shall be carried out in the night-time as well. For such activities, light beacons and bouys are necessary.

Light Beacon 4
Light Buoy 12
Light Guide post 1

2-4 Alternative

2-4-1 Formulation of Alternatives

Required berths at the new site up to the year 1997 are one container berth, one feeder berth and one general/bulk cargo berth.

To avoid interference with the future plan, the locations of container berth and general/bulk cargo berth shall be planned at the same place as in the master plan. Thus, there are only two alternatives on the location for a feeder berths.

Construction of them should be begun from the place near Watering Point of Rumassala Hill considering natural conditions.

Alternative 1. Alternative for Cost Saving

A feeder berth will be constructed using the northern revetment of the container berth as shown in Fig. 2-4-1. There is little wave influence in front of the feeder berth, and it is now around eight metres in depth. And the required length of the Southwest Breakwater and the East Breakwater are 1200m and 250m respectively. Therefore, it would cost less comparing with Alternative 2. However, at the stage of the next expansion, the feeder berth will become useless. In this case, the length of the container berth will be 350m considering some space for handling feeder cargo at the side.

Alternative 2. Alternative for future plan connection.

The second container berth in the master plan will be constructed

continuously, north of the first berth as shown in Fig. 2-4-2. In this alternative, one section of the second berth will be constructed as a feeder berth. To secure the required tranquility in front of the feeder berth, it is necessary to invest more in construction of the East breakwater. The lengths to be prolonged is 100m. Further, since the depth of the bed rock becomes shallower in the northern part, the cost of dredging will increase. However, development in the following phase should prove less difficult.



Fig. 2-4-1 Short Term Development Plan (Alternative 1)

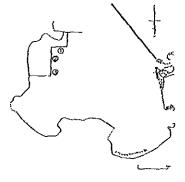
Fig. 2-4-2 Short Term Development Plan (Alternative 2)

2-4-2 Study of calmness

A computer-aided simulation analysis has been undertaken to determine the effect on the calmness of the inner harbor with respect to the two alternative plan layouts.

Appendix III-2-1(1) to Appendix III-2-2(8) show the wave height ratio of each alternative by wave direction. Using the diffraction coefficients given in Appendix III-2-3, the frequency of occurrence of the overall wave height below the critical wave height (0.5m) was calculated. The results are shown in table 2-4-1.

From these examination, it is judged that there are not so much differences between two alternatives in terms of calmness in front of quay walls.


Table 2-4-1 Degree of Calmness (Critical Wave Height Hc = 0.5 m)

Alterna	tive l									Unit: %
	н∤вс		н к не							
Dia	retion									
Point		SE	SSE	S	SSW	SW	WSW	W	Total	Total
1		0.00	0.00	0.00	0.23	2.00	1,79	0.04	4.06	95.94
2		0.00	0.00	0.00	0,30	2.32	1.79	0.04	4.45	95.55
3		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

Points of Calmness Estimation

Alternative 2									Unit: %		
H } Hc	H } Hc H > Hc = 0.5 m										
Diretion]		
Point	SE	SSE	s	SSW	5₩	WSW	W	Total	Total		
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00		
2	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0,01	99.99		
3	0.00	0.00	0.00	0.22	3.73	20.9	0.04	6.08	93.92		

Points of Calmness Estimation

2-4-3 Evaluation

As mentioned in 2-4-1, each alternative has several merits and demerits. The main merit of Alternative 1 is cheaper cost for the time being and that of Alternative 2 is easy connection to future development.

Appendix III-2-4 shows the construction cost of two Alternatives.

As the amount of initial cost of the short term plan is great, cost saving is the most important point to be considered for the time being. Therefore, Alternative 1 is recommended to be taken as the short term development plan.

2-4-4 Layout

Layouts of the each berth are snown in Fig 2-4-2 \sim 2-4-4 and layout plan of new terminal is shown in Fig 2-4-5.

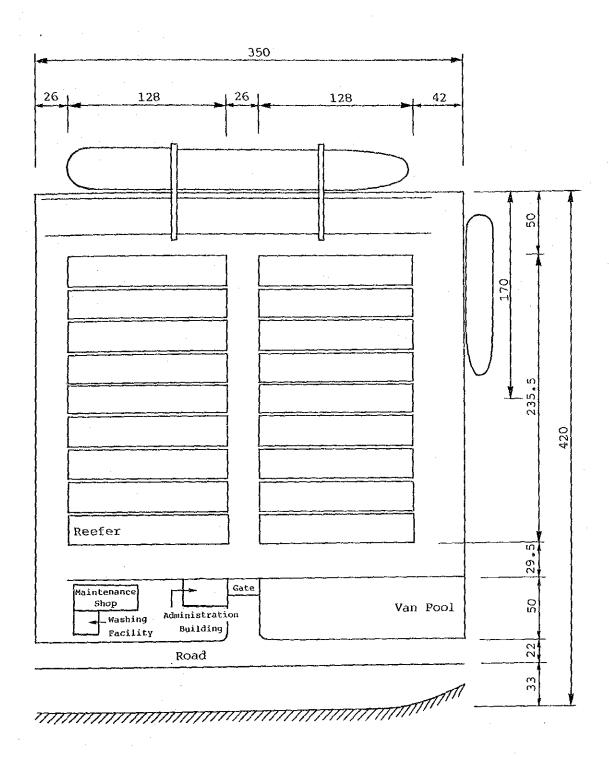


Fig. 2-4-3 Layout of Container Berth

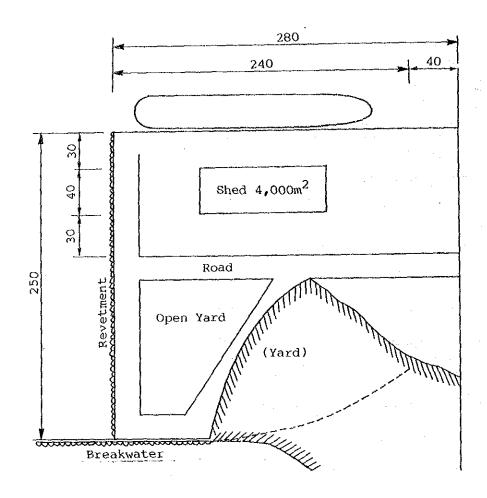


Fig. 2-4-4 Layout of General/Bulk Cargo Berth

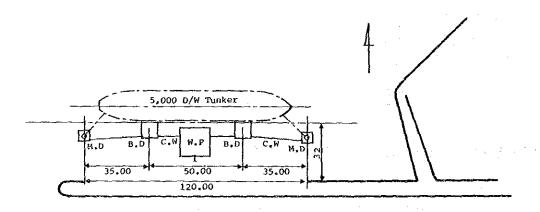


Fig. 2-4-5 Oil Berth

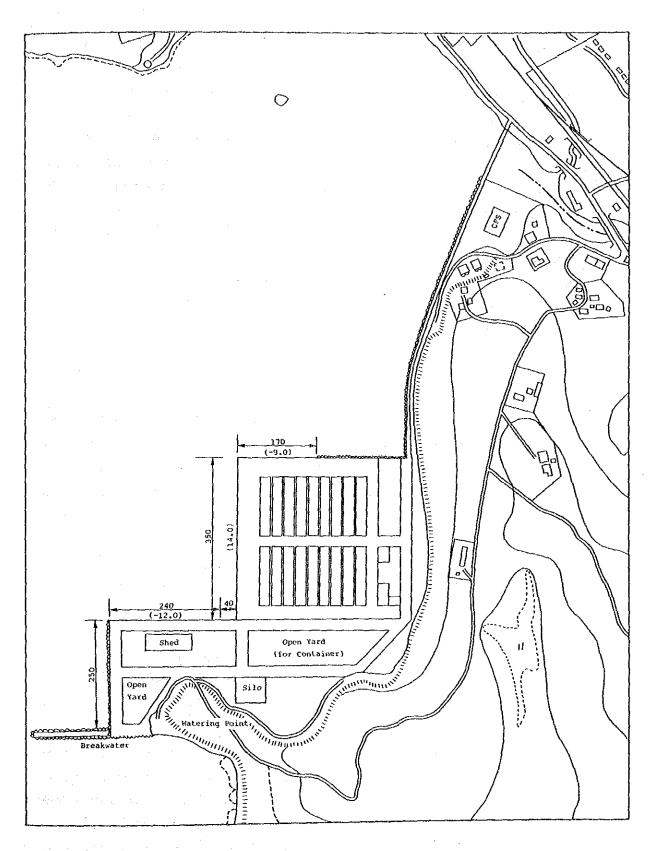


Fig. 2-4-6 Layout of New Terminal

3 PRELIMINARY DESIGN

3-1 Design Criteria

This subclause describes the design criteria established on the basis of the data contained in Part I, Chapter 4 Natural Conditions of Coastal Area Adjacent to Galle Port and additional information obtained through the site investigation conducted as part of the Study.

(1) Tide Levels

The tide levels in Galle Port are given below:

Mean High Water Level	+ 0.60 m
Mean Sea Level	+ 0.34 m
Mean Low Water Level	+.0.10 m
Datum Level	+ 0.00 m

(2) A sounding survey was executed in the Port of Galle in November 1990 according to the feasibility study program. The survey results are shown in Fig. 4-4-3 in Part I, Chapter 4. A sonic survey was also carried out in the same manner as the sounding survey, and the contour lines of hard strata prepared from these surveys are indicated in Fig. 4-4-4 in Part I, Chapter 4.

(3) Waves

The design wave characteristics with a 50-year return period have been defined as follows:

Direction	Height (Ho¹)	Height (H 1/3)	Period
$w \sim s$	5.5 m	5.1 m	9.5 sec

(4) Geology

The geology of the Port and Bay of Galle and adjacent areas consists primarily of a gneiss formation as the bedrock which is partly overlain by laterite layers. Generally, the gneiss layer occurs at a limited depth in the North and Gibbet Island and its outcrops are seen at many places on both sides of the Central Channel. In the eastern part of the Bay, the gneiss layer is formed at greater depths with loose sand, silty sand, cohesive clay and laterite layers

overlying the layer.

At the location where the Southwest Breakwater is to be constructed, sediments are formed to a limited extent and the substratum consists primarily of relatively well graded sand and gravel. At the proposed construction sites of the General Cargo Wharf and East Breakwater, however, the substratum is composed primarily of silty sand and cohesive clay layers (N-value = $0 \sim 1$) of about 10 m thick. The proposed Container Wharf site is partly scattered with outcrops of gneiss.

(5) Earthquakes

Earthquakes are not considered in the design of the Project facilities.

(6) Wind

A wind speed of 40 m/sec has been adopted for design purposes.

(7) Design Ship Characteristics

1) Container Berth

The maximum container ship sizes considered for design purposes are Post-Panamax type container ships of 50,000 DWT and feeder vessels of 12,000 DWT. The principal characteristics of the design ships are as noted below.

Container Ship		50,000 DWT	12,000 DWT
Length, overall	(m)	280.0	144.0
Breadth, molded	(m)	35.8	19.4
Depth, molded	(m)	22.6	11.2
Draught, full load	(m)	13.0	8.2

2) General/Bulk Cargo Berth

The General/Bulk Cargo Berth has been designed for a maximum ship size of 30,000 DWT. The major ship characteristics are as indicated below.

General/Bulk Cargo	Vessel	30,000 DWT
Length, overall	(m)	186.0
Breadth, molded	(m)	27.1
Depth, molded	(m)	15.2
Draught, full load	(m)	10.9

3) Oil Bunkering Berth

The principal characteristics of the oil tankers considered for design purposes are as follows:

Oil Tanker		5,000 DWT
Length, overall	(m)	104.0
Breadth, molded	(m)	16.2
Depth, molded	(m)	7.8
Draught, full load	(m)	6 . 5

(8) Crown Height of Quays

Basically, the following crown heights, the same as for the existing quays in the Port, are taken for the proposed quays. For quays with a depth alongside of -7.5m or more: +8.25 ft (+2.5m).

(9) Surcharge on Quay Faceline

The surcharge load considered is in principle 1.5 tons/m² (uniformly distributed load).

Special cargo handling vehicles and crane wheel loads has been considered where appropriate.

3-2 Preliminary Design

(1) Basic Plans of Port Facilities

Preliminary designs have been undertaken with respect to the following port facilities proposed under the Plan.

Proposed Port Facilities

Facilities	Length (m)	Depth (m)
1) Breakwater	, , , , , , , , , , , , , , , , , , ,	
- Southwest	1,200	Existing Water Depth
- East	250	Alongside
2) Container Berths*	350	~14.0
3) Feeder Berth	170	- 9.0
4) General/Bulk Cargo Berth	240	-12.0
		(-14.0)
5) Oil Berth	120	- 7.5
6) Transitional part	40	-14.0
7) Revetment on south side	250	Existing Water Depth
8) Revetment on north side	230	Existing Water Depth

Notes:

- ① Figure in brackets indicate the design depths alongside the quays.
- ② The berth marked with the Asterisk (*) is to be equipped with a crane.

(2) Structural Type of Breakwater

In selecting an optimum structural type for the proposed breakwater, due consideration was given to the following points:

1) Design wave of 50-year return period with the following characteristics:

H1/3 : 5.1

T : 9.5 sec

Harry P. Blee Direction : W - S

- 2) Bottom Characteristics;
 - 3) Need to avoid monsoon seasons for the breakwater construction;
 - 4) Necessity of providing a caisson fabrication yard;

- 5) Need for temporary storage of completed concrete caissons at sea;
- 6) Required time for the construction of caisson foundations;
- 7) Need to minimizing possible reexecution of any part of the foundation and armoring works;
- 8) Need to minimize permeability through voids between blocks;
- Need for providing an armor stone storage yard and concrete block fabrication yard
- 10) Need for maximum utilization of local materials; and
- 11) Structural soundness from the economical point of view

In view of the critical time and cost factors, 10 structural types have been evaluated on their merits and demerits, and the rubble mound type with concrete block protection has been finally selected.

The main features of the final section of the proposed breakwater structure are as follows:

- 1) Armor stones will form the core of the structure.
- 2) The breakwater height of +5.0M is determined on the basis of the High Water Level plus 60% of H1/3 and an additional height is provided by 4 to 6-ton armor stones in place of armor concrete blocks on the harbour side.
- 3) That part of the breakwater lying between the level of -8.0 m and the crest will be covered with 16-ton concrete blocks on the seaward slope due to the non-availability of local stones of 6 tons or more which can be used for armoring.
- 4) The tip of the breakwater will be reinforced with 25-ton concrete blocks. A light beacon will be installed at the tip of the Southwest and East Breakwers.

Since approximately 80% of the total length of the Southwest Breakwater will be located on the existing rocky ground and the rest of the structure will be underlain by thin layers of sandy soils, it is not necessary to improve its subsoils foundation.

Unlike the Southwest Breakwater, the East Breakwater will require soil improvement by replacing the sandy soils with appropriate material as indicated in Figs. 3-2-1 and 3-2-2.

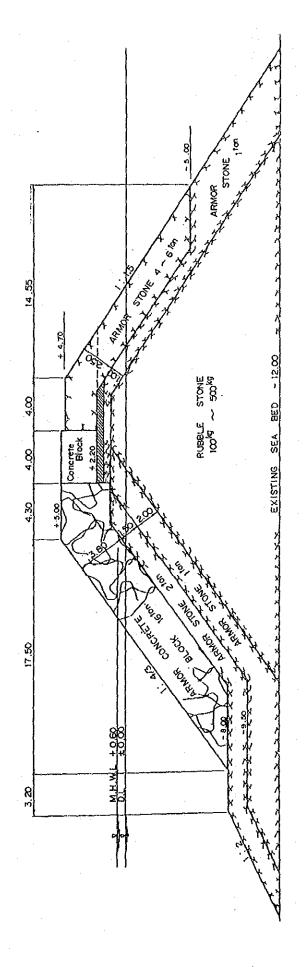


Fig. 3-2-1 Typical Cross Section of Southwest Breakwater

Fig. 3-2-2 Typical Cross Section of East Breakwater

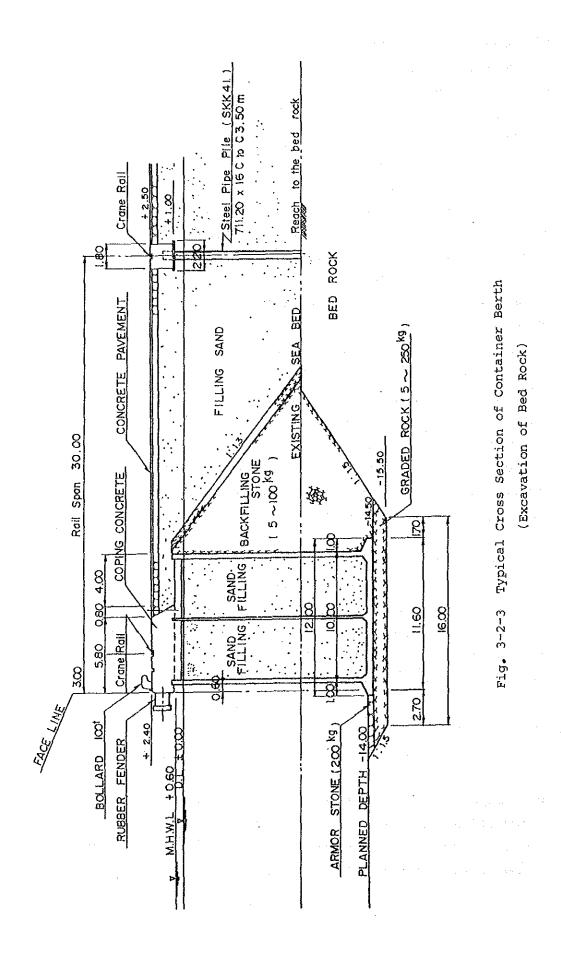
(3) Selection of Structural Type for Quays

The quay structures have been selected by considering such factors as stability, influence on the environment, construction cost and time, ease of maintenance and repairs based on the design conditions.

The following factors were taken into consideration in choosing between the Gravity Type of Quay and Open Type Quay supported on Vertical Piles for the proposed quay structures.

- ① Availability of a solid foundation in relatively shallow areas -10 m to -20 m deep where the quay line is proposed.
- ② Where the gneiss formation is deeper than the design level. soft marine clays must be dredged and replaced.
- (3) No more material of medium stiffness is found between the soft marine clays and the gneiss layer.
- (4) Earthquakes need not be considered.

With due regard for the site conditions, a gravity type of quay structure has been selected.


Among such gravity type quay structures as the caisson type, cellular concrete block type, and cast-in place concrete type, the caisson type quay is considered most suitable in terms of the site conditions, construction cost, and construction time.

1) Container Berth

Figs. 3-2-3 and 3-2-4 illustrate the typical cross sections of the container berth. The quay will be of a caisson type structure of 10.0 m in width and will have seaward container rails on its apron. The landward crane rails will be laid on the part of the apron supported on vertical steel piles as its foundation.

2) Feeder Berth

The feeder berth will be built at right angles to the face line of the container berth. The feeder berth will be a caisson-supported structure of 5.8 m in width and will have no container crane installation. The caisson foundation will be constructed on the same concept as the container berth. The typical cross section of the feeder berth is shown in Fig. 3-2-5.

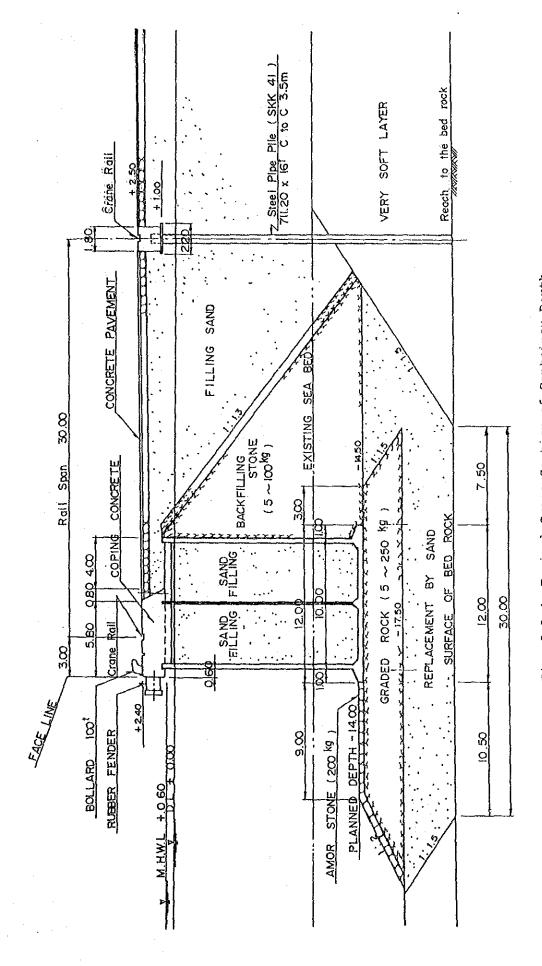


Fig. 3-2-4 Typical Cross Section of Container Berth (Replacement by Sand)

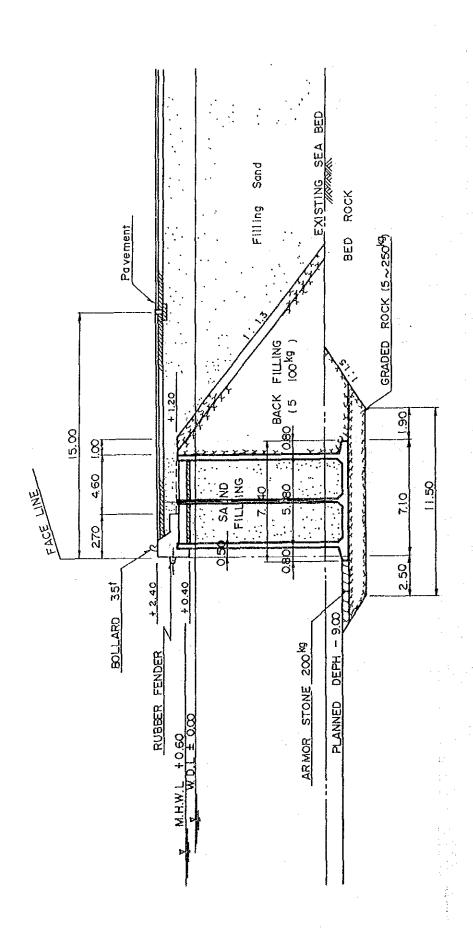


Fig. 3-2-5 Typical Cross Section of Feeder Berth

3) General/Bulk Cargo Berth

The general/bulk cargo berth shall be a caisson-supported structure of 10.0 m in width. A quay crane is not intended to be constructed under the Short Term Plan, but the design of the berth provides for sufficient strength to enable the crane to be installed in future according to the Master Plan. Fig. 3-2-6 shows the typical cross section of the general/bulk cargo berth.

4) Oil Bunkering Berth

The oil bunkering berth is planned at the north of the existing South Breakwater (inside the old harbour area). It will be of a gravity type dolphin structure consisting of a working platform, breasting dolphin, two mooring dolphins, catwalk and pipe supporting bridges. Fig. 3-2-7 shows the typical cross section of the oil bunkering berth.

5) Transitional Part

The 40-m transitional portion linking the container berth and the general/bulk cargo berth will have the same structure as the general cargo berth.

6) Revetment for Reclaimed Area

A rubble mound structure has been chosen for the revetment for the reclaimed area to meet the following requirements;

- a) Reliability in protecting the reclaimed area against waves and surging storm;
- b) Ensuring greater stability of the structure against other external forces; and
- c) prevention of possible outflow of filling materials from the reclamied area.

Fig. 3-2-8 shows the typical cross section of the revetment.

