5. ALTERNATIVE RETARDING BASIN PLANS

5.1 Alternative Cases

5.1.1 Poponto Retarding Basin

Poponto Swamp is habitually inundated mainly due to flood coming from the Agno River and Tarlac River. In addition to these condition, this swamp has four (4) tributaries including Baka River (409 km²) with a total catchment area of about 580 km². Flood water from these tributaries discharges into this swamp as illustrated in Fig. 5.1. Estimated 100-yr probable flood peak discharges from these tributaries are 200 m³/s, 390m³/s 1,490 m³/s and 210 m³/s respectively.

Considering these conditions, several conceivable alternative retarding basin plans have been studied. As the basic alternative plans, a retarding basin with a confining dike and a retarding basin without a confining dike are considered. Both ideas are shown in Fig. 5.1.

Comparing these two basic alternative plans, the retarding basin plan with confining dikes is disqualified due to the following constraints;

- (1) Poponto retarding basin is planned for flood peak reduction of the Agno River and Tarlac River. When this basin start to function as a retarding basin, flood water coming from the tributaries can not be drained out toward the downstream of the Agno River due to topographical point of view. As a result, areas to be protected by confining dikes suffer from inland inundation.
 - (2) Pump facilities are the most effective countermeasure to solve this inland water problem. However, huge construction cost is required to install the facilities because the objective catchment area, of 580 km² is too large to drain by pumping.

Retarding basin plan without confining dike is further divided into four (4) alternative cases. Flood control method by these alternatives are illustrated in Fig. 5.2 and described below;

- Case 1: Natural retarding basin
 Flood water coming from the Agno River, Tarlac River and tributaries
 flows into the swamp, then flows out to the lower Agno River after
 natural flood retardation of swamp.
 - Case 2: Gated control retarding basin without side overflow dike
 A gated control weir is provided at the outlet of swamp. Flood
 water from each river enter into the swamp and its outflow is to be
 controlled by gates.
- Case 3: Gated control retarding basin with a side overflow dike
 A by-pass floodway channel to convey flood water from the Agno River
 directly to the lower Agno River is provided passing through the swamp
 area. Flood water from the Tarlac River is lead to the swamp for
 retardation. A gated control weir is provided at the outlet of the
 Poponto Swamp to control its outflow. Two alternative cases are
 considered in this Case. One is to provide side overflow dike at bypass channel and the other is no side overflow dike.
- Case 4: Retarding Basin with dike, two overflow dike and a drainage

River channels of both the Agno River and Tarlac River are provided with side overflow dikes. Flood is partly retained in the retarding basin and partly flowed down to the lower Agno River passing through the drainage gate after flood water level in the Agno River subsided.

5.1.2 Camiling Retarding Basin

Camiling swamp area is habitually inundated due to flood coming from Agno River and Camiling River. A retarding basin with a side overflow type, which has a higher flood control effect than a natural type, is introduced in this retarding basin plan taking into account the topographic and land use constraints.

Natural retarding basin plan is also conceivable for the Camiling swamp. However, flood retarding effect to the downstream area by this plan is not so high, since this is located in the lower reaches of the Agno River.

Furthermore, retarding capacity of this swamp is very small compared to the Poponto swamp.

5.2 Selection of Retarding Basin Plan

5.2.1 Poponto Retarding Basin

The selection of prospective flood retarding basin plan has been done in four (4) alternative cases by adopting the criteria described in Section 3.2.

Flood control effects were compared and evaluated by changing the flood peak cut rate and the dimensions of flood control structures for Cases 2, 3 and 4.

The study results including principal features, required construction costs and decreased river improvement costs due to flood retarding effect by each alternative case are shown in Table 5.1 and summarized below;

Item	Unit	Case-1	Case-2	Case-3	Case-4
	•		4 - 1 - 1 - 1		to a war to
k inflow	m ³ /s	13,110	13,110	10,860	8,330
k reduction	m ³ /s	3,180	7,500	7,500	8,330
arding volume	Mill.m ³	757	1,445	1,356	1,515
od water level	EL.m	16.6	18.4	18.2	18.5
arding area	km ²	347	445	433	455
trol gate	m	none	150	150	none
e overflow dike	m. ·	none	none	2,100	5,000
ility cost	Mill.P	0	1,128	1,653	1,681
			e de la companya de l		
uction in river i	nprovement	cost			ng by 17 MAI ng Pithologia. Pangangan
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mill.P	4,126	4,869	3,266	2,085
· · · · · · · · · · · · · · · · · · ·	Entropy of the second	٠.	· 1		
ference	Mill.P	-4,126	-3,741	-1,613	-404
ference	Mill.P	-4,126	-3,741	-1,613	

The study concludes that all these retarding basin plans are prospective in terms of flood control. Among the four (4) cases, the natural retarding

basin plan (case-1) is the most advisable one to consider. Accordingly, this natural retarding basin plan is being considered in the integrated flood control plans.

5.2.2 Camiling Retarding Basin

Flood control effects are compared and evaluated by changing the peak overflow amount and the dimensions of flood control structures.

The study results are described in Table 5.2 and summarized below;

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100		
<u> Item</u>		Unit	Case-1	Case-2	Case-3
Peak overflow	1.00	m^3/s	2,000	2,500	3,000
Retarding volume	•	Mill.m ³	120	173	230
Flood water level		EL.m	12.3	13.4	14.3
Retarding area		km ²	43	52	60
Side overflow dike		m	2,400	2,370	2,350
11. miles - 12. miles - 12. miles		Art of the second	No.		
Facility cost		Mill.P	712	740	779
		*			
Reduction in river	improvemen	nt cost			
	•	Mill.P	371	451	521
All Control of the Co	10 m				
Difference		Mill.P	341	289	258
ne saya ing mga mga mga basa	garanta ang	All March	1.		er i afi

The study concludes that the facility cost for this retarding basin with side overflow dike exceeds the reduction in river improvement cost, therefore, it is assessed that the Camiling retarding basin plan is not a predominant to river improvement plan. Accordingly, Camiling retarding basin plan is not proceeded in the integrated flood control plans.

It would be possible to reclaim swamp area for land use with the progress of river basin conservation and river improvement works. However, it is recommended to secure retarding effect until such time that the Agno River become stable.

6. SELECTED DAMS

6.1 Principal Features

Moriones and Lower O'Donnell combined dam plan with the flood peak cut ratio at 50% is selected as the optimum scale for flood control dam. Accordingly, the following dams are taken into consideration for the integrated flood control plan;

Categories	Name of Dam	Criteria
Existing dams	Ambuklao	Flood control effect under the current
	Binga	reservoir operation rule be adopted.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
On-going dam	Balog-Balog	Flood control effect under the designed
		reservoir operation rule be adopted.
	2.78	
Designed dam	San Roque	Flood control effect under the designed
en de la companya de		reservoir operation rule be adopted.
Identified dams	Moriones and	Single purpose flood control dam be
	Lower O'Donnell	considered.

Principal features of existing, on-going and designed dams are described in Chapter 2, and Moriones and Lower O'Donnell combined dam plan are described as follows;

		Moriones	Low	er O'Donnell
- Catchment area (km ²)		537		278
- River name		Moriones		O'Donnell
- Flood control				
Peak cut ratio (%)			50	
100-yr peak inflow (m ³ /s)			3,310	ing the second of the second o
100-yr controlled peak outf	low (m ³ /s)		1,690	
- Reservoir				and the section of th
Flood water level (E1.m)			101.0	

Surcharge water level (El.m)	9	98.7	
Sediment level (E1. m)	er var er er er et e	39.5	:
Gross storage (Mill. m ³)	. 56	53.8	
Flood control storage (Mill. m ³)	32	25.3	
Dead storage (Mill. m ³)	23	38.5	
Reservoir area at SWL (km²)	* *1	48	the second
- Dam	$(x_1,\dots,x_n) \stackrel{\mathrm{def}}{=} (x_1,\dots,x_n)$		* * *, *,
Type	Concrete gravit	y Conc	rete gravity
Crest elevation (El.m)	103		103
Crest length (m)	375		260
Crest width (m)	8		8
Height (m)	53	and the second	38
Dam volume (m ³)	277,000		92,000
Saddle dam volume, earthfill (m ³)		650,000	*
- Spillway			
Type Fre	e overflow crest w	with gated o	onduit
Design flood, 200-yr (m ³ /s)	3,860		
Overflow crest elevation (El.m)	98.7		
Overflow crest width (m)	180		
Gate (No. x width x height)	15 x 4 m x 4 m		
Energy dissipater	Stilling basin		
- Diversion			
Type	Tunne1	4 - 4 - 4	Tunnel
Design flood, 2-yr (m ³ /s)	640		340
Tunnel diameter (m)	6		5
Tunnel length (m)	200		240
Number of tunnel (lanes)	1		1

Layout plan of Moriones and Lower O'Donnell combined dam plan is shown in Figs. 6.1 and 6.2.

6.2 Site Conditions and Compensation

Lower O'Donnell damsite is located on the O'Donnell River about 12 km southwest of Tarlac town. Access to the damsite from Tarlac town is by 2 km of paved road, 3 km of unpaved road, 7 km of dirt road on top of dike and 3 km of foot trail.

Moriones damsite is located on the Moriones River about 9 km west of Tarlac. Access to the damsite from Tarlac is by 8.5 km of paved road, 15 km of dirt road and 1.5 km of foot trail.

Both damsites are mainly underlain by sedimentary rocks. These rocks consist mainly of sandstone, siltstone and conglomerate. The damsites are considered to be in good and acceptable geological condition. Major problem is water leakage from low saddles, therefore, construction of saddle dams are necessary in portion where it is required to prevent water leakage.

In the reservoir area, especially Moriones damsite, some villages such as Moriones, Villa Aglipay, Lubigan and Iba are located along the Moriones River where about 1,600 families (90% in Moriones and 10% in Lower O'Donnell) are living. Majority of the inhabitants living in these villages are farmers. About 75% of the reservoir area are used mainly for rainfed paddy field.

There are two existing irrigation system in this reservoir area. One is Sula and Iba Irrigation System servicing an area of 250 ha on the left bank of the Moriones River, and the other is Lubigan Irrigation System which irrigates an area of about 200 ha on the right bank. In addition to these existing irrigation systems, Western Barrios Impounding Irrigation Project (1,030 ha) is on-going. This project is a grant-in-aid by the Government of Japan. Location of this SWIM project is shown in Fig. 6.3 and its project features are as follows:

Name of dam	Mangillog	Bulelatin	Pangasan	Balnges
Catchment area (km ²)	8.1	2.0	12.9	27.9
Dam height (m)	19.3	10.0	17.3	24.2
Dam Volume (m ³)	363,000	37,000	81,800	158,200
Total storage capacity (Mill.m ³)	3.21	0.73	1.14	1.82
Effective storage cap.(Mill.m ³)	3.11	0.70	0.98	1.47
Irrigation canal (km)	10.32	1.58	3.13	8.80
Irrigation area (ha)				
Wet season (Rice)	360	120	200	350
Dry season (Corn)	232.5	60	200	350

Data Source: BASIC DESIGN REPORT ON THE PROJECT FOR WESTERN BARRIOS IMPOUNDING IRRIGATION by JICA.

After implementing the Moriones and Lower O'Donnell combined dam plan, agricultural land of about 40 $\rm km^2$ including 820 ha of the Western Barrios irrigation area will be inundated by the reservoir. Its annual agricultural production foregone including the on-going irrigation system is about 34.3 $\rm x$ 10⁶ Pesos per year. This production foregone is considered as the negative benefit in the economic evaluation.

Western Barrios Impounding Irrigation Project is on-going now as described above. According to the said basic design report, sediment yield of 125.2 $\rm m^3/km^2/yr$ is applied for dam design. This value is far apart from 8,200 $\rm m^3/km^2/yr$ which is macroscopically estimated for this region by the STUDY, therefore it is recommended to review this sediment yield at damsites.

and the said the control of the cont

7. SELECTED RETARDING BASIN PLAN

7.1 Principal Features

Poponto natural retarding basin plan is selected for the integrated flood control plan. Its principal features are as follows:

Item	<u></u>	Probab1	e flood <1		
	100-yr	50-yr	25-yr	10-yr	
Peak inflow to basin (m3/s)	14,100	11,600	9,190	6,420	
Peak outflow from basin (m3/s)	10,200	8,670	7,210	5,360	
Peak cut amount (m3/s)	3,900	2,930	1,980	1,060	
Flood control storage (Mill.m ³)	757	594	431	226	
Flood water level (El.m)	16.6	16.1	15.6	14.8	
Inundated area (km²)	347	318	288	238	

Note: <1; Rainfall for hydrological base point at Wawa is applied.

General plan of Poponto retarding basin is shown in Fig. 7.1

7.2 Site Condition

Poponto retarding basin is located north of Tarlac and south of Alcala. This is a flat and low-lying area which spreads from the confluence of the Agno River and Tarlac River with a lowest ground elevation of about 10 m. Poponto retarding basin extends up to the upstream reaches of the Tarlac River and its tributaries. Rivers in this area are exceedingly meandering because of its topographical condition.

Alluvial plain which is spread in this area is composed mainly of organic clay and silt with little sand.

Most of low-lying areas south of the Manila-San Fernando railway and west of Moncada town is habitually inundated due to flood. Around this low-lying areas residential villages are scattered. Major towns such as Moncada and Paniqui are developed because of their favorable elevated location avoiding excessive flood damage.

8. WORK QUANTITIES AND COST ESTIMATE

Two kinds of construction costs are estimated, i.e. financial cost and economic cost. The economic cost is used for evaluation of the integrated flood control plan for economic view point.

The construction costs are estimated from the work quantities which are estimated based on the facilities designed and unit prices. In addition to this, the following provisions are taken into account:

- Preparatory works

: 10% of the sum of the estimated main work cost

- Miscellaneous works

: 15% of the sum of the estimated main work cost and preparatory cost

- Government administration

: 5% of the sum of main construction

cost and compensation cost

- Engineering services

: 16% of the main construction cost

- Physical contingency

: 15% of the sum of the main construction cost, compensation cost and administration cost

Compensation cost is disregarded in the economic construction cost estimate because this cost is evaluated based on the agricultural production forgone as described in Section 6.2.

Financial and economic construction costs with work quantities are shown in Tables 8.1 and 8.2.

TABLES

Table 2.1 FEATURES OF QUALIFIED AND ON-GOING SMALL IMPOUNDING DAM SCHEMES IN THE STUDY AREA

Ro.	Name of Project	River Name	Dan Type	Area	Dam Height (m)	Blev.	HAL	Area	Effect. Storage (mill.m3)	Storage	Cost ∢1	Purpose (2
ualified	Dan											
DPWH- 1.	Saytan Dan & Reservoir SRIP	Saytan	Zoned Barthfill	4	24	235	232.5	. 3	0.284	0.296	40.3	IR, PC, IP, NH
	Acop Dan & Reservoir SWIP	Acop	Loned Barthfill	9	12	112	110	6	0.414	0.460	14.2	1R,FC,1F
	Calitlitan Dam & Reservoir	Calitlitan	Loned Earthfill	12	21	122	120	8	0.765	0.850	32.3	IR,FC,IF
DPWH-19	Rita-Rita Dan & Reservoir	Rita-Rita	Loned Earthfill	9		112	110	10	0.351	0.390	10.6	18,70,17
DPRH-20	Salvacion Dan & Reservoir	Salvacion	Loned Earthfill	5	13	49	-47	5	0.459	0.510	13.7	IR,FC,IF
DPNH-21	San Angel Dam & Reservoir	San Angel	Zoned Earthfill	9	13	56	54	10	0.261	0.290	12.0	IR, PC, IF
NIA-29	Alibeng SWIP	Alibeng	Loned Barthfill	11	30	130	127	26	1.730	1.903	- 31.0	IR, PC, IF
	Digap SWIP	Digap	Zoned Earthfill	1	10	100	97.5	4	0.071	0.078	6.2	IR, FC, IF
	Diket SWIP	Diket	Loned Earthfill	1	23	200	197.5	. 8	0.368	0.405		IR, PC, IF
	Bigbiga CIS		Zoned Earthfill	4	22	140	137.5	77	0.439	0.483		IR,FC,IF
	Tangcarang CIP		Loned Barthfill	- 1	21	140	137.5	5	0.278	0.306		IR, PC, IP
			Zoned Karthfill		8.8	97.2	96	34	0.719	0.725		IR,FC,IF
BSWN- 9	Pugaro SVIP	* .* •	Hosogeneous B.	0.9	6.5	93	91	12	0.194	0.214	5.3	ir, vo, 19, po
	•	Pagaranus	Komogeneous E.							0.090		IR, ND, IF, FO
	Kabini SWIP	-	Honogeneous E.			122.6	120	2		0.181		IR, ND, IP, FO
		-	Honogeneous E.			-	-		0.170	0.185		IR, ND, IF, FO
BSWA-63	Villa Boado SVIP	•	Homogeneous E.	0.8	11	94	92	6	0.213	0.230	5.7	1R, WD, 1F, PO
BSWN-65	Maniniog Swip				13.5							IR, WD, IF, FO
n-Going 1	Dan a garanta da						<u>.</u>	- 				
WBII- I	Mangillog Dam & Reservoir		Loned Barthfill	8,1	19.3.	111.3	108	: 71	3.110	3.210		ĪR
	Bulelatin Dan & Reservoir		Rozogeneous E.		10	98	96		0.700	0.730	_	18
	Pangasan Dan & Reservoir		Loned Rockfill						0.980	1.140	_	18
	Balages Dan & Reservoir		Zoned Earthfill							1.820		18

Note; (1: 1989 price level including compensation and administration costs estimated by JICA SWIM Study Team.

^{(2:} IR-Irrigation, PC-Plood Control, MD-Matershed Management, MH-Mini Hydropower, IP-Inland Pishery

Table 4.1 PRESENT STATUS OF DAM PROJECT

	47		1. 4. 14.	1.1	· · · · · · · · · · · · · · · · · · ·		
No.	Name of Dam	River Basin	Catchment Area(km²)	Present Status	Latest Study	Agency	Renarks
1.	Aabuklao	Agno	617	Existing	· · · · · · · · · · · · · · · · · · ·	NAPOCOR	
2.	Binga	Agno	860	Sxisting		NAPOCOR	
3.	Tabu	Agno	1,051	Haster Plan	LHPPS ^{<1}	NAPOCOR	Selected thru 2nd screening in LHPPS
4,	San Roque	Àgno	1,250	D/D completed	:	HAPOCOR & HIA	
5.	Upper Ambayoan	Anbayoan	151	Haster Plan	EDP ^{<2}	NIA	Recommended site for development in IDP
6.	Upper Sapinit	Aabayoan	270	Kaster Plan	IDP	NIA	Excluded due to studies of economic & alternatives in 1DP
7.	Lower Ambayoan	Aabayoan	310	Inventory	IDP	МГА	Only site inventory in IDP
8.	Kalipkip	Tuboy	75	Waster Plan	IDP	MIY	Excluded due to studies of economic alternatives in IDP
9	Lubas	luboy	90	Master Plan	IDP	MIY	Reconsended site for development in ID
0.	Bangat	Tarlac .	39	Master Plan	Balog-Balog F/S [°] 3	AIK	Syaluated as alternative site in P/S
11.	O'Donnell	Tarlac	· 119	Haster Plan	Balog-Balog F/S	AIR	Byaluated as alternative site in P/S
2.	Lower O'Donnell	Tarlac	278	Inventory	IDP	HIA	Only site inventory in IDP
3.	Balog-Balog	Tarlac	283	On-going		NIĄ	
٤.	Noriones	Tarlac	537	Master Plan	Balog-Balog F/S	MIA	Byaluated as alternative site in P/S
5.	Camiling	Camiling	221	Haster Plan	IDP	AIK	Recommended site for development in ID
8.	Pila	Olo	130	Master Plan	IDP	NIY	Recommended site for development in ID
17.	Bayaoas	Bayaoas	64	Master Plan	PDP	NIA	Excluded due to studies of economic & alternatives in IDP

NOTE: (1 Study on Hydropower Potentials in Luzon Island JICA, August 1987

⁴² Irrigation Development Plan for Central Luzon NIA, January 1978

⁴³ Feasibility Study on Balog-Balog Multi-Purpose Project ELC and Philtech, July 1980

Table 4.2 FLOOD AT DAMSITES

100yr Probable Rainfall 1,075 nm 50yr Probable Rainfall 950 am Runoff Coefficient 0.7

		1	OOyr Flood			50yr Flood		
Dansite	41.	C.A. (ku2)	Peak (m3/s)	Amount (x Hill.m3)	Period (hr)	Peak (n3/s)	Amount (x Mill.m3)	Period (hr)
Tabu		1,051	5,518	790.9	79.6	4,887	698.9	79.5
San Roque	1.	1,250	6,438	940.6	81.2	5,625	831.3	82.1
Upper Ambayoan		151	1,276	113.6	49.5	1,125	100.4	49.6
Upper Sapinit		270	1,998	203.2	56.5	1,755	179.6	56.2
Lower Ambayoan		310	2,217	233.3	58.5	1,938	206.2	59.1
Kalipkip	•	.15	750	56.4	41.8	660	49.9	42.0
Lubas		90	864	67.7	43.5	761	59.9	43.7
Bangat		39	460	29.3	35.4	402	25.9	35.8
O'Donnell		119	1,071	89.5	46.4	940	79.1	46.7
Lower O'Donnell		278	2,043	209.2	56.9	1,793	184.9	57.3
Noriones		537	3,356	404.1	66.9	2,954	357.1	67.2
Camiling	* * * * * * * * * * * * * * * * * * *	221	1,713	166.3	53.9	1,503	147.0	54.3
Pila		130	1,144	97.8	47.5	1,008	86.5	47.1
Bayaoas		64	666	48.2	40.2	589	42.6	40.2

Table 4.3 SCREENING OF PROSPECTIVE DAMSITE FOR FLOOD CONTROL (100-YR FLOOD)

Name of Damsite	River	(A) Catchment area (km2)	Riverbed elevation (EL.m)	Topo.max. elevation (EL.m)	Sediment Volume (mill.m3)	Peak Discharge (m3/s)	Hydro. Required Volume (mill.m3)	Dam height from river- bed (m)	Adopted dam height criteria
Tabu	Agno	1,051	310	√1 420	52.5	5,518	790.9	110	TWL of Binga dam
San Roque	Agno	1,250	100	320	107.3	6,438	940.6	198	Hydro. required
Upper Ambayosa	Ambayoan	151	465	>800	41.5	1,276	113.6	173	Hydro. required
Upper Sapinit	Ambayoan	270	175	>500	74.3	1,998	203.2	143	Hydro. required
Lower Ambayoan	Ambayoan	310	125	400	85.3	2,217	233.3	124	Hydro. required
Kalipkip	Tuboy	75	150	380	20.6	750	56.4	71	Hydro, required
Lubas	Tuboy	90	90	180	24.8	864	67.7	62	Hydro. required
Bangat	Tarlac	39	150	260	7.8	460	29.3	49	Hydro. required
O'Donnell	Tarlac	119	140	300	23.8	1,071	89.5	39	Hydro. required
Lower O'Donnell	Tarlac	278	75	110	55.6	2,043	209.2	35	Topo. maximum
Moriones	Tarlac	537	60	100	107.4	3,356	404.1	40	Topo. maximum
Camiling	Camiling	221	155	460	44.2	1,713	166.3	103	Hydro. required
Pila	010	130	55	180	26.0	1,144	97.8	90	Hydro. required
Bayaoas	Bayaoas	64	55	260	12.8	666	48.2	70	Hydro. required

Note: <1; Tail water level of Binga power station.

