V-9- The part number digits refer to the type and technical specification of the device.

V-10- The main group number /91/ is designated for passive components, such as: Resistors, etc...

V-11- The group digits refer to the class of passive devices such as :

- 91-00 to 21-xx-xxxx for resistors.
- 91-25 to 29-xx-xxxx for capacitors.
- 91-30 to 35-xx-xxxx for fuses and fuse holders.
- 91-36 to 39-xx-xxxx for switches.

V-12- The sub-group digits refer to the kind "materials, technology and some technical specifications" such as:

- 91-01-02-xxxx High stab carbon film resistors , 0.5w, + 5%
- 91-02-04-xxxx Metal film resistors, 0.125w, + 1%
- 91-08-13-xxxx Ceramic wire wound resistors, 1w, +10%
- 91-25-30-xxxx Electrolytic capacitors, Wire indeed axial, 100v
- 91-27-00-xxxx Solid tantalum capacitors, 6.3 V, lead type
- 91-28-20-xxxx Metallic polyester film capacitors encapsulated,

axial leads 250V.

91-29-22-xxxx Disc ceramic capacitors , 25 V

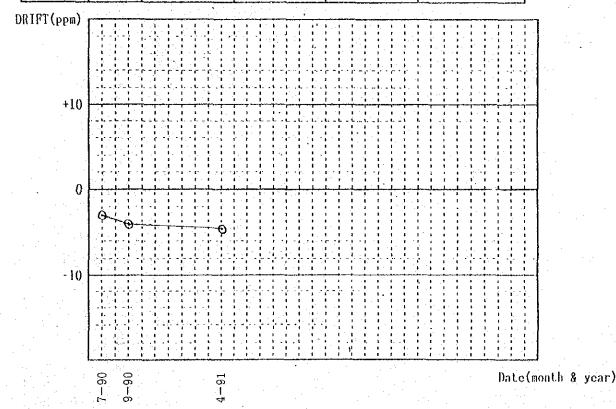
V-13- The part number digits refer to the value power rating voltage and tolerance.

Attachment (2) : Historical Carda

DC & RC LAB

HISTORICL CARD FOR

INSTRUMENT :standard resistor


Type: 2794 S/No 59FU1002

REG No: 0004

LEVEL: Secondary Std

REMARK: The intercomparison of this resistor was done by using DCCP 9975

CAL DATA	TEMP	SETTING RANGE	DRIFT (ppm)	UNCERTAINTY OF MEAS	ALLOVABLE LIMITS(± 8)
7-90	23	1Ω	-3 ррм	± 5 ppm	
7-90	23		- 1 ppm	± 5 ppm	± 20 ppm
7-91	23		-4.4 ppm	± 5 ppm	

Attachment (3) : NSCL's Transfer Standards

N. S. C. L 's TRANSFER STANDARDS

NO	TYPE	DESCRIPTION	DARDS Manufacturer	Qt	Sec
1	7324				
		DC Reference standard	Fluke	1	DC
2	2781 /1 Ω	Double wall Standard Resistor	AGA	3	DC
3	1404A/1000FF	DRY-Nitrogen Standard Capacitor	G.R.	2	DC
4	540 B	AC-DC Transfer Standard	fluk	ı	.AC
5		Current Shunt (1 mÅ)	Fluke	1	ΛC
6	DT72	AC Voltage Divider,Decade Transformer	E.S.I.	1	AC
7	R800-1 RTD (PT-25)	Standard Temperature Sensor	Chino	2	тки
8	C800-15	Thermocouple type "S"	Chino	2	TEM
9	Rb-1008C	Rubidium Frequency Standard	N.E.C	l	RP.
10	HL8403A	Power Mcter	Ancitsu	1	RF
11	NA4601A	Power Sensor	Anritsu	2	RF
12	KA4702A	Power Sensor	Anritsu	2	RF
13	ዝኮ721ል	3dB Attenuators	Anritsu	3	. RF
14	MP7210	6dB Attenuators	Anritsu	3	RF
15	MP721C	10dB Attenuators	Arnitsu	3	RF
16	HP7210	20dB Attenuators	Arnitsu	3	ŖГ
17	MP752A	Termination	Wiltron	3	RF
18	MP752B	Termination	Viltron	3	RF
19	CG 5001	Programmable Calibration Generator	Tektronix	1	REP

^{**}PS AC Power&Energy Transfer Standards are to be determined later.

Attachment (4) : NSCL; s Requirement for Mechanical & Optical Standards.

NSCL'S REQUIREMENTS

FOR

MECHANICAL & OPTICAL STANDARDS

SCIENTIFIC STUDIES & RESEARCH CENTER (SSRC)

NATIONAL STANDARDS & CALIBRATION LABORATORY (NSCL)

7-1991

I - Dimensional Laboratory

Environmental conditions:

This laboratory will keep the National reference of length and will conduct precise measurements related to this quantity.

