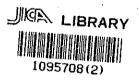
Control of the place of the place

THEY WAY MAY

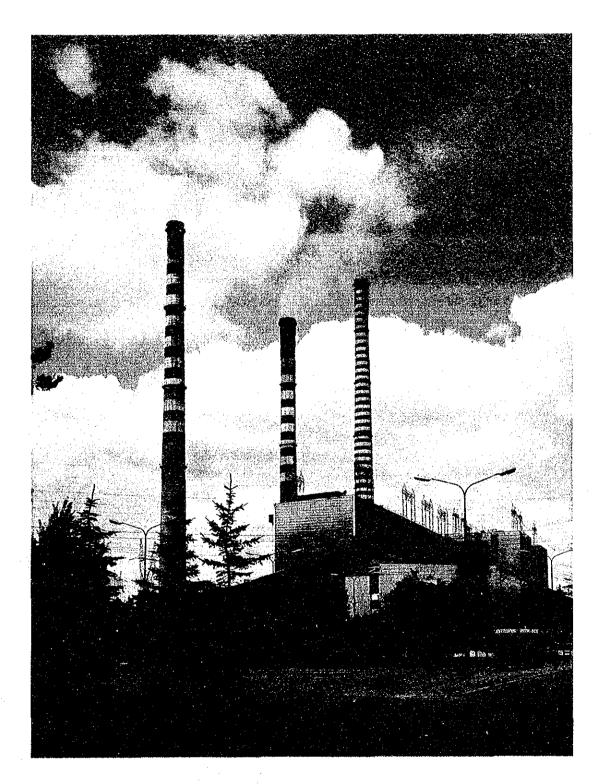

10.00克斯斯特·斯·斯

The real with the transfer of the entry of the second state of the entry of the ent

