4 MASTER PLAN

4-1 Port Development Policy

Through the analysis of port functions, the capacity of Galle Bay and so on, the following conclusions are reached:

- Promoting the development of the port for container transshipment cargo, making use of its advantageous location on international shipping routes.
- (2) Enhancing the potential of a bulk cargo distribution base, exploiting locational advantage
- (3) Contributing to regional development
 - 1) Supporting the development of the EPZ by providing necessary port facilities such as a container terminal
 - 2) Providing necessary facilities for industries directly related to the port
 - 3) Providing necessary facilities for the transportation of commodities in the hinterland of the port
- (4) Supporting other activities conducted within the Bay area
 - Maintaining the condition of the present fishery port facilities, to insure their full utilization
 - 2) Securing some spaces for yacht anchoring now being conducted within the basin
- (5) While there are some problems to be solved, the entire Bay area is designated as space for future development
- (6) Securing safe navigation in the harbour taking into consideration natural conditions such as high waves, rocks scattered on the sea bed and so on.
- (7) Connecting the port to land transportation facilities while avoiding traffic congestion
- (8) Consideration of environmental preservation

4-2 Vessel Size and Berth Dimensions

(1) Container Cargo

Considering the trend of container vessel size in the world and the vessel size visiting the Port of Colombo, the criteria shown below shall be adopted as an objective container vessel:

50,000 GRT, 3,500 TEU type

Accordingly the berth dimension shall be as follows: Length = $330 \sim 350m$: Depth = -14m

In formulating the master plan, a length of 350 m is adopted.

(2) General cargo

Judging from present ship size visiting the Colombo Port, it would be sufficient to have facilities of 11 m depth.

(3) Bulk cargo

It is anticipated that wheat, fertilizer, clinker and cement will be handled as the main bulk cargoes at the port of Galle in the future.

Considering the trend of bulk carrier in the world and vessel size visiting ports of Colombo and Trincomalee, the following are adopted as maximum and objective vessel for bulk cargo, respectively:

65,000 DWT, 30,000 DWT

Accordingly the dimensions are as follows, respectively: Berth length = 270m, Depth = -14mBerth length = 240m, Depth = -12m

(4) Others

According to a plan of the Ceylon Petrochemical Corporation, the below will be adopted as the objective vessel for liquid bulk. 5,000 DWT, LOA = 104m, Dr = 6.5m Accordingly, the dimensions of the berth are as follows: Berth length = 120m, Depth = -7.5m

4-3 Required Number of Berth

4-3-1 Container Berth

The container berth to be constructed in the port of Galle is not a remodeled one using the existing wharf but a new one, and many conditions are assumed to be similar to those of the Jaye Terminal in the Port of Colombo. Therefore, in this examination, statistical data of Jaye Terminal are used as parameters for calculation of the required scale of container terminal at Galle.

Based on the result of calculation of berth occupancy rate, the number of container berths required will be 3.

4-3-2 General/Bulk Cargo Berths

Some dry bulk cargoes will be handled at the Port of Galle in 2005. However, the volume of these cargoes is not large enough to plan a separate berth for these commodities. Instead, general/bulk cargo berths are planned for accommodating vessels that convey break bulk, fertilizer, clinker, cement and wheat.

Based on the result of calculations of berth occupancy rate, required number of berths will be 2.

4-3-3 Other berth

One oil products berth is planned for accommodating a 5,000 DWT tanker and bunkering inside the existing breakwater.

4-3-4 Summary

Through the calculations described above, the following facilities are planned:

:

Berth	Objective vessel	Length	Depth	Number	Main cargo
Container					
Berth	50,000 GRT	1,050	-14	3	Container
General/Bul	k				
Cargo Berth	65,000 DWT	270	-14	1	Wheat
	30,000 DWT	240	-12	1	Fertilizer, Others
0il Berth	5,000 DWT	120	-7.5	1	Oil

4-4 Required Scale of Facilities/Equipment

4-4-1 Container Berth

(1) Handling system

A lift-on, lift-off system on the quay wall and a transfer crane system at the terminal will be used in the port of Galle since these systems have been used at the port of Colombo and a comparatively small area of the container yard is prepared through reclamation.

(2) Container yard

The required number of ground slots is calculated as around 2200.

(3) Container freight station

The required floor area of CFS is estimated at around 4000. The dimension of the C.F.S is 45m in width and 80m of frontage.

(4) Cargo handling equipment

1)	Container crane	6 units
2)	Transfer crane	14 units
3)	Tractor-trailers at the yard	36 units
4)	Tractor at the CFS	3 units
5)	Trailors at the CFS	35 units
1.1		

-71-

(5) Others

- * Administration office: 800 m^2
- * Maintenance shop: 1,000 m²

* Others (Water supply facility, Cleaning facility, etc.)

It is necessary to secure around 50,000 m2 even if the space is secured for a third of the local container cargo volume other than container yard.

4-4-2 General/Bulk Cargo Berth

(1) Handling system

As described, unloading of fertilizer and clinker will be carried out by ship gear while the unloader and pump will be used for handling wheat and cement. Unloading general cargo conveyed by conventional vessels will be carried out by ship gear, and cargo handling between apron and shed will be done by fork-lifts.

> 1 unit 1 unit

20,000 ton

(2) Scale of shed $6000m^2$

(3) Cargo handling equipment

* Cement

Норри	er
Belt	conveyer
Silo	

* Wheat

Unloader(400t/h)	2 units
Belt conveyer(400t/h)	2 units
silo	100,000 ton

For handling break bulk and fertilizer, 20 units of fork lift (3 tons) will be necessary. There are already 3 fork lifts and 17 more units will be prepared.

4-5 Other Facilities

4-5-1 Breakwater Alignment

The alignment of the breakwater will be determined in one way; namely, a combination of two breakwaters. One will be constructed from the Fort towards the southeast to combat the W to SW sea waves caused mainly by southwest monsoons. Rocks crop out from the front of the Fort, and it is useful to develop this area as the edge of the breakwater. The other breakwater will be constructed from Rumassala towards the west to combat swells mainly from the south. Since the port mouth will be established towards the south to the south-east for easy maneuvering of ships, the main breakwater is the former one. To secure a sufficient water area, it will be necessary to construct breakwaters of approximately 1,500 m in length.

4-5-2 Channel

· · · ·

300 m is adopted as the width of the channel from the maximum length of the objective vessel and 370 m is adopted as the width of the mouth of the port considering the structure of the breakwater..

iii) Stopping distance

To maneuver ships for stopping safely in ports, 5L will be taken into consideration in formulating the master plan.

والمراجع والمراجع

There are two ways of entering the port; one is from the southeast, the other is from the south. The mouth of the port will be established at the eastern part of the bay taking wave and sea bed conditions into account.

There is a Eastern Channel which is not used now in Galle Bay. This channel runs along places where it is deep and there are less rocks. In the case that the mouth is established toward the southeast, it is very useful to expand this existing channel as the future channel.

4-5-3 Land Transportation Facilities

(1) Road A road is planned to connect the reclaimed area to the existing road running along the coast. Traffic volume per hour will be 679, and it is thus necessary

经济资料 化合同分子 建磷酸盐 花叶菜

to plan a 4-lanes road.

(2) Railway

Since a railway and a CFS are planned for the site of koggala EPZ, the railway should be constructed in the port area.

4-5-4 Navigational Aids

The following navigational aids shall be planned according to the channel and breakwater plan.

* Two tug boats: 2500 HP

* Light beacons on the breakwater	4	· · ·	
* Light buoys along the channel	12	· ·	
* Light guide post	1	1.1. A. A. A.	

4-5-5 Others

Apart from what has been written above, it is necessary to prepare a water-supply facility, an electric power supply facility and an administrative facility.

4-6 Alternatives of Master Plan Layout

4-6-1 Selection of the Site to be Developed for the Port

Judging from present conditions, especially water area use, there are three sites that be nominated for the development of the port in Galle Bay.

They are listed as follows,

Site 1. West side of the Bay, very close to the centre of Galle city.

Site 2. Centre of the Bay off-shore from the existing port.

Site 3. East side of the Bay next to the hill of Rumassala.

4-6-2 Formulation of Alternatives

There are five alternatives in the master plan layout with a combination of sites or configuration of wharves. They are:

Alternative-1: To develop site 1 as the first container terminal, and continue to develop site 2 for the next stage.

Site 1 is the best equipped to protect the quay wall from southwestern sea waves. However, there are some restrictions.

One is caused by the existence of the Fort. Secondly, dredging the many rocks on the sea bed is an expensive procedure.

Alternative-2: To develop site 2 for the long term

If site 1 is to be preserved for environmental reasons, then, the next best site for protection against SW waves is the western side of site 2. This site not only offers protection from SW waves, but it is also easy to connect with existing facilities.

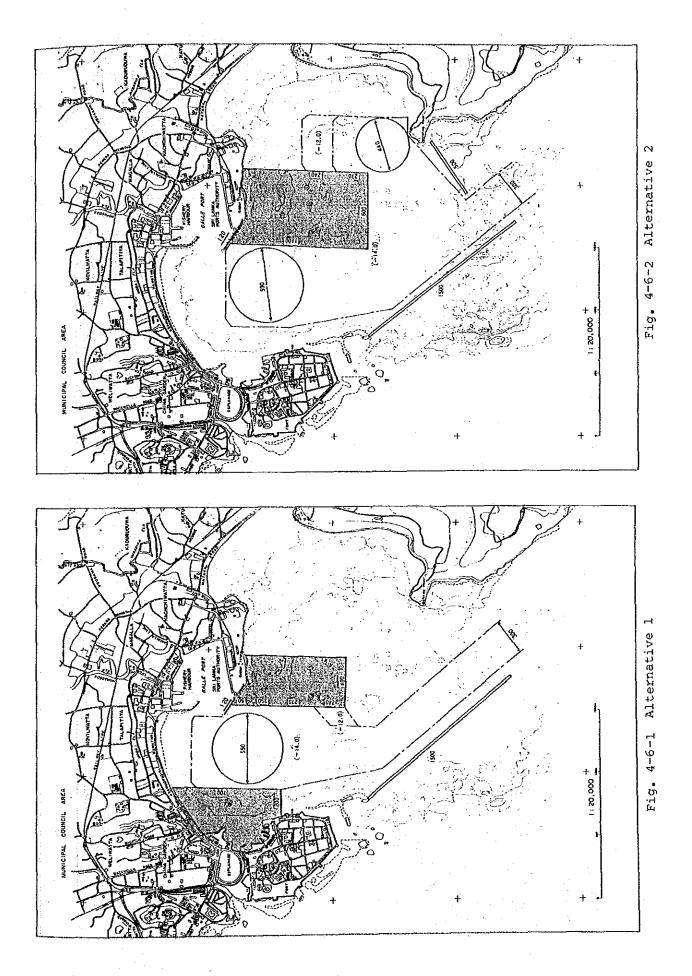
Alternative-3: To develop site 3 as a pier-type berth

In this plan , the calmness and area size of the turning basin are considered most preferable. However, it is necessary to dredge an extensive rocky area.

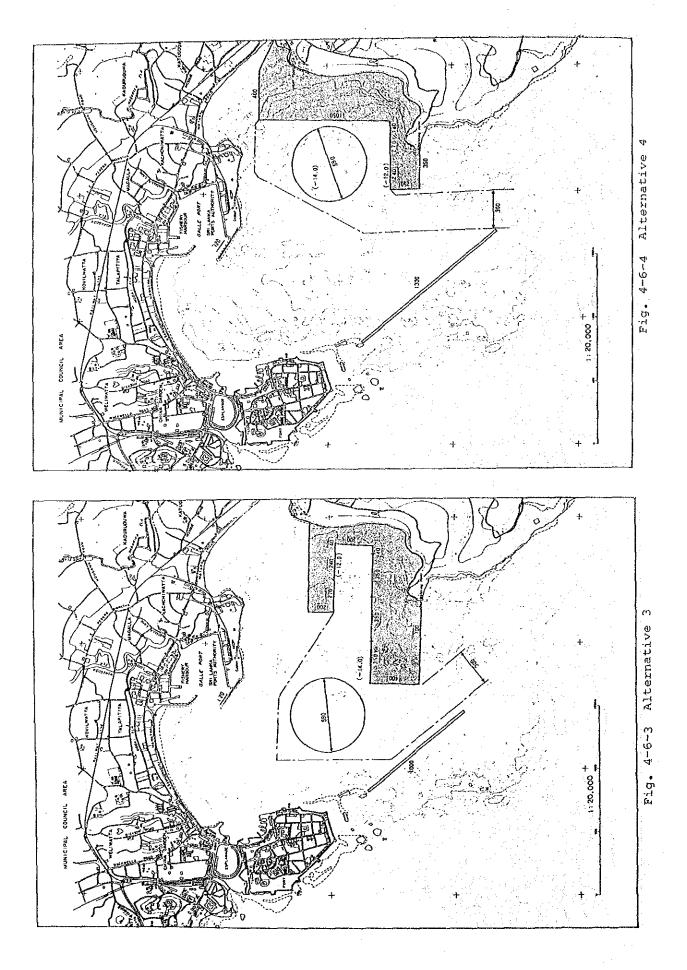
Alternative-4: To develop simultaneously site 3 as a parallel berth and perpendicular berth to the coast while continuing to extend both berths as the next step.

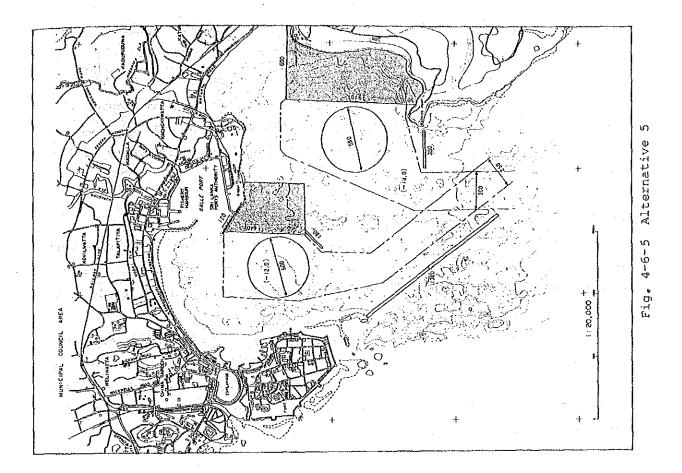
If wharves are constructed in the western part of the bay, it will cost a lot to dredge the sea bed of many rocks. In this alternative plan, since allocation of the channel and basin are planned mainly considering sea bed conditions, the dredging cost would be the least.

Alternative-5: To develop site 2 in the cheapest way and develop site 3 as the next step The costs involved in constructing port facilities such as a breakwater and a basin are high. This alternative plan attempts to


increase cost savings in the short term plan. However, the depth of

They are shown in the next Figures.


basin is limited to -12m.


Ą.

化动动态

-77-

a de la construcción de la constru La construcción de la construcción La construcción de la construcción d

-79-

4-6-3 Study of Calmness

A computer-aided simulation analysis has been undertaken to determine the effects on the calnmess of the inner harbour of the five master plan layout alternatives considered for Galle Port, including the proposed breakwater, reclamation works, container berth, and other necessary harbour works.

(1) Incident Wave at Harbour Entrance

The Swells and wind waves in an area 68 m of water off Galle Port vary in height under the influence of depth, refraction, bottom friction and other effects before they reach the harbour entrance which is 15 m of water.

While undergoing aforesaid deformations, swells and wind waves approach to the harbour entrance simultaneously. Table 4-6-1 present the direction-wise frequencies of wind wave height occurrence according to the swell wave heights at the harbour entrance. In this table, the swell wave direction is taken as S 9.7° W.

(2) Wave height Distribution in Inner Harbour

In respect of the five alternative layout plans discussed earlier, height distributions in the inner harbour of incident waves coming from harbour entrance were obtained by a computer-aided numerical simulation analysis.

(3) Degree of Calmness in the Port

Quayside cargo handling efficiency is affected by the motions of moored ships. The magnitude of ship motions varies widely depending on various factors including, among others, (1) the height, direction and period of waves, (2) direction and speed of winds, (3) type and size of ships moored, (4) method of taking mooring lines, and (5) stiffness of fenders.

