APPENDIX D

SOCIO-ECONOMIC CONDITIONS

APPENDIX D SOCIO-ECONOMIC CONDITIONS

TABLE OF CONTENTS

1.	ECONO	MY OF PENANG ON THE CONTEXT OF NATIONAL ECONOMY	D-1
	1.1 1.2 1.3 1.4 1.5	Economic Planning Framework	D-1 D-1 D-2
2.	ANATO	MY OF PENANG ECONOMY	D-3
3.	ECONO	MY OF PENANG IN FUTURE	D-4
4.	POPUL	ATION	D-4
	4.1	Population Trend	D-4
	4.2	Future Projected Population	D-5
		·	
		LIST OF TABLES	
Table	D-1	STRUCTURE OF ECONOMY BY INDUSTRIAL SECTOR, 1980, 1985 AND 1990	D-7
Table	D-2	CONTRIBUTION SHARE ON NATIONAL GDP GROWTH BY REGION AND STATE	D-8
Table	D-3	POPULATION OF THE PULAU PINANG BY DISTRICT	D-9
Table	D-4	PROJECTED POPULATION AND GROWTH RATE, PENANG ISLAND	D-10
		LIST OF FIGURES	
Fia. I)-1	INFLUENTIAL AREA OF PENANG ECONOMY	D-11

APPENDIX D SOCIO-ECONOMIC CONDITIONS

1. ECONOMY OF PENANG IN THE CONTEXT OF NATIONAL ECONOMY

1.1 Economic Planning Framework

In planing framework, the regional approach to development is adopted in the Fifth Malaysia Plan (1986-1990) as a framework for national economic planning because planning on a state basis have failed to attain the benefits of any large-scale project in a particular state.

Malaysia is divided into six planning regions, namely, Northern, Central, Eastern, Southern, Sabah, and Sarawak. Each of these regions, comprising either an entire state or a group of neighbouring states, is dominated by at least a single urban centre. In case of Northern Region, this urban centres are Ipoh and Georgetown.

With the completion of the East-West Highway, the North-South Highway and the Penang Bridge and the improved facilities at the Penang Port and the Bayan Lepas International Airport, Penang is expected to improve its role as a regional centre and expand its sphere of influence even to the East Coast. Influential Area of Penang Economy is shown in Fig. D-1.

1.2 General Features of Penang Economy

The Northern Region is characterized by a large but narrowly-based manufacturing sector and a mobile population.

Since Penang is a major centre in the Northern Region with the largest metropolitan port base in the area, it's economy is affected by the overall growth of the region and the competitive linkage within the state and other states in the region. The areas which generally fall under the influence of the Penang economy include the whole of Kedah/Perlis and the Northern half of Perak, with Kelantan being a potential addition, through the East-West Highway connection. In addition, with the development of North-South Highway, the new Penang Bridge and the improved facilities at the Penang Port, the degree of integration and interaction with the region and the nation as a whole will further increase in the future.

1.3 Structure of Economy

Structure of Penang economy by industrial sector is compared with national/regional levels in Table D-1. Contribution of states and regions to national economy is shown in Table D-2.

Dominant growth core of Penang economy is occupied by a manufacturing sector, accounting for 41.0% of the whole production in Penang. This dominant position of manufacturing sector is sharply prominent in comparison with the national average of 20.6% and North Region's figure of 5.1%. And also this suggests that manufacturing sector with a high value added can lead Penang economy to rise in a dynamic spiral of growth

in progress that economic backward and forward linkages are accumulated in the region.

The contribution of manufacturing sector is very impressive in the Northern Regions as well as Central and Southern Regions. The shares of this sector output in the respective regional GDPs were 21% for the Northern Region, 26% for the Central Region, and 22% for the Southern Region compared with 19% at the national level, in 1985. These three regions together accounted for 88% of the total manufacturing sector output of the country.

The manufacturing sector of the region grew at 4.0% per annum during the period of 1981-1985. The increase in manufacturing output is largely originated from Perak and Penang, which together accounted for more than 90% of the increment in the region.

Manufacturing is followed by sub-sectors of secondary industry. Their title and composition share are as follows;

- Wholesale, retail trade, hotel and restaurants, 13.7%
- Electricity, gas and water, 2.9%
- Transport, storage an communication 11.6%
- Finance, insurance, real estate, and business service 8.4%

These tertiary sub-sectors accounts for 36.6% in total of whole Penang economy and are ranked at a slightly higher than national level of 32.5%, and far higher than Northern average of 6.9%.

Agricultural/fishery sector occupies 4.2% of total Penang economy in production, far less than the national level of 18.2%. This share has shown a gradual decreasing tendency since 1980 in parallel with that of national average figure. Composition share of agriculture/fishery sector is leveled at same level as the average figure of Northern Region.

The output of agricultural sector was the highest in the Northern Region, but the rates of growth in output and productivity were relatively less impressive compared to the other regions.

1.4 GDP Level of the Region

The GDP per capita of Northern Region in 1985 was \$3,162 or 84% of national average. This GDP per capita was growing at 2.4% per annum during the period. The State of Penang was the most developed in the Northern Region with a GDP per capita which is 10% higher than the national average. The three remaining states had a GDP per capita lower than the national average, ranging from 63% for Kedah to 85% for Perak. The ratios of GDP per capita to national average for all the states in the region were lower in 1985 compared with their ratios in 1980, indicating that these states grew less rapidly during the period.

1.5 Population and Labour Force

The Northern and Central Regions had the largest concentration of population in the country in 1985. With about eight million people, the two regions accounted for more than 50% of the total population, with the Northern Region having a slightly larger share of 28% of the total population. The share of population in the other regions was significantly less, with the Sabah Region having the smallest share of about 7%.

Given the growing labour force in the region and the limited number of jobs created during the period, agricultural states like Kedah experienced the highest unemployment rate in the region as well as sustained emigration. The relatively higher capacity of Penang to create employment in the secondary sector accounted for its relatively lower unemployment rate in 1985.

Employment creation was significant in the manufacturing sector. Out of 15,000 jobs created in the manufacturing sector, Penang and Perak together accounted for about 13,000 jobs.

In the urban hierarchy of towns, based on population, Georgetown ranked number two after Kuala Lumpur in 1970. However by 1980 its ranked has dropped to third below Kuala Lumpur and Ipoh. The population of Georgetown has in fact been decreasing. In terms of trade and economy, however Georgetown still remains in the second rank after Kuala Lumpur.

2. ANATOMY OF PENANG ECONOMY

Penang Island has been traditionally a trading, commercial and Entreport centre and today it continues to be a major growth centre in Peninsular Malaysia. Several major projects have been implemented in the past or are under implementation to facilitate the emergence of Penang as a regional centre.

In terms of national output, the manufacturing sector continued to spearhead growth with a 15.3% expansion. For the second consecutive year, the sector also continued to maintain its position as the leading contributor to total G.D.P., accounting for 24% of the national average. Expansion in manufacturing output was across the board with the majority of the industries registering double digit growth rates. The main impetus for this robust expansion was the enhanced performance of the traditional export-oriented industries of electronics and electrical goods, which increased by 17.7%, while rubberbased products grew by 75.6%. The growth of the textile and garment industry was rather slow and was only 4.1%.

The Penang economy likewise benefited from the development at national level. In 1988, it was estimated that the G.D.P. of the State grew by 8.9% compared to 6.6% in 1987. The manufacturing sector continued to spearhead the expansion of the economy of the State and grew at 15% in 1988. This sector continued to be the leading contributor accounting for 45.2% of the GDP of the State.. The manufacturing output sector continued to grow during the year and this was reflected in a

7.9% increase in cargo tonnage handled by the Port of Penang in 1988.

During the year, MIDA approved a total of 732 manufacturing projects for the country, an increase of 219.8% over 1987. Potential employment from these projects was 136,000 while proposed capital investment was 9.1 billion Malaysian Ringgit compared with 3.9 billion Malaysian Ringgit in 1987.

The State of Penang maintained its third ranking amongst the States in the country with a total of 73 new approved manufacturing projects for 1988. Potential employment by these projects was 17,833 while proposed capital investment was 730 million Malaysian Ringgit. This compares favourably with the 59 projects approved for 1987, with potential employment of 16,662 and proposed capital investment of 636 million Ringgit.

The real estate market responded favourable to the expansion of economy. Work resumed on many of the residential and commercial development projects which had been shelved or delayed. The high demand for factory premises also helped to boost the construction sector as a whole in 1988. This sector was estimated to have recorded a marginal growth of 1.6%.

The tourism sector too showed signs of recovery, with the direct arrival of foreign visitor to the State growing by 14.6%, with an absolute increase of 22,500 over 1987. Occupancy rates at leading hotels averaged 66.4%, reflecting the mood of the sector in the States.

Although employment by manufacturing sector and its output in Penang and Perak had registered steady growth, still Penang is characterized by a rather narrow industrial base. More than 46% of the employment by manufacturing in Penang were concentrated in electrical, machinery and equipment sub-sector, especially electronics. The electronics industry attracted female labour from neighbouring states, especially Kedah and Perak, into Penang. Despite the inflow of immigrants, Penang recorded a net emigration. A sizeable number of emigrants from Penang, who were largely males and better educated than the immigrants, moved to the Klang Valley in search of employment in modern sectors.

3. ECONOMY OF PENANG IN FUTURE

With forecasts of increasing real growth rates in newly industrializing nations and the projected stabilization of prices of commodities, the Malaysian economy is forecasted to experience a steady growth of 6.5% in 1989. Penang with the manufacturing sector as its main engine of growth is expected to benefit from this uptrend and is estimated to grow by 9% during the coming year.

4. POPULATION

4.1 Population Trend

According to population census of 1980, the total population of Penang Island was approximately 547,300 people, and that of whole state was 1,068,900. Penang is among the states with the lowest growth rates in the decade of 1970 - 1980, with an average annual growth rate of 1.5%, while that of

the Island was even lower with 0.9%. This figure is very much lower than the average annual growth rate of 2.2% in the same decade for Peninsular Malaysia.

At district level, the average annual growth rates for the same decade for Georgetown registered a negative growth rate of about -0.8% per annum. This reflect decentralization of population from Georgetown to other secondary urban centres such as Air Itam, Gelugor, Tanjung Tokong. It also indicates that the areas on the western part of the island like Balik Pulau, Pondok Upeh registered a decline in population.

Georgetown registers a constant increase of population since 1981 according to the population data shown in Table D-3. However, this is attributable to the method of estimation which is based on the mortality and fertility rates, rather than registration of accurate inhabitants.

Average population density of the Island is about 1,650 persons per sq.km. North East District with a population of 455,500 is much denser with 93,370 persons per sq.km. than the South West District with a population of 91,800 and a density of only about 570 persons per sq.km. The North East District contains 84.0% of the Island's population, while the Metropolitan area, the whole urbanized eastern part of the island, contains 88.0% of the island's population.

The immigration cum emigration has a significant impact on the change in population in the Penang Island. During the 1970-1980 decade there had been a significant loss of people from the island. Though there is no accurate data available on this issue, the NIDAS survey estimated that there is a net emigration of as much as 6,000 people per year since 1970.

4.2 Future Projected Population

Penang Island Structure Plan conducted population forecast based on the Cohort Component method, which takes into account the effects of fertility, mortality and migration on population size and structure.

Model 1

- Basic assumption are as follows; Fertility rate will decline from the 1980 level.
- Mortality rate will decline from the 1980 level.
- Net migration level (negative) will remain constant at 1980 level.

Model 2

- Basic assumption are as follows; Fertility rate will decline from the 1980 level.
- Mortality rate will decline from the 1980 level.
- The net migration level are assumed to decrease to zero in a linear fashion during the period of 1980-2000.

The results of population forecast is summarized in Table D-4. Accordingly, the population of Penang Island is

forecasted to be in the range of 63,000 - 66,700 in the year 2000.

The results of analysis concerning future population will be dealt with in detail in subsequent stage.

Tables

Table D-1 STRUCTURE OF ECONOMY BY INDUSTRIAL SECTOR, 1980, 1985 AND 1990

}{ems	ר	The State of Penang	of Penang	_				-	North Region	uc				Whole	Whole Malaysia			
	1980		1985		1950		1980		1985		1990		1980		1985		1990	
Economic sector																		
Agriculture, forestry, livestock, and fishing	223 (223 (6.5%)	228 (5.3%)	230 ((%2.4	2789 (25.2%	3108 (22.8% >	3387 (3387 (20.6%)	10189 (23.4%)	12046 (20.6% }	13713 (18.2%
Mining and quarrying	180	0.5%)	21 (0.5% }	_	0.4%)	1180	10.6%)	1093 (8.0%)	808	4.9%	4487 (10.3%)	9009	10.3%)	9889	8.3%
Manufacturing		41.0%)		38.9%)		41.0%)	2357 (21.3%	2864 (21.0%)	3798 (23.1%)	8932 (20.5%)	11357	19.4% }	15509 (20.6%
Construction		4.2%)		4.4%)	222 (4.1%	431	3.9%	634 (4.6%)	812	4.9%)	2066 (4.7%)	3048	5.2%	4000 (5.3%
Electricity, gas, and water	989	2.0%)		2.4%)	_	2.9%	151 (1.4%	240 (1.8%	375 (2.3%	640 (1.5%)	988	1.7%)	1513 (20%
Transport, storage, and communicat	313 (9.2%	447 (10.4%)		11.6% }	654 (5.9%	922 (6.8%	1317 (8,0%	2542 (5.8%	3805	6.5%	5494 (7.3%
Wholesale and retail trade, hotels,	565 (16.6%)	920 (15.2%)		13.7%)	1196 (10.8% }	1469 (10.8%)	1805 (11.0%)	5383 (12.4%)	7551	12.9% }	10252 (13.6%)
and resturants						_												
Finance, Insurance, real estate, and business services	269 (7.9%)	383 (8.2%	462 (8.4%	937 (8.5%	1244 (9.1%)	1654 (10.1%)	3687 (8.5%	5212 (8.9%	7230 (9.6%)
Government services	322 (9.4%	519	12.1% >	634 (11.5%)	1154 (10.4%)	1790 (13.1%)	2135 (13.0%)	4563 (10.5%)	7270	12.4%)	8842 (11.8%
Other Services	93 (2.7%)	108 (2.5% >	124 (2.3%	238	2.1%	291 (2.1%)	349 (2.1%)	1021 (2.3%)	1312	2.2%	1651	2.2%
Total	3413 (100%)	4283 (100%)	5479 (100% }	11087 (100%)	13655 (100%)	16440 (100%	43510 (100%)	58595	100%)	75193 (100%)
GDP at purchasers' value (MS million)	3496		4325		5493		16481		13789		16481		44702		59344		75599	
Per capita GDP (MS)	3649		4120		4848		3539		3162		3539		3321		3758		4228	
Ratio to Malaysian average	1.13		- -		3		0.84		0.84		9.84		-		₩		-	
Growth rate of GDP per capita (% per annum)	l	2.5		6,6			I	2.4	l	2.3			I	3.1		2.4		
Population ('000)	958		1050		1133		4040		4360		4658		13879		15791		17988	
Employment ('000') Chemployment ('000')	5,1		6.4		σ, ω		6.1		7.7		10.2		5.7		2.6		10.1	
Net internal micration (1000)	1	6 6	ļ	ا در			1	,,,	l	93.			i	- C				

(Source; Fifth Malaysia Plan)

Table D-2 CONTRIBUTION SHARE ON NATIONAL GDP GROWTH BY REGION AND STATE

tons.	Year	Northern					Central					Eastern	İ		V) ·	Southern	Sabah	Sarawak	Malaysia
		Total	Kedah	Perak	Perlis	Pulau Pinang	Total	Melaka	Negeri Sembilan	Selangor	F.T. of K.Lumpur	Total	Kolantan	Pahang	Toren- gguanu	Johar			
CDP at purchasers' Value	1980 1985 1990	11,358 13,739 16,481	2,355 2,855 3,344	5,170 6,179 7,103	337 430 541	3,496 4,325 5,493	16,313 21,781 28,058	1,072 1,362 1,706	1,981 2,405 2,956	7,014 9,043 11,328	6,246 8,971 12,068	5,902 8,281 11,212	1,337 1,786 2,316	2,553 3,490 4,578	2,012 3,005 4,318	4,797 6,163 7,653	3,235 4,570 6,005	3,097 4,760 6,190	44,702 59,344 75,599
······································	1980 1985 1990	25.4% 23.2% 21.8%	5.3% 4.8% 4.4%	11.6% 10.4% 9.4%	0.8% 0.7% 0.7%	7.8% 7.3% 7.3%	36.5% 36.7% 37.1%	2.4% 2.3% 2.3%	4.4% 4.1% 3.9%	15.7% 15.2% 15.0%	14.0% 15.1% 16.0%	13.2% 14.0% 14.8%	3.0% 3.0% 3.1%	5.7% 5.9% 6.1%	4.5% 5.7% 5.7%	10.7% 10.4% 10.1%	7.2%	8.0% 8.0% 8.2%	100.0% 100.0% 100.0%
	Difference 1980-1585 1985-1990	-2.2%	-0.5%	-1.2% -1.0%	0.0% 0.0%	-0.5%	0.2%	-0.1% 0.0%	-0.4% -0.1%	-0.5% -0.3%	1.1% 0.8%	0.8% 0.9%	0.0% 0.1%	0.2%	0.6% 0.6%	-0.3% %8:00-	0.5%	1.1%	
GDP incremental	1980-1985 1985-1990 1980-1990	2,431 2,692 5,123	500 489 989	1,009 924 1,933	93 111 204	829 1,168 1,997	5,468 6,277 11,745	290 344 634	424 551 975	2,029 2,285 4,314	2,725 3,097 5,822	2,379 2,931 5,310	449 530 979	937 1,088 2,025	993 1,313 2,306	1,366 1,490 2,856	1,335 1,435 2,770	1,663 1,430 3,093	14,642 16,255 30,897
Incremental GDP Share	1980-1985 1985-1990	16.5% 16.5%	3,4%	6.9% 5.7%	0.6%	5.7%	37.3% 38.6%	2.0% 2.1%	2.9%	13.9% 14.1%	13.6% 19.1%	16.2% 18.0%	3.1% 3.3%	6.7% 6.7%	6.8% 8.†%	9.3% 9.2%	9.1%	11.4% 8.8%	100.0% 100.0%
	Difference	0.0%	-0.4%	.1.2%	. %0.0	1.5%	1.3%	0.1%	0.5%	0.2%	0.4%	1.8%	0.2%	0.3%	1.3%	-0.2%	%6.0-	.2.6%	

Table D-3 POPULATION OF THE PULAU PINANG BY DISTRICT

DISTRICTS		1980	1981	1982	1983	1984	1985	1986
TENGAH	(BUKIT MERTAJAM)	171.4	174.7	178.6	182.7	186.7	191.4	196.2
UTARA	(BUTTERWORTH)	210.3	214.5	219.2	224.0	228.7	233.9	239.0
SELATAN	(NIBONG TEBAL)	75.8	77.2	79.0	80.8	82.6	84.4	86.4
TIMUR LAUT	TIMUR LAUT (GEORGETOWN)	417.9	425.4	432.5	438.3	444.0	450.1	455.5
BARAT-DAY	BARAT-DAYA (BALIK PULAU)	80.3	9. 9.	83.6	85.3	87.3	89.5	91.8
TOTAL		955.6	973.8	992.8	1,011.2	1,029.3	1,049.3	1,068.9

SOURCE: STATE/DISTRICT DATA BANK, PENANG, 1980-1986, DEPARTMENT OF STATISTICS MALAYSIA, KUALA LUMPUR.

