Table 8.2(1/2) FEATURES OF DESIGN CHANNEL OF TRIBUTARIES OF AGNO RIVER FOR LONG TERM PLAN

River: TALRAC RIVER Design Flood: 25-yr

	Ret	urding Basir		Tarlac R.		1		
Item	Unit AG180+0.8k - TA200		TA200 - TA227	TA227 TA251				
Design Discharge	m3/s		2600	2600	1750			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Distance	m	8100	13000	11800	4150			
Gradient of River Bed	_	1/1850	1/1300	1/760	1/692			
River Width	m	_	1700-640	1600-600	600-270		•	
Width of Channel Bed	m	160	160	160	140			
Dike Height (Ave.)	m	7.2	3.9	3.5	1.5			er e e
Water Depth	m	7.9-4.82	4.82-4.0	4.0	4.0-3.5			
Low Channel Height(Ave.)	m	5.0-2.0	2.0	2.0	3.5			100
				100				

River: CAMILING RIVER Design Flood: 25-yr

	. :			Camiling R.	reg ¹ .		
Item	Unit	AG143+1.0k CA156+0.3k	CA156+0.3k - CA162	CA162 - CA167	CA167 - CA172	CA172 - CA173	CA173 - CA175
Design Discharge	m3/s	1650	1150	1150	1150	850	850
Distance	m	3550	4650	4300	4950	1300	2050
Gradient of River Bed		1/2000	1/2000	1/1000	1/550	1/300	Existing
River Width	m	250	180	180	180	130	130
Width of Channel Bed	m	50	40	40	40	30	Existing
Dike Height (Ave.)	- m	5.0-3.2	3.1	2.8	2.0	1.0	1.0-0.0
Water Depth	m	8.2-6.9	6.9-6.7	6.7-6.3	6.3-4.8	4.8-4.4	4.4-4.2
Low Channel Height(Ave	.) m	4.7	. 4.7	4.7	4.5	4.5	4.0

River: BANILA RIVER Design Flood: 25-yr

				Banila R.			
Item	Unit	AG349- AG349+3.7k	AG349+3.7k - BN381	BN381 - BN386		BN394 - BN397	BN397 - BN401
Design Discharge	: ::3/s	1000	1000	650	300	300	230
Distance	m	3700	8050	4550	7600	2900	4100
Gradient of River Bed	. .	1/1295	1/835	1/520	1/265	Existing	Existing
River Width	: : : : : : : : : : : : : : : : : : :	180	180	120	120	120	120
Width of Channel Bed	m :	20	20	15	8	Existing	Existing
Dike Height (Ave.)	m	3.1	2.8	2.5	2.1	1.9	1.1
Water Depth	m	7.1	6.6	6.6-6.0	6.6-2.8	2.8-1.3	1.3
Low Channel Height (Av	e.) m	5.0	4.8	4.8	4.8-2.5	1.0	1.0

Table 8.2(2/2) FEATURES OF DESIGN CHANNEL EL OF TRIBUTARIES OF AGNO RIVER FOR LONG TERM PLAN

River: VIRAY-DIPALO RIVER

Design Flood: 25-yr

		•		Viray-Dipal	o R.	Vira	y R.	
Item	Unit	AG414 -VD425	VD425 -VD428	VD428 VD430	VD430- VD430+0.6K	VD430+0.6K -VD433	VD433 -VD434+0.5K	
Design Discharge	m3/s	550	550	550	550	270	270	
Distance	m	2800	3100	2000	600	2400	1450	
Gradient of River Bed	· - ,	1/375	1/300	1/250	1/127	1/127	1/75	
River Width	m	380-290	320-270	320-260	300	150	150	
Width of Channel Bed	m .	30	30	30	30	15	15	
Dike Height (Ave.)	m	1.4	1.4	1.4	1.4	0.75	0.75	
Water Depth	m	3.7	3.7	3.7	3.7	2.75	2.75	
Low Channel Height (Ave.)	m	3.3	3.3	3.3	3.3	2.8	2.8	

River: VIRAY-DIPALO RIVER

Design Flood: 25-yr

	Dipalo R.							
Item	Unit	VD430+0.6K -VD436	VD436 -VD437	VD437 -VD439	VD439 -VD441	VD441 -VD442		
Jesign Discharge	m3/s	250	250	150	150	150		
listance	m	1500	700	1950	1950	1000		
radient of River Bed	-	1/170	1/125	1/125	1/80	1/68		
liver Width	m	100	100	100	100	100	•	
idth of Channel Bed	m	15	15	.10	. 10	10		
ike Height (Ave.)	m	2.4	2.4	1.95	1.75	1.55		
ater Depth	m	3.6	2.8	2.35	2.15	1.95		
ow Channel Height(Ave.)	m	2.0	1.2	1.0	1.0	1.0		

River: AMBAYOAN RIVER Design Flood: 25-yr

			Ambayoan R	•		* · · · ·
Item		AG461- AM444+0.5K	AM444+0.5K - AM448K	AM448- AM451+0.4k	· * * * * * * * * * * * * * * * * * * *	
Design Discharge	m3/s	1350	1350	1350		
istance	∞ m	1800	3550	3350		
Gradient of River Bed	-	1/390	1/205	1/150		guita de la companya
River Width	m	400	400	400		
lidth of Channel Bed	m	50	50	50		
Oike Height(Ave.)	m	3.9	1.9	1.7		
later Depth	m	5.2	3.4	3.2		
Low Channel Height(Ave	.) m	2.8	2.5	2.5	19.	

River: CAYANGA-PATALAN-ANGALACAN RIVER Design Flood: 10-yr (with Closure Dike)

		Cayanga R.	Patalan R.	er i	Anga lacan	River	
Item	Unit	R.M - Bued R.	Bued R Aloragat R.	Aloragat R. - 21.0k	21.0k- Maraboc	Maraboc - 27.0k	27.0k - Bugayong
Design Discharge	m3/s	1500	800	400	400	280	280
Distance	: m	6500	8300	6200	2800	3200	3300
Gradient of River Bed		1/1300	1/1100	1/650	1/460	1/460	1/230
River Width	m	500	200	150	120	100	80
Width of Channel Bed	m	40	30	25	25	20	20
Dike Height	· m	1.9	2.1	0.3	0	0	. 0
Water Depth	m	7.4	6.1	4.5	4.1	3.8	3.2
Low Channel Height	m	6.5	5.0	5.0	5.0	5.0	4.0

		Anga laca	n River			· .	
Item	Unit	Bugayong -KILLO Br.	Killo Br. -37.5k				
Design Discharge	m3/s	190	190				
Distance	m	2700	4500				
Gradient of River Bed	· · · <u>-</u>	1/190	1/140	\$1.5 m			the strike
River Width	m	60	50	17.	V.		
Width of Channel Bed	m	15	15	TV			
Dike Height	m	0	0		•		
Water Depth	m	3	2.4				
Low Channel Height	m	4.0	3.0				1 1 1 1

River: BUED RIVER

Design Flood: 10-yr (with Closure Dike)

	1.11		Bu	ed River	. : 	:
Item	Unit	Junction -2.0 K	2.0 K - 4.0 K	4.0 K - NIA Dam	NIA Dam 11.9 K	11.9 K - 16.5 16.5 K 19
Design Discharge	m3/s	750	750	750	750	500 500
Distance	m	2000	2000	3300	4600	4600 3200
Gradient of River Bed	. -	1/400	1/280	1/170	1/143	1/140 1/70
River Width	m	400	400	400	400	400 400
Width of Channel Bed	m	30	20	20	20	20 20
Dike Height	m	1.9-1.1	2.1	1.9	1.4	1.2
Water Depth	m	7.4-5.1	4.6	2.9	1.9	1.7
Low Channel Height	m	5.0	3.5	2.0	1.5	1.5

Table 8.3(2/3)

FEATURES OF DESIGN CHANNEL OF ALLIED FOR LONG TERM PLAN

River: ALORAGAT RIVER

Design Flood: 10-yr (with Closure Dike)

	ALORAGAT RIVER							
Item	Unit	Junction -7.0k	7.0k- 11.5k	11.5k- 17.0k	17.0k- 19.7k	:		
Design Discharge	m3/s	300	300	150	100	- to m up m = 10 fr fr	b = = = # # # # = = = = ;	
Distance	m	7000	4500	5500	2700		40.7	
Gradient of River Bed	~ 1.	1/680	1/355	1/335	1/185	•	1	
River Width	m :	90	-80	50	45			
Width of Channel Bed	m	30	20	10	10			
Dike Height	m	1.6-0.0	0.0	0.3	0.8		1.00	
Water Depth	m	6.1-3.2	3.2	3.2	2,2			
Low Channel Height	m	5.5	5.0	3.5	2.0			
The second secon	m	5.5	5.0	3.5	2.0			

River: PANTO-MARUSAY-SINOCALAN-TAGUMISING RIVER

Design Flood: 10-yr (w/o Floodway)

As a second second		PANTO R.	MARUSAY F			NOCALAN F	
Item	Unit	R.M - Dagupan l	Dagupan R. R4.0K	4.0k - Ingalera R.	Ingalera R18.0k	18.0k- 25.5k	25.5k - ∞Mitura R.
	m3/s		1250	1250		⊹ 650	
Distance	m	2500	1500	4300	9700	7500	5500
Gradient of River Bed	-	1/1750	1/1750	1/1750	1/1750	1/1450	1/1100
River Width	m:	400	120	220	220	150	100
Width of Channel Bed	m	60	60	40	30	30	25
Dike Height	m -	2.7	2.6	2.6	2.4	2.4	2.0
Water Depth	n,	7.2	7.1	7.1	6.9	6.9	6.0
Low Channel Height	m	5.5	5.5	5.5	5.5	5.5	5.0

			TAGUMISING R.	. ja 43a.	
Item		Mitura R. -36.7k	36.7k- Sta. Maria	Sta. Maria -43.5k	
Design Discharge	m3/s	160	160	120	***************************************
Distance	m	5700	4700	2100	4
Gradient of River Bed		1/700	1/430	1/350	$\label{eq:continuous} \mathcal{A} = \mathcal{A} = \{ (1, 2, \dots, 2, 2, \dots, 2$
River Width	m	100	⁰ 80	80	
Width of Channel Bed	m	10	10	10	
Dike Height	m	: 0	0	0	
Water Depth	m	4.0	3.3	3.0	and the second second
Low Channel Height	m	5.0	4.5	4.5	

Table 8.3(3/3)

FEATURES OF DESIGN CHANNEL OF ALLIED FOR LONG TERM PLAN

River: DAGUPAN RIVER Design Flood: 10-yr

	ere commence de la co	DAGUPAN R.	SAN JUAN R.		ELANG R.		
Item	Unit	Junction -7.5k	7.5k- 12.7k	12.7k- Erang R.	San Juan - 27.6k		 m 10 st st 10 to
Design Discharge	m3/s	700	550	390	190	 	
Distance	m	7500	5200	9000	5900		
Gradient of River Bed		1/5000	1/5000	1/5000	1/5000		
River Width	m	250	100	100	50		100
Width of Channel Bed	m	60	30	20	15		
Dike Height	m	2.7	3.2	3.3	2.3		
Water Depth	m	7.2	7.2	7.0	6.0		100
Low Channel Height	m	5.5	5.0	4.5	4.5		

River: INGALERA RIVER Design Flood: 10-yr

			INGA	LERA RIVER		ration at the second
	Unit	-Ma las igu i		32.0k	San Nicolas	
Destan Discharge	m3/s		260	150	150	80
Distance	m	13300	12700	6000	4000	1500
Gradient of River Bed		1/3600	1/1800	1/1000	1/700	1/700
River Width	ra .	100	60 -	50	50	40
Width of Channel Bed	m	15	12	8 -	8	6 1 1 1
Dike Height	m.	2.4	0.5	0.0	0.6	0.3
Water Depth	m	7.1	5.8	4.3	4.0	3.2
Low Channel Height	W	5.5	5.5	5.0	4.0	3.5
			1 1	1 2 2 2		<u> </u>

River: MITURA-MAGALONG RIVER

Design: Flood: 10-yr

		MITURA R.		MAGALONG	RIVER	
Item	Unit	Junction -5.3k	5.3k- Taboy	Taboy -	19.0k - 21.0	
Design Discharge	m3/s	130	130	90	70	
Distance	m	5300 .	8900	4800	2000	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Gradient of River Bed	_	1/800	1/460	1/460	1/250	a Park a salabah
River Width	m	50	40	35	30	(1) 编译 (1) (2) (4)
Width of Channel Bed	m	10	8	6	4	Color Carrier The Field
Dike Height	ro	2.0-0.0	0.3	0.4	0.5	The feet graph
Water Depth	m	6.0-3.8	3.7	3.3	2.9	in a single service of the service o
Low Channel Height	m	5.0	4.0	3.5	3.0	Same her bereit, hydr

Table 8.4 (1/2) WORK QUANTITIES OF RIVER IMPLOVEMENT OF AGNO RIVER FOR LONG TERM PLAN

River : Main Agno
Study : Long Term Plan (River Improvement and Natural Retarding Basin)
Return Period : 25 - year