The wave height in front of the proposed quay structure is the key factor affecting cargo handling efficiency. Generally, wave heights up to 0.5 to 0.7 m are known to produce no adverse impact on the efficiency in loading and unloading an oceangoing vessel moored alongside a quay.

Table 4-6-2 presents the degree of calmness in the basin. This table

shows the frequencies of occurrence of the overall wave height which is below 0.5 m in front of the proposed quay.

Table 4-6-1 Frequency of Wind Wave Height Occurrence

According to Swell Scale

Swell H_{1/3} = 0.00~0.49

									-	مستعد سيرد سيرم م	
Direction H _{1/3} (m)	ESE	SE	SSE	S	SSW	SW	WSW	V	WNW	OTHER	TOTAL
0.00-0.19	0.00	0.00	0.35	0.03	0.00	0.00	0,00	0.00	0.00	0.05	0.45
0.50-0.99	0.00	0.00	0.49	0.37	0.06	0.00	0.00	0.00	0.00	0.00	0.83
1.00-1.49	0.00	0.00	0.00	0.00	0.00	0.01	0.07	0.00	0.00	0.00	0.08
1.50-1.99	0.00	0.00	0.00	0.00	0.00	0.05	0.03	0.00	0.00	0.00	0.08
2.00-2.49	0.00	0.00	0.00	0.00	0.02	0.09	0.01	0.00	0.00	0.00	0.12
2.50-2.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.00-3.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.50-3.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.00	0.00	0.64	0.30	0.09	0.15	0.10	0.00	0.00	0.05	1.56

Swell $H_{1/3} = 0.50 \sim 0.99$

H1/3 (m)	ESE	SE	SSE	S	SS₩	SW	WSW.	Ŵ	WXW	OTHER	TOTAL
0.00-0.49	0.00	0.00	12.52	0.75	0.77	1.68	1.53	2.02	0.00	5.53	24.80
0.50-0.99	0.00	0.00	5.94	1.27	0.61	1.74	1.85	0.70	0.00	0.00	12.10
1.00-1.49	0.00	0.00	0.17	0.06	0.08	1.11	0.94	0.13	0.00	0.00	2.49
1.50-1.99	0.00	0.00	0.00	0.00	0.08	1.20	0.97	0.05	0.00	0.00	2.29
2.00-2.49	0.00	0.00	0,00	0.00	0.00	0.46	0.26	0.03	0.00	0.00	0.75
2.50-2.99	0.00	0.00	0.00	D.O O	0.00	0.15	0.09	0.01	0.00	0.00	0.25
3.00-3.49	0.00	0.00	0.00	0.00	0.00	0.01	0.10	0.00	0:00	0.00	0.11
3.50-3.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.00	0.00	18.62	2.08	1.54	6.35	5.74	2.95	<u>0.00</u>	5,53	42.80

Swell H_{1/3} = 1.00~1.49

H _{1/3} (m)	ESE	SE	SSE	S	SS₩	S₩	WSV	¥	WNW	OTHER	TOTAL
0.00-0.49	0.00	0.00	0.73	0.13	0.51	0.89	1.45	0.35	0.00	1.24	5.30
0.50-0.99	0.00	0.00	0.31	0.55	0.37	4171	5.86	0.65	0.00	0.00	12.45
1.00-1.49	0.00	0.00	0.15	0.03	0.26	4.31	5.31	0.20	0.00	0.00	10.26
1.50-1.99	0.00	0.00	0.00	0.00	0.15	1.85	2.41	0.03	0,00	0.00	4.45
2.00-2.49	0.00	0.00	0.00	0.00	0.02	0.58	0.42	0.00	0.00	0.00	1.03
2.50-2.99	0.00	0.00	0,00	0.00	0.01	0.20	0.15	0.00	0.00	0.00	0.35
3.00-3.49	0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.00	0,00	0.00	0.04
3,50-3.99	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01
TOTAL	0.00	0.00	1.19	0.72	1.31	12.58	15.62	1.25	0.00	1.24	33.89

.

Table 4-6-1 Frequency of Wind Wave Height Occurrence

According to Swell Scale (Continued)

Swell $H_{1/3} = 1.50 \sim 1.99$

ł


Hirs (m)	ESE	SE	SSE	S	SS₩	`S₩	WSW	¥	WNW	OTHER	TOTAL
0.00-0.49	0.00	0.00	0.09	0.01	0.01	0.21	0.26	0.12	0.00	0.31	1.01
0.50-0.99	0.00	0.00	0.00	0.00	0.11	2.21	2.20	0,26	0.00	0.00	4.79
1.00-1.49	0.00	0.00	0.00	0.01	0.27	3.61	3.78	0.18	0.00	0.00	7.84
1.50-1.99	0.00	0.00	0.00	0.00	0.03	1.52	1.84	0.02	0.00	0.00	3.42
2.00-2.49	0.00	0.00	0.00	0,00	0.01	0.37	0.63	0.00	0.00	0.00	1.01
2,50-2.99	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02
3.00-3.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
3.50-3.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
TOTAL	0.00	0,00	0.09	0.01	0.43	7.93	8.74	0.58	0.00	0.31	18.1

Hirs (m)	ESE	SE	SSB	5	SSH	SV	WSW	H	WHW	OTHER	TOTAL
0.00-0.49	0.00	0.00	0.00	0.00	0.00	0.05	0.05	0.00	0.00	0.08	0.19
0.50-0.99	0.00	0.00	0.00	0.00	0.03	0.42	0.44	0.00	0.00	0.00	0.89
1.00-1.49	0.00	0.00	0.00	0.00	0.03	0.71	0.81	0.00	0.00	0.00	1.55
1.50-1.99	U. 00	0.00	0.00	0.00	0.01	0.26	0.20	0.00	0.00	0.00	0.47
2.00-2.49	0.00	01.00	0.00	0.00	0.00	0.04	0.05	0.00	0.00	0.00	0.09
2.50-2.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.00-3.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.50-3.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.00	0.00	0.00	0.00	0.07	1.47	1.55	0.00	0.00	0.08	3.18

Swell H_{1/3} = 2.50~2.99

• -

H1/3 (m)	ESE	SE	SSE	S	SSW	SW	WSW	¥	WNW	OTHER	TOTAL
0.00-0.49	0.00	0.00	0.00	0.00	0.00	0.06	0.02	0.00	0.00	0.00	0.08
0.50-0.99	0.00	0.00	0.00	0.00	0.00	0.04	0.12	0.04	0.00	0.00	0.20
1.00-1.49	0.00	0.00	0,00	0.00	0.01	0.08	0.10	0.00	0.00	0.00	0.18
1.50-1.99	0.00	0.00	0.00	0.00	0.00	0.00	n.00	0.00	0.00	0.00	0.00
2.00-2.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.50-2.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.00-3.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.50-3.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	0.00	0.00	0.00	0.00	0.01	0.17	0.25	0.04	0.00	0.00	0.47

100.0 (S) 100.0 95.8 89.0 97.1 99.5 (g) 39.5 96.3 **99.3** Ì 100.0 (\$) 100.0 100.0 100.0 Į 100.0 (\$) 100.0 100.0 95.8 94.7 90.9 (X) 82.8 70.5 100.0 99**.** 3 e l èn -ហ ,

200

(internet internet in

୭

4-6-4 Rough Cost Estimate

Comparative cost estimation is carried out to the major port facilities of the five Alternative Proposals contained in the Master Plan.

The Table No. 4-6-5 and 4-6-6 show the results of the calculation. Of the five Alternative Proposals, the No. 4 and No. 5 Proposals have a design concept to utilize the back site of the cape in the East as quaywall that is succeeded in huge reduction of the length of the breakwater.

Locations of navigation channel and anchorage position in the No. 4 and No. 5 Proposals are so selected as to minimize the dredging volume of anchorage and rock layer, under which design concept relatively economical port facilities are obtained compared with the other three.

Table 4-6-5 Rough Cost Estimates of Master Plan (Alternative 1-5)

(UNIT ; Million US\$)

· · · · · · · · · · · · · · · · · · ·				MII , MII-	
Facility	Plan-1	Plan-2	Plan-3	Plan-4	Plan-5
Dredging					
Rock Material	96.18	111.99	100.73	42.67	36.73
Other Material	18.52	21.10	16.59	12.31	16.57
Breakwater Southwest Breakwater	96.90	96.00	64.77	83.98	95.61
East Breakwater	-	42.80	-	-	29,96
Quays -14.0M Wharf	109.58	109.33	88.12	98.41	78.76
-12.0M Wharf	17.20	11.35	21.09	16.81	38.14
0il Berth	4.43	4.43	4.43	4.43	4.43
Revetment	51.77	66.45	83.20	46.42	39.86
Reclamation	63.35	74.43	87.30	59.78	65,08
Pavement	46.96	43.00	54.35	43.07	48.10
Grand Total	504.89	580.88	520.58	407.88	453.24

Table 4-6-6 Major Works in Five Alternative

Facility	Unit	Plan-1	Plan-2	Plan-3	Plan-4	Plan-5	
	-						
Dredging	İ					1445-1143	
Rock Material	m3	1,375,000	1,601,000	1,440,000	610,000	525,000	
Other Material	mЗ	3,265,000	3,719,000	2,924,000	2,170,000	2,920,000	
Breakwater							
Southwest Breakwater	m	1,500	1,500	1,000	1,300	1,480	
East Breakwater	m		500	-	•	350	
Quays			1.4 19				
Container	m	*1,100	*1,100	*1,140	*1,090	*1,150	
Grain	m ·	270	270	270	270	270	
General/Bulk Cargo	m	240	240	240	240	240	
011	Sum	1	1	1	.1 .	1	
Revetment	m	2,000	1,815	2,300	1,770	1,520	
					e e entre de		
Reclamation	m3	5,850,000	6,940,000	8,160,000	5,470,000	5,955,000	
	-				a shi na ta shi	-	
Pavement	^{m2}	616,000	564,000	713,000	565,000	631,000	

* : Including the transitional part

- 86 ---

بر ۲۰۰۰ ۲

•••••

4-6-5 Evaluation of Alternatives

An evaluation of the 5 alternatives by item are shown in the table below.

	· · · · · · · · · · · · · · · · · · ·				
	Alterna-	Alterna-	Alterna-	Alterna-	Alterna-
	tive 1	tive 2	tive 3	tive 4	tive 5
Construction cost	С	С	с	A	В
Breakwater	В	, C	A	A	С
Dredging	C	с	C C	. A	А
Development potential	A	A	с	B.	с
Maneuvering of ships	A	В	A	A	A
Calmness of basin	В	А	A	A	A
Functional connection	В	. A	A	A	В
Relation to land	. • B	A	A	A	<u>A</u>
transportation	- -			· · · · · · · · ·	
Total evaluation	С	C	С	A	В

Table 4-6-7 Evaluation of Alternatives

Note: A:preferable, B:normal, C:Not preferable

a secondaria

(1) Construction cost

As described in the previous section, construction costs are highest for Alternative-2 and lowest for Alternative-4.

(2) Development potential

This factor will be judged from the total length of the berth and area to be secured in the long-term plan. Based on a very rough estimation of the length of the reserved quay walls considering unutilized water area, Alternative-1 and Alternative-2 have the biggest potential for future development. However, with the exception of Alternative-3, the difference in length among the quay walls is fractional.

- 87 -

(3) Maneuvering ability of ships

Especially, in the case of Alternative-2, vessels must turn near the entrance of the harbor in order to approach the eastern side berth.

(4) Calmness of the basin

With the exception of Alternative-1, the difference in calmness at the berth side among the alternatives is small.

(5) Functional connection

In the case of Alternative-1 and Alternative-5, reclaimed areas are apart from each other.

(6) Connection to land transportation

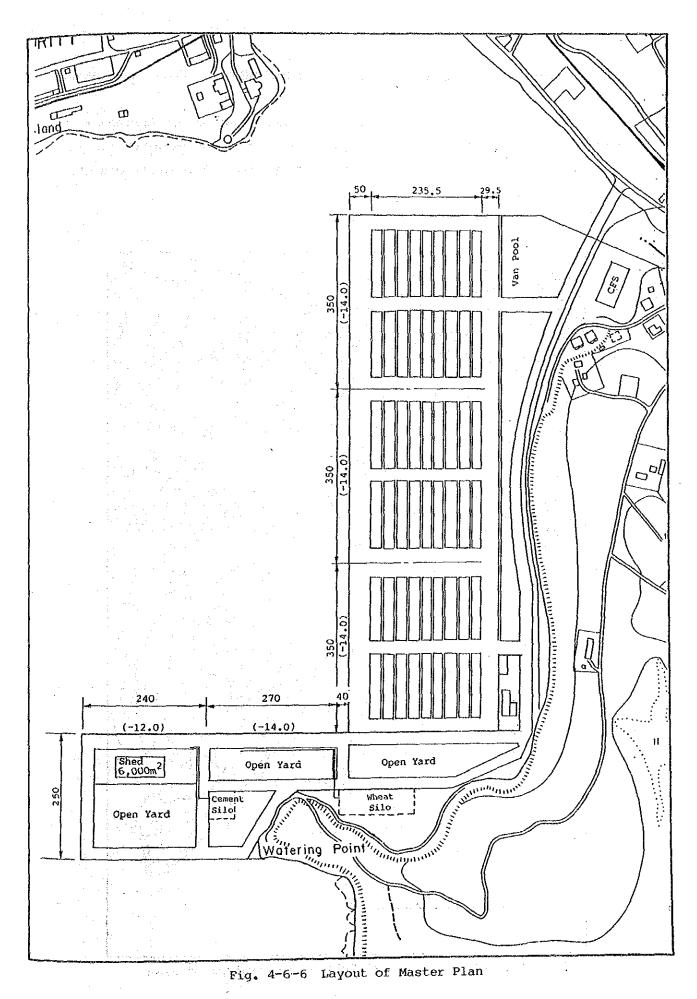
In the case of Alternative-1, in which the front of the city center is reclaimed, the connecting point between the access road and the main road is established near the city center, causing traffic problems.

(7) Environmental aspect

The Fort is a living monument and it is believed on the Sri Lankan side that it should be preserved.

(8) Relationship with short-term development plan

According to a very rough estimation of the initial cost for the short term development plan, Alternative-5 is the cheapest, followed by Alternative-4.


(9) Comprehensive evaluation

Based on these evaluations, it is judged that alternative 4 is the best. However, alternative 5 is cost effective for the short term development plan.

معاقدت فالأخراب البراجي الأد

4-6-6 The layout Plan

The layout of the master plan is shown in the next Figure.

-89-

4-6-7 Conceptual Development Plan for the Long Term

In this section, we want to present a conceptual understanding of the bay's future from the viewpoint of port development. Our aim here is not to formulate a long-term plan but to clarify the development potential beyond the year 2005.

This concept is shown in Fig. 4-6-7.

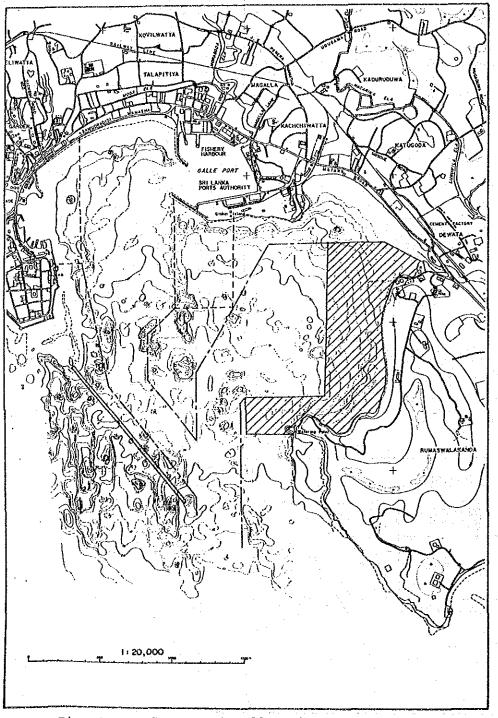


Fig. 4-6-7 Conceptual Full Scale Development Plan

4-7 Design, Rough Cost Estimation and Implementation Program

As mentioned in Section 4-6-4, the No. 4 and No.5 Proposals of the five Alternative Proposals were selected for further study, and the No. 4 Proposal was finally selected as the best-suited plan.