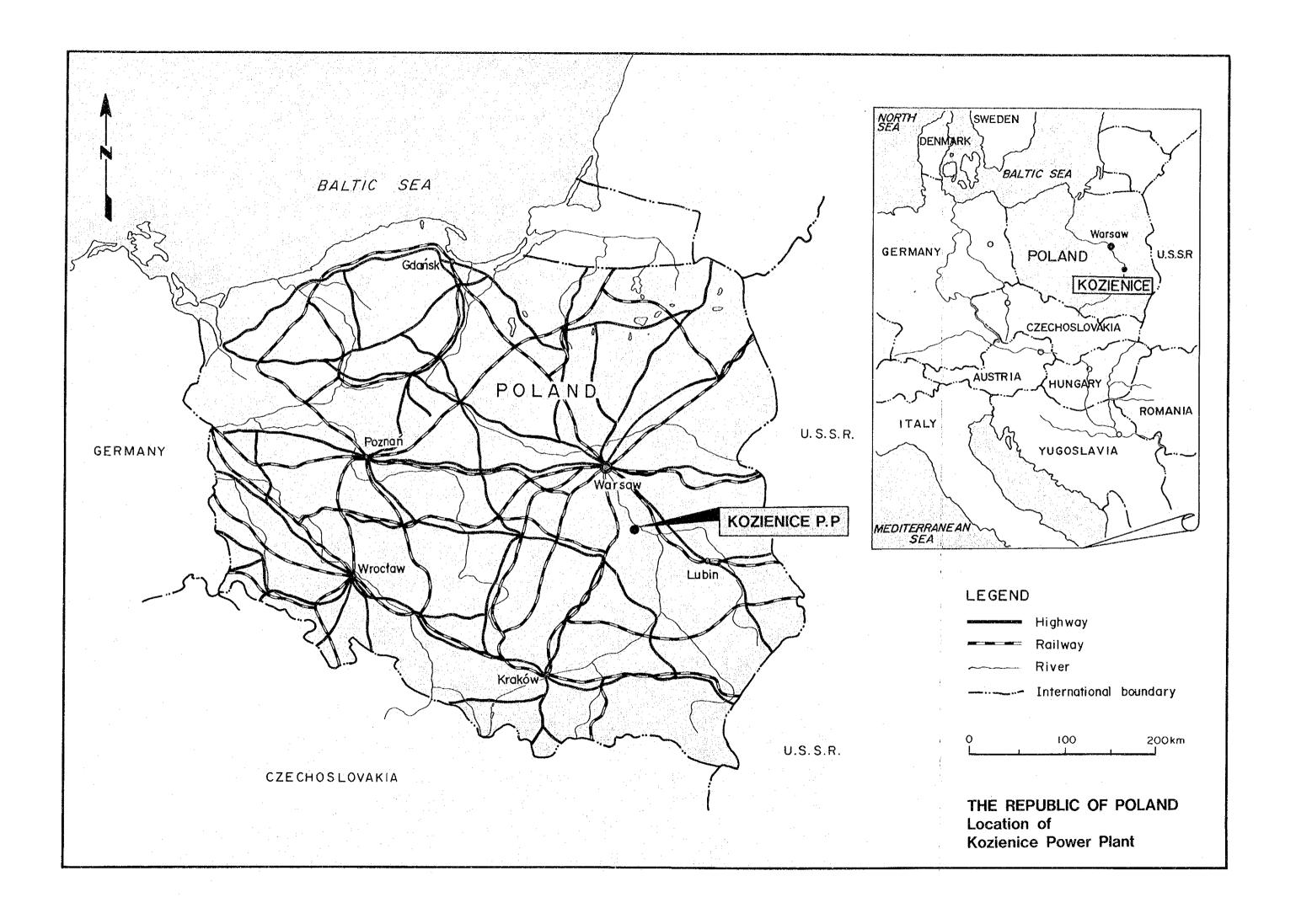
THE REPUBLIC OF POLAND

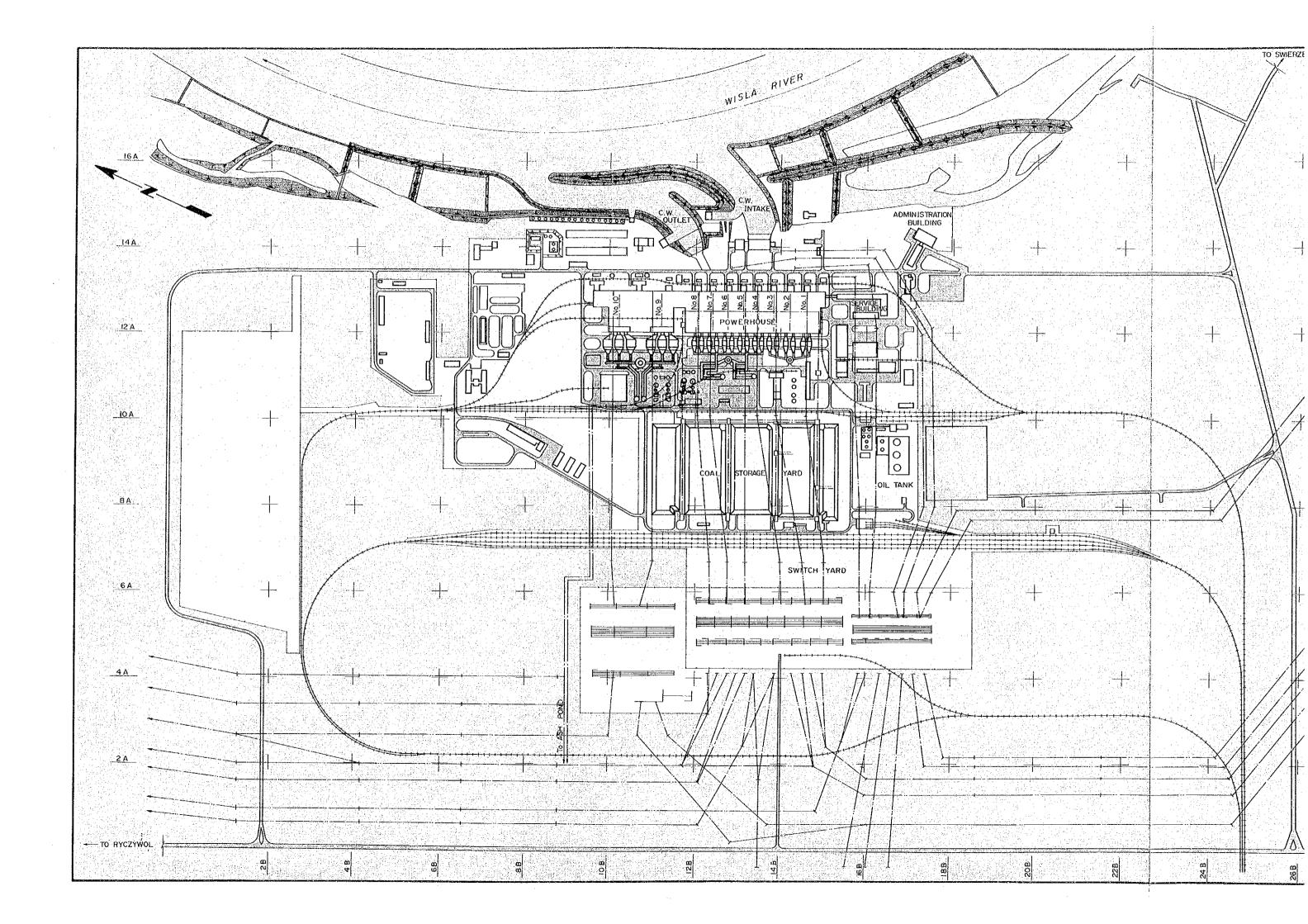
FEASIBILITY STUDY ON FLUE GAS DESULPHURISATION FOR THE KOZIENICE POWER PLANT

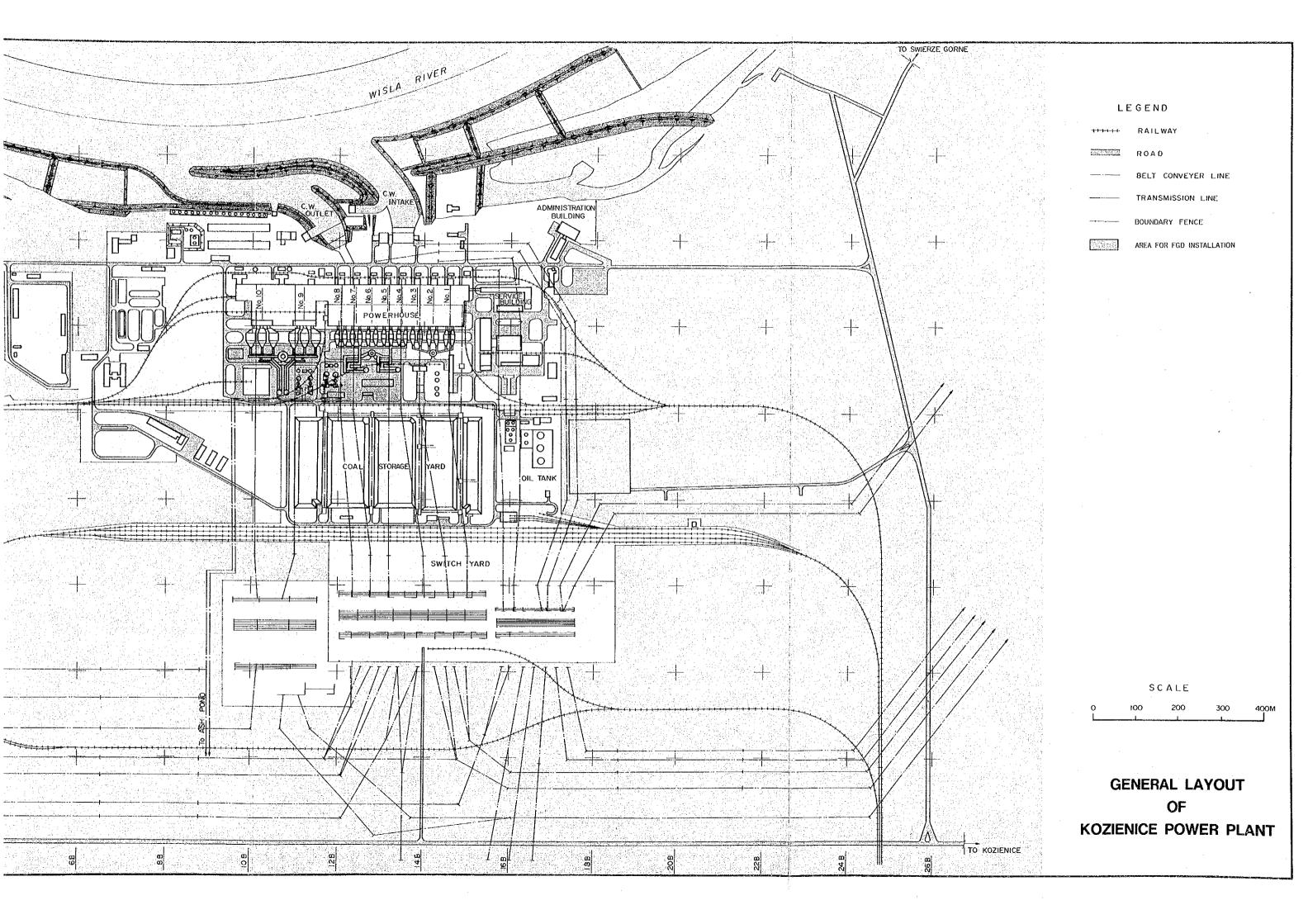
FINAL REPORT
SUMMARY

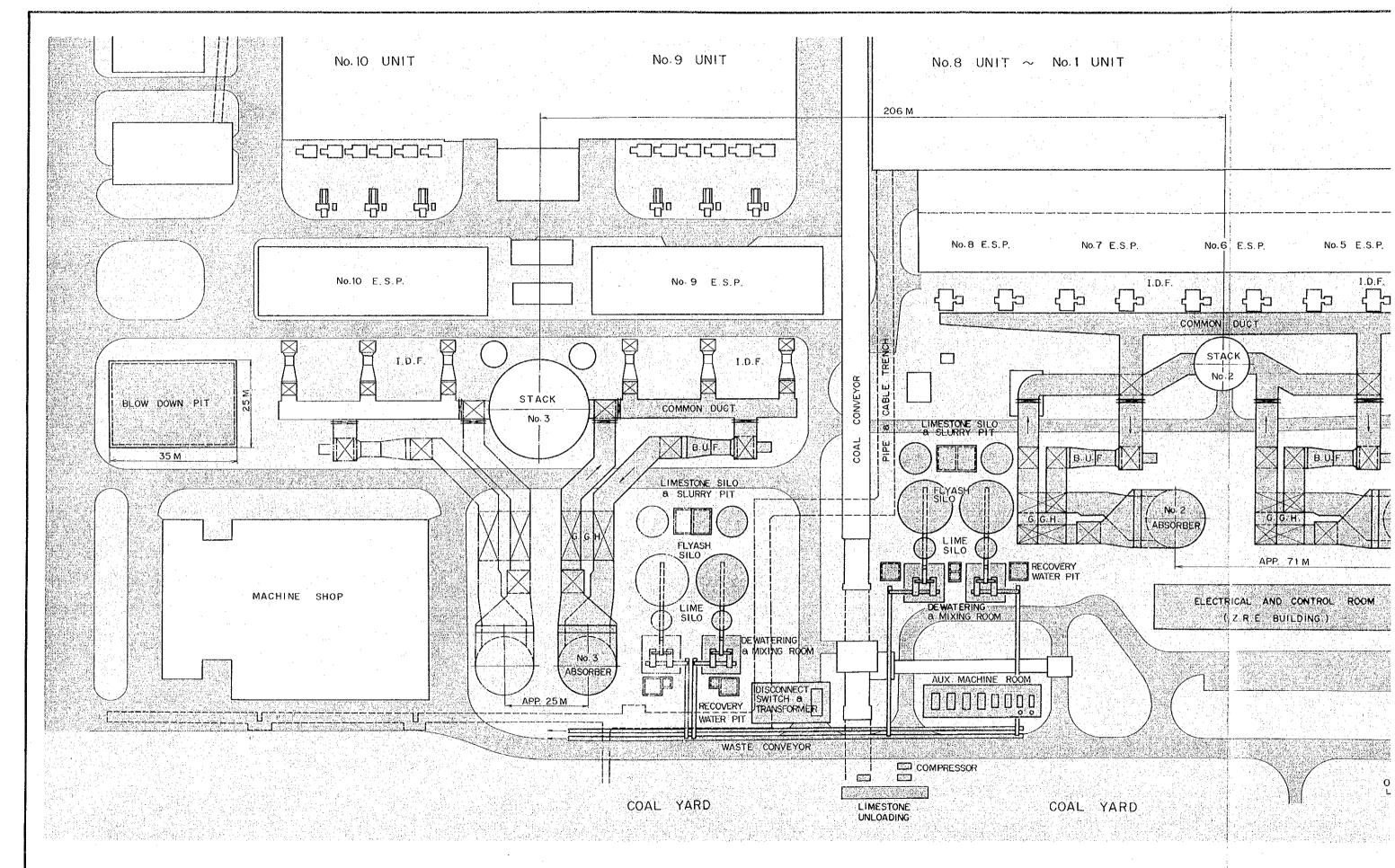

23279

DECEMBER 1991

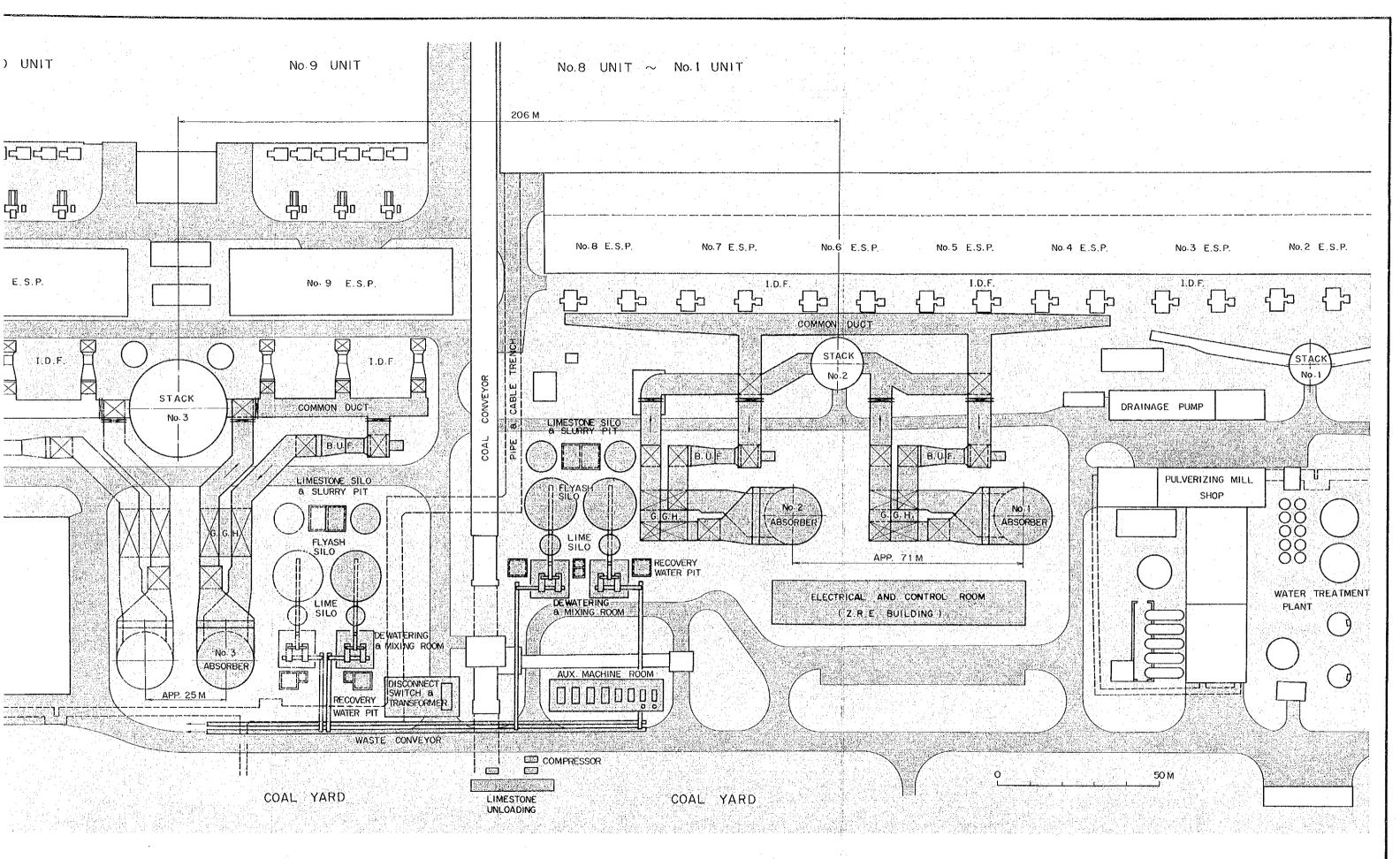

JAPAN INTERNATIONAL COOPERATION AGENCY


国際協力事業団


23279



THE KOZIENICE POWER PLANT



GENERAL LAYOU

GENERAL LAYOUT OF THREE (3) 500 MW FGD UNITS

CONTENTS

			Page
Out	line of the Study	• • • • • • •	1.
1.	Socioeconomic Background and Current Status of Elect	ric	,
	Utility Industry		4
2.	Description of DeSOx System Project Site		5
3.	Selection of the Optimum DeSOx System		9
4.	Environmental Assessment	• • • • • • •	39
5.	Conceptual Design of DeSOx System		41
6.	Project Implementation Programme		61
7.	Construction Cost and O&M Cost		65
8.	Operation and Maintenance		68
9.	Analysis and Evaluation on Socioeconomic Impact		74
10.	Recommendation for the Implementation of the Project	·.	82

Outline of the Study

Study items of the Investigation of the Feasibility Study on Flue Gas Desulphurisation of the Kozienice Power Plant of the Republic of Poland were as follows:

1st Stage

- (1) Collection and analysis of data related to the Feasibility Study
- (2) Determination of the level of sulphur oxide emission of the Power Plant, and environmental assessment based on the level of sulphur oxide emission of the Power Plant
- (3) Technical evaluations and economic comparison for selection of the optimum flue gas desulphurisation method and equipment for the Power Plant

2nd Stage

- (1) Additional investigation of the 1st stage field survey
- (2) Conceptual design of DeSOx system
- (3) Project implementation programme

3rd Stage

- (1) Calculation of new tariff necessitated by introduction of DeSOx system
- (2) Benefit from introduction of DeSOx system
- (3) Socioeconomic effects by introduction of DeSOx system

The Kozienice Power Plant has made the agreement with Radom Prefecture to reduce the hourly maximum sulphur oxide emission of 26,648 kg/h at present to

7,995 kg/h by the end of 1997. It has reached a conclusion that it is most appropriate, to meet the agreement, to install three 500-MW class flue gas desulphurisers (FGD Units) of wet type limestone-gypsum method, which achieves the desulphurisation efficiency of 89%, to treat the flue gas from power plants corresponding to 1,500 MW of the 2,600 MW total output of the Power Plant.

Another conclusion, as to the power generation plants for which FGDs are installed, is that it is most suitable to install two FGD Units of the efficiency and capacity described above for Unit No. 4 through Unit No. 8 (200-MW \times 5) power plants which are all using the No. 2 Stack and one FGD Unit of the same type for No. 9 (500-MW) power generation plant which is using the No. 3 Stack.

Based on the above study conclusion of the optimum DeSOx system and combination of DeSOx system installed and power generation plants, a conceptual design of DeSOx system was carried out at the 2nd stage with further data and information collection by doing 2nd stage field survey.

Furthermore, a study on the project implementation programme was made as the 2nd stage study.

The study suggests that it is necessary to make an order of the DeSOx equipment by around the end of May in 1994 and to start the erection by around the end of May in 1995 in order to put into DeSOx system commercial operation from the 1st of January, 1998.

An estimation of the project cost as of the 1st of March, 1991 was 185,404,000 US\$.

If the figure is converted into unit cost per kW, it is 123.6 U\$/kW.

Diffusions of sulphur oxides emissions of the Power Plant after installation of FGD Units were calculated as a part of the environmental assessment, and it reached a conclusion that the sulphur oxide level at the point of maximum sulphur oxide concentration would be well below the environmental standard to

be applied to the environment of the neighborhood of the Kozienice Power Plant.

Tariff is calculated based on the annual cost including interest during construction. As a result of this calculation, 33 to 41 ZL/kWh additional burden in tariff is estimated.

For the economic evaluation, reconstruction of boilers into natural gas firing which has the same reduction of SO₂ effect as this project was chosen.

According to this economic evaluation, this project is much superior to the partial reconstruction of the boilers into natural gas firing which has the same SO₂ reduction effect in terms of cost.

Following are analysis on introduction of DeSOx system in Polish power plants based on above analyses.

- (1) Economic extension and increase in employment attributable to increase in investment.
- (2) Absorbable effect on energy tariff
- (3) Increase in export

Poland is already industrialized. In this project, local procurement shall be extended as much as possible so that technology can be absorbed aggressively. As a consequence, Poland will be able to export DeSOx equipments to neighbor countries by taking advantage of both its comparatively cheap labor cost and such technology.

What described in respective chapters are outlined below.

1. Socioeconomic Background and Current Status of Electric Utility Industry

Social reforms based on liberalization, privatization and open policies and economic assistance of western countries based on the agreement of G24 are going on in Poland, but the economic outlook of Poland is still severe due to inflation coming from the vicious cycle of rises in consumer prices and salaries and stagnant industrial production.

The Republic of Poland is the biggest coal-producing country in Europe, but it is not enough to meet her energy demands because of the cold weather and her highly energy-consuming industrial structure including her low energy utilization efficiency as represented by her energy consumption per unit GNP which is twice as high as that in western countries, and she is an importer of primary energy.

The Ministry of Industry proposed, in August 1990, a scenario, on long-term prospect of energy supply and demand, of 1) Promotion of electrification, 2) Reduction of dependence on coal and brown coal shifting to petroleum and natural gas and 3) Use of atomic energy from year 2000, in view of promotion of energy saving and in harmony with environmental protection, based on the "Directions of Energy Policies for 1990 to 2010" which was formulated with cooperation of the World Bank, OECD-IEA and the Government of France.

As for the electric utility system in the Republic of Poland, the direct governmental control is being reviewed to reorganize it to have completely independent generation and distribution sectors. The organization would mediate with an electric power network company and be based completely on market principles, but such reorganization is yet to occur.

The Kozienice Power Plant, which is located at 75 km south of Warsaw, is a large-scale coal fired power station having a generation capacity of 2600 MW, which corresponds to about 10% of the total generation capacity of whole Poland. With 3,400 employees, the Power Plant is managed by the self-supporting system where necessary costs are covered by the income from the wholesale of electricity. The income was about one trillion ZL (about 15 billion yen) in 1990, and the unit electricity rate is on the order of 187 ZL (2.55 yen) per kWh.

In Table 1-1, history of Kozienice Power Plant and in Table 1-2, specification of major equipment of the Power Plant are shown.

The policy of environmental protection is being promoted in the Republic of Poland. Environmental standards have been set in addition to regulations on sulphur oxide and other emissions for the purpose of achieving targeted reduction of nationwide levels of sulphur oxide and other emissions, and it is becoming necessary for the Kozienice Power Plant to take actions for meeting such standards and regulations.

In Table 1-3, Emission and Ambient Air Quality Standards in Poland legislated in 1990 is shown.