Temperature

Humidity

Cleanliness

particles which have $\phi = 0.5 \,
m / m$ or more are less than $1.3 \times 10^{\circ}$ per cubic

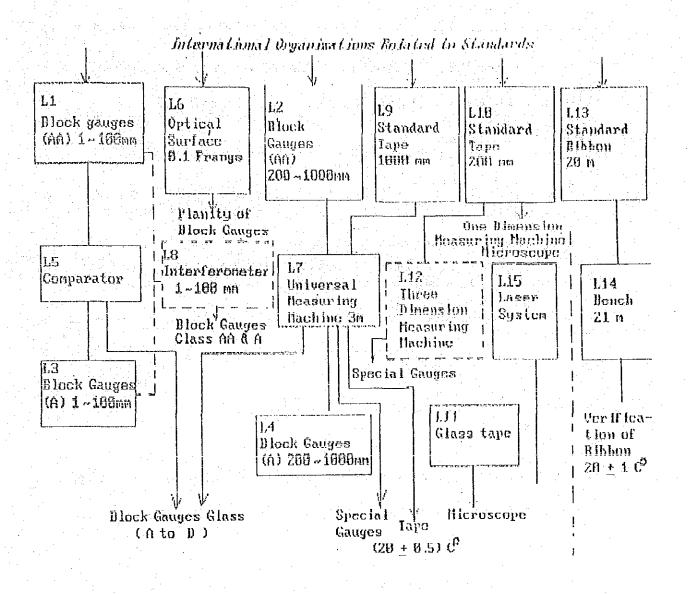
meter

Light <illuminance >

800 lm/m 2

Pressure

Not controlled but measured


The equipment needed to fulfill those tasks are as shown in diagram -1- :

- L1: A set of block gauges, class AA<00>, dimension <1 to 100 >mm to be used as reference < primary > standard.
- L2: A set of block gauges / class AA , dimension <200,300,400,500)mm and 1000 mm (class A > to be used as reference (primary) standard.
- A set of block gauges, class A, dimension L3 : to 100 > mm; same composition of L1 . To be working < secondary> standard. used
- L4: A set block ο£ gauges class dimension (200,300,400,500,1000) mm. To be working (secondary) standard.
- L5: Block gauges comparator, capacity maximal 100 mm, having a special mechanism to help the comparison of 5 points of the block gauge under test and standard

- with reading less than 0.1 /m; with thermometer to measure between 15°C to 25°C with an accuracy of 0.1°C.
- L6: Optical glass to verify the planarity of block gauges, diameter 60 mm, planarity better then 0.1 , frange of interference with monochromatic lamp to facilitate the observation of fringes.
- L7: Universal measuring machine to compare block gauges by substitution; sensibility minimal 0.1 /m. This machine may be combined with an internal standard tape at microscope of observation in order to use them in measuring tapes.
- L8: Interferometer to control < calibrate > the standard block gauges < class AA>.
- L9: National standard length 1 m. This tape must be divided every mm and calibrated for every cm.
- L10 :Standard tape , length 200 mm divided every mm.
- L11 :Glass tape including one division of 2 mm divided every 0.1 mm.
- L12 : Three dimensional measuring machine.
- L13: Three standard Ribbon tape, length 20m, divided every cm.
- L14: Special installation for the comparison of ribbon tapes.
- L15: Laser system; like HP 5528 system to measure angle, speed and straightness.

In order to complete dimensional laboratory we propose the following measuring instruments and related devices.

- Set of gauge blocks , 100 to 200 mm , clas 00 and 0 .
- Sets of angle-gauge blocks , clas 00 and 0 .
- Sets of gauge pins .
- High precision setting ring gauges 1-400 mm.
- Control surface plates , class 00,0 and 1
- Surface roughness comparison standards
- High precision spirits levels.
- High precision height gauges and scribers.
- High precision surface roughness and form tester.
- High precision roundness and form measuring machine.
- Profile projector.
- Microscope and photomicrography.

1- Synoptic diagram of the equipment for a dimensional laboratory

II - Mass laboratory :

This laboratory will keep the standard of Mass and will conduct precision measurements related to this quantity.

Environmental conditions:

Temperature (23 7 1)°C Humidity (40-10) %

Cleanliness Particles which have $\psi = 0.5 \, \text{/m}$ m or more are less than 1.3 10° particules

per cubic meter

Light < illuminance > 800 lm/m2

pressure Not controlled but measured.

The diagram (2) shows the equipment needed to calibrate

weights and balances. Here are some details describing those main instruments:

M1: National Standard , 1Kg.

M2: Reference < primary > set of mass from 1mg to 2x10Kg.

M3: Working < secondary > set of mass as M2.