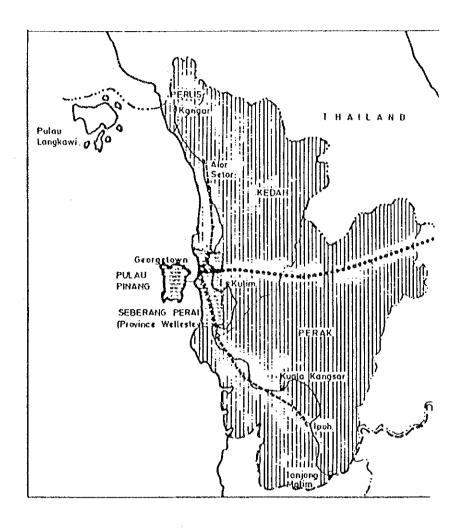
Table D-4 PROJECTED POPULATION AND GROWTH RATE, PENANG ISLAND

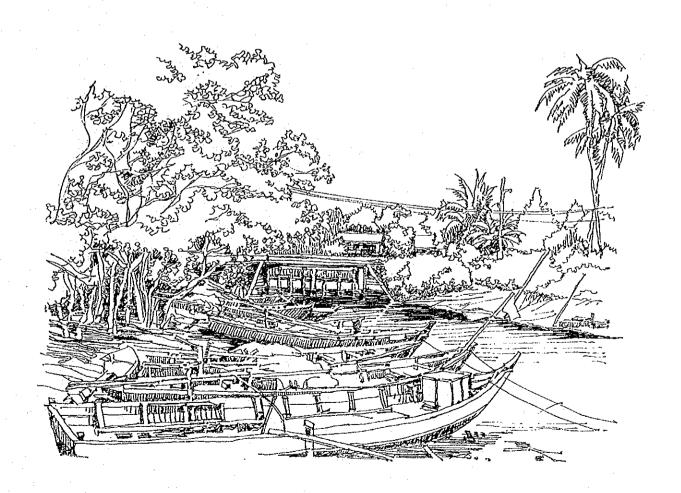
	1985 1990 1995 2000	op. Growth Pop. Growth Pop. Growth Rate Rate Rate	34 D.a.	3.5 168900 3.3 195500 3.0 220800	0.5 324800 0.5 331600 0.4 334900	1.0 59200 1.1 62600 1.1 65200	0.8 8100 0.8 8500 1.0 8800	1.4 561000 1.4 598200 1.3 629700
	1990	Pop.		168900	324800	59200	8100	561000
	1985	Pop. Growth Rate		143500	316400	55900	7800 0.8	523600 1.4
	1980	Pop. Growth Rate	98 CI		308100 0.9		7500 -2.2	489500 1.3
MODEL 1	Year	Ethnic Group	L i	Malay	Chinese	Indian	others	Total

MODEL 2										
Year	1980		1985		1990		1995		2000	
Ethnic	Pop.	Growth	Pop.	Growth	Рор.	Growth	Pop.	Growth	Pop.	Grawth
Group		Rate		Rate		Rate		Rate		Rate
		38 D.a.		% p.a.	,	% p.a.		88 D.9.		96 CI.
Majay	120800	3.0	143700	3,5	168200	3.2	192200	2.7		2.0
Chinese	308100	6 0		0.5	331200	0.0	351400			1.3
Indian	53100	0.7			60500	ក	65800	1.7	71400	1.6
others	7500	-2.2		0.8	8100	0.8	8500	0.	8800	7.
Total	489500			4.	568000	្ស	617900	1.7	667400	9.

Source: MPPP Structure Plan Survey, 1983

Figures




Fig. D-1

INFLUENTIAL AREA OF PENANG ECONOMY

THE STUDY ON FLOOD MITIGATION AND DRAINAGE IN PENANG ISLAND

APPENDIX E

PRESENT CONDITIONS OF THE RIVERS AND BASINS IN PENANG ISLAND

APPENDIX E PRESET CONDITIONS OF THE RIVERS AND BASINS IN PENANG ISLAND

TABLE OF CONTENTS

1.	INTROD	UCTION	E-1
2.		T CONDITIONS OF THE RIVERS AND BASINS IN PENANG	E-2
	2.2	General Description of the Basin	E-2 E-2 E-3 E-3
3.	EXISTI	NG FLOOD MITIGATION PROJECTS	E-4
		Completed Flood Mitigation Projects	E-4 E-5
4.	EXISTI	NG RIVER AND RELATED STRUCTURES	E-6
	4.2	Air Itam Dam	E-6 E-6 E-6
5.		NG INSTITUTIONAL FRAMEWORK FOR RIVER AND BASIN	E-7
6.	EXISTI	NG FLOOD FORECASTING AND WARNING SYSTEM	E-8
		LIST OF TABLES	
Table	E-1-1 ~1-11	CHARACTERISTICS OF RIVERS AND BASINS	E-9
Table	E-2	COMPREHENSIVE EVALUATION OF RIVERS AND BASINS	E-20
Table	E-3-1 ~3-7	FEATURES OF EXISTING BRIDGES	E-21
Table	E-4	COMPLETED OR PREVIOUSLY PROPOSED LENGTH OF RIVER IMPROVEMENT	E-28

LIST OF FIGURES

Fig.	E-1	RIVERS IN PENANG ISLAND	E-29
Fig.	E-2	PRESENT AND FUTURE URBANIZATION IN EACH BASIN	E-30
Fig.	E-3-1	EXISTING DISCHARGE CAPACITY OF SG. PINANG & SG. JELUTONG	E-31
Fig.	E-3-2	EXISTING DISCHARGE CAPACITY OF SG. AIR ITAM & SG. DONDANG	E-32
Fig.	E-3-3	EXISTING DISCHARGE CAPACITY SG. AIR TERJUN	E-33
Fig.	E-3-4	EXISTING DISCHARGE CAPACITY OF RIVERS NO.2 - NO.5	E-34
Fig.	E-3-5	EXISTING DISCHARGE CAPACITY OF RIVERS NO.6 - NO.8	E-35
Fig.	E-3-6	EXISTING DISCHARGE CAPACITY OF RIVERS NO.9 - NO.12	E-36
Fig.	E-3-7	EXISTING DISCHARGE CAPACITY OF RIVERS NO.13 - NO.16	E-37
Fig.	E-3-8	EXISTING DISCHARGE CAPACITY OF RIVERS NO.17 - NO.19	E-38
Fig.	E-3-9	EXISTING DISCHARGE CAPACITY OF RIVERS NO.20 - NO.22	E-39
Fig.	E-3-10	EXISTING DISCHARGE CAPACITY OF RIVERS NO.23, NO.24 & NO.26	E-40
Fig.	E-4	PROPOSED ROUTE OF SG. TIRAM DIVERSION CHANNEL	E-41
Fig.	E-5	PROPOSED LONGITUDINAL PROFILE AND CROSS SECTION OF SG. TIRAM DIVERSION	E-42
Fig.	E-6	TYPICAL CROSS SECTION OF AIR ITAM DAM	E-43
_	E-7-1 ~7-5	LOCATION MAP OF RIVER AND RELATED STRUCTURE	E-44

APPENDIX E PRESENT CONDITIONS OF THE RIVER AND BASINS IN PENANG ISLAND

1. INTRODUCTION

Penang Island with a total area of about 300 km² is located in the northern portion of the west coast of Peninsular Malaysia. The total population of the Island in 1985 was about 450,000 out of which about 260,000 lived in the City of Georgetown.

In the Island, there exist 31 main river systems as shown in Fig. E-1 with varying catchment areas ranging from as low as $1~\rm km^2$ to $50~\rm km^2$. Among these rivers, Sg. Pinang is the largest river system with a catchment area of $50.97~\rm km^2$ (including Sg. Jelutong up-stream basin). Its lower reach flows through the City of Georgetown and severe flood damages occur whenever the river overflows its banks.

The rainy season is from August to January, and flooding usually occurs in the months of September and October. The most severe floods in recent years occurred in October 1980, and an area over 2 km² of Georgetown was inundated for 1 to 2 days to a depth of 0.5 to 1 m. Flooding in Sg. Pinang basin has occurred so far mainly in the centre of old Georgetown along Sg. Pinang and along its tributaries, Sg. Air Terjun, Sg. Air Itam and Sg. Jelutong. After completion of Sg. Jelutong diversion channel, flooding in the Sg. Jelutong area has been mitigated ever since. In other basins also, flooding has occurred mainly in the lower basins. However, due to recent intensive land development in the upper basin, especially in the hilly side, flooding now occurs even in the upper or middle basin, such as in the Sg. Dondang, Sg. Gelugor or Sg. Relau.

In addition, the role and responsibilities of the various Departments and Agencies in the planning, development and maintenance of flood mitigation and urban drainage works both within and outside the City of Georgetown are not clearly defined. This has led to confusion and duplication in the role and functions of various Agencies resulting in a decrease in efficiency and effectiveness on the planning, development and maintenance of flood mitigation and urban drainage works. To make matters worse, no effective coordination among DID or MPPP and the Agencies who jurisdict land development or human activities, such as cultivation, housing development, land reclamation, deforestation, and mining, has been done, resulting in erosion and siltation, frequent flooding and drainage problems.

2. PRESENT CONDITIONS OF THE RIVERS AND BASINS IN PENANG ISLAND

2.1 General Description of the Basin

In the Penang Island, there are 31 main river systems which may be broadly classified into five (5) groups based on their topographical conditions, land use pattern, extent and scale of catchment area.

The first is Sg. Pinang Basin, the catchment of which is the largest and the most developed among the 31 river systems.

The second is the basins of mid scale with moderately developed catchment comprising a comparatively large area of flat land. Such river basins are located in the east coast of the Island.

The third is the basins of mid scale with sparsely developed catchment due to their unfavourable topographic conditions comprising much hills and valleys. Such basins exist along the north and south coast of the Island.

The fourth is the basins of small scale with a catchment area less than $5\ km^2$ and are either highly developed already or planned to be developed. Such basins exist along the north, east and south coast.

The fifth is also basins of mid scale comprising a high degree of agriculturally developed catchment. Such basins are located along the west coast of the Island.

2.2 Characteristics of the Rivers and Basins

The characteristics of each rivers and the respective basins are summarized in Tables E $1-1\sim$ E 1-11.

Among these basins, four basins have serious erosion and sediment run-off potential caused by human activities. They are Sg. Pinang, Sg. Tanjung Tokong, Sg. Balik Batu and Sg. Keluang

The river channels of these basins are severely affected by siltation of river beds.

Longitudinal profiles of the 25 rivers excluding the five rivers in the west coast of the Island are shown in APPENDIX H.

Regarding land use, most of the flat land in the Island is expected to be developed into residential, park or agricultural areas until the year of 2010.

Fig. E-2 shows the present and future urbanization in each basin.

The rivers in the east coast will be extended at their river mouths due to land reclamation.

2.3 Existing Discharge Capacity of the Rivers

Existing discharge capacity was estimated for the 24 rivers in which the longitudinal and cross sectional survey have been executed.

Fig. E-3-1 $^{\circ}$ E-3-10 show the existing flow capacity and probable discharge under the land use conditions in the year 2010

In the Sg. Pinang system, both the main river and its tributaries generally have very low discharge capacity.

The discharge capacity of the rivers in the north coast is comparatively large. However, the rivers in the east coast have extremely low discharge capacity due to existence of lowlying area and siltation problem.

The rivers in the south coast also have low discharge capacity.

2.4 Comprehensive Evaluation of Rivers and Basins

In order to formulate the implementation program and also to select the urgent project area, a comprehensive evaluation of the rivers and basins were carried out considering the scale of catchment, experienced past floods, flood damage, future land development of basin and anticipated future flood damage.

The results of this comprehensive evaluation for all 31 river basins are presented in Table E-2.

Accordingly the river basins are classified into three grades, Grade A, Grade B and Grade C, expressing the degree of importance of each river for flood control.

The following legend was used for the evaluation of rivers and basins and hence to grade the river basins based on aggregate points of evaluation.

	Evaluation	
Item	Point	Range or Condition
Scale of Catchment	1	5.0 km ²
•	2	$5.0 - 10.0 \text{ km}^2$
	3	$10.0 - \text{km}^2$
Experienced Floods	1	Non-existence
_	2	Sometimes
	3	Frequently
Flood Damaged	1	No damage
	2	Minor damage
	3	Serious damage
Future Development	1	No development or less than 10%
	2	10%-30% of urban expansion area
	3	30% and more
Flood Damage in Futu	are 1	Not anticipated
	2	Minor damage anticipated
	3	Serious damage anticipated

< APPENDIX E >

Method of Grading : Grade A for aggregate points > 10

Grade B for aggregate points ≥ 9 but ≤ 10

Grade C for aggregate points < 9

3. EXISTING FLOOD MITIGATION PROJECTS

For the rivers in the Island, neither a comprehensive flood mitigation study nor a master plan of flood mitigation has ever been carried out in the past. The river improvement works have been executed only locally and for some very important river stretches by SDID or MPPP. These improved river stretches exist mainly in the newly urbanized area, such as a river reach with developed area at upstream or a land reclamation area.

These localised river improvement works have been executed, in general, by private housing developers based on the design conditions approved by SDID.

3.1 Completed Flood Mitigation Projects

The major flood mitigation projects already executed by SDID or MPPP are as follows:

3.1.1 Jelutong Diversion Channel

The Jelutong Diversion Channel was completed in 1976 for the purpose of diverting 80% of run-off discharge from Sg. Jelutong Catchment to South Channel.

Sg. Jelutong is a tributary of Sg. Pinang and has a catchment of $6.59~\rm km^2$. Total length of diversion channel is about 1 km comprising of 0.20 km open channel at its upstream and 0.8 km closed channel at downstream.

The section of this channel is 7.7 m wide and 2.9 m deep, with a carrying capacity of about 60 $\rm m^3/s$.

More details about Jelutong diversion channel are described in APPENDIX I.

3.1.2 Sg. Tiram Diversion, Stage I

Sg. Tiram is a small river located in the vicinity at north of the Bayan Lepas International Airport. The River together with its tributaries drain an area of 437 hectares at northwest of the airport comprising mainly of agricultural and undeveloped land. During the construction of the airport runway extension, the natural drainage outlet of Sg. Tiram was blocked off and the flow was diverted into the airport drainage system which soon proved to be inadequate to cope with the increased surface run-off, resulting in nuisance flooding in the airfield.

As the solution to this flooding problem it was decided to divert the run-off from the Sg. Tiram catchment partly north-easterly to Sg. Ara and partly south-westerly to Sg. Bayan Lepas.

The diversion works to Sg. Ara, termed as Sg. Tiram Diversion Channel, Stage 1, was completed in 1970.

It involved the construction of about 2.2km of unlined trapezoidal channel with a design capacity of 34 m³/s and runs parallel to the airport runway and discharges into Sg. Ara about 610m from the coast. The Sg. Bayan Lepas diversion channel project is termed as Sg. Tiram Diversion Channel, Stage II, and described in the subsequent section

3.2 On-Going Flood Mitigation Projects

The major flood mitigation projects that are on-going are described below:

3.2.1 Sg. Pinang Improvement Works

This river improvement work is planned to be carried out by SDID for 3.2km stretches between the river mouth and Datuk Keramat bridge. The improvement work is comprised of widening and deepening of the existing river channel section.

The design cross-section is a simple unlined one with a discharge capacity for a 2 year rainfall return period.

Alignment of the proposed river channel follows the existing route.

In the stretches to be improved, there exist four concrete bridges, but there is no plan to reconstruct these bridges. This improvement works will start in 1989 and is expected to be completed by 1990.

The construction cost is estimated to be about M\$4.5 million.

The adopted design consideration for this river improvement plan is summarized below.

Length to be improved Design rainfall frequency

3.2km
2 years return period

Discharge at River Mouth 105.6m³/s

Water level at river mouth

1.60m (H.W.S.) Trapezoidal

Cross-section Channel type

Storage channel (excavated waterways)

Gradient of Riverbed Slope protection

1:5,000 Earth channel

Relocation of houses

60

3.2.2 Sq. Tiram Diversion Channel Works, Stage II

The background and basic description concerning this project is described in the previous section under, Sg. Tiram Diversion Channel Works, Stage I. As dealt with in the previous section this Stage II, works consist of diverting a portion of Sg. Tiram to Sg. Bayan Lepas with a diversion channel. The implementation is planned to be commenced in the year 1989 by SDID. The total length of diversion is 2.8km.

< APPENDIX E >

The discharge capacity for $0.68 \,\mathrm{km}$ of upstream portion of the diversion channel is $52.4 \,\mathrm{m}^3/\mathrm{sec}$, whereas for the rest $2.62 \,\mathrm{km}$ downstream portion is $76.4 \,\mathrm{m}^3/\mathrm{sec}$. The average width of the channel is $11 \,\mathrm{m}$ with an average depth of $3.5 \,\mathrm{m}$. Fig. E-4 and E-5 shows the proposed route, longitudinal profile and cross section of Tiram Diversion Channel.

4. EXISTING RIVER AND RELATED STRUCTURE

In the Study area, as the river and related structures, there exist one major water supply dam, about 120 bridges and about 6.1 km of improved river stretches.

The characteristics of these structures are as follows:

4.1 Air Itam Dam

The Air Itam Dam was constructed in 1962 at the upstream of the Sg. Air Itam for the purpose of water supply.

The dam is of earth-fill type with a capacity of about 2.6 million m^3 . The catchment area of the dam is 575 hectares and when full the water surface area of the dam is about 20 hectares. The crest length of the dam is about 210 m with the maximum height of about 47 m.

A cross sectional view of the dam is shown in Fig. E-6.

4.2 Bridges

In the river stretches that may require river improvement works, there are about 30 bridges along Sg. Pinang system, and about 40 bridges along the other rivers.

Most of these bridges are of concrete.

In general, the span length of the bridges are greater than the existing river widths, However some bridges are of inadequate size or have many piers thereby interfering with free flow during flood discharges.

Table E-3-1 \sim E-3-7 show the characteristics the existing bridges.

The location of these bridges are shown in Fig. E-7-1 \sim E-7-5.

4.3 Improved River Stretches

The river improvement works executed in the past are predominantly partial channelization of the river stretches.

They are either concrete channel in the newly urbanized area, retaining wall, or stone wall revetment.

The major river improvement works already completed are as follows:

Concrete box of Sg. Jelutong Diversion

Concrete Channel of Sg. Batu Ferringghi

Concrete Channel of Sq. Babi

Concrete channel of Sg. Gelugor Diversion Channel

Concrete Channel of Sq. Dua Besar

The location of these improved stretches, mostly located along the downstream reaches, are shown in Fig. E-7-1 \sim E-7-5 .

Table E-4 shows the completed or proposed length of river improvement.

5. EXISTING INSTITUTIONAL FRAMEWORK FOR RIVER AND BASIN MANAGEMENT

In Penang Island, there are a variety of rapidly progressing land development, land reclamation and other human activities such as mining and quarrying.

These activities are in general independent of each other from the view point of developer, the responsible individual organization, and the intended usage. However, they all exert profound effect on runoff, including sediment run-off, and flooding problem as they all result in change in land use pattern.

At present there exists no single organization to coordinate and control all these land development and the related human activities, that result in increase in both the surface and sediment run-off, from the view point of the overall watershed management of Penang Island.

Leaving this overall watershed management issue aside and if we consider only the operation and maintenance of facilities of flood mitigation and drainage, at present, bulk of the responsibility and jurisdiction lies with SDID and MPPP. This is evident from Table E-5, which illustrates the existing institutional framework of flood mitigation and drainage in the Island.

It is noted that the activities of SDID and MPPP are not well coordinated. For example, at time river improvement works to increase the carrying capacity of an upstream stretch or tributary is being undertaken with no consideration to the limited existing discharge capacity of the river downstream stretches when the respective stretches lies under the jurisdiction of different organizations, for example, SDID and MPPP.

Hence it is evident that the existing institutional framework for river and basin management is rather unsatisfactory, and a stage-wise upgrading is proposed as follows:

As an urgent measure, coordination of activities among all organization responsible, especially SDID and MPPP, for operation and maintenance of flood mitigation and drainage facilities has to be established.

< APPENDIX E >

It is also necessary to institute an organization to coordinate, regulate, control and manage the whole watershed of Penang Island from the view point of overall run-off.

6. EXISTING FLOOD WARNING SYSTEM

There exists only one automatic flood warning siren in the Sg. Pinang bank at the vicinity of Jalan Perak. This siren with sounding range of about 400 m was installed in 1981 and has a solar battery power source.

This flood warning siren automatically switches on when the river water level reaches EL. 1.83 m and EL. 2.44 m which are the alert and danger water levels respectively.

This siren sounds continuously for 5 minutes once the water level reaches either of the above-mentioned heights.

However, after long period of rainfall, such as 3 days, the siren does not work effectively because of poor power of battery. The vicinity area of the Jalan Perak bridge including Jalan P.Ramlee is a frequently inundated area.

The water level of Sg. Pinang at Jalan Perak bridge exceeds the alert level five to six times per year.

At Jalan Perak Bridge during heavy rainfall the rate of rising of water level is about 45 cm per 1 hour. Most of the houses located in this lowlying area are elevated floor type and evacuation of people is not held so often in comparison to the frequency of flash floods.