2. Description of DeSOx System Project Site

The Kozienice Power Plant, located on the left shore of the Vistula (Wisla) River, is 12 km north of the city of Kozienice and 75 km south of Warsaw, and roads and railways from the two cities to the Power Plant are in good order.

The weather in the Republic of Poland is generally unstable under the influence of the oceanic climate of western Europe and the continental climate of eastern Europe, and is cold except the summer. The precipitation is low with an annual precipitation of about 500 mm.

It is said that about 90% of the land is flat, and the Power Plant is located in a vast flat area of forests and farms.

The geology around the Power Plant consists of a quaternary river deposit and an underlying tertiary layer.

Table 1-1 History of Kozienice Power Station

Phase	Unit Number	Output	Start of Construction	Date of Commissioning
7.00	1	200MW		1972.10.18
	2	200MW		1973. 3.10
	3	200MW		1973. 6.20
I	4 2001	200MW	1970.3.1	1973.10.08
	5	200MW		1973.12.10
	6	200MW		1974. 5.28
	7	200MW	4.070 0 1	1974.10.18
II	8	200MW	1972.8.1	1974.12.24
	9	500MW		1978.12. 4
III	1.0	500MW	1974.7.1	1979.11.30

Table 1-2 Outline of Kozienice Power Station

Item	Outline of	Facilities
1. Major Equipment	No. 1 - No. 8 Units	No. 9, 10 Units
(1) Unit Output	200 MW	500 MW
(2) Boiler		
Туре	Drum type, natural circulation type	Drum type, forced circulation type
Maximum Evaporation	650 T/H	1,650 T/H
Firing System	Front firing system	Corner firing system
Fuel System	Pulverized coal (Hard coal)	Pulverized coal (Hard coal)
Mill Type	Ball mill	Roller mill
(3) Turbine		
Туре	Tandem, reheat, condenser, 3-casing type	Tandem, reheat, condenser, 4-casing type
Speed	3,000 rpm	3,000 rpm
Main Steam Pressure	130 kg/cm ² g	166 kg/cm ² g
Main Steam Temperature	535 °C	535 °C
Reheat Steam Temperature	535 °C	535 °C
(4) Generator		
Capacity	235.2 MVA	588 MVA
Voltage/Frequency	15.75 kV/50 Hz	20 kV/50 Hz
Cooling System	Stator: water Rotor: hydrogen	Stator: water Rotor: hydrogen
(5) Environmental Facility	Electrostatic precipitator	Electrostatic precipitator
(6) Stack	1 stack each for No. 1 - No. 3 units and No. 4 - No. 8 units	1 stack for No. 9, 10 units
	No. 8 units 200 m high	300 m high
2. Condenser Cooling Water	Taken from Vistula River to t	he north of plant.
3. Coal Yard	Outdoor storage system, 5 pil transported to coal yard by r	es used by all units, ail.
4. Ash Disposal Site	Ash slurry transported by pip west of the plant.	peline to a site 3 km to the

Table 1-3 Emission and Ambient Air Quality Standards in Poland

	(Ministries o	Emission Standards (g/GJ) (Ministries of Environment, Natural Resources, and Forest)	dards (g/GJ)	, and Forest)		A. (Ministries	Ambient Air Quality Standards $(\mu g/m^3)$ (Ministries of Environment, Natural Resources, and Forest)	/ Standards (μg/m² latural Resources,) and Forest)	
	Existing Plants	y Plants	New P	New Plants		General Area		Spe	Special Protected Area	. ea
	1990 ~ 1997	1998 -	1990 ~ 1997	~ 8661	30 Min. Value	24 Hrs. Value	Annual Ave.	30 Min. Value	24 Hrs. Value	Annual Ave.
SOx	1,240	870	870	200	009	200	32	550	75	prof prof
(\$02)	1,540	1,070	1,070	200	440	150	32	150	75	11
NOX	330	170	170	170						
					200	150	90	150	20	30
(NO ₂)	225	150	150	150					:	
Dust	260	130	130	130						
					250	120	20	85	99	40
(SPM)	195	95	98	95						
Remarks	• Figures are c kinds of fuel	• Figures are classified into 13 categories according to kinds of fuel used and Firing method.	3 categories acc method.	cording to	• In column for show from 1998	• In column for SOx, figures of upper side show values valid by the end of 1997, and bottom side show from 1998.	upper side show v	alues valid by the	end of 1997, and	bottom side
	• Figures of up and of bottom	 Figures of upper side are those for firing bituminous and of bottom side are those for ligurite coal. 	se for firing bi for ligunite coa	ituminous coal al,						

3. Selection of the Optimum DeSOx System

The Kozienice Power Plant is located close to a nature conservation area and other protected area and designated as a special regulated area. Because of that the discussion for setting stricter regulations has been made between the local authority of Radom prefecture and the Power Plant.

As a result, both parties have made mutual consent on these figures and made agreement in August 1991.

These agreed figures consist of two stages, namely figures for those valid by the end of 1997 and for those valid from the beginning of 1998.

According to the agreement, SO_2 emission from the Power Plant will be reduced to 30% of the present maximum SO_2 emission amount from January of 1998 by installing DeSOx system.

Therefore, selection of optimum DeSOx system for the Kozienice Power Plant is made in this report in accordance with the agreement.

The selection of the optimum DeSOx system is made according to a flow sheet showing in Fig. 3-1.

Seven FGD methods, listed below, which would be possibly applicable to the Kozienice Power Plant were selected and their technologies were compared for the purpose of selecting the most suitable FGD method for the Kozienice Power Plant.

<Wet methods>

- (1) Limestone-gypsum method Spray tower method
- (2) Limestone-gypsum method Jet bubbling method

<Semi-dry methods>

(3) Spray dryer method

<Dry methods>

- (4) Activated carbon method
- (5) Coal ash-using dry FGD method
- (6) Simple FGD method Dry absorbent injection into furnace
- (7) Simple FGD method Dry absorbent injection into duct

Process flow sheets of these seven methods are shown in Fig. 3-2 to 8.

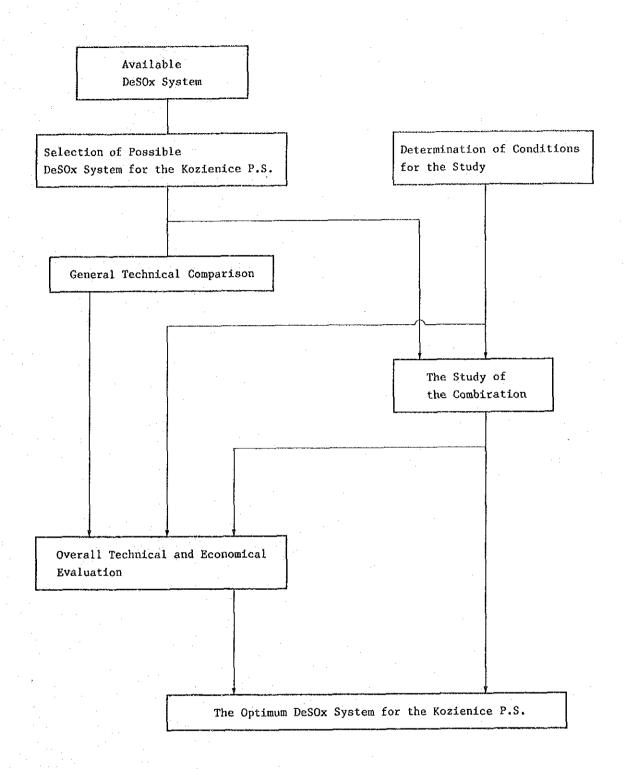
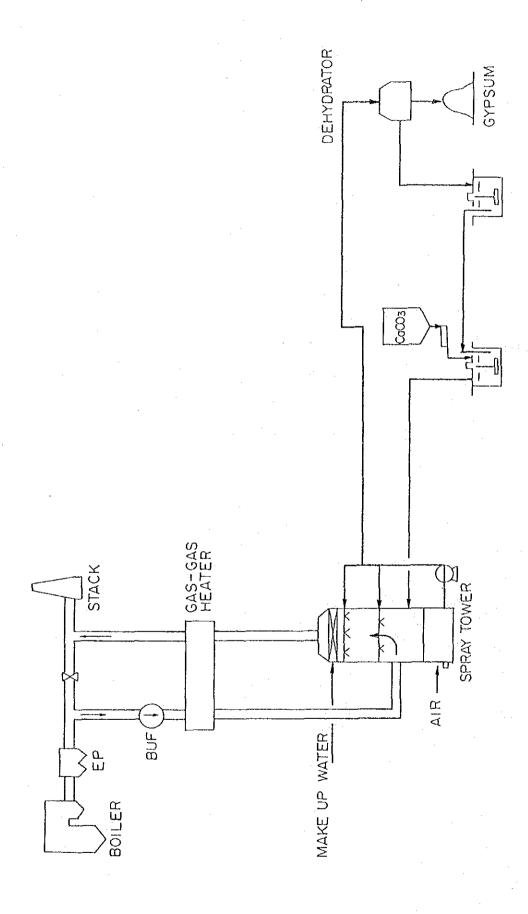



Fig. 3-1 Selection Flow of the Optimum DeSOx System

PROCESS FLOW OF WET LIMESTONE-GYPSUM PROCESS (SPRAY TOWER METHOD) Fig. 3-2

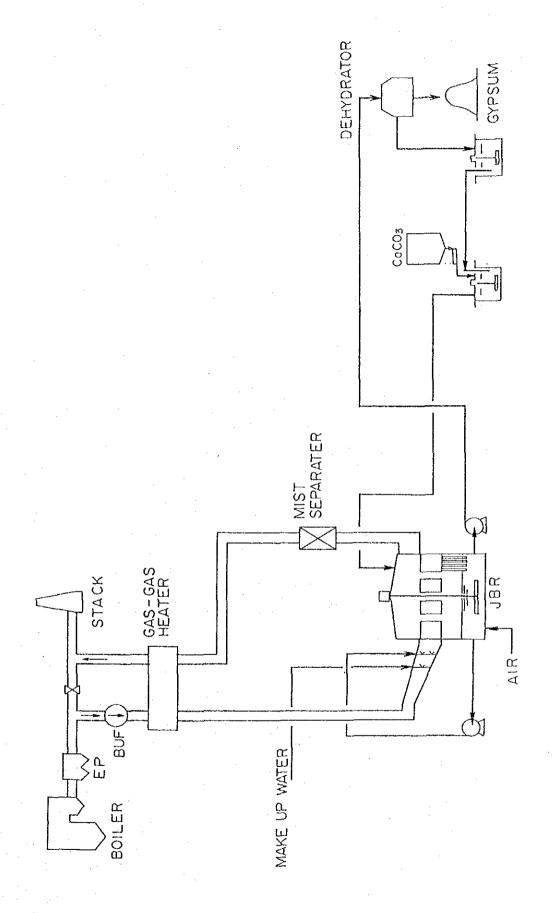


FIG. 3-3 PROCESS FLOW OF WET LIMESTONE-GYPSUM PROCESS (JET-BUBBLING METHOD)