							Alver Hain S						
Work Item	Unit		Lower Agn	o River		Po	ponto Streto	h		Upper Agn			Total of
tu			*AG045-AG122			Bayanbang Stretch	Poponto Floodway	Sub-total	AG309-AG351	AG351-AG405		Sub-total	Agno River
(i) Excavation 1	cu.m	0		7,100,000		650,000	5,440,000	6,090,000	1,900,000	1,400,000	0	3,300,000	21,823,000
Excavation 2	cu.m	0	0	0	- 0	0	0	. 0	. 0	0	2,850,000	2,850,000	2,850,000
Totoal of (1)	Cu.m	0	5,333,000		12,433,000	650,000		5,090,000	1,900,000	1,400,000	2,650,000	6,150,000	
(2) Oredging (3) Embanament 1	Cu,II	5,770,000	7,257,000	0	13,027,000	0	. 0	. 0	G	0	0	. 0	13.027,00
Left Dike	CU.M	. 0	. 0	1,440,000	1,440,000	84,300	133,700	218,000	77,700	236,000	0	313,700	1,971,70
Right Dike	cu.m	ō	. 0	625,000	625,000	84,300	953,300	1,037,600	66,600	167.000	0	533,600	2,196,20
Embankment 2			•	010,000	,		200,000	.,,			•	4501041	
Left Dike	cu.m	862,000	5,950,000		6.812.000	0	0		0	0	240,000	240,000	7,052,00
Right Dike	CA'2	798,000	752,000	ů.		0	0	. 0	ů	0	2,500,000	2,500,030	4,050,00
fotoal of (3)	ÇU.EI	1,650,000	6,702,000		10,427,000	168,600	1,087,000	1,255,600	144,300	703,000	2,740,000	3,587,300	
(4) Sodding	Cu.m	524.000	1,440,000	756,000	2,720,000	74,200	310,500	384,700	703,500	655,500	366,000	1,725,000	4,829,70
(5) Revetment (L.W.C.)	CUAR	324,000	1,440,000	130,000	£,720,000	74,200	310,300	304,700	102,100	033,300	300,000	1,723,000	4,023,10
	50.13	16,000	24,000	0	40,000	3,150	59,800	62,950	32,800	24,400	75,100	132,300	235,25
Type-A		10,000		58,600	130,200	4,670			32,000	24,400	75,100		134,87
Type-B	. sq.∞	. •	71,600	30,000	130,200	4,010	. 0	4,070	. •	. •	U	v	134,07
Revetment (M.W.C.)		. 0	0	0	0	0	0	0	30,500	13,400	13,600	57,500	\$7.50
Type-A	26.10		-	11.600	47,800	. 0	38,100	38,100	10,500	13,400	13,000	0/,500	85,90
Type-B	\$Q.M	14,400 30,400	21,600 117,200	70,490	218,660	7,320	97,900	105,720	63,300	37,800	68,700		513,52
foliat of (5)	50.0	30,400	117,200	70.400	210,000	,,,020	97,900	103,720	03,300	37,000	00,700	109,000	313,32
(6) Grain (L.W.C.)	pc.	59	277	124	460	. 0	. 0	0	114	- 84	0	198	65
Type-8	pc.	0		0	. 0	i. 0	0	ě		0	0		
Groin (H.W.C.)	рс.		·	·	. •		•	•	•	•	·	_	
Type-A	. pc.	. 0		. 0	. 0	n	0		0	0	148	148	14
Type-9	DC.	0		ó	Ö	. 0	. 0	ň	ō	ŏ	152		1
Totoal of (6)	pc.	59	211	124	460	Ö	. 0	ŏ	114	84	300		
(7) Stutce Way	P		A 105				_	•		-			_
Type-A	pc.	0	. 0	2	2	1	1	2	0	2	1	3	
Type-0	pc.	. 0		2	8	n	. 0	0	ß.	0	ι	1	
Total of (7)	pc.	o	6	. 4	10	i	1	2	0	_	2		1
(B) Water Gate	,			•		-	•	7	•	-	•		•
Type-A	pc,	0	. 0	0	0	. 0	G	n	0	. 0	0	. 0	
Type-8	pc.	2	, 0	ō	-	. 0	0	6	ŏ	_	0		
Totoal of (8)	pc.	2	. 0	. 0		ň	. 0	ů	ō		ū		
(9) Bridge	pc.		Ū	•		v	٠	·	v				
		22,500	11 000	11 250	45,600	û	0		6,750	^			
Revily Const. Rehabilit.	sq.a	22,500	11,850 G	11,250 0		. 0	0	0	0,150		0	6,750 0	52,3
	26-18	. 0		U	U	. ,	U	U	v	٠, ٧	v		
Deno l ishecut							0	1	3	: 0	_		
Concrete	CU.N	3,400	1,480	1,400		0	-	0	3,800	•	C		10.6
Hetai	ton	510	550	0		. 0	0		1,300		0	-,	
10) Fixed Welr	pc.	0	0	0	-	Ü	1	Ť	-	•	•	_	
(11) Gihers	Ł.Ś	0	0	0	Ų	Ų	0	ų.	0	0	0	· u	

Table 8.4 (2/2) WORK QUANTITIES OF RIVER IMPLOVEMENT OF AGNO RIVER FOR LONG TERM PLAN

River

: Tarlac/other tributaries : Long Term Plan (River Improvement and Natural Retarding Basin) Study

Return Portod : 25 - year

		•	Tarlac Rive	r : 1		Tribut	aries of Agno	River	
Hork Item	Unit	AG180-TA200 (Confluence)	TA200-TA265	Total of Tarlac River	Camiling River	Banila River	Viray-Dipalo River	Ambayacan River	Total of Tributaries
(1) Excavation 1	cu.m	2,600,000	1,700,000	4,300,000	414,000	478,000	185,000	0	1,077,000
Excavation 2	Cu.m	0	. 0	0	. 0	38,000	0	85,000	123,000
Total of (1)	cu.m	2,600,000	1,700,000	4,300,000	414,000	516,000	185,000	85,000	1,200,000
(2) Dredging	cu.m	0	0	0	0	0	0	0	, (
(3) Embankment 1									
Left Dike	Cu.m	558,000	315,500	873,500	467,600	623,500	42,000	134,200	1,267,300
Right Dike	Cu.m	0	481,600	481,600	424,400	680,900	60,200	140,400	1,305,900
Embankment 2			·	•		·	•		1 1 1 1
Left Dike	cu.m	0	0	0	. 0	7,800	. 0	0	7,800
Right Dike	cu,m	0	o	0	Ö	0	0	0	
Total of (3)	cu.m	558,000	797,100	1,355,100	892,000	1,312,200	102,200	274,600	2,581,000
(4) Sodding	cu.m	437,800	979,800	1,417,600	441,400	739,000	119,200	152,400	1,452,000
(5) Revetment (L.W.C.)			-						
Type-A	sq.m	18,400	58,300	76,700	48,100	67,000	39,700	15,900	170,700
Туре-В	sq.m	12,100	0	12,100	. 0	0	0	3,500	3,500
Revetment (H.W.C.)				2.5					3
Type-A	sq.m	0	6,800	008,3	10,500	. 0	200	3,800	14,500
Туре-В	sq.m	0	0	0	0	6	. 0	0	(
Total of (5)	m.pz	30,500	65,100	95,600	58,600	67,000	39,900	23,200	188,700
(6) Groin (L.W.C.)	•				1.5		1.	•	
Type-A	рс.	0	244	244	276	420	286	88	1.070
Туре-В	pc.	. 0	0	0	0	0	0	0	
Groin (H.H.C.)						4	•		
Type-A	рс	0	0	0	0	. 0	0	0	(
Туре-В	pc.	Q	0	. 0	. 0	0	0	0	. (
Total of (6)	pc.	0	244	244	276	420	286	88	1,070
(7) Sluice Hay	-								
Туре-А	pc.	. 0	2	2	1	14	4	4	2
Type-B	pc.	0	0	0	3	0	. 0	. 0	
Total of (7)	рс	0	2	2	. 4	14	4	4	20
(8) Water Gate					4.4	€**-		·	
Type-A	pc.	0	. 0	. 0	0	. 0	0	. 0	
Type-B	pc.	. 0	0	0	0	0	0	0	. (
Total of (8)	pc.	0	. 0	0	5 70	0	0	0	(
(9) Bridge	•								•
Newly Const.	sq.m	0	13,500	13,500	2,300	8,600	6,200	3,000	20,10
Rehabilit.	sq.m	0	0	0	0	0	. 0	0	
Demolishment									
Concrete	cu.m	0	2,500	2,500	1,100	2,300	600	200	4,20
Metal	ton	0	0	. 0	. 0	0	. 0	0	4
(10) Fixed Weir	pc.	.0	.0	0	0	0	0	0	
(11) Others	L.S	0	0	0	0	. 1	. 0	0	

(File cord : WQ/TAL25)

WORK QUANTITIES OF RIVER IMPLOVEMENT OF Table 8.5 ALLIED RIVER FOR LONG TERM PLAN

River

: Allied River

Study : Long Yerm Plan (River Improvement with Sued Closure Dike/without Binalonan Floodway)
Raturn Period : 10 - year

			Alited River									
Work Item	Unit			Panto - Sino				Cayanga - Patalan River				Aliled River
		*Panto- Sinocalan R.	Dagupan River	ingatera River	Hacalong River	Binalonan Floodway	Sub-total	**Cayanga- Patalan R.	Bued River	Aloragat River	Sub-total	
(1) Excavation 1	Cui.M	1,925,000	702,000	1,395,000	194,000	0	4,216,000	1,254,000	183,600	216,000	1,653,800	5,869,80
Excavation 2	cu.m	0	0	0	.0	0	0	o o	188,000	0	188,000	188,000
Total of (1)	cu,m	1,925,000	702,000	1,395,000	194,000	- 0	4,216,000	1,254,000	371,800	216,000	1,841,800	6,057,80
(2) Dredging	Ca*#	38,000	0	0	0	0	38,000	260,000	0	0	260,000	298,00
(3) Embankment 1												
Left Blke	CH.W	618,400	967,900	384,000	35,500	0	2,005,800	288,700	33,000	0	321,700	2,327,50
Right Dike Embankment 2	cu.m	618,400	967,900	384,000	35,500	0	2,005,800	288,700	33,000	0	321,700	2,327,50
Left Dike	cu.m	. 0	Q	0	0	0	0	0	23,700	0	23,700	23,70
Right Dike	cu.m.	0	. 0	. 0	0	0	0	0	\$1,100	0	51,100	51,10
Total of (3)	çů.m	1,236,800	1,935,800	768,000	71,000	0	4.011.600	577,400	140,800	0	718,200	4,729,8
4) Sodding	Cu,m	628,000	995,000	520,000	64,000	0	2,207,000	231,100	97,200	0	328,300	2,535,3
5) Revetment (L.W.C.)			1.00					1.0				
Type-A	sq.m	73,000	30,400	18,900	20,900	0	143,200	75,200	39,700	40,800	155,700	298,9
Type-8	sq.m	38,000	40,300	124,200	0	. 0	202,500	30,300	0	0	30,300	232.8
Revetment (H.W.C.)												
Type-A	sq.m	27,200	0	0	0	0	27,200	5,800	1,500	0	7,300	34,5
Type-B	sq.m	. 0	0	0	0	0	0	0	0	0	. 0	
Total of (5)	sq.m	138,200	70,700	143,100	20,900	0	372,900	111,309	41,200	40,890	193,300	556,2
6) Groin (L.W.C.)											-	
Type-A	pc.	556	100	242	54	0	952	542	281	272	1,095	2,0
Type-B	pc.	. 0	Û	0	, 0	, 0	0	0	0	0	0	
Groin (H.Y.C.)												
Type-A	pc.	. 0	0	. 0	0	0	, , 0	0	O 15 1	0	0	
Type-B	pc.	. 0	0	0	0	0	. 0	0	0	0	0	
Total of (6)	pc.	556	100	242	54	0	952	- 542	281	272	1,095	2,0
7) Sluice Ray	- 1		1.1			* .		1000	3			
Type-A	рс.	16	4	8	8	0	36	10	. 6	0	16	
Туре-В	p¢.	0	3	0	. 0	0	3	0	0	. 0	0	
Total of (7)	pc.	16	ž	8	8	ŏ	39	10	6	. 0	16	
8) Water Gate	•		•	v	·	·		10	. •	. •	••	
Type-A	pc.	0	0	0	0	0	0	. 0	0	0	0	
Type-9	pc ·	ō	0	. 0	0	0	ō	o.		. 0	0	
Total of (8)	pc	0	0	0	0	0	ò	0.	0	0	G	
9) Bridge			17		•		·	19 A. 4 T.	- 1 1 1 T	<u>-</u>	•	
Hewly Const.	sq.m	8,000	0	3,900	38	. 0	11,938	1,210	3,000	263	4, 473	16,4
Rehabilit. Sexulishment	zd-u	338	3,905	0	193	0	4,435	2,678	0	0	2,678	7,1
Concrete	cu.m	4,590	1,200	1,700	470	0	7.950	1,700	300	200	2,200	10,1
Heta I	ton	0	0	0	0	. 0	0	0	. 0	0	0	
0) fixed Weir	pc.	ŏ	ū	Ŏ	Õ	0	ō	0	ō	. 0	0	
1) Others	L.S	0	: 0		ŏ	-	- Q	0	. 1	ō	i	

Remarks: * Panto-Sinocalan River Consists of Panto, Marusay, Sinocalan, lagumising and Tuboy Rivers.