Tables

TABLE E-1-1 CHARACTERISTICS OF RIVERS AND BASINS

Sg. Teluk Bahar Sg. Teluk Bahar		t t	1		•			
State Stat	Catchment	Jo.			7		ກ	
Marca (km2)	Name of Ri	ver	Sg. Pin	ang	Sg. Telu	< Awak	Sg. Teluk B.	ahang
Cecutiding ellutions Pantal Acheh Pantal Acheh Teluk Bahan Tel	Location		East Cos	ıst,	North We	st Coast,	North West	Coast,
12.30 12.30 12.30 12.30 12.30 12.30 12.30 12.30 12.30 12.30 12.30 13.4 km² (1.5%) 1.31 km² (1.			George 7	OWN	Pantai /	cheh	Teluk Bat	าลกต
Percent Company Percent Co	Catchment	Area (km2)	46.07				12.30	
1. 430m, Western Hill East Itam El. 830m, Western Hill El. 439m, Bt. Batu Itam El. 731m, Bt. Laksamana Land			(excluding Jeluton	Diversion Area)				
1.40 km2 (12%) 0.44 km2 (15%) 1.31 km2 (1 km2 incorrection) 1.40 km2 (12%) 1.40 k		Highest Point of the Basin	El. 830m, Western H		439m.			ana
Name of the Area 29.57 km2 (78%) Present (1989) Future (2010) Present (1989) Present (Topography	Flat Land	11.40 km2	(22%)	0.44 km2	(15%)	1.31 km2	(11%)
Include Area Present (1989) Future (2010) Present (1989) Present (1989		Mountainous/Hilly Area	39.57 km2	(78%)	2.51 km2	(85%)	10.99 km2	(%68)
13.80km2(30%) 14.98km2(33%) 0.13km2(14%) 0.02km2(15%) 0.02km2(15%) 0.02km2(15%) 0.02km2(15%) 0.02km2(15%) 0.00km2(12%) 0.00km2(12%) 0.00km2(12%) 0.00km2(13%) 0		Time						Füture (2010)
Name of the Area 3.15km2(7%) 5.67km2(12%) 0.13km2(5%) 0.30km2(2%)	Land Use	Build-up Area	13.80km2(30%)	14.98km2(33%)		0.29km2(10%)		1.03km2(8%)
rest 22.31km 2(48%) 25.42km 2(55%) 2.01km 2(85%) 0.06km 2(23%) 0.06km 2(21%) 0.06km 2(21%) 0.06km 2(21%) 0.08km 2(21 km) 0.08km 2(21 km) 0.08km 2(21	Pattern in	Park, Open Land, Cemetery	3.15km2(7%)	5.67km2(12%)	l	1.66km2(56%)		2.95km2(24%)
12 % 0.00km2(0%) 0.66km2(23%) 0.38km2(13%) 0.38km2(13%)	the Basin	Forest	22.31km2(48%)	25,42km2(55%)	2.01km2(68%)	0.62km2(21%)	7.58km2(62%)	6.44km2(52%)
Scarte 12 % 123		Agriculture Area	6.81km2(15%)	0.00km2(0%)	0.66km2(23%)	0.38km2(13%)	3.82km2(31%)	1.88km2(16%)
State Serious Negligible Source Cultivation in Hillside Cultivation in Hillside Area (km2) 20 657 (Including Main Tributaries) 2.300 (Study Length : 2.100) Ner Width (m) 20 ~ 50 5 ~ 10 Noved Channel 20 ~ 50 5 ~ 10 Nx Capacity (m3/sec) 20 ~ 40 5 ~ 10 Nx Capacity (m3/sec) 20 ~ 40 5 ~ 10 Nx Capacity (m3/sec) 20 ~ 50 5 ~ 10 Nx Capacity (m3/sec) 20 ~ 50 5 ~ 10 Nx Capacity (m3/sec) 20 ~ 50 5 ~ 10 Nx Capacity (m3/sec) 20 ~ 50 5 ~ 10 Serious Nx Noderate 8 ~ 10 Inter Extension of River Channel 710 710 Extension of River Channel 710 710 Dam 1 3 Bridge 8 Exide 8 Drop Structure 1 3 Drop Structure 1 3		Increase Ratio of Urbanized Area	12 %	1/2	123			
Source Housing Development, Mining, Mining, Name of the Area Cultivation in Hillside Cultivation in Hillside Area (km2) 20.657 (Including Main Tributaries) 2.300 (Study Length : 2,100) Ver Width (m) 20.557 (Including Main Tributaries) 5.710 Proved Channel 20.50 5.70 w Capacity (m3/sec) 20.40 5.70 etch Affected by Tidal Flow(m) Serious Negligible etch Affected by Tidal Flow(m) Serious Negligible etral Drift Affect at River Mouth Moderate Moderate ture Extension of River Channel 710 - et b Land Reclamation (m) 1 - Endem Bridge 3 Bridge 3 3 Bridge 3 3 Bridge 3 3	Erosion &	State	Serio	sn	Nealic	aible	Neglig	ble
Area (km2) 20.657 (Including Main Tributaries) 2.300 (Study Length : 2.100) Jer Width (m) 20.657 (Including Main Tributaries) 5.200 (Study Length : 2.100) Jer Width (m) 20.657 (Including Main Tributaries) 5.200 (Study Length : 2.100) Jer Width (m) 20.657 (Including Main Tributaries) 5.710 Proved Channel 20.40 5.710 W Capacity (m3/sec) 20.40 5.710 etch Affected by Tidal Flow(m) 3.000 200 dimentation Serious Neclicible rure Extension of River Channel 7.10 et o Land Reclamation (m) 1 Dam 1 Bridge 3 Bridge 3 Bridge 3	Sediment Run		Housing Development	, Mining,				
Area (km2) 20.657 (Including Main Tributaries) 2.300 (Study Length : 2.100) Fer Width (m) 20.657 (Including Main Tributaries) 2.300 (Study Length : 2.100) Fer Width (m) 20.657 (Including Main Tributaries) 5 - 10 proved Channel 20 - 40 5 - 10 proved Channel 20 - 40 5 - 10 extch Affected by Tidal Flow(m) 3.000 200 dimentation Serious Negligible eral Drift Affect at River Mouth Moderate Moderate ture Extension of River Channel 710			Cultivation in Hillside					
Area (km2) 20,657 (Including Main Tributaries) 2,300 (Study Length : 2.100) yer Width (m) 20 ~ 50 5 ~ 10 proved Channel 20 ~ 40 5 ~ 10 w Capacity (m3/sec) 20 ~ 40 5 ~ 10 etch Affected by Tidal Flow(m) 3,000 200 etch Affected by Tidal Flow(m) Serious Nealigible etch Land Rectanation 710 - ture Extension of River Channel 710 - bam 1 - Bridge 3 - Drop Structure 3 -	•							ı
Area (km²) 20.657 (Including Main Tributaries) 2.300 (Study Length : 2.100) For Width (m) 20 ~ 50 5 ~ 10 Proved Channel 20 ~ 40 5 ~ 10 w Capacity (m3/sec) 20 ~ 40 5 ~ 10 w Capacity (m3/sec) 20 ~ 40 5 ~ 10 w Capacity (m3/sec) 20 ~ 40 5 ~ 10 etch Affected by Tidal Flow(m) 3.000 200 200 dimentation Serious Negligible Moderate ture Extension of River Channel 710 - Dam 1 - Bridge 3 Drop Structure 3	inundated Area			,				
tal Length (m) 20.657 (Including Main Tributaries) 2.300 (Study Length : 2.100) ser Width (m) 20 ~ 50 5 ~ 10 proved Channel 20 ~ 40 5 ~ 10 w Capacity (m3/sec) 20 ~ 40 5 ~ 10 etch Affected by Tidal Flow(m) 3.000 200 200 etch Affect at River Mouth Moderate Moderate Moderate ture Extension of River Channel 710 - - et o Land Reclamation (m) 1 - Dam 1 3 Bridge 3 3 Drop Structure 3 3		Area (km2)						
ver Width (m) 20 ~ 50 5 ~ 10 proved Channel 20 ~ 40 5 ~ 10 w Capacity (m3/sec) 20 ~ 40 5 ~ 10 ecth Affected by Tidal Flow(m) 3.000 200 dimentation Serious Negligible eral Drift Affect at River Mouth Moderate Moderate ture Extension of River Channel 710 - e to Land Reclamation (m) 1 - Dam 1 3 Bridge 3 - Drop Structure 3 -		Total Length (m)	657	Main Tributaries)	2,300 (Study	Lenath : 2,100)	3,500 (3,130)
by Capacity (m3/sec) 20 ~ 40 5 ~ 10 etch Affected by Tidal Flow(m) 3.000 200 dimentation Serious Negligible eral Drift Affect at River Mouth Moderate Moderate ture Extension of River Channel 710 And Reclamation (m) 1 Exto Land Reclamation (m) 1 3 Drop Structure 3 And Reclamation (m)		River Width (m)		. 50	ł	10	10 ~	15
w Capacity (m3/sec) 20 ~ 40 5 ~ 10 etch Affected by Tidal Flow(m) 3.000 200 dimentation Serious Negligible eral Drift Affect at River Mouth Moderate Moderate ture Extension of River Channel 710 - to Land Reclamation (m) 1 - Dam 1 3 Bridge 3 - Drop Structure 3 -		improved Channel						
etch Affected by Tidal Flow(m) 3.000 200 dimentation Serious Negligible eral Drift Affect at River Mouth Moderate Moderate ture Extension of River Channel 710 . e to Land Reclamation (m) 1 . Dam 1 . Bridge 3 Drop Structure 3	Existing	Flow Capacity (m3/sec)	- 02	40	~ 3	10	₹	90
dimentation Serious Negligible eral Drift Affect at River Mouth Moderate Moderate ture Extension of River Channel 710 - e to Land Reclamation (m) 1 - Dam 1 3 Bridge 3 - Drop Structure 3 -	River	Stretch Affected by Tidal Flow(m)	တ		200		300	
eral Drift Affect at River Mouth Moderate Moderate ture Extension of River Channel 710 - e to Land Reclamation (m) 1 Bridge Drop Structure 3	Channel	Sedimentation		Şf	Neglig	nible	Neglia	ejq;
ture Extension of River Channel 710 - 6 to Land Reclamation (m) 1 3 8 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10		Literal Drift Affect at River Mouth		ate	Mode	rate	Moder	ate
E to Land Reclamation (m) 1 Dam 3 Bridge 3 Drop Structure 3		Future Extension of River Channel			•		ı	
Dam Bridge 3 Drop Structure		due to Land Reclamation (m)						
Bridge Drop Structure	<u>-</u>	Dam	-					
Drog	River and	Bridge					2	
	Related Struc	Drop						

TABLE E -1-2 CHARACTERISTICS OF RIVERS AND BASINS

Catchment No.	No.	4		5		9	
Name of River	ver	Sg. Batu Ferringghi	ringghi	Sg. Satu	tt.	Sg. Mas	35
Location		North Coast, Batu Ferringgi	ast, ringgi	North Coast, Batu Ferrin	Vorth Coast, Batu Ferringgi	North Coast, Batu Ferringgi	oast, srringgi
Catchment	Catchment Area (km2)	11.27		2.58		2.11	
	Highest Point of the Basin	El. 825m, Western Hill		El. 581m, Bt. Batu Feringgi	eringgi	El. 350m	Som
Topography	Flat Land		1%}	0.21 km2 (8%)	8%)	0.79 km2 (37%)	(37%)
	Mountainous/Hilly Area	11.13 km2 (99%)	99%)	2.37 km2 (92%)	(95%)	1.32 km2 (63%)	(83%)
:	Time	Present (1989)	Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)
Land Use	Build-up Area	0.06km2(0.5%)	0.57km2(5%)	0.08km2(3%)	0.42km2(16%)	0.30km2(14%)	Ŀ
Pattern in	Park, Open Land, Cemetery	0.00km2(0%)	0.12km2(1%)	0.00km2(0%)	0.04km2(2%)	0.29km2(14%)	0.41km2(19%)
the Basin	Forest	11.12km2(99%)	10.58km2(94%)	2.22km2(86%)	8	0.92km2(44%)	0.47km2(23%)
	Agriculture Area	0.09km2(0.5%)	0.00km2(0%)	0.28km2(11%)	0.00km2(0%)	0.60km2(28%)	0.00km2(0%)
	increase Ratio of Urbanized Area	8 2 2 %		425 %		310 %	
Erosion &	State	Negliaible	le	Nealigible	ible	Negliaible	ible
Sediment Run-off	l-off Source						
* T	Name of the Area						
Inundated Area	3						
	Area (km2)						
	Total Length (m)	1,250 (Study Lenath : 400)	nath : 400)	1.750 (Study	1,750 (Study Length : 500)	1,500/600	(00)
	River Width (m)	ω		7 ~ 10	10	2 ~	10
	Improved Channel					l	
Existing	Flow Capacity (m3/sec)	40 ~ 100	00	10 ~ 60	90	2 ~ 3	20
River	Stretch Affected by Tidal Flow(m)		·	,		١.	
Chainnel	Sedimentation	Negliaible	e	Nealigible	ible	Negligible	iole
	Literal Drift Affect at River Mouth	Moderate	a	Moderate	ate	Moderate	ate
	Future Extension of River Channel	•		•			
	due to Land Reclamation (m)						
	Dam						
River and	Bridge	Ψ-		+		-	
Related Structure	ture Drop Structure	-					

TABLE E-1-3 CHARACTERISTICS OF RIVERS AND BASINS

								Ī
Catchment No.	١٥.	7		8		6		
Name of River	er	Sg. Kecij	gcij	Sg. Kelian	lian.	Sg. Ba	Sg. Balík Batu	
Location		North East Coast,	orth East Coast,	North East Coast	rt Coast	North East Coast,	st Coast,	
Catchment Area (km2)	krea (km2)	2.75		9.04		0.80	51000	1
	Highest Point of the Basin	El. 548m	£8π	El. 742m		El. 215m, Mt. Erskine	ej.	
Topography	Flat Land	0.40 km2 (15%)	(15%)	1.36 km2 (15%)			2 (29%)	
	Mountainous/Hilly Area	2.35 km2 (85%)	(85%)	7.68 km2 (85%)	(85%)	0.57 km2 (71%)	2 (71%)	
	Time	Present (1989)	Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)	-
Land Use	Build-up Area	0.71km2(26%)	0.77km2(28%)		2.63km2(29%)		5 } :	(%)
Pattern in	Park, Open Land, Cemetery	0.04km2(1%)	0.00km2(0%)	0.02km2(0%)	0.05km2(1%)	0.01km2(1%)	0.02km2(2%?
the Basin	Forest	2.00km2(73%)	1.98km2(72%)	5.29km2(58%)	6.36km2(70%)	0.07km2(9%)	0.07km2(9%)
	Agriculture Area	0.00km2(0%)	0.00km2(0%)	1.32km2(15%)	0.00km2(0%)	0.00km2(0%)	0.00km2{	(%0
	Increase Ratio of Urbanized Area	83	%	% o		0	% 0	
Erosion &	State	Moderate	ate	Moderate	ate	Ser	Serions	
Sediment Run-off	off Source					Housing Development	velopment	
Inundated Area	Name of the Area							
_	Area (km2)							T
4	Total Length (m)	1,100(705)	705>	2,811		1.250	250(500)	
	River Width (m)	~ 9	~ 10	50 ≤	20	~ 4	20	
	Improved Channel							
Existing	Flow Capacity (m3/sec)	15 ~	40	20 ~	40	~ 01	~ 30	
River	Stretch Affected by Tidal Flow(m)					1		
Channel	Sedimentation	Moderate	ate	Moderate	ate	Serious,	Serious, 1.2m deep	-
	Literal Drift Affect at River Mouth	Moderate	rate	Moderate	ate	Ser	Serious	
	Future Extension of River Channel	•		1				
	due to Land Reclamation (m)							
·*·	Dam							
River and	Bridge							
Related Structure	re Drop Structure							

TABLE E-1-4 CHARACTERISTICS OF RIVERS AND BASINS

Catchment No.	S S		10	***************************************			12	
Name of River	liver		Sg. Fettes	tes	Sg. Bagan Jermal	Jermal	Sg. Babi	Ď.
Location			North East Coast,	st Coast,	North East Coast,	t Coast,	North East Coast,	t Coast,
			Tanjung Tokong	Tokong	Tanjung Tokong	okona	Tanjung Tokong	okong
Catchment Area (km2)	Area (km2)	1.36		0.83		0.84	
	Highest	Highest Point of the Basin	El. 242m		El. 252m, Mt. Olivia		El. 197m	97m
Topography	Flat Land	ρι	0.45 km2 (33%)	(33%)	0.28 km2 (34%)	(34%)	0.40 km2 (48%)	(48%)
	Mounta	Mountainous/Hilly Area	0.91 km2 (67%)	(67%)	0.55 km2 (66%)	(66%)	0.44 km2 (52%)	(52%)
	Time		Present (1989)	Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)
Land Use	Build-u	Build-up Area	0.65km2(48%)	0.95km2(70%)	0.27km2(33%)	0.27km2(33%)		0.49km2(58%)
Pattern in	Park, O	Park, Open Land, Cemetery	0.05km2(4%)	0.14km2(10%)	0.26km2(31%)	0.37km2(45%)	0.27km2(32%)	0.27km2(32%)
the Basin	Forest		0.66km2(48%)	0.27km2(20%)	0.30km2(36%)	0.19km2(22%)	0.24km2(29%)	0.08km2(10%)
	Agricul	Agriculture Area	0.00km2(0%)	0.00km2(0%)	0.00km2(0%)	0.00km2(0%)	0.00km2(0%)	0.00km2(0%)
	increas	increase Ratio of Urbanized Area	46 %	%	% 0	%	49 %	
Erosian &	S	State	Moderate	ate	Moderate	rate	Nectigible	ejqi
Sediment Run-off	,	Source	Housing Development	elopment	Housing Development	elopment	Non Point Source	Source
Inundated Area		Name of the Area						
	⋖	Area (km2)			-			
	Total L	Total Length (m)	1,250(600)	600)	1,500 (Stud	1,500 (Study Length : 300)	1,700 (Study	1,700 (Study Length: 1,000)
	River	River Width (m)	~ E	5	4		4.5 ~ 7.5	7.5
	Improve	Improved Channel					150	
Existing	Flow C	Flow Capacity (m3/sec)	40 (~ Lower	40 (~ Lower Flow Nothing)	140		2~2	5
River	Stretch	Stretch Affected by Tidal Flow(m)	,			:	-	
Channel	Sedimentation	ntation	Moderate, 0.3m deep	3m deep	Moderate	ate	Negligible	eļģi
	Literai	iteral Drift Affect at River Mouth	Serious	sno	Minor Affect	Vfect	Moderate	ate
A-24%, 6-55a	Future	Future Extension of River Channel	•				1	
	due to	due to Land Reclamation (m)						
	니	Dam						
River and	ឈ	Bridge			က		ဇ	
Related Structure		Drop Structure					1	
					-			

TABLE E-1-5 CHARACTERISTICS OF RIVERS AND BASINS

Catchment No.	Vo.	13		14		u v	
Name of River	Ver	Sg. Gelugor	gor	Sg. Dua Besar	Besar	Sa. Nibona Besar	g Besar
Location		East Coast,	ist,	East Coast,	oast,	East Coast;	
-		Paya Terubong	bong	Paya Terubong	pood	Paya Terubo	Paya Terubong, Bayan Lepas
Catchment Area (km2)	Area (km2)	4.07		6.19		1.50	
	Highest Point of the Basin	Ei. 413m, Bt. Relau		El. 411m, Bt. Relau		El. 240m. Bt. Jambul	
Topography	Flat Land	1.31 km2 (32%)	32%)	2.85 km2 (46%)	(46%)	1.22 km2 (81%)	(81%)
	Mountainous/Hilly Area	2.76 km2 (68%)	(%89)	3.34 km2 (54%)	(54%)	0.28 km2 (19%)	(19%)
	Time	Present (1989)	Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)
Land Use	Build-up Area	1.79km2(44%)	2.36km2(77%)	2.83km2(46%)		0.98km2(65%)	1.25km2(83%)
Pattern in	Park, Open Land, Cemetery	0.93km2(23%)	0.27km2(9%)	0.74km2(12%)	1.79km2(29%)	0.33km2(22%)	0.10km2(7%)
the Basin	Forest	1.06km2(26%)	0.43km2(14%)	0.68km2(11%)	0.45km2(7%)	0.14km2(9%)	3
	Agriculture Area	0.29km2(7%)	0.00km2(0%)	1.94km2(31%)	0.00km2(0%)	1	0.00km2(0%)
	Increase Ratio of Urbanized Area						
Erosion &	State	Moderate	et et	Moderate	ate	Negligible	ble
Sediment Run-off	-off Source						
Inundated Area	Name of the Area	Taman Brown, Minden Heights	Heights	Tapak Pesta, Pantai Jerjak	Jerjak		
	Area (km2)	0.12		0.63			
	Total Length (m)	2,900		3,950 (Study	(Study length: 2,900)	2.000 (Study E	(Study Length: 1,050)
	River Width (m)			~ 20 ~	~ 30	3	
	Improved Channel					1,500	
Existing	Flow Capacity (m3/sec)	8 ~ 15	5	5~	15	. ~ 3	20
River	Stretch Affected by Tidal Flow(m)	200		1,200		800	
Channel	Sedimentation	Negligible	eje	Negligible	ible	edipipe/	e)Ç
	Literal Drift Affect at River Mouth	Negligible	Sle	Negligible	ible	Negliqible	ble
	Future Extension of River Channel	1		650		009	
	Dam						
River and	Bridae						
Related Structure	ure Drop Structure						

