2.4 Cost Estimates and Present Value

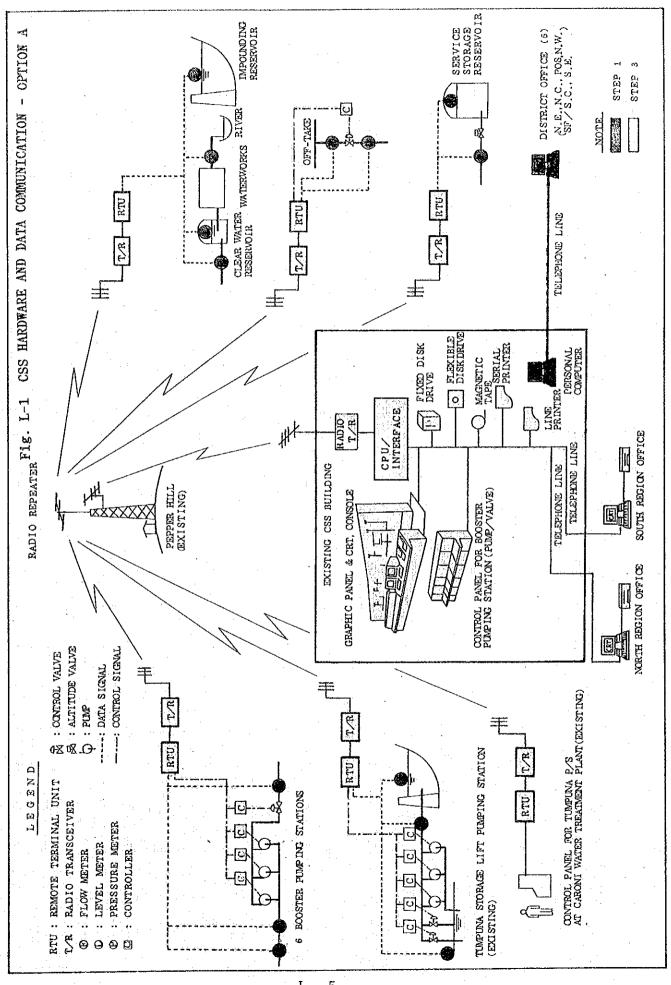

To determine the method of project implementation, project costs are estimated as summarized in Tables L-2 for Option A and L-3 for Option B. Initial investment costs required for Steps-1 and 3 of Option A are US\$ 6.9 million and US\$ 41.1 million respectively. The Option B investment cost is estimated at US\$ 46.4 million. The Option B is slightly moderate in initial investment cost. These tables also show replacement costs of the instruments and equipment, required when they outlive their durable years.

Table L-4 shows an annual investment plan for these two options, which are developed on the basis of the initial investment and replacement costs estimated, a tentative construction schedule and expected design life of materials and equipment.

Present value method is applied to evaluate options. Discounts rates employed are 5, 10, 12 and 15%. Present values estimated from annual investment plans for coming 20 years up to 2010 are also shown in Table L-4.

2.5 Recommendations

As clearly seen in Table L-4, "Option A" excels in every percentage of discount rates. Difference in the net present value ranges from US\$ 8.7 million to 13.5 million. The table also suggests that the higher the discount rates are employed, the larger the deviation are seen. Since benefits accrued from these options can be considered almost similar, it may be concluded that "Option A" is a more feasible solution for Phase I Project implementation.

Table L-1 LIST OF MONITORING AND CONTROL EQUIPMENT BY CENTRAL SUPERVISORY SYSTEM - OPTION A (1)

AV; A B ; B BU; B CV; C	IR PURGE TYPE, O ; ORIF LTITUDE VALVE, P ; PROP DURDON TUBE, PF; PARS	ICE PLATE, ELLAR TYPE, HALL FLUME, URI TUBE,	AV ; A' IN ; H SH ; SI ST ; S RES; R IT ; I	IGH WA IEET, FREET, ESERVO	IR,	OT; JCT; IC; BPS;	OFF-T JUNCT INTER BOOST DIFFE	ION, CONNECT ER PUMP RENTIAL	ING S PRES	TATIO SURE	TYPE,	"¥";	EXIST EXIST	TINGS (TINGS (TO BE REPLA	USE CEME	D, NT PER TROL E(
NUMBER & NAME OF			ST E	P				Р Н Install			Ś	<u>i</u> <u>s t</u> Monit			3	F	QUIPME	NT TI	0 BE
RTU STAT. TO BE INSTALLED	NAME OF MONITORING POINT	EQUIP TO BE IN LEVEL PRES	TALLED.	DAT	A RY	RECOR	RDFR	EQUIP.	BY C	ENTRA	L SUP	ERVISO	RY SYS	STEM ((CSS) TOTAL		CONTR		D
[STEP 2]		METER GAUG	E METER	LEVEL	PRESS	RATE	5	VALVE	LEVEL	PRESS	RATE	STATUS	STATUS			NO.	PLACE	NO.	PLACE
	ROPOUCHE WW RAW WATER CLEAR WATER RESERVOIR DISTRIBUTION (1050)	F * D·2	¥ PF AN	1 2		1	3		1 2		1				3				······
2 HOLLIS	TMPOUNDING RESERVOIR RAW WATER (300) DISTRIBUTION (600)	F	AN	1		1			1		1								
3 GILL TR	ACE	D		<u> </u>	<u> </u>		11		1					-	15			\square	
	QUARE WATER TANK QUARE DISTRIBUTION (300) GILL TRACE OT (300) QUARE (1) OT (150) QUARE (2) OT (150) TO SANGRE GRANDE OT (400)	¥	AN AN AN	1	1 1 1 1 1			BU BU BU BU		1 1 1 1	1 1 1 1 1	1 1 1 1						1	SITE SITE SITE SITE
4 ARIPO B	PS ARIPO (NEW) RAW WATER (300)		¥ 0				12				1	ļ			15				·
	ARIPO (OLD) RAW WATER (250) FORT READ RESERVOIR (250) FORT READ RESERVOIR (300) ARIPO BPS (300) CUMOTO(1) OT (300) CUMOTO(2) OT (300)		AN AN AN ¥ V AN				8	BU BU BU	1	1 1 1	1 1 1 1 1 1	1 1 1			11			1	SITE SITE SITE
5 GUANAPO	GUANAPO RAW WATER (300) GUANAPO RESERVOIR (300) GUANAPO WW DIST. (300) DOUBLE BRIDGE OT (150) GUANAPO JUNCTION OT (300)	D E E	AN		1 1 1 1	1 1 1 1		BU BU BU	1	1	1 1 1 1	1 1 1	· · · · · · · · · · · · · · · · · · ·			•••••			SITE SITE SITE
6 DEMERAR	DEMERARA JCT OT (300) TUMPUNA JCT OT (300)	E E			<u>1</u>	1	4	BU BU		1	1	<u>1</u> 1			6				SITE SITE
7 ARIMA O	D RESERVOIR ARIMA NEW RESERVOIR (375) ARIMA OLD RESERVOIR (200) TO MORENO ST OT (150) QUESNEL ST OT (300) OMERA JCT OT (150) ARIMA BPS (300) ARIMA BPS (300) ARIMA B/PUMPS	F D F	AN AN	1	1 1 1 1		13	BU BU BU BU	<u>1</u>	1	1 1 1 1 1 1			· · · · · · · · · · · · · · · · · · ·	17	· · · · · · · · · · · · · · · · · · ·		1	SITE SITE SITE SITE
8 MAUSICA	JUNCTION OLTON RD OT (150) BOYS LANE OT (200) MAUSICA JCT OT (150) CARAPO OT (300) MAUSICA OT (300) MALONEY JCT OT (300)		AN AN AN AN		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			BU BU BU BU BU BU		$\begin{array}{c} 1\\1\\1\\1\\1\\1\\1\\1\end{array}$	1 1 1 1	1 1 1 1 1 1			18			1	SITE SITE SITE SITE SITE SITE
9 AROUCA	CLEAR WATER TANK DISTRIBUTION (200) BORNE AREA #1 OT (150) LOPINOT IC OT (300)		AN AN B AN	1	1 1	1	6	BU BU BU	1	1 1	1 1 1	1 1 1			9				SITE SITE SITE
10 CAURA W	RAW WATER (400) Clear Water Tank Distribution (400)	D	AN B AN	1	1	1	4	BU	1	1	1	1			5			 1	SITE
	CLEAR WATER RESERVOIR DISTRIBUTION(1) (300) DISTRIBUTION(2) (400) TO CAURA BPS OT (225) PASEA RD OT (175)		AN AN AN AN		1		3	BU BU BU	. 1	1 1 1 1	1 1 1 1	1 1 1		· · · · · · · · · · · · · · · · · · ·	16	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		SITE SITE SITE

Table L-1 LIST OF MONITORING AND CONTROL EQUIPMENT BY CENTRAL SUPERVISORY SYSTEM - OPTION A (2)

AV; A B : B BU; B CV; C	NNUBAR, F ; FLOA IR PURGE TYPE, O ; ORIF LTITUDE VALVE, P ; PROP OURDON TUBE, PF; PARS UTTERFLY VALVE, V ; VENT ONE VALVE, RD; ROAD	ICE PLA Ellar T Hall Fl Uri Tub	TE, YPE, UME,	AV ; AV INY ; HI SH ; SH ST ; ST RES; RE IT ; IN	GH WA IEET, 'REET, 'SERVO	-	OT; JCT; IC; BPS;	OFF-7 JUNC7 INTER BOOST		PING S . PRES	SURE	TYPE,	"*"; "¥"; "#";	PIPE EXIST EXIST INST/	EINGS FINGS (TO BE (repla	USE Ceme	NT PER		
NUMBER & NAME OF RTU STAT. TO BE INSTALLED [STEP 2]	NAME OF MONITORING POINT		QUIPMEN E INSTA	IT ILLED	DAT WATER	A BY WATER	MON1' RECO	RDER TOTAI	EQUIP. CONTROL VALVE	BY C	NUME ENTR/ WATEF	ER OI L SUI	ST FHONIT PERVISC VALVE STATUS	DRY SYS	DATA Sten Alari	FOTAL	P	QUIPME Conte UMP Place	IOLLE Va	
	NTROL STATION PIARCO JCT OT (300) BY-PASS OT (300) FLOW CONTROL STATION(800) STINE RESERVOIR		B B B·2	AN An ¥ V		1 1 2	1 1 1	7	BU BU # CV-1	į	1 1 2	1 1 1	1 1 2			11			<u>1</u> <u>1</u> <u>2</u>	SITE SITE SITE
14 TUNAPUN	RESERVOIR (750) ST JOHN RD OT (300) TO TUNAPUNA OT (150) RABIR ST OT (200) RIVERSIDE RD OT (100)	F	8 8 8 8	AN AN AN AN AN	1	1 1 1 1	1 1 1 1	12	AV	1	1 1 1 1		· · · · · · · · · · · · · · · · · · ·			48			· · · · · · · · · · · · · · · · · ·	
14 IUNAFUN	TUNAPUNA (1) (150) TUNAPUNA (2) (200) TUNAPUNA (2) (200) TUNAPUNA (3) (525) PASEA ST OT (100) TUNAPUNA RIVER (1) (300) TUNAPUNA RIVER (2) (525)		B B B B B	AN AN AN AN AN AN			1 1 1 1 1	<u>- 11</u>	BU BU BU BU BU		1 1 1 1 1			· · · · · · · · · · · · · · · · · · ·					1	CSS CSS SITE SITE SITE
15 ST JOSE	TUNAPUNA B/PUMPS PH RESERVOIR RESERVOIR TO ST JOSEPH OT (225) TO RIDER MAIN OT (200) MENDEZ STEEL SH. OT (200) MATERNITY HP. OT (100)	F	B B B B	AN AN AN AN	1	1 1 1 1	1 1 1 1	11	BU BU BU BU	1	1 1 1 1	1 1 1 1	1	6	25	15	3	CSS	1 1	SITE SITE SITE SITE
16 VALSAYN	RAW WATER (750) CLEAR WATER RESERVOIR DISTRIBUTION (750) BOOSTER SUCTION (450)	¥ D	¥ B ¥ B	AN AN ¥ V ¥ V ¥ AN	1	 1 1	1 1 1 1 1	8	BU	1	 1 1	1 1 1 1	1			41				SITE
	BOOSTER DELIVERY (450) VALSAYN B/PUMPS UTLER HW JUNCTION STAG/NESTL OT (300) E RESERVOIR RESERVOIR (600)	D	¥B B	AN AN AN	1	1	1	2	BU BU AV	1	1	1 1 1	1	<u> </u>	25	3 23	3	CSS	1	CSS SITE
	CARIB(1) OT (150) CARIB(2) OT (200) MT. HOPE OT (300) GORDON ST (1) OT (200) GORDON ST (2) OT (200) GORDON ST (3) OT (300)	· · · · · · · · · · · · · · · · · · ·	B B B B	AN AN AN AN AN	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1		· · · · · · · · · · · · · · · · · · ·	BU BU BU BU BU			1 1 1 1	1				·····		1 1 1 1	SITE SITE SITE SITE SITE
19 MAJ. ICK	BROOM ST OT (200) TO SANTA CRUZ OT (250) RESERVOIR RESERVOIR (750) TO BARATARIA OT (300) SIXTH AV. OT (300) TO LADY YOUNG AV. OT (450)	D	B B B B B	AN AN AN AN AN	1	1 1 1 1	1 1 1 1 1	8	BU BU AV BU BU BU							11			1	SITE SITE SITE SITE SITE
20 EL SOCO		¥ AP	¥ B ¥ B	¥ V ¥ AN	1	1 1 1 1	1 1 1	13	BU BU BU	 1	1	1 1 1	<u> </u>			49			1	CSS
21 LAVENTI	EL SOCORRO RD OT (150) DON MIGUEL RD OT (150) ELEVENTH ST OT (150) EL SOCORRO B/PUMPS LLE	· · · · · · · · · · · · · · · · · · ·	B B B	¥ AN AN AN AN		1 1 1	1 1 1	2	BU BU BU	· · · · · · · · · · · · · · · · · · ·	1 1 1			6	25	3	3	CSS	1 1 1	SITE SITE SITE
22 BLACK R	TO LAVENTILLE OT (300) IVER		B	AN				8	BU			_1	1			12			1	SITE

Table L-1 LIST OF MONITORING AND CONTROL EQUIPMENT BY CENTRAL SUPERVISORY SYSTEM - OPTION A (3)

AV; A B ; B BU; B CV; C	NNUBAR, F ; FLOA IR PURGE TYPE, O ; ORIF LTITUDE VALVE, P ; PROP OURDON TUBE, P ; PARS UTTERFLY VALVE, V ; VENT ONE VALVE, RD; ROAD	ICE PLA Ellar 1 Hall Fl Uri tue	ITE, YPE, JUME, IE,	Av ; AV HN ; HI SH ; SI ST ; ST RES; RF IT ; IM	GH WA IEET, REET, SERVO	Y, IR.	OT ; JCT; IC ; BPS;	OFF-T JUNCT INTER BOOST	ION, CONNECT ER PUMP RENTIAL	ING S PRES	SURE	TYPE,	"*"; "¥";		TINGS TINGS (TO BE Repla	USE CEME	D, NT PER TROL E		
NUMBER & NAME OF			S	ΤE	P	1	:		<u>рн</u>	<u>A</u>		1	I S T	ΕI	P	3				
RTU STAT.	NAKE OF		QUIPHEN	T	NUMBE	R OF	NONT		INSTALL		NUME	ER OI	MONIT	ORING	DATA		E	QUIPHE		
TO BE INSTALLED	MONITORING POINT		E INSTA	LLED	DAT	A BY	RECOR	IDER Trotal	EQUIP. Control	BY C WATER	WATER	<u>u. Sui</u> Afinw	VAL VE	RY SYS	ALARN	USS)		CONTI UMP		LVE
[STEP 2]		METER		METER	LEVEL	PRESS	RATE	IVIND	VALVE	LEVEL	PRESS	RATE	STATUS	STATUS			NO.	PLACE		
	BLACK RIVER (1) OT (300)		B	AN		1	1	.	8U		1	1	<u> </u>						1	
	BLACK RIVER (2) OT (450)		B B	AN AN			1		BU BU	•••••	1	<u> </u>	<u>1</u> .	· • · • · · · ·			.			SITE SITE
	BLACK RIVER (3) OT (525) TO LADY YOUNG RD OT (300)		B	AN		1	1	 			1	1	1	• • • • • • • •				•••••	1	SITE
23 PICTON	NO. 3 RESERVOIR							13								16				
	PICTON #1 RESERVOIR (400)			<u>AN</u>	1 2 1		1		AV	1	•••••	1		•••••				•••••		······
	PICTON #2 RESERVOIR (750) PICTON #3 RESERVOIR (900)			AN AN	2		\		AV·2	2	•••••	1		• • • • • • • • •			[
	MASALLAH ST OT (100)		B	AN	{ t	1	1 î		BU		1	ī	1						1	SITE
	PRIZAR LANDS ST OT (100)		B	AN		1	1		BU		1	1	1	<i>-</i>			[SITE
DA SEDVAL	KERR RD OT (100) LIFE CENTER		8	AN		1		6	BU		1	1	1			9	┞		1	SITE
E4 DLITUL	BEETHAM DUMP OT (100)		B	AN		1	1	<u> </u>	BU	<u> </u>	i	1	1				<u> </u>		1	SITE
	SERVOL LIFE C. OT (100)		B	AN		1	1		BU		1	1	1						1	SITE
25 KNAGGS	TO LAVENTILLE OT (525)		<u> </u>	AN			$\frac{1}{1}$	15	BU		1	1	. 1			19			1	SITE
20 MAGUS	RESERVOIR (525)	* D-2		AN	2		1	-13	* AV-2	2		1			<u> </u>	13				
	TO BELMONT OT (300)		В	AN		1	Ī	1	BU		1	1	1	· · · · · · · · · · · ·					1	SITE
	TO CASCADE OT (600)		B	AN		1	1	.	BU		1	. 1	1	.			.			SITE
	TO ST CLAIR OT (350) WESTERN MAIN ROAD (525)		<u>B</u>	AN AN		<u>1</u>	<u> </u>	.	BU BU		<u> </u>		<u>1</u>	•••••		• • • • • • • •		· · · · · · · · · · ·		SITE
	FROM SAVANNAH WELLS (300)		B.	AN		!	î	1			1	1	····. *·				····		·	JIIL
	BARRACK (750)		B	AN		î	ī		•••••		1	ī								
26 NATIONA	L FLOUR MILL							2							ļ	3				0100
	NFM OT (100) PORT AUTHORITY (300)	<i>.</i>	B	AN		1	i	 	BU		1	1	<u>1</u> .	······			.	· • • • • • • • • • •	. 1	SITE
	POST OFFICE (300)	••••			•••••		• • • • • • •	 							• • • • • • •	••••••		•••••		
	NATIONAL STADIUM (300)								•••••											
27 TUMPUNA	STORAGE LIFT PS						ļ	4								17				
	ARENA IMPOUNDING RES.	¥ AP			1					1								•••••		
	TUMPUNA WEIR TO/FROM RESERVOIR (1200)	F		¥ V·2	···· ¹		2			····‡.	•••••	2								
	RIVER DISCH. VALVE (1200)						-	1	¥ BU·2	•••••			2				·····		2	CARONI
	TUMPUNA S. L. /PUMPS													12	59		6	CARONI		
28 CARONI	RAW WATER	¥ AP		¥ PF				1		1		1				9			<u> </u>	
	CLEAR WATER RESERVOIR	¥ AP		<u>. t. ri</u>	1		···· !			1				• • • • • • • • •	····· ·			••••		
	CARONI NORTH (900)		* B	¥ AN ¥ AN		1	1		¥ BU		1	1	1	••••••						CARONI
	CARONI SOUTH (1200)		+ B	¥ AN		<u>1</u> 1	1		¥BU		1	1	1						1	CARONI
29 KELLY V	ILLAGE KELLY VILLAGE OT (300)		B	AN		1	1	2	8U		1		1			- 3	 			SITE
BO SCALE Y			<u>v</u>					4	50		t-		<u> </u>		<u> </u>	6	├		<u></u>	0110
	SCALE YARD OT (300)		B	AN		1	1		BU		. 1	1	1		.	[SITE
31 LAS LON	HINGKING RD OT (300)		<u> </u>	AN		1	1	4	BU		1	1	1		 	5	┞		1	SITE
	RAW WATER (600)			¥0			1					1			├	<u>`</u>				
	CLEAR WATER RESERVOIR	D			1		1			1							1			
	DISTRIBUTION (600)		¥Β	¥Υ	ļ	1	$\lfloor 1$	ļ	BŬ		1	1	1		ļ	<u> </u>	 		1	SITE
DZ JEKNING	HAM JUNCTION TO LAS LOMAS OT (600)		B	AN		1	1	4			1	1	<u></u>			5	┨			<u> </u>
	JERNINGHAM JCT OT (300)	L	B	AN		1 1	i		BU		····•	1	1			L			1	SITE
33 CHAGUAN	AS							4							<u> </u>	6				
	CHAGUANAS OT (300) Lange Park ot (300)	•••••	B B	AN AN	ļ	<u>1</u>	1	.	BU		1	<u>1</u>	<u>1</u>	[SITE
34 CARLSEN			<u>р</u>	<u>– Añ</u>			<u> </u>	5	BU		- <u></u> -	<u> </u>	<u> </u>		<u>+</u>	7	├		<u> </u>	3110
	CLEAR WATER RESERVOIR	F			1		<u> </u>	ا		1						<u> </u>	1			
	DISTRIBUTION(1) (200)		B	AN		1	1	 	BU		1	1	1							SITE
35 CARAPIC	DISTRIBUTION (2) (250)		<u>B</u>	AN	<u> </u>	1	1		BU		1	1	1		_		 		1	SITE
	CARAPICHAIMA OT (200)		B	AN		1	1	6	BU		1	<u>,</u> 1	1			⊢	-	· · ·	1	SITE
	TO CARLSEN FIELD OT (300)		B	AN		1	l î				1	1	.							
DE MADDON	TO FREEPORT WW OT (30D)		B	AN	ļ	1	1	ļ			1	1			ļ	<u>-</u> -	<u> </u>	ļ		
16 WARDEN	UPP ICE.	I	L	L	L	L	I	6	L		L	l	L	l	<u> </u>	9	J	I	I	I

Table L-1 LIST OF MONITORING AND CONTROL EQUIPMENT BY CENTRAL SUPERVISORY SYSTEM - OPTION A (4)