4-7-1 Design

The port facilities to be constructed under the Master Plan Scheme comprise

- 1) Breakwater
- 2) Quay Structures
 - a) Container Berth (planned depth -12.0 and -14.0 m)
 - . b) Grain Berth (planned depth -14.0 m)
 - c) General/Bulk Cargo Wharf (planned depth -12.0 m)
 - d) Oil Berth (planned depth -7.5 m)
- 3) Revetment
 - a) Sea Wall
 - b) Revetment

Typical cross sections for those Port Facilities are basically the same as those shown in the Part III Short Term Plan referring to the Fig. $3-2-1 \sim 3-2-6$.

4-7-2 Rough Cost Estimation

Of the Alternative Plans presented in the preceding article of 4-6, the Alternative Proposals of No. 4 is selected as the optimum Master Plan and the cost estimation is performed thereto.

The Table No. 4-7-1 account for the results of the calculation.

and the second
Table 4-7-1 Rough Cost Estimates of Master Plan Project (2005) (Alternative No. 4)

	(Alter	native No. 4)	
				jan an a
	Facility	Quanti	ty	Cost (Million US\$)
1.	Dredging			
	Rock Material	610,000	m3	42.67
	Other Material	2,170,000	mЗ	12.31
2.	Breakwater			
	Southwest Breakwater	1,300	m	83.98
3.	Quays			
	Container (-14.0m)	1,090	m	80.63
	Grain (Wheat)	270	m	17.78
	General/Bulk Cargo	240	m	16.81
	Bunker Oil	1	Sum	4.43
4.	Revetment	1,770	m	46.42
5.	Reclamation (Filling)	5,470,000	m3 [°]	59.78
6.	Pavement	565,000	m2	43.07
7.	Rail Way	1,000	m	1.08
8.	Houses Buildings	1	Sum	11.76
9.	Navigation Aids	1	Sum	0.70
10.	Utilities (Water and Electric)	1	Sum	25.00
11.	Cargo Handling Equipment			
	Container	1	Sum	69.35
	Grain	1	Sum	25.71
	Fertilizer	1	Sum	7.56
	Cement	1	Sum	1.50
	Bunker Oil (Loading arm)	1	Sum	1.30
12.	Port Service Vessels	2	Nos	6.48
13.	Contingency (6%)			33.50
	Grand Total (1~12)			592.00

4-7-3 Implementation Program

والمتعادية أيها فقحان المتعا

The target years set up in the Implementation Program are 1997 and 2005 for the Short Term and the Master Plan respectively.

The time schedule for the major items of works are explained in the Table 4-7-2.

prove and the second
Table 4-7-2 Implementing Steps for The Master Plan (Alternative No. 4)

Item		•		Ta	arget	Year		Yea	ar			Ta	rget	Year		<u>.</u>	
	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	
1.	Dredging	[1	ب			<u> </u>	į	
2.	Breakwater								}						ļ	ļ	
3.	Quay				[<u> </u>							<u> </u>		<u>i</u>	ł	
4.	Revetment			. =		þ		1		1					÷		ļ
5.	Reclamation	.					5		1		, , ,	Ē			<u>.</u>		
6.	Pavement	ļ			1					ļ	Î	[<u> </u>	ł	Į
7.	Railway					í I	1	+ T 1		1				-	+		
	Houses, Buildings	.		1		c	<u> </u>	Į			*	l		· c	<u> </u>		l
9.	Navigation Aids]	1		1		į			t T I				1		
10.	Utilities				ł	==		1					1			i i	
11.	Cargo Handling Equipment)) 2 6 6	1 1 1	c===	} 										
12.	Port Service Vessels		1			====	<u> </u>	į		į	<u> </u>			l	<u> </u>	<u> </u>	I

¹ Tell March and Provide Control of States (1997)

na se seguinte de la companya de la transforma de la companya de la companya de la companya de la companya de Esperimente de la companya de la comp

-93-

4-8 Consideration of Environmental Aspect

4-8-1 Rough Evaluation of Environmental Conditions In Galle Bay

a an an tha an an a

Not only surveyed data concerning water quality, such as COD, BOD, coliform, etc., but also other data related to environmental conditions such as air pollution, vibration and animals and plants do not exist in Galle Bay.

(1) Sewage

Drainage from houses flows directly into the public water without any treatment but is obliged to proceed through a simple treatment process in the case of feces.

(2) Garbage Disposal Yard

There are two areas for Garbage disposal in the Galle area, which are located in the North-Eastern part, and their capacities for disposal will remain sufficient for more than ten years. And this does not have any influence on the water pollution of the sea.

(3) Cultural Protection

Demolition or rebuilding of structures within the Fort are forbidden in principal by the regulations of the Archaeological Department, and also any development activity within 400 yards from the boundary of the Fort has to get approval from the same department.

(4) Maintenance of Hill Environment

The Hill of Rumassala, which is located on the eastern side of Galle Bay, has some restrictions against development. They have some relationship to religious beliefs. Some of the plants found on this hill has special medicinal values as well.

(5) Species to be Protected

It is reported that there are no specific species to be protected in the Bay.

4-8-2 Picking-up of Environmental Components to be Affected by the Port Development

na segle an sealach a shi na seo na seo na shi na seo n Ta seo na seo

Environmental characteristics of the port plan are as follows:

i) Port facilities themselves don't affect environmental conditions.

ii) However, the construction of the breakwater will result in the closed water area in which it is not easy to exchange water with the outer sea.

iii) It is possibile to assume that environmental conditions in Galle
Bay area are generally in good.

iv) On the contrary, some attention should be paid to preservation of the landscape.

Considering these characteristics, components of the environment to be affected by the port development are selected as follows:

* The air condition

Generally speaking, the volume of gas produced by ships and automobiles in the port area is comparatively less than that resulting from automobile in the area surrounding the port.

* Water quality

* Vibrations

* Oceanography, topography

* Animals, plants

* Landscape

* Others

The relationship with activities such as fisheries shall be taken into consideration.

4-8-3 Environmental Impact and Countermeasures against it

Development projects in coastal areas can cause many changes in surrounding environment. Accordingly, it is necessary to examine and exchange views about assessment of environmental influence beforehand.

-- 95 --

(1) Oceanography, topography differences in the second s

Construction of a breakwater will cause a big change in waves and currents in Gall Bay and its vicinity. It should be noted that the narrower bay mouth will become an obstacle for exchanging water with the outer sea.

When the breakwater proposed in the Master Plan is built, the waters adjacent to the river mouth will become very calm and the material discharged from the river is likely to be deposited in the relatively narrow sea area in the vicinity of the mouth. Under Alternative 4, reclamation is planned for the area extending to a point close to the river mouth and it may be necessary to undertake monitoring of possible depth changes in the neighborhood of the river mouth as a result of the construction of facilities such as breakwater and quay walls.

(2) Water quality

As describe in (1), the bay mouth will become narrower with the construction of the breakwater and it will become difficult for contaminants to be diluted and dissolved by exchanging with the outer sea. The volume of contaminants flowing into the Bay will increase with activation of many activities and reach a level such that the capacity of the Bay cannot accept them. Besides applying stricter criteria regarding discharge limits, construction of sewage disposal plants and discharging some parts of sewage into outer sea directly should also be considered.

. .

化化化学 化化学 化合金属 医静脉管 网络小麦属加美国

(3) Animals, plants

Although it is difficult to clearly determine the impact on species living in the sea and coastal area because of lack of data concerning living creatures, it is reported that there are no species that need to be protected in these area.

(4) Others

1) Fishery activity

There are some beaches now being used for berthing fishing boats as well as some water areas being used for fishery activities in the Bay. Some of them will vanish, or their use will be restricted to some extent as a result of reclamation and port activities.

2) Influence of construction activities

a) Muddiness

Some of the soil dredged for construction of the channel and basin will be abandoned near by in the outer sea area. Dredged soils originally composed of sea ground and minute articles that cause muddiness will already have been washed out. Therefore, it is anticipated that there will be little muddiness caused by abandoning dredged soils in the outer sea area.

b) Vibrations

The method used to dredge these areas is to blast rocks and boulders first and gather materials blasted by the grab next. As this method has already been applied in dredging the existing channel, it is assumed that it will not result in many problems regarding environmental conditions.

3) Traffic congestion

Port activities will result in more traffic burdens on the present road system. And yet, there are some parts of the road system around Galle Bay where smooth traffic conditions do not exists. Thus is necessary to improve road conditions such as alignment and width.

4) Landscape design

The main items to be considered for the creation of a good landscape can be listed as follows:

* Creation of landscape by making full use of characteristics of the port

* Harmonizing of many functions in the port space

a second a second s

5) Disposition for the Waste Oil

a) Types of the Waste Oil

The types of waste oil appearing during ordinary operations of

ships are mainly bilge, ballast water and tank cleaning water.

- b) International Conventions Relating to Marine Pollution The Oilpol convention's main object is to restrict discharging crude oil and heavy oil into sea. Sri Lanka has ratified this Oilpol convention.
 - Sri Lanka has not ratified this Marpol convention.
- c) Disposal Facilities for Waste Oil About 3,000 m^2 will be required for the site, including these facilities, based on actual data.

4-9 Socioeconomic Impact

The implementation of the Master Plan will bring socioeconomic impacts on the Southern Province. For example,

-It will provide direct access to overseas markets from the South ern Province: Galle, Matara and Hambantota, thereby contributing to the reorganization and rational allocation of functions at Sri Lanka's ports.

-It will allow the port of Colombo to relieve the present congestion and to accommodate future traffic demand.

-It will reduce unnecessary traffic on the national road A2 (from Colombo to Hambantota via Galle) and the railway of coast line, which otherwise might be paralyzed due to the increasing demand and progress of motorizations as a whole.

计算机 化化学

en el ne contra de

-It will enable the exploitation of the benefit of maritime containerization, thereby improving the service quality and cost condition for the shippers/consignees in Galle's hinterland.

-It will boost regional economy as the Port of Galle become a hub port on international shipping routes.

-It will contribute to the development of an Export Processing Zone (EPZ) in Kogalla in the Galle District. As the port area is developed, the number of the factories located in Kogalla, as well as production generally, will increase.

- -It will provide a growth core in the Southern Province, and contributing to revitalization of the economy through industrialization. In particular, the cement factory behind the port and the flour mill to be located near the port will be developed in the near future.
- -It will have a good effect on agriculture in the Southern Province due to savings in land transportation costs, compared with to and from Colombo.
- -Finally, construction and management of the port combined with the development of local industries, will increase employment opportunities, thereby raising income levels in the Southern Province.

Clearly, the development of the Port of Galle will lead to ongoing regional expansion in the Southern Province.

-99-

PART III SHORT TERM PLAN AND FEASIBILITY STUDY

1 PLANNING PREMISES

In the preparation of the Short-term Development Plan, we incorporated the urgent plan.

and the stage of the state of the set

1-1 Cargo volume

.

Table 1-1-1 shows the total cargo throughput at the Port of Galle.

	· · ·		
			1997
	Bulk	('000 Tons)	378
Discharged	Break Bulk	('000 Tons)	202
	Container	('000 TEUs)	13
Loaded	Break Bulk	(*000 Tons)	17
	Container	('000 TEUs)	23
	Bulk	('000 Tons)	378
Sub Total	Break Bulk	('000 Tons)	219
	Container	('000 TEUs)	36
Ttansshipment	Container	('000 TEUS)	190
Total	Conventional	('000 Tons)	597
	Container	(*000 TEUs)	· 226

Table 1-1-1 Total Cargo Throughput at the Port of Galle

1-2 Vessel Size and Berth Dimensions

(1) Container Cargo

Size of objective vessel is set as the same as that of 2005.

And 12,000DWT, 500TEU type is adopted as objective feeder vessel size. Accordingly, the required berth dimensions are as follows :

Container berth length	=	330 - 350m	Depth	=		14m	
Feeder berth length	=	170m	Depth	n	-	9m	

-101-

In the case of Short-term Development Plan, 330m is adopted as the length of container berth.

(2) Bulk Cargo

30,000 DWT is adopted as the maximum vessel size and the required berth dimension is as follows :

Berth Length = 240m Depth = -12m

(3) Others

According to the plan of the Ceylon Petroleum Corporation, the vessel size is set to be 5,000 DWT.

Depth =

7.5m

Berth Length = 120m

2 MAIN FACILITY PLAN

2-1 Berths

2-1-1 Container Berth

The volume of container cargo to be handled at the Port of Galle is expected to be 226,000 TEUs in 1997.

Although more than one berth is required based on the calculated berth occupancy rate, two full-scale berths will provide more than enough capacity.

Therefore, it can be judged that one berth for a mother vessel and one berth for a feeder vessel will be required.

2-1-2 General/Bulk Cargo Berth

We have planned a General/Bulk Cargo Berth that can be used for handling break bulk, wheat, fertilizer and clinker.

Based on the calculated berth occupancy rate, it is judged that one berth is enough.

2-1-3 Oil Berth

4 .

One oil products berth is planned for accommodating a 5,000 DWT tanker and bunkering inside the existing breakwater.

2-1-4 Summary

Through the calculations described above, the following facilities are planned:

Berth	Objective	Vessel	Length	Depth	Number
Container Berth	50,000	DWT	330	- 14	1
	12,000	DWT	170	- 9	1
General/Bulk Cargo Ber	h 30,000	DWT	240	- 12	. 1
Oil Berth		DWT	120	- 7.5	1

-103-

2-2 Storage Facilities/Handling Equipment

2-2-1 Container Berth

(1) Handling System

For the container berth, a lift-on, lift-off system on the quay wall and a transfer crane system will be applied. For a feeder berth, however, loading and unloading containers will be carried out by ship gears. In this case, cargo handling between the apron and the yard will be done by a top lifter and tractor-trailers.

(2) Container Yard

The required number of ground slots under the same conditions taken in 2005 is calculated to be around 2000.

Sharen tari di

the second state of the second

- (3) Container Freight Station 2,025m³
- (4) Cargo Handling Equipment

Container crane
Transfer crane
Tractor - Trailer
Tractor
Trailer
Top Lifter (40 ton)
Folk Lift (2 ton)

(5) Others

Administration Office	800 m ²
Maintenance Shop	$1000 m^2$
Cleaning Facilities	$400 m^2$

2-2-2 General/Bulk Cargo Berth

(1) Handling System

The volume of fertilizer, clinker and wheat to be handled at this berth is not enough to install some special handling equipment at quay side. Then, unloading of these bulk cargoes and handling of break bulk cargo will be carried out by ship gears. Fertilizer after bagging and break bulk will be stored at the shed, and wheat will be stored at the silo, while most of the clinker will be directly delivered to the outside the port. Handling cargoes between the apron and the storage facilities will be done by forklifts and trucks.

(2) Scale of Storage Facilities

	Shed	4,000m ²
n an an an	Silo	30,000Ton

(3) Cargo Handling Equipment

Fork Lifts	(3	ton)	11	Units
Packer			3	Units
 Hopper	÷		3	Units
Trucks			б	Units

2-3 Other Facilities

2-3-1 Breakwater, Channel

As the maximum objective vessel is assumed as in 2005, the same scale of the channel will be planned.

2-3-2 Land Transportation Facilities

(1) Road

Taking the same procedure in 2005, it is planned to have a twolanes road.

