້	• •	Lucing	Sent 2-8	
2		Nitang	Sept. 2 V	
. с Д	1969	None	Dept. 20 000, 2	
7 5	1070	None		
с	1071	Posing	Tulu 17-24	
7	1911	kosing	0 a + 7 - 14	
0	1072	KIISING Vouding	UCL, 7-14 Tube 96 97	
ο Λ.	1972	Koraing		
9 0	1973		OCL. 2-9	
U 1	19/4	lling	July 18-21	
• •	· · ·	Susang	UCT. 8-12	
2		Tering	UCT. 14-1/	
3		Wening	Oct. 25-29	•
4		Aning	Nov. 4-8	
5.	·	Biding	Nov. 24-29	
<u>6</u>	1975	Auring	June 22-26	
7	1976	Huaning	June 22-July 2	
8	1977	Unding	Nov. 10-17	
9	1978	Miding	Aug. 18-26	
0		Kading	Oct. 25-27	
1	1979	Mamang	Aug. 9-15	
2	1980	Gloring	May 22-26	
3	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Miting	July 18-22	
4		Aring	Nov. 1-17	
5	1981	Anding	Nov. 21-27	
6	1982	Emang	July 12-16	
7	an a	Norming	Aug. 19-Sept. 4	
8	1983	Bebeng	July 12-16	
9	1984	Maring	Aug. 27-30	28 - 194 A. 🛪 🖈
0	1985	Kuring	June 20-24	*
1		Daling	June 25-29	*
2	Real and a second	Saling	Oct. 15-20	
3	1986	Gading	July 6-10	*
4	2000	Miding	Aug. 24-Sent 4	*
ς .	1987	Ising	Aug 12-19	a sector de la Maria de Maria
6	1989	lineana	nug. 12 13	
v	T 200	onsany	UCL: 21-27	

Table 2.1 LIST OF DESTRUCTIVE TYPHOON IN THE AGNO RIVER BASIN (1962-1988)