Name of Damsite	Crest elevation (EL.m)	Flood water level (EL.m)	Sediment l level (EL.m)	Gross storage (mill.m3)	(B) Flood Storage (mill.m3)	(C) Peak cut Ratio of flood (%)	(D) Dam Volume (mill.m3)	Storage efficiency SE=(B)/(D)	Flood control efficieny FCE=SE*(A)*(C)/1,000
Tabu	420	415	370.5	201.8	149.3	43	0.841	178	80
San Roque	298	293	180.0	1,047.9	940.6	100	8.545	110	138
Upper Ambayoan	638	633	574.0	155.1	113.6	100	2.508	45	7
Upper Sapinit	318	313	255.0	277.5	203.2	100	2.444	83	22
Lower Ambayoan	249	244	189.5	318.6	233.3	100	2.864	81	25
Kalipkip	221	216	191.0	77.0	56.4	100	0.749	75	6
Lubas	152	147	121.0	92.5	67.7	100	0.836	81	7
Bangat	199	194	171.5	37.1	29.3	100	0.239	123	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O'Donnell	179	174	155.5	113.3	89.5	. 100	1.110	81	10
Lower O'Donnell	110	105	98.2	147.5	91.9	66	0.409	225	41
Moriones	100	95	82.7	381.5	274.1	82	0.217	1,263	556
Camiling	258	253	206.0	210.5	166.3	100	1.251	133	29
Pila	145	140	102.0	123.8	97.8	100	1.112	88	11
Bayaoas	125	120	89.0	61.0	48.2	100	0.419	115	7

Table 4.4 SCREENING OF PROSPECTIVE DAMSITE FOR FLOOD CONTROL (50-YR FLOOD)

Name of Damsite	River	(A) Catchment area (km2)		Topo.max. elevation (EL.m)		Peak Discharge (m3/s)	Hydro. Required Volume (mill.m3)	Dam height from river- bed (m)	Adopted dam height criteria
Tabu	Agno	1,051	310	<1 420	52.5	4,887	698.9	110	TWL of Binga dam
San Roque	Agno	1,250	100	320	107.3	5,625	831.3	191	Hydro required
Upper Ambayoan	Ambayoan	151	465	>800	41.5	1,125	100.4	168	Hydro. required
Upper Sapinit	Ambayoan	270	175	>500	74.3	1,755	179.6	138	Hydro, required
Lower Ambayoan	Ambayoan	310	125	400	85.3	1,938	206.2	119	Hydro. required
Kalipkip	Tuboy	75	150	380	20.6	660	49.9	69	Hydro, required
Lubas	Tuboy	90	90	180	24.8	761	59.9	60	Hydro. required
Bangat	Tarlac	39	150	260	7.8	402	25.9	47	Hydro. required
O'Donnell	Tarlac	119	140	300	23.8	940	79.1	37	Hydro required
Lower O'Donnell	Tarlac	278	75	110	55.6	1,793	184.9	35	Topo. maximum
Moriones	Tarlac	: 537	60	100	107.4	2,954	357.1	40	Topo. maximum
Camiling	Camiling	221	155	460	44.2	1,503	147.0	99	Hydro. required
Pila	Olo	130	55	180	26.0	1,008	86.5	87	Hydro. required
Bayaoas	Вауаова	64	55	260	12.8	589	42.6	68	Hydro, required

Note: <1; Tail water level of Binga power station.

Name of Damsite	Crest elevation (EL.m)		Sediment level (EL.m)	Gross storage (mill.m3)	(E) Flood Storage (mill.m3)	(C) Peak cut Ratio of flood (%)	(D) Dam Volume (mill.m3)	Storage efficiency SE=(B)/(D)	Flood control efficieny FCE=SE*(A)*(C)/1,000
Tabu	420	415	370.5	201.8	149.3	46	0.841	178	86
San Roque	291	286	180.0	938.6	831.3	100	7.815	106	133
Upper Ambayoan	633	628	574.0	141.9	100.4	100	2.310	43	6
Upper Sapinit	313	308	255.0	253.9	179.6	100	2.242	80	22
Lower Ambayoan	244	239	189.5	291.5	206.2	100	2.607	79	24
Kalipkip	219	214	191.0	70.5	49.9	100	0.708	70	5
Lubas	150	145	121.0	84.7	59.9	100	0.785	76	7
Bangat	197	192	171.5	33.7	25.9	100	0.221	117	5
O'Donnell	177	172	155.5	102.9	79.1	100	0.995	79	9
Lower O'Donnell	110	105	98.2	147.5	91.9	71	0.409	225	44
Moriones	100	95	82.7	381.5	274.1	88	0.217	1,263	597
Camiling	254	249	206.0	191.2	147.0	100	1.132	130	28
Pila	142	137	102.0	112.5	86.5	100	1.027	84	11
Bayaoas	123	118	89.0	55.4	42.6	100	0.394	108	7

Table 4.5 RESULTS OF INITIAL SCREENING

				fficiency	Flood Co	ntrol Bi.	0-1	
Name of Dansite	River Basin	Catchment Area (km2)	100-yr Flood	50-yr Flood	100-yr Flood	50-yr Plood	- Selected damsite	Remarks
Tabu	Agno	1,051	178	178	80	86		High efficiency for flood control, however, Tabu is discarded in favor of San Roque due to lower flood control efficiency.
San Roque	Agno	1,250	110	106	138	133	*	High efficiency for flood control.
Upper Ambayoan	Ambayosi	151	. 45	43	7	6		Low efficiency for flood control.
Upper Sapinit	Anbayoni	270	83	80	22	22		Upper Sapinit is discarded in favor of Lower Ambayoan due to lower flood control efficiency.
Lower Ambayoan	Anbayoai	310	81	79	25	24	*	Lower Ambayoan has highest flood control efficiency in the Ambayoan River basin.
Kalipkip	Tuboy	75	-75	70	8	5		Low efficiency for flood control.
Lubas	Tuboy	90	81	76	7	7		Low efficiency for flood control.
Bangat	Tarlac	39	123	117	5	5		Low efficiency for flood control.
O'Donnell	Tarlac	119	81	79	10	9		Low efficiency for flood control.
Lower O'Donnell	Tarlac	278	225	225	41	44	‡	High efficiencies.
Moriones	Tarlac	537	1,263	1,263	556	599	*	High efficiencies. Compensation problem can probably be settled.
Camiling	Camiling	221	133	130	29	28	* * * * * * * * * * * * * * * * * * *	High efficiency for flood control.
Pila	Olo	130	. 88	84	11	11		low efficiency for flood control.
Bayaoas	Bayacas	64	115	108	 7	7		Low efficiency for flood control.

Table 4.6 SUMMARY OF FLOOD CONTROL DAMSITE ALTERNATIVE STUDY

** ***********	ter der ein eigt vom der eine vertreckte det de vom großen. In gener vom 19 det de deet det de			Dans	ite			
	Iten	San Roque	Lower Ambayoan	Lower O'Donnell	Horiones	Horiones & Lower O'Donnell	Camiling	Withou Dam
[,	River Basin	Agno	Ambayoan	Tarlac	Tarlac	Tarlac	Camiling	
П.	Catchment Area (km2)	1,250	310	278	537	815	221	
III.	Peak Cut Ratio (%)	30	30	30	50	50	30	
ĮV.	Discharge at Damsite (m3/s) 1. 100-yr peak inflow 2. 100-yr controlled outflow	6,380 4,500	1,800 1,270	1,700 1,200	2,250 1,160	3,310 1,690	1,240 880	
۷.	Flood Control Storage (mill.m3)	173	42	53	245	325	49	
VI.	Rlevation (RL.n) 1. Surcharge water level 2. Dan crest elevation	240.0 244.1	230.0 233.2	107.2	94.0 97.9	98.7 103.0	231.5 235.4	
VII.	Dan Height (m)	149.1	118.2	44.9	47.9	53.0	85.4	
/III.	Dam Volume (mill.m3) 1. Main dam (concrete) 2. Saddle dam (earthfill)	3.87 0	2.24	0.13 1.50	0.22 0.21	0.37 0.65	0.55	
IX.	Construction Cost (mill.P) 1. Wain construction 2. Compensation 3. G/A, B/S & Contingency	8,036 10 2,955	4,551 11 1,674	897 26 334	802 71 309	1,547 107 590	1,355 4 499	
	Total	11,001	6,236	1,257	1,182	2,244	1,858	
X.	Peak Discharge at Base Point (m3 1. BP.1 2. BP.2 3. BP.3 4. BP.4 5. BP.5 6. BP.6 7. BP.7	•		17,130 14,580 9,190 6,370 2,180 6,410 1,730	16,590 13,980 9,190 6,370 2,180 5,830 1,730	16,179 13,490 9,190 6,370 2,180 5,260 1,730	17,210 14,820 9,190 6,370 1,840 6,720 1,730	17,310 14,820 9,190 6,370 2,180 6,720 1,730
ΧI	Reduction in River Improvement C 1. River improvement works	osts by Dam f 185	lan (mill.) 113	P) 160	460	745	133	
	2. O & H cost (dredging)	2,529	2,010	1,332	1,030	2,362	698	
	Total	2,714	2,123	1,492	1,490	3,107	831 	
KII.	Dam Cost less Reduction in River Improvement Cost (mill.P)	8,287	4,113	-235	-308	-863	1,027	

Table 4.7 SAN ROQUE DAM ALTERNATIVE CASES

			Peak Cut	Ratio (%)		
	Item	90	70	50	30	0
1.	Discharge			<u> </u>		
	1. 200-yr peak inflow (m3/s)	7,750	7,750	7,750	7,750	7,75
	2. 100-yr peak inflow (#3/8)	6,380	6,380	6,380	6,380	6,38
	3. 100-yr controlled peak outflow (#3/8)	750	2,000	3,250	4,500	6,38
	######################################					
11.	Storage 1. Sediment (mill. m3)	256.0	256.0	256.0	256.0	
	2. Calculated flood control (mill. m3)	786.2	505.6	295.6	143.9	
	3. Design flood control (will. m3)	943.4	506.7	354.7	172.7	-
 !	Elevation					
1111	1. Dam bottom (Rl. m)	95.0	95.0	95.0	95.0	
	2. Sediment (Bl. m)	213.0	213.0	213.0	213.0	
	3. Calculated SWL (Bl. *)	293.0	272.0	255.0	237.0	· -
	4. Design SWL (El. w)	304.0	280.0	259.0	240.0	-
	5. FWL (B1. m)	309.5	284:4	262.3	242.1	
	6. Dam crest (El. m)	311.5	286.4	264.3	244.1	
Ų	Dan Volume	· ·				
4 3	1. Main dam, concrete (mill. m3)	9.90	7.25	5.34	3.87	-
•	2. Saddle dam, earthfill (mill. m3)		0	0	. 0	
 !.	Construction Cost (Pinancial)					
•	1. Preparatory works (mill. P)	1,495	1,111	833	617	
	2. Civil works (mill. P)	14,956	11,115	8,329	6,172	
	3. Netal works (mill. P)	80	138	159	199	.5, -
	4. Miscellaneous works (mill. P)	2,480	1,855	1,398	1,048	-
	Total of 1 to 4 (mill. P)	19,011	14,219	10,719	8,036	
	5. Compensation (mill. P)	20	16	13	10	-
	6. Government administration (mill. P)	951	712	537	402	_
	7. Engineering services (mill. P)	3,042	2,275	1,715	1,286	-
	8. Physical contingency (mill. P)	2,997	2,242	1,690	1,267	-
	Grand Total (mill. P)	26,021	19,464	14,674	11,001	_
 I	Peak Discharge at Base Point					
	1. BP.1 (#3/s)	14,870	15,540	16,240	16,970	17,3
	2. BP.2 (m3/s)	11,660	12,400	13,180	14,100	14,8
	3. BP.3 (m3/s)	5,510	6,280	7,160	8,170	9,19
	4. BP.4 (m3/s)	1,130	2,360	3,810	4,840	6,3
	5. BP.5 (m3/s)	2,180	2,180	2,180	2,180	2,18
	6. BP.6 (m3/s)	6,720		6,720	6,720	6,7
	7. BP.7 (m3/s)	1,730		1,730	1,730	1,7
11.	Reduction in River Improvement Cost by Dam Plan	(will.P)				
	1. River improvement works	1,020	770	470	185	
	2. 0 & M cost (dredging)	2,529	2,529	2,529	2,529	
	fotal	3,549	3,299	2,999	2,714	
 III.	Dan Cost less Reduction in River					
	Improvement Cost (mill.P)	22,472	16,165	11,675	8,287	

Table 4.8 LOWER AMBAYOAN DAM ALTERNATIVE CASES

	I ten	90	70	Ratio (%) 50	30	. 0
 [.	Discharge					
	1. 200-yr peak inflow (m3/s)	2,200	2,200	2,200	2,200	2,20
	2. 100-yr peak inflow (m3/s)	1,800	1,800	1,800	1,800	1,80
	3. 100-yr controlled peak outflow (m3/s)	210	560	920	1,270	1,80
Ι.	Storage		44 44 44 44 44 44 44 44 44 44 44 44 44	*		~
	1. Sediment (mill. m3)	203.0	203.0	203.0	203.0	-
	2. Calculated flood control (mill. m3)	201.2	127.3	71.7	34.6	-
	3. Design flood control (mill. m3)	241.4	152.8	86.0	41.5	<u>-</u>
Ш.	Elevation					
	1. Dam bottom (EI. m)	115.0	115.0	115.0	115.0	· · -
	2. Sediment (El. m)	221.0	221.0	221.0	221.0	-
	3. Calculated SWL (El. m)	257.5	246.0	236.0	228.5	-
	4. Design SWL (El. m)	262.0	250.0	238.5	230.0	-
	5. PWL (Bl. m)	264.5	252.0	240.0	231.2	
	6. Dam crest (El. m)	266.5	254.0	242.0	233.2	· <u>-</u>
١٧.	Dan Volume					
	1. Main dam, concrete (mill. m3)	3.98	3.22	2.62	2.24	-
	2. Saddle dam, earthfill (mill. m3)	. 0	0	0	0	
1.	Construction Cost (Financial)					• .
	1. Preparatory works (mill. P)	610	500	412	357	-
	2. Civil works (mill. P)	6,106	5,001	4,126	3,568	
	3. Metal works (mill. P)	18	30	33	32	
	4. Miscellaneous works (mill. P)	1,010	830	686	594	-
	Total of 1 to 4 (mill. P)	7,744	6,361	5,257	4,551	-
	5. Compensation (mill. P)	14	13	12	11	-
	6. Government administration (mill. P)	388	318	263	228	-
	7. Engineering services (mill. P)	1,239	1,018	841	728	
	8. Physical contingency (mill. P)	1,222	1,004	830	718	-
	Grand Potal (mill, P)	10,607	8,714	7,203	6,236	-
Π.	Peak Discharge at Base Point					
	1. BP.1 (m3/s)	16,420	16,650	16,870	17,070	17,31
	2. BP.2 (m3/s)	13,720	13,980	14,250	14,520	14,82
	3. BP.3 (#3/s)	8,080	8,370	8,660	8,940	9,19
	4. BP.4 (m3/s)	6,370	6,370	6,370	6,370	6,31
	5. BP.5 (m3/s)	2,180	2,180	2,180	2,180	2,18
	δ. BP.6 (±3/s)	6,720	6,720	6,720	6,720	6,72
	7. BP.7 (m3/s)	430	690	960	1,240	1,73
Ш	Reduction in River Improvement Cost by Dam	Plan (mill.P)				
:	1. River improvement works	371	281	192	113	
	2. 0 & M cost (dredging)	2,010	2,010	2,010	2,010	
	Total	2,381	2,291	2,202	2,123	
	.Dam Cost less Reduction in River				1 .	

Table 4.9 LOWER O'DONNELL DAM ALTERNATIVE CASES

	[ten	90	Peak Cut 70	Ratio (%) 50	30	0
	Discharge			, and see the see see see see the first the the		
	1. 200-yr peak inflow (m3/s)		-	2,010	2,010	2,01
	2. 100-yr peak inflow (m3/s)		*	1,700	1,700	1,70
	3. 100-yr controlled peak outflow (m3/s)		:	870	1,200	1,70
П.	Storage		-			
	1. Sediment (mill. m3)	-	-	135.0	135.0	-
	2. Calculated flood control (mill. m3)	-	-	86.1	44.3	•
	3. Design flood control (mill. m3)		-	103.3	53.2	
Ш.	Blevation					
	1. Dan bottom (Bl. m)		-	65.0	65.0	-
	2. Sediment (El. m)	-	-	104.2	104.2	•
	3. Calculated SWL (El. m)	-	· -	108.8	106.8	-
	4. Design SML (El. m)		-	109.5	107.2	- -
	5. FWL (El. m)	-	-	109.9	107.9	
	6. Dam crest (El. m)		_	111.9	109.9	
ĮŸ.	Daw Volume	•			A 16	
	1. Main dam, concrete (mill. m3)		-	0.14	0.13	-
	2. Saddle dam, earthfill (mill. m3)			1.90	1.50	
7.	Construction Cost (Pinancial)					
	1. Preparatory works (mill. P)	-	-	74	65	-
	2. Civil works (mill. P)	-	-	740	647	•
	3. Metal works (mill. P)	-		68	68	
	4. Miscellaneous works (mill. P)			132	117	• -
	Total of 1 to 4 (mill. P)	• -	• .	1,014	897	
	5. Compensation (mill. P)	-	· -	28	26	. =
	6. Government administration (mill. P)	-	-	52	46	
	7. Engineering services (mill. P)	_		162	143	-
	8. Physical contingency (mill. P)	-	-	164	145	
	Grand Total (mill. P)	-	•	1,420	1,259	2
VI.	Peak Discharge at Base Point				::	
	1. BP.1 (m3/s)	: -	-	16,940	17,130	17,31
	2. BP.2 (#3/s)	•		14,360	14,580	14,82
	3. BP.3 (m3/s)	. · · · · · · · · · · · · · · ·	~	9,190	9,190	9,19
:	4. BP.4 (m3/s)	•		6,370	6,370	6,37
	5. BP.5 (m3/s)	•	-	2,180	2,180	2,18
	6. BP.6 (m3/s)	-	. •	8,190	8,410	6,72
:	7. BP.7 (m3/s)	: -		1,730	1,730	1,73
 III.	Reduction in River Improvement Cost by Dam	Plan (will.P)		, i ,		
	1. River improvement works	-	•	265	160	
	2. 0 & M cost (dredging)	-	· -	1,332	1,332	
	Total	· .		1,597	1,492	
////	Dam Cost less Reduction in River					
	Improvement Cost (mill.P)			-177	-235	