(2) Railway

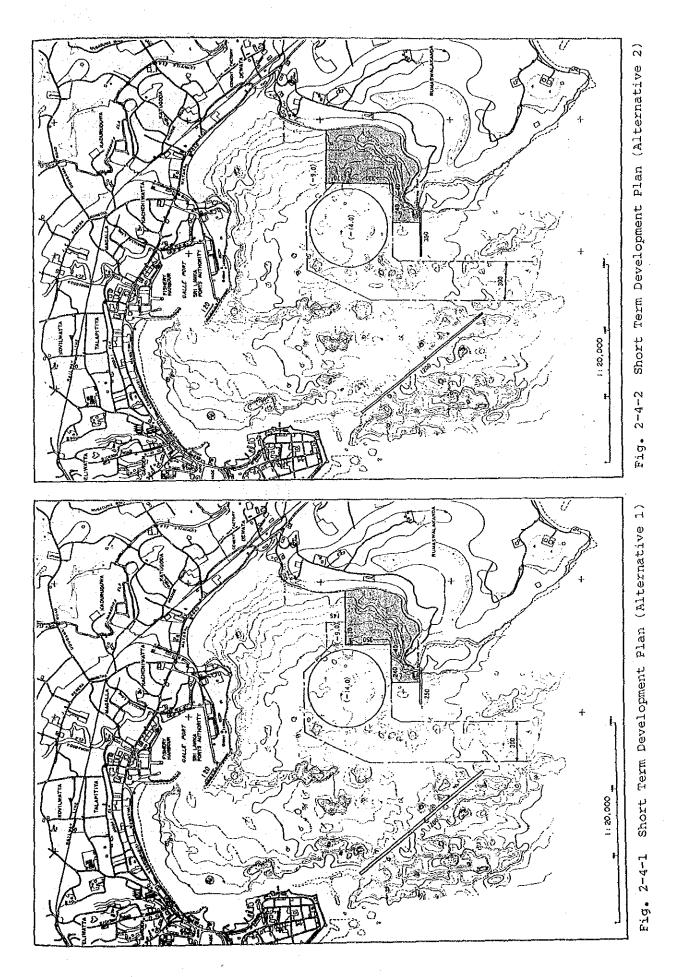
As it is considered that the railway system will be introduced after 1997, necessary space is reserved in this plan.

2-3-3 Navigational Aids

Light Beacon	4
Light Buoy	12
Light Guide post	1

2-4 Alternative

2-4-1 Formulation of Alternatives


There are only two alternatives on the location for a feeder berths.

Alternative 1. Alternative for Cost Saving

A feeder berth will be constructed using the northern revetment of the container berth as shown in Fig. 2-4-1. There is little wave influence in front of the feeder berth, and it is now around eight metres in depth. And the required length of the Southwest Breakwater and the East Breakwater are 1200m and 250m respectively. Therefore, it would cost less comparing with Alternative 2. However, at the stage of the next expansion, the feeder berth will become useless. In this case, the length of the container berth will be 350m considering some space for handling feeder cargo at the side.

Alternative 2. Alternative for future plan connection.

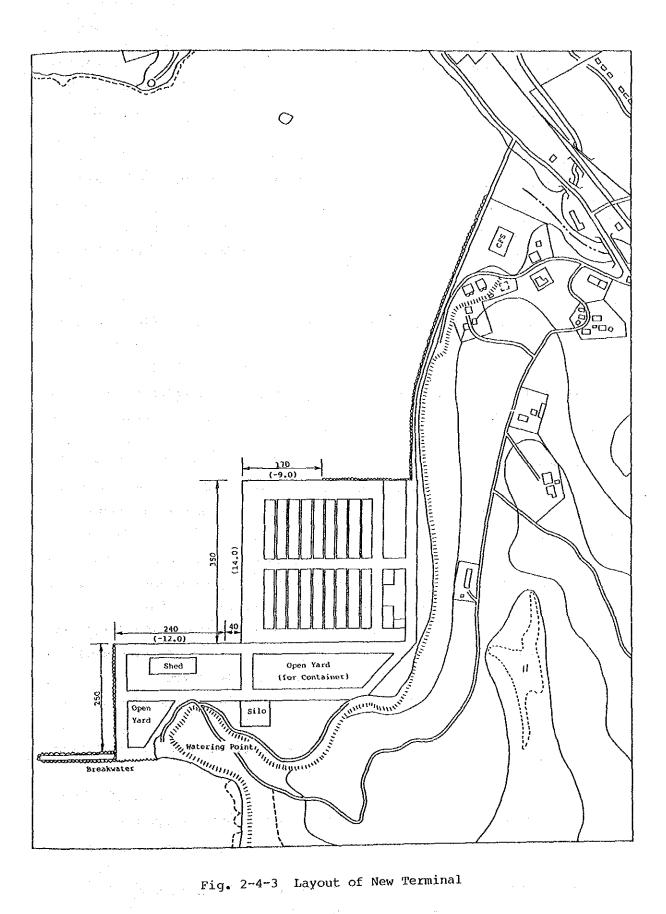
The second container berth in the master plan will be constructed north of the first berth as shown in Fig. 2-4-2. In continuously, this alternative, section of the second berth will be one To secure the required tranquility constructed as a feeder berth. necessary to invest more in in front of the feeder berth, it is lengths to be prolonged construction of the East breakwater. The is 100m. since the depth of the bed rock becomes Further, shallower in the northern part, the cost of dredging will increase. However, development in the following phase should prove less difficult.

-107-

2-4-2 Study of calmness

A computer-aided simulation analysis has been undertaken to determine the effect on the calmness of the inner harbor with respect to the two alternative plan layouts.

From these examination, it is judged that there are not so much differences between two alternatives in terms of calmness in front of quay walls.


2-4-3 Evaluation

As mentioned in 2-4-1, each alternative has several merits and demerits. The main merit of Alternative 1 is cheaper cost for the time being and that of Alternative 2 is easy connection to future development.

As the amount of initial cost of the short term plan is great, cost saving is the most important point to be considered for the time being. Therefore, Alternative 1 is recommended to be taken as the short term development plan.

2-4-4 Layout

Layout plan of new terminal is shown in Fig 2-4-3.

3 PRELIMINARY DESIGN

3-1 Design Criteria

(1) Tide Levels

Mean High Water Level	+ 0.60 m
Mean Sea Level	+ 0.34 m
Mean Low Water Level	+ 0.10 m
Datum Level	<u>+</u> 0.00 m

(2) Waves

The design wave characteristics with a 50-year return period have been defined as follows

Direction	Height (Ho')	<u>Height (H1/3)</u>	Period
W - S	5.5 m	5.1 m	9.5Sec

(3) Geology

The geology of the Port and Bay of Galle and adjacent areas consists primarily of a gneiss formation as the dedrock which is partly overlain by laterite layers.

At the location where the Southwest Breakwater is to be constructed sediments are formed to a limited extent and the substratum is consists primarily of relatively well graded sand and gravel.

At the proposed construction sites of the General Cargo Wharf and East Breakwater, however, the substratum is composed primarily of silty sand and cohesive clay layers (N - Value = 0 - 1) of about 10m thick.

(4) Earthquake

Earthquake are not considered in the design of the Project facilities.

(5) Wind

A wind speed of 40m/sec has been adopted for design purposes.

(6) Design ship Characteristics

1) Container Ship	50,000 DWT	12,000 DWT
2) General/Bulk Cargo Ship	30,000 DWT	
3) Tunker	5,000 DWT	

(7) Crown Height of Quays and Breakwater

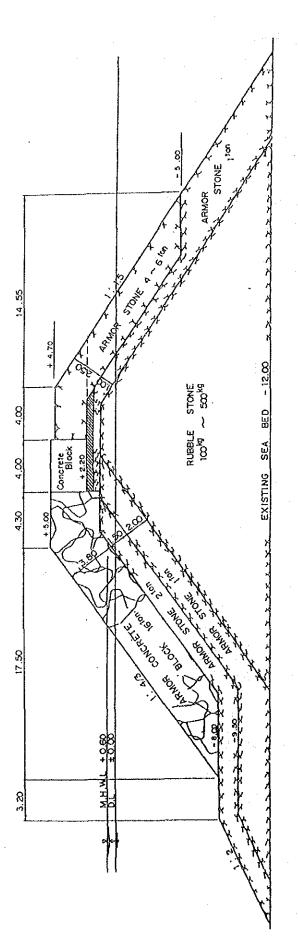
For quays with a depth alongside of -7.5 m or more: +8.25 ft (+2.5m)For breakwater: +5.0 m

3-2 Preliminary Design

Preliminary designs have been undertaken with respect to the following port facilities proposed under the plan.

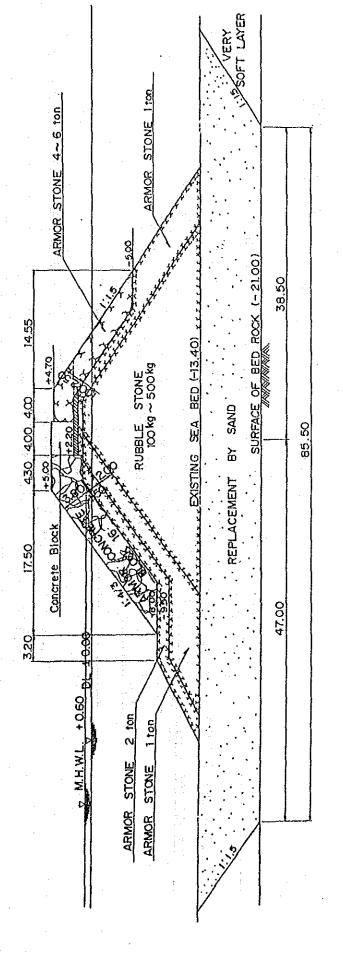
Proposed Port Facilities

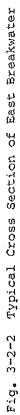
Facilities	Length (m)	Depth (m)
1) Breakwater		
- Southwest	1,200	Existing Water Depth
- East	250	Alongside
2) Container Berth *	350	-14.0
3) Feeder Berth	170	-9.0
4) General/Bulk Cargo Berth	240	-12,0
		(~14.0)
5) Oil Berth	120	-7.5
6) Transitional part	40	-14.0
7) Revetment on south side	250	Existing Water Depth
8) Revetment on north side	230	Existing Water Depth

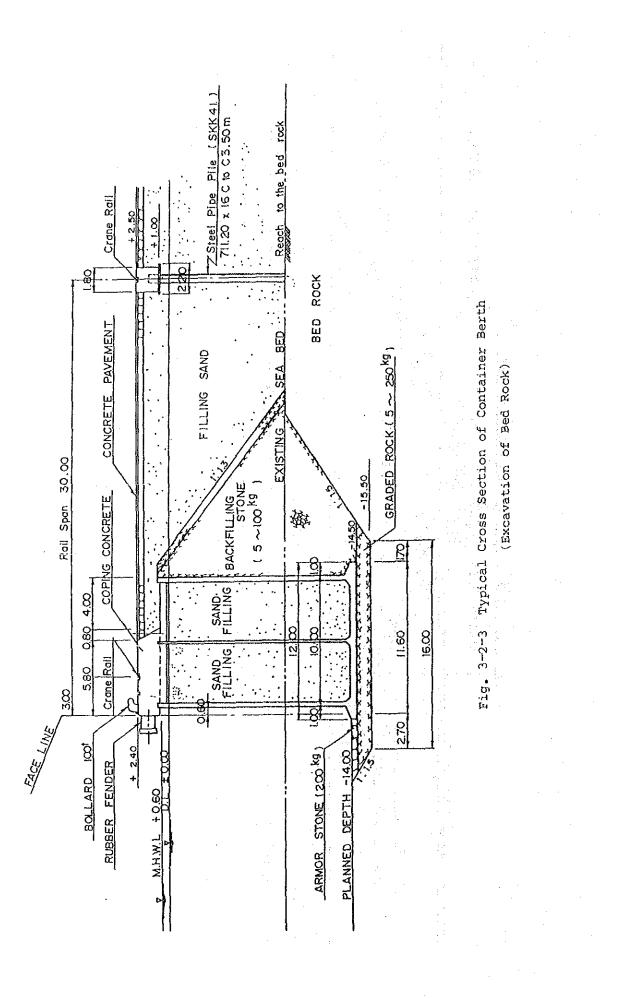

Notes:

1. Figure in brackets indicate the design depth alongside the quay

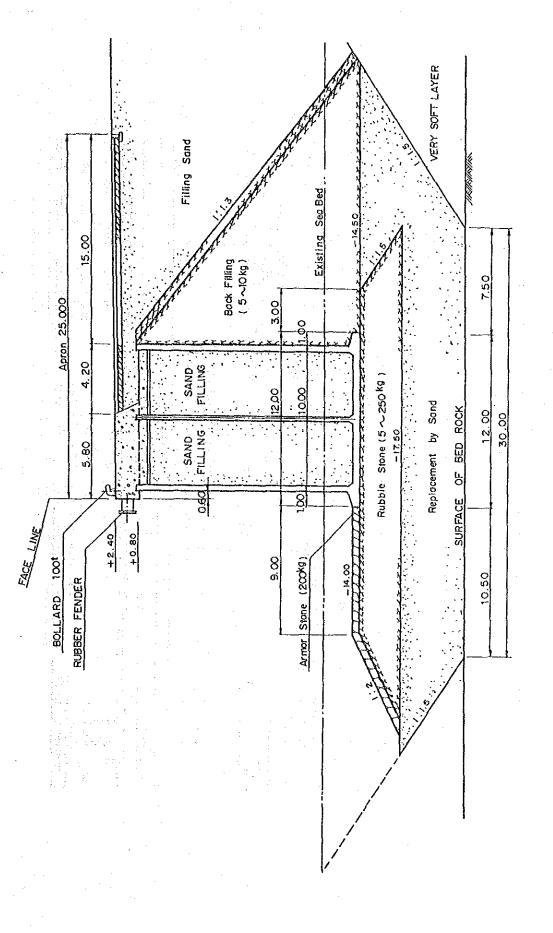
2. The berth marked with Asterisk (*) is to be equipped with a crane


Typical cross section of main port facilities are as shown in Fig. 3-2-1 - 3-2-6.


-111-



en di yana da bi shi shi



-113-

-114-

-115-

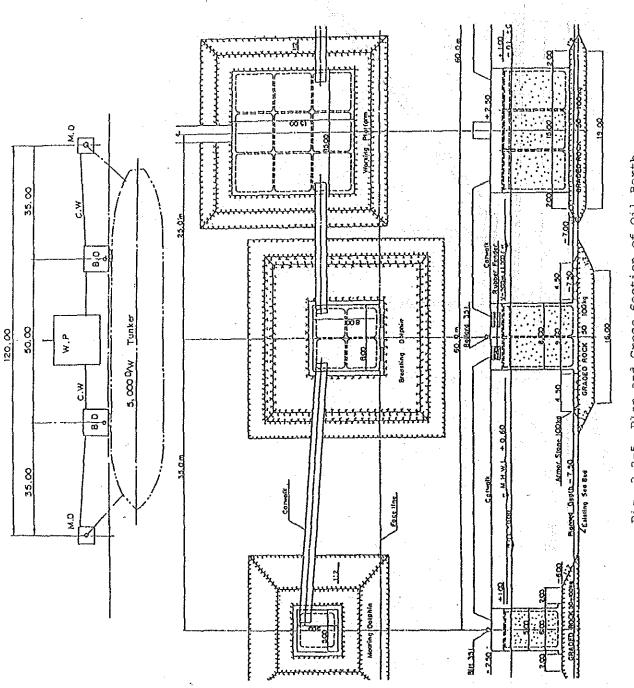


Fig. 3-2-5 Plan and Cross Section of Oil Berth

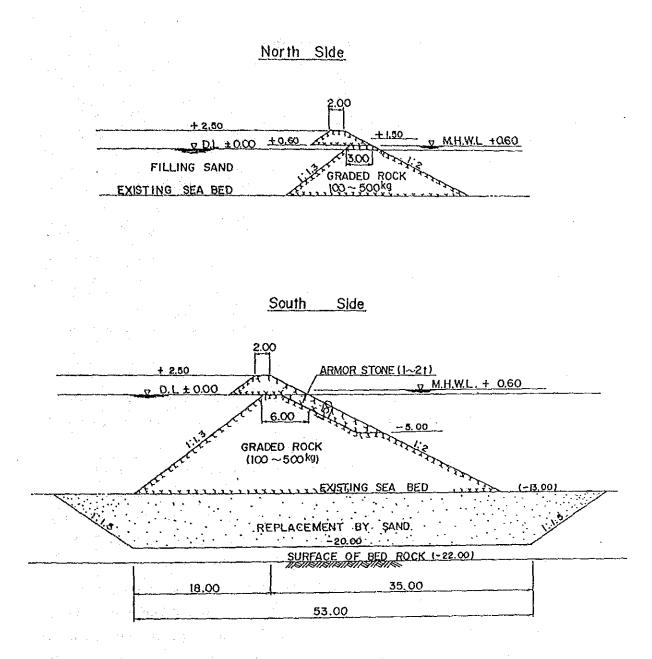


Fig. 3-2-6 Typical Cross Section of Revetment

-117-

4 IMPLEMENTATION PROGRAM AND COST ESTIMATION

4-1 Implementation Program

4-1-1 Construction Schedule

Fig. 4-1-1 provides a detailed explanation of the time schedule of construction.

