Average per capita water demands including UFW for the areas of the source groups I and II, and Tobago for the years 1990, 1995, 2000 and 2005 are summed up and tabulated below.

AVERAGE PER CAPITA WATER DEMAND

(Unit: lpcd)

YEAR	AREA OF SOURCE GROUP I	AREA OF SOURCE GROUP II	TOBAGO
1990	644	436	449
1995	572	379	394
2000	521	342	355
2005	485	308	326

2.2 WATER BALANCE

Production capabilities of the existing water sources are both limited by the capacity of facilities and the amount taken at the sources. Upon estimating dependable yields from existing sources, if available raw water is in excess of the stipulated amount, the production capacities of existing facilities restrict the yields. In contrast, during period of drought when water at sources is insufficient, the dependable yields are estimated from the river discharge, impounding reservoir storage and aquifer's storage.

The production capacities listed by WASA, cited from the report titled "The Water System Balance in Trinidad, June 1985", are compared to past production records and the seasonal production capabilities are investigated. Then, the dependable yields are estimated for respective sources as shown in Table II-2.8.

Upon estimating the dependable yields from the existing sources, expansion of the existing production facilities is not considered. The dependable yields are limited to the present production capabilities of the existing facilities. Potential water production by exploiting new sources or by expanding the existing facilities is not considered, but recovering the present production levels to the original levels is taken into account.

The total dependable yields of existing 96 waterworks in Trinidad and Tobago (including Hillsborough West in Tobago to be constructed) are estimated at 771,300 $\rm m^3/day$ at the rainy season and 711,100 $\rm m^3/day$ at the dry season.

Water balance in Trinidad and Tobago for the years 1990, 1995, 2000 and 2005 is summarized as follows.

WATER BALANCE IN TRINIDAD AND TOBAGO (DRY SEASON)

			(Mill Daile		: (Unit	: m ³ /day)
	Year		Demand		Supply* Capability	Balance
		Net	UFW	Total**	•	
Trinidad	1990	321,250	321,250	642,500	679,400	+ 36,900
	1995	370,400	246,700	617,100	679,400	+ 62,300
	2000	427,400	183,100	610,500	679,400	+ 68,900
	2005	489,000	122,600	611,600	679,400	+ 67,800
Tobago	1990	11,900	11,900	23,800	31,700	+ 7,900
	1995	14,900	9,900	24,800	31,700	+ 6,900
	2000	18,600	8,000	26,600	31,700	+ 5,100
	2005	22,300	5,600	27,900	31,700	+ 3,800

- *.... Supply amounts in Tobago include that of Hillsborough West.
- **.... Total Demand = Net Demand/(1-UFW Ratio)

As shown in Table II-2.9, the dependable yields of the source group I, which totals $545,600 \text{ m}^3/\text{day}$ for dry season, are disaggregated for water areas supplied by the 16 water sources including four major sources. Water demand of the area supplied by the source group I in 1990 is estimated at $531,400 \text{ m}^3/\text{day}$ including the special industrial demand so that the supply can meet the demand throughout the area. As shown in the table, water supply exceeds the demand in the area of the source group I up to the year 2005. Water balance of the area of the source group I for the years 1990, 1995, 2000 and 2005 is summarized as follows.

WATER BALANCE OF THE AREA OF SOURCE GROUP I (DRY SEASON)

Year		Demand	(Unit Supply Capability	: m ³ /day) Balance	
	Net	UFW	Total	oapability	
1990	256,700	256,700	531,400	545,600	+ 14,200
1995	307,700	205,100	512,800	545,600	+ 32,800
2000	356,800	152,900	509,700	545,600	+ 35,900
2005	410,800	102,700	513,500	545,600	+ 32,100

The water area allocation of the dependable yields shown in Table II-2.9 is just a trial for the present study, however, when flow rates at offtakes are measured by meters and population of the area supplied from the offtake is determined, the allocation will be modified accordingly.

The dependable yields of the source group II are totaled in $133,700 \text{ m}^3/\text{day}$ for dry season. As shown below, for the area supplied by the sources, the supply exceeds the demand of the area as a whole.

WATER BALANCE OF THE AREA OF SOURCE GROUP II (DRY SEASON)

Year		Demand		(Uni Supply Capability	t: m ³ /day) Balance
1990 1995 2000	Net 55,550 62,600 70,550	UFW 55,550 41,700 30,250	Total 111,100 104,300 100,800	133,700 133,700 133,700	+ 22,600 + 29,400 + 32,900
2005	78,500	19,600	98,100	133,700	+ 35,600

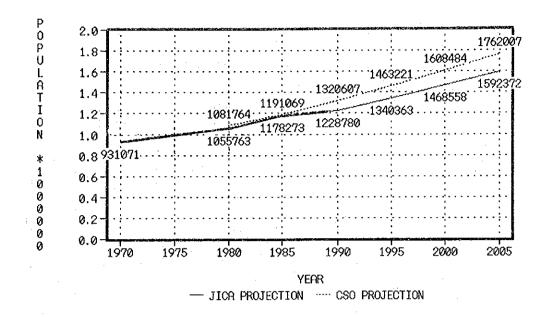


Fig. II-2.1 POPULATION PROJECTION

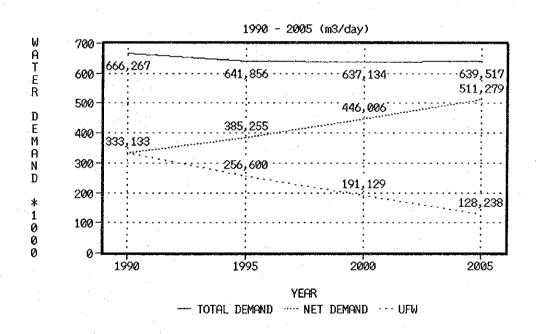


Fig. II-2.2 WATER DEMAND PROJECTION

Table II-2.1 POPULATION PROJECTION BY WATER AREA (1)

	WATER AREA	CENSUS POPULATION 1980	Annual Rate of Growth Over 9 Years (%)	ESTIMATED POPULATION 1989	ESTIMATED POPULATION 1990	Annual Rate of Growth (%) 1990-2000	PROJECTED POPULATION 1995	PROJECTED POPULATION 2000	Annual Rate of Growth (%) 2008-2005	PROJECTED POPULATION 2005
1.	DIEGO MARTIN	61, 226	1. 37	69, 212	70, 161	1.50	75, 583	81, 425	1,00	85, 578
2.	PORT OF SPAIN	90, 302	-0. 91	83, 156	82, 530	0.13	82, 928	83, 622	0, 03	83, 733
	Municipality	55, 800	-2. 39	44, 894	43, 822	-1,00	41, 674	39, 632	-1.00	37, 690
	Diego Martin	27, 526	1. 37	31, 116	31, 543	1. 50	. 33, 981	36, 607	1, 00	38, 474
_	St. Anns	6, 976	0. 27	7, 146	7, 165	0.30	7, 273	7, 383	0.50	7, 569
3.	E. M. R. COMMUNITIES	246, 917	1.18	274, 508	278, 073	1. 43	297, 995	320, 646	1. 32	342, 305
	St. Barbs	6, 175	0. 27	6, 325	6, 342	0.30	6, 438	6, 535	0.50	6, 700 6, 863
	Laventille	6, 325	0. 27 0. 27	6, 479 19, 606	6, 496 19, 658	0, 30 0, 30	6, 594 19, 955	8, 694 20, 256	0. 50 0. 50	20, 768
	Morvant Picton	19, 140 26, 344	0. 27	26, 985	27, 058	0.30	27, 466	20, 230 27, 880	0. 50 0. 50	28, 584
3. 5	The second secon	32, 382	0. 27	20, 303 33, 170	33, 259	0. 30	33, 761	34, 270	0.50	35, 136
	St. Joseph	29, 365	1. 73	34, 265	34, 868	2. 10	38, 658	42, 934	1. 76	46, 850
J. U	St. Anns	6, 628	0. 27	6, 789	6, 808	0.30	6,910	7, 015	0. 50	7, 192
	Tacarigua	22, 737	2. 13	27, 476	28, 060	2. 50	31, 748	35, 919	2, 00	39, 658
3.7	Arouca	15, 971	4. 22	23, 177	24, 269	3. 55	28, 849	34, 414	2.46	38, 859
*	Tacarigua	11, 888	2. 13	14, 366	14, 671	2. 50	16, 599	18, 780	2.00	20, 735
	Arima	4, 083	8. 92	8, 812	9, 598	5.00	12, 250	15, 634	3. 00	18, 124
3.8	Tacarigua	16, 568	2.13	20, 021	20, 447	2. 50	23, 134	26, 174	2. 00	28, 898
3. 9	Saddle Road	53, 759	0. 27	55, 068	55, 215	0. 30	56, 048	56, 894	0. 50	58, 331
	O St. Augustine	19, 124	2.13	23, 110	23, 601	2. 50	26, 703	30, 212	2, 00	33, 356
	1 Tunapuna	21, 764	2. 13	26, 300	26, 859	2. 50	30, 389	34, 382	2, 00	37, 961
4.	ARIMA	37, 302	5. 07		61, 487	3. 19	71, 608	84, 175	2. 22	93, 937
	Borough	24, 112	2. 37	29, 775	30, 481	1.00	32, 036	33, 670	1: 00	35, 388
r	Ariea Ward	13, 190	8. 92	28, 466	31, 006	5.00	39, 572	50, 505	3.00	58, 549
5.	SANGRE GRANDE	43, 633 1, 604	2. 47 8. 59	54, 358 3, 367	55, 755 3, 656	2. 68 5. 00	63, 611 4, 666	72, 647 5, 955	2. 08 3. 00	80, 536 6, 904
	Valencia Manzanilla	21, 395	2.06	25, 697	26, 225	2, 50	29, 672	33, 571	2.00	37, 065
	Tamana	7, 629	2. 13	9, 219	9, 415	2. 50	10, 652	12, 052	2.00	13, 306
	Turure	12, 862	2. 38	15, 897	16, 276	2. 50	18, 414	20, 834	2.00	23, 003
	San Raphael	143	2. 49	178	183	2. 50	207	234	2.00	258
δ.	WALLERFIELD	18, 888	3. 74	26, 293	27, 365	3. 40	32, 311	38, 243	2. 51	43, 285
•-	Tacarigua	2, 585	2. 13	3, 124	3, 190	2. 50	3, 609	4, 084	2. 00	4,509
	Arima Ward	3, 021	8. 92	6, 520	7, 101	5. 00	9,063	11, 568	3.00	13, 410
	San Rafael	4, 328	2. 49	5, 399	5, 533	2. 50	6, 260	7, 083	2.00	7, 820
	Cunupia	8, 954	2, 57.	11, 251	11, 540	3. 00	13, 378	15, 509	2. 50	17, 547
7.	TOCO	6, 681	2. 75	8, 527	8, 761	3. 00	10, 157	11, 775	2. 50	13, 322
	Matura	1, 513	2. 54	1, 896	1, 944	3.00	2, 254	2, 613	2. 50	2, 956
	Тосо	5, 168	2. 81	6, 631	6, 817	3, 00	7, 903	9, 162	2. 50	10, 366
8.	CARONI	150, 684	2. 13	182, 229	186, 144	2.57	211, 233	239, 840	2. 39	269, 840
8. I	Caroní Tacarigua	6, 690 2, 954	2. 38 2. 13	8, 264 3, 570	8, 461 3, 646	2. 79 2. 50	9, 707 4, 125	11, 138 4, 667	2. 29 2. 00	12, 474 5, 152
	Cunupia	2, 334 3, 736	2. 13	3, 570 4, 694	4, 815	2, 30 3, 00	5, 582	6, 471	2. 50 2. 50	7, 321
8 2	Cunupia	3, 730 43, 142	2. 57	54, 204	55, 597	2. 95	64, 294	74, 358	2. 48	84, 034
Ų. <u>L</u>	Cunupia	4, 903	2. 57	6, 161	6, 319	3.00	7, 325	8, 492	2. 50	9, 608
	Chaguanas	35 , 78 3	2. 63	45, 209	46, 399	3.00	53, 789	62, 356	2. 50	70, 550
	Montserrat	2, 456	1.60	2, 834	2, 879	2.00	3, 179	3, 510	2.00	3, 875
8, 3	Chaguanas	50, 396	2. 30	61, 835	63, 264	2. 71	72, 288	82, 639	2. 44	93, 230
	Chaguanas	34, 087	2. 63	43, 066	44, 200	3.00	51, 240	59, 401	2. 50	67, 206
	Couva	9, 419	1. 55	10, 818	10, 986	2.00	12, 130	13, 392	2, 50	15, 152
	Montserrat	6, 890	1.60	7, 950	8, 078	2. 00	8, 919	9.847	2.00	10, 872
8. 4	Couva	50, 456	1. 55	57, 927	58, 823	2.00	64, 945	71, 704	2. 24	80, 102
	Couva	24, 062	1. 55	27, 637	28, 065	2.00	30, 986	34, 211	2. 50	38, 707
	Montserrat	10, 095	1.60	11, 649	11, 835	2.00	13, 067	14, 427	2.00	15, 929
c	Pointe-a-Pierre		1. 50	18, 642	18, 922	2.00	20, 891	23, 066	2.00	25, 466
9.	MAYARO	9, 354	0.68	9, 942	10, 022	0.98	10, 500	11,054	1. 23	11, 752
	Guayaguayare Trinity	7, 420 469	1. 38 -5. 38	8, 397 285	8, 513 270	1, 50 -5, 00	9, 171	9, 880	1. 50	10, 643
	Cocal	1, 465	-3. 36 -1. 66	1, 260	1, 239	-5. 00 -2. 00	209 1, 120	161 1, 012	-2. 00 -1. 00	146 963
	VOUL	1, 400	1. 00	1, 200	1, 203	2.00	1, 120	1, 016	1. 00	300

Table II-2. 1 POPULATION PROJECTION BY WATER AREA (2)

WATER AREA	CENSUS POPULATION 1980	Annual Rate of Growth Over 9 Years (%)	ESTIMATED POPULATION 1989	ESTIMATED POPULATION 1990	Annual Rate of Growth (%) 1990-2000	PROJECTED POPULATION 1995	PROJECTED POPULATION 2000	Annual Rate of Growth (%) 2000-2005	PROJECTED POPULATION 2005
10. RIO CLARO	241, 876	1. 27	271, 062	274, 591	1.40	294, 215	315, 688	1. 48	339, 695
10.1 Arch Trace	45, 918	0.34	47, 325	47, 531	0. 60	48, 829	50, 464	0. 98	52, 992
Cocal	8, 879	-1.66	7, 636	7, 509	-2.00	6, 788	6, 136	-1.00	5, 835
Charuma	12, 650	-0. 93	11, 634	11, 526	-1. 00	10, 981	10, 424	-0. 50	10, 166
Pointe-a-Pierre	5, 511	1.50	6, 303	6, 398	2.00	7,064	7, 799	2.00	8, 611
Ortoire	6, 498	1.94	7, 724	7, 873	2.00	8, 693	9, 598	2.00	10, 597
Savanna Grande	12, 380	1.40	14, 028	14, 224	1, 50	15, 323	16, 508	1. 50	17, 783
10.2 Princes Town	43, 373	1, 59	49, 971	50, 765	1.73	55, 310	60, 282	1. 74	65, 722
Naparima	4, 369	1.45	4, 975	5, 047	1.50	5, 437	5, 858	1.50	6, 310
Moruga	5, 788	2.06	6, 952	7, 095	2. 50	8, 028	9, 083	2.50	10, 276
Ortoire	7, 317	1.94	8, 697	8, 866	2.00	9, 789	10, 807	2.00	11, 932
Savanna Grande	25, 899	1.40	29, 347	29, 757	1.50	32, 057	34, 534	1. 50	37, 203
10.3 Barrackpore	44, 114	1.46	50, 261	50, 995	1.56	55, 092	59, 527	1.56	64, 327
Naparima	7, 890	1.45	8, 984	9, 115	1.50	9, 819	10, 578	1.50	11, 396
Moruga	2, 355	2.06	2, 829	2, 887	2. 50	3, 266	3, 695	2. 50	4, 181
Savanna Grande	2, 606	1, 40	2, 953	2, 994	1.50	3, 226	3, 475	1. 50	3, 743
Siparia	31, 263	1.42	35, 495	35, 999	1.50	38, 781	41, 778	1. 50	45, 007
10. 4 Fyzabad	51, 584	1.44	58, 677	59, 523	1. 50	64, 123	69, 079	1. 50	74, 418
Naparima	33, 210	1. 45	37, 816	38, 366	1. 50	41, 331	44, 525	1. 50	47, 966
Siparia	18, 374	1. 42	20, 861	21, 157	1.50	22, 792	24, 554	1.50	26, 452
10.5 Palmyra	38, 946	1. 47	44, 399	45, 050	1. 50	48, 532	52, 283	1.50	56, 324
Pointe-a-Pierre	13, 075	1. 50	14, 954	15, 179	1. 50	16, 352	17, 616	1.50	18, 977
Naparima	23, 327	1. 45	26, 562	26, 948	1. 50	29, 031	31, 275	1.50	33, 692
Savanna Grande	2, 544	1.40	2, 883	2, 923	1.50	3, 149	3, 392	1.50	3, 654
10.6 Marabella	17, 941	1, 45	20, 429	20, 726	1.50	22, 328	24, 054	1.50	25, 913
11. SAN FERNANDO	33, 395	-1.12	30, 180	29, 842	-1.00	28, 380	26, 989	-0. 50	26, 321
12. SIPARIA/ERIN	29, 556	1.45	33, 638	34, 125	1. 50	36, 763	39, 604	1. 50	42, 665
Siparia	19, 152	1. 42	21,744	22, 053	1.50	23, 758	25, 594	1. 50	27, 572
Erin	10, 404	1.50	11, 894	12, 072	1. 50	13, 005	14, 010	1. 50	15, 093
13. POINT FORTIN	44, 719	1.40	50, 660	51, 368	1. 61	55, 636	60, 265	1. 61	65, 285
Borough	16, 710	1. 13	18, 493	18, 703	1. 50	20, 148	21, 705	1.50	23, 382
Erin	384	1.50	439	446	1. 50	480	517	1. 50	557
Cedros	9, 320	1. 77	10, 916	11, 109	2.00	12, 266	13, 542	2.00	14, 952
La Brea	18, 305	1, 44	20, 812	21, 111	1.50	22, 742	24, 500	1. 50	26, 394
14. NORTH COAST	1, 70\$	3, 30	2, 285	2, 360	3, 00	2, 736	3, 172	2, 00	3, 502
15. TOBAGO	39, 524	3. 58	54, 223	56, 195	3. 52	66, 707	79, 415	2, 67	90, 616
15.1 Leeward Section	29, 780	3. 90	42, 027	43, 689	3, 85	52, 723	63, 771	2, 89	73, 530
St. George	4, 580	2.42	5, 678	5, 815	2.50	6, 579	7, 444	2.00	8, 219
St. Andrew	10, 935	4. 11	15, 707	16, 352	4.00	19, 895	24, 205	3.00	28, 060
St. Patrick	7, 859	5. 25	12, 455	13, 109	5.00	16, 731	21, 353	3. 50	25, 361
St. David	6, 406	2.76	8, 187	8, 413	2. 50	9, 519	10, 770	2, 00	11, 891
15.2 Windward Section	9 744	2 53		12, 505	2. 26	13, 984	15, 644	1. 78	17,086
St. Mary's	2, 291	3. 41	0.002	3, 202				2. 50	4, 869
St. Paul	4, 637	2.24	5, 659	5, 786	2.00	6, 388	7, 053	1.50	7, 598
St. Mary's St. Paul St. John	2, 816	2, 25	3, 440	3, 517	3. 00 2. 00 2. 00	3, 883	4, 288	1. 50	4, 619
TOTAL	1, 055, 763	1. 51	1, 208, 515	1, 228, 780	1. 80	1, 340, 363	1, 468, 558	1. 63	1, 592, 372

Table II-2.2 POPULATION GROWTH

ANNUAL GROWTH RATE (1) (H)/(G)*100 (%)		1.70	1.98	2.43	2.35	1.02	1.55	0.75	0.90	-1.86	1
TOTAL INCREASE (H) (C)+(F)	13, 378	18, 383	21,654	27, 146	26, 715	11,950	18,321	8,951	10,860	-22, 526	t
RATE OF NET MIGRATION (F)/(G)*100 (%)		-0.37	-0.29	0.20	0.09	-1.01	-0.63	-1.29	-0.91	-3.51	ı
RATE OF NATURAL INCREASE (C)/(G)*100 (%)		2.07	2, 27	2, 23	2. 25	2.03	2. 18	2.03	1.81	1.65	ı
CSO MID-YEAR POPULATION ESTIMATE (G)	NA	1,079,791 *	1,093,940	1, 115, 701	1, 138, 542	1, 169, 628	1, 178, 273	1, 196, 401	1, 211, 753	1, 211, 539	NA
NET MIGRATION (F) (D)-(E)	-9, 260	-3,980	-3, 168	2,250	1,053	-11,830	-7,388	-15,377	-11,040	-42,490	-19, 216
DEPARTURES (E)	585, 380	571,850	540,070	531, 612	530, 973	572,004	574,856	593, 470	620,819	642, 507	596, 917
E ARRIVALS D (D)	576, 120	567,870	536, 902	533,862	532,026	560, 174	567, 468	578,093	609, 779	600,017	577, 701
NATURAL INCREASE (C) (A)-(B)		22, 363	•								ŧ
DEATHS (B)	7, 060	7, 506	7,355	7,641	7, 546	7,819	8,026	7, 699	8, 100	8,036	NA
LIVE BIRTHS (A)	29, 698	29,869	32, 177	32, 537	33, 208	31,599	33, 735	32,027	30,000	28,000	NA
YEAR	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989