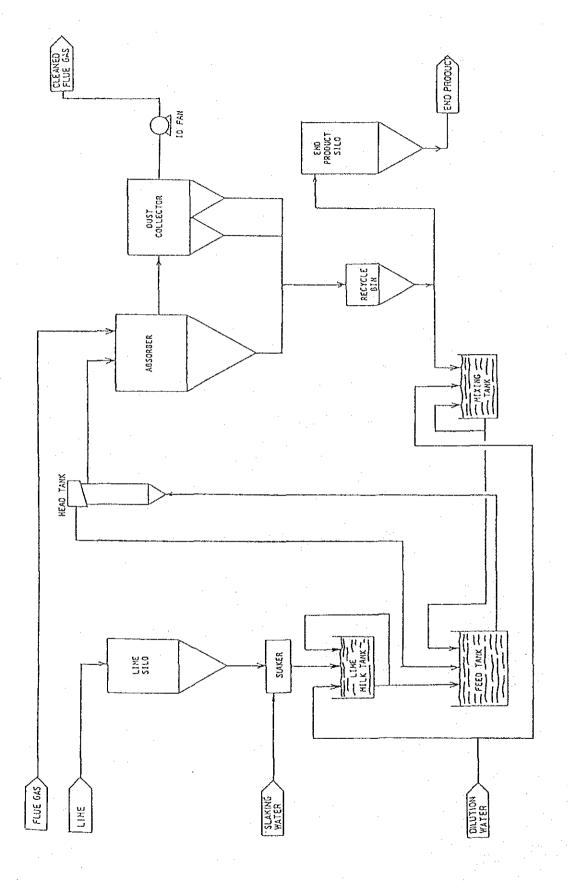


Fig. 3-4 Process Flow of Spray Dryer

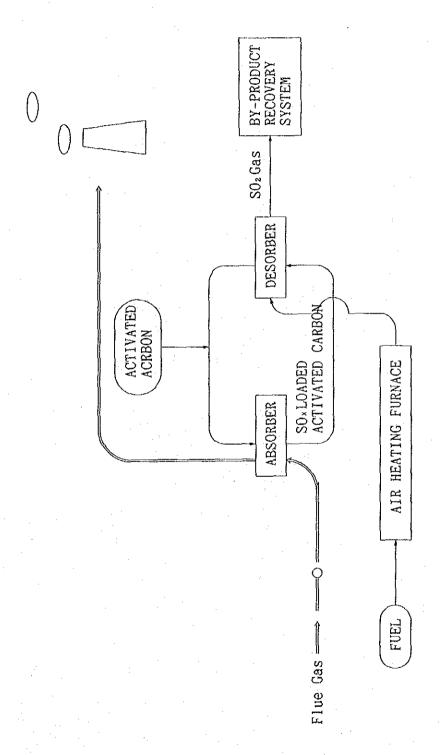


Fig. 3-5 Process Flow of Activated Carbon

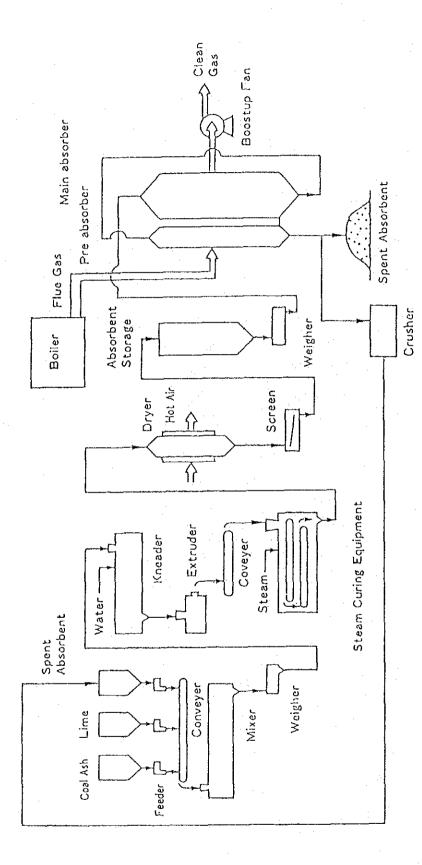
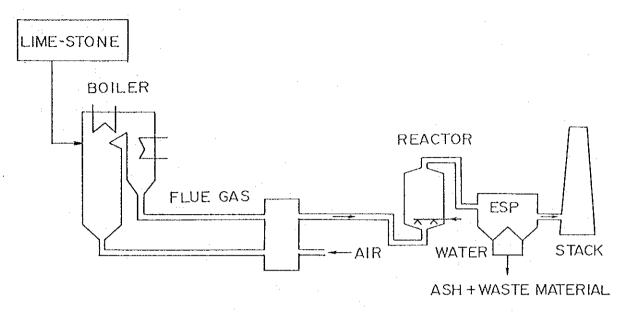
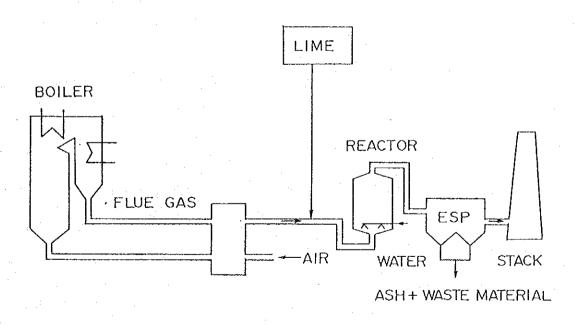




Fig. 3-6 PROCESS FLOW OF COAL ASH USING DRY FGD METHOD

PROCESS FLOW OF
Dry Absorbent Furnace Injection System

PROCESS FLOW OF

Dry Absorbent Duct Injection System

Conditions for the study on these methods are as follows.

(1) Plant Utilization Factor

- a. 200 MW Plants 57% (Equivalent to 5,000 hours operation at rated output)
- b. 500 MW Plants 57% (Equivalent to 5,000 hours operation at rated output)

(2) Plant Thermal Efficiency

- a. 200 MW Plants 36.7% (Average of 1990's figures of 8 plants from the power station)
- b. 500 MW Plants36.1% (Average of 1990's figures of2 plants from the power station)

(3) Minimum Continuous Operation Load

a. 200 MW Plants 140 MWb. 500 MW Plants 250 MW

(4) SO₂ Emission Amount and Regulation

As for ${\rm SO}_2$ emission regulation from January 1, 1998 it will be 7,995 kg/h regulated as the total emission from the power plant.

 SO_2 emission amounts from each boiler for this study are determined as follows:

a. Boiler without FGD

200 MW plant 1,119 kg/h 500 MW plant 2,851 kg/h (Above figures are the same as those for agreed emission amount by December 31, 1991.)

b. Boiler with FGD

200 MW plant

2,035 kg/h

500 MW plant

5,184 kg/h

(Above figures are the same as those of maximum SO_2 emission at the present.)

(5) Operation range of DeSOx system

50 to 100% of rated output

(6) Response to Power Plant Load Change

Response rate of DeSOx system to power plant load change is set at 2% of rated output per minute at a range of 50% to 100% rated output.

(7) Water Source for DeSOx System

Water for DeSOx system will be taken from Vistula River which water quality is usable for DeSOx system.

(8) Inlet and Outlet Conditions of FGD

In Table 3-1, inlet and outlet conditions of FGD is shown.

(9) Coal Properties

In Table 3-2, coal properties for the study is shown.

Analysis results of coals which were obtained during the first site survey are shown in Table 3-3.

Table 3-1 FGD Inlet and Outlet Gas Conditions

ŀ		FGD 1	Inlet	FGD 0	Outlet	F
Tem	T TUO	200 MW	500 MW	200 MW	500 MW	Kemarks
Treated Capacity	н	≓ *	∀			**!" Will be determined based on the study of FGD capacity and efficiency along with the units to be equipped with the FGD's.
Flue Gas from Boiler	m³N/ħ	817,000	2,078,000			
Flue Gas Temp.	ပ	114	130	80*2	2*06	"*2" Shows value with reheating system.
${ m SO}_2$ from Boiler	kg/h	2,035	5,184			
SO ₂ Concentration	ਘਰੰਫ	076	076			
Dust Load : Design Value	N ^E m/gm	300	300	It will be settled by a dust removal efficiency of applie system.	settled by val of applied	
: Current Value	N ² m/gm	275 ~ 335	511 ~ 572			
Excess O ₂	8-4	6.0	6.0			**3" Value are presumed based on EPDC's
нсі	Ng/m³N	579	579			experiences.
HF	mg/m³N	24	24			
so ^{3*3}	ındd	5	S			

Table 3-2 Coal Property

Item	Unit	Value	Remarks
(1) As Received Base			
. Total Moisture	%	10.7	
. Moisture	Z	8.4	
. Heating Value	kcal/kg	4,460	(LHV)
. Sulphur Content	Z.	0.96	
. Ash Content	Z ·	27.85	
(2) Proximate Analysis			
. Inherent Moisture	2	2.5	
. Ash Content	2.	30.4	
. Volatile Matter	Z	26.1	
. Fixed Carbon	Z.	41.0	
(3) Ultimate Analysis			
. Carbon	7	54.9	
. Hydrogen	Z	3.7	
. Nitrogen	Z	0.9	·
. Oxygen	Z	8.2	
. Sulphur	Z	1.1	
. Ash Content	Z	31.2	

Table 3-3 Coal Analysis by EPDC

		ļ	:		Sampl	Sampling Date: March 12th,	ch 12th, 1991
					Mine		
Item	Unit	ZABRZE	PIAST	WESOLA	MURCK	PIACIV	Sample from Coal Yard
Total Moisture (AR)	2	6.44	14.2	8.42	11.0	12.5	10.5
Lower Heating Value (AD)	kcal/kg	5,250	5,730	4,870	4,900	5,430	.5,860
Proximate Analysis (AD)							4.0
Inherent Moisture	%	2.5	6.6	4.4	4.7	6.1	4.0
Ash	84	32.2	16.8	31.0	29.0	22.0	20.9
Volotile Matter	**	24.9	30.4	25.7	28.4	29.5	28.9
Fixed Carbon	2	40.4	46.2	38.9	37.9	42.4	46.2
Fuel Ratio	.	1.6	1.5	1.5	1.3	1.4	1.6
Ultimate Analysis (Dry)							
Carbon	24	54.8	62.4	52.2	53.5	58.1	62.2
Hydrogen	2	3.56	4.02	3.52	3.71	3.88	3.96
Total Sulphur	2	0.88	1.37	0.89	06.0	1.17	0.84
Nitrogen	. 2	0.89	0.88	0.88	96.0	0.86	0.98
Fluorine	8-6	0.016	0.015	0.019	0.02	0.016	0.02
Chlorine	8-4	0.27	0.46	0.14	0.04	0.30	0.16
Boron	5 -2	0.004	0.009	0.005	0.006	0.008	0.004
Total	2	60.42	69.15	57.66	59.12	64.33	68.16

Note: AR: As Received Base, AD: Air Dry Base

(10) Electrostatic Precipitator (ESP) Inlet and Outlet Dust Load

a. 200 MW plants inlet : $30.7 \text{ g/m}^3\text{N}$, Dry

b. 500 MW plants inlet : 30.7 g/m³N, Dry

c. ESP outlet dust for DeSOx design : 300 mg/m³N, Dry

(11) Powdered Limestone Property

a. Purity CaCO₃ 94% or more

o. Grain size 325 mesh pass 95% or more

(12) Area for DeSOx System Installation

In Fig. 3-9, a ground plane of usable space for DeSOx system installation is shown.

(13) Unit Price of Utilities

In Table 3-4, unit prices of utilities as of 1991 which are used for the economic comparison of each DeSOx system are shown.

The exchange rates between Poland zloty, Japanese yen, and American dollar as of March 1991 are as follows.

1 ZL = 0.014 Yen

1 U\$ = 9,500 z1

1 U\$ = 135 Yen

(14) Unit Price of By-products

. Gypsum 35,000 to 45,000 ZL/ton

b. Sulphuric Acid 1,100 ZL/kg

(15) Deterioration Rate and Interest

a. Deterioration Rate : 12 years (with no value at the end)

b. Interest Rate : 5%

Fig. 3-9 Available Space for FGD Installation

Table 3-4 A Unit Price of Utilities

	Item	Unit	Value	Remarks
(1)	Limestone (CaCO ₃)	Z1/ton	130,000	• 94% or more as CaCO ₃
				• 95% or more 325 mesh pass
(2)	Lime (CaO)	Z1/ton	325,000	90% passed on 0.04 mm's mesh
(3)	Slaked Lime (Ca(OH) ₂)	Z1/ton	420,000	
(4)	Activated Carbon	ZI/ton	000,000,6	
(5)	Caustic Soda (NaOH)	21/kg	2,130	based on 100% concentration
(9)	Sulphuric Acid (H ₂ SO ₄)	21/kg	1,300	based on 100% concentration
(7)	Auxiliary Steam	Z1/ton	54,000	17 ata and 220°C
(8)	(8) Auxiliary Power	21/kwh	200	
(6)	Law Water	Z1/ton	180	river water

* These are the prices in March, 1991.

Comparison for combination between power generation plants and FGD units is shown in Table 3-5 (1) and (2).

Before the study of the above, simplified FGD methods are excluded from FGD methods to be examined and compared by the following reasons:

The DeSOx efficiency of the simplified FGD methods are on the order of 30 to 40% when absorbent is blown into the furnace or duct. To meet the emission standards of the Kozienice Power Plant, however, the DeSOx efficiency of 70% is required even when an FGD Unit is installed to each power generation unit by the "unit-to-unit" method. To attain a DeSOx efficiency of over 70% while using a simplified FGD method, it would be necessary to further install a DeSOx tower (water spraying reaction tower) between the existing boiler house and the dust collector. The size of a DeSOx tower is about 12 m in diameter, and no space for such installation is available, at the Kozienice Power Plant, between the existing boiler house and the dust collector

Table 3-6 (1) and (2), technical comparison of various FGD system is shown and in Table 3-7, cost comparison of those for three 500 MW class FGD is shown.

It reached a conclusion after examination that the optimum FGD method for the Kozienice Power Plant is either of the wet type limestone-gypsum methods and the most suitable combination is to install two 500-MW equivalent FGD Units of 89% in desulphurisation (DeSOx) efficiency to treat the flue gas of No. 4 through No. 8, (200-MW x 5) power plants of 1,000 MW in total generating capacity and one FGD Unit of same capacity and efficiency to treat flue gas of No. 9, (500-MW) power plant. The conclusion therefore was that it is the best to install three FGD Units same in type and capacity.

The wet type limestone-gypsum methods include the two methods of the spray tower method and the jet bubbling method. Differences were little between the two methods in their technical and economic comparisons made in the current stage of the Feasibility Study, and either method can be applicable to the Kozienice Power Plant.

Differences are little between the spray tower method and the jet bubbling method in their basic principles of flue gas desulphurisation. The only

difference is in the method of contacting the absorbing liquid and flue gas for absorption of sulphur oxides (SOx). Such contact is achieved by spraying the absorbing liquid by slurry circulation pumps in the spray tower method and by blowing flue gas into the absorbing liquid by desulphuriser fans in the jet bubbling method.

In Fig. 3-10 to 13, layouts and process flow sheets of these two systems are shown.

It was concluded in this Feasibility Study that either of the spray tower method and the jet bubbling method can be applicable to the Kozienice Power Plant. In order to carry out a conceptual design of the most suitable FGD method, it has been decided to proceed with the study on the assumption of the use of the spray tower method which has been employed more for 500-MW class FGD Units and much operational experiences have been accumulated.