Table 4.10 MORIONES DAM ALTERNATIVE CASES

	Item	90	Peak Cut 70	Ratio (%) 50	. 30	0
 T	R: _land.	·				
L	Discharge 1. 200-yr peak inflow (m3/s)	2,540	2,540	2,540	2,540	2,54
	2. 100-yr peak inflow (m3/s)	2,250	2,250	2,250	2,250	2,25
	3. 100-yr controlled peak outflow (m3/s)	280	720	1,160	1,600	2,25
	2 100-At constitution bear office (#3/2)	60V		1,100	1,000	ده ره
ΙΙ.	Storage	142 4	101.0	101.6	+44.4	-
	1. Sediment (mill. m3)	104.0	104.0	104.0	104.0	-
	2. Calculated flood control (mill. m3)	472.5	319.2	204.1	107.4	-
	3. Design flood control (mill. m3)	567.0	383.2	244.9	128.9	-
Π.	Elevation					
	1. Dan bottom (El. m)	50.0	50.0	50.0	50.0	* . -
	2. Sediment (El. m)	82.5	82.5	82.5	82.5	, -
	3. Calculated SWL (Bl. m)	100.4	96.3	92.5	88.7	-
	4. Design SWL (El. m)	102.6	98.2	94.0	89.7	-
	5. PML (E1. m)	105.8	100.7	95.9	91.0	. *
	6. Dam crest (El. m)	107.8	102.7	97.9	93.0	-
٧,	Dan Volume					
	1. Main dam, concrete (mill. m3)	0.33	0.26	0.22	0.19	-
	2. Saddle dam, earthfill (mill. m3)	3.00	0.44	0.21	0.07	· •
,	Construction Cost (Financial)					
	1. Preparatory works (mill. P)	134	72	61	51	
	2. Civil works (mill. P)	1,342	724	808	510	
	3. Metal works (mill. P)	15	25	31	35	
	4. Miscellaneous works (mill. P)	224	123	104	89	·
	Total of 1 to 4 (mill. P)	1,715	944	802	: 685	-
	5. Compensation (will. P)	115	92	71	52	
	6. Government administration (mill. P)	92	52	44	37	-
	7. Engineering services (mill. P)	274	151	128	110	-
4,	8. Physical contingency (mill. P)	288	163	137	*	
	Grand Total (mill. P)	2,484	1,402	1,182	1,000	
 I.	Peak Discharge at Base Point				*****	
-:	1. BP.1 (m3/s)	15,960	16,270	16,590	16,910	17,3
	2. BP.2 (m3/s)	13,270	13,620	13,980	14,340	14,8
	3. BP.3 (23/8)	9,190	9,190	9,190	9,190	9,1
	4. BP.4 (m3/s)	6,370	6,370	6,370	6,370	6,31
- 1	5. BP.5 (e3/s)	2,180	2,180	2,180	2,180	2,18
	6. BP.6 (m3/s)	5,090	5,450	5,830	6,190	8,7
	7. BP.7 (x3/s)	1,730	1,730	1,730	1,730	1,75
Π.	Reduction in River Improvement Cost by Dam Plan	(mill.P)				
	1. River improvement works	800	660	460	265	
	2. 0 & M cost (dredging)	1,030	1,030	1,030	1,030	
	Fotal	1,830	1,690	1,490	1,295	
III	.Dam Cost less Reduction in River				-+	
	Improvement Cost (mill.P)	654	-288	-308	-295	

Table 4.11 MORIONES AND LOWER O'DONNELL COMBINED DAM ALTERNATIVE CASES

	ltes		90		reak cut 70	Ratio (X)	30	0
 [,	Discharge							~~
	1. 200-yr peak inflow (m3/s)			-	3,860		3,860	
	2. 100-yr peak inflow (m3/s)	;		٠.	3,310	3,310	3,310	3,31
. *	3. 100-yr controlled peak outflow (m3	(8)		-	1,050	1,690	2,340	3,31
 II.	Storage							
	1. Sediment (mill. m3)			-	238.5	238.5	238.5	• • •
	2. Calculated flood control (mill. m3	}			125.4	271.1	141.2	· · · -
	3. Design flood control (mill. m3)			-	510.5	325.3	169.4	
ш.	Blevation							
	1. Dam bottom at Moriones (El. m)			- `	50.0	50.0	50.0	
	2. Sediment (El. m)			-	89.5	89.5	89.5	- · · · · -
	3. Calculated SWL (Bl. m)			-	100.7	97.6	94.3	
	4. Design SWL (El. B)			_	102.1	98.7	95.1	
	5. FWL (B1. a)			-	105.2	101.0	96.9	· * ;
	6. Dan crest (Bl. m)			-	107.2	103.0	98.9	· ; -
V.	Dan Volume	*****						
-	1. Main dam, concrete (mill. m3)	200		-	0.42	0.37	0.33	∴ ÷.
	2. Saddle dam, earthfill (mill. m3)			-	1.75		0.15	
	Construction Cost (Pinancial)							1 1 1 1
	1. Preparatory works (mill. P)			-	146	117	100	·
	2. Civil works (mill. P)		•	-	1,467	1,174	997	
	3. Ketal works (mill. P)			_	37	54	70	-
	4. Miscellaneous works (mill. P)			-	247	202	175	
	Total of 1 to 4 (mill, P)		:	-	1,897	1,547	1,342	-
	5. Compensation (mill. P)		:	-	136	107	. 85	
	6. Government administration (mill. 8)		-	102	83	71	rando v -
	7. Engineering services (mill. P)			-	303	247	215	· -
	8. Physical contingency (mill. P)			-	320	260	224	:
	Grand Sotal (mill. P)			-	2,758	2,244	1,937	
1.	Peak Discharge at Base Point		,					
	1. BP.1 (m3/s)	:		· -	15,680	16,170	16,690	17,3
	2. BP.2 (m3/s)			-	12,930	13,490	14,080	14,8
	3. BP.3 (m3/s)	:		-	9,190	9,190	9,190	9,19
	4. BP.4 (m3/s)			-	8,370	6,370	6,370	6,3
	5. BP.5 (m3/s)	4		-	2,180	2,180		2,1
	6. BP.6 (m3/s)	: .		-	4,780	5,260	5,880	6,7
	7. BP.7 (m3/s)		· ::		1,730	1,730	1,730	1,73
11.	Reduction in River Improvement Cost t		ın (pilli)	?)				
	1. River improvement works		٠.	-	1,020		345	
	2. 0 & M cost (dredging)	•	· i	•	2,362	2,362	2,362	
	Total			_	3,382	3,107	2,707	
III	Dam Cost less Reduction in River			*-				
	Improvement Cost (mill.P)			_	-624	-863	-770	120 Sp. 5

Table 4.12 CAMILING DAM ALTERNATIVE CASES

			Peak Cut			
	ltem	90	70	\$0	30	0
 ,	Discharge					
	1. 200-yr peak inflow (m3/s)	1,510	1,510	1,510	1,510	1,510
	2. 100-yr peak inflow (m3/s)	1,240	1,240	1,240	1,240	1,240
	3. 100-yr controlled peak outflow (m3/s)	150	390	630	880	1,240
	or too it controlled bear ornitos (moto)	144	444444444444444444444444444444444444444	UUU	000	1,610
I.	Storage	п 1	75 0		Ø1 0	
	1. Sediment (mill. m3)	71.0	71.0	71.0	71.0	-
	2. Calculated flood control (will. m3)	204.0	139.4	87.4	41.0	-
	3. Design flood control (mill. m3)	244.8	167.3	104.9	49,2	-
Π,	Blevation					
	1. Dam bottom (El. m)	150.0	150.0	150.0	150.0	-
	2. Sediment (El. m)	216.5	216.5	216.5	216.5	
	3. Calculated SWL (81. n)	264.5	253.0	241.5	229.0	-
	4. Design SKL (El. m)	271.0	258.0	245.5	231.5	-
	5. PWL (El. m)	275.3	261.5	247.9	233.4	-
	6. Dam crest (El. m)	277.3	263.5	249.9	235.4	
Ÿ.	Dan Volume					
	1. Main dam, concrete (mill. m3)	1.55	1.14	0.82	0.55	-
	2. Saddle dam, earthfill (mill. m3)	0	0	0	0	-
	Construction Cost (Pinancial)	****				
•		250	192	144	104	_
	1. Preparatory works (mill. P)					
	2. Civil works (mill. P)	2,506	1,919	1,445	1,044	•
	3. Metal works (will, P)	15	21	27	30	-
	4. Miscellaneous works (mill. P)	416	319	242	177	
	fotal of 1 to 4 (mill. P)	3,187	2,451	1,858	1,355	
	5. Compensation (mill. P)	8	5	4	4	-
÷	6. Government administration (mill. P)	159	123	93	68	-
	7. Engineering services (mill. P)	510	392	297	217	-
	8. Physical contingency (mill, P)	503	387	294	214	• •
	Grand Potal (mill. P)	4,365	3,358	2,546	1,858	· :
 T	Peak Discharge at Base Point					
11	1. BP.1 (13/s)	16,780	16,920	17,060	17,210	17,31
:	2. BP.2 (e3/s)	14,820	14,820		14,820	14,82
٠	3. BP.3 (#3/s)	9,190	9,190	9,190	9,190	9,19
	4, BP.4 (u3/s)	6,370	6,370	6,370	6,370	6,37
	5. BP.5 (m3/s)	1,380	1,530	1,680	1,840	2,18
	6. BP.6 (13/s)	6,720	6,720	6,720	6,720	6,72
	7. BP.7 (13/8)	1,730	1,730	1,730	1,730	1,73
 []	Reduction in River Improvement Cost by Dam Plan	(m;] 1 D)				
11.	1. River improvement cost by pass rian	345	276	210	133	
	2. 0 & M cost (dredging)	698	698	698	898	
	Total	1,043	974	908	831	
 	.Dam Cost less Reduction in River					
Ш						

Table 5.1 POPONTO RETARDING BASIN ALTERNATIVE STUDY

				C	ase No.				
Ite s	1	2-1-1	2-1-2	2-2-1	2-2-2	2-2-3	2-3-1	2-3-2	2-3-3
I. Discharge (=3/s)									
1.Peak inflow to basin	13,110	13,110	13,110	13,110	13,110	13,110	13,110	13,110	13,110
2. Feak outflow from basin	9,930	6,610	5,610	7,610	6,610	5,610	7,610	6,610	5.61
3. Peak cut	3,180	6,500	7,500	5,500	6,500	7,500	5,500	6.500	7,50
II. Flood Control Storage (mill.m3)	757	1,319	1,445	1,153	1,248	1,394	1,068	1,186	1,35
III. Plood Water Level (El.a)	16.59	18.06	18.37	17.64	17.88	18.24	17.43	17.72	18.1
IV. Inundated Area (km2)	347	428	445	406	419	438	394	410	43
V. Disension of structure (a)	12						45		
1. Width of control gate	0	150	150	200	200	200	300	. 300	30
VI. Construction Cost (mill.P)	4.0	. *	to the		*	•			
1.Control gate	0	1,102	1,128	1,419	1,447	1,487	2,096	2,145	2,21
VII. Peak Discharge at BP1 (m3/s)	13,260	10,320	10,030	11,010	10,780	10,240	11,610	11,090	10,38
III. Reduction in River Improvement Costs	by Returding Bas	sin Plan (ill.P)						
1. Siver improvement works	1,542	2,226	2,285	2,035	2,093	2,234	1,863	2,008	2,20
2.0 4 M cost(dredging)	2,584	2,584	2,584	2,584	2,584	2,584	2,584	2,584	2,58
Total	4,126	4,810	4,869	4,619	4,677	4,818	4,447	4,592	4,78
IX. Retarding Basin Cost less Reduction				1					
in River improvement Cost (mill.P)	-4126	-3708	-3741	-3200	-3230	-3331	-2351	-2447	-257

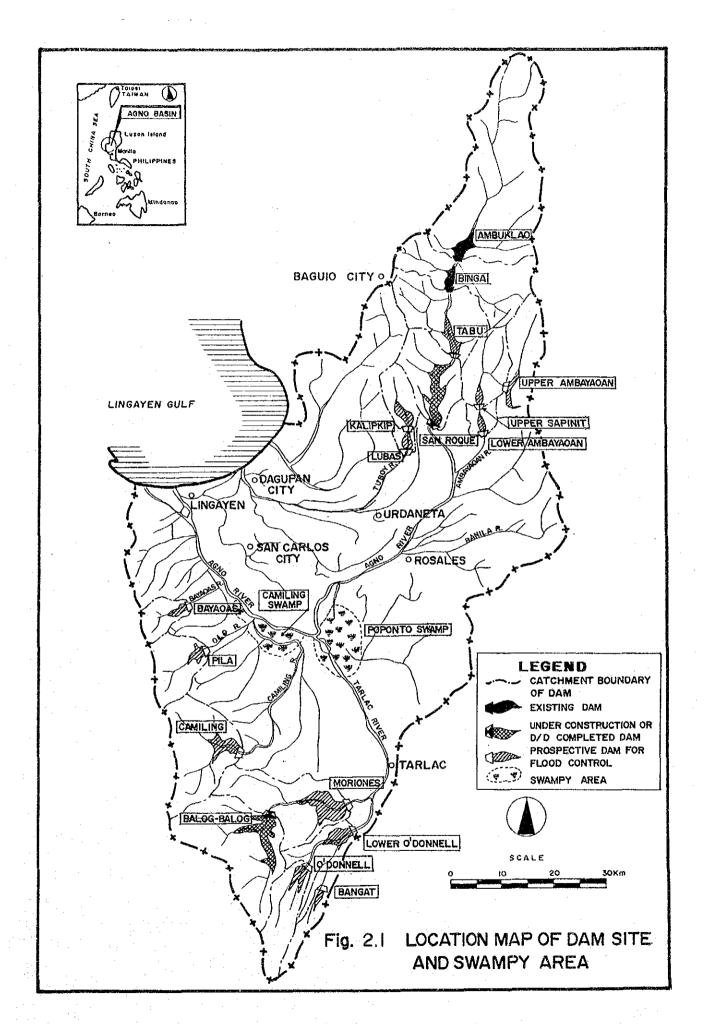
	Case No.						
Ites	3-1	3-2	3-3	38	4-1	4-2	4-3
I. Discharge (m3/s)							
1.Peak overflow to basin	3,000	4,000	5,000	0	3,000	4,500	6,000
2. Feak inflow to basin	8,860	9,860	10,860	5,960	5,330	6,830	8,330
3.Peak outflow from basin	1,360	2,360	3,360	460	-		
4. Feak cut	7,500	7,500	7,500	5,500	5,330	6,830	8,330
II. Flood Control Storage (mill.m3)	1,346	1,337	1,356	1,370	922	1,189	1,515
III. Flood Water Level (Bl.m)	18.12	18.10	18.15	18.18	17-05	17.73	18.55
IV. Inundated Area (km2)	432	430	433	435	374	410	455
V. Dimension of structure (m)			• .				
1. Width of control gate	150	150	150	150	. 0	0	0
2.Length of side overflow	3,600	2,850	2,100	. 0	7,800	6,350	5,000
VI. Construction Cost (mill.P)							
1.Control gate	1,107	1,102	1,107	1,111	0	0	:0
2.Side overflow	935	741	546	9	2,028	1,651	1,300
3.Drainage gate	0	0	. 0	0	340	357	381
Total	2,043	1,843	1,653	1,111	2,368	2,008	1,681
VII. Peak Discharge at BP1 (m3/s)	10,520	10,440	10,340	12,150	12,590	11,170	9,740
VIII. Reduction in River Improvement Costs by	Retarding Ba	sin Plan (z:	ill.P)	4			
1.River improvement works	2,075	2,108	2,137	1,535	1,362	1,732	2,085
2.0 & M cost(dredging)	1,129	1,129	1,129	1,129	0	0	0
Tota1	3,204	3,237	3,266	2,664	1,362	1,732	2,085
IX. Retarding Basin Cost less Reduction					4.1		
in River Improvement Cost (mill.P)	-1161	-1394	-1613	-1553	1006	276	-404

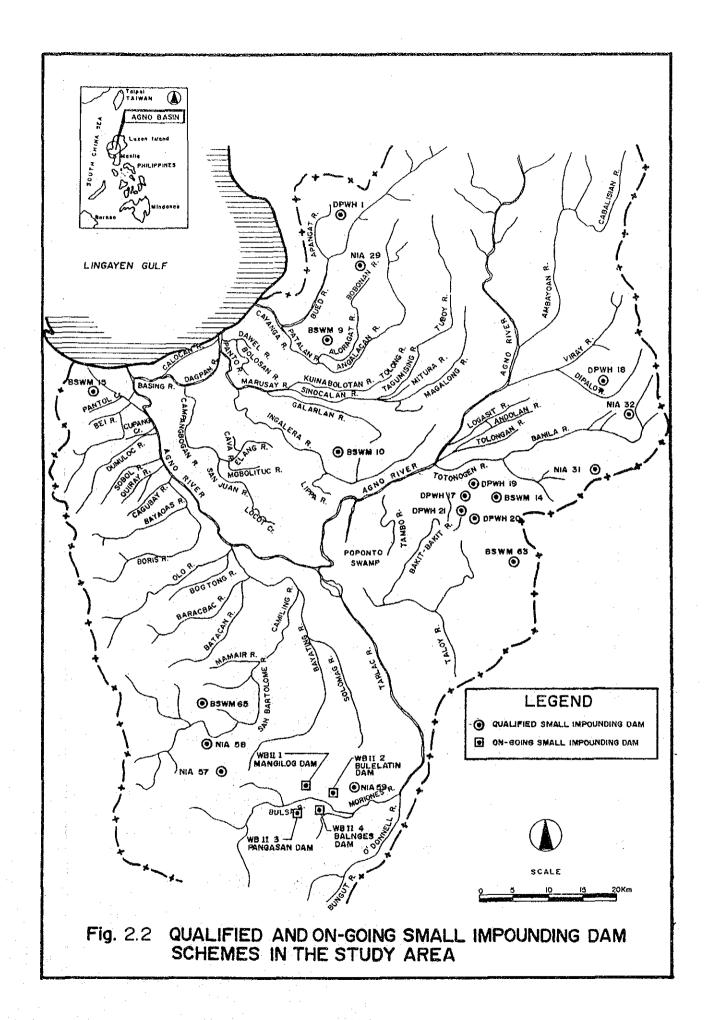
Table 5.2 CAMILING RETARDING BASIN ALTERNATIVE STUDY

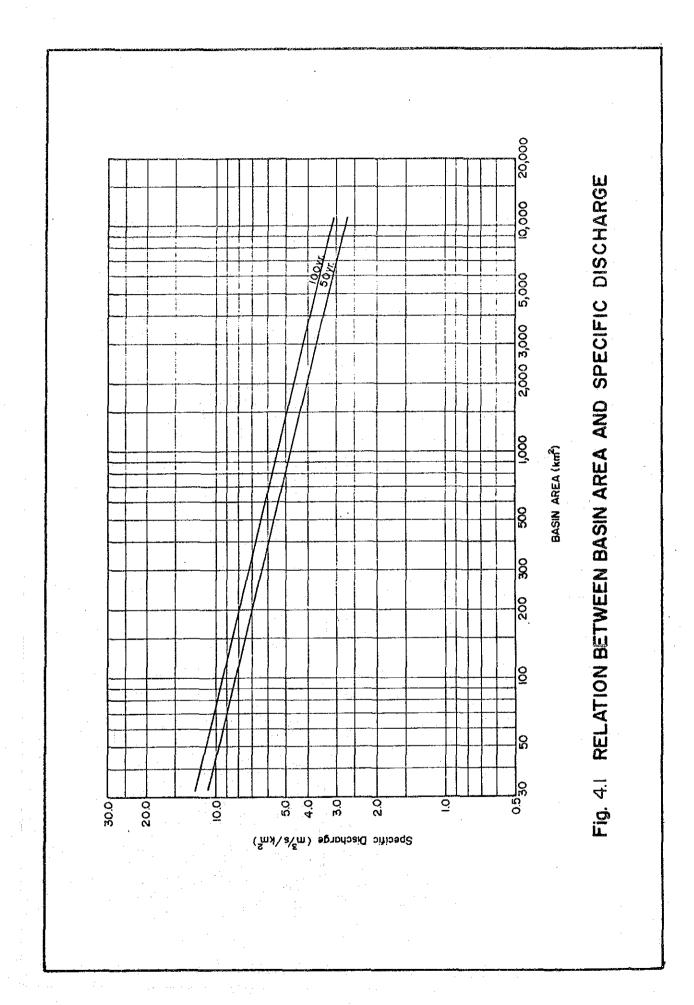
	**	Case No.				
	Item	1	2	3		
1.	Discharge (m3/s)					
	1.Peak overflow to basin 2.Peak cut	2,000 2,000	2,500 2,500	3,000 3,000		
·II.	Flood Control Storage (mill.m3)	120	173	230		
III,	Flood Water Level (El.m)	12.25	13.37	14.30		
ĬŸ.	Inundated Area (km2)	43	52	60		
v.	Dimension of structure (m) 1.Length of side overflow	2,400	2,370	2,350		
VI.	Construction Cost (mill.P)					
:	1.Side overflow 2.Drainage gate	624 88	616 124	611 168		
5.5	Total	712	740	779		
VII.	Peak Discharge at BP1 (m3/s)	15,700	15,250	14,800		
VIII.	Reduction in River Improvement Costs by Retarding Basin Plan (mill.P)	371	451	521		
IX.	Retarding Basin Cost less Reduction in River Improvement Cost (mill.P)	341	289	258		

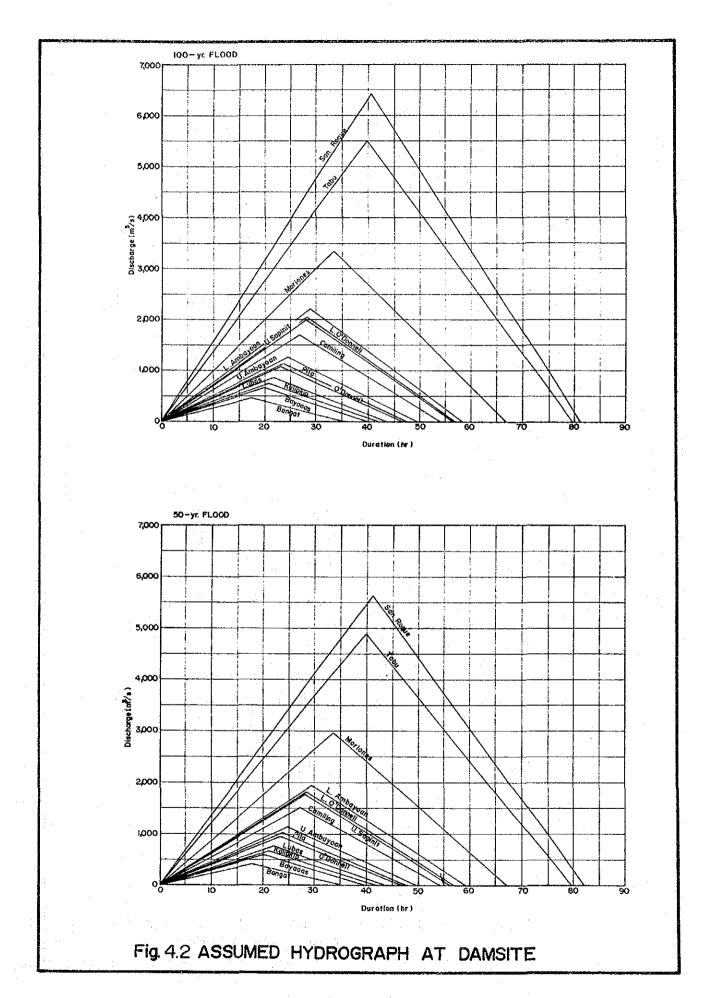
Table 8.1 FINANCIAL CONSTRUCTION COST OF MORIONES
AND LOWER O'DONNELL COMBINED DAM PLAN