Note: * Census Population including Institutional Population

NA : Not Available
Sources: Population and Housing Census 1980
Population and Vital Statistical Report 1984
Population and Births Report 1985
Death Reports 1986, 1988
International Travel Report 1988
Travel Statistics - Jan 89, Aug 89, Dec 89, Jun 90
Annual Statistical Digest 1988

Table II-2.3 ESTIMATED 1989 POPULATION

	Area	Number of Households as of 1980 Census	Population Census 1980	Estimated Number of Households as of Oct 1989	Average Size of Household	Estimated Population 1989	Annual Population Growth Rate (%)
1.	Port of Spain	15, 083	55, 800	14, 482	3. 1	44, 894	-2. 39
	San Fernando	7, 930	33, 395	7,942	3.8	30, 180	-1.12
	Arima Borough	5, 128	24, 112	6, 767	4. 4	29, 775	2. 37
	Point Fortin Borough	4,083	16,710	5, 137	3. 6	18, 493	1. 13
5.	Diego Martin	20, 722	88, 752	25, 725	3. 9	100, 328	1. 37
6.	St. Ann's	37,649	157, 729	41, 428	3. 9	161, 569	0. 27
7.	Tacarigua	21,672	97, 620	30, 248	3. 9	117, 967	2. 13
8.	Rest of St. George						
	Arima Ward	4, 326	20, 294	11, 230	3. 9	43, 797	8. 92
	Blanchisseuse	466	1,706	586	3. 9	2, 285	3. 30
	San Rafael	962	4, 471	1, 430	3. 9	5, 577	2. 49
9.	Caroni						
	Montserrat	3, 969	19, 441	5, 217	4.3	22, 433	1. 60
	Chaguanas	14, 147	69, 870	20, 529	4. 3	88, 275	2.63
	Cunupia	3, 476	17, 593	5, 141	4. 3	22, 106	2. 57
	Couva	6, 771	33, 481	8, 943	4. 3	38, 455	1.55
10.	Nariva/Mayaro			.,		·	
200	Cocal	2, 151	10, 344	2, 281	3.9	8,896	-1.66
	Charuma	2, 539	12, 650	2, 983	3. 9	11,634	-0.93
	Guayaguayare	1, 936	7, 420	2, 153	3. 9	8, 397	1.38
	Trinity	139	469	73	3. 9	285	-5. 40
11	St. Andrew/St. David	140	100		v. v	000	V. XV
11.	Toco	1, 383	5, 168	1, 542	4. 3	6, 631	2. 81
	Valencia	365	1,604	783	4. 3	3, 367	8. 59
	Matura	379	1, 513	441	4. 3	1, 896	2. 54
	Manzanilla	4,639	21, 395	5, 976	4. 3	25, 697	2.04
					4. 3	9, 219	2. 13
	Tamana	1, 573	7,629	2, 144			2. 13
10	Turure	2, 715	12, 862	3, 697	4. 0	15, 897	4. 30
12.	Victoria	0.700	10 015	0 700		16 491	1 04
	Ortoire	2, 788	13, 815	3, 732	4. 4	16, 421	1. 94
	Naparima	18, 453	86,737	22, 447	4.4	98, 767	1. 45
	Pointe a-Pierre	7, 214	34, 885	9,068	4. 4	39, 899	1.50
	Moruga	1, 775	8, 143	2, 223	4. 4	9, 781	2.06
13	Savanna Grande St. Patrick	8, 769	43, 429	11, 184	4. 4	49, 210	1. 40
14.	Siparia	14, 047	68, 789	17, 750	4. 4	78, 100	1.42
	Erin	2, 338	10, 788	2, 803	4. 4	12, 333	1. 50
	La Brea	4, 264	18, 305		4. 4	20, 812	1. 44
	Cedros	2, 044	9, 320	2, 481	4. 4	10, 916	1. 77
1.4		2,044	3, 320	2, 401	4.4	10, 510	1.11
14.	Tobago St. Goorge	004	4 500	1 200	A T	5 C70	2.42
	St. George	964	4, 580	1, 208	4.7	5, 678	
	St. Mary's	500	2, 291	659	4.7	3, 097	3. 41
	St. Andrew	2, 562	10, 935	3, 342	4. 7	15, 707	4. 11
	St. Patrick	1, 842	7,859	2,650	4.7	12, 455	5. 25
	St. David	1, 384	6, 406	1, 742	4. 7	8, 187	2. 76
	St. Paul	943	4, 637	1, 204	4.7	5, 659	2. 24
	St. John	637	2,816	732	4. 7	3, 440	2. 25
	TOTAL	234, 727	1,055,763	294, 833	4.1	1, 208, 515	1. 51
							

Table II-2.4 PER CAPITA WATER DEMAND

PER CAPITA WATER DEMAND 1990/1995

(lpcd)

		1990		1995			
	URBAN	SEMIURBAN	RURAL	URBAN	SEMIURBAN	RURAL	
DOMESTIC	240	220	180	250	230	185	
INDUSTRIAL/AGRICULTURAL	10	10	4	12	12	4	
COMMERCIAL/PUBLIC	5	5	2	6	6	2	
SUB-TOTAL (NET)	255	235	186	268	248	191	
UNACCOUNTED-FOR WATER	255	235	186	179	165	127	
TOTAL	510	470	372	447	413	318	

Note: Percentage of UFW: 50%(1990), 40%(1995)

Agricultural demand includes water for livestocks but not for irrigation.

Total Demand = Net Demand/(1-UFW Ratio)

PER CAPITA WATER DEMAND 2000/2005

(lpcd)

						(Ipcu)		
-	2000			:-	2005			
	URBAN	SEMIURBAN	RURAL	URBAN	SEMI URBAN	RURAL		
DOMESTIC	260	240	190	270	250	195		
INDUSTRIAL/AGRICULTURAL	14	14	4.	16	16	4		
COMMERCIAL/PUBLIC	. 7	. 7	2	. 8	8.	2		
SUB-TOTAL (NET)	281	261	196	294	274	201		
UNACCOUNTED-FOR WATER	120	112	84	74	69	50		
TOTAL	401	373	280	368	343	251		

Note: Percentage of UFW: 30%(2000), 20%(2005)

Agricultural demand includes water for livestocks but not for irrigation.

Total Demand = Net Demand/(1-UFW Ratio)

Table II-2.5 SPECIAL INDUSTRIAL WATER DEMAND

(lpcd)

 			(Theat
YEAR	SPECIAL INDUSTRIAL (NET)	UFW	TOTAL
1990	63	63	126
1995	70	46	116
2000	77	33	110
2005	85	21	106

Allocation for five water areas:

Port of Spain	6.14%
Barataria	6. 35%
St. Joseph	13, 51%
Arouca	5. 71%
Couva	68. 30%

Note: Percentage of UFW: 50%(1990), 40%(1995), 30%(2000) and 20%(2005)

Total Demand = Net Demand/(1-UFW Ratio)

Table II-2.6 POPULATION AND WATER DEMAND PROJECTION 1990-2005 (1)

,	<u> </u>	lotal	29, 261	44, 432	58, 142	2, 734	2 80	8, 474	11, 663	24, 286	34, 823	20, 245	5.22.5	21, 813	11, 536	26, 125	17, 118	8, 919	2, 739	86, 530	3.808	24, 263	27, 556	20, 207	207	13, 364	16, 709	16, 643	25, 159	9 482	12, 052	10 648	16, 365	. 645	617, 083	24, 773	20, 686	Š	641, 856
	(P/	iai	ļ	9, 601	├					9, 929		•				-		_	\neg	106, 799 1			ç	22.										-	158, 376				156, 378
	DEMAND (=3/d)	General S	l	1	ı		2,800	8,474	11, 863				3, 223	21, 813	11, 636	26, 125	17, 118	8, 919			3,808	24, 263		_1_	2, 100	13, 954	16, 709	16, 643	25, 159	3,482	12, 052	10, 648	16, 365	645	-	24, 773	20, 586		485, 480
	WATER D					101		28			3, 042		9	1,583	9		1, 507			10, 331			6,918		┰	1,358			945			648	11, 663	645	`			-	104, 282 4
-		a 1 .	107	860	.231	. 833	ă	8,445	1, 663	4, 266	1, 780	9, 554	5, 223	230	11, 636	6, 125	5, 611		Ш	_			20, 638	4	200	91, 995 12, 606	6, 709	2,350	2, 212	9, 630	2,052	Ļ.,	4, 702	-	512, 801 10			-}	512, 801
995		by Served by Are I Sources II	0, 593	9,311	9, 131 18	226		54			7, 366		- 8	3, 833	: ?		4, 740		8, 615	Ь				+	+	4, 271			8 8			i	675	028	250	<u>.</u>		╁	275, 250 5.
37		by Serves	258		٠	~	~ 1	894	033	173	310	735	332		7 E	258	191	147		339	222	910	871	252		139	545	836	782	212	196	-	788	2.	2 196	_		+	367
	중	d Served by Sources I	151	923 38,	ļ_	116 5,		157							131 26.	L		_	14				722 48,	1	Ľ	128 251, 112 39,					L	Ŀ	163 14.	128	217 895,	141	787	-	158 895,
-	POPULATI	S.	20	77.	274.	9	9	18 0									L		L	L					1	43, 912					L	_	L		1.			_	1, 234, 158
		Service Area	74, 581	82, 025	289, 375	6 438	6 594	19 955	27, 466	33,761	34, 922	28, 849	21, 718	55, 597	27, 401	66, 587	56, 864	29 523	9 068	203, 213	9, 707	61,840	70, 234	01, 433	10, 288	291, 609	55, 310	55, 092	54, 123	70 328	28 380	35 248	54 171	2, 135	1, 232, 862	66, 25,	52, 723	10.00	1, 299, 116
		Total	75, 583	82, 928	297, 995	6 438		19 955	27 466	33, 761	38, 658	28, 849	23, 134	56, 048	389	71. 508	63, 811	32, 311	10, 157	211, 233	9, 707	64, 294	72, 288	54. 543	10, 30,0	294, 215	55, 310	55, 092	64, 123	92 328	28.380	36 763	55, 636	2, 736	273, 656	66, 707	52, 723-1	+	1, 340, 363
		Total	0.911	49,085	5, 491	3 073	3 147	9 525	3 109							L						•		_1.		108, 475					Ŀ	L	L	L	Ë	781	19, 507	1_	666, 267 1,
	€	Special	l_	9, 505 4	+		-			831	20, 912 3	837				2				105, 741 18				5, /41 13	1	01 -			~~	7					54, 826 64	7		+-	154, 826 66
	DEMAND (#3/d)	General Sp	 	9, 579	١		3, 147	9, 525	3, 109			<u> </u>	음!	4, 455	734	3. 977	7, 533	8, 821	2, 764	1—		3, 855	7, 417	4, 844 IU	3, 440	108, 475 15, 779	7, 940	8, 022	6, 577	0.113	4.459	1, 562	17, 676	651	629	3, 781	18, 507	-	511, 440 15
	WATER DE	Area II Ge	30, 799 3	9, 378 3	1-	113		33			3, 059 1		ì	1,774	77	-	1, 524		-	10, 584 7				-	-	9, 692 10 1, 489 1		4, 662	113	976	ļ	L	12, 570	_	7	2		╂	111, 121 51
		Area I An	⊢	29, 707	L		3, 147	. 193	109	. 1		18, 979		:		L	16,010			L			20, 350	1	1	98, 783 14, 290				0.007	14, 459	_	5, 106		531, 364 11			⊢	531, 364 11
1990			5	!_	-	223		29	-		6, 508 31			3, 775	<u> </u>	7	4, 096 1	_	<u> </u>	22, 518 175			15,035 20	+	4	24, 069 98 4, 003 14			6, 623	<u>. </u>		31,080		_	-			+	254, 844 53
1.9		Served by Served by Sources I Sources II		ı	1			613	705						23. 007	271		712						4	+	38, 413					350		13, 727 3:	_	<u> </u>				825, 028 25
			$\overline{}$	L												 _		L.		<u>_</u>			33 43, 288	4	1							H			72 825, 028	9.4	3 8	1	
	POPULATION	Served	65, 7	77, 607	256, 882	6,025					:				23, 007	L	L						58, 333	\perp		258, 123					<u> </u>	31,080	۲		1.0	52, 994	41, 505		1, 132, 8
		Service Area	69, 231	81, 691	270, 402	6, 342	6, 496	19, 658	27, 058	33, 259	31, 563	24, 269	19, 186	54, 759	24, 218	58, 180	49, 614	24, 960	7 821	178, 931	8, 461	53, 426	61, 403	250 000	3, 732	44, 549	50, 765	50, 995	59, 523	20, 726	29,842	32, 718	50,018	1,842	1, 135, 708	55, 784	12,589		1, 192, 491 1, 132, 867
		Total	70, 151	82, 530	278, 073	6, 342	5, 496	19, 658	27, 058	33, 259	34, 858	24, 269	20, 447	33, 213	26, 859	61, 487	55, 755	27, 385	8, 751	186, 144	8, 461	55, 597	63, 264	30,023	10, 022	47, 531	50, 765	50, 33	59, 523	20, 726	29, 842	34, 125	51, 368	2, 360	. 172. 585	56, 195	12, 589		1, 228, 780 1
YEAR	WATER AREA		1. DIEGO MAKETIN	2. POINT OF SPAIN	3. E. M. R. COMMUNITIES	3.1 St. Barbs	3.2 Laventille	en	4	b	ω		× .	3.9 Saddle Road	3.11 Tunapuna	4. ARIMA	5. SANGRE GRANDE	6. WALLERFIELD	7. TOCO	3	-	\sim	8, 3 Chaguanas	o, 4 Couva	3. MATANO	10, 1 Arch Trace	10.2 Princes Town	16.3 Barrackpore	10. 4 Fyzabad	10. 6 Marabella	11. SAN FERNANDO	12. SIPARIA/ERIN	13. POINT FORTIN	14. NORTH COAST	TOTAL (TRINIDAD) 1	15. TOBAGO	15. I Leeward Sect.	-	TOTAL

Table II-2. 6 POPULATION AND WATER DEMAND PROJECTION 1990-2005 (2)

		Total	27, 516	39, 303	155, 100	2, 342	2, 399	7, 260	3, 993	23, 026	36, 597	22, 319	3, 484	18,854	10, 857	11. 380	21. 132	17, 135	9, 448	2, 836	200, 236	4 085	26, 372	29, 543	140, 257	2, 766	94, 773	12, 102	12, 671	15, 339	24, 249	18, 333 0 050	0 202	9 756	15 159	651	611 612	27, 905	23, 960	3, 846	639, 517
	(m3/d)	Special	-	387							22, 852					1				-	115, 550				115, 550				-								061 PS	+-			169, 150
	DEWAND (m3	1	27, 518	28, 915	<u> </u>	2, 342	2, 399	7, 260				٠	9, 484	18,854	10,857	300	21. (32	17, 135	9, 449	⊢-	 - -	4,065	26, 372	29, 543		2, 766	94, 773	12, 102	15, 671	15, 339	24, 249	18, 333	0 203	9 754	15, 159	651	47 473	27, 905	23, 960	3, 946	470, 328
	WATER D		┺	ļ	7, 909 1	98		74	_		3, 155			368	2, 558		1	1, 539		ļ	10, 633						8,410			3, 833	2,840	OR.		9 754	10.851	651	╁				98, 127
		Area I A	╁	23, 941	┨	2, 256	2, 399	7, 236	9, 993	23, 026	33, 441	21, 603	9, 484	17, 486	8, 299	11, 300	21.132	15, 596	9, 449		189, 603	4, 065	25, 896	22, 373	37, 269		86, 363	10, 855	15, 671	11, 406	21, 403	208.71	200	3	4, 308		513 484				513, 484
2005	-	Served by A		⊥_	23,038 1			98			202			3, 989			┅╊	6.130		11, 298	-						30, 052				8, 278		 	L.	43, 233	2.595	╁	·			318, 901 5
Ā		Served by Services I Sources	293	36, 832			6, 520	9, 683	7, 155	3, 379	0,872	4,828	5, 773	0, 978	24, 197	7,517	033	2, 134	7, 647		215, 896				_	L.						24, 358	5,005	1	17, 162	1	058,359 3	₽			1, 058, 359 3.
	NO		-	575 3	Ĺ	365						:				L	1																1	1	i .	ı	1	-1	354	720	
	POPULAT		80.	78.	315,	යේ (:									31,654	1	1	_					٠,				L							1	H	H	H	7 85, 573		7 15.	7 1, 462, 836
		Service	84, 44	82, 71(331, 63	, 70 90	0, 36	20, 76	28, 58,	35, 13	42, 18,	38, 85	27, 12	57,86	33, 320	34, 66	02, 10,	71,85	39, 62	11, 89	259, 897	12, 47,	80.83	30, 68	75, 82	11, 60;	337, 45	50, 75	65, 72	64, 32	74, 418	20,32	96 39	40.90	63, 57;	2, 73,	1,449,750	90,077	73, 530	16, 547	1, 539, 827
		Total	85, 578	83, 733	342, 306	6, 700	5, 653	20, 768	28, 584	35, 136	46,850	38, 859	28, 838	58, 331	33, 356	37.301	35, 35	80, 536	43, 285	13, 322	269, 840	12, 474	84, 034	93, 230	80, 102	11, 752	339, 696	52, 992	65, 722	64, 327	74, 418	95, 924	26 221	42, 665	65, 285	3, 502	501, 756	90, 616	73, 530	17,086	1, 592, 372
	-	Total	28, 470	41, 402	155, 503	2, 430	2, 55U	7,717	10, 621	23, 313	35, 535	21, 415	9, 361	19, 898	10, 694	11, 010	867.77	17, 233	9, 313	2, 796	92, 154	3, 947	25, 366	28, 480	34, 362	2, 896	96, 834	12, 797	16, 035	15, 834	24, 478	9 163	10 281	10, 100	15, 609	658	10, 509	26, 625	22, 597	4, 028	637, 134 1
	(P/)	Special	•	9, 918						10, 257										_	110, 327 1				10, 327								 				61.541 6	-			161, 541
	WATER DEMAND (#3/d)	General S	28, 470	31, 485	114, 206	2, 490	2, 330	7, 717	10, 621	13, 055	13, 716	12, 135	361	19, 998	10, 694	010 11	507,17	17, 233	313	_		3, 947	25, 366			2, 896	96, 834	12, 797	16, 035	15, 834	24, 478	070	18% 0.	10, 100	15, 509	658	448, 957	28, 625	22, 597	4, 028	475, 593 1
	WATER I	Area II (366	Н	903			97			3, 109			I, 451	519		+	1, 538	-	3.06	10, 367		458		934	896	8, 616	283		270.6	7,00	4,00	-	10, 100	11, 149	658	Ľ	_			100, 753 4
		Area I A	104	25, 041	147, 600	2, 388	7, 330	7, 691	10, 621	23, 312	32, 426	20, 710	9, 361	18, 547	8, 175	37 350	507.77	15, 635	9, 313		181, 787	3,947	24, 897	21, 515	31, 427		88, 217	11, 514	16, 035	11, 701	21, b11	9 163	10 281	╄	4, 461	-	509, 757	-			509, 757
2000		Sources [1]	75, 049	\vdash	21, 165	523		3			8, 334	1, 891		3, 89	6, 755	1		5, 435		986			_				27, 869	4, 582	į	14, 343	,	1, u3		36, 071	39, 816	2, 351	\vdash	-			297, 744 5
. 2		Served by Ser Sources I Sou		Ц	274, 235		200	DS 5	26, 486	32, 557	28, 437	30, 803	23, 343	49, 723	21, 915	7000	000	20, 052	33, 260		191, 581				_				27, 268	27, 003	0,340	22, 61,	5 540	L	15, 931		977, 565 2		-		977, 565 2
		Served Seri	76, 328		295, 399 2.						_				28, 670	╀	1	4	33, 260	_					_	_						22, 851	L.	_		2, 351	L	74, 969	1, 583	. 385	
	POPULATION		_													ļ	1	_		_				<u>. </u>	4	_							L	L	L	Ľ	1,	_	71 60,	1	44 1, 350
		Service	L		310, 946					34, 270		34, 414			30, 179			1						<u>.</u>								24, 054	L				1, 342, 430	<u> </u>	63, 771		1, 421, 3
		Total	81, 425	83, 622	320, 646	6,535	0,034	20, 256	27,880	34, 270	42, 934	34, 414	26, 174	55, 894	30, 212	27, 175		72. 547	38, 243	11. 775	239, 840	11, 138	74, 358	82, 639	71, 704	11,054	315, 588	50, 464	50, 282	720,02	50, 07	24, 054	26. 389	39, 604	60, 265	3, 172	1, 389, 143	79, 415	63, 771	15, 644	1, 468, 558 1, 421, 344 1, 350, 277
YEAR	WATER AREA	-	1. DIEGO MARTIN	2. PORT OF SPAIN	3. E. N. R. COMMUNITIES	3.1 St. Barbs			~	3.5 Barataria	ص			3. 9 Saddle Road	3.10 St. Augustine	A SPINS	T CANADO ANAMA	S. SAMULE UKANDE	6. WALLENGTELD	7. TOCO		8.1 Caroni		8.3 Chaguanas	8.4 Couva	9. MAYARO	10. RIC CLARO	10. I Arch Trace	10. Z Princes Town	10.3 perracepore	10. 4 FyZabad	10.6 Marabella	11. SAN FERNANDO			14. NORTH COAST	TOTAL (TRINIDAD)	15. TOBAGO	15. I Leeward Sect.	15.2 Windward Sect.	TOTAL