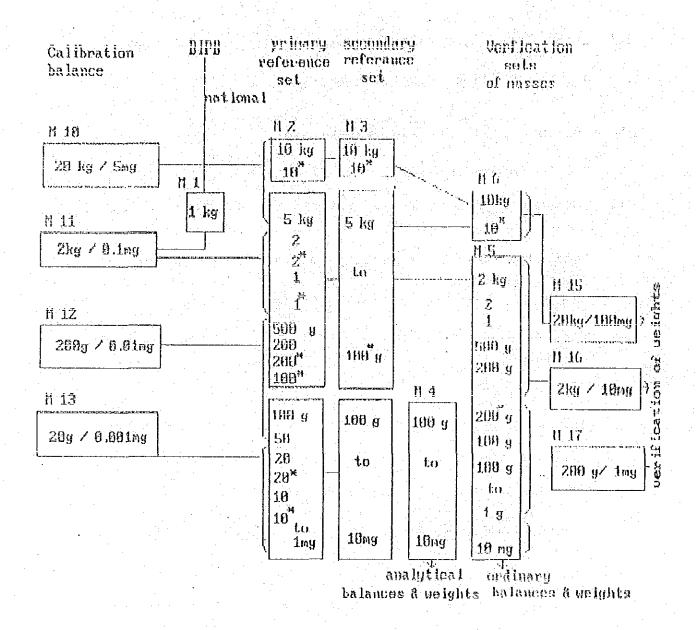
M4: Set of mass for verifying analytical balances or others used in pharmacy industry and jewelry from 10mg to 100g.

M5: Set of mass; 10mg to 2x2 Kg to be used with M4.

M6 : Mass to be used for verification.

M10: Balance for calibration, capacity 20Kg

M11: Balance for calibration ; capacity 2Kg


M12: Balance for calibration; type analytic, capacity total with sensible weight < 20,20g >.

M15 :Balance; capacity 20Kg suitable for the verification and adjustement of weights by comparison.

M16: Balance; capacity 2Kg suitable for the verification and adjustment of weights by comparison.

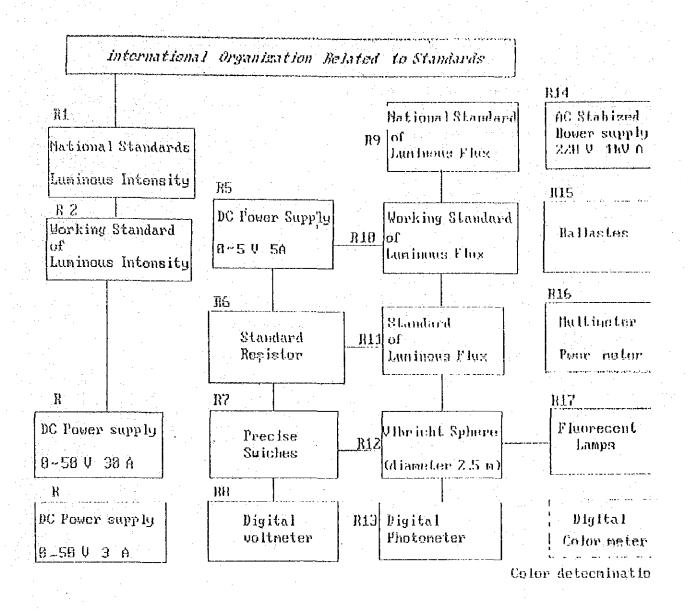
M17: Balance ; capacity 200Kg suitable for the verification

and adjustment of weights by comparison.

2- Synoptic diagram of the equipment needed for the calibration of weights and balances.

III - Optical laboratory :

This laboratory will keep the National Standards of Optical Quantities. It will conduct both phometric and radiometric meas urements. The equipment needed for phometric calibrations are as given in diagram -3-. Here are some more specifications:


- R1: 10 standard lamps of luminous intensity filled with gas, to be used at a color temperature around 2850 K.

 Five of them will constitute the national reference.
- R2: Working standard lamps.
- R3: Stabilized DC power supply < 0 to 50 V>; current maximal 30 A; resolution 0.002V, stability better than o.o1% for one variation of 15% of the main AC.
- R4: Optical bench with more than 3 holder of lamps, length 6m with a graduated tape. One holder must include x, y, z movement.
- R5: Stabilized DC power supply < 0 to 250V > current maximal 5A, resolution 0.1 V; stability better than 0.01% for one variation of 15% of the main AC.
- R6: A set of standard resistances; coldest by water; accuracy -0.01%; nominal values:

0.001 ;50A 0.01 ;10A 0.1 :3 A

R7: Switch selector; 5 positions; isolation 1500 VDC.

- R8: Digital voltmeter 6.5 digits; linearity better than 0.005%.
- R9:10 standard lamps of luminous flux; filled with gas, electric power 200 W 220 V.
- R10: 15 working standard lamps as R9.
- R11: Lamps, 25 to 500W chosen from general usage lamps.
- R12: Sphere of integration < sphere ulbricht > diameter
 2.5 m, with accessories to support all type of lamps <
 incandescent, fluorescent >.
- R13: Digital photometer, with a set of filters in order to obtain a spectral response corresponding to V () established by the international commission on illumination < CIE >.
- R14: Stabilized AC power supply, stability better then 0.01% for one variation of -10% of the main AC.
- R15: Standard ballast to be used with fluorescent lamps.
- R16: Voltmeter, Am meter and power meter.
- R17 : Fluorescent lamps.
- R18: calorimeter to evaluate the three components corresponding to specifications of < CIE >.

3- Synoptic diagram of equipment needed for photometric

calibration