Source: Office of Civil Defense

PAGASA

Note : * Mark shows the typhoon which brought Huge Damages

Mark snows the .... in the recent years, -DS.16-

Agno River (Upper)   Earthdike/Revet. Breaches/Gaps Scoured   (Site, m) (Site, m)   8   2,760 S2,972   8   2,290 17,888   10     Scoured   (Site, m)   0   0   0   3   17,888   3   17,888   3   17,888   3   17,888   3   17,888   3   17,888   3   3   17,888   3   3   17,888   3   3   3   3   1   10   0   0   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3	lood -11 ag") D- 5 ag)	1986-F July 9 ("Gadi Aug. 3 Sept. ("Medi	l ood 2-24 ng") 8-30 ng")	1985-₹ June 2 ("Kuri June 2 ("Dali	1984-Flood Aug. 28-30 ("Maring")		Damaged Type	River (Reaches)
Damaged Spurdike   (P:1,000)   0   0   0   7     Agno River   Earthdike/Revet.   (Site, Unit)   2   56   0   0   7     (Lower)   Breaches/Gaps   (P:1,000)   1,400   0   1   1   0   0   1     (Lower)   Breaches/Gaps   (P:1,000)   20,000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 </th <th>5,340 55,402 2,900</th> <th>10 3</th> <th>2,290 17,888 0</th> <th>,760 8 ,972 0 0</th> <th>82, 52, 0</th> <th>(Site, m) (P:L,000) (Site, m)</th> <th>Earthdike/Revet. Breaches/Gaps Scoured</th> <th>Agno River (Upper)</th>	5,340 55,402 2,900	10 3	2,290 17,888 0	,760 8 ,972 0 0	82, 52, 0	(Site, m) (P:L,000) (Site, m)	Earthdike/Revet. Breaches/Gaps Scoured	Agno River (Upper)
Agno River (Lower)   Earthdike/Revet. Breaches/Gaps Scoured   (Site, m) (P:1,000)   1   110   0   0   1     (Lower)   Breaches/Gaps Scoured   (P:1,000)   20,000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0	188 3,812	1	0	56 0 ,400	2 1,	(P:1,000) (Site, Unit) (P:1,000)	Damaged Spurdike	
Scoured Site, m 0 0 0 0 0 0 0   Damaged Spurdike (Site, m) 0 0 0 0 1   Tarlac River Earthdike/Revet. (Site, m) 0 0 0 1   Tarlac River Earthdike/Revet. (Site, m) 0 0 0 1   Tarlac River Earthdike/Revet. (Site, m) 0 0 3 70 5   Breaches/Gaps (P:1,000) 0 0 0 0 0 0   Damaged Spurdike (Site, m) 0 0 0 0 0 0   Tributaries Earthdike/Revet. (Site, m) 0 0 3 140 7   of Agno Breaches/Gaps (P:1,000) 0 1,000 0 0 0   River Scoured (Site, m) 0 0 0 0 8   Allied Barthdike/Revet. (Site, m) 0 0 0 0 0   Allied Barthdike/Revet. <t< td=""><td>500</td><td>1</td><td>0</td><td>110 0 .000</td><td>1 20.</td><td>(Site, m) (P:1.000)</td><td>Earthdike/Revet. Breaches/Gaps</td><td>Agno River (Lover)</td></t<>	500	1	0	110 0 .000	1 20.	(Site, m) (P:1.000)	Earthdike/Revet. Breaches/Gaps	Agno River (Lover)
Damaged Spurdike   (Site, Unit)   0   0   0   0   1     Tarlac River   Earthdike/Revet.   (Site, m)   0   0   3   70   5     Breaches/Gaps   (P:1,000)   0   0   0   0   0   0     Scoured   (Site, m)   0   0   0   0   0   0     Damaged Spurdike   (Site, m)   0   0   0   0   0   0     Tributaries   Earthdike/Revet.   (Site, m)   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0	0	0.	0 0	0 0	0	(Site, m) (P:1,000)	Scoured	(
Tarlac River Earthdike/Revet. (Site, m) 0 0 3 70 5   Breaches/Gaps (P:1,000) 0 0 0 0 0 0   Scoured (Site, m) 0 0 0 0 0 0   Damaged Spurdike (Site, m) 0 0 0 0 0 0   Tributaries Earthdike/Revet. (Site, m) 0 0 3 140 7   of Agno Breaches/Gaps (P:1,000) 0 1,000 0 0 0   River Scoured (Site, m) 0 0 0 0 0   Allied Barthdike/Revet. (Site, m) 0 0 0 0 0   Allied Barthdike/Revet. (Site, m) 4 976 1 40 9   River Breaches/Gaps (P:1,000) 8,166 231 231   Scoured (Site, m) 0 0 0 0 0	8,120	<b>1</b> 	0	0 0	0	(Site, Unit) (P:1,000)	Damaged Spurdike	
Damaged Spurdike (P:1,000) 0 0 0 3   Tributaries Earthdike/Revet. (Site, m) 0 0 3 140 7   of Agno Breaches/Gaps (P:1,000) 0 0 1,000 0 0 0 0   River Scoured (Site, m) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>490 5,845 0</td><td>5</td><td>70 660 0</td><td>0 0 0 0 0</td><td>0</td><td>(Site, m) (P:1,000) (Site, m)</td><td>Barthdike/Revet. Breaches/Gaps Scoured</td><td>Tarlac River</td></td<>	490 5,845 0	5	70 660 0	0 0 0 0 0	0	(Site, m) (P:1,000) (Site, m)	Barthdike/Revet. Breaches/Gaps Scoured	Tarlac River
Tributaries   Earthdike/Revet.   (Site, m)   0   0   3   140   7     of Agno   Breaches/Gaps   (P:1,000)   0   1,000   1,000   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   <	0 46 1,280		0 0 0	0	0	(P:1,000) (Site, Unit) (P:1,000)	Damaged Spurdike	
River   Scoured   (Site, m)   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0	1,080 8,300	7	140 1,000	0 3	0 · ·	(Site, m) (P:1,000)	Barthdike/Revet. Breaches/Gaps	Tributaries of Agno
Damaged Spurdike   (Site, Unit)   0   0   0   0   8     (P:1,000)   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0	0	Ŭ.	0	0	0	(Site, m) (P:1,000)	Scoured	River
Allied   Barthdike/Revet.   (Site, m)   4   976   1   40   9     River   Breaches/Gaps   (P:1,000)   8,166   231     Scoured   (Site, m)   0   0   0   0     (P:1,000)   0   0   0   0   0	61 1,744	8.	0		<b>0</b>	(Site, Unit) (P:1,000)	Damaged Spurdike	·
Scoured (Site, m) 0 0 0 0 0 (P:1,000) 0 0	1,820	9	40 231	976 1	. 4	(Site, m) (P:1.600)	Barthdike/Revet. Breaches/Gaps	Allied
	0 0	0	0	0 0	0	(Site, m) (P:1,000)	Scoured	NT 1 69
Damaged Spurdike (Site, Unit) 0 0 2 10 3 (P:1,000) 0 576	48 997	3	10 576	0 2 0	0 °	(Site, Unit) (P:1,000)	Damaged Spurdike	× .
Total Cost of Restoration Works (P:1,000) 82,538 20,355	109,017		20,355	,538	82,	(P:1,000)	E Restoration Works	Total Cost of

i,

31.2

1.