(File cord : NQ-ALE10)

** Cayanga-Patalan River consists of Cayanga, Patalan and Angalacan Rivers.

Table 8.6 PROJECT FINANCIAL COST OF AGNO RIVER FOR LONG TERM PLAN

(Unit: 1,000 Pesos)

River	F.C.	L.C.	Total
I. Agno River		. 44 25 44 26 46 46 46 46 46 46 46 46 46 46 46 46 46	
1. Lower Agno River		•	
(1) RM-AG045	955,609	679,183	1,634,792
(2) AG045-AG122	1,958,053	963,113	2,921,166
(3) AG122-AG282	979,063	519,039	1,498,102
Sub-total of 1	3,892,725	2,161,335	6,054,060
2. Poponto Stretch			
		4.54	
(1) Bayambang Stretch	76,139	53,450	129,589
(2) Poponto Floodway	685,298	312,500	997,798
Sub-total of 2	761,437	365,950	1,127,387
3. Upper Agno River			
(1) AG309-AG351	299,418	225,551	524,969
(2) AG351-AG405	222,559	155,322	377,881
(3) AG405-AG473	871,344	429,655	1,300,999
Sub-total of 3	1,393,321	810,528	2,203,849
Total of I	6,047,483	3,337,813	9,385,296
II. Tarlac River			
(1) AG180-TA200	456,111	184,589	640,700
(2) TA200-TA265	446,532	333,839	780,371
Total of II	902,643	518,428	1,421,071
III. Agno River Tributary			
(1) Camiling River	225,737	161,015	386,752
(2) Banila River	459,202	314,534	773,736
(3) Viray-Dipalo River	150,801	149,433	300,234
(4) Ambayoan River	101,274	78,013	179,287
Total of III	937,014	702,995	1,640,009
GRAND TOTAL (I+II+III)	7,887,140	4,559,236	12,446,376

(CF-LG25A)

Table 8.7 PROJECT FINANCIAL COST OF ALLIED RIVER FOR LONG TERM PLAN

(Unit: 1,000 Pesos)

	River	F.C.	Ł.C.	Total
I. Pan	to-Sinocalan River			
(1)	Panto-Sinocalan River	539,589	376.417	916,006
(2)	Dagupan River	379,441	207,483	586,924
(3)	Ingalera River	334,582	219,499	554,081
(4)	Macalong River	57,757	45,235	102,992
(5)	Binalonan Floodway	0	0	0
	Sub-Total I.	1,311,369	848,634	2,160,003
I. Cay	anga-Patalan River			
· (1)	Cayanga-Patalan River	338,684	262,748	601,432
(2)	Bued River	214,179	161,985	376,164
(3)	Aloragat River	61.882	86,802	148,684
	Sub-Total I.	614,745	511,535	1,126,280

(CF-LG25B)

River:Agno River Design Flood: 100-yr

				Agi	no R.	
ltem	Unit	RM - AG45		AG45 - AG65	AG65 - AG109	AG109 - AG177
Design Discharge	m3/s	13800		13800	13800	12700
Distance	103	6850		9050	15150	10500
Gradient of Channel Bed	_	1/6500		1/6500	1/3500	1/2000
liver width	m	400-300		1500	1500	1500
lidth of Channel Bed	m	100		300	240	200
ike Height (Ave.)	m	4.9	garata.	5.5	6.6	6.0
ater Depth	m	8.73-9.75	- 9	.75-11.1	11.1	11.1-9.74
ow Channel Depth (Ave.)	m	6.5		6.5	6.5	6.5

		Agno R	Retarding 1>	Floodway	Bayanbang 2
Item	Unit	AG177 - AG181	AG181 - AG314	AG314 - AG320(Ъ)	AG282(b)- AG307
Design Discharge	m3/s	11200	~	8200	1000
Distance	m	2200	7100	3800	9640
Gradient of Channel Bed	_	1/2000	1/1600	1/1600	1/1850
liver width	m	1500	-	1200	250-1300
Hidth of Channel Bed	m	200	180	180	80-100
lke Height (Ave.)	113	5.6.	6.7	5.3	3.3
later Depth	m	9.74-9.56	9.56-7.80	7.8	8.5-4.1
Low Channel Depth (Ave.)	111	6.0	4.0	4.0	5.0

1>:Retarding Basin stretch

2>:Bayanbang Stretche of Agno R.

			Ag	no R.	•
Item	Unit	AG320(b)- AG351	AG351 - AG367	AG367 - AG414	AG414 AG453
Design Discharge	m3/s	9200	8200	8200	8200
Distance	m	15930	8170	8150	5330
Gradient of Channel Bed	· <u>-</u>	1/1600	1/1300	1/665	1/440
River width	m	900-1900	1250-3000	3000-2000	2000-1200
Width of Channel Bed	TIL	180	180	180	150
lke Height (Ave.)	m	5.3	4.6	3.9	3.4
Vater Depth	TÚ	7.8	7.8-5.4	5.4	4.9
Low Channel Depth (Ave.)	123	4.0	3.5	3.0	3.0

River:Agno River Design Flood: 100-yr

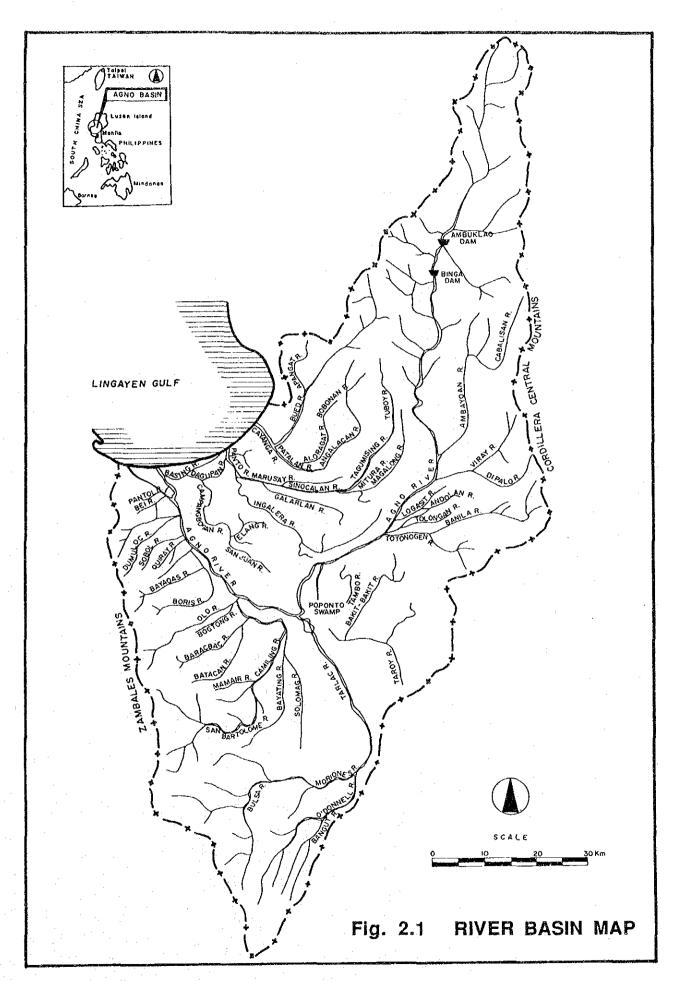
			R.		
Item	Unit	AG367 - AG460	AG460 - AG464	AG464 ~ AG469	AG469 - AG474
Design Discharge	m3/s	6400	6400	6400	6400
Distance	m	3120	1990	2420	2800
Gradient of Channel Bed	<u></u>	1/280	1/230	1/230	1/230
River width	m.	1500-3000	3000-2200	2200-1100	1100-300
Width of Channel Bed	10 .	150	150	150	150
Dike Height (Ave.)	m	2.5	2.5	3.1	3.4
Water Depth	m	4.0	4.0	4.0-6.3	6.3-7.5
Low Channel Depth (Ave.)	m	3.0	3.0	3.5	5.0

River:Agno River Design Flood: 25-yr

Item	Agno R.					
	Unit	RM - AG45	AG45 - AG65	AG65 - AG109	AG109 - AG177	
Design Discharge	m3/s	10100	10100	10100	9300	
Distance	m	6850	9050	15150	10500	
Gradient of Channel Bed	-	1/6500	1/6500	1/3500	1/2000	
River width	19	1500	(1500)	(1500)	(1500	
Vidth of Channel Bed	m	360-250	240	200	200	
Dike Height (Ave.)	IÚ.	4.2	4.8	5,4	4.8	
later Depth	m	8.2-9.2	9.2-10.4	10.4	10.4-9.1	
Low Channel Depth (Ave.)	m	6.5	6.5	6.5	6.5	

				1.5	and the second second
		Agno R	Retarding 1>	Floodway	Bayanbang 2>
Item		AG177 - AG181	AG181 - AG314	AG314 - AG320(b)	AG282(b)- AG307
Design Discharge	m3/s	8400	_	5200	600
istance	ta	2200	7100	3800	9640
radient of Channel Bed	_	1/2000	1/1600	1/1600	1/1850
iver width	100	(1500)	-	1200	250-1300
idth of Channel Bed	120	200	180	180	80-100
ika Height (Ave.)	Ţt3	4.4	4.7	4.2	2.3
ater Depth	m	9.1-8.7	8.7-6.7	6.7	7.8-3.8
Low Channel Depth (Ave.)	m	6.0	4.0	4.0	5.0

1>:Retarding Basin stretch	2>:Bayanbang	Stretchc	οf	Agno
----------------------------	--------------	----------	----	------


		Agno R.					
Item	Unit	AG320(b)- AG351	AG351 - AG367	AG367 - AG414	AG414 - AG453		
Design Discharge	m3/s	5800	5100	5100	5100		
Distance	m	15930	8170	8150	5330		
Gradient of Channel Bed	~	1/1600	1/1300	1/665	1/440		
River width	m	900-1900	1250-3000	3000-2000	2000-1200		
Width of Channel Bed	m	180	180	180	150		
Dike Height (Ave.)	m	4.2	3.7	3.2	2.9		
Water Depth	m	6.7	6.7-4.7	4.7	4.4		
Low Channel Depth (Ave.)	100	4.0	3,5	3.0	3.0		