Table II-2.7 WATER DEMAND PROJECTION BY WATER AREA

2005	DEMAND (m3/day)				Ŀ					_					8, 673 2, 184	1	<u>L</u>	L		160, 090 40,			23, 600	_	Ĺ	9, 691							L	ļ.,	ļ	22, 300 5,		3, 160	511, 279 128,
	WATER	Total	27, 516	39, 303	155, 100	2, 342	2,399	7,280	9, 993	23, 026	36, 537	22, 319	9,484	18,854	10,857	27 732	17, 135	9, 449	2, 836	200, 236	4, 065	26, 372	29,543	140, 237	94 773	12, 102	15, 671	15, 339	10 252	9,033	9, 202	9,754	15, 159	651	611. 512		23, 960		639, 517
÷	(#3/day)	Min	8, 549	12, 397	46, 623	745	763	2, 309	3, 178	6, 984	16, 664	6, 428	2,801	8, 005	3,211	8 185	5, 170	2, 794	833	57, 668	1, 185	7,617	8,552	CTC 'OF	24 055	3,839	4, 810	4, 750	200	2, 742	3,077	3, 030	4, 683	198	183, 135	7, 934	6, 785	1, 208	191, 129
2000	DEMAND	Net	19, 922	29, 005	108,880	1,745	1, 787	5, 407	7, 443	16, 329	24, 871	14, 988	6, 553	13, 993	7,483	19.074	12, 063	6, 519	1, 957	134, 486	2, 762	17, 749	19, 928	94, 04	67 779	8, 958	11, 224	11, 084	19 064	6. 421	7, 205	7, 070	10,926	461	427, 374	18, 632	15, 812	2, 820	446, 006
	WATER			-					_		_	_			10,694	- -	╌	₩		-		_		- -	+-						+		+	┼-	+	26, 625	22, 597	4,028	637, 134
-	(m3/day)	UF#	11, 690	17, 788	63, 256	1,095	1, 121	3, 393	4, 571	9, 713	13, 922	8, 092	3, 693	8, 715	4, 181	10, 438	6, 836	3, 562	1,094	74, 573	1, 522	9, 693	11,003	1 243	40 352	5, 577	6, 673	5, 647	10,001	3, 797	4,826	4, 252	6, 536	258	246. 704	9, 897	8, 264	1, 632	256, 600
1995	DEMAND (Net	17, 571	26, 644	94, 886	1, 539	1, 579	5,081	6, 993	14, 553	28, 900	12, 152	5, 529	13, 090	6, 284	15, 688	10, 282	5, 357	1,645	111, 956	2, 287	14, 569	16, 547	1 967	60 646	8, 387	10, 036	3, 896	13, 107	5.685	7, 226	6, 395	9,829	387	370, 379	14,877	12, 422	2, 455	385, 255
	WATER			_	_	_				_	- -			_	10, 466	┿╌		┿┉		-			~	+		_				_	⊢	⊢			┢	├		-	641, 856
	(= 3/day)	UFW	15, 456	24, 542	82, 748	1,536	1,574	4, 762	6, 555	12, 972	17,502	9,837	4, 650	12, 227	5, 263	12, 989	8, 767	4,410	1, 382	52, 817	1,889	11, 927	13, 708	1 792	54 237	7, 889	8, 970	3, 611	10, 200	5,021	7, 229	5, 781	8,838	325	321, 243	11, 891	9, 754	2, 137	333, 133
1990	DEMAND	Net	15, 456	24, 542	82, 746	1, 536	1,574	4, 762	6, 555	12, 972	17, 502	9,837	4,650	12, 227	5, 263	12, 989	8, 767	4, 410	1, 382	92, 817	1,889	11, 927	13, 708	1 793	54 237	7,889	8, 970	9,011	10,000	5,021	7, 229	5, 781	8, 838	325	321, 243	11, 891	9, 754	2, 137	333, 133
	WATER	Total	30, 911	49, 085	165, 491	3,073	3, 147	9, 525	13, 109	25, 945	35, 005	19,674	300	24, 455	10, 525	25, 977	17, 533	8, 821	2, 764	185, 634	3, 778	23, 855	27, 417	377	108 475	15, 779	17,940	18, 022	70,02	10.042	14, 459	11, 562	17, 676	651	642, 485	23, 781	19, 507	4, 274	666, 267
	POPULATION DENSITY	(/km2)	S 999	1, 473 U	325	3, 523 U	4, 112 U	2,912 0	3, 082 U	2,504 U	605 S	355 S	1, 594	730 S	813 S	414 S	85	143 R	21 R	330	548 S	265 S	400 830 830 830 830 830 830 830 830 830 8	2,17	136	80 R	122 R	234 K	750	3.681	3, 787 U	175 R	173 R	12 R	243	187	311 S	78 R	240
	σ.	\neg	105	29:	305	7	7	7	5	CT2	88	90	=		52 %			t I					153	, l∝	ماد	592		n c	3 6	သေ						301			5, 128
YEAR	WATER AREA		1. DIEGO MARTIN	2. PORT OF SPAIN	3. E. M. R. COMMUNITIES		3.2 Laventille		4	3.5 Barataria	3.6 St. Joseph	3.7 Arouca	3.8 Tacarigua	3.9 Saddle Road	3.10 St. Augustine 3.11 Tunanuma	4. ARIMA	5. SANGRE GRANDE	5. WALLERFIELD	7. 1000	8. CARONI	8.1 Caroni	8.2 Cunupia	8.3 Chaguanas	O MAYARA	10. RIO CLARO	10.1 Arch Trace	10.2 Princes Town	10.3 barrackpore	10 5 Dalman	10.6 Marabella	11. SAN FERNANDO	2. SIPARIA/ERIN	3. POINT FORTIN	14. NORTH COAST	TOTAL (TRINIDAD)	15. TOBAGO	15.1 Leeward Sect.	15.2 Windward Sect.	TOTAL

N. B. U:Urban, S:Semiurban, R:Rural UFW(Unaccounted-for Water): 50% in 1990, 40% in 1995, 30% in 2000, 20% in 2005

Table II-2.8 ESTIMATED DEPENDABLE YIELDS (1)

• Estimated

DISTRICT	NAME OF PRODUCTION FACILITIES	KIND	SURFACE	WATER	GROUND	WATER	TO	TAL
OF	WATERWORKS/TREATMENT PLANTS	OF	RAINY	DRY	RAINY	DRY	RAINY	DRY
WASA	INTAKES, WELLS AND SPRINGS	SCALE	(m3/d)	(m3/d)	(m3/d)	(∎3/d)	(m3/d)	(m3/d)
NORTH	1 CARONI/ARENA TREATMENT PLANT	LARGE-S	272, 760	272, 760			272, 760	272, 760
CENTRAL	2 • VALSAYN WATERWORKS	MEDIUM-G			27, 280	27, 280	27, 280	27, 280
	3 • TACARIGUA WATERWORKS	MEDIUM-G			14, 550	14,550	14, 550	14, 550
	4 LAS LONAS WATERWORKS	MEDIUM-G	11, 360	0.004	11, 360	11, 360	11, 360	11,360
	5 CAURA WATERWORKS 6 LOANGO/NARANJO WATERWORKS	MEDIUM-S Medium-s	3, 180	9, 094 2, 214			11, 360 3, 180	9, 094 2, 214
	7 * AROUCA WATERWORKS	SMALL-G	0, 100	2,214	 653	653	653	653
	8 * ST. JOHN'S INTAKE	SMALL-S	454	454			454	454
	9 + Mt. D'OR INTAKE	SMALL-S	88	88			88	88
	10 * WATERFALL ROAD INTAKE	SMALL-S	59	59			59	59
	11 • LOANGO INTAKE	SMALL-S	59	59			59	59
·	12 * LOPINOT INTAKE	SMALL-S	35	35			35	35
	13 * SURREY INTAKE	SMALL-S	18	18			18	18
	LARGE-S Medium-G		272, 760 0	272, 760 0	53, 190	53, 190	272, 760 53, 190	272, 760 53, 190
	MEDIUM-S	·	14, 540	11, 308	33, 130	33, 130	14, 540	11, 308
	SMALL-G	1	0	0	653	653	653	653
	SMALL-S		713	713	0	0	713	713
	SUB-TOTAL		288, 013	284, 781	53, 843	53, 843	341, 856	338, 624
NORTH	14 NORTH OROPOUCHE WATERWORKS	LARGE-S	90, 125	44, 825			90, 125	44, 825
EAST	15 * HOLLIS WATERWORKS	LARGE-S	31, 826	25, 000			31, 826	25, 000
	16 GUANAPO WATERWORKS	MEDIUM-S	11, 360	11, 360			11, 360	11, 360
	17 ARIPO NEW WATERWORKS 18 * ARIPO INTAKE	MEDIUM-S MEDIUM-S	10, 530 4, 535	8, 059 4, 535			10, 530	8,059
	19 * QUARE INTAKE (VALENCIA)	MEDIUM-S	2, 935	2, 935			4, 535 2, 935	4, 535 2, 935
	20 * TOCO WATERWORKS	MEDIUM-S	2, 162	1, 525			2, 162	1, 525
	21 · * ARIMA WELL #6	SMALL-G			644	644	644	644
	22 : * SANS SOUCI INTAKE	SMALL-S	493	493			493	493
	23 * LOS ARMADILLOS INTAKE	SMALL-S	105	105			105	105
	24 * FOUR ROAD/TAMANA INTAKE	SMALL-S	70	70			70	70
	25 * CUMACA INTAKE	SMALL-S	45	45			45	45
	26 * MATURA INTAKE 27 * MATELOT INTAKE	ISMALL-S	35 35	35			35 35	35
	28 + GRAND RIVIERE INTAKE	SMALL-S SMALL-S	35	35			35	3 <u>5</u> 35
	29 : * SALIBEA INTAKE	SHALL-S	35	35			35	35
	30 . * MONTEVIDEO INTAKE	SMALL-S	35	35			35	35
	31 * MORNE LA CROIX INTAKE	SMALL-S	27	27			27	27
	32 * BRASSO SECO-PARIA INTAKE	SMALL-S	27	27			27	27
	LARGE-S		121, 951	69, 825	0	0	121, 951	69, 825
	MEDIUM-S SMALL-G	\vdash	31, 522	28, 414	0	0	31, 522	28, 414
	SMALL-S	 	942	942	644 0	644 0	644	644 942
	SUB-TOTAL	 		UT6				772
NORTH		1 1	154. 415 l	99, 181	644	644	942 155, 059	
	33 * FOUR ROADS WATERWORKS	KEDIUH-G	154, 415	99, 181	644 28, 900	844 28, 900	155, 059	99, 825
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS	MEDĪŪM-G			28, 900 24, 126	28, 900 24, 126		99, 825 28, 900
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS	MEDIUM-G Medium-g			28, 900 24, 126 7, 971	28, 900 24, 126 7, 971	155, 059 28, 900 24, 126 7, 971	99, 825 28, 900 24, 126 7, 971
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS	MEDIÚM-G Mediúm-g Mediúm-g			28, 900 24, 126 7, 971 6, 820	28, 900 24, 126 7, 971 6, 820	155, 059 28, 900 24, 126 7, 971 6, 820	99, 825 28, 900 24, 126 7, 971 6, 820
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G			28, 900 24, 126 7, 971 6, 820 5, 669	28, 900 24, 126 7, 971 6, 820 5, 669	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS	MEDIUM-G Medium-g Medium-g Medium-g Medium-g			28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * KIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G			28, 900 24, 126 7, 971 6, 820 5, 669	28, 900 24, 126 7, 971 6, 820 5, 669	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS	MEDIUM-G Medium-g Medium-g Medium-g Medium-g	2, 100	1, 543	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155,059 28,900 24,126 7,971 6,820 5,669 5,400 2,900 2,100	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE	MEDIUM-G Medium-G Medium-G Medium-G Medium-G Medium-G Medium-S		1, 543 358	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 2, 900 2, 100 358	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S SMALL-S SMALL-S SMALL-S	2, 100 358 305 266	1, 543 358 305 266	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 100 2, 100 358 305 266	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358 305
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANOA INTAKE	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S MEDIUM-S SMALL-S SMALL-S SMALL-S SMALL-S	2,100 358 305 266 200	1, 543 358 305 266 200	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 100 2, 100 358 305 266 200	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358 305
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * KIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S	2, 100 358 305 266 200 94	1, 543 358 305 266 200 94	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 94	99, 825 28, 900 24, 126 7, 971 5, 669 5, 400 2, 900 1, 543 358 266 200
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUALCO TAMANA/LAS CUEVAS INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S	2, 100 358 305 266 200 94 90	1, 543 358 305 266 200 94	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 94	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358 305 260 200 94
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA/CAPRIATA INTAKE	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88	1, 543 358 305 266 200 94 90 88	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 94 90 88	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358 305 206 200 94
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA/CAPRIATA INTAKE 48 * MON REPOS INTAKE	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88	1, 543 358 305 266 200 94 90 88 45	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 94 90 88 45	99, 825 28, 900 24, 126 7, 971 6, 820 5, 640 2, 900 1, 543 358 305 266 200 888 45
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA/CAPRIATA INTAKE	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88	1, 543 358 305 266 200 94 90 88	28, 900 24, 126 7, 971 6, 820 5, 669 2, 900 2, 900	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 94 90 88 45 44	99, 825 28, 900 24, 126 7, 971 6, 820 5, 680 1, 543 358 305 266 200 94 98 45
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANDA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA RES. ROAD 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE MEDIUM-G MEDIUM-G MEDIUM-S	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2,100 358 305 266 200 94 90 88 45	1, 543 358 305 266 200 94 90 88 45	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 94 90 88 45	99, 825 28, 900 24, 126 7, 971 6, 820 5, 640 2, 900 1, 543 358 305 266 200 888 45
WEST	33 * FOUR ROADS WATERWORKS 34 * EL SOCORIO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA RES. ROAD 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE MEDIUM-S SMALL-S	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88 45 44 0 2, 100	1, 543 358 305 266 200 94 90 88 45 44	28, 900 24, 126 7, 971 6, 820 5, 669 2, 900 2, 900	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 2, 100 2, 100 358 305 266 200 94 90 88 45 44 81, 786	99, 825 28, 900 24, 126 7, 971 5, 662 5, 662 5, 400 2, 900 1, 543 358 206 200 94 90 88 45 44 81, 786
	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUALCO TAMANA/LAS CUEVAS INTAKE 44 * LA CANGA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE MEDIUM-G MEDIUM-S SMALL-S SMALL-S SMALL-S SMALL-S	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S SMALL-S	2,100 358 305 266 200 94 90 88 45 44 0 2,100	1, 543 358 305 266 200 94 90 98 45 44 0	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 94 90 88 45 44 81, 786 2, 100 1, 490 85, 376	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 305 200 94 90 88 45 44 81, 786 1, 543 1, 490 84, 819
PORT	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUALCO TAMANA/LAS CUEVAS INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA/CAPRIATA INTAKE 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 50 * BLANCHISSEUSE INTAKE 50 * SUB TOTAL 50 * SAYANNAH WELLS	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88 45 44 0 2, 100	1, 543 358 305 266 200 94 90 88 45 44 0 1, 543 1, 490	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 81, 786 0 0 81, 786 12, 270	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 94 90 88 45 44 81, 786 2, 100 1, 490 85, 376 12, 270	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358 305 266 200 94 90 88 45 44 81, 786 1, 543 1, 490 84, 819
PORT OF	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 50 * BLANCHISSEUSE INTAKE 50 * SUB - T O T A L 50 * SAYANNAH WELLS 51 * KING GEORGE V PARK WELLS	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88 45 44 0 2, 100	1, 543 358 305 266 200 94 90 88 45 44 0 1, 543 1, 490	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 81, 786 0 81, 786 12, 270 10, 340	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 100 358 305 266 200 88 45 44 81, 786 2, 100 1, 490 85, 376 12, 270 10, 340	99, 825 28, 900 24, 126 7, 971 6, 820 5, 640 2, 900 1, 543 358 305 266 200 88 45 44 81, 786 1, 543 1, 490 84, 819 12, 270 10, 340
PORT	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANOA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA RES. ROAD 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 50 * SWALL-S 50 * SAVANNAH WELLS 51 * KING GEORGE V PARK WELLS 52 * ST. CLAIR WELL	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88 45 44 0 2, 100	1, 543 358 305 266 200 94 90 88 45 44 0 1, 543 1, 490	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 900 81, 786 0 0 81, 786 12, 270 10, 340 1, 820	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 81, 786 0 81, 786 12, 270 10, 340 1, 820	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 100 358 266 200 94 90 88 45 44 81, 786 2, 100 1, 490 85, 376 12, 270 10, 340 1, 820	99, 825 28, 900 24, 126 7, 971 5, 6820 5, 690 5, 400 2, 900 1, 543 358 206 200 94 90 88 81, 786 45 44 81, 786 1, 543 1, 490 84, 819 10, 340 1, 820
PORT OF	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANDA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA/CAPRIATA INTAKE 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 50 * SAVANNAH WELLS 51 * KING GEORGE V PARK WELLS 52 * ST. CLAIR WELL 53 * MONA WELLS	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88 45 44 0 2, 100 1, 490 3, 590	1,543 358 305 266 200 94 90 88 45 44 0 1,543 1,490 3,033	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 81, 786 0 81, 786 12, 270 10, 340	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 100 358 305 266 200 94 90 88 45 44 81, 786 2, 100 1, 490 85, 376 12, 270 10, 340 1, 820 1, 590	99, 825 28, 900 24, 126 7, 971 5, 669 5, 609 1, 543 358 206 200 94 90 88 45 44 81, 786 1, 543 1, 490 84, 819 12, 270 1, 620 1, 590
PORT OF	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANCA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA RES. ROAD 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 50 * SAVANNAH WELLS 51 * KING GEORGE V PARK WELLS 52 * ST. CLAIR WELL 53 * MOKA WELLS 54 * MOKA WELLS 55 * MOKA WELLS 56 * MARAVAL WATERWORKS	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88 45 44 0 2, 100	1, 543 358 305 266 200 94 90 88 45 44 0 1, 543 1, 490	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 81, 786 0 0 81, 786 12, 270 10, 340 1, 820 1, 590	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 900 81, 786 0 0 81, 786 12, 270 10, 340 1, 820 1, 590	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 600 2, 900 2, 100 358 305 266 200 94 90 88 45 44 81, 786 2, 100 1, 490 85, 376 12, 270 10, 340 1, 820 1, 590 5, 910	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358 3056 200 94 45 44 81, 786 48, 184 12, 270 10, 340 1, 590 4, 770
PORT OF	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUALCO INTAKE 44 * LA CANGA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 50 * SAVANNAH WELLS 51 * KING GEORGE V PARK WELLS 52 * ST. CLAIR WELL 53 * HORA WELLS 54 * MARAYAL WATERWORKS 55 * PARAMIN WATERWORKS 56 * ST. ANN'S WATRWORKS	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88 45 44 0 2, 100 1, 490 3, 590	1, 543 358 305 266 200 94 90 88 45 44 0 1, 543 1, 490 3, 033	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 900 81, 786 0 0 81, 786 12, 270 10, 340 1, 820	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 81, 786 0 81, 786 12, 270 10, 340 1, 820	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 100 358 305 266 200 94 90 88 45 44 81, 786 2, 100 1, 490 85, 376 12, 270 10, 340 1, 820 1, 590	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358 3056 200 94 90 88 45 44 81, 786 1, 490 11, 270 10, 340 11, 590 4, 770 390
PORT OF	33 * FOUR ROADS WATERWORKS 34 * EL SOCORRO WATERWORKS 35 * TUCKER VALLEY WELLS 36 * RIVER ESTATE WATERWORKS 37 * CHAGUARAMAS WELLS 38 * DORRINGTON GARDEN WATERWORKS 39 * LA PASTORA WELLS 40 * ACONO WATERWORKS 41 * DAMIER INTAKE 42 * TYRICO INTAKE 43 * GUAICO TAMANA/LAS CUEVAS INTAKE 44 * LA CANCA INTAKE 45 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 47 * LA PASTORA RES. ROAD 46 * PIPIOL INTAKE 48 * MON REPOS INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 49 * BLANCHISSEUSE INTAKE 50 * SAYANNAH WELLS 51 * KING GEORGE V PARK WELLS 52 * ST. CLAIR WELL 53 * MOKA WELLS 54 * MARAYAL WATERWORKS 55 * PARAMIN WATERWORKS	MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-G MEDIUM-S SMALL-S	2, 100 358 305 266 200 94 90 88 45 44 0 2, 100 1, 490 3, 590	1,543 358 305 266 200 94 90 88 45 44 0 1,543 1,490 3,033	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 81, 786 0 0 81, 786 12, 270 10, 340 1, 820 1, 590	28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 2, 900 81, 786 0 0 81, 786 12, 270 10, 340 1, 820 1, 590	155, 059 28, 900 24, 126 7, 971 6, 820 5, 669 5, 600 2, 900 2, 100 358 305 206 200 94 90 88 45 44 81, 786 2, 100 1, 490 85, 376 12, 270 10, 340 1, 820 1, 820 5, 910 390	99, 825 28, 900 24, 126 7, 971 6, 820 5, 669 5, 400 2, 900 1, 543 358 3056 200 94 45 44 81, 786 48, 184 12, 270 10, 340 1, 590 4, 770

Table II-2.8 ESTIMATED DEPENDABLE YIELDS (2)