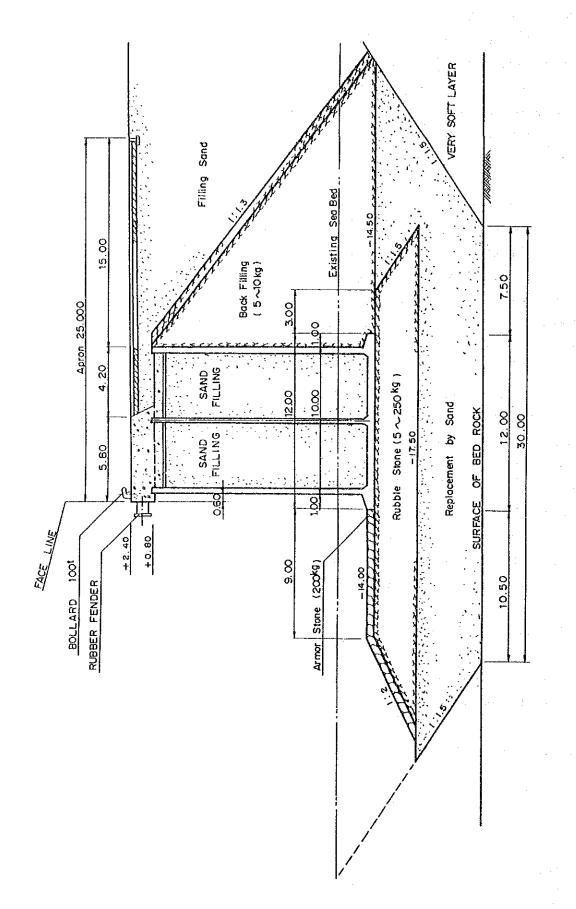


Fig. 3-2-6 Typical Cross Section of General/Bulk Cargo Berth

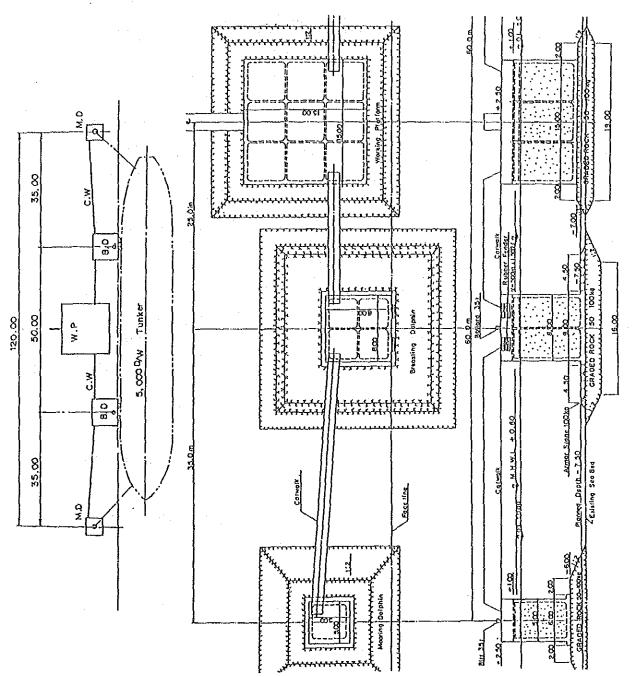
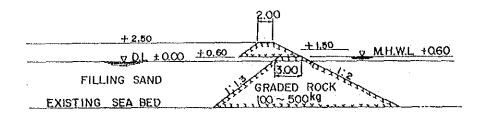



Fig. 3-2-7 Plan and Cross Section of Oil Berth

North Side

South Side

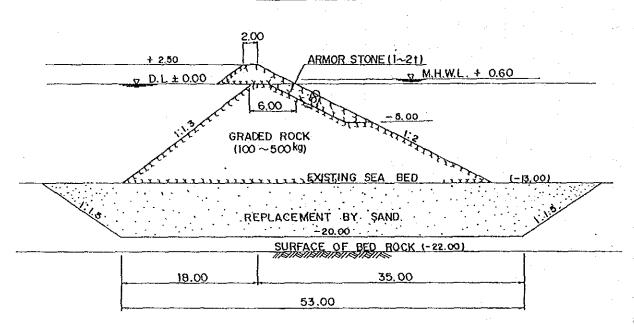


Fig. 3-2-8 Typical Cross Section of Revetment

4 IMPLEMENTATION PROGRAM AND COST ESTIMATION

4-1 Implementation Program

4-1-1 Construction Schedule

The construction schedule for the Short Term Construction Plan is described below in brief. Fig. 4-1-1 provides a detailed explanation of the time schedule of construction.

(1) Construction of the Southwest Breakwater and the East Breakwater with a length of 1,200 m and 250 m, respectively, is a key element of the development of the Port of Galle. The port open to the south will be exposed to swells. High rough waves invade the port particularly during the southwest Monsoon Season lasting from May to September.

The breakwaters are intended to secure a sufficiently large calm port area so as to allow the construction of the project facilities within the area.

The Southwest Breakwater will take a longer construction time. The construction will start in early 1993 and will be completed in late 1997, approximately one year after the completion of the other port facilities.

The East Breakwater needs early completion since several port facilities are planned to be constructed at its back. The construction of this breakwater is, therefore, required to start in early 1993 to ensure the scheduled completion in early 1995.

- (2) In the dredging of the approach channel and the port basin, soils must first be excavated and then rock excavation will follow. The dredging works is to commence at the end of 1993 and to be completed at the end of 1996.
- (3) Construction of the South Revetment behind the East Breakwater will start in late 1993 and is scheduled for completion in late 1994.

The construction of the North Revetment is scheduled for commencement in mid-1994 and for completion in mid-1995.

Administration of the second

- (4) The time available for dredging in a year is estimated at seven (7) months, that is, from January to April and October to December. Therefore, the reclamation work will be executed in three different periods, that is, from october 1993 through April 1994, from October 1994 through April 1995 and finally from October 1995 to January 1996.
- (5) Construction of the general/bulk cargo berth including the transitional part is to start at the beginning of May 1994 and to be completed at the end of 1995.
- (6) Construction of the container berth will commence two months after the work on the general/bulk cargo berth is started. The container berth is planned for completion at the end of October 1996.

The feeder berth construction, scheduled to start in March 1996, must be completed by the end of 1996 so as to come into service at the beginning of 1997.

- (7) Construction of the oil berth can take place independently of the other project facilities, because its construction site is located at the back of the existing Breakwater. The construction will start in March 1996 and will be completed by the end of the same year so as to be in time for the commissioning of the entire project facilities in early 1997.
- (8) The paving works for the container yard and the roads will start in 1995 with completion scheduled for late 1996. The bridge construction is scheduled to commence in early 1996 with its completion expected at the end of October of the same year.
- (9) Navigation aids are to be installed by the end of 1996.
- (10) The building works, including the Administration Building, Transit Shed, Maintenance Shop, CFS and container cleaning facility, will be started in late 1995 and completed in 1996.

, edgle to Angel

Augment to the second section

(11) The utility works comprising water and electric supply facilities and the computer system for cargo handling operations will be constructed

			199	<u>.</u> 92		r	1	993				199	4				199	5				19	96					1997					199			
Description	Quantity	1 2 3	4 5 6	7 8 9 1	10 11 12	1 2 3	4 5 6	78	9 10 1	1 12 1	2 3 4	5 6	789	10 11	12 1 2	5 3 1	1 5 6	7 8 9	10 11 1	12 1 2	2 3 1	5 6	7 8	9 10	11 12	1 2 3	4 5	6 7	8 9	10 11 1	2 1 2	3 4	5 6	7 8	9 10	11 12
1. Temporary Works	1 Sum													4	Rock Ma	ateria	1 (422	00003)								1-					-			\dashv		
2. Dredging	1,585,000 m ³										Other	Materia	1 (1,1		m3)		west Br	T	. (1.20)	0m)						1									\dashv	
3. Breakwater	1,450 m																East Bre													74	++	-				
4. Container Berth (-14.0M)	350 *											1-1-1								井														\dashv		
5. Feeder Berth (-9.0M)	170 %											111	11		$\left\{ \cdot \right\}$	11		_		_	=	++-				44				11	11	-				
6. General/Bulk Cargo Berth (-12.0H)	280 %																	##			11	11.				_ -	44	_		11	11	 		44	_	
7. Oil Berth (-7.5M)	120 *											(250-)									井	##				4				44	4	-		\bot		
8. Revetment	480 *										South	_(Z5UM)			North	1230n	<u> </u>				11	11								11		11	- -			
9. Reclamation	2,530,000 m3								片		 			上					Pave							11				$\bot \downarrow$				$\bot \bot$		
10. Pavement	283,000 m ²				,													‡	Lave			Bridg	e			\bot			_ _	41	4	11		_ -	_	
11. Navigation Aids	1 Sum																												_ _	$\downarrow\downarrow$	_ _			_	_ _	
12. Administration Building	800 m ²																																		_	
13. Transit Shed	4,000 0																				++									11						
14. Maintenance Shop	1,000 %																					井								1	11	<u> </u>		\bot		
15. C.F.S.	2,025 *																				++											11		_ _		
16. Cleaning Facilities	400 %																						上								11					
17. Utilities	1 Sum																	++		++	++															
18. Procurement of Equipment	1 %																			c.c 	II		士			Other	Equipa	, , ,								1
19. Procurement of Port Service Vessels	1 / "		111	111															2-Tı	ıg-Boal	t															
										\prod																										
21. Engineering Services	1 Sum			##					#	+			+	+		++			++-	#	+	++				$\pm \pm$				#						Ш

Fig. 4-1-1 Construction Schedule of Short Term Plan

between mid-1995 and the end of 1996.

(12) The cargo handling equipment and port service vessels will be procured by the end of 1996.

4-1-2 Project Site

The Short Term Plan calls for the construction of a variety of port facilities and involves a very tight construction schedule.

At present, the Port of Galle has a certain amount of unused land space other than land lots for office buildings. The existing quay has a design depth of -8.85 m and a design length of 426.7 m with an apron 15.2 m wide. Viewed in the light of the fact that only a total of 78 ships with an average deadweight tonnage of 2,130 called at the port during 1989, the existing quay may be said to be under utilized, although its tip has been partially damaged.

For the construction of the project facilities, land spaces will have to be secured for such construction facilities as a field office, concrete plants, material storage area, and fabrication yards for concrete blocks and armour blocks. Some of the land space requirements can be met by the reclamation works. Adequate land spaces will have to be secured for such works as the breakwater and revetment construction which must be started in the early stage of the project construction.

A temporary storage area for stones can be obtained by temporary reclamation of approximately 17,000 m² of area at the mouth of the Waggal Modera Ela River. This storage area requires a temporary jetty of 100 m in length and an access road of 420 m in length and 15 m in width.

The volume of stones required for offshore works is as follows:

Net Volume of Stones Required

	Offshore Works	Volume of Stones
	Breakwater	860,500 m ³
	Revetment	117,100 m ³
	Quays	45,000 m ³
\$.	Total	1,022,600 m ³

The actual volumes of stones required will be increased to approximately $1,200,000~\text{m}^3$ when losses due to slippage to subsoils and washing by waves are taken into accounts.

A space of 2,500 m² for a concrete batching plant will have to be secured by utilizing the unused land at the back of the quay. Part of the unused land and the damaged tip of the quay after repairs will be used for the fabrication and storage of concrete blocks. The storage area for concrete blocks will need approximately 10,000 m². tabulated below are the quantities of armour concrete blocks and concrete blocks required.

Quantity of Blocks Required for Breakwater Construction

Item		Quan	tity
Armour concrete blocks	16 tons	10,70	0 pcs.
Armour concrete blocks	25 tons	50	o pes.
Coping concrete blocks	25 tons	1,46	0 pcs.

Unused land inside the port area will be used for the contractor's site office and for the installation of construction plants.

A floating dock in the 5,000-ton class will be utilized for fabricating concrete caissons to be incorporated into the quay structure. The floating dock will be moored within the calm port area in such manner as to avoid interference with the movements of other vessels.

4-1-3 Construction of Breakwater

The construction methods to be employed for the project construction will not vary very widely from the those adopted in the Jaye Container Terminal Project insofar as the works are performed within calm water areas.

The construction works on the breakwater in Port of Galle. however, will have to be carried out in the open sea under an extraordinarily severe marine weather conditions and the influence of waves on the works will not be negligible.

The following description has relevance to the breakwater

construction.

Looking toward the Indian Ocean, Galle Bay is exposed to southerly swells more than 0.5 meter high all the year round. Moreover, wind waves of 1.5 m or more in height reach the bay from S to SW directions during the five southwest monsoon months of May to September.

Wind speeds of 10 m/sec or more and significant wave heights of 0.3 to 0.5 m or more are generally considered critical physical conditions which render harbour works and other marine construction activities impractical. By this standard, the proposed breakwater works in Galle Port will be affected to a greater or lesser degree throughout the year.

The numbers of days available for construction operations as determined on the basis of wave heights in and around the port are as indicated in Table 4-1-1. In this table, the wave heights of less than 1.5 m are considered to permit construction activities to be carried out, though with reduced efficiency, without interruptions.

The available days in the tabulation are for offshore or coastal construction operations. For shore works the number of available days is assumed to be increased by nearly 80 days, which may vary depending on the type of work.

Table 4-1-1 Available Working Days

		Wave Height				Available
Season		~0.49 m	0.5 m ~	1.0 m~	1.5 m ~	Working
			0.99 m	1.49 m		Days
Month	Total Days	(A)	(8)	©	0	Total
March -	61	-	15 days	34 days	12 days	49 days
April		·	(24.6%)	(55,7%)	(18.5%)	(810.3%)
May -	153	-		4 days	149 days	4 days
September	•			(2,6%)	(97.4%)	(2.6%)
October -	61	_	9 days	27 days	25 days	36 days
November			(14.8%)	(44.3%)	(40.9%)	(59.0%)
December -	90	_	43 days	45 days	2 days	88 days
February			(47.8%)	(50.0%)	(2.2%)	(97.8%)
Total	365	_	67 days	110 days	188 days	177 days
			(18.4%)	(30.1%)	(51.5%)	(48.5%)

The structural type of the breakwaters and construction method adopted Table 4-1-1, are typical and prevalent in the world. As can be seen from the weather at the sea is quite inclement. The depth at the sites of the breakwater construction is substantial and the construction works are expected to be massive.

The major construction materials for the breakwater construction include stones and concrete blocks, all of which will have to be transported from the stock yard onshore for incorporation into the construction works.

Instead of joint operation of plural working crafts, operation of a singles barge is planned to minimize idle time due to high waves. One unit each of floating crane and rock barge will be used for placing concrete blocks and stones.

The Southwest Breakwater construction will experience five monsoon seasons throughout the construction period, while the works on the East Breakwater will undergo two monsoons during the construction. Protection and reinforcement works on the tips of the structures are to be executed before the monsoon seasons come in order to avoid damage. Offshore works during the monsoon seasons are impossible at the sections where high waves strike the structures directly. On the other hand, works are likely to make good headway within the relatively calm inner harbour.

4-2 Cost Estimation

- 4-2-1 The unit prices and rates for calculation of construction cost in respect of labor, equipment, plant and materials are obtained through Feasibility Studies Which were conducted during the first filed survey in October 1990 and the third field survey in May 1991.
 - (1) The construction cost is broken-down into foreign and local currency portions at the exchange rate of US& 1.00 = Rs 41.00 = ¥ 138.85 quoted during the Third Filed Survey.
- (2) The import duties assessable on materials, equipment and plant to be imported into Sri Lanka are not included in the cost estimates.

- (3) The transaction tax (BTT) to be levied on materials and fuels obtainable from local sources is not included in the cost estimates.
- (4) The contract tax considered in the cost estimates is as follows:

 Construction and procurement cost 3%

 Engineering Services 5%
- (5) Physical Contingency of 6% is included in the construction cost except for the costs of container handling equipment and engineering services. No price escalation is considered in the cost estimate.

4-2-2 Estimation of Cost

(1) Basic prices and Capacity for material and Labor Supply

In addition to a survey on prices and rates for locally available labor, fuels and materials, an investigation was undertaken with particular reference to the recent development projects in Sri Lanka to determine the supply capacities of these items.

Reserves and production capacities of the major construction materials are outlined below.

1) Stone

Rubble stone of 100 to 500 kg apiece and armor stone of 1 to 6 tons are obtainable from a private-owned quarry in the vicinity of Galle Port. The deposits of the quarry are sufficient, but the production capacity at the moment is still limited. Consequently, the contractor for this project may have to invest a substantial sum of money and mobilize appropriate equipment to exploit the quarry by paying a royalty to the quarry owner to obtain the stones necessary for the execution of the works.

2) Aggregate for concrete

Quarry-run will be used for coarse aggregates, since gravel from the rivers is not sufficiently obtainable to satisfy the huge demand in the construction industry.

River sand can be used for fine aggregates, but authorized firms

only are allowed access to the sources to excavate sand. Such restraints are intended to preserve the river bed.

3) Cement

Clinker, a major raw material used at a cement factory located immediately behind the Port of Galle, is imported from Middle East countries. The clinker constitutes the greater part of the cargo volume handled at the Port.

The volume of cement necessary for the construction of the project facilities can be procured within the country even when the volume of cement consumed by other projects is taken into account.

4) Steel

Despite the fact that Ceylon Steel Corporation produces such steel products as bars, flat bars, binding wires, barbed wires and nails, the major steel materials to be incorporated in the project will have to be imported.

5) Material for Reclamation

For reclamation works of the Project, fill materials will be obtained from seabed or river. The excavation of such fill material must be approved well in advance by the Coast Conservation Department.

6) Concrete Products

Standardized concrete products, such as hume pipes for drainage and concrete intended for kerbs, gutters and lamp posts are to be provided by the State Development and Construction Corporation.

Listed in Table 4-2-1 and 4-2-2 are the current market rates for labour, fuels and materials.

Table 4-2-1 Unit Cost of Local Worker and Fuels

(Unit: Rs.)

		(OHEC: KB.)	
Item	Unit Cost		
Worker (per day):	Basic Wage	Working Wage	
Unskilled	90	175	
Skilled	120	230	
Foreman	225	440	
Carpenter	160	310	
Bar Bender	140	270	
Welder	140	270	
Surveyor	300	600	
Mechanics	140	270	
Driver	120	230	
Crew (High class)	300	600	
Crew (Normal class)	150	300	
Fuel (per liter):	Unit Cost		
Gasoline	. 25		
Light Oil	11		
Heavy Oil	10.6		

Table 4-2-2 Unit Cost of Local Materials

		(Unit = Rs.)
Item	Unit	Net unit cost
Sand for Reclamation	_m 3	190
Stone (100 - 500 kg/pc)	m ³	370
Stone (1 - 6 tons/pc)	_m 3	410
Gravel	m ³	360
Cement	Ton	4,000
Aggregate (Crusher-run)	m ³	600
Fine Aggregate (Sand)	m ³	200
Admixture	kg	76
Asphalt	kg	15.3

(2) Foreign and Local Currency Components

The direct construction cost is divided into the foreign and local currency components. The percentage distributions of the major items of equipment, materials and labour between the foreign and local currency components are indicated below.

Item	Foreign (%)	Local (%)
1. Rubble and other stones	0	100
2. Fill materials	0	100
3. Cement and admixture	0	100
4. Aggregates for concrete	0	100
5. Concrete products from local sources	0	100
6. Labour	· 0	100
7. Fuel and asphalt	100	0
8. Steel and reinforcing bar	100	0
9. Floating equipment	100	0 .
10. Construction plant and equipment	90	10
11. Formwork for concreting	70	30
12. Materials for temporary works and		
scaffolding	70	30

4-2-3 Project Cost

The construction cost for the Short Term Plan is given in Table 4-2-3 and 4-2-4.

The total construction cost for the Short Term Plan amounts to US\$ 334,612,000 broken down into US\$ 245,291,000 for the foreign currency component and US\$ 89,321,000 for the local currency component.

Table 4-2-5 gives the annual investment plan extending from 1992 to 1997.

Table 4-2-3 Construction Cost of Short Term Plan
Uni

Unit	;	Thousand	US\$

				Cone	truction C		t : Thousand US\$
	Description	Quantity	Unit	Foreign	Local	Total	Remarks
		210,000	m3	10,992	3,699	14,691	Basin
	Dredging of Rocks	212,000	4	11,096	3,734		Channel
		887,000	4	4,616	416		Basin
	Other Material	276,000	*	1,436	130	1,566	
	Southwest Breakwater	1,200	m	57,710	19,808	77,518	
	East Breakwater	165	*	11,797	3,379	15,176	
-	East Seawall	85	"	4,683	1,542	6,225	
	Container Berth (-14.0M)	350	4	17,463	8,428	25,891	
ing	Feeder Berth (- 9.0M)	170	"	4,172	2,108	6,280	
d Buildin	General/Bulk Cargo Berth (~12.0M)	280	,	12,694	6,917	19,611	Including Transitionnal Part
and	Oil Berth (-7.5M)	120	"	3,135	1,290	4,425	
Civil	Revetment	480	. 4	8,800	3,788	12,588	North and South Side
of.	Reclamation (Yard and Road)	2,530,000	m3	19,371	2,747	22,118	
ជួ	Pavement (Yard and Road)	283,000	m ²	11,794	7,378	19,172	7
Construction	Bridge	60	m	1,684	718	2,402	, , , , , , , , , , , , , , , , , , , ,
tru	Navigation Aids	1	Sum	494	198	692	
Suc	Administration Building	800	m ²	182	738	920	
ŭ	Transit Shed	4,000	4	310	1,734	2,044	
	Maintenance Shop	1,000	"	112	635	747	
	C.F.S.	2,025	"	205	819	1,024	
	Cleaning Facilities	400	"	37	212	249	
	Utilities (Water Supply)	1	Sum	2,350	265	2,615	
i	(Electric Supply Computer System)	1	,	5,485	619	6,104	
	Sub-Total (1)			190,618	71,302	261,920	
	Container Cargo Handling Equipment	1	Sum	22,514	•	22,514	
Procurement	Cargo Handling Equipment for General/Bulk Cargo Berth	1	,	886	86	972	
no.	For Oil Berth	1	"	117	13	130	
Pro	Port Service Vessels (Tugboat)	1	"	6,482	-	6,482	
į	Sub-Total (2)		[29,999	99	30,098	
	Total (1) + (2)			220,617	71,401	292,018	
-	Engineering Service	1	Sum	13,237	3,570	16,807	Foreign 6%) Local 5%
	Physical Contingency	Sub-Total		11,437	4,278	15,715	
	Tax				10,072	10,072	Construction & Procurement 3% E/S 5%
	Grand Total			245,291	89,321	334,612	

Table 4-2-4 Breakdown of Procurement Cost of Equipment and Vessels

Unit: Thousand US\$ Procurement Cost Remarks Quantity Unit Description Foreign Local Total 494 198 692 1. Navigation Alds 81 281 4 Nos. 200 Light Beacon 2 14 4 18 4 Light Guide 280 113 393 12 Light Buoy 22,514 22,514 2. Container Cargo Equipment 12,963 12,963 2 Nos. Container Crane 5 6,122 6,122 Transfer Crane 4 1,005 (40ton) 2 1,005 Top Lifter 14 2,017 2,017 4 Tractor-Trailer 119 119 Tractor 1 No. 252 252 Nos. 10 Trailer Forklift (2ton) 36 2 36 4 86 886 972 General/Bulk Cargo Berth 237 Fork Lift (3ton) 237 86 433 347 Packer and Hopper 302 302 Trucks (10ton) 130 117 13 4. For Oil Berth

Table 4-2-5 Annual Investiment Plan (Short Term)