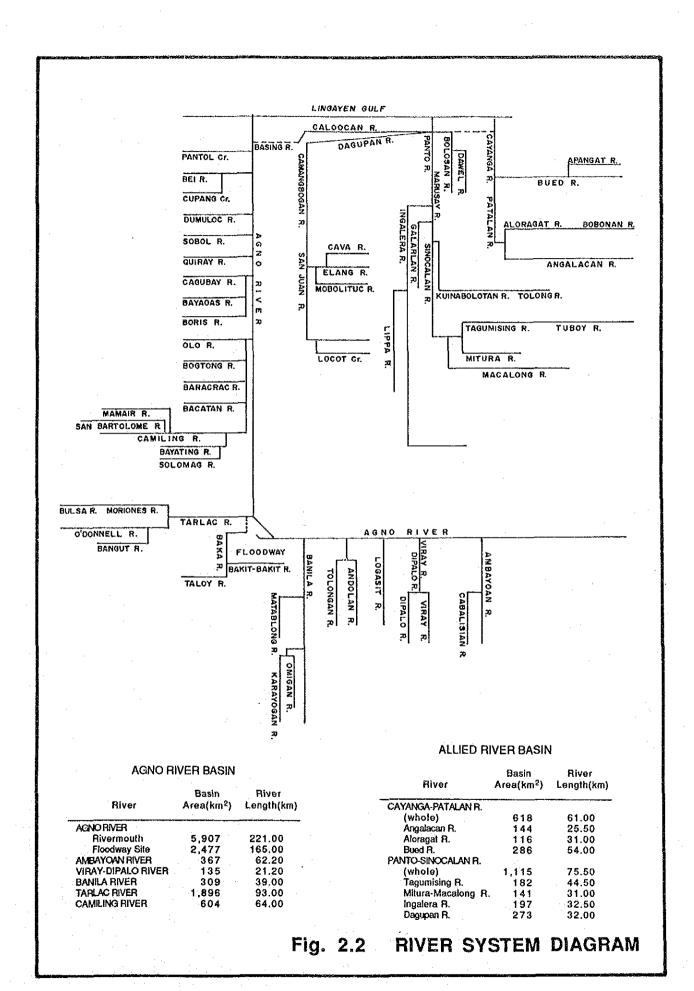
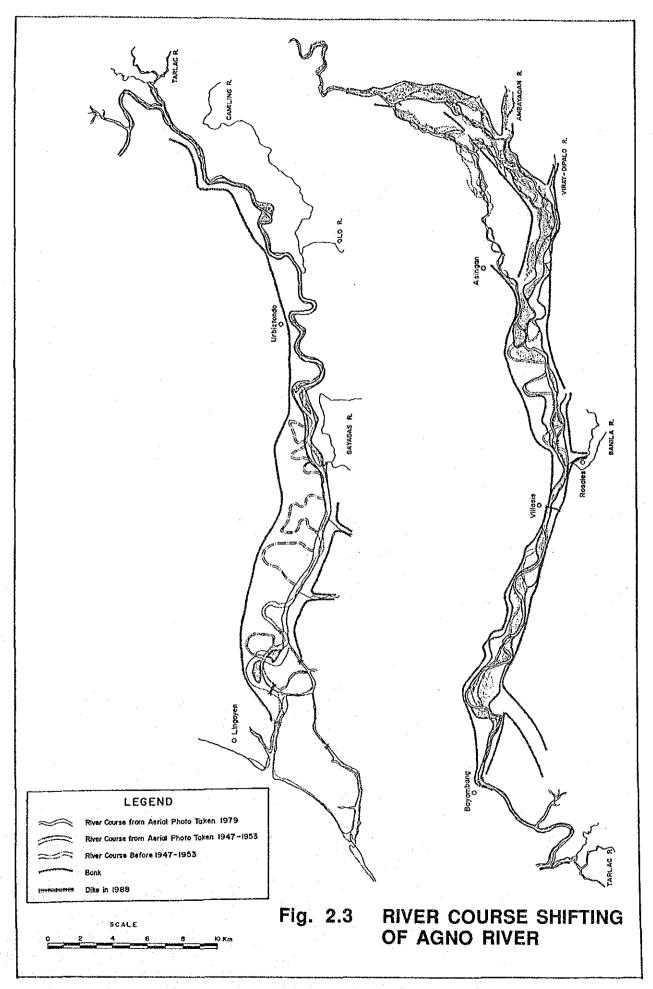
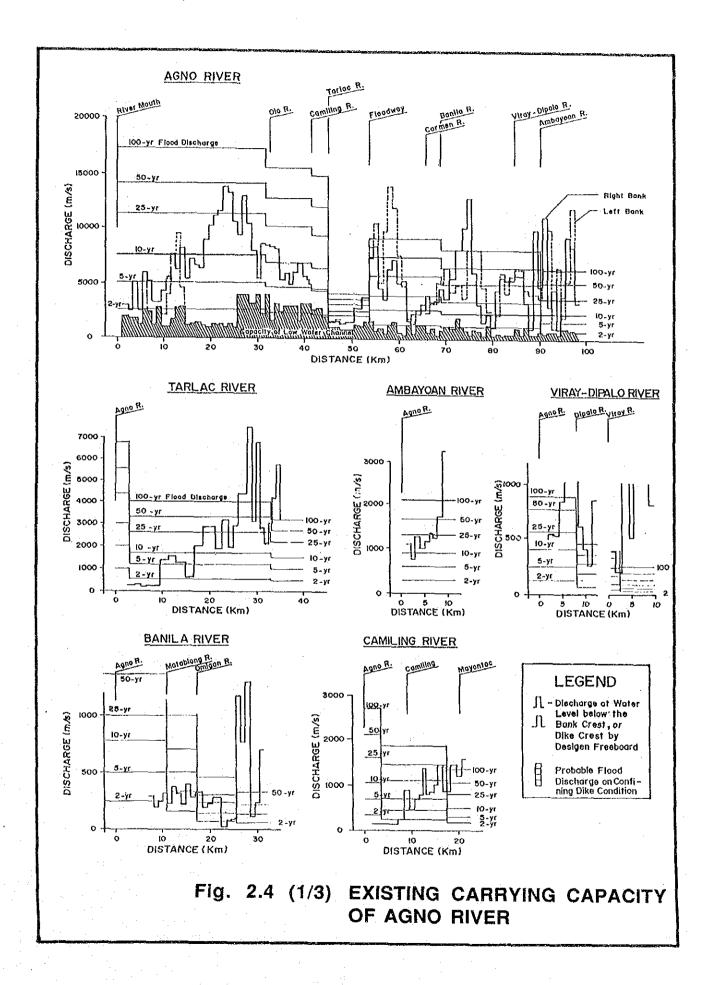
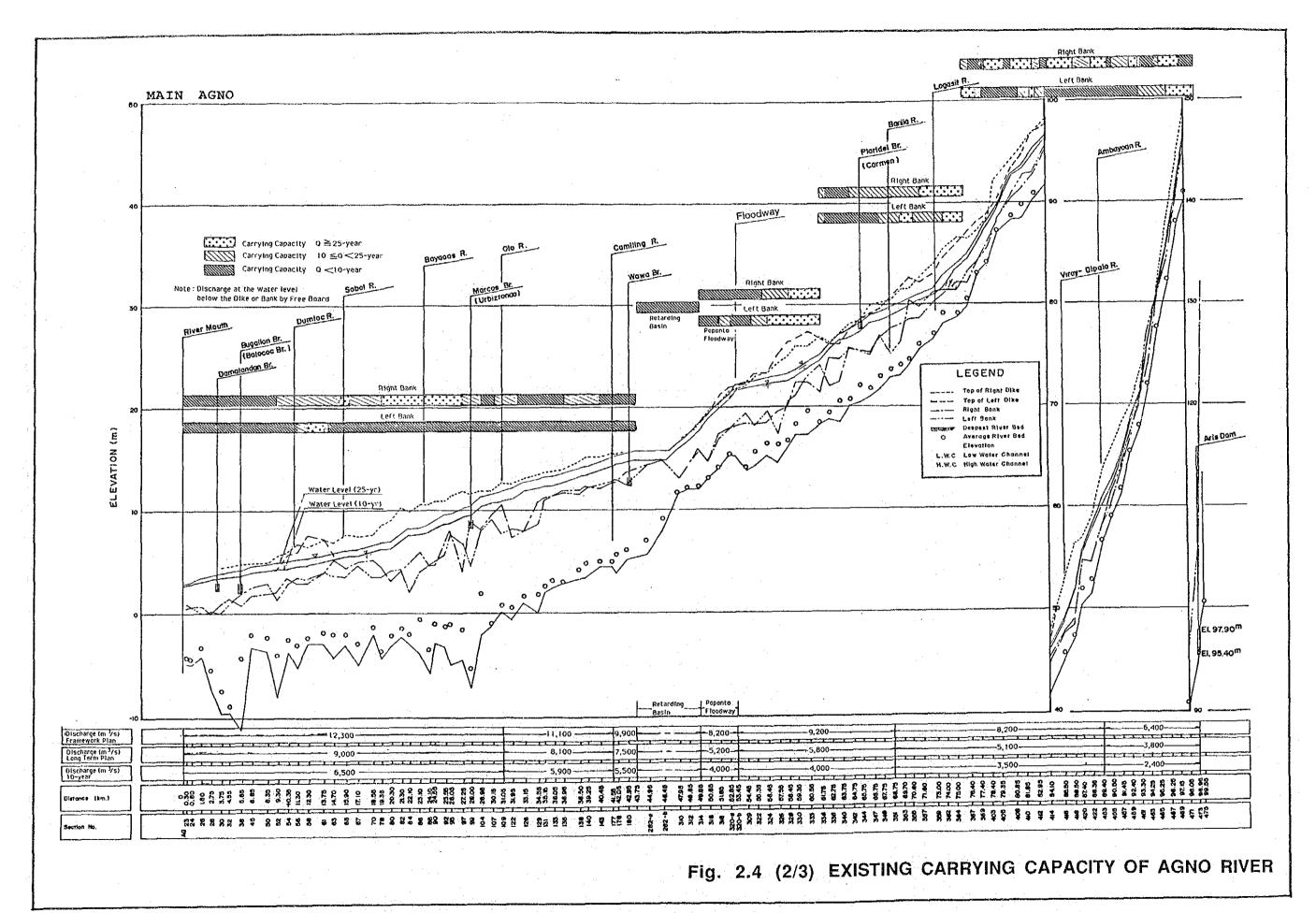
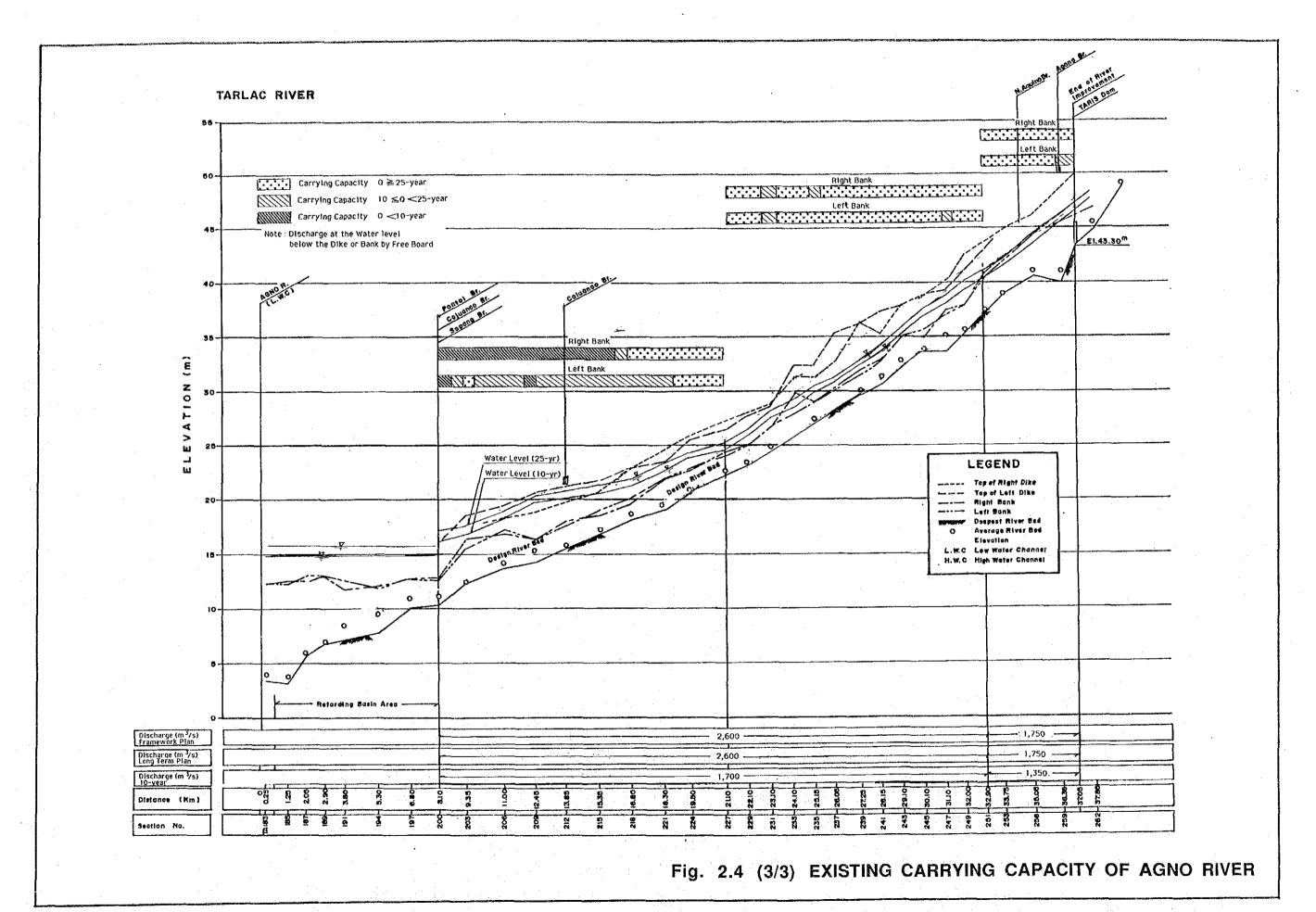

FEATURES OF DESIGN CHANNEL OF AGNO RIVER FOR LONG TERM PLAN

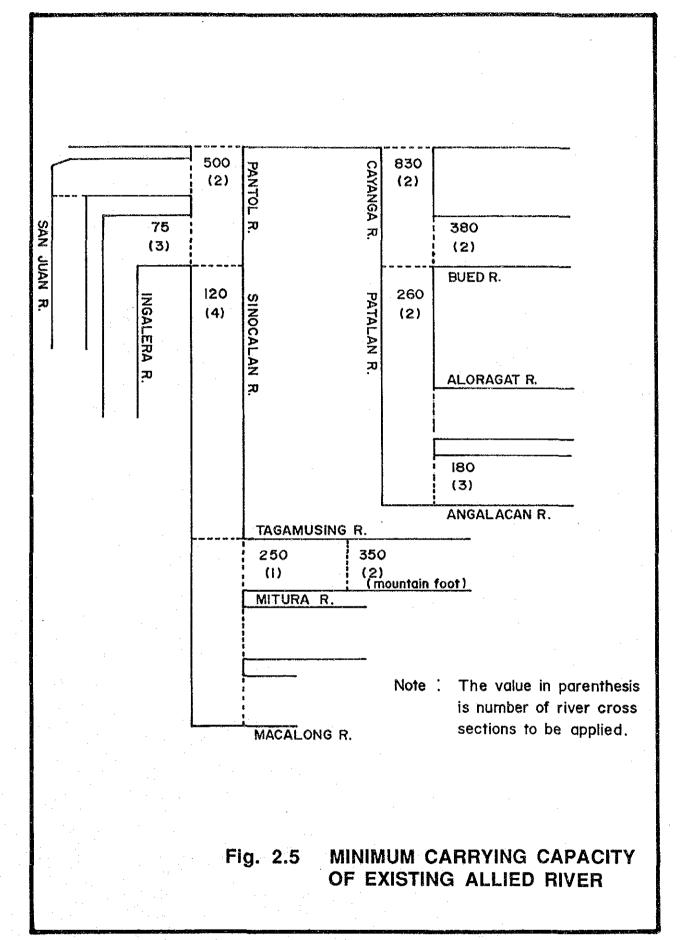
Table 9.2 (2/2)
River:Agno River
Design Flood: 25-yr

