TABLE F-4-1 NUMBER OF RESIDENTIAL DWELLINGS IN THE FLOOD PROLEMAN (SG. KELUANG)

Flood Frequency; 50-Year Return Flood

Name of	ş	Inundation	Total	0861				2010			
Flood Prone Area	Bash	Depth (cm)	Flood Prone Area (1000 m2)	Share of Residential Area (%)	Area of Residence (1000 m2)	Average Size of Residencial Lot (m2)	Number of Residential Owellings	Share of Residential Area (%)	Area of Residence (1000 m2)	Average Size of Resi- dencial Lot (m2)	Number of Residential Owellings
Keluang	-	0cH-50 505H-c100 1005H-c200 2005H-300 3005H	000000	55555	00000	500 500 500 500 500 500	000000	33333 33333	00000	000 000 000 000 000 000 000	00000
	8	0cHc50 50sHc100 100sHc200 200sHc300 300sH	000000	55555	00000	0000 0000 0000 0000 0000	000000	8 8 8 8 8 8 8 8 8 8	000000	000 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00000
	ო	044-50 505H-<100 1005H-<200 2005H-<300 3005H 7 etel	0.0 1.37.5 0.0 0.0 0.0 0.0	00000	27.5 0 0 0 0 0 27.5	000000 0000000000000000000000000000000	0 8 0 0 0 8 8	9 9 9 9 9 9 9 9 9 9	0 41.25 0 0 0 0 0 0 0	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 8 0 0 0 8 3 0 0 0 0 8
	**	04H-50 505H-4100 1005H-4200 2005H-4300 3005H Total	0 % 0 0 0 % 0 0 0 % 0 0 0 0 % 0 0 0 0 % 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 4 5 6 5 5 6 4 6 6 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6	200 200 200 200 200	0400046	0 0 0 0 0 4 4 4 4 4	0 96.8 8.0 9.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	44 44 44 45 60 60 60 60 60 60 60 60 60 60 60 60 60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	បា	0cH-60 505H-c100 1005H-6200 2005H-6300 3005H Total	120.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0	%0000% 400004	500 500 500 800	4 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8,00000 8,00000	500 500 500 500 500	960006
	v	04H450 50sH4100 100sH4200 200sH4300 300sH	525.0 0.0 0.0 0.0 0.0 0.0	00000	25 0 0 0 0 25	500 500 500 500	50 0 0 0 0 0 50	0 0 0 0 4 4 4 4	50 0 0 0 0	200 200 200 200 200 200 200	000

TABLE F-4-2 NUMBER OF RESIDENTIAL DWELLINGS IN THE FLOOD PRONE AREA BY FLOOD FREQUENCY (SG. KELUANG)

Flood Frequency: 50 Year Return Flood

	- ii o	1	1	T	· · · · · · · · · · · · · · · · · · ·		
	Number of Residential Dwellings	ဂတ္ထမဝင္	000000	000000	255 250 250 250 250	200	250 0 0 0 0 0 0 0 0 0
	Average Size of Resi- dencial Lot (m2)	5000 5000 5000 5000	2000 2000 2000 2000	W W W W W	A A A A A A A A A A A A A A A A A A A	500 500 500 500	9 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Area of Residence (1000 m2)	0 0 0 0 K	000000	99999	0 12 0 0 0 12 25 0 0 0 12 25 0 0 0 12	001 000 001 001	0 12 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2010	Share of Residential Area (%)	2000 2000 2000 2000	0 0 0 0 0 8 10 10 10 10	00000 00000	0.0000 0.0000 0.0000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 8 8 8 8 8 8
	Number of Residential Dwellings	0 / 0 0 0 /	000000	00000	250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000
	Average Size of Residencial Lot (m2)	500 500 500 500 500 500	500 500 500 500 500	500 500 500 500 500	500 500 500 500	500 500 500 500 500	00000000000000000000000000000000000000
	Area of Residence (1000 m2)	0 % 0 0 0 %	\$ 00000	000000	0 0 0 0 125	0 00000000000000000000000000000000000	2000 SS
1990	Share of Residential Area (%)	99999	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 10 0 0 0	00000	00000
⊤ ota	Flood Prone Area (1000 m2)	0.0 17.5 0.0 0.0 0.0	000000	000000	0.0 250.0 0.0 0.0 0.0 0.0	0.0 250.0 0.0 0.0 0.0 0.0	0.0 250.0 0.0 0.0 2.0 250.0
Inundation	Depth (cm)	0-H-50 50sH<100 1005H<200 2005H+300 3005H	0-H-50 505H-100 1005H-200 2005H-300 3005H Total	0~H<50 50.5H<100 100.5H<200 200.5H<300 300.5H	0cHc50 50sHc100 100sHc200 200sHc300 300sH Total	04450 505H<100 1005H<200 2005H<300 3005H 70tal	0 <h<50 50 SH<100 100 SH<200 200 SH<300 300 SH</h<50
ş	Basin	2	ω	o.	o.	=	27
Name of	Flood Prone Area	Keluang		· · · · · · · · · · · · · · · · · · ·			

TABLE F-4-3 NUMBER OF RESIDENTIAL DWELLINGS IN THE FLOOD PROUD FREQUENCY (SG. KELUANG)

Flood Frequency: 50 Year Return Flood

Name of	S.	Inundation	Total	1990				2010			
Flood Prone Area	Qasin	Dopth (cm)	Flood Prone Area (1000 m2)	Share of Residential Area (%)	Area of Residence (1000 m2)	Average Size of Resi- dencial Lot (m2)	Number of Residential Dwellings	Share of Residentia: Area (%)	Area of Residence (1000 m2)	Average Size of Resi- dencial Lot (m2)	Number of Residential Dwellings
Keluang	13	04H-50 505H-100 1005H-200 2005H-300 3005H	0.0 0.0 2.191 0.0 0.0 8.191	2 2 2 2 2	00 8 00 8 00 00 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	002	4 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0	500 500 500 500 500 500 500	00 % 00 %
	*	0~H-60 505H-100 1005H-200 2005H-300 3005H	000000	000000	00-00-	2000 S	000000	4 4 4 4 4 0 0 0 0 0	000000	\$000 \$000 \$000 \$000 \$000 \$000	004004
	r.	04H-50 505H-4100 1005H-200 2005H-300 3005H	000000	8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00000	000 000 000 000 000 000	00000	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	000000	500 500 500 500 500 500 500	00000
	.	0-H-50 505H-100 1005H-200 2005H-300 3005H	0.0 0.0 140.5 0.0 0.0 0.0 140.5	3.00 00 00 3.00 00 00 3.00 00 00	0 0 70.25 0 0 0 70.25	900 900 900 900 900	0 0 141 0 0 141	9 0 9 0 9 0 9 0	8 4,3 0 0 0 0 0 0 84,3	500 500 500 500 500	G G G G G G G G G G G G G G G G G G G
	71	04H-50 505H-100 1005H-200 2005H-300 3005H Total	0.0 231.0 0.0 0.0 0.0	80 80 80 80 80 80 80 80 80 80 80 80 80 8	0 0 0 0 0 0 15.5	500 500 500 500 500	231 0 0 0 0 731	9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 138.6	500 500 500 500 500	277
	e) 	0.4H.50 50sH.<100 10CsH.<200 200sH<300 300sH Total	0.0 250.0 0.0 0.0 0.0 0.0	2 2 2 2 2	ဝတ္ထိခုခ္ဝတ္ထိ	000000000000000000000000000000000000000	000000	45 4	125 0 0 0 0 0 0 125	2009 2009 2009 2009 2009 2009	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE F-4-4 NUMBER OF RESIDENTIAL DWELLINGS IN THE FLOOD PROLE PRONE AREA BY FLOOD FREQUENCY (SG. KELUANG)

Flood Frequency: 50 Year Return Flood

Name of	3	Inomdation	Total	1990				2010			
Flood Prone Area	Basin	Cepth (cm)	Flood Prone Area (1000 m2)	Share of Residential Area (%)	Area of Residence (1000 m2)	Average Size of Residencial Lot (m2)	Number of Residential Dwellings	Share of Residential Area (%)	Area of Residence (1000 m2)	Average Size of Residencial Lot (m2)	Number of Residential Dwellings
Keluang	С	04H-50 505H-100 1005H-200 2005H-300 3005H	2.0 0.0 2.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0	00%00%	009	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	005 005 005 005 005	0 0 250 0 0
	50	04H-50 505H-100 1005H-200 2005H-300 3005H	0.0 0.0 0.0 0.0 0.0	99999	00°00°	00000	၀၀၀ ၀၀၀	००० <u>०</u> ० क्षेत्रक	000000	800 800 800 800 800	2000
	21	04H450 503H4100 1005H4200 2005H4300 3005H Total	0.0 0.0 125.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00	0 1.25 0 0 0 0.25	00000 00000 00000	00000	00000 4444	50 50 50 50	500 500 500 500	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	25	04H450 505H4100 1005H4200 2005H4300 3005H	0 0 0 0 0 0 0 0 0 0 0	0.05 0.05 0.05 0.05 0.05	000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	00000	0 0 0 0 0 0 0 0 0 0 0 0	800000	5000 5000 5000 5000	000000
	23	044-60 505H-100 1005H-200 2005H-300 3005H Total	0.0 72.0 0.0 0.0 72.0	0,15 0,15 0,15 0,15 0,15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22500025	6 0 0 0 0 6 0 0 0 0	0 10 0 0 10 8 0 0 0 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	040004
	24	04H-50 50\$H<100 100\$H<200 200\$H<300 300\$H Total	0.0 0.0 231.5 0.0 0.0	# # # # # # 6 6 6 6 6	0 59,45 0 0 0 0 54.5	500 500 500 500	0 0 <u>6 0</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	០១០០០ លំបានប្រស	0 0 115.75	000 000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	200 0 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE F-4-5 NUMBER OF RESIDENTIAL DWELLINGS IN THE FLOOD PRODE AREA BY FLOOD FREQUENCY (SG. KELUANG)

Flood Frequency: 50 Year Return Flood

to ame!	é	4	Toroi	1990				2010			
Flood Prone	88 sin	Copts (cm)	Flood Prone Area (1000 m2)	Share of Rosidential Area (%)	Area of Residence (1000 m2)	Average Size of Resi- dencial Lot (m2)	Number of Residential Dwellings	Share of Residential Area (%)	Area of Residence (1000 m2)	Average Size of Resi- dencial Lot (m2)	Number of Residential Dwellings
Keluang	25	04H-50 505H-4100 1005H-4200 2005H-300 3005H Tota?	250.0 250.0 0.0 0.0 0.0 250.0	9999	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500 500 500 500 500	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ស្តេស ភេទ ស្តេស ភេទ ស្តេស ភេទ	0 125 0 0 125	000 000 000 000 000 000 000	250
	26	0cH-60 505H-100 1005H-200 2005H-300 3005H Total	0.0 162.5 0.0 0.0 0.0 162.5	22222	0 16.25 0 0 0 16.25	000	3300033	00000 88888	0 81,25 0 0 0 0 81,25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	27	04H-60 505H-6100 1005H-6200 2005H-300 3005H Totai	0.0 0.0 125.0 0.0 0.0	2 0 0 0 0 2 2 2 2 2	62.5 62.5 0 0 62.5	000 8 8 00 00 00 00 00 00 00 00 00 00 00	0022	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.0 6.2.5 6.2.5 6.2.5	500 500 500 500	0 125 0 0 0 125
	26	044-50 505H-100 1005H-200 2005H-300 3005H Total	0.0 0.0 0.0 0.0 0.0 0.0	00000	00000	800 800 800 800	000000	0 0 0 0 0 8 8 8 8 8	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	50 00 00 00 00 00 00 00 00 00 00 00 00 0	125 0 0 0 125 125
	29	04H450 50SH4100 100SH4200 200SH4300 300SH Total	0.0 0.0 0.0 0.0 0.0	200000 200000 200000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	008 008 008 008 008	0 10 0 0 10 10	୧୯ ମ ମ ମ ମ ୧୯ ମ ମ ମ ମ	ဝ ^ဆ ု ရာ ဝ ဝ ^{ဆု} အ ရာ ဝ ဝ ဝ ^အ အ	900 900 900 900 900	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	o e	04H-50 505H-4100 1005H-6200 2005H-6300 3005H Total	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0000	000000	009 009 009 009	00000	2000 2000 2000 2000	0 7.75 0 0 0 0 7.75	000000000000000000000000000000000000000	00000
Grand Total		0.44.40 50.5H.4100 100.5H.4200 200.5H.4300 30.05H	245.0 2,270.0 1,318.5 0.0 0.0	• • • • •	49.0 497.8 367.8 0.0 0.0		98 998 736 0		98.0 1,067.0 616.2 0.0 0.0		196 2,134 1,232 0 0
					2		630'		2. 07.		3,552

TABLE F-5 NUMBER OF RESIDENTIAL DWELLING IN THE FLOOD PRONE AREA BY FLOOD FREQENCY (GEORGETOWN DRAINAGE)

Flood Frequency; 10-Year Return Flood

	T		·····	·	
	Number of Residential Dwellings	141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	513 417 28 0 0	97 105 194 142 214 751	750 555 223 142 214 214
	No. of Persons per House (persons)	6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6	8 1.0 0 8 1.	@ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	
	Population Area per Density Person (person/ha) (m2/person)	ო თ თ თ თ ო ო ო ო ი	4 4 4 4 4 W W W W W		
2010	Population Density (person/ha)	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	
	Number of Residential Dwellings	133 32 0 0 0 0 165	483 392 27 0 0	91 99 183 134 201 708	707 523 210 134 201
Ī	No. of Persons per House (persons)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	@ @ @ @ @ & & & & & & & & & & & & & & &	
	Population Area per Density Person (person/ha) (m2/person)		4 4 4 4 4 លលលល	50 50 50 50 50 50 50 50	
1990	Population Density (person/ha)	0000	220 220 220 220	120 120 120 120	
Total	Flood Prone Area (ha)	2.0 0.0 0.0 0.0 0.0	14,4 11,7 0.8 0.0 0.0 26.9	5.0 5.4 10.0 7.3 11.0	22.3 17.8 10.8 7.3 11.0 69.2
Inundation	Depth (cm)	0.44.50 50sH.4100 100sH.4200 200sH.4300 300sH Total	0 <h+50 50sH<100 100sH<200 200sH<300 300sH Total</h+50 	04H450 50≤H4100 100≤H4200 200≤H4300 300≤H Total	0cHc50 50sHc100 100sHc200 200sHc300 300sH Total
qns	Basin	ი. ე	S - 18	N-12	
Name of	Flood Prone Area	Georgetown	•		Total

TABLE F-6 TOTAL NUMBER OF HOUSES IN FLOOD PRONE AREA BY FLOOD RETURN YEAR

(SG. PINANG)

	-1			(U	nit; houses)	
Year	Water Depth cm	5-year Return Flood	10-year Return Flood	30-year Return Flood	50-year Return Flood	100-year Return Flood
1990	041420	.3,341	2,888	1,612	1,522	621
	50≤H<100	1,575	6,726	3,740	1,606	1,514
	100≤H<200	371	8,033	13,719	12,121	6,735
	200≤H<300	0	358	9,237	11,138	9,756
	300≤H	0	13	1,212	7,033	16,669
	Total	5,288	18,019	29,520	33,421	35,296
2010	0 < H < 50	3,547	3,411	2,125	1,745	690
	50≤H<100	1,672	7,493	5,151	2,273	1,603
	100≤H<200	394	8,105	16,380	15,912	9,353
	200≲H<300	0	298	10,308	12,303	12,020
	300≤H	. 0	1.4	1,282	7,646	18,194
	Total	5,613	19,321	35,246	39,880	41,860

(SG. KELUANG)

	7		<u> </u>	<u>(</u> U	nit; houses)	
Year	Water Depth cm	5-year Return Flood	10-year Return Flood	30-year Return Flood	50-year Return Flood	100-year Return Flood
1990	0 <h<50< td=""><td>277</td><td>541</td><td>423</td><td>- 98</td><td>48</td></h<50<>	277	541	423	- 98	48
	50≤H<100	37	137	541	996	872
	100≤H<200	0	0	3	736	888
	200≤H<300	0	0	0	0	292
	300≤H	0	0	0	0	0
	Total	314	677	967	1,829	2,098
2010	0 <h<50< td=""><td>579</td><td>1,010</td><td>1,097</td><td>196</td><td>96</td></h<50<>	579	1,010	1,097	196	96
	50≤H<100	420	620	1,049	2,134	1,936
	100≤H<200	0	0	100	1,232	1,354
	200≤H<300	0	0	0	0	445
	300≤H	0	0	0	0	0
	Total	999	1,630	2,246	3,562	3,831

(GEORGETOWN DRAINAGE)

Year	Water Depth	5-year Return Flood	10-year Return Flood
1990	0 <h<50< td=""><td>525</td><td>707</td></h<50<>	525	707
	50≤H<100	277	523
	100≤H<200	70	210
	200≤H<300	0	134
	300≤H	0	201
	Total	872	1,775
2010	0 <h<50< td=""><td>558</td><td>750</td></h<50<>	558	750
	50≤H<100	294	555
	100≤H<200	74	223
	200≤H<300	0	142
	300≤H	0	214
	Total	926	1,884

TABLE F-7 NUMBER OF HOUSES IN FLOOD PRONE AREA AND WATER DEPTH FOR 24 RIVER BASINS

				Number of Houses	Houses										Flood v	Flood Water Level (m)	(E) 0			
	Number & Name of River	Total Area	1990						2010										- w	Ground Elevation
			Flood	Resid	Residential Area		Commer-	Industry	Flood	Reside	Residential Area		Commer-	Industry	۲/ ۲	· •	(6)	, C	0017	E)
			Area	Tawn	Village	Sub. Total			Area	Town L	Village	Sub. Total				-			3	
	8																		-	
~ ~			275	so '	70	7.5	0	0	275	-	1 49	160	0	0	6.0	0.1	Ξ	1.2	6.	3.2
m 4	Sg. Teluk Bahang Se. Bata Ferringshi		331	<u></u> ⊂	308	356	0 0	0 0	331	e c	308	326	د د	00	7.0	6.0	<u>.</u> .	- 0	ci :	5.5
-			9.6	0	E	-	. 0		, co	30	. e	ο e -	, 0	. 0	9 0	. 6	, 6 , 3	5.4.0	4 4	1 6 1 6
σι			61.	o !	100	8 5	0	0	119	0	100	100	თ	0	0.5	0.2	0.3	6.4	4.0	2.3
<u>~</u> α	Sg. Kecil		106	<u>ო</u> დ	69	350	m c	о c	106 086	9.α	986	102	00	0 0	9.0	7,0	7.0	8,6	o 1	e. c
			<u> </u>	67	4 -	£ 5	9 0		5	0 2	7 7 7	رن د د	> 7.	, c	2 C	ם כ ס כ	o e	00	. 0	n (1
2			125	87	30	117	9		125	87	30	1.5	. 40	. 0	0.6		5:0	0.8	. 8.0	2.5
Ξ			25	œ	58	37	0	0	25	œ	53	37	0	0	0.3	0,4	0.5	0.9	0.7	8.
C .	Sg. Babi		156	15	81	96	0	0	256	15	g) 	96	0	0	6.0	9.0	2.0	7.0	9.9	2.7
-		_	7	σ σ	c	46	c	c	\$ 5	76	c	ŏ	c	_	•	ti	4		0	•
	13-2		350	250	0	250	0	. 0	350	333	. 0	333	, 0	0 0	, c	i ci	i ri	: 4:	jω	- 4 5 S
			444	344	0	344	0	0	444	427	O	427	0	0						٠.
* -	+ og. Dua besar 14.1		4	ŭ	ò	6	•			6	ä			•	,			·		ı
	14.2		450	ñ 0	369	9 69 - 69	. 0	> 0	4 C	n c	4.6	9 00 10 00 10 10 00 10 0) (-	- α - c		₫ •		٠. د د). 0
	14.3		696	63	171	234	0		696	125	0 0 0 0	464	9 0	. 0	9 0	. C	. 0	9.0		. 4
	•••		1582	132	634	766	0	0	1538	194	802	966	0	. 0					, .	
بن بن ا	Sg. Nibong Besar		က တိုင် တို	134	e 0	327	0	0 0	519	115	166	281	0	46	0.1	<u>.</u>	د. ق	1.5	9.	2,3
				•							•									
- 0			938	88	84	172	. 0		886	346	330	676	٠ .	. с	. Q	. O	, 6	. 6		٠ .
- 6	Sg. Kampumg Masjid	_	456	O	325	325	0	0	456	Đ	288	288	. 4 E	. 0	0.5	5.0	5,0	9.6	9.0	4,4
2	8		169	0	88	88	0	0	.169	0	163	163	0	0	6.0	1,0	1.2	5.1	4.	8.
ζ.			694	0	431	431		0	694	D	500	900	60	0	1,4	5.	1,6	1.7	9.	1,1
55			256	0 ;	00:	100	0	0	256	0	225	225	0	0	6.9	6.0	6.0	1.0		6.
3 0	Sec. Mail		4 6 6 7	e C	000	0/2	0	<u> </u>	4 20	36	356	392	0	0	o o	0.0	 	0.1	 	2.1
<u>,</u>			769	0	363	363	0		769	0	363	363	c		2	6	7	ر. در	u v	c·
	24-2		719	0,	156	156	6	-0	719	, 0	156	156	, 0	· o	·	· -	1 0	; <u>.</u>	· ·	. o
			1488	0	519	513	0	. 0	1488	0	513	519	0		<u>:</u> ,	<u>:</u> ,	<u>.</u>	<u>,</u>	· ·	o.
23			•																	
26	Sg. Gertak Sanggul	_																		
								_											_	

TABLE F-8 FLOOD DAMAGE RATIO (FOR SG. PINANG, SG. KELUANG AND GEORGETOWN)

Water Depth	-	Flood Damage Ratios	ñ	
(mo)	House	Househoid Articles	Commercial Assets*	Commercial Stocks*
0 <h<50< td=""><td>0.004</td><td>0.057</td><td>0.052</td><td>0.127</td></h<50<>	0.004	0.057	0.052	0.127
50≤H<100	0.030	0.096	0.121	0.276
100≤H<200	0.068	0.135	0,161	0.379
200≤H<300	0.112	0.336	0.208	0.479
300≤H	0.170	0.687	0.243	0.562

Remarks; * Figures are the same as those used in "The Study on the Flood Mitigation of the Klang River Basin."