• Estimated

SAL STATES SALE	DISTRICT		NAME OF PRODUCTION FACILITIES	KIND	SURFACE	WATER	GROUND	FATER	T O	TAI.
SAME										
18										
REDIBLE Section Color	MERRI	50								138
MEDIUM S		"		O. T. I.O.			26, 020	26, 020	26, 020	26, 020
SMAL-G SMAL-S SUB-TOTAL SMAL-S SUB-TOTAL SMAL-S SUB-TOTAL SUB-TOTAL SMAL-S SUB-TOTAL SMAL-S SUB-TOTAL SMAL-S SUB-TOTAL SMAL-S SUB-TOTAL SMAL-S SUB-TOTAL SMAL-S SWAL-S SWA		 				4, 770		0	5, 910	4, 770
SMALLS		Hi					390	390		390
SATE S.U.B. T.O.T.A.L.					1, 330	1, 330	0	0	1, 330	1, 330
SAM 60 CAMUSEN FIELD WATERWORKS MEDIUM-6		ļ <u>i</u>				6, 100	26, 410	26, 410	33, 650	32, 510
FERNAND 61 FREEPOIT WITEMORKS	SAN	60		MEDIUM-G			11, 175	11, 175	11, 175	11, 175
CENTRAL S. U. B. T. O. T. A. L. O. O. D. 17, 340 17, 340	FERNANDO			MEDIUM-G						6, 165
SECTION	/SOUTH	;						17, 340		
EAST 62 MACORY WELLS MEDIUM 6 1,358 1,	CENTRAL	,	SUB-TOTAL				17, 340			
64	SOUTH	62			77, 280	77, 280				
65 GANAGRAS SPRING SMALL-G SMALL-G SMALL-G SMALL-G SMALG	EAST	63		MEDIUM-G			1, 358		1, 358	
Formal Section Secti			AMOCO TOURNEBRIDGE WELLS						1, 194	
67 MAYADO WELLS SMALL-6 792 792 792 792 792 66 66 MAYO SPRING SMALL-6 718									1, 136	
For Mort Collab. Symbol. For							897			
FOR			MAYARO WELLS							
To BLORE WATEROORISS SAALL-S 259 259 259 259 259 259 259 259 259 259 259 259 259 259 250		·								
MEDIUM G										
MEDITH G		70		SMALL-S						
SMAIL-C										
SAMALL-S		<u> </u>								
SUTII SUTII T. CHATHAW MATERWORKS MEDIUM-G T. CHATHAW MATERWORKS MEDIUM-G T. CHATHAW MATERWORKS MEDIUM-G T. STORAL CÓCORÁ) WATERWORKS MEDIUM-G T. STORAL CÓCORÁ) WATERWORKS MEDIUM-G T. STORAL COORÁ		<u></u>								
SOUTH 71 CHATILAW MATERWORKS MEDIUM-G		<u> </u>								
TRINIDAD SUB-TO-TAL CARGES MEDIUM-G 3,500 3,50	COLOUI	<u> </u>		RED HIN C		11, 333				6 750
73 SIPARIA (COORA) WATERWORKS MEDIUN-G 3,033 3,0		L						3 500	3 500	
TYPE	#E21									3 033
75 FYZARAD WATERORIES MEDIUN-G 1.500 1.500 1.500 1.500 1.500 1.500 1.600 1.400 1		h			} <u></u>				5 ROD	
TRINIDAD				MEVIUM-C						1 500
Trinidad Point Forting Waterworks				NEVIIN-C	h <u></u>					
TRINIDAD TRINIDAD TOTAL								1 906		
TRINIDAD SALL-G			DOINT COTTO WATERWOODS							
SOCIETY SMALL Color Co										
STAIL STRINTOC TO PT FORTIN SMALL G										
REDIUM-G										
MEDIUN-G		h	TRINTOC TO PT. FORTIN							69
SMALL-G		7		0.2100	Ō	0		18, 983	18, 983	18, 983
S U B - T O T A L						0		3, 013		3, 013
TRINIDAD MEDIUM-G			SUB-TOTAL	^`	0	0	21, 996	21, 996	21, 996	21, 996
TRINIDAD MEDIUM-S 54,072 46,035 0 0 54,072 46,035 38,873 8,735 8,873 8,735 8,873 8,735 8,873 8,735 8,873 8,735 8,873 8,735 8,873 8,735 8,873 8,735 8,873 8,735 8,			LARGE-S		471, 991	419, 865				419, 865
SMALL-S			MEDIUM-G				199, 871	199, 871		
SMALL-S	TRINIDAD		MEDIUM-S		54, 072	46, 035				
TOBAGO 83 HILLSBOROUGH WATERWORKS MEDIUM-S 8,582 8			SMALL-G		1			8, 873		
TOBAGO										
84 COURLAND WATERWORKS MEDIUM-S 7,368 7,368 7,368 7,368 85 HILLSBOROUGH WEST RIVER MEDIUM-S 3,500 3,50								208, 744		
REDIUM S 3,500	TOBAGO									8, 582
REDIUM S 3,360 3,360 3,360 3,360 3,360 87 KINGS BAY WATERWORKS MEDIUM S 2,994 2,994 2,994 2,994 2,994 88 RICHMOND WATERWORKS MEDIUM S 2,467 2,467 2,467 2										7, 368
REDIUM S 2,994 2,994 2,994 2,994 2,994 88 RICIMON WATERWORKS MEDIUM S 2,467 2,467 2,467 2,467 2,467 2,467 2,467 2,467 2,467 2,467 2,461 2,461 30 GOV T FARM WELL #3 SMALL S 388 388 335 335 335 335 335 335 335 335 335 335 335 335 335 335 336 388 92 SPEYSIDE SMALL S 86 86 86 86 86 86 8					3, 500					3,500
SECTION SECT					3, 360				3, 360	
SQ										Z, 994
90 GOV T FARM WELL #3 SMALL-G 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 335 336 388 92 SPEYSIDE SMALL-S 86 86 86 86 86 93 CASTARA SMALL-S 80 80 80 80 80 94 PARLATUVIER SMALL-S 70 70 70 70 70 95 L'ANSE FOURMI SMALL-S 34 34 34 34 96 BLOODY BAY SMALL-S 34 34 24 24 24 24 24										
91 CHARLOTTEVILLE SMALL-S 388 388 388 388 92 * SPEYSIDE SMALL-S 86 86 86 86 86 93 CASTARA SMALL-S 80 80 70 70 70 94 * PARLATUVIER SMALL-S 70 70 70 70 95 * L'ANSE FOURMI SMALL-S 34 34 34 34 34 96 * BLOODY BAY SMALL-S 24 24 24 24 24 24 2				LWCATALLS.	4,401	2,401		325		
92 SPEYSIDE SMALL-S 86 86 86 86 86 93 CASTARA SMALL-S 80 80 80 80 80 94 PARLATUVIER SMALL-S 70 70 70 70 70 95 L'ANSE FOURMI SMALL-S 34 34 34 34 96 PARLATUVIER SMALL-S 34 34 24 24 24 24 24		h = - 4			200	290				
93 CASTARA SMALL-S 80 80 80 80 80 94 PARLATUVIER SMALL-S 70 70 70 70 70 95 1					• ~					
94 PARLATUVIER		h			4					
95 * L'ANSE FOURMI SMALL-S 34 34 34 34 96 * BLOODY BAY SMALL-S 24 24 24 24 24 24 24 24									70	
96 * BLOODY BAY SMALL-S 24 24 24 24 24 24 24										
MEDIUM-S 30,732 30,732 0 0 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 30,732 335										
SMALL-G		1		CHENCE O			<u> </u>	n		
SMALL-S 682 682 0 0 682		'		1						335
TOTAL 31,414 31,414 335 335 31,749 31,749		<u> </u>						···		682
LARGE-S 471, 991 419, 865 0 0 471, 991 419, 865 1 1 1 1 1 1 1 1 1		 								
TRINIDAD MEDIUM-G 0 0 199,871<	······································	 								419, 865
AND MEDIUM-S 84,804 76,767 0 0 84,804 76,767 TOBAGO SMALL-G 0 0 9,208 9,208 9,208 9,208 SMALL-S 5,416 5,416 0 0 5,416 5,416	TRINIDAD	-								199, 871
TOBAGO SMALL-G 0 0 9,208 9,2		\vdash		l						76, 767
SMALL-S 5,416 5,416 0 0 5,416 5,416										9, 208
					5, 416		0	0		5, 416
							209, 079	209, 079		711, 127

NOTE: - " • " MEANS NO INSTALLATION OF FLOW METER AT THE EXISTING PRODUCTION FACILITIES.
- " -S " MEANS OBTAINING RAW WATER FROM SURFACE WATER.
- " -G" MEANS OBTAINING RAW WATER FROM GROUNDWATER.

(Unit: m3/day)

		1990				1995	95			2000	00		_	2005	35	
WATER DISTRI- BUTION	WAT	WATER DEMAND		WATER	WATER DISTRI- BUTTON	WATER		DEMAND	WATER DISTRI- BUTION	WATER	er dei	DEMAND	WATER DISTRI- BUTION	WATER		DEMAND
FOR AREA OF SOURCE GROUP I	AREA OF SOUNCE GROUP I	AREA OF SOURCE GROUP II	TOTAL	CONSUMPTION	FOR AREA OF SOURCE GROUP I	AREA OF SOURCE GROUP I	AREA OF SOURCE GROUP II	TOTAL	FOR AREA OF SOURCE GROUP I	AREA OF SOURCE GROUP I	AREA OF SOURCE GROUP II	TOTAL	FOR AREA OF SOURCE GROUP I	AREA OF SOURCE GROUP I	AREA OF SOURCE GROUP II	TOTAL
115	113	30, 799	30, 911	45, 731	115	107	29, 155	29, 262	113	104	28, 366	28, 470	111	100	27, 418	27,516
			49, 085	55, 338	28, 546	26, 860	17, 572	44, 432	28, 612	25, 041	16, 362	41, 402	28, 709	23, 941	15, 361	39, 303
		8, 152	165, 491	180, 661	159, 192	150, 231	7, 911	158, 142	158, 931	147, 600	7, 903	155, 503	158, 544	147, 190	7, 909	155, 100
	7 25, 977		25, 977	43, 435	89, 768	26, 125		26, 125	29, 373	27, 259		27, 259	28, 789	27, 732		27, 732
		1, 524	17, 533	27, 599	19, 664	15, 611	1, 507	17, 118	19, 403	15, 695	1, 539	17, 233	19,016	15, 596	1, 539	17, 134
	11, 503 8, 821		8, 821	15, 868	11, 457	8, 919		8, 919	11, 305	9, 313		9, 313	11,080	9, 449	_	8, 449
		2, 764	2, 764	2, 811			2, 739	2, 739			2, 796	2, 796			2, 836	2, 836
	179, 235 175, 050	10, 584	185, 634	114, 357	180,002	176, 199	10, 331	186, 530	182, 558	181, 787	10, 367	192, 154	186, 344	189, 503	10, 633	200, 236
. 1		3, 446	3, 446	2, 950			3, 108	3, 108			2, 896	2, 896			2, 766	2, 766
12	99, 038 98, 783		108, 475	120, 946	98, 645	91, 995		100, 998	97, 335	88, 217	8, 616	96, 834	95, 398	86, 363	8, 410	94, 772
	11, 724 14, 459		14, 459	12, 800	11, 678	12, 052		12,052	11, 523	10, 281		10, 281	11, 293	9, 202		9, 202
		11, 562	11, 562	5, 751			10,648	10, 648		_	10, 100	10, 100			9, 754	9, 754
٠,	6, 595 5, 106	12, 570	17, 675	19, 340	6, 569	4, 702	11,663	16, 365	6, 482	4, 461	11, 149	15, 809	6, 353	4, 308	10, 851	15, 159
		651	651	718			645	645			658 658	658			651	651
•			23, 781	20, 492				24, 773				28, 625				27, 905
5-3	545, 636 531, 364	111, 121	666, 267	668, 599	545, 636	512, 801	104, 282	641,856	545, 636	509, 757	100, 753	637, 134	545, 636	513, 485	98, 127	639, 517
											1					

Table II-2.9 WATER DEMAND PROJECTION

3. STRATEGIES AND CONCEPTS FOR DEVELOPING WSSS

To develop the Water Supply Supervisory System (WSSS) in Trinidad and Tobago, strategies and concepts are worked out in line with the design objectives of the existing Central Supervisory System (CSS). The design objectives for the existing CSS are presented in Section 4.5 "Existing Central Supervisory System", Part I of this report.

It is convinced that the newly proposed system with various equipment and facilities are to be developed and operated to accomplish the designed functions of WSSS.

WASA has experienced operation and utilization of the existing CSS since its inauguration in early 1980's. Monitoring was the major targeting function of the existing CSS, aiming at gathering and accumulation of information/data regarding the current operational status of entire water supply system. Through these experiences, however, it was found that the originally planned monitoring was not satisfactorily achieved nor fulfilled.

The major reasons for above were a) absence of the very basic information/data on water supply system necessary for the practical daily operation and control of the system, b) insufficiency of monitoring equipment in number for flow measurements especially at waterworks and transmission/distribution mains, c) inadequate inventory records of the system, particularly of the transmission/distribution mains and d) weak organizational structure for the CSS, especially insufficient back-up activities for developing the water supply management plan and operation/maintenance for equipment.

Taking into account the above experiences, monitoring procedures, integral part of the WSSS, will be established in sections which follow. In addition to the monitoring system improvement and expansion, an applicable system automation, such as possibility of remote operation is discussed and incorporated in the present master plan.

There are many motivations and necessity to monitor or record parameters associated with the water supply supervisory system. In generalized terms, four of the most significant applications of effective data collection are:

- 1) Optimization of resource use in terms of water, power, fuels, manpower, chemicals such as chlorine, alum sulphate, lime, soda-ash, etc.
- 2) Short-term planning for preventive maintenance of numerous equipment and instruments, adoptive measures in emergency, inventory control of pipelines, pumping facilities, treatment plants, equipment spare parts, chemicals and system operation for process adjustment and control at waterworks, service storage reservoirs and off-takes,
- 3) Long-term planning for water source development, expansion of treatment works, transmission facilities, storage and distribution facilities, system modification such as installation of flow meters, pressure gauges, valves, pumps and pipelines, and
- 4) Enhancement of the water supply system management for quicker decision making, improvement of service level to the customers, internal exchange of accurate and prompt information within WASA.

Apart from the area of data applications, there exist four large-scale production facilities (that exceed water production of 30,000 m³/d) in Trinidad, namely, North Oropouche, Hollis, Navet, and Caroni. To supply rather sparsely populated rural area, many medium and small scale systems in Trinidad have been established together; 75 systems in 1989. In terms of water production, the former produces 63.5% of total water production in Trinidad in 1988.

Waterworks constructed in Tobago are 13 in number including 6 medium scale and 7 small scale water supply systems. Water production by medium scale water supply system at Hillsborough, Courland, Richmond, Craig Hall, Green Hill, and Kings Bay is dominantly large with 19,000 m³/d which accounts for 95.2% of total production in Tobago in 1988.

In due consideration of the present water supply conditions in Trinidad and Tobago, water supply supervisory system will be proposed in the sections which follow.

4. PROPOSED WATER SUPPLY SUPERVISORY SYSTEM

The Water Supply Supervisory System (WSSS), targeting the year of 2005, is proposed in the following subsections. Proposed WSSS consistent with the existing CSS is based on the established strategies or concepts which are described in the preceding Section 3.

The proposed WSSS consists of two sub-systems of 1) Central Supervisory System (CSS) and 2) Local Supervisory System (LSS), as currently practiced by WASA.

For master planning WSSS, a stage-wise development in two phases (Phase I: 1991-1995, and Phase II: 1996-2005) is recommended, considering about the present condition of the entire water supply system in Trinidad and Tobago, and also the financial burden of the initial and succeeding investments to the proposed projects in the master plan program.

4.1 TARGET

- 1) Establishment of an effective water supply supervisory system for optimum water production and distribution in the entire system of WASA by improving and expanding the existing CSS.
 - To increase the efficiency in operation of the water supply system, the operation status data/information on water levels, pressures, flow amounts of raw water, treated water, distributed water are indispensable.

At present, the measurement equipment for these data/information are inadequately installed. As for the existing CSS improvement in the present study, the necessary equipment for the above system operation status are planned to be installed for the optimum system operation.

- The current status of water production and distribution will be expected and/or confirmed, with the estimated hourly and seasonal variation using the gathered data for several years.

- After confirmation of the present status of the water production and distribution through WSSS operation and associated studies and analyses, the standard system operation program will be formulated.
- This operation program will be periodically reviewed and improved to reduce operation costs for water production and distribution and to attain optimal usage of water resources.
- 2) Stabilization of the proper distribution pressure
 - To achieve equitable water supply to each consumer, off-take flows and pressures are controlled.
- 3) Contribution to the leakage control
 - After execution of the universal metering program, and completion of the metering system for the service connections, the leakage condition in each water supply area could be obtained by comparing the total flow amount at each off-take and the accumulated water consumption by metering the consumers in the service area. This result may contribute to prompt execution of effective measures for the leakage control.
- 4) Establishment of information flow for quicker decision-making for the water supply management
 - An appropriate instructions to the operators will be given in real time, for normalization of the water supply.
 - To find the problems and aspects to be improved on the water supply operation and existing facilities, with analysis of the accumulated data through the CSS, which contributes to quickly establish the next planning step for water supply and the facilities improvement.

4.2 WSSS IN 2005

The final status of the proposed WSSS at the master plan target year 2005 is highlighted hereunder. Fig. II-4.1 illustrates concepts of the WSSS.

4.2.1 CSS and LSS

1) In order to monitor and operate the existing water supply system effectively, the present water supply area of WASA is recommended to be separated into the two groups based on size of the system in water supply amounts and numbers of facilities. Namely, the area which is supplied water from the four major sources of Caroni/Arena, North Oropouche, Navet, and Hollis.

They also have the many numbers of facilities and the large amount of water to be supplied, and the rest of the areas which have many numbers but smaller size and scattered facilities for smaller amount of water supply. See the preceding Sections 3 and 4, Part I.

Based on this grouping of the system, the Water Supply Supervisory System (WSSS) for the WASA's entire system operation and management, the Central Supervisory System (CSS) for the first group of the large size system, and the Local Supervisory System (LSS) for the second group of the smaller size system, are formulated considering the most appropriate measures for the operation and management in Trinidad and Tobago.

2) The water supply facilities in the CSS covering area include many numbers of intakes, waterworks/water treatment plants, booster pumping stations, high lift pumping stations, transmission and distribution mains' off-takes with control valves, and service storage reservoirs.

And this area has an estimated capacity of water supply of more than 70 percent of the total amount of water supply of WASA.

- 3) The water supply facilities to be covered in the LSS covering area also include many numbers however, the lesser total amount of water is supplied compared to that of CSS.
- 4) The data on water levels, pressures, flow amounts at the strategic points for the system of CSS are transmitted to the CSS building located in the complex of WASA Head Office for the monitoring at same place and time.
- The operation status of the LSS covering facilities are reported to each Regional Office from the respective District Offices under them, then transmitted to the CSS building via on-line transmission system with electronically input of its data into the individual computer by optical character reader (OCR).
- 6) The pumps and control valves in the booster pumping stations including the existing Tumpuna Storage Lift Pumping Station, and the control valves at the transmission and distribution mains' off-takes are remotely-operated from the CSS building or Caroni Treatment Plant.

4.2.2 WSSS Hardware and Data Communication

Utilizing the existing system with facilities at maximum level, the proposed CSS is planned to achieve its design functions as shown on Fig. II-4.2, which presents WSSS hardware and data communication of this proposed WSSS.

CSS

1) The data signals of water levels, pressures, and flow amounts which are measured at strategic monitoring points at raw water storage reservoirs, waterworks and transmission/distribution facilities including off-takes are transmitted to remote terminal unit (RTU) first, then to CSS building by the radio communication system.

- 2) As for the proposed data communication system, the existing system of radio communication is applied, compared to the other type of the data communication system considering geographically locating situations, WASA's sufficient experience of operation, and reliability with economy.
- 3) Control valves installed at off-takes on transmission/distribution mains are operated by automatic remote controls, via controller installed at each site by operating valve control panel with mini-graphic display in the CSS building.
- 4) Pumping units and control valves in booster pumping stations are operated by remote control at the control panel in the CSS building.
- 5) The pumping units and discharge valves in the existing Tumpuna Storage Lift Pumping Station are operated by remote control by the existing control panel, installed at Caroni Water Treatment Plant. This operation is directed under the CSS information through the main computer in the CSS building.
- 6) Data signals received at the CSS building are compiled and processed by the main computer system, as they are displayed on the graphic panel as well.

The display style of the collected information is planned for the combined system of the fixed large graphic panel and the CRT (cathode ray tube) display, based on the following reasons:

- To display the total system information on a large graphic panel to enable observation of the operation status of the entire system at a same dimension or level base.
- This aims at easy monitoring of the complicated total system for quicker decision-making.
- Detailed information which are not indicated on the graphic panel are presented on CRT units more precisely for substantial monitoring.

- The information displayed on CRT are made into hard copies for reporting and for discussion materials.
- 7) The computer system and radio communication unit for data communication in CSS building, and the radio repeater unit are designed to be installed as dual-system units so that the system can secure the reliability and safety during an emergency.
- 8) RTUs are installed to receive and transmit the data, measured at respective facilities in the system. RTUs are designed to be installed to cover the distance within 2 km from the system measurement points where instruments are installed, based on the limit of data transmission system by cables.
- 9) To secure the reliability of operation of the planned equipment, the capacity of uninterrupted power battery units for repeater station equipment are designed to last for over four hours capacity, while that for the CSS building equipment and each RTU units are designed for one hour capacity.
- 10) Taking into account the present condition of existing facilities or equipment, the newly proposed facilities are designed as new products or materials. Since, the existing facilities and equipment are considered not to be used for the future system.

However, those equipment which are capable for further usage for the proposed system are considered to be utilized at maximum level so that the project costs could be lowered.

Such facilities or equipment are the existing stand-by generator in the existing CSS building, the repeater station facilities on Pepper Hills with its antenna tower and building structure, and, the remote operation devices/unit installed at Caroni Treatment Plant, for remote operation of the existing Tumpuna Storage Lift Pumping Station's equipment, are considered to be utilized again with necessary repair works.