				1				i		:				i				(Unit : 1000 USE)	G 1000
	_	1992			1993	-	19	h661		1995	<u> </u>		9661		1997		-	Total	
Description	Foretan	Local	Total	Foretgn	Local	Total F	Foreign Lo	Local Total	L Foreign	Local	Total	Foreten	Local	Total Foreign	1gn Local	I Total	Foreign	Local	Total
.CIVII and Building					-						-		-	-					
1. Predging for Basin		_		5,022	989	5,688	L	1,210 5,143	3,471	1,168	1,639	3,182	1_	4,253			15,608	4,115	19, 723
2. Dredging for Channel				5,169	715	١	ł	1,192 4,839	1	L	4,683	3,212	1.081	4,293			12,532	3,864	16.396
3. Southwest Breakwater		_		9,358	3,212	1	12,478 4		Γ_	1		12,478		ட	10,918 3,747	17 14 665		19,808	77,518
				737	211	845	1	2,534 11,382	乚	£	2,846		\mid		-		11,797	3,379	15, 176
	-		L	4,683	<u>. </u>	6,225		-	i				-			-~	4,683	1,542	6,225
					-		3,742	1,806 5,548	1811 1 181	3,612	11,096	6,237	3,010	9,247	-		17,463	8,428	5,8
7. Feeder Berth(~9.04)	-					-						4,172	2,108	6,280			1,172	2, 108	8
	-				-	-	5,078 2	2,767 7,845	7,616	4, 150	11,766			-			12,694		19,61
					-	-	,		_	1_	-	3, 135	1,290	4,425			3,135	1,290	4 425
10. Revetaent	-	_		1.727	673	8 10 10 10 10 10 10 10 10 10 10 10 10 10	<u> </u>	L		98	Ē		1	_	_		8,800		12.588
11. Reclamation (Yard and Road)	-	 -		3.229	153	3,687	7,533	1,068 8,601	7 533	Ŀ	8.601	1,076	153	1,229	-		19,371	2,747	22, 188
12, Pavement (Yard and Road)		L				-	_		6, 153	3, 3,849	10,002	5,641	3,529	9,170			11,794.	7,378	19,172
13. Bridge	-				-	-	-	-		┺-		1,684	<u>. </u>	2,402			1,684	718	2,402
14. Mayigation Aids	_	L	L			-		_			- 	161	861	269			1517		695
15. Administration Building	_	_	L		-	-		-	28	158	197	143	280	723			182		ŝ
16, Transit Shed					-	-	_ 			-		310	1,734	2,044			310		हैं 2
17. Maintenance Shop			L			-		_		-		112	635	747	_		112	635	727
18. C.F.S.	 -				-	-	-		777	176	220	161	643	804	-		205	819	1,024
19. Cleaning Facilities	 -									_		37	212	545			37	212	£5
O. Utilities (Water Supply)									866	5 98	964	1,484	_	1,651		-	2,350	265	2,615
21. Utilities (Electria & Computer)		_							2,021	1 228	2,249	3,464	391	3,855	-		5,485	619	2
iI	-								ш				,	1			0,700.	2000	050 136
Sub-Total (1)	+	1		26,925	1.1	34,099	51,941	17,635 69,576	53,812	20,943 74,755	74,755	47,022 21,803	21,803	68,825	10,918 3,747	47 14,005	_	2000	501,300
I Procurement of Equipment and Vessels	-	-			1	-	-	-		-			+	-	-				
22. Container Cargo Equipment	-	L				-							-						
Container Crane & Transfer Crane	-	_	L						7,634	_	7,634	11,451	1	11,451			19,085	-	19,085
Other Equipment	 -	_	L			-						3,429		3,429			3,429		%. 23. 23. 23. 23. 23. 23. 23. 23. 23. 23
23. General/Bulk Cargo Berth												886	86	972			386	96	372
24, For Oil Berth	-	_										117	13	130		_	117	13	23
25. Port Service Vessel		_			-	-			3,241	-	3,241	3,241		3,241			6,482	-	6,482
	_	L				-		_	10,875		10,875	19, 124			, ,			66	30.08
Sub-Total (1) + (2)				26,925			_	·	76 64,687	20,943		96,146			10,918 3,747	#	2	71,401	292,016
26. Engineering Service	3,310	0 893	4,203	2,206	595	2,801		595 2,801		9 595		2,206	- 1			297 1,400		3,570	8
27. Physical Contingency	-	1	Ì	_]	E 33	2,046	3,116	-	3,229	_1		2,821	. 1	4,129	655	325	11,437	2,470	0,00
28. Tax	-		200		1.224	_1			ᆚ	2,84	# # # # # #		6,8	_1	_1	3 1	1	90,014	25, 545
Grand Total	3,310		1,103 4,413	30,747	9,423 40,170	1	57,263 21,641	,641 78,904	24 70, 122	2 25,639 95,761	25.76	11.17	71,173 26,710 197,883	_	12,676 4,8	4,805,17,461	182,291	03:361	354.016

5 MANAGEMENT AND OPERATION PROGRAM

5-1 Funds for Constructing the Port

In general, fundamental facilities or infrastructures such as port facilities, transport facilities and so on are often constructed with subsidies from the government, as these facilities are generally used by the public at large. And as the development of an infrastructure generally requires substantial investment and often takes a long time to recover these investments, the government and public organizations have responsibilities regarding the development of an infrastructure.

On the other hand, some functional facilities such as cargo handling equipment are sometimes provided by the actual operators.

Often, in the initial stages of an infrastructure project except for port development project, the adoption of the B.O.T. (Build, Operate and Transfer) model is sometimes considered and executed. But in the case of the port development project, though the B.O.T. model is opted for in some countries, the construction has not yet commenced because there are many unresolved questions to be solved. The team will examine the feasibility of applying the B.O.T. model to the Galle Port project for the short-term plan.

5-2 Outline of the B.O.T. Model

The principles of the B.O.T. model are summarized as follows:

the broadest terms, the build-operate-transfer In that an international consortium bidding on a project shall states project, raise and secure funding for the construction, design the manage and maintain the project with the host construct, own. government's quarantees to take the products of the plan during a At this point, the prices of given period of say 10-15 years. product and/or services throughout the said period will be decided at a level sufficient to cover debt service, operation

maintenance costs and to provide a return on equity investors. At the end of the term, when all the project's loans have been paid and equity capital has been repatriated, ownership of the project will transfer to the host government without charge. An appropriate representative of the host country will be permitted to fixed percentage of the equity of the joint venture in order to acquire and operate the project. The project must be completed under a turnkey fixed price contract. risks during the construction and operation of the project are borne by the host government. Payment for the products and/or services will be made in foreign currency, using the same basket currencies with which the project is financed.

We will examine the possibility of applying the B.O.T. model to this project in the next section, as well as taking other models into account.

5-3 Classifications of the Port Management and Operation Model

The following three models offer different solutions to the problems of port construction, management and operation:

- Public Autonomy Model

In this model, the SLPA constructs, manages and operates the port facilities and activities, much as in the present system.

- Lease Model

The SLPA constructs the port facilities. The SLPA leases the port facilities to the private company or the joint venture of the government organization and private companies. The lessee manages and operates the port facilities and activities.

There are three basic types of leases: flat rate, mini-max rate and shared revenue.

- B.O.T. Model

The private company or the joint venture is responsible for

all facets of the project, the construction, management and operation necessary for port activities.

As the mode of model moves from the public autonomy model to the B.O.T. model, a higher ratio of private investment is encountered. Generally speaking, as private investment increases, the economic resources are used more efficiently, thereby improving the viability of project and the productivity of operations. In the case of the B.O.T. model, the construction costs are also added in the scope of the above judgment.

However, it is difficult to analyze quantitatively the benefits of the improved viability and productivity because the changes in the productivity of cargo handling operations and the changes of the demand forecast of cargo volume are intertwined with the private companies' economic agenda: they are designed to recover their investments, and so the precise measurements cannot be calculated.

We will describe the merits and demerits of each model for this project.

(1) Public Autonomy Model

If the productivity of operations or the cargo forecast are not changed by privatization, this model provides the maximum profit for the SLPA, as the surplus after taxes does not need to be divided among foreign companies.

Furthermore, the SLPA already has its own laborers with the technology to operate and manage the new terminal. So, if the SLPA can obtain foreign loans at a low rate of interest through the government, this model might be suited for managing and operating the new terminal.

(2) Lease Model

The advantages of the lease model are as follows:

- Securing handling cargo volume and clients for a extended period of time.
- 2) Gaining the new technology of port operations and the know-how to

utilize human resources from foreign companies.

3) Improving the profitability of the project and the productivity of the operation and management through the effects of privatization.

Here, we will give a brief account of the three basic types of the lease model.

- Flat rate type

The owner(lessor) gives the user(lessee) the right to use fixed assets for a specific period of time in exchange for a fixed amount of money. The main advantage of the flat rate lease is that costs and benefits are known to both parties in advance. The flat rate lease provides the greatest incentive to the lessee to generate as much business as possible for the terminal.

- Mini-max rate type

The owner(lessor) gives the user(lessee) the right to use fixed assets for a specific period of time in exchange for a variable amount of money. There is a minimum and a maximum amount of money for the lease depending upon the amount of activity performed on the fixed asset. There is a pre-established bottom and a ceiling amount of money in the mini-max. For example, a user that leases a container terminal will pay more or less for the lease depending on the amount of cargo throughput annually.

-Shared revenue type

The owner(lessor) gives the user(lessee) the right to use fixed assets for a specific period of time in exchange for a variable amount of money. In this type of lease, there is no limit to the amount of money that the lessee can pay, even though there is a minimum amount of money that the lessee will always pay regardless of the amount of activity.

It is critical for the success of the lease model to show how the benefits gained by improving the profitability and the cargo handling efficiency are divided between the lessee and the lessor. The methods of the distribution of profits are considered three types as above. At any rate, each method must take into account the fact that a private company is designed to make profits, therefore, it is the necessary that lease model be constructed in such a way that the potential for profit exists.

However, in the case of the Galle Project, FIRR including the construction of breakwater and channel dredging is about 2%. Therefore, the lessee cannot gain a sufficient profit without subsidies. At the very least, it is necessary to aid the construction and/or operations with incentives from the government.

At present, the SLPA already has sufficient technology to operate a container terminal, and is making efforts to operate port activities efficiently. Therefore, the lease model is of little value besides its capacity for securing clients and handling cargo volume for a extended period of time.

(3) B.O.T. Model

The merit of the B.O.T. model is that it promotes the advantages 1)-3) mentioned in the lease model. Furthermore, when it is difficult to attract investment at a national level, this model is the best choice because the SLPA does not have to raise the funds for construction. Namely, the investment risk does not have to be borne by the SLPA and the government. The construction costs also might decrease through the effects of privatization.

At any rate, the profit margin of the project must be at a level high enough to merit the investment risk that companies joining the project take.

When the viability of the project is low and it is difficult to guarantee sufficient profits, this model has many problems. In adopting the B.O.T. model, the government must offer incentives to the companies: for example, reducing initial construction costs in such a way that will satisfy the private companies, reducing taxes, and so on. These problems must be solved at the government level.

In the case of the Galle Project, because FIRR is very low, it is likely that private companies would experience difficulties in

raising funds. Therefore, incentives from the government are necessary, more so than in the case of the public autonomy model.

However, because the B.O.T. model also has an advantage in that the government does not have to raise funds for the construction of a new terminal and can instead direct its funds to other projects, the B.O.T. model is worth inviting proposals from private companies.

5-4 Choice of Port Management and Operation Model

The financial situation of the SLPA is good at present. The SLPA operates and manages all of port activities including those for the container terminal at the Port of Colombo by its own laborers. It also has a training institute which keeps the workers up-to-date with the latest technology.

Therefore, the SLPA is considered to have sufficient human resources and operating technology to manage the port activities of the Port of Galle.

Though the SLPA has a few too many laborers at present, this is not a cause for concern because the SLPA is reducing the number of laborers each year and wages are comparatively low.

Therefore, the SLPA can be regarded as the organization best equipped to handle management and operation of the new terminal. We will examine and formulate a port management and operation plan for the SLPA in the next sections.

5-5 Management and Operation Plan

5-5-1 Increment of Tariff

Because the natural conditions in the case of the Galle Project are very severe, the construction costs are extremely high. Therefore, the SLPA needs to receive government subsidies for the construction of the breakwater and for the execution of the channel dredging, and it needs to increase the charges of transshipment container cargoes handled in the

Port of Galle by 20% to secure the viability of the project. This increase can be justified as compared with tariffs of other ports. We will elaborate on this increment of charges in the chapter on financial analysis.

5-5-2 Organization

The SLPA should manage and operate new terminals in order to establish an integrated organization with the existing sections of the Port of Galle.

In creating the operating section of container cargo in the operating division of the Port of Galle, additional divisions are not necessary.

5-5-3 Required Number of the Staff

The number of staff at the Port of Galle is 755 as of 30th Sept. 1990. It is important to make the utmost use of the existing labour force.

But, when the new terminals of the Port of Galle are opened, a new staff is required.

(1) Container Berth

The required number of new staff at the main container berth and the feeder berth respectively is shown in Table 5-5-1.

It is recommended that the control room and the gate in the container berth be used both for the main and the feeder berth and operated under an integrated administration.

Table 5-5-1 The Required Number of Staff at the Container Berth

		Main	Feeder	
Offices	Divisions/Sections	Terminal	Terminal	Shifts
	General affairs, Accounting	7	-	đay
	Planning of handling	10	5	day(partly night)
Head Office	Yard control center	8	4	day & night
	Container inventory	3	2	day
-	Documentation of cargo delivery/receiving	12	6	day & night
Gate	Gate check	12	-	day & night
CFS	Documentation of cargo delivery/receiving	12		day & nìght
	Stuffing/unstuffing of containers	80	20	day & night
	(including operators of forklifts)			į
Cargo handling	Loading/unloading and transporting of containers	52	48	day & might
	(including operators of gantry crames straddle		}	{
	carriers, tractors and forklifts)	Ì	Ì	ļ
Maintenance	Maintenance of equipment and containers	25	-	day(partly night)
Security	Security	38	-	day & night
Others	Others	5		day
Total		264	85	

(2) General/Bulk Cargo Berth

The wheat, fertilizer and clinker are mainly loaded and discharged at the general/bulk cargo berth.

The standard number of workers required for the handling of bulk cargo per gang will be shown in Table 5-5-2.

Eight gangs are required in all.

When the break bulk cargoes are loaded and discharged, workers need to be assisted by others in the existing section.

(3) Others

At the navigation section, because a couple of tug boats are added when new berths are opened, 20 workers are required in addition to the existing workers at that section.

Table 5-5-2 Formation of Gang for Handling the Bulk Cargo

	and the state of t	To the second	NO.OF EQUIPMENT	NO.OF OPERATORS/ LABOURERS
SHIP GEAR CRANE	OPERATOR	1/CRANE	1	1
PACKER	LABOURER	4/PACKER	3	12
TRUCK	OPERATOR	1/LOADER	3	3
FORK LIFT	OPERATOR	1/FORK LIFT	.3	3
	FOREMAN	1/GANG	e e e e e e e e e e e e e e e e e e e	1
TOTAL				20/GANG

5-5-4 Operation System

(1) Working Hours and Shifts

The cargo-handling operations of the Port of Galle are performed exclusively during the day at present. As the handling cargoes increase, two twelve hour shifts should be implemented.

In particular, in the case of container cargoes, two 12-hour shifts should be performed as in the operation system at the Port of Colombo. Finally, dividing the operation system into three shifts should be considered to maintain and improve services to port users in the future.

(2) Stevedoring Method at the Feeder Berth

The stevedoring at the feeder berth should be performed by the ship gear crane. The latest technological advances in the ship gear crane allows it to execute the stevedoring in an efficient fashion.

5-5-5 Computer System

Generally speaking, a computer-based container handling system should be introduced when cargo volume of a container terminal exceeds

60,000 TEUs per year. According to the demand forecast, the cargo volume will exceed 60,000 TEUs soon after the completion of the container berth. Therefore, the installation of a computer handling system is needed not only to efficiently utilize the terminal facilities but also to meet the port user demand.

There are excellent computers in the Port of Colombo at present. In addition, the SLPA has an improvement plan to upgrade the computer system. Moreover, the present computer system has free capacity of 30% in its memory bank. Therefore, in order to make use of the computer system in the Port of Colombo and to manage the container inventory under integrated system, the terminal units should be installed in the Port of Galle and be connected with the main computer in the Port of Colombo. However, because telephone lines are very poor, the terminal units should be connected with the main computer by a radio line. Facilities necessary for radio communication should be built.

5-6 Recommendation of Port Management System

(1) Berth assignment

In the case of the Port of Colombo, berth assignments are determined by taking the priorities of ships into account. The detailed explanation is found in Chapter 5-7 of Part I.

It is important to maintain a fixed schedule for a container ship between ports. It is necessary to give the priority to a container ship running along main routes.

In the case of Galle Project, because the profitability of the project has improved, the SLPA should consider whether or not to give the priority of berth assignments to partial shipping lines or only to a major shipping line.

(2) Simplicity of Document Procedures

Port users currently submit too many documents to various offices of the SLPA at the Port of Colombo.

The SLPA should simplify the procedures for ship entry/departure and cargo operations by promoting computerization at the SLPA for the Galle Project.

(3) Port Marketing Activities

The SLPA should carry out intensive port marketing activities to ensure the success of the new port. Without a positive approach, clients may not be attracted to the port.

However, it should be noted that a reputation for prompt, reliable, economical and efficient service as well as publicity is essential for attracting clients. To this end, a quick passage through customs, efficient immigration and quarantine procedures are also vital in attracting potential clients.

(4) Coordination

To operate port activities smoothly, the SLPA should coordinate the various organizations related to port activities such as customs, quarantine and immigration. Furthermore, the SLPA should consider integrating the organizations with the aid of the computer system. This would be helpful in attracting users to the Port of Galle.

(5) Recruitment and Training

The Galle Project requires about 600 new workers, and the staff of the Colombo Port will need to assist in training the new workers. The staff of the existing training institute in Colombo Port should also be called upon for assistance.

Besides, port workers will need continuous training to catch up with advanced port operation technologies.

A training center for port workers and personnel will be needed at the Port of Galle.

(6) Telecommunication and Computer System

The poor telecommunication system between Colombo city and Galle city has a detrimental effect on all aspects of business. Although the telecommunication system is expected to improve in the near future, the SLPA should examine the possibility to permit the companies related port operations to use the radio lines of the SLPA.

6 ECONOMIC ANALYSIS

The purpose of the economic analysis is to appraise the economic feasibility of the Short-term Development Plan for the Port of Galle in the target year (1997) from the viewpoint of the national economy.

Therefore, the purpose of this chapter is to investigate the economic benefits as well as the economic costs that will arise from this project and to evaluate whether the net benefits of the project exceed those that could be obtained from other investment opportunities ("The Opportunity Cost of Capital") in Sri Lanka.

6-1 Methodology of Economic Analysis

An economic internal rate of return (EIRR) based on a cost-benefit analysis is used to appraise the feasibility of this project.

The flow chart of the economic analysis procedure is shown on Figure 6-1-1.

In estimating costs and benefits of the project, they should be fixed quantitatively as much as possible. Then, "Economic Pricing" is applied after the removal of "Transfer Items" such as tax, interest charges and subsidies. "Economic Pricing" here means the appraisal of costs and benefits in terms of international prices ("Border Prices").

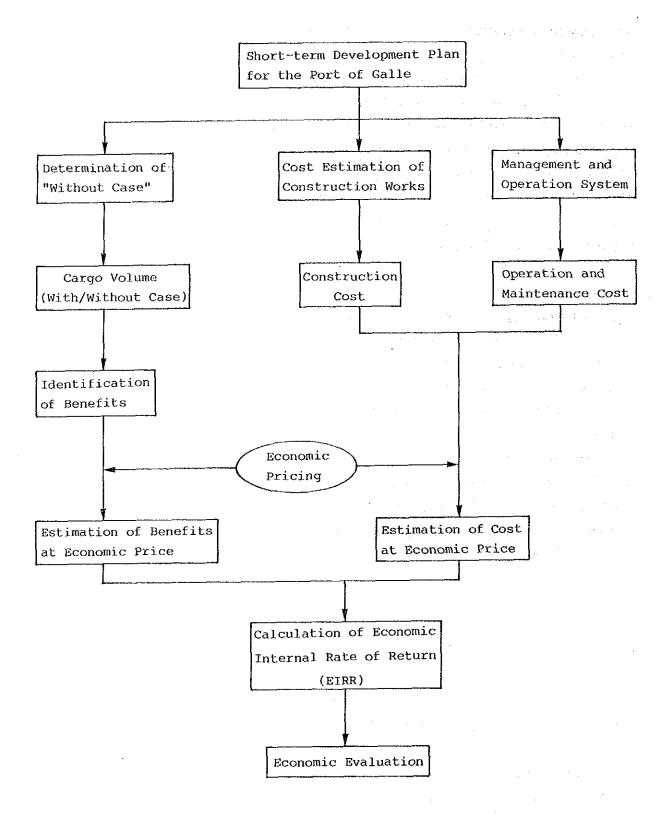


Figure 6-1-1 Flow Chart of Economic Analysis Procedure

6-2 Prerequisites of the Economic Analysis

6-2-1 Base Year

The "Base Year" here means the starting year of the economic analysis. Taking into consideration the construction schedule in Chapter 4 of this part, 1992 is set as the "Base Year" for this Study.

6-2-2 Project Life

Taking into consideration the depreciation period of the main facilities mentioned in the next chapter and the construction period of five years, the period of calculation ("Project Life") in the economic analysis is assumed to be thirty-five years from the beginning of construction (i.e., from 1992 to 2026).

6-2-3 Foreign Exchange Rate

The exchange rate adopted for this analysis is US\$ 1.00 = Rs. 41.00, that is, the same rate as used in the cost estimation.

6-2-4 "Without" Case

A cost-benefit analysis is conducted on the difference between the "With" case where investment is made and the "Without" case where no investment is made. In other words, incremental benefits and costs arising from the proposed investment are compared, and it is examined whether the net benefits generated by the project exceed "the Opportunity Cost of Capital" in Sri Lanka.

Therefore, considering the "Without" case is one of the key elements of the economic analysis. In arguing the merit of the "Without" case, one must consider the true purpose of the project. Expressed in broad terms the true purpose is the "Regional development of the Southern Province". Secondary aims include "Providing supplementary cargo handling facilities to the Port of Colombo" and "Generation of foreign currency". Then, in this Study, the following conditions are adopted as the "Without" case after various possibilities are discussed:

- -No investment is made for the Port of Galle;
- -The construction plan for Jaye Container Terminal No.3 & No.4 and rehabilitation of the QEQ Container Terminal of the Port of Colombo is implemented on schedule;
- -National development plans, such as Koggala EPZ, etc., are implemented.

6-2-5 Cargo Volume Handled at the Port of Galle

(1) "With" Case

The cargo volume handled at the Port of Galle in the target year under the "With" case was forecast in Chapter 3 of Part II. The maximum handling capacity of the Port of Galle after completion of this project was also estimated in Chapter 2 of this part. The cargo volume will increase after 1997 and exceed the handling capacity in 1998. Therefore, the cargo volume used for the economic analysis are assumed as follows:

-The volume forecast in Chapter 3 of Part II (1997)

Break bulk cargo: 219,000 M.T.

Bulk cargo: 378,000 M.T.

Local containers: 36,000 TEUs

Transshipment containers: 190,000 TEUs

-The maximum handling capacity estimated in Chapter 2 of this part (after 1997)

Break bulk cargo: 230,000 M.T.

Bulk cargo: 391,000 M.T.

Local containers: 43,000 TEUs

Transshipment containers: 225,000 TEUs

The volume exceeding the maximum handling capacity is to be accommodated by the following stage of the development plan mentioned in Chapter 4 of Part II.

(2) "Without" Case

1) Container Cargo

In the "With" case, container cargoes of 1,380,000 TEUs are to be handled at the Port of Colombo in 1997 (of which 326,000 TEUs are local cargoes, that is, import/export cargo, and 1,054,000 TEUs are transshipment cargoes); at these volumes, the port is at its maximum handling capacity for containers. However, an additional 36,000 TEUs in local cargo forecast for 1997 could be handled at the Port of Galle in the "With" case. In the "Without" case, all local cargo forecast for 1997 must be handled at the Port of Colombo, with local cargo taking priority over transshipment container cargo. Therefore, the breakdown of local and transshipment containers handled at the Port of Colombo in 1997 will be 362,000 and 1,018,000 TEUs, respectively.

In other words, because total container volume handled at the Port of Colombo is to be the same in both the "With" and "Without" case, the opportunity for handling transshipment container cargoes of 226,000 TEUs—the balance of the forecast cargo volume in Sri Lanka in 1997—would be lost for Sri Lanka. These transshipment cargoes are assumed to be transferred to other foreign ports such as Singapore, Fujairah, etc. This "lost" cargo volume in containers will increase to 268,000 TEUs in 1998 and will remain stable at this level thereafter.

2) Other Cargo

With the exception of bulk clinker of 194,000 tons, bulk wheat of 100,000 tons, containerized flour of 65,000 tons and imported break bulk cargo of 100,000 tons that will be handled at the Port of Galle, all other cargo will have to be handled at the Port of Colombo.

The above bulk clinker and imported break bulk cargo will have been handled at the existing port in Galle as at present. As for the bulk wheat and the containerized flour, it would be lost for Sri Lanka. In the "Without" case, a new flour mill will not be constructed and operated in the Galle port area, and there is no room in Colombo.

Table 6-2-1 shows the cargo volume handled at the Port of Galle

in 1997 and in 1998 in both the "With" and "Without" case.