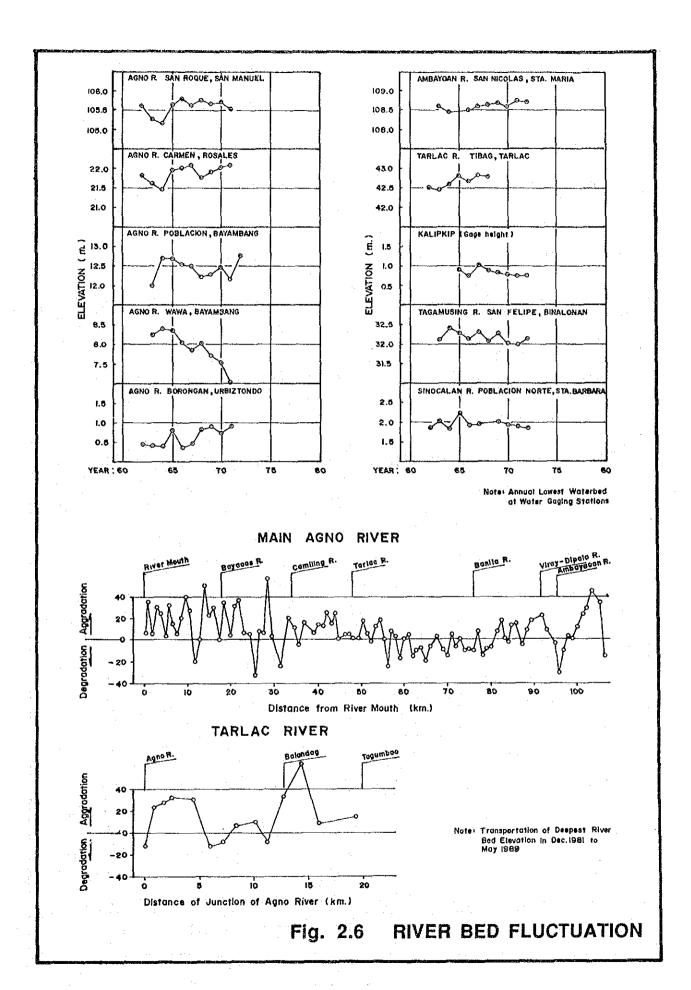

			Agno	R.	
Item	Unit	AG367 - AG460	AG460 - AG464	AG464 - AG469	AG469 - AG474
Design Discharge	m3/s	. 3800	3800	3800	3800
Distance	m	3120	1990	2420	2800
Gradient of Channel Bed	_	1/280	1/230	1/230	1/230
River width	m	1500-3000	3000-2200	2200-1100	1100-300
Width of Channel Bed	m	150	150	150	150
Dike Height (Ave.)	Dt.	1.8	1.8	2.2	2.0
Water Depth	m	3.6	3.6	3.6-5.4	5.4-6.3
Low Channel Depth (Ave.)	m	3.0	3.0	3.5	5.0

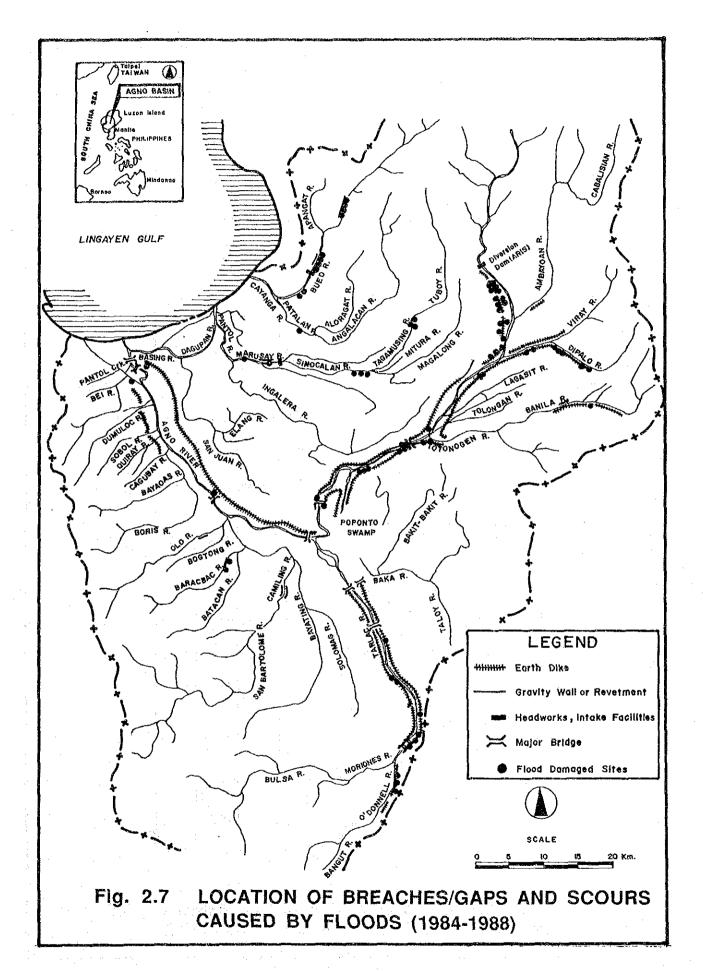

FIGURES






-RV.106-





-RV.113-

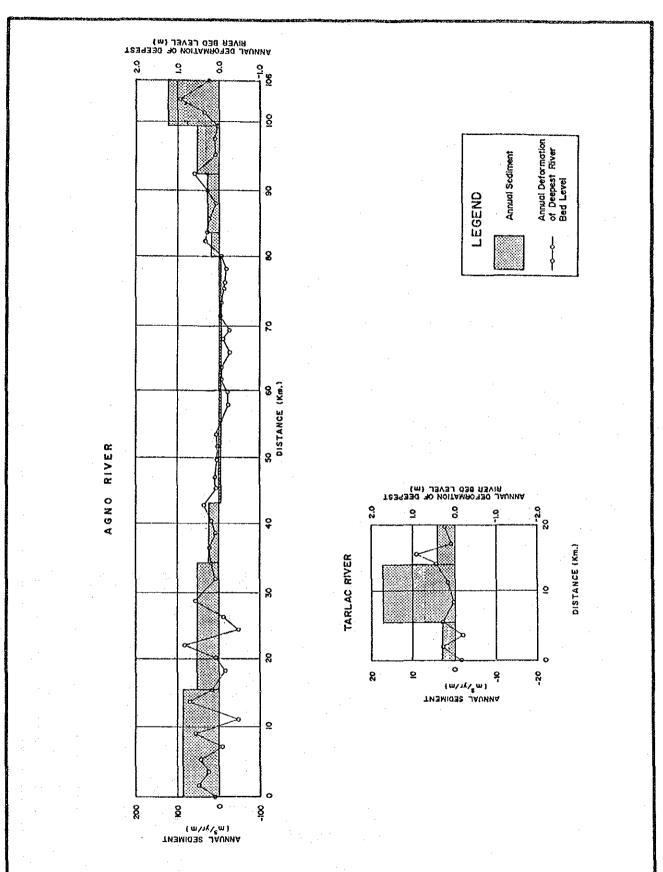
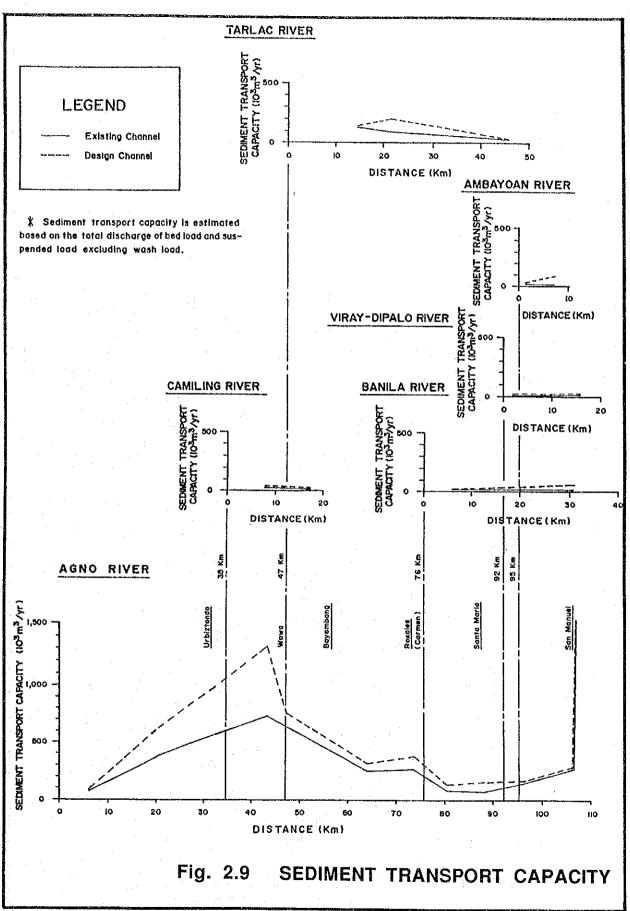
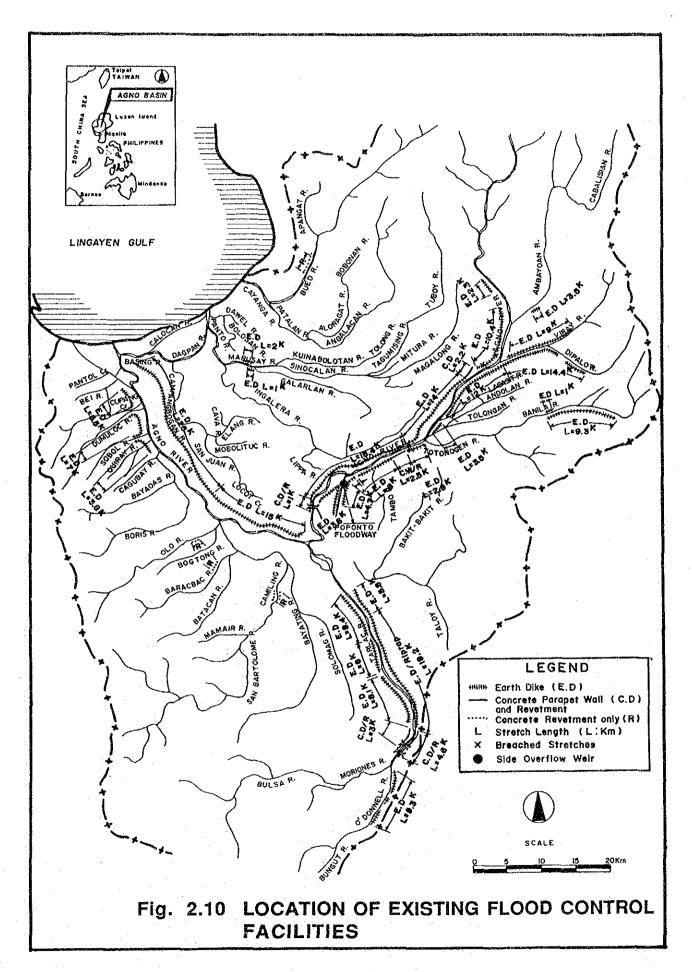
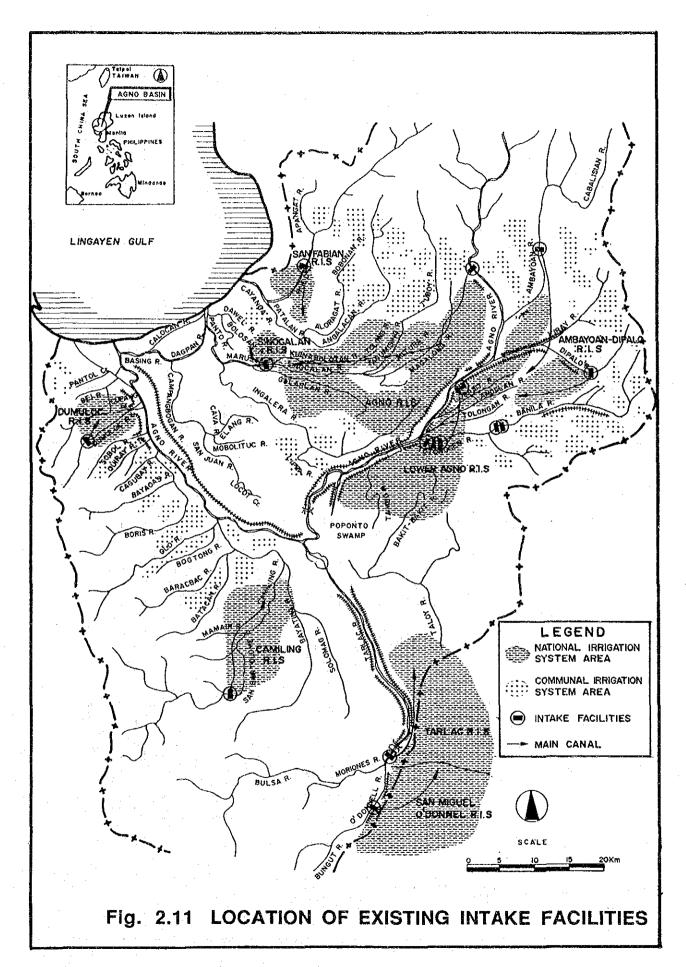