## Table 2.2 SUMMARY OF FLOOD CONTROL PACILITIES DAMAGED BY FLOODS

Source: Agno Flood Control System Office, Rosales

i ne

20

(A <u>LE</u> )2444	ITRNS	LBNGTH (n)	I BARANGAY/NUN.	ESTIMATED COST T RESTORE INCL. PR TECTIVE WORKS (P WILLIONS)	0 D- REMARKS
1,	BARTHDIKE AND REV'T. BREACHES/GAPS	844.252.24949949949494734943494749474844 <u>444466448</u>	<u> </u>	ute the state of the	<u></u>
****	A. ALONG AGNO RIVER				19 - E
: <b>i</b> -	sta. 29+800 to Sta.	30+090 29	)0 Narra,Sn. Nanue Pangasinan	1, 2.047	"MEDING" Aug.30-Sept.5/86
2	Sta. 29+650 to Sta.	29+800 15	50 -do-	1.039	"MARING" Aug.28-31/84
3	Sta. 29+400 to Sta.	29+650 25	i0 -do-	1.765	"RURING"s"DALING"June 22
4	Sta. 27+420 to Sta.	29+400 98	30 Calanutian, Sn. Manuel, Pangasin	6,918 ən	to 24;28-30/85 "MARING" Aug. 28-31/84
5	Sta. 26+900 to Sta.	27+420 52	20 -do-	3.671	"KURING"&"DALING"June 22 to 24;28-30/85
6	Sta. 26+020 to Sta.	26+900 88	-do-	6.212	"MEDING" Aug. 28-31, 1986
1	Sta. 25+540 to Sta.	25+600 (	50 Sn. Vicente, Sn Manuel,Pangasin	0.423 an	"KURING"&"DALING"June 22 to 24;28-30/85
8	sta. 25+180 to Sta.	25+540 31	50 -do-	2,541	"MARING" Aug. 28-31/84
<.9	sta. 25+050 to sta.	25+180 13	30 -do-	0.917	"KURING"&"DALING"June 22 to 24;28-30/85
10	Sta. 24+050 to Sta.	25+050 1,00	)0 -do-	7.060	"GADING" July 9-11, 1986
11	Sta. 22+740 to Sta.	25+110 31	70 Bato, Sn.Manuel Pangasinan	, 2.612	"KURING"6"DALING"June 22 to 24;28-30/85
12	Sta. 22+020 to Sta.	22+740 71	20 -do-	5.083	"GADING" July 9-11, 1986
13	Sta. 21+500 to Sta.	21+700 20	0 Guron, Sn. Manu Bangaginan	iel, 1.412	-do-
14	Sta. 21+020 to Sta.	21+500 48	ranyasınan 30 -do-	3.388	-do-
15	Sta. 20+860 to Sta.	21+020 10	60 -do-	1.129	"HARING" Aug. 28-31/84
16	Sta. 20+180 to Sta.	20+860 61	80 -do-	4.760	"KURING"6"DALING"June 22 to 24;28-30/85
17	sta. 19+380 to sta.	19+580 20	00 -do-	1.400	"MARING" Aug. 28-31/84
18	Sta. 17+700 to Sta.	19+000 1,3	00 Bantog, Sn. Man	iel 9,100	"GADING" Aug. 28-31,1984
19	Sta. 0+000 to Sta. (	0+400 41	00 Caramutan,Villa sis, Pangasinan	a- 8.000	-do-

Table 2.3 (1/6) SUNMARY OF BREACHES/GAPS AND SCOURS CAUSED BY PLOODS (1984-1988)