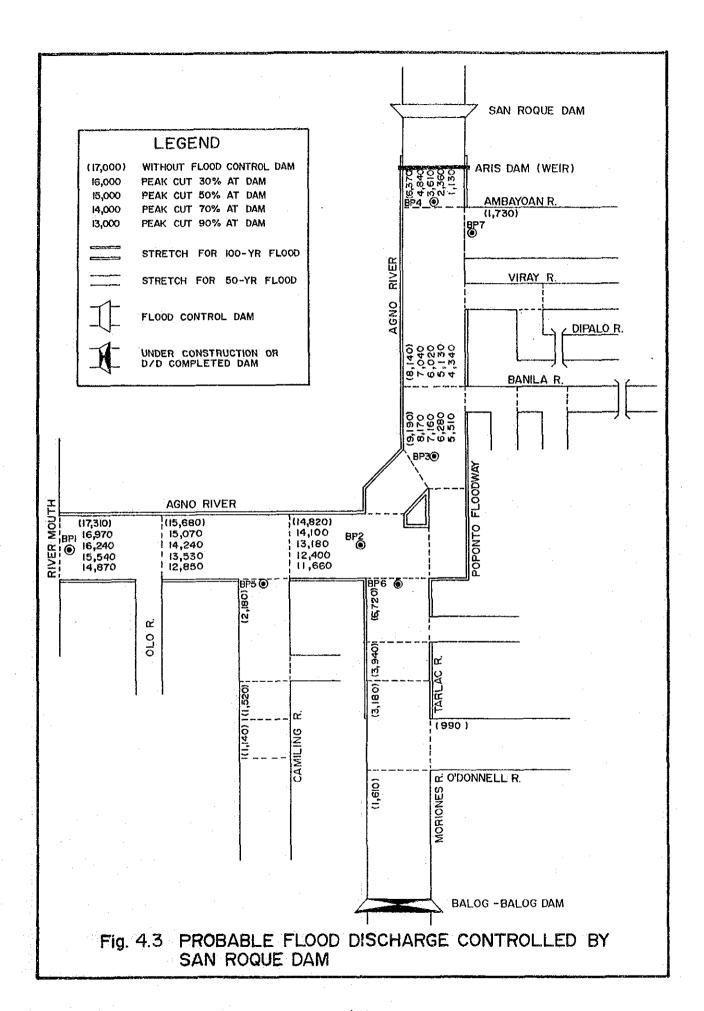
PEAK CUT = 50%, DAM CREST BL = 105.0 H

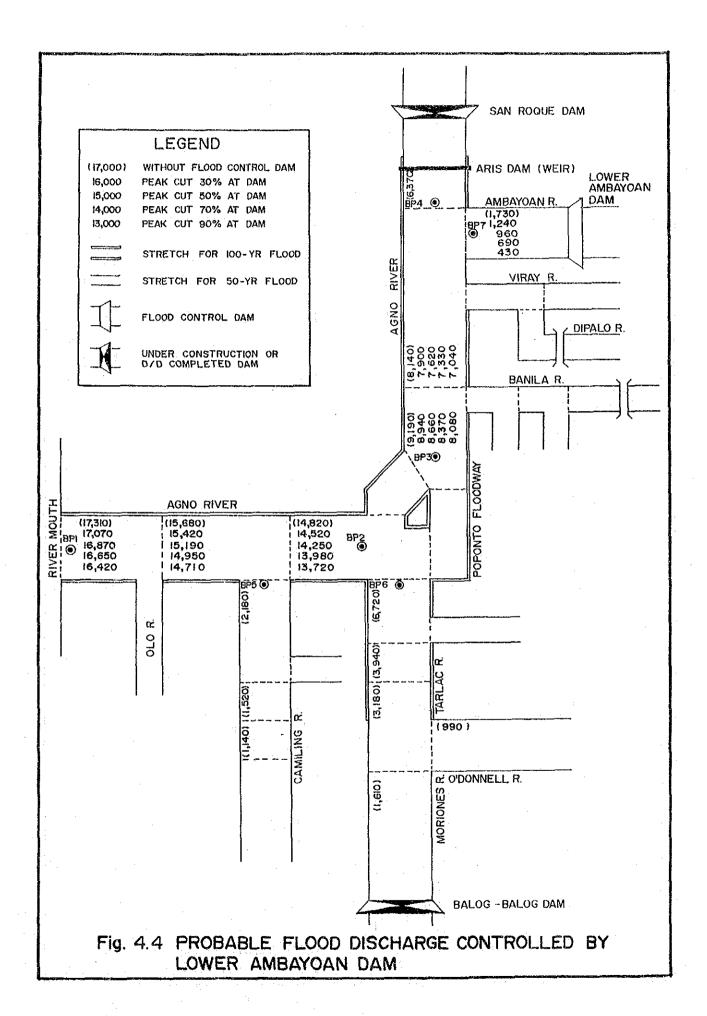

			_				
	WORK ITEM	ТІЯ	UNIT PRICE (Pesos)	HOBIONES	O.BONHELT FORES	TOTAL	AHOUNT (Hill. P
1 1	PREPARATORY WORKS						117.3
II (CIVIL HORKS				2.3		
. 4	2.1 Siver Diversion Works Yunnel excavation	mЗ	1,170	8,810	7,710	16,520	19.3
	Lining concrete	ສ3 ກ3	2,770	3,160	3,000	8,160	17.0
	Plug concrete	m3	2,230	790	390	1,180	2.6
	Steel bar	ton	29,000	158	150	308	8.9
	Consideration grout	Œ.	1,830	1,510	1,510	3,020	5.5
	Cofferdam	m3	160	108,900	75,300	184,200	29.4
	Sub-Fotal of 2.1						82.9
	ado-total of 271	.' •				*1	
	2.2 8	•					
	2.2 Dam Sxcavation (common)		73	40,000	22,000	62,000	4.5
	Excavation (rock)	នាទី	260	120,000	64,000	184,000	47.8
	Concrete	- шЗ	Variable	277,000	92,000	369,000	599.1
	Curtain grout		2,520	15,450	000,01	25,458	9.69
	Consolidation grout		1,830	7,300	3,600	10,900	19.9
	Saddle das	m3	160			650,000	164.0
	Excava. for saddle dam	m 3	73			300,000	21.9
					•	****	864.0
	Sub-Total of 2.2					± .	
		1 1	•				er det George
2	2.3 Spillway			104 400	0	104,400	7.8
	Excavation (common)	- m3	73	104,400 44,700	. 0	44,700	11.6
	Excavation (rock)	m3 ⇔3	250 2,280	30,420	o o	35,420	69.3
	Concrete Steel bar	ton	29,000	456	. 0	456	13.2
	n.i. m-4-1 -6 2 2					2 - 4 - 5	101.8
	Sub-Total of 2.3	1.1				6.0	0
2	2.4 Connection Channel Excavation	E.a.	60		and the second of	2,080,000	124.8
					1	Special 2017 - Security	124.6
	Sub-Total of 2.4		4	•			
		٠.,		and the state	e de la companya del companya de la companya del companya de la co		+ d+ (<u>1</u> 1+ <u>1</u>
	total of II					100	1,173.6
			and the second				
II H	HBTAL WORKS				•		•
ď	Diversion closure gate	ton	158,000	41	. 20	61	9.6
	Spillway gate	ton	227,000	188	. O	188	42.6
	Cutlet gate	ton	227,000	0	7	. 7	1.5
	_						53.9
	Total of III						, 401.
							201.7
Y N	MISCELLANEOUS WORKS				•		
	Total of I to IV						1,546.6
					41.		
							107.0
v c	COMPENSATION						
r c	COVERNMENT ADMINISTRATION		:			* * * .	82.5
	BHGINBERING SERVICES					and the second	247.4
1 8						and the second	1.5
							200
	PHYSICAL CONTINGENCY		•	•			260.4

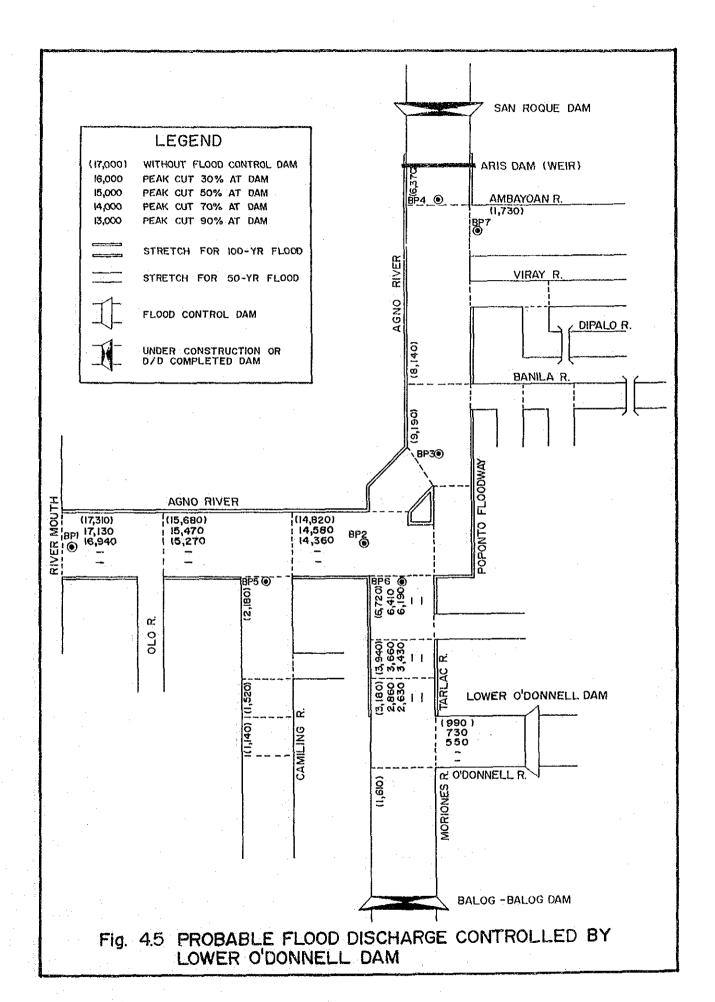

Table 8.2 ECONOMIC CONSTRUCTION COST OF MORIONES
AND LOWER O'DONNELL COMBINED DAM PLAN

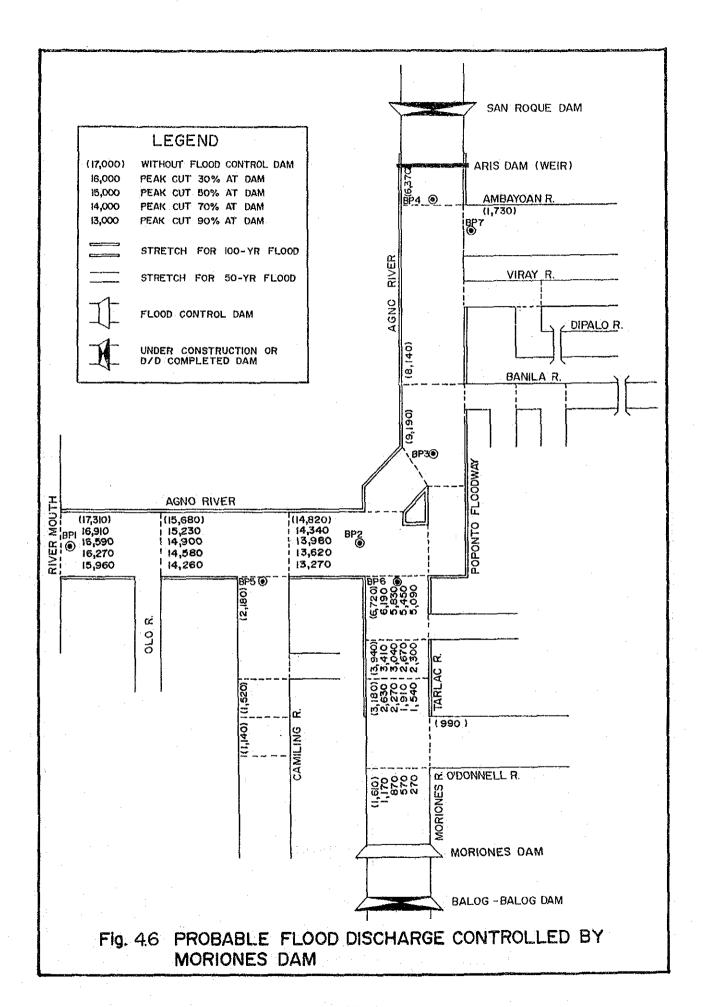

PEAK CUT = 50%, DAM CREST EL = 103.0 H

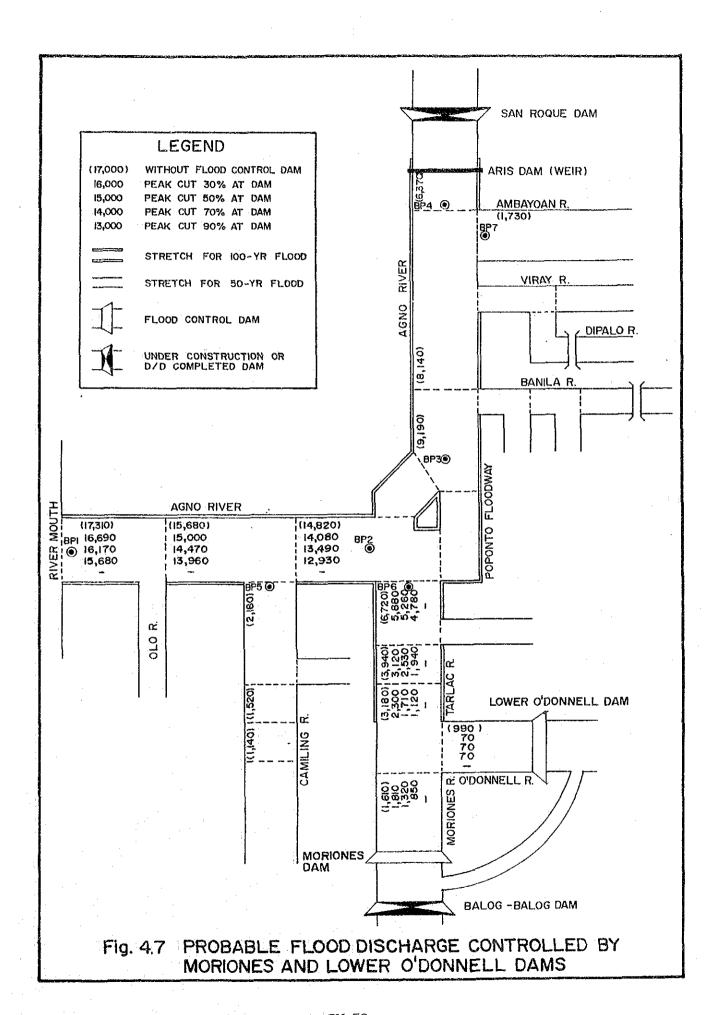

VORK TITES					•		WORK QUANTITY		
Carte March Marc			WORK ITEM	UNIT		Horiones	· ·	TOTAL	
2.1 Elver Diversion Norks Tunnel executation Linns conceste 3	I	PREP	ARATORY WORKS						100.54
Tumes excavation al 1,008 5,510 7,710 16,220 16.526 14.59 14	11	CIVI	L WORKS						
Liming concrete		2.1	River Diversion Works						
Plus concrete a3 1.308 700 330 1.186 2.25 Steel bar ton 24,000 158 150 308 7.39 Consideration grout			Tunnel excavation	m3					
Steel bar									
Consideration group a 1.558 1.510 1.510 1.020 4.70 Coffeedam = 3 132 188,900 75,300 184,200 22.01 Sub-Total of 2.1		· ·	=					-	
Coffeedam m3 132 188,300 75,300 184,200 24,31									
2.2 Das Exervation (common)			and the second s						
Excavation (cosmon) a3 63 49,000 22,000 62,000 3.9			Sub-Total of 2.1		•				69.90
Excavation (rock)		2.2	Daw						
Concrete				m.3	63	40,000	22,000	62,000	3.91
Contain grout a 2,075 15,450 10,000 25,450 52.81 Consolidation grout a 1,556 7,300 3,600 10,900 16.80 Saddle dam a 3 132 7,000 3,600 10,900 16.80 Excava. for aaddle dam a 3 63 3 100,000 18.90 Sub-Total of 2.2 7,000 18.90 Sub-Total of 2.2 7,000 18.90 2.3 Spillway Excavation (comen) a 3 63 104,400 0 104,400 9,97 Concrete a 3 1,988 30,420 0 30,420 9,97 Concrete a 3 1,988 30,420 0 30,420 59,20 Sub-Total of 2.3 86.75 2.4 Connection channel Excavation a 3 52 2,080,000 106.16 Sub-Total of 2.4 100 132,000 188 0 106.16 Sub-Total of 11 1,005.42 III METAL MORKS Diversion closure gate ton 132,000 41 20 61 8.24 Spillway gate ton 132,000 188 0 168 36.10 Outlet gate ton 132,000 188 0				23					The second secon
Consolidation grout				m3					
Saddle dam									
Excave, for aeddle dam m3 63 300,000 18.90 Sub-Total of 2.2 740,61 2.3 Spillway						7,300	3,600		
2.3 Spillway Excavation (common) %3 63 104,400 0 104,400 6.38 Excavation (common) %3 63 104,400 0 44,700 9.97 Concrete %3 1,948 30,420 0 30,420 59.26 Steel bar ton 24,000 456 0 456 10.94 Sub-Total of 2.J 86.75 2.4 Connection Channel Excavation %3 52 2,080,000 108.16 Sub-Total of 11 1,065.42 III METAL MORKS Diversion closure gate ton 135,000 41 20 61 8.24 Spillway gate ton 192,000 188 0 188 36.10 Outlet gate ton 192,000 0 7 7 7 1.34 Total of [II 45.68 IV HISCELLAMEOUS NORKS 172.75 Total of [to IV 56.22 V COMPENSATION 0.00 VI COVERMENT ADMINISTRATION 56.22 UNIVERSION SERVICES 201.80 EXCAVATION 0.00 VI COVERMENT ADMINISTRATION 56.22 THOUSERLY SERVICES 201.80 UNIVERSION SERVICES 201.80 PHYSICAL CONTINCENCY 203.59 GEARD TOTAL 1,811.89									
2.3 Spillway Excavation (common) m3 63 104,400 0 104,400 6.58 Excavation (rock) m3 223 44,700 0 44,700 9.97 Concrete m3 1,948 30,420 0 30,420 59.26 Steel bar ton 24,000 456 0 455 10.94 Sub-Total of 2.3 86.75 2.4 Connection Channel Excavation m3 52 2,080,000 108.16 Sub-Total of II 1,005.42 III METAL WORKS Diversion closure gate ton 135,000 41 20 61 8.24 Spillway gate ton 192,000 188 0 188 36.10 Outlet gate ton 192,000 0 7 7 7 1.34 Total of III 45.68 IV HISCELLANEOUS NORKS 172.75 Total of I to IV 56.22 V COMPENSATION 0.00 VI COVERMENT ADMINISTRATION 56.22 CEAND TOTAL CONTINGENCY 209.59 GEAND TOTAL 1,281.89			Sub-Total of 2.2						740.61
Excavation (common) #3 63 104,900 0 104,400 6.58 Excavation (rock) #3 223 44,700 0 44,700 9.97 Concrete #3 1,988 30,420 0 30,420 59.26 Steel bar ton 24,000 456 0 456 10.94 Sub-Total of 2.3 86.75 2.4 Connection Channel Excavation #3 52 2,080,000 108.16 Sub-Total of 11 1,005.42 III METAL WORKS Diversion closure gate ton 135,000 41 20 61 8.24 Spillery gate ton 192,000 188 0 188 35.10 Outlet gate ton 192,000 0 7 7 7 1.34 Total of III 45.68 IV HISCELLAHEOUS WORKS V COMPENSATION 0.00 VI COVERNMENT ADMINISTRATION 56.22 VII EMGINEERING SERVICES 211.80 GRAND TOTAL CONTINGENCY 208.59 GRAND TOTAL 1,011.10									
Excavation (rock) m3 223 44,700 0 44,700 9,97 Concrete m3 1,988 30,420 0 30,420 59.26 Steel bar ton 24,000 456 0 455 10.94 Sub-Total of 2.3 86.75 2.4 Consection Channel Excavation m3 52 2,080,000 108.16 Sub-Total of 1.4 1098.16 Total of II 1,005.42 III METAL HORKS Diversion closure gate ton 135,000 41 20 61 8.24 Spillway gate ton 192,000 158 0 188 35.10 Outlet gate ton 192,000 0 7 7 7 1.34 Total of III 45.68 IV MISCELLAMEOUS NORKS 172.75 Total of I to IV 1,324.38 V COMPENSATION 0.00 VI GOVERNMENT ADMINISTRATION 66.22 VII ENGINEERING SERVICES 211.80 GEARD TOTAL 1,811.09		2.3	Spillway		4		,		
Concrete Mail 1,948 30,420 0 30,420 59.26 Steel bar ton 24,000 456 0 455 10.94 Eub-Total of 2.3 86.75 2.4 Connection Channel Excevation Mail Ma			Excavation (common)	m 3	63	104,400	Ð	104,400	6.58
Steel bar ton 24,000 456 0 458 10.94			Excavation (rock)	m3	223	44,700			
2.4 Connection Channel Excavation									
2.1 Connection Channel Excavation =3 52 2,080,000 108.16 Sub-Total of 2.4 109.16 Total of II 1,005.42 III METAL HORKS Diversion closure gate ton 135,000 41 20 61 8.24 Spillway gate ton 192,000 188 0 188 36.10 Outlet gate ton 192,000 0 7 7 7 1.34 Total of III 45.68 IV HISCELLAMEOUS NORKS 172.75 Total of I to IV 1,324.38 V COMPENSATION 0.00 VI GOVERNMENT ADMINISTRATION 66.22 VII ENGINEERING SERVICES 211.80 III PHYSICAL CONTINGENCY 208.59 GRAND TOTAL 1,511.09			Steel bar	ton	24,000	456	0	456	10.94
Excavation			Sub-Total of 2.3						86.75
Total of II 1,005.42 1,005.		2.4		23	52		·	2,080,000	108,16
Total of II METAL HORKS Diversion closure gate ton 135,000 41 20 61 3.24 5pillway gate ton 192,000 188 0 168 36.10 Outlet gate ton 192,000 0 7 7 7 1.34 Total of III HISCELLANEOUS KORKS V COMPENSATION V COMPENSATION OLOWERMMENT ADMINISTRATION FHYSICAL CONTINGENCY CEAND TOTAL 1,005.42 11 20 61 3.24 36.10 7 7 7 1.34 45.68 172.75 Total of I to IV 1,324.38 20.00 172.75 172.75 173.34 172.75 173.34 173.36 173.36 174.36 175.36 175.36 176.36 176.36 177.36 176.36 17									108.16
METAL HORKS Diversion closure gate ton 135,000 41 20 61 8.24 5pillway gate ton 192,000 188 0 188 36.10 0 161 161 17 1 1 18 18 18 18 18			300-10121 01 214						24412
Diversion closure gate ton 135,000 41 20 61 8.24 Spillway gate ton 192,000 188 0 188 36.10 Outlet gate ton 192,000 0 7 7 7 1.34 Total of [II] 45.68 IV HISCELLANEOUS NORKS 172.75 Total of I to IV 1,324.38 V COMPENSATION 0.00 VI GOVERMMENT ADMINISTRATION 66.22 VII ENGINEERING SERVICES 211.86 III PHYSICAL CONTINGENCY 208.59 CEAND TOTAL 1,511.09			fotal of II				÷		1,005.42
Spillway gate ton 192,000 188 0 188 36.18 Outlet gate ton 192,000 0 7 7 1.34 Total of [II 45.68 IV HISCELLANEOUS WORKS 172.75 Total of I to IV 1,324.38 V COMPENSATION 0.00 YI COVERNMENT ADMINISTRATION 66.22 YII ENGINEERING SERVICES 211.90 III PHYSICAL CONTINGENCY 208.59 CEAND TOTAL 1,811.09	III	METAI	L HORKS						
Spillway gate ton 192,000 188 0 188 36.18 Outlet gate ton 192,000 0 7 7 1.34 Total of [II 45.68 IV HISCELLANEOUS WORKS 172.75 Total of I to IV 1,324.38 V COMPENSATION 0.00 YI COVERNMENT ADMINISTRATION 66.22 YII ENGINEERING SERVICES 211.90 III PHYSICAL CONTINGENCY 208.59 CEAND TOTAL 1,811.09	٠	niva:	raina oloruma sata	ton	135 000		20	61	8.24
Outlet gate ton 192,000 0 7 7 1.34 Total of III 45.68 IV HISCELLAMEOUS WORKS 172.75 Total of I to IV 1,324.38 V COMPENSATION 0.00 VI GOVERNMENT ADMINISTRATION 66.22 VII ENGINEERING SERVICES 211.90 III PHYSICAL CONTINGENCY 208.59 CEAND TOTAL 1,811.09									
IV HISCELLANEOUS NORKS 172.75 Total of I to IV 1,324.38 V COMPENSATION 0.00 VI GOVERNMENT ADMINISTRATION 66.22 VII ENGINEERING SERVICES 211.90 III PHYSICAL CONTINGENCY 208.59 CEAND TOTAL 1,811.09									
TOTAL OF I TO IV 1,324.38 V COMPENSATION 0.00 VI GOVERMMENT ADMINISTRATION 56.22 VII ENGINEERING SERVICES 211.86 III PHYSICAL CONTINGENCY 208.59 CEAND TOTAL			Total of [II						45.68
V COMPENSATION 0.00 VI GOVERNMENT ADMINISTRATION 66.22 VII ENGINEERING SERVICES 211.90 III PHYSICAL CONTINGENCY 208.59 GRAND TOTAL 1,811.09	IV	HISC	ELLAHEOUS WORKS						172.75
V COMPENSATION 0.00 VI GOVERNMENT ADMINISTRATION 66.22 VII ENGINEERING SERVICES 211.90 III PHYSICAL CONTINGENCY 208.59 GRAND TOTAL 1,811.09			Total of I to IV						1,324,38
YI GOVERNMENT ADMINISTRATION \$65.22 YII ENGINEERING SERVICES 211.90 III PHYSICAL CONTINGENCY 208.59 GRAND TOTAL 1,811.09		•							•
PHYSICAL CONTINGENCY CRAND TOTAL 211.00 208.59	V.	COMPI	ENSATION						0.00
TII PHYSICAL CONTINGENCY 208.59 GRAND TOTAL 1,811.09	ΥŢ	GOVE	RMMENT ADMINISTRATION						86.22
GRAND TOTAL 1,811,09	VII	ENGI	NEERING SERVICES				÷		211.90
	III	PHYS	ICAL CONTINGENCY						208.59
			CEAND TOTAL					•	1,811,09
						4+1			