TABLE F-9 ESTIMATION PROCEDURE OF FLOOD DAMAGE POTENTIAL FOR HOUSE AND COMMERCIAL ASSETS (50 YEAR FLOOD)

Water	No. of houses			Average value		Flood damage
depth	in flood prone	House value	Depreciation	of house	Damage ratio	potential
(cm)	area	(M\$)	ratio	(MS)		(Million MS)
0 <h<50< td=""><td>1,522</td><td>008'69</td><td>0.2</td><td>13,960</td><td>0.004</td><td>0.1</td></h<50<>	1,522	008'69	0.2	13,960	0.004	0.1
50≤H<100	1,606	69,800	0.2	13,960	0:030	7.0
100≤H<200	12,121	69,800	0.2	13,960	0.068	11.5
200≤H<300	11,138	69,800	0.5	13,960	0.112	17.4
300≤H	7,033	69,800	0.2	13,960	0.170	16.7
Totai	33,420					46.4

	No. of houses	Share of	Share of	No. of			Average		Flood
Water	in flood prone	commercial	commercial	commercial	Assets value	Depreciation	aseets	Damage ratio	damage
depth	area	house	dous	houses in flood		ratio	value	•	potential
(cm)				prone area	(MS)		(M\$)		(Million M\$)
0 <h<50< td=""><td>1,522</td><td>0.21</td><td>0.43</td><td>137</td><td>165,000</td><td>0.2</td><td>33,000</td><td>0.052</td><td>0.2</td></h<50<>	1,522	0.21	0.43	137	165,000	0.2	33,000	0.052	0.2
50≤H<100	1,606	0.21	0.43	145	165,000	0.2	33,000	0.121	0.0
100≤H<200	12,121	0.21	0.43	1,094	165,000	0.2	33,000	0.161	5.8
200≤H<300	11,138	0.21	0.43	1,005	165,000	0.2	33,000	0.208	6.0
300≤H	7,033	0.21	0.43	635	165,000	0.2	33,000	0.243	5,1
Total	33,420			3,017					18.6

TABLE F-10

ANNUAL COST OF ROAD RESURFACING BY MPPP, 1985 - 1989

5 E # # # # # # # # # # # # # # # # # #		Road Length (yard)	Width (yard)	Road Area (sq. yd)	Unit Cost of Resurfacing (MS/sq.yd)	Total Cost of Resurfacing (1000 MS)
29.85 5.	Jn. Jelutong Jn. Patarii Jn. Burmah Jn. Macalum Jn. Argyli	8622 2856 11901 1114 2450	8 0 0 0 0 8 0 0 0 0	301,770 74,256 392,733 33,420 83,300		
	Total			885,479	7.70	80 80 10
1986	Jn. Cacalister Tek Soon Street Gurney Drive Total	9905 1779 8807	700 4	366,485 58,707 387,508 812,700	7.70	5,258
1987	MacNair Street Chin Ho Square Jn. Lim Chwee Loong Jn. Air Itam Total	3057 412 2212 10867	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	110,052 14,008 92,904 402,079 619,043	7.70	4,767
1988	Jn. Asson Jn. Sato Kramat Jn. Sato Kramat Jn. Perak Jn. Riga Jn. Riga Jn. Magazire Jn. Transfer Jn. Transfer Jn. Bagan Jermal	4082 5998 21051 771 818 1901 2313	6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	151, 034 2 28, 912 15, 420 15, 420 91, 450 91, 450 80, 955 80, 955		
0) 80 0)	Jn. Birch Jn. Ibboston Jn. Jobsselton Lebuh Raya Kesselton Jn. Burmah Jn. Chowrasta Kuala Kangsar Road Lebuh King	671 104 2983 871 11901 401 999	+ + + + + + + + + + + + + + + + + + +	1,316,658 16,560 53,654 15,674 14,035 31,968	7.70	86.10
Average Expe	Total Average Expenditure for Resurfacing of Road			596,845	7,70	4,596 6,515

Source

TABLE F-11 LOSS OF EARNING OPPORTUNITY -- BUS COMPANY

		Operation								Revenue	Flood Damage			Average Period	Estimated Reduction of
Bus Company	No. of Bus Route	Total Length of Bus	No. of	No. of Trips per Day		Operation Days per Year	Operating Hour	Peak Hour	Peak Hour Ratio	Average of Daily	Revenue R (% of Dail)	Revenue Reduction due to Flood (% of Daily Earning)	F190d	of Service Failure	Revenue due to Flood (Habitual Flood)
		Route	Fleet	One Bus	Total					Revenue	Rainy Day	Rainy Day Habitual Flood 1984 Flood	1984 Flood	·	
1 Lim Seng Seng Bus Com.	-	,	10	12		365	06:00-22:30	15:00-16:00		2300	15%	40%	n.a.	2-3hrs/flood	5,750
2 Hin Bus Com.	-	თ	92	,	230	က ဖ ဟ	05:15-01:00	06:00-08:00 12:00-14:00 17:00-19:30	•	00008		10%	more than 20%	•	000.8
3 Sri Negara Bus Com.	,		б	ത		8 8 8	05:30-24:00	06:30-10:00 15:30-19:30	%09	3500	%	30%	100% 1.5 days	i	8,750
4 Penang Yellow Bus Сотр.	•	•	,	09		365	08:30-24:00	06:30-08;00 12:00-14:30 16:00-18;30	%52-02	8000		5%	100% 2-3 days		4,000
5 MPPPs	13	107.64	82		701	365		07:00-09:00	90%	11800		25%		100 hrs/year	29,500
Total		·					•	16:30-20:00		33,600	•				56,000

Source; Interview Survey, the Study Team, July 1990.

TABLE F-12 LOSS OF INCOME OPPORTUNITY -- TAXI AND TRISHAW

ltems		Unit	Habitual Flood	·
			Taxi	Trishaw
No. of Vehicles		(vehicles)	524	1,728
Per One Vehicle	Average Daily Earning	(M\$/day)	0.2	08
	Reduction Rate in Earning due to Flood	(%)	15	<u>ب.</u> بې
	Reduction in Daily Earning due to Flood	(M\$)	10.5	4.5
	No Working Days per Year due to Flood	(days/year)	10	10
	Yearly Loss of Earning due to Flood	(M\$/year)	105	4 3
Loss of Earning Opportunity	pportunity	(M\$/year)	. 55,020	77,760

Source: Taxi Association of Penang, Trishaw Association of Penang

TABLE F-13 VEHICLE OPERATING COST BY TRAVEL SPEED, 1990

21.9

21.5 21.5

21.9

22.3

23.3

24.2

25,0

25.9

(unit; cent/vehicle-kilometer)

48.3

45.7

43.0

41.7

43.1

44.3

45.7

46.9

48.3

63.4

59.9

56.4

54.7 56.5

58.1

59.9

61.5

63.4

Travel Motor-Sedan Bus Lorry Speed (kph) cycle 5 ' 8.7 28.2 140.8 184.4 26.9 112.1 147.1 10 8.2 15 7.6 25.9 88.6 116.2 73.0 95.7 20 7.0 24.6 25 6.7 23.8 62.6 82.1 23.3 54.7 71.8 30 6.3 50.9 66.7 22.3

6.1

5.9

6.1

6.2

6.3

6.6

6.9

7.2

REGISTERED VEHICLE NUMBER IN PENANG STATE, 1985 TABLE F-14

ltem	Motor- cycle	Sedan	Bus	Lorry
Registered Vehicle Number in Penang State 1985	251000	116000	19400	1600
Composition Share (%)	64.7	29.9	5.0	0.4

Source:

35

40

45

50 55

60

65

70

75

80

Feasibility Study of Computerized Area Traffic Control System in Penang, Malaysia, Final Report, Supplementary Volume, January 1988, 1988, JICA, p.3-11.

WEIGHTED VEHICLE OPERATING COST TABLE F-15

Travel Speed (kph)	Weighted VOC (cent/CPU-km)
10	15.09
40	9.84

LOSS IN TRAFFIC ECONOMY TABLE F-16

37.6 2000 Loss in Vehicle Operating Cost (VOC) Loss in VOC (1000 MS) 1890 24.7 VOC (M\$/1000 km) km/h
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9</t 5 km/h 5 Loss in Travel Time 2000 305.8 (1000 M\$/year) 1990 201.2 Time Value (M\$/ oss in Time Value Ö Runnig Speed (km/h) 40 $\begin{array}{c} 7.94 \\ 7.$ 2000 CPU (1000/day) $\begin{array}{c} 8.6 \\ 2.6 \\$ 1990 Length of Road (m) Jn. Sungai Pinang Jn. Dato Keramat Jn. Zainał Abidin Jn. Macalister Jn. Patani Jn. Jelutong Jn. Free School eboh Carnaryon Jn. C. Y. Choy Brick Kiin Road Lorong Jasjid Negeri Jn. Scottland Jn. Trengganu Jn. Hamilton Fransfer Road Name of Road tan Jn. Anson Jn. Ross Jn. Perak Jn. Ayer Total

€ 🕄

Note;

Fiooded day is set to be 10 days/year. Average running speed of the vehicles is set to be 40 km/h at non-flood day, while 20 km/h at flood days.

TABLE F-17 SUMMARY OF DIRECT DAMAGE AND INDIRECT FLOOD DAMAGE

(unit: M\$)	Authority Related	ЈКВ, МРРР	Мррр	- KR	277	2	dddW	dddW	ddW	Bus Companies	Taxi Association	Trishaw Association	МРРР		Interview Survey	202
٠.	1984 Flood	0	3,722,000	0	,	0	0	0	0	,		ı	1	•	0	0
	Habitual Flood	0	3,722,000	0	0	0	0	0	0	96,000	55,020	77 760	201,000	24,000	0	0
	ltems	Flood Damage of Road	Deterioration of Road Structure	Flood Damage of Bridge	Flood Damage of Electric Facilities	Revenue Loss of Electricity	Flood Damage of Gov. Buildings' Facilitie	Flood Damage of School Facilities	Flood Damage of Hospital Facilities	Revenue Loss of Bus Service	Revenue Loss of Taxi	Revenue Loss of Trishaw	Traffic Loss (Time Loss)	Traffic Loss (VOC Loss)	Sales Loss of Shop	Sales/Production Loss of Factory
	ð	-	O)	ო	4	ı,	φ	7	89	Ø	9	-	57	ნ	4.	r.

TABLE F-18-1 FLOOD DAMAGE POTENTIAL BY DAMAGE ITEM AND FLOOD FREQUENCY (SG. PINANG)

							~	unit:	그);	11. S	1990 Pr	ices)
USBSK6 ITCK			1990			_			2010			,
	1/1.1	1/5	1/10	1/30	1/50	1/100	1/1.1	1/5	1/10	1/30	1/50	1/100
A. General Property												
(1) Houses	•	•	٠	۳.	•	Ł.3		•	•	φ.	ď,	۳,
(2) Household Articles	0.6		8°.	27.3	45.7	69.2	0.6	3.9	60	31.4	57	78.7
(3) Commercial Assets	•	•		ı,	9	ď			ري	ω,	2	ć
(4) Commercial Stocks	•		6	2	•	ω,	•			ω.	٣,	တ
Sub-total	•	•		8	_;	6		•	ιn	m	m	ω
B. Public Property												1
(1) Road	٠	•	•	•	•	•		•				
(2) Bridge	•	•	•	0	•	0	•					ς,
(3) Electricity Facility	•	•			•	•	•					
(4) Telecomm. Facility	٠	•	•	•	•	•	•	•	٠	•	E	•
(5) School, Hospital	•	•			•			•		•		
(6) Gov. Building Facility	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
Sub-total	٠	•		•	•							
C. Agricultural Products	0.0	٠	0.0	l٠	١.	٠.	١.	١.	٠.		c	١.
D. Income/Sale Loss							1	Ī	ĺ	1	[1
(1) Shop Revenue	•	•				•	•		٠			
(2) Factory Production	٠	٠	•	•	•	•	•		•	•	•	
(3) Bus Services	0.1	0.2	0.7	E.	 .5	1.7	0.1	0.3	1.1	2.0	7 2	2.6
(4) Taxi Services	•	•	•	•	•	•	•	•	•		•	
(5) Trishaw Services	•	•	•	•	•		٠	•				
Sub-total	•	•		rt.	•	•	•					
E. Vehicle's Running Cost							Ì	i	į .		1	ı l
(1) Operating Cost	•	•	•	9.0	•				Ω 7	•		•
(2) Time Cost	0.2	ල ව	2.7	<u>م</u> .	5.	6.1	co en					
Sub-tota]	- 1	- 4	3.1	ກ ເນ	6.4	•	0.3	0.	4.6	ω 	6	
	6.4	19.1		198.7	259.1	316.1	6.7	20.2		۱ ۱	١.	352.2
Ţ	als of	Gen	Prop	rty	9r 1.	ear re	urn fl	ood are	estima	pai		
pased on Ilood prone	2 2 2 2 3	in propor	tion	with th	๙	5-year r	eturn f	lood.				

TABLE F-18-2 FLOOD DAMAGE POTENTIAL BY DAMAGE ITEM AND FLOOD FREQUENCY (SG. KELUANG)

								นกit; แ	million	MS in	1990 Pr	ices)
Damage Item			1990						2010		·	
,	1/1.1	1/5	01/1	1/30	1/50	1/100	1/1.1	1/5	1/10	1/30	1/50	1/100
A. General Property							,					
(1) Houses	•	•	٠	•	•		•		٠			دع
(2) Household Articles		0.2	ე შ	0.8	2.2	23	9.2	1.1	12.7	17.6	29.4.	32.1
) Commercial Asset	•	•		•			٠		Ċ	Ż	. •	
) Commercial	•	•		٠		٠	•			€3	•	. '
Sub-total	•	•	•	•	•	٠	•		•	•	•	•
(1) Road	0.0	٠							•	. •	٠	٠
~	•	٠				•	٠		٠	*		• .
(3) Electricity Facility	0.0	0.0	0	0.0	0.0	0.0	0.0	C . C	0.0	<u>ස</u>	ස ස	0.0
elecomm. Faci	•				•				•		•	
) School, Hospi	•	٠			•				•		. •	
.lding	6	٠		•	•	•	٠	٠	4	•	•	٠
Sub-total	•	•	•	•		٠				•	•	•
C. Agricultural Products	•	٠						• 1	- 1		া	•
ome/S												
(1) Shop Revenue	0.0	٠	4	•		•				•	•	0.0
Fa (•	•	•	•	•				•	•	•	
) Bus	0.0			•		÷	2.		٠		٠	
~	0.0	0.0	0.0	D.	0	о О	0.0	0.0	ස ස	g.	ස ස	ස ස
) Tri		٠	•		•	•			٠	•	•	٠
Sub-total	0.0	•	• • •	- 4	•	- 1	•		•	- +	•	•
hi												
) Operating Cos	0.0	•		•	٠	,		•	٠	٠		٠
me Cos	0.0	ص ص	0.0	0.0	O. O.	0.0	0.0	0 0	0.0	0.0	ස ස	ස ස
Sub-total	0.0	٠	-1	+	•	-4		•	6	=	္ပ	5
Grand Total	0.1		•	•	•		•	•	•	•		64.8
	4	1	1				ı	l	7	1 - 4		

Remarks: Flood damage potentials of "General Property" for 1.1-year return flood are estimated based on flood prone area in proportion with that for 5-year return flood.

TABLE F-18-3 FLOOD DAMAGE POTENTIAL BY DAMAGE ITEM AND FLOOD FREQUENCY (GEORGETOWN DRAINAGE)

		0661				7
	1/1.1	1/5	1/10 1	1/1.1	1/5	1/18
A. General Property						
(1) Houses	0.1				6.4	2
(2) Household Articles	0.2	0.8	2.7	0.2	9.0	
A.	0.1		L. 3		0.5	e-i
C/3	0.2		6.		0.7	6
Sub-total	0.7		Б.		2.3	(C)
B. Public Property			<u></u>			
(I) Road	0.4	1.1	 	0.4		tr:
(2) Bridge	0.0	0.0	0.0	0.0	0.0	· C3
(3) Electricity Facility	B.0	0.0		0.0	0.0	6
(4) Telecomm. Facility	0.0	0.0	0.0	0.0	0.0	C
(5) School.Hospital	0.0	0.0	٠.	0.0	0.0	
_	0.0	0.0	0.0	0.0	0.0	· 🖨
Sub-total	9.4	1.1		0.4	← ,	· it)
 Agricultural Products 	0.0	0.0	1 0.0	0.0	0.0	O
D. Income/Sale Loss				1	i	
(1) Shop Revenue	0.0		0.2	0.0	1 0	0
(2) Factory Production	0.0			0.0		0
(3) Bus Services	0.1	0.2	0.7	0.1	0.2	p=4
(4) Taxi Services				0.1		-
(5) Trishaw Services	0-1		1.0			-
Sub-total	0.2		•	0.3		**
					1	
(1) Operating Cost	0.0	0.1	6.3	0.0		8
(2) Time Cost	0.2	0.6	2.7	0.3	g.	4
Sub-total	0.2	0.7		0.3	0.1	4
Grand Total	:. <u> </u>	4.6	- 5	000	5 &	22

TABLE F-19 FLOOD DAMAGE POTENTIAL BY FLOOD FREQUENCY

(Sg. Pinang)

					<u>(unit: mil</u>	lion M\$ in	1990 Prices)
!	Year	l.I-year	5-year	10-year	30-year	50-year	Annual Average
-		Return	Return	Return	Return	Return	Flood Damage
		Flood	Flood	Flood	Flood	Flood	Potential !
	1990	6.4	19.1	94.9	198.7	259.1	27.6
_	2010	6.7	20.2	105.4	219.9	287.4	30.1

((Sg. Keluang)

,				<u>(unit; mil</u>	<u>lion M\$ in</u>	1990 Prices)
Year	1.1-year	5-year	10-year	30-year	50-year	Annual Average
!	Return	Return	Return	Return	Return	Flood Damage
	Flood	Flood	Flood	Flood	Flood	Potential
1990	0.1	0.4	0.9	1.9	5.6	0.4
2010	4.7	13.9	27.4	37.2	58.9	11.4

(Georgetown Drainage)

		(uni	t: million 45 in	1990 Prices)
. Year	1.1-year	5-year	10-year	Annual Average
	Return	Return	Return	Flood Damage
!	Flood	Flood	Flood	Potential
1990	1.5	4.6	19.1	3.4
2010	! 1.8	5.4	22.2	3.9

TABLE F-20 RESULT OF INTERVIEW SURVEY--CAUSE OF FLOOD BY ZONE

Zone	High Tidal Level	Narrow River	Low Clearance of Bridge	Floating Debris	High Water Level of River Causes Reverse Flow of Drainage	Floating Debris	High Tidaí Level	Narrow River	Low Clearance of Bridge	Floating Debris	High Water Level of River Causes Reverse Flow of Drainage
	1-A	1-B	1-0	1-D	2-A	2-B	3-A	က် က	ဗ	3-D	ь. Ш
1-1	# 60	ဗ	₹	56	e	8	7	0		4	8
1-2	£	თ	O	10	4	ά	0	ო	***	ო	ო
1-3	17	8 8	+-	1.8	20	o	4	0	0	ω	თ
1-4	90	හ හ	Ø	۲	o	4	m	ဖ	O	ω	61
£.5	ø	32	٥	2 2	42	cs cb	4	20	O	ro ro	co
÷.	σ •	æ,	0	Φ	6	4	4	ĸ	-	္ဖ	8
1-7	4 60	ფ	ហ	ဖ ဗ	ю	& I	-	1-	4	0	ಹ
1-8	19	20	.	10	59	25	21	23	O	<u>ო</u>	Ø ₩
თ +	47	32		9.4	57	5 3	29	23	O	, 6	24
1-10	10	19	23	4 +	တ္	4 ռ	ო	ω	₩	. 4	61
TOTAL	223	258	16	176	242	188	91	108	10	6	7.9