Installation of work stations at these regional offices of South, North, and Tobago is planned. Each of work stations consist of a computer system equipped with the individual computer/CRT unit, OCR unit and the terminal unit of the main computer in CSS building with normal computer functions. Each work station has following three functions:

- Data electronically input by OCR, transmit data to the individual computer on LSS weekly operation status of LSS under the respective Regional Offices.
- Monitoring the water supply operation status of WASA's entire system, communication to the main computer in CSS building, its system status is monitored by the CRT unit installed at each Regional Office.
- Individual computer function; each work station will be installed with the individual computer unit for respective use purposes in Regional Offices.

A list of WSSS hardware with its purposes is presented in Table II-4.1. The equipment in the list is designed to achieve the previously described functions.

Further, lists of the monitoring and control equipment to be installed for WSSS are presented in Tables II-4.2 and II-4.3. These equipment are designed for the previously described supervisory functions of water supply system status.

4.2.3 WSSS Monitoring/Control

CSS

1) Level meters, pressure gauges, and flow meters are installed at each facility to measure the water levels, pressures, and flow amounts.

The existing monitoring equipment which are in usable conditions now, are put in use continuously for the future system operation.

- 2) Control valves are designed to be installed at each off-take on the strategic points on transmission and distribution mains, to control water flows and pressures at respective off-takes.
- 3) The automatic control valves at all service storage reservoirs are designed to be installed to stop excess over flows from the respective reservoirs.

LSS

1) Installation of flow meters with recorder at each outlet pipe of the production facilities.

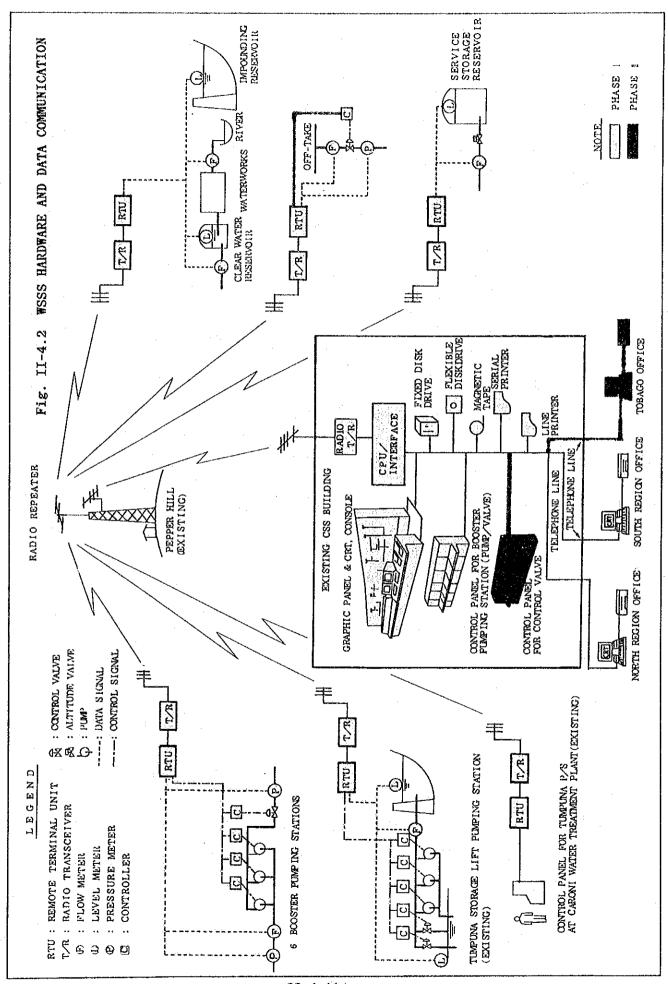
4.3 STEPWISE DEVELOPMENT

As mentioned in the preceding sub-section, the master plan for WSSS is formulated in two-phase developments (Phase I: 1992-1995 and Phase II: 1996-2005), considering about the present conditions of the water supply system in Trinidad and Tobago, and the financial burden of the proposed projects in the master plan.

The proposed development plan is designed to be implemented in two phases as follows. In phase I, the major equipment of CSS and the necessary equipment for monitoring system with RTUs and control units of valves are designed for installation. Further, this Phase includes the remote operation

units for six booster pumping stations and the remote operation devices to control the existing pumping and valving equipment at Tumpuna Pumping Station.

Regarding the control valves for off-takes on the transmission and distribution mains, in Phase I, the valves and its remote operation devices will be installed in Phase I.


In the initial/first step of system operation, automatic valve operation setting is made by manual input at sites for a trial. After valve control operation is practiced, and the actual operation status data are collected and analyzed, the operation target setting will be established to operate remotely from the CSS building in the second step of system operation.

In Phase II, some equipment and devices especially for CSS related instrument and electronic appliances which are installed in Phase I need to be replaced, which have been in use for more than 10 years. Therefore, such equipment and devices are planned to be replaced with new ones. And, the remote operation devices for the control valves, installed at off-takes on the transmission and distribution mains, are planned to be installed. In addition to this in Phase II, work stations at each Regional Offices and flow meters with recorder for the waterworks in LSS are planned to be installed.

Immediate projects are recommended in this Study, as a substantial part of the Master Plan, which require to undertake the ongoing "Universal Metering Program" and the planned "Leakage Reduction Program" in an earliest timing in the initial stage of Master Plan improvement program (1992-1995).

CONCEPT OF WATER SUPPLY SUPERVISORY SYSTEM (PHASE II) Fig. II-4.1

	LOGAL SUPERVISORY SYSTEM	TOBÁGO REGION WORK STATION WITH	MEMORY.	WEEGLY REPORT	L	PRODUCTION FACILITY (14) TOBAGO (14) HED LUM-(7) SMALL-(7)
ON-LINE ON-LINE	LOCAL SUPERVISORY SYSTEM (LSS) IN SOUTH	HOI SECTION	FLOSE NONE	WEEKLY REPORT	AT EASI PRODUCTION F TY	PRODUCTION FACILITY (21) SE/SC (1) MEDIUM-(1) S. E. (8) MEDIUM-(2) SMALL-(6) S. W. (12) MEDIUM-(6) S. W. (12) SMALL-(6)
CENTRAL SUPERVISORY SYSTEM (CSS)		COMPITER SYSTEM AND GRAPHIC PANEL	WATER FLOW, WATER LEVEL, WATER PRESSURE, VALVE & PUMP STATUS AND ALAND PUMPS & VALVES AT BOOSTER POMPING STATION (*** AS SHOWN ON THE BELOW TABLE) FOR REMOTE OPERATION AND CONTROL VALVES AT OFF-TAKE OF STRATEGIC POINTS.	ON - LINE	FLOW METER, LEVEL METER, PHESSURE GAUGE, CONTROL VALV AT STRATEGIC, POINTS	N. C. 1 CARONI /ARENA W. T. P. LARGE N. C. 1 FTUNAPUNA B. P/S N. C. 1 MT. HOPE NALSAYN W. W. MEDIUM N. E. 2 SVALSAYN B. P/S S. S. T. ALIGUSTINE S. S. T. AL
ON-T INE	LOCAL SUPERVISORY SYSTEM (LSS) IN NORTH	WORK STATION	NONE .	WEEKLY, REPORT	AT EACH PRODUCTION F' TY	N. C. (7) MEDIUM-(1) N. E. (12) MEDIUM-(1) N. E. (12) MEDIUM-(1) SMALL-(1) N. W. (16) MEDIUM-(7) SMALL-(9) POS (10) MEDIUM-(5) SMALL-(9) N. W.
CENTER	SUPERVISORY SYSTEM	SUPERVISORY EQUIPMENT TO BE INSTALLED	AT CENTER [MONITORING ITEMS] FEMORE CONTROL AND OPERATION EQUIPMENT]		SITIE EQUIPMENT TO BE INSTALLED AT SITE	FACILITIES TO BE SUPERVISED

II-4-11

Table II-4.1 LIST OF WSSS HARDWARE

HARDWARE	QUANTITY	ROLE OF
COMPONENTS	dollari III	COMPONENTS
[A] CENTRAL DATA PROCESSING SYSTEM (CDPS)		
(1) CENTRAL PROCESSING UNIT (CPU)	1 2	DATA PROCESSING, STORAGE AND RETRIEVAL
(2) FIXED DISK DRIVE	2	STORAGE OF OPERATING SYSTEM
(3) FLEXIBLE DISK DRIVE	7 2	DATA STORAGE
'/A\ CADTDIRCE TARE NOIVE	2	DATA STORAGE
(5) COMMUNICATION INTERFACE	2	CONTROL OF CPU AND DATA COMMUNICATION
(6) SERIAL INTERFACE	2 2 2 2 2 2	PERIPHERAL CONTROL
(7) SERIAL INPUT/OUTPUT INTERFACE		CONTROL OF GRAPHIC PANEL, PUMP REMOTE OPERATION & VALVE REMOTE PANELS
(8) CRT DISPLAY	2	DISPLAY OF GRAPHIC AND ALPHANUMERIC SYMBOLS
(9) HARD COPIER	1 1	CRT PICTURE COPY
(9) HARD COPIER (10) LINE PRINTER	1	DATA PRINTOUT
(11) SERIAL PRINTER	1	OPERATION REPORT PRONTOUT
(12) SYSTEM CONSOLE		CONTROL OF COMPUTER SYSTEM
(13) GRAPHIC PANEL	1	DISPLAY OF WATER SUPPLY SYSTEM AND MONITORING DATA
(14) MODEM	$\frac{1}{1}$	MODULATION AND DEMODULATION OF SIGNAL
(15) UNINTERRUPTIBLE POWER SUPPLY	1	BACK-UP POWER SUPPLY FOR EQUIPMENT OF CSS BUILDING
[B] REMOTE TERMINAL UNIT (RTU)		Commence of the state of the st
(1) INTERNAL CONTROLLER	48	INTERPRETATION BETWEEN CPU AND FIELD INSTRUMENTS
(2) SERIAL INPUT/OUTPUT INTERFACE	48	INPUT/OUTPUT CONTROL FOR MICROPROCESSOR
(3) PROCESS INPUT/OUTPUT INTERFACE	48	ANALOG AND DISCRETE DATA CONTROL
[C] DATA RADIO COMMUNICATION SYSTEM		
(CSS BUILDING)		
(1) UHF TRANCEIVER	2	DATA COMMUNICATION BETWEEN CSS BUILDING AND REPEATER STATION
(2) COMMUNICATION INTERFACE	2	CONTROL OF DATA COLLECTION
(REPEATER STATION)		
(1) UHF REPEATER	2	COMMUNICATION RELAY FROM/TO VHF
(2) VHF REPEATER	<u>2</u>	COMMUNICATION RELAY FROM/TO UNF
(3) UNINTERRUPTIBLE POWER SUPPLY	1	BACK-UP POWER SUPPLY FOR EQUIPMENT OF REPEATER STATION
(RTU STATION)		
(1) VHF TRANSCEIVER	48	DATA COMMUNICATION BETWEEN RTU AND REPEATER STATION
(2) COMMUNICATION INTERFACE	48	CONTROL OF DATA TRANSMISSION
(3) UNINTERRUPTIBLE POWER SUPPLY	48	BACK-UP POWER SUPPLY FOR EQUIPMENT OF RTU STATION
[D] REGIONAL OFFICE		
(1) WORK STATION (CRT AND COMPUTER)	3	DATA INPUT, DISPLAY AND ANALYSES
(2) OPTICAL CHARACTER READER (OCR)	3	DATA ELECTRONICALLY INPUT INTO THE INDIVIDUAL COMPUTER
(3) HARD COPIER	3	CRT PICTURE COPY

Table II-4.2 LIST OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (1)

NOTE: AN; ANNUBAR, AP; AIR PURGE TYPE, B AV: ALTITUDE VALVE, C	B : BOURDON TUBE, F : BU: BUTTERFLY VALVE, 0 : CV: CONE VALVE, P :		PF: PARSHALL FLUME, V : VENTURI TUBE, WW: WATERWORKS,	BPS; BOOSTER PUMPING WTP; WATER TREATMENT D ; DIFFERENTIAL PRE	BOGSTER PUMPING STATION, WATER TREATMENT PLANT, DIFFERENTIAL PRESSURE TYPE,	HW : HIGH WAY, (300); PIPE DIAMETER(MAY), "*"; EXISTINGS TO BE UK	TER(MAN), TO BE USED,	Į.	(REPLACEME	NT PERIPHER ROL EQUIPME	MLS).
REMOTE TERMINAL INIT (RTI)	PONITONENT AND MINRER	NA H G	E I	or anamatinas i	30	CONTINUENT AND MINORD	A H A	PHASE II	-	ENTIDIENT 1	11
	TO BE INSTALL	CENTRAL		CONTROLLED	3	TO BE INSTALLED	BY CENTRAL S		(css)		
	LEVEL PRESS FLOW CONTROL METER GAUGE METER VALVE	WATER WATER FLOW VAL	ALVE PUMP ALARMITOTA TATUSSTATUS	U PUMP VAI	VE LEVEL PRESS PLACE METER GAUGE	S FLOW DONTROL E METER VALVE	RATER WATER 1	FLOW VALVE FUMP BLARKTOTAL RATE STATUSSTATUS	E	PLACE	VALVE NO, I PLACE
NORTH OROPOUCHE WW	E-1-1-APF-1	3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5	_:	KPF 1			5		
MA SITTON	1 . AN . 2	1 2			YF : 1	KAN 2	1	2	3		
GILL TRACE	D 1 B 4 AN 4 BU 4	1 2 2	4 15	4	SITE NO 1 B	1 KAN 4 #BU 4	1 5	5 4	15	₹	
4 . ARIPO BPS	(7)	2 3 7	3 15	3	SITE ND 2 KB	3 YAN 5 #BU 3	2 3	7 3	15	3	83
					1	*0 1	-		-	-	-
SUAWAPO JUNCTION	D - 1 B - 3 AN - 4 BU - 3	134	311	6	SITE NO 1 WB	3 KAN 4 #BU 3	1 3	-4	11	11	
DEMERARA JUNCTION	8 2 AN 2 BII 2	2	6	9	- X	2 KAN 2 HRI 2		6 6	LE	7	38
ARIMA OLD RESERVOIR	4 AN 7 BU	22		F		MAN 7 #80	2 4		17 38 2	83	
8 MAUSICA JUNCTION	B : 6 AN : 6	9 9	6 18	9	SITE 1 183	6 KAN 6 #BU 6	9	8 8	18	2	SS
7A YY	D-1-1 B-7-2 AN 3 BU 3	12	<u> </u>	8	SITE FD 1 148	2 KAN 3 #BU 3		33		$\frac{1}{1} \frac{1}{2}$	SSO MA
10 CAURA WW	1 B 1 AN 2	1 1 2	1	5	SITE NO 1 1/18	1 MAN 2 #BU 1	1	2 1	5		×
TACARIGUA WW	ND - 1 B - 4 AN - 4 BU - 3	1 4 4	3 12	£	SITE D 1 48	4 KAN 4 8U 1	1 4	4 4	13	2	壁や
FLOW CONTROL STATION	B 4 AN 2 BU 2	4 3	4	4	SITE		7	4	11	7	383
	¥V : 1 #CV					¥V 1 #CV		_			
ST AUGUSTINE RESERVOIR	- 4 AN - 5 AV	<u> </u>	<u> </u>	1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	4 KAN 5 KAV 1			14		
14 TUNAPUNA BPS		9	. 5 6 25 48	3 655 2	SITE	6 FAN 6 #88	9	9	25 - 48 - 3	5 - 5	
15 ST JOSEPH RESERVOIR	1 B 4 AN 5	9 7 7	4 15	4	SITE #F 1 #B	4 MAN 5 #8U 4	1 4	8 4 1	15	4	SS
E AX	*D - 1 *B - 3 AN 1 BU 2	3	2 6 25 41	$\frac{3}{1}$ $\frac{65}{1}$	SITE D 1 B	3 KAN 2 #8U 2	3	2	25 41	3 88 1	
URIAH BUTLER IN JUNCTION	B 1 AN 1 BU 1	1 1		3	Si TE	1 KAN 1 #BU 1		1	۳,		SSS
HOPE RESERVOIR	D - 1 B - 7 AN - 8 AV - 1	3 - 3	7	<u> </u>	Q.	7 KAN 1 KAV 1 7 KAV 1 7 KAN 1 1 KAV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	ω, σ,	25	801	ltt
MALICK RESERVOIR	D - 1 B - 3 AN - 4 AV - 1	1 - 3	3	-3	SITE 10 1 FB	3 KAN 4 KAV 1	1 3	- 3		E7	8
SOCORRO WW	9 NV 3 B0 - 3 B0 - 5	9	5 - 5 - 43	3 CSS 1	SITE	3 KAN - 5 #8U - 5			25 49	3 CSS - 1	₹ 8
LAVENTILLE	1 AN 1	1 1	1	1		1 ¥4N : 1 #BU : 1	1	1 1 1	3	-	83
BLACK RIVER	B 4 AN 4	4 4	4			¥AN 4	4	4 4	12	1	SSS
PICTON NO. 3 RESERVOIR	*D_1-4_B_1-3_AN6_AV4	4 3	3	£3;	SITE D- 1.4 MB.	- 3 KAN - 6 KAN - 4	4 3	- 6		£1	83
24 SERVOL LIFE CENTER	B 3 AN 3 BU 3	3 3	3	9 3	SITE	3 KAN : 3 #8U : 3	3	3 3	8	3	83