B ; BU; CV; (AIR PURGE TYPE, O; ORIF ALTITUDE VALVE, P; PROP BOURDON TUBE, PF; PARS BUTTERFLY VALVE, V; VENT JONE VALVE, RD; ROAD	ELLAR T HALL FL URI TUB	YPĖ, UME,	INY ; IU SII ; SI ST ; ST RES; RI IT ; IN	IEET, IREET, ESERVO	IR,	JCT; IC BPS;	INTEF BOOST	TON, RCONNECT TER PUMP RENTIAL	ING S	SURE	TYPE,	"#"					ENT PEI NTROL I		
NUMBER & NAME OF RTU STAT. TO BE INSTALLED	NAME OF MONITORING POINT	TO B LEVEL	QUIPMEN E INSTA	LLED FLOW	NUMBE DAT WATER	' <mark>a by</mark> Water	MONIT RECOR	IDER	PH INSTALI EQUIP. CONTROI VALVE	BY C WATER	NUME ENTRA WATER	ER OF L SUF FLOW	MONIT ERVISO VALVE	PUMP	DATA Stem Jalari	(CSS)		EQUIPHI CONTI PUMP T PLACE	ROLLI	ED AL
[STEP 2]	WARDEN OFFICE OT (300) COUVA LANE OT (300)	MLIEN	B	AN		1	1		BU BU		1	1	1				1		1	_
37 TRINGE	POINT LISAS OT (600)		B	AN		1	1	2	BU		1	1	1			3			1	-
	TRINGEN 11 OT (300) RNIA RESERVOIR RESERVOIR (900)	Ð	8	AN AN	1	1	1	2	BU AV	1		1	1	-		2	 	:	1	!
39 TCL								2								3	1	<u> </u>	İ.,	Ţ
40 NARAVE	<u>TCL OT (300)</u> .LA		B	AN I		1	1	2	BU		1	1	1			3	\vdash			19
41 SAN FE	MARAVELLA OT (300)		8	AN		1	1	14	<u>BU</u>		1	1	1			49	<u> </u>		1	5
<u>41</u> 0am fei	SAN F' DO RESERVOIR (750) MARRYAT RESERVOIR (600) NAPARIMA RESERVOIR	¥D ¥D ¥D		AN AN	1		1		AY	1		1			 - <i>.</i>				· · · · · · · · · · · · · · · · · · ·	
	BOOSTER SUCTION (900) BOOSTER DELIVERY (900)	* U	¥B ¥B	¥ AN	• •	1	1		* <u>BU</u>		1	1	1					····	 <u>1</u> .	Q
	ROUND ABOUT(1) OT (300) ROUND ABOUT(2) OT (525) FIRE BRIGADE OT (375)		B B B	AN AN AN		1 1 1	1 1 1		BU BU BU		1 1 1	1 1 1	1 1 1							03.02.03
42 MOSQUI	SAN F' DO B/PUMPS							2						<u> </u>	25	3	3	CSS	┣	┢
	TO MOSQUITO CR. OT (600)		B	AN	ļ	1	1		BU		1	1	1			δ			1	S
43 ST CLEI	ENT ST CLEMENT (1) OT (200) ST CLEMENT (2) OT (250)		B B	AN AN		<u>1</u> 1	1	4	BU BU		 1	1	1						<u>1</u> . 1	
44 DAISY	DAISY OT (400)		B	AN		1	 	2	BU		1	1	1			3	┥──		1	5
15 MALGRE	OUTE BPS							9						<u> </u>	<u> </u>	64				Ĺ
	BOOSTER SUCTION (900) BOOSTER DELIVERY (900) BUEN INTENTO OT (300) TO PRINCESS TOWN OT (300)		¥B ¥B B	¥ V An An				· · · · · · · · ·	BU BU BU		1 1 1	1	1 1 1				· · · · · · · ·			0.9.9.9
46 BROTHEI	TO MALGRETOUTE OT (300) MALGRETOUTE B/PUMPS		B	AN		!	!	6	BU		1	1		10	41	9	5	CSS	! . 	S
to Dioma	BROTHER ROAD OT (150) TO PIPARO/ARCH OT (250) TO ST JULIAN OT (375)		B B B	AN AN AN		1	1 1 1		BU BU BU		1	1	1						$\frac{1}{1}$	SSS
47 TCO BPS	3							5	00		1	1				68		<u> </u>	É	Ľ
	BOOSTER SUCTION (900) BOOSTER DELIVERY (900) RIO CLARO OT (300) TCO B/PUMPS	·····	¥ B ¥ B B	¥ V AN		1 1 1	1		BU BU		1 1 1	1	1 1	12	49		6	CSS	1	0 S
18 NAVET I	Ŵ				<u> </u>			9								9	Ľ		1	t
	HIGH DAM Low DAM Storage Lift PS (1200)	f F		AN			1			1				 						
	RAW WATER (450) CLEAR WATER RESERVOIR DISTRIBUTION (900)	F	•••••	AN-4	1		4			1		4						•••••		•••
	TOTAL	38	127	160	-38	127	160	325	124	38	127	160	113	58	249	745	29		113	t
	= 1.1st of items =	YAP 4 D 11	¥B 14 B 111 •B 2	AN139					AV 9 *AV 2 BU106 *BU 1	. 1							6 23	CARONI CSS	7	

r - 8

Table L-2 SUMMARY OF COST ESTIMATE FOR CENTRAL SUPERVISORY SYSTEM (OPTION A) - (1)

NAME				<u></u>		1 0 1 1								 	HASE	3 - S - I	പപ			
TEM FACTI ITTES	FORE	FOREIGN CURRENCY (USS)	(<u>tssin</u>)		CIVIL	CIVIL WORKS	E			TOTAL	EOREIC	FORETCH CURRENCY (US\$)	(133)		E 1	OCAL CUIN	NCY (TTS	() STIDDI V 7		IVLU I
		PRIMARY INSTRUMENT	TOTAL (USS)	F-M/G-V BUILDING INSTAL- CHAMBER WORKS LATION	MILDING		13~	TRANS-	TOTAL (STT)	(ssn)	PRIMARY I	INSTRUMENT	TOTAL (US\$)	F-M/C-V B	BUILDING	INSTAL- 5	CLVIL) PC	TRANS-	TOTAL (211)	(1SSI)
[1] CONSTRUCTION WORKS	1							<u> </u>												
(000)				 				1	1					_						
FLOW METER	494.2	1, 870. 2	2, 364, 4	1, 438, 4		1,004.9	2, 443.3	201.0	2, 644, 3	2, 986. 6	1	1				1	13			
CONTROL VALVE	1					-	1	1	1	1	2, 156.4	3, 779.8	5, 936, 2	1, 396. 5	1	2, 522. 9	3. 919. 4	504. G	4, 424. 0	6, 977.
LEVEL METER	32.5	380.9	413.4	1			175.7	35, 1	210.8	463, 0	1	,	-				: ; ;			
PRESSURE GAUGE	1	388. 9	988.9	1	1	420.3	420.3	84.1	504.3	1, 107. 5	;	1		l		1			1	
CSS' & CENTRAL EQUI	1	1		•								5, 861, 9	5, 861, 9	1	385.3	1. 902. 6	2, 287, 9	<u>م</u> :	2. 668. 4	6.489
REGIONAL OFFICE	-	1		<u> </u>	<u> </u>	1	1	1				211.	211.	1	-	89.9	83.9		107.9	236.
REPEATER STATION				·								219.1	219.1			-		18.6	111.7	245
RTU STATION		•				1	1	1				11.832.0	11.832.0		2 219 5 1	~		1,005,7	8.253.8	13.774
BOOSTER P/S	1									1		966	564			6 30		10.2	115	553
SPARE PARTS									1			249.3	249.3					21.2	21.2	254
SUR-TOTAL	528.7	1 0 072 8	3 766 7	1 438 4		1 600 8	1 010 2	2 U 2	3 359 2	4 557 1	9 156 A	2 780 2	7 372 h	1 305 5	2 ED4 9	2 2 2 3 4 5	8 726 23	1 067 0	15 709 7	140 20
					• == -						i 1	ŝ	į		4					5
[DISTRICT OFFICE]													1							
PC & PRINTER	1	112.0	112.0					2.2	2.2	112.5										
SUB-TOTAL		112.0	112.0	 		l		2.2	2.2	112.5	 		1					l	L L t	1
TOTAL	526.7	3, 352, 0	3, 878. 7	1, 438. 4		1, 500. 8	3, 039. 3	322.4	3, 361. 7	4, 669. 7	2, 156, 4	22, 380. 3	24, 536. 7	1, 396. 5	2, 604. 9	9, 733. 4	13, 734, 8	I, 967. S	15, 702. 7	28, 231.
[2] ENGINEERING SERVICES			489.4	······································				1 1 1	332. 6	579. 4	1		2, 823, 9	1				1	1, 788. 4	3, 244.
TOTAL OF ITENS [1] & [2	(2) 526.7	3, 352. 0	4, 358. 1	1, 438. 4		1, 500. 8	3, 039. 3	322. 4	3, 744. 3	5, 249. 1	2, 155. 4	22, 380. 3	27, 360. 6	1, 396. 5	2, 604. 9	9, 733, 4	13 734.8	1, 967. 9	17, 491, 1	31, 476. 2
[3] TAX (VAT)	1				- • - • • - • ·	[ŀ	:	3, 346, 3	187. 4								1 1 1	20, 066, 1	4. 721. 4
[4] CONTINGENCY	1		655. 2					ł	561.6	787. 4		1	4, 104, 1			1			2, 623. 7	4, 721.4
[5] ADMINISTRATION	1		1						111.5	26.2			1			l			668. 9	157.4
GRAND-TOTAL	526.7	3, 352. 0	5, 023. 3	1.438.4	;	1, 600. 8	3, 039, 3	322. 4	7. 753. 8	6, 850, 1	2, 158. 4	22, 380.3	31, 464. 7	1, 396. 5	2, 604. 5	9, 733. 4	13, 734. 8	1, 367. 9	40, 849, 7	41, 076.
TOTAL COLLES COLLEGE				j							-			-	-	1				

Table L-2 SUMMARY OF COST ESTIMATE FOR CENTRAL SUPERVISORY SYSTEM (OPTION A) - (2)

	TOTAL (USS) (TTS)				1000	161.8 355.4		4 11.170. 254	11.			7, 792. 5 17, 320. 5		7, 792. 5 17, 320. 6	11, 041. 9 2, 538. 1	168.9 2.538.1	368.1 86.5	371. 3 22, 503. 4
1.1.2		_					18.5		1 5			316.4 7,		315.4 7.	11,			316.4 20,
(TT\$) [cimorv	물지	-		-								476.1 1.3		476.1 1.3				476.1 1.3
LOCAL CURRENCY	L- SUB-TOTAL N (CIVIL)	_				n. cr	1 \$3.		1 5.475		}	22 		<u>е</u> н				2
LOCAL			1.5	7		134	- 1	4. 238. 7	£, 476.		 	5, 476.	 	6, 476.		 		6, 476.
	BUI BUI						1		 		 		 			 	 	
	F-N/C-V		1	1	1		1			1	I			ł	1			
(<u>ssn</u>)	TOTAL (US S)				0.007.0	317.3	219.1	3, 973, 3 7,44 3	15, 487. 1		ł	15, 487. 1		15, 487. 1	ł	2, 323.1		17, 810. 2
CURRENCY	INSTRUMENT -ATION			1 1 2 1		317.3	219.1	9, 973, 3	15, 487. 1		1	15, 487. 1		15, 487. 1	1	-		15, 487. 1
FOREIGN	PRIMARY J														1	}		
			1. 489. 4	313.1					2, 437. 1		1	2, 437. 1		2, 437. 1	365. 6	365. 6	12.2	3, 180. 4
	TOTAL (TTS)	-	678. 2	142.6	289.0				1, 109. 8		1	1, 109. 8		1, 109. 8	1, 553. 7	166.5	51.8	2, 881. 7
5)	DORTATION	·	113_0		48.		1		185.0	1	1	185.0		185.0			1	185.0
ENCY (TT	(CIVIL)		565. 2	118.8	240.8				924.8			924.8		924.8	1			924.8
OCAL CUR	L WURDS		565. 2	118.8	240.8				924.8			924.8		924.8	ł			324.8
	E-M/C-V BUILDING INSTAL- CHAMBER : WORKS LATION		1		-		1			1				1				1
	F-M/C-V CHAMBER						1				1 -							
	TOTAL (USS)		1, 329. 8	279 6					2, 176, 0			2, 176. 0		2, 176.0		326.4	1	2, 502. 4
FOREICN CURRENCY	INSTRUMENT		1. 329. 8	279.6	566. 7				2, 176.0			2, 176. 0		2, 176. 0				2, 176.0
FOREIG	PRIMARY II) EQUIPMENT						- j j						·					
		CONSTRUCTION ROBKS				CSS S CENTRAL EQUIP	VTION		SUB-TOTAL	FLOW METER	TVLOI-90S	TOTAL	[2] ENGINEERING SERVICES	TOTAL OF ITEMS [1] & [2]	[3] TAX (VAT)	[4] CONTINGENCY	[5] ADMINISTRATION	GRAND-TOTAL

38. 8 1,489,4 1,390,1 1,390,1 313,1 313,1 313,1 313,1 355,4 355,4 11,170,1 25, 783, 9 757.8 19, 757, 8 00 5 2, 963, 7 2, 963. 7 15, 757. 8 × 1,000 254. TI (SS) ł İ. ł e, i ÷ 678, 2 633, 0 633, 0 142, 6 142, 6 1, 289, 0 1, 778, 3 1, 1, 7 1, 1, 7 5, 086, 4 жı ¢ 9 ~ 07 • N 2 ~ i 8, 902. 2 UNIT: 1 902 8, 902. I, 335. 419. 33. 595. TOTAL (TTS) 5 ļ ł ł ൽ 12. ដ PORTATION 1, 501.4 113,0 105,5 23,8 23,8 23,8 23,6 23,6 23,6 23,6 23,6 23,6 23,7 0 23,7 0 27,0 847,7 1, 501.4 1, 501.4 1, 501.4 SUPPLY 21.2 ł ł ł ł i 4. 25, Ê 565.2 5265.2 118.8 118.8 1.481.9 134.9 134.3 33.1 LATION (CIVIL) 400.3 σ 7,400.9 0 STT = 22U I UNA 7,400. 7,400. t ł ł ł ţ 目 CURRENCY -555 2 527 5 118, 8 118, 8 134, 9 134, 9 3, 1 4, 238, 7 ≁ 400.9 7, 400. 9 èn 5 CIVIL WORKS i. 7, 400. **4**00 400 ŀ ł 0 ł ł 1 r, -135 . S O O BUILDING ł ł ł 1 ł ** ł ł ł 1 US\$ EMENT F-M/C-V CHAMBER ļ ļ ł ł ł ł ł ł ł RATES: ں ح 329.8 241.1 556.7 317.3 317.3 219.1 219.1 219.3 663.1 **563. I** ŝ 20, 312, 6 ଳ 2, 649. 5 249. 663. EXCHANGE TOTAL (US\$) ł i; ł ł ł (ISI) **NOITGO** 6 17 Ľ, Ц, N CURRENCY 1 1, 329 8 1 1, 241, 1 239, 6 239, 6 317, 3 117, 3 249.3 PRIMARY INSTRUMENT COULDWENT - ATION 17, 663, 1 563. 663. 663. į ł ł ł ł 1 Ľ, 1 1 FORELGN SUPERVOSORY SYSTEM ÷ TĂX ł ł ł ł ł 1 ł ļ ł ADDED 177.7 VALUE 5 s ശ s, e 2 45, 357, 0 i 381. 349. 545. 2553. 2253. 3, 933. 3 5, 329, 5, 329. 596. 596. 530. TOTAL (USS) ij ł က် အိန်ဂ ц, f ន្ល VAT: 2 368 7 4 424 0 159 1 2 668 4 107 9 107 9 111 7 2 553 8 111 7 2 553 8 111 7 2 553 8 111 2 2 553 8 9 G ഹ ~ ß 0 C i 18, 519. 5 2, 109. 3 3, 094. 3 47, 128. | 513 528. ទ្រ 650. 101AL (115) ł ഇ് a. 33 VALVE, Supply 7. TRANS-Portation 155.0 26.5 26.5 380.5 18.0 18.0 18.0 19.3 21.2 21.2 ശ ഥ ò 2, 197.6 2, 197. 1 2, 197. 8 197. ł ł ł ł ļ CONTROL 2.1 FOR CENTRAL CIVIL WORKS (175) SUB-TOTAL (CIVIL) PC 321.9
 8.4
 -- 775
 2
 213
 6

 0.5
 -- 2.522
 3
 319.4
 1

 -- 132.6
 132.6
 122.6
 6
 240.8
 6

 -- 240.8
 240.8
 240.8
 240.8
 6
 369.9
 6
 39.1
 6
 3.1
 102.6
 6
 2.207.8
 2.4
 8
 2.4
 8
 2.4
 8
 2.4
 8
 2.4
 8
 2.4
 8
 2.4
 9
 3.1
 1.2
 6
 3.1
 1.2
 6
 3.1
 1.2
 6
 3.1
 1.2
 6
 3.1
 1.2
 6
 3.1
 1.2
 6
 3.1
 1.2
 6
 3.1
 1.2
 6
 3.1
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 1.2
 o ò တ 16, 321. **56, 321.** 321. ŀ ł ł ł ł FLOW METER AND ģ ģ 882.1 BUILDING LASTAL-882.1 882. 882. ł ŀ ł 1 ł 9 Ę Ê. Ê. HAS 504.9 504.9 604. 9 604.9 F-M/C-V: ESTIMATE ł ł ł 1 1 ન્યં ณ์ ณ์ 4 F-M/C-V 2, 834. 9 2,834.9 2, 834. 9 ø $\left| \right|$ 834 ł ł ł 1 e i 824.0 932.0 932.0 312.0 211.5 219.1 219.1 225.7 249.3 249.3 -27. 239. 4 35, 277. 9 0 4 10 S TOTAL (USS) 27, 239. 3, 437. 67G. 501 COST į ł ł 1 STATI (ISI) ້ທີ່ П d, ខ្ល <u>n currency (</u> Supply P/S; PUMPING
 1, 329, 8
 3, 779, 8

 3, 779, 8
 279, 6

 5, 861, 9
 5

 5, 861, 9
 211, 6

 211, 322, 0
 249, 3
 3 3 3 24, 556. 3 PRIMARY INSTRUMENT EQUIPMENT -ATION Ť. OF 556. 556. 556. ļ 1 ł ł ł 24, 24, 24, SUMMARY FOREIGN - -2, 683. 1 2, 583.] 2, 683.] 583. ł ł ł ł 4 FLOW METER CONTROL VALVE CONTROL VALVE LEVEL METER PRESSURE GAUGE CSS & CENTRAL EQUIP REGIONAL OFFICE REPEATER STATION RTU STATION RTU STATION SOOSTER P/S SPARE PARTS SERVICES [2] PMENT. **WDRXS** i 98 NAME OF FACILITIES AND EQUIPMENT TOTAL Ξ SUB-TOTAL ADMINISTRATION e SUB-TOTAL ð FLOW METER VOTE: EQUIP.: EQU 1 ENGINEERING CONTINGENCY ITENS **GRAND-TOTAL** CONSTRUCT (VAT) Table 늉 TAX TOTAL ē Ξ Ξ Ξ 5 2

ri	· · · ·							r	
TOTAL		52, 659 3, 824 56, 433	8, 472 8, 472	73, 710				• •	51, 355 3, 933 8, 293 8, 293 72, 151 72, 151
2009 2010 TOTAL		1/2 '6 1/2 '6	1, 496	13, 013	22, 603			***	
5003	STEP 3	7, 349	1, 102 1, 102	37	JIN -				
2008	REPLACEMENT OF STEP 3		: : :	- 1 - 1					
2007	REPLACEN								
2006				i i					
2005			210 - 210 -		180				111, 501 117, 000 117, 000 115, 000 115, 000 115, 000 115, 000 115, 000 117, 000 110
2004	P 1	034 1. - 034 1.	155 155	349				EI	12171
2003 21	REPLACEMENT OF STEP	1. 034		ii	VIOI		 -	REPLACEMENT OF PHASE	8, 2 1, 2 10, 7 10, 7
	LACENE NT							ACEMENT	
1 2002	NEPI	1						REPL	
2001									
2000		16, 253 1, 088 17, 340	2, 601 2, 601	22, 629	41,076	:			
1999	283	11, 979 599 12, 578	1, 887 1, 887	16, 414	TOTAL =				
1998	- STEP 2 & 3	1, 082 1, 082	162 162	1.411	•				
1997	PHASE 1	477 477	11	522 522					
1996									
1995		2, 688 194 2. 883	432 432	3, 762	6, 850				18, 190 1, 319 19, 509 2, 225 45, 459 46, 367
1994	STEP 1			 2:8i	TOTAL -			Ĩ	13, 407 1 726 1 2, 133 1 2, 120 1 2, 120 1 13, 443 2 201A, 1 101A, 1 201A, 1 2
1993	- 1	193 1 193 2		252	2	<u> </u>		PHASE	
1992	PHASE	85 85	67 F7						7578 1 7578 1 754 1
	_	1			. .			μ	
0 N		CONSTRUCTION ENGINEERING SERVICES U B - T O T A L			. 1	L			
	۷	I ION	2	O T A L	LUE	81	316	8	CONSTRUCTION EWLINEERING SERV INX (VAT) INX (VAT) ONTINGENCY ADMINISTRATION ADMINISTRATION C 52, 442 C 40, 418 C 40, 418 C 32, 505 C 32, 505 C 32, 505 C 32, 505 C 22, 442 C 22, 442 C 22, 442 C 22, 442 C 23, 505 C 22, 505 C 23, 505 C 24, 505 C 24, 505 C 24, 505 C 24, 505 C 24, 505 C 25,
R P F F	NO	VEERI - T	TAX (VAT) CONTINGENCY	ALSI A.C.	PRESENT VALUE	43, 722 27, 581	23,5	z	$\begin{array}{c} \mbox{CONSTRUCTION}\\ \mbox{ENCINERING}\\ \mbox{SUB} - T 0 T\\ \mbox{SUB} - T 0 T\\ \mbox{SUB} - T 0 T\\ \mbox{ADMINGENCY}\\ \mbox{CONTINGENCY}\\ \mbox{ADMINGENCY}\\ $
2 C	OPTION	CONSTRUCT ENGINEERI U B - T	TAX	T 0 T	RESE		نا ب	OPTION	CONSTRUCT ENGINEER SUB V. T T SUB V. T T O T AL T O T AL CONTINGE ADMINIST T O T AL CONTINGE ADMINIST T O T AL C 35, C 36, C
ະ ວ	ЧÖ	[1] [2] [07			5	X 15	0 D	
<u> </u>	Ц.,	·····		<u> </u>		L		[

.

NOTE: EXCHANGE RATES; 1 US\$ = TT\$ 4.25 AND 1 US\$ = ¥ 135, %; DISCOUNT RATE

Table L-4 NET PRESENT VALUE FOR OPTIONS A AND B

3. REMOTE CONTROL BOOSTER PUMPING STATION

3.1 Outline of Existing Booster Pumping Stations

As described in the Part I of the Main Report, booster pumping stations in Trinidad and Tobago are summed up to 58 in number including high lift pumping stations.

There are three types of pumping stations constructed so far in Trinidad and Tobago. They are booster pumping stations, high lift pumping stations and storage lift pumping stations. Difference of the former two is whether the pumping well exists or not in the pumping station. The latter aims to lift raw water from the downstream river/low dam to the water resource reservoir when water level is quite low in the reservoir.

Most of the pumping stations, although some pumps are dismantled for repair, are working normally. Table I-4.3 given in the context of the Main Report presents the working conditions of booster pumps with some technical information.

3.2 Method of Selection

It is difficult to select some alternatives beforehand due to lack of data and information on actual pump capacity and transmission/distribution system.

In view of the objectives of the Phase I project to be followed by Phase II Expansion Project, it is desirable that several key pumping stations are monitored and controlled from the CSS building during the period of the Phase I Project. After collation and analyses of the compiled data, the number of pumping stations will be increased according to the requirements during Phase II Project.

Hence, it seems rather reasonable to select several pumping stations out of 58, which are located along the transmission/distribution mains from four large scale water supply systems. Evaluation of each pumping station will, then, be made from viewpoints of cost, scale, number of operators, etc.

3.3 Selected Booster Pumping Stations

The selected booster pumping stations for remote control during the period of Phase I Project are following six booster pumping stations and one storage lift pumps, which are also listed in Table L-5:

Booster Pumping Stations

- 1) Tunapuna BPS
- 2) Valsayn BPS
- 3) El Socorro BPS
- 4) San Fernando BPS
- 5) Malgretoute BPS
- 6) TCO BPS

Storage Lift Pumps

1) Tumpuna SLP

3.4 Recommendation

Following are the JICA Team's recommendations related to remote control operation of the pumping stations:

- 1) Initiation of remote control operation will require repair works of pumping facilities in advance. It is minimum requirements that all pumps installed for standby should be overhauled and any dismantled pumps for repair should be also restored as originally designed.
- 2) After initiation of the remote control operation by the CSS, periodical maintenance of pumps and the appurtenances will be indispensable to operate the system as longer period as possible.

NAME OF STATION	NUMBER PUMPS	OF ¹⁾ CAPACITY (CMD)	NUMBER OF OPERATORS	DISTRIC	T ²⁾ COST OF ³) INSTLLTN	EVALUATION ³⁾
Tunapuna	3(1)	15,300	4	NC	III	II
Valsayn	3(1)	36,300	4	NC	II	II
El Socorro	3(1)	90,700	4	NW	II	I
San Fernan		68,300	4	SF/SC	1	I
Malgretout	• •	67,000	4	SE	II	I
TCO	6(2)	77,184	4	SE	II	\mathbf{I} . ,
Aripo	2(1)	4,600	1	NE	II	III
Arima	2(1)	4,600	1	NE	II	III
Tumpuna	6(2)	257,000	0	NC	I	I.
Navet	6(2)	90,700	1	SE	II	II

SELECTION OF BOOSTER PUMPING STATIONS Table L-5

Note:

1) Number in parentheses means number of stand-by.