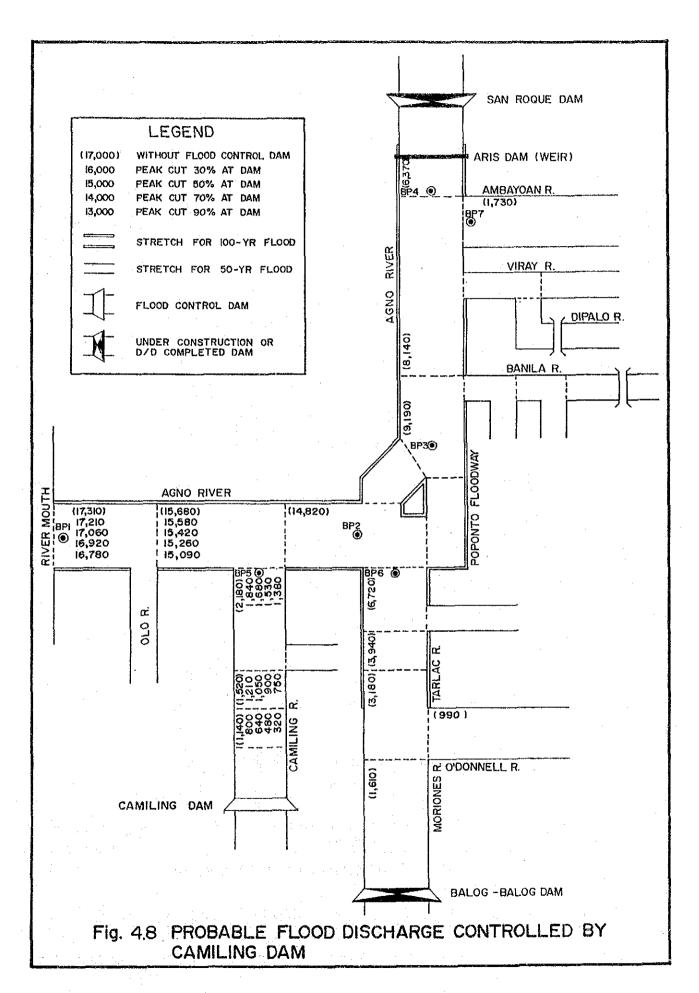

FIGURES

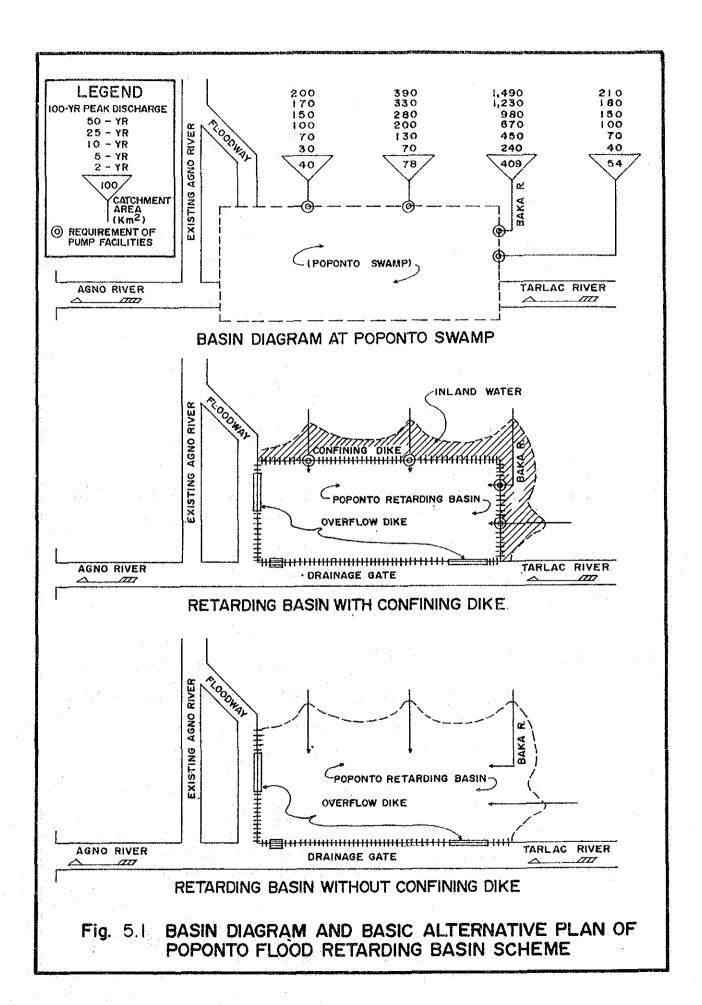


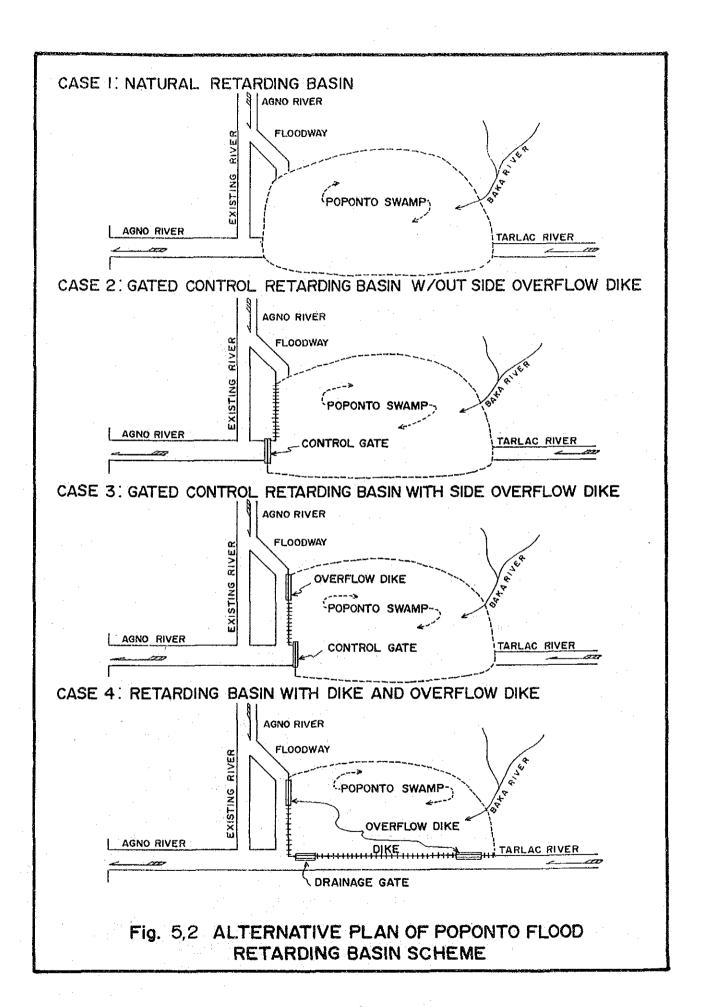


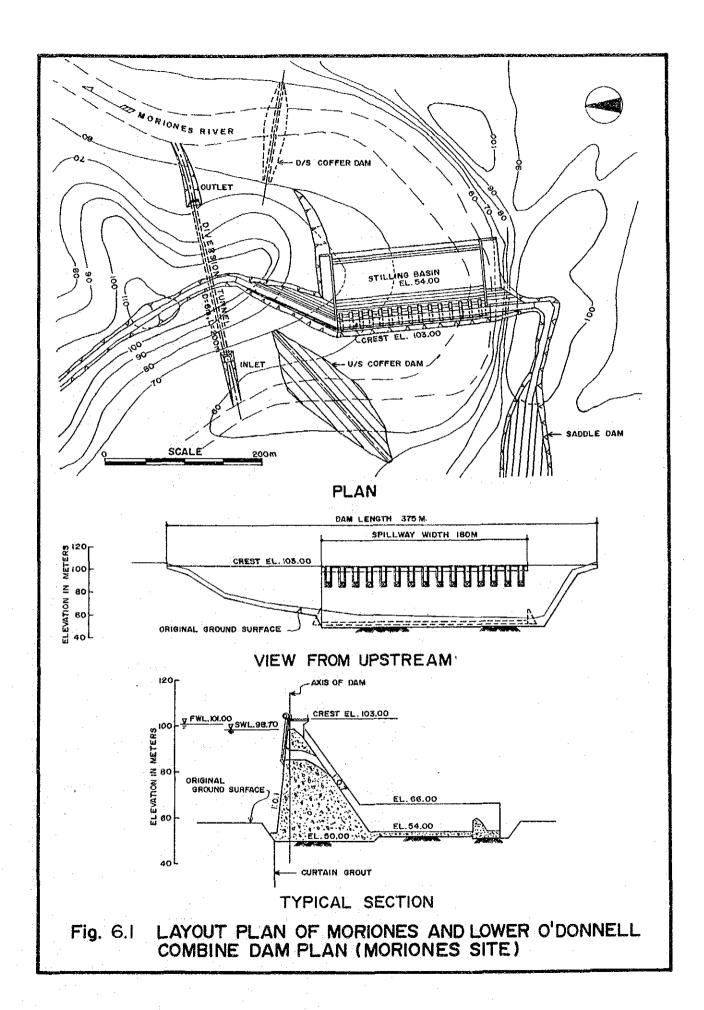


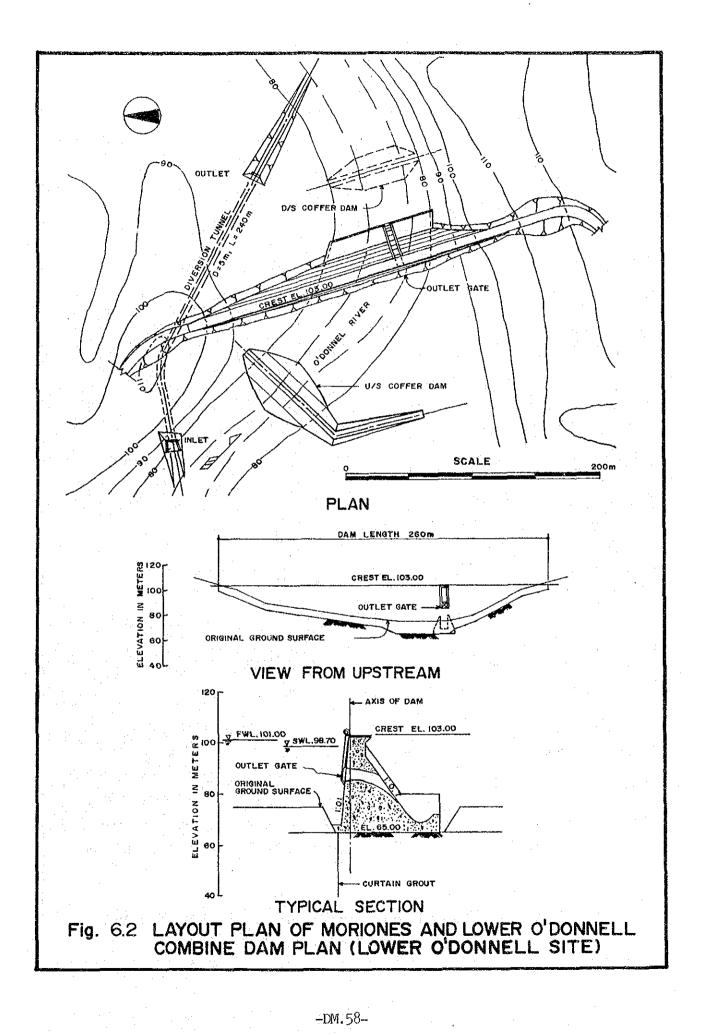


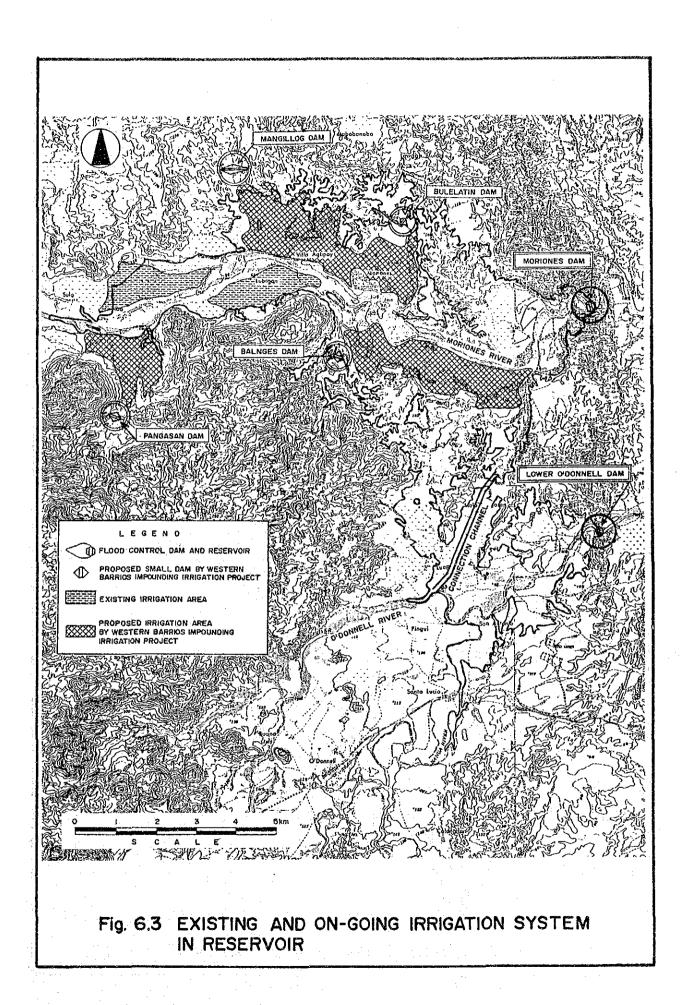


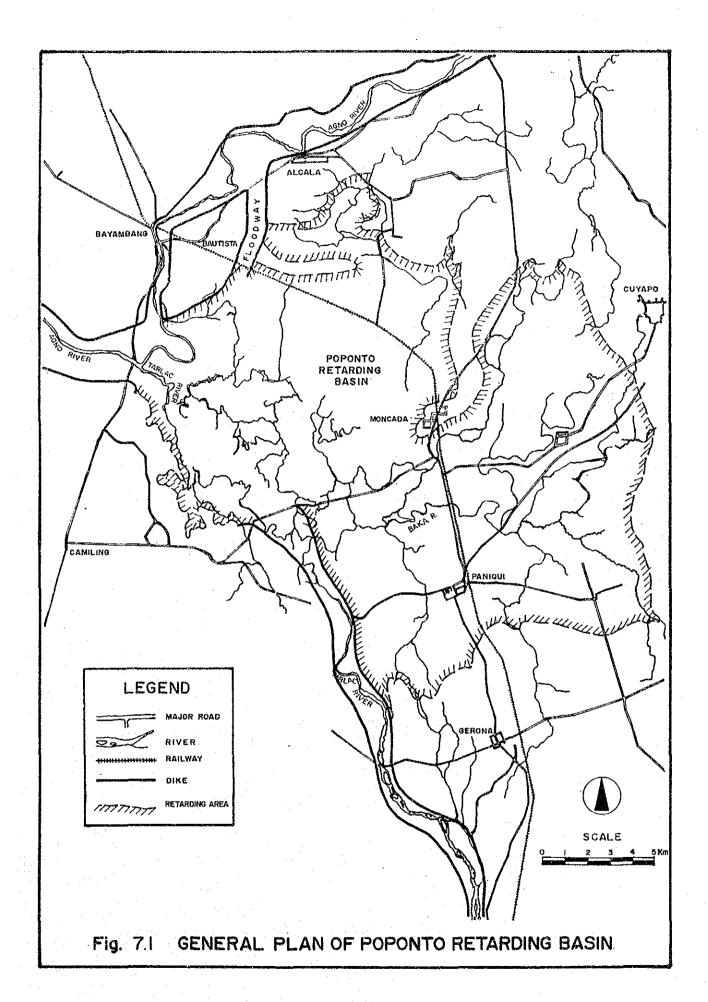












-DM.59-

9. FF FLOOD FORECASTING AND WARNING SYSTEM

FLOOD FORECASTING AND WARNING SYSTEM SUMMARY

- (1) This study deals with the Flood Forecasting and Warning System (herein after called FFWS) as one of the non-structural component of the flood control measures in the Master Plan stage of Agno River Flood Control Study.
- (2) FFWS exists in the Agno River basin, which has been installed in 1982 as ABC (Agno, Bicol and Cagayan Rivers) System. FFWS for dam operation is also on-going in the Binga-Ambuklao dam basin, where is located in upstream of Agno River.
- (3) The following three problems were found in the existing FFWS in Agno River basin. The FFWS plan in the master plan study formulated to solve the existing problems.
 - Insufficient budget and staff for maintenance.
 - Low reliability of forecasting due to limited number of raingauge stations.
 - Less warning effectiveness due to unreliable communication system between concerned agencies.
- (4) The Integrated FFWS plan was formulated as one of the components of frame work plan of The Agno River Flood Control. The system defines the final status of the Agno River basinwide FFWS in the far future.
- (5) The following three objectives are defined in the Integrated FFWS plan formulation.
 - for resident's protection from flood incident
 - for flood operation of the flood control facilities
 - for basinwide flood management
- (6) The basic condition of the Integrated FFWS plan formulation is shown below:
 - (a) The integrated FFWS is defined to be composed of the following systems.

