2.5.4 Financial Status and Accounting

(1) General

The total assets of the power station is 2,762.6 billion ZL, the capital is 2,556.5 billion ZL and the liabilities is 366.4 billion ZL (5 billion yen). (Refer to Tables 2.5-5 through -9).

The accounting of the power station is completely independent; the expenses incurred by the operation of the power plant of a wholesale power industry are covered by the income from the tariff sold to the Power Network Company with some profit retained. The revenue was 1,083.2 billion ZL, expenses were 902.5 billion ZL, and a profit was 180.7 billion ZL in 1990. The ratio of profit to the total sale was 17%, but this high percentage was thought to be caused tentatively by the interim measure of the review of tariff system through introduction of market principle. It is planned to modify the tariff system after 1991 to squeeze the profit according to the following formula.

Proper profit rate = (total expenses - fuel cost) x 72

The largest problem with the current tariff system of wholesaling electricity is lack of the system of return for the investment. Since the investments for renewal of facility and environmental measures are possible within the profit in the current tariff system, it is impossible to make a long term borrowing for the large investment. Therefore, the problem with the tariff system is how to make the capital costs (interest and amortization) of proper investment reflected on the tariff on a long-term basis.

(2) Composition of Generating Cost

1) Basic Principle

The tariff of electric power wholesaled from Kozienice Power Station to the Power Network Company covers and includes the following cost. (However, subsidy is provided to the transaction of the Power Network Company as referred to before.)

- The tariff is divided to the variable cost (kWh portion of tariff) and the fixed cost (kW portion of tariff).
- 2. The variable cost corresponds to the fuel cost, and it is the sum calculated by multiplying the unit cost per MWh by the amount of energy supplied. As of January, 1991, the fuel cost unit price is set at 116,840 ZL/MWh (1,600 yen/MWh*). As the amount of energy supplied in that month was 816,041 MWh, the variable cost income calculated as follows;

116,840 ZL/MWh x 816,041 MWh = 95,341 million ZL (approximately 1.3 billion yen).

- 3. The fixed cost consists of other expenses and the sum corresponding to profit. The detail is given below. As of January, 1991, the fixed cost for 8 units of 200 MW units was 35,446 million ZL, and 2 units of 500 MW units was 22,096 ZL, and the total was 57,540 ZL (approximately 800 million yen)
- The whole wholesale revenue on a kWh basis is calculated as follows;

152,881 million ZL \div 816,041 MWh = 187 ZL/kWh (2.25 yen/kWh)

Payment of the tariff from the power station to the Power Network Company is made as follows;

The calculation was done based on the foreign currency exchange rates of 1 US\$ = 9,500 ZL (fixed exchange rate at this time), and 1 US\$ = 130 yen (the average exchange rate at this time).

Advanced payment: on 6th day of each month
Settlement of Account: on the last day of each month

2) Actual Composition of Generating Cost (Based on accounting at the end of '90 business year)

1. Fuel Cost

Table for the detailed tariff calculation is formulated by the government based on calorific value, sulphur content and ash content and the coal cost is calculated by this table.

However, it is required to modify the table corresponding to the inflation, and this modification is performed every month in recent years. The trend of correction factors in recent years is given in Table 2.5-10.

According to these modification indices, the tariff in March, '91 is 2.05 time as high as that in June, '90.

The total fuel cost in '90 was 539.4 billion ZL; coal was 398.5 billion ZL, oil 7.4 billion ZL, and transportation 133.4 billion ZL.

The total calorific value of the coal purchased in '90 was 87,070.3 TJ. The average cost of coal per calorific value is 4,557 ZL/TJ. The calorific value per weight was 4,734 kcal/kg (19,819 KJ/kg), which is very low value. According to the above data, the total weight of the coal purchased in '90 was 4.3 million tons, and the unit price per weight of coal purchased in '90, was 90,568 ZL/t (1,240 yen/t).

2. Labor Expense

When we look at the labor expenses in '90, we obtain the following figure.

The total labor cost is 5,357 million ZL, and the labor cost per capita of employee is 1,561 ZL (approximately 210,000 yen). As classified the labor expense in engineers and workers, the engineers earn 17.75 million ZL (approximately 240,000 yen) and workers earn 15.03 ZL (approximately 200,000 yen). Difference between the above two categories is thought to be not so much.

As for the wages of the employees in each job category, the wage of engineer in the operating section is the highest, being 24.19 million ZL (approximately 330,000 yen). The lowest is in the welfare section, where engineers earn 14.44 million ZL (approximately 200,000 yen) and workers earn 10.20 million ZL (approximately 150,000 yen).

The escalation rate of labor cost was 523.2% of the previous year. (3.14 million ZL per person in '89).

The detail of labor costs in '90 in Kozienice Power Station is given in Table 2.5-11.

3) Depreciation Cost

Criteria of depreciation are presented in Table 2.5-12.

4) Repairing Cost

Repairing cost is recovered according to the plan and the actual expenditure.

The expenditure in '90 was 192.7 billion ZL (2.7 billion yen).

In Japan, the repairing cost is approximately 2% of the construction cost depending upon the age of the facility. For example 3 billion yen of the repairing cost for a generating plant of 600 MW scale with the construction cost of approximately

150 billion yen. Compared with the Japanese case, the repairing cost for the power station is thought to be large taking into account the difference of labor cost and price level. This is assumed to be due to the age of the facility, and also to be related to the insufficient investment for renewal of facilities and the low plant capacity factor.

Of the total repairing cost of 192.7 billion ZL, 91.6 billion ZL (48% of the total) is cost for the contracting works, the repairing works considerably depend on outside contractors. The remaining part of the repairing cost is spent inside the Power Station; 63.4 billion ZL (33% of the total), is material costs and 31.3 billion ZL (16% of the total) is labor costs.

Table 2.5-1 History of Kozienice Power Station

			· · · · · · · · · · · · · · · · · · ·	
Phase	Unit Number	Output	Start of Construction	Date of Commissioning
	1.	200MW		1972.10.18
	2	200MW		1973. 3.10
-	3	200MW	1070 0 1	1973. 6.20
I	4	200MW	1970.3.1	1973.10.08
	5	200MW		1973.12.10
	б	200MW		1974. 5.28
	7	200MW	1070 0 1	1974.10.18
II	8	200MW	1972.8.1	1974.12.24
	. 9	500MW	107/ 7 1	1978.12. 4
III	10	500MW	1974.7.1	1979.11.30

Table 2.5-2 Outline of Kozienice Power Station

Item	Outline of	Facilities
1. Major Equipment	No. 1 - No. 8 Units	No. 9, 10 Units
(1) Unit Output	200 MW	500 MW
(2) Boiler		
Туре	Drum type, natural circulation type	Drum type, forced circulation type
Maximum Evaporation	650 T/H	1,650 T/H
Firing System	Front firing system	Corner firing system
Fuel System	Pulverized coal (Hard coal)	Pulverized coal (Hard coal)
Mill Type	Ball mill	Roller mill
(3) Turbine		
Туре	Tandem, reheat, condenser, 3-casing type	Tandem, reheat, condenser, 4-casing type
Speed	3,000 rpm	3,000 rpm
Main Steam Pressure	130 kg/cm ² g	166 kg/cm ² g
Main Steam Temperature	535 °C	535 °C
Reheat Steam Temperature	535 °C	535 °C
(4) Generator		
Capacity	235.2 MVA	588 NVA
Voltage/Frequency	15.75 kV/50 Hz	20 kV/50 Hz
Cooling System	Stator: water Rotor: hydrogen	Stator: water Rotor: hydrogen
(5) Environmental Facility	Electrostatic precipitator	Electrostatic precipitator
(6) Stack	1 stack each for No. 1 - No. 3 units and No. 4 - No. 8 units 200 m high	1 stack for No. 9, 10 units
2. Condenser Cooling Water	Taken from Vistula River to t	he north of plant.
3. Coal Yard	Outdoor storage system, 5 pil transported to coal yard by r	es used by all units, ail.
4. Ash Disposal Site	Ash slurry transported by pip west of the plant.	eline to a site 3 km to the

Table 2.5-3 Personnels of Kozienice Power Station

Section	Engineer	Worker	Total
Operation	72	402	474
Repair	215	915	1,130
Research and Development Management	69	225	294
Ash Treatment and Railway	49	550	599
General Affairs	22	56	78
Engineering	16	23	39
Personnel Affairs Training Economic Analysis	23	23	46
Welfare	38	1.74	212
Accounting	43	0 .	43
(Sub-Total)	(547)	(2,368)	(2,915)
Heat Supply Section	190	328	518
Total	737	2,696	3,433

Table 2.5-4 Energy Generation and Capacity Factor of Power Station

Year	Energy Generation (MWh)	Capacity Factor
1986	10,127.271	44.4
1987	11,050,941	48.5
1988	9,974,419	43.8
1989	9,920,510	43.6
1990	8,374,632	36.7

Table 2.5-5 Breakdown of Generating Cost

1990 Base		
Fuel Cost	539.3 billion ZL	50%
Material Cost	4.4	
Wage	30.7	3%
Repair Cost	192.7	18%
Depreciation	71.3	7%
Other Production Costs	22	2%
Interest	0	
Other Expenses	43.1	3%
(Total)	(903.5 billion ZL)	
Profit* (20% of the cost)	180.7	17%
Sales Income	1,084.2	

^{*} It is being studied to squeeze the profit to (total cost - fuel cost) x 7%.

Rise of retail price in May and October, 1991 is included in the contract.

Table 2.5-6 Disposition of Profit

		In million	n ZL
Total Profit		* 221,667	· A
Profit from Power Generation		209,662	
Profit from Heat Supply		12,005	
Un-approved Expenditures		2,426	В
(Promotional expenses and gifts		1,501)	
Income not subjected to Taxation		18,346	C
(Installation of Environmental Equipment		15,558)	. :
Income subjected to Taxation	A + B - C	205,747	D
Corporate Tax	D x 40%	82,299	
Tax Exemption, etc.		д 32	· ·
Corporate Tax Paid		82,266	E
Stock Dividend	8% of Open Stocks (owned by Government)	27,584	F
Tax on Excess Wages		28,714	G
Retained Earnings by Power Station	A-(E+F+G)	83,102	Н
Bonus		5,734	Ι
Contribution to Social Insurance		2,580	J.
Contribution to Residence Loan		20,000	K
Contribution to Welfare Loan		7,475	L
(Crew Fund)			
Final Retained Earnings	H-(1+J+K+L)	47,312	
(Company Fund)	:		
	The state of the s		

Table 2.5-7 Balance Sheet

(Asset)	(in million ZL)
1. Fixed Assets	2,762,577
Fixed Assets	2,564,267
Investment	197,004
Stocks (Radom Bank)	1,306
2. Liquid Assets	233,589
Cash	31,898
Account Receivable	81,180
Stored Articles	120,511
(Materials)	108,550)
Total	2,996,166
(Liabilities and Capital)	
1. Capital	2,556,566
Open Capital	927,822
Power Statio Capital	1,628,744
2. Liabilities	366,369
Construction Liabilities	260,777
Liquid Liabilities	105,592
3. Reserve, etc.	73,231
Reduction by Financial Operations	۵ 21
Surplus	73,252
Total	2,996,166

Table 2.5-8 Statement of Fixed Asset Depreciation (After Revaluation)

		i i	(in million ZL)
	Asset Item	Acquired Value	Depreciation
01	Building	1,136,064	200,479
02	Pipeline	51,562	14,508
03	Water Facility	149,677	31,694
04	Other Buildings	582,416	182,996
05	Boiler	750,789	394,829
06	Turbine	688,198	380,053
07	Others	23,531	3,234
80	Equipments	162,188	145,638
09	Current Switcher	66,133	40,711
10	Current Adjuster	134,056	87,843
11	Transformer	128,011	84,326
12	Others	727,347	495,669
13	Railway	42,117	21,026
14	Other Fixed Assets	12,629	7,626
15	Total Fixed Assets	4,654,900	2,090,633
16	Total Production Facilities	4,497,239	2,067,907
17	Heat Supply Facilities	62,800	12,536
1	8 Boiler	21,248	1,847
1	9 Heat Unit	41,552	10,668
20	Substation Facility, 110 kV and above	1,179	
21	Welfare Facilities	3,551	116
22	Assets not subject to Depreciation	393,044	297,422
23	Assets already depreciated	282,610	282,610
25	Increase in Fixed Asset - Investment Profit	144,251	675
26	Legal Limit of Depreciation	•	76,198
31	Average Price of Fixed Assets	·	1,809,473
32	Average Price of depreciated Fixed Assets	· · · · · · · · · · · · · · · · · · ·	1,619,466
33	Average Depreciation Rate		4.20%

No. 1		单位 100万21																											
osts		Total Cost	01	21,018		30, 103		47, 081	105, 306	:	903, 545	80,816	58, 802	62, 276	65, 526	75, 417	966, 996	59, 855	60, 853	79, 462	108, 191	91, 919	93, 432			150, 635	·		
ion C		Remaining Costs	10	978		1, 291		2, 323	 6, 417		43, 106	4, 198	3, 110	3, 735	2, 382	3, 151	2, 695	3, 154	2, 757	3, 587	4,830	3, 081	6, 426			4,849			
Product		ion Interest	60	127		59		25							11.00														
Energy F	-1	other Production Costs	08	207	Verment of the second of the s	902		1, 129	3, 980		21, 989	2, 156	2, 040	2, 081	2, 024	1, 975	2, 020	2, 117	2, 285	2, 248	2, 243	2, 196	-1, 396			7, 556			
of En	S O	Depreciation	07	1,541		1, 796		2, 579	3, 448		71, 278	6, 158	5, 498	5, 806	5, 794	5, 796	5, 773	5, 790	5,816	5, 776	5, 308	7, 830	5, 933			16, 605			
hange	၁	Repairing	90	3, 781		5, 566		9, 098	32, 013		192, 712	19, 018	19, 033	18, 256	18, 261	18, 275	18, 240	12, 247	11,540	16, 858	16, 832	16, 785	7, 367			35,019			
5-9 Ch		Salaries	05	693		751		1, 255	5, 287		30, 701	1,495	1,711	1,818	1, 791	2,009	1, 980	2, 456	2, 762	2, 674	2, 701	2, 734	6, 570			2, 886			
Table 2.		Materials	8	113		186		256	591		4, 379	727	597	305	75	259	232	376	374	130	282	440	283	-		596			
Та		Fuel	0.5	13, 608		19, 748	- 1	30,416	53, 570		539, 380	47, 064	26, 813	30, 275	35, 199	43,952	36, 056	33,715	35, 319	48, 189	75, 995	58, 853	67, 950			83, 124	.		
		Period		1986		1987		1988	1989		1990		2	67)	4	2	9	1	ω.	8	01	11	12		1991				

			T		77	7																				
	į					-			-					·						•						
	,		-					1	:																	
									1																	
	tas:			F7	57	74	128		49	88	88	74	. 88	52	98	86	94 (98	26	77	120		29			
	Fixed Asset	11	70 117	106	49, 157	100, 774	100,928		1, 499, 849	1, 496, 788	1, 496, 788	1, 496, 274	1, 497, 288	1, 497, 752	1, 499, 986	1, 501, 486	1,501,594	1, 501, 586	1, 503, 626	1, 503, 977	1, 505, 520		4, 117, 229			
	Net Production (MMb)	03	10 197 971	10, 151, 511	11, 050, 941	9, 974, 419	9, 920, 510		8, 374, 632	935, 609	525, 148	605, 154	671, 185	738, 582	562, 987	523, 229	518, 210	658, 896	1, 081, 958	752, 941	800, 733		816, 992			
Unitary	Power Cost	14	0	3	4	9	20		140	13	12	12	12	12	12	10	10	12	12	13	10		58			
st	Total	11	0 075	2,013	2, 724	4, 720	10,615		107, 890	86, 378	90, 144	102, 909	97, 527	102, 109	119, 000	114,395	117, 429	120, 599	96, 96	122, 080	116, 683		184, 377			
Unitary Energy Cost	Remaining	13	701	101	937.	1.671	5, 215		43, 484	36, 075	39, 086	52, 880	45, 184	42, 601	54, 956	49, 959	49, 273	47, 463	29, 758	43,916	31, 823		82, 633			
Uní	Puel	12	1101	1, 044	1, 787	3,049	5, 400		64, 406	50, 303	51,058	50, 029	52, 443	59, 508	64, 044	64, 436	68, 156	73, 136	70, 238	78, 164	84, 860		101, 744			
										1	2	က	4	2	9	7	8	6	01	11	12					
	Period		0	1 3 8 0	1987	1988	1989		1990													1991				

Sell Cost of Sales			Value of Sales		
3			10 30 10	- 1	
 13	El. Energy	Total	Power	El. Energy	
	14	15			
-	13, 598	21, 648	7, 698	13,950	
-	19, 733	31, 347	10, 962	20,385	
ິ	30, 394	47, 954	16,419	31, 535	
·					
ഹ	53, 536	110, 351	54, 550	55, 801	
23	8, 994	1, 083, 221	518, 948	564, 273	
-47	7.027	99, 787	49, 97T	49,810	
27	6, 779	72, 713	44, 769	27, 944	
l.	0, 239	76, 858	44,653	32, 205	
(C)	5, 174	77, 342	41, 609	35, 733	
4	3, 936	79, 165	34, 556	44, 609	
ന	6, 034	67, 093	29, 942	37, 151	
ന	13, 702	72, 255	37, 733	34, 522	
ന	35, 307	71, 299	37, 104	34, 195	
ਧਾ	8, 163	88, 487	38, 500	49, 987	
-	5, 954	126,067	43, 979	82, 088	
ທ	58, 798	114, 526	46, 063	68, 463	And the second s
9	67, 881	137, 629	70, 063	67, 568	
					The state of the s
ŀ					
8	83, 063	153, 749	58, 403	95, 346	
ŀ					

Table 2.5-10 Trend of Correction Factors of Coal Charge System Table

90.6 - 90.12	1.55
90.12 - 91. 1	1.20
91. 1 - 91. 2	1.05
91. 2 - 91. 3	1.05

Table 2.5-12 Criteria of Depreciation (Figures in parentheses are Japanese values)