2) Abbreviation of districts are as follows:

NE: North East

NC: North central

NW: North west

SF: San Fernando

SC: South central

SE: South east

3) Priority(I, II and III) evaluated in the table means as follows: I: Most effective or reasonable

- 16

L

II: Priority between I and III

III: not effective at the moment

M: EXISTING CSS FACILITIES

M: EXISTING CSS FACILITIES

<u>CONTENTS</u>

1.	BackgroundM- 1
2.	Existing CSS FacilitiesM- 2
3.	Function of the Components of the Central Processing Unit and PeripheralsM- 3
4.	Function of the Radio Communication Equipment
5.	Function of the Remote Terminal Unit Component
6.	Data on CSSM- 8
7.	Data ProcessingM- 8
8.	Remote Manual Control of Pump and ValveM-14

ć

FACILITIES

1. Background

a) The CSS was commissioned in November 1980 with the following components:

Two (2) computer systems and peripheral devices. Twelve (12) Remote Terminal Units (RTU) at the following places:

Mallic Reservoir El Socorro Booster Pump Station San Fernando Booster Pump Station Mt Hope Reservoir Caroni Water Treatment Plant Valsayn Booster Pump Station Loango/Naranjo Waterworks Acono Waterworks Caura Waterworks Subero St. Booster Pump Station Aripo Waterworks Flow Control Station

b) The following RTUs were installed by the end of 1980.

Picton Reservoir Morvant Reservoir St Joseph Reservoir

Μ.

c) The following RTUs were installed in 1981.

Tunapuna Booster Pump Station Tumpuna Pump Station Valley View Reservoir Arima Reservoir North Oropouche Waterworks

d) The following RTUs were installed in 1986.

Knaggs Hill Reservoir California Reservoir

e) The RTU was installed at Pepper Hill Reservoir in 1987.

f) The RTU at Subero St. Booster Pump Station was removed in 1989 due to removal of booster pump.

2. Existing CSS Facilities

The existing CSS facilities consist of four main system blocks such as (a) Central Processing Unit, Peripheral and Auxiliary Equipment, (b) Data Radio Communication, (c) Remote Terminal Units and (d) Field Instruments and Equipment as shown on Fig. M-1. The details of those systems are described below.

a) Central Processing Unit and Peripherals

A computer is always carrying out the real time monitoring of the water system functions. Whenever this computer fails, the stand by was to be switched to carry out the said functions of monitoring the water system.

The Central Processing Unit and Peripherals consist of the following components.

Uninterrupted Power Supply	1	Topaz 81415-17
Central Processing Unit	2	DEC PDP 11/34
Fixed Disk Drive	2	DEC RK05-F
Cartridge Disk Drive	2 .	DEC RK05-j
Magnetic Disk Drive	2	DEC TSO3
High Speed Printer	1	DEC LA 180 PA
Graphic Printer	1	HP 7202 A
Video Terminal	1	DEC VT52
Printer Terminal	1	DEC LA 36 CE
Color Video Terminal		ISC 8100
MODEM	2.	Racal/Vadic VA 1230 K
Switch Panel	1	

Note: DEC ; Digital Equipment Corporation HP ; Hewlett Packard ISC ; Intelligence Systems Corporation

b) Data Radio Communication

The Data Radio Communication Link is made up of the following (ref. Fig. M-2).

Data Radio Transceiver at the Central Supervisory System Building Data Radio Repeater at Pepper Hill Data Radio Transceiver at each RTU

The Data Radio Communication Link consists of the following components.

Transceivers	2	Master II VC 55 RAD 77B
Repeaters	2	Master II SC 55 RAL 77B
Repeaters	2	Master II SC 76 RAD 66A
Transceivers	6	Custom MVP CT 56 AAP with duplex
Transceivers	19	Custom MVP CT 56 AAP without duplex

c) Remote Terminal Unit (RTU)

Presently there are twenty two (22) RTUs at water supply facilities. The following are type, quantities and manufacturers of components in a typical RTU. The components are more or less standard in each RTU except that there are different quantities of input/output interfaces in each RTU.

Modem Watch Dog Timer Micro Processor Unit	$\frac{1}{1}$	SCI PC 737315 MTR M 68 MM 01 A
AC/DC Power Supply	1	R/O Model 750
DC/DC Power Supply(Input/Output Interfaces)	1	SCI AD 757340
Two States Input PC Card		SCI AD 7573505 SCI AD 7573510
Relay Driver Output Card Multiplexed		SUL AD 1013010
Analog Input PC Card		SCI AD 7573500
Analog Output PC Card		SCI AD 753520-2

Note: SCI: System Control Incorporated MTR: Motorola R/O; R.O.Associated Incorporated

d) Field Instruments and Equipment

The field instruments and equipment are classified into four (4) main categories as follows:

Analog Input Devices Analog Output Devices Discrete Input Devices Discrete Output Devices

The analog input and output devices are instruments and discrete input and output devices are relay or two state switches.

The list of instruments, type and manufacturers is shown in Table M-1.

Function of the Components of the Central Processing Unit and Peripherals 3.

The each function of the components of the Central Processing Unit and Peripherals is described below.

a) Uninterrupted Power Supply (UPS)

The UPS supplies power even during the time it takes between loss of utility electrical power and supply of electrical power supply from stand by electrical power generating plant. The Central Processing Unit and Peripherals are supplied with electrical power through the UPS.

b) Central Processing Unit (CPU)

The Central Processing Unit is the main intelligence of the Central Supervisory System. It communicates with all the other peripherals to control them. It uses a number of computer programs designed to operate on available data.

M - 3

c) Fixed Disk Drive

The fixed disk located in the Fixed Disk Drive stores the programs which make up the operating system, indefinitely. When the computer system is being placed "on-line", the operating system is loaded from the Fixed Disk Drive into the CPU's main memory where it may communicate faster with the processor, the main controlling components of the CPU. The fixed disk also store indefinitely, the program which monitoring and data logging of water system information.

d) Cartridge Disk Drive

The Cartridge Disk is removable from the cartridge disk drive and stores the information from water system obtained through data logging by the Central Supervisory System.

e) Magnetic Tape Drive

The magnetic tape in the Magnetic Tape Drive is removable and performs the same functions as the Cartridge Disks.

f) High-Speed Printer

The High-Speed Printer is a unidirectional machine to man communication link. It prints out alphanumeric information regarding the activities taking place within the central processing unit on paper, as directed by the CPU. It is a one-way communication link since man cannot communicate with the equipment in the Central Supervisory System through this printer.

g) Graphic Printer

The Graphic Printer is a unidirectional machine to man communication link. The graphic printer prints out graphical information on paper as directed by the CPU.

h) Video Terminal

The Video Terminal is a bidirectional man/machine intercommunication link. It is the intercommunication link between man and computer and provides the features for writing, running and editing programs via a key-board. Through this terminal new program can be written and old programs modified.

i) Printer Terminal

The four (4) printer terminals are all bidirectional man/machine intercommunication links. Two (2) of the terminals are programmer's terminals communicate with the Central Processing Unit in the same manner as the Video Terminal. They perform functions similar to the Video Terminal, and in addition they print out on paper all the intercommunication. There are two other printer terminals called Operator's Terminal which mainly log errors, alarms or significant events as they occur within the water system.

M - 4

j) Color Video Terminal

The two (2) color video terminals provide bidirectional man/machine intercommunication with the water system. They communicate information from the water system to the operator via the screen in both graphic and alphanumeric symbols.

k) MODEM

There are two modem cards in the modem card cage through which all data communication between the Central Computer at the CSS Building and the Remote Terminal Units take place. One of the modem cards is connected to each of the CPU's. The modem which effectively modulates and demodulates data signals, converts data signal from standard two level voltages used in the computer for digital data manipulation to two level frequency used in telephone line transmission of digital data. The modem also converts two level frequency received as digital data from the Remote Terminal Units via the data radio transceivers to two level voltages used in the computer for digital data manipulation.

1) Switch Panel

This is basically a panel with switches on it to enable manual switching of certain equipment within the CSS Building between CPU's.

4. Function of the Data Radio Communication Equipment

The each function of the Data Communication Equipment is described below.

a) Transceivers

These two way radio transceivers located at the CSS Building are used to transmit digital signals from the Central Computer to the Remote Terminal They are also used to receive digital signals Units via the repeaters. from the RTU's via the repeaters. The digital signals which reach the transceiver from the Central Computer are a train of two level discrete The frequencies are 1200 cycles per second and 2200 cycles frequencies. The transceivers radio transmission through the air via the per second. antenna is modulated by the two-level frequency received from the The level of radio transmission (carrier) is ultra high computer. frequency (UHF), being 418.025 million cycles per second. The level of radio reception carrier is also UHF being 413.250 million cycles per second.

b) Repeaters

TRANSCEIVERS (Master II SC 55 PAL 77B)

This repeater receives a train of digital signals on UHF radio waves entering through the antenna from the transceivers at the CSS Building. The digital signals are then extracted from the UHF waves and transmitted to the very high frequency (VHF) repeaters to modulate the VHF radio waves and so transmit signals to the transceivers at the RTU. It also receive a train of digital signals transmitted by the VHF repeater from the RTU's which modulates its UHF carrier transmission through its antenna to the transceiver at the Central Computer.

TRANSCEIVERS (Master II SC 76 RAD 66A)

The repeater receives a train of digital signals transmitted by the UHF repeater which are then used to modulate the VHF repeater transmission (carrier) to the Remote Terminal Units (RTU's) via the antenna and air medium. It also receives a train of digital signals on the VHF radio waves entering through the antenna from the transceiver at the RTU. The digital signals are then extracted from the carrier and transmitted to the ultra high frequency (UHF) repeater, which will modulate UHF carrier and so transmit signals to the transceivers at the Central Computer.

TRANSCEIVERS (Custom MVP 56 AAP 66A)

These two way radio transceivers located in the RTU's are used to receive digital radio signals from the Central Computer via the repeater. These signals enter the transceivers on VHF carrier via the antenna and are transmitted to the microprocessor unit in the RTU. These transceivers are also used to transmit digital signals from the microprocessor unit in the RTU to the Central Computer via the repeater. The digital signals which reach the transceiver from the Remote Terminal Unit's microprocessor are a series of two level discrete frequencies. These frequencies are 1200 cycles per second and 2200 cycles per second. The transceivers radio transmission through the air via the antenna is modulated by the two level frequency received from the microprocessor unit of the RTU. The level of radio transmission (carrier) is very high frequency (VHF) being 153.950 The level of radio reception through the million cycle per second. antenna is also VHF being 159.960 million cycles per second.

5. Function of the Remote Terminal Unit Component

The each function of the Remote Terminal Unit Component is described below.

a) Remote Terminal Unit (RTU)

The Remote Terminal Units are microprocessor controlled units which perform the function of interpreter between the Central Computer and Field Equipment or instruments. All communication transmitted from the RTU to the Central Computer and all communication received by the RTU from the Central Computer must pass through the Microprocessor Unit (MPU), and Modem and Watchdog Timer Printed Circuit (PC) cards in the RTU. The instruction and request from the Central Computer are decoded and understood by these two modules in the RTU. The microprocessor unit then sends signals via input/output printed circuit cards to the field instruments and equipment. It also receives signals via the said input/output PC Cards (Modules) from the field instruments and equipment. b) Modem and Watchdog Timer

All communication from the Central Computer to the RTU enter the RTU via the modem and watchdog timer printed circuit card. Within this module the train of two level discrete frequency digital data are converted to two level discrete voltage levels of the type used by microprocessor. The data transmission train received by the modem and watchdog timer card is decoded to some extent and the information received is transmitted to the microprocessor unit.

c) Microprocessor Unit

The Microprocessor Unit (printed circuit card) contains the main intelligence of the Remote Terminal Unit. It contains computer programs for scanning the field instruments and equipment based on instructions or request from the Central Computer.

d) AC/DC Power Supply

The RTU receives its electrical power from Electric Utility Company which supplies alternating current (AC) electricity. Computer equipment needs direct current (DC) electrical power for data manipulation. As such an AC to DC converter is needed to supply the required DC voltages and hence the need and function of the AC/DC power converter.

e) DC/DC Power Converter

The AC/DC power supply provides only a +12 volts referenced to ground (zero volts). However, the components of the RTU utilizes several level of DC voltages. These voltages are +5 volts, -12 volts, +12 volts, +24 volts. As a result the DC to DC power converter is utilized to produce the various levels of DC voltages.

f) Batteries

The batteries are used to provide the 12 volts to the DC/DC power converter when there is a loss of Electric Utility Company electrical power supply. These batteries are sized to power the RTU for only a limited time. The time limit is based on a reasonable time for the electrical power to be restored by the utility company.

g) Two Status Input PC Card

This card is used for the microprocessor unit to receive signals from field instrument or equipment indicating that they are in one of two possible status.

h) Relay Driver Output PC Card

This card is used for the microprocessor unit to send signals to field instrument or equipment to drive them into one of two possible status. i) Multiplexed Analog Input PC Card

This card is used for the microprocessor unit to receive signals from field instrument or equipment indicating that they are in one of several possible states or positions.

j) Analog Output PC Card

This card is used for the microprocessor unit to send signals to field instrument or equipment to drive them into one of several possible states.

6. Data on CSS

The monitoring data at CSS building are described below.

Water Level : 34 Flow Rate : 25 Water Pressure : 17 Others : 14 (pump and valve status,etc.)

The list of those data is shown in Table M-2.

- 7. Data Processing
- a) Supervisory Control and Data Acquisition (SCADA) System

In general, a SCADA system is comprised of the following subsystems:

- i) remote sensor data acquisition
- ii) data transmission channel to the central control site
- iii) data input multiplexing at the central site
- iv) data base control and usage

In addition a SCADA system requires off-line software utilities that support on-line operation and creation of the data base in main memory and on disk. In the Central Supervisory System remote sensing and data transmission are provided by the Remote Terminal Unit which collect water system data through transducers, pack the data into a data stream using a geometric coding scheme and transmit that data by radio link to the central site, on-line PDP 11/34 computer. The system controls the input of that data, incorporates the data into its data base in main memory and on disk, and provides a man/machine interface with which operators and engineers can monitor the sensor environment, handle alarms as they arise, and make correction and improvements to the system as required.

b) System Software

This supervisory system provides three basic functions: data acquisition, alarm notification and generation of a historical data base. As data is acquired, pre-defined checks are made for alarm conditions which will produce an alarm message and activate the alarm horn. All analog information is saved on disk at 6-minutes intervals and processed each day at midnight to provide a complete history of the system on magnetic tape. There are seven (7) subsystems which function independently using the system data base. These are:

- Input/Output to RTU's
- Alarm Processing
- Process Control
- Historical Database
- Fail-over
- Message Facility
- Man/Machine Interface

The man/Machine Interface (MMI) tasks provide functions which can be classed into four general categories.

- Display functions : system status and database display
- Modification functions : control of system through database changes
 Process Control functions: output to RTU's
- Operating system function: for privileged operator only

Fig. M-3 shows a diagram of the major executable program units, called tasks, for on-line system. The major features are the global common database, the remote terminal unit I/O processor, the man/machine interface tasks and controller, the historical database tasks and point alarm notification task.

The hardware, tasks and data base are interconnected in such a way that inter-task control information and inter-task data movement is minimized. Only one task, PIOX, handles input and output for the RTU's.

Remote point data moves directly from remote input channels to the data base in global common (a memory partition in the CPU) by way of the RTU I/O processor. PIOX in turn receives all requests for changes to the RTU channels, and verifies the result of the command output.

All software tasks, including PIOX, must follow a global common access protocol to use certain parts of the data base. The protocol allows sharing of the data and of direct access files. Sharing is accomplished through the employment of software lock devices. When data base access is allowed, global parameters facilitate efficient conversion of input data and movement into the proper location in global common.

c) Global Common Blocks

A global common partition, PCSCOM, is defined in this system to occupy a specific area in physical memory. PCSCOM is currently allocated 6K words of memory of which all but 32 words are currently being used. All tasks must set aside 8K words of their 32K words virtual address space in order to access this global common partition. This means that the maximum task size is 24K words.

Tasks CKPGCM and RSTGCM are used to save and restore an image of entire global common partition in the file PCSCOM DAT. The Fortran block data program PCSCOM is used to initialize global common. PCSCO.TSK and PCSCOM.STB (symbol table) which are produced by the PCSCOM task build must be on DK2: under UIC = [1,101]. Any change to the structure of PCSCOM will require that all tasks referencing PCSCOM be compiled (or assembled)

M - 9

and task built with the new global common installed. This is accomplished by using the command file PCSBUILD.CMD which will build all task in the system.

The followings are the summary of global common blocks.

AAACOM - size of global common
ALRCOM - alarm message file data
CRTCOM - CRT communication
DATCOM - PIODMP data buffer and flag
DDBCOM - digital device descriptor blocks
EUTCOM - engineering units table - all point information
FLGCOM - logical system flags
HSTCOM - system history information
IDXCOM - point indices for process tasks
PCVCOM - process control variables
RTUCOM - RTU attributes
SUMCOM - daily and yearly integrated values
SYSCOM - system configuration information
UNTCOM - definition of variable units
VPPCOM - virtual point interpolation tables

d) Function of the Task

The followings are the functions of the major tasks in the system.

AAACOM (Global Common Partition Size)

This global common block is placed at the beginning of the partition so that the tasks CKPGCM and PSTGCM can access an address for copying global common into PCSCOM.DAT disk file. The contents of GCSIZE refer to the number of 32 word blocks. The system generation of 2.July '79 produced a global common of 191 blocks (192 max for 6K word common partition).

ALRCOM (Alarm Message Common)

The ALRCOM task write the alarm message in record AINDEX of the direct access file ALARMS.DAT, then bumps AINDEX by one. If AINDEX is greater than ALSIZE it is reset to 1. ALS uses AINDEX to determine where to start checking ALMAPS for an active alarm in reverse chronological order. ALMAP is zero if the alarm is not active and one if an active alarm message.

DATCOM (RTU Input Data Buffer)

DATCOM consists of DATAIN, DATFLG tasks. DATAIN is used as an intermediate buffer when the dump bit is set in RTUTS (RTUCOM). Whenever this RTU is scanned the input bytes will be transferred to DATAIN if DATFLG=0 and task PIODMP will be activated. When PIODMP finishes printing the buffer DATFLG will be reset to zero indicating PIODMP is ready for more data in DATAIN.

DDBCOM (Digital Device Description Block)

A digital device (i.e. pump or valve) may have 2 or 3 digital input points used to describe the state of the device. In order to display the state of this device on CRT a mapping must be made from the input points to a device state name. If a digital input point is part of a device the device name (DDNAME) is stored in EUCKHI (EUTCOM) of the point. In order to map from any point to the other points in a device DDPTNR is used. DDMAP provides an index to the device state name given the states of the 3 digital input points associated with the device (e.g. pump on, off and fail status inputs). DDSTAT is used to disable a device so that process control tasks will not attempt to control the device.

IDXCOM (Point Indices for Process Tasks)

This array is used by the Caroni/Tumpuna control task PROCS3 so that the point indices need be looked up only once. When PROCS3 is first run the task IDXSET is activated. IDXSET fills INDEX with 102 indices which PROCS3 will use. The additional entries in INDEX1 are reserved for future expansion of PROCS3 control functions.

HSTCOM (System History Information)

HSTCOM is divided into 3 parts which are used by SCANSV, HISTRY and TAPESV tasks. HISTCOM is initialized by the utility task HSTINI which fills the array SCHA with point indices for all analog points. Currently the history system is limited to 125 analog values. The MMI task DCM can be used to display all values in HSTCOM.

PCVCOM (Process Control Variables)

Three parameters are provided for up to 5 elementary process control loops in the global common block PCVCOM. PCVMIN and PCVMAX are used as minimum and maximum set point values and PCVDBD is used as an absolute deadband value.

SUMCOM (Daily and Year to Date Integrated Values)

All analog points which must be integrated on a daily and yearly basis have their names defined in the global common array INAMES. Currently these points are all system flows (integrated to volume) and the 2 rainfall measurements. PROCS4 does the summing and places the integrated values into PTSUMS. The task HSTRY resets the daily and yearly sums and moves the array PTSUMS into the appropriate location in the daily history file. The array INAMES is filled by the task HSTINI from the edit file SUMNAME.TXT which contains a list of up to 508 character point name.

SYSCOM (System Configuration Common)

SYSCOM allows the operator through the MMI task CON to change the physical device assigned to a logical device, e.g., if the LA-18 printer is down, the logical printer devices may be reassigned to port 5, which is a LA-36 terminal.

UNTCOM (Units Definition)

The units code associated with each analog point can be modified by the task CPA and stored in EUSTAT (EUTCOM).

VPPCOM (Virtual Point Interpolation Tables)

The common block VPPCOM allows up to 5 table to be defined with a maximum of 20 pairs of points to be used for calculating virtual points using empirical data. The task CVP allows the operator to add, delete or modify these tables. The subroutine LGINTR contained in PROCS4.FTN is used to perform quadratic interpolation using these tables. The utility task VPPCRE will create these tables from the source file TABLES.TXT.

FOV (CPU Failure Detection Task)

This task sends a pulse to the DR11 watchdog timer bit every 5 seconds. If FOV fails to send this pulse he CPU fail light and CPU fail alarm will be activated. In general, FOV only indicates that the on-line CPU is still executing the task FOV, FOV will detect a failure of the RTU communication task, PIOX. PIOX sets a flag (RTUFLG(2)) every second in its mark time AST service routine. FOV checks if the flag is set and then clears the flag. If it is not set FOV will turn on the alarm horn and log the message "PIOX STALLED". FOV also checks the status of the two switch panel power supply bits in the DR-11 status register. If either bit is off, a message is logged and the system alarm horn is enabled.

PIOX (RTU Interface Task)

PIOX is a memory resident task written in assembly language which handles all communications with the remote terminal units. PIOX is divided into an input section and an output section which share common subroutines for message formatting.

ALARM (Alarm Notification Program)

ALARM is activated when ALRCON finds either an alarm condition or no alarm and the message printed bit set an any input point. ALARM then scans all valid points to determine which points have an alarm flag set. If a flag is set and the message printed bit is not set, a message is formatted and entered into the ALARMS.DAT file and printed on the alarm logging device. If the alarm flag is not set but the message printed bit is on an "out of alarm" message is printed on the alarm device and the message printed bit is cleared. All other conditions are ignored. After checking all points, if any alarm condition has been detected the alarm have been detected the alarm horn is turned off through the DR11 I/O task.

ALRCON (Alarm Activation Task)

ALRCON is a small memory resident task which checks all points in EUTCOM every 5 second. ALRCON will activate the ALARM task under the following conditions.

The alarm bit is set and the message printed bit is clear in EUSTAT for any point. ALARM will then print a point in alarm state message. The alarm bit is not set and the message printed bit is set. ALARM will print the point out of alarm message and clear the message printed bit.

Any task which changes the condition under which an alarm is detected must make the initial alarm checks itself and set the alarm bit if required.

CRTCON (Man/Machine Interface Control Task)

This task controls the man/machine interface (MMI), i.e. the interface between the system operator at the CRT and the tasks which allow the operator to interact with the system.

The services which are provided by CRTCON are:

Add/remove a CRT from the system

- Pass a character and or function key input to the active task
- Activate tasks as requested by function index task or function keys
- Provide means of exiting from a running task and activating a successor task
- Provide screen freeze enable/disable control for copy page function
- Provide clock enable/disable control

All input from the CRT to MMI tasks must pass through CRTCON. This is accomplished by using the logical function GETINP which will place the input into a line buffer for the attached CRT. MMI tasks are attached to a given CRT by including the block of code "GETCRT.TXT" at the beginning of the program. All output to the CRT may be done with the usual write statements and formats. CRTCON traps all incoming data from the CRT by using an AST service routine.

HISTRY (Calculate and Save Daily System History)

HISTRY runs at midnight each day to compress the previous 24 hours of scan data saved in the file SCANSAVE.DAT. HISTRY calculate for each analog variables the following parameters.

- minimum value

--

- time of minimum value
- maximum value
- time of maximum value
- daily average
- 24 hourly average
- integrated daily value (selected points)
- integrated yearly value (selected points)

The name of points which are integrated on a daily and yearly basis are in the global common SUMCOM in the array INAMES. After writing the daily history file HISTRY DAT, HISTRY zeros all daily sums, saved the current rainfall pulse count in EUCKLD (EUTCOM) and zeros the yearly sums of the date is January 1.

M - 13

MESSAG (Message Format and Output Task)

All system message are logged on the logging device by the task MESSAG. A task requests a message to be logged by issuing a send data directive and then an activation request to MESSAG. The send data buffer contains the message number, the number of parameters and up to 12 words of parameter data. MESSAG reads the message template from the disk file MESSAG, DAT. and fills in the blanks with the parameter from the send data directive. The message is then printed on the logging device along with the system date and time, the message number, the operator name (if an MMI task) and the name of requesting task.

e) CRT Display

The operator can monitor the data of various kind by CRT display at CSS building. The list of CRT display is shown in Table M-3.