TABLE E-1-6 CHARACTERISTICS OF RIVERS AND BASINS

Name of River Location						2	
Location	je	Sg. Nibong Kecil	Kecil	Sg. Keluang	ang	Sg. Nipah	hak
		East Coast,		East Coast;		South East Coast,	Coast,
		Paya Terubor	Paya Terubong, Bayan Lepas	Paya Terub	Paya Terubong, Bayan Lepas	Bayan Lepas	epas
Catchment Area (km2)	rea (km2)	2.77		22.17		1.69	
i.					Diversion Area)		
<u>~1</u>	Highest Point of the Basin	El. 240m, Bt. Jambul		El. 513m, Bt. Meriyam		El. 157m, Bt. Tempoyak	ak
Topography F	Flat Land	2.32 km2 (84%)	(84%)	6.53 km2 (29%)	5 (29%)	1.29 km2 (76%)	(76%)
•	Mountainous/Hilly Area	0.45 km2 (16%)	(16%)	15.64 km2 (71%)	2 (71%)	0.40 km2 (24%)	(24%)
, <u>, , , , , , , , , , , , , , , , , , </u>	Time	Present (1989)	Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)
Land Use	Build-up Area	1.72km2(62%)	2.31km2(83%)	4.76km2(21%)	8.73km2(40%)	0.21km2(12%)	1.40km2(83%
Pattern in F	Park, Open Land, Cemetery	1.04km2(38%)	0.32km2(12%)	1.09km2(5%)	0.95km2(4%)	0.15km2(9%)	0.02km2(1%)
the Basin	Forest	0.01km2(0%)	0.14km2(5%)	3.06km2(14%)	11.73km2(53%)	0.40km2(24%)	0.18km2(11%)
	Agriculture Area	0.cokm2(0%)	0.00km2(0%)	13.26km2(60%)	0.77km2(3%)	0.93km2(55%)	0.09km2(5%)
	Increase Ratio of Urbanized Area	34 %	%	83 %	%	567 9	%
Erosion &	State	Negligible	ble	Seri	Serious	Negligible	ejç
Sediment Run-off	off Source			Mining	ing		
	Name of the Area			1. PDC Housing Area, Jalan Tengah	, Jalan Tengah		
Inundated Area				z. Bayan Lebas, rree Irade zone	rade zone		
	Area (km2)			1. 1.18	2. 0.46		
	Total Length (m)	2.500 (Study L	(Study Length : 900)	5150 (Study	5150 (Study Length : 3,760)	2,500(1,906	(906)
	River Width (m)	10.5		13 ~ 20	~ 20 (ARA 5)	Up Stream 2.5	Lawer 15.3
	Improved Channel	900					
Existing	Flow Capacity (m3/sec)	20 - 40	40	10 ~ 30	30	1 ~ 1	20
River	Stretch Affected by Tidal Flow(m)	1,000		2.800		1,500	
Channel	Sedimentation	Organic Mud	fud	Seri	Serious	Negliaible	ible
	Literal Drift Affect at River Mouth	Negligible	ible	Reclamat	Reclamation (ongoing)	Negligible	ble
	Future Extension of River Channel	490		006		800	
	due to Land Reclamation (m)						
	Dam						
River and	Bridge	-		ις,			
Related Structure							
	Gatte	1 (River	(River Mouth)				

TABLE E-1-7 CHARACTERISTICS OF RIVERS AND BASINS

Catchment No.	No.	19		20		21	
Name of River	ver	Sg. Kampung Masjid	ig Masjid	Sg. Ikan Mati	n Mati	Sg. Bayan Lepas	Lepas
Location		South East Coast,	Coast,	South East of Island,	of Island,	South East of Island,	Island,
		Bayan Lepas	spas	Bayan Lepas	spas	Bayan Lepas	32
Catchment Area (km2)	Area (km2)	0.84		0.38		7.04	
	Highest Point of the Basin	El. 109m		El. 157m, Bt. Tempoyak	/ak	El. 405m. Bt. Gambir	
Topography	Flat Land	0.51 km2 (61%)	(61%)	0.18 km2 (47%)	(47%)		15%)
	Mountainous/Hilly Area	0.33 km2 (39%)	(39%)	0.20 km2 (53%)	(23%)	5.96 km2 (85%)	(85%)
	Time	Present (1989)	Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)
Land Use	Build-up Area	0.30km2(36%)	0.60km2(71%)	0.11km2(29%)	0.35km2(92%)	1 14	l 1:
Pattern in	Park, Open Land, Cemetery	0.13km2(16%)	0.11km2(13%)	0.02km2(5%)	0.00km2(0%)		0.60km2(9%)
the Basin	Forest	0.08km2(10%)	0.08km2(10%)			0.44km2(10
	Agriculture Area	0.33km2(38%)	0.05km2(6%)	0.25km2(66%)	0.00km2(0%)	:	0.04km2(0%)
	Increase Ratio of Urbanized Area	100 %		218 %		65 %	
Erosion &	State	Negligible	ible	Negligible	elqi	Negligible	sle
Sediment Run-off	b-off Source						
Inundated Area	Name of the Area					Parmatang Damar Laut	amar Laut
	Area (km2)						
	Total Length (m)	950(600)	200>	2005	500(150)	3,500 (Study	(Study length: 2,400)
	River Width (m)	~ E	5	ري ۳	4		
	Improved Channel						
Existing	Flow Capacity (m3/sec)	10		2		10 ~ 3	30
River	Stretch Affected by Tidal Flow(m)	400		1		200	
Channel	Sedimentation	Negligible	ible	Negligible	ible	Negligible	ole Sie
	Literal Drift Affect at River Mouth	Negligibie	ibie	Negligible	ible	Negligible	ole
	Future Extension of River Channel	•		•		-	
	due to Land Reclamation (m)						
	Dam						
River and	Bridge					5	
Related Structure	ture Drop Structure						

TABLE E-1-8 CHARACTERISTICS OF RIVERS AND BASINS

23	Sg. Teluk Kumbar	ť	Teluk Kumbar Bt. Gemuroh	0.95	El. 269m	0.60 km2 (63%) 2.31 km2 (33%)		Future (2010) Present (1.13kg	7%) 0.00km2(0%) 0.12km2(2%)	1.52km2(22%)	4.49km2(63%)	22 %	2					1,037(800) 3.000 (1,700)	5 ~ 10	200	5 ~ 30	008	Negligible	Negligible					
22	Sg. Batu	South Coast of Island,	Teluk Kumbar	6.0	El. 172m, Bt. Payong	0.45 km2 (50%)	0.45 km2 (50%)	Present (1989) Future (2010) Present (1989)	12(26%) 0.38km2(42%)	0.00km2(0%) 0.01km2(1%) 0.07km2(.03km2(3%) 0.08km2(9%)	164 %	Moderate	Non Paint	Teluk Kumbar / Sg. Batu			1,150(1,000)	2 ~ 5		2		Moderate, Recently Dredged	Negligible	•				
Catchment No.	Name of River	Location		Catchment Area (km2)	Highest Point of the Basin	Topography Flat Land	Mountainous/Hilly Area	Time	Land Use Build-up Area	Pattern in Park, Open Land, Cemetery	the Basin Forest	Agriculture Area	Increase Ratio of Urbanized Area	Erosion & State	Sediment Run-off Source	Name of the Area	Inundated Area	Area (km2)	Total Length (m)	River Width (m)	Improved Channel	Existing Flow Capacity (m3/sec)	River Stretch Affected by Tidal Flow(m)	Channel Sedimentation	Literal Drift Affect at River Mouth	Future Extension of River Channel	due to Land Reclamation (m)	Dam	River and Bridge	Related Structure Drop Structure

TABLE E-1-9 CHARACTERISTICS OF RIVERS AND BASINS

Catchment No.	No.	25		26		27	
Name of River	iver	Sg. Gemuroh	uroh	Sg. Gertak Sanggul	sanggul	Sg. Pulau Betong	Betong
Location		South West Coast,	Coast,	South West Coast,	# Coast,	South West Coast	t Coast,
		Bt. Gemuroh	uroh	Pasir Pa	Pasir Panjang Hills	Benting, Plair	Benting, Plain Genting Hills
Catchment	Catchment Area (km2)	5.		1.03		11.04	
=	Highest Point of the Basin	El. 303m, Bt. Gemuroh		El. 360m, Bt. Pulau Betong	Setong	Ei. 413m	3m
Topography	Flat Land	0		0.18 km2 (17%)	(17%)	6.58 km2 (60%)	(%09)
	Mountainous/Hilly Area	1.91 km2 (100%)	(100%)	0.85 km2 (83%)	(83%)	4.46 km2 (40%)	(40%)
	Тіте	Present (1989)	Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)
Land Use	Build-up Area	0.02km2(1%)	0.02km2(1%)	0.09km2(9%)	0.09km2(9%)	0.69km2(6%)	0.68km2(6%)
Pattern in	Park, Open Land, Cemetery	0.03km2(2%)	0.03km2(2%)	0.00km2(0%)		0.07km2(1%)	0.07km2(1%)
the Basin	Forest	0.67km2(35%)	1.35km2(71%)	0.22km2(21%)	0.79km2(77%)	2.95km2(27%)	3.85km2(35%)
	Agriculture Area	1.19km2(62%)	0.51km2(26%)	0.72km2(70%)		7.33km2(66%)	6.44km2(58%)
	Increase Ratio of Urbanized Area	% 0		0	%	%0	1
Erosion &	State	Negligible	ble	Negligible	ible	Nedigible	ejqi
Sediment Run-off	n-off Source						
	Name of the Area					Pulau Betong	tong
Inundated Area	ū		, , , , , , , , , , , , , , , , , , , ,				
	Area (km2)					0.22	
	Total Length (m)	•		483.50		4,250	
	River Width (m)			2~	ഗ		-
· · · · · · · ·	Improved Channel						
Existing	Flow Capacity (m3/sec)	,		20			
River	Stretch Affected by Tidal Flow(m)			•			
Channel	Sedimentation	Negligible	ibie	Negligible	jible	Desiltation requested at lower reach	ed at lower reach
	Literal Drift Affect at River Mouth	Negligible	eldi	Moderate	rate		
	Future Extension of River Channel	•		•			
	due to Land Reclamation (m)					٠	
	Dam						
River and	Bridge						
Related Structure	sture Drop Structure						
					7		

TABLE E-1-10 CHARACTERISTICS OF RIVERS AND BASINS

Catchment No.	No.	28		29		30		F
Name of River	iver	Sg. Nipah	ah	Sg. Burong	rong	Sg. Kongsi	gsi	
Location		West Coast,	ast,	West coast,	cast,	West Coast	past	·
		Sungai Burong, Pulan Betong	Pulan Betong	Sungai Burong, Pondok Upeh	, Pondok Upeh	Bagan Air Itam, Batu Itam	n, Batu Itam	
Catchment	Catchment Area (km2)	3.24		13.79		20.63		
	Highest Point of the Basin	El. 92m	2m	EI. 4	El. 452m	El. 720m. Batu Itam		
Topography		3.11 km2 (96%)	(%96)	6.95 km2 (50%)	(50%)	8.06 km2 (39%)	(38%)	
		0.13 km2 (4%)	(4%)	6.84 km2 (50%)	(20%)	12.57 km2 (61%)	: (61%)	
	Time	Present (1989)	Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)	
Land Use	Build-up Area	0.87km2(27%)	0.87km2(27%)	2.50km2(18%)	2,41km2(17%)	2.18km2(11%)	2.23km2(11%)	
Pattern in	Park, Open Land, Cemetery	0.05km2(1%)	0.02km2(1%)	0.61km2(4%)	0.34km2(3%)	0.61km2(3%)	0.10km2(0%)	T
the Basin	Forest	0.00km2(0%)	0.04km2(1%)		4	\overline{z}	2	т
	Agriculture Area	2.32km2(72%)	2.31km2(71%)	9.84km2(72%)	5.57km2(40%)	15.17km2(73%)	9.86km2(48%)	
	Increase Ratio of Urbanized Area	% 0	%	0	%		%	·
Erosion &	State	Negligible	ble	Negligible	ible	Nealiaible	ejqji	
Sediment Run-off				-				
	Name of the Area			1. Kampong Paya		Kampong Titi Tras		·
Introduced Area				Dailk Fulau				
	Area (km2)			1. 0.17	2. 0.14	1.08		
	Total Length (m)	3,000		6,500		8,375 (Tributary : Sg.	Sg. Korok)	
	River Width (m)							
	Improved Channel							
Existing	Flow Capacity (m3/sec)							
River	Stretch Affected by Tidal Flow(m)							
Channel	Sedimentation					Negligible	ible	г
	Literal Drift Affect at River Mouth			Negligible	ible	ejqibijbeN	ible	
	Future Extension of River Channel							
	due to Land Reclamation (m)							
	Dam							
River and	Bridge							
Related Structure	sture Drop Structure							
			-					·
			***************************************					7

TABLE E-1-11 CHARACTERISTICS OF RIVERS AND BASINS

Catchment No.	o.	3.1				
Name of River	ər	Sg. Pinang				
Location		West Coast,				
		Sungai Pinang				
Catchment Area (km2)	кеа (кт2)	19.99				
	Highest Point of the Basin	El. 830m, Western Hill				
Topography	Flat Land	5.53 km2 (28%)				
	Mountainous/Hilly Area	14.46 km2 (72%)				
	Time	Present (1989) Future (2010)	Present (1989)	Future (2010)	Present (1989)	Future (2010)
Land Use	Build-up Area	1.70km2(9%) 1.69km2(8%)	L			
Pattern in	Park, Open Land, Cemetery	0.38km2(2%) 0.13km2(1%)](0			
the Basin	Forest	8.04km2(40%) 14.66km2(73%)				
	Agriculture Area	9.87km2(49%) 3.51km2(18%)				
	Increase Ratio of Urbanized Area	% 0				
Erosion &	State	Negligible				
Sediment Run-off	off Source					Commence of the Commence of th
	Name of the Area					
Inundated Area						
	Area (km2)					
	Total Length (m)	3,750 (Main Tributary: Sg. Rusa)				
	River Width (m)					
	Improved Channel					
Existing	Flow Capacity (m3/sec)					
River	Stretch Affected by Tidal Flow(m)					
Channel	Sedimentation	Desittation requested at lower reach				
	Literal Drift Affect at River Mouth					
	Future Extension of River Channel					
	due to Land Reclamation (m)					
	Dam	The result of th				
River and	Bridge					
Related Structure	re Drop Structure					

TABLE E-2 COMPREHENSIVE EVALUATION OF RIVERS AND BASINS

Catchment No.	Name	Scale of Cathement	Experienced Floods	Flood Damage	Future Development	Flood Damage In Future	Total	Grade
1	Sg. Pinang	3	3	3	2	3	14	Λ
2	Sg. Teluk Awak	1	1	1	3	2	8	С
3	Sg. Teluk Bahang	3	1 :	1	3	2	10	В
4	Sg. Batu Ferringghi	3	1	1	1	1	7	C
5	Sg. Salu	1	1	1	2	1	6	С
6	Sg. Mas	1	1	1	3	2	8	С
7	Sg. Kecil	1	1	1	1	1	5	С
8	Sg. kellan	2	1	1	i	1	6	С
9	Sg. Ballk Batu	1	j	1	1	1	5	С
10'	Sg. Fettes	1	2	1	3	2	9	В
11	Sg. BaganJermal	11	1.	1	2	1	6	С
12	Sg. Babl	11	2	1	2	1	. 7	C
13	Sg. Gelugor	1	2	2	2	2	9	В
14	Sg. Dua Besar	2	2	1	3	3	11	Α
15	Sg. Nibong Besar	1	1	1	2	2	_7	С
16	, Sg. Nibong Kecil	. 1	1	1	2	2	7	C
17	Sg. Keluang	3	2	2	2	3	12	Α
18	Sg. Nipah	. 1	1	1	3	111	7	С
19	Sg. Kampumg Masjid	1	1	1	3	1	8	С
20	Sg. Ikan Mati	11	1	1	3	11	7	Ç
21	Sg. Bayan Lepas	2	2	1	2	1 .	9	В
22	Sg. Balu	11	1	11	2	1	6	С
23	Sg. Matl	1	1	1	2	1	8	С
24	Sg. Teluk Kumbar	2	<u> </u>	1	1	1	6	C
25	Sg. Gemurch	1	1	1	1	1	5	C
26	Sg. Gertak Sanggul	11	1	1.	1.	1	5	C
27	Sg. Pulau Betong	3	2	1	1 :	1	8	Ç
28	Sg. Nipah	1	1	1	1	1	5	С
29	Sg. Burong	3	2	1	1	1	8	C
30	Sg. Kongsl	3	2	11	1	1	8	С
31	Sg. Pinang in West Coast	3	i	1	1	1	7	C

The above are evaluated by following criteria:

are are evaluated of tollowilling	11161107	
Scale of Catchment	1	5.0 km ²
	2	5.0 - 10.0 km ²
	3	10,0 - km ²
Experienced Floods	1	Non-existence
	2	Sometimes
	3	Frequently
Flood Damaged	1	No damage
•	2	Minor damage
	3	Serious damage
Future Development	1	No development or less than 10%
	2	10%-30% of urban expansion area
	3	30% and more
Flood Damage In Future	1	Not anticipated
•	2	Minor damage anticlpated
	3	Serious damage anticipated
Method of Grading :		gregate points > 10
		gregate points ≥ 9 but ≤ 10
	Grade C for ag	gregate points < 9

TABLE E-3-1 FEATURES OF EXISTING BRIDGES

					3		•		
	CHAIN	SPAN LENGTH	WIDTH	AREA	SOFIT LEVEL	DESIGN LENGTH	DIFFERENCE	AREA	NECESSITY
	400+7	53	10	290		44.46		444.5	CHANGE
	900-4	ন	9	120	3.13	40.45	20.45	242.T	CHANGE
	1250+23	22	03	220		40,4S	15.45	404.5	CHANGE
	2100+22	81	15	0.02	2.83	30.4		1854	CHANGE
	3100+29	181	93	733		30.4	12.4	485.4	CHANGE
				(218				2,034	
SG.AIR ITAM				ļ					
	11050+12	2	30	390	6.39	25.4		762	CHANGE
	1450+43	181	18.5	333	6.55	23.6	5.6	435.6	CHANGE
	1550+31	23.8	00		8.9				
	1900+37	23.7	25						
	2450+21	21.8	9.5	707.1	8.1	23.6		224.2	CHANGE
	-								
	-								
			-	620				1 472	
				3				27.47	
SGAIR TERTUN	(a)	(m)	(8)	(Z ₃ ,c ₂)	(E)	Ê	(E)	(Jan 2)	
	CEAIN	SPAN LENGTH	WIDTH		SOFTIEVEL	DESIGN WIDTH	DIFFERENCE	AREA	NECESSITY
	K		8	52.8			4.7	30.4	CHANGE
	¥		83	52.8	4.55			4.06	CHANCE
	3.		X	37				5.95	CHANGE
	7.		5	09				87.9	CHANGE
	8	940	Ý	3			3.3	\$8	CHANGE
	1150		* ZZ		7.25	113		248.5	
	Ť	5.4	6	48.6	16.7	11.8	13	106.2	CHANGE
	380		\$	#157.02			#WALUE	33.1	CHANGE
	£\$		74	14		11.8		3.55	CHANGE
	4640	40 8.5	Ł	59.5	22.48			82.6	CHANGE
	,								
				385				876	
2 Sg.Tchtk Awak	(B)	(A)	(m)	(20-72)	(m)	(m)	(E)	(Emil)	
	CHAIN	SPAN LENGTH	52		SOFIT LEVEL	HLICIM NOISEC	1	AREA	NECESSITY
		D1.52	90		¥	10.2	#VALUE	19°18	CHANGE
	5)	510 3.1	60	24.8!*	a.	10.2	7.1	81.6	CEANCE

TABLE E-3-2 FEATURES OF EXISTING BRIDGES

	というできる。	_	ĩ	いいこれでき		Ĭ	#V**	2000	
				8		,		<u>8</u> 2	
3. SCITALUK BAHANG				-					
		-							
	280	ŢŢ	ত	1020		18.3	5	109.8	CHANGE
	13.10	8.2	3.1	25.42		18.3	10.1	56.73	CHANGE
				-					
				127				191	
4. Sr. Bath Ferringgi	210	7.7	4	30.8		11.2	3.5	8.44.8	CELANGE
5. Sg. Sans	300	÷	9	48		6.8	60	53.4	CHANCE
	1130	13	*	÷					
		_						-	
	970	- 6	1				000	0	02
D. OC. Mars	007	K.X	o			7.7	מייחר	16.0	Š
			?						
S. S. Kedian	145	13	8.6	•		10.2	.28	95.88	ON
	620	88	10.3	82.4 *		10.2	22	105.06	CHANGE
,	1070	9	13.8	828		10.2	4.2	140,76	CHANGE
	1330	13	7.04			10.2	-28		ÓX
	1720	8	321			10.2	4.4	32.64	CHANGE
	2300	7.3	r y	44.53		10.23	2.9	62.22	CHANGE
				184				374 (٠
_		-							
11. Sg. Bagan Jennai	150 1.5x1.1x2.0		19	30.4	1.186	8.4	#VALUE	2.18	CHANGE
	ផ្ដ	86	*	•		8.4	-3.2		Q.
	059	ā	13	•					
				36				 -	
					-				
12 Se Babi	220 0.9x3		09	54 0		87	*VALUE!	288	CHANGE
	930	*	ជ		~~	3.9	• 1.0-	-	% 0¥
	1690 D0.6x1		٤٠)	•	•				
	1730 D0.7x1		71	•					
								288	
									-
14. Sg. Dun Bener	615	18.7	35		3.006	17.5	e []-		⊋
	1430	15	3	•		11.4	±3.5.€		Q.
	2878 2.1x2.2x1		4		11.434			-	
	320012.4x1.3±2		4		13.846				
						-		Į.	
_				_		_		5	