	Rate of Depreciation	Period of Depreciation
Machinery	5~6%	17 ~ 20 years (15 years)
Environmental Equipment	8.5 ~ 10 %	10 ~ 12 years (7 years)
Measuring Instrument	17 ~ 20 %	5 ~ 6 years (7 years)
Building	2.5 %	40 years (30 years)
Foundations (River structures, etc.)	4 %	25 years (50 years)

Table 2.5-11 Labor Costs of Kozienice Power Station (1990)

		-					(Annu	1 Income	(Annual Income in 10,000 2L)	
		Engineer		Mo	Workers, etc			Total		
	Number of Personnels	Unit Price	Total	Number of Personnels	Unit Price	Total	Number of Personnels	Unit Price	Total	
Operation	71.5	2,419	172,944	402	1,790	719,544	473.5	1,885	892,488	
Repair	215	1,755	377,301	914.5	1,499	1,370,946	1,129.5	1,548	1,748,247	
Research, Development and Control	69	1,778	122,701	225	1,503	338,210	294	1,567	460,911	
Ash Treatment, Railway, etc.	49	1,932	94,684	549.5	1,561	857,800	598.5	1,591	952,484	
General Affairs	22	1,594	35,066	95	1,414	79,174	78	1,465	114,240	
Engineering	16	1,738	27,807	23	1,658	38,127	39	1,691	65.934	
Personnel Affairs/ Training/Economics	23.5	1,699	39,916	22.5	1,165	23,371	46	1,463	67.287	
Welfare	38	1,444	54,869	173.5	1,029	178,568	211.5	1,104	233,437	
Accounting	43	1,463	62,908				43	1,463	62,908	
Heat Supply	190	1,668	316,973	328	1,347	441,907	518	1,465	758,880	
Total	737	1,775	1,308,169	2,694	1,503	4,051,648	3,431	1,561	5,355,816	

CHAPTER 3 DESCRIPTION OF DeSOx SYSTEM PROJECT SITE

Contents

																							Ī	eg?	₹ <u>6</u>
3.1	Location	n					•			3	•		•	•			•	•	•		•	•	3	-	1
3.2	Access	• • •			•	•	•	٠	•	•	•	٠	•	•	•	•	•		٠	٠	•	•	3	_	1
3.3	Climate	• ,• •					•			•	•	•					•		•				3	_	1
	3.3.1	Outline			٠.			•			•	٠					٠						3	_	1.
	3.3.2	Tempera	ture				٠	٠							٠				٠			•	3		2
	3.3.3	Precipi	tatio	n															•	•			3	-	2
	3.3.4	Wind .	• •		٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•		•	3	:	2
3.4	Topograj	phy	• •		•			•	•	•.		•		•	•	•			•	•		•	3	-	9
3.5	Geology	• • •			•		•	•									•					•	3	_	9

List of Figures

Fig. 3.3-1	Monthly Temperature at Kozienice P.P. from 1981 to 1990
Fig. 3.3-2	Precipitation and Days
Fig. 3.3-3	Distribution Diagram of Wind Direction and Speed
Fig. 3.3-4	Topographic Map
Fig. 3.3-5	Kozienice Fower Plant
Fig. 3.5-1	Sketch of Structure Drillings Spacing and Soil Profiles

List of Tables

Table 3.3-1	Monthly Temperature
Table 3.3-2	Monthly Rainfall at Kozienice P.P.
Table 3.3-3	Annual Percentage Distribution of Wind Direction and Speed
Table 3.5-1	Data of Laboratory Test

Chapter 3 Descriptions of DeSOx System Project Site

3.1 Location

The Kozienice Power Plant is located at 51°-40'N and 21°-28'E in Radom Prefecture in southeast of Republic of Poland. It is on the left shore of the Vistula River flowing south to north across Poland and 12 km north of the city of Kozienice.

3.2 Access

The main road No. 723 is running from Warsaw, the capital of Poland, to the Kozienice Power Plant. The distance from Warsaw to Kozienice Power Plant is about 75 km. The road is a two-lane road with good surface condition.

Coal, chemicals and other materials used at the Kozienice Power Plant are being carried to the plant by the railway which was used for carrying materials at construction of the power plant. Railroad tracks lead to appropriate points within the plant site. It is judged that the railway can be used effectively for carrying materials and equipments at construction of the Flue Gas Desulphuriser (FGD). Major ports in Poland are Danzing, Gdynia and Stettin facing on the Baltic Sea.

3.3 Climate

3.3.1 Outline

The weather in Poland is generally unstable under the influence of the oceanic climate of Europe in the west and the continental climate in the east, and is cold except summer. The weather data, attached hereto, are those obtained at the Kozienice Power Plant (temperature and precipitation) and Radom Meteorological Station (wind).

3.3.2 Temperature

According to the weather data of last ten years (1981-1990), the average daily maximum temperature, the average temperature and the average daily minimum temperature are 11.4, 8.0 and 4.6°C, respectively. The average monthly maximum temperature is the highest in August at 22.2°C, and the average monthly minimum temperature is the lowest in January at -4.1°C. The maximum monthly change in the average temperature is 6.1°C. The highest and lowest temperatures in the last ten years were 32.8°C occurring in August and -31.3°C occurring in January, respectively.

The temperature data are shown in Table 3.3-1 and Fig. 3.3-1.

3.3.3 Precipitation

The average annual precipitation in the last ten years is 479 mm. Precipitation is occurring much during the five months from May to September, and relatively less from October to April. The days with precipitation vary through the year, and no specific tendency is present. The maximum daily precipitation in the last ten years is 34.7 mm which occurred in May. The precipitation data are shown in Table 3.3-2 and Fig. 3.3-2.

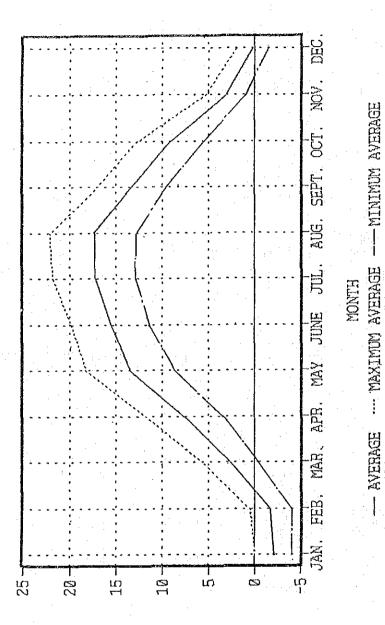
3.3.4 Wind

The Distribution Diagram of Wind Direction and Speed shown in Fig. 3.3-3 was prepared from weather data obtained at the Radom Meteorological Station. According to the figure, prevailing winds are in the direction of SW-NW. The occurrence of winds below 2.0 m/s and 5.0 m/s is 5 and 89%, respectively. The occurrence of winds of 5.0 m/s and faster is 11%.

A frequency table of wind direction and speed at the Radom Meteorological Station is shown in Table 3.3-3.

Table 3.3-1 Monthly Temperature

MONTHLY AVERAGE TEMPERATURE AT KOZIENICE P.S.

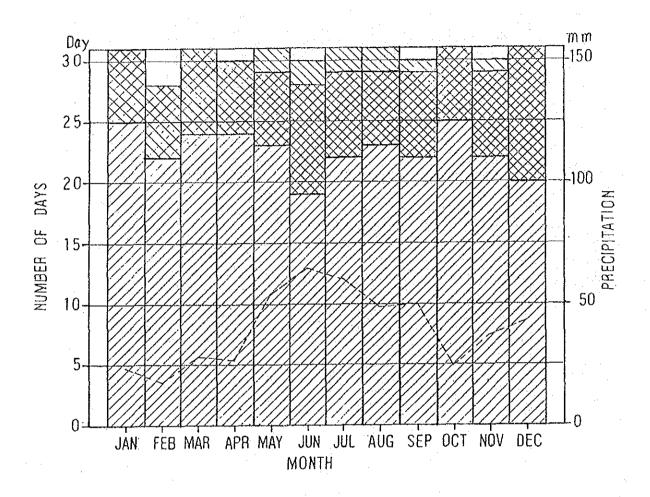

္ပ	AGE	2.1	7.1	2.7	7.5	3.5	5.5	7.4	17.5	3	9.1	3.0	
UNIT.	AVERAGE		'		-	7	-1	-	-	•			
	1990	1.7	5.1	6.7	5.4	12.5	1.91	16.3	17.2	10.9	9.2	4.7	
	1989	2.1	4.1	5.3	8.6	12.8	15.0	17.1	17.4	14.0	10.5	1.6	
	1988	0.7	0.5	7.0	0.9	13.7	15.6	18.5	17.1	13.2	7 4	0.0	
	1987	-12.9	6.0~	-2.7	7.0	77.4	15.2	17.6	15.2	12.4	8.2	4.2	
	1986	-1.6	9.6-	1.9	8.5	13.2	15.9	17.1	17.2	11.0	8.0	5.4	
	1985	9.6	- 9.7	2.0	7.9	14.0	74.2	16.5	18.1	12.2	8.3	0.5	
	1984	0.3	-1.8	0.7	7.9	13.2	14.2	15.3	17.6	13.8	10.6	2.4	
	1983	3.0	-2.7	3.7	9.5	15.4	16.5	18.3	17.6	14.5	9.2	2.2	
	1982	-2.3	-2.6	3.1	6.4	13.4	15.1	17.7	18.7	15.1	8.8	6.4	,
	1981	-2.2	0.3	5.5	7.3	15.3	18.4	19.6	18.4	15.7	10.4	4.3	
	YEAR	JAN.	FEB	HAR.	APR.	MAX	JUNE	JUL.	AUG.	SEPT.	OCT.	NOV.	

MONTHLY MAXIMUM TEMPERATURE AT KOZIENICE P.S.

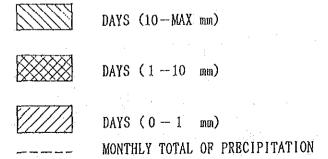
_	٠.,					_					·	г	_
400000	TATOTAL	1-0-	0.5	5.6	11.7	18.4	19.9	21.8	22.2	17.0	12.7	5.3	1.8
0001	755	3.5	7.9	10.3	12.3	18.3	23.4	19.9	22.4	13.8	13.9	7-9	1.2
2020	1303	3.7	6.5	8.8	12.3	17.8	19.3	22.2	22.2	18.5	13.4	3.6	3.3
1008	200	2.4	1.2	2.7	11.1	19.0	19.7	23.1	21.6	16.8	12.3	7.7	2.5
7801	7.30	-10.0	1.5	0.3	10.2	15.8	19.7	22.2	19.2	16.5	12.2	5.9	1.8
2001	2007	0.1	-6.7	5.2	12.9	18.3	20.8	21.7	21.4	14.0	12.3	7.9	1.3
>40'	0000	-6.7	6.9-	4.1	12.0	19.0	17.3	20.5	22.5	15.7	11.0	2.2	4.1
780 -	1001	2.0	10.1	3.8	12.3	17.4	17.3	18.9	23.1	16.6	13.8	5.2	0.1
1083	5065	4.8	-0.7	5.4	13.9	20.4	21.4	23.0	23.4	18.4	12.5	4.3	1.3
1080	7205	-0.3	-0.5	6.2	8.6	18.3	19.6	22.6	24.0	20.3	12.8	7.6	2.5
1001	1001	-0.2	2.3	3.4	11.3	19.7	22.3	24.2	22.6	8.61	13.1	5.9	0.0
1 0100	1 200	JAN.	FEB.	HAR.	APR.	HAY	JUNE	JUL	AUG.	SEPT.	OCT.	NOV.	DEC.
L	J		L.	L.,		_		L			Ŀ		_

MONTHLY MINIMUM TEMPERATURE AT KOZIENICE P.S.

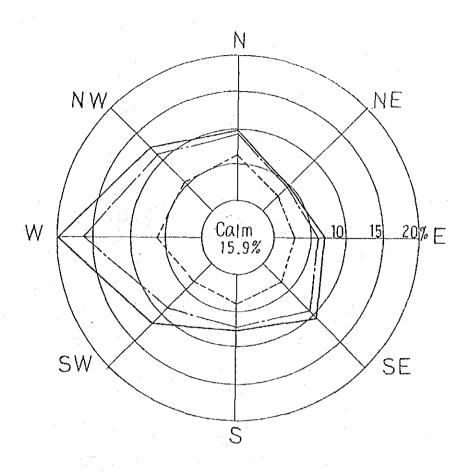
(D.) IIND	AVERAGE	Y-4-	0.4-	-0.3	3.4	9.0	11.4	12.9	12.7	9.5	5.4	6.0	-1.6
	1990	-0.2	2.3	3.2	3.5	6.8	10.8	12.7	12.1	8.1	9.4	3.1	-1.5
	1989	0.5	1.7	1.8	5 7	7.8	10.8	12.0	12.7	9.5	1.7	-0.5	-0.2
	1988	-1.0	-1.1	-1.9	1.0	4.8	11.5	13.8	12.5	6.7	2.5	-2.3	9.0-
	1987	-15.9	-3.3	-5.7	3.8	7.0	10.8	. 13.0	11.2	9.4	4.2	2.5	-1.1
	1986	-3.2	-12.5	4.1-	4.1	8.1	10.9	12.4	13.1	8.0	3.6	3.0	-2.1
	1985	-12.6	-12.5	-0.2	3.8	0 6	11.1	12.4	13.7	8.8	5.5	-1.3	4.0
	1984	*1.3	-3.6	-2.4	3.5	9.0	11.2	11.7	12.2	11.0	7.4	4.0-	2.9
	1983	1.3	9.4-	1.1	4.6	10.5	11.7	13.5	11.8	10.7	6.0	1.0	-3.3
	1982	7.4-	7.4-	0.0	rd rd	8.5	9.01	12.8	13.5	8.6	6.4	2.2	-0.3
	1981	-4.3	-1.8	2.5	3.3	11.0	14.5	6 71.	14. 2	11.6	7.6	2.7	-4.3
	YEAR	JAN.	FEB.	MAR.	APR.	HAY	JUNE	JUL.	AUG.	SEPT.	ocr.	NOV.	DEC.


ЕШУСШЩ≪БОКШ

MONTHLY TEMPERATURE AT COZIENICE P.S FROM 1981 TO 1990


Table 3.3-2 Monthly Rainfall at KOZIENICE P.P.

			-	·	***	_						_	
	Total	524.2	411.4	481.8	433.0	523. 3	456.4	521.4	491.1	472.4	471.4	4, 786. 4	478.6
	Dec.	53.6	75.7	34.0	12.4	68.9	26.8	61.7	50.4	24.6	21.7	429.8	43.0
	Nov.	50.8	23.2	21.9	24.5	19.4	19.6	37.5	54.6	61.7	55.7	368.9	36.9
	Oct.	50.7	56. 1	18.5	18.8	18.8	29.9	19.8	5.9	17.7	9.6	245.8	24.6
	Sept.	47.7	26. 5	42.8	60.8	39.2	62.9	40.6	31.2	41.9	106.3	499.9	50.0
	Aug.	62.3	41.6	30.1	18.3	62.7	68.7	64.0	59.7	34.9	46.5	488.8	48.9
	Jul.	43.1	38.2	56.1	67.0	64.0	69.5	50.7	77.7	58.6	77.5	602.4	60.2
	Jun.	79.8	42.2	32.7	72.5	104.0	40.4	86.0	57.0	99. 1	35.8	649.5	64.9
	May	54.0	39. 1	91.0	92. 1	45.4	60.8	55.4	53.0	34.9	13.4	539. 1	53.9
	Apr.	6.3	28.0	40.7	4.9	30.5	22.2	35.0	8.3	37.2	48.0	267. 1	26.7
	Mar.	35.4	6.9	47.5	22.4	28.3	11.7	37.5	30.2	26.5	34.6	281.0	28.1
	Feb.	12.7	7.8	23.2	9.5	24.1	5.3	11.6	42.1	24.1	16.3	176.7	17.7
	Jan.	24.8	26.1	43.3	29.8	18.0	35.6	21.6	21.0	11.2	6.0	237. 4	23.7
Month	Year	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	Total	Average


Fig. 3.3-2 Precipitation and days

LEGEND

RADOM Meteorological Station

LEGEND	
Center	0.0-0.09m/s
	0.1-Max m/s
-	0.1-4.9 m/s
	0.1-1.9 m/s

Fig. 3.3-3 Distribution Diagram of Wind Direction and Speed

Table 3.3-3 Anual Percentage Distribution of Wind Direction and Speed (RADOM Meteorological Station)

(unit:%)

				,
Total	34.9	73.0	84.1	100.0
2				15.9
NW	5.6	11.2	12.5	12.5
W	6.2	16.3	19.8	19.8
S W	3.5	&. 8	11.8	11.8
S	4.0	7.2	7.7	7.7
SE	3.6	6.3	10.5	10.5
ਜ਼	2.8	6.1	7.0	7.0
NE	2.9	4.7	4.9	4.9
Z	6.3	9.4	9.9	6.6
Speed Direction (m/s)	$0.1 \sim 1.9$	$0.1 \sim 4.9$	0.1 ~ Max.	Total

3.4 Topography

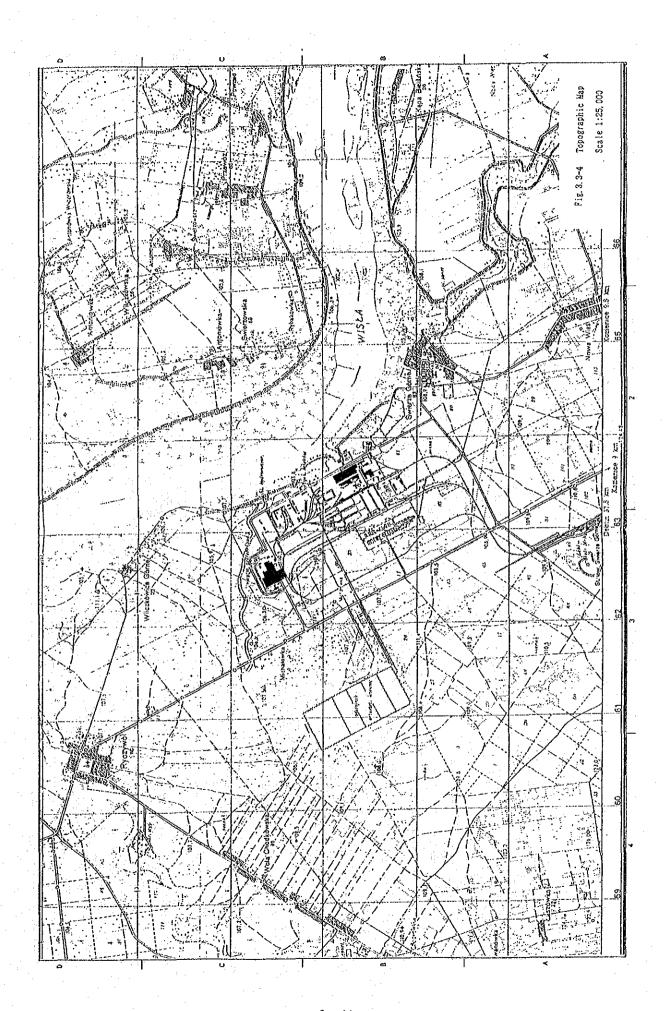
The Kozienice Power Plant and its surrounding are part of a vast flat area. of 105 to 110 m above sea level, facing the Vistula River.