Coal Calorific Value: 4,460 kcal/kg Sulphur content: 0.95 %

			Stack No.1				Stack No. 2			Stack No.	No. 3	Total	Eva	Eva.luation
	,	No. 1	No. 2	No. 3	No. 4	No.	No. 6	No. 7	No. 8	No. 9	No. 10	Emission	Cost	Space, etc.
Case A					(200MW)	(200MW)	(200MH)	(200MW)	(200MW)	(KW005)	(500MW)			
Flue Gas through DeSOx	(%)	ı	1	. •	100	100	100	100	100	100	100			
DeSOx Eff.	(%)	ı			78	78	78	78	78	78	78		4	∢
SO ₂ Emission	(kg/h)	1,119	1,119	1,119	448	448	448	448	448	1,140	1,140	7,877		
Case B					(172MH)	(172MW)	(172MW)	(172MW)	(172MW)	. (430MW)	(430MM)			
Flue Gas through DeSOx	(%)	,	ı	1	98	98	98	. 98	87	98	98		>	
DeSOx Eff.	(%)	•	ī	ı	06	06	06	06	06	66	06		<	∢
SO ₂ Emission	(kg/h)	1,119	1,119	1,119	460	460	460	460	442	1,172	1,172	7,983		
Case C							(200MW)	(200MW)	(200MW)	(MW009)	(500MH)			
Flue Gas through DeSOx	(%)		1	ı	1	1	100	100	100	100	001			
DeSOx Eff.	(%)	ŧ		1	ı	ı	54	06	06	06	06		4	5
SO ₂ Emission	(kg/h)	1,119	1,119	1,119	1,119	1,119	937	204	204	519	519	7,978		
Case D							(120MW)	(200MH)	(200MH)	(200MM)	(800MW)			
Flue Gas through DeSOx	(%)	ı	1	,	t		09	100	100	100	100			
DeSOx Eff.	(%)	1	,	1	·	•	06	06	06	06	06		⊲	0
SO ₂ Emission	(kg/n)	1,119	1,119	1,119	1,119	1,119	937	504	204	519	519	7,978		
Case E							(200MW)	(200MW)	(200MW)	(500MH)	(500MH)			
Flue Gas through DeSOx	(%)	•	,	i	1	1	100	100	100	100	100		(•
DeSOx Eff.	<u>%</u>	1	,			,	78	78	78	06	06		o	
SO ₂ Emission	(kg/h)	1,119	1,119	1,119	1,119	1,119	448	448	448	519	519	7,977		

Note 1.

Regulation on SO₂ Emission: 7,995 kg/h
SO₂ amount from boilers:
• Plants without FGD
1,119 kg/h (200 MW plants), 2,851 kg/h (500 MW plants)
• Plants with FGD
2,035 kg/h (200 MW plants), 5,164 kg/h (500 MW plants)
Figures in () are capacity of DeSOx plants in MW equivalent

o Excellent
o Good
A Fair
X Bad

Table 3-5 (2) Combination of DeSOx Plants Installation

Coal Calorific Value: 4,460 kcal/kg Sulphur content: 0.96 %

			Stack No.1	147			Stack No.	5. 2		Stack No.	3.	Total SO ₂	Evalu	Evaluation
	-	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	Emiss 10n	Cost	Space, etc.
Case F								(HH009)		(500MW)	(500MH)		-	
Flue Gas through DeS0x	(%)	1	•		ł	1		100		100	100			
DeSox Eff.	(%)	•	,	1	1			78		06	06	:	0	0
SO ₂ Emission	(kg/h)	1,119	1,119	1,119	1,119	1,119		1,344		519	519	7,977		
Case G							(200MM)	(200MW)	(200MM)	(500MM)	(500fW)			
Flue Gas through DeSOx.	(%)		1	1	,	1		100 100	100	100	100			
DeSOx Eff.	<u>%</u>		, ,	1		1		06 06	06	06	76		4	0
SO ₂ Emission	(kg/h)	1,119	1,119	1,119	1,119	1,119	2	204 204	204	519	1,245	7,971		
Case H							(200MW)	(200MM)	(200MH)	(500MW)	(500MH)			
Flue Gas through DeS0x	(%)	ı		1	ſ	,	_	100 100	100	100	8			
DeSOx Eff.	%	1	.!	,	!			06 06	06	06	8		4	5
SO ₂ Emission	(kg/h)	1,119	1,119	1,119	1,119	1,119	2	204 204	204	519	1,266	7,992		
Case I								(BOONK)	(1	(500MH)	(500MH)			
Flue Gas through DeSOx	(%)		ı	,	ı	1		100		100	W			
DeSOx Eff.	(%)	t	t	í	1	1		06		96	8		٥	o
SO ₂ Emission	(kg/h)	1,119	1.119	1,119	1,119	1,119		611		519	1,266	7,991.		
Case J								(S00MH	(C)	(500MH)	(E00MH)			
Flue Gas through DeSOx	(%)	,	,	1	1	,		001		100	100			
DeSOx Eff.	(%)	,	1	ı	ı	ı		92		35	26		0	9
SO ₂ Emission	(kg/h)	1,119	1,119	1,119	1,119	1,119	1,018	407		415	415	7,850		
Case K						(SOOMW)		(MM005)		(S00MW)	(E00MM)			
Flue Gas through DeSOx	(%)	1		ı		100		100		001	1		(
DeSox Eff.	(%)	ı	,			83		68		88	t		9	•
SO ₂ Emission	(kg/h)	1,119	1,119	1,119		260		560		571	2.851	7,899		

Note 1.

er,

Regulation on SO₂ Emission: 7,995 kg/h SO₂ amount from boilers: • Plants without FG0 1,119 kg/h (200 MW plants), 2,851 kg/h (500 MW plants) • Plants with FG0 2,035 kg/h (200 MW plants), 5,184 kg/h (500 MW plants) Figures in () are capacity of DeSOx plants in MM equivalent

Table 3-6 (1) Technical Comparison of Various Flue Gas Desulphurisation System (Based on Application to Kozienice P.S.)

Item Item Spray Tower Method Jet-Bubbling Method Ca. 90 Ca. 90 Ca. 90 Ca. 90 Ca. 90 Technical Maturity It has been recognized Same as the left				
Spray Tower Method SOx Removal Efficiency (Eff. at practical operation range) Dust Removal Efficiency Dust Removal Efficiency Technical Maturity It has been recognized as a proven rechnology	0)	Semi-Dry Type	Dry	Dry Type
Spray Tower Method SOx Removal Efficiency (Eff. at practical operation range) Dust Removal Efficiency Technical Maturity Technical Maturity Technical Maturity Technical Maturity Thas been recognized Technical Maturity Thas been recognized	m Method	Sarey Organ Mathod	Activated Carbon	DeSOx Method Using
SOx Removal Efficiency (Eff. at practical operation range) Dust Removal Efficiency Ca. 90 Ca. 70 Ca. 90	Jet-Bubbling Method		Method	Absorbent
Dust Removal Efficiency Ca. 90 Ca. Technical Maturity It has been recognized Same as a proven technical over	Ca. 90	Ca. 80 ~ 90	Ca. 90	Ca. 90
Technical Maturity It has been recognized Same as		Ca. 90	Ca. 90	Ca. 90
Technical Maturity It has been recognized Same as		(Combination with dust collector after SDA)		
for commercial use.	Same as the left	Same as the left	Tests in demonstration plants were finished and several commercial plants have been operating.	Test in a demonstration plant was finished and a commercial plant has been operating.
4. Operational experience 305 Plants* 7 Plants*	7 Plants*	53 Plants*	4 Plants	1 Plant
Many plants including big scale plants of 350MW, 500MW and 700MW class for coal-fired power plants have been installed and in operation.		applications including big scale plants of 350MW and 500MW class to coalfired power plants. Application of the spray dryer system is popular especially in Europe and the United States of America.	There are 4 applications to coal-fired power plants. The biggest application of 130MW equivalent plant is under operation. A plant for a 350MW fludized bed combustion boiler is under planning which is scheduled in be	As a commercial plant, there is a 175MW equivalent plant for a half of 350MW coal-fired power plant. Desox plant was put into operation in March 1991.
			1995.	

* Figures in FGD handbook published by IEA in May 1987 (Including planned plants as of May 1987)

Table 3-6 (2) Technical Comparison of Various Flue Gas Desulphurisation System (Based on Application to Kezienice P.S.)

	Wet lype	Type	Semi-Dry Type	Dry	Dry Тур е
Item	Limestone-Gy	Limestone-Gypsum Method	Spray Dayer Method	Activated Carbon	DeSOx Method Using
	Spray Tower Method	Jet-Bubbling Method		Method	Absorbent
Reliability	. It has been recognized as a proven technology.	• It has been recognized as a proven technology.	• It has been recognized as a proven technology.	recognized as a level of proven	Same as the left.
	· Reliability is very high.	. Reliability is similar to that of spray tower method.	figh reliability similar to spray tower method has been recognized.	can be applied to can be applied to commercial plant, however operational experience is	
				shorter than those of wet- limestone/gypsum	
			:	methods.	
Operational Characteristics	Excellent	Excellent	Good	Good	Good
			(There is a limitation on operation at low flue gas temperature.)	(Warm-up time at start up is rather long.)	(Absorbent production process is complicated.)
Kaintainability	Good	Good	Good	Good	Good
By-Product	Commercial gypsum can be recovered, however	Same as the left	Calcium sulfite+Flyash	Sulphuric acid or elemental sulphur	Used absorbent
	gypsum board around		· Research for	• In case of Kozienice	Research for
	Gypsum price at cement factories is low.		effective use is under way.	power plant, evaluation was made based on sulphuric	effective use is under say.
	therefore no gypsum recovery is more		 In case of Kozienice power plant, 	acid recovery.	· In case of Kozienice power plant,
	economical.		evaluation was made based on disposal to		evaluation was made based on disposal to
			the ash yond.		the ash pond by slurry transportation
					similar to existing
				-	ash disposal system.

Table 3-6 (3) Technical Comparison of Various Flue Gas Desulphurisation System (Based on Application to Kozienice P.S.)

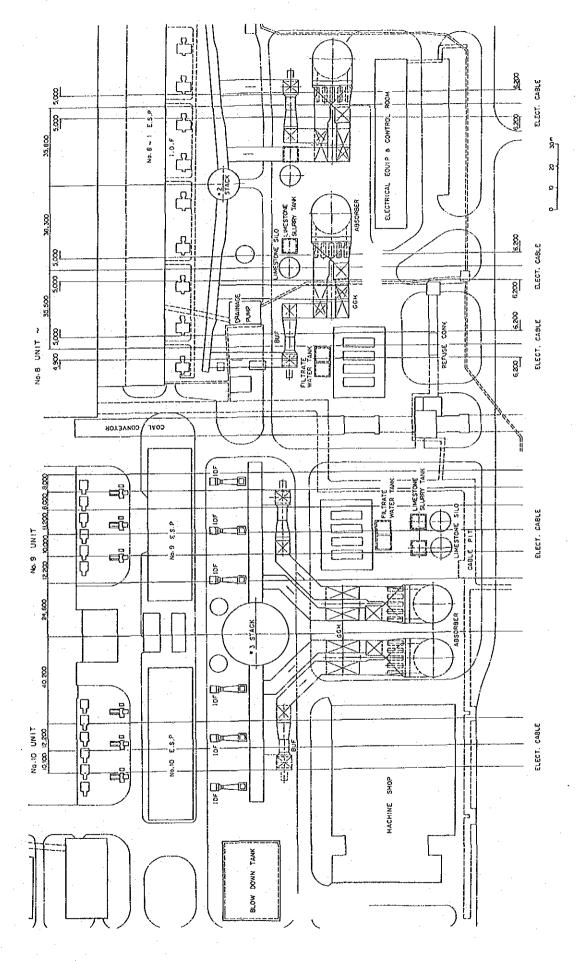
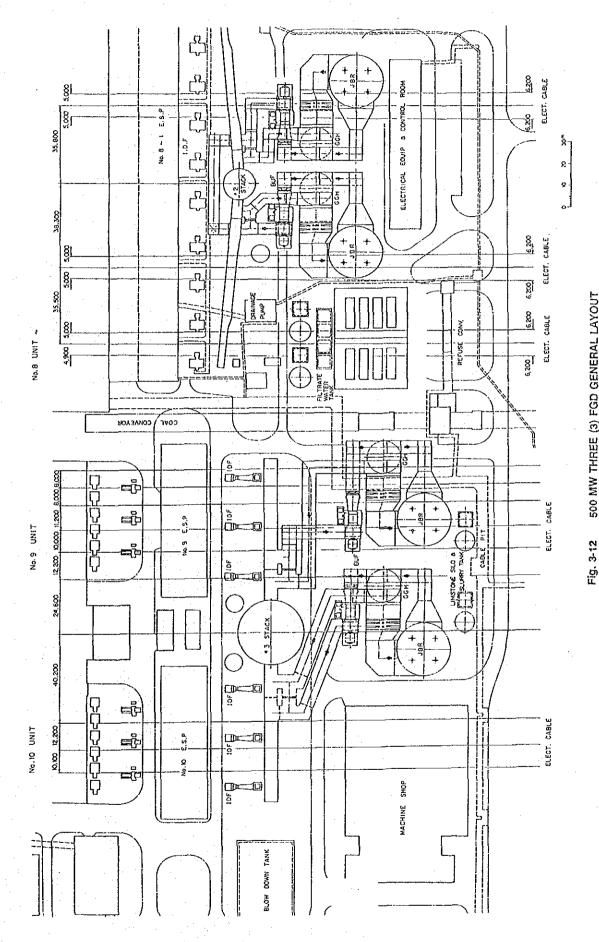
		Wet	Wet Type	Semi-Dry Type	Dry	Огу Туре
		Limestone-G	Limestone-Gypsum Method	Spray Driver Method	Activated Carbon	DeSOx Method Using
		Spray Tower Method	Jet-Bubbling Method		Method	Absorbent
9.	Ucility					
	(1) Absorbent	Limestone	Limestone	Slaked lime	Activated Carbon	71yash+Gypsum+Ca(OH)2
		(5,00,00)	(500	[C4(U5)2)		(Each of them is about 1/3)
		• About 25 t/h of	Same as the left	. About 37 t/h of	• About 4 t/h or	• About 19 t/h of
		limescone is		slaked line is	20,000 t/year of	slaked lime is
		necessary.		necessary.	activated carbon is necessary.	necessary.
		· Limestone can be		. There is no factory		. There is no factory
		supplied by cement		to supply such	• At the present	to supply such
·		nactories mear the		lime to the power	very difficult to	lime to the bower.
		4		plant.	obtain activated	plant.
					carbon at the power	
					prant pecause	
		-			of activated carbon	
					in Poland is about 1,500 t/year.	
	(2) Water	270 t/h	270 t/h	184 c/h	70 t/h	315 =/a
	(Alver water)					
	(3) Steam	6 t/a	6 t/h	1	0.6 c/h	84 t/h
	(4) Electricity	19,800 kW	19,800 ки	12,900 kW	14,000 kW	14,700 kW
90	. Waste Water	None	None	None	ų/± 9	None
		Disposal to ash pond as a compound of Gypsum, flyash, and waste waster.	Same as the left		Waste water treatment system is required.	
	and the state of t	*				

Table 3-6 (4) Technical Comparison of Various Flue Gas Desulphurisation System (Based on Application to Kozienice P.S.)