8. Remote Manual Control of Pump and Valve

The six (6) storage lift pumps and two (2) river discharge valves at Tumpuna Pumping Station are controlled at Caroni Water Treatment Plant by start/stop pushbuttons and open/close pushbuttons through CSS (Caroni Water Treatment Plant/Tumpuna Pumping Station Pump and Valve Control).

Table M-1 List of Field Instruments

STATION	DATA NAME	FIELD INSTRUMENT
Picton	Picton I Level	L/T - F/P D/P Cell
110001	Picton II Level	11 11 11 11
	Picton III Level	18 18 18 18
Mallick	Reservoir Level	L/T - R/S 160-B1
EL Socorro	Clearwell Level 1	P/D - F/P 50 DP 2000
	Picton II Out Pressure	P/T - F/P 50 EP 1000
	Picton III Out Pressure Picton II Out Flow	S/R - R/M 1151 D/P
	Picton III Out Flow	
	Caroni WTP In Flow	92 98 98 98
· .	Clearwell Flow	11 91 11 EF
	Wellfield Flow	17 17 17 PT
· · ·	Spill over Flow	17 17 17 17 17
San Fernando	San F'do Res. Level	L/T - R/M 1151 DP
	Marryat Res. Level	15 19 17 17
	Naparima Res. Level	92 93 93 73 73 92 92 92 92
	Chacon Res. Level	
	Caroni WTP In pres.	P/T - F/P 50 EP 1000C
	Pump ST Out Pressure	
· ·	Caroni WTP In Flow	S/R - F/P 50 ES 3000
	Navet Line In Flow Navet Line Out Flow	11 11 11 11 JT
	Pump Status 1 2 3	
Mt.Hope	Reservoir Level	L/T - R/S 160-B1
Caroni	River Level	L/T - F/P D/P
	Clearwell Level	71 ST EL
	North Pipeline Pres.	P/T " "
	South Pipeline Pres.	17 77 17 ¹ 17 17 17
	North Pipeline Flow	78 FF
	South Pipeline Flow	
Tumpuna	Arena Res. Level	
r.	Channel Level	L/T - F/P
	Tumpuna Weir Level	
	Flow to Reservoir	F/P
	Flow to River	
	Pump Status 1 - 6 River Discharge Valve	
	Weir AC Fail	F/P Position Indicator
	PS AC Fail	Relay Contact
California	Reservoir Level	L/T - R/S 160 B1

M - 15

.

Table M-1 (cont'd)

STATION	DATA NAME	FIELD INSTRUMENT
Valsayn	Clearwell Level Mt Hope Out Pressure Caroni WTP In Pres. St Augustine Out Pres. Caroni WTP In Flow St Augustine Out Flow Wellfield Flow	L/T - R/S 160 B1 P/T - F/P 50 EP 1000 """"""""" S/R - R/M 1151 D/P """"""
Knaggs Hill	North Res. Level South Res Level	L/T - S/T 1333 TF
Loango/ Naranjo	Treated Water Pres. Treated Water Flow	P/D - S/T 1333 TF S/R - S/T 1336 NA
Acono	Raw Water Level Treated Water Pres. Treated Water Flow	L/T - Euroguage 3664-50 P/T - S/T 1333 TF S/R - S/T 1336 NA
Caura	Clearwell Level Raw Water Sump Level Treated Water Pres. Treated Water Flow	L/T - D/B 506-6000 P/T - F/P 50 DP 2000 S/R - F/P 50 ES 3000
Arima	Reservoir Level	L/T - L/S 160 B1
Aripo	Raw Water Pump Level Treated Water Flow	L/T - Euroguage 3664-50 S/R - S/T 1336 NA
N.Oropuche	Reservoir 1 Level Reservoir 2 Level Raw Water Flow	L/T - F/P " " F/P
Flow Control	Pipeline Pressure Pipeline Flow	P/T - F/P F/P
Pepper Hill	Reservoir Level Radio Room Temp.	L/T - R/M 1151 D/P R/M 444
Note;	L/T : Level Transmitter P/T : Pressure Transmitter S/R : Square Root Extracto P/D : Pressure Difference R/S : Robertshow F/P : Fisher & Porter R/M : Rosemount S/T : Sybron Taylor D/B : Drexblook	r

Table M-2 List of Data Obtained By CSS

	LOCATION	DATA OBTAINED
1.	Picton Reservoir	Picton I Level/Picton II Level/ Picton III Level
2.	Morvant Reservoir	Reservoir Level
3.	Mallick Reservoir	Reservoir Level
4.	El Socorro WTP/BPS	Clearwell Level 1/Clearwell Level 2
		Picton II Out Pressure/Picton III out Pressure Caroni WTP In Pressure/Picton II Out Flow Picton III Out Flow/Caroni WTP In Flow Clearwell Flow/Wellfield Flow/Spillover Flow
5.	San Fernando BPS	San Fernando Reservoir Level Marryat Reservoir Level/Naparima Reservoir Level Chacon Reservoir Level/Caroni WTP In Pressure Navet Line In Flow/Navet Line Out Flow Pump 1 Status/Pump 2 Status/Pump 3 Status
6.	Mt Hope Reservoir	Reservoir Level
7.	St Joseph Reservoir	Reservoir Level
8.	Tunapuna BPS	Inlet Pressure/Outlet Pressure/Outlet Flow
9.	Caroni WTP	River Level/Clearwell Level North Pipeline Pressure South Pipeline Pressure North Pipeline Flow/South Pipeline Flow
10.	Tumpuna PS	Arena Reservoir Level/Channel Level Tumpuna Weir Level/Flow to Reservoir Pump Status 1 - 6/River Discharge Valve 1,2 Weir AC Fail/PS AC Fail
11.	California Reservoir	Reservoir Level
12.	Valsayn WTP/BPS	Clearwell Level/Mt Hope Out pressure Caroni WTP In Pressure St Augustine Out Pressure/Caroni WTP In Flow
	· .	St Augustine Out Flow/Wellfield Flow
	Knaggs Hill Reservoir	North Reservoir Level/South Reservoir Level
14.	Loango/Naranjo WTP	Treated Water Pressure/Treated Water Flow
15.	Acono WTP	Raw Water Level/Treated Water Pressure Treated Water Flow
		M ~ 17

Table M-2 (cont'd)

Reservoir Level

LOCATION

DATA OBTAINED

16. Valley View Reservoir

17. Caura WTP

Clearwell Level/Raw Water Sump Level Treated Water Pressure/Treated Water Flow

18. Arima Reservoir

19. Aripo WTP

Reservoir Level/Fort Read Reservoir Level Raw Water Sump Level/Treated Water Flow

20. North Oropuche WTP

River Level/Reservoir 1 Level Reservoir 2 Level

21. Flow Control Station

Pipeline Pressure/Pipeline Flow

Reservoir Level/Radio Room Temperature

22. Pepper Hill Reservoir

Note;

WTP : Water Treatment Plant BPS : Booster Pump Station PS : Pump Station

M - 18

1. function index 2. alarm summary 3. digital output and analog output change configuration example 4. configuration display 5. change points attributes, analog point description 6. 7. analog points units 8. analog points limits and I/O specification analog point range 9. 10. add new analog point 11. delete point, modify analog output point 12. modify digital output point 13. change trending defaults 14. change point value, analog input and output point 15. change value of digital input and output point 16. change virtual point interpolation table 17. display global common EUTCOM 18. display global common HISTCOM and CRTCOM 19. display global common IDXCOM 20. display global common RTUCOM 21. digital device commands 22. digital device, modify points 23. digital device, modify state names 24. digital device modification 25. display integrated values 26. display integrated values, modify integrated value 27. display group log 28. display point name 29. display RTU status, scan hold 30. display RTU status, scan enabled 31. display point values, analog and digital 32. event flag service 33. execute a task 34. log message on logging device 35. print point log 36. operator password service 37. RTU specification modify 38. trend analog point value on CRT 39. CRT trend, one variable 40. CRT trend with two variables 41. trend hourly average over 10 days on CRT 42. CRT trend of hourly average 43. trend output to line printer 44. picture display index 45. El Socorro - Picton System 46. Valsayn System 47. Caroni - Mallick System 48. North Oropuche System 49. Caroni - Arena System 50. Caroni WTP - San Fernando System 51. San Fernando - Marryat System 52. Maracas Valley - St Joseph System

Table M-3 (cont'd)

53. Caura - St Augustine System 54. Aripo - Arima System 55. Hollis System

56. Navet System

57. display legend

58. system block diagram

59. North Caroni System Status

60. South Caroni System Status

61. Caroni/Tumpuna System Status

62. North Range Valley Project

63. reservoir status display

64. RTU #11 input point display

65. Tumpuna PS detail

66. character color combination

67. map of Trinidad 68. test picture

69. system parameters

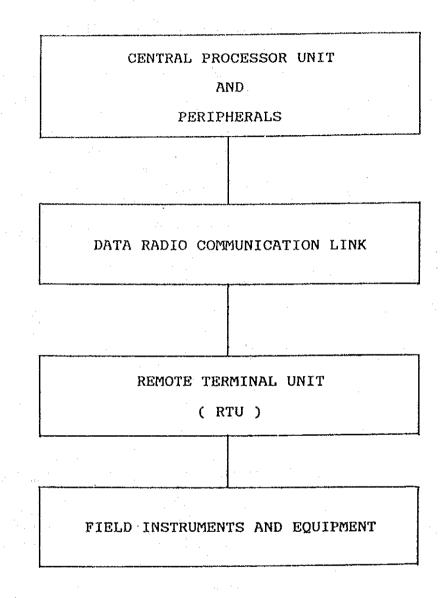
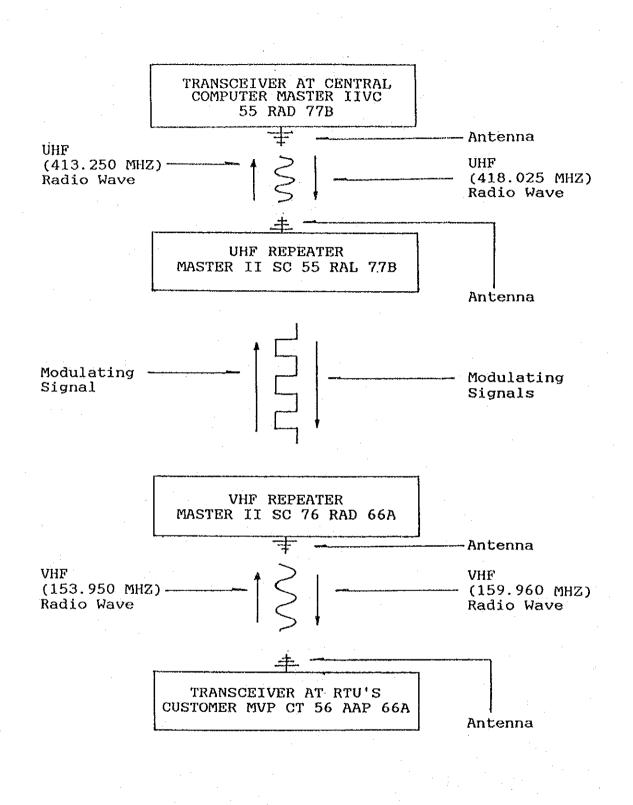
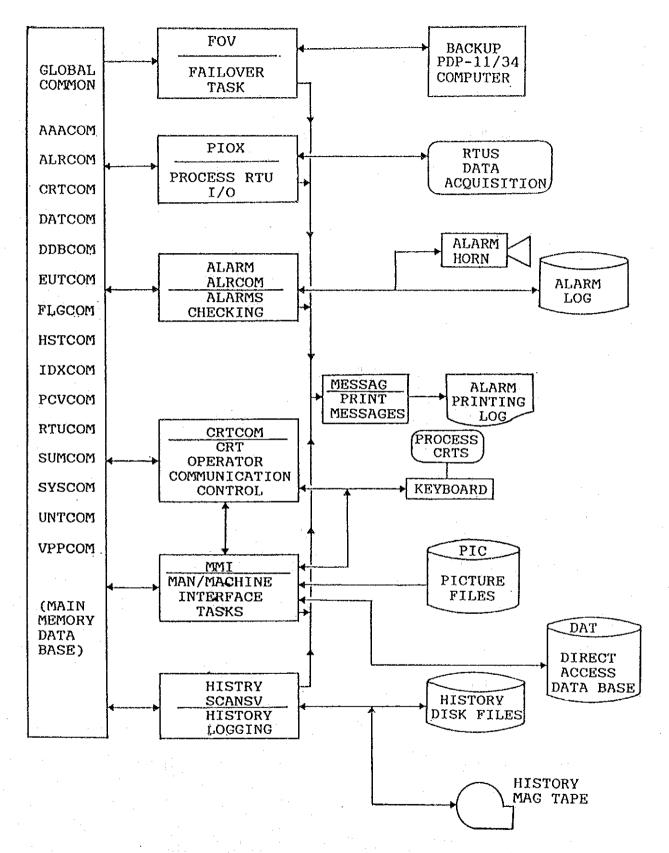




Fig. M-1 BLOCK DIAGRAM OF CENTRAL SUPERVISORY SYSTEM HARDWARE

Fig. M-2 DATA RADIO SIGNAL MODULATION

Fig. M-3 SUPERVISORY SYSTEM BLOCK DIAGRAM

M - 23

N: DATA ON COST ESTIMATE

LIST OF TABLES

Table

ESTIMATED COST

N-1.2	SUMMARY OF COST ESTIMATE FOR WATER SUPPLY SUPERVISORY SYSTEMN- 1
N-1.2	DISBURSEMENT SCHEDULE IN PHASE I PROJECTN- 2
N-1.3	DISBURSEMENT SCHEDULE FOR PHASE II PROJECT (1) & (2) $\dots N-3$
N-1.4	COST ESTIMATE OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (PHASE I) (1) - (3)N- 5
N-1.5	COST ESTIMATE OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (PHASE II) (1) - (3)N- 8
N-1.6	COST ESTIMATE OF NEW CENTRAL SUPERVISORY SYSTEM (PHASE I & II)N-11
N-1.7	COST ESTIMATE OF MONITORING EQUIPMENT TO BE INSTALLED FOR LOCAL SUPERVISORY SYSTEM (PHASE II)N-12
N-1.8	ASSOCIATED COST SCHEDULE FOR IMPLEMENTING LEAKAGE REDUCTION AND UNIVERSAL METERINGN-13
N-1.9	SUMMARY OF COST ESTIMATE FOR CENTRAL SUPERVISORY SYSTEM (OPTION - A) (1) & (2)N-14
N-1.10	SUMMARY OF COST ESTIMATE FOR CENTRAL SUPERVISORY SYSTEM (OPTION - B)N-16
N-1.11	DISBURSEMENT SCHEDULE AND PRESENT VALUE FOR OPTIONS A AND BN-17

MARKET PRICE AND RATE FOR CONSTRUCTION WORK

N-2.1	LIST OF LABOUR RATES AND MARKET PRICES MATERIALS & MEASURED RATES IN TRINIDAD AND TOBAGO (1) - (6)N-18
N-2.2	LIST OF CONSTRUCTION MACHINE RATES AND LABOUR COSTN-24
N-2.3	LIST OF CONSTRUCTION MATERIALS COSTN-24
N-2.4	LIST OF RATES AND CHARGESN-25

PROPOSED MONITORING AND CONTROL EQUIPMENT

N-3	LIST OF	MONITORING AND	CONTROL	EQUIPMENT	TO BE	INSTALLED	FOR
	CENTRAL	SUPERVISORY SY	STEM (1)	- (6)			N-26

Table N-1.1 SUMMARY OF COST ESTIMATE FOR WATER SUPPLY SUPERVOSORY SYSTEM

UNIT: IN x 1,000

					PHASI										N N N N	11	• .			
÷	FOREIG	FOREIGN CURRENCY (USS)	(ISU)			LOCAL CURRENCY	Ë		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		FOREIGN	ON CURRENCY	(ISI)		1	FOCAL CURRE	RRENCY (TTS)	1.15		
TEM FACILITIES		SUPPLY			CIVIL	NORKS		Y Juddins	1100	TOTAL		- " I E	- I		CIVIL	NORICS		X140X	1	TUTAL
EOUIPMENT	EQUIPMENT J	PRIMARY JINSTRUMENT Equipment – Ation –	TOTAL (USS)	CIMBER	F-M/C-V BUILDING (KSIAL- SUB-TU) CHANBER WORKS LATION (CIVII	INSIAL- D	<u> </u>	PORTATION	Ē		EQUIPMENT 4	T -ATION	(\$SD)	CILANDER :	1 LU LING	LATION (CIVIL) PC	PORTATION	(STT)	(603)
1) CONSTRUCTION WORKS																				
Di nu uchco	5 YOX		1 894 0-	1 1 2 B		- 775 7 -	515	- 155 0 -	7 252 7	381	P	-1 363 n -	1 367 4	10.1					707	1.533
CONTRON VALVE	122 6		038 9	1 306 5		2 522 0	0	504 6	4 474 6	6 977	206	1997 1997 - 1997 1997 - 1997	1.916.1	115.0			÷	<u>+</u>	1.092.6	~
TEVET NETER			312.01			132.6	132	26.5	η.	349.5	+	312.8	319.3	1		ļ	1	<u> </u>	162	1
PRESSIRE GALICE			566.7			240.8	240.8	48.2	1	634		593. 9 -	593.9	-		÷			302. 5	199
CSC' & CENTRAL FOULD			5.861.9		385.3	1 902 6	287.9	380.5	2.668.4	6. 489.	ļ	3.486.9	3, 486, 9			÷	0		 	3, 305
REGIONAL DEFICE			211.61			89.9	68	18.0		236.	¦	317.37	317.3			· · · ·			101.8	355
REPEATER STATION	I		219.1			93.1	33.1	18.5	:	245.		219.1	219.1						111	
RTU STATION			11. 832.0		2, 219, 5	5, 028, 6	, 248. 1	_	8, 253, 8	13.774.1		9, 973, 3	9, 973, 3						5,085,	=1
BOOSTER P/S		226.77	226.7			96.3	96.3		115.6	253.9			5.015			0.0	0.0	0.0	0.01	e iv
SPARE PARTS		245.31	C-647					7.17	7.13	5.94.3						-	2.2	9E -	1 7 7 7 7	5
SUB-TOTAL	2, 683. 1	24, 556. 3	27, 239. 4	2, 834. 9	2, 504. 9 1	20, 882. 1	16, 321. 9	2, 197. 6	18, 519. 5	31, 596. 9	307.1	18, 135. 4	18, 443. 4	125.1		7, 732. 5	7, 357. 6	1, 567. 7	9, 425. 3	799 °EET
[(33)]													500 5	1 2 1 2 1 1 1		500 E -	1 100 1	1 261	9 754 0	171 6
FLOW METER						1		!	1			7 3	200.	1 L. 444.		~	9	1.061	107	C, 141
SUB-TOTAL	1		· .		1	1					328.4	1, 279.9	1, 608.3	1, 444. 6	1	583. 5 2	2, 128, 1	135.7	2, 264, 8	2, 141. 2
TOTAL	2, 583. 1	24, 556. 3	27, 239. 4	2, 834. 9	2, 504.9	10, 882. 1	16, 321. 9	2, 197. 6	18, 519. 5	31, 596. 9	635. 1	19, 416. 3	20, 051. 7	1, 569. 7		8, 416.0	9, 385. 7	1, 704. 4	11, 530. 1	22, 802.
[2] ENGINEERING SERVICES		1	3, 437. 0			1			2, 109. 3	3, 933. 3		!	6, 311. I				1	Ì	3, 809. 3	7, 207.4
TOTAL OF ITEMS [1] & [2]	3 2, 583.1	24, 556. 3	30, 676. 4	2, 834. 9	2, 604. 9 1	10, 882. 1	16, 321. 9	2, 197.6	20, 528. 7	35, 530. 2	635.4	19, 416. 3	26, 362, 8	1, 569. 7		8, 416. 0	3, 985. 7	1, 704.4	15, 459, 4	30,069.7
[3] TAX (VAT)		1	1				1		22, 650. 5	5, 329. 5		1	-		}		;	.	19, 131. 2	4,501
[4] CONTINGENCY			4, 501.5	ł		1		ļ	3, 094. 3	5, 329. 5	1		3.954.4				-		2, 324, 9	4, 501.
[5] ADMINISTRATION		·•		1			-	[755.0	177.7			!				ł	ł	637.7	150.
GRAND-TOTAL	2, 683. 1	24, 556. 3	35, 277. 9	2, 834. 9	2, 604. 9 10, 882. 1	10, 882, 1	16, 321. 9	2, 197. 6	47, 128, 6	46, 367. 0	635. 4	19, 415, 3	30, 317. 2	1, 569. 7		8,416.0	3, 385. 7	1, 704, 4	37, 533. 2	33, 162
		-																		

.