Figures

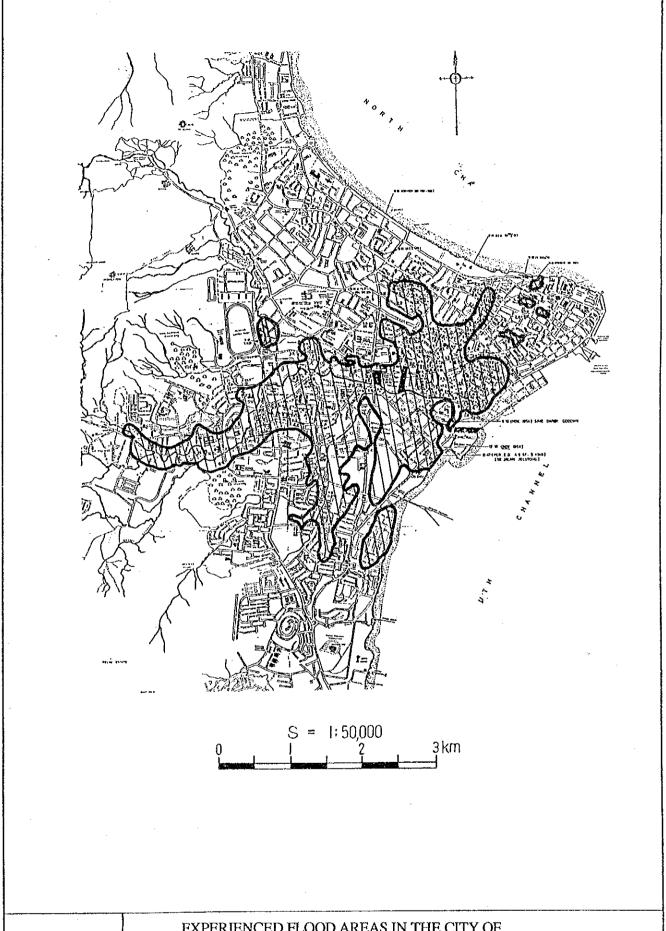


Fig. F-1

EXPERIENCED FLOOD AREAS IN THE CITY OF GEORGETOWN

THE STUDY ON FLOOD MITIGATION AND DRAINAGE IN PENANG ISLAND

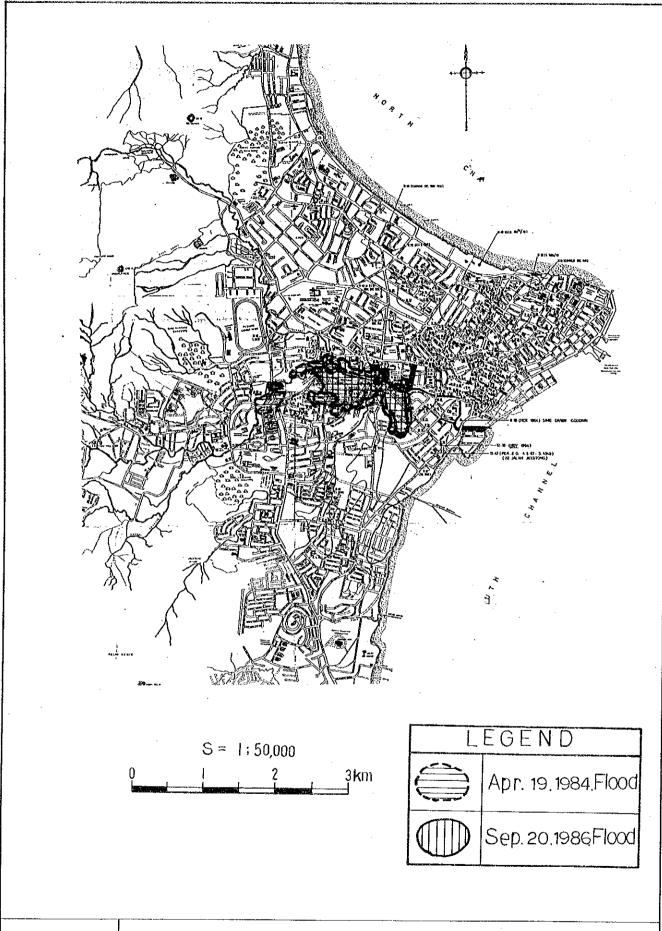
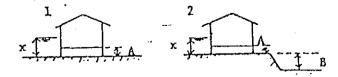


Fig. F-2

FLOOD AREAS IN GEORGETOWN IN 1984 AND 1986


THE STUDY ON FLOOD MITIGATION AND DRAINAGE IN PENANG ISLAND

(APPENDIX 1: INTERVIEW SHEET-1)

THE STUDY ON FLOOD MITIGATION AND DRAINAGE IN THE PENANG ISLAND

Subje		Flood/Inundation Damage in the Penang Island		Date;		Sep.,1989
	utive gency:	JICA STUDY TEAM in cooperation with SDID, Penang		Area Coo and Reg.l Interview	No	
Interv	viewee	's Address and Signature:				
A. Wa	ter De	pth	Annual	Flood	Severest	Flood
A-1	And i	ur house inundated annually? s submurged in the severest year?	***************************************	es, No		5, No
A-2	Check	the items below;		j		
	н.	Type of house/building	1, 2, 3	, 4		
	A.	Height of the Floor from the ground	Α.	cm	Α.	cm
	в.	Height of the elevated ground	В.	cm	В.	cm
	x.	Maximum water depth	х.	cm	x.	Cm
		(Calculate!)	X-A	cm	X-A	cm
A-3	Durat	ion (on the floor)		hours days		hours days
A-4		any times is your house ated annually?		times /year		

- A-5-1 What do you think causes the flood/inundation so severer, or makes the flood/inundation occur so frequently? Please encircle only one alternative appropriate.
 - 1. Caused by overflow of river
 - 2. Caused by overflow of drainage
 - 3. Caused by overflow both of 1. and 2.
 - 4. Others (specify _____
- 1, 2, 3, 4
- A-5-2 If interviewee has clear idea about the questions below, identify the appropriate cause?
 - If 1 in A-5 is selected, what is its cause?
 - 1-a high tidal level (which prevents river water from flowing into the sea)
 - 1-b river is too narrow
 - 1-c bridge prevents the water flow into the sea smoothly
 - 1-d so many floating debris

1-a, 1-b, 1-c, 1-d

- If 2 in A-5 is selected, what is its cause?
 - 2-a high level of river causes the reverse flow of the drainage channel
 - 2-b so many floating debris

2-a, 2-b

- If 3 in A-5 is selected, what is its cause?
 - 3-a high tidal level which prevents river water from flowing into the sea
 - 3-b river is too narrow
 - 3-c bridge is the obstacle to let the water flow smoothly
 - 3-d so many floating debris
 - 3-e high level of river causes the reverse flow of the drainage channel

3-a, 3-b, 3-c, 3-d, 3-e

B. House & Value

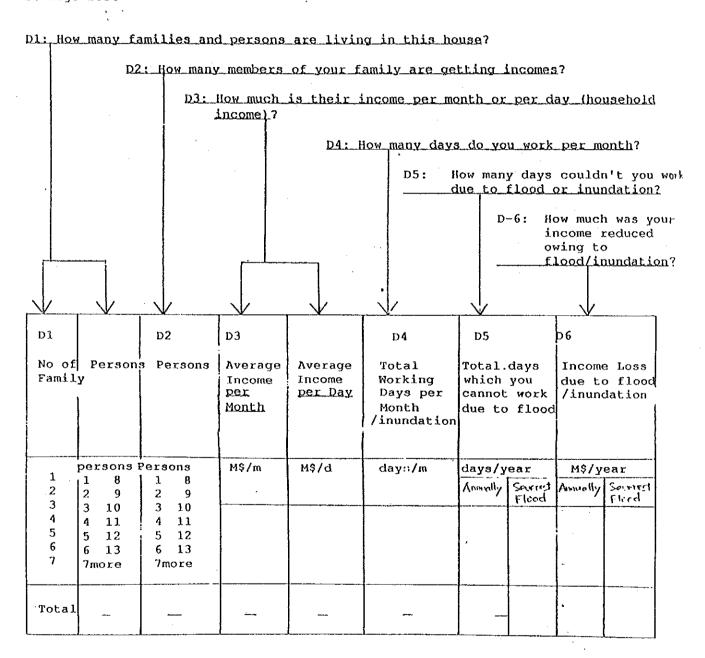
B-1	How wide is Housing/ground the area floor (excludin garden)	g = () M.x() M
B-2	What is main material of your house's walls?	1. Wood 2. Brick/Cement/Stone
в-3-1	How many years ago was this house constructed?	years ago
в-3-2	Can you remember how much was the constructin cost of this hous (or) If you re-construct this house no how much does it cost (at present	(or)
в-3-3	Can you estimate the present valu of this house at present?	e M\$

C. Assets Value and Flood/Inundation Damage

Please estimate present value of the property in this house? (How much does it cost?) Was any item below damaged by flood/inundation? If so, please check the damaged items and estimate their damage value;

	Value	Flood Da	amage
	Whole Property Value	Annual Flood	Severest Flood
Furniture (Desk, table, sofa, chair, word robe, buffet, carpet etc.)	мҙ	м\$	м\$
Clothes, dresses	м\$	м\$	м\$
Kitchen commodities	мş	м\$	м\$
Electric equipments (TV, Video, Radio, Washing Machine, Refrigirator etc.)	мş	м\$	ms
Car, Motorcycle Bycicle	м\$	м\$	м\$
Others	м\$	мѕ	, M\$
Total (calculate!)	м\$	и\$	мş

C-1-b


House

Which actions was required for your house maintenance, repair or new construction?

How much did it cost?

Annual Flood	Severest Flood
Nothing Repair New const.	Nothing Repair New const.
м\$	мѕ

D. Wage Lost

E. Policy Preference

Question:

I will refer two policy alternatives. Question is, "Which of the two policies you think the Government should give the higher priority?"

Recording Sample:

In case of comparison between (A1) and (B2), if (A1) is given priority, write "A" in the cell, and if (B2) is given priority, write "B" in the cell.

							· · · · · · · · · · · · · · · · · · ·
	policy	B-1 Housing Develop- ment	B-2 Drainage System Improve- ment (no flood)	B-3 Public Transport Improve- ment (more bus) (and taxi) (services)		B-5 Road Network & Traffic Improve- ment (no traffic	ment
	Housing Development			·			
Λ2	Drainage System (no flood)	, married and					
Λ3	Public Transport System (more bus services)	S hanada ayak	to reservois				
λ4	River/Sea Water Purifi- cation						
	Road Network & Traffic Improvement o traffic jam)		**************************************		gast-harrin		
Λ6	Sewage System Improvement			<u></u>	5	Nicos and	

(APENDIX 2; INTERVIEW SHEET-2)

Flood/Inundation Damage


Subject:

THE STUDY ON FLOOD MITIGATION AND DRAINAGE IN THE PENANG ISLAND

Subje	ct:	Flood/Inundation Damage in the Penang Island	Date;		_	_		
Execu Agenc		JICA STUDY TEAM in cooperation with NSDID, Penang	Ja ame and of Int	lan N d Reg ervie	lame ; j. No ewer ;	Kampi A2H	ung Jan IAR (B)	De Ban
Shop/f	actory	address & name Joya Store, 1	70	fala	n K	awyu)	y Jan) 9 Bayı
A. Wat	er Dep	th						
A-1	Was y	our shop/factory submerged in the est flood? If so, check the items below	annu	al flo	ood	severe	st year	
A:	1-1	Maximum water depth		(om .		CM	
A-:	1-2	Duration day/hours	4		our) ays	A	(bour)	
\Lambda-	1-3	How many times is your shop/factory inundated annually?	사	tim	25	S	times	
A-2-1	of em	he flood/inundation affect the commuting ployees? If so, how many minutes of commuting time was required?	70)	cm	70	cm	
λ−2−2	the m	he flood/inundation affect the supply of aterials/products? If so, how large e loss? (time, sales)	C)	tr\$	O	11\$	
A-2-3		he operation time shortened? , how many hours was it?			ırs	0	hrs	
A-2-4	Was the flood.	he shop/factory closed because of the /inundation? If so, how many days per ye	ar? (-	hrs days	1	hrs days	•
B. Tot 9-1	al Ass Total (excl	ets value of facilities of your shop/factory uding the building)	7 4	<u> </u>	11\$	400)() ti\$	
B-2	Total	value of constant stock in the shop/fact	ory? 6	000) ns	600	30 hs	
B-3	by the	ere any part of this shop/factory damaged flood/inundation? If so, how much is image?	()	111\$	40	()() 11\$	
B- 4	Total	sales/production value per year?	21	1 00	O 11\$	240	000 m	

APPENDIX G

METEO-HYDROLOGICAL CONDITIONS AND FLOOD RUN-OFF ANALYSIS

APPENDIX G METEO-HYDROLOGICAL CONDITIONS AND FLOOD RUN-OFF ANALYSIS

TABLE OF CONTENTS

1.	INTRO	DDUCTION	G- 1
2.	METEC	O-HYDROLOGICAL DATA	G- 1
	2.1	Meteorological Data	G- 1
	2.2	Water Level and Discharge	G- 1
	2.3	Tidal Data	G- 2
3.	METEC	O-HYDROLOGICAL CONDITION	G- 2
	3.1	Climate	G- 2
	3.2	Rainfall	G- 2
	3.3	Storm Pattern	G- 2
	3.4	Rainfall Intensity	G- 2
	3.5	Floods	G- 3
	3.6	Flood Hydrograph	G- 3
	3.7	Tidal Water Level	G- 3
4.	HYDRO	DLOGICAL ANALYSIS	G- 4
	4.1	Flood Run-off Analysis	G- 4
	4.2	Inundation Analysis	G-10

Table G-2

LIST OF TABLES

Table G-1-1 CATCHMENT AREA OF THE 26 RIVER BASINS G-12

..... G-12

MONTHLY METEOROLOGICAL DATA G-13

Table G-1-2 DIVISION OF CATCHMENT AREA IN SG. PINANG BASIN

Table	G-3	INVENTORY OF RAINFALL GAUGING STATIONS	G-14
Table	G-4	AVAILABLE DAILY RAINFALL RECORDS	G-14
Table	G-5	LIST OF COLLECTED HOURLY RAINFALL DATA	G-15
Table	G-6	LIST OF WATER LEVEL GAUGING STATIONS	G-16
Table	G-7	ANNUAL MEAN MONTHLY RAINFALL DATA	G-16
Table	G-8	PROBABLE RAINFALL DEPTH DURATION AT STATION NUMBER 5302001	G-16
Table	G-9	RUN-OFF COEFFICIENT FOR URBAN AREAS	G-17
Table	G-10	ESTIMATED RUN-OFF COEFFICIENTS FOR SG. PINANG SUB-BASINS	G-17
Table	G-11	ESTIMATED RUN-OFF COEFFICIENTS OF 25 RIVER BASINS	G-18
Table	G-12-1	COEFFICIENT OF BASIN (EXISTING)	G-19
Table	G-12-2	COEFFICIENT OF BASIN (FUTURE)	G~20
Table	G-13	CORRELATION COEFFICIENT FOR 7 STATIONS	G-21
Table	G-14	PROBABLE AREAL RAINFALL BY GUMBEL METHOD (1 DAY)	G-22
Table	G-15	PROBABLE DISCHARGE FOR 25 RIVERS	G-23
		LIST OF FIGURES	
Fig. 6	5-1-1	GENERAL AREA MAP OF THE 26 RIVER BASINS	G-24
Fig. G	G-1-2	DIVISION OF CATCHMENT AREA IN SG. PINANG BASIN	G-25

Fig. G-2	LOCATION MAP OF RAINFALL STATIONS	G-26	
Fig. G-3	LOCATION MAP OF WATER LEVEL STATIONS AND RAINFALL GAUGING STATIONS	G-27	
Fig. G-4	LOCATION OF TIDE POLES	G-28	
Fig. G-5	MONTHLY MEAN RAINFALL HYETOGRAPH	G-29	
Fig. G-6	MEAN ANNUAL RAINFALL ISOHYETS	G-30	
Fig. G-7	TEMPORAL RAINFALL DISTRIBUTION IN WEST COAST REGION	G-31	
Fig. G-8	RAINFALL INTENSITY CURVES	G-32	
Fig. G-9	GENERAL FLOW CHART OF FLOOD RUN-OFF ANALYSIS	G-33	
Fig. G-10-1	DIVISION OF CATCHMENT AREA FOR FLOOD ANALYSIS (FOR SIMULATION OF ACTUAL FLOOD DISCHARGE)	G-34	
Fig. G-10-2	DIVISION OF CATCHMENT AREA FOR FLOOD RUN-OFF ANALYSIS (FOR PROPOSED PLAN)	G-35	
Fig. G-11-1	RIVER SYSTEM MODEL FOR FLOOD ANALYSIS (FOR SIMULATION OF ACTUAL FLOOD DISCHARGE)	G-36	
Fig. G-11-2	RIVER SYSTEM MODEL FOR FLOOD RUN-OFF ANALYSIS (FOR PROPOSED PLAN)	G-37	
Fig. G-12	SG. KELUANG RIVER SYSTEM MODEL	G-38	
Fig. G-13	FREQUENCY CURVE OF 1 DAY RAINFALL (1) (2)	G-39,	40
Fig. G-14	ACTUAL HYETOGRAPH IN 1976 AND 1984 FLOODS	G-41	
Fig. G-15-1	HOURLY HYETOGRAPH IN AUGUST 1989	G-42	
Fig. G-15-2	HOURLY HYETOGRAPH IN SEPTEMBER 1989	G-43	
Fig. G-16-1	OBSERVED FLOOD HYDROGRAPH IN AUGUST 1989	G-44	
Fig. G-16-2	OBSERVED FLOOD HYDROGRAPH IN SEPTEMBER 1989	G-45	
Fig. G-17	RATING-CURVE AT JLN. SCOTLAND AND BROOK ROAD	G-46	
Fig. G-18	OBSERVED AND SIMULATED FLOOD HYDROGRAPH	G-47	
Fig. G-19	PROBABLE FLOOD DISCHARGE DISTRIBUTION	G-48	
Fig. G-20	DESIGN FLOOD DISCHARGE DISTRIBUTION	G-49	
Fig. G-21	PROBABLE FLOOD HYDROGRAPH AT RIVER MOUTH	G-50	
Fig. G-22-1	ESTIMATED FLOOD AREA OF SG. PINANG WITHOUT PROJECT (PRESENT CONDITION)	G-51	
Fig. G-22-2		G=52	

Fig.	G-23	CATCHMENT OF SG. TELUK AWAK	G~53
Fig.	G-24	CATCHMENT OF SG. TELUK BAHANG	G-54
Fig.	G-25	CATCHMENT OF SG. BATU FERRINGGHI	G-55
Fig.	G-26	CATCHMENT OF SG. SATU, MAS AND KECIL	G-56
Fig.	G-27	CATCHMENT OF SG. KELIAN	G-57
Fig.	G-28	CATCHMENT OF SG. BALIK BATU, FETTES, BAGAN JERMAL AND BABI	G-58
Fig.	G-29	CATCHMENT OF SG. GELUGOR AND DUA BESAR	G-59
Fig.	G-30	CATCHMENT OF SG. NIBONG BESAR AND NIBONG KECIL	G-60
Fig.	G-31	CATCHMENT OF SG. KELUANG	G-61
Fig.	G-32	CATCHMENT OF SG. NIPAH AND KAMPUNG MASJID AND IKAN MATI	G-62
Fig.		CATCHMENT OF SG. BAYAN LEPAS AND TIRAM DIVERSION	G-63
Fig.	G-34	CATCHMENT OF SG. BATU, MATI AND TELUK KUMBAR	G-64
Fig.	G-35	CATCHMENT OF SG. GEMUROH AND GERTAK SANGGUL	G-65

APPENDIX G METEO-HYDROLOGICAL CONDITIONS AND FLOOD RUN-OFF ANALYSIS

1. INTRODUCTION

The objectives of the hydrological study is to grasp the hydrological characteristics of the 26 river basins (Fig.G-1), to provide useful information necessary for the formulation of the flood mitigation and drainage plan. The hydrological study includes the following activities:

- Collection of existing hydrological data
- Installation of 3 water level gauging stations
- Assessment of the rainfall and run-off characteristics
- Hydrological analysis for an estimation of probable rainfall
- Flood run-off analysis using the mathematical model
- Hydraulic analysis of flooding area
- Hydrological and hydraulic evaluation for flood mitigation works and drainage works.

The catchment areas of the rivers in the study area and sub catchment areas of Sg. Pinang basin are shown in Table G-1 and Fig. G-1.

2. METEO-HYDROLOGICAL DATA

2.1 Meteorological Data

Meteorological data in Penang Island are recorded by Drainage and Irrigation Department, Penang Water Authority and Malaysian Meteorological Service.

Table G-2 shows monthly meteorological data in Penang Island.

There exist seven rainfall gauging stations in the Island as shown in the Table G-3, G-4 and Fig. G-2.

Most of these rain gauges are automatic rain gauges. These stations are densely distributed in the Island. Hourly rainfall observation at Kajicuaca Bayan Lepas were commenced in 1934.

Daily and hourly data are compiled and stored in the Data Bank of D.I.D. For discussion of storm pattern, hourly rainfall data exceeding $100\ \text{mm}$ of daily depth were collected. They are listed in Table G-5.