Table 6-2-1 Forecast Cargo Volume in both the "With" and "Without" Case at the Port of Galle

(Unit: '000)

		Wi	th	Without
		1997	1998	
Bulk Wheat	(Tons)	100	100	Handled in another country
Bulk Fertilizer	(Tons)	84	- 97	Handled in Colombo
Bulk Clinker	(Tons)	194	194	194
General Cargo	(Tons)	219	230	100; Remainder in Colombo
Containers				
Flour	(TEUs)	7	7	Handled in anther country
Other Local	(TEUs)	29	36	Handled in Colombo
Transshipment	(TEUs)	190	225	Handled in another country

Year: Cargo volume handled at the Port of Galle under the "With" case will remain constant at the level expected in 1998.

6-3 Economic Prices

6-3-1 Methodology

The purpose of the economic analysis is to examine the value of a project, that is to see if it represents an efficient allocation of resources in the national economy. The value of goods quoted at a market price do not always represent the true value of national resources actually consumed from the viewpoint of the national economy. The local currency portion of goods and materials at a market price often includes sales tax, subsidies, customs duties, etc. The labour cost at market prices is often influenced by a minimum wage system. Therefore, "Economic Pricing" should be conducted for the economic analysis.

There are several ways of conversion from market price to "Economic Price". In this Study, the benefits and costs are divided into five items: traded goods, non-traded goods, skilled labour, unskilled labour and transfer items. Then, they are revised to "Border Prices" in an

effort to determine a more rational valuation (L-M Method or OECD Method). In general, these "Border Prices" are intended to represent the international market value or the world prices. The market prices are changed to "Border Prices" by various conversion factors such as "Standard Conversion Factor", "Conversion Factor for Consumption" and so forth.

6-3-2 Exclusion of Transfer Items

Import duties, other taxes and subsidies are merely transfer items, which do not actually reflect consumption of national resources. Therefore, these transfer items should be excluded in the calculation of the costs and benefits of the project for the economic analysis.

6-3-3 Method of Applying Conversion Factors

As mentioned above, all costs and benefits are generally divided into traded goods, non-traded goods, skilled labour, unskilled labour and transfer items.

Traded goods are expressed at CIF (cost, insurance & freight) for imports and FOB (free on board) for exports. As for non-traded goods, theoretically speaking, they should be classified and sorted by category and respective sub-categories into traded goods, non-traded goods, skilled labour, unskilled labour and transfer items, which are the items required for the production of the non-traded goods. However, because of the absence of an I/O (input-output) table of inter-industrial relations in Sri Lanka, it is impossible to take these steps in this Study. Hence, the local currency portion after deducting labour costs and transfer items is considered as non-traded goods, the economic price of which is calculated by multiplying the "Standard Conversion Factor" (SCF).

The economic price of skilled labour is obtained by multiplying its market price by the "Conversion Factor for Skilled Labour" and that of unskilled labour is calculated by multiplying the market price by the "Conversion Factor for Unskilled Labour".

(1) Shadow Exchange Rate (SER)

1) Standard Conversion Factor (SCF)

Economic policy items such as import duties and export subsidies cause a price differential between the domestic market and the international market. The SCF is applied to determine the economic prices of certain non-traded goods and services that cannot be directly valued at border prices, and the SCF is obtained by the following equation:

$$SCF = \frac{I + E}{(I + D_I) + (E - D_E)}$$

where, I: Total value of imports

E: Total value of exports

D_I: Total value of import duties

D_E: Total value of export duties

and subsidies

Each value in the above equation is calculated based upon 1988 data from Sri Lanka Customs.

In this Study, the SCF is stated as 0.918.

2) Conversion Factor for Consumption (CFC)

The "Conversion Factor for Consumption" (CFC) is used for converting the prices of consumer goods from domestic market prices to border prices. This is particularly required in converting domestic labour costs to corresponding border prices. The CFC is usually calculated in the same manner as the SCF, replacing total imports and total exports by imports and exports of consumer goods only.

In this Study, the CFC is stated as 0.947.

(2) Shadow Wage Rate

For economic analysis, labour costs should be measured in terms of the opportunity cost of labour; that is, the value of the marginal

product of labour foregone elsewhere because of its use in a given project.

1) Conversion Factor for Skilled Labour

The opportunity cost of skilled labour is assumed to be equal to the actual wage rate, since the number of skilled labourer is limited and the market mechanism is functioning properly.

However, since these are domestic prices, they should be converted to border prices. Wages can be measured in terms of their purchasing power of consumer goods.

Therefore, the cost of skilled labour is calculated by multiplying their actual wage rate by the CFC; that is, the "Conversion Factor for Skilled Labour" is stated as 0.947 in this Study.

2) Conversion Factor for Unskilled Labour

The opportunity cost of unskilled labour is generally far below the actual wage rate, since the rate is controlled by a minimum wage system and other regulations. Nevertheless, there are many unskilled labourer. However, it is virtually impossible to calculate an accurate opportunity cost for unskilled labour.

When a project is conducted, the inflow of unskilled labourer to the project is mainly from the agricultural sector which is relatively elastic in its use of labour. Therefore, in a simplified manner it is often assumed that the opportunity cost of unskilled labour is equal to the per capita income of the agricultural sector.

Because Sri Lanka does not have a labour force census by sector, per capita income of the agricultural sector is another item for which no firm figures are available. However, "Price and Wage Statistics 1986" issued by the Central Bank of Sri Lanka presents an average daily salary in this sector that can be

considered as a proper indicator of its marginal productivity.

Therefore, in this Study, the opportunity cost of unskilled labour of Rs. 45 per day is adopted with reference to the above issue.

The "Conversion Factor for Unskilled Labour" is calculated as follows:

6-4 Benefits

6-4-1 Benefit Items

Considering the "With" and "Without" situations mentioned earlier, the following items are identified as the benefits of the Short-term Development Plan for the Port of Galle:

- 1) Savings in land transportation costs;
- 2) Generation of foreign currency earnings from handling container cargoes;
- 3) Promotion of regional development in the Southern Province as well as national development in Sri Lanka;
- 4) Increase in employment opportunities/incomes;
- 5) Increase in value added for port service and the related industries;

Of the above, items 1) and 2) are considered as benefits suitable for the cost-benefit analysis of this project. Other benefits are also considered qualitatively in this Study.

6-4-2 Savings in Land Transportation Costs

As mentioned in 6-2-5, under the "Without" case, some cargo from/to the Southern Province, the hinterland of the Port of Galle, are assumed to be handled at the Port of Colombo. As a result, additional traffic will occur between Galle and Colombo to transport this cargo.

Therefore, the savings in land transportation costs in the "Without" case can be considered as one of the benefits of the project.

(1) Premise

- a) Road transportation is only considered because the capacity of railway transportation is not sufficient to transport the extra cargo mentioned above.
- b) For calculation purposes, the trucks adopted for our cost estimation are to be "Medium Truck A" (7 tons capacity), of which 30% are to be empty trucks in consideration of the proportion of imports and exports. The loading weight of the loaded trucks is assumed to be 75% of capacity. Consequently, the average loaded weight per truck is 3.675 tons.
 - c) The road distance between Colombo and Galle is 120 km.
- d) Local container cargoes transferred to the Port of Colombo under the "Without" case are vanned/devanned in Colombo because there is no CFS in Galle. Therefore, no transportation of containers occurs between Colombo and Galle.

(2) Cargo Volume for Transportation under the "Without" Case

Cargo volumes transported between the Port of Colombo and Galle under the "Without" case are shown in Table 6-4-1.

Table 6-4-1 Cargo Volumes Transferred to Colombo Port

Items	Quantity	(OOO M.T.)
	1997	1998
Fertilizer	84	97
General Cargo	119	130
Other Local Cargo	282	347
Total	485	574

(3) Calculation of "Economic Prices" of Land Transportation

The unit cost of land transportation is calculated based on the actual operation performance in Sri Lanka; the Study Team was able to obtain some data and information by interviewing the Transport Studies & Planning Center.

The unit costs are first estimated in the market prices, which can be broken down into component costs such as fuel, depreciation, maintenance, workers' wages, insurance, spare parts and so forth. Then, "Economic Pricing" is applied to each of these factors in estimating the "Economic Price" of the land transportation costs (see, Appendix III-6-1).

Taking into consideration that the distance between Colombo and Galle is 120 km, the unit cost of land transportation is estimated at US\$ 5.676 per ton.

The benefit from savings in land transportation costs can be obtained by multiplying the above unit cost by cargo volume. The results are shown in Table 6-4-2.

Table 6-4-2 Savings in Land Transportation Costs

Year	Cargo Volume	Benefit
	(tons)	(¹000 US\$)
1997	485,000	2,753
1998 2026	574,000 574,000	3,258 3,258

6-4-3 Foreign Currency Earnings in Handling Container Cargoes Etc.

While 1,606,000 TEUs of containers will be handled at both the Port of Colombo and Galle in 1997 under the "With" case, it is assumed that only 1,380,000 TEUs would be handled at the Port of Colombo under the "Without" case.

This means that the foreign currency earnings in handling the balance of the cargo volumes between both cases (226,000 TEUs, of which 219,000 TEUs are transshipment containers) would be lost for Sri Lanka in 1997. Therefore, realizing these earnings would be another major benefit of the project. This volume will increase to 268,000 TEUs, of which 261,000 TEUs are transshipment containers, from 1998.

Furthermore, the earnings in handling 100,000 tons of bulk wheat (imports) would be also lost for Sri Lanka.

Foreign currency revenue related to cargo handling in the Port of Galle can be estimated as appropriate international prices, based upon the figures given in the next chapter and Appendix III-7-4. Since this revenue can be considered as border prices, there is no need for conversion to economic prices.

Table 6-4-3 shows the benefits of foreign currency earnings from 1997.

Table 6-4-3 Earnings of Foreign Currency in Handling Cargoes

(1000) Transshipment Exported Flour Imported Wheat Total Year Volume Volume Benefit Volume Benefit Benefit Benefit (TEUs) (US \$) (TEUs) (US\$) (Tons) (US \$) (US \$) 1997 17,145 219 15,330 7 1,085 100 730 7 1998 261 18,270 1,085 100 730 20,085 2026 261 18,270 1,085 100 730 20,085

6-4-4 Other Benefits

As mentioned in 6-4-1, there are other important benefits generating from this project even though they are not calculated as benefits in the cost-benefit analysis in this chapter.

and the second of the second o

(1) Promotion of Regional Development in the Southern Province

As detailed in Chapter 2 of Part II, there are many projects proposed such as an Export Processing Zone (EPZ), a flour mill, a fertilizer mixing plant, agro-based industries and so forth, which are crucially dependent upon the development of the Port of Galle.

with the development of the port, it will be impossible to carry out the above projects, which will promote regional development in the Southern Province and achieve diversification of Sri Lankan industry.

The development of the port also contributes to the rationalization of the distribution mechanism and to the activation of industries in the hinterland. As a result, an improvement in people's livelihood in the province is expected.

(2) Increase in Employment Opportunities/Incomes

The construction of new facilities at the Port of Galle will increase employment opportunities for both construction and port workers.

According to our cost estimates, total compensation paid to local employees during construction at market prices will be US\$ 25,021,000.

According to Chapter 5 of this part, the port management body of this project will employ 625 peoples and annual personnel costs at economic prices will be US\$825,000.

This boost to the region's employment level can be considered as one of the benefits of the project.

(3) Increase in Value Added for Port Service and the Related Industries

If this project is not be implemented, the port service industries and port related industries will be very restricted in their production activities. However, this project would contribute to their production output, an increase in value added that can be considered as one of the benefits of the project.

6-5 Costs

The cost items of the project are: construction costs, personnel costs, maintenance costs, operation/management costs and replacement investment costs. "Residual Value" is also considered as a cost in the final year of the project.

6-5-1 Construction Costs

Construction costs are estimated in Chapter 4 of this part. However, these costs include construction of the breakwaters, dredging of the navigation channel and so forth, which are provided not only for the Short-term Development Plan but also are included as permanent structures in the long-term development plan. Therefore, it would be excessive to consider all of these costs as elements of the short-term project only. In the economic analysis, the cost of these common facilities is allocated between the Short-term Development Plan for 1997 and the subsequent long-term development plan. The allocation is based on the number of berths and the total length of berths in each plan. The costs for the Short-term Development Plan are assumed to be one-fifth of the total cost of the above facilities.

The costs estimated in Chapter 4 of this part are shown at market prices. In the economic analysis, these costs have to be divided into foreign materials, other foreign currency portions (labour and equipment), non-traded goods, skilled labour and unskilled labour.

Since the foreign currency portions, excluding foreign materials, are shown in CIF prices, they do not need to be converted into economic prices. As for foreign materials, 1% of duty has to be deducted; the costs do not include import taxes.

Table 6-5-1 Construction Costs at Economic Prices

(Unit: '000 US\$)

Market	Economic
Prices	Prices
1,320	1,308
5,904	5,764
19,783	19,263
32,171	30,837
19,610	18,752
4,424	4,256
12,587	11,664
22,118	21,688
19,171	18,430
2,402	2,325
4,984	4,453
8,719	8,562
692	653
23,616	23,378
6,482	6,418
10,587	10,467
9,233	8,877
203,805	197,095
	Prices 1,320 5,904 19,783 32,171 19,610 4,424 12,587 22,118 19,171 2,402 4,984 8,719 692 23,616 6,482 10,587 9,233

Economic prices of non-traded goods are calculated by multiplying the SCF after deducting 1% of duty, and the local labour costs are converted into economic prices by using the respective conversion factors mentioned in 6-3-3.

Table 6-5-1 shows the construction costs at both market prices and economic prices (refer to Appendix III-6-2). Appendix III-6-3 shows its disbursement schedule.

6-5-2 Personnel Costs

The personnel costs for the new facilities at the Port of Galle are shown in the next chapter. The costs are converted into economic prices

by multiplying the corresponding conversion factor.

Total personnel costs at economic prices are calculated as US\$ 825,000 per annum.

6-5-3 Maintenance Costs

Maintenance costs are also shown in the next chapter. The costs are assumed to be 1% of the total construction cost excluding the cost of dredging/rock dredging and reclamation at economic prices.

Annual maintenance costs at economic prices are US\$ 1,650,000.

6-5-4 Operation Costs

In the next chapter, the operation costs are estimated to be 20% of total personnel costs.

Annual operation costs at economic prices are US\$ 165,000.

6-5-5 Replacement Investment Costs

The next chapter presents the replacement investment schedule. Economic prices of these costs are calculated by multiplying the respective overall conversion factors shown in Appendix III-6-2. The results are shown in Appendix III-6-4.

6-5-6 Residual Values

The next chapter also presents residual values (they are minus costs) in the final year of this project. However, in the economic analysis, only materials of water/electric supply, navigation aids and handling equipment are considered as residual values. Economic prices of these costs are calculated by multiplying the respective overall conversion factors shown in Appendix III-6-2. The results are shown in Appendix III-6-4.

6-6 Evaluation

Table 6-6-1 shows the calculated results of the cost-benefit analysis of this project.

6-6-1 Calculation of EIRR

The economic internal rate of return (EIRR) based upon a cost-benefit analysis is used to appraise the economic feasibility of the project.

The EIRR is a discount ratio that makes the costs and benefits of a project during the project life equal. It is calculated by using the following formula:

$$\sum_{i=1}^{n} \frac{B_{i} - C_{i}}{(1+r)^{i-1}} = 0$$

where, n: Period of cost-benefit analysis

B: Benefit in i-th year

C: Cost in i-th year

r: Discount Rate (EIRR)

The EIRR of the Short-term Development Plan of the Port of Galle is calculated as 8.15%.

6-6-2 Conclusion

There are various views concerning the appropriate EIRR level used to determine whether a project is feasible. The leading view is that the project is feasible if the EIRR exceeds the "Opportunity Cost of Capital" (OCC).

The OCC in Sri Lanka is not known. The value of the OCC adopted by International Bank for Reconstruction and Development (IBRD) is 12%, for the United States Agency for International Development (USAID), 8%, and for the Asian Development Bank (ADB), 10%. Meanwhile, the rate varies from 8% to 12%, according to the degree of development in each country. It is generally considered that an EIRR of more than 10% is economically feasible for infrastructure or social service projects.

Table 6-6-1 Cost/Benefit Analysis

			Cost	(ssn 000.)				Benefit	(*000·USS)		Benefit	Net P	Present Value (NPV	ue (NPV)
Year	Construc-	Mana	Management & Oper	& Operation	Replacement	Residual	Total	Land Trans-	Handling	Total	. 1		Cost	Benefit
	tion	Personnel		Operation	Investment			portation	Charge		Cost			- Cost
											. '		45	
1992	2,619						2,619	•		0	-2,619	0	2,619	-2,619
1993	14,201						14,201			0	-14,201	0	13,131	-13,131
1994	41,558						41,558			0	-41,558	0	35,533	-35,533
1995	64,833			_			64,833			0	-64,833	0	51,258	-51,258
1996	099,69				_	· · · · · · · · · · · · · · · · · · ·	099,69			0	-69,860	0	50,925	-50,925
1997	4.224	825	1,650	165			6,864	2,753	17,145	19,898	13,034	13,451	4,640	8,811
1998							2,640	3,258	20,085	23,343	20,703	14,591	1,650	12,941
1999												13,492	1,526	11,966
2000							-					12,476	1,411	11,065
2001					2,186		4,826				18,517	11,536	2,385	9,151
2002							2,640				20,703	10,667	1,206	9,460
2003												9,863	1,116	8,748
2004												9,120	1,031	8,089
2002							->-				-	8,433	954	7,480
2006					2,819		5,459		-		17,884	7,798	1,824	5,974
2007							2,640		-		20,703	7,211	815	6,395
2008							->				_ b	899'9	754	5,913
2009		. —			8,044		10,684				12,659	6,165	2,822	3,343
2010							2,640		,		20,703	107,8	645	5,056
2011					2,601		5,241				18,102	5,271	1,184	4,088
2012							2,640				20,703	4,874	551	4,323
2013												4,507	510	3,997
2014												4,168	471	3,696
2015				,			>- -				*	3,854	436	3,418
2016					33,084		35,724				-12,381	3,563	5,453	-1,890
2017							2,640				20,703	3,295	373	2,922
2018												3,047	345	2,702
2019							·					2,817	319	2,499
2020							}-				>	2,605	295	2,310
2021					2,186		4,826				18,517	2,409	498	1,911
2022					8,044		10,684		-		12,659	2,227	1,019	1,208
2023				_			2,640				20,703	2,060	233	1,827
2024		_										1,904	215	1,689
2025							>				-	1,761	119	1,562
2026		3	ite-	ju-		-19,600	-16,960	1	>	-	40,303	1,628	-1,183	2,811
Total	197,095	24,750	49,500	4,950	58,964	-19,600	315,659	97,235	599,610	696,845	381,186	187,163	187,163	0
										S H GGTR	8.15%			

From this premise, alone, the calculated EIRR of 8.15% falls slightly short of the benchmark. However, this analysis takes into consideration only two items of benefits as mentioned in 6-4-1, and calculated EIRR should not necessarily take priority over the incalculable social benefits, including a possible end to poverty in the Southern Province. At the very minimum, the development of the Port of Galle will expand the economy of the province by creating permanent employment for both skilled and unskilled labour. Income per capita will rise in the province as the port and new industry are developed. As a result, the wealth differential between the province and Colombo will narrow, averting potential social and economic friction. Sri Lanka is a small country but with vast potential, and we strongly believe that the development of the Port of Galle will help distribute more evenly the country's potential.

Consequently, we judge that this project should be implemented as a project leading the regional development in the province, in close cooperation with the development of port-related industries and the progress of other development projects in the province.

7 FINANCIAL ANALYSIS

7-1 Purpose of the Financial Analysis

The purpose of the financial analysis is to examine the viability of the project and the financial soundness of the port management body during the project life. (The project means the short-term development plan for the Port of Galle in this chapter.)

7-2 Methodology of the Financial Analysis

7-2-1 Viability of the Project

The viability of the project is analyzed using the Financial Internal Rate of Return (FIRR) by means of the discount cash flow method. The FIRR is a discount rate that makes the costs and the revenues during the project life equal, and it is calculated using the following formula:

$$\sum_{i=1}^{n} \frac{Bi - Ci}{(1+r)^{i-1}} = 0$$

n: Project life

Bi: Revenue in the i-th year

Ci: Cost in the i-th year

r : Discount rate

Here, the revenues and the costs in this analysis cover the following items:

Revenues: operating revenues

Costs: investments (initial investments and re-investments)

maintenance, repair and fuel costs personnel and administration costs

When the calculated FIRR exceeds the weighted average interest rate of the total funds for the investments of the project, the project is regarded as financially feasible.

7-2-2 Financial Soundness of the Port Management Body

The financial soundness of the port management body is appraised based on its projected financial statements (Profit and Loss Statement, Cash Flow Statement and Balance Sheet). The appraisal made from the viewpoints of profitability, loan repayment capacity and operational efficiency, using the following ratios:

(1) Profitability

Rate of Return on Net Fixed Assets:

Net Operating Income
Total Fixed Assets x 100 (%)

This indicator shows the profitability of the investments, which are presented as net total fixed assets. It is necessary to keep the rate above the average interest rate of the funds for investments.

(2) Loan Repayment Capacity

Debt Service Coverage Ratio:

Net Operating Income before Depreciation
Repayment of and interest on long-term loans

This indicator shows whether the operating income can cover the repayment and the interest on long-term loans. The ratio \max be higher than 1.0.

en grande in the second of the second of the second of the second

The second restriction of the second second

1917年中国,1918年3月末8日的《John Albert 2018

Controlling of the foreign & the fitters of

(3) Operational Efficiency
Operating Ratio:

Operating Expenses
Operating Revenues x 100 (%)

Working Ratio:

Operating Expenses - Depreciation Expenses x 100 (%) Operating Revenues

The operating ratio shows the operational efficiency of the organization as an enterprise, and the working ratio shows the efficiency of the routine operations of the port.

When the calculated operating ratios are less than 70-75%, and the working ratios are less than 50-60%, the operations of port are efficient.

7-3 General Presuppositions of the Financial Analysis

7-3-1 Scope of the Financial Analysis

The viability of the project can be analyzed, using the revenues and costs related to the project (namely, the short-term plan for the Galle Port).

On the other hand, the finances of the entire SLPA as the port management body must be analyzed to estimate of financial soundness. Plans for the Colombo Port are generally based on the Report for the Development Study on the Port of Colombo in 1989 issued by JICA (hereinafter referred to as the Colombo Report).

Matters related to the Galle project are dealt with in the following sections, 7-3-2 to 7-3-7. Matters used to analyze the SLPA financial stability are discussed in section 7-3-8.

7-3-2 Project Life

Taking account of the conditions of the long-term loans and the service lives of the port facilities, the project life for the financial analysis is determined as 35 years from the beginning of the project including six years of detailed design and construction of the port facilities and 30 years of operation.

7-3-3 Base Year

For the estimate, all costs, expenditures and revenues analyzed quantitatively here are indicated in prices as of 1991, when the price survey was conducted. Neither price inflation nor increases in nominal wages are considered during the project life.

7-3-4 Cargo Handling Volume

Based on the cargo volume forecast and estimated cargo handling capacity of facilities, the annual cargo handling volume is determined as shown in Appendix III-7-1.

For liquid cargo, which is bunkering oil, the volume is calculated based on the projected vessels and the data for the Colombo Port.

7-3-5 Port Charges and Revenues

Port charges will remain almost at existing tariffs, which are shown in Appendix III-7-2 and III-7-3. However all charges for the transshipment container operations have to be increased by 20% when the container terminal opens.

Compared with the charges levied by the ports of Singapore, Fujairah and Madras, the charges for transshipment container operations in Colombo Port are very inexpensive (See Appendix III-7-4). The new charges for transshipment container operations at Galle can be justified because of the port's advantageous location to the main shipping route.

We also determined the level rates of new charges by taking account of the feasibility of the project.

Revenues from port activities are calculated based on the above new tariff, the cargo handling volume and the projected calling vessels.

7-3-6 Fund Raising

(1) Government Funds

Funds necessary for construction of certain port facilities -particularly breakwaters and channel dredging for public-use port
facilities-- are assumed to be covered entirely by government

investment in the project.

The government funds are assumed to be free of repayment and interest.