LIST OF MONITORING AND CONTROL EQUIPMENT TO BE INSTALLED FOR CENTRAL SUPERVISORY SYSTEM (2) Table II-4.2

RALS), ENT.		을 E 당	VALVE	83	8	CARONI	CARONI	83	8	-	ß	-	3 3	-	₩-	-	ß		g	S		83	S	+	4 CSS	-1-	2 CSS			CSS
EXISTINGS (REPLACEMENT PERIPHERALS) INSTALLATION OF CONTROL EQUIPMENT,		CONTRACT	PUMP VALVE	LAGE NO.	4	5 CARONI 2	2		2		2		7	1 (-	3	1		PH	-	SSS 4		1 2	1	8	<u>ا</u>	5 CSS - 2		125	CSS
EPLACEMEN OF CONTI			+	1.9	717	77 5	65	~	٤	ır.	G	,	0 6	. 01	1	8	~	2	~	ش	49	3	9	3	25	67		-	786 31	
TINGS (R ALLATION		DATA (CSS)	PUMP ALARMITOTAL	rot i		12 53		+	-			+	+	-				_			8 25	$\frac{1}{1}$		-	10 41	-	12 48	-	62 266	
*; EXIS	11	NITORING TSQTV S	VALVE PUMP	4	4	2	2	-	~	17	2	-	7	1	1	3		-	~	1	ų.	1-4	2	r×	4	-	77	+	125	
	PHASE	NUMBER OF MONITORING DATA CENTRAL SUPERVISORY SYSTEM	R FLOW	S	4 4	2	2 3	-	2	7	2 - 2	9	7 6	1 67		3	1	-		1 1	2	1	2 2	1 1	5 4	65	3	4	19;	
(MAN), BE USED,	Ь	NOW BY CENTRA		-		- 2	2			1.		_									en:	F						-	38 131	
HW ; HIGH WAY, (300); PIPE DIAMETER(WM), "+" ; EXISTINGS TO BE USED.			WA.		4 41	- 2	- 3	H	~	1		-1 °	7	2	11	3					-141		2	-1	4	m	- 5	_	136	0 - T T Z
HIGH HIGH HERE HERE		NOMBER VLED	FLOW CONTROL	137	#80 4 4	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	- 2 #BU	1 #80	-		2 88	_	2 2 3	<u>ار</u>		۳			₹		W	3		#BU		2	1. E	 	164	145 #AV 2 #BU 3 #CV 11
_		EQUIPMENT AND NUMBER TO BE INSTALLED	PRESS FI	8	3 KAN	1	- 2 KAN	1 FAN	1 2 KAN	- 1 X	- 2 MAN	100	AAN C	1 00		3 KAN	I KAN	KA.	¥ VIV	F.A.	2 4AN	1 KAN	. 2 ¥AN	, 1 ¥AN	1 - 2 KAN	3 #4	- 2 KAN	N. W.	131	20 AN 111 YAN 70 YP YPF
ATION, ANT, URE TYPE		100 100 100 100 100 100 100 100 100 100	LEVEL PR	5 <u>e</u>	ω.g		2 2 2	- E	8£	-1-1-	82#	-	2 E			92	œ 2	-	2	9	ကမ္ဘာ့	£B *	#3	, ¥B	8) 1	£	2,8	-	38	13 78 B
: BOOSTER PUMPING STATION, : WATER TREATMENT PLANT, : DIFFERENTIAL PRESSURE TYPE.		: S	VALVE LE		1 SITE	2 CARONI F	2 CARONIKAP	SITE	SITE	SITE	SITE	2110	SITE	SITE		SITE		외	SILE	SITE	Sizione Sizion	SITE	SITE	SITE	SSS SITE	SITE	STIS	5,		SITE WAP CSS D CARONIND F
BOOSTER PUMPING WATER TREATMENT DIEFERENTIAL PRE		EQUIPMENT TO BE CONTROLLED	Ę					-	2	T	11	-	_		-	~		-	7		88	1	7	-	SSS 1	~	SS		113	CSS 7
BPS; B WTP; W			۽ ۾	E1		77 6 CARONI	8	3	9	5	5	-	7	-	<u> </u>	_		7	-		49 - 3	3	9		25 - 25 -		5 9 89	-	5 29	23 e 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
L FLUME, TUBE, RKS,		STA CER (CSS)	PUMP ALARMIOTAL			55,		<u> </u>				$\frac{1}{1}$	1				+	1		{	25	Ш			- 41		49		249 745	
PARSHALL FLUME, VENTURI TUBE, WATERWORKS,	I	ORY SYST				2 12	2		2	1	1	1	2 2			۳.	-	-	1	-	5	1	2	1	4 - 10	3	<u>-2</u> _ <u>-12</u>	-	113 58	
PF:	PIASE	NUMBER OF MONITORING DATA MIRAL SUPERVISORY SYSTEM (CSS)	FLOW WALVE	4		2	m	1	2	- 2	2	·	7 ~	_ا	\vdash	3	1		1	-4	۵	7	2	-1	4	3	- 2	-	150 1	
TYPE, E PLATE, JAR TYPE,	A PA	CENTRAL	WATER	-			2	7	2	1	22	r	77	3		e	-	ŀ	-		S	1	2	-	5	3	6		127	
F : FLOAT TYPE, 0 : ORIFICE PLATE, P : PROPELLAR TYPE.	-	BY	WATER Level	+		2 2	22	1	2	1 1	1		2 2		- 1		ľ	1		ľ			2		4	3	2 3	L	38	24.162.2
ᄔᄋᇲ	daman	ED CA	CONTROL R VALVE	- 2 *AV - 2	: : : : :	2 YBU .	2 ¥8U	1 BU	2 BU	<u> </u>	2 80 ;	ī	2 88	3	— І.	2 2	3	A A	2 2		시트 동[왕[홍	1 39	2 BD:	≅		3 30	.; ≅:	 ග	0 124	AA EEE 20 ECVERTED 20
3E. /ALYE,	CONTRACTOR AND MARCH	TO BE INSTALLED	FLOW (₩.	¥.		2 KAN	1 AN	2 AN .	1 40 1-	2 AN :-	- NV	4-	3 48		3	£ 3	27	7	-,-	S EAN	. AN	2 A	A.	2 FV -	3 AN	1 AN 2	AN .	09T Z	4 YAN 6 1 AN 139 2 WO 2 4PF 2 4PF 11
B ; BOURDON TUBE, BU; BUTTERFLY VALVE, CV; CONE VALVE,	ECM 11 DAM		C PRESS		ω.		8	В	8	1 ¥B	ω,	ď	m m		-	2		-	- - -	- l	Σ. Δ. Σ. Δ.	ω, (Ω)	- -		α¦α 20,	8	ထန္တြ	3	38 327	8 8 11 10 10 10 10 10 10 10 10 10 10 10 10
8 : S			LEVEL AETER	Q.	-;-	S KAP 1	AAP.	-		_; _;		+	-	-	+	1	- -	-	+				-	+		-		- - 		3 099"
e type, valve,	(IN) TIME	מיני וישי	Š		R MILL	SE LIFT PS		:			NCT 10N		26				a Luxusasa	DENYOTU DENYOTU		300	2			,	ا م				<u>, 1</u>	JIPMENT =
ANNUBAR, AIR PURCE TYPE, ALTITUDE VALVE,	DEMPTS TEDMINAL HALT	TUNBING!	LOCATION	S HILL	IML FLOUS	TUMPUNA STORAGE LIFT	I WITE	KELLY VILLAGE	YARD	LAS LOWAS WY	JERNINGHAM JUNCTION	MAS	EN FIELD	CARAP I CHÁ I MA	JOLUGO REGULA	10 L 10 L	SALA DEC	OWIN RE	V 1 12	WINDSTERON	EDWARDO I	TTO CREEK	N.W.	,	MALGRETOUTE BPS	BROTHER ROAD	82	E.	TOTA	= LIST OF EQUIPMENT
NOTE: AN: ANNUBAR, AP; AIR PURC AV; ALTITUDE	DCMME T	T TIONE	<u>S</u>	25 KNAGGS HILL	26 NATIONAL FLOUR MILL	27 TUMPUI	28 CARONI WIP	29 KELLY		T CAS L	32 JERNII	3 CHAGU	I I	35 CABAP)	- John St	35 MANDEN OF	R CAT FEE	30 TY!	AN MARAVELLA	AT CAN EE	New 1	42 MOSQUITO CREEK	43 SI CLEMEN	A DAISY	45 MALGE	· - }-	47 TC0 BPS	48 NAVET WW		¥1 =
¥ [<u> </u>	L-4	1,~	<u> </u>	121			14-7	Ľ			1 -		<u>'</u> ["	<u>.T.</u>	1	1	₹		1	<u> </u>	<u>~ l</u>		4			

Table 11-4.3 LIST OF MONITORING EQUIPMENT AND DATA UNDER LOCAL SUPERVISORY SYSTEM

Т		PHASE I	PIIASE	11		<u> </u>	PHASE I	PHASE	<u>II</u>
1		NUMBER OF	FLOW DATA				NUMBER OF	FLOW DATA	MONITORE
NO.	FACILITY	MONITORING	IN W'LY		NO.	FACILITY	MONITORING	IN W'LY	REPORT
		FLOW DATA IN	IN' ED	NUMBER			FLOW DATA IN	IN' ED	NUMBER
		M'LY REPORT	METER	OF DATA			M'LY REPORT	METER	OF DATA
NOR	TH CENTRAL)				(SOU	TH EAST)			
1	LOANGO/NARANJO WW (300) LOANGO INTAKE (100) LOPINOT INTAKE (100) MT. D'OR INTAKE (100) ST. JOHN'S INTAKE (150) SURRY INTAKE (100)	·	¥	1	47	MALONEY WELLS (150) ANOCO TOURNEBRIDGE WELL (100) GUARACARA SPRING (100)	2	¥ 2	2
-5	LOANGO INTAKE (100)		-^ -	11	48	AMOCO TOURNERRIDGE WELL (100)	3	¥ 3	3
	TODINOT INTAKE (100)		h - î	t i	49	GUARACARA SPRING (100)	1	¥ 1	1 1
-;-	RE DOUBLING TOO				50	GUAYAGUAYARE WELL #1 (100)		f v	i~~
	or longe thear (100)			+	51	MANABO MELLS (100)	.	Ϋ́δ	-
-5	SURRY INTAKE (100)			1	52	MODICUAL CODING 7100	1	¥ 1	
		* 1	'	<u>i</u>	52	MAYO SPRINGS (100)		- Î Î	
-'-	WATERFALL RD. INTAKE (100)		$\begin{bmatrix} 1 \end{bmatrix}$	7	54	MAYARO WELLS (100) MORICHAL SPRING (100) MAYO SPRINGS (100) MAYO SPRINGS (100) BICHE WATERWORKS (150)		- * *	-
VIOR	SUB-TOTAL			· · · · ·	194	SUB-TOTAL	[0] 16	[16] 16	16
ŭΩK.	NI EAST) BRASO SECO-PARIA INTAKE(100)				/cori	TH WEST)	F 0 1 10	[10) 10	19
-š	BRASU SECO-PARIA INIAME(IUU)			$\frac{1}{1}$	(Sun	ιτη μεσι) Γουντία αντερφοργό (200)		¥ 5	
3	CUMACA INTAKE (100)			 	55	FORMAL WATERWOOMS (400)	} 	¥ - 3	
ΪÑ	POUR RUZIAMANA INTAKE (100)	-	!		130	CHATAM WATERWORKS (400) PENAL WATERWORKS (250) SIPARIA (COORA) WW (300)		¥ 8	+ 👸
ΪŢ	GRAND RIVIERE INTAKE (100)	-			5/-	CONTROLL MATERIAGO (000)		¥ 7	
12	BRASO SECO-PARIA INTAKE (100) CUMAÇA INTAKE (100) FOUR RD/TAMARA INTAKE (100) GRAND RIYLERE INTAKE (100) MATELOT INTAKE (100) MATURA INTAKE (100) MONTEVIDEO INTAKE (100) MORNE LA CROIX INTAKE (100) SARIBEA INTAKE (100) SARIBEA INTAKE (100) TOCO WATERWORKS (250) LOS ARMADILLOS INTAKE (100)	-	- 1	!	29	GRANVILLE WATERWORKS (200) FYZABAD WYTERWORKS (150)		¥ 5	
13	MATURA INTAKE (100)	 	ļ .	ļ !	59	LITURAN MATERIANNY (120)			5
14	MONTEVIDEO INTAKE (100)	*	ļ <u>l</u>]	ρŪ	CARAPAL WATERWORKS (250)		¥ 2	
15	MORNE LA CROIX INTAKE (100)		-	!	ρĩ	CAP DE VILLE WW (300)		¥ 1	
16	SARIBEA INTAKE (100)	* <u> </u>	<u>1</u>	11	6Z	POINT FORTIN WW (200)	3	¥ 3	
17	SANS SOUCH WATERWORKS (100)	* 1	1 1	1 !				¥ 1	
18	TOCO WATERWORKS (250)	* 1	1	1		TEXACO TO GUAYAGUARE (100)	* 1	ļ <u>ļ</u>	
19	LOS ARMADILLOS INTAKE (100)	+ 1	1	1		TRINTOC TO TECHIER (100)	*1	l l	l 1
	NIB-BHAL	N 12 1 12	11 11 1 57.	1 1/2	66	TRINTOC TO P'T FORTIN (100)	1	¥ 1	1
(NOR	TH WEST)		L			SUB-TOTAL	[2] 43	[41] 43	43
20	BLANCHISSEUSE INTAKE (100)	* 1	1	1	(TOE	BAGO)		l	L
21	CHAGUARAMAS WELLS (300)	* 2	2	2	67	HILLSBOROUGH WW (400) COURLAND WATERWORKS (400) HILLSBOROUGH WEST RY (300)	1	¥ 1	1 1
22	DAMIER INTAKE (100)	* 1	1	1	68	COURLAND WATERWORKS (400)	1	¥ 1.	1 1
23	DORRINGTON CARDEN WW (200)	* 1	1	1	69	HILLSBOROUGH WEST RV (300)	1	¥ 1.	1 1
24	FOUR RD. WATERWORKS (200)	* 12	12	12	70	GREEN HILL INTAKE (300)		¥ 1	1 1
25	LA CANOA INTAKE (100)	* 1	1	i	71	KINGS BAY WATERWORKS (200)	1	¥ 1	1
26	LA PASTORA RES. RD. (125)	• 1	1	1	72	RICHMOND WATERWORKS (200)	1	¥ 1	1
27	LA PASTORA WELLS (200)	* 2	2	2	73	CRAIG HALL INTAKE (150)	i	¥ _ 1_	11_
28	GUAICO TAMANA/L. C. IT (100)	* 1	1	1	$\bar{7}\bar{4}$	GOV T FARM WELL #3 (150)	1	[¥	1 1
29	MON REPOS INTAKE (100)	* 1	1	1	75	CHARLOTEVILLE INTAKE (100)	1	¥ 1	1 1
30	PIPIOL INTAKE (100)	* 1	1	1 - 1	76	SPEYSIDE INTAKE (250)	* 1	1	1
31	RIVER ESTATE WW (200)	* 5	5	5	177	CASTARA INTAKE (50)	<u></u>	¥ 1	1
32	TH WEST) BLANCHISSEUSE INTAKE (100) CHAGUARAMAS WELLS (300) DAMIER INTAKE (100) DORRINGTON GARDEN WW (200) FOUR RD. WATERWORKS (200) LA CANOA INTAKE (100) LA PASTORA RES. RD. (125) LA PASTORA WELLS (200) GUAICO TAWANA/L. C. IT (100) MON REPOS INTAKE (100) PIPIOL INTAKE (100) RIVER ESTATE WW (200) TUCKER VALLEY WELLS (200)	* 8	8	5	78	PARLATUVIER INTAKE (50)	* 1	1	1
33	TYRICO INTAKE (100)	• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	1 1	79	L'ANSE FOURNI INTAKE (50)	* 1	1	1
	ACONO WATERWORKS (300)	i 1	¥ 1	11	180	BLOODY BAY INTAKE (50)	* j	1	1
35	LA PASTORA/CAPRIATA IT (125)		¥ 1	11	r	SUB-TOTAL	[4] 14	[10] 14	14
Y-0-	SUB-TOTAL	[14] 40	[2]40	40	<u> </u>				
POP	r of spain)		·		l	TOTAL	[48] 154	[73]154	154
ลัก	ARIPITA INTAKE (100)	*	1	1 - 1	l				1
37	CASCADE INTAKE (125)	*	i î	† <u>î</u>	┝╌		<u> </u>		
38			t	† î	l NC	OTE:			
39	KING GEORGE V PK WELLS (300)		†	+	'```	WW; WATERWORKS, (20	O); PIPE DIAMET	ER (MM).	
40	MARAYAL WATERWORKS (675)	<u>-</u>	+	†ĭ	l	IT; INTAKE,	+"; NO INSTALLA	TION OF FL	OW METER
41) 41	MOKA WELLS (200)	}	2		l	RD.; ROAD,	IN EXISTING		
42	PARAMIN WATERWORKS (200)	* 2	2	+5	l	RES.; RESERVOIR, "	¥"; EXSISTINGS		NT OF
42		} 6	+ ~	16	٠ ا	L. C.; LAS CUEVAS,	PERIPHERALS		01
43	SAVANNAH WELLS (300) ST ANN'S WATERWORKS (200)	*6	<u>-</u>	+ U	İ		ED: INSTALLED.	·/·	
44	OT VUM O MATEUMOUVO (COO)	├ - 	├ { - ·	 	l	P'T; POINT,	DV, INGINDEED,		
40	ST CLAIR WELL (300)	* 	[+ 1	l	RV.: RIVER.			
larr	SUB-TOTAL	[10] 19	[0]19	19	l				
	FERNANDO/SOUTH CENTRAL)	 	- _V _x	·		GOV T; GOVERNMENT,			
4b	FREEPORT WATERWORKS (300)	3	¥ 3	3	l	M'LY; MONTHLY,			
	SUB-TOTAL	[0]3	[3]3	3	<u> </u>	W'LY; WEEKLY,			

5. WSSS OPERATION AND MANAGEMENT

5.1 METHODOLOGY

This section presents the operation and management of the proposed Water Supply Supervisory System (WSSS) which is formulated and proposed in the present study. Since the WSSS is a segment of WASA's water supply operation and management under its organization, the technical aspects of WSSS is focussed in this section.

The fundamental function of WSSS is to monitor the WASA's actual/present operation status of the major four water supply system in the country under the Phase I Project. Further in the next advanced step, the proposed WSSS targets to formulate a practical water supply operation program for all system in the country, based on the analyses of the collected and accumulated operation status data/information. The following depicts operation method of the WSSS at final stage of the project.

CSS

The system operation status of existing water production facilities and service areas for WASA core water supply system including the four major sources, is monitored at CSS building. This monitoring is practiced for 24 hours a day, by real time monitoring system.

The major monitoring items for CSS are:

- Alarm status of each facilities.
- Operating status of pumping units and valves at each booster pumping stations,
- Operating status of control valves at each strategic points.
- Water levels at impounding reservoirs and rivers.
- Water levels at clear water and service storage reservoirs,
- Water flows of raw water, waterworks and transmission/distribution facilities.
- Water flows and pressures at each strategic points, and
- Leakage control related works.

LSS

As for the operation status in LSS covering areas, the system operation reports at weekly basis are planned to be prepared. And the necessary information are telecommunicated by Regional Offices to the main computer system in CSS building through the terminal units of the work stations installed in each Regional Office. The weekly operation status is also compiled into the data files in the CSS building.

The medium and small-scale systems operation are monitored under LSS. The weekly operation reports prepared by each regional office will compile data on water production and distribution records into the each work stations by OCR, which are reviewed and evaluated with the water supply plans provided by the WSSS management in advance.

Major monitoring items for LSS are:

- Distribution records of waterworks, intakes and wells/springs, and
- Operation records of waterworks, intakes and wells/springs.

Water Supply Program Formulation

Regarding the optimum water supply program formulation in the following stage, the efficient water production and distribution program is planned to be formulated. This plan could be effectively performed, utilizing the consumption records which are obtained by the metering system for each service connections under the "Universal Metering Program".

The production and distribution flow records are obtained by flow metres installed under the proposed Phase I Project on the major facilities and strategic points on the existing transmission/distribution mains for the CSS, and other production facilities for the LSS in Phase II Project.

Thus, an optimum efficient water supply planning is formulated based on the locally available amounts of water production in the system and the water demands in the respective service areas. The water production/distribution and consumption balances for each service area are calculated and reviewed periodically, so that it could be analyzed and interpreted to the system leakage and/or waste of water in each service area, which could finally totals to all system loss of WASA.

Maintenance of the Equipment and Facilities Related to WSSS

To effectively operate the proposed WSSS, the equipment and facilities installed under the Phase I and Phase II Projects are planned to be periodically and sufficiently maintained, by the staff specifically assigned for this purpose. To accomplish the above maintenance works, spare parts with necessary materials for the WSSS related equipment and facilities are planned to be stored in the CSS building. And, it is also planned that they are periodically replaced to maintain the practical life of usage.

5.2 ORGANIZATION

To achieve the objectives and targets of the proposed WSSS described in the preceding sections, an appropriate organization for the WSSS is recommended as presented in Fig. II-5.1. The recommended organization structure for operation and management of WSSS is formulated to coordinate with the present organization of WASA.

The proposed WSSS is composed of two sub-systems of CSS and LSS, following the present practice of WASA. The CSS part organization is newly recommended to operate the improved on-line system, while the LSS part is recommended under the Regional Manager as it is practiced now.

The CSS organization structure consists of three parts of 1) operation status monitoring, 2) water supply planning, and 3) maintenance of CSS equipment and facilities.

This organization is formulated with objectives of the following three major activities in the proposed WSSS: 1) to perform the continuous monitoring of water production and demands' variations for 24 hours, and to improve the preventive measures against accidents occurred on facilities in the system, 2)

to review and analyze collected data, and prepare appropriate water production and distribution plans for each sub-system, and 3) to enhance a proper maintenance system of CSS related equipment and facilities, respectively.

Especially, the planning section in the recommended structure is cited as an intensively recommended part. This part is planned to perform an effective utilization of the collected data and to promote the technology development for the optimum level of water supply programming.

The engineers assigned to the newly prepared positions are recommended, those who have sufficient capability to execute the task-roles presented in this report.

Regarding the effective use of manpower, most of the pump operators for booster pumping stations and valve operators for off-takes are efficiently transferred or recruited to other sections.

The major task-roles of each section in the above organization structure are presented below:

Planning Section

- Review and analysis of data collected on water production and consumption trends by water sources and transmission/distribution mains basis.
- Water production/distribution and system with facilities operation planning by seasonal and daily basis,
- Water supply technology development for optimum usage of service storage reservoirs and economical water production and distribution, and
- Existing and future water supply facilities rehabilitation and expansion planning.

Operation Section

- Continuous monitoring for water levels, pressures, flows at major facilities in the system,
- Status monitoring on emergency aspects occurred, operation direction for booster pumping units and valve units, and necessary system operation and control direction to each sites of system operation,
- Remote operation of booster pumping and valve units,
- Remote control of flow control valves at strategic points, and
- Reporting on water supply by daily, monthly and yearly basis.

Maintenance Section

- Maintenance planning for computer system, data communication equipment, local instrument, and CSS related equipment,
- Periodical check and calibration, and its repair works for CSS related equipment, and
- Reporting of maintenance records for CSS related equipment, including information on accidents statistics records.

The task-role of the proposed CSS Manager is recommended to have an important role, therefore his position is recommended identical to the regional managers, under the Deputy Technical Director.

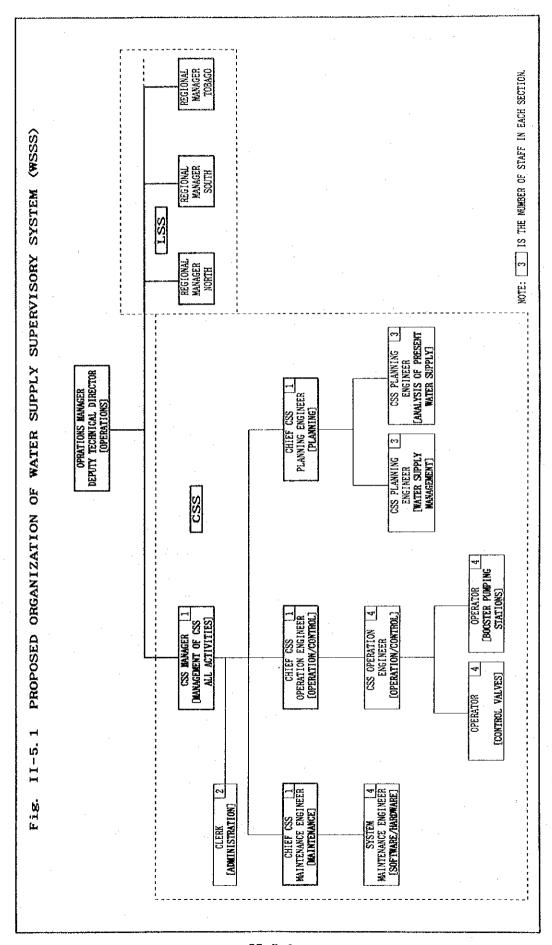
5.3 TRAINING

Regarding the new system of WSSS operation, a training program is recommended to be planned for the newly assigned/recruited staff for the system operation, so that they could practically and efficiently operate the improved and expanded CSS and LSS. This section describes the proposed training program for WSSS operation and management.

Following items are recommended to be included in the training program:

- Through sufficiently learning the operation methods and basic rules for operation of the newly installed equipment/facilities, to confirm the objectives and functions of the WSSS, especially the new CSS is needed. This matter is applied to all staff of WASA as well as the staff assigned to the new CSS operation.
- It is necessary to prepare materials and methods for the above purpose for all WASA's staff training,
- For CSS operation staff, as for the common knowledge of WASA's staff, the entire water supply system of WASA with its detailed functions and components of each facility, is planned to be well informed,
- In addition to the above item, the CSS staff are planned to be well trained for the objectives and functions of the newly improved CSS with each equipment together with facilities,
- To conduct the above training, following materials are required to be prepared: detailed description on each facility with drawings, which are equipped to the operators' office for future operation,
- CSS planning engineers are planned training of the software application for the pipe net-work analysis and the optimum water distribution programming, through the equipment operation test running with substantial training by the system equipment suppliers, since application software sets for pipe-network analysis and

economic water distribution programming etc. are planned to be installed to the CSS computer system, and


- CSS operation engineers are planned training of operation and maintenance technology for each facility/equipment installed in the system, to smoothly cope with any requirements for system operation.