2.2 Water level And Discharge

The 4 gauging stations of D.I.D, installed before 1982 are listed in Table G-6. At present, for this study 3 gauging

stations as shown in Fig. G-3 were set up in the Sg.Pinang at Jalan Perak, Sg.Air Itam at Jalan Scotland, and Sg. Air Terjun at Brook Road. Rating-Curve at each station was compiled for run-off analysis.

2.3 Tidal Data

The tide water level fluctuation is recorded at Kedah Pier by Port Authority since 1985.

In addition, 4 tide poles were set up to check the tidal fluctuation along Penang Island for this Study. Fig. G-4 shows location and site pictures.

3. METEO-HYDROLOGICAL CONDITION

3.1 Climate

Penang has an equatorial climate which is quite uniform throughout the year. The climate is warm and humid. The maximum average temperature is 23.2°C. There are no recognizable hot or cold seasons and the mean annual rainfall of approximately 2600mm is unevenly distributed throughout the year. Table G-7 and Fig. G-5 shows the monthly rainfall distribution at seven gauging stations. September to November may be considered as the wettest months with heavy showers.

Fig. G-6 shows mean annual rainfall isohyets in Penang Island.

3.2 Rainfall

A storm rainfall study over Peninsular Malaysia has been published by D.I.D in 1982. The study was based on relatively short term data of 104 rainfall gauges. The rainfall-depth-duration relation was derived by applying the Gumbell distribution, and the conversion factor from point rainfall to a real average rainfall was given based on U.S.Weather Bureau recommendations. Probable rainfall at Taliair Besar in Sg. Pinang (Stn.5302001) was listed in Table G-8.

3.3 Storm Pattern

Temporal distribution of annual maximum rainstorms in Peninsular Malaysia has been estimated for selected durations, namely 1/2,3,6,12,24 and 72 hours, in Hydrological Procedure 1 (Revised and Updated in 1982) based on the data from July 1970 to June 1979. Temporal rainfall distribution in West Coast Region are illustrated in Fig. G-7. As can be seen from the Figure;

- 75 percent of 6 hours depth is concentrated in 2 hours,
- ii) 70 percent of 24 hours depth is concentrated in 6 hours,
- iii) 50 percent of 72 hours depth is concentrated in 24 hours.

3.4 Rainfall Intensity

Rainfall intensity curves for Penang Island were estimated by D.I.D and M.P.P.P as shown in Fig.G-8. Intensity curve by

D.I.D was based on records during 1951- 1983 at Kajicuaca Bayan Lepas. The curve by M.P.P.P was adjusted by Kajicuaca Bayan Lepas and Butterworth values.

3.5 Floods

Experienced floods in the Island from 1963 to 1985 are summarized below.

1964	Built-up Lowlying Area in Georgetown
1974	Air Terjun
1976	Lowlying Area in Georgetown
1977	Lowlying Area in Georgetown
1978	Local Lowlying Area in Penang Island
1979	Lowlying Area in Georgetown
1980	Georgetown
1984	Built-up Lowlying Area along the Sg.Pinang.
	Lowlying Area of the Sg.Gelugor, Sg.Dua Besar,
	Sg.Nibong Kecil, Sg.Relau, Sg. Ara and Sg.Tiram
1985	Built-up Lowlying Area along the Sg.Pinang

Features of flooding in the Island are ;

Flooding Area

- (1) Flooding occurs frequently during the heavy rainfall of flash storms coming with high tides.
- (2) Flooding occurs along the lowlying and built-up areas during spring high tide affecting.

3.6 Flood Hydrograph

Flood hydrographs are available for Sg.Pinang at Jalan Perak/Jalan Sg.Pinang and Paras Air Pasang for the days listed below:

5th June, 1987

25th October, 1987

13th - 15th September, 1987

2nd December, 1987

3.7 Tidal Water level

Data on tide level of Penang Island are available in "Record Cerapan Air Pasang Surut 1985" which was published by Director General of Survey and Mapping, Dept. of Survey and Mapping. The data were observed at Kedah Pier in Penang Island.

The tide level data obtained from this record is given below.

		RL
EHW		+1.615
MHWS	+2.5 A.C.D	+1.08
NHWN	+1.8 A.C.D	+0.38
MSL	+1.6 A.C.D	+0.18

MLWN	+1.3 A.C.D	-0.12
MLWS	+0.6 A.C.D	-0.82
LAT	+0.2 A.C.D	-1.22

R.L : Reduced Level

A.C.D : Admiralty Chart Datum

Mostly these values have been used by DID for hydraulic analysis of the river.

In addition, 4 tide poles were set up to check the tidal fluctuation along Penang Island for this Study. A slight difference (about 10 cm) in tide level was observed between the two points in the northern and southern part of the Island.

While, the tide level is also recorded at Kedah pier by Port Authority for three years since 1985. MHWS of this station is ± 1.095 (R.L.) and EHW is ± 1.615 (R.L.).

4. HYDROLOGICAL ANALYSIS

4.1 Flood Run-off Analysis

4.1.1 General Procedure

In order to calculate the flood discharges and design flood discharge of the objective rivers for flood control, run-off analysis was conducted based on the rainfall data with proposed safety factor. The results of this analysis are the most fundamental information for formulating the flood mitigation plan.

For establishing the above objectives, the following study on flood run-off analysis is needed so as to simulate flood hydrograph at major sites in the basin;

- Modelling of the river basin and channel,
- Construction of a river system model in which the existing dams and proposed flood mitigation works are linked,
- Rainfall analysis for determining the design rainfall duration, rainfall amount and pattern,
- Run-off calculation for the present river condition and with proposed flood control works using results of rainfall analysis, and
- Prediction of inundated area and depth in the target year.

In the flood run-off analysis for the 25 rivers in the Island, following methods were used.

As for the Sg. Pinang and Sg. Keluang, storage function method was adopted. This is because their catchment areas are large and retention ponds are considered for flood control.

As for the other rivers, rational formula method was adopted. This is because their catchment areas are small and flood inflow time is short.

In addition to this, inundation analysis to calculate the inundation area and depth was conducted for the Sg. Pinang and Sg. Keluang.

Fig. G-9 shows the general procedures of flood run-off analysis.

4.1.2 Simulation Model

As mentioned earlier, it is required to calculate the flood hydrograph in order to evaluate the effects for flood mitigation works.

Storage Function Method (For Sg. Pinang and Sg. Keluang)

In this Study, the Storage Function Method proposed by Dr. Kimura was applied for the conversion of areal rainfall to flood hydrograph.

(1) Basic Equation

$$S_1 = K*Q_1^P$$

where, K, P: Constants for a basin or a channel

This equation of motion is combined with the following continuous equation for a river basin or a river channel.

a) For Basin

$$ds/dt=1/3.6 * f * r_{ave} * A - Q_1$$

where, f : Inflow coefficient

Rave : Average rainfall in the

basin (mm/hr)

A : Catchment area at the

calculated point (km²)

 T_1 : lag time (hr)

 $Q_1(t) = q(t+T_1) (m^3/sec)$

constants K, P and lag-time in the equation are initially estimated by means of the following empirical formulas which are described by average river bed slope in sub-basin. These are then calibrated using the flood records.

$$K = 118.84 \cdot i^{0.3}$$

$$P = 0.175 \cdot i^{-0.235}$$

where, i : Average river bed slope

In the study, lag-time in sub-basin is roughly estimated by following empirical formula.

$$T_1 = 0.047 * L = 0.56$$
 (L>11.9 km)

$$T_1 = 0$$
 (L<11.9 km)

where, T_1 : Basin lag-time (hour) L: River length (km)

b) For River Channel

$$\sum_{j=1}^{n} fjIj - Q_1 = d/dtS_1$$

where, Ij : Inflow discharge into the basin, tributaries and/or upper boundary

of the channel (m³)
f; : Inflow coefficient
T₁ : L Lag time (hr)

$$Q_1(t) = Q(t + T_1) \quad (m^3/sec)$$

Discharge at lower boundary of channel after lag time

S₁ : Apparent storage in channel

(2) Basin Division and River System Model

a) Sg. Pinang Basin

Fig. G-10, G-11 shows division of catchment area and the river system model of the Sg. Pinang for flood analysis. The river system model of the Sg. Pinang is modelled by 16 sub-basins, 5 river channels. In addition, the proposed retention ponds, and diversion channel are linked to the river system model.

Base points are set at river mouth of the Sg. Pinang.

b) Sg. Keluang Basin

Fig. G-12 shows the river system model for flood analysis. The river system model of Sg. Keluang is modelled by 8 sub-basins, and 3 river channels.

(3) Run-off Coefficient

The coefficients used for various types of land use are listed in Table G-9.

Preliminary run-off coefficients for the sub-basins of Sg. Pinang are listed in Table G-10, based on run-off coefficient under various land use condition.

400 -

S. Harris

(4) Base Flow

The specific discharge of 0.05 m³/sec/km², which corresponds to the average discharge, is distributed into sub-basins.

2) Rational Formula Method (For Other Rivers)

Basic Equation (1)

The Rational formula method is generally considered to be one of the best available flood estimation for small urban and rural catchment areas. In this Study, the peak discharge is obtained from the Rational formula shown below:

Peak Discharge

$$Qp = 1/3.6 \text{ f·r·A}$$

: Peak discharge where, Qр

: Run-off coefficient f

: Rainfall Intensity (mm/hr) r

: Catchment area (km²)

(2) Rainfall Intensity

The rainfall intensity curve for the probable discharge estimation in this Study is based on the curve prepared by D.I.D, because D.I.D's values are bigger than MPPP's ones and considered as the conservative values given for the safety side to the planning.

(3) Run-off Coefficient

The run-off coefficient for the 24 catchments is listed in Table G-11, based on run-off coefficients under various land use condition.

These run-off coefficients for the probable discharge estimation were accounted for the future land use condition in the target year 2010.

Time of Concentration (4)

The time of concentration is estimated from the sum of overland flow time (to), and the time of flow in the watercourse (td).

$$t_c = t_o + t_d$$

 t_c : concentration time where,

to: overland flow time td: flow time in the

watercourse

Kraven's formula incorporating the length of water course and slope was used for estimating the flow time in the course.

Kraven's Formula

I over 1/100 1/100-1/200 below 1/200

W 3.5 m/s 3.0 m/s 2.1 m/s

T = L/W

where, I : Slope of watercourse

W : Flood run-off velocity
L : Length of watercourse

T : Time

4.1.3 Rainfall Analysis

1) Probable Areal rainfall

Daily rainfall data observed at 7 stations in Penang Island for 35 years (4 stations in Sg. Pinang Basin for 13 years) have been obtained.

A regression and correlation analysis for 7 stations were carried out to fill up the values of the missing data. The result of analysis is listed in Table G-13.

Probable areal rainfall is estimated by means of lognormal method, Iwai method, Ishihara-Takase method and Gumbel method. Among all results, the rainfall estimated by Gumbel method was adopted, because the value was comparatively higher than others and Gumbel method was widely used in Malaysia. Probable daily rainfall at these stations are shown in Table G-14.

Frequency curves of annual maximum daily rainfall are plotted in Fig. G-13.

2) Duration Time and Pattern of Probable Rainfall

The design rainfall at typical station was adopted for run-off analysis, because catchment area was comparatively small in all river basins except Sg. Pinang. There are 4 stations in Sg. Pinang basin, and average probable daily rainfall was adopted for runoff analysis as a design rainfall. The average probable rainfall in Sg.Pinang basin is as follow:-

Return Periods(Year) 2 5 10 20 30 50 100

Average probable

Rainfall of the 124 178 213 247 266 291 423

Basin (mm/day)

As a design rainfall, daily rainfall was used for Sg. Pinang and Sg. Keluang which have comparatively large catchment areas, and rainfall intensity-duration curve by D.I.D. was used for other rivers which have small catchments. Rainfall intensity-duration curve by M.P.P.P. was used for the drainage plan.

Rainfall pattern data recorded in the Sg. Pinang and other basins from 1975 until 1987 have been obtained. Among

them, the rainfall pattern which caused the highest peak discharge was adopted as a design rainfall model, taking into account the conditions given below.

- a) Enlargement ratio for design probable rainfall (291 mm in average) must be 2.0 and under.
- b) The enlarged values of 1-hour, 3-hour and 6-hour rainfall must not be extremely beyond the values of rainfall intensity-duration curve by D.I.D.

Thus rainfall pattern observed on September 17, 1976 at Air Itam station was adopted as a design rainfall model. The 24-hour rainfall is 231.8 mm and enlargement ratio is 1.25. Typical three rainfall patterns are shown in Fig. G-14.

4.1.4 Flood Run-off Calculation

1) Calibration of Run-off Model

Run-off simulation of actual flood discharge was carried out, in order to establish a simulation model for run-off analysis of the Sg. Pinang and other rivers. The model was calibrated by using the actual data for the Sg. Pinang.

Flood discharges were observed twice during the study period. The floods on August 25 was adopted as the actual flood discharge, because the discharge was comparatively big.

Hourly hydrographs in August and September 1989 floods are shown in Fig. G-15 and their hydrographs are shown in Fig. 16.

The rating-curves estimated based on these observed data at two gauging stations are shown in Fig. 17.

Calibration was done through trial and error in comparison between the calculated flood hydrogragh and the hydrogragh observed in Sg. Air Itam at Jln. Scotland and Sg. Air Terjun at Brook Road on August 25, 1989.

The flood hydrograph describing both actual and calculated discharge are shown in Fig. G-18.

The coefficients of the river courses and basins used in a simulation model for run-off analysis of Sg. Pinang are shown in Table G-12.

2) Probable Flood Discharge

For Sg. Pinang

Probable Flood discharges were calculated by using the established simulation model. The conditions assumed in the calculation are as follows:

- a) Landuse in 2010 was considered as a landuse of the basin.
- b) The existing Air Itam Dam cannot have effective flood control potential even if improved, and

control effect of this dam was not taken into account.

- c) The discharge of Sg. Jelutong was only due to runoff from the catchment downstream of the Jelutong Diversion Channel, as the discharge from the upper catchment is diverted to the Jelutong Diversion Channel
- d) The discharge corresponding to a rainfall reform period of 50 years at the river mouth of Sg. Pinang is assumed to be $270~\text{m}^3/\text{sec}$.

The determined probable flood discharge distribution of Sg. Pinang is shown in Fig. G-19.

For Other Rivers

All other rivers except Sg. Keluang have comparatively small catchment areas and short time of concentration, the Rational formula was adopted for discharge determination.

Target points for the diversion were considered at the river mouth of the individual catchment. In addition, the probable discharge was put out at the important sub-target points for the river planning. The determined probable flood discharge of all the other 25 rivers are given in Table G-15.

3) Design Flood Discharge Distribution (for Sg. Pinang)

Based on the alternative study, the design discharge distribution was determined as following conditions:-

- a) 2010 year for the target.
- b) With a diversion and retention pond.

Fig. G-20 and Fig. G-21 show the design flood discharge distribution and probable flood hydrograph at river mouth formulated by the Master Plan Study.

4.2 Inundation Analysis

Inundation analysis was carried out to identify flood areas and inundation depth (or flood water level) under the existing river conditions for the estimation of annual flood damage potential.

4.2.1 Hydraulic Calculation of the Flooding Area

The inundation area-depth is worked out by hydraulic flooding calculation.

Hydraulic flooding calculation in Sg. Pinang basin is composed by non-uniform flow computation methods under the assumption of the existing river conditions with a Manning's roughness coefficient of 0.03, for the 2 cases of with and without retention pond and diversion channel.

4.2.2 Flooding Analysis

Flooding analysis was carried out for 5 numbers frequency floods, ranging from 5 year to 100 year (5, 10, 30, 50 and 100 year frequency floods), under the following conditions that remained unchanged:-

- River under the existing conditions.
- Catchment area under the future (2010) land use conditions.
- With and without considering the proposed retention pond and diversion channel.

The results of the analysis are shown in Fig. G-22.

Tables

TABLE G-1-1 CATCHMENT AREA OF THE 26 RIVER BASINS

	1												
Catchment Area(km2)	6.19	1.00	<u></u>	•	1.69	0.84	0.38	7.04	0.90	0.03	7.06	1.91	1.03
River Name	Dua Besar	ong	Kec	. Keluang	. Nipah	. Kampung Masjid	دد			. Mati	. Teluk Kumbar	. Gemuroh	. Gertak Sanggul
				მ									Sg
River No.	14		16	7.1	18	19	20	21	22	23	24	. 22	26
Catchment Area(km2)	50.97	<u>თ</u>	12.30	•	3	7	٠.	9.04	œ	1.36	0.83	0.84	4.07
Rive	r. Pinang	. Teluk Awak		. Batu Fe	Satu	. Mas			-		. Bag	Ва	. Gelugor
	Sg	ις 20	CO po	Sg	დ რ	იკ <i>დ</i>	_ გ	Ω ρυ	സ മ	സ ഇ	സ ബ	ია გი	S)
River No.	H	63	m	4,	2	9	~	œ	6			12	13

TABLE G-1-2 DIVISION OF CATCHMENT AREA IN SG. PINANG BASIN

Catchme	River Name	Catchment Area(km2)
	Sg. Air Itam (upper reach)	10.64
-2 -3	Sg. Air Putih	4.56
£ - 3	Sg. Dondang	11.33
₹- -	Sg. Air Itam (lower reach)	1.05
;; F	Tributary Sg. Air Itam	2.42
- 9 - F	Sg. Terjun	10.76
(<u>1</u>)	Sg. Pinang (upper reach)	0.73
8 - - - -	Sg. Jelutong (lower reach)	1.69
6 = -	Sg. Pinang (lower reach)	2.89
(1) -10	Sg. Jelutong (lower reach).	4.90
	Total	50.97

TABLE G-2 MONTHLY METEOROLOGICAL DATA

ltem			Te	emperat	ure		ara, ara distante de la constanta de la consta	Hun	nidity	Pı	recipitat	tion
	Highest Recorded	Ave. of Monthly Highest	Ave. of Daily Highest	Ave.	Ave. of Daily Lowest	Ave, of Monthly Lowest	Lowest Recorded	9 oʻclock	15 o'clock	Monthly	Max. of 24 hrs.	Nos. of Date
Month	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(ලා	(%)	(%)	(mm)	(mm)	(>0.25mm)
Jan.	36.6	33.9	32.2	27.5	22.8	21.6	18.9	7 5	68	94	69	8
Feb.	36.1	33.9	32.8	27.8	22.8	21.6	18.9	74	64	76	142	7
Mar.	36.6	34.4	33.3	28.3	23.3	21.6	19.4	75	64	142	132	11
			ž.							·		
Apr.	36.6	33,9	32.8	28.9	23.9	22.2	19.4	79	66	188	158	14
May.	35.5	33.9	32.2	27.8	23.3	22.2	20.0	78	66	272	135	16
Jun.	36.1	33.9	32.2	27.8	23.3	21.6	20.5	.77	67	196	145	12
									٠.			
July	35.0	33.3	32.2	27.8	23.3	21.6	20.5	77	67	191	158	12
Aug.	35.5	33.3	31.6	27.2	22.8	21.6	20.5	78	67	. 295	168	15
Sep.	36.6	32.8	31.1	27.0	22.8	21.6	20.0	80	69	401	221	18
Oct.	34.4	32.8	31.6	27.2	22.8	21.6	19.4	81	70	429	241	21
Nov.	35.0	32.8	31.1	27.0	22.8	21.6	18.3	79	71	302	183	19
Dec.	35.0	32.8	31.6	27.2	22.8	21.6	19.4	76	- 68	147	1%	11

Notes: (1) Average temperature is that of average temperature of daily highest and lowest.

⁽²⁾ Data source is "Climate of Asia" written by Hisataka Hatakeyama.