- DS, 18 -

	and the second				
20	Sta. 2+851 to Sta. 3+020	179	Sto. Domingo,Sto. Tomas, Pangasinan	10.645	"MARING" Aug. 28-31/84
21	Sta. 3+032 to Sta.3+106	75	-do-		"KURING"6"DALING"June 22 to 24:28-30/85
22	Sta. 8+420 to Sta. 8+880	460	Sn.Hicolas,Alcala, Pangasinan	9.200	"HARING" Aug. 28-31/84
23	Sta. 8+800 to Sta. 9+000	200	-do-	3.740	"KORING"\$"DALING"June 22 to 24;28-30/85
24	Sta. 9+000 to Sta. 9+040	40	-do-	0.800	"NEDING" Aug.30-Sept.5/86
25	sta. 4+100 to Sta. 4+130	30	Nibalew,Bautista, Pangasinan	0.300	"GADING" & "MEDING" July 9-11, Aug. 30-Sept. 5/86
25	sta. 18+365 to sta. 18+800	435	Pob. Bayambang, Pangasinan	0.100	"MARING" Aug. 28-31/84
27	Sta. 0+000 to Sta. 0+110	110	Pob. Orbiztondo, Pangasinan	20.000	-do-
28	Sta. 37+700 to Sta. 38+000	300	Quibaol, Lingayen	12.000	"MEDING" Aug. 30-Sept. 5/86
B	. ALONG TRIBUTARY RIVER		TOTAL	126.255	
29	Sta. 4+200 to Sta. 4+450	250	Bantog, Sn Quintin, Pangasinan	2.500	"GADING" July 9-11, 1986
30	sta. 5+020 to sta. 5+520	500	Bantog,Sn Quintin, Pangasinan	0.500	"MEDING" Aug.30-Sept.5/8
31	sta0+200 to Sta0+250	50	Yulin, Natividad, Pangasinan	0.500	"HEDING" Aug.30-Sept.5/8
32	sta 2+400 to sta2+450	50	-do-	0.500	"MEDING" Aug.30-Sept.5/8
33	sta2+600 to sta2+650	50	au 1990 - <b>Edo-</b> Sola 1999 - Angelan Sola (1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990	0.500	"NEDING" Aug.30-Sept.5/8
34	sta. 4+800 to Sta. 4+850	50	Magallanes, Tayug, Pangasinan	0.500	"KURING" & "DALING" June 22-24;28-30/85
35	sta. 5+450 to Sta. 5+500	50	-đo-	0.500	ан антайсана и балаан <b>- do-</b> 
36	Sta. 2+800 to Sta. 2+990	190	Mancalabasaan, Omingan, Pang.	3.800	"GADING & MEDING" July 9-11 Aug. 30-Sept.5/86
37	Sta. 0+000 to Sta. 0+010	10	Tumana, Rosales, Pangasinan		く。 
	4 g 1 g 2 g 2 g 2 g 2 g	· · · ·	TOTAL	14.000	29、21日1月3日(1947)。29日1日) 

Table 2.3 (2/6) SUMMARY OF BREACHES/GAPS AND SCOURS CAUSED BY PLOODS (1984-1988)

- DS 19 -

•	C. ALONG ALLIED RIVER	• • • • • •			
38	sta0+270 to Sta0+370	100	Esperanza, Sison, Pangasinan	1.203	"MARING" Aug. 28-31/84
39	Sta. 1+674 to Sta. 1+729	55	-do-	0,220	-do-
40	Sta. 0+330 to Sta. 1+290	960	-do-	3.852	"GADIRG" July 9-11/86
. 41	Sta. 1+290 to Sta. 1+590	300	-do-	1.203	"MEDING" Aug.30-Sept.3/86
42	Sta. 0+540 to Sta. 0+781	241	Binday, Sn. Yabian, Pangasinan	1,511	"NARI#G" Aug. 28-31/84
43	Sta. 0+503 to Sta. 0+540	37	-do-	0,231	"KURING" & "DALING" June 22-24; 28-30/85
44	Sta. 0+781 to Sta. 1+081	300	-do-	1.881	"GADING" & "MEDING" July 9-11; Aug.30-Sept.5/86
45	Sta. 1+081 to Sta. 1+181	100	-do-	0.627	"MEDING" Aug. 30-Sept. 5/86
46	Sta. 0+900 to Sta. 0+929	29	Sto.Nino,Binalonan, Pangasinan	0.232	"MARING" Aug. 28-31/84
47	Sta. 0+969 to Sta. 1+003	34	-do-	0.272	"GADING" July 9-11/86
48	Sta, 0+520 to Sta. 0+604	84	Pob. Binalonan, Pangasinan	0.672	"MEDING" Aug.30-Sept.5/86
49	Sta. 0+149 to Sta. 0+159	10	Pinmaludpod, Urdaneta, Pang.	0.080	"MARING" Aug. 28-31/84
50	Sta. 0+270 to Sta. 0+290	20	-do-	0.100	"GADIEG" July 9-11/86
- 51	Sta. 0+290 to Sta. 0+300	10	-do-	0.080	"NEDING" Aug.30-Sept.5/86
52	Sta. 0+062 to Sta. 0+413	351	Pias, Mapandan, Pangasinan	5.000	"MARING" Aug. 28-31/84
				·····	
			TOTAL	17.224	