5.4 INFORMATION FLOW

Table II-5.1 presents information flows in the proposed WSSS for decision-makers, communication methods, operators, and operation and control methods of each water supply facilities.

The major activities in the information flows are presented below:

- decision-makings for operation and control of CSS related facilities are made by the Chief CSS Operation Engineer, and decision-makings for LSS are done by respective Regional Manager,
- normal operation of each facility is executed following to the Operation Manual prepared by CSS Operation Manager,
- any emergency modification of the operation status is transmitted directly to the respective operation sites by CSS Operation Engineer through the voice radio communication system.
- remote operation of the pumping and valve units at booster pumping stations and remote control of flow control valves at strategic points are executed by Pump/Valve Operators using the data communication network under direction of Chief CSS Operation Engineer, and
- pumps and release valves at the existing Tumpuna Storage Lift Pumping Station are remotely controlled by Operators in Caroni Water Treatment Plant according to the direction of Chief CSS Operation Engineer.

II-5-8

Table 11-5.1 OPERATION AND CONTROL OF WATER SUPPLY SUPERVISORY SYSTEM

CONTROL OBJECTS	DECISION MAKER	COMMUNICATION MEANS	OPERATORS	CONTROL METHOD
C S S Raw Water Flow & Distribution/ Transmission Flow at Waterworks	Operation Engineer at CSS Building	Voice Radio Communication System	Operators at Waterworks	Manual Control -Selection of Number of Pump Operation -Start/Stop of Pumps -Valve Position Control
Storage Lift Pumps & Reservoir Release Valve at Tumpuna	Ditto	Data Communication System (CSS)	Operators at Caroni Water Treatment Plant	Remote Menual Control -Selection of Number of Pump Operation -Start/Stop of Pumps -Open/Close of Valves
Booster Pumps & Control Valves at the Six Booster Pumping Stations	Ditto	Ditto	Pump Operators at CSS Building	Remote Manual Control -Selection of Number of Pump Operation -Start/Stop of Pumps -Valve Position Control
Booster Pumps at Aripo and Arima Booster Pumping Stations	Ditto	Voice Radio Communication System	Operators at Aripo Waterworks and North District Office	Manual Control -Selection of Number of Pump Operation -Start/Stop of Pumps -Valve Position Control
Flow Rate at Offtakes	Ditto	Data Communication System (CSS)	Control Valve Operators at CSS Building	Automatic Remote Control by Designated Flow Rate
Storage Lift Pumps at Navet WW	Ditto	Ditto	Operators at Navet Waterworks	Manual Control -Selection of Number of Pump Operation -Start/Stop of Pumps
Water Level at Service Storage Reservoir	Ditto	Voice Radio Communication System	Operators at Related Waterworks & Booster Pumping Stations	Manual Control -Selection of Number of Pump Operation at Relate Waterworks & Booster P/S -Valve Position Control at the Above Site Automatic Control by Altitude Valve
L S S Distribution/Transmission Flow Rate at Waterworks	Regional Manager	Voice Radio Communication System	Operators at Waterworks, Intake & Well	Manual Control -Selection of Number of Pump Operation and/or Valve Position Control

6. COST ESTIMATES

The cost for the Projects in the Master Plan are estimated based on market prices (March 1991) in Japan and Trinidad and Tobago, and the data/information obtained through the experienced similar projects in developing countries. The cost estimate summary for the Phase I and Phase II Projects in the Master Plan is shown in Table II-6.1, and the cost estimates for the recommended Immediate Projects are presented in Supporting Report N "Data on Cost Estimate".

In estimating projects capital costs, construction, engineering and administration costs are categorized as shown in the figure. The physical contingencies allowance is estimated to be 15 percent of the sum of the costs for construction and engineering. Price contingencies is not included in this figure. Value Added Tax (VAT) is considered 15 percent of the sum of the costs for construction and engineering.

Project cost for Phase I Project is US\$ 46,300,000 and that for Phase II is US\$ 39,200,000 as summarized below. Total project cost totals in US\$ 85,500,000.

SUMMARY OF PROJECT COST

(UNIT: 1,000 US DOLLARS)

ITEM	PHASE I	PHASE II	TOTAL
[1] CONSTRUCTION WORKS	31,600	22,800	54,400
[2] ENGINEERING SERVICE	3,900	7,200	11,100
[1]+[2]	<u>35,500</u>	30,000	65,500
[3] VALUE ADDED TAX	5,300	4,500	9,800
[4] CONTINGENCY	5,300	4,500	9,800
[5] ADMINISTRATION	200	200	400
PROJECT COST	46,300	39,200	85,500

SUMMARY OF COST ESTIMATE FOR WATER SUPPLY SUPERVISORY SYSTEM Table II-6.1

NAME	FORFIG	CHRRENCY	(83)		PHAS	E I	≥				PORF IGN	CHRRENCY			PHAS	E II	FWCY (TITE)		UNIT: IN	× 1,000
ITEM FACILITIES AND FOLLOWENT	PRIMARY (1)	RIMARY (NSTRUMENT TOTAL ATTOM OFS)	TOTAL	F-M/C-V B	CIVIL	CIVIL WORKS JING INSTAL- BUT KKS LATION (C	-TOTAL	SUPPLY TRANS-	TOTAL	TOTAL (US\$)	PRIMARY I	UPPLY TRUMENT	TOTAL	F-K/C-V B	BUILDING WORKS	GIVIL WORKS JING INSTAL SUB-TO KS LATION COV		SUPPLY TRANS-	TOTAL	TOTAL (US\$)
[1] CONSTRUCTION WORKS				. L _ 1	t - t	\Box	-1								·† -				1	
FLOW METER	494.2	1, 329, 8	1, 824, 0	1,438		12.5	101	163/5	15-16	2,381		1, 353, 0	1, 367, 4			1000	591. 2	116.2	707. 4	1,533.8
LEVEL METER	32.5	279.6	312.0	1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		-2, 22, 3 132, 6	132.6	010	-:-	349.5	တ္ကုံတဲ့ N	312	4 E		-}- - -	135.7		~		357.6
PRESSURE GAUGE		566.7	566.7		r - h	240.8	10010	~		634.7		593	33			252. 4			T	665.1
REGIONAL OFFICE		211.6			2002	2007. 89.99	20,00 83,00 83,00	o c	***	236.9	111	3.5	3,5	-} -		134.9				2, 500 2, 500 2, 500 4,
REPEATER STATION		219, 17			· · · · · · · · · · · · · · · · · · ·		[14016	100	245.4	} -}	25	219		; -;		<u> </u>			245.4
BOOSTER P/S		226.7	226.7		. c 212.2	2, UZ8. 9	96.3		×	253, 9		-}-				4, 238, 7		.: :		11, 170, 1
SPARE PARTS		249.3	249.3			-	+	~	21.2	- 1		249.3	249.3	$\ \cdot\ $				21.2	21.2	254.3
SUB-TOTAL	2, 683.1	24, 556. 3	27, 239, 4	2, 834.9	2, 604. 9 10, 882. 1		16, 321. 9	2, 197. 6	18, 519. 5	31, 586. 9	307. 1	18, 136, 4	18, 443. 4	125.1	1	7, 732. 5	7,857.6	1, 587. 7	9, 425. 3	20, 661. 1
[LSS] FLOW METER						3	1 2 2				328.4	1, 279, 9	1, 608.3	1, 444, 6		683. 5	2, 128, 1	136.7	2, 264.8	2, 141, 2
SUB-TOTAL	1	.]				1	1	l	-	1	328. 4	1, 279.9	1, 608. 3	1,444.6	1	683. 5	2, 128. 1	136.7	2, 264.8	2,141.2
TOTAL	2, 583. 1	24, 556, 3	27, 239. 4	2, 834, 9	2, 604. 9	10, 882, 1	16, 321. 9	2, 197. 6	18, 519. 5	31, 596. 9	635.4	15, 416, 3	20, 051. 7	1, 569. 7		8,416.0	9, 985, 7	1, 704.4	11, 690, 1	22, 802.3
[2] ENGINEERING SERVICES		1	3, 437.0			ı	l		2, 109, 3	3, 933. 3			6, 311. 1		1	l			3, 809. 3	7, 207. 4
TOTAL OF 1TEMS [1] & [2]	2, 683. 1	24, 556. 3	30, 676, 4	2,834.9	2, 804. 9 1	10, 882. 1	16, 321. 9	2, 197. 6	20, 528. 7	35, 530. 2	635. 4	19, 416. 3	28, 352. 8	1, 569. 7		8, 416.0	9, 985. 7	1, 704. 4	15, 499. 4	30, 009, 7
(TAX (VAT)			-	-	<u> </u>	į	1	1	22, 650, 5	5, 329, 5	1			: t	:		i i i	;	19, 131. 2	4, 501. 5
(4) CONTINGENCY	1	:	4, 601. 5			1	ļ		3, 094. 3	5, 329, 5			3, 954. 4	:	 	1 1	;		2, 324. 9	4, 501. 5
(S) ADMINISTRATION							i		755.0	177.7	;	1				l	ŀ		637.7	150.0
GRAND-TOTAL	2, 583. 1	24, 556, 3	35, 277. 9	2,834.9	2, 604. 9 10, 882. 1		16, 321. 9	2, 197. 6	47, 128. 6	46, 367. 0	635, 4	19, 416. 3	36, 317. 2	1, 569. 7		8, 416.0	9, 385. 7	1, 704.4	37, 593. 2	39, 162. 7
NOTE: EQUIP. ; EQUIPMENT,	d'	P/S : PUMPING STATION	G STATION,		-M/C-V; I	F-M/C-V; FLOW METER AND	AND CONT	CONTROL VALVE,		VAT : VAL	VALUE ADDED	TAX, E	EXCHANGE RATES; 1 US\$	TES; I USS	= ¥ 135	AND 1 US\$	= TT\$ 4.	25.		

7. IMPLEMENTATION SCHEDULE

In accordance with the target year discussed in Sub-section 1.1 "Target Year", and in consideration of works described in Section 4 "Proposed Water Supply Supervisory System", the implementation schedule of the whole project of the Master Plan is worked out and shown in Fig. II-7.1.

A rather tight implementation schedule has been developed for Phase I Project as well as Immediate Projects. Phase I Project requires about four years period from its initiation in mid 1992 to completion of the construction works, taking into account the work volume, financial constraints and the time required for foreign financing. As far as Phase II Project is concerned, it is essential that a feasibility study be prepared prior to its implementation. It should be noted that Master Plan and implementation schedule is only a general guideline, and is subject to changes/modifications as conditions warrant.

In Phase I Project, water supply supervisory system facilities will be satisfactorily installed in 1995. However, if the newly established WSSS with installed facilities do not properly function as intended and designed, the Phase II Project should be delayed.

Objective of Phase II Project is to manage the WSSS, mostly monitoring system, which is realized in Phase I Project along with Immediate Projects. Further, it aims to accumulate essential information of the water supply system, with relevant analysis, to provide an effective operation and management program of the water supply system in the future. As well as upgrading the level of system operation monitoring in Phase II, a remote operation for selected facilities of the system is exercised, succeeding to the improvement of the level of whole system operation.

For this Phase, a total ten years period, which is divided into two stages as illustrated in the figure, is considered appropriate. It is principally based on a proposed sufficient time for system operation with training and an essential and actual data accumulation through the system operation. In addition to the above, the time for the same procedure for project formation and implementation made in Phase I is incorporated.

Fig. II-7.1 IMPLEMENTATION SCHEDULE

PROGRAM	PHASE	EI,	/ 188	EDIAT	E PRO	JECT				P H	ASE	11	0.5	4 4 5		
DESCRIPTION	1990 1	991	1992	1993	1994	1995	1996	S T 1997	A G E	1 1999	2000	2001	2002	A G E 2003	2 2004	200
1. Waster Plan and Feasibility Study		J														
2. Loan Negotiation/Financing for Immediate and Phase I		С]													
3. IMMEDIATE PROJECT 3.1 Select and Award Engineering Service														<u> </u>		1.1
3.2 Engineering Service			D [D TE		CS										
3.3 Tendering and Award of Contract				С												
3.4 Construction/Installation											<u>.</u>		:			
3.5 Place Facilities in Operation						[
4. PHASE I PROJECT											.i			ļ	ļ	
4.1 Select and Award Engineering Service						የብ ተ					<u>!</u>		<u>.</u>	<u>.</u>		
4.2 Engineering Service			Ľ	D TE		CS T					<u>.</u>					ļ
4.3 Tendering and Award of Contract										<u>.</u>						
4.4 Construction/Installation											<u>.</u>					
4.5 Place Facilities in Operation						C			<u>.</u>					ļ		
4.6 Commissioning							-									
5. Negotiate Loan/Finance for Phase II												С				
6. Operation, Data Collection/Analysis										(WA	SA)					
7. PHASE II PROJECT	ļ <u>i</u>									ļ	ļ	,		<u> </u>	<u></u>	<u></u>
7.1 Select and Award Engineering Service										66	62				ļ	00
7.2 Engineering Service							11811	ning	j	Ö			ί	D TE	<u> </u>	CS
7.3 Tendering and Award of Contract										ļ	ļ			С	j	
7.4 Construction/Installation																<u></u>
7.5 Place Facilities in Operation			:				ļ			<u>.</u>			<u>:</u>			
7.6 Commissioning	CS - Co										r Supp	1 1				

8. BENEFITS ACCRUED FROM THE PROJECT

The benefits accrued from the Project can be broadly categorized into three aspects: 1) improvement of services to customers, 2) reduction of operational costs while maintaining the services to customers and 3) contribution to planning of water supply systems. It should be noted that most of the benefits will be accrued only when the data and information collected is utilized appropriately and is made available whenever it is needed, as well as that such prerequisites as mentioned before are met.

1) Improvement of Services to Customers

Improvement of services to customers comprises stable water supply to customers, foresight of or prompt reaction to abnormal occurrences, and the monitoring and detection of water leakage.

Stable water supply to customers

With the level of water leakage reduced enough to meet the demand of water, the water supply supervisory system (WSSS) will enable WASA to provide customers with more water in a good pressure and to decrease the areas subject to rationing of water.

In addition, chances could be provided to effectively utilize produced water during dry period.

Foresight of or prompt reaction to abnormal occurrences

When take place disasters, stoppage of electricity, accidents in facilities or others which suspend water supply, prompt reaction and appropriate treatment made possible with the WSSS will contribute to minimizing the areas suffering from the cut-off of water supply. It may be possible to change the courses of water flow and to flexibly utilize treated water among the treatment plants, so that the affected people can secure the "life-line" of water.

Moreover, continuing monitoring of water systems could enable WASA to find signs which indicate occurrences of accidents, and then prevent them.

Monitoring and detection of water leakage

Monitoring of the water system and detection of water leakage will contribute to reducing the leakage. Using the WSSS, the leakage will be detected in a shorter period. In addition, the opportunity could be provided to formulate the most cost effective method for the detection.

Also, the WSSS will get the saved water more effectively distributed to customers. The benefits could not be fully realized if some water is wasted at the level of consumer due to inappropriate distribution.

2) Reduction of Operational Costs

Operational costs include energy, chemicals and personnel costs. Reduction of operational costs with the WSSS can be achieved in three ways: 1) reduction of personnel costs involved with the installation of CSS, 2) production and supply of water which corresponds to the demand and 3) establishment of the minimum cost operating strategy of a given multiple sources through distribution.

With the installation of CSS, manual works will be replaced by its functions: some booster pump operators in Phase II, so that the operation of water supply will be optimized while meeting increased demand.

As a result, the resources required for the production and supply of water, including water, will be reduced for a given level of supply.

The minimum cost operating method could be figured out, probably focusing on pump scheduling and source optimization. For example, costs of treating water could be reduced when precedence is given to higher quality of water in use.

3) Contribution to Planning of Water Supply Systems

In addition to the benefits of ordinary operations, the WSSS will contribute to the planning in future. The storage of data collected with the WSSS will be the base on which the plans of water supply systems such as the expansion and improvement of the systems will be formulated.

This is important since unavailability and/or inaccuracy of data will be negatively affect the validity of the plans.

PART THREE: FEASIBILITY STUDY

•

1. PROJECT IDENTIFIED IN MASTER PLAN

The Scope of Work agreed between JICA and the Government of Trinidad and Tobago in May, 1989 defines the scope of feasibility study. Basic requirement of the Study is an improvement and expansion of the existing CSS. The Master Plan identifies the most appropriate project area, target year, population, water balance as well as major scope and work of the Phase I Project. Followings are brief summary of Master Plan related to Phase I Project.

Project Area

The area supplied with piped water principally from the four major waterworks (Caroni, North Oropouche, Hollis and Navet) including 16 raw water sources as shown on Fig. III-1.1.

Target Year

The end of 1995, 4 years after the initiation of the project implementation in mid 1992.

Population

Future population is forecast with the net growth rate of 1.8% during Phase I period. Population served in WASA water system will increase from 1,192,000 in 1990 to 1,299,000 in 1995. Population served within the project area will also show an rapid growth in the said period, i.e., from 825,000 in 1990 to 896,000 in 1995.

Water Demand

On assumption that unaccounted-for water ratio would be substantially improved from the present 50% to a rather optimistic ratio of 40% in the target year (1995) by conducting intensive wastage control activities, future net water demand including UFW in the project area will be forecast almost constant with a slight drop from 531,000 m^3/d in 1990 to 513,000 m^3/d in 1995.

Water Balance

Dependable yields of the said 16 water sources and of the existing production facilities in the project area are most critical in dry seasons when the runoff of the rain water is minimum. Estimates from the historical data and information suggest a 10% decrease of the dependable yields from $602,000~\text{m}^3/\text{d}$ in rainy seasons to $546,000~\text{m}^3/\text{d}$ in dry seasons. This implies a total of dependable yields will suffice well for the water requirement in 1995 $(513,000~\text{m}^3/\text{d})$ even in dry seasons.

As discussed in Section 6, Part I, however, urgent implementation of the leakage reduction program to supply treated water effectively is definitely required for the water balancing. Otherwise, the water demand will exceed the dependable yields in the coming several years.

Outline of Phase I Project

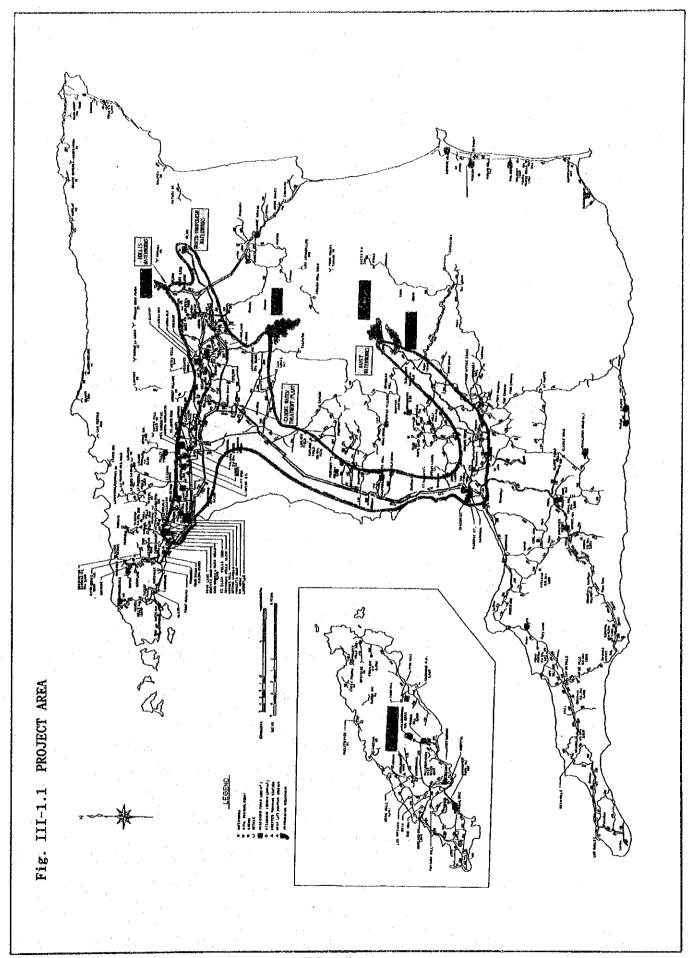
Improvement and expansion of the CSS facilities are major scope proposed for the Phase I Project. This mainly aims strengthening to establish on-line monitoring and control system in the project area.

Therefore, this phase includes works to formulate the metering and valving system on the transmission/distribution mains, which aim at not only the indispensable information collection of the main pipelines in the distribution system, but also the basic information collection to effectively mobilize the new CSS, with actual data of operation status from the initial step of its system operation.

Such information enables the CSS to work properly as expected for strategic control of the transmission/distribution system. It is especially noted that acquisition and analysis of such data are quite time consuming. Moreover, such data collection can only be possible with the installation and operation of sensing equipment.

Major facilities and instruments contained in the Project will have following functions:

- 1) The CSS building will be a center for monitoring and control, equipped with master terminal unit, central processing unit, input/output interface, graphic panel, uninterruptible power supply, remote control panel, etc.
- 2) The repeater station will perform repeater function of signal and data, which will be equipped with a repeater system and uninterruptible power supply.
- 3) RTU stations to be newly constructed on site will encase remote terminal units, an instrument panel and uninterruptible power supply to receive and transfer electrical and mechanical signals to the CSS building.
- 4) Monitoring and control equipment to be installed at the waterworks, pumping stations, service storage reservoirs and water mains are flow meters, pressure gauges, level sensing meters and flow rate controllers.