ì		·	Т	r	Γ		r		1	
	Dry Type	DeSOx Method Using	Absorbent	Not necessary	Same as the left		Same as the left		Same as the left	• Difficult to obtain slaked lime.
	Dry	Activated Carbon	Method	Not necessary	Same as the left		Same as the left		Same as the left	• Difficult to obtain activated carbon.
	Semi-Dry Type	Soras Dever Method	המיים הלות לפולה	Not necessary	Same as the left		. It is difficult to install within the available space.	• It is necessary to remove existing maintenance service building and renew a building for RCD control room.	• Difficult to be installed within the available space.	• Difficult to obtain slaked lime.
	Iype	pour Method	Jet-Bubbling Method	Required	Same as the left		Same as the left		Applicable	
	Wet Type	Limestone-Gypsum Method	Spray Tower Method	Required	Reconstruction of duct between IDF outlet and stack inlet.	• Other small items	Available space for YGD installation can be used for 3 units of 500MM equivalent.		Applicable	
		Item		Stack Lining or Flue Gas Reheating	Reconstruction of Existing Power Plant		Installation Space		Overall Evaluation	
	···	· · ·		11.	12.		13.		14.	~~~

Table 3-7 Cost Comparison of Various Flue Gas Desulphurisation System (Based on Application to Kozienice P.S.)

	Semanks								Annual Payment for Investment (A) ** Investment x Levelizing Factor	Annual Running Cost (B) * Running Cost - By- products Sale	Total Annual Cost - A + B
Dry Type	DeSOx Method Using	Flyash as a part of Absorbent		Non	None	None	268	500MW × 3	105%	190%	120%
Dry	4 to	Method Method		None	K e s	None	80 80	500MW × 3	1107	250%	140%
Semi-Dry Type	oppi C	Method		None	None	Yes	%68	500MW x 3	208	225%	105%
Type	psum Method	Jet-Bubbling Method		۲۵ ده	None	¥.	14 60 80	500MW × 3	100%	100%	100%
Wet	Limestone-Gy	Spray Tower Method		7es	None	Jes	868	500MV x 3	100% (Base)	100% (Base)	100% (Base)
	Iten		Estimated Conditions	Reheat & Stack Lining	By-products Recovery	Groundwater Protection Measures at Asi Pond	SOx Removal Efficiency	DeSOx Plant Size	Capital Cost Annual Payment for Investment	Running Cost Annual Running Cost	Total Annual Cost
			1.						2.	ຕໍ	

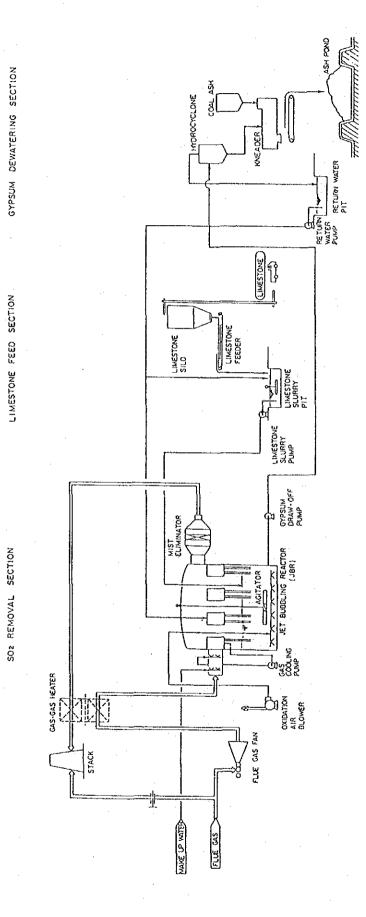

Fig. 3-10 500 MW THREE (3) FGD GENERAL LAYOUT WET LIMESTONE-GYPSUM METHOD (SPRAY TOWER)

Fig. 3-11 Wet Limestone/Gypsum Method Process Flow Sheet (Spray Tower Reactor)

FROM BOILER

ig. 3-12 500 MW THREE (3) FGD GENERAL LAYOUT WET LIMESTONE-GYPSUM METHOD (JET-BUBBLING REACTOR)

Wet Limestone/Gypsum Method Process Flow Sheet (Jet Bubbling Reactor) Fig. 3-13

4. Environmental Assessment

The maximum ground level concentrations of SO_2 before and after installation of the FGD Units are compared by hourly ground level concentration of SO_2 and the annual mean of hourly ground level concentration determined from diffusion formulas.

In Table 4-1, the results of calculation is shown.

The hourly ground level concentrations of SO_2 before and after installation of FGD Units of the most suitable combination thus obtained were 0.092 mg/m³·SO₂ and 0.058 mg/m³·SO₂, and their annual means were 0.015 mg/m³·SO₂ and 0.009 mg/m³·SO₂, respectively.

Furthermore, dust in flue gas can be reduced by installation of the wet type FGD Units.

The predicted present hourly ground concentration of 0.042 mg/m^3 dust would be 0.024 mg/m^3 dust with the installation of the wet type DeSOx system.

It is assumed that the employment of such wet type FGD Units would improve the environment much to levels where the SO_2 and dust emission of the Power Plant little affect the natural environment and human life.

Table 4-1 Result of Calculation

(Siloi - 1010)	איני ווסמו וא אינו מאַכן	מים ליוימים איווע לממי	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(== /=3)			> 100	/ l/m /				(H) VD
a o	T+em		CilidX (/ III/Bitil			Allida (Kill)	(Kill)			(m) au	
		No. 1	No. 2	No. 3	Total	No. 1	No. 2	No. 3	Totaì	No. 1	No. 2	1
	so ₂	0.034	0:040	0.024	0.092	70.8	24.2	32 5	25.0	403.0	0 647	1
1	WdS	0.015	0.018	0.011	0.042	2	J j))	2	2	
11 000	zos	0.034	0.029	0.005	0.066	8 01	27 R	27.5	21.5	0 200	ልዳዳ ወ	ł
11 0500	SPM	0.015	0.011	0.002	0.028	2)	? i) • •			
Caca 111	\$0 ₂	0.034	0.011	0.017	0.058	8 01	20.4	0 05	0 66	403.0	412 3	ì
111 2500	SPM	0.015	0.002	0.007	0.024			}) ; ;	

(Long-Term; Annual Average)	nual Average)									
e se s	l +em		Стах (тg/m³)	ng/m³)			Хтах (кт)	(km)		Direction
		No. 1	No. 2	No. 3	Total	No. I	No. 2	No. 3	Total	
Caco I	SO ₂	0.004	90.00	0.005	0.015	,				(1)
+ } }	MdS	0.002	0.003	0.002	0.007			,	ı	9
Coco II	202	0.004	0.004	0.001	0.010					()
T > 7	WdS	0.002	0.002	0000	0.004	1	· · · · · · · · · · · · · · · · · · ·	ı		9
TI ese	so ₂	0.004	0.001	0.003	0.009		,			ũ
111	SPM	0.002	0.000	0.001	0.004			· •		(3)

Note: Case I = Present (Before Dec.31,1997), Case II = Combination Case-J, Case III = Combination Case-K

5. Conceptual Design of DeSOx System

A conceptual design of the DeSOx system was carried out based on the study result of the selection of the optimum DeSOx system for the Kozienice Power Plant.

There is a little difference in inlet flue gas conditions between two FGD Units (No. 1 and No. 2) installed to No. 4 to No. 8 power generation plants and one FGD Unit (No. 3) installed to No. 9 power generation plant.

In this study, the conditions for No. 3 FGD Unit have been selected as the representative.

In Table 5-1 and 5-2, design conditions and planned performance of the FGD Units are shown respectively.

A general layout of the FGD Units is shown in Fig. 5-1.

In this layout, it is planned to be able to install another FGD Unit to No. 10 power generation plant in the future, if it would become necessary.

In Fig. 5-2 and in Table 5-3, a flow diagram and specifications of major equipment of the FGD Units are shown respectively.

In Fig. 5-3, material balance for No. 1 and No. 2 FGD Units and in Fig. 5-4 that for No. 3 FGD Unit are shown.

In these material balances, the case using high chlorine content coal is represented.

However, it is recommended to reduce chlorine content in coal by purchasing low chlorine content coals and/or blending low chlorine content coals with high chlorine content coals and so on.

In Fig. 5-5 and 5-6, material balances of 20,000 ppm chlorine content in the FGD Units are shown.

Table 5-1 Design Condition of FGD Unit

	Item	Unit	Design Condition
1.	Capacity of FGD		500 MW
2.	FGD Process		Wet-Limestone-Gypsum
3.	Gas Flow Rate	m ³ N/h, wet	2,078,000
4.	Inlet Flue Gas Temperature	°C	130
5.	Inlet Flue Gas Composition		
	H ₂ O	volz	15.4
	02	volZ	6.0
	SO ₂	ppm	940
	НЕ	mg/m ³ N, dry	24
	HC1	mg/m ³ N, dry	579
	so ₃	ppm	5
6.	SO ₂ Removal Efficiency	Z	89
7.	Dust Concentration		
	Outlet of the Existing EP	mg/m ³ N, dry	300
8.	Absorbent	_	Limestone
	Purity	7.	94% or more
	Grain Size	mesh	325 mesh pass 95% or more
9.	Gypsum		To be discarded with fly ash
10.	Outlet Flue Gas Temperature at the Inlet of the Stack	°C	90
11.	Cl Concentration in Make-up Water	ррт	237

Table 5-2 Design Performance of FGD Unit

	Item	Unit	Design Performance
1.	Capacity of FGD		500 MW
2.	Gas Flow Rate	m ³ N/h, wet	2,078,000
3.	Inlet Gas Condition		
	Temperature	°C	130
	802	ppm	940 (5,184 kg/h)
	SO ₃	ppm	5
	Dust Load	mg/m ³ N, dry	300
4.	Outlet Gas Condition	·	
	Temperature	°C	90
	SO ₂	ppm	103 (571 kg/h)
	SO ₃	ppm	2
	Dust Load	mg/m ³ N, dry	50
5.	SO ₂ , Removal Efficiency	Z	89
6.	Ca/S (Consumed Ca/Inlet SO ₂)	-	1.11
7.	Draft Loss of FGD Plant	mmAq	305
8.	Gypsum Slurry	t/h	39.4
	Fly Ash Consumption	t/h	63
	Gypsum Ash Waste	t/h	102.4