4-1-2 Construction of Breakwater

The following description has relevance to the breakwater construction.

Looking toward the Indian Ocean, Galle Bay is exposed to southerly swells more than 0.5 meter high all the year round. Moreover, wind waves of 1.5 m or more in height reach the bay from S to SW directions during the five southwest monsoon months of May to September.

Wind speeds of 10 m/sec or more and significant wave heights of 0.3 to 0.5 m or more are generally considered critical physical conditions which render harbour works and other marine construction activities impractical. By this standard, the proposed breakwater works in Galle Port will be affected to a greater or lesser degree throughout the year.

The numbers of days available for construction operations as determined on the basis of wave heights in and around the port are as indicated in Table 4-1-1. In this table, the wave heights of less than 1.5 m are considered to permit construction activities to be carried out, though with reduced efficiency, without interruptions.

The available days in the tabulation are for offshore or coastal construction operations. For shore works the number of available days is assumed to be increased by nearly 80 days, which may vary depending on the type of work.

					19	92				·····			1	993									199	94		÷		T				19	95				Γ	~ <u>.</u>			19	96				- <u>T</u> -			•	1997	1							19	198			
Description	Quantity	1 2	3	4 !			3 9	10 1	12	1	2 3	4	5 6	77	8	9 1	0 1	1 12	1	2	3 4	5			8 9	10	111	2 1	2	3	4 5			8 9	10	II	12	1 2	3	4			89	10	11 12	21	2	3 4				9 1	011	12	12	3	4			89) 10	11 12
1. Temporary Horks	1 Sum						**						T			T		T													Τ	T														1				Τ			Ī					Τ		T		
2. Dredging	1,585,000 m3																				her	Mat	eri	<u></u>	1,16	53,0	R R	ack 3)	Hat			422	,000 	<u></u>	T		-	=			=		=		-								Τ			Π						
3. Breakwater	1,450 m																									Ē				nith	East	t <u>Br</u> t	eaki eaki	ate	r_(2	1.20 250m	10m) ()	T	F		=	Ħ				+	F		H	=	-		+								1	
4. Container Berth (-14.0 ^H)	350 +																1											;;			-	-									╪	$\left \right $																				
5. Feeder Berth (-9.0 ^M)	170 *																				1				-																Ŧ												T		T		T					
6. General/Bulk Cargo Berth (-12.0M)	280 *		1															1				-			+			-			+	-					===	-																		\top				-		
7. 011 Berth (-7.5 ^H)	120 +												1																					ŀ									-	Ħ				1	Π				1				T					Π
8. Revetment	480. +											$\uparrow \uparrow$				F	+	+	Ħ		uith I	(2)	50m) 	4		E		Nor	<u>th (</u>	230	_ m)							· :				Π				Ì		1	\square	-			1-								1	
9. Reclamation	2,530,000 m3							+								₹					-	=		1	-	H									F	H	1	=			1			\prod					\square												1	
10, Pavezent	283,000 m ²										1.					1										†-†			F		╞	ŧ			‡-	Pave	ment F	t –	E					Ħ	=	1													Π			
11. Navigation Aids	1 Sum				1								+	\square		╈									1	†1																Ì		F					\square													
12. Administration Building	800 m ²									Ţ.			╈	\square		1										Τt		Τ	T			T		1	Ħ	Ħ	-				- -	Ħ	-	Ħ	=								1						Π			
13. Transit Shed	4,000 +															1		-			-											1					-	-	╞╡		-		-		=	Τ		1	П			Π					-					
14. Maintenance Shop	1,000 *			┝╼╌┠╼												╧						1	┟╌┨					1				1	╞╼┼				-	1			-	Ħ	-		=								Τ	\prod								
15. C.F.S.	2,025 *	┝╌╂╴							╋				-				\uparrow																					-					-		=	1		1					1									Π
16. Cleaning Facilities	400 +				1		-				1					Ť		1														-	┝─┼					-			1	Ħ			=					T												Π
17. Utilities	1 Sum	┝─┼╴			┦─	╏╌┠╴				┝━╋	1				╞─┼	-		╞				†-										Ē		+							+	H		H		+-		Ť							T			T				Π
18. Procurement of Equipment	1 *	┝╼┼╸		┝╾╂╴	-[╞╌┠╴					\uparrow						1			┝╼╌╊╴	1	†-									F			-	F	Ħ		<u>.c.</u> a			+	╞╡	=	冒			- ther	Equ	ipme	- enț				\prod	Τ	\top			Π			
19. Procurement of Port Service Vessels	1 *	┝┼			1-		\uparrow						+	T		\uparrow	1	t			T	T	-[1	[]		F			1	1	F†		ŧ	<u>2-</u> Th	ug-F	Boat			+	Ħ	-	╞╡	+			Ţ		╈		\square	T	Π				Ţ	T		T	Π
								┝╍╋╍				┼╍┤			┝┈┟		╈	+-		-+		+-										+		1				1								T				T		\square		\prod								\prod
21. Engineering Services	1 Sum	┝╍╋╸			1											_	1	1							1						1												1	╞┼	1	1			H	=	+-		╞	Ħ	╈	\uparrow			\square			\prod

Fig. 4-1-1 Construction Schedule of Short Term Plan

-119-

and the second		anga yang basar san	Wave He	ight	an a	Available
Season		\sim 0.49 m	$0.5~m\sim$	1.0 m \sim	1,5 m ~	Working
			0,99 m	1.49 m		Days
Month	Total Days	Ø	₿	O	Ø	Total $\bigcirc \sim \bigcirc$
March -	61		15 days	34 days	12 days	49 days
April			(24,6%)	(55,7%)	(19.7%)	(80.3%)
May - September	153	-		4 days (2.6%)	149 days (97.4%)	4 days (2.6%)
October -	61	-	9 days	27 days	25 days	36 days
November			(14.8%)	(44.3%)	(40.9%)	(59.0%)
December -	90		43 days	45 days	2 days	88 days
February		· · · ·	(47.8%)	(50.0%)	(2.28)	(97.8%)
Total	365		67 days	110 days	188 days	177 days
			(18.4%)	(30,1%)	(51.5%)	(48.5%)

Table 4-1-1 Available Working Days

The major construction materials for the breakwater construction include stones and concrete blocks, all of which will have to be transported from the stock yard onshore for incorporation into the construction works.

Instead of joint operation of plural working crafts, operation of a singles barge is planned to minimize idle time due to high waves. One unit each of floating crane and rock barge will be used for placing concrete blocks and stones.

The Southwest Breakwater construction will experience five monsoon seasons throughout the construction period, while the works on the East Breakwater will undergo two monsoons during the construction. Protection and reinforcement works on the tips of the structures are to be executed before the monsoon seasons come in order to avoid damage.

-121-

4-2-1 Conditions of Cost Estimate

- (1) The construction cost is broken-down into foreign and local currency portions at the exchange rate of US\$ 1.00 = Rs 41.00 = 138.85 quoted during the Third Filed Survey.
- (2) The import duties assessable on materials, equipment and plant to be imported into Sri Lanka are not included in the cost estimates.
- (3) The transaction tax (BTT) to be levied on materials and fuels obtainable from local sources is not included in the cost estimates.
- (4) The contract tax considered in the cost estimates is as follows:
 Construction and procurement cost 3%
 Engineering Services 5%
- (5) Physical Contingency of 6% is included in the construction cost except for the costs of container handling equipment and engineering services. No price escalation is considered in the cost estimate.

4-2-2 Project Cost

The construction cost for the Short Term Plan is given in Table 4-2-1. The total construction cost for the Short Term Plan amounts to US\$ 334,612,000 broken down into US\$ 245,291,000 for the foreign currency component and US\$ 89,321,000 for the local currency component.

Table 4-2-2 gives the annual investment plan extending from 1992 to 1997.

Table	4-2-1	Construction	Cost	of	Short	Torm	Dlan
Lang		construction	COSC	ŬĽ.	DIULL	rerm	Plan
							IInft

•	Description	Quantity	Unit	Const	truction C	ost	Remarks	
		quaitoroj	QUEO	Foreign	Local	Total	Rengt KS	
		210,000	m3	10,992	3,699	14,691	Basin	
	Dredging of Rocks	212,000		11,096	3,734	14,830	Channel	
1		887,000	*	4,616	416	5,032	Basin	
		276,000	*	1,436	130	1,566	Channel	
	Southwest Breakwater	1,200	m	57,710	19,808	77,518		
	East Breakwater	165	4	11,797	3,379	15,176		
	East Seawall	85	4	4,683	1,542	6,225		
ba	Container Berth (-14.0M)	350	4	17,463	8,428	25,891		
- Ho	Feeder Berth (- 9.0 ^M)	170	"	4,172	2,108	6,280	-	
and Buildin	General/Bulk Cargo Berth (-12.0 ^M)	280	"	12,694	6,917	19,611	Including Transitionnal Part	
	011 Berth (-7.5 ^M)	120	4	3,135	1,290	4,425		
Civil	Revetment	480	"	8,800	3,788	12,588	North and South Side	
Construction	Reclamation (Yard and Road)	2,530,000	m3	19,371	2,747	22,118		
	Pavement (Yard and Road)	283,000	m2	11,794	7;378	19,172		
	Bridge	60	m	1,684	718	2,402	· · · · · · · · · · · · · · · · · · ·	
	Navigation Aids	1	Sum	494	198	692		
	Administration Building	800	m2	182	738	920	[
	Transit Shed	4,000		310	1,734	2,044		
	Maintenance Shop	1,000	"	112	635	747		
	C.F.S.	2,025	<i>"</i>	205	819	1,024		
	Cleaning Facilities	400	*	37	212	249		
	Utilities (Water Supply)	1	Sum	2,350	265	2,615		
	<pre>% (Electric Supply Computer System)</pre>	1	4	5,485	619	6,104		
	Sub-Total (1)			190,618	71,302	261,920	· · · · · · · · · · · · · · · · · · ·	
pt	Container Cargo Handling Equipment	1	Sum	22,514	-	22,514	··	
curement	Cargo Handling Equipment for General/Bulk Cargo Berth	1	"	886	86	972		
	For Oil Berth	1	4	-117	- 13	130		
д А	Port Service Vessels (Tugboat)	1	*	6,482	-	6,482		
	Sub-Total (2)			29,999	99	30,098		
	Total (1) + (2)			220,617	71,401	292,018		
	Engineering Service	1	Sum	13,237	3,570	16,807	Foreign 6% Local 5%	
	Physical Contingency	Sub-Total (1) \times 6%		11,437	4,278	15,715	0	
	Tax		· ·		10,072	10,072	Construciton & Procurement 3% E/S 5%	
	Grand Total	h		245,291	89,321	334,612	<u> </u>	

-123-

.

Table 4-2-2 Annual Investiment Plan (Short Term)