These funds are essential to the feasibility of the project. (If all construction costs are borne by the SLPA, FIRR is 2.06%.)

The rest of the necessary funds are assumed to be raised by soft loans from foreign governments and domestic funds in Sri Lanka.

(2) Soft Loans

We assumed that 85% of all construction costs after subsidies will be raised by soft loans in this financial analysis.

A soft loan for this project is assumed to be as follows:

Loan period: 30 years, including a grace period of 10 years

Interest rate: 3.5% per annum

Repayment: fixed amount repayment of principal

(3) Domestic Funds

The other portion of the construction costs financing for this project is assumed to be raised in Sri Lanka as follows:

Loan period: 10 years, including a grace period of three years

Interest rate: 7.0% per annum

Repayment: fixed amount repayment of principal

Any cash shortage should be covered by short-term loans with an annual interest rate of 15% in local currency.

Interest rates on domestic loans currently amount to 18% annually on long-term loans, on short-term loans, the rate is 26% annually. Because these rates reflect domestic price inflation we deflated those rates by 11% to take into account the implicit GNP deflator and the exchange rate.

This method is used for local currency, because the tariffs for port operations are charged in U.S. dollars and the repayments of soft loans by the SLPA also are executed in foreign currency.

7-3-7 Expenditure

(1) Investments

The initial construction costs of the project are estimated in Chapter 4 of Part III.

The initial investment calculation must include all taxes payable, the Business Turnover Tax, Import Tax and so on. Those initial investments are shown in Table 7-3-1 and Appendix III-7-5. The initial investments will require US\$343 million, including US\$126 million in the government subsidies.

The depreciable facilities and equipments will be renewed based on their service lives. The service lives of the facilities and equipments are shown in Appendix III-7-6.

It is assumed that the funds for re-investment will be raised from the reserves of the project accounts.

(2) Maintenance and Repair Costs

Maintenance and repair costs are calculated as 1% of depreciable assets. This ratio is based on the actual accounts of the SLPA, and 1% is also the standard in ports around the world.

(3) Personnel and Administration Costs

The annual personnel costs are estimated based on the required number of workers proposed in Chapter 5 and the existing scale of pay.

The annual administration costs are calculated as 20% of the total annual personnel costs.

(4) Depreciation Expenses

The annual depreciation expenses of the port facilities and equipments are calculated by the straight line method, based on their service lives. Residual values after all depreciations are estimated as zero. At the end of the project life, fixed assets are assumed to be sold at their residual values.

Table 7-3-1 Galle Port Revised Investment Plan

	-		•													Court: 1.000 0237	0237			
		1882			1883			188			1995			1596			1881		ĺ	
	Forsign Loc	Local Total		Foreign Local		10101	Foreign	10007	Total	Fareign	Local	i Total	Forcisa	Local	Total	Foreign Lc	Local	Yotal	Grand Total	[otel
			_																	
Dredging for Spain				5, 223	935	6, 259	4, 188	1. 490	5.859	3, 573	1,425	5, 105	3.373	1, 307						21. 702
Dredging for Channel				2,239	241	2.865	3.866	1,459	5, 325	3, 71.	1,439	5, 153	3.495	1,319	4,724					18.841
しゃいのかおりやしむ かけをまたいつらい	• :		_	ď	3.841	13, 760	13, 227	5. 122	875.81	13, 227	5, 122	18,348	19. 227	5, 122	·	11.573	4.481	16.054		84.859
TOWN TOTOLS			_		252	1.038	9,379	3 081	12,460	2,345	144	3.118	٠.					,		16. 813
The t			•	786.	1.851	8,815									6					6.815
Container Beach							3,987	2, 436	8, 402	7, 933	4,872	12,805	6, 61	4,080	10,671				٠.	29.573
Feader Serth		:							_		٠		4, 422	2,825	7,247					7.247
General Cardo Series							5.383	3.671	8.053	8,073	5, 505	13, 578								22, 431
Ot Berth		•••						-					2, 323	1,783	5,107					5, 103
Revetaent				1:831	803	2, 634	7,083	3,236	10.379	414	388	803								5.5
Rec Best or				3, 633	615	4,038	7, 985	1.435	9,420	7,985	1,435	8,420		\$02			*			24, 223
Pavesent		./· ···		-						8.522	4.608	1.131		4,226						21.337
200.10			_			_								1.051						2,836
Mayigation Aids					_								224	962	819					SO .
Administration Bld.	:									14	177	218	152	650						1.820
Transit Shed	٠				-								329	1, 939			-,			2,267
Maintenance Shop					•••								119	110						624
\$ 5.6.5						_			-	4.1	10.	244		721						130
Cleaning Facilities			_											23.3			• •	-		9) 2
Utilities(Water, Supply)										919	236			£133			,			77.
Drillties(Electric)							İ			2, 142	543		_	341						7,304
SUB-TOTAL				28.541	8 843 ;	37,383	55,037	21,989	77.048	52 041	25, 124	83,765	Ц	27, 795		11.573	4.481	16.054		291.887
Container & Transfer Crane			_							7.634	513		_	1,222			•	_		21, 121
Tractor in Touck					.,	_		_	•				2, 087	6.58						2.545
Charris.			•			_							603	132						135
Fork Lift & Top Lifter		•											1.278	138			w //			7
Equipment for Others			-					.,					434	<u>5</u>			******			615
Tug Boat		_		j						3, 24 1		_		172						9.859
SUB-101AL		L	-					-		10.875	986	11.881	18, 124	2, 272		_	-	C		33.257
Engineering Service	3,310	1.103	4.4.13	2,288	135	2, 941	2.206	135 !	2,941	2.208			2.208	135		1, 103	387 1	1.470		17.647
TOTAL	3,310	1, 103 .	4,413	30.747	9.578	40,324	51,263	22.724	78.987	70.122	383.446	98.558	71, 173	30.801	101.875	12.616	5.848	17.52		342, 791

Sreakwater & Channel Expineering Service	754	280	1.024	13, 000	4,638	17,638	26.471	9.661	36, 133	19, 286	7,331 (1,024	16,631	8,441	1.023	11,573	367	16.054	119,514
T0 TAL	784	280	1,024	13,784	4,898	18,682	27, 235	9, 921	37,157	20.050	7, 591	27,641	17, 295	6, 700	24.095	12,676	4.648	11.524	126, 103
investment by SLPA	2.546	843	3.389 16,	16,923	4.580	21.662	30.028	12,803 42,831	42,831	50,072	20.855	10,927 53,778	53.778	24, 102	17.880	0	G	0	216,689

(5) Taxes

Payable taxes are turnover tax, income tax and deemed dividend tax.

Taxes in addition to construction costs are already mentioned in part of investments.

7-3-8 Presuppositions for Colombo Port

The presuppositions mentioned in this paragraph are used to analyze the financial statements only of the Colombo Port, the Trincomalle Port and the existing Galle Port.

The short-term plan mentioned in the Colombo Report is assumed to be delayed by one year.

The presuppositions of the short-term plan for the Colombo Port are similar to those in the Colombo Report of 1989. However, some presuppositions have to be adjusted to the Galle Project. The key differences from the Colombo Report are as follows:

(1) Cargo Handling Volume

Based on the cargo volume demand forecast in Chapter 3 of Part III and that in the Colombo Report, the annual cargo handling volume of all ports is determined as shown in Appendix III-7-7.

(2) Port Charges

Port charges, except for activities related to the project will be based on the existing tariff. In other words, the charges for the transshipment container operations will not match the rates of the project.

(3) Fund Raising

The funds necessary for the implementation of the short-term plan in the Colombo Port are assumed to be raised as follows:

1) Soft Loans

We assume that 85% of all construction costs will be financed by soft loans from overseas. The other conditions are the same as those in the Colombo Report, as follows:

Loan period: 25 years, including a grace period of four years

Interest rate: 10% per annum

Repayment: fixed amount repayment of principal

2) Domestic Funds

The other portion of the construction costs is assumed to be raised from reserves of the SLPA.

Cash shortages should be covered by short-term, local currency loans with an interest rate of 15% per annum.

3) Investments

The initial construction costs are shown in Appendix III-7-8, where costs reflect inflation from the Consumer's Price Index and import and miscellaneous taxes.

Depreciable facilities and equipments will be renewed based on their service lives as shown in Appendix III-7-6.

The reinvestment of channel dredging will be made each 10 years, as mentioned in the Colombo Report.

7-4 Evaluation

7-4-1 Viability of the Project

The FIRR of this project is 4.99%, as shown in Table 7-4-1.

At 4.99% the rate exceeds the weighted average interest rate of funds of 4.03% during the project life; for our purposes, the weighted average is also the floor limit.

Table 7-4-1 FIRR Calculation

FIRR CALCULATION

BASE CASE

PIRR=

4.99%

							(UNIT:1,000	US\$)
	[COST		REVENUE-	PRESE	NT VALUE IN	
YEAR	REVENUE_	INVESTMENT	EXPENSE	TOTAL	COST	REVENUE	COST	DIFFERENCE
						_		0.000
1992		3,389		3,389	-3,389	0	3,389	-3,389
1993		21,662		21,662	-21,662	0	20,632	-20,632
1994		42,831		42,831	-42,831	0	38,853	-38,853
1995		70,927		70,927	-70,927	0	61,281	-61,281
1996		77,880		77,880	-77,880	0	64,088	-64,088
1997	16,167	0	3,665	3,665	12,503	12,672	2,872	9,799
1998	18,843	0	3,840	3,840	15,003	14,066	2,867	
1999	18,843	0	3,840	3,840	15,003	13,397	2,730	10,667
2000	18,843	0	3,840	3,840	15,003	12,760	2,600	10,159
2001	18,843	2,677	3,840	6,517	12,326	12,153	4,203	7,950
2002	18,843	0	3,840	3,840	15,003	11,575	2,359	9,216
2003	18,843	0	3,840	3,840	15,003	11,024	2,247	8,778
2004	18,843	0	3,840	3,840	15,003	10,500	2,140	8,360
2005	18,843	0	3,840	3,840	15,003	10,001	2,038	7,963
2006	18,843	3,450	3,840	7,290	11,553	9,525	3,685	5,840
2007	18,843	0	3,840	3,840	15,003	9,072	1,849	7,223
2008	18,843	0	3,840	3,840	15,003	8,641	1,761	6,880
2009	18,843	9,177	3,840	13,017	5,825	8,230	5,685	2,544
2010	18,843	0	3,840	3,840	15,003	7,838	1,597	6,241
2011	18,843	3,165	3,840	7,006	11,837	7,465	2,776	4,690
2012	18,843	0	3,840	3,840	15,003	7,110	1,449	5,661
2013	18,843	0	3,840	3,840	15,003	6,772	1,380	5,392
2014	18,843	0	3,840	3,840	15,003	6,450	1,315	5,136
2015	18,843	0	3,840	3,840	15,003	6,143	1,252	4,891
2016	18.843	37,611	3,840	41,451	-22,609	5,851	12,872	-7,021
2017	18,843	489	3,840	4,329	14,514	5,573	1,280	4,293
2018	18,843	0	3.840	3,840	15,003	5,308	1,082	4,226
2019	18,843	0	3,840	3,840	15,003	5,055	1,030	4,025
2020	18,843	Ó	3,840	3,840	15,003	4,815	981	3,834
2021	18,843	2,677	3,840	6,517	12,326	4,586	1,586	3,000
2022	18,843	9,177	3,840	13,017	5,825	4,368	3,018	1,350
2023	18,843	0	3,840	3,840	15,003	4,160	848	3,312
2024	18,843	489	3,840	4,329	14,514	3,962	910	3,052
2025	18,843	Ó	3,840	3,840	15,003	3,774	769	3,005
2026	18,843	124,336	3,840	-120,496	139,339	3,594	-22,985	26,579
TOTAL	562,606	161,264	115,030	276,295	286,312	236,440	236,440	0

7-4-2 Financial Soundness of the Port Management Body

The projected financial statements and financial indicators, -- the working ratio, operating ratio, rate of return on net fixed assets and debt service coverage ratio -- are shown in Table 7-4-2.

(1) Profitability

The rate of return on net fixed assets is less than the average interest rate of funds (6.64%) under the construction of port facilities, but after 1999 the rate of return on net fixed assets exceeds the average interest rate during the project life (See Figure 7-4-1).

(2) Loan Repayment Capacity

Throughout the project life, the debt service coverage ratios exceed 1.0. There will be no problem with the repayments of the long-term loans using the annual operating revenues (See Figure 7-4-2).

(3) Operational Efficiency

Both the operating ratios and the working ratios maintain positive levels (See Figure 7-4-3, 7-4-4).

PREFIT AND LOSS STATEMENT CURTICE	008US\$)				•								, -															****								
OPERATION REVENUE	1991	1898	1991	1994	1995	19\$8	•	1998	1899		\$601	5003	2003	2004		8008	\$003			2010		2012	2013	2014		2016		2018	2819		2621		2023		2025	2075
DASMALIZE CALCACE LOLYT DAESTICHE SEALASE DASMALIZE CELEGOR	75, 484	81, 179					127, 484					24.221	34, 322	34, 383							34, 394	24, 394	34, 394	141.188	34, 394	34,394	24, 394	34, 394	34,314	34, 394		-				
PERSONNEL ENPERSES ANNINESTRATION ANNINESTRATE REPAIR AND FREE	21, 164 5, 573 5, 550	28, 561 5, 713 5, 676	28, 193 5, 839 5, 674	8, 638 8, 043	31,217 8,243 9,831	31, 891 8, 378 9, 831	\$3,956 8,131 13,516	5, 507 5, 507 (3, 591	34,616 6,819 13,891	34.139 8.#28 13.691	\$4,299 \$.040 13,891	4, 852 13, 891	8, 484 13, 691	6.877 13.591 19.040	34.394 814.6 12.691	34, 194 6, 879 13, 891	14.394 6.878 13.893	11,181	\$4,384 6,878 13,691	14.194 6.87# 13.695	8,879 13,681	8.879 13.891	5, \$79 (3, 69)	6.019 13.491 19.610	6.879 12.691 19.640	8, 879 12, 891 19, 640	6. 879 13. 691 19. 840	6, 478 13, 691 19, 840	6, 478 13, 691 19, 640	8,878 13,891 19,640	6, 879 13, 691 19, 640	34, 394 6, 879 E3, 48 L	34.346 5.579 (3.691	34.394 8.879 13.691	34,394 6,379 t3,691	34.394 5,819 (3,691
DEPERCENTED OF TIMED ASSETS ANDATIZATION OF DEFERRED ASSETS FORM OPERATION EXPENSES	7, 768 0 46, 748	7, 915 0 67, 169	19.621 193.46	9,479 1,358 55,130	12, 233 1, 525 81, 050	12,233 1,525 61,847	19,640 3,815 71,719	3, 715	10.640 3,815 78.040	19,849 - 3,815 78,113	19, 840 19, 840 19, 840	18.840 3.315 18.280	19, 840 3, 815 78, 333	3.312 11.933	3, 178	19.640 3.116 17.781	19.64@ 33B 75.48G	19,848 885 75,490	19,640 888 75,488	19.640 136 75.490	19, 640 886 75, 490	19,648 386 15,490	19,648 358 15,498	686 75. 490	\$24 75, 490	886 75. 490	586 75, 496	868 75.490	885 75, 198	75, 49D	388	19.848 686 75,430	19.610 886 75.490	18,640 861 75,490	18, 640 656 75, 490	856
BET SPERATIRE INCOME	29.119	31.9(4	11.652	35, 301	35.279	49, 981	48, 745	52.981	57, 175	57. 430	61, 461	61,788	85,015	85.475	-89,381	19, 397	11.677	71,677	71,677	71.577	71. 877	71.877	71.877	71.677	71. 877	11,517	71. 87 <i>1</i>	11.611	11,671	71, 877	71.577	71, 677	71.577	71.677	71,677	71.877
TOTAL WOR-OPERATING REVENUES TOTAL WOR-OPERATING REVENUES TOTAL WOR-OPERATING REVENUES	114 1,502 1,616	148 1,582 1,8\$0), 592 1, 502	1, 502 1, 502	1, 502 1, 502	1, 502 1, 502	1,502 1,502	1.582 1.592	1,502 1,502	1,502 1,502	0 1.502 1.502	1,502 1,502	t, 502 1, 502	1.502 1.502	1, 502 1, 502	8, 502 1, 502	1.502 1.502	1, 502 1, 502), \$02 1, 502). 30 <i>2</i> 1. 50 <i>2</i>	587 1.502 2.069	1,195 1,502 2,637	1.975 1.502 3.477	95 1,502 1,597	1.502 1.502	388 1.502 1.898	1.502 1.302	196 1.502 1.685	1, 411 1, 502 2, 979	2.667 1.502 2.189	1.958 1.502 5.558	5.522 1.502 1.024	8.712 1,502 8.214	\$. 05# 1. 502 \$. 55#	1. 502	11.198 1.502 13.298
TATEBEST OF SHEFT-TERM LOVES THREEST OF FORE-TERM CORES TOT-SPEKATIES EXPERSES	11, 3\$4 0 11, 3\$1	12.539 0 12.538	19. 135 8(2 18. 748	29.315 3.245 33.059	33,353 4,299 38,288	37,378 5,585 42,944	10,319 1,228 17,885	38,691 7,581 25,678	25,341 7,864 43,205	\$4.962 8.871 \$2.073	31.664 8,250 39.558	28, 213 8, 327 31, 518	28, 819 7, 849 34, 558	24. 624 8. 656 31, 989	22,476 7,718 30,192	20.612 5.798 21.669	18.252 5.393 21.650	17,702 3,859 21,591	16, 14t 1, 561 13, 788	14.592 586 15.188	13,037	11,483 0 11,493	9,928 0 9,928	8.373 0 8,373	6, a18 1, 791 8, 402	5, 283 0 5, 253	3, abs 3, 542 1, 371	2.595 U 2.598	2,090 0 2,090	1, 641 0 1, 641	1.282 0 1.282	946 946	\$22 0 622	337 8 331	118 0 114	0 0
TOTAL BOB-OPERATING EXPERSES	19, 414	22. 921	15. 407	4, 744	-1,487	-155	3, \$43	8. 295	14, 432	18. 858	23. 108			33,491	40.898	11.250	13.529	51.589	55, 411	57.992	69.729	82.832	45, 227	44.902	44.570	48.312	45.409	70.589	12,588	74. 204	75,973	11.181	18.210	80.895		64.975
INCOME LYN BRETHERR INFRANÇE LYE	175.2	4.889 6.591	4. 114 3. 953	4.572 80	4.815	5, 142 0	6,313	8.547 850	6,761 2,099	8,777 3,528	5, 932 5, 643	5.912 8.429	7.170 8.859	1, 170 9, 354	7, 358 11, 689	7. 35E 12. 923	7.35 8 14.410	7,358 15,481	7, 358 16, 840	7, 25 8 17, 722	1, 359	7.358 [3.4]8	1.358 20.254	7.358 20.140	1, 15¢	7,354 21,334	20, 45\$	1.356 22.131	2. 454 22. #23	7, 351 23, 397	7,358 24,015	1.35% 24,641	7,358 25,169	1.356 25.738		1.358 27.156
BET LECOME AFTER TAX DECHED DIVIDENT TAX NET LECOME AFTER PAYMENT	9, 935 2, 494 7, 481	12, 241 3, 950 9, 131	1.341 1.435 5.565	21 58 115	-6,304 -6,304	-5,597 -5,597	-2.731 -2.731	1.207 302 194	5, 012 1, 253 3, 759	6,553 1,638 4,915	10. 440 2. 820 7. 160	11, 939 2, 985 8, 954	18.080 1.020 12.080	17, 372 6, 343 17, 029	21,671 5,416 10,253	23.999 8.000 17.998	6.880	28, 158 7, 187 21, 562	31, 273 7, 814 23, 455	37, 912 6, 228 24, 884	34,691 8,873 26,014	38.058 8.814 27.043	31, 815 9, 404 28, 211	9, 351 28, 852	37, 168 9, 297 27, 891	38.620 9.995 29.715	37, 993 9, 195 26, 495	41.100 19.235 30.825	42, 345 18, 598 31, 749	13, 451 16, 463 32, 584	14.690 11.158 33,450	45, 162 11, 441 34, 322	46,742 11,896 35,957	11.950	49, 101 12, 275 36, #28	12.513
CASE FEDE STATEMENT (URIT: 1050 V	(\$)											, i .									•															
LITER	1991	1992	1993	1994	1995 -28.860	1988	1997	1999	1999 -52,428	2000 -53,805	-54, 997	2002 -55, 513	-52.329	-51.105	-51, 440	-\$8.858	-15.95E	-15,916	-10, 196	-3, 871	2011	2012	2013 49.381	2014 2.380	-11.940	2015	-23. 150	2858 2.639	2018 38,915	2020	101.393	2022 138, 440	2023	2024	2025	2026 294, 893
CASH DESIMBIAS CASH (BETON AE) DEBITED TROOMS	24, 119			16,101	15, 219	40, 947	49, 745		57, 115	57. 430	\$1,481	81.788	65.075	85. 175	69,387	41.327	11.017	71.877	71.877	11. 617	71, 877	71. 677	11.671 (3.440	71.877 19.840	71,677 19.849	71.877 19.840	71.673 19.640	71.677 12.640	T1,877	71,577 19,#45	11, 517 19, 540	71, 577	71, 617	71.877	11.677	
THE STATES OF SELECT VZZELS THOSTSTATES OF SELECT VZZELS SELECTATION	1.760	7.91S	7. 915 0 18. 592	9, 478 1,359 37, 157	12. 233 1. 525 27. 841	12,233 1,525 24,095	19. 440 2. 615 17. 524	19.840	3,815	18,840 3,815	3. 615	19.840 3.815	19.848 3.815	19.64B 3.342	3, 616 3, 176	35.545	19.618	19,649	19.610	19.84G 818	18.84B	19.840	\$86 A	346	816	588	888	111	816	184	15.010	18.548	19.540 888	888	18.81Q	
tore-ream Loads proce coeffet liablerites orace fixed tiablelites	23, 332 B 6	15. 353		15, 50\$	85,888	69,700	9	9	ū		0		0	Đ		. 4		6	8	ų A	587	1, 195	1,375	95	. 8	338	9	106	1,411	2, 691	4, 958	5, \$22	8,712	1.054		g 11 44.
LETEREST OF DEPOSIT EIG. OTHER HOW-SPEEDELING REVERUES EDIAL CASK LAFLOW	1,502 59,508	1.502 1.502 119.855	1-502 149,837	1,582 161,304	1,502 164.08	t, 552 170, 248	1.592 \$2,227	1,502 17,938	1,592 \$2,132	1,501 1,501 82,187	1.592 68,419	14.316 1.265 0	t.502 10,033	1,502 89,159	1.502 93,785	1. 582 92, 785	1.502 93.706	1,502 83,786	1.502 93,706	1.502 9\$.70\$	1,502 94,2\$2	1. 592 24. 841	1.592 85.881	1.582 93.801	1.502 93.706	1,502 91,102	1.502 93.708	1.502	1.502	1,502 38,373	1.592	1.502	1,502 100,418	1. 502	9, 355 1, 502 103, 541	1. 502
TOSE-155W FORM SEARWIRE INVESTMENT CHECKLOCK CHECKLOCK TOSE-155W T	1, 151	94, 114 3, 151	170.588 1.155 19.135	1.151	121.293 8.221 33.989	120, 922 12, 113 37, 373	22,558 18,099 40,379	5,034 21,175 38,491	5,024 23,558 38,341		7,711 24,120 31,90#	24, 192	16.242 24.547 20.519		5_03¢ 21,246 22,478	21.534	9.835 21.334 19.25 7		15.911 21.534 15.147	5,034 21,534 14,582	11.300 21.534 13.037	5.034 21.534 11.433	74, 294 21, 534 3, 923	41.364 21,554 3.313	5, 934 21, 534 8, 818	63.382 20.537 5.283	5.523 17.110 3.898	5, 934 12, 841 2, 598	12,088 10,485 2,696	8,528 8,712 1,643	8.119 8,209 1.262	16,011 9,055 940	13, 493 8, 145 422	5. 523 6. 324 337	5,034 3,310 118	5.034 0 9
ENTEREST ON LENG-TERM LOANS OTHER CURRENT ASSETS AQUUSTRENT	11, 3\$1	ð	0 3	ē	6. \$18	5.142	6.373	7, 193	10,713	13. 244	15,246	16.396	Q 18,849	20.348	0 21, 445	0 28. 2#1	21.459	0 35. D25	92.016	33.385	0 34,711	0 35. 7 \$ 9	0 37. ala	0 16, 849	0 36, 679	0 3\$.597	97.314	0 39.784	0 40.777	9 41,818	42. 524	13, 149	8 44. 213	0 45.047	46,073	0 67. 137
TARES (RIEREST SA SKORT-TERM EDARS TOTAL CASH OVIFLOW	0	13, 741 9 127, 845	9. 991 612 202. 316	4,669 3,745 168,335	4, 239 172, 50\$	5,585 181,120	7, 226 91, 633	7,597	7, 854 93, 592	2, 871 13, 535	0,250 31,331	1,327	7. 549 95. 408	1.458	7, 716 40, 916	5, 798 91, 010	5.393 53.61 T	3, 889 78, 166	1.561 87.270	536 75.064	BO.583	73.84D	1#2, 682	188.121	1.791	127.760	3.352 67.317	59.535	65. 420	61.856		\$\$, 456	86.873	57. 231	\$4,533	
CASK IMPLOW-SUFFLOW	-341	-7, 789	-11.519	-1.029	-1, (4)	-11.272	-2, 169	-1, \$68	-1,374	*1.132	-518	3. 194	-5, 315	5,285	12.715	2,645	19.028	15,528	6.438	18,841	(3,769	21.001	-47.001	-14.320	21.649 2.908	-33.658	26.388	34.276	29. 162	34.718			33,545	245. 885	49.683	
CASM EXPERS CASM EXPESS SHORT-FRAM LOAMS	3. 161 1, 797 9	3	9	-24,458 0 29,480	-11, (01 0 31, 101	-41, 173 0 45, 113	9	-52.429 0 52.429	-53, 805 0 53, 605	0	-55, 513 0 55, 513	-52,329 0 52,329	0	0	-38,650 3 38,659	ý	-25.928 T 25.928	B	-3.971 0 3.911		28,380 28,380 G	49.381	2,340 2,360 0	-11, 949 0 11, 940	8.901	23.750	2, 533	36.915 0	46.477	101. Jes 0	138.019	187,811	201,358	245. 885	214, 113	348, 224
																										·										
SPERKITES ERTIS	61-851	58. 511	59.101	5g. 301	53.361	60. 141	19. 973	59.511	\$1.725	51.635	55.48E 30.195	15. Q11 28. 241	54, 821 38, 275	54, 341 38, 321	52.85\$ 37.35\$	52. 85£ 37. 353	51.381 37.351	51.391 31.351	51.301 37.351	51.301 37.351	\$1.303 31.353	\$1.30x 31.35x	51.301 17.351	51, 391 37, 351	51.301 37.351	51.301 37.351	51.391 37,351	51.385 37.351 6.26	51. 301 37. 353	51. JOI 37. 351	51,301 37,351	51.391 31.351	51.301 37.351	51. 181 37. 351	31.353	32, 351
SERI ZERRIZE CORERNEE BULLO NGKEIRE KULES		2.11	1.58	1.21	1. 18	1. 11	1- 25	1.28	1.35	1.39	1,52	1.59	1.12	1.69	7.11	2.11	2.25	2.15	2.45	2, 55	2.87	2.39	2.93	3. 08	3. 25	3.57	1, 11	6. 26	7. 23	F. G8	8.41	9.22	10.52	13.84	26.31	
BACARCE SHEETERST: 1900 SESS	1931	1993	1933	1994	1245	1996	1883	1998	1298	2690	2001	2982	2003	2084	zeos	2008	2807	2008	2808	2010	2811	2812	2913	2014	2015	2018	2017	201.	2818	2823	2021	2382_	2023	2824	2025	2025
ASSETS CREM & DEPOSITS								_	_					4					a	12 621	28 350	29. 3k1	2, 389	ů	9. 903	8	2,539	36.915	\$5.613					245.485 55.767		
COLVE CASSES WREEL WREELS	55, 787 59, 676	55. 767	55.767	55. 767	55, 767	\$5, 787	55,787 55,787	55.717	55.787	55,767	33. 781	25. 181	33, 161	77. (#1	34. 101	. 33, [8]	33.131	33, 141	77, 141	10.134	**. ***	100.110	55, 787 58, 147	55, 187 55, 187	55. 167 65. 835	55, 787	55.787 53.10B	97.582	122.444	157,180	193. 167	213,515	257.123	391.652	350.560	(93.931
FIXED ASSETS DEFRECTIABLE ASSETS ACCUMULATION OF SCREECEASION NET DEFRECTIVELE ASSETS		15, 675	21.144	11,668	45. 102	57, 535	17.176	98.486	116.456	138.025	155,737	179.377	335 863	210,531	234,231	234,336	241 315	433,210	312.438	112.433	442 182	432.578	**		285. 398	724.126	715.963		812. 824	581, 419	878. 283	\$68. #86	\$52.054	837. 935	\$23. 339	101.124
ADA-BERRESIABLE ISSETS TOTAL FIXED ASSETS		401, 314	12,596 550.9 \$ 0	\$1,4 \$ 5	21,485 112,232	49.658 858.080	49.525 860,398	144, 382	49.885 831.785	\$17.588	805.85E	191.052	178, 785	188, 528	751, 922	748, 187	730.261	723, 655	720.028	705. 128	657,768		48, 598 128, 176	749,982		119.018	144.481	750.295	142.722	731.708	720.187	716,558	701.952		\$73.278	158.822
SEFERRED CHARGES TOTAL ASSETS	9	0	12,524	13, 190	12, 366	33, 712	29,927	26.112	22.288 9nd. 818	18, 481	16,666	10. 851 857. 821	15, 895 850, 457	12,553	8, 377 817, 888	#. 261 #10, #35	5, 315 188, 343	4;428 722,851	3,543 179,338	2, \$57 778, 515	1, 772	929 788, 598	8, 859 793, 388	818.7 \$14.51£	7,047 100.059	6.281 348.331	5.315 826.527	4.424 863.698	3,543	2,858 891,525						
Flangerities & met worth	375.190	£57, 88]	\$25.332	732, 980	\$49,423	341,357	140.001	*******	100.000	VII, III		*******	****	•	,																					
LIMBILETIES CORRERT LIMBILTTIES SMORT-TERM LAKEL	4	4.612	21 541	73 Z28	31 181	48. 171	56.521	52, 129	53.165	54, 497	55,513	52. 328	51, 105	51. 440	38, 450	35, 954	25. 92#	10,400	2. 971	0	Đ	. 0	0	11. 110		27, 750				9	11	0	Į.	0	9	ð
OFREE CHREET LIREILITIES Flace Crarellices Lors-ferm eques	21. 915	21. #15	21, 415	21, 915	21,415	21.915	21,915	21.415	21.915	21.915	21.815	21.913	21,015	21, 913	21, 915	21. \$15	21. 113	21,913	21,915				21.915	21,415	21. #15 105. 846	21,915	21,915	21.015 56.311		38, 95¢					41. 913	c1. 1 [3
LOLET EIVELETIEF JIMES LENED FLEBUTLISES	0 134.003	200. 200	144. T91	428, ISB	508, 294	594, 959	519, 288	559. 962	537. 761	514, 834	491.229	443. 854	464,580	415. 942	381,907	357, 817	32#. 114	209, 068	281.498	225, 583	214,051	192.515	170.932			131.128		18.226						25, 225		
EQUITY CAPITAL Reserves	195.108	186.324	214.988 68 547	252,143	279, 734 54, 147	393, 219 48, 151	327.493 46.620	321, 103 46, 426	321,493 50,665	321.493 55.888	121,483 83,480	121,493 72,414	123,411 44,474	121,401 97,503	121.401 [13.156	121, 401 131, 755	321.403 151.628	221, 403 173, 388	321, 491 196, 442	321, 483 221, 527	121, 193 247, 545	321.483 274.568	321.493 302.786 624.202	321, 483 330, 332	321, 483 359, 743	221, 403 333, 453	\$21.403 \$18.852	321,403 441,111	321.403 478.566	321, 483 518, 154 822 549	\$21,481 \$45,484 861.009	121, 403 579. 925	321, 403 814, 592	121.401 150.132	121.403 131.453	121.493 115.496
TOTAL EQUITY TOTAL LIABSLITIES & EQUITY	211.131	251.384	275, 553	312,134	334, 535	352, 87D	367.423	388, 329	414,014	\$17,003	114.169	424, 811	405' #11	410, 700	740,144	4441 144	*****		4141624	******		• • • • • • •						789, 180 847, 498	866.710	491,528	\$15, 768	861,922	\$41, \$36	\$\$7.46B 1	.444.861 .438,474	. 444, 214
PATE OF RETURN ON REP FIXES ASSETS																																				
																		نىجىرىلىنىسىن																		