TABLE G-3 INVENTORY OF RAINFALL GAUGING STATIONS

STATION	STATION STATION NUMBER INDEX	STATION NAME	GRID REFERENCE	LATITUDE (D, M, S)	LONGITUDE (D. M. S)	DATE EQUIP. INSTALLED MAN/AUTO	CURRENT EQUIP.	OPER. AUTH.	ELEV. (m)	DATE CLOSED
5202021 25M	25M	STN. KAJICUACA BAYAN LEPAS	QX539867	05 17 50	100 16 20	05/34	M5	PKM	ო	
5302001 2PA	2PA	TALIAIR BESAR SG. PINANG	OX472972	OS 23 30	100 12 45	01/52 09/66	M8 OTAW	JPT.	. 8	
5302002 25M	25M	PINTU AIR BAGAN, AIR ITAM	QX460929	05 21 15	100 12 00	01/46	\$.Tqi	2	
5302003	25A	KOLAM TAKONGAN AIR ITAM	QX531974	05 23 45	100 15 55	C&75 C&75	WH RW	ď	210	
5303001	25A	RUMAH KEBAJIKAN, PULAU PINANG	QX575970	05 23 30	100 18 15	C8/75 08/75	WB HW	<u>a</u>	ç	
5402001	25A	KLINIK BKT. BENDERA	QS539006	05 25 25		08/75 08/75	WB HW	g,	2 069	-
5402002	25A	KOLAN BERSIN PULAU PINANG	QS555024	05 26 25	100 17 10	100 17 10 08/75 08/75	WH BW	Ē	8	

TABLE G-4 AVAILABLE DAILY RAINFALL RECORDS

TABLE G-5 LIST OF COLLECTED HOURLY RAINFALL DATA

Station No.	53	302001	53	302003	- 53	303001	54	402001	54	102002
	22/8	1976	17/9	1976	17/9	1976	1/9	1975	28/2	1976
	17/9	1976	5/9	1980	3/11	1978	9/10	1975	17/9	1976
	29/6	1978	28/9	1980	27/11	1979	17/9	1976	8/10	1976
	5/9	1978	6/9	1981	5/9	1980	22/10	1976	5/9	1978
	7/9	1978	14/10	1981	16/10	1983	23/9	1977	7/8	1980
	7/4	1981	18/4	1984	18/4	1984	28/6	1978	28/9	1980
	2/9	1982	28/4	1984	16/7	1984	5/9	1978	20/10	1980
	1/10	1983	11/10	1985	11/10	1985	19/8	1979	9/9	1983
	16/10	1983	7/12	1985			7/8	1980	16/10	1983
	18/4	1984	19/9	1986			5/9	1980	18/4	1984
Date	28/4	1984	5/10	1986					14/7	1984
(day/month/year)	15/7	1984	12/11	1986	·		17/5	1983	16/4	1985
	3/10	1984	4/6	1987			9/9	1983	11/10	1985
	25/9	1985	15/8	1987			16/10	1983	21/9	1986
	26/9	1985	15/9	1987	· · · · · · · · · · · · · · · · · · ·		18/4	1984	4/6	1987
	11/10	1985		- :- ·			28/4	1984	21/7	1987
<u> </u>	1/8	1986					16/5	1984	8/11	1987
	11/10	1986					15/7	1984	13/11	1987
	15/8	1987					25/9	1985		
	8/11	1987			····		11/10	1985		
							1/8	1986		
							5/10	1986		
							18/3	1987		
							4/6	1987		
							8/11	1987		
							13/11	1987		

TABLE G-6 LIST OF WATER LEVEL GAUGING STATIONS

	Station Name	River Name	Catchment Area	Latitude	Longitude	Observation
			(km ²)	(D, M, S)	(D, M, S)	Period
ç,	5204422 Jam. Jin. Raya	Sg. Jawi	41.4	05° 12' 10"	100 29' 55" 1970 - 1971	1970 - 1971
_	5303401 Jln, Kurau	Sg. Jelutong	2.8	05° 23' 40"	100° 18' 40"	05° 23' 40" 100° 18' 40" 1975 - Nov/1980
-	5403401 Jam. Jln. Scotland Sg. Air Itam	Sg. Air Itam	33.0	05° 24' 40"	05° 24' 40" 100° 18' 10" 1975 - 1982	1975 - 1982
22	5403402 Western Road	Sg. Teriun	9.2	05° 25' 35"	100 18' 10" 1975 - 1980	1975 - 1980

TABLE G-7 ANNUAL MEAN MONTHLY RAINFALL DATA

STATION	STATION NAME	JAN	FEB	MAR	APR	MAY	NON	3	ALG	SEP	28	ğ	SHO	ANNUAL TOTAL	NOT TOT	
5202021	5202021 STN. KAJICUACA BAYAN LEPAS	66.7	81.5	137.3	211.3	241.1	172.2	199.7	238.8	350.3	366.8	217.6	100.7	2411.4	1953 - 1987	1987
5302001	TALIAIR BESAR SG. PINANG	70.0	78.7	177.5	268.2	278.1	215.2	248.6	272.5	378.3	454.4	392.3	111.8	2945.6	1953 - 1987	1987
5302002	PINTU AIR BAGAN, AIR ITAM	73.5	74.5	168.6	243.3	270.2	170.4	227.4	242.5	383.4	452.2	273.1	117.7	2778.8	1963 - 1987	1987
5302003	KOLAM TAKONGAN AIR ITAM	33.4	63.2	105.4	216.7	224.5	107.3	184.1	220.2	371.0	384.0	247.2	100.4	2261,4	1975 - 1987	1987
5303001	RUMAH KEBAJIKAN, PULAU PINANG	30.5	62.8	89.0	173.8	186.8	106.0	162.6	201.1		275.7	197.3	06.4	1911.6	1975 - 1987	1987
5402001	5402001 KLINIK BKT. BENDERA	54.0	73.7	147.4	237.3	276.1	183.4	271.8	271.7	455.2	464.7	276.7	116.0	2873.0	1975 - 1987	1987
5402002	KOLAN BERSIN PULAU PINANG	43.0	57.7	124.7	204.0	268.6	132.7	178.5	229.9	414.7	410.2	253.2	76.0	2443.4	1975 - 1987	1987

TABLE G-8 PROBABLE RAINFALL DEPTH DURATION AT STATION NUMBER 5302001

Period	1	Duration (Hrs)	
(Yrs)	24	48	72
64	168 mm	210 mm	mm 239
۲ĵ	243	285	315
5	292	335	365
50	339	382	414
20	400	444	476

*Station No. 5302001 (Talair Besar Sg. Pinang) Years Used 24 (1954 - 1978)

TABLE G-9 RUN-OFF COEFFICIENT FOR URBAN AREAS

Type of Drainage Area	Coefficient (C)
Business Areas	0.70 - 0.95
Residential Areas	0.25 - 0.50
Light Industrial Areas	0.50 - 0.80
Unimproved Areas	0.10 - 0.30
Streets	0.70 - 0.95
Lawns:	
Sandy soil, flat 2%	0.50 - 0.10
Sandy soil, av. 2 - 7%	0.10 - 0.15
Sandy soil, steep 7%	0.15 - 0.20
Heavy soil, flat 2%	0.13 - 0.17
Heavy soil, av. 2 - 7%	0.18 - 0.22
Heavy soil, steep 7%	0.25 - 0.35

Hydrological procedure No. 16 Flood Estimation for Urban Areas in Peninsular Malaysia 1980 Ministry of Agriculture

TABLE G-10 ESTIMATED RUN-OFF COEFFICIENTS FOR SG. PINANG SUB-BASINS

No.	C.A.	Run-Off C	oefficients
	(Km²)	1988	2010
1.	5.75	0.14	0.20
2.	4.59		0.24
3.	4.56	0.18	0.23
4.	0.30	0.38	0.38
5.	6.15	0.23	0.27
6.	5.18		0.28
7.	0.70	0.29	0.29
8.	2.42	0.31	0.30
9.	0.35	-	0.30
10.	7.74		0.21
11.	3.02	-	0.30
12.	0.73	-	0.30
13.	1.69	-	0.35
14.	0.88	-	0.61
15.	1.20	-	0.54
16.	0.81	. <u>-</u>	0.50

TABLE G-11 ESTIMATED RUN-OFF COEFFICIENTS OF 25 RIVER BASINS

NO	RIVER NAME		
		Existing	Future
2	Sg.Teluk Awak	0.21	0.22
3	Sg.Teluk Bahang	0.21	0.22
4	Sg. Batu Ferringghi	0.20	0.21
5	Sg.Satu	0.21	0.23
6	Sg.Mas	0.26	0.33
. 7	Sg.Kechil	0.25	0.25
8	Sg.Kelian	0.25	0.25
9	Sg.Balik Batu	0.36	0.37
10	Sg.Fettes	0.30	0.34
11	Sg.Bagan Jermal	0.26	0.26
12	Sg.Babi	0.26	0.29
13	Sg.Gelugor	0.31	0.31
14	Sg.Dua Besar	0,28	0.29
15	Sg.Nibong Besar	0.35	0.36
16	Sg.Nibong Kechil	0.39	0.41
17	Sg.Keluang	0.25	0.28
18	Sg.Nipah	0.24	0.35
19	Sg.Kampung Masjid	0.29	0.35
20	Sg.Ikan Mati	0.26	0.37
21	Sg.Bayan Lepas	0.22	0.24
21	BY-PASS OF NO.21	0.25	0.30
22	Sg.Batu	0.25	0.26
23	Sg.Mati	0.27	0.29
24	Sg.Teluk Kumbar	0.23	0.23
25	Sg.Gemroh	0.20	0.20
26	Sg.Gertak Sanggul	0.22	0.22

TABLE G-12-1 COEFFICIENT OF BASIN (EXISTING)

Check Point	Catchment No.	Catchment Area A (km ²)	Inflow Coefficient f ₁	ĸ	P	Lag Time T1 (min.)	Base Flow QB (m ³ /s) (=0.05m ³ /s/km ²)	Saturation Rainfall Rsa (mm)
(1) Brook Road	8	9.62	0.26	23	0.33	0.0	0.48	120
	1	10.34	0.14	36	0.33	0.0	0.52	120
	2	4.56	0.18	36	0.33	0.0	0.23	120
(2) Jln. Scotland	3	0.30	0.38	30	0.33	0.0	0.02	120
	4	11.33	0.23	30	0.33	0.0	0.57	120
	5	0.70	0.29	23	0.33	0.0	0.04	120
	6	2.42	0.31	36	0.33	0.0	0.12	120

COEFFICIENT OF RIVER (EXISTING)

Check Point	River No.	к	p	Lag Time
(1) Brook Road	D D	2.1	0.70	5
(2) Jln. Scotland	A	0.9	0.68	5
	В	2.2	0.72	5

TABLE G-12-2 COEFFICIENT OF BASIN (FUTURE)

Catchment No.	Catchment Area	Inflow Coefficient			Lag Time	Base Flow Q _B (m ³ /s)	Saturation Rainfall
	A (km2)	fı	K	p	Tl (min.)	(±0.05m ³ /s/km ²)	Rsa (mm)
. 1	5.75	0.20	36	0.33	0.0	0.29	120
2	4.59	0.24	36	0.33	0.0	0.23	120
3	4.56	0.23	3 6	0.33	0.0	0.23	120
4	0.30	0.38	30	0.33	0.0	0.02	120
5	6.15	0.27	30	0.33	0.0	0.31	120
6	5.18	0.28	30	0.33	0.0	0.26	120
7	0.70	0.29	23	0.33	0.0	0.04	120
8	2.42	0.30	36	0.33	0.0	0.12	120
9	0.35	0.30	23	0.33	0.0	0.02	120
10	7.74	0.21	23	0.33	0.0	0.39	120
11	3.02	0.30	27	0.33	0.0	0.15	120
12	0.73	0.30	30	0.33	0.0	0.04	120
. 13	1.69	0.35	18	0.33	0.0	0.08	120
14	0.88	0.61	18	0.33	0.0	0.04	120
1.5	1.20	0.54	18	0.33	0.0	0.06	120
16	0.81	0.50	18	0.33	0.0	0.04	120

COEFFICIENT OF RIVER (FUTURE)

River			Lag Time
No.	K	P	Tl (min)
Α	0.9	0.68	5
В	2.2	0.72	5
С	1.8	0.69	5
D	2.1	0.70	5
E	5.5	0.46	5

TABLE G-13 CORRELATION COEFFICIENT FOR 7 STATIONS

Station Number	5303001			
5303001		5302003		
5302003	0.807		5402001	
5402001	0.758	0.793		5402002
5402002	0.725	0.753	0.843	
5202021	0.624	0.633	0.558	0.554
5302001	0.595	0.674	0.640	0.613
5302002	0.577	0.664	0.620	0.579

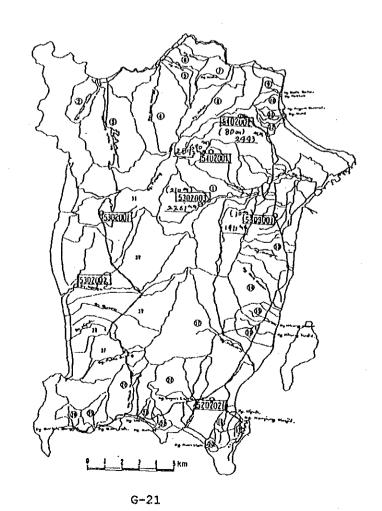
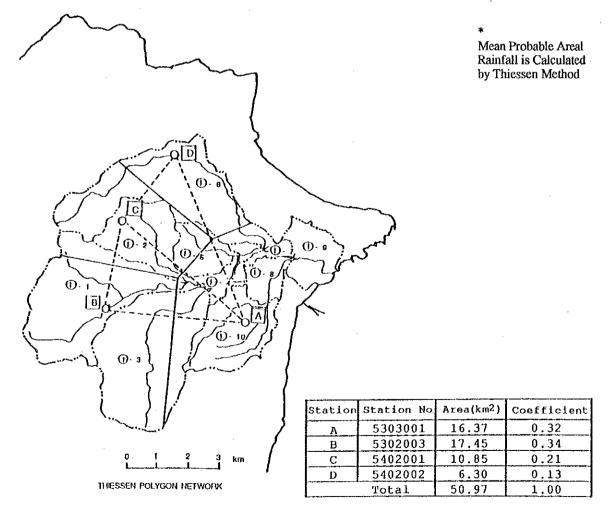
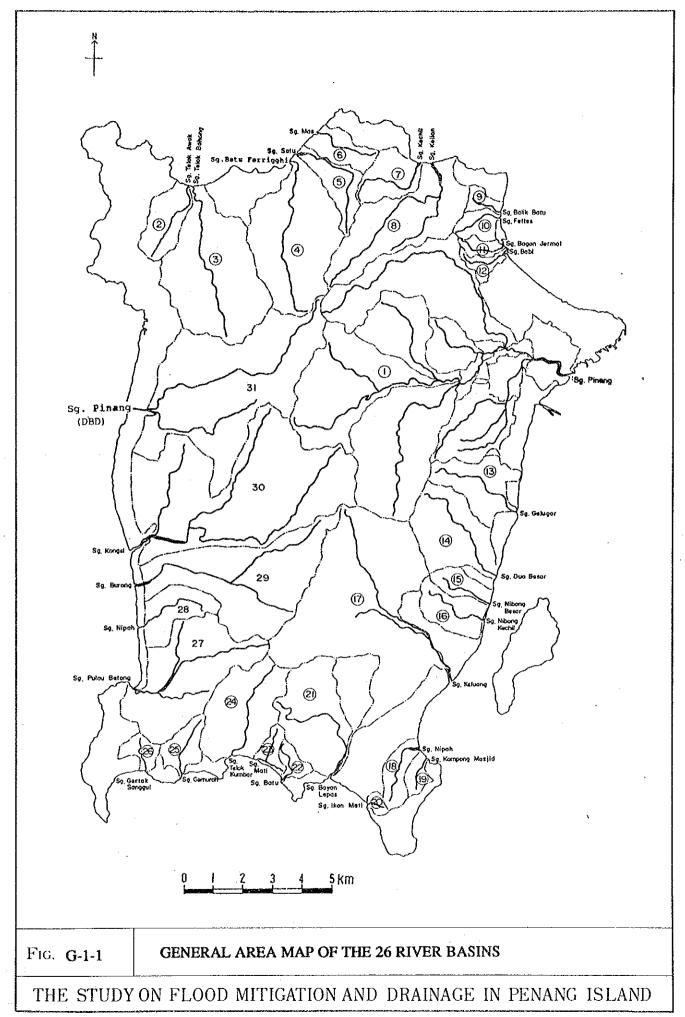


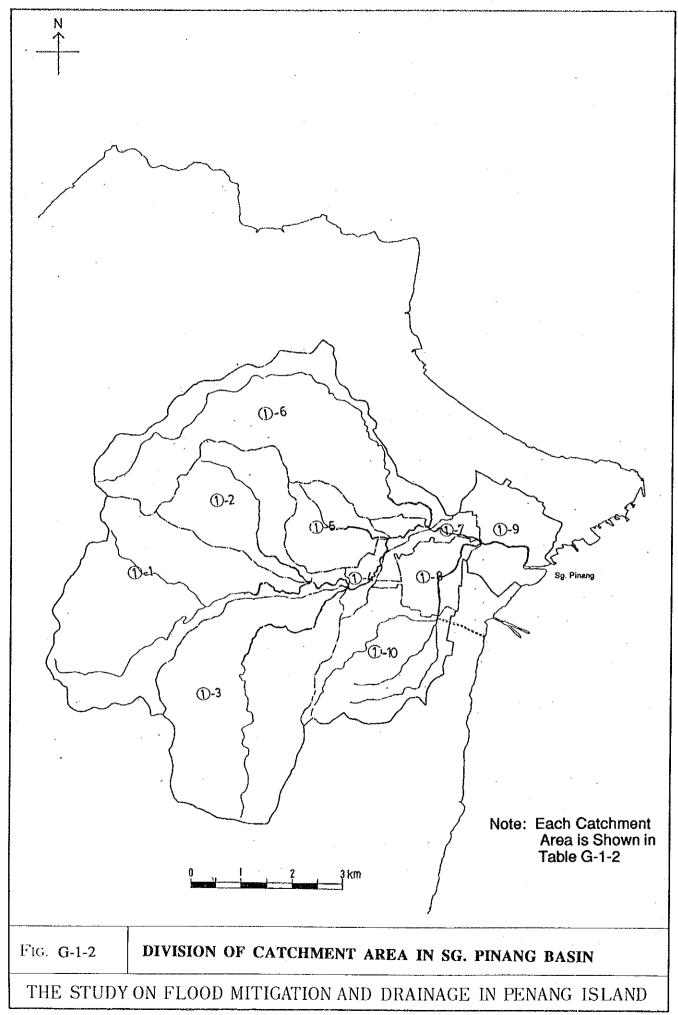
TABLE G-14 PROBABLE AREAL RAINFALL BY GUMBEL METHOD (1 DAY)

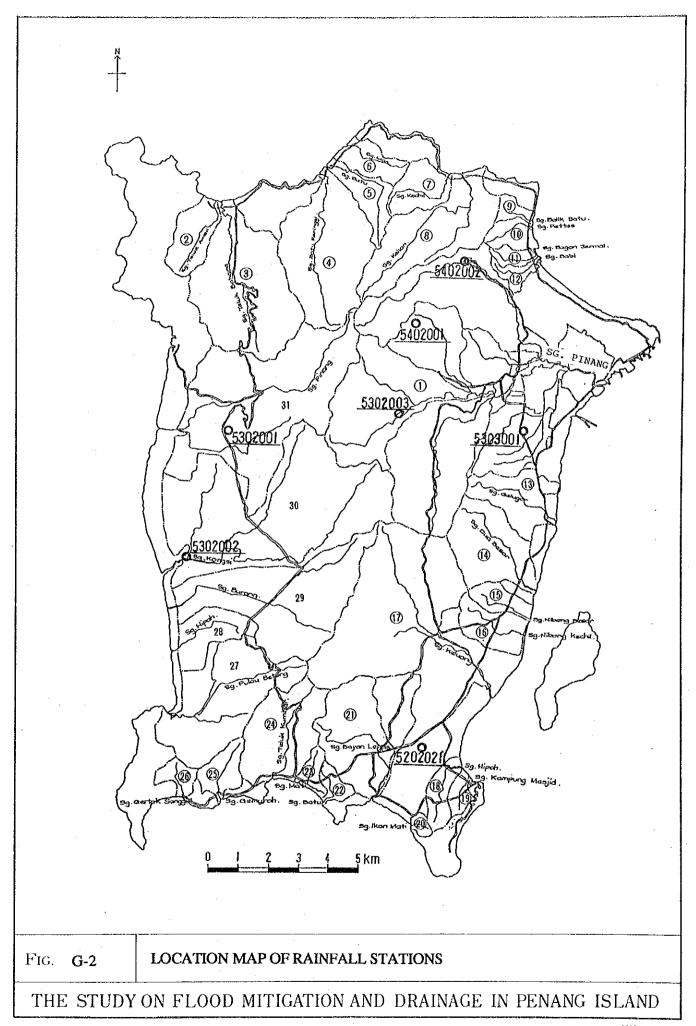
Unit : mm

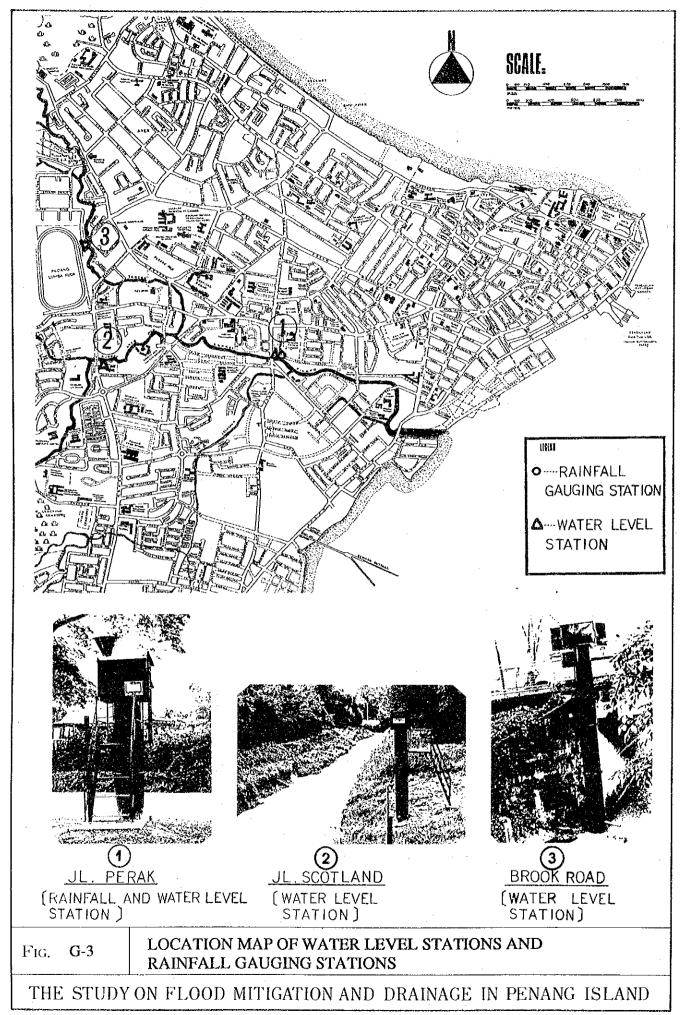
Station Return Period	Λ	В	С	D	*Mean Probable Arcal Rainfall in Penang Basin
1/2	112	124	142	126	124
1/5	163	179	188	193	178
1/10	197	216	218	237	213
1/20	229	251	247	279	247
1/30	248	271	264	303	266
1/50	271	296	285	334	291
1/70	286	312	298	354	306
1/100	302	330	313	375	323