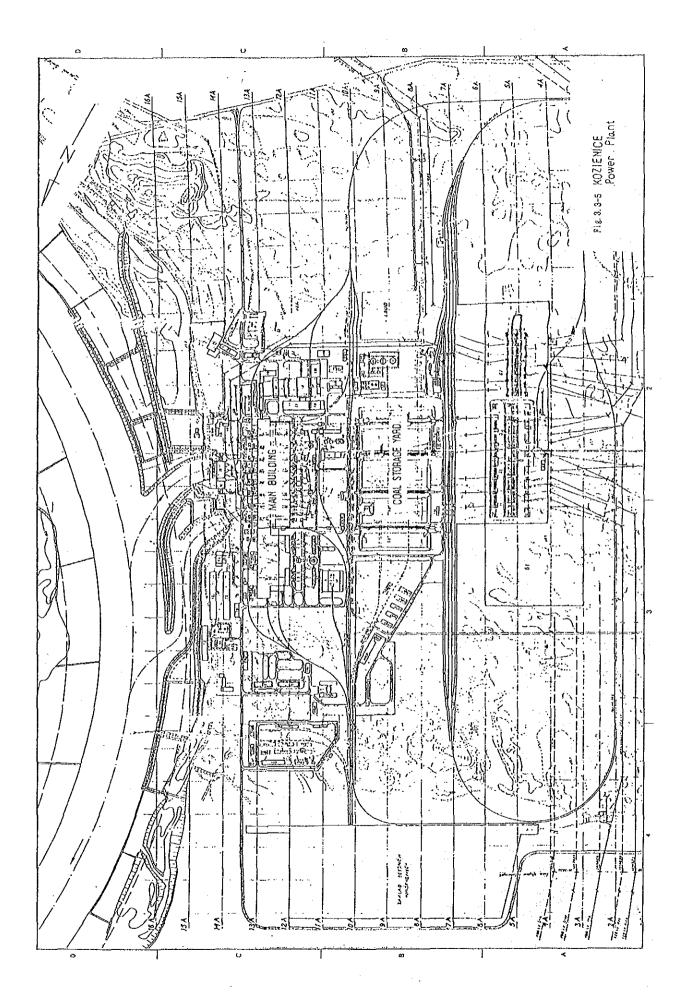
The areas around the power plant are planted with pine trees, and vegetables are grown in surrounding farms.

In addition to rail tracks for carrying materials necessary for operation and maintenance of the power plant, power cables, water supply and discharge pipes and other utility facilities are existing overhead or underground the FGD project site between the powerhouse and the coal yard. Furthermore, the power transmission line from the roof of the powerhouse to the switchyard is passing above the FGD project site.

A topographical map of the area and a power plant layout are shown in Figs. 3.3-4 and 3.3-5, respectively.

3.5 Geology


According to the results of structure drillings conducted in the past, the geology of the site of the Kozienice Power Plant consists of sand and gravel soil of river accumulation from quaternary period and an underlying tertiary strata compounded by sand, lignite, clay and varwed clay. The depth of quaternary strata amounts to approx. 20m.


Soil profile roughly indicate a fine sand layer, medium grained sand layer, coarse grained sand layer and gravel sand layer in that order from surface, and the Plant's Main Building is constructed on the medium and coarse grained sand layers as its supporting base.

The natural underground water level around the Kozienice Power Plant used to depend on the water level of the Vistula River, and it is being affected much by the Main Building drainage system.

Structure drillings spacing, of which data have been obtained, is as shown in Fig. 3.5-1. The data are insufficient for the planned FGD project site, and additional structure drillings are necessary at the stage of working for execution.

Structure drillings spacing and soil profiles are shown in Fig. 3.5-1. In addition, data of laboratory test are given in Table 3.5-1.

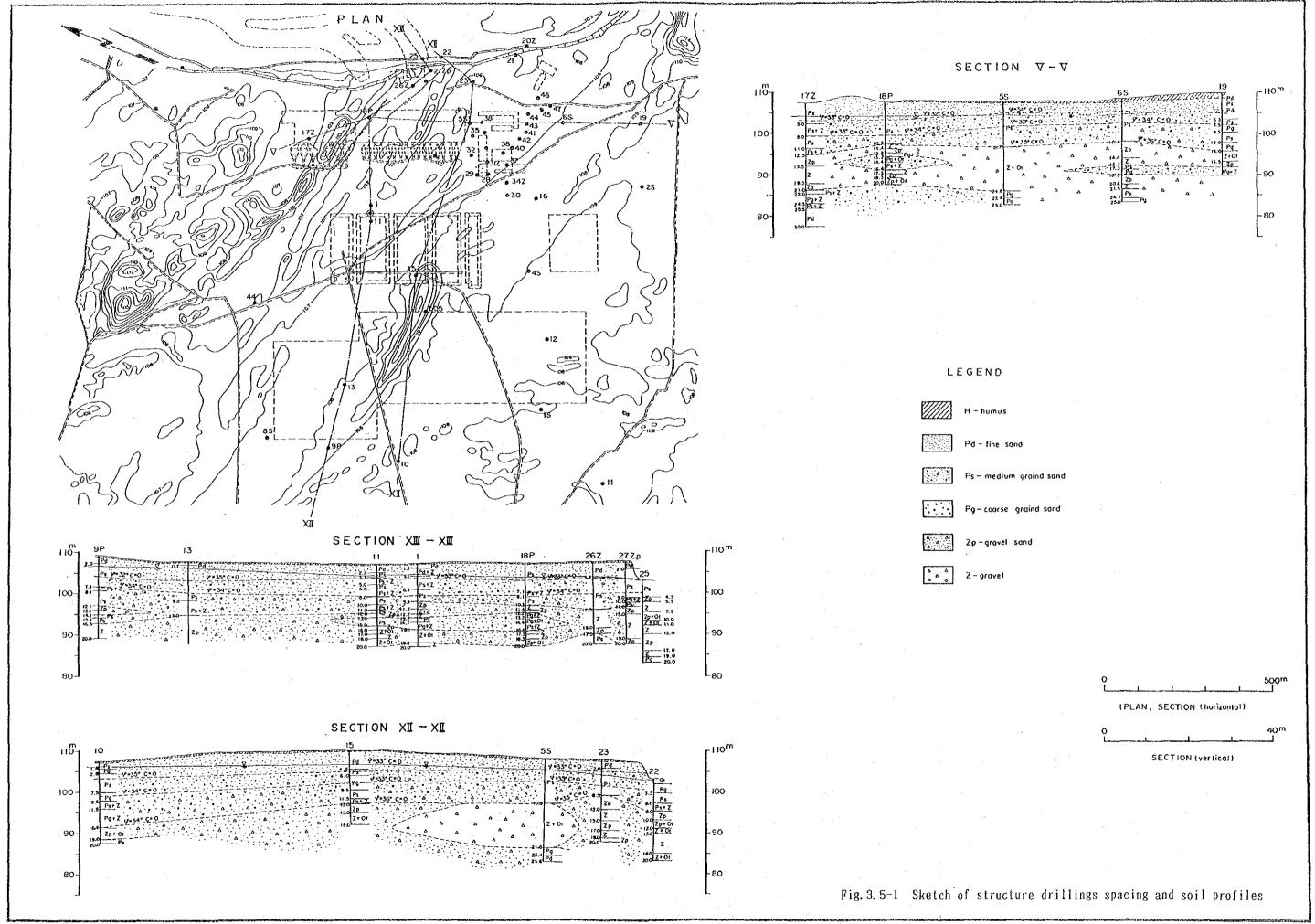


Table 3.5-1 Data of Laboratory Test

L		Item	Unit	Range of Measured Values	Average Value
1	H	Geophisical Behaviours of the Sandy Soil			
L		1. Angle of internal friction		30° ~ 35°	34°
l		2. Cohesion	MPa		0
L		3. Bulk density	t/m³	1.46 ~ 1.99	1.73
L		4. Original bulk modulus	MPa	13.0 ~ 17.0	14.0
		5. Secondary bulk modulus	MPa	19.5 ~ 24.0	24.0
<u> </u>		6. Filtration coefficient	m/24 hours	17 ~ 30	25
	II.	Geophisical Behaviours of the Gravel Soil	The state of the s		
		1. Angle of internal friction		34° ~ 37°	350
<u> </u>		2. Bulk density	t/m³	1.67 ~ 2.26	1.92
		3. Filtration coefficient	m/24 hours	25 ~ 45	35
]					

Chapter 4. Selection of the Optimum DeSOx System

CHAPTER 4 SELECTION OF THE OPTIMUM DeSOx SYSTEM

Contents

			Page
4.1	Emissio	on Standards Applied to the Kozienice Power Plant	4 - 1
4.2	Selecti	on and Technical Comparison of FGD Methods	
	to be E	Evaluated	4 - 11
	4.2.1	Section of FGD Methods to be Evaluated	4 - 11
	4.2.2	Technical Comparison of Evaluated FGD Methods	4 - 14
4.3	Study C	Conditions of the Optimum DeSOx System Selection	4 - 58
	4.3.1	Power Plant Operation Practice	4 - 59
	4.3.2	Design Conditions for DeSOx System	4 - 63
	4.3.3	Unit Price of Utilities	4 - 92
	4.3.4	Sales Opportunities of By-products in Poland	4 - 92
	4.3.5	Deterioration Rate and Interest	4 - 94
4.4	Studies	on Combination of Power Generation Units and	
	FGD Uni	ts ,	4 - 95
	4.4.1	Conditions of the Study	4 - 96
	4.4.2	Basic Policies	4 - 100
	4.4.3	Examinations of Combinations	4 - 102
	4.4.4	Results of the Study on Combination	4 - 109
4.5	Technic	al and Economic Comparison of FGD Methods	
	under E	Waluation	4 - 110
	4.5.1	Comparison Items for the Evaluation	4 - 110
	4.5.2	Conditions for Technical and Economic Comparison .	4 - 111
	4.5.3	Method for Economic Comparison	4 - 113
	4.5.4	Result of Comparison	4 - 113
	4.5.5	The Optimum FGD Method for the Kozienice Power	
	* .	Plant	4.119

4.6	Results	of Selection of the Optimum FGD System
	4.6.1	FGD Method and Number of Units to be Installed 4 - 131
	4.6.2	Conceptual Design Specifications
	4.6.3	Handling of By-product and Waste Water 4 - 135
	4.6.4	Ash Disposal Area
e."		
	:	

List of Figures

Fig. 4.1-1	Selection Flow of the Optimum DeSOx System
Fig. 4.2-1	Flue Gas Desulphurisation System
Fig. 4.2-2	Reaction Scheme of Wet Limestone-Gypsum Process
Fig. 4.2-3	Process Flow of Wet Limestone-Gypsum Process (Spray Tower
	Method)
Fig. 4.2-4	Reaction Scheme of Wet Limestone-Gypsum Process
Fig. 4.2-5	Process Flow of Wet Limestone-Gypsum Process
Fig. 4.2-6	Reaction Scheme of Spray Dryer
Fig. 4.2-7	Process Flow of Spray Dryer
Fig. 4.2-8	Reaction Scheme of Activated Carbon
Fig. 4.2-9	Process Flow of Activated Carbon
Fig. 4.2-10	Reaction Scheme of Coal Ash using Dry FGD Method
Fig. 4.2-11	Process Flow of Coal Ash Using Dry Method
Fig. 4.2-12	Process Flow of Dry Absorbent Furnace Injection System
Fig. 4.2-13	Process Flow of Dry Absorbent Duct Injection System
Fig. 4.3-1	Ash Disposal Area Plane and Section
Fig. 4.3-2	Kozienice Power Plant General Layout
Fig. 4.3-3	Available Space for FGD Installation
Fig. 4.3-4	The Elevation of Overhead Lines and the Prospective Areas for
	FGD Plant
Fig. 4.4-1	200 MW Power Plant Side View
Fig. 4.4-2	500 MW Power Plant Side View
Fig. 4.5-1	500 MW Three (3) FGD General Layout Wet Limestone/Gypsum
	Method (Spray Tower)
Fig. 4.5-2	Side View (Spray Tower)
Fig. 4.5-3	500 MW Three (3) FGD General Layout Wet Limestone/Gypsum
	Method (JET-Bubbling Reactor)
Fig. 4.5-4	Side View (JET-Bubbling Reactor)
Fig. 4.5-5	500 MW Three (3) FGD General Layout Spray Dryer Method
Fig. 4.5-6	500 MW Three (3) FGD General Layout Activated Carbon Method
Fig. 4.5-7	500 MW Three (3) FGD General Layout Coal Ash using Method
Fig. 4.6-1	Wet Limestone/Gypsum Method Process Flow Sheet (Spray Tower
	Reactor)
Fig. 4.6-2	Wet Limestone/Gypsum Method Process Flow Sheet (Jet Bubbling
	Reactor)

Fig. 4.6-3 By-product and Ash Disposal Area

List of Tables

Table 4	.1-1	Emission and Ambient Air Quality Standards in Poland
Table 4	.2-1	Comparison of Various Flue Gas Desulphurisation System
		(1) - (19)
Table 4.	.3-1	Pollutant Emission from the Boilers of Kozienice Power Plant
Table 4.	3-2	FGD Inlet and Outlet Gas Conditions
Table 4.	.3-3	Calculation of Flue Gas Amount
Table 4.	.3-4	Calculation of [HCL] and [HF] Concentration in Flue Gas
Table 4.	. 3-5	Coal Property
Table 4	. 3-6	Weighted Average Calorific Value and Ash
Table 4.	. 3 – 7	Coal Analysis
Table 4	.3-8	Coal Analysis by EPDC (1/3) (2/3) (3/3)
Table 4.	.3-9	River Water Property
Table 4.	.3-10	River Water Analysis (sampled at intake) (1/2) (2/2)
Table 4.	3-11	Water Analysis
Table 4.	3-12	Ash Analysis
Table 4.	3-13	Calculation of EP Inlet Dust Load
Table 4.	3-14	Ash Production and Effective Use
Table 4.	3-15	Analysis of Ash Pond Recirculation Water
Table 4.	3-16	(1) Powdered Limestone Analysis by EPDC
		(2) Powdered Limestone Property from Kozience P.P.
Table 4.	3-17	A Unit Price of Utilities
Table 4.	4-1 (1)	- (2) Combination of DeSOx Plants Installation
Table 4.	5-1:(1)	- (4) Technical Comparison of Various Flue Gas
		Desulphurisation System

Table 4.5-2 Cost Comparison of Various Flue Gas Desulphurisation

Chapter 4 Selection of the Optimum DeSOx System

4.1 Emission Standards Applied to the Kozienice Power Station

Emission Standards and Ambient Air Quality Standards in Poland are legislated in 1990 in which regulations are designated according to kinds of fuel used and firing method as shown in Table 4.1-1.

Emission Standards are classified into existing plants and newly built plants and Ambient Air Quality Standards are classified into general area and special protected area. These Standards will be regulated more stringently from the beginning of 1998.

Moreover, local authorities of Poland are allowed to set stricter regulation than figures set by the Central Government in order to preserve ambient air quality in local area.

Kozienice power plant is located close to a nature conservation area and other protected area and designated as a special regulated area. Because of that discussion for setting stricter regulations has been made between the local authority of Radom prefecture and the Power Plant.

As a result, both parties have made mutual consent on these figures and made agreement in August 1991.

These agreed figures consist of two stages, namely figures for those valid by the end of 1997 and for those valid from the beginning of 1998 as shown in Attachment 4.1-1.

According to the agreement, SO_2 emission from the Power Plant will be reduced to 30% of the present maximum SO_2 emission amount from January of 1998 by installing DeSOx system.

Therefore, selection of optimum DeSOx system for the Kozienice Power Plant is made in this report in accordance with the agreement.

The selection of the optimum DeSOx system in order to reduce the SOx emission to the target value requires studies of the selection of the optimum DeSOx system from various kinds of DeSOx system and combination of the power generation plants and installed DeSOx units including numbers and capacity of the DeSOx plants.

Therefore, the selection of the optimum DeSOx system will be done according to the following manner.

- (1) Selection of possible DeSOx system for the Kozienice power station and general technical comparison of each system.
- (2) Determination of conditions for the study of combination of the power plants and installed DeSOx plants, and of the selection of the optimum DeSOx system.
- (3) The study of the combination of the power plants and installed DeSOx system according to conditions determined in item (2).
- (4) Based on the optimum combination determined in item (3). case studies on selected DeSOx systems in item (1) will be made and overall technical and economical evaluation is to be carried out on selected DeSOx systems referring to the general technical evaluation done in item.
- (5) Finally, the optimum DeSOx system for the power plants will be selected according to the studies of the above.

In Fig. 4.1-1, a flow chart of this procedure is shown.