Table 2.3 (3/6) SUMMARY OF BREACHES/GAPS AND SCOURS CAUSED BY FLOODS (1984-1988)

- DS. 20 -

1913 ÷

ta batan da

a sa ta sa

	ITENS	LENGTH (m)	BARANGAY/NUM.	ESTIMATED COST RESTORE INCL. TECTIVE WORKS (P HILLIONS)	TO PRO-	REWARKS
2.	RARTHDIKE AND REV'T. BRRACHES/GAPS	al ar la gar <u>a</u> da da an an fatina da an	ge gegenden de Annele September generale de la September de Carlos de September de Carlos de September de Carlo	n an		
*-					• . •	
1	Sta2+190 to Sta2+200	10	Carangian, ¶arlac	0.100	-	"KORING" June 22-24/85
2	Sta. 2+154 to Sta. 2+190	36	Poblacion, Tarlac	0.350	te di di	"DALING" June 28-30/85
3	Sta. 1+180 to Sta. 1+200	20	-60-	0.200	· · ·	"KURING" June 22-24/85
4	Sta. 2+575 to Sta. 2+615	40	Sipong-Calsada Tarlac Tarlac	2.000		"HEDING" Aug.30-Sept.5/80
5	Sta. 2+650 to Sta. 3+000	350	Armenia, Tarlac	2.775		"GADING" July 9-11/86
6	Sta. 2+600 to Sta. 2+650	50	-do-	0.425		"NEDING" Aug. 30-Sept. 5/8
. <b>1</b>	Sta. 3+000 to Sta. 3+050	50	-do-	0.425		internet in the second s
:	$\frac{1}{2} = \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \right) + $	· · ·	TOTAL	6.285		
	B. ALONG TRIBUTARY RIVER		······································		1915 -	
8	Sta. 0+090 to Sta. 0+022	20	Pitao,So. Clemente Pangasinan	, 0.200	bry€s	"GADING" July 9-11, 1986
9	sta. 0+022 to sta. 0+044	22	-do-	0.220		"MEDING" Aug. 30-Sept. 5/8
П	SCOURED	· · ·				
: <del></del>		•	· · · · ·		. '	
.1	A. ALONG AGNO RIVER			· · · · ·	114	
1	Sta. 20+180 to Sta. 20+480	300	Guzon, Asingan, Pangasinan	0.300		"HARING" Aug.28-31, 1984
I	3. ALONG TRIBUTARY RIVER				•	
2	Sta. 2+850 to Sta. 5+220	2,570	Magallanes, Tayug, Pangasinan	2.370	··· ··	-do-
(	C. ALONG ALLIED RIVER		1 ## <b>3#</b> 51###			
3	Sta. 0+150 to Sta. 0+190	40	Cabatuan, Alaminos Pangasinan	, 0.080	. <b></b>	"MEDING" Aug. 30-Sept. 5/8
			Ŧ O Ŧ A L	3.170		

Table 2.3 (4/6) SUMMARY OF BREACHES/GAPS AND SCOURS CAUSED BY FLOODS (1984-1988)

- DS. 21 -

III DAMAGED SPURDIKES A. ALONG AGEO RIVER 1 Sta. 21+020 to Sta. 21+500 15 units Guron, Asingan, 0.300 "GADING" July 9-11, 1986 Pangasinan 2: Sta. 25+180 to Sta. 25+540 San Vicente, San 0.200 "MARING" Aug. 28-31, 1984 8 units Manuel, Pangasinan 3 Sta. 27+420 to Sta. 29+000 48 units Calanutian, San 1.200 -do-Manuel, Pangasinan 4 Sta. 29+000 to Sta. 31+500 40 units -do-1.000 "GADING" July 9-11, 1986 5 Sta. 6+470 to Sta. 7+100 19 units Sta. Maria, 0.437 -do-Pangasinan 6 Sta. 0+100 to Sta. 0+400 29 units Puelay, Villasis, 0.675 "MEDING" & "GADING" Pangasinan July 5-11, 1986 7 Sta. 2+820 to Sta. 3+200 17 units Sto. Tomas, Sto. 0.680 -do-Domingo, Pangasinan 8 Sta, 8+320 to Sta. 8+600 10 units San Micolas, Alcala, 0.400 -do-Pangasinan 9 Sta. 8+800 to Sta. 9+000 8 units -do-0.320 -do-10 Sta. 38+020 to Sta. 38+200 4 units Quibaol, Lingayen 0.120 -do-Pangasinan 13.392 TOTAL----B. ALONG TRIBUTARY RIVER 11 Sta. 7+950 to Sta. 8+400 10 units Casaratan, San 0,250 "MEDING" Aug. 30-Sept. 5/86 Micolas, Pangasinan 12 Sta. -0+200 to Sta. -0+400 10 units Tulin, Natividad, 0.260 -do-Pangasinan 13 Sta. -4+200 to Sta. -0+800 3 units Bantog, San Quintin 0.078 -do-Pangasinan 14 Sta. 2+800 to Sta. 2+990 10 units Mancabalasaan, 0.260 -do-Umingan, Pang. 15 Sta. 0+000 to Sta. 0+120 0.200 "GADING" July 9-11, 1986 Tumana, Rosales, Pangasinan 16 Sta. 0+300 to Sta. 0+500 5 units -do-0.200 "MEDING" Aug. 30-Sept. 5/86 17 Sta. 0+870 to Sta. -1+060 18 units Bugallon, Pangasinan 0.486 -40-18 Sta. 0+920 to Sta. 1+065 "GADING" July 9-11, 1986 -do-1.744 TOTAL ----