Fig. 2.8 ANNUAL SEDIMENT AND DEFORMATION OF DEEPEST RIVER BEDLEVEL OF EXISTING CHANNEL

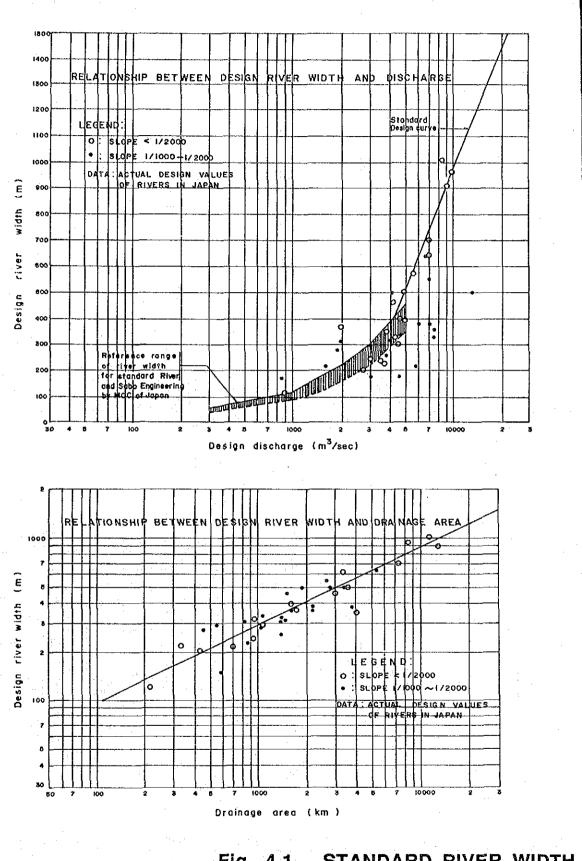


Fig. 4.1 STANDARD RIVER WIDTH

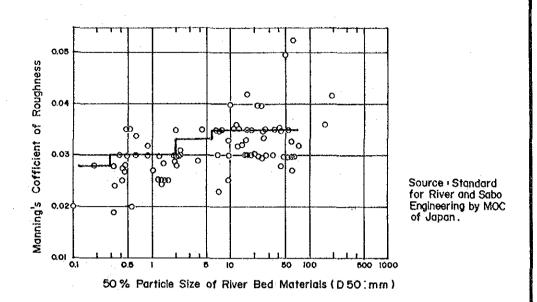
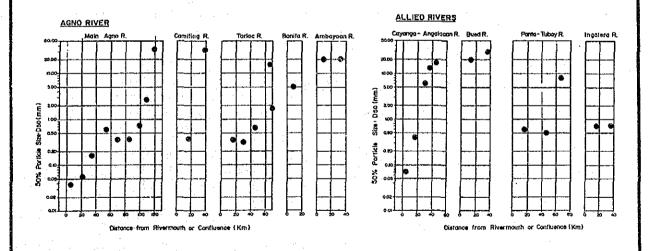
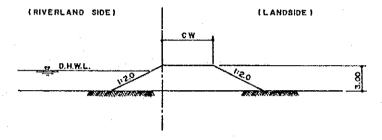
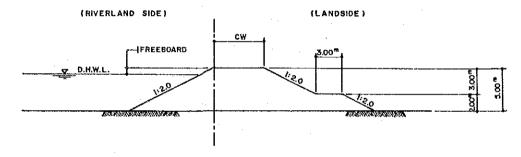


Fig. 4.2 RELATIONSHIP BETWEEN MAINNING'S COEFFICIENT AND SIZE OF RIVER BED MATERIALS

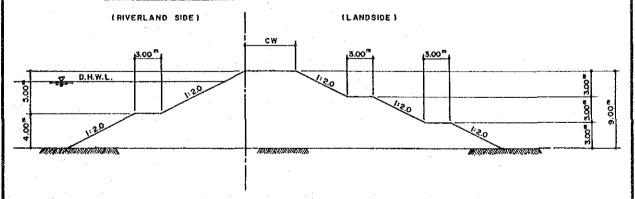
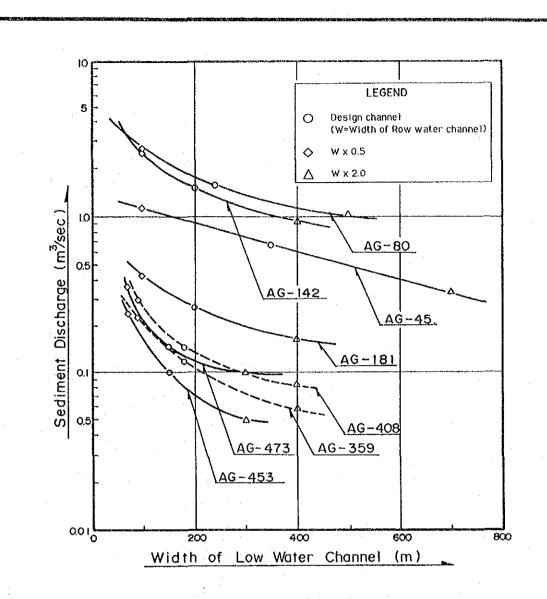
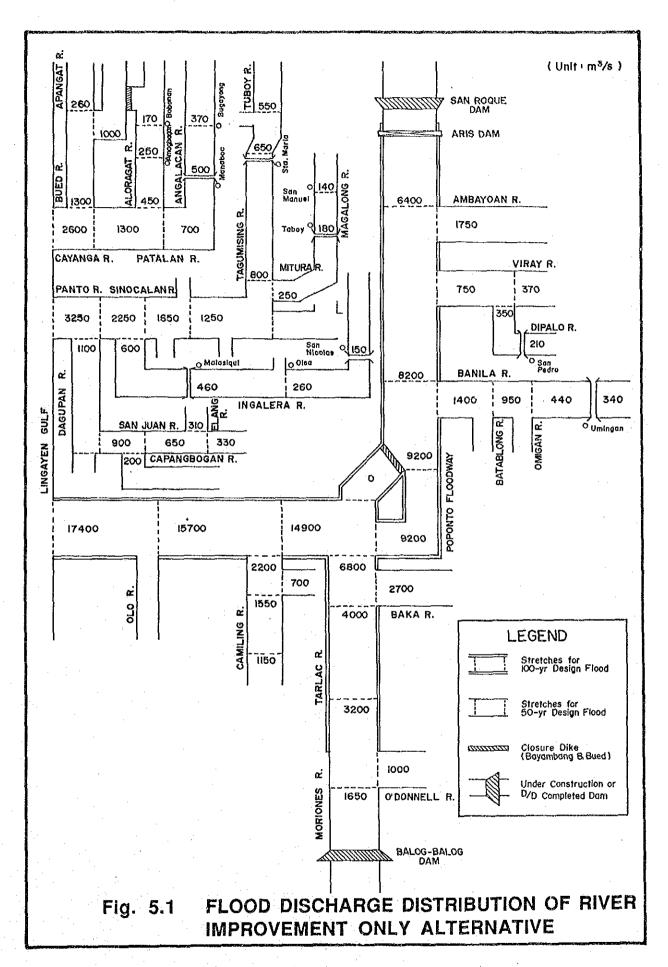

Fig. 4.3 PARTICLE SIZE OF RIVER BED MATERIALS OF AGNO AND ALLIED RIVERS

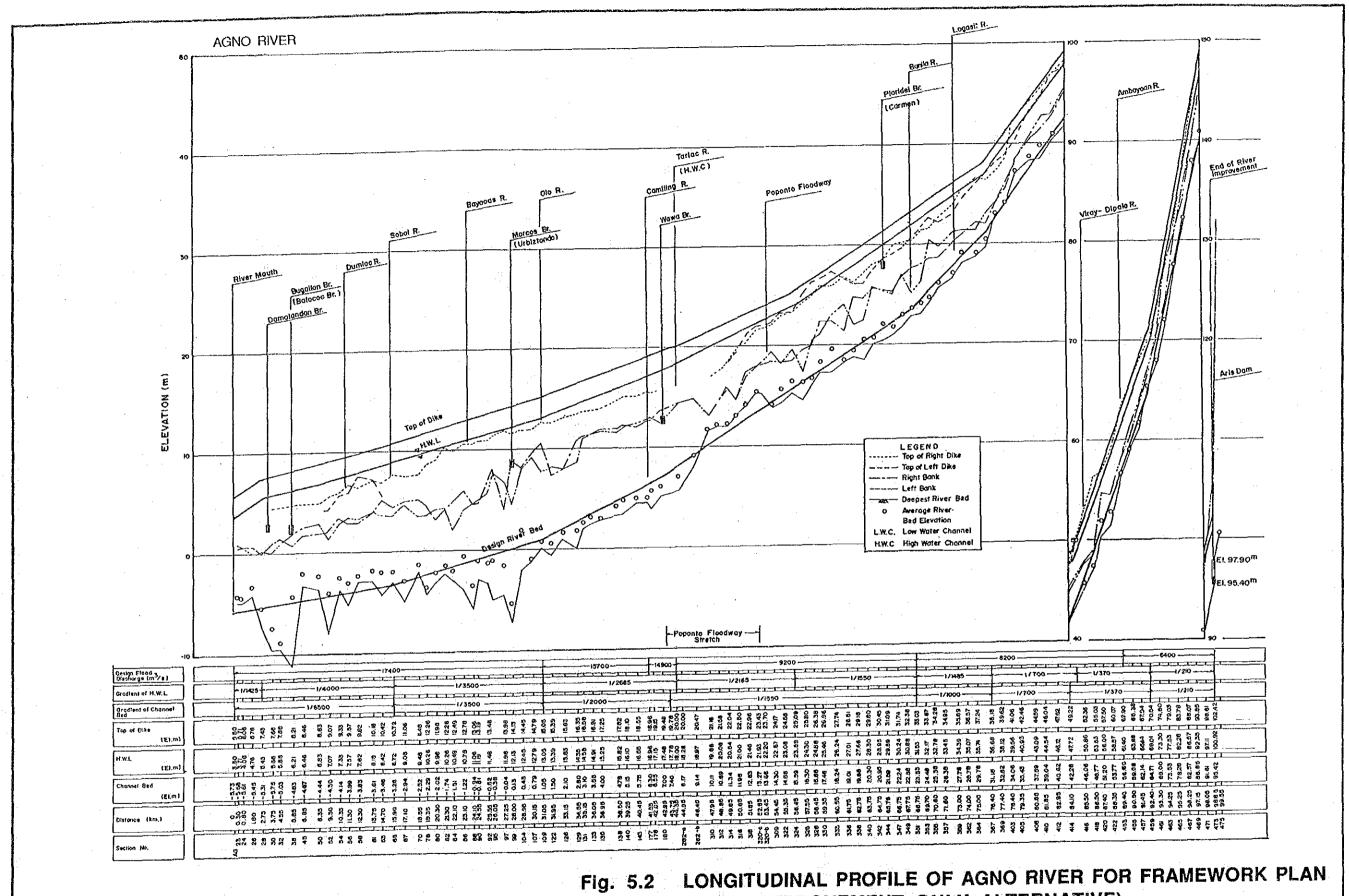
DESIGN DISCHARGE Q(m³/s)	FREEBOARD FB(m) NOT LESS THAN	CROWN WIDTH CW(m) NOT LESS THAN
< 200	0,60	3.00
200 ∿ 500	0.80	3.00
500 v 2,000	1,00	4,00
2,000 ∿ 5,000	1.20	5.00
5,000 10,000	1.50	6.00
10,000 <	2.00	7.00

DIKE HEIGHT + H ≤ 3.00 m

DIKE HEIGHT . 3.00 M < H ≤ 5.00 M

DIKE HEIGHT \cdot 5.00 M < H \leq 9.00 M


Fig. 4.4 APPLIED STANDARD DIKE SECTION FOR RIVER DESIGN

River Section	Dist frow River mouth (km)	2-yr Probable Flood (m³/sec)
AG-45	6.9	2.520
AG -80	20.3	2,520
AG-142	40.0	2,260
AG-181	43.5	1.320
AG -359	73.0	1,140
AG - 408	80.9	1, 140
AG - 453	89.4	710
AG - 473	90.0	710

Fig. 4.5 RELATION BETWEEN WIDTH OF LOW FLOW CHANNEL AND SEDIMENT TRANSPORT CAPACITY

(RIVER IMPROVEMENT ONLY ALTERNATIVE)

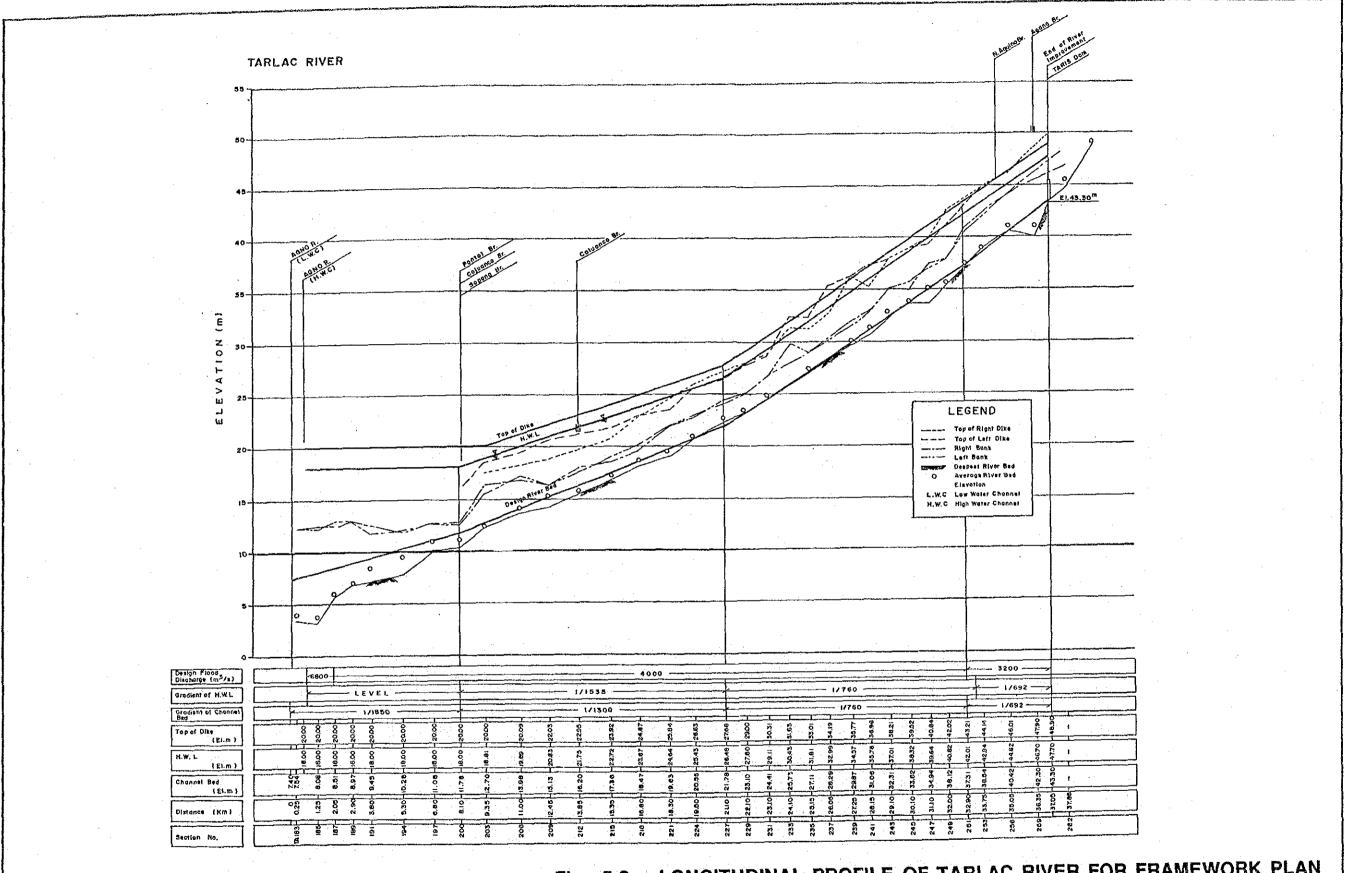


Fig. 5.3 LONGITUDINAL PROFILE OF TARLAC RIVER FOR FRAMEWORK PLAN (RIVER IMPROVEMENT ONLY ALTERNATIVE)