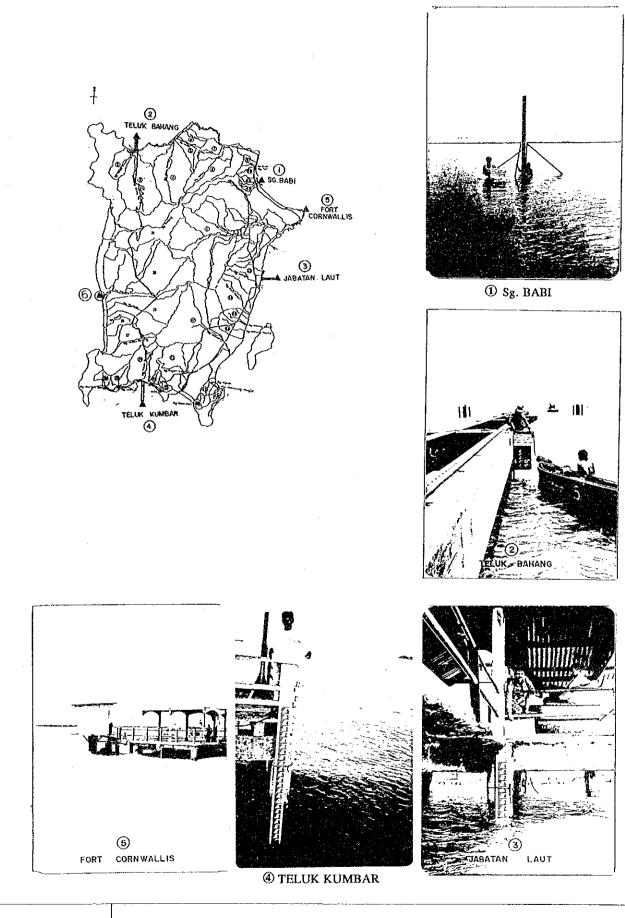
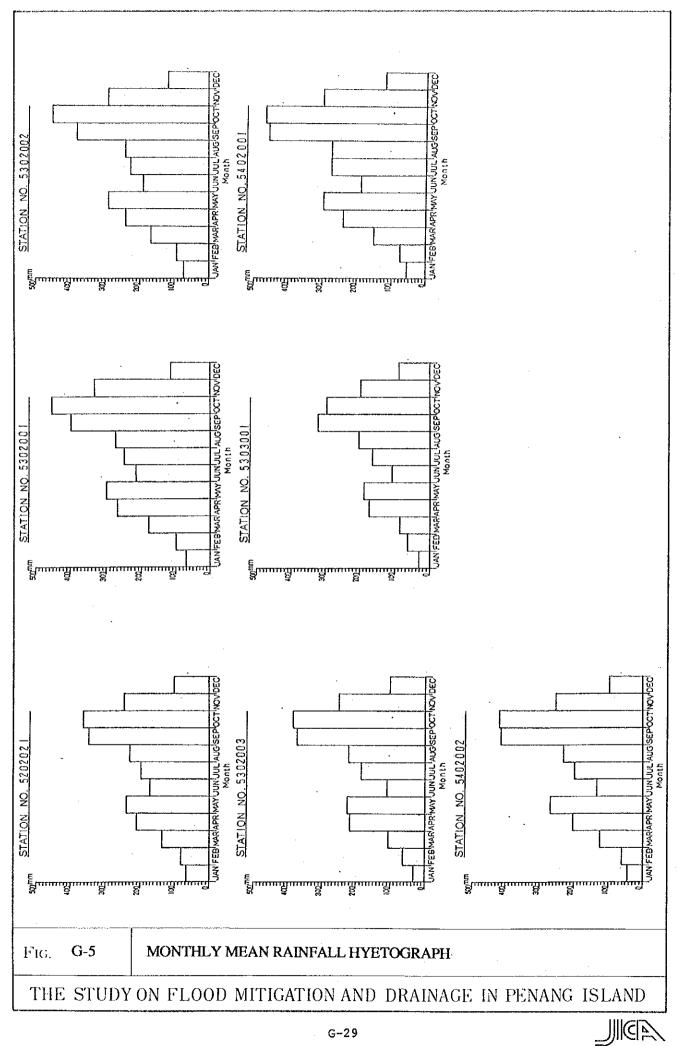
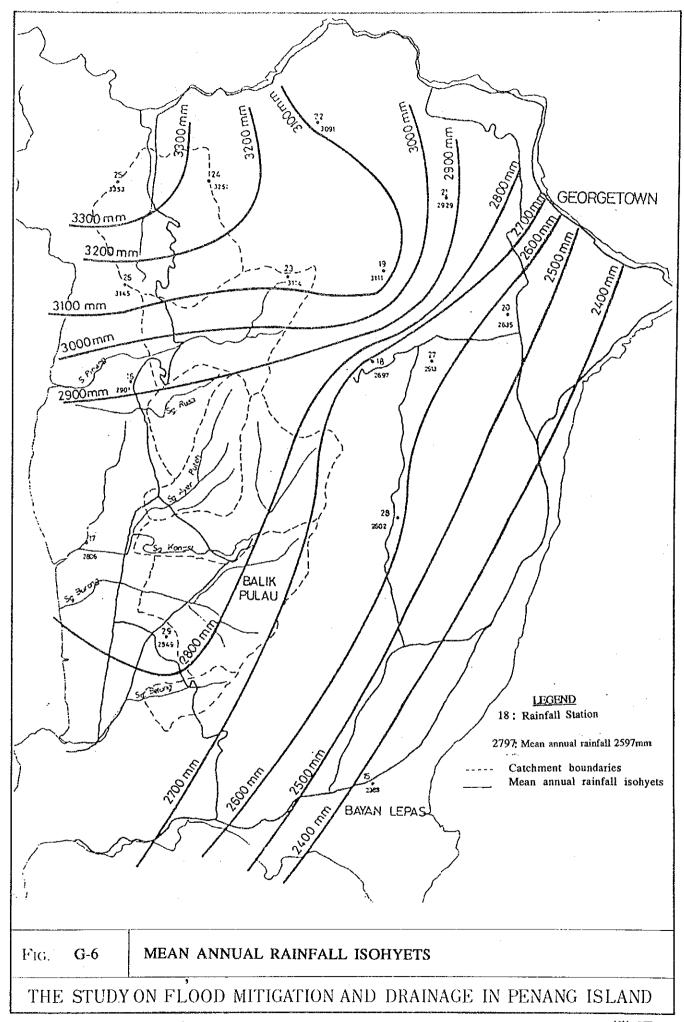
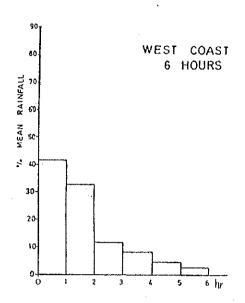

TABLE G-15 PROBABLE DISCHAGE FOR 25 RIVERS

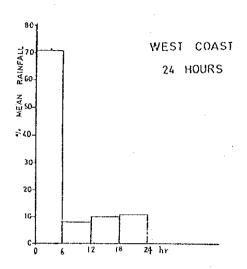

Land Use Condition in 2010


	(m ³ /s)	ar 100 year	2	W	ιΩ	(1	C)	C1	4	C/I	CA	+	4	4	ഗ	CA	*I	4)	ന	(A	•	4	CA.	•	4-	ц	22	•
	Discharge	year 50 year	ர	ထ	ආ	_O	ري د	ന		7	4	v -	0	ເດ	ហ	61	00	1-	თ	ဖ	4	_	4	1	4	ო	19 21	
	Probable Flood	0 year 20																									17	12
	à.	5 year	16	თ	40	ស	20	Φ.	ဗ္ဗ	4	20	ச	α	28	37	φ.	32	36	24	4	თ 	30	20	o	1 -	9 10	4	
	Time of Con-	centration (minute)	37	53	4 0	ខា	32	ဗ	56	23	24	24	28	თ ღ	42	20	ဗ္ဗ	63	25	53	<u>ග</u>	47	35	26	25	40	25	22
}		Coefficient	C/I	S	α	Ø	ഗ	ď	α	ഗ	ന	α	Ŋ	ധ	α	ന	ব	Ŋ	ω	വ	ന	Ġ	ധ	Ġ	Ŋ	α	0.20	α
	Catchment	Area (km²)	2.95	٠,	٠,	ч:	٠.	' '	9.04	v.,	C.Y	ωį	0.84	Υ.	6.19	u,	1,0	22.17	w	w	(,)	\circ	L()	(Q)	o	\circ	<u>₽</u>	1.03
	River Name		Sg.Teiuk Awak	Sg.Teluk Bahang	Sg. Batu Ferringghi	Sg.Satu	Sg.Mas	Sg.Kechii	Sg.Kelian	Sg.Balik Batu	Sg.Fettes	Sg.Bagan Jermal	Sg.Babi	Sg.Gelugor	Sg.Dua Besar	Sg.Nibong Besar	Sg.Nibong Kechii	Sg.Keluang	Sg.Nipah	Sg.Kampung Masjid	Sg.lkan Mati	Sg.Bayan Lepas	Sg. Tiram Diversion	Sg.Batu	Sg.Mati	Sg.Teluk Kumbar	Sg. Gemuroh	Sg. Gertak Sanggul
	ġ Ż		0	ന	4	ເດ	ယ	^	ω	Ø	5	†— †—	7	<u>,</u>	4	ដ	φ	17	φ	o T	50	Ŋ		22	23	24	22	26


Catchments of each river are shown in Fig.G-23 to Fig.G-35

Figures


Fig. G-4 LOCATION OF TIDE POLES

THE STUDY ON FLOOD MITIGATION AND DRAINAGE IN PENANG ISLAND

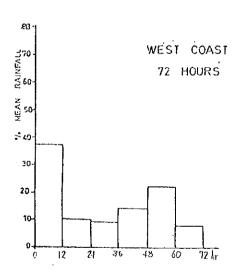
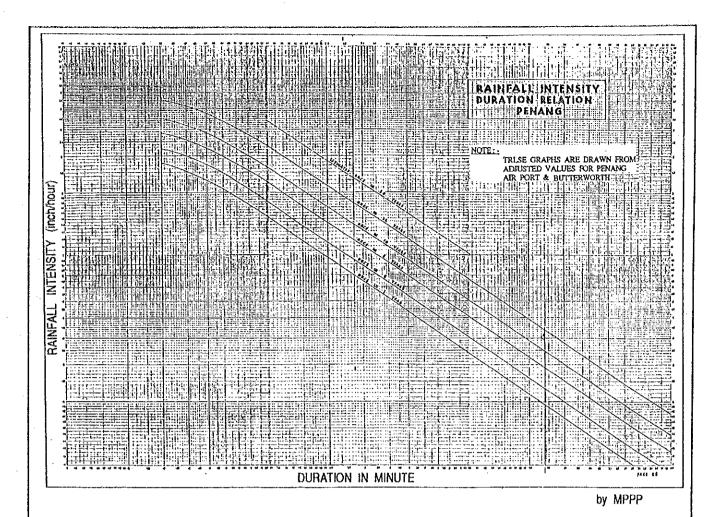
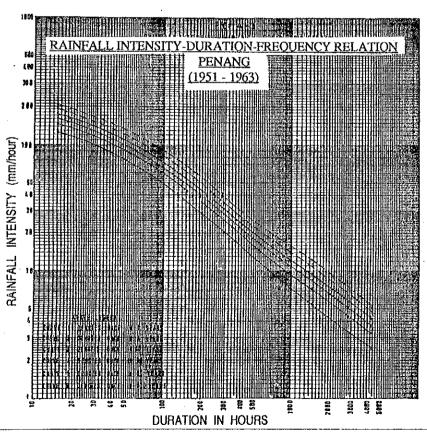
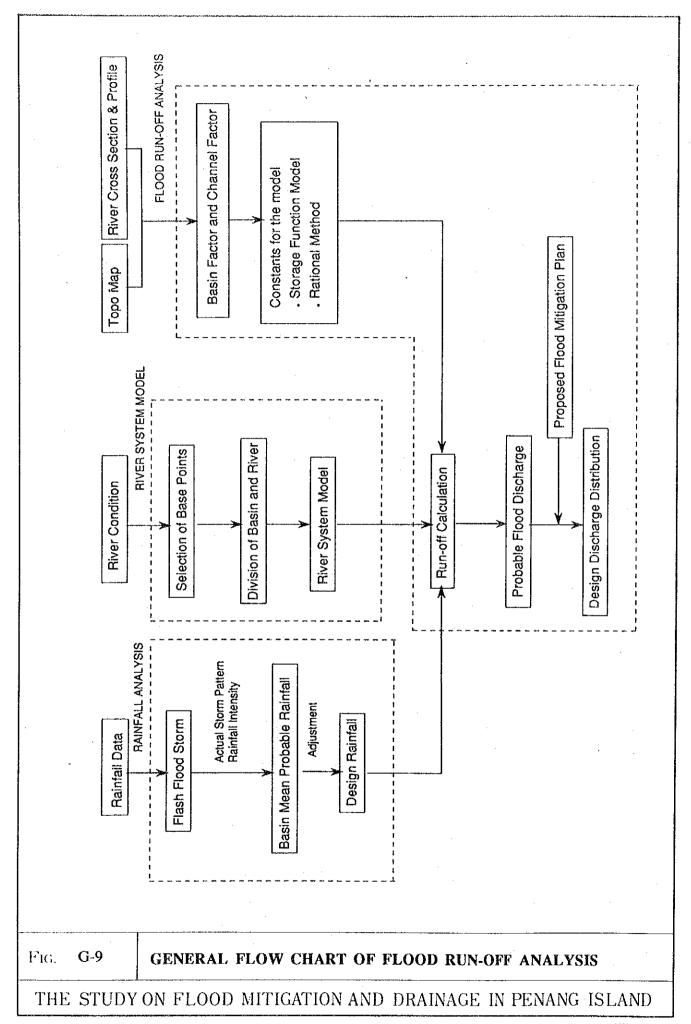




Fig. **G-7**

TEMPORAL RAINFALL DISTRIBUTION IN WEST COAST REGION



THE STUDY ON FLOOD MITIGATION AND DRAINAGE IN PENANG ISLAND

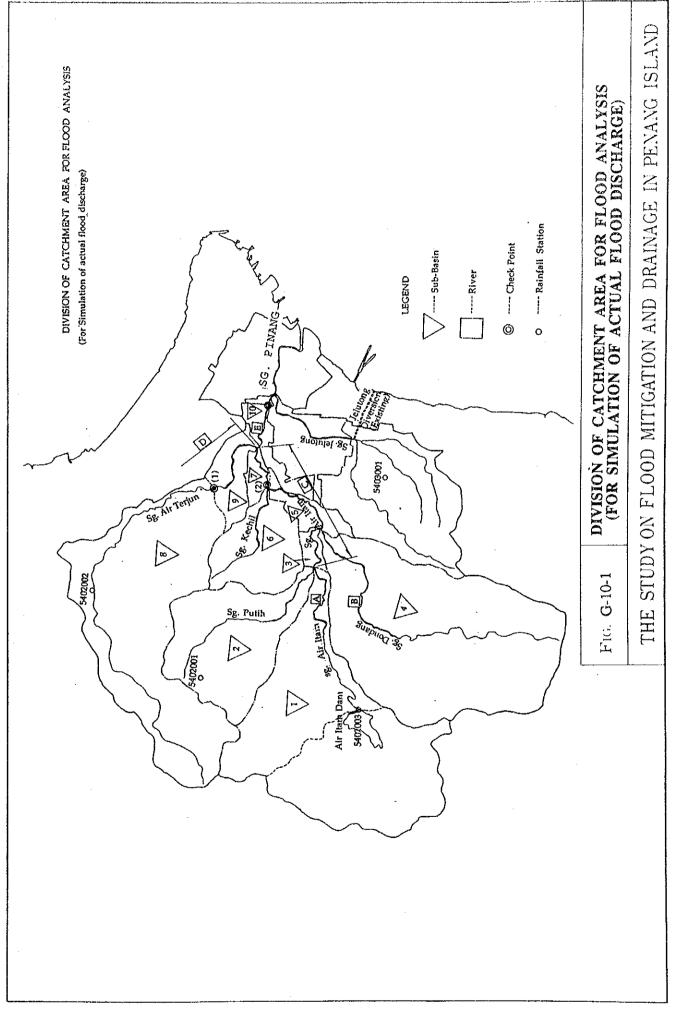
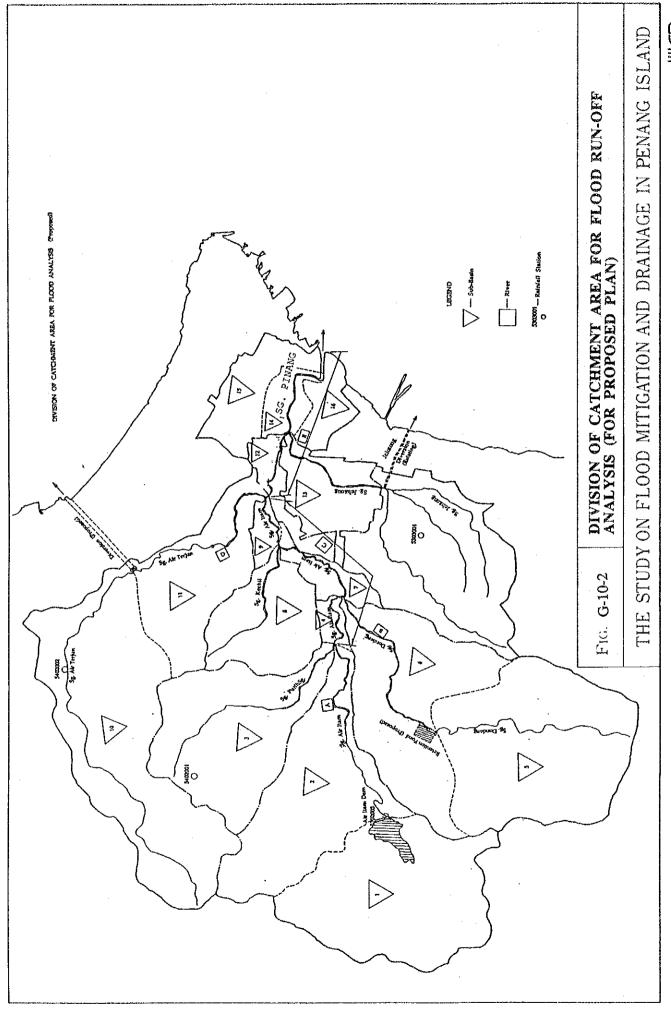
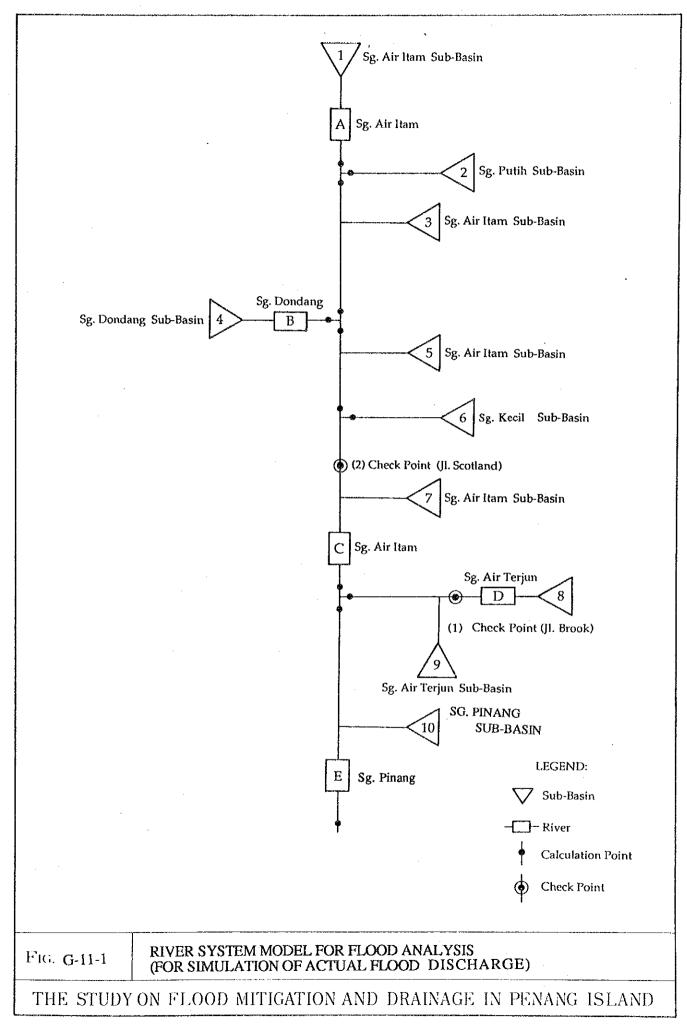
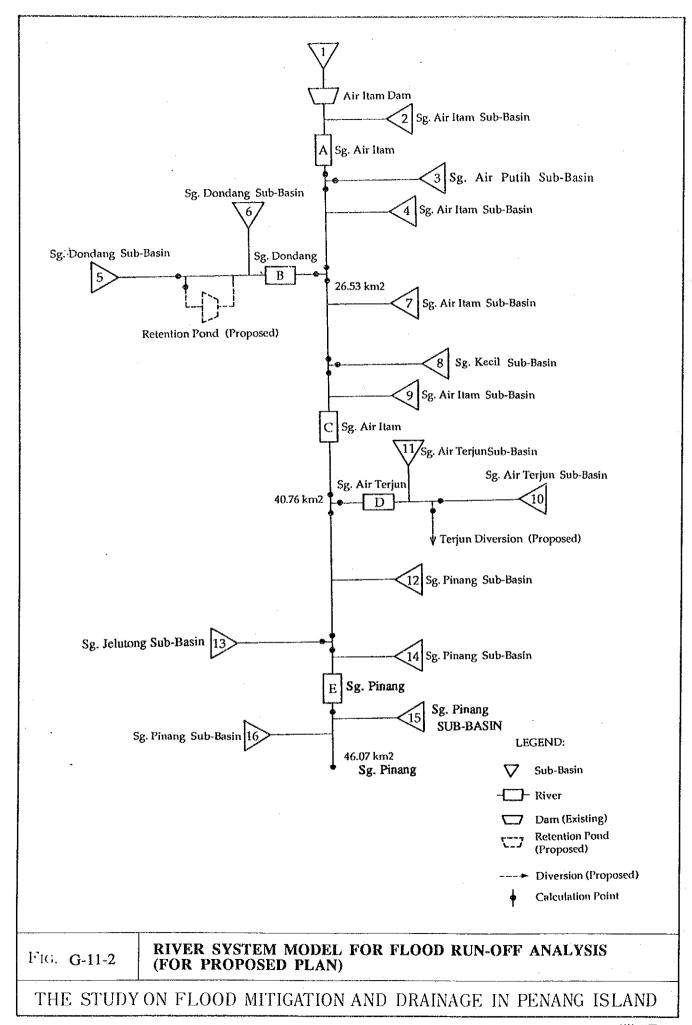