SUNMARY OF BREACHES/GAPS AND SCOURS CAUSED BY FLOODS (1984-1988)

Table 2.3 (5/6)

- DS . 22 -

SUMMARY OF BREACHES/GAPS AND SCOURS CAUSED BY FLOODS (1984-1988) Table 2.3 (6/6) C. ALONG ALLIED RIVER "KORING" June 22-24, 1985 0.160 5 units San Vicente, San 19 Sta. 0+020 to Sta. 0+200 Jacinto, Pang. "DALING" June 28-30, 1985 0.416 -do-5 units 20 Sta. 0+240 to Sta. 0+200 "GADING" July 9-11, 1986 Poblacion, San 21 Sta. 0+500 to Sta. 0+600 13 units Jacinto, Paug. -do-Tuliao, Sta. 0.997 22 Sta. 0+500 to Sta. 0+832 35 units Barbara, Pang. -do-Talibaew, Sta. 23 Sta. 5+250 to Sta. 5+420 Barbara, Pang. B. ALONG TARLAC RIVER "MEDING" Aug. 30-Sept. 5/86 1,280 24 Sta. 04000 to Sta. -24400 40 units -do-25 Sta. 2+000 to Sta. 4+520 ١ 2.853 TOTAL ---

1

法通知 机带用 动物门 dige a  $(10^{-1})$ 法法法法法法法法

. 15

12 11

- DS . 23 -

Tear	RARTH DIKE (B)	W/BOULDER Facing/ Aprox	REVETNENT GRAVITI WALL	BOULDER SPOR DIKE	BOULDER DIKE	GRAVEL SUR- PACING	CUT-OFF CHANNEL	DRAINAGE GATE	SPILLWAY	total Cost
		(n)	(n)	(ONIT)	<b>(n)</b>	<b>(n</b> )	( <b>n</b> )	(UNIT)	(2)	(P)
1972	3,234	0	225	3	0	15,000	0	. 0.	0	305,956
1973	3,322	0	-	155	0	0	0	0	- 0	12,186,174
1974	28,855	Û	3,852		0	1,452	7,000	1	0	4,211,700
1975	69,915	0	2,765	1	0	10,248	460	2	0	22,006,479
1976	12,015	2,050	3,100	83	0	12,142	0	1	0	16,043,439
1977	12,607	0	75	26	0	0	3,500	1:	1,020	19,157,660
1978	25,295		116	0	180	65,816	8,100	1	· · · 0	23,651,927
1979	20,631	Q	. 0	29	720	0	0	4	0	9,099,154
1980	6,993	1,160	1,999	30	0	4,250	8,740	0	0	8,610,694
1981	10,805	.0	843	0	0	0	992	Û	0	8,492,994
1982	5,686	0	1,176	85	0	32,887	12,021	2	0	12,104,140
1983	10,484	0	856	138	0	280	9,599	0	0	15,859,494
1984	2,091	: <b>-</b> .	441	52	· -	18,788	10,000	·	•	10,603,750
1985	1,304	194	2,458	64	<b>ee</b>	0	7,426	0	0.	11,583,600
1986	3,965	1,524	922	120	759	48,395	600	2	5 - 1 - <b>0</b> -	22,252,571
1987	7,750	3,633	1,910	182	686	-	1,703	2	Û	33,933,000
1988	4,235	9,492	2,347	387	793	0	5,896	0	0	40,763,288
TOTAL	229,187	18,053	23,085	1,355	3,138	209,258	79,037	16	1,020	270,866,02