Table N-1.2 DISBURSEMENT SCHEDULE IN PHASE I PROJECT

3, 533. 3 5, 329. 5 5, 329, 5 177.7 46, 367.0 35, 530. 2 27, 756.5 3, 840. 4 31, 596, 9 UNIT: JN x 1, 000 TVIOL LOIN g 20, 628. 7 3, 094. 3 2, 197. 6 16, 321. 9 2, 109, 3 22, 650. 5 0 18, 519, 5 47, 128. (755 0 T A S€ 4, 601. 5 35, 277. 9 27, 239. 4 27, 239. 4 3, 437.0 30, 576, 4 E/C (US\$) ł ł 25, 458. 7 16, 653. 9 97.5 2, 526. 3 2, 926. 3 18, 190. 1 1, 318. 5 19, 508. 6 1, 536.2 (SSN) 22, 672. 2 1, 281. 0 1, 318.6 7, 847.3 692.6 8, 539, 9 12, 436. 7 414.6 6, 528. 7 361 2/1 2/1 2, 624, 9 1, 155. 6 16, 343. 6 16, 343. 6 17, 499. 2 20, 124, 1 E/C (US\$) ł ł ł 18, 443. 3 2, 119. 9 70.7 725.9 2, 119. 9 11, 102. 6 2, 304. 3 14, 132.8 13, 405. 9 TOTAL (USS) 1, 662, 2 300.3 22, 053, 6 11, 081. 4 9, 009. 6 879.0 10, 672. 2 409.3 9, 793, 1 12/1 1/2 10, 895.8 1, 728, 8 629. 6 10, 895. 8 11, 525. 4 13, 254, 2 (ISE) l ł ł PHASE 1, 311. 1 196. 7 6.6 1, 711.0 1, 311. 1 196.7 TOTAL : ł ł 108.6 1, 696. 4 724.1 724.1 835.8 27.9 12) 1/C ł ł ł 171.1 1, 140. 7 1, 311.9 1, 140. 7 SS) 1 ł ł ł 754.0 577.8 577.8 86.7 86.7 2.9 TOTAL (USS) 4. 25, l ł ł 1 US\$ = TT\$ 705.4 283. 3 283.3 368.3 42. 5 12.3 1992 L/C ł ł ł NOTE: EXCHANGE RATES; 1 US\$ = ¥ 135 AND 587.8 511.1 51L 1 78.7 E/C (USS) ł ł ł ł ł CONSTRUCTION - CIVIL WORK CONSTRUCTION - SUPPLY ENGINEERING SERVICES TOTAL SUB-TOTAL YEAR ITEN SUB-TOTAL ADMINISTRATION CONTINCENCY TAX (VAT) 3 Ξ 8 ള 2 였

Table N-1.3 DISBURSEMENT SCHEDULE FOR PHASE II PROJECT - (1)

.			·				4	HASE	II							UNIT: IN	x 1.000
-	2	STAGE V F A B		1906	L		1007	STAGE	Î	1008			1990			2000	
		2 398 2 643 2 544 4 744 4 744	F/C (USS)	S€	TOTAL (US\$)	F/C (1SSI)	۲Ĵ	TOTAL (US\$)	5/C (1056)	≧≦Ê	TOTAL (USS)	E/C (USS)	۶Ê	TOTAL (USS)	F/C (US\$)	SÊ	TOTAL (USS)
L	Ξ	CONSTRUCTION - SUPPLY	1	l	1			ł	1	ł		1		ł		1	
		CONSTRUCTION - CIVIL WORK						1 1 1 1 1 1 1 1				9 9 9 1 1 1 1					
		SUB-TOTAL		3 1 1			1	ł	ł	1 1 1	;	. 1	1	1	1		ł
	[2]	ENGINEERING SERVICES	948. 1	566. 7	1, 081. 5	948.1	566. 7	1, 081. 5		1		488.9	283.3	553. 6	488.9	283. 3	555. 6
	-	SUB-TOTAL	948.1	566. 7	1, 081. 5	948.]	566.7	1, 081. 5	ł	!		488.9	283.3	555. 6	488.5	283. 3	555. 6
L	3	TAX (VAT)	1	689. 4	162.2	ł	689.4	162.2	1 1			;	354. 2	83.3		354. 2	83.3
	[4]	CONTINGENCY	142.2	85. 0	162. 2	142. 2	85.0	162.2		1 1 1	l l	73.3	42.5	83. 3	73.3	42.5	83.3
	[5]	ADMINISTRATION	-	23.0	5. 4	1	23.0	5.4	1		ł	ł	11.8	2.8	-	11.8	2.8
		TOTAL	1, 090. 4	1, 354, 1	1, 411. 3	1, 090. 4	1, 364, 1	1, 411. 3	.			562. 2	691.8	725.0	562.2	8 - 169	725.0
Ľ		NOTE: EXCHANGE RATES; 1 US\$ = ¥ 135 AND 1 US\$ = 77\$: = ¥ 135 A	= \$SN I ON	TT\$ 4. 25,												

× 1 009 2 -TINII

								P H	A S E	п								UNIT: IN	× 1,000
Ś	STAGE			1				S T .	<u> </u>	II								TOTAL	
		1	2001		, 1 1 1 1	2002			2003			2004) 1 1 1 1 1		2005	3 1 5 5 6 6			_
	ITEN	E/C (US\$)	ry Try	TOTAL (US\$)	F/C (USS)	SE F	(ISSI)	E/C (ISS)	S€ SÊ	TOTAL (USS)	F/C (USS)	<u>sê</u>	TOTAL (USB)	E/C (ISS)	у Г	TOTAL (USS)	F/C (ISS)	175) 113	TOTAL (USSI)
Ξ	CONSTRUCTION - SUPPLY	1	}	1			1			 	8, 020. 7	631. 8	8, 181. 1	8, 181. 1 12, 031. 0	1, 022.6	12, 271. 6	20, 051. 7	I, 704. 4	20, 452. 7
	CONSTRUCTION - CIVIL WORK											5, 991. 4	1, 409. 7		3, 594, 3	939.8		9, 985. 7	2, 349. 6
	SUB-TOTAL		}	1	1			1	1	1	8, 020. 7	6, 673. 2	9, 590. 8	12, 031. 0	5, 016. 9	13, 211. 5	20, 051. 7	11, 590. 1	22, 802. 3
2	ENGINEERING SERVICES	1			511.1	283. 3	577.8 1,	, 140. 7	724.1	1, 311. 1	629. 6	409. 3	725. 9	1, 155. 6	632.5	1, 318. 5	6, 311. 1	3, 809, 3	7, 207. 4
	S U B - T O T A L	·			511.1	283. 3	577.8 1,	1, 140. 7	724.1 1, 311.1		8, 650. 3	7, 082. 4	10, 316.8	13, 186. 6	5, 709. 5	14, 530. 0	26, 362. 8	15, 439. 4	30, 009. 7
[3]	TAX (VAT)				1	368. 3	85. 7	1	835. 8	196.7	1	6, 576. 9	1, 547. 5		9, 262, 9	2, 179. 5	1	19, 131. 2	4, 501. 5
- [4]	CONTINGENCY			1	76.7	42.5	86. 7	171.1	108.6	196.7	1, 297. 5	1, 062. 4	1. 547. 5	1, 978.0	855. 4	2, 179. 5	3, 954, 4	2, 324, 9	4, 501. 5
2	ADMINISTRATION					12.3	2.9		27.9	6.6	1	219.2	51.6		308.8	72.6		637.7	150.0
	TOTAL	1			587.8	706. 4	754.0 1	1, 311. 9 1	1, 696. 4 1	1, 711. 0	9, 947. 9	14, 941.0	13, 463. 4	15, 164. 6	16, 137.6	18, 951. 6	30, 317. 2	37, 533. 2	39, 162. 7
.	NOTE: EXCHANGE RATES; 1 US\$ = ¥ 135 AND 1 US\$ = T1\$ 4.25,	5 = ¥ 13t	AND 1	STT = \$SI	4. 25,					1									

DISBURSEMENT SCHEDULE FOR PHASE II PROJECT - (2) Table N-1. 3

TADJE N-1.4 COST ESTIMATE OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (PHASE I) - (1)

- ≜ I0							- -		<u>ה</u> ה					
	_ •	'					0	ST (¥1,	000)					
METER O	TYPE	2.L	UNIT	PRICE	PRYMARY	CIF T & T	TOTAL	TRANS-	INSTAL-	METER CHANRER	TAT (TAT)	F/C	TOTAL	TUTAL.
1200	¥ AN	F		្រ្ត		122		22.4	112.2		1.1	122.	32	
1200	AN	-		935.0	824.2	1.122 0	1.946.2	38.9	194, 6	547.1	409.0	1, 946. 2	1, 189, 6	3, 135, 8
1050	NN	-	653.7	ំភេះ	784.4	122	906.	38.1		504.3	395. 9	306	129	035.
900	¥AN	2		പ		244	244	44.9			377.0	244.	646.	890.
300	AN	3	621.4	ഹ	2, 236. 9	366	602	112.1		1, 390, 5	1, 149, 9	602	3, 212. 7	un co
300				1	1		1			I		1	ł	ł
800		-									1	1	1	
750	AN	വ	588.2		3, 529. 2	5, 610, 0	9, 139, 2	182.8	913.9	2, 123, 2	1, 853, 9	9, 139. 2		14 212.9
800	¥ AN		ſ	935.	1	1, 122. 0	1, 122, 0	22.4	112.	ł	138	1, 122, 0	323, 1	1, 445, 1
600	AN	2	555. 9	935.		7,854 0	12, 523, 6	250.5	1, 252.4	2, 713. 7	2, 511.0	12, 523. 6	- 2	19, 251, 1
525	AN	2	g	935.	4, 533.	7,854.0	12, 387. 9	247.8	238	589.	469.	12, 387. 9	545. 2	18, 933, 1
450		2		935,	4 398	7, 854.0	12, 252, 2	245.0	225.	467.	428.	12, 252. 2	366.7	18, 618, 9
450	¥ AN			935.	1	1, 122. 0	1, 122. 0	22.4	112	1	188.	1, 122. 0	323.1	1.445.1
400	;	-1	1	1.1	-	1, 122. 0	1, 122.0	22.4	112.2		188.5	1, 122, 0	323.1	1.445.1
400	AN	ŝ		935.	3, 690.	6, 732. 0	10, 422, 4	208.4	1.042.2	2,047.5	058	10, 422. 4	356. 3	15, 778, 6
375	AN	3	505.6	935. 0	1, 823.8	3, 366. D	5, 189. 8	103.8	519.0	1, 007. 0	1, 022. 9	5, 189. 8	2, 652. 7	7, 842. 5
350	AN	1		935.	109	1, 122. 0	1, 723.8	34.5	172.	330.1	339.	1, 723. 8	876.1	2, 599, 9
300	AN	49		935.	28, 838.	54, 978. 0	83, 816. 5	1, 676. 3	8, 381. 6	15, 643. 2	16.427.6	83, 816, 5		125, 945, 2
250	AN	9		935.	1, 585.	6, 732. 0	8, 317. 1	166.3	831.	1, 851, 3	675	8, 317. 1	524.3	12, 841.
225	A	~		935.	512	2, 244, 0	2, 756. 0	55. 1	275	606.5	554	2, 756, 0	491.2	4, 247.
200	AN	5		335.	3, 702.	16, 830, 0	20, 532, 6	410.7	2, 053, 3	4,470.5	120	20, 532. 6	054.5	31, 587, 1
175	AN	~		935.	477.	2, 244, 0	2, 721.4	54.4	272	585. 7	545.	2, 721. 4	457.3	4,178
150	AN	12		935.	3, 442.	16, 830, 0	20, 272, 5	405.5	2, 027. 3	4, 315, 8	4, 053, 1	20, 272, 5	801.6	31, 074, 1
100		5		935.	1,064.	10, 098. 0	11, 162, 9	223. 3	116.	2.498.4	250	11, 162, 9	088.0	17, 250, 9
500		-		ud:	;	1, 122. 0	1, 122. 0	22.4	112.2		88	1, 122, 0	· . ·	1, 445. 1
300		-		ഫ്	-	1, 122, 0	1, 122, 0	22.4	112.2		188.5	1, 122. 0		1, 445, 1
		2		ഹി		2, 244. 0	2, 244, 0	44.9	224.4		377.0	2, 244.0	~ `	2, 890.
1200		~1	1	ம்	1	2, 244. 0	2, 244. 0	44.9	224.4	ļ	377.0	2, 244. 0		2, 890.
006	∆ ¥	2		പ	-	2.244.0	2.244.0	44.9	224.4	1	377.0	2, 244.0	· ~~~	2, 890.
800	⊳ ≯		ļ	പ	1	1, 122. 0	1, 122. 0	22.4	112.2		188.5	1, 122.0		1, 445.
750	۸ ¥	.		ഹ		3, 366, 0	3, 366, 0	67.3	336.6		563. 5	3, 366. 0		4, 335. /
600	γ¥	-	1	5		1, 122.0	1, 122.0	22.4	112.2		188.5	1, 122, 0		1, 445.
525		1		1	1		1		1	1			1	1
400	;	1]	3 6 1	1	}	:	1	1	1	1			ļ
300	γ¥	2		935.0		2, 244 0	2, 244.0	44.9	224.4		377.0	2.244.0	646.3	2, 890, 3
	TUTA	59												

Table N-1.4 COST ESTIMATE OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (PHASE I) - (2)

			TOTAL	28, 295. 0		95 841 2	8 351 0		15, 322, 0	11, 452, 7	51, 057, 0		48, 850, 9	28.254.1	•	44, 971, 9		17, 731. 2	8, 735, 7	356, 945. 1	33. 192. 2	16.471.3	30, USU. /	19 202 7	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					36, 055, 8		63, 246, 0	9, 638, 4	1	4, 389, 5		083, 199. 7
to be used,		1.000		6, 326, 8			867 3		26.0	00.8			13, 178, 1	587.7		12, 083. 1		-	en i	95, 396, 0 3	0	0.1	<u>.</u> ;	0 364	1 0 00 10	2			1	8, 062. 2	1	0	2, 155. 2		981.5		281, 812. 5 1, 0
SNITSIXE			E/C	21, 968, 2		18 854 1	- 785 - F	5 5 1 1 1	896.		37, 242.4		672.8	666.4	,	32, 888, 8			6 394 4	61, 543, 1				1 20	10 000 1	4 3 5 1				27, 993. 6		49, 104, 0	7 483 2		3, 408, 0		801, 387. 2
			(IAN)	3, 690. 7		3 370 6	1 080	3. 1	<u> 3</u> 28.	493.	6, 559, 6		371.9			5, 865. 9				46, 558, 1 2				1010	0 306 0	2 2 4				4, 702. 9			1, 257, 2	_	572.5		141, 286. 9
PERIPHRALS) L EQUIPMENT,			VALVE			1 25/1	ri.				2, 685, 9		2, 525, 5	422		2, 270. 5		5	<u>ہ</u>	17,452.0					9 753 0											 1	44, 359.1
EXISTINGS (REPLACEMENT PERIPHRALS) INSTALLATION OF CONTROL EQUIPMENT.		1 1 1 1 1 1 1	LATION C	2, 196. 8		1 885 4	1 2 200	E 010	1. 189. 6	835, 2	3, 724. 2		3 567.3	2, 065. 6		3, 288. 9		1, 297. 3	639. 4	26, 154, 9	2, 435, 3	1, 209, 6	7, ZUS. U	100	0 202 F		1			2, 799, 4	1	4, 910, 4	748.3		340.8		80, 138. 7
		╞	PORTATION	439.4		1 448	1 2 0 2		237.9	167.0	744.8		713. 5	<u> </u>		657.8		259, 5	127.9	5, 231, 0	487.1	241.9	T, 441. S	5	9 - FOD 17					559.9		982.1	149.7	-	68.2	t F	16, 027. 7
:# :	γE		TOTAL	21, 968. 2		251	- 16 787 7	5	896.	8 351 8	37, 242. 4		35, 672. 8	666	,	32, 888, 8		12, 973, 1	6, 394. 4	261, 549, 1	24, 352, 5	12, 095, 7			45 050 1	100				27, 993. 6		49, 104, 0	7, 483, 2		3, 408, 0	1	801, 387. 2
IN CURRENCY, CURRENCY,	10	(¥ 1, 000)	R-CNT CIRT	3, 978, 0		123	1 326 0	5	652	326.	6, 630. 0		630.	3, 978, 0		6, 630, 0		2, 652, 0	1, 326, 0	55, 692, 0	5, 304, 0	2, 652, 0			10, 203, 01					;	1	1	1				148, 512.0
F/C: FOREIGN CURRENCY, L/C: LOCAL CURRENCY,	N I	E	CIRT	210.01		. e	120.0	2	340.0	170.0	850.0]	850.0	510.0		850.0		340.0	170.0	7, 140. 0	580° 0	340.0	Z, U4U. U	0.000 6	1 200 0						1	1		1		+	19, 040. 0
			CNT PANEL	9, 180. 0		10 061 3			120.	060.	15, 300, 0	1		9, 180. 0		15, 300, 0	1	120.	090	128, 520, 0	240.	120.	120	1000	10,020,121	j.		1		1	1	1]		;	342, 720. 0
CIRCUIT, REMOTE CONTROL,			VALVE	8, 300. 2		1 672 0	1 427 1		2, 784, 0	3, 795, 8	14, 462, 4	1	12, 892, 8	6, 398, 4		10, 108, 8		3, 861, 1	1, 838. 4	70, 197. 1	6, 128. 6	2, 983. 7	11, 418, 2	0 020 05	10 4 4 4			1		27, 993, 6	1	49, 104, 0	7, 483. 2		3, 408, 0		291, 115. 2
CIR' T; R-CNT;			R-CNT CIR'T	1, 105. 0		1 105 0	105.0		1.105.0	1, 105, 0	1, 105.0		1, 105, 0	1, 105.0	1	1, 105, 0		1, 105. 0	1, 105. 0	1, 105. 0	1, 105. 0	1, 105, 0	T, 105.0	0.00				1	1			1	1				
BUTTERFLY VALVE, CONTROL.		20100	ANEL CNT CIR' T	0 170.0		170	170.0		0 170	0 170	0 170.0		0 170.0	170.		0 170.0		0 170	0 170.	0 170.0	0 170.	0 I I 70.	U	1.10					1		1				1	1 1 1	
BU; BUTTERF CNT: CONTROL		A 1911	CNT P	.6 2,550.0		9 550	A 550		0 2.550	2 2.550	4 2.550.	1	8 2, 550	0 2, 550.		8 2, 550.		2, 550.	2, 550.	2, 550.	2, 550	2, 550.	7, 550		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								1	1	3		
NOTE: AV; ALTÍTUDE VALVE, CV; CONE VALVE.			VALVE	3 2, 305.		÷	1 1 606	÷	. <u>;</u>	Ļ.	5 2,410			3 1.944.	;	5 1.684.		2 1, 508	;	42 1, 392, 8	1	2 1, 243			0 1 004 0					2 1 11.664.0		5 8, 184	1 5, 236. 0	2	1 2,840.0		124
ALTITUDE VI CONE VALVE		- • -		5		Bil	× RI	÷	:	:	R		B	BU	[Dg:		BU	- Da	D 8	99	2	20		200	17	I			٨V	<u>ب</u>	AV	٨٧	* AV	AV		TOTAL
DTE: AV: CV:	JdId	_		1200	1200		000		÷		600	600	525	450	450	400	400	375	350	300	0c7	225	- ZUU	C/T	- 	200	300		1200	006	800	750	909	525	400	300	
У И	L.			L	:	:	:	:	:	:	: :					<u>ن</u> ۔۔۔ [N		: 6	:	:		:		<u>.</u>	:	:	:	<u>.</u>			; 				<u> </u>	i
																																				-	

Table N-1.4 COST ESTIMATE OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (PHASE I) - (3)

•

	Τ	Ť	Ľ,	8.6	8.8		10.4	0 2		09°3	Τ					35. 6	96.4	32.0	-
HRALS),			TOTAL		13, 728.8		6, 24	20, 100, 5		54, 258. 3				TOTAL		11, 035. 6	87, 496, 4	98, 532. 0	
EMENT PERIP		TOTAL	1/C	:	3, 069, 8		1, 395. 4	4, 494, 5		42, 126. 0 12, 132. 3			TOTAL.	L/C		2,467.6	19, 564, 4	22, 032. 0	
IGS (REPLAC)			F/C	11, 016, 0	10, 659, 0	3	4, 845, 0	15, 606, 0		42, 126.0				F/C		8, 568. 0	67, 932, 0	76, 500. 0	
"¥"; EXISTINCS (REPLACEMENT PERIPHRALS),		; XAT	(VAT)	1, 850. 7	1, 790, 7	1	814.0	2, 621.8	_ ·	7, 077. 2			TAX	(VAT)		1, 439, 4	11.412.6	12, 852.0	
JSED,		METER	CHAMBER							•			METER	CHAMBER		1	:		
F/C; FOREIGN CURRENCY, L/C; LOCAL CURRENCY, "*"; EXISTINGS TO BE 1	METER ¥ 1.000)	INSTAL-	LATION		_		184 5	1, 560. 6		4, 212. 6	GAUGE	(000)	INSTAL-	LATION		856.8	6, 793, 2	7, 650. 0	
F/C; FOREIGN CURRENCY L/C; LOCAL CURRENCY, "*": EXISTINGS TO BE	COST (¥ 1,000)	TRANS-	PORTATION	220.3	213.2	1		312.1		842.5		<u>0 S T (¥ 1,</u>	TRANS-	PORTATION	1	171. 4	1, 358. 6	I, 530. 0	
	1 U U		TOTAL	11,016.0	10, 655, 0		4,845.0	15, 606, 0		42, 126. 0	PRESSURE	0 0		TOTAL		8, 568. 0	67, 932.0	76, 500. 0	
D; DIFFERENTIAL PRESSURE TYPE, YY; PRIMARY SENSOR, VT; INSTRUMENTATION,		CIFT&T	INSTRUMENT	11,016.0	10, 659, 0	;	4, 845, 0	11. 220. 0		37, 740. 0			CIFT&T	INSTRUMENT		8, 568. 0	67, 932, 0	76, 500. 0	
D; DIFFERENTIAL PF PRIMARY; PRIMARY SENSOR, TRUMENT; INSTRUMENTATIO			PRIMARY	-	1]		4, 386, 0		4, 386.0				PRIMARY		ł	-		
D; PRIMARY; INSTRUMENT;		PRICE	INSTRUMENT	2, 295.0	807.5	1	807.5	935.0					UNIT PRICE	INSTRUMENT		510.0	510.0		
AIR PURGE, FLOAT TYPE, BOURDON TUBE,	•	UNIT PRICE	PRIMARY	1				365.5		·			TINU	PRIMARY	-				
AP; AIF F ; FL(B ; B0(Ŷ		4	Ξ	ŝ	S	9		38			ŝ		~	14	Ħ	127	
NOTE: AI F B		TYPE		¥ AP	<u>م</u>	∩ *	0 *	i tar		TOTAL			TYPE		* 8	en ¥	ß	TOTAL	

Table N-1.5 COST ESTIMATE OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (PHASE II) - (1)

Table N-1.5 COST ESTIMATE OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (PHASE II) - (2)

,

		TOTAL	5, 911. 9		7, 882. 6	3, 941, 3	1 1. 970. 6	1 10, 255, 2 1	9, 853. 2	9, 853, 2	5.911.9	3, 853, 2	3.941.3	1. 370. 6	88, 678, 8	34 169	7 882 6	3.941.3	23.647.7	8, 217.2	8, 158, 8	8, 100.5	27, 539, 0	7,984.3	15, 765, 1						9,013.9		12	2,409.	3, 697.	1.097.4		337, 509. 6
	TOTAL	T/C	1, 321, 9		L. 762. 6	881.3	440.6	2. 772. 7	2, 203, 2	2, 203, 2	-1.321.9	2. 03. 2	881 3	10.6	19.828.8	9,124	1.762	881 3	5. 287 7	2, 175. 7	2, 154, 7	2, 133, 8	6, 169, 0	2, 092, 6	3, 525. 1	1 1 1 1 1 1 1 1					2,015.5		3, 535, 5	538.8	826.7	245.4	* *	78, 730. 1
, e no. ; number, periphrals),		E/C	4, 590.0		6, 120, 0	3.060.0	1. 530.07	7.482.5	7, 650, 0]	7. 650. 0 7	4, 590, 0	7. 650. 0 1	3,060.01	1.530.07	68 850 0 1	25,045,47	6.120.0	3,060.0	18, 360, 0	6.041.5	6, 004. 1	5, 366, 6	21, 420, 0	5, 891, 8	12, 240, 0		1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1	1	6, 998. 4		12, 276, 0	1. 870. 8	2, 870, 4	852.0		44, 023. 0 258, 779. 5
CONTROL	TAX	(VAT)	771.1		1, 028, 2	514.1	257.07	1. 337. 6 7	1, 285. 2	1, 285. 2 7	771.17	1. 285. 2	514.1-	257.07	11.566.87	4.456.9	1.028.27	514.1	3 084 5	1.071.8	1.064.27	- <u>1, 056, 6</u>	3, 598, 67	1.041.4	2,056,3	1 1 					1, 175, 7	•	2,062.47	ရက္	482.2	143.1	F - 1 1 1 1 1 1 1	44, 023. 0
INSTALLATION OF EXISTINGS (REPLA	VALVE	CHAMBER						537.27						r - 1 1 1 1)	1.562.17	+ - - 			378.91	<u>370, 0</u> 7	361.37	}	344.1						1		}* - 						3, 653. 6
"¥"; EXIST "¥"; EXIST	INSTAL-	LATION	459.0		612.0	306.0	153.0	748.2	765.01	765.0.7	459.01	765.07	306. 0 .	153.07	6. 885 0	2.504.57	612.07	306 0 1	1. 836. 0	604.2	600.47	596.77	2, 142, 0	589.2	1, 224.0					2 5 7	693.8	- - - - - - - - - - - - - -	1, 227. 6 1	187.1	287.07	85.2		25, 878. 0
	TRANS-	PORTATION	91.8		122. 4	61.2	30.6	149.67	153.07	153.0 -	91.81	153.07	61.2	30.67	$1.377.0^{-1}$	500.9	122.4	61.27	367 2	120.8	120 1	119.3	428.4	117.8	244.8		 				140.0		245.51	37.4	57.4	17.0		5, 175. 5
N CURRENCY, Currency, <u>A L V E</u> (¥ 1 DND)		TOTAL	4, 590. 0 1		6, 120, 0 7	3.060.0	1.530.07	7 482 5 7	7, 650. 0 7	7.650.07	4, 590, 0 7	7. 850. 0 7	3.060.07	1.530.07	68, 850, 0	25, 045, 47	6. 120. 0 7	3.060.07	18 360 0	6.041.57	6.004.1	5, 966, 61	21.420.07	5, 891, 8 -	12, 240, 0) 	· • • • •			6, 998. 4		12.276.07	÷	2, 870. 4	852.0		258, 779. 5
F/C; FOREIGN L/C; LOCAL CL R 0 L V A	100	R-CNT CIR' T	3, 978, 0		5, 304. 0	2. 652. 0	1. 325. 0	1, 326, 0	6, 630, 0	6, 630. 0	3. 978.07	. <u>6. 630. 0</u> 1	2. 652. 0	1. 326. 0 1	59, 670, 0 1	5. 304. 0	5 304 0 1	- 2 652 0 1	15.912.01	1. 326.0	1. 326.01	1. 326.01	18, 564, 0	1, 326, 0	10, 608, 0								1 2 3 1 3 1 1 1 1 1 1 1 1					165, 750. 0
C O N T	CIFT&T	CIR'T	612.0		816.0	408.07	204.0	204.0	1. 020. 0	<u>1. 020. 0 1</u>	612.0	1. 020. 0 1	408.01	204.01	9, 180, 01	816.0	<u>816.0</u> 1	408.01	2.448.0	204.01	204.07	204.01	2, 856.01	204.0	1, 632, 0				1 1 1 1 1 1	3			1 1 2 1 1 1 1 1 1 1					25, 500. 0
IT, E CONTROL,	-	CNT PANEL	;					3. 060. 0								12.240.0	1	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	1 1 1 1 1 1 1 1 1 1	3, 060, 0	3,050.0	3, 050. 0		3, 060. 0									† 					27, 540. 0
CIR'T; CIRCUIT, R-CNT; REMOTE C		VALVE	 - - 1				ŧ.,	2.892.5	. .							6.685.4		· F	•	451.	4	1, 376, 6) 	1, 301, 8							6, 998, 4		12, 276, 01	Ċ	0	<u>~i</u>	. 1	39, 989. 5
		R-CNT CIR T	1, 105. 0		1, 105, 0 7	1.105.07	1, 105, 0	1, 105, 0 1	105.07	1,105.07	1 105.07	1. 105. 0	1, 105, 0 7	<u>1 105 0 7</u>	105.07	105.07	105.07	105.07	105.07	1, 105.07	105.07	1, 105.07	1, 105.0	1, 105, 0	1, 105, 0												1	
BUTTERFLY VALVE, CONTROL,	RICE	CIR'T	170.0		170.0	170.01	4	1	170.0	170.01	170.07	170.07	- 170.07	170 0 1	170 0	170.0	170.01	170.0	170 0 1		70.0	70.0	170.0	170.01			1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·										
BU; BUTTERFI CNT; CONTROL	UNIT PRICE	CNT PANEL	1''				· · · · · · · · · · · · · · · · · · ·	2. 550. 01				· · · · · · · · · · · · · · · · · · ·	* * * * * * *			2. 550. 0	f			2, 550, 0			L I	2, 550.0														
		VALVE		1				2.410.4								1. 392.81				1, 209, 6	178.4	147.2		1, 084, 8	_		·· + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+ 		2.916.0		2, 046, 0	1, 559. 0	1, 196. 0	710.0		
ALTITUDE VALVE, CONE VALVE,	TYPE NO.		_ BU _ 3_		BU 4							- <u>B</u> U7-57-	BUT 27	- <u>B</u> U - 17	<u>ب</u>	H -	<u>ہ</u>	3~ ~	3 · · ·	F -						· - ;	· ~ }-	- 1		1	AV 2		AV 5	AV 1	AV 2	AV		TOTAL 136
NOTE: AV: CV; DIA-	<u></u>		71	1050	# 006	# 008	750 #	500	# 009	525 #	420 #	400 #	375 #	<u>350 </u>	1 - <u>300</u> #	300	250 #	225 #	200 #	200	175	150	150 #	100			8	-		_				284	284			Ĥ