TABLE E-3-3 FEATURES OF EXISTING BRIDGES

15. Sr. Nibong Bear	3				3.24	7.48	* Z51-		S.
	OF.8	A.5	25	(12.5	2	7.48	2.98	187	CHANGE
	1250		22	125		5.88	0.88	147	CHANGE
	1400	1.9x1.85x1	32	8531	5.32	5.88	WALUE	482.16	CHANGE
	16001	1600 1.8x1.2z2	33	59.4	5.89	5.88	#VALUE!	194.04	CHANGE
				452.7					
								1,010	
16. Sg. Nibong Kechil	07.11	10.5	100		2.05	•	•		2
					-				
17. Sp. Keldang	1550				2.38	54.2	* 8-22-8		S.
	18881		•		3.75	24.2	C.		ş
	2830		•		6.53	24			Ş
	3420	0	IZ	243 7		24	1.5	948	CHANGE
	4290					8			•
				243				648	
71 Car Barrens Correct	OOP		0	3	567	956	001	722	SUN FAL
	086) W1	2	225	3.14	16		2	CHANGE
	0571		*	24	4	10.3		412	CHANGE
	3060		15.6	38	6.77	9.4	5.4	89.3	CHANGE
	2800	8			17.7				
				138.5				436	
40014 2220 270	-			(54)	,	7-7	1		
S. St. Gell Colk		(M)	(III)	7.10	(H)	Chestral Taments		(7.22	A CONTRACTOR OF THE PARTY OF TH
XXX.	10-27	35	16	1	20" 11 TO 10"	11.4	*19:57-		NO
SS.	100+5	R	* 01			11.4	-10.6		S S
SON.	150		14 *			11.4	-15.6		Q.
CON.	150+25	EZ	*01			11.4	-10.5		Ş
SS.	500+27					11.4		0	NO
	650417					11.4	17.11	O	Ş
CON.	850+7.5	11	01	011		11.4	0.4	114	CHANCE
CON.	820+48	81	* 5			11.4	-6.61		NO NO
COM.	11524-40	1	1.1	1		6.6	29	108.9	CHANCE
	1450+9		*				*		윷
	1550+11	•	*			*	*		Ş
SO.	1800+19	7	12	4		8.5		11	SEARCH CHARLES
CON.	2000+37	디	<u>₹</u>			8.5			NO
WOW	2200-39	ញ់	Ö			2.5	ě		S.
CON.	2550-49	9	125			2.5	-3.5	ACCT	ON
							-		
				201			-	240	
22 SG. BATU									
	74		•						
WON	300421		ic .			0×1	13.0		*

TABLE E-3-4 FEATURES OF EXISTING BRIDGES

NO.			1.780			-	* 7 7	-	•
CON.	40C+11	6.3	1.5	54.6	1.86	13.6	7.2.	20.4	CHANGE
	450+11.2						, ,	2	
	580+46								
	Y.Bry								
	700-13							1	
	70t. 10							1	
	000.33							+	
	COUPLY.								
	(100+15								
	1100+29								
	1100+48							202	
					-				
23. SG. MATI									
	00+18.5		2.23			90			
	50+17.5		8.			13.0		1	
XX.	150+85	22.5	1.5		2.23	13.0	4		C ₂
S.	1250+22	5.08	215	10.922	7.54	e 5.	× 73	20 67	SUL PRICE
Ω¥.	554-15	8.6	24	38.7	3.42	13.8	5.5	67.1	CHANGE
	150+23					200			Care Liver
	450-40.5	:				13.8			
	6+059					13.8		-	
COM.	650+15.5	3.75	22	8,25	3.52	13.8	10.05	30.36	CHANGE
	650+16.5				w	13.8			
	620+19					13.8		-	
	580+4.5					13.8			
CON.	950+45	7.1	1.5		6.85			-	
•					La .			1221	
		,		57.872					
20, SG, IKAN MATI									
CIT VEDT	W.W.	15-	36	Ϋ́		24	¥	27,70	2000
	7.40		, vi	5		99	\$ Q Y	74.5	STATE OF THE STATE
	\$ \$ \$					6.0	}	}	The state of the s
	£435					6.9			
	1405-1	3	en	8		639	3.9	28.7	CHANCE
	250+5	21	ris				}		
								-	
	300+14	8	21.				-	-	
	360443	3.	3					†	
	21-55	31	7						
	400+33	R	00					-	
								82	
				19.25					
12. SUNGALI NIPAH									
֡				_	•	-	:		

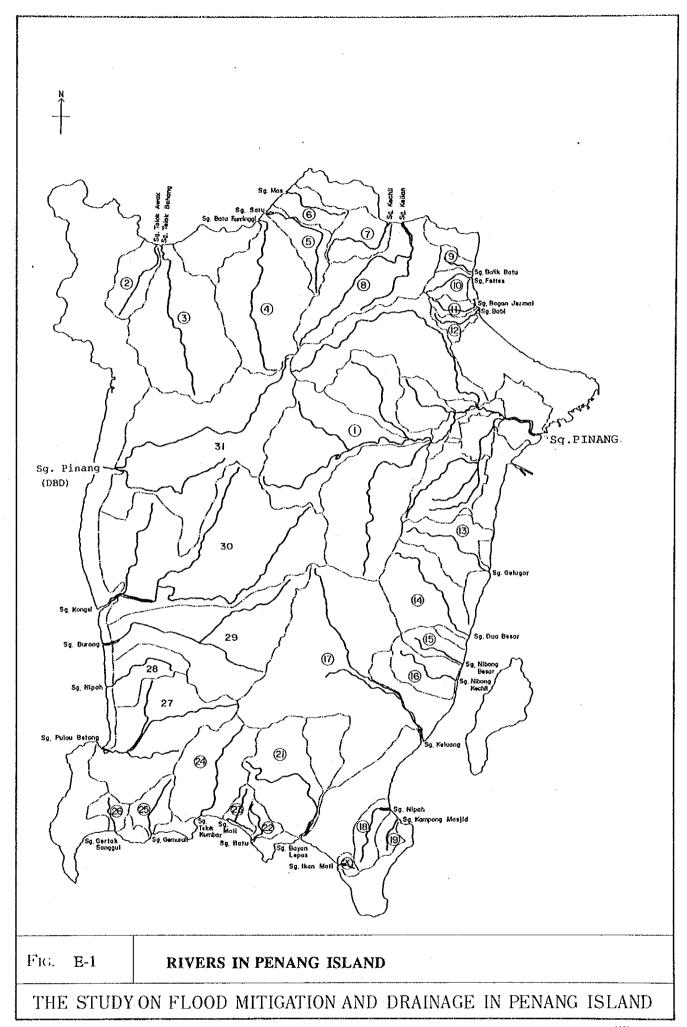
TABLE E-3-5 FEATURES OF EXISTING BRIDGES

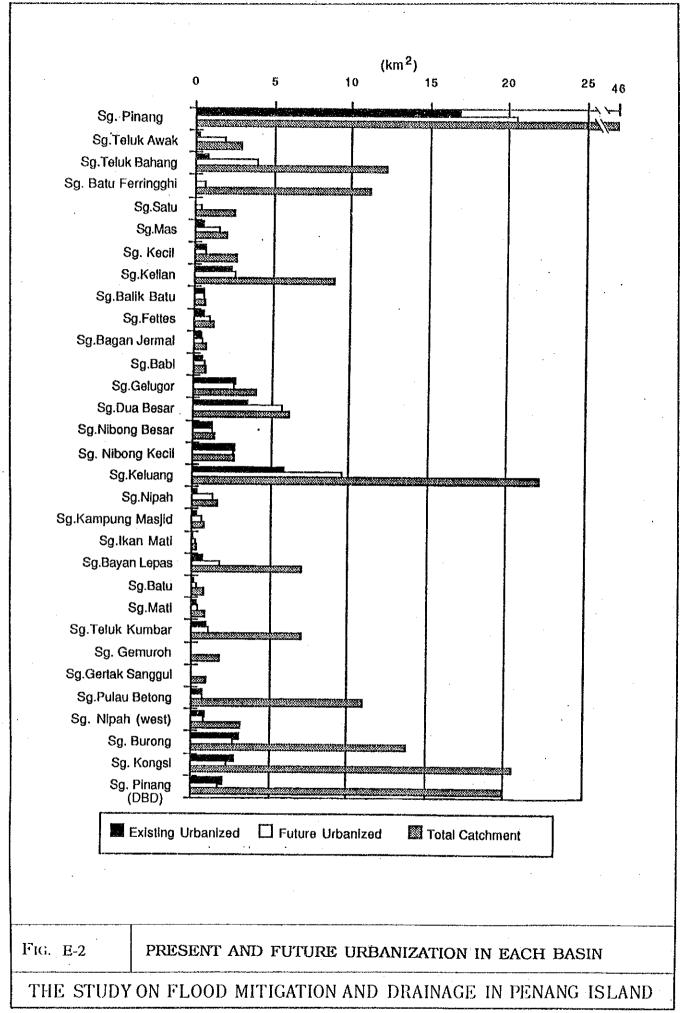
	3										
	200+48			•			10.5			•	
	7557+28	11.5	7.1		~~.	1.06	10.5				Ş
SQF.	1400+14	2.55	m		7.65	1.35	10.5	17.		31.5	CHANGE
	165048						10.5			. .	
	1700+18						10.5			g.	
24 SG. TELOK KUMB					•					32 }	
	9,000			-							
	50-50				-		25.6			+	
200	50.37	25.1	7.5		26.75	į.	200			6	743 B 1
	100.22 4					7-7		6-7-1		1.61	1
	1007-74						25.6			-	
	200,354						8.62			-	
	2501.30						25.5			+	
NO.A.	Sept. 25		2.1	- A			1 70			-	
	52473						850			-	
	1100+35						7.00			-	
	115045						7.02			-	
	115046						7.02			-	
CON.	1150+12	3.9	3.1		12.09	3.1	20.7	16.8		64.17	CHANGE
	1200+22						7.02				
NGA	1500+65		5.04			00.	20.7			-	
	1550+42						7.02			_	
	1650+27						20.7				
	1700+45						7.02			L	
	1750+19		6.19	-							
CON:	1950+45	Þ								-	
			21.53						7	252	
9. SG. BALIK RATU										_	
		-								_	
	20043				-		6.5			-	
	200427					-	6.6			-	
	300+29						6.9			_	
	600+22.5				_	_				-	
CON.	600433.5	ez	121							-	
	660+39									-	
	700+36									+	
	750+27									-	
CON.	750+38.7	7	6			-				-	
	B00+43									+	
CON.	800+48.6	13	12								
	850+5					_				-	
	950+1.8									-	
						-	-		_	C	

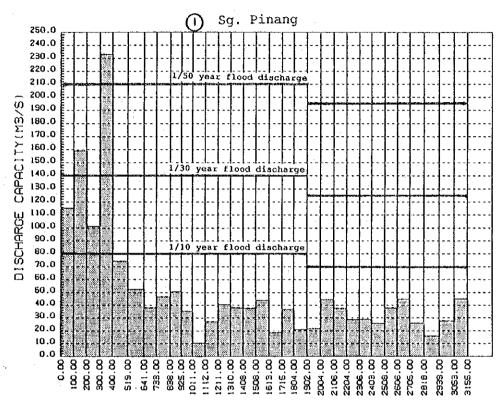
TABLE E-3-6 FEATURES OF EXISTING BRIDGES

くとりてつからいった。		-				-			
								-	
	100+32					9.2			
	100+34					9.2			
ÇON.	100+39	5.5	5.6	30.8	1.71	6.2	3.7	51.52	CHANGE
	100+43.5					5.5			
	130+47					9.2			
	15049					5.2			
	200+55					6.2			
	400+37.5	2.4	4	9.6	1.52	9.2	6.8	36.8	CHANGE
	500-165					9.2			
-	500+265								
COM	650+26	2.6	Ś		3,74		-2.4		ā
	7004-61						l		
	750+31								
CON	750+37.5	3	10.5				* 6.		ø
	\$\$±552			40				88	
	750+45								
	920+16								
	52:+056								
10. SG. PETTES							•		
	30.00								
CONT	30,456								
: 35	34.05				-	, 1	1	5	2
100	58-05:	6	700			4 t	-1.7 *	ŕ	ON C
NOO	0+05€	F	6.9				1	5	2
W.D.N.	450+34		7.			£.4.	17-		D Ž
	400+36					ř			
	500+10			-					
	500+24								
	500+30								
	500+34								
	550+40								
								0	
7. SG. KECIL								-	
	7. 34.								
3	97+701	8.8	5	52.8		9.5	0.7	27	CHANGE
	Z00-1-4					9.5			
3	350+36	60	₹	12		9.5	6.5	38	CHANCE
	7004-13				-	9.5			
Š	700+28	\$	*	92		9.5	4.5	88	CHANGE
	1050+17			-				•	
2	1400-14	30.5	m	•					

TABLE E-3-7 FEATURES OF EXISTING BRIDGES


	150+8						ì		
				8.4.8					
								133	
				•					
SCDONDANG	1	(w)	(m)	T	(E)	(3)	Œ	(5042)	
	CHAIN	SPAN LENGTH	HICIM	AREA	SOPIT LEYEL I	DESIGN LENGTH	DIFFERENCE	AREA	NECESSITY
	S		8	36	3.57	† 1	35	56	CHANGE
	1222		\$7	45	3.13	Ħ	<u>ن</u>	lot.	CHANGE
	88	6-0	11	T	4.1	14		154	CHAINGE
	1880	•	5	35	2.83	10.2	3.2	51	CHANGE
	4520		*1	78	4.09	6.8		124.6	CHANGE
	4880	00	21	158		6.8	160	186.9	CHAINGE
	5130		9	\$\$		8.9		53.4	CHANGE
	5387		3.5	10.5		6.8		31.15	CHANGE
	22.68		7	16		8.9		35.6	CHANGE
·	5595	DI.1 X 3.6	56	10.45		8.9	*VALUE!	84.55	CHANGE
,									
	,			526.95				847	


TABLE E-4 COMPLETED OR PREVIOUSLY PROPOSED LENGTH OF RIVER IMPROVEMENT


lo. 1	Name		tal ngth)	Completed (m)	Proposed (m)
	Sg.	pinang	3,100		
— 1 .	Sg.	Dondang	6,400		240-C
-2	Sg.	Air Terjun	3,800		250-C
-3	Sg.	Air Itam	6,057		550-C
-4	Sg.	Air Putih	1,200	•	
-5	Sg.	Jelutong	3,650		
:	Sg.	Batu Ferringghi	1,100	200-C	500-C
;	Sg.	Mati	1,750	900-C,200-C	
	Sg.	Kelian	1,720	440-C	470-C
2	Sg.	Babi	1,600	150-C	140-E
4	Sg.	Dua Besar	2,600	250-C, 350-C	900-C
5	Sg.	Nibong Besar	1,300	700-C, 130-C	
.7	Sg.	Keluang	4,500	1,530-E, 250-E	

C=Concrete Channel
E=Earth Channel

Figures

Note: Probable flood discharges are the values with retention pond and diversion channel.

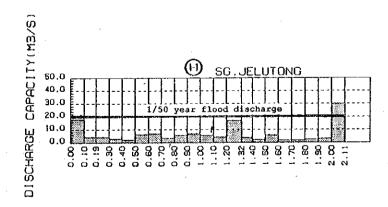


Fig. E-3-1

EXISTING DISCHARGE CAPACITY OF SG. PINANG& SG. JELUTONG

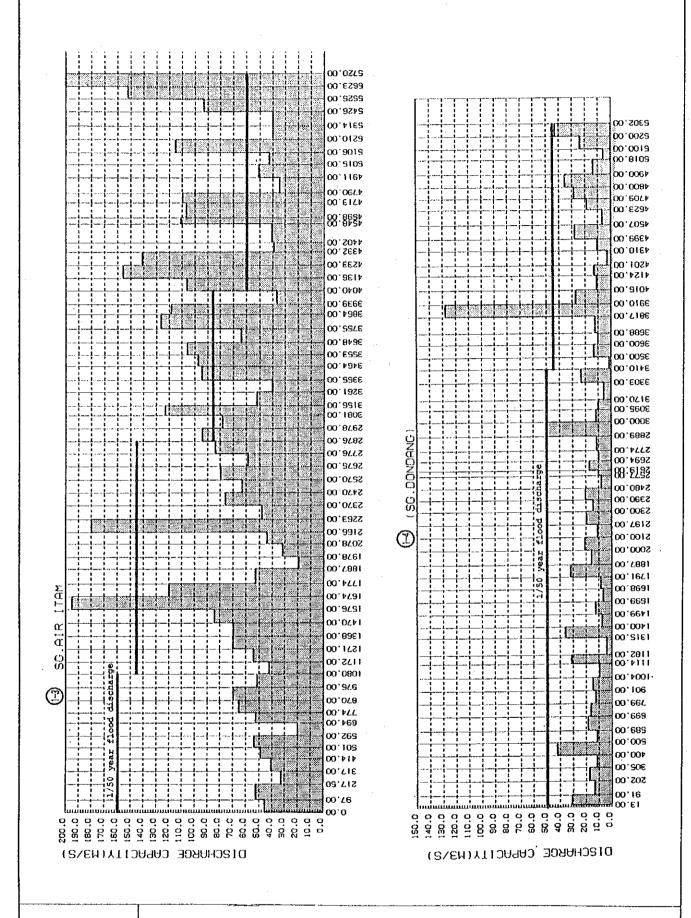


Fig. E-3-2

EXISTING DISCHARGE CAPACITY OF SG. AIR ITAM & SG. DONDANG

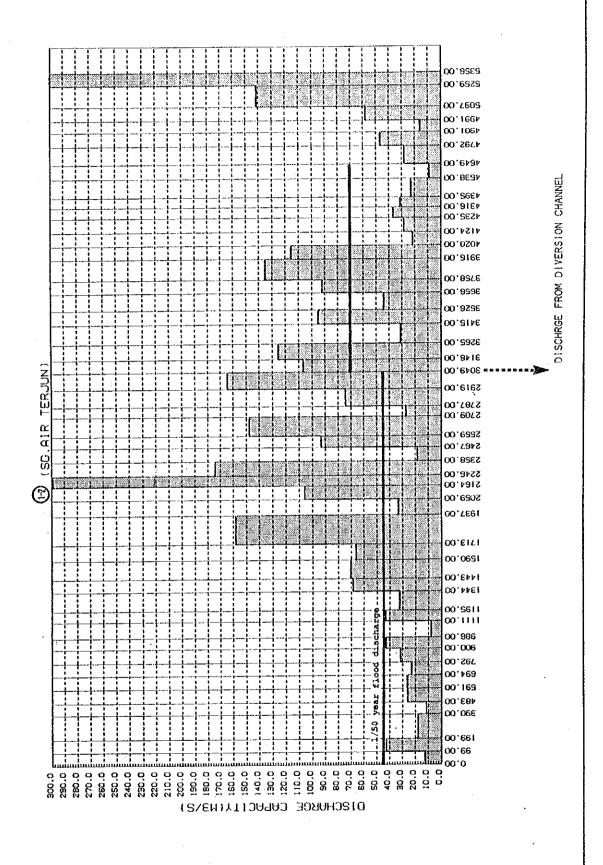
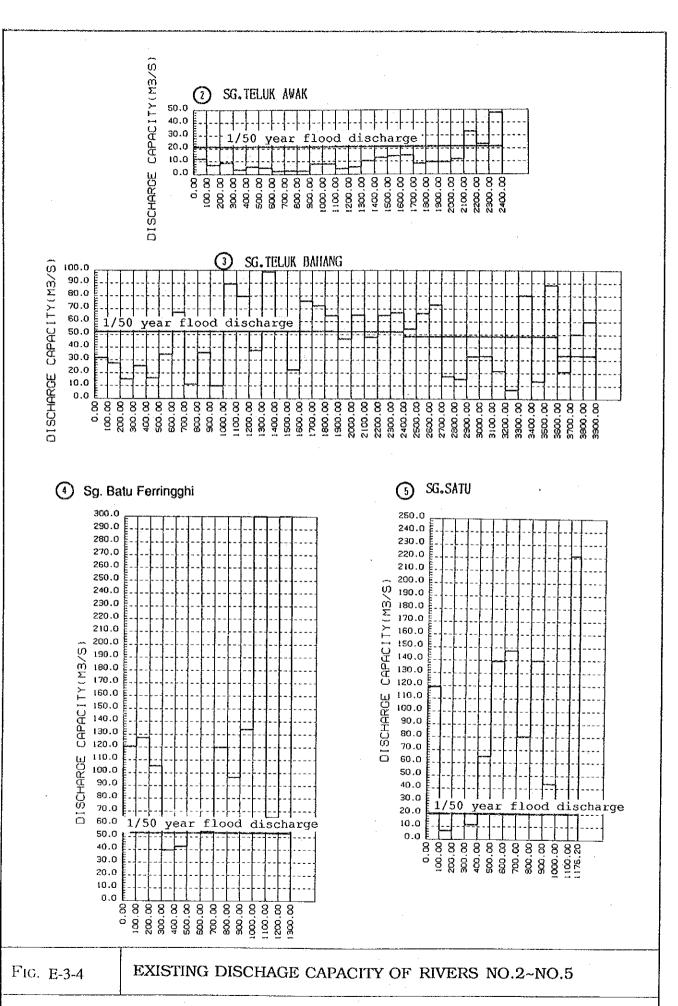
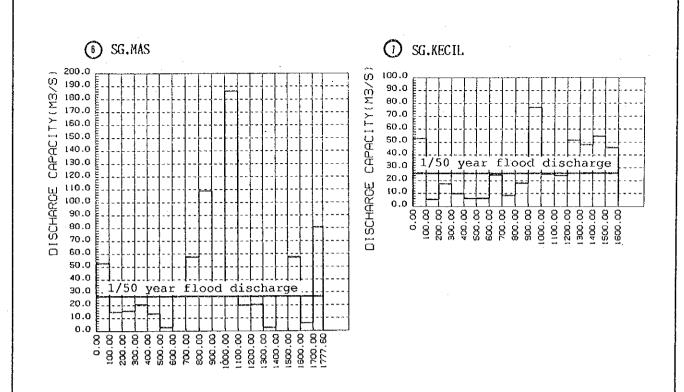