Table 2.4 SUMMARY OF ACCOMPLISEMENT OF RIVER CONTROL NORKS (1972-1988)

SOURCE: AGEO FLOOD CONTROL SYSTEM OFFICE, Rosales

- DS. 24 -

	Work Item	Unit	Noriones Dan	Lower O'Donnel Dam	and <b>Total</b>	Remarks
I CIVIL	WORKS				· · · · · · · · · · · · · · · · · · ·	
19 <b>1.1</b> 1920 - Alfr 1920 - Alfr 1920 - Alfr	River Diversion Works Tunnel excavation Lining concrete Plug concrete Steel bar Consolidation grout	n3 n3 ton	8,810 3,160 790 158 1,510	7,710 3,000 390 150 1,510	16,520 6,160 1,180 308 3,020	
	Cofferdan	- <b>m</b> 3	108,900	75,300	184,200	
1.2 	Dan Excavation (common) Excavation (rock) Concrete Curtain grout	193 193 193 19	40,000 120,000 277,000 15,450	22,000 64,000 92,000 10,000	62,000 184,000 369,000 25,450	
	Consolidation grout Saddle dan Excava. for saddle dam	12 123 123 123	7,300	3,600	10,900 650,000 300,000	
<b>1.3</b>	Spillway Excavation (common) Excavation (rock) Concrete Steel bar	n3 n3 n3 ton	104,400 44,700 30,420 456		104,400 44,700 30,420 456	
1.4	Connection Channel Excavation	<b>m3</b>			2,080,009	
II HETAL	WORKS					
Diver Spill Outle	rsion closure gate way gate at gate	ton ton ton	41 188 0	20 0 7	51 188 7	
	v.,		: :			

## Table 5.1 SUNMARY OF WORK QUANTITIES OF MORIONES DAN AND LOWER O'DONNELL DAN COMBINE PLAN

- DS.25 -

 $(1, j)_{\mathcal{C}}$ 

•	Work Item	Unit	Quantity	Remarks	-1
1.	Excavation	cu.n	13,700		
2,	Concrete	cu.m	21,150		
3.	Concrete	cu.n	1,550		• .
4.	Backfilling Gravel	cu.m	1,050		. 1
5.	Gabion Mattress	sq.n	4,800		7
6.	Re-Bar	kg	49,800		7., <b>3</b>
1.	Steel Sheet Pile	នចុ.ត	3,650	· · · · · · · · · · · · · · · · · · ·	· ·
. 8.	(L=5.0 m) RC Pile	B	7,000		
9.	(4.Unx4.Un,L=8.Um) Wooden Pile	n.	9,400		
10.	(u.2m qiam,L=5.0m) Revetment Works	sq.n	3,300	, da si	€ .N
	1911 - A			••••••••••••••••••••••••••••••••••••••	

Table 5.2 SUMMARY OF WORK QUANTITIES OF THE FIXED WEIR ON AGNO RIVER

 $3\,\eta^2$ Table 5.3 SUMMARY OF WORK QUANTITIES OF THE CLOSING DIKE IN BUED RIVER

6 400

λ.

ţ

	m Unit Quantity Remarks cu.m 32,000		8 <u>)</u>	
Work Item	Onit	Quantity	Remarks	laha sa
1. Embankment 1	cu.m	32,000	un synta	
2. Revetment Works	-		• • • • •	· .
a. Excavation	çu.n	8,500	De la	зŤ,
b. Stone Masonry	CU.M	1,600	a kito a to st	<b>,</b> .
c. Backfilling Gravel	cu.m	1,300		•
d. Concrete	cu.n	1,100	tana Alian araw	5 g
e. Gabion Hattress (A Smrt 2mr3 Am)	sg.n	12,000	۲	
3. Steel Sheet Pile	sq.n	10,000	ti facti	î f
9. Sodding	sq.m	13,400		