Local Total Total <th< th=""><th></th><th></th><th></th><th></th><th>L F</th><th></th><th>,</th><th></th><th></th><th>- H</th><th>- ŀ-</th><th></th><th>- H</th><th></th><th>. F</th><th>- F</th><th></th><th>F</th><th>h h</th><th>-</th><th></th><th>Total</th></th<>					L F		,			- H	- ŀ-		- H		. F	- F		F	h h	-		Total
5 5 5 5 5 5 5 5 5 5 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 Civil and Building	Foreign	Local	Total F	~	- 1		_			Local	Total		Local To	-	-+-		L Foreign	_	Local
1 2.310 3.711 2.701 3.741 1.365 2.561 1.465 2.711 2.7	5.260 1.261 5.261 1.261 5.261 1.261 5.261 1.261 5.261 1.261 5.261 1.261 5.261 1.261 5.261 1.261 5.261 1.261 5.261 1.261 5.261 1.261 <th< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>1. Dredging for Basin</td><td></td><td></td><td></td><td>J. 1</td><td></td><td>11</td><td></td><td>210 5,14</td><td></td><td>1,168</td><td>4,639</td><td></td><td>1,071 4</td><td>,253</td><td> -</td><td></td><td>15,50</td><td></td><td>E</td></th<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1. Dredging for Basin				J. 1		11		210 5,14		1,168	4,639		1,071 4	,253	-		15,50		E
1 2							F I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		192 1,8		1,179	4,683		1,081 4						ŏ
1 1731 2,108 1,539 1,128 6,539 1,128 6,539 1,129 1,633 1,129 6,539 1,126 6,539 1,126 1,129 1,13	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3. Southwest Breakwater						1	- I	283 16, 71		4,263	16, 761		4,283 16			14.66			×,
4, 553 1, 177 5, 174 1, 605 5, 514 7, 413 3, 161 3, 173 1, 100 6, 221 3, 100 9, 230 1, 173 1, 174 1, 174 1, 175 1, 174 1, 174 1, 176 1, 175 1, 176 1, 175 1, 176<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4. East Breakwater						- 1		534 11.3		17E9	2 866				+	-	2.1		λī
1 5 0.01 2.102 1.020 5.010 <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>5. East Seawall</td> <td></td> <td></td> <td>╉</td> <td>_£</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>1</td> <td>- 1</td> <td></td> <td>┦</td> <td>4</td> <td></td> <td></td> <td>ňΡ</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5. East Seawall			╉	_£	1						-	1	- 1		┦	4			ňΡ
1 7.201 7.401 7.616 7.10 <th< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>5. Container Berth (-14, 04)</td><td></td><td></td><td></td><td>╉</td><td>+</td><td>-</td><td></td><td></td><td></td><td></td><td>11.090</td><td></td><td></td><td>142</td><td>ł</td><td>+</td><td>54°</td><td>İ.</td><td>÷</td></th<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5. Container Berth (-14, 04)				╉	+	-					11.090			142	ł	+	54°	İ.	÷
1.727 5.20 9.57 7.53 1.068 7.53 1.068 7.53 1.068 7.53 1.068 7.53 1.068 7.53 1.068 7.53 1.068 7.53 1.068 1.77 1.07 1.77 1.07 1.77 1.07 1.75 1.01 1.77 1.01 1.77 1.01 1.77 1.01 1.77 1.01 1.01 1.77 1.01 1.01 1.02 1.01	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					╞	-	ľ			1	1		_1 .	1	201	╀	╏	102 61		≍lò
1,727 6.73 2.607 7.533 1.068 3.601 7.633 1.068 5.611 7.733 1.068 3.601 1.773 673 1.080 1.173 1.1773 1.1773 1.1773 1.1773 1.1173 1.1773 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.122 1.1173 1.122 1.123 1.1173 1.1173 1.123 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173 1.1173	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				+		+		Ł		1	_			- E.,	1521	╀	+		1	niā
3.729 169 7.533 1,056 8,601 7.533 1,056 5,611 2,725 9,170 10 11,734 1 </td <td>3.230 495 3.687 7.533 1.066 8.601 7.533 1.066 7.601 7</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>10. Revetuent</td> <td></td> <td></td> <td>+</td> <td>1.727</td> <td><u>+</u></td> <td>1</td> <td>i.</td> <td></td> <td>1</td> <td></td> <td>Ł</td> <td></td> <td>1</td> <td> </td> <td> -</td> <td></td> <td>8.8</td> <td></td> <td>117.7</td>	3.230 495 3.687 7.533 1.066 8.601 7.533 1.066 7.601 7	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10. Revetuent			+	1.727	<u>+</u>	1	i.		1		Ł		1		-		8.8		117.7
1 1 2 2 3 3 3 3 3 3 3 3 1 1 3 1	1.1 1.1 <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>11. Reclaration (Yard and Road)</td> <td></td> <td></td> <td></td> <td>3, 229</td> <td></td> <td>ł</td> <td>1 i</td> <td></td> <td></td> <td>I</td> <td>8,601</td> <td>t </td> <td>1 1</td> <td>.229</td> <td></td> <td></td> <td>19,37</td> <td></td> <td></td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11. Reclaration (Yard and Road)				3, 229		ł	1 i			I	8,601	t	1 1	.229			19,37		
1 1	1 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12. Pavement (Yard and Road)									6, 15.		10, 002		6 1	, 170 {			11.75		
1 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-						L			1.1	, 402			1,6		
10 100	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14. Mavigation Aids				-								464	1	692		-	Ť		
10 17.04 17.05 17.04 17.05 17.04 17.05 17	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15. Administration Building						-		•			161	143		222		-	¥-	1.1	
112 653 747 112 633 737 112 137 212 2390 371 <td>1 1</td> <td>1 1</td> <td>16. Transit Shed</td> <td></td> <td>310</td> <td></td> <td>, O44</td> <td>-</td> <td></td> <td>E</td> <td></td> <td></td>	1 1	1 1	16. Transit Shed												310		, O44	-		E		
And Land TTG Land TTG Land Land <thland< th=""> Lan</thland<>	No. No. <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>17. Maintenance Shop</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>112</td> <td></td> <td>747</td> <td></td> <td></td> <td>44</td> <td></td> <td></td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17. Maintenance Shop					-							112		747			44		
31 21 21 249 1,1651 2 2 31	26,925 7,114 34,095 51,911 3,746 3,746 3,746 3,746 3,747 1,655 5,495 26,925 7,114 34,095 51,911 3,771 1,455 1,165 3,746 3,747 1,455 190,618 26,925 7,114 34,095 51,911 1,755 1,755 1,755 1,195 1,195 1,195 1,195 26,925 7,114 34,095 51,911 1,553 1,255 1,195 1,195 1,195 1,195 23,210 23,210 23,21 3,211 1,11 13 1,195 1,195 1,195 3,310 1,105 2,206 5,161 16,17 3,229 1,267 4,165 2,059 3,310 1,105 1,203 2,250 2,501 2,505 2,501 2,505 2,505 2,505 3,310 1,103 1,203 2,250 2,501 2,505 1,551 1,11 1,103 1,145 3,310 1,105 2,303 2,505 2,501 2,505 2,505 2,505 2,505 2,505 2,505 3,310 1,103 2,313 1,103 1,103 2,105 1,1,103	3.3 3.1 3.12 3.2 3.9 3.44 91 3.55 5.465 5.465 3.6 5.6 5.6 5.6 5.7 3.6 5.7 5.7 5.5 5.7 5.7 5.7 5.4 5.465 5.465 5.465 5.7 <	18. C.F.S.											220	161	. 1	80#			Ň		
26.6 98 94.4 14.04 15.1 2.355 1.0.918 3.747 14.66 19.085 26,935 7.117a 34.093 51.941 11.651 2021 229 3.365 10.918 3.747 14.665 190.618 26,935 7.117a 34.093 51.941 11.651 7.634 3.429 3.469 3.747 14.665 190.618 26,935 7.17a 34.09 51.941 11.611 11.451 11.451 19.08 26,935 7.634 7.634 7.634 7.634 7.634 11.451 11.451 19.09 26,935 51.812 28.943 7.634 7.634 7.634 19.235 19.235 17.77 3.429 26.925 51.941 17.634 99 91.232 19.723 19.723 19.723 3.310 1.013 3.741 3.429 91.923 17.425 5.206 5.241 2.211 13.211 19.723 19.723 19.723	1 1	26,955 7,118 34,059 51,951 2,020 22,859 3,1461 91 3,555 1,455 91 3,555 1,455 91 3,555 1,4	19. Cleaning Facilities				-			_					37	1	249	-	_	aire		
26,925 7.118 34,099 51.941 17.635 69,376 57.812 2021 228 2.925 10.916 3.747 14.665 190.618 26,925 7.118 34,099 51.941 17.635 69,576 53.812 20.943 74.75 87.022 21.803 66.385 10.918 3.747 14.665 199.095 3.429 26,925 7.634 7.634 7.634 7.634 7.634 11.451 11.451 1.950 3.429 26,925 7.634 7.634 7.634 7.634 17.73 3.429 3.429 3.429 3.429 26,925 6.9576 5.467 2.043 7.178 3.429 3.471 14.665 20.959 3.231 4.203 4.203 5.104 2.423 0.116 3.747 14.665 20.959 3.231 4.203 1.17 3.243 11.451 11.17 3.473 3.473 14.665 20.659 3.473 3.473 3.473	26,405 7.178 34,039 51,941 17,634 7.635 7.635 7.634 7.634 7.634 7.635	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20. Utilities (Water Supply)									88			1,484		, 651			5°3		
26,925 7.178 34,039 51,941 17.635 59,516 53,812 20,933 74,752 21,803 56,3355 10,916 3,747 14,665 190,618 7 63 7,634 7,634 7,634 7,634 11,451 11,451 19,056 86 7 63 7,634 7,634 7,634 3,429 3,429 3,429 3,429 86 97 886 8 972 88 972 886 98 999 86 93 4,129 3,429 3,429 3,429 3,479 3,479 3,479 86 94 7,634 94 3,241 3,41 3,41 19,056 3,479 3,230 893 44 94 3,429 3,41 10,916 3,471 466 29,935 1,17 2,14 17,655 69,576 64,667 20,943 86,630 66,146 21,902 3,471 466 29,935 2,010 2,010 2,026 595 2,001 2,206 596 2,	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21. Utilities (Electric & Computer)	~				-+	-			2.02		-	3,464	_	.855			5	. [:	
No. Source Source Source No.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					t			K3C 50 6	- 1	040		100 11	89 CV8 10	· I -	_			1	
7,634 7,634 7,634 1,1,61 11,91 3,429 3,9,036 7,634 7,634 7,634 1,1,61 11,91 1,9,036 3,9,036 7,634 7,634 7,634 1,61 11,91 1,91 3,9,036 7,634 7,634 1,64 3,429 3,429 3,429 3,9,036 866 7 10 17 13 100 3,747 3,9,036 171 3,241 3,241 3,241 3,241 3,241 3,241 5,249 3,499 26,953 61,61 7,636 64,67 56,430 61,162 3,241 3,241 3,241 3,241 3,241 3,241 3,242 6,465 220,941 66,66 64,667 55,630 66,146 7,616 7,616 7,606 22,091 3,241 3,241 5,249 5,241 5,221 5,321 5,321 5,321 5,321 5,321 5,321 5,321 5,321 5,321 5,321 <td< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td>┢</td><td>+-</td><td>.1-</td><td>. J _</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>12</td><td>┶</td><td></td><td></td><td>1</td><td></td></td<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				┢	+-	.1-	. J _								12	┶			1	
7,634 7,634 11,451 11,451 11,451 11,451 19,095 7,634 3,429 3,429 3,429 3,429 3,429 3,429 866 3,429 3,241 3,241 3,241 3,241 3,429 3,429 866 3,721 3,249 5,469 3,469 5,469 3,747 4,466 2,469 3,747 4,466 2,469 3,747 4,466 2,469 3,747 4,466 2,896 1,175 5,766 5,261 5,261 5,261 5,261 5,261 5,261 5,261 5,261 5,261 5,261 5,261 5,261 5,261	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I. Procurement of Equipment and Vessel:			$\frac{1}{1}$		╞	-	+												ŧ.
Contratiner Craine & Transfer Craine Contratiner Craine & Transfer Craine 1, 451 11, 451 11, 451 19, 085 Obter Encipeent Obter Encipeent 3, 429 3, 429 3, 429 3, 429 3, 429 3, 429 Obter Encipeent Encipeent 117 117 117 117 3, 429 3, 429 3, 429 3, 429 3, 429 3, 429 3, 429 3, 430 3, 430 3, 446 </td <td>Conflictent Craus Tr.63 <thtr.63< th=""> Tr.63 Tr.63</thtr.63<></td> <td>Configuration: Configuration: 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,7</td> <td>22. Container Cargo Equipment</td> <td></td> <td></td> <td></td> <td></td> <td> -</td> <td> -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ļ</td> <td>-</td> <td></td> <td></td> <td>Į į</td>	Conflictent Craus Tr.63 Tr.63 <thtr.63< th=""> Tr.63 Tr.63</thtr.63<>	Configuration: Configuration: 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,63 17,7	22. Container Cargo Equipment					-	-									Ļ	-			Į į
Othere Enultament 3,429	Othere Entitiesent 3,429 3,429 3,429 3,429 3,429 5,429 6,972 6,972 6 972 6 972 6 972 6 972 6 972 6 972 6 972 6 972 6 972 6 972 9 <	Otherr Excluserent 3, 429 3, 439 3, 411 3, 231	Container Crane & Transfer Crane					ŀ	╞	-		12		1 E9 L	11.451	E	151			0.61	35	1
General / ball Curry ball B36 86 972 86 972 866 972 972 973	General / Paix Curren Barth Bit Curren Barth Bit Curren Barth Bit Current	General / Pairly Carryon Barech Bold 972 986 969 972 986 972 986 972 986 972 986 972 986 972 986 972 986 972 986 972 986 972 986 972 973	Other Ecuipsent												3.429		· 429	L		3.4	53	1.01
Rer OLI Berth 117 13 130 171 13 130 171 13 130 171 13 130 171 13 130 171 13 130 171 13 130 171 13 130 171 13 130 171 13 130 171 13 130 171 15 132 131	For 011 Barth For 011 Barth 117 13 130 117 13 130 117 13 130 117 13 131 13.241 13.241 13.241 13.241 13.241 13.241 13.241 13.241 13.241 13.241 13.241 13.241 14.665 220,619 23.241	For OLI Barch For OLI Barch 117 13 190 117 13 190 117 13 190 117 13 190 117 13 190 117 13 190 117 13 190 117 13 190 117 13 190 117 13 190 117 191 17 13 241 3.241 3.241 3.241 3.241 3.241 3.241 5.261 3.241 5.261 3.241 5.261 3.241 5.261 3.241 5.261 3.241 1.161 0.3721 1.173 3.241 1.161 0.3721 1.266 29.95 2.801 1.3231 1.465 220.151 3.241 1.161 2.321 1.3231 1.465 220.151 3.241 1.465 220.151 3.241 1.465 220.151 3.241 1.465 220.151 3.241 1.465 220.151 1.417 3.225 1.416 1.417 3.225 1.417 3.225 1.	23. General/Bulk Cargo Berth				╞	ŀ	-	┞					886	8	972			8	86	Įw,
Part Service Vessel 3,241 3,241 3,241 3,241 3,241 6,482 Bub-Tocal (2) 21,025 10,875 10,875 10,875 91,126 91,1223 23,999 Sub-Tocal (2) 21,025 51,911 16,65 56,56 55,56 56,146 21,902 83,619 67,146 23,999 Sub-Tocal (2) 21,00 93 4,203 2,206 555 50,516 556 596 2,801 2,206 597 1,106 23,201 11,103 237 1,400 13,237 Subtratering Service 3,210 1,516 3,231 4,178 3,236 1,402 23,901 11,47 Subtratering Service 210 1,224 2,301 2,301 2,301 1,103 236 1,147 Subtratering Service 210 1,228 2,301 2,106 321 1,417 Subtratering Service 210 1,223 2,301 1,102 2,305 5,301 1,102 2,366 5	Nut Sarvice Vessel 3,241 3,241 3,241 3,241 3,241 3,241 3,241 $3,241$	Retr. Sarvices Vessel. 3, 201 3, 201 3, 201 3, 201 5, 482 5, 482 Sub-Toteal. (2) 20, 975 7, 174 30, 075 0, 675 91, 176 99 93, 7233 20, 99 Sub-Toteal. (2) 26, 975 7, 174 30, 095 51, 941 17, 655 20, 619 37, 174 4665 20, 619 Sub-Toteal. (2) 3, 710 933 4, 203 2, 606 59, 50 5, 607 50, 610 37, 174 4065 27, 610 Sub-Toteal. (2) 3, 710 933 4, 203 2, 606 5, 505 2, 806 1, 470 3, 771 4, 405 2, 706 Sub-Toteal. 3, 710 933 4, 203 2, 606 3, 716 1, 653 2, 806 1, 470 3, 721 1, 406 3, 721 Sub-Toteal. 3, 710 1, 516 4, 720 2, 305 2, 306 4, 173 3, 731 1, 406 3, 731 Sub-Toteal. 3, 711 1, 723 2, 305 2, 616 4, 179 2, 905 2, 905 2, 905 2, 905 2, 905 2, 905 2, 905	24. For Oil Berth				-			-					117	13	130	╞╌			11	L' I
Sub-Tocal (2) 26,955 7,174 34,095 51,941 17,655 69,576 64,567 79,152 79,152 717 14,665 230,999 Sub-Tocal (1) + (2) 3,310 3,36 555 51,941 17,655 56,576 555 52,601 576 2,001 2,706 577 1,465 220,137 3,717 14,665 220,519 231,16 1,566 956 2,801 2,306 597 2,301 1,103 2371 1,466 2271 Engineering Service 3,310 1,664 3,116 1,765 41,178 3,281 1,466 280 1,191 2731 Engineering Service 2,001 2,206 595 2,801 2,801 1,103 2371 1,400 1271 Proteingenery 2,10 1,263 2,301 2,306 595 2,801 2,105 557 380 1,400 1737 Proteingenery 2,10 1,233 2,301 2,305 2,801 2,106	Sub-Total (2) No. 375 No. 375 No. 375 No. 375 No. 377 No. $22,999$ No. 377 No. $23,999$ Sub-Total (1) + (2) 2, 309 51, 941 26, 955 51, 941 17, 655 56, 146 21, 202 80, 013 3, 717 14, 665 220, 693 3, 717 14, 665 220, 619 Sub-Total (1) + (2) 3, 310 1, 209 51, 941 2, 320 699 51, 911 3, 223 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 665 2371 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 177 14, 172 14, 172 14, 172 14, 172 14, 172 14, 172 14, 172 14, 172 14, 172 14, 172 14, 172 14, 172	Sub-Total (2) No. 375 No. 375 No. 375 No. 377 No. $22,999$ No. $23,999$ No. $23,999$ No. $23,717$ No. $23,7$	25. Port Service Vessel				┢	-		-				3.241	3.245		1.241			2.2	8	
2) 2 6, 146 71, 778 34, 095 51, 941 17, 635 59, 557 54, 167 20, 945 71, 78 37 747 4665 220, 619 3, 310 3, 30 4, 203 2, 206 595 2, 2001 2, 206 595 2, 2001 2, 206 595 2, 301 1, 103 277 1, 400 13, 277 3, 310 1, 616 4, 203 2, 305 2, 305 2, 301 2, 205 2, 301 2, 205 2, 301 1, 403 227 13 2 <td>2) 20, 925 7, 178 34, 095 51, 941 17, 635 59, 657 56, 146 21, 902 88, 630 10, 913 3, 787 14, 665 220, 619 3 3 310 15, 61 2, 200 255 2, 200 255 2, 201 2, 206 595 2, 301 1, 103 277 1, 103 3 3 14 1, 616 3, 116 1, 205 2, 301 2, 206 595 2, 301 1, 103 277 1, 103 2 2 2 10 1, 516 3, 116 1, 103 2, 315 1, 103 23 285 580 11, 123 2 2 2 1 2 1 3 2 1 1, 103 28 1 1, 103 28 280 11 1, 123 25 590 11 21 28 280 11 21 28 280 11 21 28 596 11 21 28 506 11 21 28 510 11 21 28 510 11 21 28 510 11 28 51 28 510 11 28 510 11 21 28</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Sub-Tocal (2)</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.81</td> <td>5</td> <td>10,875</td> <td>19.124</td> <td>51 66</td> <td>1,223</td> <td>┢╴</td> <td>-</td> <td>29,9</td> <td></td> <td></td>	2) 20, 925 7, 178 34, 095 51, 941 17, 635 59, 657 56, 146 21, 902 88, 630 10, 913 3, 787 14, 665 220, 619 3 3 310 15, 61 2, 200 255 2, 200 255 2, 201 2, 206 595 2, 301 1, 103 277 1, 103 3 3 14 1, 616 3, 116 1, 205 2, 301 2, 206 595 2, 301 1, 103 277 1, 103 2 2 2 10 1, 516 3, 116 1, 103 2, 315 1, 103 23 285 580 11, 123 2 2 2 1 2 1 3 2 1 1, 103 28 1 1, 103 28 280 11 1, 123 25 590 11 21 28 280 11 21 28 280 11 21 28 596 11 21 28 506 11 21 28 510 11 21 28 510 11 21 28 510 11 28 51 28 510 11 28 510 11 21 28	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sub-Tocal (2)									0.81	5	10,875	19.124	51 66	1,223	┢╴	-	29,9		
3,310 833 x,2366 595 2,801 2,206 595 2,801 2,206 595 2,801 1,400 13,271 3,310 1,616 430 2,016 3,116 1,656 4,171 3,229 1,566 595 2,801 1,400 13,271 1,400 13,271 3,310 1,616 430 2,016 3,116 1,653 2,353 2,329 1,564 2,905 2,905 255 280 11,437 1 210 1,228 1,228 2,353 2,353 2,804 2,905 2,905 536 13,431 285,591 3,310 1,103 3,371 90,110 57,263 21,561 70,557 25,657 285,591 285,711 285,711 285,291 285,791 285,711 285,291 285,711 285,711 285,711 285,711 285,711 285,711 285,721 285,721 285,720 285,711 285,711 285,711 285,711 285,711 285,720 285,711 285,711 285,711 285,711 285,711 285,711 285,71	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sub-Total (1) + (2)		<u></u> 			7	1			J		85, 630	66.1461	21 902 81	1,048 10	F		L_	ŀ	
1 1,616 430 2,046 3,116 1,658 4,171 3,229 1,366 2,821 1,326 4,129 655 225 880 11,437 2 210 210 1,228 2,353 2,353 2,844 2,905 2,905 336 356 1,431 3 3 30,147 9,423 80,117 8,395 5,510 2,905 2,905 336 356 11,431 3 3 30,147 9,423 40,170 57,263 21,561 70,122 25,539 55,761 71,173 26,710 97,803 12,676 4,855 295 295 55,710 97,803 17,801 285,291 285,291 285,710 27,676 17,173 26,710 97,676 17,421 285,291 285,791 285,710 97,605 17,421 285,291 285,710 76,710 97,605 17,421 285,291 285,710 285,656 17,421 285,291 285,710 767 285,65	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Įß	3,310	ľ	.			£		595 2,8			2.801	2,206	265	108,	5	1			
2,304 2,904 2,905 2,905 2,905 2,905 2,524 1,224 2,254 2,353 2,353 2,394 2,904 2,905 2,905 2,905 2,905 2,905 2,905 2,505 256 2,501 2,505 2,509 25,706 1,173 25,710 97,803 12,576 4,805 17,801 285,291	2:00 2:00 2:300 2:300 2:300 2:300 2:300 2:300 2:300 2:301 2:300 2:301 2:300 2:301 2:300 2:301 2:301 2:301 2:301 2:301 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:301 2:305 2:305 2:301 2:305 2:301 2:305 2:305 2:301 2:305 2	210 210 1,228 1,228 2,353 2,353 2,355 336 336 3100 1,103 4,103 25,100 27,203 25,100 27,203 25,101 21,113 35,110 27,521 25,523 25,510 21,113 25,111 26,111	27. Physical Contingency		I .				٢.	· · ·	058 4 1	<u> </u>	ŀ	2,486	2,821	1 301	129	lin		ŀ.,		
3,310 1,103 4,413 30,747 9,423 40,170 57,263 21,641 76,924 70,722 25,639 55,761 71,773 25,719 97,633 12,676 4,805 17,481 235,291			26. Tax		ļ	210			١.		353 2.3		1	2.844		2,905	506	-	<u>ــــــــــــــــــــــــــــــــــــ</u>	I		
			Grand Total	3,310	1,103			- 1	57	263	1 79				71, 173	26, 710 91	7,883 12	5	<u> </u>	Ц		
								:		:			-		1		•		: 	. :	. d	
				350 ()	•									÷		•		· .	•	·.	х. 	
				t:	-	•••				- - -	•								•••	•		
				7 * • • •		•				۰.		•			-	1 s	i Li		•	1		
				ہ نے بد د ب	. :	•	•	. :					н. Мала На 1	••••••						•		
						 19		. •											•			