- Hydrological observation network system
- Telemetry system
- Flood forecasting system
- Flood warning system
- Monitoring system
- (b) The target area of the integrated FFWS is all the flood prone area in the Study area, where is delineated in the supporting report of the Flood damage analysis.
- (c) The control center of the system is to be located at Rosales, the same place where the existing ARFFO for the following reasons.
 - The local level of the disaster coordination is expected to be the responsibility of the local agency in consideration with the further decentralization.
 - Sufficient and timely maintenance and repair works will be undertaken promptly, if the control office is situated in the basin.
- (d) Communication between headquarter and the FFWS control office should be maintained in order that flood forecasting and warning activity of the basin is monitored at the headquarter.
- (e) Communication between the integrated FFWS control office and FFWSDO Binga dam office should be intensified for effective basinwide flood management. The other flood control structures to be constructed are to be obliged to install their own FFWS and to be connected to the FFWS control office.
- (f) Flood warning network system between local agencies such as municipality and FFWS control office, which aims to intensify the local level of flood warning, flood preparedness and flood fighting activity, is considered in the integrated FFWS plan component.
- (g) The warning stations along the river course, which aim to prevent the residents from approaching the river during flood, are taken into account in the integrated FFWS plan formulation.

- (7) The integrated FFWS in the Agno River basin is consisted of the following systems.
 - (a) Hydrological Observation System
 - Water level stations : 17 stations
 - Raingauge stations : 32 stations
 - (b) Telemetering Network System
 - System Control Center : Rosales, DPWH
 - Repeater Station: 2 stations
 - (c) Monitoring of Flood Operation System
 - For Binga-Ambuklao FFWSDO sub-system (Existing)
 - For Balog-Balog Flood Operation System (New)
 - For San Roque Flood Operation System (New)
 - For Moriones Flood Operation System (New)
 - (d) Monitoring at DPWH central office
 - (e) Flood Forecasting System
 - One computer system in Rosales control center
 - (f) Flood Warning System
 - Duplex link between Rosales control center and the related 29 local agencies
 - 31 Warning stations along the river
- (8) The total cost of the Integrated FFWS in Agno River basin is estimated to 740 million pesos. The economic internal rate of return is expected to 19.26%.
- (9) The following institutional arrangement is assumed to be recommendable for the smooth operation of the integrated FFWS:
 - (a) Local level of FFWS activity shall be transferred to the local agency.
 - (b) The suitable agency to be responsible for the local flood forecasting

is assumed to be DPWH, considering its responsibility for the river administration and the regular maintenance work of the hydrological stations.

- (c) The role of PAGASA is assumed to be advisory for the transfer of flood forecasting technology, and further research of applicable new technology for the improvement of flood forecasting.
- (d) Flood warning activity is responsibility of OCD. It is tasked to prepare the program for improvement of Disaster Coordination Council's activities.
- (e) Telecommunication training center is recommended to be established in collaboration with PAGASA, NAPOCOR, NIA, DPWH and NTC in Manila. The purposes of the center are to train the staff, stock and supply the spare parts of the telemetering facilities. The prompt repair work will be expected once the center is established.
- (f) Flood Operation system for the dams to be constructed is responsibility of the owner agency.
- (g) Multiplex communication system with DPWH central office should be provided for the monitoring if FFWS activity.
- (10) The priority FFWS plan is formulated as one of the components of Long Term Plan of Agno River Flood Control. The target year of the completion of the priority FFWS plan is 2010.
- (11) The following objectives are assessed to formulate the priority FFWS development plan in the Study Area.
 - To improve the flood forecasting accuracy of the forecasting points in the existing Agno River FFWS.
 - To carry out the effective flood warning activity in the Study Area.
- (12) The priority FFWS in the Agno River basin is consisted of the following systems.

- (a) Hydrological Observation System
 - Water level stations : 7 stations
 - Raingauge stations : 14 stations
- (b) Telemetering Network System
 - System Control Center : Rosales, DPWH
 - Repeater Station : 2 stations
- (c) Monitoring of Flood Operation System
 - For Binga-Ambuklao FFWSDO sub-system (Existing)
- (d) Monitoring at DPWH central office by the existing communication link.
- (e) Flood Forecasting System
 - One computer system in Rosales control center
- (f) Flood Warning System
 - Duplex link between Rosales control center and the related 5 local agencies
- (13) The total cost of the Integrated FFWS in Agno River basin is estimated to 260 million pesos. The economic internal rate of return is expected to 28.91%.

FF: FLOOD FORECASTING AND WARNING SYSTEM

TABLE OF CONTENTS

		<u>Page</u>
1	INTRODUCTION	FF.1
2	PRESENT CONDITIONS OF THE EXISTING FFWS	FF.2
	2.1 Existing and On-going FFWS in The Agno River Basin	FF.2
	2.2 Forecasting Model Assessment	FF.4
	2.3 Flood Forecasting and Warning	FF.6
	2.3.1 The Procedures of Flood Forecasting and Warning	FF.6
	2.3.2 Previous Forecasting and Warning Activies	FF.8
	2.4 Operation and Maintenance Conditions	FF.9
	2.5 Present Institutional Organization	FF.10
3	THE INTEGRATED FFWS	FF.13
,	3.1 Basic Concept	FF.13
	3.2 Objectives	FF.13
	3.3 Basic Condition and Criteria	FF.14
	3.3.1 Basic Condition	FF.14
	3.3.2 Design Criteria	FF.15
	3.4 Flood Forecasting and Warning Plan	FF.16
	3.4.1 Hydrological Observation and Telemetering	
	Network System	FF.16
	3.4.2 Flood Forecasting System	FF.17
	3.4.3 Flood Warning System	FF.18
	3.5 System Management Plan	FF.19
	3.6 The Integrated FFWS and Cost Estimation	FF.21
	3.7 Socio-Economic Context	FF.22
4	LONG TERM DEVELOPMENT PLAN	FF.24
	4.1 Concept of Long Term Development Plan	FF.24
	4 2 Priority WEWS Development Plan	FF 24

LIST OF TABLES

No.		Page
2.1	PRINCIPAL FEATURES OF THE EXISTING/ON-GOING TELEMETERING	
1.	GAUGING STATIONS	FF.30
2.2	BASIN CHARACTERISTIC OF THE EXISTING MODEL	FF.31
2.3	CHANNEL CHARACTERISTIC OF THE EXISTING MODEL	FF.32
2.4	FLOOD ASSESSMENT LEVELS OF THE FORECASTING POINTS	FF.33
2.5	SERIES OF FLOOD BULLETIN DURING TYPHOON "GADING"	FF.34
2.6	STAFF COORDINATION OF THE EXISTING AGNO RIVER FFWS	FF.36
2.7	ANNUAL DATA COLLECTION RATE OF THE CONTROL OFFICE	FF.37
2.8	FFWS TASK DISTRIBUTION	FF.38
3.1	THE AGNO RIVER INTEGRATED FFWS COST ESTIMATE	FF.39
4.1	THE AGNO RIVER PRIORITY FFWS COST ESTIMATE	FF.40

LIST OF FIGURES

No.		Page
2.1	EXISTING/ON-GOING FFWS	FF.41
2.2	SCHEMATIC DIAGRAM FOR THE EXISTING FLOOD RUNOFF MODEL	FF.42
2.3	STANDARD PROCEDURES OF FFWS ACTIVITY	FF.43
3.1:	INTEGRATED TELEMETERING NETWORK SYSTEM	
	FOR AGNO RIVER FFWS	FF.44
3.2	FLOOD FORECASTING MODEL FOR THE INTEGRATED FFWS	FF.45
3.3	INTEGRATED FLOOD WARNING NETWORK SYSTEM	FF.46
3.4	RELATION BETWEEEN FLOOD FORECASTING POINT	
	AND AFFECTED MUNICIPALITY	FF.47
3.5	POPULATION DENSITY DISTRIBUTION	FF.48
3.6	THE INTEGRATED FFWS	FF.49
4.1	THE AGNO RIVER PRIORITY FFWS	FF.50

ABBREVIATIONS

FFWS Flood Forecasting and Warning System

ABC Agno, Bicol and Cagayan River Basins

FFWSDO Flood Forecasting and Warning System for Dam Operation

ARFFC Agno River Flood Forecasting Center

RF/WL st. Rainfall / Water Level Station

RP st. Repeater Station

NFFO National Flood Forecasting Office
PAGASA Philippine Atomospheric Geophysical

and Astronomical Services Administration

OCD Office of Civil Defense

NIA National Irrigation Agency

NAPOCOR National Power Cooperation

DPWH Department of Public Works and Highways

NWRB National Water Resources Board

O/M Operation and Maintenance

HEP Hydro Electric Power

NDCC National Disaster Coordination Council
RDCC Rigional Disaster Coordination Council
PDCC Provincial Disaster Coordination Council
MCDD Municipality Disaster Coordination Council

BCDD Barangay Disaster Coordination Council

DLG Deparrtment of Local Government

DSWD Department of Social Welfare and Development

FOS Flood Operation System

NTC National Telecommunication Commision

FLOOD FORECASTING AND WARNING SYSTEM

1. INTRODUCTION

This study deals with the Flood Forecasting and Warning System (herein after called FFWS) as one of the non-structural component of the flood control measures in the Master Plan stage of Agno River Flood Control Study.

Chapter 2 reviews the present condition of the existing FFWS in the Agno River basin which has been operated by the Agno - Bicol - Cagayan Rivers Flood Forecasting and Warning System Project (ABC system) under PAGASA since 1982.

The integrated FFWS Framework Plan is formulated in Chapter 3. The system defines the final status of the Agno River basinwide FFWS in the far future.

Chapter 4 presents the priority FFWS development plan in Agno River basin. The target year defined 2010, same as the long term river improvement plan in the Agno River Basin Flood Control Master Plan Study.

2 PRESENT CONDITION OF THE EXISTING FFWS

2.1 Existing and On-going FFWS in The Agno River Basin

The Government of the Republic of the Philippines have fully recognized the importance of the flood forecasting and warning system, and establishes the first FFWS in Pampanga River basin in 1973. Due to the effectiveness of the first system to mitigate the damage of the 1976 flood, the Government decided to provide the FFWS to the Agno, Bicol and Cagayan River basins (ABC system), and commenced its operation in 1982.

The importance of FFWS for dam operation was also recognized by the Government when the flood disaster occurred in downstream plain of the Angat dam due to typhoon "KADING" in 1978. The disaster caused the loss of 100 lives. It was reported that shortcoming in the operation procedures of the Angat dam, inadequate hydrological networks and lack of reliable communication systems were seemingly attributable to this unfortunate incident. Consequently, FFWS for dam operation for the Binga-Ambuklao damns, located upstream of the Agno River, was designed in 1987 and presently under bidding for construction.

The existing Agno River FFWS, out of ABC system, and FFWSDO of the Binga-Ambuklao sub-system in Fig. 2.1 and the features of each hydrological station is shown in Table 2.1 and summarized below.

(1) The Agno River FFWS (the part of ABC system)

- (a) Flood Forecasting Points
 - . San Roque, Carmen, Wawa, Banaga (Agno River)
 - . Tibag (Tarlac River)
 - . Santa Barbara (Sinocalan River)
- (b) Hydrological observation network
 - . 6 raingauge stations
 - . 7 water level gauging stations
- (c) Telemetering system

Simplex link

- . Binga RF/WL st. Sto. Tomas RP st. Rosales, ARFFO
- . San Roque RF/WL st. Rosales, ARFFO

- . Carmen RF/WL st. Rosales, ARFFO
- . Wawa RF/WL st. Rosales, ARFFO
- . Tibag RF/WL st. Rosales, ARFFO
- . Banaga WL st. Rosales, ARFFO
- . Sta.barbara RF/WL st. Rosales, ARFFO

Multiplex Link

- . Rosales, ARFFO Quezon city, NFFO
- (d) Flood forecasting system
 - Input data
 - . 3 hourly rainfall and water level record
 - Output data
 - . Forecasted water level and discharge
 - . Recorded rainfall and water level
 - Forecasting time
 - . 12 hours in advance
 - Data processing time
 - . 1 hour
- (e) Flood warning system
 - Warning processing time
 - . 2 hours after forecasting activity
 - Local agency to be disseminated
 - . OCD, Local radio broadcast, National police
- (f) Operation condition
 - Data collection rate
 - . 85.5% for 6 rainfall stations
 - . 54.3% for 7 water level stations
 - Operating stations as of Oct.1989
 - . 6 rainfall stations are operated under the good condition.
 - . 2 water level stations are operated under the good condition.
 - (Santa Barbara and Wawa)
- (g) Existing Problems
 - Insufficient budget and staff for maintenance.
 - Low reliability of forecasting due to limited number of raingauge stations.
 - Less warning effectiveness due to unreliable communication system between concerned agencies.
- (2) FFWS for dam operation (Binga-Ambuklao sub system)

(a) Target Area

- . The downstream of the Binga dam to avoid man-made disaster due to improper operation.
- (b) Hydrological Observation system

Simplex Link

- . Badayan RF st. Mt. Toyangan RP st. Binga FFWSDO office
- . Apunan RF st. Mt. Toyangan RP st. Binga FFWSDO office
- . Bobok RF st. Mt. Toyangan RP st. Binga FFWSDO office
- . Ambuklao dam RF/WL st. Mt. Toyangan RP st. Binga FFWSDO office
- . Binga dam RF/WL st. Binga FFWSDO office

Multiplex Link

- . Binga FFWSDO office Mt.Ampucao RP st. NAPOCOR headquarter
- (c) Flood Forecasting system
 - Input data
 - . hourly rainfall, water level and dam release record
 - Output data
 - . forecasted inflow and water revel of reservoir
 - . optimum reservoir and gate operation procedures
 - Flood forecasting measure
 - . flood run-off model simulation analysis
 - Flood warning system
 - . flood warning through 18 warning station in downstream
 - . warning dissemination by means of 6 patrol cars
 - Others
 - . The rehabilitation of the existing FFWS in the Agno River basin is included.

2.2 Forecasting Model Assessment

Storage function method, which is commonly used for flood run-off analysis, is applied as the flood forecasting model of the existing FFWS. The model is composed of six sub-basins and six channels, as sown in Fig.2.2.

The reliability of the model mainly depends on the accuracy of basin rainfall estimation. The Tiessen method is applied to estimate the basin rainfall for the forecasting model. The network of the rainfall stations is presently composed of six raingauge stations, and will be extended to eleven

stations after installation of the FFWSDO Binga-Ambuklao sub system.

The factors applied to determine the reliability of the model are :

- 1) the number of raingauge stations,
- 2) respective tiessen area,
- 3) the difference elevation between basin mean and station mean,

The reliability of the basin rainfall estimation is shown in Table 2.2, which considered the FFWS for the Binga-Ambuklao dams operation.

It was found that the Ambuklao-Binga, San Roque-Carmen, Upper Tibag, and Wawa-Banaga sub-basins are less reliable to estimate the basin rainfall, and may not be applicable for flood forecasting model if adequate accuracy is designed.

Sub-basin	Catchmen	t Basin	Distributi	on of RF	stations
	Area	Mean	Available	Max.	Average
	(Km ²)	Elevation (E1.m)	Station (Nos.)	Tiesser (Km ²)	Elevation
. Upper Ambuklao	620	1,530	4(4)	256	1,350
. Ambuklao-Binga	240	1,300	3(2)	100	990
. Binga-San Roque	390	950	3(3)	192	1,010
. San Roque-Carmen	1,210	560	4(2)	686	195
. Carmen-Wawa	430	15	2(2)	221	20
. Upper Tibag	920	370	1(1)	920	30
. Tibag-Wawa	650	35	3(2)	261	20
. Wawa-Banaga	1,520	420	3(1)	1,038	140

Note: (): Those available stations which are located in the sub-basin.

A few raingauge stations are required to be installed at the north east part of the mountain area in San Roque-Carmen sub-basin. Upper Tibag sub-basin has only one station. It is strongly required to install a few raingauge stations in the upper basin. Since there is no raingauge station in the south west mountainous of Wawa-Banaga sub-basin at present, it is less reliable in

basin rainfall estimation.

Another approach to forecast flood is based on the flood discharge observation at upstream water level gauging station and computation the downstream flood level considering the lag time of flood from upstream site and the run-off from the residual basin. This procedure can be applied at Binga, San-Roque, Carmen, Wawa and Banaga. The features of each channel condition is shown in Table 2.3 and summarized below.

Fo	recasting	Catchment	Upstr	eam basin		Residua	al basin	C.A ratio of	
	Point	Area	Check point Catchment		Channel Catchment Basin		nt Basin	upstream	
		(km²)		Area (km ²)	Lag time (hr)	Area (km ²)	Lag time	(%)	
	Binga Dam	860	Ambuklao dam	620	1.0	240	3.0	73	
	San Roque	1,250	Binga dam	860	4.0	390	3.0	69	
	Carmen	2,460	San Roque	1,250	5.0	1,210	8.0	51	
	Wawa	4,460	Carmen	2,450	4.0				
			Tibag	920	4.0	1,080	6.0	76	
	Banaga	5,980	Vawa	4,460	8.0	1,520	7.0	75	

Due to the foregoing facts it is assessed that flood forecasting without flood run-off model is difficult because of the following reasons.

- Channel lag time is insufficient for most of the channels.
- The residual basin cannot neglect for all forecasting points.

Accordingly, installation of additional raingauge stations is required in order to estimate the basin rainfall with high degree of accuracy and to execute a reliable flood forecasting activity.

2.3 Flood Forecasting and Warning

2.3.1 The Procedures of Flood Forecasting and Warning

Since the installation of the FFWS in the Agno River basin in 1982, several typhoons have swept the basin, and the FFWS was effective in mitigating the damages due to flood. The standard procedure of forecasting and warning activity for the Agno River basin is described in the flow chart shown in

Fig.2.3.

Flood bulletin is furnished by PAGASA to the concerned agencies which contains various flood information, such as the real meteorological and hydrological conditions of the basin, the predicted rainfall, forecasted water level at the forecasting points and the indication of the warning area to be flooded. There are three categories of flood bulletins; flood outlook, flood advisory and flood warning; depending on the severity of the actual and forecast hydrological situations.

The flood situation is classified based on the predetermined flood assessment levels, alert level, alarm level and critical level for respective forecast point. Each flood assessment level is defined depending on the capacity of a river to confine the discharge within its banks as shown below and the assessment levels for respective forecasting point is shown in Table 2.4.

i) ALERT LEVEL

River stage equivalent to 60% of maximum flow capacity.

ii) ALARM LEVEL

Water level at gauging station which is the equivalent to 80% of the maximum flow capacity.

iii) CRITICAL LEVEL

Water level equivalent to maximum flow capacity.

The category of flood bulletin depends on the hydrological conditions which is related to the flood assessment levels as shown below.

i) FLOOD OUTLOOK

Promptly the water level have exceeded the alert level at any station, or after the peak stage and water level have receded below the alarm level when the preceding bulletin is an Advisory.

ii) FLOOD ADVISORY

When the water level is forecasted to reach or exceed Alert level within 24 hours, or, when water level have receded below the Critical level and is forecasted to recede to or below the Alarm level within 24 hours.

iii) FLOOD WARNING

When the water level is forecasted to reach or exceed the Critical level within 24 hours, or, the water level remains above the critical level.

Issuance of flood bulletin is one of the main flood warning activities executed by PAGASA. The information contained in the bulletin is disseminated to the residents living in the flood prone areas, mainly through broadcasting. Flood preparedness activities such as self-guarding, evacuation and sand-bagging, which are to follow the forecasting and warning activity mentioned above, are expected to be executed under the supervision of Office of Civil Defense (OCD), however, no activity for flood preparedness has been reported until now, because of insufficient institutional arrangement between PAGASA and OCD.

2.3.2 Previous Forecasting and Warning Activities

To examine previous forecast and warning activities, typhoon "GADING" which attacked the basin in July 1986, was selected because of its data availability.

Series of flood bulletins issued during the period of the typhoon is summarized in Table 2.5. At that time, the flood damage was concentrated in the areas located along Sinocalan and Bued rivers and their surrounding. The first bulletin, in the form of Flood outlook, was issued on 17:00, July 8, 1986 because it was predicted to exceed the Alert level at Sta.barbara forecast point within the next 24 hours. However the water level actually had exceeded the Alarm level after 12 hours, and exceeded the critical level 24 hours after the issuance of the first bulletin. It can be said that the reliability of the forecasting model is inadequate because of the inaccurate basin rainfall estimation.

The first warning issued at 11:00a.m., July 9, 18 hours after the issuance of the first bulletin, warned the residents at the downstream of Sinocalan and Bued rivers to evacuate due to overflowing of said rivers. However, at that time, the water level at Sta barbara had already reached the Critical level.