Table 4.1-1 Emission and Ambient Air Quality Standards in Poland

	(Ministries of	Emission Standards (g/GJ) (Ministries of Environment, Natural Resources, and	ndards (g/GJ) atural Resources,	, and Forest)		An (Ministries	nbient Air Qualit of Environment, N	Ambient Air Quality Standards $(\mu g/m^3)$ (Ministries of Environment, Natural Resources, and Forest)	3) and Forest)	
	Existing	Existing Plants	New P	New Plants		General Area		sp.	Special Protected Area	
	1990 ~ 1997	- 1998	1990 - 1997	1998 –	30 Min, Value	24 Hrs. Value	Annual Ave.	30 Min. Value	24 Hrs. Value	Annual Ave.
sox	1,240	870	870	200	009	200	32	250	75	11
(205)	1,540	1,070	1,070	200	440	150	32	150	75	11
NO×	330	170	170	170						
					200	150	20	150	20	90
(NO ₂)	225	150	150	150						
Dust	260	130	130	130						
					250	120	20.	82	09	40
(SPM)	195	95	96	5 6				-		
Remarks	Figures are c kinds of fuel	 Figures are classified into 13 categories according kinds of fuel used and Firing method. 	13 categories acc 1 method.	ording to	• In column for show from 1998	SOx, figures of u	upper side show v	alues valid by the	• In column for SOx, figures of upper side show values valid by the end of 1997, and bottom side show from 1998.	l bottom side
	• Figures of up and of bottom	 Figures of upper side are those for firing bituminous coal and of bottom side are those for ligurite coal. 	ose for firing bi for ligunite coa	tuminous coal il.						

Agreement on Pollutants Emission Between Radom Prefecture and Kozienice Power Plant

Decision

By the Radom Prefecture concerning the protection of air against pollution.

- This decision determines the type and amount of pollutants that can be introduced into the air by the Kozienice Power Plant. This decision is valid until December 31, 1997.
 - 1. Pollutants introduced into the air from individual power generating units and from stack No. 1 shall not exceed the following values:
 - a) Boiler OP 650 Unit No. 1 200 MW

	Maximum [kg/h]	Annual [t/year]
- Sulphur dioxide	1,119	5,550
- Nitrogen dioxide	512	3,102
- Dust	514	3,115
- Carbon oxide	228	1,382

b) Boiler OP - 650 - Unit No. 2 - 200 MW

[Values same as above]

c) Boiler OP - 650 - Unit No. 3 - 200 MW

[Values same as above]

d) The total amount of pollutants introduced into the air by stack No. 1 (height 200 meters, outlet diameter 6.7 m) shall be as follows:

	Maximum [kg/h]	Annual [t/year]
- Sulphur dioxide	3,357	16,650
- Nitrogen dioxide	1,536	9,306
- Dust	1,542	9,345
- Carbon oxide	684	4,146

- 2. Pollutants introduced into the air from individual power generating units and from stack No. 2 shall not exceed the following values:
 - a) Boiler OS-650 Unit No. 4 200 MW

	Maximum [kg/h]	Annual [t/year]
- Sulphur dioxide	1,119	5,550
- Nitrogen dioxide	512	3,102
- Dust	514	3,115
- Carbon oxide	228	1,382

b) Boiler OS-650 - Unit No. 5 - 200 MW

[Values same as above]

c) Boiler OS-650 - Unit No. 6 - 200 MW

[Values same as above]

d) Boiler OS-650 - Unit No. 7 - 200 MW

[Values same as above]

e) Boiler OS-650 - Unit No. 8 - 200 MW

[Values same as above]

f) The total amount of pollutants introduced into the air by stack No. 2 (height 200 m, outlet diameter 7.9 m) shall be as follows:

	Maximum [kg/h]	Annual [t/year]	
- Sulphur dioxide	5,595	27,750	
- Nitrogen dioxide	2,560	15,510	
- Dust	2,570	15,575	
- Carbon oxide	1,140	6,910	

- 3. Pollutants introduced into the air from individual power generating units connected to stack No. 3 shall not exceed the following values:
 - a) Boiler AP 1650 Unit No. 9 500 MW

	Maximum [kg/h]	Annual [t/year]	
- Sulphur dioxide	2,851	9,050	
- Nitrogen dioxide	1,149	4,457	
- Dust	1,310	5,082	
- Carbon Oxide	581	2,254	

b) Boiler AP - 1650 - Unit No. 10 - 500 MW

[Values same as above]

c) The total amount of pollutants introduced into the air by stack No. 3 (height 300 m, outlet diameter 9.3 m) shall be as follows:

	Maximum [kg/h]	Annual [t/year]
- Sulphur dioxide	5,702	18,100
- Nitrogen dioxide	2,298	8,914
- Dust	2,620	10,164
- Carbon oxide	1,162	4,508

4. The following emission values will be applicable to the Kozienice Power Plant until December 31, 1997.

	Maximum [kg/h]	Annual [t/year]
- Sulphur dioxide	14,654	62,500
- Nitrogen dioxide	6,394	33,730
- Dust	6,732	35,084
- Carbon oxide	2,986	15,564

- 5. The following amounts of pollutants generated in the process of fuel combustion are permitted:
 - a) Boiler OP 650

- Sulphur dioxide	566 g/GJ
- Nitrogen dioxide	259 g/GJ
- Dust	260 g/GJ

b) Boiler AP - 1650

-	Sulphur dioxide	566	g/GJ
	Nitrogen dioxide	228	g/GJ
_	Dust	250	g/GJ

II. The following emission values shall be applicable to the Kozienice Power Plant after January 1, 1998

	Sulphur dioxide	7,995	kg/h
	Nitrogen dioxide	4,402	kg/h
-	Carbon oxide	2,986	kg/h
_	Dust	3,366	kg/h

III. The Kozienice Power Plant is obliged to:

- 1. Install a desulphurisation system by December 31, 1997
- Complete modernization of power generating equipment by December
 1997 (in order to meet dust and nitrogen dioxide emission standards which come in force on January 1, 1998)
- 3. Submit to the Radom Prefecture a schedule of activities aimed at dust and nitrogen dioxide reduction. This schedule should be submitted by June 30, 1992.
- IV. The Radom Prefecture reserves the right to impose on the Kozienice Power Plant other obligations concerned with air protection.
- V. The permissible pollution values specified in part II of this decision shall be binding for the Kozienice Power Plant until December 31, 1999.

Rationale

An analysis of air pollution conducted by Energoprojekt on the basis of coal parameters and ESP efficiency (97.5%) showed that the permissible sulphur dioxide emission values are dramatically exceeded on a large area.

Nitrogen dioxide emission values are exceeded by at least 30% on specially protected areas.

Consequently, further analyses were carried out in order to establish emission values which do not exceed allowable concentration levels.

The total amount of pollution after 1998 must not exceed the following values:

- sulphur dioxide	7,995 kg/h
- Nitrogen dioxide	4,402 kg/h
- Dust	3,366 kg/h

These values imply that the present emission levels should be reduced by:

- 70% in the case of sulphur dioxide
- approximately 45% in the case of nitrogen dioxide
- approximately 55% in the case of dust

The order to achieve these valuer it will be necessary to modernize boilers (mill-furnace systems) and electrostatic precipitators, as well as to install a DeSOx system.

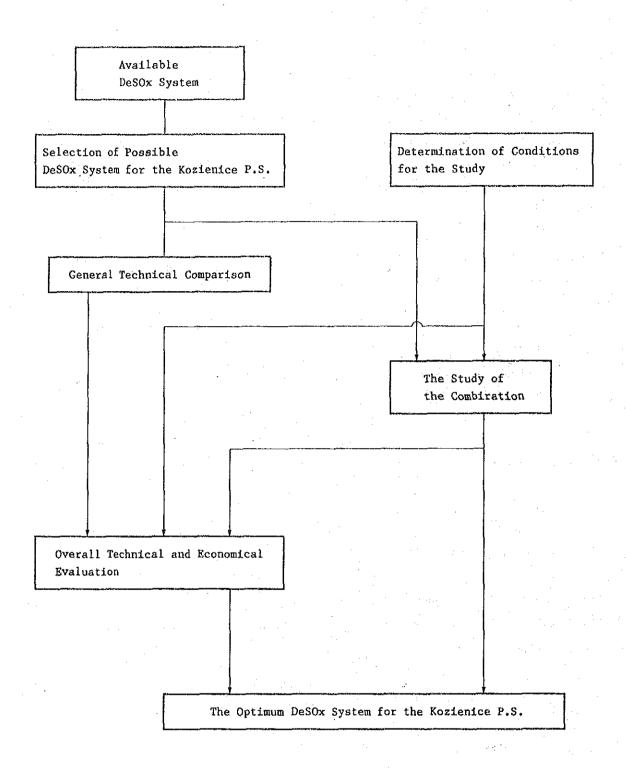


Fig.4.1-1 SELECTION FLOW OF THE OPTIMUM DeSOx SYSTEM

4.2 Selection and Technical Comparison of FGD Methods to be Evaluated

4.2.1 Selection of FGD Methods to be Evaluated

A large variety of FGD methods are being used, but many of them are similar in their principles. Such methods are categorized also in a variety of ways, but they are generally categorized into wet, semi-dry and dry methods depending on the use of water in their absorption process. FGD methods classified in such manners are shown in Fig. 4.2-1.

Judging from the current trends of FGD technologies in the world, the limestone method, where limestone slurry is used as the absorbent, is popular among the wet methods, and being employed at many utility plants.

The spraydryer method corresponds to the semi-dry method. This method has not been employed in Japan at coal fired power plants although it has been employed at many plants in Europe and the USA.

Among the dry methods, the activated carbon method which uses activated carbon as absorbent, the coal ash using method which partly uses coal ash as absorbent, and the simplified FGD method where absorbent is blown into the furnace or duct have been employed at utility plants, and more data are getting to be available.

From such wet, semi-dry and dry FGD methods, the following seven methods were selected, based on their experience at coal fired utility power plants, development status etc., as methods which can be applicable to the Kozienice Power Plant.

<Wet methods>

- (1) Limestone-gypsum method Spray tower method
- (2) Limestone-gypsum method Jet bubbling method

<Semi-dry methods>

(3) Spray dryer method

<Dry method>

- (4) Activated carbon method
- (5) Coal ash using method
- (6) Simplified FGD method Dry absorbent injection into furnace method
- (7) Simple FGD method Dry absorbent injection into duct method

These selected seven methods are outlined and their technologies are compared generally below. In Section 4.5, in addition, their technologies and economy are compared in considerations of conditions specific to the Kozienice Power Plant, and a method most appropriate for the Kozienice Power Plant is selected from the seven methods.

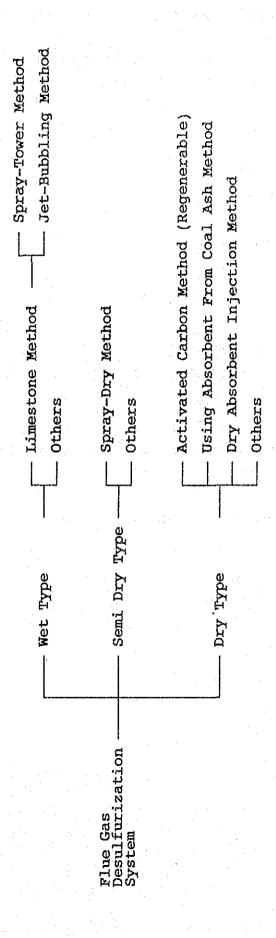


Fig. 4.2-1 FLUE GAS DESULFURIZATION SYSTEM

4.2.2 Technical Comparison of Evaluated FGD Methods

The following technical items, which are considered important, are described for each evaluated FGD method for general comparison:

- (1) Basic principles of the process
- (2) Reactions
- (3) Desulphurisation performance
- (4) Dust removal performance
- (5) Technical levels
- (6) Experience at utility plants
- (7) Reliability
- (8) Byproducts
- (9) Utilities
- (10) Waste water
- (11) Stack lining and Exhaust gas reheating
- (12) Operability
- (13) Maintenability

Table 4.2-1 shows results of general technical comparison of the FGD methods evaluated in this study.

In addition, basic processes of such FGD methods are outlined in pages which follow.

(1) Wet type limestone-gypsum method - Spray tower method

Limestone (CaCO₃) slurry is sprayed to flue gas in a spray tower to absorb sulphur oxides (SOx) of the flue gas for desulphurisation. The limestone slurry thus sprayed reacts with absorbed sulphur oxides and forms calcium sulphite (CaSO₃). Calcium sulphite thus formed is oxidized further and discharged in the form of gypsum (CaSO₄).

Major reactions which occur in this method are as follows:

[Absorption]

$$CaCO3 + SO2 + \frac{1}{2}H_2O - CaSO_3 \cdot \frac{1}{2}H_2O + CO_2$$

[Oxidation]

$$CaSO_3 \cdot \frac{1}{2}H_2O + \frac{1}{2}O_2 + \frac{1}{2}H_2O - CaSO_4 \cdot 2H_2O$$

The flow of these reactions is shown in Fig. 4.2-2.

The process flow of this method is shown in Fig. 4.2-3. This method consists of a draft system, a limestone slurry preparation system, an absorbing system, a gypsum recovery system, etc.

a. Draft system

The flue gas from boiler is pressurized by a boost-up fan (BUF), subjected to heat exchange at a gas-gas heater (GGH) with treated gas from FGD outlet, and enters the spraying absorber. Here, the flue gas temperature is lowered to the saturation temperature by spraying part of the absorber circulating liquid. The cooled flue gas is then uniformly dispersed and rectified in the absorber, comes into contact, face to face, with slurry at the absorbed and dust in the flue gas is removed by the scrubbing in the absorber.

After the desulphurisation, mist included in the flue gas are removed at the mist eliminator which is existing at the upper part of the spraying tower.

After removal of sulphur oxides and dust, the treated flue gas is led again to the gas-gas heater, where it is heated by flue gas from boiler, and then discharged from the stack.

b. Limestone slurry preparation system

Limestone (powder), used as absorbent is stored in a limestone powder silo. The limestone powder is fed to a limestone slurry tank through a limestone metering feeder. Water is also added to the limestone slurry tank at a specified rate. Limestone powder and water are made into limestone slurry, and the limestone slurry is kept in the limestone slurry tank. Necessary amounts of limestone slurry are pumped from the tank by limestone slurry pumps to a circulation tanks existing at the bottom of the absorber. Waste water of gypsum dehydration is usually used for preparing the limestone slurry.

c. Absorbing system

The absorbing system, where the mixed slurry of limestone and reaction products is sprayed in the absorber, is the most important system on the desulphurisation and the dust removal efficiency of the FGD. The mixed slurry sprayed in the absorber falls while absorbing and removing sulphur oxides and dust of the flue gas and the slurry is stored in the circulation tank existing at the bottom of the absorber. Limestone slurry is added to the tank to maintain the desulphurisation performance of the mixed slurry, and the mixed slurry is sprayed again in the absorber tower for desulphurisation. The air is blown into the absorber circulation tank to oxidize calcium sulphite into gypsum (calcium sulphate).

d. Gypsum recovery system

When gypsum is to be recovered as a byproduct, the gypsum slurry from the absorption system is dehydrated by dehydrators to obtain gypsum in this system. Waste water from dehydrators is usually used again as make-up water for the desulphurization process.

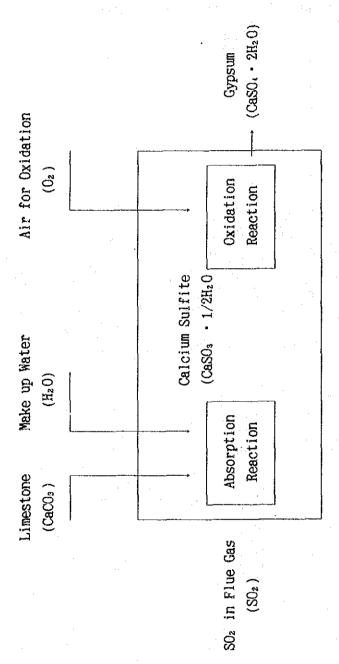
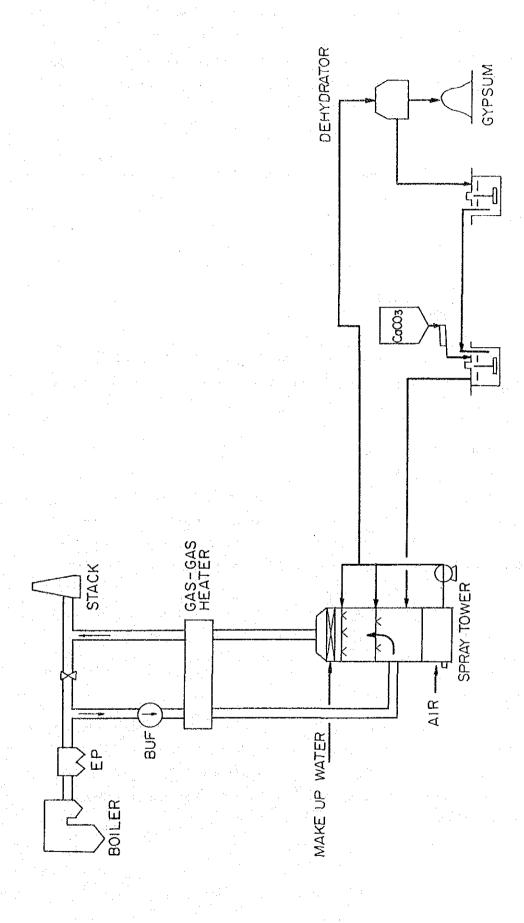



Fig. 4.2-2 Reaction Scheme of Wet Limestone - Gypsum Process (Spray Tower Method)

PROCESS FLOW OF WET LIMESTONE-GYPSUM PROCESS (SPRAY TOWER METHOD)

Fig. 4.2 - 3

(2) Wet type limestone gypsum method - Jet bubbling method

In this method, the flue gas and the air for oxidation are blown into an absorption liquid of limestone slurry in a jet bubbling reactor (JBR). Sulphur oxides included in flue gas are absorbed and oxidized in this way, and gypsum is recovered as a by-product.

The major reaction which occurs in this method is as follows:

[Absorption and oxidation]

$$SO_2 + CaCO_3 + \frac{1}{2}O_2 + 2H_2O - CaSO_4 \cdot 2H_2O + CO_2$$

The flow of this reaction is shown in Fig. 4.2-4.