FIG. E-3-3

EXISTING DISCHAGE CAPACITY OF SG. AIR TERJUN

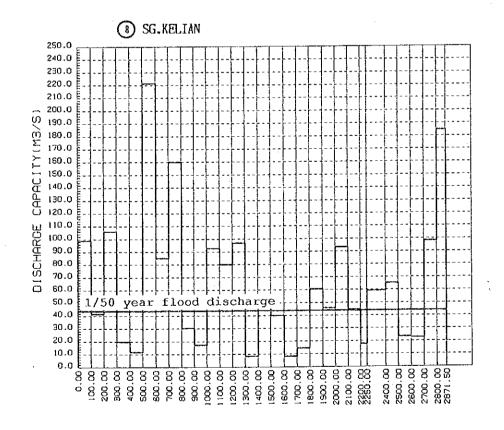
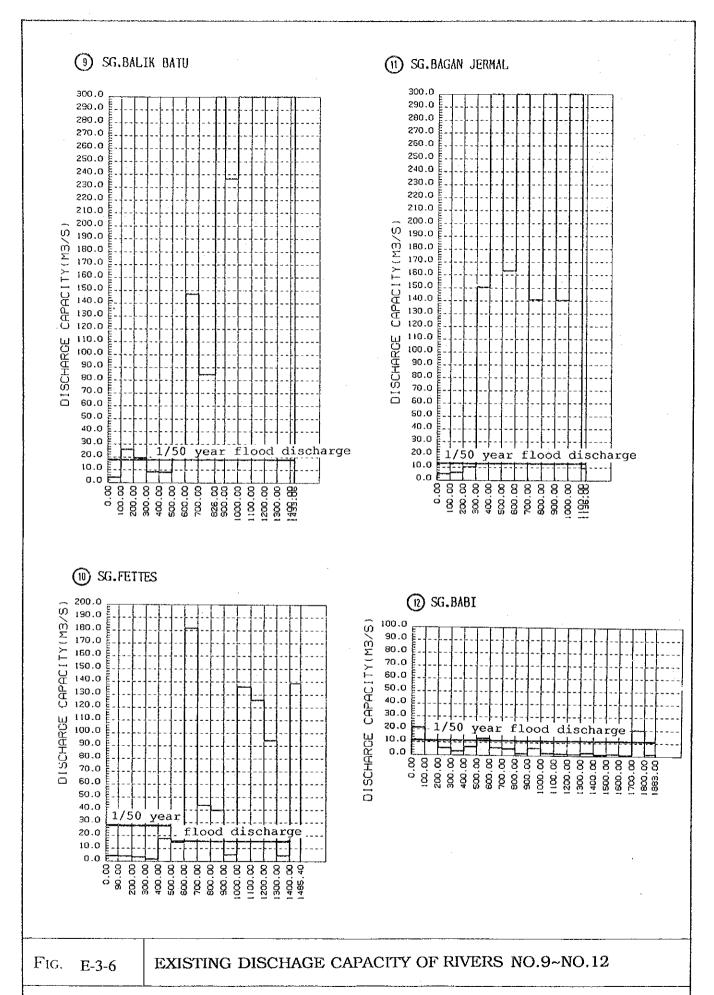
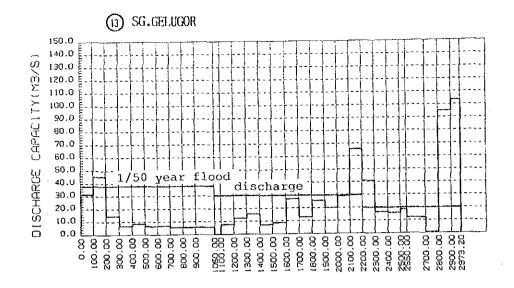
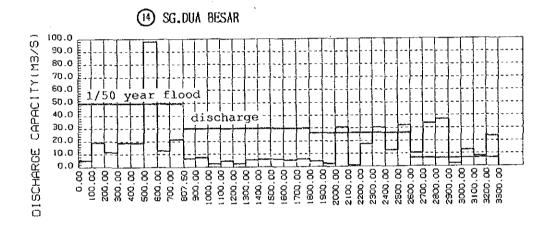





FIG. E-3-5 EXISTING DISCHAGE CAPACITY OF RIVERS NO.6~NO.8

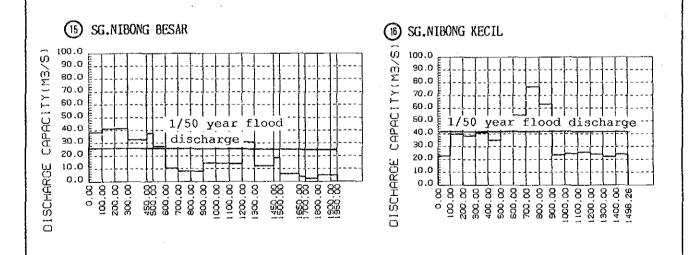
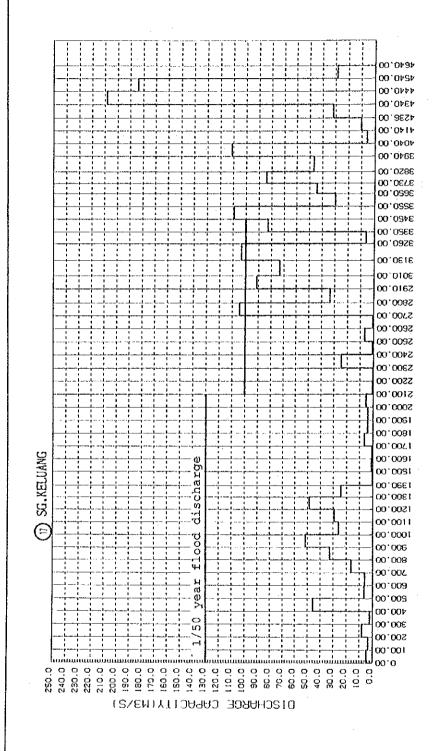
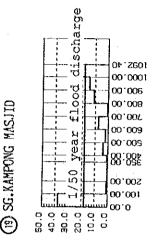
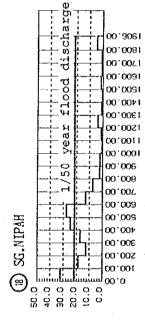
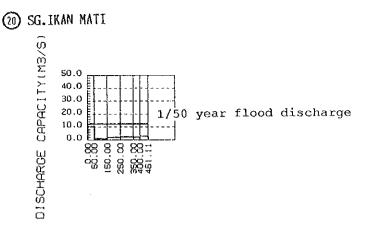





Fig. E-3-7 EXISTING DISCHAGE CAPACITY OF RIVERS NO.13~NO.16

DISCHURGE CHEMCITY(M3/S)



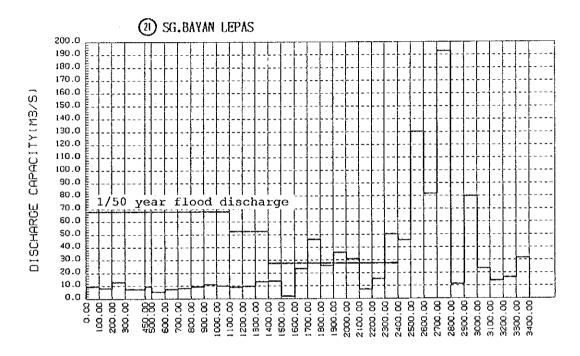
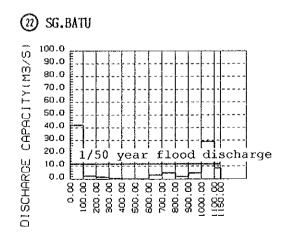
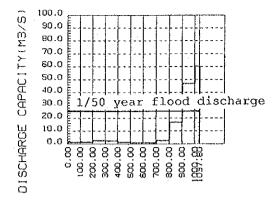
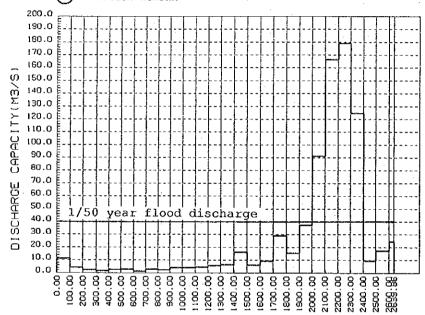

DIZCHURGE CHERCITY(M3/S)

FIG. E-3-8

EXISTING DISCHAGE CAPACITY OF RIVERS NO.17~NO.19


FIG. E-3-9

EXISTING DISCHAGE CAPACITY OF RIVERS NO.20~NO.22

(24) SG.TELUK KUMBAR

26 SG.GERTAK SANGGUL

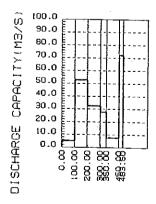
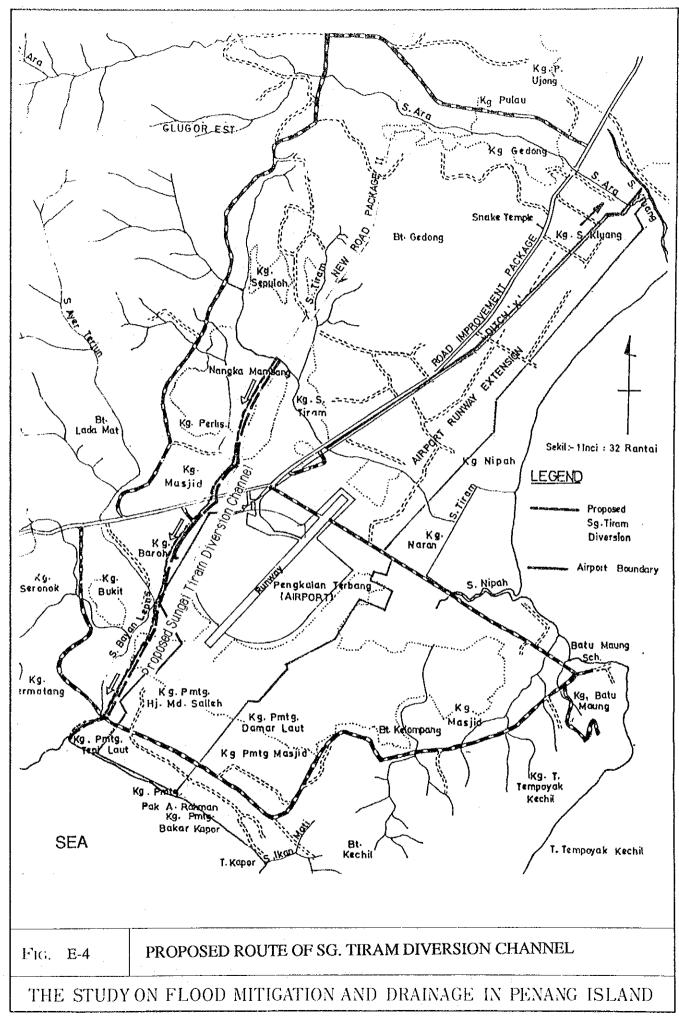
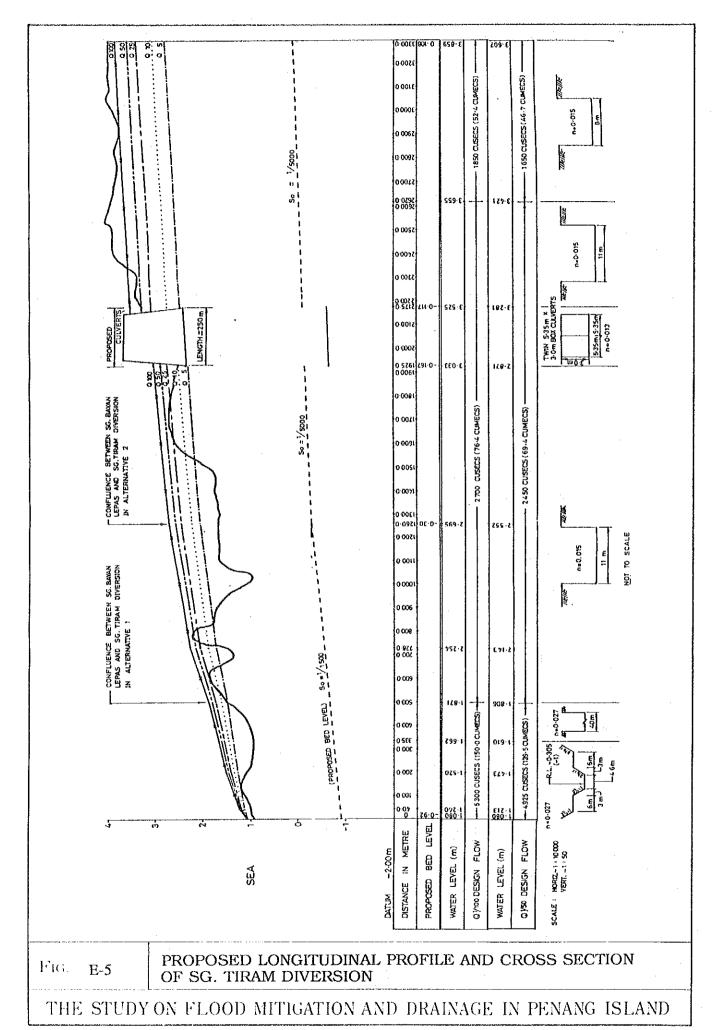
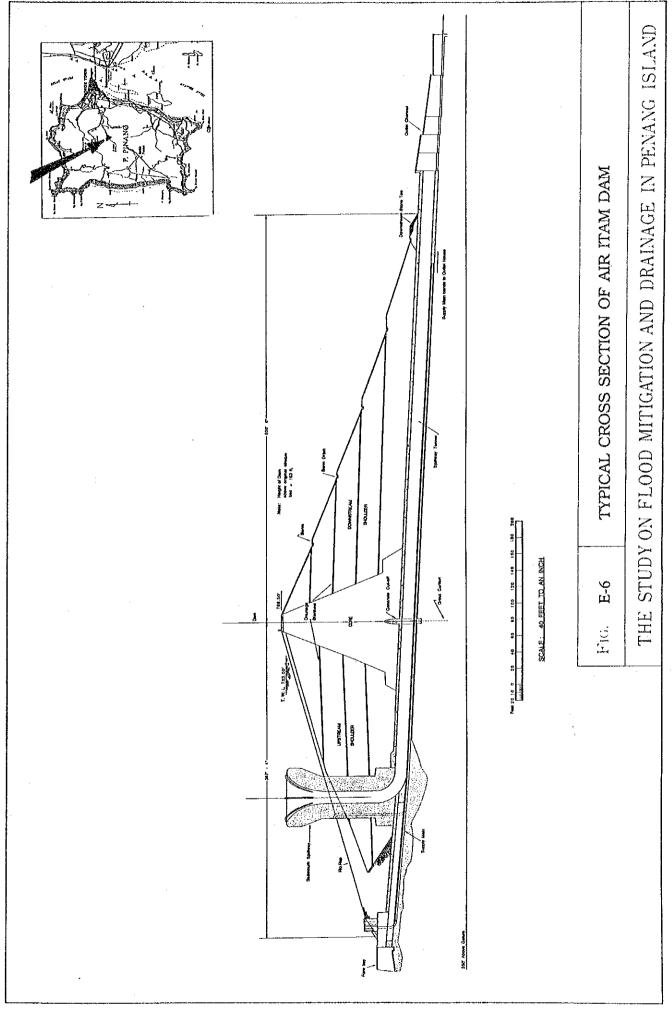
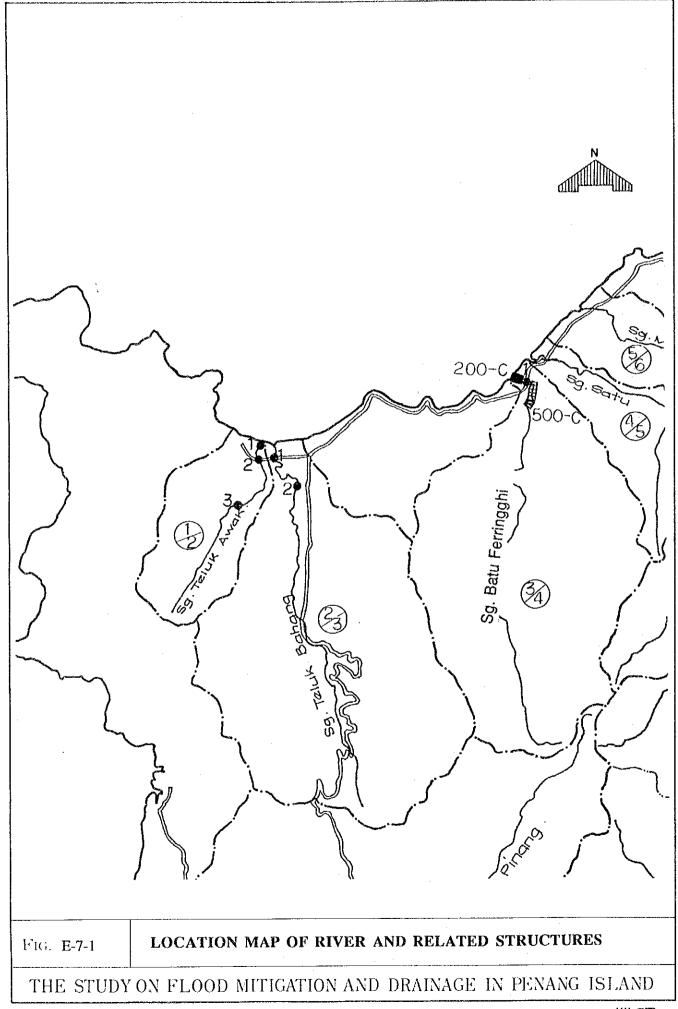
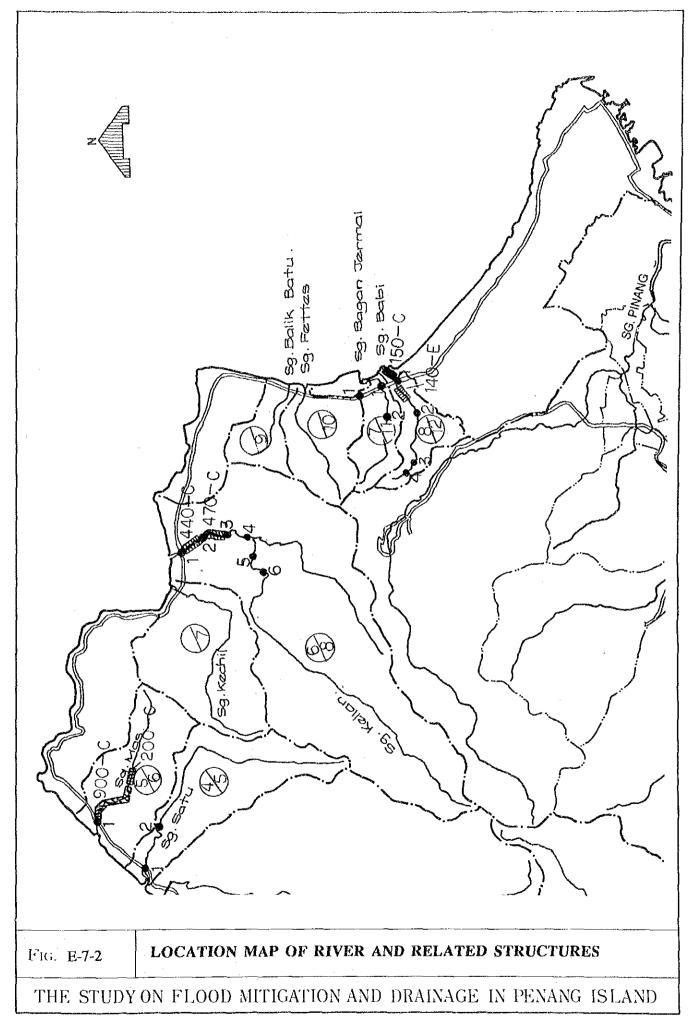
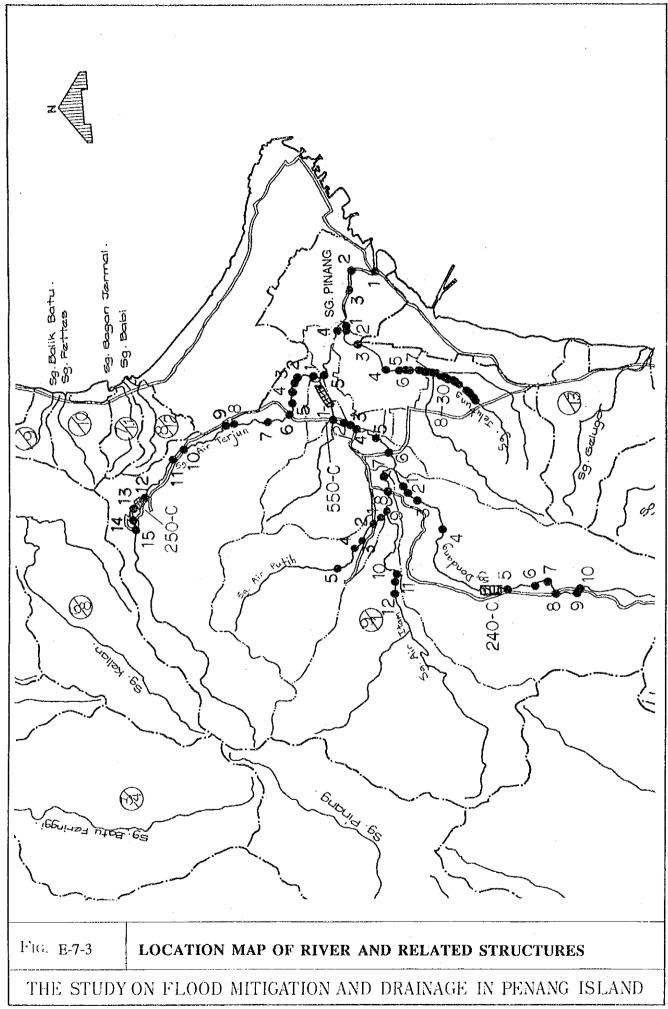