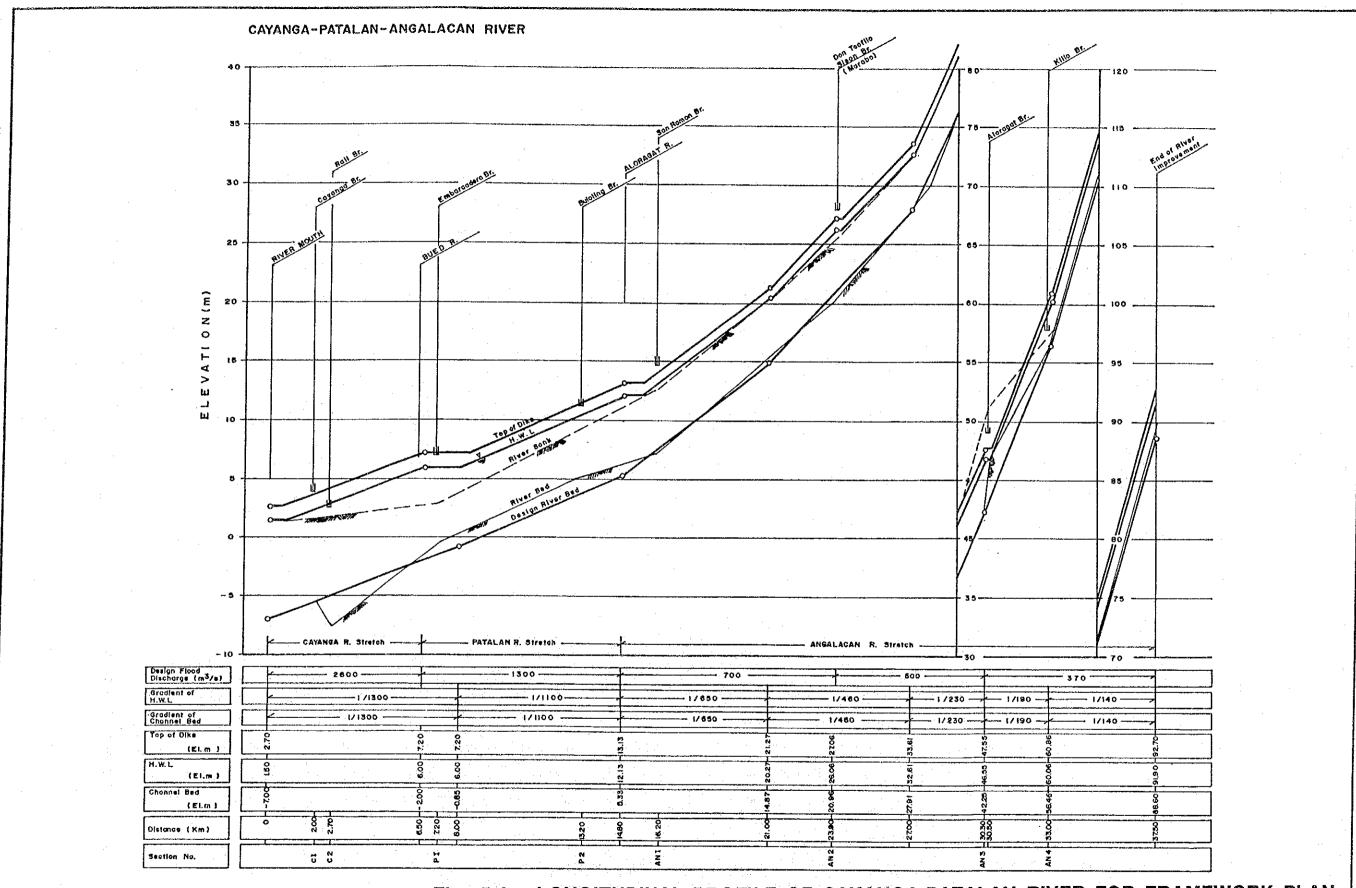
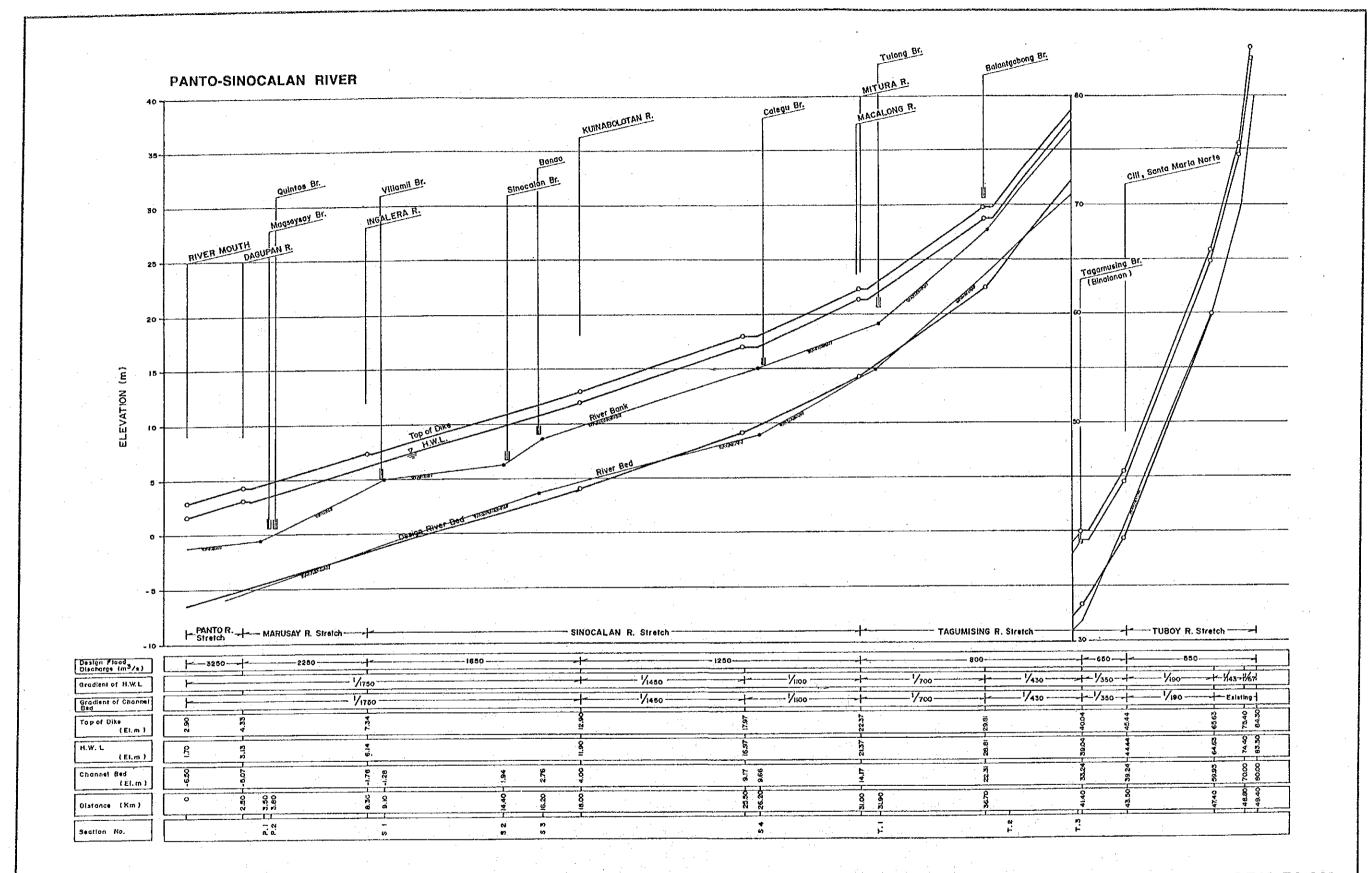
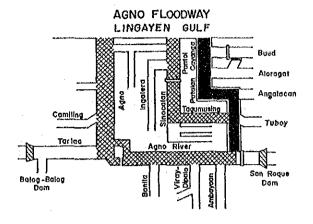
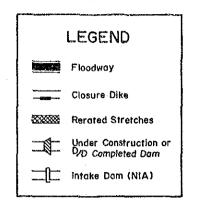
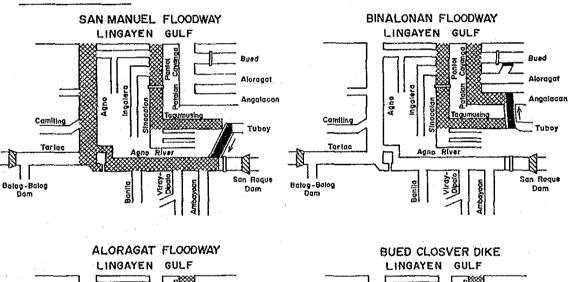


Fig. 5.4 LONGITUDINAL PROFILE OF CAYANGA-PATALAN RIVER FOR FRAMEWORK PLAN (RIVER IMPROVEMENT ONLY ALTERNATIVE)


Fig. 5.5 LONGITUDINAL PROFILE OF PANTO-SINOCALAN RIVER FOR FRAMEWORK PLAN (RIVER IMPROVEMENT ONLY ALTERNATIVE)

AGNO RIVER MAINSTREAM

ALLIED RIVERS

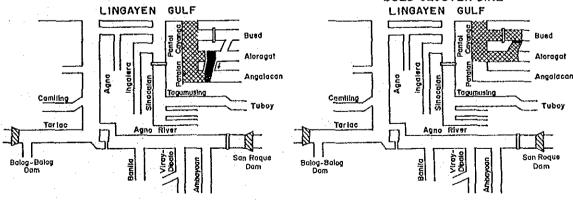


Fig. 6.1 FLOODWAY ALTERNATIVES DIAGRAM

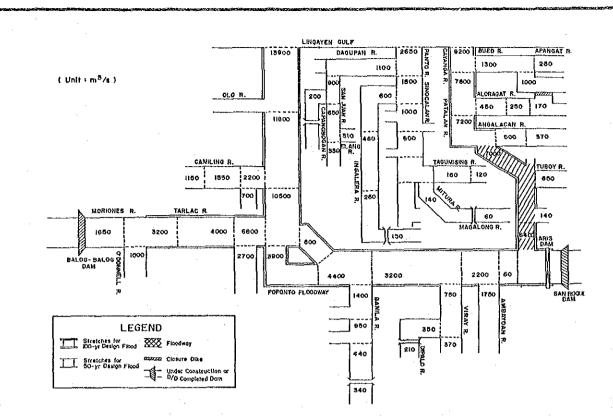


Fig. 6.2 FLOOD DISCHARGE DISTRIBUTION OF FLOODWAY ALTERNATIVE (AGNO FLOODWAY)

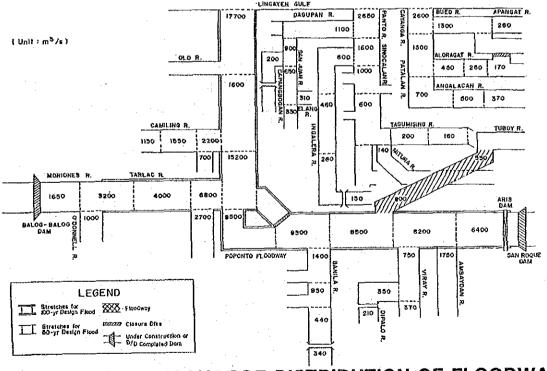


Fig. 6.3 FLOOD DISCHARGE DISTRIBUTION OF FLOODWAY ALTERNATIVE (SAN MANUEL FLOODWAY)

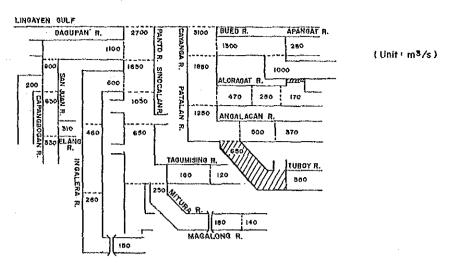


Fig. 6.4 FLOOD DISCHARGE DISTRIBUTION OF FLOODWAY ALTERNATIVE (BINALONAN FLOODWAY)