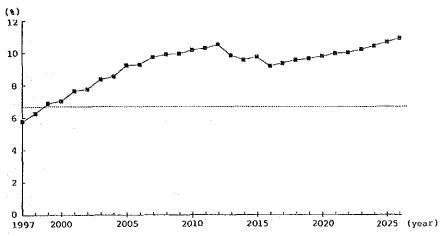


Fig. 7-4-1 Rate of Return on Net Fixed Assets

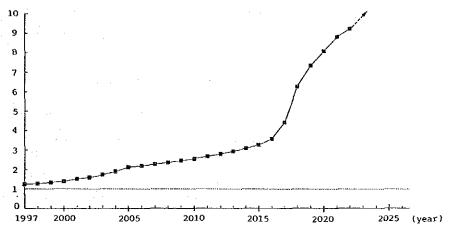


Fig. 7-4-2 Debt Service Coverage Ratio

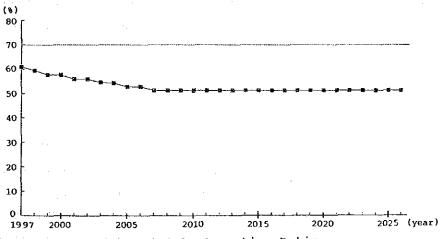


Fig. 7-4-3 Operating Ratio

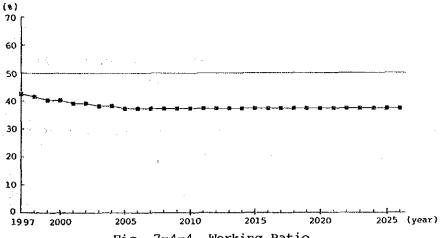


Fig. 7-4-4 Working Ratio

7-5 Sensitivity Analysis

A sensitivity analysis is made for the following three cases:

Case I: The revenues decrease by 10%.

Case II: The construction costs increase by 10%.

Case III: The operating expenses increase by 10%.

The FIRR of each case is as shown in Table 7-5-1

Table 7-5-1 FIRR in Sensitivity Analysis

	Base Case	Case I	Cașe II	Case III
FIRR	4.99%	4.09%	4.22%	4.81%
Floor Limit		4.03%		

In each case, the ratio exceeds the weighted average interest rate of funds, which is also the floor limit during the project life.

7-6 Conclusions

Judging from the above analysis, this project can be regarded as financially feasible if the funds necessary for construction of breakwaters and channel dredging is financed through interest-free government funds that require no repayment and if the charges for transshipment container operations in the Port of Galle are increased 20% from the existing tariff.

Because the initial construction costs are huge, it will be impossible for the SLPA to invest in the project for itself.

At last, it is recommended that the following measures be taken to improve the financing during the project life.

- (1) The re-lending rate on the long-term loans from the government to the SLPA should be kept as low as possible including the development plans of Colombo Port.
- (2) The SLPA should maintain its efforts to secure sufficient cargo volume and to improve cargo handling efficiency.
- (3) Because the short-term loans with high interest rates are to continue until 2009, the SLPA should attempt to refinance with lower-cost funds, taking account of actual cash flow.

APPENDIX

	LIST OF APPENDIXES
$(x_1, \dots, x_n) = \sum_{i=1}^n (x_i - x_i)^{i+1} = x_i$	
Appendix I-2-1	Rainfall and Temperature (1951-80)369
Appendix I-2-2	Population of Sri Lanka (1980-89)
Appendix I-2-3	Sectorial Composition of GDP at Constant (1982)
	Factor Cost Prices
Appendix I-2-4	Exports, Imports and Balance of Trade (1989-89)371
Appendix I-2-5	Major Exports and Share (1984, 1989)
Appendix I-2-6	Major Imports and Share (1984, 1989)
Appendix I-2-7	Passenger and Cargo Transport by Rail372
Appendix I-2-8	The Number of Registration of Motor Vehicles373
Appendix I-2-9	Passenger Transport by Road
Appendix I-2-10	Passenger and Cargo Transport by Air
Appendix I-3-1	Employment and Unemployment (1990)
Appendix I-3-2	Sectoral GDP at 1982 Factor Prices
	in Southern Province375
Appendix I-3-3	Extent of Agricultural Crops in Southern Province376
Appendix I-3-4	Fish Production in Sri Lanka
Appendix I-3-5	Fish Production in Southern Province
Appendix I-3-6	Average Arrivals of Tourists
Appendix I-3-7	Average Daily Traffic 1986379
Appendix I-3-8	Summary Statistics of Electricity (1989)380
Appendix I-4-1	Frequency of Wind Occurrence (%)381
Appendix I-4-2	Wind Rose
Appendix I-4-3	Temperature and Humidity (Jan. 1980 - Dec. 1989)385
Appendix I-4-4	Rainfall
Appendix I-4-5	Location of Wave Meters387
Appendix I-4-6	Distribution of Significant Wave Height
	and Period (%)388
Appendix I-4-7	Exceedance Probability of Wave Height391
Appendix I-4-8	Frequency Distribution of Overall Wave Height392
Appendix I-4-9	Exceedance Probability of Overall Wave Height393
Appendix I-4-10	Distribution of Significant Wave Height
and the second of the second o	and Direction (%) (Swell)394
Appendix I-4-11	Distribution of Significant Wave Height and Period
	(%) (Swell)396

ppendix I-4-12	Distribution of Significant Wave Height
	and Direction (%) (Wind Wave)397
opendix I-4-13	Distribution of Significant Wave Height and Period
	(%) (Wind Wave)399
opendix I-4-14	Distribution of Significant Wave Height
	and Direction (%) (Overall Wave)400
opendix I-4-15	Distribution of Tidal Current (%)400
opendix I-4-16	Distribution of Tidal Current401
opendix I-4-17	Result of Drilling402
opendix I-4-18	Coordinates of Boring Points402
opendix I-4-19	Boring Data403
opendix I-4-20	Laboratory Test Results412
opendix I-5-1	Container Service at JCT in Colombo Port423
opendix II-2-1	Greater Colombo Economic Commission
	Major Investor's Estimated Investment
	Exports & Employment426
opendix II-3-1	Road Distance between Principal Cities433
opendix II-3-2	Statistics on Paddy Sector434
opendix II-3-3	Wheat/Flour Handled at three (3) Ports435
opendix II-3-4	Sugar Statistics436
opendix II-3-5	Statistics on Fertilizer Sector437
opendix II-3-6	Fertilizer Consumption by Crop in the Southern
	Province 1986, 1987438
opendix II-3-7	Cement Statistics438
opendix II-3-8	Per Capita Consumption of Cement and per Capita GNP
	in the World439
opendix II-3-9	The Volume of Other Break Bulk Cargo439
opendix II-3-10	Statistics on Tea Sector440
opendix II-3-11	Area under Tea Cultivation in the Southern Province441
opendix II-3~12	Statistics on Rubber Sector442
opendix II-3-13	Production of Rubber in the Southern Province443
opendix II-3-14	Area under Tapping of Rubber in the Southern
•	Province
opendix II-3-15	Statistics on Coconut Sector444
opendix II-3-16	Production, Consumption & Exports of Coconuts
penarn zz o zo	& Coconut Products
opendix II-3-17	Ratio of Containerization in Sri Lanka (Import)446
pendix ii 5 i/	Ratio of Containerization in bir banka (1pozo, 10000000

	**-10	Patio of Containorigation in Svi Lanka (Funovt) 447
		Ratio of Containerization in Sri Lanka (Export)447
Appendix		Tonnage per TEU and Ratio of Empty Containers448
Appendix		Future Volume of Containerizable Cargo in Bangladesh449
Appendix		Containers Handled in Bangladesh
Appendix	•	Container Cargo Throughput in India
Appendix		Containers Handled in East India
Appendix		Containers Handled in West India452
Appendix		Containers Handled in Pakistan
Appendix	11-3-26	Container Cargo Throughput at 10 Ports in the Gulf
	. :	and Red Sea453
Appendix		Containers Handled in Gulf and Red Sea454
Appendix		Shipping Line Wise Container Traffic457
Appendix		Shipping Line Wise Container Traffic (Monthly)458
Appendix	11-4-1	Newly Introduced Vessels with More Than 3000 TEU
		in 1989459
Appendix	II-4-2	New Building Orders of Container Vessel by Size460
Appendix	11-4-3	Refraction Diagram461
Appendix	11-4-4	Coefficient of Refraction471
Appendix	II-4-5	Wave Height Ratio481
Appendix	11-4-6	Wave Height Ratio485
Appendix	11-4-7	Wave Height Ratio489
Appendix	11-4-8	Wave Height Ratio493
Appendix	11-4-9	Wave Height Ratio497
Appendix	II-4-10	Rough Cost Estimates of Master Plan Project (2005)
		(Alternative No.5)
Appendix	11-4-11	Implementing Steps for The Master Plan
4		(Alternative No.5)
Appendix	III-1	Urgent Plan503
Appendix	111-2-1	Wave Height Ratio543
Appendix	111-2-2	Wave Height Ratio547
Appendix	111-2-3	Coefficient of Diffraction for Wind Wave and Swell551
Appendix	111-2-4	Construction Cost of Short Term Plan 1 and 2552
Appendix	111-6-1	Calculation of Land Transportation Costs553
Appendix	111-6-2	Economic Prices of Construction Costs554
Appendix	111-6-3	Disbursement Schedule (Economic Price)555
Appendix	111-6-4	Replacement Investment Schedule556
Appendix	111-7-1	Handling Volume in Galle Project557

Appendix	111-7-4	Comparison of Port Charges557
Appendix	III-7 - 2	Main Charges for Container Operations558
Appendix	111-7-3	Main Charges for Conventional Cargo Operations559
Appendix	III-7-5	Revised Construction Cost of Galle Port560
Appendix	111-7-6	Service Life & Depreciation Rate
Appendix	111-7-7	Handling Volume In Sri Lanka561
Appendix	111-7-8	Revised Construction Cost of Each Terminal
		in Colombo Port

and the second section of the second

Appendix I-2-1 Rainfall and Temperature (1951-80)

And the second s	Annual	Temp	perature
	Rainfall	Maximum	Minimum
Colombo	2,527mm	30.4°C	24.0℃
Jaffna	1,184	·	
Trincomalee	1,615	31.1	25,2
Hambantota	1,073	30.2	24.1
Ratnapura	3,740	31.9	22,7
Anuradhapura	1,358	31.9	23,1
Kandy	1,947	28.7	20.2
D <u>i</u> yatalawa	1,662	24.7	15.6
Nuwara Eliya	2,044	20.2	11.4
Kankesanthurai	1,252	31.2	25.0

Source: Statistical Pocket Book of Sri Lanka, Department of Census and Statistics, Ministry of Policy Planning and Implementation

Appendix I-2-2 Population of Sri Lanka (1980-89)

(In thousands)

Year	Male	Female	Total	Growth Rate (%)
1980	7,582	7,165	14,747	1.91
1981	7,706	7,282	14,988	1.63
1982	7,742	7,447	15,189	1.34
1983	7,858	7,558	15,416	1.49
1984	7,951	7,648	15,599	1,19
1985	8,072	7,765	15,837	1,53
1986	8,215	7,902	16,117	1.77
1987	8,339	8,022	16,361	1.51
1988	8,454	8,132	16,586	1.38
1989			16,806	1,33
Ave.				1.46

Source: Central Bank of Sri Lanka

Appendix I-2-3 Sectoral Composition of GDP at Constant (1982) Factor Cost Prices

													ت	(Unit: Million Rs)	ion Rs)
	Agricul	ture, E	Agriculture, Forestry and Fishing	and Fi	shing	Mining	F-				មា	Electricity,	ty,	Transport,	,
						and	<u>.54</u> .	Manufacturing		Construction		Gas, Water	er	Storage and	pg
	Plantations	ions	Others	rs	Total	Quarrying	ing	,				and Sanitary	κĀ	Communications	Suot
		Growth		Growth	Growth Growth		Growth		Growth		Growth		Growth		Growth
	Amount	Rate	Amount	Rate	Rate	Amount	Rate	Amount	Rate	Amount	Rate	Amount	Rate	Amount	Rate
		. (8)		(&)	(8)		(%)		(%)		(%)		(%)		(%)
1982	6,451		18,513			2,238		13,601		656,7		1,089		10,666	
1983	6,166	-4.4	20,046		0.0	2,413	7.8	13,710	8.0	8,039	1.0	N.A.		N.A.	
1984	6,072	-1.5	20,041	0	4.0	2,449	7.5	15,390	12.3	8,030	7.0	1,239		12,437	
1985	7,438	22.5	20,928	4.4	9.8	2,486	7.5	16,193	5.2	8,070	0,5	1,313	0.9	12,959	4.2
1986	7,514	0.1	21,592	3.2	2.6	2,615	5.2	17,558	8.4	8,191	1.5	1,406	7.1	13,377	3.2
1987	6,482	-13.7	20,927	1. E.	8.5	3,112	19.0	18,748	8.0	8,338	1.8	1,448	3.0	13,538	1.2
1988	6,197	-4.4	21,787	4.1	2.1	3,392	0.6	19,622	4.7	8,463	1.5	1,499	3.5	13,619	0.0
1989	6,575	6	21,091	-3.2	-1.1	3,576	5.4	20,488	4.4	8,514	9.0	1,526	7.8	13,883	6
Ave.		0.3		1.9	1.5		6.9		0.9		7.0		4.9		8

Source: 1) Review of the Economy and Annual Reports, Central Bank of Sri Lanka

2) Public Investment 1989 - 1993, Dept of National Planning, Ministry of Policy Planning & Implementation

Wholesale	ıle	Banking,	, gr	Ownership	diı	Public	,			gross	
and		Insurance and	and a	of		Administration	ration	Services	ses	Domestic	tic
Retail Trade	Trade	Real Estate	tate	Dwellings	ığs	and Defence	ance		•	Product	Çţ
- Action	Growth		Growth		Growth		Growth		Growth		Growth
Amount	Rate	Amount	Rate	Amount	Rate	Amount	Rate	Amount	Rate	Amount	Rate
	(8)		(%)	:	(%)		(%)		(%)		(%)
19,694		3,715		3,250		2,899		4,604		94,679	
20,738	5.3	4,130	11.2	N.A.		3,786	30.6	4,590	-0.3	99,375	O vs
22,029	6.2	4,526	9	3,381		4,165	10.0	4,636	0	104,395	ત. જ
22,925	4.1	4,975	0	3,432	1.5	4,432	6.4	4,419	-4.7	109,570	0 50
23,821	3.9	5,174	4.0	3,497 1.9	1.9	5,274	19.0	4,242	-4.0	114,261	4.3
24,496	2.8	5,490	6,1	3,550	1.5	5,435	3,1	4,358	2.7	115,922	1.5
25,164	2.7	5,819		3,603	ı,	5,462	0,5	4,423	1,5	119,050	2.7
25,588	1.7	6,168	0.9	3,650	1.3	6,140	12.4	4,530	2.4	121,729	2.3
	3,8		7.5		1.7		11.3		-0.2		3.7

Appendix I-2-4 Exports, Imports and Balance of Trade (1980-89)

(Unit: SDR Million)

	Exports	Imports	Balance of Trade
1980	818	1,577	-759
1981	928	1,614	~686
1982	934	1,826	-892
1983	998	1,811	-813
1984	1,432	1,823	~391
1985	1,311	1,956	-645
1986	1,036	1,658	-622
1987	1,080	1,589	-509
1988	1,098	1,661	-563
1989	1,216	1,737	-521

Source: 1) Customs, Sri Lanka

2) Central Bank of Sri Lanka

Note: Data were adjusted for lags and other factors.