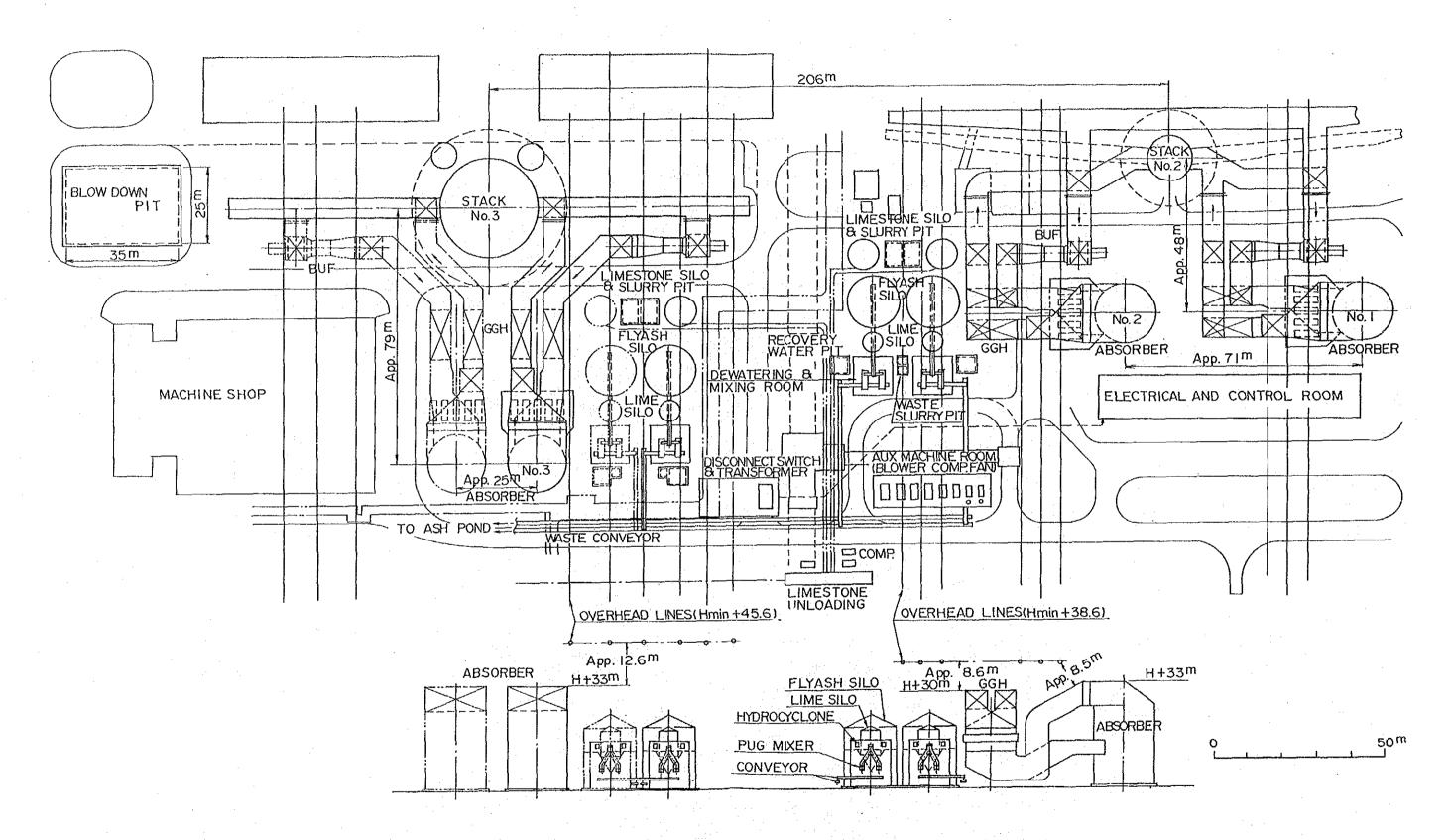


Fig. 5-1 General Layout of Three (3) 500 MW FGD Units

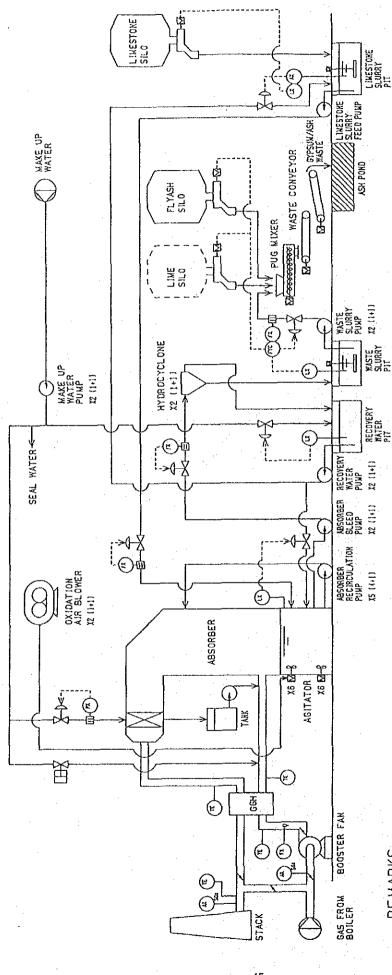


Fig. 5-2 Flow Diagram of 500 MW FGD Unit

FX : FLOW RATE TRANSMITTER

LX : LEVEL TRANSMITTER

AX : ANALYSIS TRANSMITTER

REMARKS

: TEMPERATURE DETECTOR

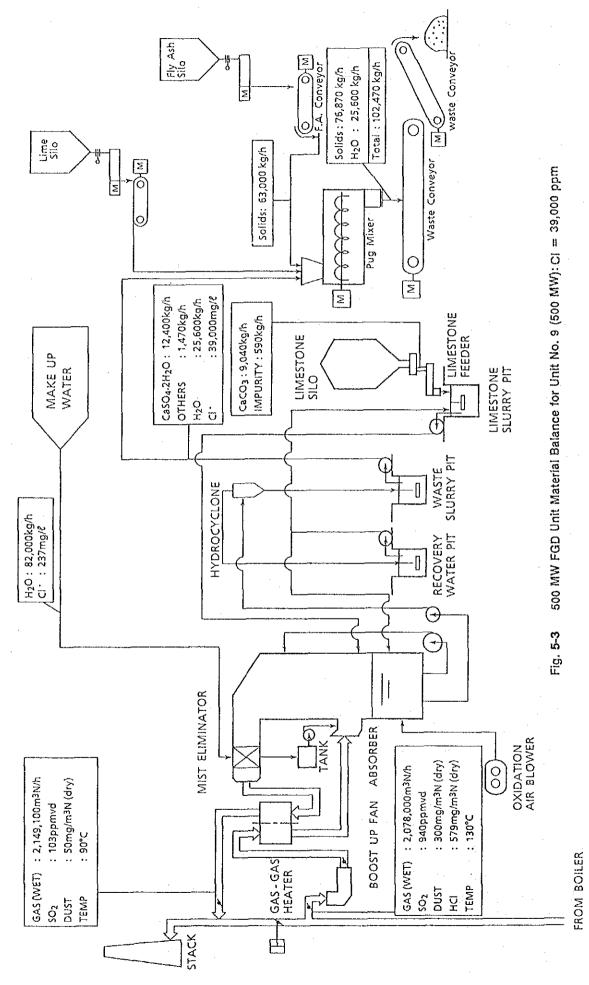
Table 5-3 Specification of Major Equipment for 500 MW FGD Unit

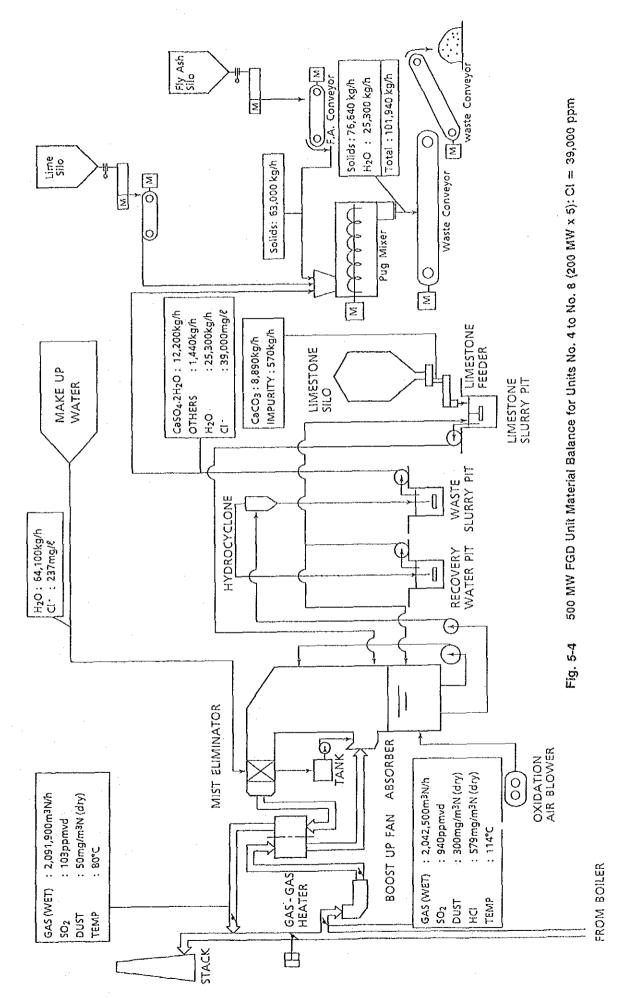
	Equipment	Specification
•	Absorbing System	
	1) Absorber	
	Number	1
	Туре	Spray Tower
	Dia. × Height	φ18.8 m × 32.3 m H
	Capacity	2,078,000 m ³ N/h
	2) Absorber Upper Recir. Pump	
	Number	1
	Туре	Centrifugal
	Capacity	123 m ³ /min
	Head	28 m
	Motor	810 kW
	3) Absorber Middle Recir. Pump	
	Number	1
	Туре	Centrifugal
	Capacity	123 m ³ /min
	Head	26 m
	Motor	760 kW
	4) Absorber Lower Recir. Pump	
	Number	1
	Type	Centrifugal
	Capacity	123 m ³ /min
	Head	25 m
	Motor	720 kW
	5) Absorber Prescrubbing Recir. Pump	
	2) Vasorber trescrapatiff rectr. temb	
	Number	1 + 1 stand-by
	Type	Centrifugal
	Capacity	72 m ³ /min
-	Head	21 m
	Motor	360 kW

	0
Equipment	Specification
6) Absorber Bleed Pump	
Number	1 + 1 stand-by
Туре	Centrifugal
Capacity	2.4 m ³ /min
Head	38 m
Motor	37 kW
7) Agitator for Absorber Recir. Tank	
Number	6
Туре	Propeller
Motor	30 kW
8) Oxidation Agitator on Absorber	
Number	6
Туре	Propeller
Motor	30 kW
9) Oxidation Air Blower	
Number	3 + 1 stand-by
	for 3 x 500 MW Roots
Type	90 m³/min
Capacity Head	0.8 kg/cm ² -g
Motor	180 kW
10001	
2. Gypsum Dewatering & Mixing System	
1) Hydrocyclone	
Number	2 sets
Capacity (as slurry)	39,400 kg/h
2) Pug Mixer	
Number	1 + 1 stand-by
Type	Mixer
Capacity (as slurry)	3 m ³
Motor	75 kW
3) Recovery Water Pit	•
Number	1
Type	Concrete pit
Capacity (Net)	57 m ³

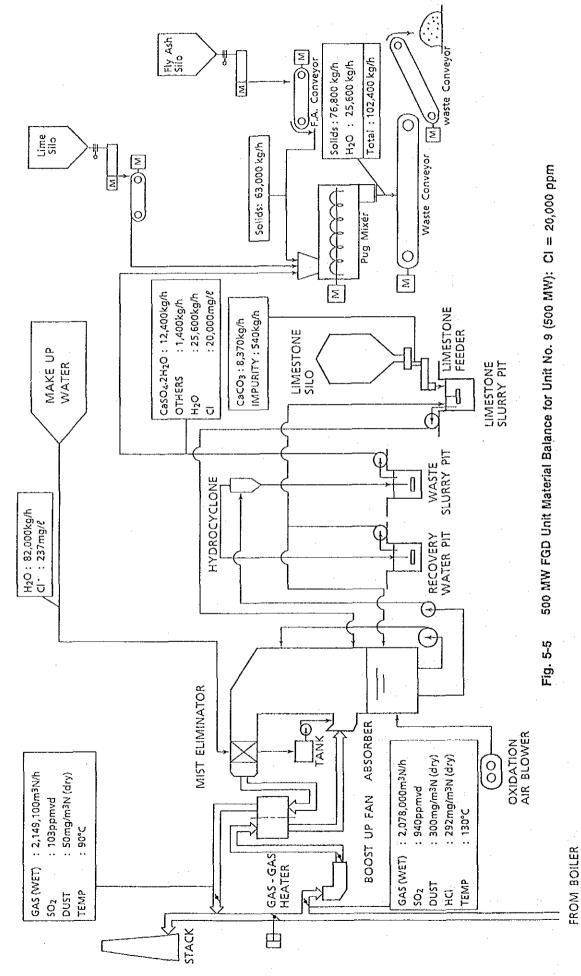
Equipment	Specification
4) Waste Slurry Pit	
Number	1
Type	Concrete pit
Capacity	16 m ³
	·
5) Waste Slurry Pump	
Number	1 + 1 stand-by
Type	Centrifugal
Capacity	$0.9 \text{ m}^3/\text{min}$
Head	15 m
Motor	5.5 kW
6) Recovery Water Pump	
Number	1 + 1 stand-by
Type	Centrifugal
Capacity	1.1 m ³ /min
Head	26 m
Motor	11 kW
7) Fly Ash Silo	1
Number	1
	Cylindrical, Vertical
Type	1,800 m ³ (1 day)
Capacity Accessary	Weigh Feeder, Conveyor
necessary	mergh recaer, conveyor
8) Lime Silo*	
Number	1
	Cylindrical Vertical
Type Capacity	280 m ³
Accessary	Weigh Feeder, Conveyor
Accessary	weigh redder, donveyor
9) Waste Conveyor	(Transport Gypsum/Ash Waste)
	to Ash Pond)
Number	2 Trains
Type	Belt Conveyor
Capacity	330 t/h
Length	3 km

* Necessity of lime addition in order to facilitate hydration of gypsum/ash waste shall be confirmed by a test using sample ash and gypsum at later stage.

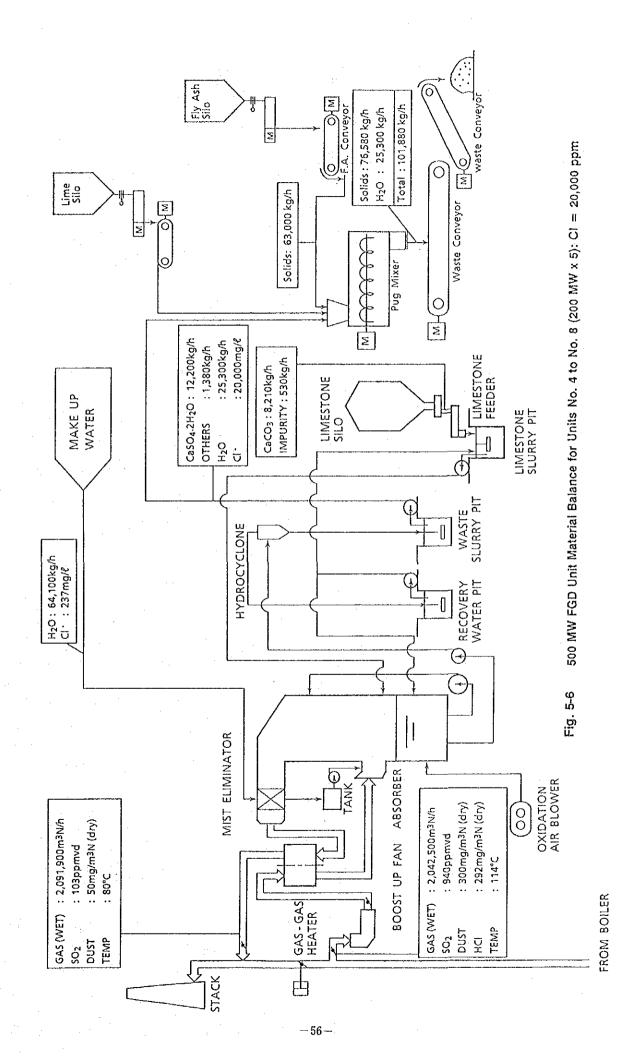

	Equipment	Specification
3.	Limestone Preparation System	
	1) Limestone Silo	
	Number	1
	Type	Cylindrical
	Capacity	630 m ³ (for 3 days)
	Accessary	Weigh Feeder
	2) Limoshana Clumry Dit	
	2) Limestone Slurry Pit	·
	Number	1
	Type	Concrete Pit
	Capacity (Net)	172 m ³
	3) Limestone Slurry Feed Pump	
	Number	1 + 1 stand-by
	Type	Centrifugal
	Capacity	1.2 m ³ /min
	Head	20 m
	Motor	11 kW
4.	Drafting System	
	1) Boost Up Fan	·
	1) boost op ran	•
	Number	. 1
	Type	Axial Flow
	Capacity	56,300 m³/min
	Head	390 mmAq
	Motor	4,700 kW
	2) Reheating Equipment	
	Number	100 g 11 10 g 21 1
	Type	Regenerative Type GCH
	Capacity	2,078,000 m ³ N/h
	· · · · · · · · · · · · · · · · · · ·	