Fig. 6.5 FLOOD DISCHARGE DISTRIBUTION OF FLOODWAY ALTERNATIVE (ALORAGAT FLOODWAY)

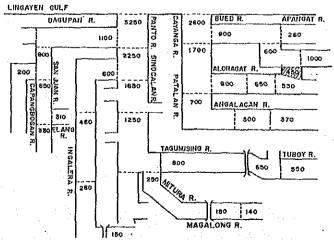


Fig. 6.6 FLOOD DISCHARGE DISTRIBUTION OF FLOODWAY ALTERNATIVE (WITHOUT BUED CLOSURE DIKE)

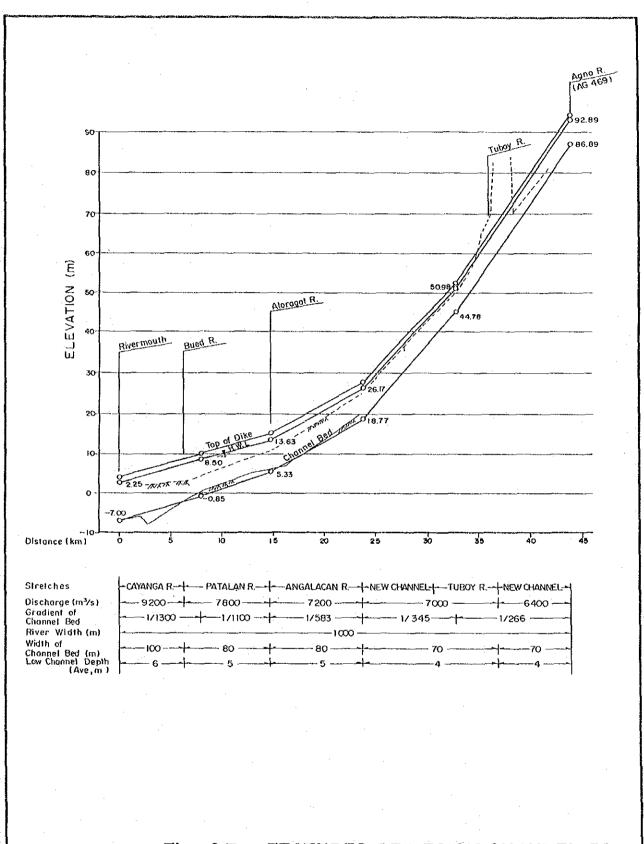


Fig. 6.7 FEATURES OF DESIGN CHANNEL FOR AGNO FLOODWAY ALTERNATIVE

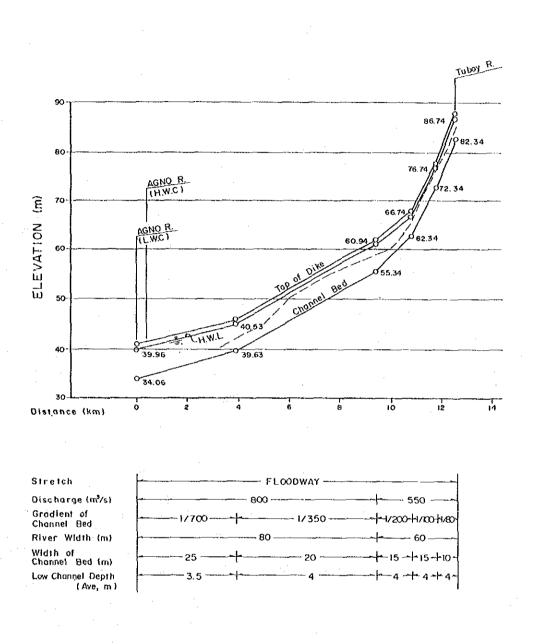
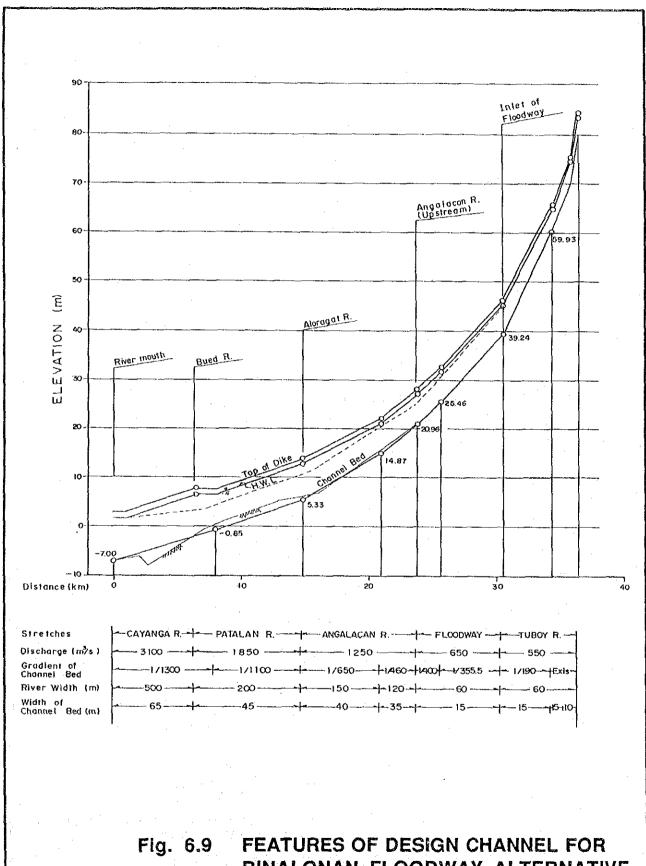
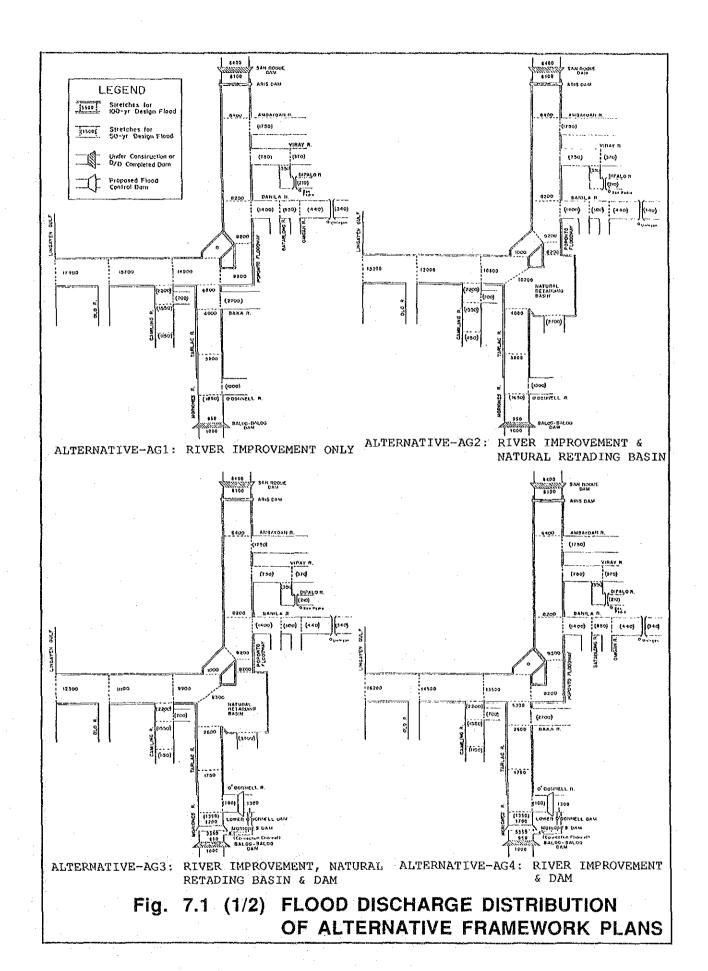
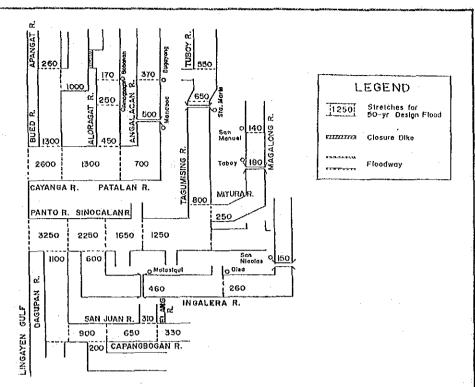
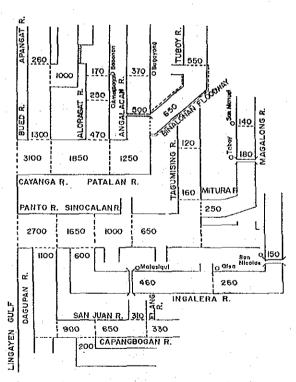
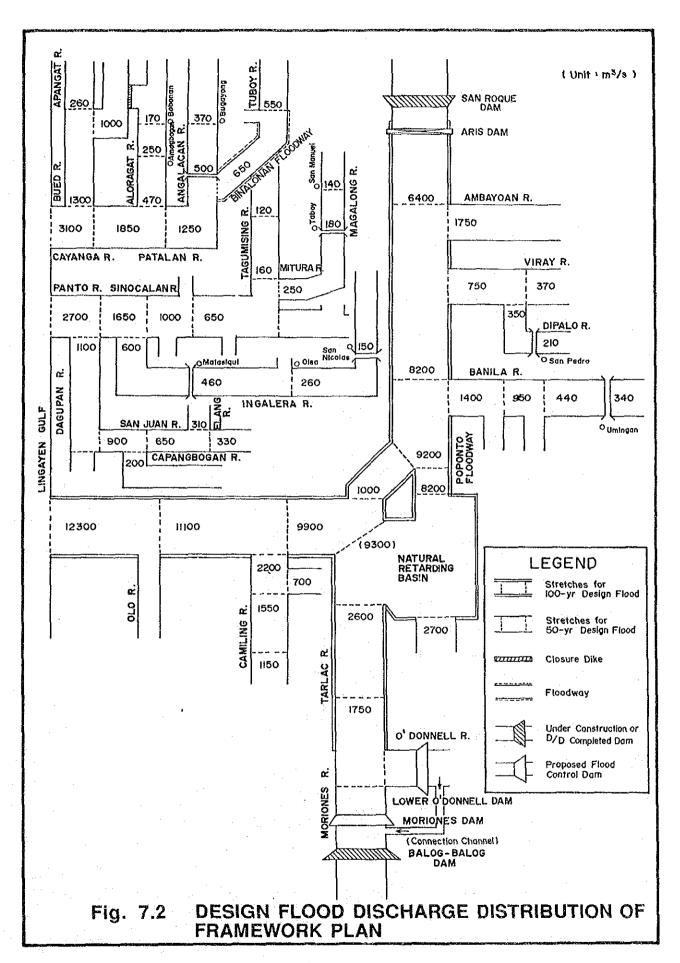





Fig. 6.8 FEATURES OF DESIGN CHANNEL FOR SAN MANUEL FLOODWAY ALTERNATIVE



BINALONAN FLOODWAY ALTERNATIVE



ALTERNATIVE-AL1: RIVER IMPROVEMENT WITHOUT FLOODWAY

ALTERNATIVE-AL2: RIVER IMPROVEMENT WITH FLOODWAY

Fig. 7.1 (2/2) FLOOD DISCHARGE DISTRIBUTION
OF ALTERNATIVE FRAMEWORK PLANS

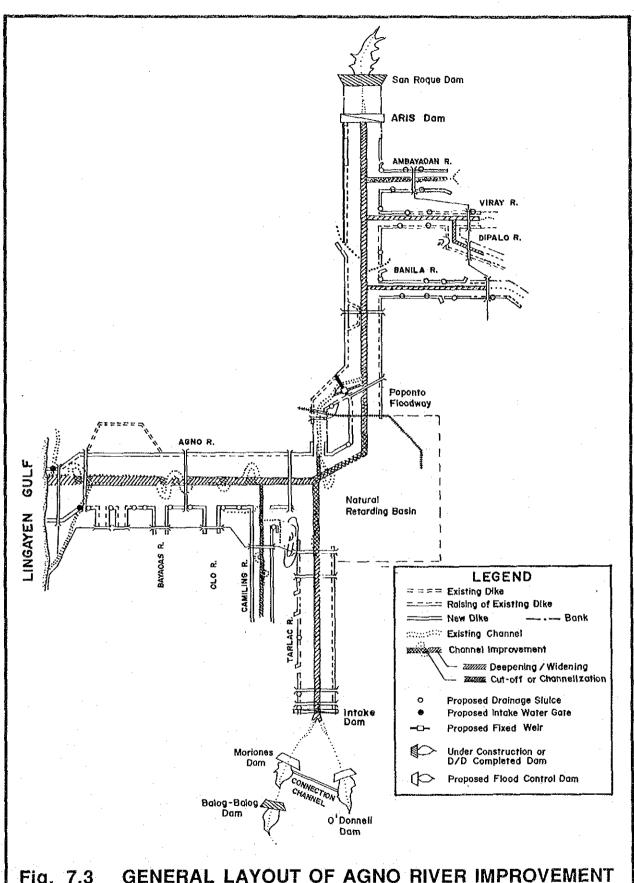


Fig. 7.3 GENERAL LAYOUT OF AGNO RIVER IMPROVEMENT PLAN FOR FRAMEWORK PLAN