The process flow of this method is shown in Fig. 4.2-5. This method consists of a draft system, an absorbing system, a limestone slurry preparation system, a gypsum recovery system, etc.

a. Draft and absorbing system

The flue gas from boiler is pressurized by a boost-up fan (BUF), subjected to heat exchange at a gas-gas heater (GGH) with treated gas from FGD outlet, and part of the makeup water is sprayed to lower the flue gas temperature to the saturation temperature.

The flue gas of saturation temperature is led to the JBR and blown into the absorption liquid through sparger pipes, and sulphur oxides and dust are absorbed and removed from the flue gas.

Mists included in the flue gas at desulphurisation are removed at a subsequent mist eliminator. After desulphurisation and dust removal, the treated flue gas is led again to the gas-gas heater, where it is heated by flue gas from boiler, and then discharged from the stack.

b. Limestone slurry preparation system

Limestone (powder), used as absorbent is stored in a limestone powder silo. The limestone powder is fed to a limestone slurry tank through a limestone metering feeder. Water is also added to the limestone slurry tank at a specified rate. Limestone powder and water are made into limestone slurry, and the limestone slurry is kept in the limestone slurry tank. Necessary amounts of limestone slurry are pumped by limestone slurry pumps and fed to the JBR. Usually, waste water of gypsum dehydration is used as water for making the limestone slurry.

c. Gypsum recovery system

When gypsum is to be recovered as a byproduct, the gypsum slurry from the JBR is dehydrated by dehydrators to obtain gypsum in this system. Waste water from dehydrators is usually used again as make-up water for the desulphurisation process.

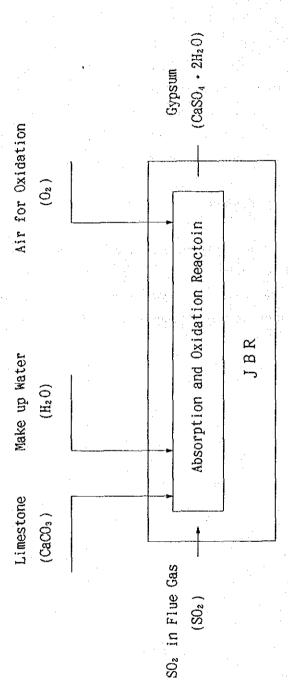
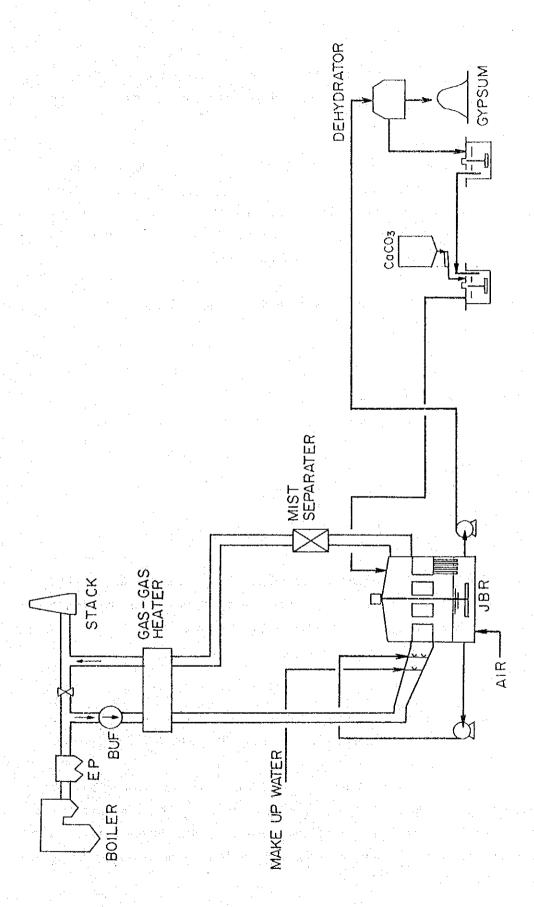



Fig. 4.2-4 Reaction Scheme of Wet Limestone - Gypsum Process (Jet - Bubbling Method)

PROCESS FLOW OF WET LIMESTONE-GYPSUM PROCESS (JET-BUBBLING METHOD)

Fig. 4.2-5

(3) Spray dryer method

In the spray dryer method, slaked lime slurry is sprayed in the form of very fine droplet in flue gas in a spray dryer absorber (SDA) to absorb sulphur oxides of the flue gas.

Water in the slurry evaporates by the heat of the hot flue gas. Sulphur oxides in flue gas reacts, at the same time, with slaked lime $(Ca(OH)_2)$ of the slurry, resulting a dry powder mixture of calcium sulphite $(CaSO_3)$ and gypsum $(CaSO_4)$, which falls on the bottom of SDA or is collected and removed by a subsequent dust collector.

Major reactions which occur in this method are as follows:

[Absorption]

$$Ca(OH)_2 + SO_2 + \frac{1}{2}H_2O \rightarrow CaSO_3 \cdot \frac{1}{2}H_2O + H_2O$$

[Oxidation]

$$CasO_3 \cdot \frac{1}{2}H_2O + \frac{1}{2}O_2 + \frac{1}{2}H_2O - CasO_4 \cdot 2H_2O$$

The flow of these reactions is shown in Fig. 4.2-6.

The process flow of this method is shown in Fig. 4.2-7. This method consists of a draft system, a slaked lime slurry preparation system, a slurry spraying system, a dust recirculation system, etc.

a. Draft system

The flue gas from boiler is led to SDA usually by an induced draft fan (IDF). The absorbent is sprayed in the SDA and sulphur oxides are removed. The temperature of the flue gas in the SDA is adjusted to an optimal operating temperature range by the amount of concentration-adjusted slaked lime slurry sprayed in the SDA. The temperature of flue gas for optimal operation is controlled to be higher than the saturation temperature by 10 to

20°C so that the flue gas can be in a dry state. The reaction products generated in the flue gas are partly removed by the cyclone separation effect of the SDA. The rest of the reaction products is carried to a subsequent dust collector, where the dust including the reaction products are removed to achieve a level of concentration which meets regulations, and the treated flue gas is discharged from the stack.

b. Slaked lime slurry preparation system

Slaked lime or quick lime, used as absorbent, is stored in a storage silo, and fed to a slaked lime slurry tank through a slaked lime metering feeder. Water is also added to the tank at a specified rate to make supplied slaked lime into slurry and store it in the slurry form.

c. Slurry spraying system

The slurry spraying system sprays the absorbent slurry in the SDA. The absorbent slurry is a mixture of the slaked lime slurry and part of the reaction products fallen to the bottom of the SDA and collected at the subsequent dust collector.

The absorbent slurry must be sprayed in the form of very fine droplet, and rotary atomizers are used for that purpose in large scale systems.

d. Dust recirculation system

The dust recirculation system removes the reaction products fallen to the bottom of the SDA and collected at the subsequent dust collector, and recirculates part of the reaction products to the absorbent slurry to improve the utilization rate of slaked lime used in the method.

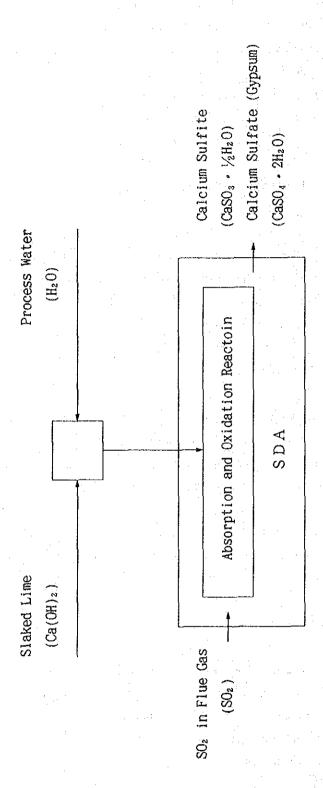


Fig. 4.2-6 Reaction Scheme of Spray Dryer

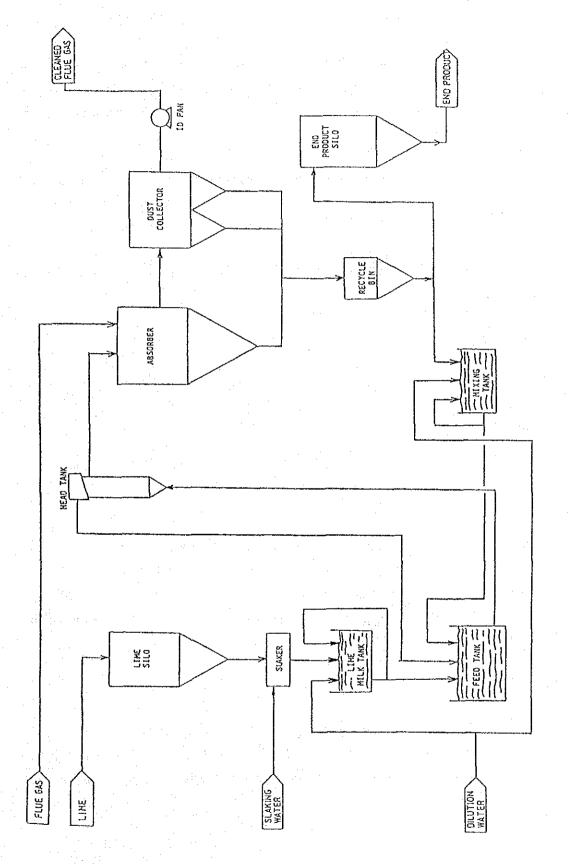


Fig. 4.2-7 PROCESS FLOW OF SPRAY DRYER

(4) Activated carbon method

In the activated carbon method, activated carbon used as absorbent is filled in an moving bed type absorber in which activated carbon moves by gravitation. Flue gas is passed through the absorber for absorption of sulphur oxides.

As the absorption efficiency of the absorbent deteriorates gradually, the absorbent is continuously heated for regeneration in a desorber. Sulphuric acid or sulphur is recovered as a byproduct.

The absorption and regeneration reactions which occur in this method are as follows:

[Absorption]

$$SO_2 + \frac{1}{2}O_2 + H_2O \rightarrow H_2SO_4$$

[Regeneration]

$$H_2SO_4 \rightarrow H_2O + SO_3$$

 $SO_3 + \frac{1}{2}C \rightarrow SO_2 + \frac{1}{2}CO_2$

The flow of the absorbing reaction is shown in Fig. 4.2-8.

The process flow of this method is shown in Fig. 4.2-9. This method consists of a draft system, an absorption system, a regeneration system, a by-product recovery system, etc.

a. Draft system

The flue gas is passed through the moving bed type absorber, which is filled with activated carbon and in which the absorbent moves by gravitation, so that sulphur oxides of the flue gas is absorbed.

b. Absorption system

The absorbent (activated carbon) is fed to the top of the absorber and then the absorbent is flowed down by gravity from the top of the absorber to the bottom of it.

During the moving action, the flue gas from boiler is passed horizontally through the moving bed (cross-flow contact) and sulphur oxides are absorbed. The used absorbent is regenerated in the desorber, and then fed to the absorber again.

c. Regeneration system (Desorption system)

The used absorbent (activated carbon) from the absorber, which absorbed sulphur oxides, is regenerated in the desorber for reuse. In regeneration, the used absorbent is heated to about $400\,^{\circ}\text{C}$ to free 50_2 -rich gas from the used absorbent at the desorber.

d. Recovery system

The recovery system recovers by-product from the SO_2 -rich gas freed in the regeneration system. The by-product is recovered in the form of sulphuric acid or elemental sulphur.

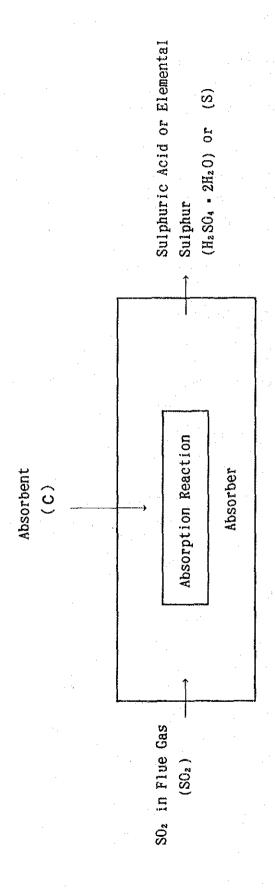


Fig. 4.2-8 Reaction Scheme of Activated Carbon

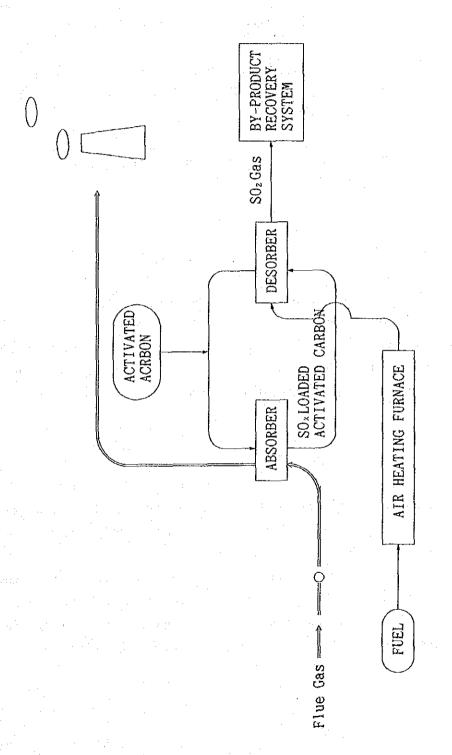


Fig. 4.2-9 PROCESS FLOW OF ACTIVATED CARBON

(5) Coal ash-using dry FGD method

In the coal ash using method, an absorbent made of coal ash, slaked lime and used absorbent or gypsum is filled in moving bed type absorbers in which the absorbent pellets move by gravitation. Flue gas is passed through the absorbers for absorption of sulphur oxides.

After absorption of sulphur oxides, the spent absorbent is partly used as the source of gypsum which is one of the raw materials of the fresh absorbent, and the rest is removed from the system.

The major reaction which occurs in this method is as follows:

[Absorption]

$$CaO + SO_2 + \frac{1}{2}O_2 - CaSO_4$$

The flow of this reaction is shown in Fig. 4.2-10.

The process flow of this method is shown in Fig. 4.2-11. This method consists of a draft system, an absorption system, an absorbent production system, a spent absorbent recovery and storage system, etc.

a. Draft system

The absorber consists of a preabsorber and a main absorber. The flue gas from boiler is led to the preabsorber, where dust and part of sulphur oxides are removed by the absorbent, and then led to the main absorber for desulphurisation. In this method, the flue gas from boiler is treated by a dry process. Thus, the temperature of the flue gas is not lowered in the process, and no reheating of the treated flue gas is necessary. The treated flue gas is induced by a fan, and discharged from the stack.

b. Absorption system

The absorbent is fed to the top of the main absorber. The flue gas from boiler is passed horizontally through the moving bed (cross-flow contact) while the absorbent goes down from the top of the main absorber to the bottom by gravitation, and sulphur oxides are absorbed. The absorbent coming out of the main absorber is fed to the top of the preabsorber, and contacted again to the flue gas from boiler. In the preabsorber, the absorbent removes dust and part of sulphur oxides, thus improving the utilization rate of calcium contained in the absorbent is improved.

c. Absorbent production system

This system produces the absorbent pellets using coal ash, slaked lime and gypsum as raw materials.

Powders of raw materials from respective storage tanks are mixed uniformly in a mixer, and mixed further with water into a clay form in a kneader. The mix is then extruded with an extruder into a cylindrical form, and cured in a steam curing unit.

The wet cylindrical pieces are dried in hot dry air to form pores in the pieces to make them active for desulphurisation, and used as the absorbent pellets. The absorbent pellets thus produced are stored in a absorbent storage silo, and supplied to the absorber.

d. Spent absorbent recovery and storage system

In spent absorbent from absorber contains calcium in the form of gypsum. The spent absorbent, therefore, is stored in spent absorbent storage silo and partly reused as the source of gypsum for production of the fresh absorbent. The rest of spent absorbent is removed from the system along with the collected dust.

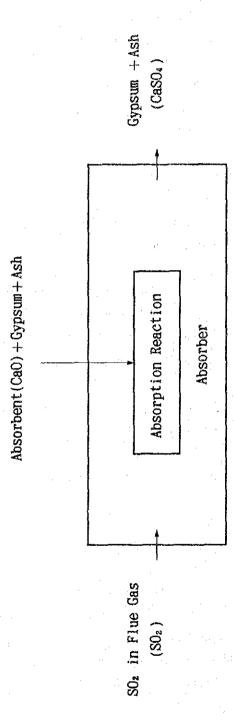


Fig. 4. 2-10 Reaction Scheme of Coal Ash Using dry FGD Method

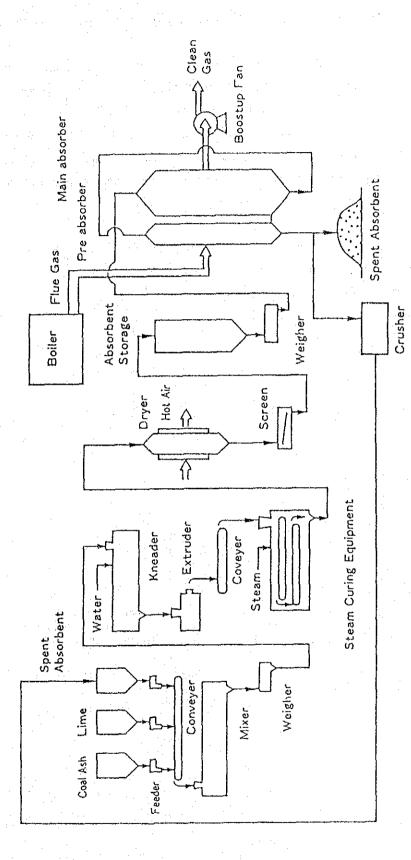


Fig. 4. 2-11 PROCESS FLOW OF DRY FGD SYSTEM USING ABSORBENT MADE FROM CAL ASH AND LIME

(6) Simplified FGD method - Dry absorbent injection into furnace method

In this simplified FGD method, limestone (CaCO₃) is blown into the high temperature region (about 1,100°C) of furnace to decarbonate limestone and partly absorb sulphur oxides at the same time. In addition, water is sprayed in a reactor, installed at a low temperature region downstream of the air preheater, for further desulphurisation when it is necessary to get better DeSOx efficiency. The byproduct along with dust is collected at following dust collector.