Appendix I-2-5 Major Exports and Share (1984, 1989)

	1984		1989	
	SDR	Share	SDR	Share
	Million	(%)	Million	(%)
Tea	604.5	42.2	295.8	24.3
Rubber	126.6	8.8	67.4	5.5
Coconut Products	81.2	5.7	62.0	5.1
Textile & Garments	290.1	20.3	381.8	31.4
Petroleum Products	126.1	8.8.	48.5	4.0
Gems	23.6	1.6	47.7	3.9

Source: 1) Customs, Sri Lanka

- 2) Ceylon Petroleum Corporation
- 3) Air Lanka Ltd.
- 4) Central Bank of Sri Lanka

Appendix I-2-6 Major Imports and Share (1984, 1989)

	1984		1989	
	SDR	Share	\$DR	Share
	Million	(%)	Million	(%)
Rice	7.5	0.4	73.5	4.2
Flour	1.1	0.1	3.8	0.2
Sugar	51.6	2.8	93.7	5.4
Petroleum	409.6	22.5	181.3	10.4
Fertilizer	42.3	2.3	138.0	2.2
Chemicals	39.4	2.2	45,8	2.6
Wheat	94.8	5.2	107.5	6.2
Textile & Clothing	114.0	6.2	216.1	12.4
Machinery	204.6	11.2	135.9	7.8

Source: 1) Customs, Sri Lanka

- 2) Food Commissioner's Department
- 3) Ceylon Fertilizer Corporation & other major importors of fertilizer
- 4) Ceylon Petroleum Corporation
- 5) Co-operative Wholesale Establishment
- 6) Central Bank of Sri Lanka

Appendix I-2-7 Passenger and Cargo Transport by Rail

(in Millions)

Item	Unit	1978	1985	1986	1987	1988	1989
Passenger	man-Km	3,709	2,101	1,972	2,059	1,859	1,677
Cargo	ton-Km	281	232	204	195	198	178

Source: Sri Lanka Socioeconomic Data, Central Bank of Sri Lanka

Appendix I-2-8 The Number of Registration of Motor Vehicles

	Pa	ssenger T	ransport		Goods		Land	Vehicles		
	SLTB	Private	Private	Motor	Transpo	ort	Maria et ave	Mu- 61	Other	Other
	Buses	Coaches	Cars	Cycles	Lorries	Others	Tractors	Trailers	Other	<u> </u>
1975	11,907	1,174	92,358	23,269	35,623	4,243	16,070	8,762	4,282	435
1980	15,416	5,834	122,428	80,477	57,702	4,793	24,882	17,236	13,279	647
1985	16,936	21,924	152,548	162,570	95,137	5,487	28,035	20,652	27,465	763
1986	17,190	23,705	163,737	189,163	98,384	5,590	28,577	21,234	30,131	780
1987	17,275	24,856	174,666	218,204	101,230	5,645	29,187	21,901	31,531	830
1988	17,520	25,719	185.699	246,041	103,675	5,704	29,696	22,272	32,993	831
1989		26,163								

Source: Department of Motor Traffic

Appendix I-2-9 Passenger Transport by Road

(in Millions)

Item	Unit	1978	1985	1986	1987	1988	1989
Passenge:	man-Km	20,374	14,249	15,149	15,974	15,413	12,980

Source: Sri Lanka Socioeconomic Data, Central Bank of Sri Lanka

Appendix I-2-10 Passenger and Cargo Transport by Air

(in Millions)

Item	Unit	1978	1985	1986	1987	1988	1989
Passenger	man-Km	129	2,509	2,108	1,946	2,832	2,625
Cargo	ton-Km	12	296	246	226	278	313

Source: Sri Lanka Socioeconomic Data, Central Bank of Sri Lanka

Appendix I-3-1 Employment and Unemployment (1990)

(Unit: No. of Persons)

The selected selection	Е	mployment	
District	Male	Female	Total
Galle	142,063	45,468	187,531
Matara	109,051	36,938	145,989
Hambantota	90,752	13,742	104,494
Southern Province	341,866	96,148	438,014
District	U	nemploymen	t
District	Male	Female	Total
Galle	37,495	33,279	70,774
Matara	29,145	27,593	56,738
Hambantota	14,667	11,825	26,492
Southern Province	81,307	72,697	154,004
Unemployment Ratio	19.2	43.1	26.0

Source: Galle Municipal Council

Appendix I-3-2 Sectoral GDP at 1982 Factor Prices in Southern Province

	GDP	Share	GDP	Share	Share of
	Southern	of	Sri	of	Southern
	Province	Sector	Lanka	Sector	Province
	(Rs.Mil.)	(%)	(Rs.Mil.)	(%)	(%)
Agriculture, Forestry and Fishing	2,829	30.32	24,964	26.37	11.33
Mining and Quarrying	50	0,54	2,238	2.36	2.23
Manufacturing	872	9.35	13,601	14.37	6.41
Construction	971	10.41	7,959	8,41	12,20
Electricity, Gas, Water and Sanitary	75	0,80	1,089	1.15	6.89
Transport, Storage and Communications	996	10.68	10,666	11.27	9,34
Wholesale and Retail Trade	1,979	21.21	19,694	20.80	10.05
Banking, Insurance and Real Estate	302	3.24	3,715	3,92	8,13
Ownership of Dwellings	448	4.80	3,250	3.43	13,78
Public Administration and Defence	290	3.11	2,899	3.06	10,00
Service	518	5.55	4,604	4.86	11.25
Gross Domestic Product	9,330	100	94,679	100	9,85

Source: Strategy for the Accelerated Development of the Southern
Province of Sri Lanka, Marga Institute

Appendix I-3-3 Extent of Agricultural Crops
in Southern Province

	**	1.	*************	Southern	Share	Sri	Vons
Crops	Uni	.C		Province	(%)	Lanka	Year
Paddy	(He	cta	re)	97,671	12.5	781,896	1986
Tea	(It)	33,300	15.0	221,683	1988
Rubber	(11)	27,858	13.7	202,771	1986
Coconuts	(.	и	,)	50,200	12.0	419,201	1984
Cinnamon	(11	,)	16,240	78.4	20,715	1985

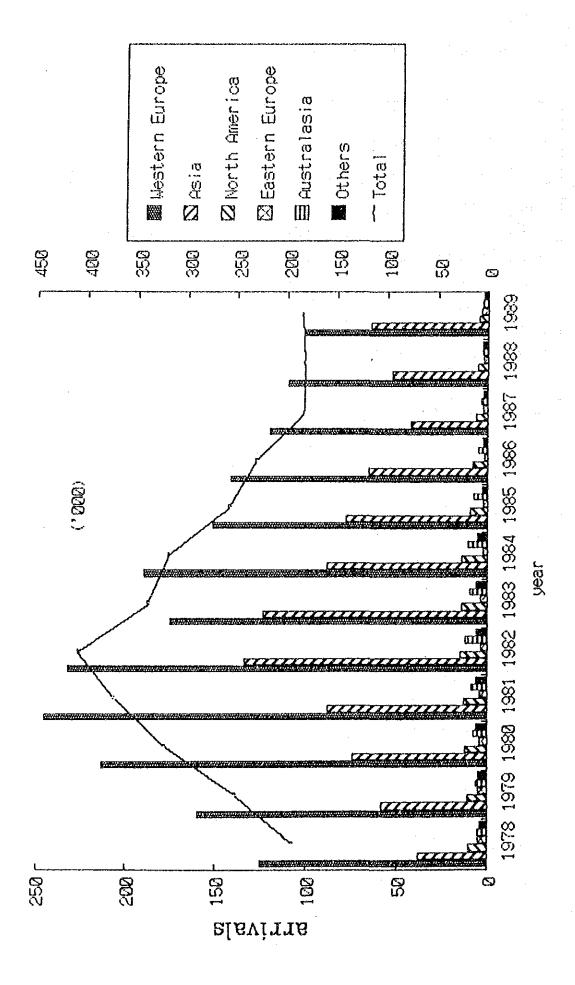
Source: 1) Ministry of Agriculture

2) Central Bank of Sri Lanka

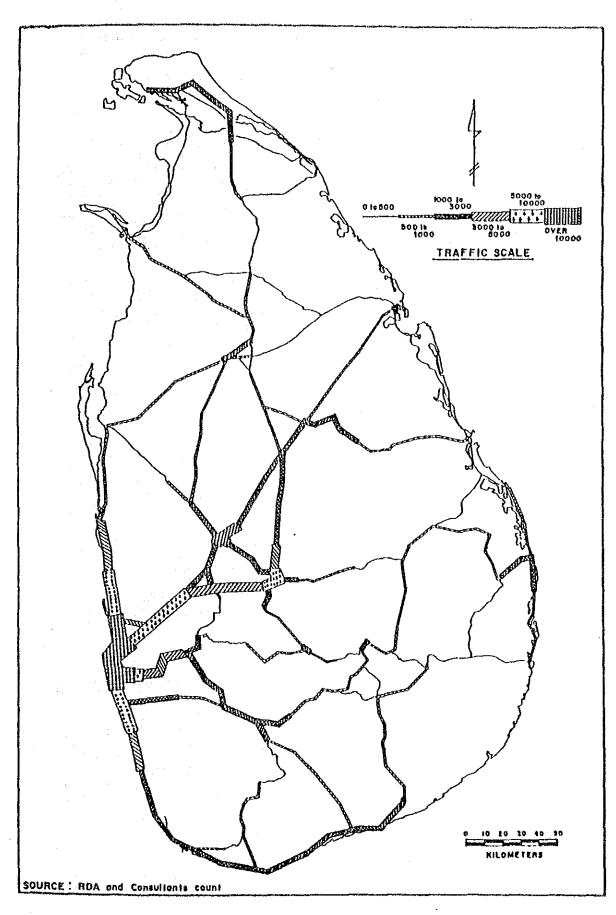
Appendix I-3-4 Fish Production in Sri Lanka

(Unit: Tonnes)

Year	Coastal	Offshore and Deep Sea	Inland	Total
1980	165,264	2,148	20,266	187,678
1981	175,075	2,178	29,590	206,843
1982	182,532	1,078	33,323	216,933
1983	184,049	689	36,068	220,806
1984	136,642	823	31,882	169,347
1985	140,266	2,400	32,743	175,409
1986	144,266	3,400	35,390	183,056
1987	149,278	4,259	36,465	190,002
1988	155,099	4,425	38,012	197,536
1989	157,411	8,155	39,720	205,286


Source: Ministry of Fishery

Appendix I-3-5 Fish Production in Southern Province


(Unit: Tonnes)

					(OUTC:	ronnes)
	(I)	2	3	4	(5)	6
Year	Galle	Southern	Sri	1)/2	①/③	2/3
* .		Province	Lanka	(%)	(%)	(%)
1980	8,101	23,518	187,678	34.4	4.3	12.5
1981	8,680	23,575	206,843	36,8	4.2	11.4
1982	10,309	26,741	216,933	38,6	4.8	12.3
1983	10,264	28,815	220,806	35.6	4.6	13.0
1984	12,902	31,394	169,347	41.1	7.6	18.5
1985	11,622	31,943	175,409	36.4	6.6	18.2
1986	11,550	31,502	183,056	36.7	6.3	17.2
1987	12,220	33,330	190,002	36.7	6.4	17.5
1988	12,696	34,628	197,536	36.7	6.4	17.5
1989	12,885	35,142	205,286	36.7	6.3	17,1

Source: Ministry of Fishery

Appendix I-3-6 Average Arrivals of Tourists

Appendix I-3-7 Average Daily Traffic 1986

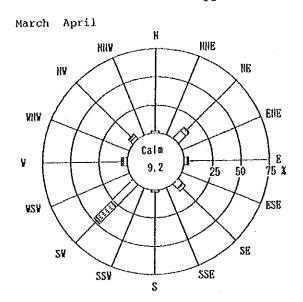
Appendix I-3-8 Summary Statistics of Electricity (1989)

No. of Power Stations:			1.8	
Hydro:	13			
Thermal:	5			
Installed Capacity:	·	, .	1,240	MW
Hydro:	968	MW		
Thermal:	272	MW		
Gross Generation:			2,858	GWh
Hydro:	2,802	GWh		
Thermal:	56	GWh		

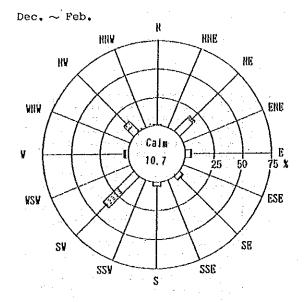
Source: Ceylon Electricity Board

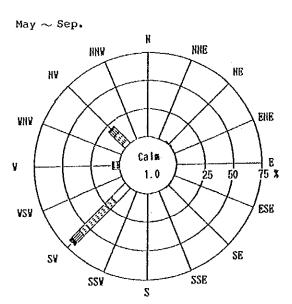
Appendix I-4-1 Frequency of Wind Occurrence (%)

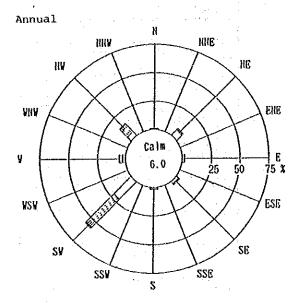
:) 21 21 21	♥TD!!ユヸヸ	۲ ۱	 -i	3 3 3 4	Zorion hora	5	7777		מכנים די עווכע	י ט						
		-																	
					:					·						March		April	
U(Knot)	æ	NNE	NE	ENE	ш	ESE	SE	SSE	s	#SS	Sis.	WSW	3	ana	NW.	MMM	CALM	TOTAL	
0.0-4.9	.0	0.0	.15	0.0	1.1	0.0	5.4	0.0	7.7	0.0	27.0	0.1	3.4	0.0	3.2	0.1	9.5	64.3	
5.0-6.9	_ _	0.0	ω 89	0.0	'n	0	i,	<u>ဝ</u>	0.4	e CI	18.9	0	1.7	0.0	7.7	0	0.0	32.7	
10.0-14.9	0	0	(A)	0	0	0	0	0	0.0	0.0	7	0.0	ر د	0.0	о М	0.0	0	00	_
15.0-19.9	0	0	0	0	0.0	0.0	0	0.0	0	0.0	0.1	0	0	0.0	0 0	0.0	0.0	 	
20.0-24.9	0	0	0	0	0	0.0	0	0.0	0.0	0	0	0	ට ප	0	0.0	0.0	0.0	0	
25.0-29.9	0	0	0	0	0	0	0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0,0	0	
30.0-34.9		ာ	0	0.0	0.0	0	0	0.0	0.0	0.0	0.0	0	0	0.0	0.0	0	0.0	0	_
35.0-39.9	0	0.0	0.0	0	0.0	0.0	0	0	0.0	0	0	0	0	0.0	0.0	0.0	0.0	0	
40.0-44.9		0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0,0	0.0	0.0	0	
45.0-49.9		0.0	0.0	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0	
50.0-54.9		ລ. ດ	0.0	0.0	0.0	0	0	0.0	0.0	0.0	0	0.0	0.0	0,0	0	0.0	0.0	0.0	•
55.0-59.9		o 0	0	0.0	Ġ O	0	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0	_
60.0-64.9		0.0	0.0	0.0	0.0	0,0	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	
65.0-69.9		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	
TOTAL	6.1	0.0	13.6	0.0	4.3	0.0	0.6	0.2	2.1	0.3	48.2	0.1	5.2	0.0	5.9	0.1	2 5	100.0	
													1			_			_

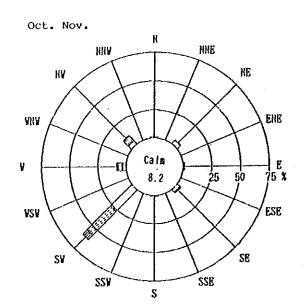

	,		
Sep.	TOTAL	74.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	100.0
7	CALM	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.0
Мау	NNE	00000000000000	0.0
	A.K.	# W W W W D D D D D D D D D D D D D D D	20.6
	rs.Nrs	00000000000000	0.0
	3	-m-00000000000	6.2
	WSW	0000000000000	0.0
	Sta	17. W. W. C.	69.2
	MSS	00000000000000	0.0
	S	00000000000000	0.4
	SSE	0000000000000	0.0
	SE	0.0000000000000000000000000000000000000	0.7
	ESE	0000000000000	0.0
	ப	60000000000000	რ
	ENE	0000000000000	0.0
	ЖE	000000000000000000000000000000000000000	1.2
-	NNE	0000000000000	0.0
	*	######################################	0.4
	(Knot)	0.00 - 4.9 10.01 - 4.9 10.01 - 14.9 15.0-14.9 25.0-24.9 35.0-34.9 45.0-44.9 55.0-54.9 60.0-54.9 65.0-64.9	TOTAL

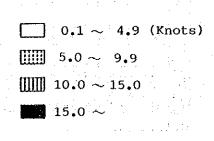
• ^ >	TOTAL	50.4	42.1	۲. س	0.1	0	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0 0	100.0
* 100	CALK	8.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.2
Ď	NNE	0.0	0.0	0	0.0	0,0	0,0	0.0	0.0	0.0	0.0	0	0.0	0	0.0	0.0
	MM	4.0	5.6	က လ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4
	MNE	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0
	79 4	3.1	4	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	8.4
İ	WSW	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	a Se	26.3	24.5	ν. Τ		0.0	0.0	0.0	0.0	ဝ ဝ	0.0	0.0	0	0.0	0.0	61.0
	SSW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	S	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.7
	SSE	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0	0.0	0.0
	SS	21.2	0.3	C1	0.0	0.0	0.0	0.0	0.0	ဝ	0	0.0	0.0	0.0	0.0	4.3
	323	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0	0.0
	ш	٦٠.	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	រះ
	ENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0	0.0	0.0
	32	ιυ ·	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	4.4
	NNE	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0
	25	2.0	0	0	0.0	0.0	0.0	0.0	0.0	<u>ه</u>	0.0	0.0	0	0.0	0.0	1.3
	U (Knot)	0.0- 4.9	5.0-9.9	10.0-14.9	15.0-19.9	20.0-24.9	25.0-29.9	30.0-34.9	35.0-39.9	40.0-44.9	45.0-49.9	50.0-54.9	55.0-59.9	60.0-64.9	62.0-69.9	TOTAL


CD 4	TOTAL	6.6000000000000000000000000000000000000	100.0
}	CALM	6.000000000000000000000000000000000000	10.7
· ner	MNN	00000000000000	0.0
	M.	6.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	12.9
	อหก		0.0
		8 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.9
	MSM		0.0
	1 . 85	5.000000000000000000000000000000000000	38.3
	SSW	00000000000000	0.0
	S	weepeepeepee	3.8
	555	0000000000000	0.0
	SE	w. 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	4.9
	523	00000000000000	0.0
	េ	4,000000000000	5.7
	ENE	00000000000000	0.0
	NE	000000000000000000000000000000000000000	13.8
	NNE	0000000000000	0.0
	æ	% NO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.0
	J(Knot) Direction	0.0-4.9 5.0-9.9 10.0-14.9 15.0-19.9 25.0-24.9 35.0-34.9 40.0-44.9 55.0-59.9 60.0-64.9	TOTAL


							-	_					_			
Annual	TOTAL	47.2	42.4	∞ !∪	1.9	0.7	0	0.0	0	0.0	0	0	0	0	0.0	100.0
Ani	CALK	6.0	0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0	0	0	0.0	6.0
	NNM	0.0	0.0	0.0	0.0	0.0	о С	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NW	4.7	8.9	2.5	0	0.0	0.0	0	0.0	0.0	0.0	0	0.0	0.0	0.0	14.5
	MNM	0.0	က 0,0	0	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0
	3	2.3	% 7	9.0	0.1	0.0	0.0	0.0	0.0	0	0	0	0.0	0	0.0	5.8
	KSW	0.0														0.0
į	MS.	21.3	28.8	(1 (0	 	0.1	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	56.6
	SSW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0
	S	1.2	0.4	0	0.0	0.0	0	0	0.0	0.0	0	0	0.0	0.0	0.0	1.6
	SSE	0.0	0	0	0.0	0.0	0.0	0.0	0	0	0.0	0	0.0	0.0	0.0	0.0
	SE	5		0	0.0	0.	0.0	0.0	0.0	0	0	0.0	0	0	0.0	3.7
	ESE	0.0	0.0	0	0.0	0.0	0	0	0	0	0	0	0.0	0.0	0.0	0.0
	ы	1.8	0	0.0	0.0	0.0	0.0	0	0	0	0.0	0.0	0.0	0.0	0.0	2.5
i	ENE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	o 0	0.0	0.0	0	0.0	0.0	0,0
	N.	5.5	:2	 	0.0	0.0	0.0	0.0	ဗ ဝ	0.0	0	0.0	0.0	0.0	0.0	8.2
	NNE	0.0	0.0		٥ ٥	0.0	0	0.0	0	0.0	0	o. 0	0	0	0.0	0.0
	×	0.7	0.5	0.0	0	6	0.0	0.	0.0	0	0	0	0.0	0	0.0	0.9
	U(Knot)		5.0- 9.9	10.0-14.9	15.0-19.9	20.0-24.9	25.0-29.9	30.0-34.9	35.0-39.9	40.0-44.9	45.0-49.9	50.0-54.9	55.0-59.9	6.0-0-09	62.0-69.9	TOTAL

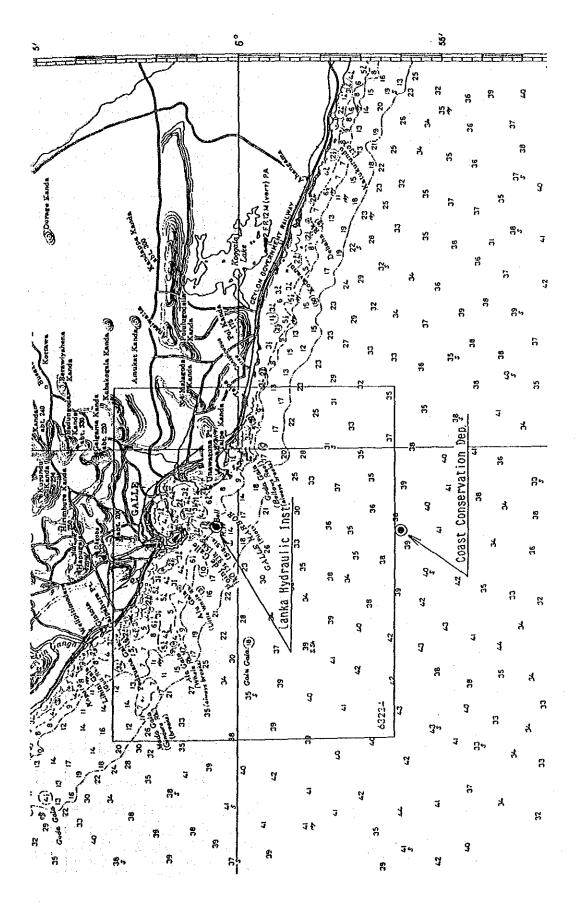

Appendix I-4-2 Wind Rose




 $t_{\pm \lambda}$

Appendix I-4-3 Temperature and Humidity (Jan. 1980 \sim Dec. 1989)

HONTH		RATURE (°C)	HUHIDITY(%)
	HUNIXAH	MINIHUM	HE AN
	MEAN HIGHEST	MEAN LOWEST	DAY NIGHT
Jan,	29.1 31.8	23.2 20.5	78.2 88.6
Feb.	30.1 34.1	23.2 21.5	72.8 86.0
Mar.	30.9 35.4	24.3 20.9	73.6 87.0
Apr.	30.9 34.6	25.3 21.7	78.2 88.2
Hay.	30.1 32.6	25.7 22.3	81.6 88.8
Jun.	29.0 30.6	25.4 21.2	88.3 87.4
Jul.	28.6 30.4	25.1 21.7	84.2 90.2
Aug.	28.4 30.4	25.0 22.3	85.8 89.4
Sep.	28.7 30.6	24.9 21.9	82.8 88.0
Oct.	29.0 32.5	24.4 22.0	81.7 89.2
Nov.	29.4 32.8	23.5 21.3	79.2 89.4
Dec.	29.4 32.2	23.4 21.2	79.0 91.3
Total	353.6	293. 4	960.4 1063.5
Hean	29.5	24.5	80.0 88.6
Max.	35.4	20.5	