In the meantime, an early implementation of the Immediate Projects is a prerequisite condition for developing the CSS facilities as described in Parts I and II. Studies on leakage reduction, WASA institution, mapping system, universal metering system and tariff structure are just at initial stage with assistance of several international funding agencies.

This report does not aim to picture such planning of the Immediate Projects. Any data or information on the Immediate Projects, if found in this Report, are tentative estimates or assumption inevitably made for the present study, which shall be reviewed in the future studies and analyses.

On the other hand, replacement/installation of control valves, flow meters level meters and pressure gauges for CSS operation, which constitute an integral part of the CSS, are considered as the work of the Phase I Project. Preliminary design and cost estimates of such work also carried out in the present study are incorporated in the Part III.

This Part III consists of six sections. Section 2 deals with design concept and criteria for establishing the central supervisory system. In the Sections 3 and 4, preliminary design and cost estimate of the CSS related facilities and equipment will be made reflecting results of review of the existing CSS. Section 5 works out construction and implementation schedule of the Project. Special stresses will be laid on financial and economic evaluation of the proposed Phase I project in Section 6.

The Part III thus compiled is simply materials for future appraisal by international funding agencies whether the project is feasible or not.

III-1-5

2. DESIGN CONCEPT AND CRITERIA

To determine type and function of the CSS instruments in the succeeding sections, design concept and criteria will further be developed hereunder. As for basic scope and strategies of the Phase I Project, it is recommended to refer to Part II Master Plan of this report. Some of the basic strategies are inevitably reproduced hereunder merely for reference, although redundant and duplicate descriptions are kept minimum. Emphasis is laid on such point that the design criteria may not contradict the aforementioned basic strategies. Fig. III-2.1 illustrates overall concept of the CSS, laying stress on CSS control area of the water supply facilities and relation with the LSS.

2.1 CSS SOFTWARE

CSS to be established is to monitor flow rate, water level and water pressure at the several designated points of water mains, reservoirs, waterworks and pumping stations and to operate/control water production, transmission and distribution from the four major waterworks to achieve the predetermined targets. To this end, CSS hardware and software will be furnished mainly in the CSS building, RTU stations and monitoring/control points. Followings are criteria developed specifically for designing the CSS software.

1) The on-line real time data acquisition system (five-minute interval) as has adopted in the existing CSS is the minimum requirement for effective operation and management.

Recommended data processing is on hourly and daily bases at least. Acquired data may be an input to pipe network analyses as hourly and daily fluctuation of water demand, pressure and flow rate. Monthly and annual data will be utilized mainly for future planning of water supply system and water source development. Five-minute data, in addition to the processed, are also stored as primary data.

2) Software of the CSS will be composed of system software and application software. The system software is to run the CSS by receiving, processing,

storing and displaying data, and the application software to utilize the CSS for specific purpose of computation and analyses. The former will be easily expanded and open-ended one for easy renewal and replacement. The latter will be effective in conducting pipe network analyses, water hammer analyses, and simulating reservoir operation, pump operation, etc. for the simultaneous use at the CSS building.

3) It is monthly operation reports prepared by district offices that provide the various data on the waterworks and pumping stations which will be monitored under LSS. They may be data on water production, chemical storage and usage, raw water characteristics, etc. Such off-line data regarding LSS will be stored together in the expanded memory to conduct comprehensive analyses on water supply conditions of the whole service area and on inventory management. The CSS will accommodate such data as well.

2.2 CSS HARDWARE

The CSS hardware will consist of at least Central Data Processing System (CDPS), Remote Terminal Unit (RTU), Data Radio System, Field Instruments, and Remote Control Equipment. In designing type and function of the CSS hardware, followings are considered as design criteria.

- 1) Central data processing system to be furnished for data collection, alarm warning, data processing and data display will have a function similar to or more than that of the latest mini-computer.
- 2) Remote terminal units to transfer data signal between the CDPS of the CSS building and field instruments will be encased in chambers to be constructed near monitoring points. Rooms that encase RTU instruments will be ventilation free from damped air and high temperature.
- 3) As like the existing CSS, communication between the CDPS and RTUs will be carried out through the existing Repeater Station at Pepper Hill. For this purpose, all RTUs and CSS building will be provided by radio transceivers.

- 4) Field instruments will be transducers of flow rate, pressure and water level. Analog signal from primary measuring device (sensor) will be output to the panels equipped in local control panel stands and in RTU stations after conversion into electric signal.
- 5) The North and South regional offices will be furnished the work station consisting of a computer system with individual computer/CRT display to overview the water supply conditions in the project area. The work station with a function of computer will have beneficial effects on free access to the CSS acquired data and their utilization for analytical purpose.

2.3 CSS BUILDING AND RTU STATIONS

Design criteria for the CSS building and RTU stations in which the CSS hardware will be furnished are worked out as follows:

- 1) The existing CSS building elaborates dual floor structure to encase cables and lines between the floors. To achieve maximum utilization of the existing, the major CSS equipment and instruments will be installed in the existing building that will play an important role as operation and control center. To accommodate most engineers and staff assigned for CSS, new CSS building will be expanded occupying the WASA's parking lot located in front of the existing building. New building will have similar span and size as the existing one.
- 2) Minor modification and rearrangement of the existing CSS building will be required to accommodate the proposed CSS instruments.
- 3) New RTU stations will be a concrete structure. These stations will be located on WASA's premises or government's area as far as possible to avoid time consuming land acquisition. In locating RTU stations, the existing facilities will be utilized to the maximum extent.

2.4 MONITORING AND CONTROL UNITS

2.4.1 Pressure Gauges, Flow Meters and Level Meters

To monitor flow conditions of the water supply system, primary sensors such as pressure gauges, flow meters and level meters for the proposed CSS will be installed at several designated points. Major monitoring items are flow rate and water pressure on water mains, intake and distribution flow rates and pressures at waterworks and water level in impounding, clear water and service storage reservoirs. Followings are design criteria developed for these primary sensors.

Waterworks and Pumping Stations

1) As discussed in Supporting Report L "Comparative Studies", major existing 7 pumping stations (six booster and one storage lift pumping stations: Tunapuna, Valsayn, El Socorro, San Fernando, Malgretoute, TCO and Tumpuna) located within the project area will be monitored for the purpose of remote operation and control from the CSS building.

On the other hand, operation and control of all waterworks and other minor booster pumping stations within the area will be made locally on the basis of the acquired data. Instruction or directions from the CSS to such waterworks and/or booster pumping stations for routine operation will be generally through voice radio communication system.

- 2) Monitoring items will cover intake rate, water production at waterworks and water level in impounding and clear water reservoirs and river. In case waterworks treats groundwater, water production rather than intake rate will be simply measured. Another essential factor at waterworks is a distribution pressure. Pressure gauges will be equipped on the pipes wherever distribution pumps are installed.
- 3) As to the six booster pumping stations in TCO, Malgretoute, San Fernando, El Socorro, Valsayn and Tunapuna, flow rate of either pump discharge or suction will be measured, as water losses in the pumping stations are

considered negligible. Water pressure will be measured at both lines of discharge and suction.

- 4) Recommended flow meter type is "annubar" in consideration of the cost, head loss, easy installation, simplicity, accuracy and life span. The existing flow meters which are functioning or even malfunctioning because of damaged peripherals, although most of them seemingly required calibration, will be utilized as long as possible. The life of meters can be lengthened by appropriate repair and replacement of the damaged peripherals.
- 5) The existing level-sensing meters and pressure gauges, although most of them seemingly require calibration, overhaul or repair, will also be utilized as far as they can be assumed to function normally.

Service Storage Reservoirs

- 1) For effective operation and control of the distribution system, it is desirable to monitor fluctuation of flow and water level in the reservoirs. Hence major service storage and clear water reservoirs that lie within the project area will be equipped with flow and level meters. As for flow rate, it is recommended to measure outflow from the reservoirs rather than inflow.
- 2) Type of level meters to be newly installed depends on structure of the reservoirs, namely, a float type is for underground structure and a pressure differential type for others.
- 3) As to flow meters, annubar type is considered most economical and effective with the least head loss. Further, this type has an advantage of monitoring that ensures both inflow and outflow measurement regardless of flow direction.

Off-Takes

1) Off-takes of the transmission/distribution mains from the four major waterworks, i.e., Caroni, North Oropouche, Hollis and Navet waterworks are

proposed monitoring points for flow control. Monitoring items are pressure and flow rate.

- 2) Recommended flow meters and pressure gauges are annubar type and Bourdontube type respectively for ease of installation and cost effectiveness.
- 3) Proposed site for installing such flow meters and pressure gauges is on the off-takes between the existing gate valves and new flow control valves. Consideration should be given to the need for straight lengths of pipe preceding the meters (minimum allowable lengths: upward eight times of pipe diameter and downward four times).

2.4.2 Control Units

The CSS is to monitor/control effectively water supply systems from the CSS building or by giving directions to each district office or waterworks through voice radio communication system. Flow control aims at supplying sufficient and potable water to all consumers in the service area. To this end, flow control instruments will be equipped at major booster pumping stations and off-takes from the water mains. These instruments will function effectively together with the monitoring devices. Major pumping stations will be controlled from the CSS building, while all off-takes are operated by site operators.

As regards service storage reservoirs, altitude valves are recommended as flow control equipment as currently practiced in WASA. These are effective for maintaining water level within an allowable limit of high water.

Waterworks and Booster Pumping Stations

1) Flow control valves equipped with electric motor drives will be installed on all header mains from waterworks and booster pumping stations that lie within the project area. However, all of them except the seven major pumping stations will be locally controlled. Operators under direction of the waterworks engineers will operate the system by controlling the flow rate and pressure.

The said six major pumping stations will be controlled directly from the CSS building and also the existing Tumpuna Storage Lift Pumping Station will be controlled by the existing control panel installed at Caroni Water Treatment Plant through direction from the CSS building.

2) Since many variations of flow rate controllers are available, selections of the most suitable type shall be based on the flow conditions, pipe characteristics, planned water pressure and water demand. As the reliable data are currently not available, it is tentatively assumed to install butterfly valves as flow controller.

Service Storage Reservoirs

- 1) An altitude valve is a typical type installed for flow control of the existing service storage reservoirs in the country. This valve functions when the water level exceeds the predetermined maximum in storage reservoirs. For ease of maintenance and operation, same type of altitude valves will be installed at all storage reservoirs where combined inlet/outlet mains (single inlet-outlet piping system) is applied.
- 2) Other service storage reservoirs that apply separate inlet-outlet piping system will be controlled locally by the site staff. As far as discharges from off-takes to the reservoirs are properly controlled, it will be rare case for them to be involved frequently in manual-flow control at site.

Off-Takes

- 1) A flow control valve will be installed on selected off-takes of the transmission and distribution mains in the project area where flow meters and pressure gauges are laid. Consideration shall be given to the straight pipe length where flow meters are installed.
- 2) It is tentatively assumed that a motor-driven butterfly valve is a proposed type for flow control.
- 3) Direction from the CSS building will be delivered through district offices to the site operators assigned for valve control.

4) The valve equipped with an electric driven motor will be controlled on site without a direct access to the valve. The operator will set flow rates on the valve control panel stand. The valve control will be made, principally according to the direction from the CSS, to meet water demand in the service area.

2.4.3 Valve Chambers, Meter Boxes, etc.

All meters, valves and gauges except level meters are encased in chambers and boxes to protect the equipment from sunshine, humidity, precipitation and any other undesirable conditions. Followings are proposed design criteria for preliminary design of the above facilities:

- 1) In general, a meter and a valve are separately encased in underground chambers made of concrete. Pressure gauges are installed on the pipeline in the valve chambers.
- 2) A control panel consists of a controller for valve control, signal indicators and transmitters. The panel shall be encased in a steel-plate stand for easy access. The steel plate shall be coated with proper protection.
- 3) As previously mentioned, location of flow meters are carefully determined to assure uniform flow through the meters. It is recommended that the meter shall precede the flow control valve.
- 4) The valve control panel stand is encircled with fencing to avoid human access from disturbance.

Fig. 111-2.	1 CONCEPT OF	CENTRAL SUPERVISORY SYSTEM		
·	ON-1.1NE	CENTRAL SUPERVISORY SYSTEM (CSS) ON-LINE	MONTHLY REPORT	
CLENTER LOCATION OF CENTER SUPERVISORY EQUIPMENT TO BE INSTALLED AT CENTER	WORK STATION	COMPUTER SYSTEM AND GRAPHIC PANEL	RORK STATION	NONE
REMOTE CONTROL AND OPERATION EQUIPMENT	NONE NONE	WATER FLOW, WATER LEVEL, WATER PRESSURE, VALVE & PUMP STATUS AND ALARM PUMPS & VALVES AT BOOSTER PUMPING STATIONS FOR REMOTE OPERATION (AS STOWN ON ** OF THE BELOW TABLE)	FLORE	KELOW NONE
	MONTHLY REPORT	ON - LINE	MONTHLY REPORT	MONTIELY REPORT
SITE EQUIPMENT TO BE INSTALLED AT SITE	NGS 7	FLOW METER LEVEL METER PRESSURE GAUGE, CONTROL VALVE AT STRATEGIC POLITIS PRODUCTION FACILITY BOOSTER PUMPING STATION	TO BE USE	WONE (EXISTINGS TO BE USED) [PRODUCTION FACILITY (24)]
FACILITIES TO BE SUPERVISED	N. E. (12) MEDIUM (1) N. M. (16) SMALL (1) SMALL (1) SMALL (2) SMALL (3) SMALL (5) SMALL (5) SMALL (5)	N. C. CARONI AMERINA W. T. P. CARGE N. C. Y-TUNADUMA B. P/S N. C. WIT. HOPE	S. E. (8) MEDIUM-(1) S. E. (8) MEDIUM-(2) S. W. (12) MEDIUM-(6) S. W. (12) MEDIUM-(6)	TOBAGO (14) MEDIUM-(7) SWALL-(7)
NOTE: N.C.; NORTH CENTRAL, INT: INTAKE, B. P/S	RAL, N.E.; NORTH EAST, N.W.; P/S; BOOSTER PUMPING STATION,	S. L. P.	ST, W. T. P.; WATER TRAIMENT ST.: SAINT, St.; STREET.	PLANT, W.W.; WATERWORKS, F'TY: FACILITIES.

3. PRELIMINARY DESIGN AND SPECIFICATIONS

3.1 PRELIMINARY DESIGN

Major facilities to be constructed in Phase I Project are the CSS building, RTU stations, valve control panel stands, valve and meter chambers where monitoring and control equipment is installed. The new CSS building and the existing CSS building accommodate most engineers/staff and various instruments for the CSS respectively. In each RTU station, microprocessor controller with input/output interface will be installed to transfer information from valve control panel stands to the CSS via the repeater station in Pepper Hill. Valve control panel stands that encase signal indicators, transmitters, controller and panels will be constructed at the most appropriate place near off-takes of the water mains. Preliminary design of the CSS related facilities and monitoring and control units are prepared in consideration of the following:

- 1) Objectives of the project, basic concept and design criteria developed, which are described in the previous sections;
- 2) Project area, the existing pipe alignment and reservoirs, the existing CSS facilities, system operation and maintenance practiced by WASA;
- 3) Maximum utilization of indigenous materials and work forces;
- 4) Operational and institutional aspects of WASA who intends to push urgent implementation of the CSS.

In the succeeding paragraphs, main contexts of the preliminary design are explained further.

CSS Facilities

Fig. III-3.1 illustrates the arrangement of the CSS related facilities and data communication system while Fig. II-4.2 already shown in Part II also illustrates that of Phase II. Major differences of these figures are absence

of the valve control panel with mini-graphic display in the CSS building and work station with CRT display at Tobago regional office.

Continuous variables (flow rate, pressure, water level) and discrete states (on/off, open/close) sensed at off-takes, waterworks, pumping stations and reservoirs are transmitted to the RTU stations in the form of electrical signal. After modulation at the RTU stations, radio transceivers emit signal to the repeater station at Pepper Hill where signals are relayed to the CSS building after conversion into the ultra high frequency (UHF). This process takes place according to the request from the CSS building. The water supply conditions thus sensed and transmitted will be displayed on the CRT display and the graphic panel after necessary data processing by central computer.

On the other hand, the direction from the CSS to operate the remote control pumping stations is transferred to the repeater station in the form of electrical signal. The repeater station converts signal into that of very high frequency (VHF). It is the RTU station that transfers signal to an actuator of the controlled equipment which physically moves the valves and pumps. Off-take valves are controlled on site by operators. Feedback control sequence designed for this purpose controls the flow rate in the pipeline.

Table III-3.1 lists the number and type of data monitored, monitoring and control equipment to be installed, while Figs. III-3.2 and III-3.3 show the proposed location of the monitoring and control equipment and RTU stations respectively.

Fig. III-3.4 shows proposed layout of CSS instruments in the CSS buildings. Major stresses are placed on the following three: 1) graphic panel and remote control panel for booster pumping stations are positioned in one room because of their close relation, 2) printers that may be a source of noise is isolated in the nearby repair room, and 3) rooms required for stationing planning and maintenance staff and officials are planned in the new CSS building to be constructed in the existing WASA's parking lot.

Fig. III-3.5(1) shows a process instrument diagram for control valves to be installed on the off-take from water mains. FIC examines the actual flow rate monitored at FI in comparison with the flow rate inputs given beforehand.

After comparison with these figures, FIC will close or open the valve to control flow rate emitting signal to the actuator. This is done repeatedly until the deviation becomes zero.

Fig. III-3.5(2) is also a process instrument diagram for operating booster pumping station from the CSS building. The data signals monitored at suction and discharge of the booster pumps are transferred to the CSS. The pumps and valves are usually operated from the control panel of the CSS building. In emergency case, they are operable on site using control switches mounted locally.

Fig. III-3.5(3) outlines the control circuit diagram for Tumpuna storage lift pumping station. Signals such as water levels in the Arena impounding reservoir and Tumpuna weir, inflow and outflow from the reservoirs are delivered to the CSS and displayed as LI and FI. Based on direction from the CSS, operating staff stationed in the Caroni Water Treatment Plant operates the valves and pumps.

Monitoring and Control Unit

Monitoring points as shown on Fig. III-3.2 are carefully selected through several times of field reconnaissance and interviews with the WASA counterparts and personnels. Off-takes from the major water mains from the four waterworks and the six major booster pumping stations are all considered as monitoring points. The equipment to be installed at the designated points for the CSS operation are summarized in Table III-3.1 which specifies also the number of the monitoring data and control methods and places.

As listed in the Table III-3.1, newly installed equipment are 11 differential type level meters, 10 float type level meters, 111 bourdon-tube type pressure gauges, 139 sets of annubar flow meters, 9 altitude valves, and 106 flow control butterfly valves. Others are the existing equipment to be utilized further after repair or replacement of the damaged peripherals.

3.2 AVAILABILITY OF EQUIPMENT, MATERIALS, ETC.

For preparing a preliminary design of the proposed system, the availability of materials and equipment in Trinidad and Tobago is one of the key factors to be considered. It seems most appropriate to follow the WASA's established practices for procurement in order to minimize time losses anticipated during project implementation.

There are many manufacturers intensively engaged in producing construction materials in Trinidad and Tobago. Construction materials required for constructing the new CSS building, RTU stations and valve chambers are easily procured in the country. Materials and equipment not locally manufactured are mainly the CSS hardware and most of piping materials and fittings. They are usually imported from overseas as have been experienced by WASA through the previous similar projects. Sources of supply and work are presented in the table which follows:

MATERIALS & EQUIPMENT

IMPORTED OR PROCURED LOCALLY

1) Building materials -Cement, sand, cobbles and gravel -Steel bar, roofing materials -Slate, sash, glass, etc.	Procured locally Procured locally Procured locally
2) Valves, meters and gauges	
-PVC & Steel pipes and fittings	Procured locally
-Piping materials (DCIP)	
-Pumps and valves	Imported
-Level and flow meters	Imported
	Imported
-Pressure gauges	Imported
-Piping equipment and tools	Imported
3) Chambers, boxes and local valve control panel s	tands
-Valve chambers	Constructed at site
-Meter chambers	Constructed at site
-Valve control panel stand	Imported
-RTU station	Constructed at site
-CSS building	Constructed at site
4) CSS hardware	
-CSS instruments	Imported
-Graphic panel	Imported
-CRT	Imported
-RTU	Imported
-Uninterruptible power supply	Imported
-Control panel	Imported
Part of Part of	TINDOT COA

The Phase I Project focussed on in this Part III contains following major civil works:

- 1) Earth work including excavation, backfilling, sheet piling and pavement for building RTU station, valve chambers, etc.,
- 2) Concrete work for constructing the new CSS building, RTU stations, valve and flow meter chambers,
- 3) Piping work including cutting, welding, jointing, meter/valve installation on the existing water mains and off-takes,
- 4) Installation of valve control panel stands to encase electrical instruments including construction of the foundation, landscaping, fencing, etc., and
- 5) Installation of CSS instruments in the existing CSS center building and RTU stations.

There are many local contractors officially registered, who are intensively involving in various public works, constructing many modern buildings, roads and bridges in the country. They have experienced construction of waterworks facilities and pipe laying works in the past similar water supply projects.

In consideration of the nature of the civil works contained in the present Project, any special skills and expertise are not required for the construction and installation, except the work item 5) above. Most of civil contractors in the country have sufficient capacity and experiences in such field of the civil work. As for the item 5), manufacturers involvement in the work may be indispensable because of their proprietary nature. It is desirable that local contractors install the CSS instruments under technical guidance and directions by manufacturers.