Specification 3) Scavenging Fan Number Motor Gas leakage untreated -> treated treated -> untreated Dust leakage 5. Common Equipment Number Number Number Number 1 + 1 stand-by for 3 × 500 MW Centrifugal 1.5 m²/min 70 m 37 kW 2) Air Compressor Number Number Number Number Number 1 + 1 stand-by for 3 × 500 MW Centrifugal 1.5 m²/min 70 m 37 kW 2) Air Compressor Number Number Specification 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m²N/h Head 7 kg/cm² g 132 kW 3) Seal Air Fan Number Number Type Capacity Head Motor Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m²N/h Rotary Screw 1,020			
Number 1 150 kW 150 kW 150 kW		Equipment	Specification
Motor Gas leakage untreated 1.02 5.07 10 mg/m³N	3) Scavenging Fan	
Motor Gas leakage untreated 1.02 5.07 10 mg/m³N		Numbor	1
Gas leakage		111	
untreated -> treated treated -> untreated Dust leakage 5. Common Equipment 1) Make up Water Pump Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Centrifugal 1.5 m³/min 70 m 37 kW 2) Air Compressor Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number (Number 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ O 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Rated voltage		·	
treated -> untreated Dust leakage 5.07 10 mg/m³N 5. Common Equipment 1) Make up Water Pump Number Type Capacity Head Motor 2) Air Compressor Number Type Capacity Head Motor 37 kW 2) Air Compressor Number Type Capacity Head Motor 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 6. Electrical Equipment (Number 190 m³/min 700 mm H ₂ O 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage			1.0%
5. Common Equipment 1) Make up Water Pump Number Type Capacity Head Motor 2) Air Compressor Number Type Capacity Head Motor 1 + 1 stand-by for 3 x 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 x 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 4) Roots Blower 190 m³/min 700 mm H ₂ O 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage			
1) Make up Water Pump Number Type Capacity Head Motor 2) Air Compressor Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³M/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m²M/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor Type Capacity Head Motor Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number Number Number Rated voltage 220 kV/6.3 kV		Dust leakage	10 mg/m ³ N
1) Make up Water Pump Number Type Capacity Head Motor 2) Air Compressor Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³M/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m²M/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor Type Capacity Head Motor Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number Number Number Rated voltage 220 kV/6.3 kV	5. 0	ommon Equipment	
Number 1 + 1 stand-by for 3 × 500 MW Centrifugal 1.5 m³/min 70 m 37 kW			
Type) Hake up water ramp	
Type		Number	
Capacity Head			
Head			
Motor 2) Air Compressor Number Type Capacity Head Motor 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor Type Capacity Head Motor 6. Electrical Equipment Number Number Number Number Number Number of windings Rated voltage 37 kW 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ O 55 kW (Number of electrical equipment is for 3 F Plants.)			
Number Number Type Capacity Head Motor Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ O 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number Number of windings Rated voltage 2 220 kV/6.3 kV	-		
Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW		Motor	3/ KW
Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW			
Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW 3) Seal Air Fan Number Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW	2	Air Compressor	
for 3 × 500 MW Rotary Screw 1,020 m³N/h 7 kg/cm² g Motor 3) Seal Air Fan Number Type Capacity Type Capacity Head Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ O 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage 1 2 220 kV/6.3 kV	_	.,	
Type Capacity Head Motor 3) Seal Air Fan Number Capacity Head Type Capacity Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 Motor 6. Electrical Equipment Number Number Number Number of windings Rated voltage Rotary Screw 1,020 m³N/h 7 kg/cm² g 132 kW (Number of symbol standard symbol sy		Number	
Capacity Head Motor 3) Seal Air Fan Number Capacity Type Capacity Head Motor 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 Motor 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage 1,020 m³N/h 7 kg/cm² g 132 kW (Number of 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW			
Head Motor 3) Seal Air Fan Number Type Capacity Head Motor 6. Electrical Equipment Number Number Number Number Number Number Number Number Number of windings Rated voltage 7 kg/cm² g 132 kW 7 kg/cm² g 132 kW (Number of electrical equipment is for 3 x 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW (Number of electrical equipment is for 3 F) Plants.)			
Motor 3) Seal Air Fan Number Type Capacity Head Motor 6. Electrical Equipment Number Number Number Number Number Number Number of windings Rated voltage 132 kW 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW (Number of electrical equipment is for 3 F Plants.)			1,020 m'N/h
Number Number Number Type Capacity Head Motor 6. Electrical Equipment Number Number Number Number Number Number of windings Rated voltage 1 + 1 stand-by for 3 × 500 MW Roots Blower 190 m³/min 700 mm H ₂ O 55 kW (Number of electrical equipment is for 3 F Plants.)		· 1	
Number Number Type Capacity Head Motor 6. Electrical Equipment Number Number Number Number of windings Rated voltage 1 + 1 stand-by for 3 x 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW (Number of electrical equipment is for 3 F Plants.)		Motor	T35 KM
Number Number Type Capacity Head Motor 6. Electrical Equipment Number Number Number Number of windings Rated voltage 1 + 1 stand-by for 3 x 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW (Number of electrical equipment is for 3 F Plants.)			
Number Number Type Capacity Head Motor 6. Electrical Equipment Number Number Number Number of windings Rated voltage 1 + 1 stand-by for 3 x 500 MW Roots Blower 190 m³/min 700 mm H ₂ 0 55 kW (Number of electrical equipment is for 3 F Plants.)	3) Seal Air Fan	
for 3 x 500 MW Roots Blower 190 m³/min 700 mm H ₂ O 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage for 3 x 500 MW Roots Blower 190 m³/min 700 mm H ₂ O 55 kW	_		•
Type Capacity Head Motor 6. Electrical Equipment Number Number of windings Roots Blower 190 m³/min 700 mm H ₂ O 55 kW (Number of electrical equipment is for 3 F Plants.) 1 FGD Transformer 1 Number 2 220 kV/6.3 kV	-	Number	
Capacity Head Motor 6. Electrical Equipment Number Number of windings Rated voltage 190 m³/min 700 mm H ₂ 0 55 kW (Number of electrical equipment is for 3 F Plants.)			
Head Motor 700 mm H ₂ O 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 F Plants.) 1) FGD Transformer Number 1 2 2 220 kV/6.3 kV			Roots Blower
Motor 55 kW 6. Electrical Equipment (Number of electrical equipment is for 3 For			190 m ⁻ /m1n
6. Electrical Equipment (Number of electrical equipment is for 3 For 3 Plants.) 1) FGD Transformer Number Number of windings Rated voltage (Number of electrical equipment is for 3 F	•	• · · · · · · · · · · · · · · · · · · ·	
equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage equipment is for 3 F Plants.) 2 220 kV/6.3 kV		MOCOL	33 Ra
equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage equipment is for 3 F Plants.) 2 220 kV/6.3 kV			
equipment is for 3 F Plants.) 1) FGD Transformer Number Number of windings Rated voltage equipment is for 3 F Plants.) 2 220 kV/6.3 kV			(Number of 1
Plants.) 1) FGD Transformer Number Number of windings Rated voltage Plants.) 2 220 kV/6.3 kV	6. E	lectrical Equipment	
Number 1 Number of windings 2 Rated voltage 220 kV/6.3 kV			
Number of windings 2 Rated voltage 220 kV/6.3 kV	. 1) FGD Transformer	
Number of windings 2 Rated voltage 220 kV/6.3 kV			. 1
Rated voltage 220 kV/6.3 kV			

		Equipment	Specification
	2)	Disconnecting Switch	
		Number Rated voltage	2 sets 220 kV
	3)	Switchgears	
	-	Rated voltage (M/C / P/C / MCC)	6.3/0.4/0.4 kV
	4)	Battery	
		Number Rated voltage Capacity	3 sets 110 V 500 AH (10hours rate)
	5)	Charger	
		Number Type Capacity	3 Thyristor rectifier 50 kVA
7.	C&I	Equipment.	(Number of C&I equipment for 3 FGD Plants.)
	1)	Control Desk	
		Number	4 (1 for each FGD Plant
		Type CRT (Cathode Ray Tube)	1 for common) Steel plated desk typ 1 CRT for each desk
	2)	Controller	
		Type	Self-standing steel pla digital controller
	3)	Relay Panels	
		Туре	Self standing steel pla hard-wired type
			man a man was by pa


Equipment	Specification
4) CVCF	
Number	3
Type Capacity	Thyristor inverter type 25 kVA

CVCF: constant voltage constant frequency equipment



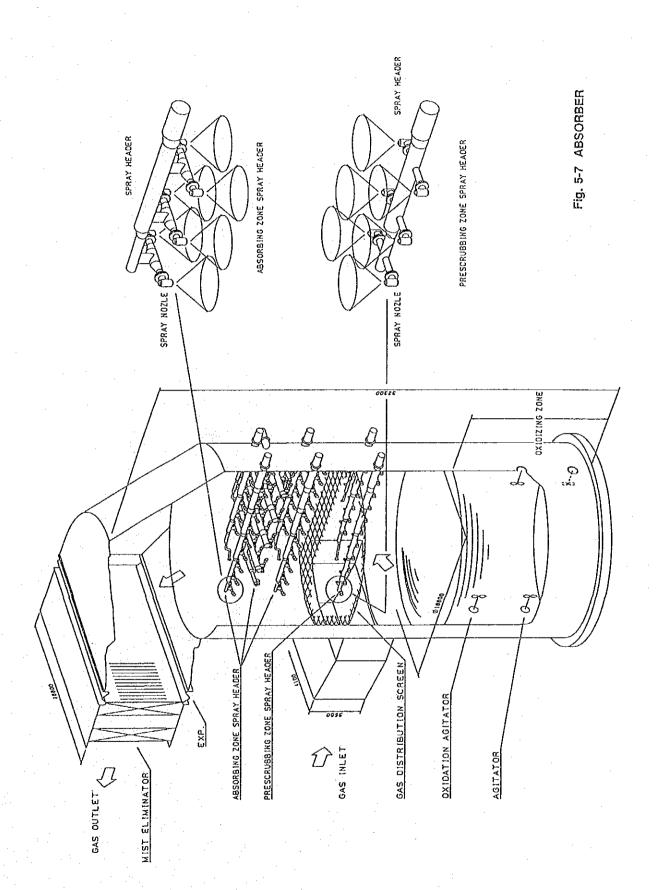
-54-

-55-

Outlines of major equipment are as follows.

: Single tamer, in-situ oxidation, spray tower method (General view of the absorber is shown in Fig. 5-7 and selection list of lining material including for the absorber is shown in Fig. 5-8.)

(2) Boost Up Fan (BUF) : Axial fan, fixed blade, A position (Between IDF and Gas/Gas Heater)


(3) Flue Gas Reheating: It is installed for the purpose of
System preventing corrosion of stacks and flue
gas ducts and of improving an effect of
flue gas dispersion from stacks.

Regenerative rotating type Gas/Gas heater (GGH) which has good reliability and economics is selected for flue gas reheating system.

(4) By-product Handling : By-product gypsum and waste water in it
Facility are mixed with flyash then conveyed to
the disposal area adjacent to the ash
disposal area.

(5) Electric Equipment : Electric equipment is powered by a newly installed DeSOx transformer which is connected with the primary side of the existing No. 4 starting transformer over head line by T-branch connection.

(6) Control Equipment : The latest model of digital controller is selected as the control equipment.

	NO.	PORTION	LINING MATERIAL
	-	FLUE	HEAT RESISTANT GLASS
		~H99	FLAKE RESIN
		ABSORBER INLET	
. –		ABSORBER OUTLET	GLASS FLAKE RESIN
		~GGH INLET	
	2	ABSORBER	
		GAS INLET	HEAT RESISTANT GLASS
		TANK UPPER ZONE	FLAKE RESIN
		SPRAY ZONE	RUBBER
EM		MIST ELIMINATOR	GLASS FLAKE RESIN
	ო	TANK	GLASS FLAKE RESIN
			OR RUBBER
	4	PIT	RESIN MORTAR
	5	SLURRY PIPING	RUBBER
			· · · · · · · · · · · · · · · · · · ·

STACK

EP

GAS GAS HEATER

AIR

AIR

ARSORPTION SYSTEM

STACK

HYDROCYCLONE

ARSORPTION SYSTEM

GAPSUM / ASH WASTE SYSTEM

Fig. 5-8 STANDARD LINING MATERIAL FOR WET LIMESTONE GYPSUM FGD SYSTEM

FLOW SHEET

Major facilities which are necessary to be reconstructed or remodeled due to DeSOx system installation are as follows.

- (1) Flue gas common ducts at stack inlet
- (2) Inner material of No. 2 stack for acid resistance lining
- (3) Z.R.E. building for electrical and control room
- (4) Rail way track for receiving chemical for demineralizer
- (5) Rail way track for maintenance
- (6) A part of flyash transportation piping