÷.

5 MANAGEMENT AND OPERATION PROGRAM

5-1 Funds for Constructing the Port

In general, fundamental facilities or infrastructures such as port facilities, transport facilities and so on are often constructed with subsidies from the government, as these facilities are generally used by the public at large. And as the development of an infrastructure generally requires substantial investment and often takes a long time to recover these investments, the government and public organizations have responsibilities regarding the development of an infrastructure.

5-2 Classifications of the Port Management and Operation Model

The following three models offer different solutions to the problems of port construction, management and operation:

- Public Autonomy Model

In this model, the SLPA constructs, manages and operates the port facilities and activities, much as in the present system.

- Lease Model

The SLPA constructs the port facilities. The SLPA leases the port facilities to the private company or the joint venture of the government organization and private companies. The lessee manages and operates the port facilities and activities.

There are three basic types of leases: flat rate, mini-max rate and shared revenue.

- B.O.T. Model

The private company or the joint venture is responsible for all facets of the project, the construction, management and operation necessary for port activities.

As the mode of model moves from the public autonomy model to the B.O.T. model, a higher ratio of private investment is encountered. Generally speaking, as private investment increases, the economic resources

are used more efficiently, thereby improving the viability of project and the productivity of operations. In the case of the B.O.T. model, the construction costs are also added in the scope of the above judgment.

However, it is difficult to analyze quantitatively the benefits of the improved viability and productivity because the changes in the productivity of cargo handling operations and the changes of the demand forecast of cargo volume are intertwined with the private companies' economic agenda: they are designed to recover their investments, and so the precise measurements cannot be calculated.

We will describe the merits and demerits of each model for this project.

(1) Public Autonomy Model

If the productivity of operations or the cargo forecast are not changed by privatization, this model provides the maximum profit for the SLPA, as the surplus after taxes does not need to be divided among foreign companies.

Furthermore, the SLPA already has its own laborers with the technology to operate and manage the new terminal. So, if the SLPA can obtain foreign loans at a low rate of interest through the government, this model might be suited for managing and operating the new terminal.

(2) Lease Model

The advantages of the lease model are as follows:

- 1) Securing handling cargo volume and clients for a extended period of time.
- 2) Gaining the new technology of port operations and the know-how to utilize human resources from foreign companies.
- 3) Improving the profitability of the project and the productivity of the operation and management through the effects of privatization.

It is critical for the success of the lease model to show how the benefits gained by improving the profitability and the cargo handling efficiency are divided between the lessee and the lessor.

At present, the SLPA already has sufficient technology to operate a container terminal, and is making efforts to operate port activities efficiently. Therefore, the lease model is of little value besides its capacity for securing clients and handling cargo volume for a extended period of time.

(3) B.O.T. Model

The merit of the B.O.T. model is that it promotes the advantages 1)-3) mentioned in the lease model. Furthermore, when it is difficult to attract investment at a national level, this model is the best choice because the SLPA does not have to raise the funds for construction. Namely, the investment risk does not have to be borne by the SLPA and the government. The construction costs also might decrease through the effects of privatization.

In the case of the Galle Project, because FIRR is very low, it is likely that private companies would experience difficulties in raising funds. Therefore, incentives from the government are necessary, more so than in the case of the public autonomy model.

However, because the B.O.T. model also has an advantage in that the government does not have to raise funds for the construction of a new terminal and can instead direct its funds to other projects, the B.O.T. model is worth inviting proposals from private companies.

5-3 Choice of Port Management and Operation Model

of the second second second

The financial situation of the SLPA is good at present. The SLPA operates and manages all of port activities including those for the container terminal at the Port of Colombo by its own laborers. It also has a training institute which keeps the workers up-to-date with the latest technology.

Therefore, the SLPA is considered to have sufficient human resources and operating technology to manage the port activities of the Port of Galle.

The SLPA can be regarded as the organization best equipped to handle management and operation of the new terminal. We will examine and formulate a port management and operation plan in the next sections.

5-4 Management and Operation Plan

5-4-1 Increment of Tariff

Because the natural conditions in the case of the Galle Project are very severe, the construction costs are extremely high. Therefore, the SLPA needs to receive government subsidies for the construction of the breakwater and for the execution of the channel dredging, and it needs to increase the charges of transshipment container cargoes handled in the Port of Galle by 20% to secure the viability of the project.

5-4-2 Organization

The SLPA should manage and operate new terminals in order to establish an integrated organization with the existing sections of the Port of Galle.

5-4-3 Required Number of the Staff

The number of staff at the Port of Galle is 755 as of 30th Sept. 1990. It is important to make the utmost use of the existing labour force.

But, when the new terminals of the Port of Galle are opened, the number of new staff is about 600.

5-4-4 Operation System

- (1) Working Hours and Shifts As the handling cargoes increase, two twelve hour shifts should be implemented.
- (2) Stevedoring Method at the Feeder Berth The stevedoring at the feeder berth should be performed by the ship gear crane.

5-4-5 Computer System

In order to make use of the computer system in the Port of Colombo

and to manage the container inventory under integrated system, the terminal units should be installed in the Port of Galle and be connected with the main computer in the Port of Colombo. However, because telephone lines are very poor, the terminal units should be connected with the main computer by a radio line. Facilities necessary for radio communication should be built.

5-5 Recommendation of Port Management System

(1) Berth assignment

Because the profitability of the project has improved, the SLPA should consider whether or not to give the priority of berth assignments to partial shipping lines or only to a major shipping line.

(2) Simplicity of Document Procedures

The SLPA should simplify the procedures for ship entry/departure and cargo operations by promoting computerization at the SLPA for the Galle Project.

(3) Port Marketing Activities

The SLPA should carry out intensive port marketing activities to ensure the success of the new port. Without a positive approach, clients may not be attracted to the port.

However, it should be noted that a reputation for prompt, reliable, economical and efficient service as well as publicity is essential for attracting clients. To this end, a quick passage through customs, efficient immigration and quarantine procedures are also vital in attracting potential clients.

(4) Coordination

To operate port activities smoothly, the SLPA should coordinate the various organizations related to port activities such as customs, quarantine and immigration.

(5) Recruitment and Training

The Galle Project requires about 600 new workers, and the

staff of the Colombo Port will need to assist in training the new workers.

(6) Telecommunication and Computer System The poor telecommunication system between Colombo city and Galle city has a detrimental effect on all aspects of business. Although the telecommunication system is expected to improve in the near future, the SLPA should examine the possibility to permit the companies related port operations to use the radio lines of the SLPA.

> Construction of the second se
> Alter second secon Second sec

المراجع المراجع المحكمة

الا بالمحمد المكتمة المحرول الألياني المحمد المكتمة المحرول الألياني المكتمة المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد

6 ECONOMIC ANALYSIS

The purpose of the economic analysis is to appraise the economic feasibility of the Short-term Development Plan for the Port of Galle in the target year (1997) from the viewpoint of the national economy.

Therefore, the purpose of this chapter is to investigate the economic benefits as well as the economic costs that will arise from this project and to evaluate whether the net benefits of the project exceed those that could be obtained from other investment opportunities ("The Opportunity Cost of Capital") in Sri Lanka.

6-1 Methodology of Economic Analysis

An economic internal rate of return (EIRR) based on a costbenefit analysis is used to appraise the feasibility of this project. The flow chart of the economic analysis procedure is shown on Figure 6-1-1.

In estimating costs and benefits of the project, they should be fixed quantitatively as much as possible. Then, "Economic Pricing" is applied. "Economic Pricing" here means the appraisal of costs and benefits in terms of international prices ("Border Prices").

There are several ways of conversion from market price to "Economic Price". In this Study, the benefits and costs are divided into five items: traded goods, non-traded goods, skilled labour, unskilled labour and transfer items. Then, they are revised to "Border Prices" in an effort to determine a more rational valuation (L-M Method or OECD Method). In general, these "Border Prices" are intended to represent the international market value or the world prices. The market prices are changed to "Border Prices" by various conversion factors such as "Standard Conversion Factor", "Conversion Factor for Consumption" and so forth.

-131-

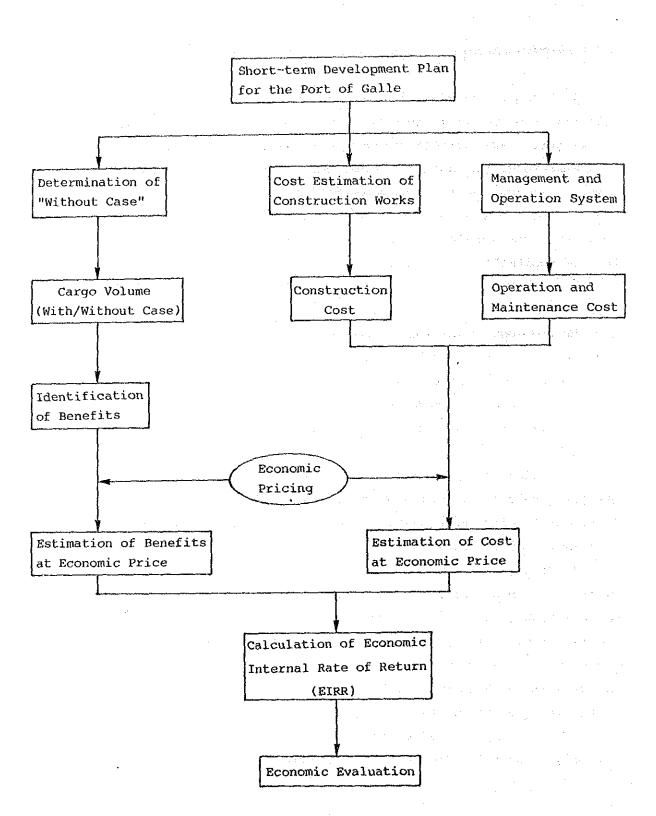


Figure 6-1-1 Flow Chart of Economic Analysis Procedure

6-2 Placing of the "Without" Case

A cost-benefit analysis is conducted on the difference between the "With" case where investment is made and the "Without" case where no investment is made. In arguing the merit of the "Without" case, one must consider the true purpose of the project. Expressed in broad terms the true purpose is the "Regional development of the Southern Province". Secondary aims include "Providing supplementary cargo handling facilities to the Port of Colombo" and "Generation of foreign currency". Then, in this Study, the following conditions are adopted as the "Without" case after various possibilities are discussed:

-No investment is made for the Port of Galle;

-The construction plan for Jaye Container Terminal No.3 & No.4 and rehabilitation of the QEQ Container Terminal of the Port of Colombo is implemented on schedule;

-National development plans, such as Koggala EP2, etc., are implemented.

6-3 Benefits

Considering the "With" and "Without" situations mentioned earlier, the following items are identified as the benefits of the Short-term Development Plan for the Port of Galle:

- 1) Savings in land transportation costs;
- Generation of foreign currency earnings from handling container cargoes;
- 3) Promotion of regional development in the Southern Province as well as national development in Sri Lanka;
- Increase in employment opportunities/incomes;
- 5) Increase in value added for port service and the related industries;

Of the above, items 1) and 2) are considered as benefits suitable for the cost-benefit analysis of this project. Other benefits are also considered qualitatively in this Study. The unit cost of land transportation is estimated at Rs.244 per ton and the total costs are shown in Table 6-3-1.

Year	Cargo Volume	Bene	fit
	(tons)	('000 Rs)	('000 US\$)
1997	485,000	118,340	2,753
1998	574,000	140,056	3,258
2026	574,000	140,056	3,258

Table 6-3-1 Savings in Land Transportation Costs

Table 6-3-2 shows the benefits of foreign currency earnings from 1997.