Table N-1.5 COST ESTIMATE OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (PHASE II) - (3)

				TOTAL	7,094.3	6. 224. 9	3, 728, 8	4.451.4	4, 020, 1	55, 519. 5				TOTAL	5,765 1	7, 496, 4		3.261.5	
RENCY,			TOTAL	r/c	1, 586. 3	3, 627, 9 1	3.069.87	3. 231. 4 1	838.3	12, 414.3 5			TOTAL	T/C	3, 525, 1 1	9, 564, 4 8		23, 089, 5 103, 261	
L/C; LOCAL CURRENCY,				E/C	5, 508. 0	2, 597.07	0.659.0	L 220.01	3, 121. 2	43, 105. 2	1			F/C	2, 240, 0	7, 932. 0 1			
			TAX	(VAT)	925. 3	2, II6.3 1 I	1, 790, 7 7 1	1. 885. 0 7 1	524.4	 7, 241. 7 4			TAX	(VAT)	2.058.3 1 1	1, 412. 6 7 6		13.468.9 80.172.0	
NT PERIPHRA E TYPE,			METER	CHAMBER	-		• • • •	· · · · · · · · · · · · · · · · · · ·		 • • • • • •			NETER	CHAMBER		'			
KEPLACEME	E 8	(000 T 1) 1	INSTAL-		550.8	1, 259, 7	1,065,9	1.122.0	312.1	 4, 310. 5	UGE	(¥ 1,000)	INSTALL		1, 224, 0	6, 793, 2 7	-	8.017.2	
"#": EXISTINGS (REPLACEMENT PERIPHRALS), D: DIFFERENTIAL PRESSURE TYPE, F/C: FOREIGN CURRENCY,	EL METER	COST	TRANS-	PORTATION 1	110.2	251.9	213.2	224.4	62.4	 862.1	PRESSURE GAUGE	COST	TRANS-	N	244.8	1, 358, 6 7		1. 603. 4	
¥	LEVE			TOTAL P	5, 508. 0	(2, 597.0	0, 659, 0	1. 220.07	3, 121. 2 -	43, 105. 2	PRESSI			TOTAL P(2, 240.0	57, 932. 0 1		80, 172, 0	- 1
PRIMARY SENSOR, INSTRUMENTATION, EXISTINGS TO BE USED.			CIF T & T	NSTRUMENT	5, 508. 0	12, 597.0	10, 659, 0	ĨL 220 0 1	2, 244, 0	42, 228, 0			CIF T & T	INSTRUMENT	12, 240. 0	67, 932, 0 1		80, 172, 0	
PRIMARY; PRIMARY SENSOR, NSTRUMENT; INSTRUMENTATION "*"; EXISTINGS TO BE			3	PRIMARY IN					877.2	877.2			0	PRIMARY IN				}	
PRIMARY; INSTRUMENT;			RICE	INSTRUMENT :	2. 295. 0 1	807.5	807.5	935.0	935.07	 			RICE	INSTRUMENT	510.0	510.07			
AP; PIR PURGE, F ; FLOAT TYPE, B ; BOURDON TUBE,			UNIT PRICE	PRIMARY II					365.5	 •			UNIT PRICE	PRIMARY []		 			
P; PIR ; FLO ; BOU			ġ	L	6/1	1	Π	10	+ - + 1941 1	ŝ			Ŕ	L	20	111		131	
NOTE: AP; PIR PURGE, F ; FLOAT TYPE B ; BOURDON TI			TYPE	-	¥ AP		а *	се., 2#1	Ľ.,	TOTAL			1.LE		8	8 *		TOTAL	

Table N-1.6 COST EATIMATE OF NEW CENTRAL SUPERVISORY SYSTEM (PHASE I AND II)

Table N-1.7 COST ESTIMATE OF MONITORING EQUIPMENT TO BE INSTALLED FOR LOCAL SUPERVISORY SYSTEM (PHASE II)

NUIE: AN ; ANNUBAR, NO. ; NUMBER,	PIPE	DIA-	NETER TYPE		400 ¥ (A	300 ¥ (A	250 ¥ (A	200 ¥ (A	150 ¥ (A	125 ¥ (A	100 ¥ (A	50 ¥ (A	675 AN	300 A	_250A	200 A	150 A	125 A	100 A		
NNUGAK, JMBER,	-	·	E NO	÷ +	N) 7	N) - 16	N) - 10	N) - 12	N) - 11		N) - 15			N - 12		33			N 1 26		
			TINU	PRIMARY	1 513	490	220	206	181	123	(57) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49	526	490	220	1 206	191	123	66	49	
INSTRUMENT	:		PRICE	INSTRUMENT	935 -	935	935	935	935	1 1 935 7	T 935 -	1	935	935	935	935	935	1 200		935	
: PRIMARY SENSUH,				PRIMARY	4, 305.4	9, 415, 5	2, 641, 8	2, 962. 1	2, 524, 5	147.9	1. 774. 8	59.2	750.7	7, 062, 5	528.4	8, 145. 7	459.0	295.8	3, 076.3	177.5	
JATION,			CIF T & T	INSTRUMENT	7, 854.0	17, 952.0	11, 220, 0	13.464.0	12, 342.0	1, 122.0	16, 830.0	1.122.0	1, 122.0	13, 464, 0	2, 244, 0	37, 026, 0	2, 244.0	2. 244.0	29, 172.0	3, 366, 0	
	FL0#	C 0 S		TOTAL	12, 159, 4	27, 368, 5	13, 861, 8	16, 426, 1	14, 866. 5	1. 269. 9	18, 604, 8	T_1.181.2	1, 872, 7	20, 526, 5	2, 772. 4	1 45, 171, 7	2,703.0	2.539.8	T <u>- 32, 248, 3</u>	1 3 543 5	-
L/C; LOCAL (е сы Ж	T (¥ 1.	TRANS-	PORTATION	243.2	547.4	277.2	328.5	297.37	25.4	372.1	23.61	37.5	410.5	55.4	903.4	54.1	50.8			
LOCAL CURRENCY,	ER	000)	- INSTAL -	LATION	1, 215. 9	2, 736. 9	1, 386. 2	1, 642, 6	I. 486. 7	127.07	1, 860, 5	118.1	187.3	2,052.6	277.2	4, 517.2	270 3	254.07	3, 224, 8	354.3	
			METER	CHAMBER	2, 388, 8	5, 108. 0	3, 085, 4	3, 576. 4	3, 164, 9	282.6	4, 163. 9	267.7	405.9	3, 831, 0	617.1	9, 835. 1	575.4	565.3	7. 217.5	803.0	-
* ; EXISTINGS (REFLACEMENT FERTFRALS)			TAX	(VAT)	2, 401.1	5, 364, 1	2, 791, 6	3, 296. 0	2, 972. 3	255.77	3, 750, 27	238.6	375.5	4.023.1	558.3	3, 064. 1	540.4	511.5	. <u>6</u> 500 3 7	715.8	
				E/C :	12, 159, 4	27, 368, 6	13, 851, 8	16, 426, 1	14, 866, 5	1, 269, 9	18, 504, 8	1, 181. 2	1, 872. 7	20, 526, 5	2.772.4	45, 171. 7	2, 703, 0	2, 539, 8	32, 248, 3	3.543.5	
			TOTAL	1VC	5, 249. 0	13, 756. 3	7, 540.4	8, 843, 6	7, 321. 2	630.8	10, 146. 7	648.0	1, 006. 1	10, 317. 2	1, 508, 1	24, 319, 8	1, 440, 2	1, 381.5	17.587.6	1.344.0	
				TOTAL	18,408.	41, 125.	21, 402.	25, 269.	22, 787.	1, 350.	28, 751.	1 I, 829.	2, 878.	30, 843.	4, 280.	69, 491.	4, 143.	3, 921.	49, 836.	5,487	

Table N-1.8 ASSOCIATED COST SCHEDULE FOR IMPLEMENTING LEAKAGE REDUCTION AND UNIVERSAL METERING

1	- 44-				1 0	00	480	0			00	8	20	14	S	041	Ţ					ľ	Ē	Ľ,	1
L. 000		٢	(1SU)						-				:	1 744	: 	เกิ			THE SED	 					
UNIT: IN × 1.000		6 - 1999	%£ ₽		102	850	714	446	* - *		7.438	9, 550	2.372	1.910	52	13, 510		1996	۶Ê						
IND		1996	E/C (USS)		215		312	195			750	1,473		295		1, 758			2∕3 (I SII)		1			1	
			TOTAL (US\$)		240	200	480	300 \$			2, 500	3, 720	558	744	. 19	5, 041			TOTAL (USS)		3, 704	556	556	19	4, 833
		1995	3)/1 1∕2		102	850	714	446			7, 438	9, 550	2, 372	1, 910	79	13, 910		1995	SÊ		3, 445	2.361	1.417	52	13, 301
	DULE		F/C (US\$)		216		312	195	1		750	1,473	1	295		I, 768	ULE		E/C (USS)		1, 482		222		1, 704
	SCHED	-	TOTAL (USS)		510	200	480	300			2,000	3, 490	524	698	- 17	4, 729	SCHED		TOTAL (US4)		3, 704	356	556	19	4, 833
1	ENT	1394	2) 2) 2)		217	850	714	446			-5, 950	8, 177	2. 225	1. 635	74	12, 111	MENTS	1994	2;Ê		9, 445	2.361	1 417	162	13, 301
	JRSEM		F/C (USS)		459		312	195			600 j	1, 566		313		1, 879	URSEM		F/C (US\$)		1, 482		222		1, 704
	DISBU		TOTAL (USSU)		1.260	700	480	300		500	2,000	5. 240	786	1,048	26	7, 100	DISB		TOTAL (USS)		3, 704	556	556	19	4, 833
			ŝÊ		536	2, 975	714	446		744	5, 950	11, 365	3, 341	2, 273	111	17, 089		1993	S€	<u> </u>	9, 445	2.381	1,417	- 52	13, 301
			F/C (USS)		1, 134		312	195		325	500		ł	513		3, 079			F/C (USS)		1, 482		222	1	1, 704
			TOTAL (US\$)				480	300	1,000	500	1, 000	4, 730	110	946	24	6, 409			TVLOL		3, 704	556	556	19	4, 833
					319	2, 975	714	446		744	2.975	8, 173	3, 015	1, 635	101	12, 923		1992	2 2 1		9, 445	2.361	1.417	79	13, 301
			F/C (US\$) (675		312	195	1, 000	325		. :		561		3, 368 1		1	(ISSI)		1, 482	L	222	- - -	1, 704 1
	(66)		<u> </u>		3, 720		3, 840			1,000				6, 412	160	43, 441	1 9 5)	R	(1 820)	┣—	14, 815		2, 222	74	19, 334
	(1992-1599)	TOTAL	(ISS)		1, 581 3			3.570 2	:				·		681 -		ESTIMATED COST (1992-1995)	TOTAL				9, 445		315	53, 204 11
	ESTIMATED COST		(TTS)			11, (· :		2 111, 675	TED COST		Y CURRENCY (TTS)		6 37, 778	6	:		
	ESTINA:	FOREIGN	CURRENCY (USS)		3, 348		2,496	1,560	1,000	650	5, 25(14, 30		2, 861		17, 165	ESTIMA	FOREIGN	CURRENCY (USS)		5, 926		888		6, 815
		PROGRAM	COMPONENT	LEAKAGE REDUCTION	1. CONSULTING & ADVISORY SERVICES	2. LABOUR COST	3. REPLACEMENT OF SERVICE MAINS	4. REPLACEMENT OF CONNECTIONS	5. EQUIPMENT	6. VALVE REPAIR	7. LEAK REPAIR	SUB-TOTAL J	8. TAX (VAT)	9. PHYSICAL CONTENGIENCIES	I. ADMINISTRATION	TOTAL		PROGRAM	COMPONENT	UNIVERSAL METER	1. UNIVERSAL METER	2. TAX (VAT)	3. PHYSICAL CONTINGENCY	4. ADMINISTRATION	TOTAL

NOTE: ABOVE COSTS EXCLUDE ADMINISTRATION COST AND ESCLATION COST. (*); FIGURES PRESENTED ARE ANNUAL COST ESTIMATED FROM 1996 TO 1999. EXCHANGE RATES: 1 US\$ = ¥ 135 AND 1 US\$ = TT\$ 4.25,

Table N-1.9 SUMMARY OF COST ESTIMATE FOR CENTRAL SUPERVISORY SYSTEM (OPTION A) - (1)

h	(113) (US4)		6 4 424 0 6, 977	5 2, 668. 4 5, 489. 0 107 9 276	6 111 7 245 4 7 8, 253 8 13 774 1 3 115 6 253 9 2 21 2 254 3	g IS, 702. 7			9 I5, 702. 7 28, 231. 5	1, 788. 4 3. 244. 7	9 17, 491. 1 31, 476. 2	20, 066, 1 4, 721.	2, 523. 7 4, 721.	668.9 157.	9 AD 846 7 A1 076
(TTS) - T Stippi V	AL TRAKS-		4 504.	380	1, 005. 19. 21.	8 1, 967.			8 I. 967.		8 1, 957.				8 1 OE7
RRENCY	- SUB-TOTAL (CIVIL) P	~	9 3, 919.	i kola	93. 196.	4 13, 734			4 13, 734.		4 13, 734				105 61 4
LOCAL	1		2,522	3 1, 902.		9 9, 733.			9 5, 733.	 	9 9, 733.				0 0 727
P N A S E	BUTLD	-				5 2.504		 	5 2, 604.		5 2, 604.		· 		5 9 60.4
	F-M/C-V CILMBER		2 1, 396.			7 1, 396.1		!	7 1, 396.	5	6 1, 396.	: :			7 1 705
(1351)	TOTAL (USS)		5, 336.2	5, 861.	219. J 11. 832. (225. 7 249.	24, 536.		ł	24, 536.	2, 323,	27, 360.		4, 104,		PT ACA
N CURRENCY	1.4		3, 779, 8	5, 861.9	11, 219, 1 11, 832, 0 226, 7 249, 3	22, 380. 3		1	22, 380, 3	· •	22, 380. 3	1	1		6 UB4 66
FOREICK	PRIMARY I	- 1-	2, 156. 4			2, 156, 4		1	2, 156.4	}	2, 156. 4		1		1 1 2 2 4
TUTAI	(\$ \$0)		2, 986. 6	1, 107, 6		4. 557. 1	112.5	112.5	4, 669. 7	579. 4	5, 249. 1	787.4	787.4	26.2	5 0CD 1
	TOTAL (TTS)		2.644.3	504.3		3, 359. 4	2.2	2.2	3, 361. 7	382.6	3, 744. 3	3, 346. 3	561.6	111.5	0 631 2
()			201.0			320. 2	2.2	2.2	322. 4	8 1	322. 4	6	1	-	
<u>it 'ius</u>)	E E		2, 443			3, 039. 3		1	3, 039. 3	1	3, 039. 3	-			6 060 6
CIVIT WORKS	INSTAL-		1, 004. 9	420.3		1, 600.8		1	1, 600.8	8	1, 600. 8	ł			0 000 1
TU 2 6 1 1	F-M/C-V BUILDING CHAMBER WORKS							1	1						
	F-M/C-V CHAMBER					1, 438. 4			1, 438. 4	1	1, 438. 4		-		1 901
(<u>1</u> 55)	TOTAL (US\$)		2, 364, 4	5 886 		3, 766. 7	112.0	112.0	3, 878, 7	489. 4	4, 368. 1	1	655.2		c 003 7
FOREIGN CURRENCY (USS)	NSTRUMENT	- + -	1. 870. 2			3, 240. 0	112.0	112.0	3, 352. 0	•••••	3, 352. 0			· .	0 636 6
513104	PRIMARY INSTRUMENT EQUIPMENT -ATION	_	494 2	а 1 - 1 - [526.7			526.7		525.7				59E 7
NAME OF FRM FACILITIES		[1] CONSTRUCTION WORKS	FLOW METER CONTROL VALVE	PRESSURE GAUGE CSS' & CENTRAL EQUIP	REPEATER STATION RTU STATION BOOSTER P/S SPARE PARTS	SUB-TOTAL	[DISTRICT OFFICE] PC & PRINTER	SUB-TOTAL	TOTAL	[2] ENGINEERING SERVICES	TOTAL OF ITENS [1] & [2]	[3] TAX (VAT)	[4] CONTINGENCY	[5] ADMINISTRATION	CD4 ND TOT 41

SUMMARY OF COST ESTIMATE FOR CENTRAL SUPERVISORY SYSTEM (OPTION A) - (2) Table N-1.9

NAME	LOOVE	d 3 8	≖^ ш С	Σ	0 2 2 0 5	YCAL CURRENC	1	2 1 2	Ļ		POREIG	FORETCH CURRENCY (LOCAL CURRE	Ē		,	
FACILITIES		Aiddin untimus	1	1	CIVIL	CIVIL WORKS	No.	SUPPLY T		<u>+</u>		SUPPLY			CIVIL	۰ſ		SUPPLY		TOTAL
	PRIMARY]	PRIMARY INSTRUMENT	28	F-M/C-V BUILDING CHAMBER WORKS	UILDING 1 WORKS 1	INSTAL- SUI	SUB-TOTAL TI (CIVIL) POI	TRANS- ORTATION	TOTAL (TTS)	(\$ \$1)	PRIMARY 1	PRIMARY INSTRUMENT OUTPMENT - ATION	TOTAL (US\$)	F-M/C-V B CHAMBER	BUILDING	INSTAL- BI	(CIVIL)	TRANS- PORTATION	74 (SEL	(3 81)
ORKS																	╡			
[CSS]			0.000				CCE 3	113.0	6.38.3	1 480 4				1						
FLUW MCLEK		7. 323. 8	T, 323. 0						4			1.176.1	1 241 1	1		527.5	527.5	105.5	633.0	1.390.1
CUNTRUL VALVE		70.8	970 6			118.8	118.8	:	142.6	313.1				1		1			1	
Decembe Alle								:	280.0	534.7			1	1			1			1
ALESSURE UNUVE	1					<u>.</u>		:				3, 486, 9	3, 486, 9	1	-	1.481.9	1, 481. 9	296.4	1, 778. 3	3, 305.3
CTIONAL DEFICE							1		1	;		317.3	317.3	1	1	_	134.9	27.0	161.8	355.4
PEPEATER STATION		· — ·		· _ ·	1		1		1		1	219.1	219.1	1			93.1	18.5	111.7	245.4
RTI STATION	1	÷		<u>-</u> -	1	1	1	1	1	1	•	9, 973, 3	3, 973, 3	-		~	4, 238. 7	847.7	5, 086, 4	11, 170, 1
BOOSTER P/S		11	11					11		11		249.3	249.3					21.2	21.2	254.3
PART FRANC					•						 .	1 101 1	1 101 21			I SLY S	5 476 1	7 312 1	7 727 5	17 220 5
SUB-TOTAL	I	2, 175.0	Z, 175. U	• • 		3.42.6	a .725	0 .col	1, 1US. 8	2, 4JI. I		1 ./05 .01	1.104.01			4			2	1.1 nm
LISS]																				
LON MULLIN						+		╞	-											
SUB-TOTAL	[·			1		! .		l L L	-		1		ł			1
TOTAL	1	2, 176. 0	2, 176. 0	1		924.8	924. 8	185. 0	1, 109.8	2, 437. 1		15, 487. 1	15, 487. 1			6, 476. 1	6, 476. 1	1, 316. 4	7, 792. 5	17, 320.5
ENGINEERING SERVICES			-	1		1				1.		1			1				-	
TOTAL OF ITEMS [1] & [2]		2, 176.0	2, 176. 0			924.8	924. 8	185.0	1, 109. 8	2, 437. 1		15, 487. 1	15, 487. 1	1		5, 475. 1	6, 476. 1	1. 316. 4	7, 792. 5	17, 320.5
(3) TAX (VAT)			1					1	1, 553. 7	365. 6			-	1		1			11.041.9	2, 598. 1
[4] CONTINGENCY			326.4	1		ļ		ł	166.5	365. 6		1	2, 323. 1		1	ł			1, 168.9	2, 598, 1
[5] ADMINISTRATION	3		ł			1	·		51.8	12. 2			1		:	;	i	1	368. 1	86. S
GRAND-TOTAL	1	2, 176.0	2, 502. 4			924.8	924.8	185.0	2, 881. 7	3, 180. 4	1	15, 487, 1	17, 810. 2	1		6, 476, 1	6, 476. 1	1, 315.4	20, 371. 3	2, 603.4

Table N-10 SUMMARY OF COST ESTIMATE FOR CENTRAL SUPERVOSORY SYSTEM (OPTION B)

N - 16

.