This indicates that the issuance of flood warning wasn't timely so as to allow residents to prepare for the flood.

Accordingly, improvement of the flood forecasting model and the proper arrangement for timely warning are required for more effective activity of FFWS in the Agno River basin.

2.4 Operation and Maintenance Conditions

Operation and maintenance work for the existing Agno River FFWS is the responsibility of National Flood Forecasting Office in PAGASA headquarters. There are forty-seven staff in charge for the FFWS in the Philippines. Incidentally, seven stuff stay in Rosales, Agno River Flood Forecasting Office (ARFFO) who are in charge in the operation and maintenance works of Agno River FFWS. The staff functional composition in shown in Table 2.6.

In spite of the great deal of endeavor by the staff, the operation and maintenance condition is relatively poor. Data collection rate, which is the rate of data to be sent to ARFFO from respective station through telemeter system, was examined to be clear the actual operation and maintenance condition.

Table 2.7 shows the annual data collection rate for each telemetering station. As for the rainfall gauging station, most of the stations are in good condition except Binga station. Hydrological data at Binga damsite is sent to Rosales, ARFFO through the repeater station at Santo Tomas. It was found that the telemetry condition between Santo Tomas and Rosales ARFFO is poor. Accordingly, the on-going Binga-Ambuklao Dam operation system project was designed to replace the repeater station at Mt.Ampucao. The replacement work is also expected to improve the telemetry condition between San Roque and Rosales, ARFFO.

Comparing the data collection rate between raingauge stations and water level gauging stations, the latter is much less reliable except Santa Barbara and Wawa. The problem of the stations isn't mainly the telecommunication system but hydrological observation. Because, the water level gauging stations which has less data collection rate are the sensing pole type stations except for Banaga. Once the sensing pole is damaged, it cannot be repaired because of

the lack of spare parts. Procurement of the spare parts depends on import, and it takes long time and costly to secure the spare parts. On the other hand, the well type gauging stations are still in good condition and secures high data collection rate. The clogging problem is considerable to the well type gauging station, however, it can resolve by man power maintenance without any spare parts to be imported. Therefore, it is supposed that the well type gauging station is suitable for the continuous water level observation in Agno River.

The data collection rate for respective station is summarized below.

Station Name	Data Collection Rate				
	Rainfall	Water level			
44 <u> </u>					
Binga Damsite	23.94%	2.27%			
San Roque	91.80%	74.39%			
Santa Barbara	99.54%	99.72%			
Carmen	99.56%	19.27%			
Wawa	98.86%	98.21%			
Banaga	-	83.46%			
Tibag	99.47%	2.70%			

Note: Data period; July 1982 - May 1989

Discharge measurement work, that is the most important maintenance work for water level station, is also insufficient. It is generally required to carry out the discharge measurement work once a month to improve the rating curve between water level and discharge. However, the actual frequency of discharge measurement is twice a year because of the insufficient number of staff to take charge of the measurement work.

2.5 Present Institutional Organization

The six agencies, PAGASA, NIA, NAPOCOR, DPWH, NWRB and OCD relate to FFWS operation and maintenance in the Philippines. Out of those agencies, PAGASA, NIA and NAPOCOR are the executive agencies and the others are working as the monitoring agencies.

"The Institutional and Management Study", was executed by PAGASA under the FFWSDO project in August 1989. The study aims to establish an institutional arrangement among the agencies related to FFWSDO, in order to achieve an effective O/M of the system and for a sound operation of inter-agency coordination system with a clear demarcation of jurisdictions of the agencies involved.

The study concluded that there was no need to modify/alter the existing framework surrounding FFWSDO project, and the obligations of each agencies were well defined and no discrepancy was observed among them. The tasks of the respective agencies to FFWS and FFWSDO is shown in Table 2.8, and summarized below.

(1) PAGASA

- Responsible for flood forecasting and warning of Pampanga and ABC FFWS.
- Responsible for O/M of Pampanga and ABC FFWS.
- Supervision of FFWSDO flood forecasting activity.

(2) NIA/(3) NAPOCOR

- Responsible for flood forecasting related to FFWSDO.
- Responsible for dam operation and discharge warning.
- Responsible for O/M of FFWSDO equipment.

(4) DPWH

- Monitoring of FFWS activity in Pampanga, Agno, Bicol and Cagayan river basins.
- Supporting to O/M of Pampanga and ABC system.

(5) NWRB

- Institutional coordination between agencies related to FFWS/FFWSDO O/M.

(6) OCD

- Responsible for local level warning activity.
- Coordination of Disaster Coordination Council.

However, reconsideration of the task distribution among agencies is required in respect to the basin-wide FFWS in Pampanga, Agno, Bicol and Cagayan

River basins. Because, the basin-wide FFWS is the one of components of flood control plan in the basin. And the river administration including flood control in the basin is responsible to DPWH.

Therefore, the basin-wide FFWS should be operated in the basin under the supervision of DPWH. On the other hand, the responsibility of PAGASA is assumed not to forecast the local level of flood but to forecast the nation-wide of the weather, typhoon truck and rainfall distribution. Accordingly, the institutional feasibility study is required for the operation of the basin-wide FFWS.

3. THE INTEGRATED FFWS

3.1 Basic Concept

Until recently, the standard flood control measure was to build massive levee to prevent residual area from flooding. The magnitude of flood control work generally depends on the flood damage potential in the basin. However, enlargement of river capacity leads to encourage the economical development and to increase the latent damage of flood in the protected area. The role of FFWS is to disseminate the flood situation to the residents in the area, where has high population density and large amount of property, under such flood control policy. Because, the social requirement to flood dissemination enlarges together with the latent damage of flood.

Another approach to flood protection receiving widespread acceptance is to provide minimum levee protection, and to rely on zoning regulations to restrict development in flood prone areas, where is less susceptible to flood damage. The new approach can be expected less investment of flood control work, however, the overflow is frequent. Under the flood control policy, FFWS is expected one of the alternative of structural measures of flood control.

The master plan of Agno River flood control applied the latter policy. However, FFWS isn't treated as the alternative of structural measures. Because, the selected retarding basins, poponto swamp and the confluence of Agno and Camiling Rivers, has no residential area. In the master plan of Agno River flood control, FFWS is expected to satisfy social requirement, providing information of flood status, and FFWS aims to minimize the flood damage, when flood attacks to the Pangasinan Plain.

The integrated FFWS in the Agno River basin is defined as one of the components of the framework plan of the Agno River basin flood control.

3.2 Objectives

The following three objectives are established to formulate the Master Plan for the integrated FFWS in the Study Area.

(1) FFWS for Resident's Protection from Flood Incident

It aims to secure the life of people and to minimize flood damage in the flood prone area by enhancing prompt flood protection activities which necessitate sufficient and accurate information, through agencies and organizations concerned, with respect to advanced forecast of extreme floods which exceed the capacity of existing river facilities.

(2) FFWS for Flood Operation

It aims to execute promptly effective operation of the flood control facilities such as dams, floodways and retarding basins by forecasting the magnitude of flood inflow into the said facilities in advance. It also aims to avoid artificial flood disasters by reporting warning information in advance, that will be affected concerning flood release from the said facilities.

(3) FFWS for Basinwide Flood Management

It aims to execute effective basinwide flood management and administration by integrated real time operation for all the flood control facilities in the basins concerned with real time access to the information concerning river and basin conditions.

3.3 Basic Condition and Criteria

3.3.1 Basic Condition

The following basic conditions are applied to the integrated FFWS.

- (1) The integrated FFWS is defined to be composed of the following systems.
 - Hydrological observation network system
 - Telemetry system
 - Flood forecasting system
 - Flood warning system
 - Monitoring system
- (2) The target area of the integrated FFWS is all the flood prone area in the Study area, where is delineated in the supporting report of the Flood damage analysis.

- (3) The control center of the system is to be located at Rosales, the same place where the existing ARFFO for the following reasons.
 - The local level of the disaster coordination is expected to be the responsibility of the local agency in consideration with the further decentralization.
 - Sufficient and timely maintenance and repair works will be undertaken promptly, if the control office is situated in the basin.
- (4) Communication between headquarter and the FFWS control office should be maintained in order that flood forecasting and warning activity of the basin is monitored at the headquarter.
- (5) Communication between the integrated FFWS control office and FFWSDO Binga dam office should be intensified for effective basinwide flood management. The other flood control structures to be constructed are to be obliged to install their own FFWS and to be connected to the FFWS control office.

Commence of the commence of th

- (6) Flood warning network system between local agencies such as municipality and FFWS control office, which aims to intensify the local level of flood warning, flood preparedness and flood fighting activity, is considered in the integrated FFWS plan component.
- (7) The warning stations along the river course, which aim to prevent the residents from approaching the river during flood, are taken into account in the integrated FFWS plan formulation.

3.3.2 Design Criteria

To satisfy the three objectives as mentioned in Section 3.2, the following design criteria is adopted.

(1) Selection of the forecasting points

The forecasting points were selected considering the following criteria.

- The area of high population density along the rivers in the target area.
- The river section seems to overflow easily in respect to the present

condition of the river improvement work.

- Existing and proposed damsite, diversion of floodway and retarding basin.
- The essential points to be required in respect to the basinwide flood management.

(2) The number of the raingauge stations

The accuracy of the basin rainfall estimation is the key requirement to construct reliable flood forecasting activity. The number of rainfall stations, which is related to the accuracy of the basin rainfall estimation, defines at least three stations in respective sub-basin, which is the same accuracy with the FFWSDO plan.

- (3) <u>Selection of the connected relative agency for flood warning activity</u>

 The local agencies to be connected to the FFWS control center for warning dissemination are selected according to the following criteria.
 - The municipality which are located along the main tributary and far from the FFWS control office.
 - The local agency which is the member of the RDCC.

(4) Selection of the flood warning station along the river

The location of the warning stations are desired according to the following criteria.

- The population distribution along the river, whose density is higher than 2000 persons/km².
- In the retarding basin, to be defined in the master plan.
- The downstream of dam, between the damsite and the lower confluence of the main tributary.
- 3.4 Flood Forecasting and Warning Plan
- 3.4.1 Hydrological Observation and Telemetering Network System

The following 17 water level gauging stations are selected as the forecasting points, according to the design criteria as mentioned in Section

3.3.2. The location of the forecasting points are described in Fig.3.1 and 3.2.

Sinocalan River Basin	Bued River Basin
12.Santa Barbara (Sinocala	n) 15.Camp I (Bued)
13.Binalonan (Tagumising)	16.Manaoag (Aloragat)
14.Malasiqui (Ingalera)	17.Mapandan(Angalacan)
an)	
)	
)	
	12.Santa Barbara (Sinocala 13.Binalonan (Tagumising) 14.Malasiqui (Ingalera) an)

For a reliable flood forecasting activity, 32 raingauge telemetry stations, including 6 existing rainfall stations, are proposed to be installed to satisfy the defined criteria as mentioned in Section 3.3.2.

The telemetry network is designed considering the distance between the FFWS control office and respective hydrological station. The hydrological stations that are to be located in the north and south mountains are assumed to be difficult to be telemetered directly. Therefore, two repeater stations shall be constructed, one on Mt.Ampucao, for the data transmission of the hydrological stations in north mountain area, and another on Mt.Bamban, for the ones in south mountain area.

The proposed hydrological observation and telemetry network system is shown in Fig.3.1.

3.4.2 Flood Forecasting System

The flood forecasting model is constructed by means of the telemeterized real time hydrological records. The proposed flood forecasting model is shown in Fig. 3.2.

The computer system shall be installed at the integrated FFWS control office for the prompt flood forecasting activity. The following functions are expected to the computer system.

- Data bank system
- Flood forecasting system
 - Flood routing analysis
 - Dam operation optimization during the flood in respect of basinwide flood management

Rainfall prediction isn't taken into account in the integrated FFWS because the technology is still premature and so far unreliable.

3.4.3 Flood Warning System

Effective and prompt warning activity is usually dependent on the reliability of forecasting activity and communication systems. However, the public communication system such as telephone and broadcast are still less developed and not completely reliable. Especially during typhoon, the public telephone network is crowded and takes some time to connect or the line may be broken by accident. So far it is unreliable to use the public communication system for flood warning activity, then, an exclusive communication line is required for effective and prompt warning activity.

According to the task distribution related to flood control works, to evacuation of residents is not DPWH matter but OCD matter as shown in Section 2.5. Therefore, the warning system of the integrated FFWS is taking into account the communication system between FFWS control office and the affected municipalities. The actual warning activity is tasked to the Disaster Coordination Council under the OCD's supervision. The DPWH's obligation is to furnish information with regards to the status of the river and the forecast water level to the affected municipality, where the municipal Disaster Coordination Council is located, as soon as possible. Therefore, the arrangement for evacuation isn't taken into account in the integrated FFWS in the Agno River basin.

The local agencies which were selected to be connected to the flood

warning system are identified below and shown in Fig. 3.3.

- 21 municipalities.
- 2 OCD local office. (San Fernando, Lingayen)
 - 3 local radio broadcast companies. (Dagupan, Urdaneta, Tarlac)
- 2 national police local office. (Dagupan, Urdaneta)
 - 1 DPWH local office. (Tarlac)

The co-relation of the forecasting point and affected municipality was examined based on the flood routing analysis as described in Fig. 3.4.

Another warning system is necessary to be installed by DPWH. Its main purpose is to discourage residents from approaching the river. During the typhoon "OPENG", that battered central and northern Luzon islands in Sep.1989, 19 out of the 24 lost lives were caused by drowning as shown below. this indicates that warning activities such as evacuating residents away from river side is assumed to strongly contribute to the relief of human lives. Therefore, warning stations should be also considered for installation along the river.

Cause	Number of lost lives		
Drowned	19		
Landslide	4		
Electrocuted	material and 1 and a		
Line Supplies to the			

3.5 System Management Plan

Before applying the FFWS for flood control works, the financial and technical capability for operation and maintenance should be considered first. Flood forecasting and warning technology is still remote in the world but is improving day by day. It needs high technology to construct the system. Most FFWS facilities are costly and have to be imported from the developed countries. The integrated system to be proposed must be justified in respect to the financial ability of the government for sufficient maintenance work.

Well skilled staff for operation and maintenance are also required

especially in hydrology and telecommunication. The hydrologists, are mainly required at the control center to supervise the regular discharge measurement work at all of water level stations. The flood forecasting computation including adjusting flood forecasting model is also tasked to the hydrologist. To improve the flood forecasting technology and the hydrological observation, it is recommended to provide sufficient training period to the hydrologist before the system operation.

On the other hand, telecommunication specialists are absolutely lacking in the Philippines. The discrepancy of the salary between the government and the private company for the telecommunication experts is assumed to be the main reason. In the new institutional arrangement is strongly required to acquire the telecommunication expert for the FFWS.

Considering the above, the following institutional arrangement is assumed to be recommendable for the smooth operation of the integrated FFWS.

- (1) Local level of FFWS activity shall be transferred to the local agency.
- (2) The suitable agency to be responsible for the local flood forecasting is assumed to be DPWH, considering its responsibility for the river administration and the regular maintenance work of the hydrological stations.
- (3) The role of PAGASA is assumed to be advisory for the transfer of flood forecasting technology, and further research of applicable new technology for the improvement of flood forecasting.
- (4) Flood warning activity is responsibility of OCD. It is tasked to prepare the program for improvement of Disaster Coordination Council's activities.
- (5) Telecommunication training center is recommended to be established in collaboration with PAGASA, NAPOCOR, NIA, DPWH and NTC in Manila. The purposes of the center are to train the staff, stock and supply the spare parts of the telemetering facilities. The prompt repair work will be expected once the center is established.
- (6) Flood Operation system for the dams to be constructed is responsibility of

the owner agency.

- (7) Multiplex communication system with DPWH central office should be provided for the monitoring if FFWS activity.
- 3.6 The Integrated FFWS and Cost Estimate

The integrated FFWS in the Agno River basin, as shown in Fig. 3.6, consists of the following systems.

- Hydrological Observation System
 - . Water level stations : 17 stations (Existing 7 stations included)
 - . Raingauge stations : 32 stations (Existing 6 stations included)
- Telemetering Network System
 - . System Control Center: Rosales, DPWH (Extension of the Existing ARFFO, PAGASA)
 - . Repeater Station: 2 stations
 - Mt.ampucao (Extension of the existing station)
 - Mt.Bamban (Newly constructed)
- Monitoring of FOS
 - . Flood control monitoring system : 4 monitors in Rosales control center
 - For Binga-Ambuklao FFWSDO sub-system (Existing)
 - For Balog-Balog Flood Operation System (New)
 - For San Roque Flood Operation System (New)
 - For Moriones Flood Operation System (New)
- Monitoring at DPWH central office
 - . Multiplex communication system is concerned for the monitoring of basin-wide FFWS activity.
- Flood Forecasting System
 - . One computer system in Rosales control center
- Flood Warning System
 - . Duplex link between Rosales control center and the related 29 local

agencies

. 31 Warning stations along the river

The estimated direct cost is described in Table 3.1 and summarized below.

Item	Direct Cost (x1000 Yen)
	(XIOOO len)
Agno River flood forecasting system	1,035,564
Flood warning system	349,958
Monitoring system at DPWH central office	131,361
Monitoring for Binga-Ambuklao dam system	15,818
Balog-Balog FOS	505,318
San Roque FOS	478,506
Moriones FOS	506,818
TOTAL	3,023,343

3.7 Socio-Economic Context

The expected benefit of the integrated Agno River FFWS is complicated to figure out as monetary value. There is no authorized measures to justify economically in the world until now. Because, the major expected benefit to FFWS is to relief the human life against the flood and the improvement of the environment aspects. Besides, the social welfare such as the information service about the real time condition of the river is also expected to the benefit of the system. The following items are considered to be the benefit of the FFWS.

- i) To eliminate lost of human lives
- ii) To mitigate environmental damage such as spread of an epidemics due to flood inundation
- iii) To mitigate the housing property damage
- iv) To mitigate the livestock damage
- v) To mitigate the commercial stock damage
- vi) To mitigate the economic activity damage
- vii) To mitigate the relief and urgent supply expense

viii) To improve social welfare such as public awareness to flood information

Out of the above expected benefits to FFWS, item (iii) through (vii) is the countable as the monetary value. On the other hand, the value of human life and of environmental assets should not be express in monetary terms. However, it is noted that those intangible benefit is mainly expected to FFWS. Therefore the economic evaluation of the FFWS isn't absolute to justify the project of FFWS but the reference to the economic feasibility. The project justification of FFWS should be depended on the maturity of the structural river improvement condition and the Government policy to the flood control and public welfare.

According to the Meteorological Telemetering System Project, which is completed detail design stage under PAGASA as of Nov. 1989, 5% of direct damage is expected to be mitigated by the telemetering system, and the assumption has applied by the Government of Philippines.

In the case of the Agno River FFWS the economic internal rate of return (EIRR) is expected to 19.26%, if the assumption is applied.

4. LONG TERM DEVELOPMENT PLAN

4.1 Concept of Long Term Development Plan

It was found that there are three major problems of the existing Agno River FFWS as mentioned in Section 2.1, and repeated below.

- Insufficient budget and staff for maintenance
- Low reliability of forecasting due to insufficient raingauge stations
- Less warning effectiveness due to unreliable communication system between relative agencies

The said problems should be taken into account in the integrated FFWS in Agno River Basin. The Long Term Plan is formulated as the priority development plan, which is a part of the FFWS integrated system, as mentioned in Chapter 3.

The following objectives are assessed to formulate the priority FFWS development plan in the Study Area.

- i) To resolve the problems of the existing FFWS in the basin, as mentioned above.
- ii) To select the appropriate technology of the flood forecasting in respect to the present technology level in the Philippines.
- iii) To select the economically feasible system in respect to the flood damage value of the target area.
- iv) To select the priority area in respect of the number of the affected people and density of the flood damage potential.
- v) To select the priority area in respect to the magnitude of the river improvement work of the river section.

4.2 Priority FFWS Development Plan

Priority development plan is considered according to the above concept and the present status of FFWS institutional aspects. The selected scheme will be treated in the coming Feasibility Study in Agno River Flood Control. The system configuration is described in Fig. 4.1.

(1) Objectives

The priority scheme of the Agno River FFWS aims to attain the following two objectives.

- To improve the flood forecasting accuracy of the forecasting points in the existing Agno River FFWS.
- To carry out the effective flood warning activity in the Study Area.

(2) Objective rivers

The following three rivers are selected to the priority FFWS development in the Study Area.

- Main Agno River
- Tarlac River
- Sinocalan-Tagumising River

(3) Flood Forecasting Points

Seven flood forecasting points are selected as shown below. Out of them, 6 forecasting points have already existed. Considering the population distribution and river characteristic, these forecasting points are reasonable to be selected. The population distribution is shown in Fig. 3.5.

In addition to these six forecasting points, Binalonan forecasting point is selected in this study. Because, the station is located upstream of Santa Barbara forecasting point, where is so far less accuracy than the other forecasting point. To improve the forecasting accuracy of the station, installation of Binalonan forecasting point is required.

- San Roque (Agno River, Existing)
- Carmen (Agno River, Existing)
- Wawa (Agno River, Existing)
- Banaga (Agno River, Existing)
- Tibag (Tarlac River, Existing)
- Santa Barbara (Sinocalan River, Existing)
- Binalonan (Tagumising River, New)

(4) Flood Forecasting Measure

The simple and accurate flood forecasting method is proposed in consideration with the present availability of the forecasting technology. Combination of water level co-relation method with rainfall run-off analysis method is applied. The available data for flood forecasting is the following.