Desulphurising reactions occur in the furnace and the reactor when water spray tower is applied. Reactions which occur in the furnace and water spray tower are as follows:

[Reactions in furnace]

$$CaCO_3 - CaO + CO_2$$

 $CaO + SO_2 + \frac{1}{2}O_2 - CaSO_4$

[Reactions in reactor]

Ca0 + SO₂ +
$$\frac{1}{2}H_2O \rightarrow CaSO_3 \cdot \frac{1}{2}H_2O$$

Ca0 + SO₂ + $\frac{1}{2}O_2$ + $\frac{1}{2}H_2O \rightarrow CaSO_4 \cdot 2H_2O$
SO₂ + $\frac{1}{2}O \rightarrow H_2SO_3$
CaO + $\frac{1}{2}SO_3 \rightarrow CaSO_3 \cdot \frac{1}{2}H_2O + \frac{1}{2}H_2O$

The process flow of this method is shown in Fig. 4.2-12.

(7) Simplified FGD method - Dry absorbent injection into duct

In this simplified FGD method, an absorbent of slaked lime (Ca(OH)₂) is blown into the duct at a low temperature region following the air preheater. In addition, water is sprayed in a subsequent reactor for further desulphurisation when it is necessary to get better DeSOx efficiency. Slaked lime is used as absorbent because of its high reactivity. The byproduct along with dust is collected at following dust collector.

Reactions which occur in this method are as follows:

[Reactions in duct]

$$Ca(OH)_2 + SO_2 - CaSO_3 \cdot \frac{1}{2}H_2O + \frac{1}{2}H_2O$$

 $Ca(OH)_2 + SO_2 + \frac{1}{2}O_2 + H_2O - CaSO_4 \cdot 2H_2O$

[Reactions in reactor]

$$SO_2 + H_2O \rightarrow H_2SO_3$$

 $Ca(OH)_2 + H_2SO_3 \rightarrow CaSO_3 \cdot \frac{1}{2}H_2O + \frac{3}{2}H_2O$

The process flow of this method is shown in Fig. 4.2-13.

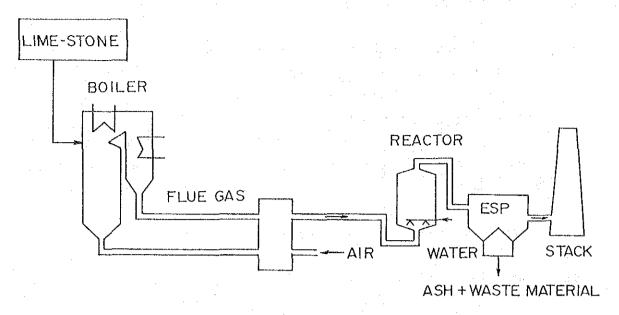


Fig. 4.2-12 PROCESS FLOW OF
Dry Absorbent Furnace Injection System

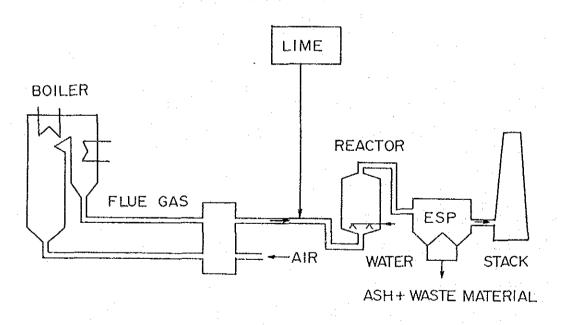


Fig. 4.2-13 PROCESS FLOW OF Dry Absorbent Duct Injection System

Comparison of Various Flue Gas Desulphurisation System (1 Unit Base) Table 4.2-1 (1)

	(7) Dry Absorbent	Injection into Duct Method	Ca(OE) ₂ for desulphurisation is injected into duct at low flue gas temperature region after air preheater. When absorber for water spray is installed after Ca(OH) ₂ injection, SOx absorption reaction is further proceeded. Compound of sulphur oxides forms dry powder, then collected and discharged at dust collecter.	(1) Reaction in Dust	Ca(OE) ₂ +SO ₂ - CaSO ₃ •1/2E ₂ O+1/2E ₂ O Ca(OE) ₂ +SO ₂ +1/2E ₂ O+ E ₂ O - CaSO ₄ •2E ₂ O
Оту Туре	(6) Dry Absorbent	Injection into Furnace Method	Decarbonizing and a part of desulphurisation are carried out simultaneously by injection of furnace. When absorber for water spray is linstalled at low flue gas temperature region after air preheater. Sox absorption reaction is further proceeded. Compound of GaCO3 and Sulphur oxides forms dry powder, then collected and discharged at dust collector.	(1) Reaction in Furnace	CaCO ₂ — CaO+CO ₂ CaO+SO ₂ =1/20 ₂ +CaSO ₂
ΣC	(5)	Coal Ash Using Method	Flue gas pass through absorbent in gravity moving layer type absorber and SOx in flue gas absorbent. Absorbent is dry solid type which made of fly ash, slaked lime and gypsum as raw marerials. A part of used SOx absorbed absorbent is crushed to make gypsum source as absorbent material and rest of absorbent is discharged out of the system.	(1) Absorption Process	CaO+SO ₂ +1/2O ₂ - CaSO ₄
	(†)	Activated Carbon Method	Hue gas pass through absorbent in gravity moving bed type absorber and SOx in flue gas absorbed in activated carbon. Activated carbon deteriorated in purformance is regenerated by heating in desorber. As by-product, sulphuric acid or elemental sulphur can be recovered.	(1) Absorption process	\$05 ⁴ + ² 05 ⁴ + ² 06 ⁴
Semi-Dry Type	(§)	Spray Dryer Method	In spray dryer nethod, slaked lime (Ca(OH) ₂) slurry is atomized as fine droplets. The droplets are mixed with flue gas in a drying chamber, then the droplets are dried to powder and SOx is reacted with alkaline marter simulcaneously. Powder is collected at the bottom of the spray dryer and at following dust collecter.	(1) Absorption Process	Ca(OH)2+SO2+½H2O - CaSO3+½H2O+H2O
Wet Type	Limestone-Gypsum Mathod	(2) Jet-Bubbling Method	Limestone is conveyed as slurry to jet-bubbling reactor (JBR). Flue gas and air is injected into the JBR to form bubbling layer. Through the bubbling layer, SOx absorbing and oxidization are carried out. Then, byproduct gypsum is produced by dewatering.	(1) Absorption and Oxidation Process	SO ₂ +CaCO ₃ +2A ₂ O ₃ +2H ₂ O - CaSO ₄ + 2H ₂ O+CO ₂
Wet	D-enoremry	(1) Spray Tower Method	Limestone (CaCO ₃) is conveyed as slurry to absorber and sprayed into flue gas stream. Sulphur oxides (SOx) present in flue gas is absorbed as calcium sulfite (CaSO ₃). Then, byproduct gypsum is produced by further oxidization and dewatering.	(1) Absorbing Process	CaCO3+SO2+1/2H2O - CaSO3.1/2H2O+CO2
	Item		Process Description	Reaction Formula	
			-4	2.	

Table 4.2-1 (2) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7) Dry Absorbent	Injection into Duct Method	(2) Reaction in absorber	502+H20 + H2503	CaSO3+1/2H2O+3/2H2O		Approx. 40 ~ 70%	(In case of no water spray tower 30~40%)	The same level of	absorbent injection	into furnace can be parformed.		Absorbent is	injected into duct with less tempera-	ture than furnace,	therefore slaked	reaction rate is	• pasp	
Dry Type	(6) Dry Absorbent	Injection into Furnace Method	(2) Reaction in absorber	CaO+SO ₂ +1/2H ₂ O + CaSO ₃ •1/2H ₂ O	CaO+SO ₂ +1/2O ₂ +2E ₂ O - CaSO ₄ •2E ₂ O	SO ₂ +H ₂ O - H ₂ SO ₃ CaO+H ₂ SO ₃ - CaSO ₃ •1/2H ₂ O+1/2H ₂ O	Approx. 40 - 70%	(In case of no water spray tower	30~40%)	nigner Jeson bir. compared with other	simplified DeSOx systems can be	optained.	Limestone can be used because it is	injected into high temperature	furnace. However,	twice as much of absorbent is	required as Wet	nimescone-gypsum method.	
Dπ	(5)	coal Asn Using Method					Approx. 90%	DeSOx Eff. differs with Ca/S and	Space Velocity (SV).	The smaller SV	value gives the more DeSOx Eff.	Increment of Ca/S	makes higher DeSOx Eff. but Ca	utilization factor will be less.		The higher Ca/S ratio is the less	calcium utili-	absorbent.	
	(4)	Activated carbon Method	(2) Desorption Process	E2504 - E20+503 SO3+4C - SO2+45CO2	(3) Byproduct Process	The reaction formula is shown in the section of "Byproduct".	Approx. 90%	By the absorption function of	activated carbon, DeSOx Iff. can be	as the same as Wet limestone-	Sypsum method.	differs according	to space velocity: (SV) and	recirculation amount of	activated carbon.				
Semi-Dry Type	(3)	Spray Dryer Method	(2) Oxidation Process	CaSO3-MH2O+MO2+1M H2O 4+SO2+1/2H2O+ - CaSO4-2H2O			Approx. 80 ~ 90%	Up to around 1,000 ppm inlet	SO ₂ , DeSO _x Eff.	limestone-gypsum	Hethod	(Ca(OH) ₂) is used	as absorbent which has higher	reaction characteristics	and higher price.				
Fype	psum Method	(2) Jet-Bubbling Method					Approx. 90%	Higher DeSOx Eff.	increment of the sparger pipe	submergence depth in the absorbent	of the Jet Bubbling Reactor	(Jak)	Limestone can be used as absorbent.				-		
Wet Type	Limestone-Gypsum Method	(1) Spray Tower Method	(2) Oxidizing Process	CaSO3.1/2H2O+1/2O2 +3/2H2O-CaSO4.2H2O			Approx. 90%	DeSOx Eff. can be increased by	increment of liquid and gas	racio (L/G).	Cheeper limestone compared with	can be used.				:			
	Item		Reaction Formula				SO _x Removal Efficience												
			2.				3.												

Table 4.2-1 (3) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

		(7) Dry Absorbent	Injection into Duct Method	Water injection is	required to get	petter bit.	DeSOx Eff. relay on	boiler load and flue	Sas cemperature.	When no water in-	jection by spray	rower is performed,	DeSOx Eff. is to be	about 30~40%.		-	Approx. 90%	(With dust	collector)					ormed by dust	after DeSOx reactor.		ine system firthdring dust collector offers the same level of dust removal as the wet			
Dry Type		(6) Dry Absorbent	Injection into Furnace Method	Water injection	after the furnace	is required to get better Eff.		DeSOx Eff. relay on	flue oas rembera.	three.		When no water	injection by spray	tower is performed,	DeSOx Eff. is to be	מחסור מסייאסאי	Approx. 90%	(With dust	collector)					Dust removal is performed	collector installed after DeSOx reactor.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	the same level of dus	type.		
Dz		(5)	coal Asn Using Method										***				Approx. 90%	Absorbent has the	function of dust	COLLECTION AS WELL		The more absorbent	moving speed and	thist are the more	dust load at the	outlet.	440	can be the same as	the wet type.	
		(4)	Activated Carbon Method	The smaller SV is	the higher DeSOx	H H H	Increment of	activated carbon	amount makes	higher DeSOx	Eff., however,	make up amount of	activated carbon	is increased.			Approx. 90%	Moving bed	absorption tower	day the temetion		The faster cir-	cutating speed is	The Less dust	יבות המי היים	Dust removal Eff.	is the same level	as the wet type.		
Semi-Dry Type		(3)	opray uryar Method														Approx. 907	(With dust	collector)	Past acl sector	installed after	spray dryer	periorms dust	remonar	The system	including dust	collector offers	dust removal as	the wet type.	
Wer Type		Limestone-Gypsum Method	(2) Jer-Bubbling Method		٠.												Approx. 90%	Dust removal is	performed in JBR.	High duer remotes	Eff. can be	obtained by	light gas and	rhyoneh TRP	*WTC 1990					
Wer		Limestone-Gy	(1) Spray Tower Method										:				Approx. 90%	Dust removal is	performed by	impinoement of	dust with spray	drops.	Direct remotted life	is determined by	L/G, particle	size, and spray	drops size.	High dust removal	Eff. can be	obtained.
		Item		SO _x Removal	Efficiency						-						Dust Removal Efficiency													
				m			_				-		_				7								···					

Table 4.2-1 (4) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7)	Injection into Duct Method	and demonstration ucting. has been operating.	Share of this simplified DeSOx system which injects absorbent into furnace or duct is about 2% in the world. Numbers of commercial plants with this system are limited and present (Apr. 1991) status of this system is that research and development are promoted by sponsors of industries and manutacturing firms in the United States, Canada, and Europe including EPRI, EPA, and DOE of the United States of America. Only one commercial plant which reports good operational experience is the one called LIFAC (Limestone Injection with an Activation Reactor) applied to the No. 4 unit (265NW) of Inkoo coal-fired power plant of IVO in Finland.
Dry Type	(9)	Injection into Furnace Method	Tests in pilot plants and demonstration plants have been conducting. One commercial plant has been operating.	Share of this simplified DeSOx system which injects absorbent into furnace or duct is about 2% in the world. Numbers of commercial plants with this system are limited and present (Apr. 1993 status of this system is that research at development are promoted by sponsors of industries and manufacturing firms in the United States, Canada, and Europe including EPRI, EPA, and DOE of the Unite States of America. Only one commercial plant which reports good operational experience is the one called LIEAC (Limestone Injection with an Activation Reactor) applied to the No. 4 unit (2655W) of Inkoo coal-fired power plant of IVO in Finland.
- C	1	Coal Ash Using Method	Test in a demonstration plant was finished. One commercial plant has been in operation since Apr. 1991.	This system was materialized during a research for coal ash effective utilization. It was proved in the research that a solid of coal ash, lime, and gypsum has the function of SOx adsorption. One of Japanese private electric power companies, Hokkaido Electric Power Co., Ltd. is the leading developer of this system.
	(4)	Activated Carbon Method	Tests in demonstration plants were finished and several commercial plants have been operating.	This system using activated carbon were researched and developed as a simultaneous DeSox-DeNOx in the later half of 1960's. After that, demonstration tests at coalfired power plants were carried out and now several commercial plants have been operating.
Semi-Dry Type	(3)	Spray Dryer Method	It has been recognized as a proven technology for commercial use as the same as the wet type.	The share of spray dryer system in the world is only about 8%, however this system have been popular in Europe and the United States. This system has been evaluated as the same proven technology as the wet type.
Wet Type	Limestone-Gypsum Method	(2) Jet-Bubbling Method	The same description as left.	Abour 36% of DeSOx system in the world consists of Wet limestone-gypsum method. When share of another type of wet DeSOx system namely wet limestone-sludge disposal method is added, it would be 85%. At the present, Wet spray tower DeSOx system is the most expeni-enced system and it has been it has been technology. (15) commercial use. There are fifteen (15) commercial use. There are fifteen commercial use. There are fifteen it has been that including one plant under technology.
Z Eet	Limestone-G	(1) Spray Tower Method	It has been recognized as a proven technology for commercial use.	Abour 36% of DeSOx system in the world consists of Wet limestone-gypsum method. When share of another type of wet DeSOs system namely wet limestone-sludge disposal method is added, it would be 85%. At the present, model of JBR for DeSOx system is commercial use. the most experience of 15 commercial use it has been (15) commercial use it has been (15) commercial userecognized as the plants including most proven construction.
	Item		Technical Maturity	(1) Operational experience in commercial plants
			ហំ	ó

Table 4.2-1 (5) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

<u> </u>			Wat Туре	Semi-Dry Type		DΣ	Dry Type	
	Item	Limestone-Gy	Limestone-Gypsum Method	(3)	(4)	(5)	(6) Dry Absorbent	(7) Dry Absorbent
		(1) Spray Tower Method	(2) Jet-Bubbling Method	Spray uryer Method	Activated Carbon Method	coal Ash Using Method	Injection into Furnace Method	Injection into Duct Method
9	(1) Operational	Latest model of	As a commercial	The reason why	Numbers of com-	A half treating	Research and development history of No.	ent history of No. 4
	experience in	in-situ oxidation	plant for a coal-	spray dryer	mercial plants	capacity of 350MW	unit of Inkoo power plant are as follows:	lant are as follows:
	plants	500MW equivalent	2 units of 200MW	been applied so	there is no	Tomoto-Azuma Power	a) Full scale lime	Full scale lime injection and haif
		capacity is in	soot-separation	widely as the wet	experience in a	Station of	scale activation	scale activation reactor to the flue
		operation.	two-tower, DeSOx	type is that	large scale coal-	Hokkaido Electric	gas volume of No.4 unit were	4 unit were
		A + + + + + + + + + + + + + + + + + + +	System tas Dest	ulsposal problem	nired power	has been in	AND LABORATION OF THE PROPERTY	mistarised as research purpose which
		model of this	1984.	and higher	1	operation as a	b) The other half s	The other half scale of activation
		system, a single		running cost with		commercial plant	reactor was inst	reactor was installed as a commercial
		tower in situ	A pilot test of a	expensive slaked		since March 1991.	plant and renova	plant and renovation of the limestone
		forced oxidation	soot-mixed,	line consumption.		After completion	injection system	injection system was carried out and
		DeSOx system for	single-tower			of 1,000m3N/h	the system was p	the system was pout into operation in
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,000MW coal-fired	improved CI-121			pilot plant test	January, 1988.	
		Constation in Tune	flue gas tolume			demonstration	C) The activation reserved in the	Agrant torong
		1990. (2x500kW	was finished in			plant test.	research purpose	research purpose was replaced with
		equivalent DeSOx	1988.				new one that is the same model	the same model as the
		system).			-		one installed as	one installed as commercial plant and
			At the present,				the system was p	the system was put into operation in
			this system for				January 1990.	
			/OUMW GOAL-Ilred				or totogo orde tost brook the stores or the	0 10000 0 121
			power prant 18				ic is generally said	that this system is
		-	under construction				Suitable for a plant which is not recul.	sulcable for a plant which is not reculred bigh DeSOY RFF, as it is the simplified
			1991).	-			DeSOx system.	
		-						
			L					