AND B
OPTIONS A
FOR
YT VALUE
PRESEI
NET
AND
SCHEDULE
DISBURSEMENT
N-1. 11
Table

1 2001 2002 2003 2004 2005	REPLACEMENT OF STEP 1			1,034	125	-									REPLACEMENT OF PHASE I			107 '0	1. 239	1, 235		<u> </u>					
1996 1957 1998 1999 2000	PHASE I - STEP 2 & 3	1.979	477 1, 082 539	477 1, 082 12, 578	71 162 1, 887	71 162 1,887 2,501	2 5 5 5	622 1,411 16,414	TOTAL =														~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
1992 1393 1994 1995 19	PHASE I - STEP I	1, 981 2, 688	193 107 194	193 2, 088 2, 883	29 313 432	313 432	10 14	. 762	TOTAL = 6, 850						PHASE I	13,407 18,190	726 1, 319	T, 311 14, 133 18, 208	197 2, 120 2, 926	2, 120 2, 926							
DESCRIPTION YEAR		CONSTRUCTI	[2] ENGINEERING SERVICES	SUB-TOTAL	[3] TAX (VAT)	<pre>4] CONTINGENCY</pre>	51 ADMINISTRATION	TOTAL		NET PRESENT VALUE	<u>ب</u>	ب	12% [23,816]]	OPTION B	1 3	[2] ENGINEERING SERVICES	506-101AL	[3] TAX (VAT)	CONTINC	5] ADMINISTRATION		NET PRESENT VALUE	5% [52,442]	, 	12% [36, 885]	·

Table N-2.1 LIST OF LABOUR RATES AND MARKET PRICES MATERIALS & MEASURED RATES IN TRINIDAD AND TOBAGO (1)

DESCRIPTION	UNIT	ALIG. ' 86	10N. 87	COST (U SEP. 87	KOV. 87	DEC. ' 88	APR. ' 89	DESCRIPTION	TINU	AUG. * 86	JUN. 87	COST (SEP. ' 87	(UNIT:TT 5, NOV. ' 87	DEC. '88	APR. ' 89
EXCAVATION AND EARTHRORK								Pitrum fill in making up levels and spread level and consolidate.	E 3	75, 65	62. 60	66. 05	50.00	46.00	48.80
-MEASURED RATES- HAND EXCAVATION AND DISPOSAL								Pitrum bed 100mm thick and well roll, water and consolidate and level and ram ground under.	22	9. 65	7.75	8.10	G. 45	6. 05 6	6. 35
(All hand excavation rates are appli- cable to excavation under normal con-								SAND BLINDING							
ditions and in medium clay or heavy soil.)								Sand bed 50mms thick spread and com- pacted to receive polythene sheeting.	22	4. 90	4. 15	3. 85	3. 20	2. 90	3. 20
Excavate oversite to remove top soil average 150mm deep.convey a distance not exceeding(n.e.) 100m and deposit in soil heaps.	겉			5. 80	5. 80	5. 80	5. 80	DAMP-PROOF MENGRANE 500 gauge polythene and lay on sand 511nding to receive concrete.		3. 65	4. 35	3. 95	<u>4. 05</u>	6. 15	6. 15
Excavate oversite to reduce level.	ß	6		÷	32.										
Excavate trench or pit starting at ground level and n.e. 1.5m deep.			39.70		39, 70	39.70	39. 70	++CONCRETE WORK++							
Ditto over 1.5m but n.e. 3.0m deep.	6	59. 95	50, 90	50.90	50. 90	50.90	50, 90	Ordinary Portland Cement-42kg bag	Š	12.00	12. 45	12.45	12.45	17.95	17. 95
8 Return fill in & compact selected ex- cavated material around foundations.		28.50			25, 00	25.00	25, 00	Guanapo Gravel (Delivered to the site) Melajo Gravel (Delivered to the site) Sharp Sand (Delivered to the site)	9999 1997	56. 50 58. 55 59. 15	53. 40 53. 40 53. 40	53.40 46.85 52.10 55.35	41.35 40.05 45.30	35. 95 29. 45 39. 25	35. 95 29. 45 39. 25
Load up and remove surplus excavated materials from site.	a 3	45.45	43. 30	43. 30	43.30	43. 30	43.30					33. JO 8. 50	8, 50 9, 50	11.00	11, 00 11, 00
MECRANICAL EXCAVATION AND DISPOSAL-USING EXCAVATOR WITH 0. 29 M3 BUCKET	NG EXCAN	ATOR WITH	0.25 143 1	NCKET				SUL WITHIN & KM KAUTUS	Ur cuncke	CELE FLAN	: :				
Excavate oversite to remove top soil								21 N/10002 26 N/10002	5 5 5	221.85	206.00 221.00			258.00 275.00	275.00
average 150mm deep, convey a distance o e 100m and denosit in soil heaps	Ê	4 2N	3 10	3.10	3 1N	3.00	3 00	Mild steel bar reinforce.n.e.Dia 12mm Ditto Dia 20mm	<u>8</u> 8	1.65 2.35	1 60 2 35	1.55 2.40	1.50 2.40	1. 75 2. 85	1 80 2 95
Excavate oversite to reduce level.		17.25		11	12	12, 10	10	Ditto Dia 25mm High tensile steel bar reinforcement	8	2.40	2.35	: :	: :	2.90	3.0
Eurocoto tworkh of att startion of			÷÷.						39	1.80	1.80	2.15	2 15	3.10	3.1
EXCAVATE UT FILL STATUTING AL	B 3	24.25	17.20	17.20	17 20	17.20	17.20	150+150+3. 2mm (BRC No. 510) 45m roll.	Ŋ.	275.00	269.65	256.35	256.35	321. 35	327.65
Ditto over 1.5m but n.e.3.0m deep.	ŝ	29.55	21.00	21.00	21.00	21.00	21.00	Uitto 15U*15U*5. 38mm(BKC No. 55)45m roll.	Vo	541.00	630.65	584.35	584. 35	713.65	728. 65
Load up and remove surplus excavated materials from site.	۲ ۲	19, 10	19, 10	19.10	19.10	19, 10	19. 10	=MEASURED RATES=							
Fn.				<u> </u>				(All concrete reinforced exept where described as "plain"and mixed on site by machine)							

Table N-2.1 LIST OF LABOUR RATES AND MARKET PRICES MATERIALS & MEASURED RATES IN TRINIDAD AND TODAGO (2)

Mar. Mar. <th< th=""><th>hs crb br / ou</th><th>1127</th><th></th><th></th><th>COCT AIN</th><th>14.77 21</th><th></th><th></th><th>DESCRIPTION</th><th>I TINIT</th><th></th><th></th><th>COST (</th><th>2 TT-TINE</th><th></th><th> </th></th<>	hs crb br / ou	1127			COCT AIN	14.77 21			DESCRIPTION	I TINIT			COST (2 TT-TINE		
Matrix Matrix			AUG. ' 85	. 87	51-	. 87	88	89			•	JUN. * 87	8		- I	APR. ' 89
E MADD MS TIT Line (13.4) Line (13.4) <thline (13.4)<="" th=""> <thline (13.4)<="" th=""> <</thline></thline>					ŀ			ſ	156+200+400mm	No.	1.85	1.90	1. 90	T 30	1.85	L 85
	POLITAND CEMENT CONCRETE 21 N/MM2-MACHIN	NE MIXE	D ON SITE					****	200+200+400mm	Š.	2.60	2.50	2.40	2.40	2.40	2.35
									California Split 100*100*400mm	У.	2.20	2. 45	2.45	2. 50	2.45	2.45
	Plain blinding (1:8) 50mm thick	걻	23.45		19.40	18.30	20. 20	ឧ								
u_1 u_2 <t< th=""><th> Foundation in trenches over 150mm but</th><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>CLAY BLOCKS (SCORED)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Foundation in trenches over 150mm but				_				CLAY BLOCKS (SCORED)							
u_1 u_2 u_3 u_4 <t< th=""><th>in.e. 300mm thick</th><th>ß</th><th></th><th>286.65</th><th>283.05</th><th>271.20</th><th><u>.</u></th><th>÷</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	in.e. 300mm thick	ß		286.65	283.05	271.20	<u>.</u>	÷								
m_{1}^{2} m_{2}^{2}	Bed 150mm thick	궡		52.20	51.65	49, 90	<u>:</u>	÷	100+200+300mm	Ś	1. 60	T 50	1. 50	T- 50	1.25	1. 25
mic 64.00 59.65 57.16 57.00 55.00 57.00 55.00 5	Suspended floor&roof slab 100mm thick	입		36, 15	35.80	34.60	:		150+200+400mm	Ś	2. 90	3.00	3.00	2.50	2.25	2.25
a_1 <t< th=""><th>Wali 150mma thick</th><th><u>م</u></th><th></th><th>59, 65</th><th>59, 15</th><th>57.35</th><th><u>.</u></th><th>÷</th><th>3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Wali 150mma thick	<u>م</u>		59, 65	59, 15	57.35	<u>.</u>	÷	3							
z_{21} z_{31} z_{34}	Beam over 0.05m2 but n. e. 0.15m2 sec-						:	÷		Ę	51.00	45. 55	41.65	32.85	28.45	32. 70
size 32.1 IS 34.1 IS 306.5 IS 365.0 IS	l tional area	-	321.25	344.15	340.55	3 28. 70	<u> </u>		ged dry mortar-mix-100 ib	2	8, 50	8.50	8. 5 <u>0</u>	8. 50	11.00	11.00
ab 201 34.5 30.6 37.6 measure measure mass. measure mark (1.4) meas							<u> </u>									
wear Initial Consider National (15 k/m) Initial (15 k/m) Initial (15 k/m) Initial (17 k/					340.55	02		375, 20	=MEASURED RATES=							
(III \$7,43) (IIII \$7,43) (IIII \$7,43) (III \$7,43) (IIII	***********						***		COMPRETE DI ACV TU DI ACTIVICED	MENT MAN	0740 /1.4					
$(10 \ FAD (10 \ FAD) (10 \ FAD (10 \ FAD (10 \ FAD (10 \ FAD) (10 \ FAD (10 \ FAD) (10 \ FAD (10 \ FAD) (10 \ FAD (10 \ FAD) $	HIT-WIKEN CONCRETE ZI NYMER								AUNTERED DIONO IN LIGHT STORAG					****		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	143 (410 00 ser m2) to the foregoing rat	1	/10 ¢/m3)	(10 \$ /2)	10 \$ /= 3/	¢ /m3	< /m		₩all of 100*200*400mm blocks	2m	45.40	45, 25	45.40	44.80	47.70	47.40
No. No. <th></th> <th>222</th> <th>/2011/2 04V</th> <th></th> <th></th> <th></th> <th>104111</th> <th></th> <th>Wall of 150+200+400mm blocks</th> <th>121</th> <th>62.50</th> <th>59.90</th> <th>53.55</th> <th>58.90</th> <th>61.10</th> <th>61 IS</th>		222	/2011/2 04V				104111		Wall of 150+200+400mm blocks	121	62.50	59.90	53.55	58.90	61.10	61 IS
We 2.40 2.65 2.60 3.75 3.00 3.05 3.00 3.05 3	RET NEORIEMENT								Wall of 200*200*400mm blocks	2	87.75	75.85	73.65	73.50	77.00	76.20
(k) 2.40 2.61 2.61 3.75 3.61 3.75 3.61 3.75 3.61 3.75 5.05 6.05 <									Wall of decorative blocks 100+100+400							
$\frac{16}{16}$ $\frac{3.5}{3.60}$ $\frac{3.6}{3.45}$ $\frac{3.6}{3$	Mild steel bar n.e. Dia. 12mm	-	2.40	2.65	2.60	2.55	3. 65	20	am (P.C. price (\$2.2) exfactory) built					÷		
$\overline{16}$ 3.00 3.16 5.16 5.01 5.16 5.01 5.20	Ditto Dia. 20mm	<u> </u>	3. 25	3, 60	3. 65	3. 65	5, 00	5	fair face one side	ଧ୍ଯ	141.45	130, 30	129.45	<u> </u>	120.80	121.05
Re 2.00 2.95 3.45 5.45 6.45 6.45 6.45 6.45 6.45 6.45 6.45 6.10 13.20	Ditto Dia. 25mm		3.30	3.60	3.75	3.75	5, 05	5.20			(\$2.20)	(\$2.45)	(\$2.45)	(\$2.50)	$\langle \rangle$	(
act 6.05 5.40 5.20 5.15 6.03 Nall of 100-200-300m blocks $act 0.15 60.45 00.15 43.80 63.15 63.15 63.20 63.15 63.20 63.15 63.20 63.15 63.20 63.15 63.15 63.15 63.15 63.15 63.15 63.15 63.15 63.15 63.15 63.15 63.20 63.15 63.20 63.15 63.20 63.15 63.20 63.15 63.20 63.15$	High tensile steel Dia.25mm		2.60	2.95	3. 45	3. 45	5. 45	5.45								
all 6.05 5.40 5.20 6.15 6.20 5.10 5.12 6.0.45 60.13 48.80 48.10 all 13.25 11.30 11.30 13.20 9.11 0.15 0.45 60.13 48.80 48.15 all 13.25 11.30 11.30 13.20 9.11 0.15	Steel-wire mesh reinforcement 150*150								IN PLASTICISED							
matrix 11.32 11.30 13.20 13.40 Wall of 150-200-300mm blocks matrix 02.25 01.25 01.13 66.13 66.15 <	*3. Zmm in foundations and beds				5, 20		6. 15	6, 20						2	~~~~~~	10 0
m2 13.23 11.30 13.20 13.40 Mail Or Jav-June June Dicors mail Or Jav-June Dicors mail Or Jav-June June Dicors mail Or Jav-June June Dicors mail Or Jav-June Dicor Mail Or Jav-June Dicors <	Steel-wire mesh reinforcement 150*150			1					Wall of 100*200*300mm blocks	2	CS 79	27, 25	00 92	9 9	40. ðU 56. 15	40, 45 56 35
metric 88.05 86.00 85.70 86.30 87.15 83.20 •••000F(MG+• ••	*5. 38mm ditto	20	13. 20			11.30	13. ZU		Rall of Jbu*ZUU*4UUmm plocks	2	00	CO '0)	00.00	'n	01.00	CC 00
web S8.00 S5.70 S8.30 S1.15 S8.20 S8.20 S1.15 S8.20 S1.15 S8.20 S1.15 S8.20 S1.15 S8.20 S1.15 S8.20 S1.15 S1.20 S	FORMMORK (FOUR(4) USES ASSUMED)									-						
m2 88.06 86.00 86.30 87.15 88.20 FMNCT PRICEs FMNCT PRICES									**ROOF ING**							
mc2 88. 05 86. 00 85. 70 86. 30 87. 15 88. 20 97. 15 92. 13 92. 13 <th>Rough formwork to horizontal soffit</th> <th></th>	Rough formwork to horizontal soffit															
0.35 91.60 91.25 91.90 91.15 92.15 Gaivanized iron corrugated sheet 26 m 9.55 10.40 10.50 <t< th=""><th>or suspended slab</th><th>୍ଲ</th><th>88.05</th><th></th><th>85.70</th><th>86.30</th><th>87.15</th><th>88. 20</th><th>=MARKCT PRICES=</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	or suspended slab	୍ଲ	88.05		85.70	86.30	87.15	88. 20	=MARKCT PRICES=							
	Ditto vertical sides of column	1 2	90. 85		91. 25	91.90	91. 15	92.15								
Corrusared Alluminium Sheet 29 wide m $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $1.3.23$ $$ $$ $1.3.23$ $$ $$ $1.3.23$ $$ <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>gauge 0.60m wide (nominal)</th> <th>e</th> <th>9.95</th> <th>10. 40</th> <th></th> <th></th> <th>17.90</th> <th>20. 45</th>									gauge 0.60m wide (nominal)	e	9.95	10. 40			17.90	20. 45
	DRENSED FORMORK							_	97	đ	1	1		•	13.23	1
26 gauge corrugated iron roof sheet- ing with 1.5 corru	No addition required for dressed formwor	-ŗ							=MEASURED RATES=							
20 Bauge corrugation root sneet 20 Bauge corrugation side lap in 20 25 20 25 20 25 20 26 20 26 20 26 20 26 20 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 26 20 26 20 26 20 26 20 26 20 26																
. 1.40 1.35 1.40 1.35 1.40 1.35 1.40 1.35 1.40 1.35 1.40 1.35 1.40 1.35 1.45 1.40 1.35 1.	a+sR[P2:RMPRK a+								2b gauge corrugated iron root sheet- ine with 1.5 corrugations side lap in							
Dirth Purlins. m2 41.70 38.45 38.95 49.20 55. 5. 1.40 1.35 1.45 1.45 1.45 1.5 41.70 38.45 38.95 49.20 55.				******					continuous lengths fixed to timber							
Ditto fixed to metal framing m2 51.75 47.55 48.15 53.00 64. 1.40 1.35 1.45 1.40 1.35 1.45 1.40 1.35 1.45 1.40 1.35 1.45 1.40 1.35 1.45 1.40 1.35 1.45 1.40 1.35 1.45 1.40 1.35 1.45 1.40 1.35 1.45 1.45 1.40 1.35 1.45 1.40 1.35 1.45 1.40 1.35 1.45 <td< th=""><th>=MARKET PRICES=</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0</th><th>겯</th><th>41.70</th><th>38.45</th><th>38</th><th>ŝ</th><th>49.20</th><th>55. 10</th></td<>	=MARKET PRICES=								0	겯	41.70	38.45	38	ŝ	49.20	55. 10
Ditto fixed to metal framing m2 51.75 47.55 48.15 59.00 64. 5. 1.40 1.35 1.45 1.40 1.35 1.45 59.00 64.																
No. 1. 40 1. 35 1. 40 1. 35 1. 40 1. 35 1. 45 1.	CONCRETE BLOCKS (ROUGH TEXTURED) EX-FACT	TORY							fixed to metal	2	51.75	47.65		48.	59.00	64.95
	100±200±400mm	C N	-	1 35	1.40	1.35	1.45	1.40								
		2	1	22.4												

Table N-2.1 LIST OF LABOUR RATES AND MARKET PRICES MATERIALS & MEASURED RATES IN TRINIDAD AND TOBAGO (3)

Mar. Set Mar. Set	DESCRIPTION	I TINU			COST (U)	IT:TT \$)			DESCRIPTION	I JINO			COST ((NIT:TT \$)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.	AUG. 786	ŀ • I	SEP. 87	. 87	38	8			1 I	JUN. '87	SEP. ' 87	Ľ.,	DEC. ' 88	APR. 89
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	++CARPENTRY AND JOINERY++								vitreous china	No.	211.65	238.35	295.00	295.00	423. 15 401 15	423.15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=MARKET PRICES=								W.C.low down suite of white vitreous	2	213.00	00.102	00.162	no	• : :	AT -TOT
add 1									china	Š.	577.00		760, 00	5	895.00	895.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fitch Fine 50+75ma 0:445 Dine f0+100+++		1.30	9-1 7 X	1 40 1 40	1.40	06 T	1 00 1	i bitto coloured	VO	I. U/3. 35		00.055	ġ.		nn - 261 -
110 110 150 <t< th=""><th>Pitch Pine 100+100mm</th><th></th><th>1 25</th><th>145</th><th>1 45</th><th>1 45</th><th>1 90</th><th>- US</th><th>PI PF WORK</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Pitch Pine 100+100mm		1 25	145	1 45	1 45	1 90	- US	PI PF WORK							
about 1:0 1:3 1:4 1:5 1:6<	Pitch Pine 50+150mm	E E	1.30	÷.	1.45	1.55	1.90	1.90								
116 1.6 <t< th=""><th>Pitch Pine 50*200mm</th><th>dn3</th><th>1.30</th><th></th><th>1.45</th><th>1.55</th><th>1. 90</th><th>1. 90</th><th>Dia.</th><th>e</th><th>3.60</th><th>3.50</th><th>4.00</th><th>4.00</th><th>7. 50</th><th>7. 50</th></t<>	Pitch Pine 50*200mm	dn3	1.30		1.45	1.55	1. 90	1. 90	Dia.	e	3.60	3.50	4.00	4.00	7. 50	7. 50
add 1.45 1.40 1.46 1.65	Ditto 25*100mm;25*150mm tongued and								õ	EI	16.93	19.90	17.65	17.65	30. 75	32.40
add 1.0 1.0 1.0 1.0 1.0 1.0 2.10 Prove lates table into the state	grooved boarding	9 9	1.45		-	L 40	1.85	1. 85	PVC pipe Dia.12mm	E	0.90	1.85	1.85	2.00		3. 50
mean trans trans <tt< th=""><th>Pitch pine 25*300mm straight edge</th><th>¢</th><th></th><th></th><th></th><th></th><th></th><th>•</th><th>PVC pipe Dia. 50mm</th><th></th><th><u>.</u></th><th></th><th></th><th>00 2</th><th>10</th><th>11 05</th></tt<>	Pitch pine 25*300mm straight edge	¢						•	PVC pipe Dia. 50mm		<u>.</u>			00 2	10	11 05
and 1 b0 1.0 </th <th>00arging</th> <th></th> <th></th> <th></th> <th>7- 10</th> <th></th> <th></th> <th>3</th> <th>DUT STATTAGE, WAS LE & YELL QUALLUY</th> <th>8</th> <th></th> <th>2 7 7</th> <th></th> <th>8</th> <th>CC -TT</th> <th>77-27</th>	00arging				7- 10			3	DUT STATTAGE, WAS LE & YELL QUALLUY	8		2 7 7		8	CC -TT	77-27
ais 1 for 1 for 1 for 1 for 1 for 1 for 1 for 	Pranting putter sor submatt surfateur, suge	da 3	1 60						(Drainage waste & vent duality)	6	14 35	15 00		15.00	34,65	28.95
$a_{a_{1}}$ \cdots 1.0	White pine 25*300mm boarding	2 2 9	1.50		1. 50	1.60	2.15		CPVC Hotwater Pipe Dia. 12mm	e		7, 00	*	6.70	8.8	8.80
mid 1.0 1.0 9.7	Canadian Ceder 25*200mm tongued and			:					Ditto Dia. 17mm	6	1 1 1	9.70	ŀ	1	12.15	12.15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	grooved boarding.	E			1.30	T. 30			Ditto Dia. 20mm	e		1		9.70	1	
m_{1} m_{1} m_{2} m_{1} m_{2} <	Canadian Ceder 25+200mm tongued.	•					00 0									
0. 46. 6 47. 45 53. 33 55. 15 72. 00 60. 13 71. 00 55. 00 53. 33 55. 17. 33 55. 17. 33 55. 17. 33 55. 17. 33 55. 17. 33 55. 17. 33 56. 17. 33 57. 35 57. 35 57. 35 57. 35 57. 35 57. 35 57. 35 57. 35 57. 35 57. 35 57. 35<	grooved, reeded and beaded.	9				T. 00	Z. 2U	7.20								
No. Lits 30 Lits 31 Lits 30 Lits 31 Lits 32 <thlits 31<="" th=""> <thlits 31<="" th=""> <thlits< th=""><th>Plywood 6*1200*2400mm sheet</th><th>¢.</th><th>46.45</th><th>:</th><th></th><th>56.65</th><th>72.00</th><th>80.00</th><th>=MEASJRED RATES=</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thlits<></thlits></thlits>	Plywood 6*1200*2400mm sheet	¢.	46.45	:		56.65	72.00	80.00	=MEASJRED RATES=							
m. u.	Formply 1/*1200*2400町町 Sneet Hottom: core そ1::ch Aco+ 750+9000+46+++	99	LIY. UC	<u>.</u>		134.UU 60 66	100.33	1/8. 35 27 00	CANTTADY ADDI TANACC							
m T/1 Sign (1) Sign (2) Sign (2	00,00	÷.,		n	00.10	00.00	CONVERT NUT TWEETINGS							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	=MEASURED RATES=								Wash hand basin 560*405mm of white							
m 17.35 14.45 14.55 17.15 52.16 37.6 53.76 53.76 53.76 53.76 53.76 53.76 53.76 53.75 53.76 53.75 53.76 53.75 53.76 53.7									vitreous china(Prime cost price							
m 17.35 14.45 12.5 17.15 17.15 17.15 17.15 17.15 17.15 17.55 14.55 17.55 14.55 17.5						-			(\$211.65) ex-store)	Ş	323.90	354.60	419.	4	624.60	624.60
m 17.35 14.45 14.25 17.15 17.15 17.15 17.15 17.56 17.57 15.56 12.57 12	Battar wirling or calling lost								200		(2211- 53)	(\$238.33)	CE23)	679	\$423.13	(\$423, 13)
m	1 504100mm	e	17 25	14 45		11 25	17 15	17 15		Ŋ	206 7F	<u>:</u>		:	70.2 80	707 80
π 31.10 27.20 26.8 27.90 30.10 $K.$ Low down suite of white vitreous m 332.60 32.76 3	1 Ditto 50*150mm	= =		20.00		00 UC	23 70	23 70		2	(\$275)	(\$757.5)	- NO	(\$260 00)	24 91 13	(21 1275)
n^2 $64, 55$ $76, 50$ $76, 50$ $76, 50$ $76, 50$ $94, 75$ $120, 07$ $8561, 61, 61, 90$ $822, 60$ </th <th>Ditto 50*200mm</th> <th>E</th> <th>31.10</th> <th>-</th> <th></th> <th>27.90</th> <th>30, 10</th> <th>30. 10</th> <th>C. low down suite of</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Ditto 50*200mm	E	31.10	-		27.90	30, 10	30. 10	C. low down suite of							
all 64.55 76.50 76.50 94.75	Eaves and ceiling boarding of (17mm)								china (Prime cost price (\$577.0) ex-							1
adc $bd.$ $7b.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ $94.$ $75.$ <t< th=""><th>softwood, tongued, grooved, reeded and</th><th></th><th></th><th></th><th></th><th></th><th>- 34</th><th>1</th><th> store)</th><th>°.</th><th>832.60</th><th></th><th>, 071. 80</th><th>942.43</th><th>276.50</th><th>1, 276, 50</th></t<>	softwood, tongued, grooved, reeded and						- 34	1	store)	°.	832.60		, 071. 80	942.43	276.50	1, 276, 50
Mo. 120.75 109.25 113.47 142.60 134.55 Mo. 1403.40 1451.073.35 120.76 1.227.05 1.227.05 1.227.05 1.532.75 1.227.05 1.532.75 1.227.05 1.532.75 1.227.05 1.532.75 1.227.05 1.532.75 1.227.05 1.532.75 1.227.05 1.522.75 1.227.05 1.522.75 1.227.05 1.522.75 1.227.05 1.522.75 1.227.05 1.522.75 1.227.05 1.522.75 1.227.05 1.522.75 1.27.50 1.27.50 1.27.50 1.27.50 1.27.50 1.27.50 1.27.75 1.27.50 1.27.75 1.27.75 1.27.50 2.27.70 2.27.70 2.27.70 2.27.70 2.27.70 2.27.75 1.27.55 1.7.50 2.27.7	beaded and fixed to ratters	2	(1 7mm)			/0° 0/	94. /0 (95mm)	34. /3 (95mm)			(//00)		\$/00. UU	(nc . / 50 c)	0030. UU	Inn 'EROC)
h No. 120. 75 109. 25 113. 47 142. 60 134. 55 PIPEWORK (1073. 35) (1033. 33) (\$8355. 00) (\$83550. 00) (\$83550. 00) (\$83550. 00) (\$83550. 00) (\$83550. 00) (\$83	Skeleton framed timber flush door		/mail TV				/minorev	Verone V	<u>:</u> د	Š.	-1 -1	1, 455, 15	1, 227. 05	227.05	, 592. 75	
No. 120. 75 109. 25 103. 25 113. 47 142. 60 134. 55 PiPEWOIK Pielemoik	750+2000+45mm faced both sides with	· · · · ·									(107	(1093. 33)	(\$895.00)	895.00)	\$1170.0)	3
PIPEWORK PIPEWORK Dial Dial </th <th>6mm thick internal quality plywood</th> <th></th> <th>120.75</th> <th>109.25</th> <th>109.25</th> <th>113.47</th> <th>142.60</th> <th>134.55</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	6mm thick internal quality plywood		120.75	109.25	109.25	113.47	142.60	134.55								
Galvanized mild steel pipe Dia.12mm 15.45 12.75 17.50 17.50 with screwed and socketed joints fix- m 16.45 12.75 17.50 17.50 ed blockwork m 16.45 12.75 12.75 17.50 17.50 Galvanized mild steel pipe Dia.30mm m 16.45 32.00 32.00 48.45 50.									PIPEWORK							
with screwed and socketed joints fix- m 15.45 12.75 17.50 17.50 ed blockwork m 15.45 12.75 12.75 12.75 17.50 Calvanized mild steel pipe Dia.30mm m 40.85 34.70 32.00 48.45 50.	••PLUMBING INSTALLATIONS••								Galvanized mild steel pipe Dia. 12mm							
ed blockwork m 15.45 12.15 12.75 17.50 17.50 calvanized mild steel pipe Dia.30mm m 40.85 34.70 32.00 48.45 50.		_					_		d socketed							
Galvanized mild steel pipe Dia. 30mm A. T. N. 6alvanized mild steel pipe Dia. 30mm a 70 32.00 43.45 50. 1 10.17.	=MARKET PRICES=								eđ blockwork.	e	16.45	12	12			17.50
aitto aitto 40.85 34.70 32.00 43.45 50. 1 1 1 1 1 1 1 1	SANTARY APPLIANCES								steel							1
										e	40.85	34,	32.00	32.00	\sim	50.40
	Wash hand basin 560*405mm of white														니	닉