Table 6-3-2 Earnings of Foreign Currency in Handling Cargoes

	(In chousehold)							
	Transsl	nipment	Exporte	ed Flour	Importe	ed Wheat	Total	
Year	Volume	Benefit	Volume	Benefit	Volume	Benefit	Benefit	ere a tra
	(TEUs)	(US \$)	(TEUs)	(US \$)	(Tons)	(US \$)	(US \$)	
1997	219	15,330	7	1,085	100	730	17,145	1
1998	261	18,270	7	1,085	100	730	20,085	
2026	261	18,270		1,085	100	730	20,085	

(In thousands)

6-4 Costs

The cost items of the project are: construction costs, personnel costs, maintenance costs, operation/management costs and replacement investment costs. "Residual Value" is also considered as a cost in the final year of the project.

Construction costs are estimated in Chapter 4 of this part at market prices. In the economic analysis, the costs of the breakwaters, dredging of the navigation channel and so forth, which are provided not only for the Short-term Development Plan but also are included as permanent structures in the long-term development plan, is allocated between the both plan. the costs for the Short-term Development Plan are assumed to be one-fifth of the total cost of the above facilities. Table 6-4-1 shows the construction costs at both market prices and economic prices.

Table 6-4-1 Construction costs at Economic Prices

	(ONIC.	(460 000
Description	Market	Economic
	Prices	Prices
Dredging	1,320	1,308
Rock Dredging	5,904	5,764
Breakwaters	19,783	19,263
Container Wharf	32,171	30,837
General Cargo Wharf	19,610	18,752
Oil Berth	4,424	4,256
Revetment	12,587	11,664
Reclamation	22,118	21,668
Pavement	19,171	18,430
Access Bridge	2,402	2,325
Buildings	4,984	4,453
Water/Power Supply	8,719	8,562
Navigation Aids	692	653
Handling Equipment	23,616	23,378
Port Service Vessels	6,482	6,418
Engineering Services	10,587	10,467
Physical Contingency	9,233	8 , 877
Total	203,805	197,095

(Unit: '000 US\$)

Total personnel costs at economic prices are calculated as US\$ 825,000 per annum.

Maintenance costs are assumed to be 1% of the total construction cost

excluding the cost of dredging/rock dredging and reclamation at economic prices. Annual maintenance costs at economic prices are US\$ 1,650,000.

The operation costs are estimated to be 20% of total personnel costs. Annual operation costs at economic prices are US \$165,000.

Economic prices of the replacement investment costs and the residual values (they are minus costs) are calculated by multiplying the respective overall conversion factors.

6-5 Evaluation

The economic internal rate of return (EIRR) based upon a cost-benefit analysis is used to appraise the economic feasibility of the project.

The EIRR is a discount ratio that makes the costs and benefits of a project during the project life equal. It is calculated by using the following formula:

 $\sum_{i=1}^{n} \frac{B_{i} - C_{i}}{(1+r)^{i-1}} = 0$

where, n: Period of cost-benefit analysis B_i: Benefit in i-th year C_i: Cost in i-th year r: Discount Rate (EIRR)

The EIRR of the Short-term Development Plan of the Port of Galle is calculated as 8.15%.

There are various views concerning the appropriate EIRR level used to determine whether a project is feasible. The leading view is that the project is feasible if the EIRR exceeds the "Opportunity Cost of Capital" (OCC).

The OCC in Sri Lanka is not known. The value of the OCC adopted by International Bank for Reconstruction and Development (IBRD) is 12%, for the United States Agency for International Development (USAID), 8%, and for the Asian Development Bank (ADB), 10%. Meanwhile, the rate varies from 8% to 12%, according to the degree of development in each country. It is generally considered that an EIRR of more than 10% is economically feasible for infrastructure or social service projects.

From this premise, alone, the calculated EIRR of 8.15% falls slightly short of the benchmark. However, this analysis takes into consideration only two items of benefits as mentioned in 6-3, and calculated EIRR should not necessarily take priority over the incalculable social benefits, including a possible end to poverty in the Southern Province. At the very minimum, the development of the Port of Galle will expand the economy of the province by creating permanent employment for both skilled and unskilled labour. Income per capita will rise in the province as the port and new industry are developed. As a result, the wealth differential between the province and Colombo will narrow, averting potential social and economic friction. Sri Lanka is a small country but with vast potential, and we strongly believe that the development of the Port of Galle will help distribute more evenly the country's potential.

Consequently, we judge that this project should be implemented as a project leading the regional development in the province, in close cooperation with the development of port-related industries and the progress of other development projects in the province.

-137-

7 FINANCIAL ANALYSIS

7-1 Purpose of the Financial Analysis

The purpose of the financial analysis is to examine the viability of the project and the financial soundness of the port management body during the project life. (The project means the short-term development plan for the Port of Galle in this chapter.)

7-2 General Presuppositions of the Financial Analysis

7-2-1 Scope of the Financial Analysis

The viability of the project can be analyzed, using the revenues and costs related to the project (namely, the short-term plan for the Galle Port).

On the other hand, the finances of the entire SLPA as the port management body must be analyzed to estimate of financial soundness. Plans for the Colombo Port are generally based on the Report for the Development Study on the Port of Colombo in 1989 issued by JICA (hereinafter referred to as the Colombo Report).

Matters related to the Galle project are dealt with in the following sections, 7-2-2 to 7-2-7. Matters used to analyze the SLPA financial stability are discussed in section 7-2-8.

7-2-2 Project Life

Taking account of the conditions of the long-term loans and the service lives of the port facilities, the project life for the financial analysis is determined as 35 years from the beginning of the project including six years of detailed design and construction of the port facilities and 30 years of operation.

7-2-3 Base Year

For the estimate, all costs, expenditures and revenues analyzed quantitatively here are indicated in prices as of 1991, when the price

survey was conducted. Neither price inflation nor increases in nominal wages are considered during the project life.

7-2-4 Cargo Handling Volume

Based on the cargo volume forecast and estimated cargo handling capacity of facilities, the annual cargo handling volume is determined.

7-2-5 Port Charges and Revenues

Port charges will remain almost at existing tariffs, which are shown in Appendix III-7-2 and III-7-3. However all charges for the transshipment container operations have to be increased by 20% when the container terminal opens.

We also determined the level rates of new charges by taking account of the feasibility of the project.

Revenues from port activities are calculated based on the above new tariff, the cargo handling volume and the projected calling vessels.

7-2-6 Fund Raising

(1) Government Funds

Funds necessary for construction of certain port facilities -particularly breakwaters and channel dredging for public-use port facilities-- are assumed to be covered entirely by government investment in the project.

The government funds are assumed to be free of repayment and interest.

These funds are essential to the feasibility of the project. (If all construction costs are borne by the SLPA, FIRR is 2.06%.)

The rest of the necessary funds are assumed to be raised by soft loans from foreign governments and domestic funds in Sri Lanka.

(2) Soft Loans and a set of the s

We assumed that 85% of all construction costs after subsidies will be raised by soft loans in this financial analysis.

A soft loan for this project is assumed to be as follows:

Loan period: 30 years, including a grace period of 10 years

Interest rate: 3.5% per annum Repayment: fixed amount repayment of principal

(3) Domestic Funds

The other portion of the construction costs financing for this project is assumed to be raised in Sri Lanka as follows:

المحادث والمحار المحار بالمحاد والمحاج والمحاد و

Loan period: 10 years, including a grace period of three years Interest rate: 7.0% per annum Repayment: fixed amount repayment of principal

Any cash shortage should be covered by short-term loans with an annual interest rate of 15% in local currency.

7-2-7 Expenditure

(1) Investments

The initial construction costs of the project are estimated in Chapter 4 of Part III.

The initial investment calculation must include all taxes payable, the Business Turnover Tax, Import Tax and so on. That initial investments will require US\$343 million, including US\$126 million in the government subsidies.

The depreciable facilities and equipments will be renewed based on their service lives.

It is assumed that the funds for re-investment will be raised from the reserves of the project accounts.

(2) Maintenance and Repair Costs

Maintenance and repair costs are calculated as 1% of depreciable assets.

(3) Personnel and Administration Costs

The annual personnel costs are estimated based on the required number of workers proposed in Chapter 5 and the existing scale of pay.

The annual administration costs are calculated as 20% of the total annual personnel costs.

(4) Depreciation Expenses

The annual depreciation expenses of the port facilities and equipments are calculated by the straight line method, based on their service lives. Residual values after all depreciations are estimated as zero. At the end of the project life, fixed assets are assumed to be sold at their residual values.

(5) Taxes

Payable taxes are turnover tax, income tax and deemed dividend tax.

7-2-8 Presuppositions for Colombo Port

The presuppositions mentioned in this paragraph are used to analyze the financial statements only of the Colombo Port, the Trincomalle Port and the existing Galle Port.

The short-term plan mentioned in the Colombo Report is assumed to be delayed by one year.

The presuppositions of the short-term plan for the Colombo Port are similar to those in the Colombo Report of 1989. However, some presuppositions have to be adjusted to the Galle Project.

7-3 Evaluation

7-3-1 Viability of the Project

The FIRR of this project is 4.99%.

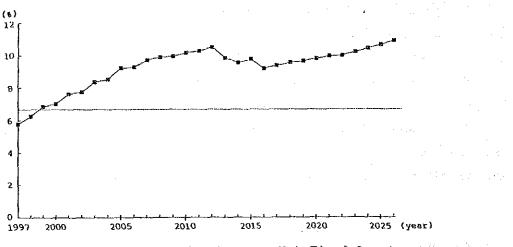
At 4.99% the rate exceeds the weighted average interest rate of funds of 4.03% during the project life; for our purposes, the weighted average is also the floor limit.

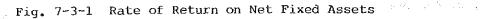
7-3-2 Financial Soundness of the Port Management Body

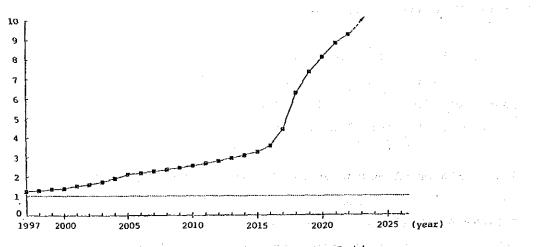
(1) Profitability

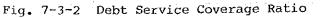
The rate of return on net fixed assets is less than the average interest rate of funds (6.64%) under the construction of port facilities, but after 1999 the rate of return on net fixed assets

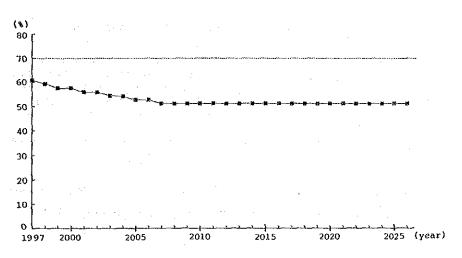
-141-

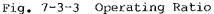

exceeds the average interest rate during the project life (See Figure 7-3-1).

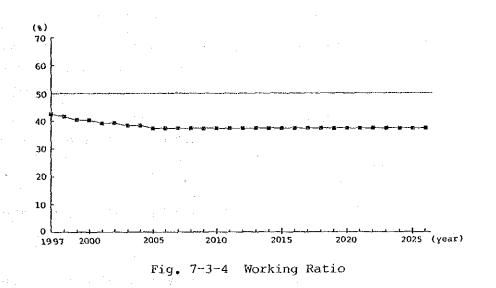

(2) Loan Repayment Capacity


Throughout the project life, the debt service coverage ratios exceed 1.0. There will be no problem with the repayments of the long-term loans using the annual operating revenues (See Figure 7-3-2).


(3) Operational Efficiency


Both the operating ratios and the working ratios maintain positive levels (See Figure 7-3-3, 7-3-4).





7-4 Sensitivity Analysis

1. 18

A sensitivity analysis is made for the following three cases:

Case I: The revenues decrease by 10%.

Case II: The construction costs increase by 10%.

Case III: The operating expenses increase by 10%.

化化学 化化学 化化学学 网络马拉马拉马拉马拉马马马马马拉马马

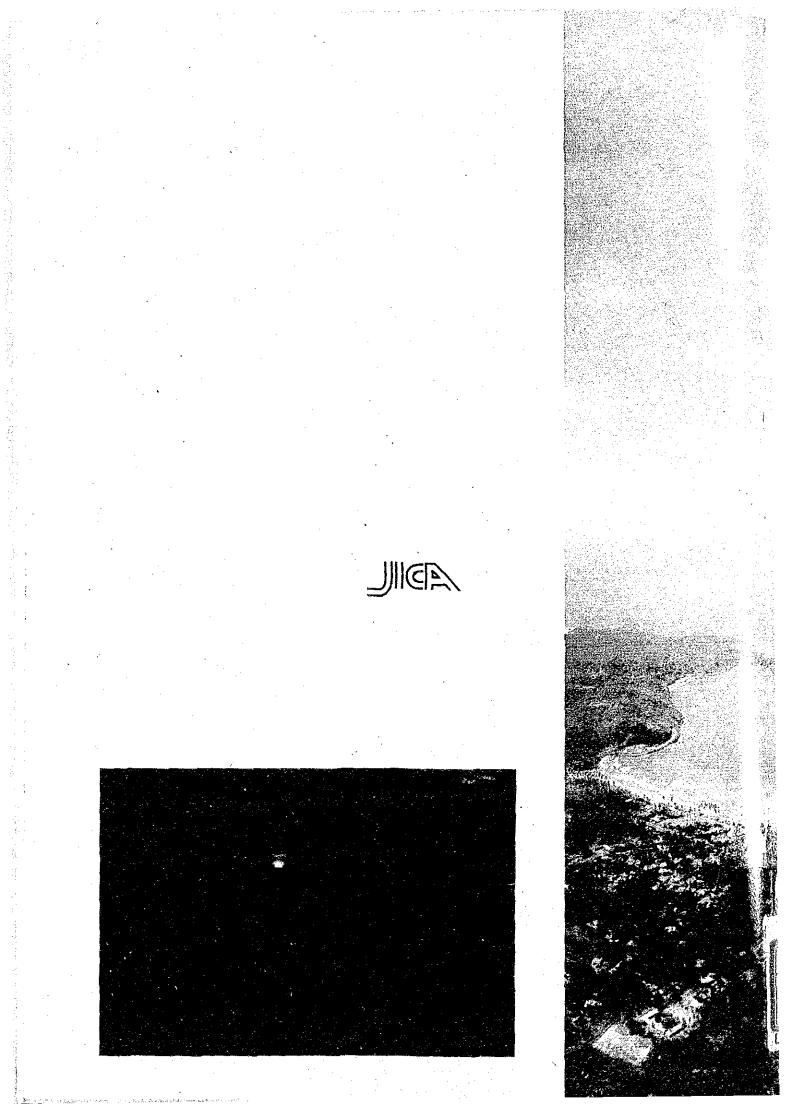
The FIRR of each case is as shown in Table 7-4-1.

Table 7-4-1 FIRR in Sensitivity Analysis

		·		
	Base Case	Case I	Case II	Case III
FIRR	4.99%	4.09%	4.22%	4.81%
Floor Limit		4,03%		
Substitute in the second second second second second second second second second second second second second s				· · · · · · · · · · · · · · · · · · ·

In each case, the ratio exceeds the weighted average interest rate of funds, which is also the floor limit during the project life.

7-5 Conclusions


Judging from the above analysis, this project can be regarded as financially feasible if the funds necessary for construction of breakwaters and channel dredging is financed through interest-free government funds that require no repayment and if the charges for transshipment container operations in the Port of Galle are increased 20% from the existing tariff.

Because the initial construction costs are huge, it will be impossible for the SLPA to invest in the project for itself.

At last, it is recommended that the following measures be taken to improve the financing during the project life.

- The re-lending rate on the long-term loans from the government to the SLPA should be kept as low as possible including the development plans of Colombo Port.
- (2) The SLPA should maintain its efforts to secure sufficient cargo volume and to improve cargo handling efficiency.
- (3) Because the short-term loans with high interest rates are to continue until 2009, the SLPA should attempt to refinance with lower-cost funds, taking account of actual cash flow.

-144-