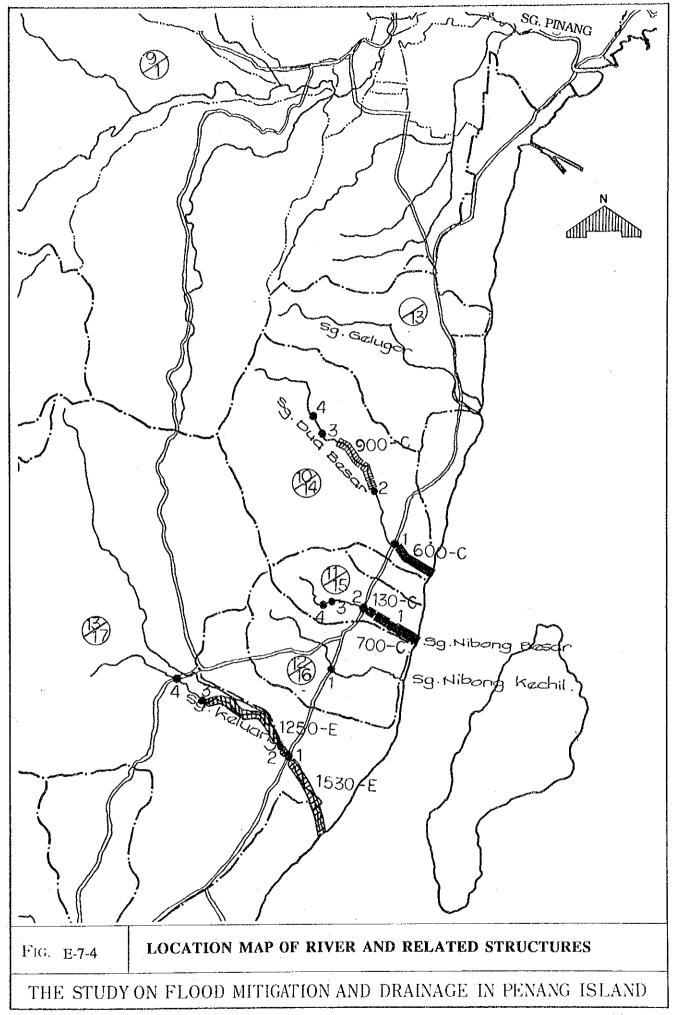
Fig. E-3-10

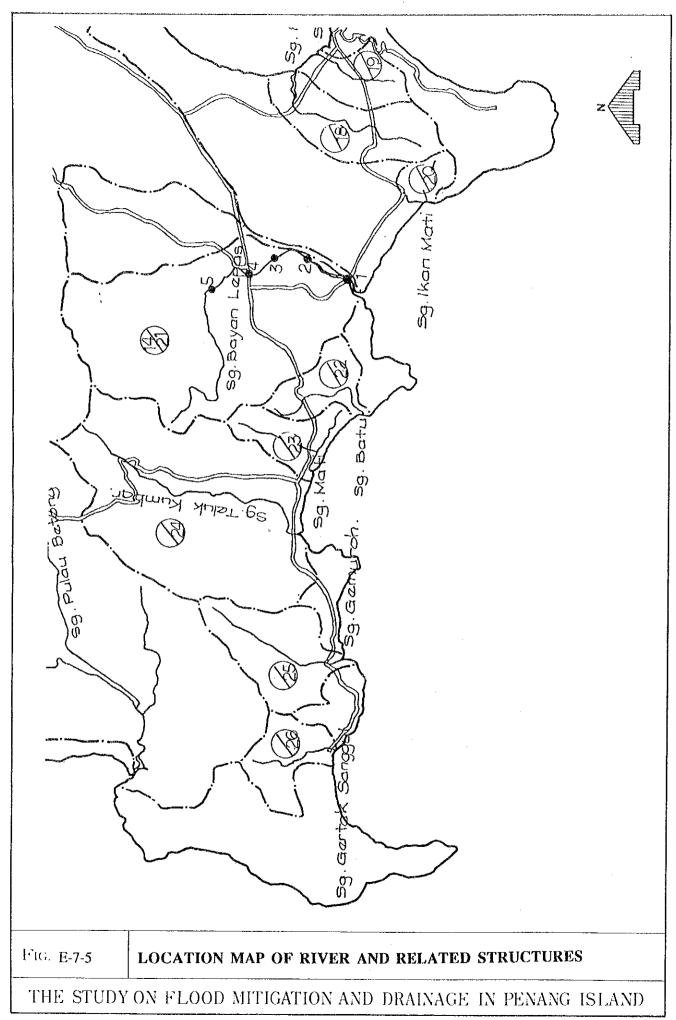

EXISTING DISCHAGE CAPACITY OF RIVERS NO.23,NO.24&NO.26

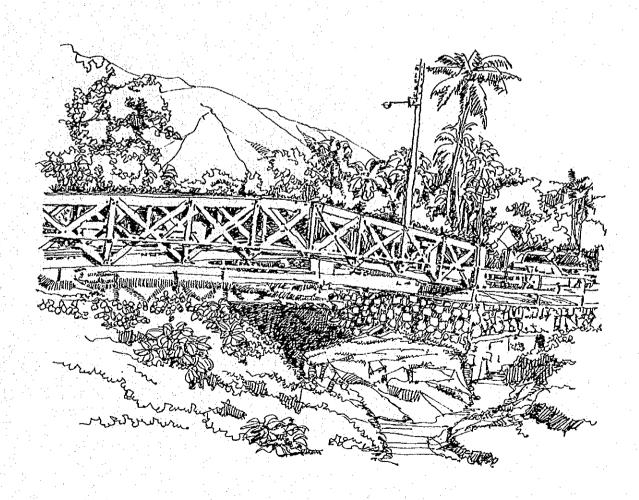





ADIL







APPENDIX F

FLOODS AND FLOOD DAMAGE

APPENDIX F FLOODS AND FLOOD DAMAGE

TABLES OF CONTENTS

1.	INTRODUCTION	F-1
2.	PAST RECORD OF FLOOD CONDITION	F-1 F-1 F-2
3.	IDENTIFICATION OF FLOOD DAMAGE	F-2
4.	FLOOD DAMAGE ESTIMATION 4.1 General Property Damage 4.2 Public Property Damage 4.3 Agricultural Product Damage 4.4 Loss of Income/Sales Value 4.5 Loss in Vehicle's Running Cost 4.6 Flood Damage by Frequency and Annual Average Flood Damage	F-3 F-4 F-5 F-6 F-6 F-7
5.	FLOOD DAMAGE SURVEY	F-9 F-9 F-9 F-10

LIST OF TABLES

Table I	F-1	Record of Highest Flood Water Level and Rainfall in Georgetown	F-11
Table.	F-2	Existing Flooded Area and Its Cause in the Basins Outside Georgetown	F-12
Table E	F-3	Number of Residential Dwellings in the Flood Prone Area by Flood Frequency (Sg. Pinang)	F-13
Table E	F-4	Number of Residential Dwellings in the Flood Prone Area by Flood Frequency (Sg. Keluang)	F-16
Table E		Number of Residential Dwellings in the Flood Prone Area by Flood Frequency (Georgetown Drainage)	F-21
Table F	7-6	Total Number of Houses in Flood Prone Area by Flood Return Year	F-22
Table F		Number of Houses in Flood Prone Area and Water Depth for 24 River Basins	F-23
Table F		Flood Damage Ratio (for Sg. Pinang, Sg. Keluang and Georgetown)	F-24
Table F		Estimation Procedure of Flood Damage Potential for House and Commercial Assets (50 Year Flood)	F-25
Table F	-	Annual Cost of Road Resurfacing by MPPP, 1985 - 1989	F-26
Table F	F-11	Loss of Earning Opportunity Bus Company	F-27
Table F	F-12	Loss of Income Opportunity Taxi and Trishaw	F-28
Table F	7-13	Vehicle Operating Cost by Travel Speed, 1990	F-29
Table F	r-14	Registered Vehicle Number in Penang State, 1985	F-29
Table F	r-15	Weighted Vehicle Operating Cost	F-29
Table F	7-16	Loss in Traffic Economy	F-30
Table F		Summary of Direct Damage and Indirect Flood Damage	F-31
Table F	'-18	Flood Damage Potential by Damage Item and Flood frequency	F-32
Table F	·-19	Flood Damage Potential by Flood Frequenxcy	F-35
rable F		Result of Interview SurveyCause of Flood by Zone	F-36

LIST OF FIGURES

Fig.F-1	Experienced Flood Areas in the City of Georgetown	F-36
Fig.F-2	Flood Areas in Georgetown in 1984 and 1986	F-37
Fig.F-3	Flood Prone Areas in Whole Penang Island	F-38

APPENDICES

APPENDIX-1 Interview sheet-1
APPENDIX-2 Interview sheet-2

APPENDIX F FLOODS AND FLOOD DAMAGE

1. INTRODUCTION

Flooding in various parts of the Island has been very frequent. In order to investigate these floods and their damages, the collection of relevant information had been carried out but few information were found to be available except several information complied by SDID and MPPP.

The area in Penang which is affected by floods can be classified into the following three categories:-

- i) The areas which are flooded after a few hours of sustained rainfall several times throughout the year.
- ii) The areas which are flooded during the wettest period of the north-east monsoon season in December/January causing crops and livestock damages.
- iii) The areas which are flooded when rainfall of greater than usual intensity recurs over a period of some years and where damages are more extensive due to the unexpected magnitude of the floods.

Furthermore, the type of floods can be divided into the following three categories:-

- i) Flood which occurs during the heavy rains of flash storms coinciding with high tide.
- ii) Flood which occurs during spring tide affecting the lowlying areas.
- iii) Flood which occurs in 10/12 years due to abnormally heavy rains and coinciding with high tides during the monsoon seasons.

Overview of past flood conditions and their damages are dealt with in the following section.

2. PAST RECORD OF FLOOD CONDITION

2.1 Flooding in the City of Georgetown

Table F-1 shows the highest flood water level and rainfall pattern in each flood occurred in Georgetown, based on the past flood records from 1976 to 1987.

Flood prone areas in Georgetown can be categorized into three districts.

a) Lowlying areas alongside Sg. Pinang and its tributary, Sg. Jelutong, e.g. Caunter Hall area, Makloom area, Van Praagh Road Area, etc.

- b) Areas with undersized or inadequate drainage system, and unaffected by tides, e.g. Barrack Road, Khaw Sim Bee Road, Perak Road etc.
- c) Lowlying areas outside Sg. Pinang catchment area having separated outlets and affected by tides, e.g. Pengkalan Kota area, Prangin Canal catchment area, Perak Road, McNair Street and Kimberly Street area, Carnarvon Street areas and its side streets, etc.

The flood affected areas within the city limits are shown in Fig.F-1. The flood prone areas in Floods of April 19, 1984 and Floods of September 20, 1986 are shown in Fig.F-2.

2.2 Flooding in the Areas Outside City Limits

Floods outside city limits usually occurs in areas alongside the main rivers and mostly at the downstream sections. The flood affected areas of each river basin are shown in Fig.F-3 and the followings are the areas severely affected by floods:

- Sg. Gelugor Catchment Around Jalan Permai in Brown Garden
- Sg. Dua Besar Catchment Saw Kit Garden, Pesta site and lowlying areas alongside its tributaries
- Sg. Nibong Catchment Jalan Aziz Ibrahim areas
- Sg. Relau Catchment Mayan Pasir Residential area and lowlying area alongside Sg. Ara
- Sg. Ara Catchment Jalan Tengah area, etc.
- Sq. Tiram Catchment
- Sg. Pulau Catchment Lowlying areas in Kampong Pulau Betong.
- Sg. Burong Catchment Swampy areas around Kampong Paya.
- Sg. Kongsi Catchment Lowlying areas in Kampong Titi Teras and Kampong Setol.

Flood prone areas and causes of floods are tabulated in Table F-2.

3 IDENTIFICATION OF FLOOD DAMAGE

In this study, five (5) kinds of the flood damages are identified and incorporated in the project evaluation of the proposed projects, which are all tangible and quantitatively measurable damages. They are:

- General property damage
- Public property damage
- Agricultural damage

- Loss of income/sales
- Vehicle's Running Cost

Each flood damage item mentioned above is composed of subitems.

Intangible flood damages are also identified as shown below. And their impacts are described in general terms.

First, these projects can contribute to remove the development constraint in the future. Floods generally cause an interruption of traffic and therefore make it difficult to deliver inputs/outputs of manufacturing sector on time. In some cases, their production schedule might be changed because of floods. It is also anticipated that, without project, future investment might be depressed in the future. This development constraint can be removed by the project.

Secondly, these projects can contribute to an improvement of people's public health and amenity. It is obvious that flooding especially in the town area causes epidemic disease and aggravate living amenity. In addition, it also gives unfavourable impression on town, especially to the foreign tourists. These defects of the floods should be removed and the pre-requisite of the living circumstance should be guaranteed by the projects.

Thirdly, implementation of the flood mitigation and drainage projects most effectively contribute to meet the inhabitants' preference to the government investment policy. Interview survey clarifies that the drainage system improvement project ranks at the top of project list anticipated by the people in the Penang Island. Priority preference is given to these projects below;

2nd	<pre>preference; preference;</pre>	drainage system improvement sewage system improvement
3rd	preference;	housing development
4th	preference;	river/sea water purification
5th	preference;	road network and traffic
		improvement
6th	preference;	public transport system
		improvement

4. FLOOD DAMAGE ESTIMATION

Results of the flood damage estimation works for Sg. Pinang basin are briefly shown below;

				(unit;	millio	n M\$)
Year Flood frequency						
	1/1.1	1/5	1/10	1/30	1/50	1/100
1990 2010				192.5 213.1		306.3 341.3

4.1 General Property Damage

This general property damage composes of five (5) kinds of sub-damage items.

4.1.1 Houses

Damage of houses are the major component of the total flood damage in terms of value and thus counts as the representative damage item.

Flood damage of houses is estimated according to the following function;

Damage = Average x Damage Ratio x No. of House
Value of in Flood
of House Prone Area

Average value of house was set in cooperation with Valuation Department, Penang. As a results, semi-detached, semi-permanent house is selected as a standard house in the flood prone area. Value of the house is determined by the following function;

(value of house)
= {(construction cost) + (developer's profit)}
x (depreciation ratio)

69,800 M\$ x (depreciation ratio)

Damage ratio is set by the regression function derived from the results of the interview survey, which are summarized with other flood damage ratios below;

Water Depth	Flood Damage Ratio					
	House HouseholdCommercialCommercial					
		Article	Assets	Stocks		
0 <h<50< td=""><td>0.004</td><td>0.057</td><td>0.052</td><td>0.127</td></h<50<>	0.004	0.057	0.052	0.127		
50≤H<100	0.030	0.096	0.121	0.276		
100≤H<200	0.068	0.135	0.161	0.379		
200≤H<300	0.112	0.336	0.208	0.479		
300≤н	0.170	0.687	0.243	0.562		

Number of the houses in the flood prone area is reckoned based on the population density and family size for the case of Sg. Pinang, Sg. Keluang and Georgetown Drainage basins as shown in Table F-3 through F-5. As for the other flood prone area, it is estimated based on the building area ratio and house lot size.

Total number of houses in flood prone area by flood return year is shown in Table F-6.

Number of houses in flood prone area outside Georgetown and flooding water depth for 24 river basins are shown in Table F- 7.

4.1.2 Household Articles

This item's damage is reckoned by the following function;

Damage = average value x damage x No. of house of the house- ratio in the flood prone area

Average value of the household articles are set to be the 21,200 Ringgit per house according to the interview survey. Damage ratio used are shown in the table with house damage ratio.

Quantity of household articles per unit is expected to increase with increasing per capita GRDP. The function $(1+g/100)^{t}$ reflects this increase in household effects.

4.1.3 Commercial Assets/Stocks

Machines and various other kinds of facilities are subjected to flood damage. Especially machines and electric equipments are major damaged items. In addition, goods in stock and goods on display at shops are also subject of flood damage.

Damage = average value x damage x No. of shops/
of asset and ratio factories in the
stock flood prone area

In estimating these damage, data collected by means of interview survey did not have any statistically reliable correlations between the actual damage and the water level. In addition, value of assets and stocks which shops/factory varies so widely and it is judged that the responses from the shopkeepers to the interviewers are not reliable.

In setting the value of average asset and stock, figures were quoted from "The Study on the Flood Mitigation of the Klang River Basin." 165,000 Ringgit and 28,900 Ringgit were adopted for the commercial assets and commercial stocks respectively. Damage ratio, shown in Table F-8, is also the same as the same study.

The estimation procedure of flood damage potential for house and commercial assets (50 year flood) is shown in Table F-9.

4.2 Public Property Damage

Six (6) kinds of public facilities are identified as subitem of this flood vulnerable.

- road
- bridge
- electricity facility
- telecommunication facility
- school, hospital

government building facility

Among the damage items above, information of actual flood damage in the past is recorded and kept only for the road by the M.P.P.P. It is confirmed that no other items had been suffered from any flood damage in the past.