Comparison of Various Flue Gas Desulphurisation System (1 Unit Base) Table 4.2-1 (6)

Trem (2) Operational experience in Macoumercial ir plants separational ir plants separatio	Inmestone-Gypsum Method Spray Tower Method Spray Tower Method 305 Plants* Many plants including big scale plants of applications to applications to coal-fired power plants of plants. Plants have been plants in operation. There are seven are seven applications to applications to plants and in operation, there are two 250MW plants in plants in operation. Measures for corrosion and erosion with beSox and dust removal of flue gas and with handling of absorbent and by-product gypsum are required. Measure for scaling in the absorbing	sum Method (2) Jet-Bubbling Method 7 Plants* As of July 1991, there are seven applications to coal-fired power plants. As the biggest plants in operation, there are two 250MM plants in operation. At the present, 700MW equivalent plant is being will be in operation in June 1995. 1 of flue gas and the cosion with the adsorbing in the absorbing in the absorbing	Semi-Dry Type (3) Spray Dryer Method 53 Plants* There are 53 applications including big scale plants of 53.50kW and 500kW class to coal- fired power plants of system is popular especially in Europe and the United States of America. Major problems with this system are erosion and plugging of absorbent are erosion for and the spray dryer system is popular especially in Europe and the United States of America.	Activated Carbon Method Sethod 3 Plants There are 3 applications to coal-fired power plants. The biggest application of 130MW equivalent plant is under operation. A plant for a 350MW fludized bed combustion holler is under planting which is scheduled to be in operation in July 1995. Several com- metrial DeSOx plants with this method have been operating but there is no big	w "HH " 12 ml	Dry Absorbent Injection into Dury Absorbent Injection into Pury Absorbent Injection into Pury Absorbent Injection into Dury Absorbent Injection into Dury Absorbent Injection into Dury Absorbent Injection into Dury Absorbent Conducting Injection Plant and demonmencial plant for a stration plant coal-fixed power plant. The biggest scale in a coal-fixed power plant is not many. The biggest scale in a coal-fixed power plant is Injection has limited application to commercial plants and operational experience of commercial plants and operational experience of commercial plants are short, therefore the reliability on long term operation of this system will be proved	Dry Absorbent Injection into Duct Method I Plant* Many cases of pilot plant and demon- stration plant tests have been conducting, however supply experience to coal-fired power plant is not many. The biggest scale in a coal-fired power plant is 1374W equivalent. ess by absorbent application to coprational experi- ents are short. lity on long term ten will be proved
D' .	tower is required.		installed in the absorber.	scale application to coal-fired power plant, more over, operation experiences of	plant (644,000 m ³ N/h) from the demonstration plant (50,000 m ³ N/h) because	by the further experience in the future.	ence in the ruture.

Figures in FGD handbook published by IEA in May 1987 (Including planned plants as of May 1987)

Table 4.2-1 (7) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

		(7) Dry Absorbent	Injection into Duct Method	this system, followings		iency	Influence to fouling and slugging of		Unknown factors when it is scaled up	plant	determine of the forth	ESP (in case of existing ESP is used	as dust collector for DeSOx system)	•	libers are still some items to be proved	of this system at the present is far less	c the spray dryer				-											
	Dry Type	(6) Dry Absorbent	Injection into Furnace Method		cı d	a) low DeSOx efficiency	b) Influence to fo	boiler furnace	c) Unknown factors	to large scale plant	a) Tronscent (5		as dust collect		There are stall some	of this system at the	than the wet type or the spray dryer	processes.				-										
	d I	(5)	Coal Ash Using Method	the operation	period or the commercial plant	is very short (1	1991).	7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	the absorbent	made from coal	ash, slaked lime			·											-						 	
		(7)	Activated Carbon Method	commercial plants	are rather short (as of Apr.	1991).	In processes of	recovering	or sulphuric acid	as by-product,	there are many	processes which	makes complicated	equipment	arrangement,	maintenance and	by-product	recovering system	is more	complicated than	radion name or l											
	Semi-Dry Type	(3)	Spray Dryer Method	There are two	atomizing method,	one is rotary	other one is two-	fluid nozzle.	Rotary atomizer	is usually	adopted to more	boilers as the	atomizer gives	good atomizing	efficiency hence	the absorber can	be shortened and	less nozzle	plugging than the	two-fluid nozzle.	Rotary atomizer	rotates at about	11,000 rpm,	therefore	periodical inspection and	adjustment for	atomizing nozzles	and cleaning of	scale at rotary	required		
	Wet Type	Limestone-Gypsum Method	(2) Jet-Bubbling Method	As the operation	soot separation	CT-121 (200MW) and	results of the	soot mixing CT-121	is believed that	the reliability	Comparative to the		method.		An operational	big scale of this	system will be	given by 700 MW	equivalent DeSOx	system which is	das of Apr. 1991).											
	Wet	Limestone-G	(1) Spray Tower Method	This system has	for the above	problems because a	were carried out	in design,	material of each	part of system	history from the	development stage	to the present.		Maintenance	periodical	inspection of a	power generation	plant has proved	continuous onemation without	problem for one	year.			<u></u>							
*		Item		Reliability																												
	. :			7																											 	

Table 4.2-1 (8) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7) Dry Absorbent	Injection into Duct Method								-										-											at the moment is re-	
Dry Type	(6) Dry Absorbent	Injection into Furnace Method																-											<u>.</u>		Therefore, re-liability of this system at the moment is	the wet type.
д	(5)	Coar Asn Using Method	This system	requires	produce pellet	maximum size of	in the market at	the present is	therefore when	DeSOx system is	designed for a	numbers of	pelletizer stream	will be bigger	and numbers of	facilities will	be increased.		As for inspection	and maintenance	production	system, a	simplified in-	spection and	PORTY Three-month	is required as	well as a	periodical	inspection and	every year.	Therefore, re-liabi	cognized less than the wet type.
	(7)	ACLIVATED LATBON Method	Therefore,	reliability of	long term	operation of	the present is	less than the wer	spray dryer.		-																				 ·	
Semi-Dry Type	(3)	Spray uryer Method	In case of rotary	atomizing nozzles.	inspection and	every three-month	in every year are	requirec.	This system is	simple because	which has less	absorber than the	wet type and has	no big size pumps	culation numbers	the wet spray	tower method.	Therefore, when	the spray dryer	DeSOx system has	atomizer, it	gives the same	level of	reliability as	ישר האם היו							
уре	psum Method	(2) Jet-Bubbling Method																														
Wet Type	Limestone-Gypsum Method	(1) Spray Tower Method							•																							
	Item		Reliability												·····						· · ·											
			7.											· · · · · ·													·					

Table 4.2-1 (9) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

Item By-product (1) Kinds of by- product (2) Disposal of by- product	Spra Spra High Oy-p Traw p Traw p Trach Syst Prod	Limestone-Gypsum Method (1) (2) Jet-Bubbling y Tower Method (as04*2H20) (cas04*2H20) to material and gypsum is re-covered as rement material and gypsum wall board. The United States, non-recovering of roduct is rather popular because at many places for land at man be achieved without by-uct recovering system and a lot out recovering system and a lot out recovering system and a lot out recovering system and a lot of by-product is recovered with	Semi-Dry Type (3) Spray Dryer Method Compound of flyash and re- action product (Flyash+CaSO ₃ + CaSO ₄ +Ca(OH) ₂) By-preduct from the spray dryer system which is compound of flyash and reaction product can be handled with usual ash handling system because physical characteristics of the bar	Activated Carbon Method Elemental sulphur or sulphuric acid (H ₂ SO ₄ or S) SO ₂ -rich gas (SO ₂ concentration 20 to 25 vol. 7) produced by heating of SO ₂ activated carbon at desorber is sent to by- product recovery system to recover	88 + 4	Dry Type. (6) Dry Absorbent Injection into Furnace Method Compound of flyash and reaction product (Flyash +CaSO ₃ + CaSO ₄ + Ca(OH) ₂) System, therefore disposal of by-product system is close to the spray dryer methos system, therefore disposal of by-product is nearly the same as the by-product of the spray dryer process. According to the test results report from the disposal of by-product of the spray dryer process. According to the test results report from the dilaton of INO is failland, by-product of LITAC has	Dry Absorbent Injection into Rurnace Method Furnace Method Gompound of flyash and reaction product (Flyash +CaSO ₃ + CaSO ₄ + Ca(OH) ₂) System, therefore disposal of by-product of this system has similar characteristics as the spray dryer method since the reaction mechanism of the system, therefore disposal of by-product is nearly the same as the by-product of the spray dryer process. According to the test results report from No. 4 unit of Inkoo power plant of IVO in Finland, by-product of Liff has
	Countries other than the Unite States, by-product has been recovered as commercial gypsum, because there are limited areas for disposal and land reclamation, and gypsum has value for commercial use.	the Unite States, recovered as ecause there are sposal and land rem has value for	of the py-product is dry small particles that has fluidity very like flyash. Research and development of effective use of by-product are under way.	the by-product. As by-product, elemental sulphur or sulphuric acid can be selected. Process of each case is as follows.	A part or by- product is used as alternatives of gypsum for absorbent pro- duction after it is crushed into small particles, and rest of by- product is dis- charged outside the DeSOx system.	stability and self hardening characteristics, therefore there is possibility to use it as road bed material and construction material.	ardening refore there is a t as road bed ction material.

Table 4.2-1 (10) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7) Dry Absorbent	Injection into Duct Method																			
Dry Type	(6) Dry Absorbent	Injection into Furnace Method																			
Ω±	(5)	Coal Ash Using Method	By-product discharged	system is handled with the same	manner as coal flyash.	Effective use of	by-product is under	development.			hur recovery	duced to H ₂ S in a	n agent.	$\rm H_2S$ and $\rm SO_2$ is converted to elemental sulphur in a claus unit.				CO ₂ +H ₂ O	The carbonyl sulphide (COS) which is	ily in the is hydrolyzed in	i eventually is obtained.
	(4)	Activated Carbon Method	a) Sulphuric acid recovery	After dust and impounities are	removed from the SO,-rich gas, the	gas is oxidized in a converter to	form SO ₃ . The SO ₃ is then	absorbed in an absorber to form	sulphuric acid.	SO ₂ +½O ₂ + SO ₃ SO ₃ +H ₂ O + H ₂ SO ₄	b) Elemental sulphur recovery	SO ₂ -rich gas is reduced to H ₂ S in a reduction claus using a carbon-	bonaceous reduction agent.	H ₂ S and SO ₂ is com sulphur in a claus	C+802 + 8+802	C+H2O + CO+H	SO + S+00	COS+H2O = B2S+CO2 H2S+45O2 - 145S+H2O	The carbonyl sulph	generated secondarily in the reduction column, is hydrolyzed in	the claus unit and eventually elemental sulphur is obtained.
Semi-Dry Type	(£)	Spray Uryer Method																			
уре	osum Method	(2) Jec-Bubbling Method															٠.			:	
Wet Type	Limestone-Gypsum Method	(1) Spray Tower Method																	:		
	Item		(2) Disposal of by- product																	:	
			œ																		

Table 4.2-1 (11) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7) Dry Absorbent Injection into Duct Method	Slaked Lime Ca(OH) ₂ Slaked lime is used as absorbent in order to obtain higher reaction rate. In order to get 70% DeSOx Eff., this system needs quantity of slaked lime as the same as Spray Dryer Method with 90% Eff.
Dry Type	(6) Dry Absorbent Injection into	Limestone CaCO3 Limestone can be used as absorbent. The obtain 70% DeSOX Eff., this system needs about twice as much limestone as the wet type.
	(5) Coal Ash Using Method	Absorbent made from flyash, slaked lime and used absorbent (gypsum) are mixed in dry condition after that these are kneaded with water. Pasted kneading raw material is formed at type of pellet (6mmóx3-10mm long). After that the pellet is transferred to steam curing equipment, and it is cured with steam (about 100°C). As the result, hydration reaction on flyash, slaked lime and used absorbent gives necessary hardness to absorbent gives to absorbent is dried with hot air and it is changed to final shape of absorbent.
	(4) Activated Carbon Method	Expensive activated Carbon is used as absorbent. Activated carbon that loss SOx absorbing ability is regenerated by regenerated by regenerated by regenerated of continuously. Activated carbon has chemical-loss at a process of reaction and powdered-loss at a process of activated carbon is 1.5% per quantity of arrolation at moving bed absorption tower.
Semi-Dry Type	(3) Spray Dryer Method	Slaked Lime Ca(OH)2 Slaked lime is used as absorbent which has higher re-action characteristics than limestone. Usually, powdered quick lime (CaO) or slaked lime Ca(OH)2 is absorbent material. CaO or Ca(OH)2 is slaked by slaking system and used as slurry phase. Slaking is carried out with water and with heating at about 60°C in order to get buter slaking reaction.
[ype	psum Method (2) Jet-Bubbling Method	is procured as is used is used as a sused as a libration of libration feeding about 25%. Density of libration feeding about 25%. The system can be designed with absorber is less than 0.2%. The system can be designed with absorber is less than absorber is less than spray tower method.
Wet Type	Limestone-Gypsum Method (1) (2) Jet-B Spray Tower Method	Limestone CaCO3 Limestone which is lower price is used as a sborbent. Usually, lime-stone is procured as powder plase, and it is used as a slurry phase. Usually, limestone powder passed the 325 mesh is more than 95%. Density of limestone slurry which is sprayed absorber is about 15%. In case of insitu mother liquid of about 15%. In case of insitu mother liquid of absorbent at about absorber is less can be absorbent at about 1.01. (In case of absorber is less feeding ratio of absorbent at about 1.01. Applying separate which is less than oxidation tower, in the about at about 1.01. It would be about method.
	Item	Utilities (1) Absorbent
		o,

Table 4.2-1 (12) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

		(7)	Injection into Duct Method	Since almost all of water sprayed to absorber evaporate and goes out through stack, this method needs a lot of water as the same as the Wet Type Method.
	Dry Type	(6) Orv Absorbent	Injection into Furnace Method	Since almost all of water sprayed to absorber evaporate and goes out three stack, this method needs a lot of war the same as the Wet Type Method.
		(5)	Coal Ash Using Method	Absorbent consists of 1/3 flyash, 1/3 staked lime and 1/3 used absorbent (gypsum). The system is usually designed with excess feeding ratio of absorbent at about 1.25. In absorbent producing process, water is necessary for kneading flyash, slaked lime, and used absorbent. The quantity of water is about 1/10 of Wer Type method.
		(7)	Activated Carbon Method	In by-product recovering process, cooling water is required for descrition gas cooling.
	Semi-Dry Type	(3)	Spray Dryer Method	In order to get the same level of DeSOx efficiency as wet limestone/ gypsum method (Approx. 90%), it is necessary to feed absorbent with excess feeding ratio of about 1.3-1.5, therefore a lot amount of more expensive an anount of more expensive than limestone is required. Spray Dryer Method because almost allot of water as the Wet Type Method because almost allot of dropler of absorbent-slurry sprayed to spray dryer evaporate and goes out through stack.
***************************************	Гуре	psum Mathod	(2) Jet-Bubbling Method	owing make up water is required. Evaporating water at absorption tower. Surface moisture of by-produced gypsum Crystallzation water of by-produced gypsum Grystallzation water of by-broduced gypsum Blow off water to control liquid quality in the system. Re water discharged from gypsum wering process can be recycled as iolving water of absorbent and etc.
	Wet Type	Limestone-Gypsum Mathod	(1) Spray Tower Method	Following make up water is required. a) Evaporating water at absorption tower. b) Surface moisture of by-produced gypsum c) Grystallization water of by-produced gypsum d) Blow off water to control liquid quality in the system. Waste water discharged from gypsum recovering process can be recycled as dissolving water of absorbent and etc.
		Item		(1) Absorbent (2) Water
į				6

Table 4.2-1 (13) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7)	In	Steam for reheating equipment is not necessary for the same reason as Spray Dryer Method. These Markeds are simplified and less auxiliary equipped systems compared with others, therefore power consumption of these systems are about 18 to 20 % of the spray tower method.
Dry Type	(6) Dry Absorbent	Injection into Furnace Method	Steam for reheating necessary for the standard. Dryer Method. These systems are sauriliary equipped others, therefore these systems are a spray tower method.
	(5)	Coal Ash Using Method	Steam is required for curing and drying of absorbent in production process. The gas reheating is not required, because of its process, flue gas temperature is not lowered. Since this system has dry absorption process, there is no slurry circulation pump. It is possible to reduce power for fans with less absorber draft loss by choosing appropriate space velocity (SV)
	(7)	Activated Carbon Method	The gas reheating is not required, because of its process, flue gas temperature is not lowered. Power consumption is about 30% of Wet Type Method, because absorber is method requires no large size equipment.
Semi-Dry Type	(3)	Spray Dryer Method	Steam is required for absorbent slurry in a slaking system. Steam for flue gas reheating is not necessary, because flue gas is kept under dry condition. In order to protect visible white plume from a stack, sometime flue gas reheating system is adopted. Power consumption of Spray Dryer Method is about 70% of Wer Type. Because spray dryer has a few internal equipment and this method doesn't have large size equipment like slurry circulating pumps.
Wet Type	psum Method	(2) Jet-Bubbling Method	eating equipment steam is required. Jet-Bubbling Method doesn't need absorbent- slurry cir- culating pump. Draft loss of JBR is larger than spray tower method. Therefore, power consumption of boost up fan is larger than spray tower method.
Wet	Limestone-Gypsum Method	(1) Spray Tower Method	When flue gas after FGD is reheated by Gas Gas heater (GGB), steam for soct blowing is required. In case of other reheating equipment are used, following steam is required. a) After-burner type • atomizing steam b) Steam heater type • heating steam b) Steam heater type check power for boost up fan and absorbent-shurry circulating pump, as major consumer. Draft loss of JBR is larger than spray tower method. Therefore power consumption of boost up fan is larger than spray tower method.
	a		(3) Steam
	Item		9. (3) Steam (4) Elect

Comparison of Various Flue Gas Desulphurisation System (1 Unit Base) Table 4.2-1 (14)

	(7) Drv Absorbent	Injection into Duct Method	
Dry Type	(6) Dry Absorbent	Injection into Furnace Method	
The state of the s	(5)	Coal Ash Using Method	In absorbent production process, rather many number of equipments are equipped, however most of them are small size equipments. Therefore, power consumption of this system is about 60% of the spray tower method.
	(4)	Activated Carbon Method	Deteriorated activated carbon is regenerated at regeneration tower continuously, fuel for heating for this regeneration process is required.
Semi-Dry Type	(3)	Spray Dryer Method	
Wet Type	Limestone-Gypsum Method	(2) Jer-Bubbling Method	Total power consumption is less than the spray tower method. of waste water nemical is needed. Ited up by after teat up by after for after burner.
Wet	Limestone-G	(1) Spray Tower Method	This system consumption is than other systems because of power consumption of above equipments. In case of insulation of waste water treatment system, chemical is needed. When flue gas is heated up by after burner is required.
	Item		(4) Electricity (5) Others
	نسبس بحق مند عندي		o.