RAINFALL INTENSITY CURVES

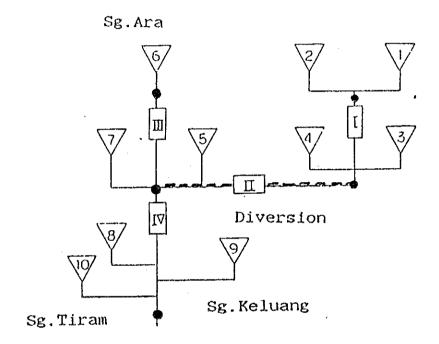
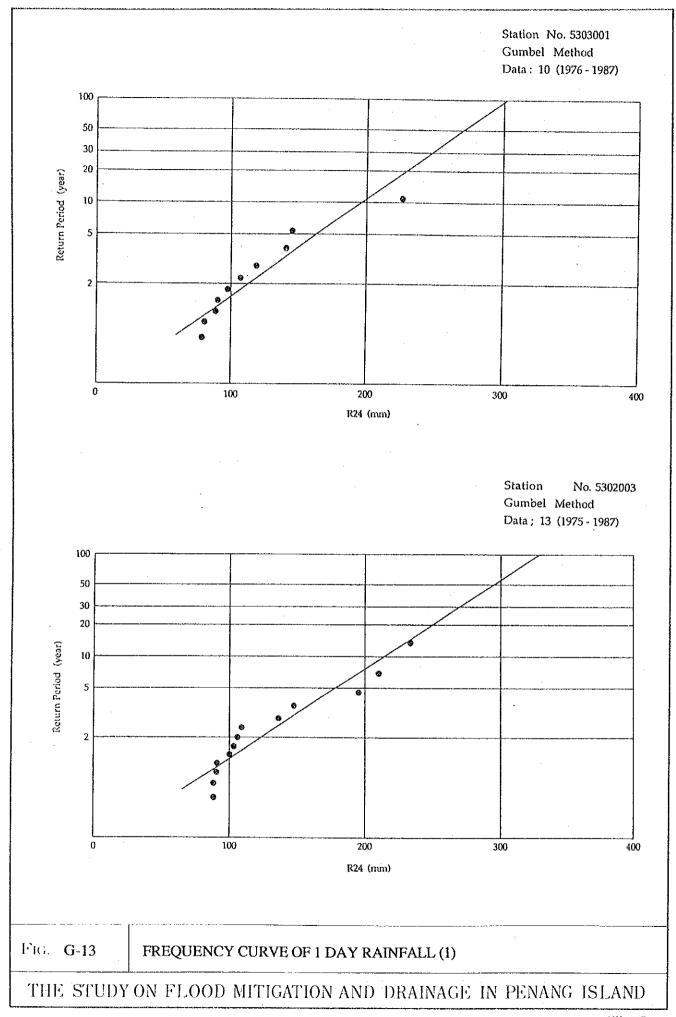
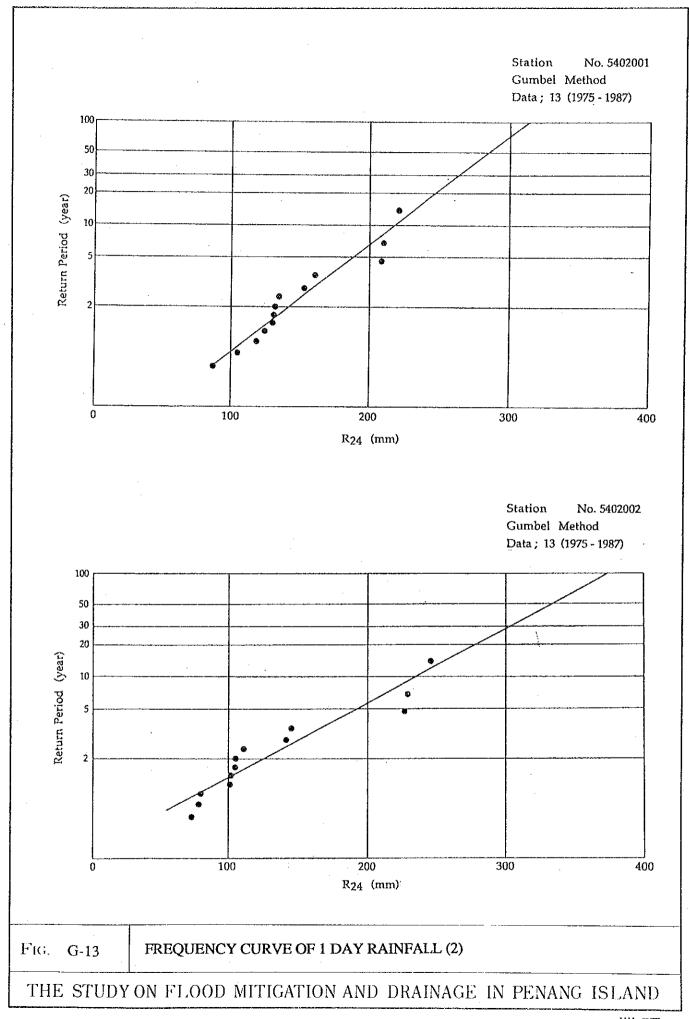
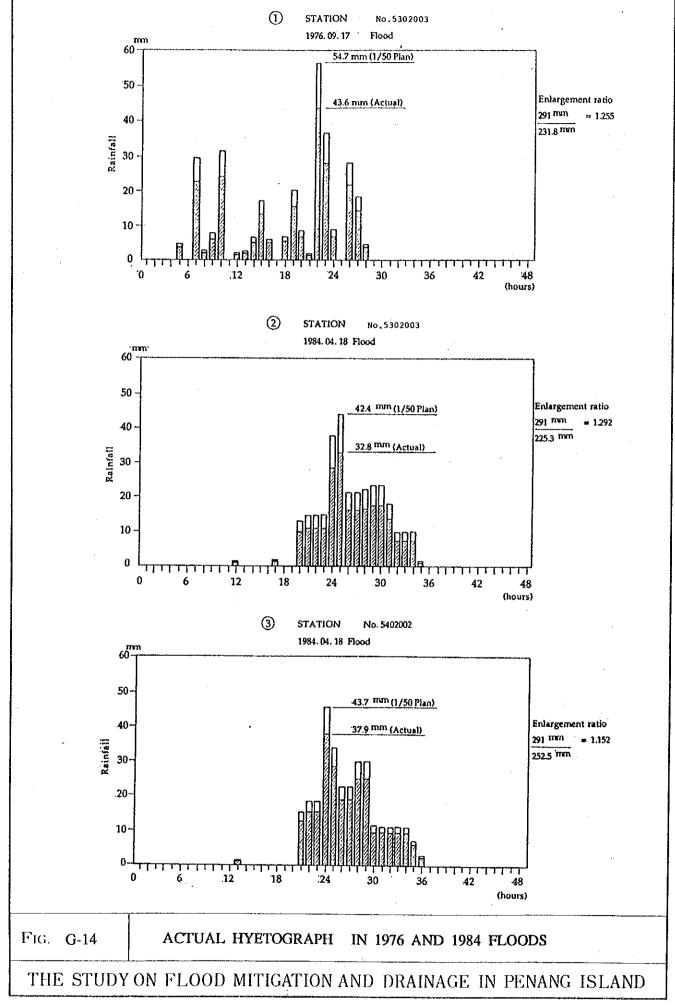
Fig. G-8