San Roque Forecasting Point

- Binga Dam Power discharge and Spillout Record.
- Basin Rainfall estimation in Binga-San Roque sub-basin by means of the following raingauge stations.
 - . Binga Damsite (Existing)
 - . Teb-bo (New)
 - . San Roque (Existing)
 - . Mt.Ampucao (On-going)

Carmen Forecasting Point

- Water level record of San Roque forecasting Point.
- Basin rainfall estimation in San Roque-Carmen sub-basin by means of the following raingauge stations.
 - . San Roque (Existing)
 - . Carmen (Existing)
 - . Malilit (New)
 - . Siminbaan (New)
 - . Umingan (New)

Wawa Forecasting Point

- Water level co-relation to Carmen forecasting point.
- Water level co-relation to Tibag forecasting point.

Banaga Forecasting point

- Water level co-relation to Wawa forecasting point.

Tibag Forecasting Point

- Basin rainfall estimation in upper tibag sub-basin by means of the following raingauge stations.
 - . Tibag (Existing)

- . Negrito (New)
- . Iba (New)
- . Balog-balog (New)

Santa Barbara Forecasting Point

- Water level co-relation to Binalonan forecasting point.

Binalonan Forecasting Point

- Basin rainfall estimation in upper binalonan sub-basin by means of the following raingauge stations.
 - . San Roque (Existing)
 - . Mt.Ampucao (Existing)
 - . Binalonan (New)

(5) Flood Warning System

As mentioned in Section 3.4.3., two kinds of warning system are assessed. One is to provide communication lines between FFWS control office and the relative local agencies, such as municipality, national police and local broadcast stations. The system aims to execute the municipal level of flood preparedness and flood fighting activity. However, inter-municipal institutional coordination is required to satisfy the object, and it is concluded that the conduction of the system is postponed because the detail analysis of the local level of institutional coordination is insufficient.

On the other hand, it also aims to disseminate flood information to the residents through the local radio broadcast. It seems to be effective to provide the self-guarding against flood by the residents. Accordingly, the following five relative agencies are selected to be linked by the communication line with Agno River FFWS control office.

- Local Radio Broadcast. (Dagupan, Urdaneta, Tarlac)
- OCD regional/provincial office (San Fernando, Lingayen)

The installation if the warning stations along the river is postponed. The system is expected to be strongly effective from the past experience. However, in consideration with the present condition of the river improvement work, it is difficult to point out the priority area for the warning system.

The priority warning area is generally determined based on the population distribution along the river. In respect to the criteria, the following area are selected as the priority area of the installation of the warning station.

- Lingayen (Lower Agno River)
- Wawa-Bayambang-Carmen (Upper Agno River)
- Dagupan-Calasiao-Santa Barbara (Panto-Sinocalan River)
- Urdaneta (Sinocalan River)
- Binalonan (Tagumising River)

However, all of the above areas are listed up the priority area of the river improvement works in the master plan. Based in the flood control plan in the master plan study, the role of the FFWS doesn't aim to the point warning, but aim to provide the general information to the whole residents in the flood prone area.

(6) Monitoring System of Dam Operation

In the framework plan, four flood operation system are concerned as mentioned in Section 3.6. Out of the flood operation system, the on-going Binga-Ambuklao FFWSDO is monitored at the Agno River FFWS control center.

(7) System Operation and Management

The control center is replaced from NFFO at Manila to Rosales. Because, the basin-wide FFWS should be managed by inter-basin agency in consideration with the further de-centralization. Therefore, the Agno River priority FFWS is operated by the Agno River FFWS control center in Rosales.

Regarding the institutional arrangement for O/M of the Agno River FFWS, The following four alternatives will be assessed at the coming feasibility study on Agno River Flood Control.

- Alternative 1
 - . Operation and maintenance : DPWH
- Alternative 2
 - . Operation : PAGASA

, Maintenance : DPWH

- Alternative 3

. Operation and Maintenance : PAGASA

- Alternative 4

. Operation and Maintenance : PAGASA and DPWH

(8) Cost and Benefit

The project cost is estimated to 1,825 million yen, and the detail is described in Table 4.1. The benefit is estimated based on the number of the affected residents. The 56% of the residents in the flood prone area may be affected. Therefore, 56% of the direct benefit is taken into account for the economic evaluation.

Subsequently, the economic internal rate of return for the Agno River Priority FFWS is estimated to 28.91%.

TABLES

TABLE 2.1 PRINCIPAL FEATURES OF THE EXISTING / ONGOING TELEMETERING GAUGING STATIONS

The Existing Telemetering Stations.

Station Name	8inga dam	San roque	Carmen	Tibag	Мана	8anaga	Santa Barbara
1.Location	Binga damsite	Irrigation intake site	Immediately downstream of Plaridel 8r.	•	300 a downstream of Wawa Br.	Padilla Br.	Maramba 8r.
-Latitude -Longitude	16 ⁰ 23'21" 120 ⁰ 41'07"			15 ⁰ 29'14" 120 ⁰ 34'09"	15 ⁰ 46'28"	16 ⁰ 01'50" 120 ⁰ 12'44"	16 ⁰ 00 ¹ 24 ¹ 124 ⁰ 24 ¹ 04"
2.Kind of station	RF(*1) #L(*2) RF & ML	RF & NL	RF & NL	RF & WL.	HL	RF & WL
3.River Name	Agno river	≙gno river	Agno river	Tarlac river	Agno river	Agno river	Sinocolan rive
4.Catchment Area	936 ka²	1,225 km ²	2,209 km²	872 km²	4,196 km ²	5,560 km ²	180 km ²
5.Water level gauge type	Sensing pole	Sensing pole	Sensing pole	Sensing pole	Well	Well	Hell
6.High water level (m AMSL ^(#3))	479.3	100.7	29.0	50.2	15.5	3.8	7.2
7.Low water level (m AHSL)	478.8	94.4	21.5	5.5	5.5	-1.2	1.7

The Telemetering Stations to be constructed on FFWSDO Project-II.

Station Name	Apunan	Bobok	8adayan 💮	Ambuklao dam	Binga dam
1.Location	Nt. Apunan	At. 8obok	Hilltop at Badayan town.	and the second s	Binga damsite
-Latitude -Longitude	16 ⁰ 34'22" 120 ⁰ 49'29"	16 ⁰ 27'00* 120 ⁰ 49'03"	16 ⁰ 45'18" 120 ⁰ 49'53"	16 ⁰ 27'40" 120 ⁰ 44'38"	16 ⁰ 23'52" 120 ⁰ 43'38'
2.Kind of station	RF	RF	RF.	RF & ML	RF & NL
3.Altitude (m AMSL)	1,240	1,497	1,700	758	586
4.Catchment Area	•	•	-	686	936
5.Hater level gauge type	-	-	•	Pressure	Prassure
6.High water level (m AMSL (*3))	•		•	752.0	575.0
7.Low water level (m AMSL)	•	•	•	694.0	355.0

Source: Oata List FF.301

Note: (*1) RF: Rainfall station.

(*2) HL: Water level gauging station. (*3) AMSL: Above mean sea level.

TABLE 2.2 BASIN CHARACTERISTIC OF THE EXISTING MODEL

				Elevation	·	Lag-Tia	e Dis	Distribution of Rainfall Station				
	Sub-Basin	Catchment Area (km2)	Hax (81.a)	Win (81.a)	Ave. (Bl.a)	(hr.)	Available	Theesen Area (Im2/Nos.)	Average Blevation (Bl.m)	Reliability		
1.	Ambuklao Dan Sub-Basin	620	2500	735	1530	3.0	4(4)	74 - 256	1345	Good		
2.	Ambuklao - Binga Sub-basin	240	2500	500	1300	3.0	3(2)	79 - 100	994	Poor		
3.	Binga - San Roque Sub-basin	390	2290	300	950	3.0	3(3)	80 - 192	1005	Good		
4.	San Roque - Carmen Sub-basin	1210	1000	40	560	8.0	1(2)	62 - 686	195	Poor		
5,.	Carmen - Wawa Sub-basin	430	40	10	15	6.0	2(2)	115 - 221	20	Good		
δ.	Upper Tibag Sub-basin	920	1400	60	370	6.0	1(1)	920	21	Poor		
7.	Tibag - Wawa Sub-basin	850	170	10	35		3(2)	168 - 261	21	Good		
8.	Wawa - Banaga Sub-basin	1520	1500	5	420	7.0	3(1)	247 - i038	12	Poor		
9.	Upper Sta. Barbara Sub-basin	160	1200	8	200	4.0	4(1)	72 - 225	140	Good		

TABLE 2.3 CHANNEL CHARACTERISTIC OF THE EXISTING MODEL

				Elev	ation	River	Lag-Pine	C.A of Upstream		C.A ratio of
	Channel Section	liver	River Length (Km)	Max (El.m)	Kin (Bl.a)	Gradient	(hr.)	(Xu2)	(Ka2)	Upstream
1.	Ambuklao - Binga	Agao R.	13	690	565	0.00926	1.0	617	243	72
2.	Binga - San Roque	Agno R.	44	479	98	0.00858	1.0	860	390	69
3.	San Roque - Carmen	Agao R.	32	98	25	0.00225	5.0	1250	1213	51
1.	Carmen - Wawa	Agao R.	31	25	10.5	0.00046	4.0	2463	1079	70
5.	Tibag - Wawa	Tarlac R.	38	48	10.5	0.00097	1.0	861	1079	44
6.	Wawa - Banaga	Agao R.	47	10.5	1.3	0.00020	8.0	4403	1523	14
1.	Upper Sta. Barbara	Siaocalan R.	56	150	4.5	0.00256	8.0	396	0	100

TABLE 2.4 FLOOD ASSESSMENT LEVELS OF THE FORECASTING POINTS

(as of May 1987)

	هجه مسجد که ده فقاحل پومیوسو چو غومشمردمی پیدید.		Assessa	ent Wat	er Leve	l(m)		Rating Cur	sve	
St.No.	St. Name		Upper		Alarm	Critica			C	
200501	ðinga Damsite		•			19.50 (19.50)		4	-	
200502	San Roque	0.00	10.00	5.30 (2.20)			11.92372	0.00000	2.69489	
200503	Santa Barbara	0.00		2.90 (2.50)			1.81216	0.50000	2.63672	
200504	Carmen	0.00	7.00	4.70 (2.50)(2.51579	2.00000	3,48725	
200505	Wawa	0.00		6,30 (3,40)(39.32286	0.50000	2.08889	
200506	Banaga	-	· - ·	(-)(-)	(-)		<u>.</u> 12.	+C * 	i.
200507	Tibag	0.00	12.00	4.10 (~1.70)(21.82252	2.00000	2.17500	
							<u>:</u>			

Note:

- The alert, alarm and critical levels are the equivalent water levels when 40%, 60% and 100%, respectively of the pre-determined discharge conveyed through the cross-section of a river at gauging station are reached.
- The critical level at a gauging station which served as a reference level is the level at which the confined water of some portion of the channel within the jurisdiction of the atation starts to overflow the unprotected river banks at the earliest time.
- Rating curve is defined the following formula:
- $Q : A \times (A + B)^{C}$ (): Assessment water levels as of 1983.

TABLE 2.5 (1/2) SERIES OF FLOOD BULLETIN DURING TYPHOON "GADING"

GADING (July 8 -15 '1986) Typhoon:

			ACCUNULATED HOURLY RAINFALL FROM 8:00 (mm)						WATER LEVEL (cm) 1/								
ISSUED FLOOD	TIBAG		CARMEN	STA. BARBARA	SAN Roque		TIBAG	HAHA	CARMEN	BANAGA	STA. BARBARA	SAN ROQUE	BINGA DAM				
OULLETIN													el:	sment leve	Asses		
							410	630	470	-	290	530	630	level			
							560		560	-	370	620	1250	n level			
							800	1000	700		500	750	1950	ical level	Criti		
	14	0	4	1	0	HA	HA	67	HA	91	180	0	NA	1 2.00	08-Ju		
	14	0	6	. 2	0	NA	НA	68	ŅA	114	180	0	NA	1 5.00	08-Ju		
*	14	0	6	10	. 0	КA	liA :	67	NA	143	180	. 0	NA	1 8.00	08-Ju		
	0	l	21	21	0	RA	NA	64	, NA	152	184	.26	NA	1 11.00	08-Ju		
	. 6	, li	38	57	0	AH-	NA 1	62	HA	133	201	16	NA	1 14.00	08-Ju		
Outlook(1)	9	. 13	56	75	0	NA	. NA	61	, NA	117	213	0	. NA	1 17.00	08- Ju		
	21	:42	94	135	. 0	. NA	НA	65	NA	137	225	. 0	HA	1 20.00	08-Ju		
	. 37	118	111	190	0	KA	, RA	78	NΑ	130	240	. 7	NA	1 23.00	08-Ju		
	52	142	143	228	1	. NA	NA	88	NA	137	317(*1)	8	. NA	1 2.00	09-Ju		
Advisory(2	65	167	161	247	8	NA	NA 1	96	NΑ	154	441 (*2)	34	НA	1 5.00	19-Ju		
	65	167	161	247	8	. NA	NA 1	117	RA	179	489(*2)	153	. NA	1 8.00	19-Ju		
Harning(3)	- 6	. g	18	. 51	0	HA	NA 1	143	NA	181	542(*3)	199	NA	1 11.00)9-Ju		
	. 20	32	56	95	. 0	NA	HA I	239	. KA	164	558(*3)	188	NA	14.00)9-Ju		
Harning(4)	. 25	44	90	131	0	NA	NA 1	364	NA.	163	565(*3)	193	NA	17.00	19-Ju		
	27	50	112	163	,	, NA	NA 1	421	NA.	163	567(*3)	199	. KA	1 20.00	39-Ju		
	. 33	54	115	168	0	КA	NA 1	459	NA	163	568(*3)	199	. NA	1 23.00	19-Ju		
	52	78	132	190	0	NA	NA 1	506	· HA	168	569(*3)	199	. NA	1 2.00	LO-Ju		
darning(5)	62	90	140	198	. 0	NA	HA 1	109	KA	182	569(*3)	199	НA	1 5.00	l0~Ju		
	0	. 1	0	. 0	. 0	NA	IIA 1	508	NA	204	570(*3)	199	HA	1 8.00	l0-Ju		
	15	13	18	13	Q.	NA	NA 1	519	NA	215	569(*3)	199	HA	1 11.00	l0-Ju		
	- 16	15	23	14	. 0	NA.	NA 1	524	NA.	210	568(*3)	199	NA	1 14.00	0-Ju		
larning(6)	45	24	35	31	. 0	NA	NA 1	538	, KA	198	568(*3)	196	HA	1 17.00	0-Ju		
	55	48	61	63	0	NA	NA 1	555	NA	197	569(*3)	199	. NA	1 20.00	0-Ju		
	62	54	66	67	. 0	NA	ו אא	571	. HA	193	569(*3)	199	NA	1 23.00	lO-Ju		
	KA	, NA	НA	NA.	НA	NА	HA 1	NA.	HA.	NA.	NA.	HA	NA	1 2.00	l1-Ju		
arning(7)	71	72	.77	81	O	NA	RA 1	614	NA	202	569(*3)	181	NA	1 5.00	l1-Ju		
	0	0	0	0	0	HA	NA 1	633(*1)	HA	215	569(*3)	199	NA	1 8.00	1-Ju		
	2	0	0	0	. 0	NA	HA 1	631(*1)	KΑ	223	570(*3)	199	. NA	11.00	1-Ju		
	6	3	. 1	0	0	HA	NA 1	628	HA	221	570(*3)	199	КA	1 14.00	1-Ju		
(8)	6	3	1	0	0	NA	NA 1	623	NA.	212	570(*3)	199	NA	1 17.00	1-Ju		
	6	3	1	0	0	NA	NA 1	623	NA	205	570(+3)	199	HA		1-Ju		
	6	3	. 1	0	0	NA	₩A 1	612	RA	1 1	569(*3)	4 4 4	NA		1-Ju		
	NA	RA	NA.	NA	NA	НA	NA 1	ЖA	NA	RA	HA	NA	NA		2-Ju		
arning(9)	6	3	ı	0	0	NA	NA I	582	NA	199	562(*3)	146	NA		2-Ju		
	6	. 3	1	0	0	NA	NA 1	575	NA	202	560(*3)	137	NA		2-Ju		
	0	0	0	0	0	NA	HA 1	562	NA	212	551(*3)		NA		2-Ju		
	0	0	0	0	0	NA	NA I	549	KA	206	541(*3)		NA	-	2-Ju		
larning(10)	0	0	0	0	0	NA	NA 1	535	NA	1.0	529(*3)		NA	1 17.00			
J,	0	0	Q	0	0	NA -	: HA 1	14	MA	176	517(*3)	4 1	НА		2-Ju		
	0	0	0	8	Œ	NA	HA 1	511	NA	4	505(*3)		NA.	23.00			

llote :

(*1): Higher than Alert level. (*2): Higher than Alera level.

(*3) : Higher than Critical level.

TABLE 2.5 (2/2) SERIES OF FLOOD BULLETIN DURING TYPHOON "GADING"

Typhoon: GADING (July 8 -15 '1986)

DATE T	ME			HATER L	EVEL (cin)			1 1	ATEO HOU	JKCI KAI	MALL.	rkun o:	OU (RIB)	1
	•	BINGA DAM		STA. BARBARA		CARHEN	WAWA		1 BINGA 1 DAH 1	SAN ROQUE E	STA. C BARBARA	ARHEN	ANA	TIBAG	I ISSUED I FLOOD I BULLETIN
\ssessmer	nt leve	e) :							1						1
Alert lev	/el	630	530	290	-	470	630	410							
larm lev		1250	620	370	-	560	820	560							
ritical	level	1950	750	500		700	1000	800	[1						
 3-Ju1	2.00	NA.	NA.	AK	i/A	NA.	NA	NA	l NA	NA	NA	NA	NA	NA	1.
(3-Ju]	5.00	НA		477(*2)	166	NA	482	НA	All f	.0	8	. 0	. 0	0 :	lWarning(11)
	8.00	' NA		472(*2)		, NA	480	НA	AS 1	0	. 8	0	0	0	1
	1.00	NA.	4.4	453(*2)		АA	472	HA	I NA	. 0	0	0	0	0	1
-	4.00	NA	93	453(*2)	172	AA	464	НA	I NA	0	0	0	0	, Q	*
	7.00	NA	84	443(*2)	165	RA	456	NA	n NA	0	0	. 0	0		Warning(12)
	20.00	All	. 85	432(*2)	160	NA	448	NA	1 NA	. 0	1	. 0	0	0	7
	23.00	Alj :	90	419(*2)	151	NA	433	НA	1 NA	0	1	0	0	0	
	2.00	NA	131	398(*2)	149	NA	415	ΝA	l na	0	1	0	0	2	
4-Jul	5.00	NA	144	398(*2)	149	, NA	415	HA] NA	. 0	1	0	0		lWarning(13)
l4-Jul	8.00	. NA	118	392(*2)	149	AK	412	ΝA	1 NA	0	1	0	0	4	
[4-Jul]	11.00	NA	140	384(*2)	153	NA	407	NA	I NA	0	0	1	0	2	
14-Jul 1		NA	100	376(*2)	155	NA	404	NA	1 NA	0	0	1	1	3	Carlotte and the Control
	7.00	IIA	102	368(*1)	150	NA.	401	NA	i na	, 0	0	4	6		1Advisary(14)
	20.00	NA	112	361(*1)	152	HA	399	. NA	I NA	0	16	17	13	38	
14-Jul 2		. NA	109	357(*1)	147	i NA	395	A.A	1 NA	0	18	. 18	14	38	A Company of the Comp
	2.00	NA	106	355(*1)	146	MA	391	AK	i na	0	18	18	14	38	
15-Jul	5.00	NA		354(*1)		na	387	NA	1 NA	0	18	18	14		lAdvisary(15)
15-Jul	8.00	ΝA		353(*1)		KA	384	NA.	1 NA	. 0	18	18	14	38	The second second
	11.00	NA		349(*1)		NA	380	AH	1 IIA	0	0	0	. 0		1
15-Jul 1		NA	. NA	NA	KA	, NA	HA	HA	l NA	NA	NA	NA	NA	, NA	The State of the S
	7.00	NA.	79	337(*1)	150	- NA	374	NA	l na	0	0	0	0		1Advisary(16)
	20.00	NA	76	333(*1)	144	NA	371	ΝA	1 HA	0	0	0	0	2	The second second
	23.00	NA	NA	HA	NA	KA	KA	KA	i na	, NA	NA.	NA	NA.	RA	1

Note:

(*1) : Higher than Alert level. (*2) : Higher than Alarm level.

(*3) : Higher than Critical level.

TABLE 2.6 STAFF COORDINATION OF THE EXISTING AGNO RIVER FFWS

(as of June 1989)

Organizational Division	Major Engaged Field	Number of Allowed Staff by States							
Inside Pagasa NFFO		Specialist	Engineer	Technician	Total				
eadquarters, Quezon City					·				
. Office of the Director	Meteo. / Hydro.	3 (7)	3 : (5)	5 (8)	11 (20)				
	Clerical	(-)	(-)	2 (2)	2 (2)				
	Sub-total	3 (7)	3 (5)	7 (10)	13 (22)				
. Hydrology and flood for	ecasting Center Meteo. / Hydro.	1 (2)	9 (11)	(11)	17 (24)				
. Telemetery Systems Serv	ice Center Meteo. / Hydro.	(1)	(-)	(2)	- (3)				
3.00 mg (1.00 mg) (1.00 mg	Telecom / Electronic		7 (4)	i0 (12)	17 (16)				
	Sub-total	(1)	7 (4)	10 (14)	17 (19)				
	Total	4 (10)	19 (20)	24 (35)	47 (65)				
gno River Flood Forecastin	g Center								
	Meteo. / Hydro.	(1)	2 (6)	3 (4)	5 (11)				
in the second of	Telecom / Electronic Clerical	(-)	· (1)	(-) -	(1)				
	Total	(-)	(-)	(1) 5	(1)				
		(1)	(7)	(5)	(13)				

Source: PAGASA NFFO. Note: () as of 1983.