Table N-2.1 LIST OF LABOUR RATES AND MARKET PRICES MATERIALS & MEASURED RATES IN TRINIDAD AND TOBAGO (4)

DESCRIPTION	INUT			COST	T TIN			DESCRIPTION	TINU	00 0 11	100	5	(UNIT:TT \$)		00.001
		AUG. 86	JUN 87	V SEP. 87	NOV - 87	DEC. 88	APR 85			AUG. 80	JUN. 8/	20 Q	MUV. SI	NEC. 00	00 AFIC 03
PVC pipe Dig. Limm with solvent cement joints fixed to blockwork	1	7.95	!	-	-		-	Main distribution panel of metal cab-							
				00 0			1	inet							
FVU PIPE UIX. IZMM GILUO			0.30	18 00 31	ľ	_									
PVC pipe Dia 100mm ditto	= e	35, 15	32.20	32.20		56.50	49, 65	as manufactured by T.Y.E., E.J.L., or							
								<u> </u>							
ELECTRICAL INSTALLATIONS								and assemble and install	ર્ષ	2, 275. 00	2, 445. 00	2, 445. 00	2, 445.00	2, 445.00 3, 088.00 3, 088.00	, 088. 00
=MARKET PRICES=								Sub-distribution panel of metal cabi-							
	·	<u></u>		-				net with locking cover of 24 way load							
rour Jaws metal water prooted meter socket of 200 Å rating four wire								V with bus bar rating of 100 A ditto	Ŷ	2, 205. 00	2, 279, 15	2, 279, 15	2, 279, 15	2, 830, 60	2, 830. 60
115/230 V	Ş	370.00	318.20	318.20 318.20	318.20	381.20	381.20	6 6							
Main distribution panel of metal cab-								PVC armoured main cable 3.5*185mm2 & fix w/ clips to concrete or blockwork	8	315.00	358.70	358, 70	358.70	456. 65	456. 85
net with locking cover of 20 way	<u> </u>	÷ .			÷										
load centre*, three phase four wire,								PVC armoured subfeeder cable 3.5*95			: :				
115/230 V with bus bar rating of 200A					<u> </u>			ditto	8	170.00	181.50	181.50	181.50	281.95	281.95
is manutactured by L.Y.E. E. J.L. Or Ather equal and anoroused including								l Single core PVC sub-circuit cable 2 5							
main and miniature circuit breakers	•	No. 1, 524.00	1, 760. 15	5 1, 760. 15	1, 760. 15	2, 232. 00	2, 232. 00	mm2 and drawn into conduit	Ħ	1.00	1.50	1.50	1.50	1.90	1. 90
uh-distribution nanel of metal cahi-								Ditto 4mm2 and drawn into conduit	E	1.40	2.20	2.20	2.20	3.00	3.00
et with locking cover of 24 way load			_							2					
centre* three phase, four wire, 115/230 V with bus bar rating of 100 A ditto	2		1. 653. 45	5 1. 653. 45 1		2, 048, 50	2, 048, 50	EMT conduit Dia.12mm and fix in chase of blockwork or concrete	8	4.20	6.40	6.40	6.40	8.00	8.00
C L C					1		: :			10	•	ł	L C	00 01	c F
PVC armoured main cable 3.5*95mm2 PVC armoured main cable 3.5*95mm2	88	120.00	Uc .244. 5U	1 NG 792 U			227. 25	01100 013. 1/ma		0. 43	e	C/ .0	c/ '0	00 nT	70.00
VC armoured subfeeder cable3.5*95mm2	<u> </u>		132.65	5 132 65	132.65	239.10	239.10								
Single core PVC sub-circuit cable				2 U 26				••FLOOR, WALL AND CELLING FINISHINGS ••							
<u>4. sume</u> Ditto 4mm2			1.10	0 1.10	1.10	1 90		=MARKET PRICES=							
EMT conduit Dia. 12mm			3, 5;	5 3.5			4,	تحصب							
Ditto Dia 17mm			5.1(0 5.1(i			_	°	51 00		22.52		20 45	L 00
* NOTE-Four the 20 way load centre 5 do	vih le n	le and s) Dole Dol	+ 1) J J	hreakers	vere adont	l ed for	Blue limestone Metal(ex-ouarrv)7mm	3 6	85.00		33 10		C4.07	2
cost calculations. Similarly for the 24 way load centre 6 double and	r the	24 way los	ad centre	6 double	and 12 sit	12 single polc circuit	circuit	Ditto 20mm to 30mm	Ê	68.00	1	:	÷	÷	9T 0
breakers were used. Prices quot	ed in	previous 1	oulletins	were in	elation to	to a 300 A	rating	Ditto 40mm	ដ	50.00			: :		57.8
main panel.								Terrazzo Chips	m3	190,00				117.70	II7.7
								Dlack Vement Wrsto Comont	9 1	4. 2U	2 2 2	4. 00			- c - u
								Adhesive Tile Grout (100 1b bag)	2 Ś	49.00			49.00	33	65. 00 65. 00
Four jaws metal water proofed meter								6		(100 1b)	_	<u>8</u>	<u>i i</u>		: :
socket of 200 A rating four wire		200.00	07 677	07 677 0	07 677	E10 20	519 20	Dick Pointing [1]e Grout-50 15 bag	Ś	00.6/	/5.00	75. 00	00 .4/	43. UU 1 75	50.UU
115/23U Y and TIX	_				۲	~		-	<u> </u>	1	1.12	7 - 10		~	1

Table N-2.1 LIST OF LABOUR RATES AND MARKET PRICES MATERIALS & MEASURED RATES IN TRINIDAD AND TODAGO (5)

	1110	AUG. ' 86	JUN. 87	LUDI (L	NON	DEC. ' 88	APR 89			AUG. ' 86	JUK 87	SEP. 87	NOV. 87	DEC. '88	APR. ' 89
	No.	3.10	3.10		_ `_	3.45	4.20	Wall tiling of white glazed ceramic							
Terrazzo floor tiles with Italian Marble Chips 300*35mm thick(ex-	: : :							tiles ed se							
	8	11. 55	10.50	10. 50		10. 50	10. 50		뎹	150.00	121.85	129.20	129.35	140.40	140.60
Ditto with local chips (and ordinary Portland Cament: 200-2004-200mm thick								Ditto but of coloured ceramic tiles	6	160.00	134.10	137.40	137. 50	153.20	153. 35
	<u>o</u>	1. 65	1.40	L. 40	1.40	1.95	1. 95	Rendering of plasticised cement and							
Non-skid white ceramic floor tiles of	; ;								22	20.00	17. 80	17. 70	17.50	18.35	18.40
	Š.	1. 80	1. 80	1.85	1. 85	2.35	2.80		입	28.50	26. 15	1	25.75	26.90	27.05
Glazed white ceramic wall tiles 150*															
	22	1.60 85	1. 60 1. 85	1.75 1.90	1, 75	2.05	2.05	•							
								=MARKET PRICES=							
								Emulsion Paint(ex-factory)4 litre tin	Ş.	65. 00	63.20	63. 20	63.20	79.40	79.40
(RIGID TILES ARE BEDED IN CEMENT MORTAL (((1.4))							011 Paint(ex-factory) & litre tin	ý	80.00	78.15	78.15	78. 15	98. 30	<u> 3</u> 8. 30
Floor paving of pollshed granolithic								Zinc chromate primer for metalwork				, <u>,</u>			54 E04
		60 00	75 00	75 00	75 DD		79 00	<u> </u>	2	88. UU	83. /U	88. 70	33. /U	TU-11	nt '7n
1 terearzo (2.5)	1					5	+ +	Anti-corrasive paint Red Oxide(ex- Factory)4 litre fin	Ş	81. 50	82.80	82.80	82. 80	100. 80	100.80
		70.00 (import)	90,00 (local)	90.00 (local)	90.00 (local)	98, 00 (local)	98.00 (local)	÷							
								<u>i</u> i							
white ceramic tiles 150*150*12.5mm of local manufacture neally pointed with								(RATES ARE INCLUSIVE OF ALL SURFACE PREPARATIONS)	EPARATIC	(SN					
-	57 10	145.00	135.95	139.20	139.30	155.65	176.60	One coat primer, one undercoat and one							
									6 m	16 00	16 05	17 00	17 00	18.65	18 65
	-					:	<u> </u>		1		1		3	5	
neatly pointed with matching cement	긜	200.00	192.10	192.35	192.15	191.80	192.65								
								finishing coat emulsion paint on ren- dered soffit	m2	20, 00	21.80	21.85	21.85	23.45	23. 45
*20mm with local chips	뎹	95, 00	99, 35	99, 50	8 6 , 35	115.15	115.95	فيست							
								Zinc chrom two finish							
	B 2	45, 00	48.15	46.75	<u> </u>	50.90	60.50	on general surfaces of metal work	길	28.75	30, 35	30, 35	30.35	34.00	34,00
Screeded bed of cement mortar(1:4)	î	00.00	10 EN	10 50	10 25	10 05	18 20	Ditto not exceeding 75mm girth	EI	2.30	2.45	2.45	2.45	2.75	2.75
	1	00 • 07		-	2	1									
Plastic dviding strip 17*4mm bedded								finishing coats oil paint on general							

Table N-2.1 LIST OF LABOUR RATES AND MARKET PRICES MATERIALS & MEASURED RATES IN TRINIDAD AND TOBAGO (6)

DESCRIPTION	TINU			COST (UNIT: TT \$	(IT:TT \$)			DESCRIPTION	I UNIT		g	COST (UNIT: IT \$)	()	
		AJG. * 86	JUN ' 87	AUG. 86 JUN. 87 SEP. 87 NOV. 87		DEC. ' 88	APR. ' 89		V V	AUG. 85 JUN	JUN. ' 87 SEP. ' 87	87 NOV. 87	DEC. ' 88	APR 89
Ditto not exceeding 75mm girth	e	2. 45	2. 60	2.60	2.60	3.00	3, 00	**!ABOUR RATES**						
Knot prime stop and apply one under-								Craftsman (excluded living allowance)	Ĥ	÷				10.00
coat and two finishing coats oil					11				H	10. 70	7. 50 7.	7. 50 7. 50	7. 50	7. 50
paint on general surfaces of woodwork	겉	22. 50	25. 20	25. 20	25.20	29.30	29.30							
Ditto not exceeding 75mm girth	6	1.85	2.10	2.10	2.10	2.35	2.35							
++PLANT HIRE++														
D4 tractor		86.25	-	74. 15	74. 15	66. 25	66.25							
6 tractor	Hour	100.00	108.75	:	101.00	108.25	118.75					_		
8 tractor	•			:		216.65	220.85							
613 Cat Motor scraper	•		150.00	150.00	150.00	150.00	150.00							
112F Motor Grader		100.00					1		_					
1206 Motor Grader	· · · ·		117.50		115.85	114 40	115.65							
Dump Truck 5.0m3	Four	45.00	45.00		45.00	49.15	49.15							
Backhoe (pneumatic type)	-					59.15	58.35							
Backhoe(track tvpe)	-	70, 00	95,00	103 35	103.75	102 50	102 50							

SOURCE : CONSTRUCTION BULLETIEN (CARIBBEAN INDUSTRIAL RESERCH INSTITUTE { CARIRI})

Table N-2.2 LIST OF CONSTRUCTION MACHINE RATES AND LABOUR COST

SOURCE: FUJIKO CARIBBEAN LTD.

ITEM	DESCRIPTION	UNIT	PRICE	ITEM	DESCRIPTION	UNIT	PRICE
=CONSTRUCTION MACHINE=						HOUR	100 - 80
				OIL JACK (PIPE DRIVING)		HOUR	40 - 30
BULLDOZER	CAT D8	HOUR	180 - 220	CONCRETE/ASPHALT CUTTER	2 INCH		40 - 30
BULLDOZER	CAT D7	HOUR	160 - 200	DRAIN PUMP		HOUR	b - 3
BULLDOZER	CAT DS	HOUR	110 - 140	DRAIN PUMP	3 INCH	HOUR	10 - 5
		HOUR	70 - 90	DRAIN PUMP	4 INCH	HOUR	16 - 8
BACKHOE	TYRE	HOUR	55 - 65	PICK HUMMER		HOUR	10 - 5
BULLDOZER BACKIOE TRACTOR SHOVEL	CAT 977	HOUR	130 - 150	SOIL BORING MACHINE		HOUR	40 - 30
POWER SHOVEL	UAI SDD	HOUR	130 - 150				
		HOUR	120 - 90	=LABOUR COST=	· · · · · ·		
POWER SHOVEL	CAT 930	HOUR	90 - 70				
POWER SHOVEL	1 0 1 0 90 1	HOUR	60 - 80	COMMON WORKER		DAY	70 - 50
TRUCK CRANE	1170 300 1	HOUR	200 - 250	SPECIAL WORKER		DAY	110 - 80
TRUCK CRANE	70 TON	HOUR	100 - 120	RAINFORCEMENT		DAY	110 - 80
VIBRO HUMMER		HOUR		FORM WORKER		DAY	110 - 80
VIBRO HUMMER DUMP TRUCK	10 CY	HOUR	55 - 45	CARPENTER		DAY	110 - 80
DUMP TRUCK	7 CY	HOUR	40 - 50	WELDER		DAY	110 - 80
		HOUR	150 - 100	PAINTER		DAY	110 - 80
TRAILER SCRAPER		HOUR	150 - 120	PLUMBER		DAY	110 - 80
ROAD ROLLER		HOUR	50 - 70	MASON		DAY	110 - 80
TANDED	1 1	HOUR	10 - 5	CONSTRUCTION EQUIPMENT OPERATER		DAY	150 - 100
VIDDATOD		HOUR	10 - 5	SURVEROR	[DAY	150 - 100
CONCRETE MIXER (MANUAL)		HOUR	10 - 5	ENGINEER	[DAY	250 - 150

Table N-2.3 LIST OF CONSTRUCTION MATERIALS COST

								SOURCE: FUJ	IKO CARIBB	EAN LTD.
		FIXED	CASH PRICE	(11 \$)	5% OFF	CASH PRICE	(TT \$)	10% OFF	CASII PRIC	E (TT \$)
NAME OF MATERIAL	SIZE (MMA)	MINIM	UM 1 CY - 2	9 CY	ADVANC	E 30 CY - 9			E 100 CY -	Contraction of the second second second second second second second second second second second second second s
		BASIC	VAT	AMOUNT	BASIC	VAT	AMOUNT	BASIC	YAT -	AMOUNT
STONE DUST FINE	3 - 0	70.00	10.50	80.50	68.50	9. 98	76.48	63.00	9.45	72.45
STONE DUST	6 - 0	40.00	6.00	46.00	38.00	5, 70	43. 70	36.00	5.40	41.40
TERRAZO CHIPPING 1/4" (BLUE)	8 - 3	120.00	18.00	138.00	114.00	17.10	131.10	108.00	16, 20	124.20
TERRAZO CHIPPING 3/8" (BLUE)	10 - 0	200.00	30.00	230,00	190.00	28.50	218.50	180.00	27.00	207.00
TERRAZO CHIPPING 3/8"	10 - 0	120.00	18.00	138.00	114.00	17.10	131.10	108.00	16.20	124.20
TERRAZO CHIPPING 1/2"	13 - 6	100.00	15.00	115.00	95.00	14.25	109, 25	90.00	13.50	103.50
SINGLE SIZE 3/4"	20 - 13	50.00	7.50	57.50	47.50	7.13	54.63	45.00	6.75	51.75
SINGLE SIZE 1"	25 - 13	45.00	6.75	51.75	42, 75	6. 41	49.16	40.50	6.08	46.58
SINGLE SIZE 1 - 1/2"	40 - 13	45.00	6.75	51.75	42.75	6.41	49.16	40.50	6. 08	46. 58
SINGLE SIZE 3"	80 - 40	40.00	6.00	46.00	38.00	5. 70	43.70	36, 00	5.40	41.40
RED BLOCK CHIPS 3/4"	20 - 13	120.00	18.00	138.00	114.00	17.10	131.10	108.00	16.20	124. 20
RED BLOCK CHIPS 3/8"	10 - 0	200.00	30.00	230.00	190.00	28.50	218.50	180.00	27.00	207.00
CRUSHER RUN 40 - 0	40 - 0	40.00	6.00	46.00	38.00	5. 70	43. 70	36.00	5.40	41.40
CRUSHER RUN 80 - 0	80 - 0	35, 00	5.25	40, 25	33, 25	4. 99	38.24	31.50	4.73	36. 23
3" INCH OVER BOULDERS (BLUE)	250 - 80	60.00	9,00	69.00	57.00	8. 55	65. 55	54.00	8.10	62.10
3" INCH OVER BOULDERS	250 - 80	40, 00	6. 0 0	46.00	38.00	5.70	43.70	36.00	5.40	41.40
BOULDERS	250 - UP	35.00	5, 25	40.25	33. 25	4, 99	38. 24	31.50	4, 73	36. 23
SPECIAL BLUE BOULDERS		59.00	7.50	57.50	47.50	7.13	54. 63	45.00	6.75	51.75
SPECIAL WHITE BOULDERS		200.00	30.00	230.00	190.00	28. 50	218. 50	180.00	27.00	207.00
FINE 80 - 0 by load	80 - 0	80.00	12.00	92.00	76.00	11.40	87.40	72,00	10.80	82.80
FINE FILL 80 - 0 by load	13 - 0	50.00	7.50	57.50	47.50	7.13	54.63	45,00	6. 75	51.75
QUARRY RUN 80 - 0 by load	300 - 0	40.00	6.00	46.00	38.00	5. 70	43. 70	36.00	5.40	41.40

NOTE: 1. The above prices are valid from January 1, 1990 to March 31, 1990.
2. A 5% discount will be granted, if over 30 cy/Loads of material is purchased on a Cash basis.
3. A 10% discount will be granted, if over 100 cy/Loads of material is purchased on a Cash basis.
4. If over 1,000 cy/Loads of material is required prices are negotiable.
5. For any Credit granted there will be a 1.5% finance charge per month on all past due accounts.
6. 1 CY = 0.7645 M3

Table N-2.4 LIST OF RATES AND CHARGES

DESCRIPTION UNIT =WAGE NATES= =WAGE NATES= (IS AT WAY, 1987) MACHINE OFENTOR MACHINE O	r PRICE (TTS)	DESCRIPTION	IT PRICE (TT\$)
1987) 1987) 1987) 1987)		-	
# COST=		CONCRETE WORK ORDINARY PORTLAND CEMENT - 42 KG. BAG OLANAPO GRAVEL OLANAPO GRAVEL	45.15
M 20051-	10.93 23.64		
# COST= 1987)	5, 72 -	PRE-MIXED CONCRETE	
# COST= 1987)		2	
# COST= 1987)	11.28 -	21 N/MM2	226
ER I. Mu =CONSTRUCTION COST= (AS AT JUNE, 1987)	13.60 -		
=CONSTRUCTION COST= (KS AT JUNE, 1987)	13.60 -	BLUE LIME STONE METAL ZU MM TO 30 MM	-9c
M. COST= 1987)	5.13 -	BLUE LIME STONE METAL 40 MM	58.
0N COST= 1987)	7.75 -	TERRAZZO CHIPS	180.20
=CONSTRUCTION COST= (AS AT JUNE, 1987)	7.27 -	PLASTIC DIVIDING STRIP 17+4 MM	AREAS DITSIDE THE RADIUS.
(AS AT JUNE, 1987)			
		PAINTING AND DECORATING	
		LITRE	
CONCRETE BLOCKS			
100+200+400 MM		ZINC CHROM	N 89. 70
		ANTI-CORROSIVE PAINT - RED OXIDE - 4 LITRE	
	H 2.35		
	1	(AS AT JANUARY, 1983)	
150+200+300 MM EACH	1 2	_	
		DEMAND CHARGE	10.00 - 15
PVC PIPE 12MM	2. 05		H 0.015 - 0.065
PVC PIPE SOMM	8.25	FUEL CHARGE	
PVC PIPE 110MM	20, 20	For every TI one cent increase	s in the average
ELECTRICL INSTALLATIONS		gross price per 1,055,100 kilojoules of fuel	in a month, the charge
PVC ARMOURED MAIN CABLE 3 1/2*185 MM2 M	267.25		by TT 0.014 cents.
LE 3 1/2+95 MM2	151.35		
SINGLE CORE PVC SUBCIRCUIT CABLE 2.5 MM2 M	1. 00		a electricity tax
SINGLE CORE PVC SUBCIRCUIT CABLE 4 MM2	J. 50		collected by the
	3. 90	Electricity Commission on behalf of the	
EMT CONDULT 17 MM	5.50		
REINFORCEMENT			
NT 12 MM	2.		
NT 20 55			
MILE STEEL BAR REINFORCEMENT 25 MM	3.70		
LIC 150*159*3.2 MM	5.3(
LIC 150+150*5.38 MM	11. 55		