Table 4.2-1 (15) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7) Dry Absorbent	Injection into Duct Method	No waste water is generated because the reacted product is exhausted in the form of dried particles as the same as the spray dryer method. It is said that the lining work for ducts and stack is unnecessary because the same as spray dryer system. Flue gas reheating is also unnecessary because the same as spray dryer system; and ry type. However, Unit No. 4 of Inkoo Power Station in Finland which adopts LIEAC System has a steam gas heater downstream the absorber to reheat the Ilue gas up to 75°C in order to protect the ESP and the stack from corrosion which would be able to occur since the system applies water spray tower to get better DeSOx Eff.	
Dry Type	(6) Dry Absorbent	Injection into Furnace Method	No waste water is generated becaracted product is exhausted in of dried particles as the same a spray dryer method. It is said that the lining work and stack is unnecessary because the matter system. Flue gas reheating is also unnecessary because the system is dry type. Unit No. 4 of Inkoo Power Station Rinland which adopts LIRAC System stems as heart downstream the to reheat the flue gas up to 75 to protect the ESP and the stack corrosion which would be able to since the system applies water to get better DeSOx Eff.	
	(5)	Coal Ash Using Method	No waste water is generated in the process of absorption process, therefore no waste the system is dry in the process. However the by- however the by- however the by- however all amount of water is used in absorbent product waste water. However all of water is evaporated during production process then no waste water is produced. The liming work for the ducts and the stack and the flew gas reheating are unnecessary because there is no temperature drop in the system.	
	(4)	Activated Carbon Method	No waste water is generated in the process of absorption absorbing because the refore n the system is dry in the prochower, the by-product recovering water is usy process generate absorbent p duction produced. The liming work for the ducts a stack and the flew gas reheatin unnecessary because there is no temperature drop in the system.	
Semi-Dry Type	(ŝ)	Spray Dryer Method	No waste water is generated because water in injected absorbent slurry is evaporated and then the reacted product is exhausted in the form of dried particles. The flue gas and reacted product are completely dried because the gas remperature at the spray dryer exit is kept 10~20°C higher than the dew point.	ļ
Wet Type	Limestone-Gypsum Method	(1) (2) Jet-Bubbling Spray Tower Method	Limestone-Gypsum Method usually produce waste water in by-product recovering process. Quantity of waste water depends on reacted slurry amount extracted from absorber. Quantity of bleeding of reacted slurry is controlled so as to settle the density of chlorine which affect the DeSOx efficiency and the corrosion resistibility of the desulphurisation system. Waste water contains dust, volatile matters such as fluorine, chlorine and COD which is produced in gypsum formation process. The treated gas after absorber is moisture saturated gas with the temperature of approx. 50°C and contains a small amount of mist. Therefore, when the gas is exhausted to the stack without any appropriate countermeasures, it will condensate in the stack with high speed, as a consequence the mist will be expansed from the stack with high speed, as a consequence the mist will be separated in the atmosphere and will fall in the vicinity of the stack.	
	Item		Waste Water Stack Liming and Treated Gas Reheating	
			11.	

Table 4.2-1 (16) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	Dry Type	(6) Dry Absorbent Dry Absorbent	I		The state of the s	the system responds to boarer toat by controlling absorbent feed rate into the furnace or flue gas duct and water spray fluw rate into the reactor when water spray spray tower is applied. SO ₂ removal ratio depends much on gas temperature of the absorbent injection area and/or the reactor and is very sensitive to these gas temperature.	\$0 ₂ removal efficiency changes by the boiler load and the flue gas temperature. Therefore, these system suit for a continuous load operation plant with a constant load, but not good for a plant which will be operated frequent load increase/decrease or start.up/shur-down.
		· · · · · · ·	coal Asn Using Method			ine same description as Limestone- Gypsum Method.	on lowest temperature of SDA inlet flue gas temperature at which the system can be put into operation (or absorbent injection) in order to keep SDA outlet temperature well above the saturate temperature of flue gas. Late absorbent injection at plant start up and early stop of the injection at plant shut down are required for the reason of the above.
		(4)	Activated Carbon Method		Ē	ine same descrip Gypsum Method.	on lowest temperature of SDA inlet flue gas which the system can be put into operation injection) in order to keep SDA outlet temp above the saturate temperature of flue gas. Late absorbent injection at plant start up of the injection at plant shut down are requesson of the above.
	Semi-Dry Type	(3)	opray uryer Method	the chemical reaction which is per-formed inside the spray dryer. From above reasons, lining work for the ducts and the stack to protect from the corrosion by the sulphuric acid mist is unnecessary and flue gas rehearing is also unnecessary.	Work movement	change of boiler, the system offer the same level of load response as the wet lime- stone-gypsum method, however there is a	on lowest temperature which the system can injection) in order above the saturate tate absorbent inject the injection at reason of the above.
A STATE OF THE PARTY OF THE PAR	Wet Type	Limestone-Gypsum Method	(1) (2) Jet-Bubbling Spray Tower Method Method	The Mist will corrode the outer wall of the stack and auxiliary machines nearby due to its strong acid (pH * 2). Therefore, anti-corrosion lining to absorber outlet ducts and stack and tehearing of the treated gas up to 80°C to protect stack lining and to prevent the fall of the mist to the surroundings are necessary.	The execton recorded call to normal load	change of boiler maintaining designed DeSOx efficiency. Time constant of DeSOx performance of absorbent slurry to inlet SOx amount is large, therefore the system can follow load change at step like.	
		Item	·	Stack Lining and Treated Gas Reheating	Operational Characteristics	Characteristics	
				.11.	12.		

Table 4.2-1 (17) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7) Dry Absombent	Injection into Duct Method		erent lamente		•	gar vas fa.					aka mika 44.			It is required some effort to find out the	most suitable control conditions such as	absorbent injection flow rate, water spray	reactor and reactor	outlet gas temperature control in several	is, since the SO,	removal efficiency changes by the boiler	as temperature.		The system can be influenced sensitively	to load change and operation conditions	such as in-service burner stage, type of															
Dry Type	(6) Dry Absorbent	Injection into Furnace Method				-									It is required some	most suitable contr	absorbent injection	flow rate into the reactor and	outlet gas temperat	operation condition	removal efficiency	load and the flue gas temperature.		The system can be i	to load change and	such as in-service	coal, etc.														
	(5)	Coal Ash Using Method					٠								The operation on	absorbing process	and draft system is	easy and immedi-	ately after the EGD	operation, flue gas	can be introduced	to the system, But,	the operability on	absorbent producing	process are worse	than that of	limestone-gypsum	method, because	cars process is	composed or many	יייייייייייייייייייייייייייייייייייייי										
	(4)	Activated Carbon Method						٠.							The operation on	absorbing process	and draft system	is easy and	immediately after	the FGD	operation, flue	gas can be	introduced to the	system. But, the	operability on	by-product	recovery process	and regeneration	or accivated	cattoring process	11201 × O100 111011	TI HEALTON OF STREET	HELICOTOTICO POST CONTROL	this process is	composed with	many equipments	and about 20	hours are	required to warm	up these	processes.
Semi-Dry Type	(3)	Spray Dryer Method	Therefore, DeSOx	periormance cannot be per-	formed during	these periods	which may result	emission on	regulated figure	when it is	regulated-based	on concentration	of SOx in flue	• 21.00	In normal load	operation, the	operability is	nearly the same	as the limestone-	gypsum method.	But, in starting-	up/shutting-down	operation, it is	severe due to	limitation on the	spray dryer	outlet gas	cemperatore.													
Wet Туре	Limestone-Cypsum Method	(2) Jet-Bubbling Method										-			simple with not many	each process, therefore	sy.		After the FGD	can be introduced										٠											
₩	Linestone-Gy	(1) Spray Tower Method							-						The system is simple	Я			Almost immediately after the FGD	operation, flue gas can be introduced	to the system.																				
	Item		Operational Characteristics	CHATACTERITICS	(1) Load Change	Characteristics									(2) Operability										-																
			12.	-		-									4 -																										

Table 4.2-1 (18) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7) Drv Absorbant	Injection into Duct Method	The maintenance is easy than that of limestone-gypsum method and spray dryer method due to simple system. It is necessary to pay attention regarding an abrasion and/or clogging of the spray nozzles.	
Dry Type	(6) Drv Absorbent	Injection into Furnace Method	The maintenance is easy than that of limestone-gypsum method and spray dryer method due to simple system. It is necessary to pay attention regard an abrasion and/or clogging of the sprinozies.	
	(5)	Coal Ash Using Method	Dry type absorber is employed for these system, therefore ordinal mild steel can be used and no liming for corrosion protection is required.	For scale up of absorbent production system, it is necessary to increase number of extruders because maximum capacity of extruders in the present is limited. Therefore, this fact makes less maintenability of the system. Solid type absorbent is used in the system. Solid type absorbent is used in the system, therefore number of the system, therefore number of the system.
	(4)	Activated Carbon Method	Dry type absorber is employed for the system, therefore ordinal mild steel can be used and no liming for corrostrotection is required.	In a process which produces sulphur or sulphuric acid as a by-product, the system configuration is complicated and special materials considering chemicals are used. Therefore, the maintenability is worse than that of limestone stone-sypsum method.
Semi-Dry Type	(3)	Spray Dryer Method	For major parts of spray dryer, ordinary mild steel can be used and no lining is necessary.	Major problems in maintenance of this system are abrasion and clogging of spray nozzle of rotary atomizers. Rotary disk which is rotating at about 11,000 r. f.m. are equipped to the rotary atomizer. In order to overcome this abrasion problem, cleaning, inspection and adjustment of nozzles in every three months and replacement of nozzles in every year are necessary.
Wet Type	Limestone-Gypsum Method	(2) Jet-Bubbling Method	take measures to nd abrasion due to . of flue gas and nt or by-product.	Anticorrosion and antiabrasion. materials are selected in accordance with the property of process liquid and/or chemical. For towers and basins resin lining is applied, for pipes rubber lining, etc. and for pumps in slurry process anticorrosion stainless materials or rubber lining, etc. are used. But, it is necessary to repair these materials because it is impossible to secure the perfect anticorrosion and/or antiabrasion materials. Further, the cleaning of towers, basins and pipes in the absorbent slurry process and gypsum slurry process are necessary to eliminate scale coating.
Yet	Limestone-G	(1) Spray Tower Method	It is necessary to take measures to prevent corrosion and abrasion due to SO_2 and dust removal of fiue gas and handling of absorbent or by-product.	Anticorrosion and antiabrasion. materials are selected in accordance with the property of process liquid and/or chemical. For towers and basins resin lining is applied, for pipes ruber lining, erc. and for pumps in slurry process anticorrosion stainless materials or rubber lining, etc. are used. But, it is necessary to repair these materials because it is impossible to secure the perfect anticorrosion and/o antiabrasion materials. Further, the cleaning of towers, basin and pipes in the absorbent slurry process and gypsum slurry process are necessary to eliminate scale coating.
	Lten		Maintenability	
			ម	

Table 4.2-1 (19) Comparison of Various Flue Gas Desulphurisation System (1 Unit Base)

	(7) Dry Absorbent	Injection into Duct Method														When water spray tower after absorbent	injection is applied, a diameter of the roser sould be about 10 meters for 200MJ	1000		Area of 12 meters in diameter is required	ed auxiliaries and etc.								-	
Dry Type	(6) Drv Absorbent	Injection into Furnace Method						• 	-							When water spray to	injection is applie	class nower plant.		Area of 12 meters i	considering attached auxiliaries and maintenance space, etc.								********	
	(5)	Coal Ash Using Method	For the maintenance of this absorbent	production system, simplified in-	spection in every	several months concentrated on the	transportation equipments other	than periodical	mespection in ever year is required.	i	Theretore, maintainability of	the system is less	than that of wet	Limestone-gypsum merhod.								-								
	(4)	Activated Carbon Method																												
Semi-Dry Type	(E)	Spray Dryer Method	In comparison with wet line-	stone-gypsum method, this	system has less	and there is no	big size pumps like in wet	limestone-gypsum	method willon makes equipment	composition	simple, therefore maintenability is	better than that	of wet limestone	gypsum mernod.		At the present,	14 meters in diameter SDA	standard module	is used for 200	to 500MW class	commercial power plants.	For large amount	of flue gas	treatment,	numbers of module	are increased.	When it comes to	plant, number of	module would be	- corec
уре	psum Method	(2) Jet-Bubbling Method																		÷										
Wer Type	Limestone-Gypsum Method	(1) Spray Tower Method		-																										
	Item		Maintenability											-		Others														
			13.							-						14.								_						

4.3 Study Conditions of the Optimum DeSOx System Selection

In order to reduce SOx emission amount from the power plant to target value by means of installation of the optimum DeSOx system selected from seven possible DESOx system reviewed item 4.2, it is necessary to make a study that to which power plants of unit No. 1 to No. 10, the selected optimum DeSOx system is to be installed.

Study conditions which are particular to the Kozienice power station are determined in this section. These study conditions are to be used for the study of the optimum combination of power plants and installed DeSOx plants, and for the study of the selection of the optimum DeSOx system.

Determination of the study conditions are made by discussions with related organizations of Poland and collections of information at the field survey of the feasibility study on Desulphurisation system for the Kozienice power station.

4.3.1 Power Plant Operation Practice

- a. Plant Utilization Factor
 - i) 200 MW Plants 57% (Equivalent to 5,000 hours operation at rated output)
 - ii) 500 MW Plants 57% (Equivalent to 5,000 hours operation at rated output)

Plant utilization factors of the plants at the present are shown below.

- i) 200 MW Plants 56% (Average of 8 plants from 1985 to 1990)
- ii) 500 MW Plants 31% (Average of 2 plants from 1985 to 1990)

According to the information from the power station these figures will be changed up to 57%.

Therefore, plant utilization factors of both 200 MW plants and 500 MW plants are set at 57% for the study which is equivalent to 5,000 hours operation at the rated output.

Note: Plant Utilization Factor = Annual Generating Power (MWh) x 100 [2]

- b. Plant Thermal Efficiency
 - i) 200 MW Plants 36.7% (Average of 1990's figures of 8 plants from the power station)
 - ii) 500 MW Plants 36.1% (Average of 1990's figures of 2 plants from the power station)

- c. Minimum Continuous Operation Load
 - i) 200 MW Plants

140 MW

ii) 500 MW Plants

250 MW

d. Power Plant Periodical Inspection

A 60 days-full-scale inspection is carried out in every four years and a year when there is no full-scale inspection 28 days-simplified inspection is carried out.

e. Rate of Power Plant Failure

Power plant failure of unit No. 1 to No. 8 in recent five years is about 2%.

According to the information from the power station, that of unit No. 9 and No. 10 (500 MW plants) is little bit higher than unit No. 1 to No. 8 (200 MW plants).

Note: Rate of plant failure = $\frac{\text{Idle time by failure}}{\text{Operating time + Idle time by failure}} \times 100 [%]$

f. SO₂ Emission Amount and Regulation

According to calculations by the power station, emission amounts of SO_2 , NO_2 and dust at hourly maximum and average of 5,000 hours operation a year at rated load from 200 MW plants and 500 MW plants are shown in Table 4.3-1.

Maximum SO_2 emission amounts from each 200 MW plant and 500 MW plant at the present are shown below.

- 200 MW plant

2,035 kg/h

- 500 MW plant

5,184 kg/h

Kozienice power plant has a obligation to install as DeSOx system by December 31, 1997.

As for $\rm SO_2$ emission regulation from January 1, 1998 it will be 7,995 kg/h regulated as the total emission from the power plant which is stricter regulation than previous figure of 14,654 kg/h by December 31, 1997 which is the total value of regulated $\rm SO_2$ emission from each boiler.

SO₂ emission amounts from each boiler for this study are determined as follows:

i) Boiler without FGD

200 MW plant 1,119 kg/h 500 MW plant 2,851 kg/h

(Above figures are the same as those for by December 31, 1991.)

ii) Boiler with FGD

200 MW plant 2,035 kg/h 500 MW plant 5,184 kg/h

(Above figures are the same as those of maximum ${\rm SO}_2$ emission at the present.)

Table 4.3-1 Pollutant Emission from the Boilers of Cozienice Power Station

				***************************************	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
			Emis	Emission from Boilers	lers	Emission from	Emission from Power Station
н	Items	Unit	0 2 2 0 0	AP-1650	AP-1650 (500 MW)	OP-650 x (8)	0P-650 x (8)
			(200 MW)	3000 hrs/year	5000 hrs/year	AP-1650 x (2) 3000 hrs/year	AP-1650 x (2) 5000 hrs/year
G	Max.	ц/вя	2,035	5,184	5,184	26,648	26,648
2000	Ave.	kg/h	1,114	1,766	2,957	12,444	14,826
2	Max.	kg/h	640	1,435	1,435	7,990	7,990
N D Z	Ave.	kg/h	350	687	818	3,778	4,436
	Max.	kg/h	590	1,504	1,504	7,728	7,728
2 2 2	Ave.	kg/h	323	512	858	3,608	4,300