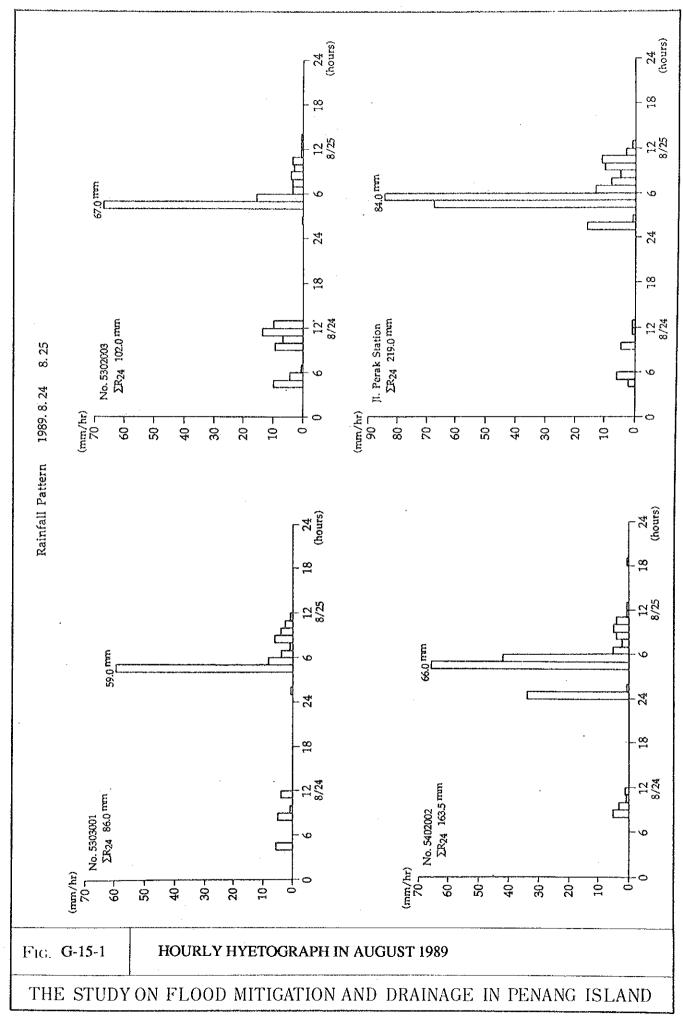

by DID

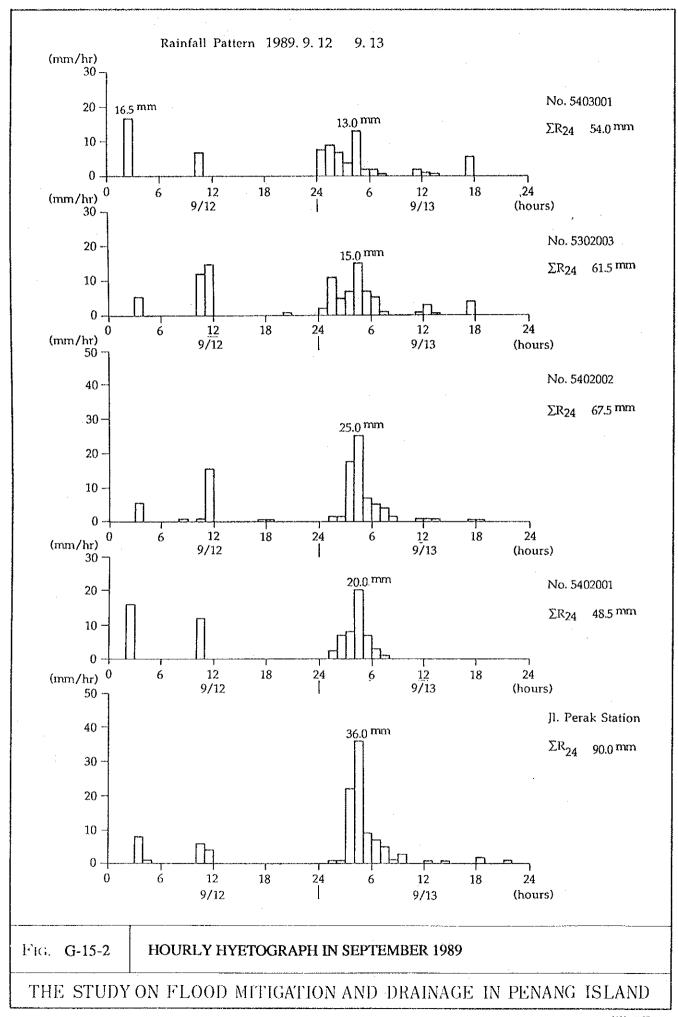


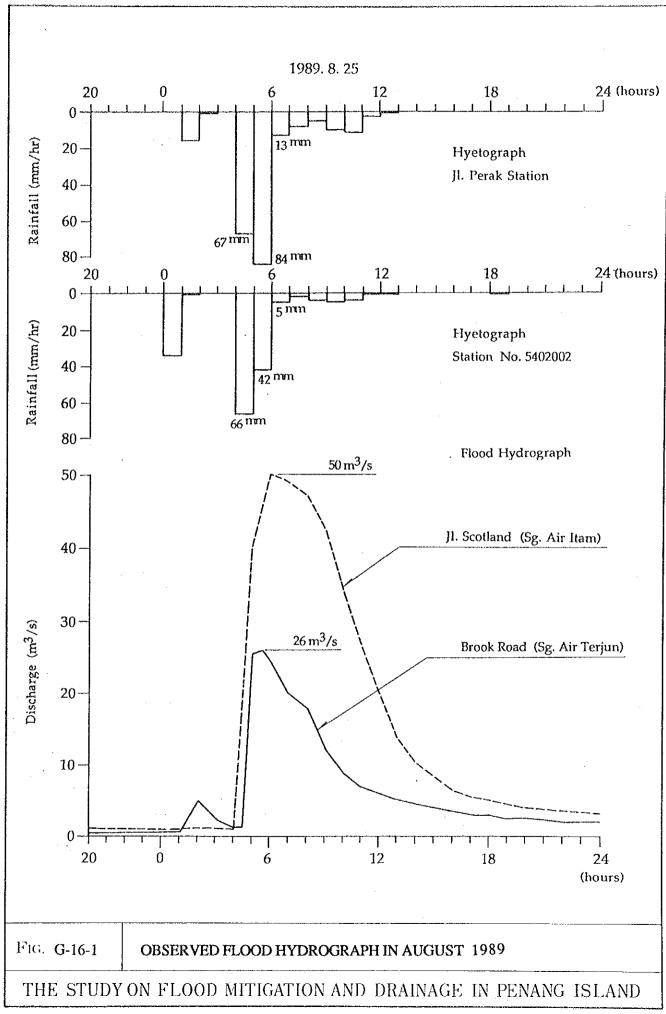


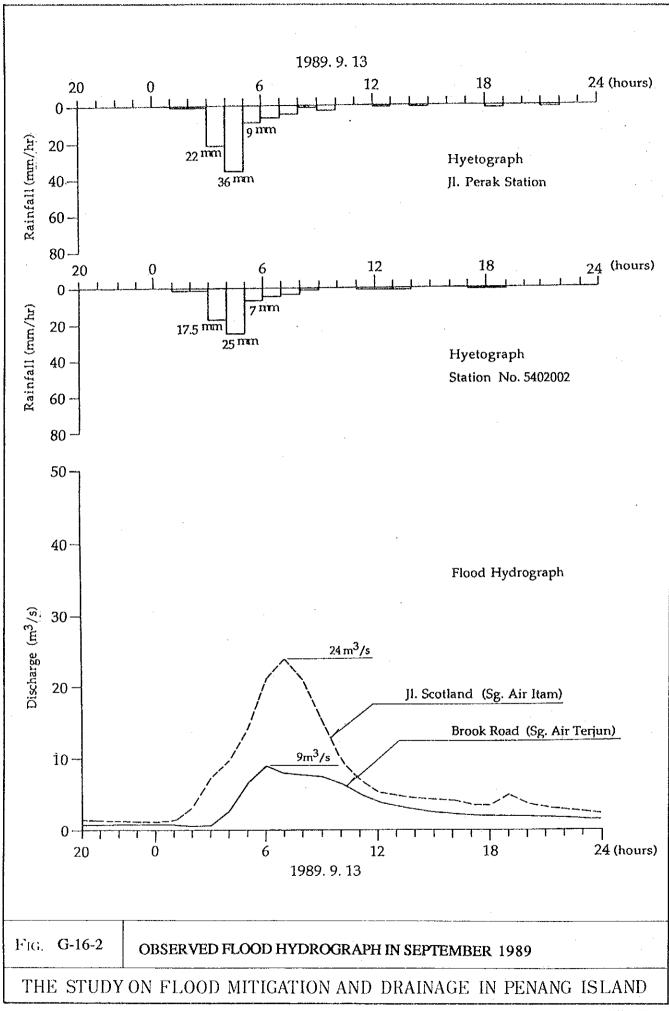
Sg. Keluang River System Model

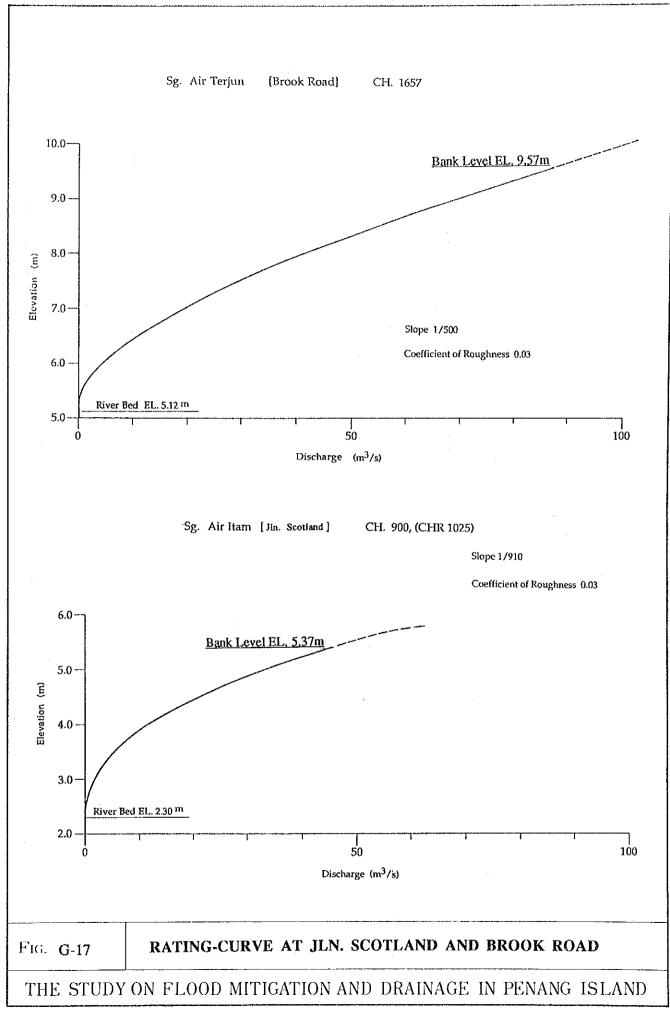





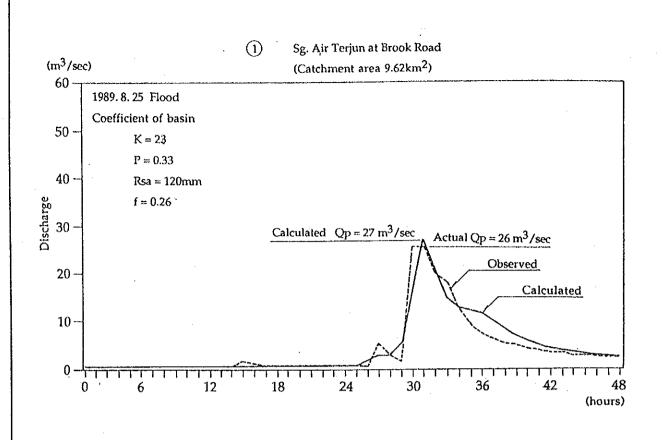

FIG. **G-12**

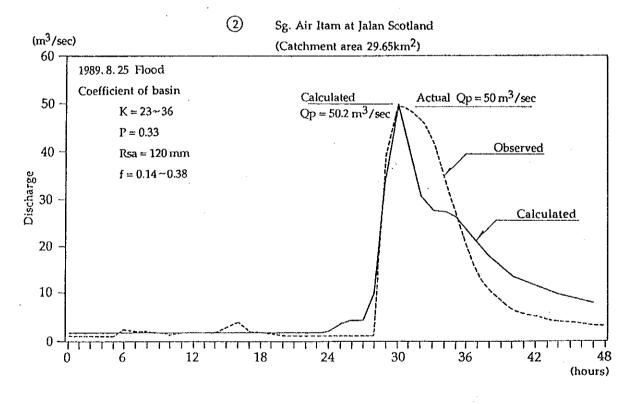
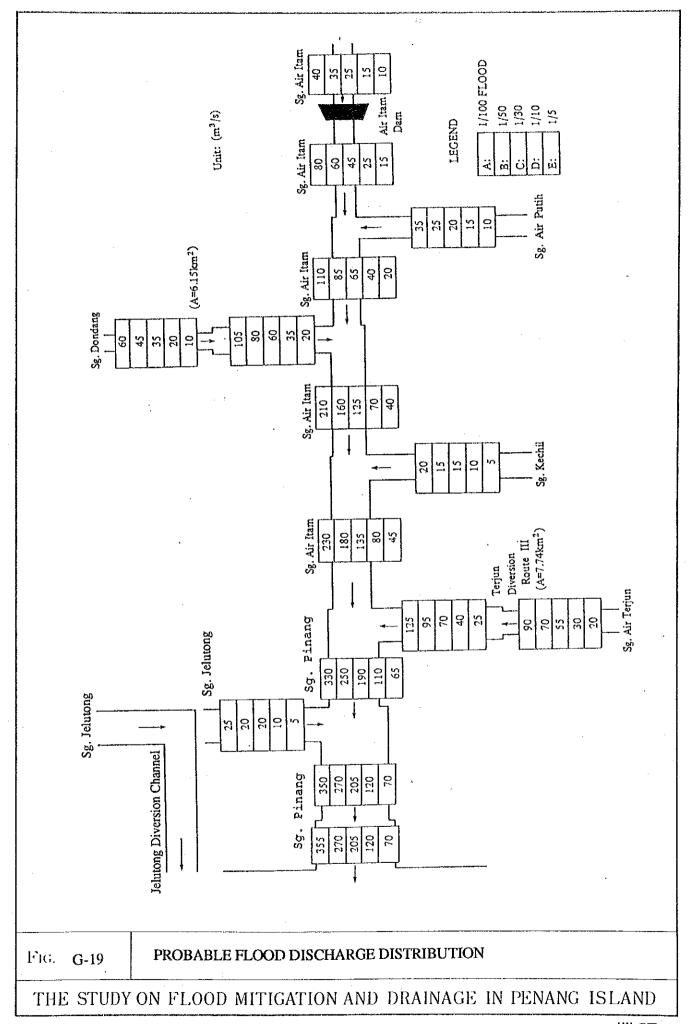
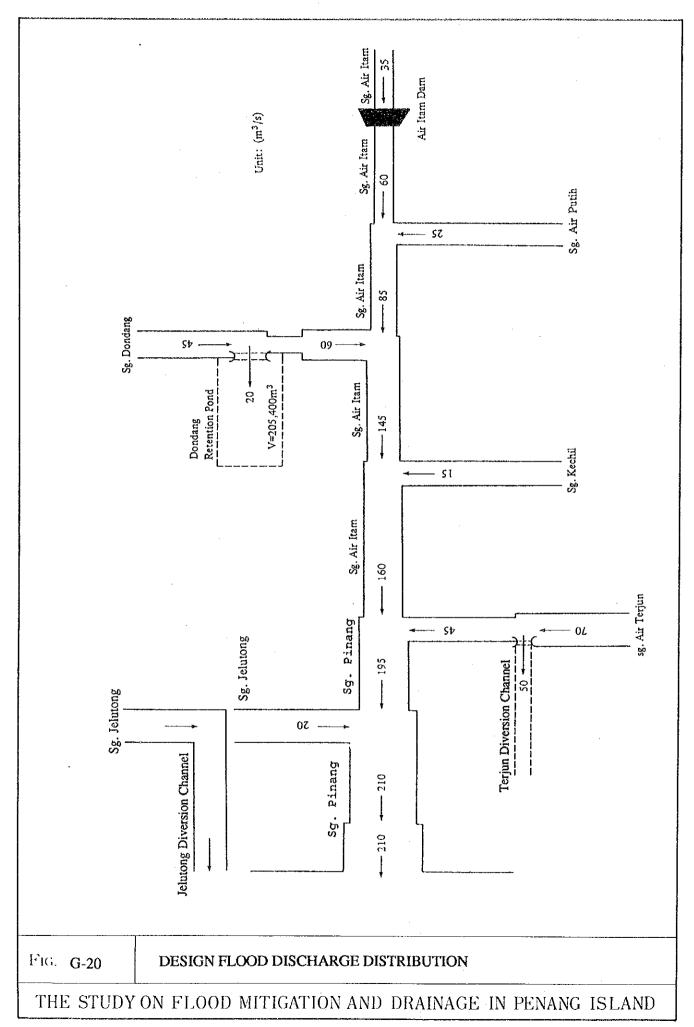
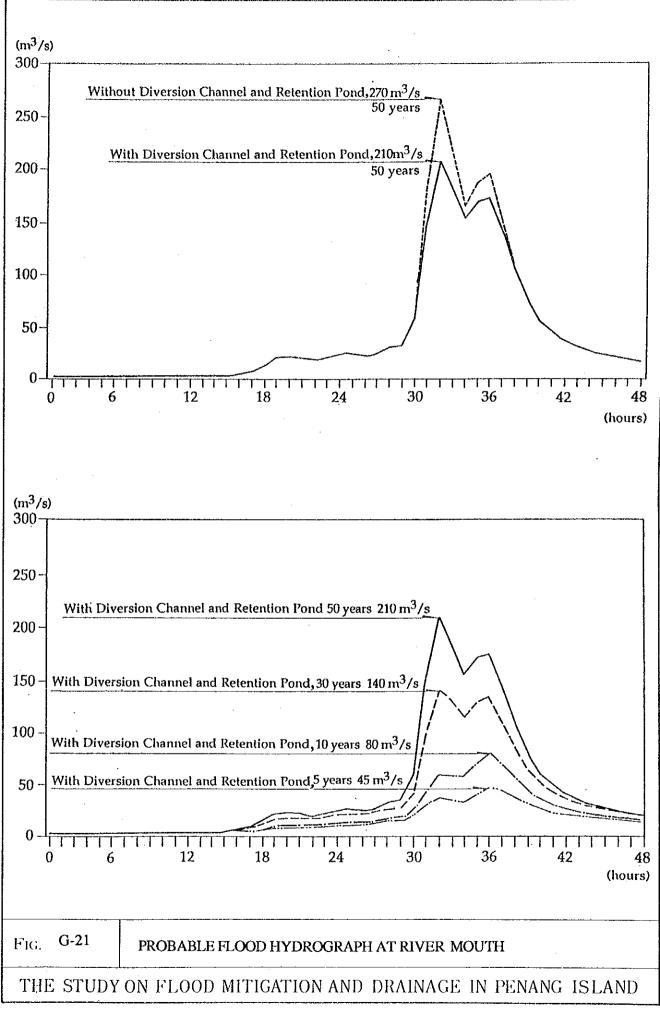
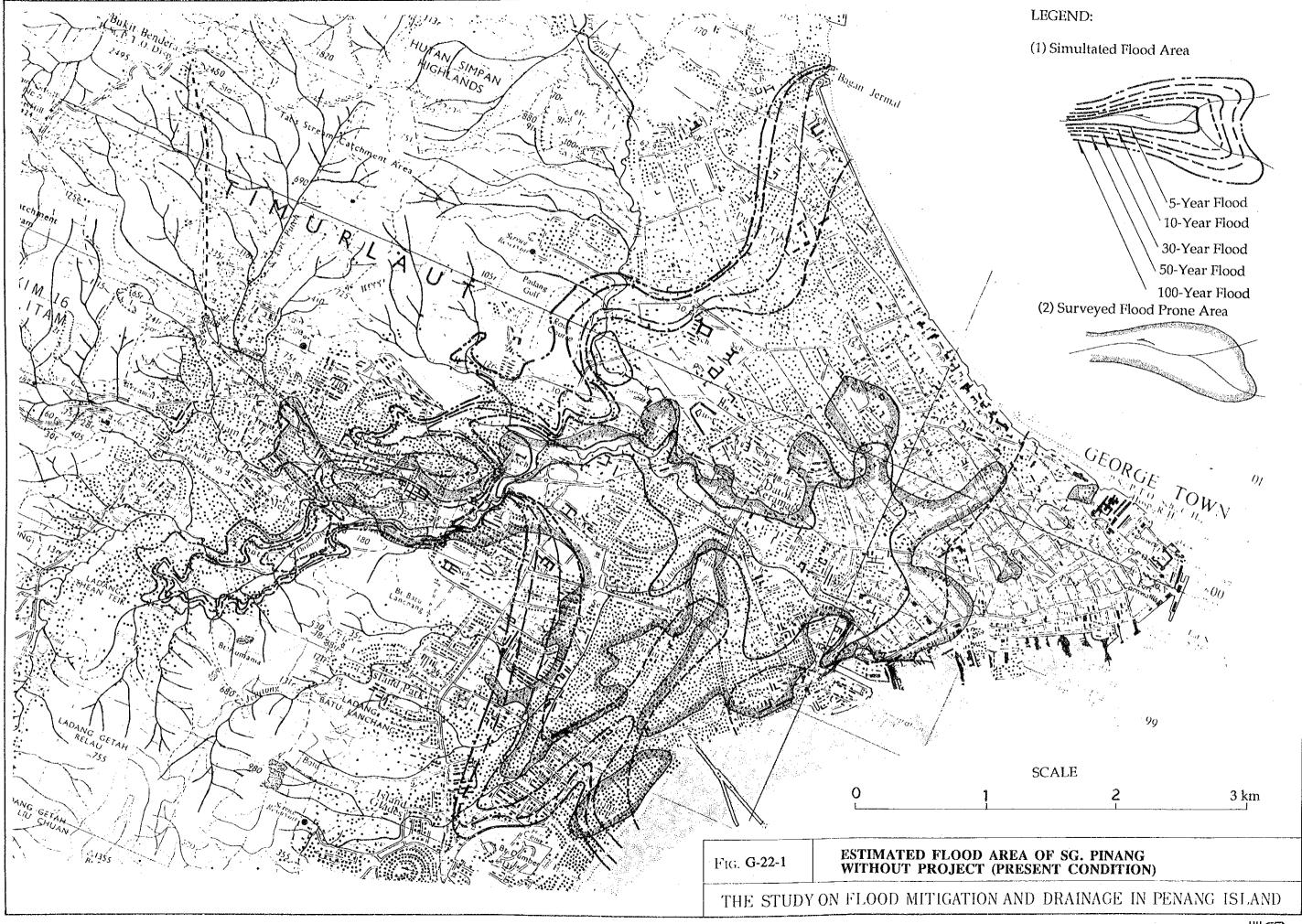

SG. KELUANG RIVER SYSTEM MODEL

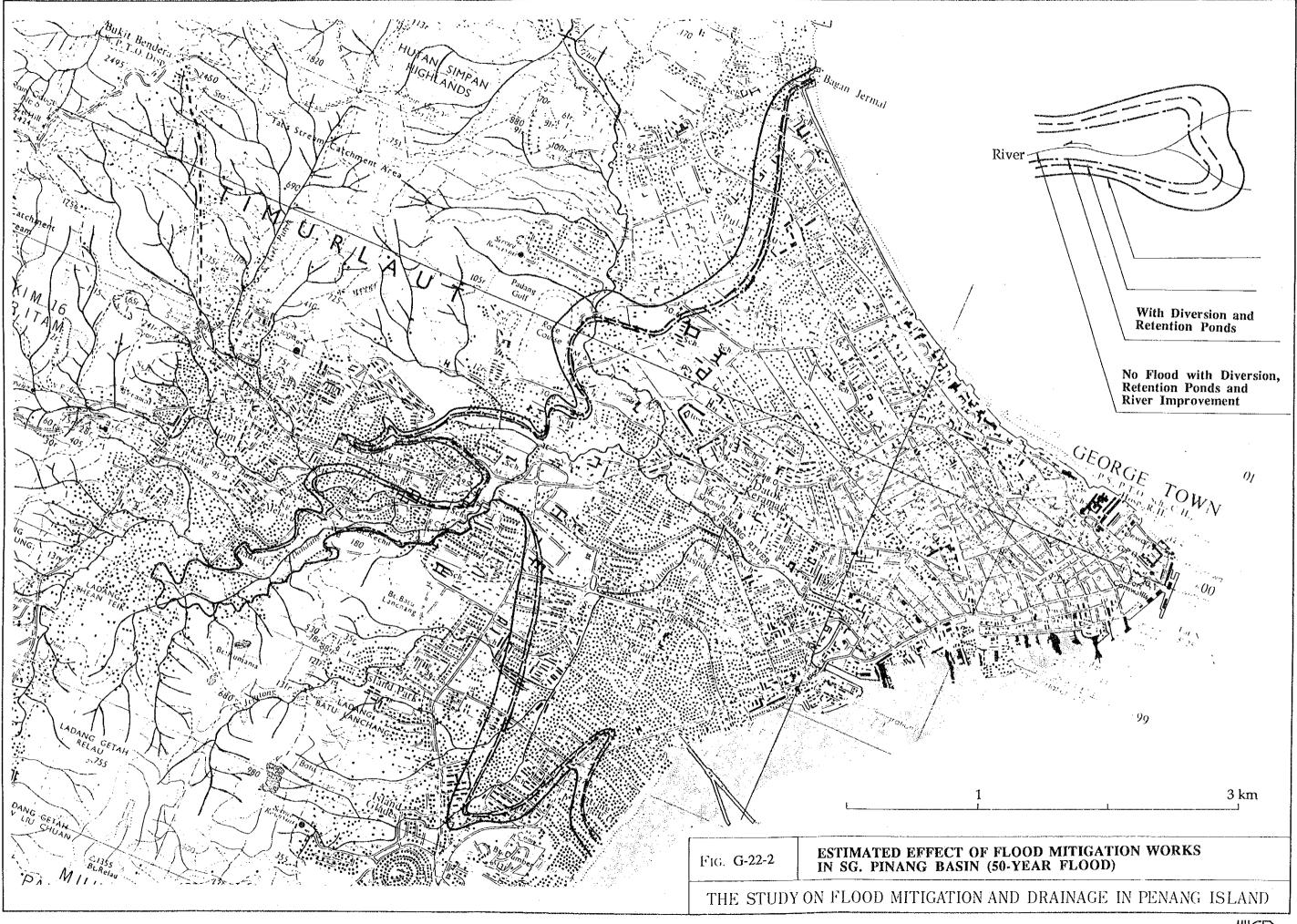


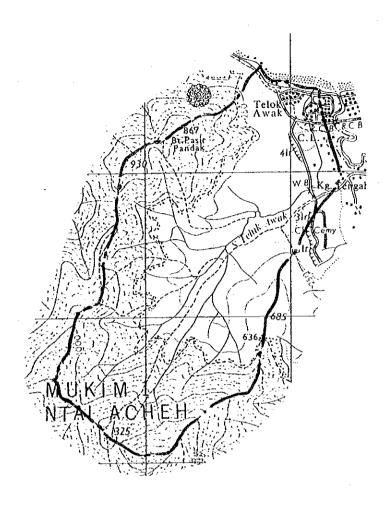


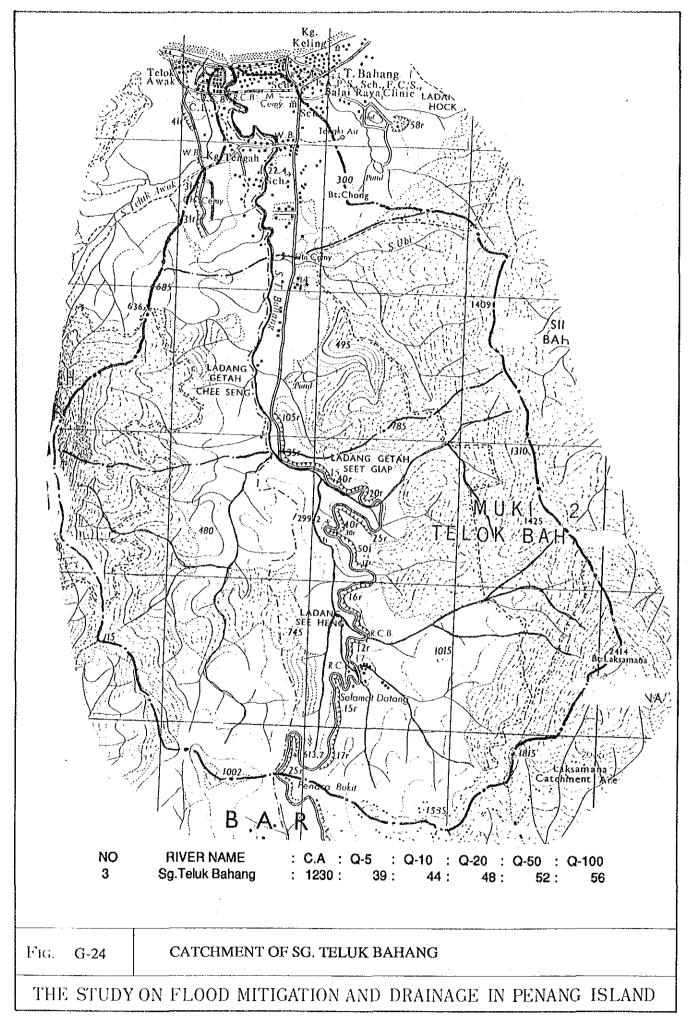





Fig. G-18 OBSERVED AND SIMULATED FLOOD HYDROGRAPH




NO 2

RIVER NAME

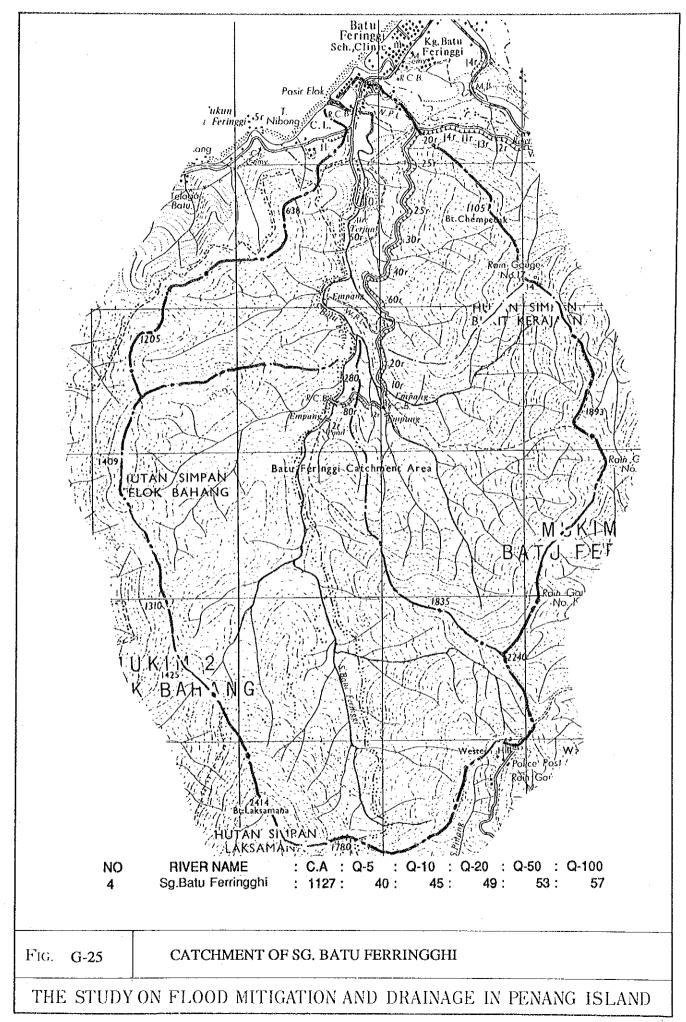

RIVER NAME : C.A : Q-5 : Q-10 : Q-20 : Q-50 : Q-100 Sg.Teluk Awak : 295 : 16 : 17 : 19 : 21 : 22

FIG. G-23

CATCHMENT OF SG. TELUK AWAK

ADIL