- DS 26 -

Ban No.	lane of River	Neight (m)	Nidth (n)	River Bed Gradient	Yotal Dam Volume (m3)	Renarks
D-1	Andayaoan	20	190	1/ 35	1,190,000	Spper <b>inba</b> yaoan Dan Site
D-2	-ditto-	20	100	1/ 35	1,191,000	
8-3	-ditto-	20	200	1/ 65	4,810,900	Nyper Sapinit Dam Site
D-4	-ditto-	26	100	1/ 70	2,380,000	
<b>D-</b> 5	-ditto-	20	300	1/100	11,400,000	
D-6	· • • • • ·	20	150	1/ 30	1,628,009	
Sub-Tota	-ditto-   {Ambayaoan}			· · · · · ·	22,590,000	
D-7	Dipalo	20	100	1/ 28	680,000	na da angelera da series da se Recordo da series da s
B-8	Viray	20	100	1/ 5	170,000	
D-9	-ditto-	20	100	1/ 12	425,900	an An an an Anna an Anna Anna Anna Anna
B-10	-ditte-	20	²³ 100	1/ 20	680,000	
B-11	-ditto-	, 10	100	1/ 15	205,000	
Sub-Pota	l (Viray)		te da ^t e e e		1,480,660	
B-12	Caniling	24	130	1/ 75	4,950,000	Camiling Dam Site
D-13	-ditto-	15	140	1/ 25	935,000	
D-14	-ditto-	10	140	1/ 75	1,875,000	
Sab-Tota	d (Camiling)				7,769,000	kan series series Kan series series
D-15	Olo	25	150	1/ 60	4,050,000	Pila Dan Site
B-16	-ditto-	20	100	1/ 35	1,190,000	
9-17	-ditto-	20	199	1/ 35	1,190,000	
B-18	-ditto-	20	100	1/ 35	1,190,000	
Sub-Tota	l (01o)	n dat Geografia		4	7,620,000	

## Pable 5.4 (1/2) SUMMARY OF MAJOR DINZUSION OF PROPOSED SABO DAM

- DS.27-

Dan Io.	Bane of River	leight (n)	Ridth (n)	River Bed Gradient	Total Dan Volume (m3)	Renarks
9-19	Bayacas	20	180	1/ 75	4,950,000	Bayacas Dan Site
D-2Q	Taboy	20	150	1/ 65	3,510,000	Kaliykiy Ban Site
<b>D-21</b>	-ditto-	15	100	1/ 40	1,020,000	
B-22	-ditto-	15	140	1/ 25	935,000	
Sub-Tota	il (Taboy)	÷	4		5,465,000	
<b>D-23</b>	<b>Anga</b> lacan	15	10	1/ 25	485,000	·. · ·
D-24	-ditto-	15	100	1/ 15	388,080	
Sud-Tota	i (Angalacan)	)			\$65,000	
D-25	Bred	20	100	1/ 45	1,530,000	
D-26	-ditto-	- 20	100	1/ 45	1,530,000	
D-27	-ditto-	20	- 100	1/ 45	1,530,000	
D-28	-ditto-	20	100	1/ 15	510,000	
B-29	-ditto-	20	100	1/ 25	850,090	
D-34	-ditto-	29	100	1/ 15	510,000	
D-31	-ditto-	20	100	1/ 10	340,000	
D-32	-ditto-	20	100	1/ 10	340,000	
Sub-Tota	l (Bued)				7,140,000	· .

Table 5.4 (2/2) SUMMARY OF MAJOR DIMENSION OF PROPOSED SAND DAM

- DS. 28 -




- DS. 29 -



- DS. 30 -

DS. 30 -



- DS. 31 -

.



ມຮ.32 -





- DS . 34 -

.



- DS. 35 -

03.00



- DS. 36 -

the state of the state of the





PROFILE 070" 20 (01.00^m= 20.00^m GABION CYLINDER LOG Ø 0.15 . ∤LOG Ø 0.15^m ଷ 2 00 1 LEAKE . J. 8.0 WOODEN PILE 00.20" L= 3.00" WOODEN PILE #0.20" L= 5.00" ł ļ ī LGABION CYLINDER PLAN  $\triangleright$ 21.00* <u>م</u> Ħ 2.70^m 6.30 2.700 ᇤ <u>A-A</u> 6.30^m 2,70ⁿ 1.45^m 2.70⁶¹ 0 ഷ് 2.00 ^m GABION CYLINDER WOODEN PILE Ø0.20", L=5.00"

Fig. 4.4 STANDARD DESIGN OF GROIN FOR LOW-WATER CHANNEL (TYPE-A)



- DS. 40 -

1



- DS. 41 -





- DS. 43 -



- DS . 44 -



- DS, 45 -


- DS. 46-

US.46-



- DS , 47 -





- DS. 49 -





- DS. 51 -



- DS. 52 -



- DŚ. 53 -



- DS. 54 -



- DS. 55 -





- DS . 57 -



ł

- DS.58-

5.98-





- DS. 60 -

.