Appendix I-4-4 Rainfall

YEAR		Jan.	Fsb.	Mar.	Apr,	May,	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	ANNUAL
1980	1 2 3	125.8 7 43.2	4.6 3 3.6	63.4 7 26.3	175.3 21 30.7	102.3 14 51.1	126.5 23 22.9	61.3 19 10.1	148.8 19 44.8	416.4 18 192.1	244.5 19 44.8	286.0 19 76.5	253.3 10 100.9	2008.2 179 192.1
1981	1 2 3	102.0 7. 45.8	83.2 8 23.0	88.7 10. 35.2	273.0 15 97.1	394.0 22 106.9	52.8 11 10.7	44.5 15 10.6	147.9 17 37.4	148.0 22 50.2	239.9 16 58.2	305.9 10 90.8	205.8 10 65.4	2085.7 163 106.9
1982	1 2 3	17.3 3 13.4	1.8 1 1.8	151.3 14 47.6	121.3 7 139.6	322.0 17 105.6	235.4 21 38.4	191.9 20 34.4	158.6 12 118.1	174.3 23 69.4	218.6 18 38.3	577.1 25 158.3	87.3 14 30.2	2556.9 175 158.3
1983	1 2 3	76.4 7 49.8	0.6 1 0.6	54.5 3 44.2	18.7 3 14.6	110.1 14 31.6	122.6 17 28.4	113.5 17 21.8	150.7 22 19.1	338.0 25 33.0	160.2 16 41.7	144.6 10 39.8	240.0 14 56.7	1549.9 149 49.8
1984	1 2 3	212.0 16 59.6	102.1 8 46.7	60.5 7 19.1	304.2 19 .62.8	466.4 20 93.3	208.0 23 48.7	149.6 19 24.5	18.8 5 8.7	208.1 11 60.8	98.8 14 20.4	310.3 20 89.8	106.6 7 74.1	2245.4 169 93.3
1985	1 2 3	139.4 11 35.3	114.0 9 26.8	91.7 15 22.2	82.1 13 44.0	212.5 23 45.0	402.2 24 53.8	71.6 17 22.9	229.3 23 115.1	159.2 15 35.9	252.9 16 87.8	18	240.7 15 46.2	2219.1 199 115.
1986	1 2 3	63.2 9 29.8	60.1 6 34.0	151.8 17 29.5	148.8 13 27.3	224.1 13 51.7	79.1 15 17.8	31.9 13 11.1	90.3 15 20.0	122.0 20 30.0	223.3 19 42.0	313.0 21 65.3	186.4 15 47.7	1694.6 176 65.3
1987	1 2 3	87.7 13 19.0	3.7 3 2.4	5.1 4 2.1	242.6 15 55.8	140.5 13 48.8	237.2 18 84.1	8.1 8 3.0	476.9 28 59.1	334.1 19 107.1	523.5 24 50.8	335.3 19 103.7	71. 7 8 23. 4	2466. 172 107.
1988	1 2 3	92.0 8 66.9	114.1 13 69.7	225.4 13 106.7	222.7 17 73.6	228.1 21 72.0	328.4 22 109.8	221.7 23 41.6	301.9 23 46.4	249.3 17 44.4	60.1 7 16.5	260.7 0 139.8	83.6 9 40.2	2391.0 173 139.8
1989	1 2 3	86.7 13 18.4	23.0 4 16.3	68.6 5 29.3	322.1 17 104.7	386.1 21 110.0	228.7 14 49.1	141.1 15 36.3	118.9 14 38.9	179.2 23 41.6	428.9 16 82.2	284.0 19 96.1	58.0 7 19.8	2325.3 168 110.0
MEAN	1	100.2	50.7	96.1	221.1	258.6	202.1	103.8	184.2	232.9	247.1	304.1	153.3	2154.3
XEAH	2	9.4	5.6	9.5	14.0	17.8	18.8	16.6	17.8	19.3	16.5	17.9	10.9	174.1
HAX	3	66.9	69.7	106.7	139.6	106.9	109.8	41.6	118.1	192.1	87.8	158.3	100.9	192.1

Note: 1. Monthly Rainfall (mm)

2.Number of Rainy Days

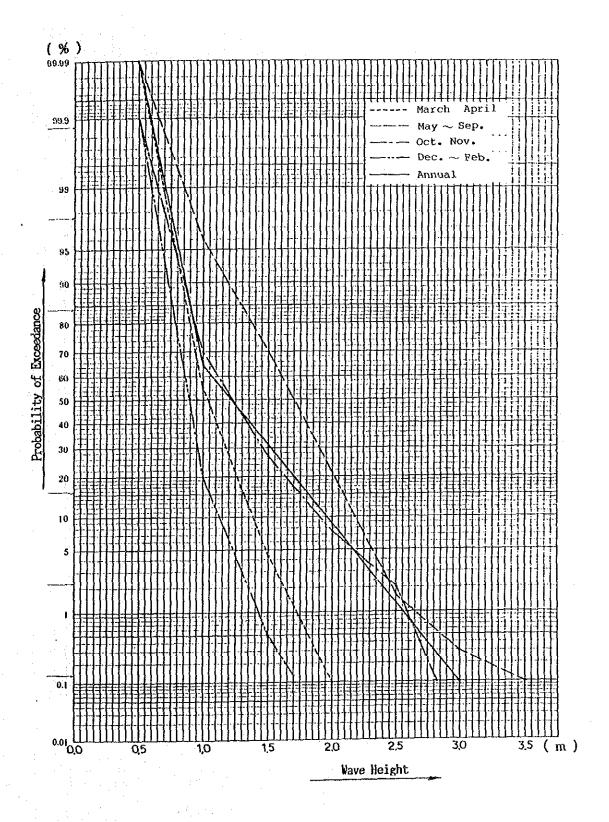
3.Heaviest Rainfall (mm/day)

Appendix I-4-5 Location of Wave Meters

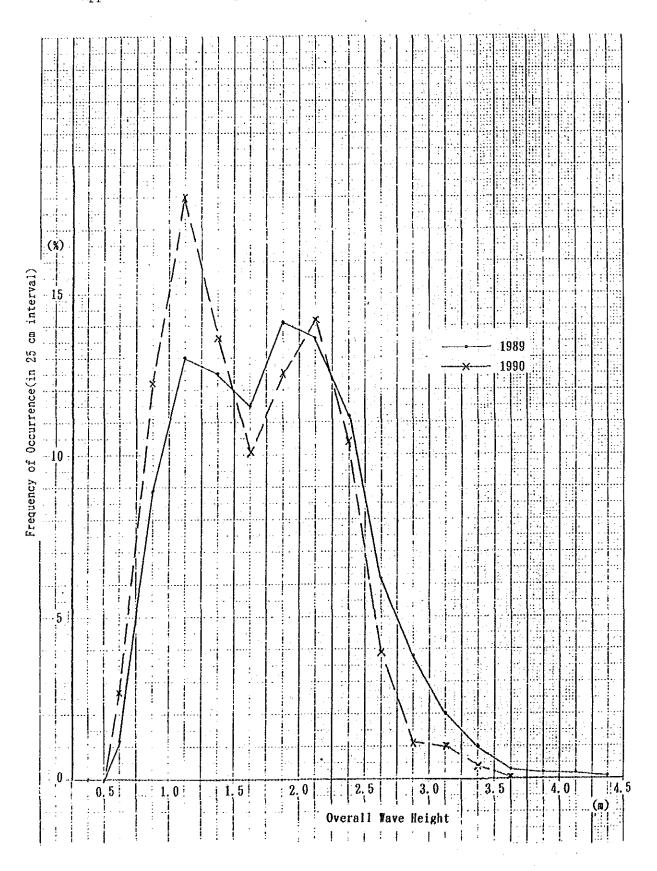
Appendix I-4-6 Distribution of Significant Wave Height and Period (%)

March April	15.9 TOTAL	0	45.	~~·	4		0		0	0.0 0.0	0.0010.0
Ž	9.0-10.0-11.0-12.0-13.0-14.0-15. 9.9 10.9 11.9 12.9 13.9 14.9 1	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0
	13.0- 1	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0
	12.0- 12.9				0.0						0.0
	11.0-				0.0						0.0
	10.0-				0.0						0.0
		1			5						2.2
	8.0-	0	ં	1-		Ö	ဝ	Ö	Ó	ø	11.0
	7.0-7.9				6.0						19.9
	6.0-	}			1.3						33.5
	5.0- 5.9	o	ដ្ឋ	ij	0.5	o	Ö	င်	င္	Ö	27.3
	4.0-				0						5.8
	3.0-	0	Ó	ပ	ဝ	o	o	ö	Ö		0.1
	2.0-				0.0						0.0
	0.0- 1.0- 2.0- 0.9 1.9 2.9	0.0	0	0	0	0.0	0.0				0.0
	0.0	0.0	0.0	6.	0.0	0.0	0.0	0.0	<u></u>	0.0	0.1
	$\Gamma_{1/3}$ (sec)	0.00-0.49	0.50-0.99	1.00-1.49	1.50-1.99	2.00-2.49	2.50-2.99		3.50-3.99	4.00-4.49	TOTAL

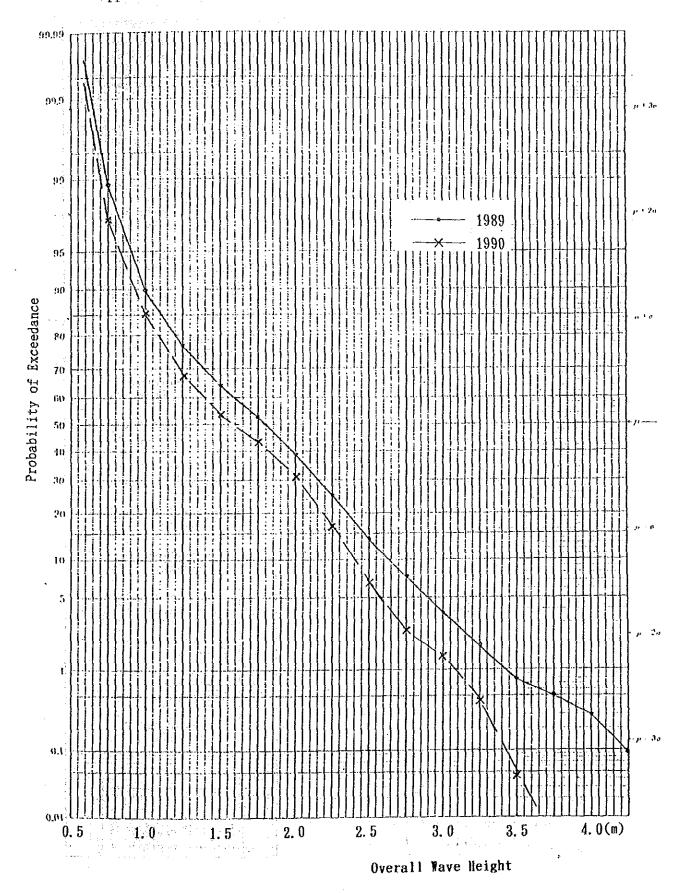
											· .			• [- 4	may. ~	vep.
$A_{1/3}(sec)$	0.0-1	1.0- 2.0- 1.9 2.	2.0-2.9	3.0-	4.0-	5.0-	6.0-	7.0-	8.0-	9.0-1	7.0- 8.0- 9.0- 10.0- 11.0- 12.0- 13.0- 14.0- 7.9 8.9 9.9 10.9 11.9 12.9 13.9 14.	1.0-1	2.0-1: 12.9	3.0- 14 13.9		5.0-	rotal
0.00-0.49	0.0	0.0	0.0	0.0	0.0	0.0	0-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	000	0.0
	. c	9 0	0		90	. v	4 co	o on	, r-i	9 0	20		0	. 7	9	_	22.3
1.50-1.99	0	0	0.0	0	9.0	13.4	26	6		0	0.1	0.1	0.0	0.1	0		52.5
00-2	0.0	0	0.0	0	რ დ	() ()	'n	้เก่	 S	0	0.0	0.0	0.0	0	0		. S
50-2.	0	0	0.0	0	0	0.1	Ö	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0		m m
3.00-3.49	0	0	0.0	0	0.0	0.0		0.0	0.0	0.0	 O	0.0	0.0	0.0	0		0.5
3.50-3.99	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	
4.00-4.49	0.0	0.0	0.0	0.0	0.0	0.0	O	0	0.0	0.0	0	0.0	0.0	0.0	0	0	0.0
TOTAL	0.0	0.0	0.0	0.1	2.0	26.2		43.5 19.8	.5	1.4	9.0	0.2	0.2	0.3	0.1	0.2	0.2 100.0


TOTAL	1.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ນ.ທາ
1 on	0.0000000000000000000000000000000000000	7.0
9.0- 10.0- 11.0- 12.0- 13.0- 14.0- 15.0- 9.9 10.9 11.9 12.9 13.9 14.9 15.		0.2
13.0- 1	0.000000	1.5
12.0-1	0,0000000000000000000000000000000000000	0.9
11.0-	0.0000000	9.0
10.0-	0.0000000000000000000000000000000000000	3.0
9.0-	0.0000	3.0
% -0.8 -0.9	000000000000000000000000000000000000000	6.1
7.0-	000000000000000000000000000000000000000	10. A.
6.0-	0.00 0.00 0.00 0.00 0.00 0.00	34.5
7.0. 9.0.	0.000	29.2
4.0-	0440000	٠. دن.
3.0-	000000000	0.9
2.0-	00000000	0.0.
1.0-		0.0
0.0	000000000	0.1
T _{1/3} (sec)	0.00-0.49 0.50-0.99 1.00-1.49 1.50-1.99 2.50-2.99 3.50-3.99 4.00-4.49	TOTAL

TAL		0.0	100.0	
Tot	1770			
5.0-	00000000	0.0	0.1	
9.0- 10.0- 11.0- 12.0- 13.0- 14.0- 15.0- 9.9 10.9 11.9 12.9 13.9 14.9 15.	00000000	0.0	0.1	
3.0-1		0.0	0.5	
12.0- 1 12.9	00000000	0.0	8.0	
11.0- 1	00000000	0.0	0.6	
10.9	00000000	0.0	2.1	
9.0-1	0.0000000000000000000000000000000000000	0.0	3.3	
8.0- 8.9	0.00000 0.000000	0.0	5.2	
7.0-	0.4.00000	0.0	2.6	
6.0-	0.54.000.00	0.0	22.7	
5.0-	0.00 0.00 0.00 0.00 0.00	0.0	36.3	
4.0-	0.00 1.00 0.00 0.00	0.0	16.7	
3.0-	0000000	0.0	1.7	
2.0-2.9	00000000	0.0	0.0	
1	00000000	0.0	0.1	
0.0- 1.0-	00000000		0.0	
10/				l
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.00-0.49 1.00-1.49 1.50-1.99 2.00-2.49 2.50-2.99	1.00-4.49	TOTAL	


						1											
0.0- 1.0- 2.0- 3.0- 4.0- 5.0- 0.9 1.9 2.9 3.9 4.9 5.9	3.0- 4.0- 5.0- 3.9 4.9 5.	3.0- 4.0- 5.0- 3.9 4.9 5.	.9 4.9 5.0-	က မှာကျ	- 0.0 - 0.0	~	6.9 6.9	7.0-7	8.0- 8.9		10.0-) 10.9	11.0-1 11.9	9.0- 10.0- 11.0- 12.0- 13.0- 14.0- 15.0- 9.9 10.9 11.9 12.9 13.9 14.9 15.	3.9-1 [3.9-1	4.0- 14.9	15.0- 15.9	TOTAL
0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0		0.0	i	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	0.1
0.0 0.0 0.2 1.6	0.0 0.2 4.6	3,4 1,0	ડા જ		12		in o	4, £Ú,	9	0.7	9.0	C1 C2	D	0	۵ 0	0.0	34.4
0.0 0.0 0.3 1.5	0.0 0.3 1.3	0.3	in.		.⊣ Ο`		ص م	r. ιν	60 60	0.0	О 4	 	0.	0,13	 		30.9
0.0 0.0 0.1 0.3	0.0 0.1 0.3	0.1 0.3	1 0.3		0		12.01	4,	 O	<u>ဝ</u> က	0.7	<u>ට</u> ට	0 0	 	ე ე		26.1
0.0 0.0 0.1 0.2	0.0 0.1 0.2	0.1 0.3	100.5		 		က်	د! جړ	က က	ပ	0	<u>ය</u>	0.0	0 0	0 0		7.0
0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0		0.1		7.0	را د ا	0.5	0.1	0.0	0.0	0.0	0.0	0 0		6.0
0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	д О		. 0
0.0 0.0 0.0	0.0 0.0 0.0	0.0.0.0	0.0		0.0		0	0	0.0	0.0	0.0	0	<u>ဂ</u>	0	0.0		0
0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0	0 0.0		0.0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	တ တ	0		0.0
0.0 0.0 0.0 0.6 6.7 29.4	0.0 0.6 6.7	0.6 6.7	6.7		29.4		35.2	16.6	6.4	2.3	1.3	0.3	0.4	0.5	0.1	0.2	100.0

-390-


Appendix I-4-7 Exceedance Probability of Wave Height

Appendix I-4-8 Frequency Distribution of Overall Wave Height

Appendix I-4-9 Exceedance Probability of Overall Wave Height

Appendix I-4-10 Distribution of Significant Wave Height and Direction (%) (Swell)

											÷				Mo	March	April
ection	N	NNE	NE	ENE	ជា	ESE	SE	SSE	S	SSW	ħs.	MSM	:3\$	MN.	35.	38 %	TOTAL
	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	1.9
	0.0	0.0	0.0		0.0	0.0	0.0	7.]	34.4	6.7	0.0	0	0.0	0.0	0.0	0.0	51.3
	0.0	0	0.0		0.0	0.0	0.0	.	33.4	iV IV	0.0	0	0.0	0.0	0	0.0	40.3
50-1.99	0.0	0.0	0.0		0.0	0.0	0.0	0.0	3.6	5.6	0.0	0.0	0.0	0.0	0.0	0.0	6.2
65	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 %
50-2.99	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0
99	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0
49	0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0	0
TOTAL	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	8.4	71.8	19.8	c U	0.0	0.0	0.0	0.0	0.0	0.0 100.0
						-								2			

															-	May	~ Sep.
Nirection Hi/3 (m)	×	NNE	NE	ENE	[2]	ESE	SE	SSE	· W	SSW	MS.	#S#	38	MNM	N.E.	NNW.	TOTAL
0.00-0.49	0.0	9	0.0		0.0	0.0	0.0	0 0	0.1	0.3		0.0	0.0	0.0	0	0.0	0.6
ခြင်း ကြွင်း	0.0	0:0	0.0	0.0	0.0	0.0	0.0		ių m	4.9	1.0	0.0	0.1	0.0	0.0	0.0	4
00-1- 20-1-	0	0	0.0	•	0.0	0.0	0.0	1.8	21.5	16.3		9.0	0.1	0.0	0.0	0	41.2
; ;	0	၀ ၀	0.0	•	က 0.	0.0	0.0	ω ci	ص د: د:	10.4		8.0	က တ	0.0	o.0	0.0	38.2
00-Z	0	ص ص	0.0	•	0.0	0.0	0.0	0.4	w iv	N N		0.0	0.0	0.0	0.0	0.0	7.4
20-2	0	0	0	•	0	<u>ර</u>	0.0	င	0	o O		0.0	0.0	0.0	0.0	0.0	,
3.00-3.49	0	0.0	က တ	-	0	0	0.0	0	0	0.0		0	0.0	0.0	0.0	0.0	0.
3.50-3.99	0	0.0	0.0	-	ပ	0.0	0.0	0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
4.00-4.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.5	53.4	36.3	3.1	1.5	0.2	0.0	0.0	0.0	100.0
	74.0																

	1	; *					;	1							1	oct	Nov.
Direction H _{1/3} (m)	N	NNE	NE	ENE	EΩ	ESE	SE	SSE	လ	MSS	nts.	MSM		ANA	M.C.	NNN	TOTAL
0.00-0.49	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.4		0.0	0.0	0.0	0.0	0.0	0.0	1.3
0.50-0.99	0	0.0	0.0		0.0	0	0.0	0.4	21.4		0.0	0.0	0.0	0.0	0.0	0.0	37.0
1.00-1.49	0	0	0.0		0.0	0.0	ပ ()	<u>ان</u>	45.5		0.0	0.0	0.0	0.0	0.0	0.0	
50-1.	0.0	0.0	0.0		0.0	0.0	0.0	0.0	6.3		0.0	0.0	0.0	0.0	0.0	0.0	4.0
8	0.0	0.0	0,0		0.0	0.0	0.0	0.0	0.0		0	0.0	0	0.0	0.0	0.0	0.0
50-2	0.0	0.0	0.0		0.0	0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0	0.0
3.00-3.49	0	0	0.0	0.0	0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0	0
3.50-3.99	0	0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0	0
4.00-4.49	0.0	0.0	၁.၀		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	70.5	27.5	0.0	0.0	0.0	0.0	0.0	0.0	0.00 100.0

TOTAL	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	100.0
NNW T	00000000	0.0
NW	000000000	0.0
MNM	000000000	0.0
38	0000000000	0.0
MSM	000000000	0.0
M:S		0.0
MSS	20.0	22.0
S	6.00 6.00 6.00 6.00 6.00 6.00 6.00	69, 1
SSE	000000000	φ. σ.
SE	0000000000	0.0
ESE	000000000	0.0
μ	0000000000	0.0
ENE	0000000000	0.0
NE	000000000	0.0 0.0
NNE	000000000	i
×	000000000	0.0
Direction H _{1/3} (m)	0.00-0.49 0.50-0.99 1.00-1.49 1.50-1.99 2.50-2.49 2.50-2.99 3.00-3.49 4.00-4.49	TOTAL

																7	Annual
Direction H _{1/3} (m)	×	NNE	NE	ENE	ம	ESE	SE	SSE	S	MSS	MS.	พรพ	3	www	NW	NNE	TOTAL
0.00-0.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	9.0	6.9	0.1	0.0	0.0	0.0	0.0	0.0	1.6
0.50-0.99	<u>ဝ</u>	0.0	0.0	၀ ၁	0.0	0.0	0.0		27.9	51.	0.4	0.0	0	0.0	0.0	0.0	42.8
1.00-1.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0		22.0	9. S	0.3	0.3	0.0	0.0	0.0	0	33.9
20-1	0.0	0.0	င်္	ပ.	0.0	0.0	0.0		11.	4. %	0.4	<u>0</u> .9	0.0	0.0	0	0	18.1
2-08 08-73	0.0	o.	0.0	0.0	0.0	0.0	0.0		۲. اک	<u></u>	0.0	0.0	0.0	0.0	0	0	2
5	0.0	0.0	0.0	0.0	0.0	0.0	0		C C	D.4	0,0	0.0	0.0	0.0	0.0	0	0
3.00-3.49	0	0.0	0.0	0.0	0:0	0.0	0.0		0	0.0	0	0.0	0.0	0.0	0.0	0	0.0
က္က	0	၀ ၀	0. 0.	၀ ၀	о С	0	0.0		0.0	0.0	0.0	0.0	о С	0.0	0.0	0.0	0.0
1.00-4.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	63.2	28.5	1.3	0.6	0.1	0	0.0	0.0	0.00100.0
T							-										

(%) and Period Height Wave Significant Distribution of Appendix I-4-11

(Swell)

100.0 H W W W W O O O O O Annua] 000000000 ~ 22.0-22.9 တ 000000000 21.0-21.9 c. 20.0- 2 H404H0000 ~ 666666666 Ö 00000000 \circ 19.0-19.9 00000000 Ö 9049900000 ا 13.0-14.0-15.0-16.0-17.0-18.0-13.9 14.9 15.9 16.9 17.9 18.9 0000000000 00000000 O 00000000 င္ **5**~ ហ 0.00000 蘏 0444100000 1141100000 ~~ 0 10 10 00 00 0 C Ċ 1 010-01000000 1~ Δ, 9.0- 10.0- 11.0- 12.0-9.9 10.9 11.9 12.9 S 0 % # 10 00 00 0 ci 00000000 1~ 000000000 ĸ %.0 .9 ဝ 0 7.9 ö 11/3 (sec) 0.00-0.49 1.00-1.49 1.30-1.99 2.30-2.49 2.30-3.49 4.00-4.49 H1/3 (E) TOTAL