Road damage, in general, accrues to the shorter interval of pavement repair and maintenance works due to inundation. In the case of Penang Island, road surface and structure are deteriorated by the frequent inundation and therefore repavement works are necessary every three years in the flood prone area, while every seven years outside the flood prone area, according to the M.P.P.P. This difference in repavement work interval counts as a road damage attributable to the floods. With the proposed project, repavement interval works would be every seven years instead of every three years. Saving in annual road maintenance cost is thus reckoned to be (1/3-1/7) of the present cost.

Annual road maintenance cost is derived by averaging actual expenditures for the last five years, which reaches 3.7 million Ringgit per year. This figure is expanded in proportion with the house damage and converted into the damage potential by the flood frequency. Calculation procedure is summarized in Table F-10 and brief summary are shown below;

	(unit; million M\$)					on M\$)
	1/1.1	1/5	1/10	1/30	1/50	1/100
Road Damage	3.7	11.2	49.0	86.9	102.0	109.7

4.3 Agricultural Product Damage

Production of paddy and vegetable is influenced by floods and reduction of the agricultural yields owing to floods is also a flood damage, and is determined by:

Damage = average yield x damage ratio x area by species

However, this damage is not reported in Penang Island. Determination of this damage was thus excluded in this study.

4.4 Loss of Income/Sales Value

4.4.1 Bus

At present five bus companies offer public bus services in Penang Island. Floods causes loss in earning opportunity in forms of 1) interruption of bus operation, 2) reduction of travel speed of bus and therefore reduction in number of bus trips and 3) lower person trip generation in rainy day. First two items are considered as a flood damage.

Data of actual earning loss due to flood is collected by means of interview with the five bus companies. It shows that the earning loss varies from 40 percent to 5 per cent of the

one day earning of each company, depending on the bus route locations. Total loss reaches 56,000 Ringgit per year in the case of habitual floods. Its damage potential for other flood frequency are expanded according to the flood prone area for each flood frequency.

Each company's loss of the earning per year is shown below and its estimation procedure is shown in Table F-11;

	ه خود ميد وينه هند کند کند د وي ميد بنده خود ميد وي ميد دند دي وي ميد دي وي ميد دند دي وي وي ميد دند دن	
1.	Lim Seng Seng Bus Com.	5,750
2.	Hin Bus Com.	.8,000
3.	Sri Negara Bus Com.	8,750
4	Penang Yellow Bus Com.	4,000
5.	MPPP	29,500
	Total	56,000

4.4.2 Taxi

According to the Taxi Association of Penang, it is reported that 524 taxies are operating in Penang Island in 1990. Their income reduction in the flooded day is about 15 per cent of the daily earning. Since the average earning per taxi is about 70 ringgit per day, their actual loss is estimated to be 10.5 Ringgit per day and then arrived at 55,020 Ringgit by multiplying earning reduction with annual flood days (10 days) and total number of taxi (524).

Calculation procedure of flood damage is shown in Table F-

4.4.3 Trishaw

In 1990, 1,728 trishaws are operating in Penang Island. According to the Trishaw Association of Penang, their income loss attributable to the flood is about 15 per cent of the daily earning. Since the average earning per trishaw is about 30 Ringgit per day, their actual loss is estimated to be 4.5 Ringgit and arrived at 77,760 by multiplying annual flood days (10 days) and total number of trishaw (1,728).

Calculation procedure of flood damage is shown together with the loss of taxies in Table F-12.

4.5 Loss in Vehicle's Running Cost

Extra expenditure of the vehicle running cost which is induced by (1) in-efficient consumption of the fuel, oil and other running cost of the vehicle and (2) longer travelling distance and time owing to re-routing of traffic.

4.5.1 Vehicle's Operating Cost

Travel speed of vehicles is slower on the inundated roads than on the normal roads outside the flood prone area and results in in-efficient consumption of fuel, oil etc. This difference counts as a flood damage.

Usual travel speed is assumed to be 40 km per hour and it decreases to 10 km per hour during flooding, according to the "Feasibility Study of Computerized Area Traffic Control System

in Penang." In the case of the sedan, vehicle operating cost at 40 km per hour is set 21.9 cent/vehicle-km while 26.9 cent/vehicle-km at 10 km of running speed. Difference of 5.0 cent/vehicle-km is considered to be flood damage. Vehicle operating cost of other modes of the transportation are shown in Table F-13.

Vehicle operating cost for each transportation mode are weighted with the composition share shown in Table F-13 and arrived at the general vehicle operating cost, which are 15.09 cent per PCU-km (passenger car unit) at 10 km per hour and 9.84 cent per PCU-km. Results are shown in Tables F-15 and F-16.

Total loss in vehicle operating cost is estimated to be 24,700 Ringgit in 1990 and 37,600 Ringgit in 2010. Savings for the habitual flood are expanded according to the flood prone area.

4.5.2 Time Cost

Lower traveling speed due to flood results in longer traveling time and therefore reduces the working time. This is coincides with the reduction of the production. This is the reason why this item can count as a flood damage.

Basic data of unit time cost of the vehicle was provided in the Report of "Feasibility Study of Computerized Area Traffic Control System in Penang". This was converted into the 1990 figures based on the price increase since 1988. It is assumed to be 0.57 Ringgit per hour.

Unit time value is multiplied with the difference in aggregated travel time both in cases of flood and normal situation. Results are shown in Table F-16 with VOC saving. In 1990 loss in time value reaches 201,000 Ringgit per year and 305,800 Ringgit per year in 2000.

4.6 Flood Damage by Frequency and Annual Average Flood Damage

The flood damages for public property and indirect damage due to habitual floods are shown in Table F-17.

In the Master Plan Study, only direct damage such as general property damage and public property damage were contemplated.

While, in the Feasibility Study, the indirect damage other than direct damage was taken into account.

Flood damage potential by item and flood frequency for three urgent project areas are shown in Tables 18-1 through 18-3.

The average annual flood damage reduction is calculated by using the following equation:

$$D = \sum [(N_{m-1} - N_m) \times (L_{m-1} + L_m)/2]$$

where, D: Average annual damage reduction

N: Probability of floods

L: Damage potential corresponding to probability

of floods

m : Ordinal number

In estimating the annual average damage, the 50-year return period was adopted as a maximum frequency for the rivers because this return period corresponds to the design flood frequency of flood mitigation. For the Georgetown Drainage Project, the 10 year return period was adopted.

The average annual flood damage potentials for three urgent projects, Sg. Pinang, Sg. Keluang and Georgetown Drainage, are shown in Table F-19.

5. FLOOD DAMAGE SURVEY

5.1 Purpose of the Flood Damage Survey

Flood damage survey was conducted in the course of the Study by the JICA Study Team in cooperation with Department of Irrigation and Drainage, Penang.

Purpose of this interview survey is to clarify the flood condition in cases of 1985 floods and annual floods. The other purpose is to collect data on actual flood damage in the two cases and to provide the basic data for the flood damage estimation according to the flood frequency.

5.2 Procedure of the Flood Damage Survey

Procedure are shown below:

- Period; September 11 to September 22 1989 (6 days)

- Sample number; 1,100 in total for Interview Sheet-1

140 in total for Interview Sheet-2

- Interviewees; 20 persons

 Area; Flood prone area in Georgetown (Whole area is divided into 10 zones, corresponding to the drainage zones.)

- Interview sheet Two kinds (Interview Sheet-1,2)

5.3 Major contents of the Interview Sheet

Two kinds of interview sheets were used, namely, Interview Sheet-1 and Interview Sheet-2. Contents of the Interview Sheet-2 is similar to the Interview Sheet-1.

Major items clarified in this Interview Sheet-1 are as follows:

Item A treats the flood situation. Major items clarified in this section are (1) flood depth, (2) level of ground elevation, (3) duration, (4) flood frequency, and (5) causes of floods.

- Item B treats the property value of houses in terms of original construction cost and present value.
- Item C aims at quantifying the value of whole property (except house and land) and its damage due to floods.
- Item D is to clarify the value of income/sales loss due to floods.
- Last item (Item E) aims at evaluating the priority ranking of infrastructure investment as anticipated by the inhabitants in the flood prone area. Development alternatives questioned are:
 - Housing development
 - Drainage system
 - Public transport system
 - River/sea water purification
 - Road network and traffic improvement
 - Sewage system improvement.

5.4 Results of Analysis

Data input of the interview and compilation of the data were carried out and the results of analysis are as shown in Table F-20.

Tables

Table F-1 RECORD OF HIGHEST FLOOD WATER LEVEL AND RAINFALL IN GEORGETOWN

Year	М.	D.	H.F.W.L.	Observation Site	Year	М.	D.	H.F.W.L.	Observation Site
1976	9	18	R.L. + 10.0 ft	Caunter Hall	1986	9	14	22;00~12;45~11;00	Caunter Hall
1977	11	25	R.L. + 8.5 ft	Caunter Hall			15	6 ft - 7.5 ft - 3.9 ft 14/9 2;00 ~ 24;00	5303001
1978	9	6	R.L. + 8.9 ft	Caunter Hall				98mm	0000001
1979	11	27	R.L. + 9.5 ft	Caunter Hall				15/9 0;00 ~ 5;00 18mm	,
1980	9	5	R.L. + 9.5 ft	Caunter Hall			20	5;00 ~ 10;00 ~ 12;00	Caunter Hall
1981	10	18	R.L. + 9.5 ft	Caunter Hall				6.8 ft - 9.6 ft - 9.2 ft	E202001
1982	10	29	R.L. + 8.5 ft	Caunter Hall				1;00 ~ 8;00 (92mm)	5303001
1983	10	15	R.L. + 8.5 ft	Caunter Hall		10	5	15;00~18;00~10;00	Jalan Perak
1984	. 4	16	R.L. + 8.2 ft	Caunter Hall			₹	4.6 ft - 7.2 ft - 4.0 ft	
		18 ≀	22;00 ~ 8;00 ~ 17;00 4.6 ft - 10.6 ft - 9.1 ft	Caunter Hall	ī		6	5/10 12;00 ~ 23;00 (70mm) 6/10 2;00 ~ 8;30	5302003
		19	20;00 ~ 4;00 ~ 10;00 7mm - 42mm - 5mm	5402002 (Kolam Bersih)				(40mm)	
			(255mm)			11	13	5;00 ~ 9;00 ~ 15;00	Caunter Hall
	:	28	6;00 ~ 15;00 ~ 24;00 6.0 ft - 11.0 ft - 5.6 ft	Caunter Hall				5.5 ft - 7.1 ft - 4.6 ft 1;00 ~ 9;00 (81 mm)	5402002
			1;00 ~ 9;30 ~ 13;00 0 - 40mm - 1mm (147.5mm)	5303001 (Rumah Kebajikan)	1987	3	19	7;00 ~ 9;30 ~ 12;30 4.2 ft - 7.1 ft - 5 ft	Jalan Perak
	5	17	5;00 ~ 9;30 ~ 15;30 5.3 ft - 9.3 ft - 6.0 ft	Caunter Hall				2;00 ~ 10;15 (55mm)	5402002
			4;00 ~ 4;30 ~ 7;30 4mm - 46mm - 0.5mm	5302003 (Kolam Takongan)		6	5	5;00 ~ 9;00 ~ 13;00 4 ft - 7.8 ft - 5 ft	Jalan Perak
	7	14	(96mm) 22;00 ~ 2;00 ~ 6;00	Caunter Hall				6;30 ~ 9;45 (70mm)	5202003
		15	4.3 ft - 8.5 ft - 6 ft					0;15 ~ 9;00	5402002
		15 16	21;00 ~ 3;00 ~ 7;00 5.6 ft - 8.6 ft - 7.3 ft	Caunter Hall		7	22	(87mm) 6;00 ~ 7;30	Jalan Perak
		16 17	23;00 ~ 4;00 ~ 8;15 5.6 ft - 10.5 ft - 8.7 ft	Caunter Hall				5.8 ft - 6.9 ft	
1985	8	8	14;00~15;00~17;00	Caunter Hall				2;00 ~ 10;00 (55mm)	5402002
			6.0 ft - 7.6 ft - 6.8 ft 13;00 - 15mm	5303001		9	14 16	20;00~14;55~14;00 6.5 ft - 6.7 ft - 4.5 ft	Caunter Hall
	10	11	13;55 ~ 20;00 ~ 11;30 7.0 ft - 10.8 ft - 7.2 ft			10	25 2	18;00 ~ 21;30 ~ 4;30 5.6 ft - 8.5 ft - 3.6 ft	Jalan Perak
		12	10/10 2;00 ~ 18;00 16mm	5402002		1	26	25/10 6;00 ~ 23;00 (105mm)	5402002
			11/10 6;00 ~ 24;00 232mm			11	9	2;15 ~ 5;00 ~ 12;00 5 ft - 8.4 ft - 4.8 ft	Caunter Hall
			12/10 2;00 ~ 6;30 25.5mm					83mm	5402002
	12	7 1	16;00 ~ 20;30 ~ 14;00 4,3 ft - 9 ft - 3.5 ft	Caunter Hall			13	10;30~13;15~14;00 3,6 ft - 9 ft - 8 ft	Caunter Hall
		8	7/12 16;30 ~ 17;30 57mm	5303001				9;30 ~ 12;00 (80mm)	5402002

Table.F-2 EXISTING FLOODED AREA AND ITS CAUSE IN THE BASINS OUTSIDE GEORGETOWN

CATCHMENT *	INUNDATED AREA	FREQUENCY (times/yr)	DURATION (hr)	CAUSES
13	Sungai Gelugor - Taman Brown Area: 0.12 km2		(2-3)	Lowlying area Land erosion due to development
14	Sungai Dua Besar - Tapak Pesta - Pantai Jerjak Area: 0.63 km2		(2-3)	1. Overflow of water from Sg.Dua Besar 2. Shallowness of the river due to land erosion because of development 3. Construction activities of upstream of Sg. Dua Besar 4. Illegal dumping makes the river narrower
17	1. Sungai Relau - PDC Housing Area - Jalan Tengah Area: 1.18 km2		(2-3)	1.1 Lowlying areas 1.2 Due to construction activities - Sg. Relau becomes shallower
21	Permatang Damar Laut		(2-3)	Flash Flood
22	Teluk Kumbar/ Sg. Batu		(2-3)	Flash Flood
27	1. Pulau Betong Area: 0.22km2			1. Lowlying areas
29	1. Kampong Paya Area: 0.17 km2 2. Balik Pulau Area: 0.14 km2 3. Genting			Lowlying areas (swampy area)
30	Kampong Titi Tras Area: 1.08 km2			Lowlying areas

TABLE F-3-1 NUMBER OF RESIDENTIAL DWELLINGS IN THE FLOOD PROLEMANS (SG. PINANG)

Flood Frequency; 50-Year Return Flood

Name of	ans	Inundation	Total	1990				2010			
Flood Prone Area	Basin	Depth	Flood Prone Area	Population	Area per	No. of	Number of	Population	Area per	No. of	Number of
		(cm)	(1000m2)	Sign of the sign o	500	House House	Dwellings	Sile le	5 5 L	House House	Dwellings
				(person/ha)	(person/ha) (m2/person)	(bersons)	-	(person/ha)	(person/ha) (m2/person)	(persons)	
Georgetown	1-1	0 <h<50< td=""><td>0</td><td>100</td><td>100</td><td>6.56</td><td>0</td><td>142</td><td>7.0</td><td>6,18</td><td>o</td></h<50<>	0	100	100	6.56	0	142	7.0	6,18	o
	_	50≤H<100	72	100	100	6.56	110	142	70	6.18	165
		100≤H<200	56	100	100	6.56	85	142	70	5,18	128
		2005H<300	56	100	100	6.56	04	142	7.0	6.18	90
		300SH	0	100	100	6.56	0	142	70	6,18	0
		Total	154				234			:	353
	1-2	0 <h<50< td=""><td>0</td><td>125</td><td>80</td><td>6.56</td><td>0</td><td>150</td><td>67</td><td>6.18</td><td>0</td></h<50<>	0	125	80	6.56	0	150	67	6.18	0
		50≤H<100	0	125	80	6.56	0	150	6.7	6,18	0
		1005H<200	0	125	80	6.56	0	150	29	6.18	0
		2005H<300	0	125	80	6.56	0	150	67	6.18	0
		300≤H	0	125	08	6.56	0	150	67	6.18	0
		Total	0				0				C
	C T	Ş,	ç	ć	Ç G	u u	,	((ն 0	•	l,
	?	20170	4 6	3 6	0 0	0 0 0	J (0 0	0 to	0 0	n (
		001 > 1500	2 1	2 6	006	0 0 0 0	0 0	9 7 6	ກ ເ ເກີຍ ເກີຍ ເກີຍ	, d))
		002542001	. :	0 5	200	6.56	23	5.56	2 1 2 2 3 3 3 4 4 5 4 5 5 6 6 7 7 6 7 8	6,78	32
		2005H<300	40	20	500	6.56	23	56	99 99 101	8 18	1.7
		Total	ο e. Ο φ	0.2	209		0 6	92	380	6.18 8	0 %
	1-4	0 <h<50< td=""><td>74</td><td>50</td><td>200</td><td>6.56</td><td>56</td><td>53</td><td>189</td><td>6.18</td><td>64</td></h<50<>	74	50	200	6.56	56	53	189	6.18	64
		50≤H<100	80	20	200	6.56	61	63	189	6.18	69
		1005H<200	145	50	200	6.56	111	53	189	6.18	125
		200≤H<300	235	20	200	6.56	179	53	189	6,18	202
		300≤H	O	20	200	6.56	o	53	189	6.18	0
		Total	535				407				458
	4	Q		C U	c	e u	C		ŗ	((
	0	DOVE O		00 :	2 1	0 0	200	ζο:	1/5		3/
		50≤H<100	0 !	20 1	200	9.5 9.5 9.5	0 ;	57	175	6.18	0
		1005H<200	108	20	200	6.56	82	57	175	6.18	100
		2005H4300	117	O IS	200	6.56	89	57	175	6.18	108
		SOOK	0	000	200	6.56	0	57	175	6.18	0
		Total	265				202				245

TABLE F-3-2 NUMBER OF RESIDENTIAL DWELLINGS IN THE FLOOD PROLEMANS (SG. PINANG)

Flood Frequency: 50 Year Return Flood

Name of	gns	Inundation	Total	1990				2010			
Flood Prone Area	Basin	Depth (cm)	Flood Prone Area (1000m2)	Population Area per Density Person (person/ha.) (m2/person)	Area per Person (m2/person)	No. of Persons per House (persons)	Number of Residential Dwellings	Population Density (person/ha)	Population Area per Density Person (person/ha) (m2/person)	No. of Persons per House (persons)	Number of Residential Dwellings
Georgetown	. 6	0 	132 64 198 112 10	00000	200 200 200 200 200	6.56 6.56 6.56 6.56 6.56 6.56	100 49 151 85 8	0 0 0 0 0	197 197 197 197	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	155 76 233 132 12 608
	1-7	04H<50 50≤H<100 100≤H<200 200≤H<200 300≤H	56 23 303 194	25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	67 67 67 67	6.56 6.56 6.56 6.56 6.56	127 51 188 693 444	150 150 150 150	67 67 67 67	80 1.00 80 1.0	135 55 199 736 471
	eo - t	0 <h<50 50≤H<100 100≤H<200 200≤H<300 300≤H Total</h<50 	132 40 150 495 569 569	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		6.56 6.56 6.56 6.56 6.56	382 116 434 1,643 1,649	190 190 190 190	50 00 00 00 00 00 00 00 00 00 00 00 00 0	6.18 6.18 6.18 6.18	405 123 461 1,522 1,750 4,262
	6	0 <h<50 50≤H<100 100≤H<200 200≤H<300 300≤H Total</h<50 	61 0 987 1,390 584 3,021	2 2 3 3 0 2 3 3 0 2 3 3 0 0 2 3 3 0 0 0 0	4 4 4 4 4 8 8 8 8 8	6.56 6.56 6.56 6.56 6.56	212 0 3,461 4,873 2,046	230 230 230 230 230	44444	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	225 0 3,673 5,173 2,172
	0	0 <h<50 50sH<100 100sH<200 200sH<300 300sH</h<50 	80 69 620 200 0 0	00000		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	244 210 1,889 610 0 2,952	200 200 200 200 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	259 223 2,005 647 0 3,134

TABLE F-3-3 NUMBER OF RESIDENTIAL DWELLINGS IN THE FLOOD PROLE PRONE AREA BY FLOOD FREQUENCY (SG. PINANG)

Flood Frequency: 50 Year Return Flood

				_																_												
·	Number of Residential Dwellings	•	9	35	282	729	811	1,918	149	1,042	7,575	1,466	1,656	11,887	246	409	1,100	1,512	661	3,928	Ö	D	o	0	114	114	1.745	2 2 7 3	15.01.0	208.01	7.646	39,880
	No. of Persons per House	(persons)	6.18	6.18	6.18	6.18	6.18		6,18	6.18	6.18	6.18	6,18		6. 18	6.18	6.18	6.18	6.18		6.18	6.13	6.18	6,18	6.18							
	Area per Person	(person/na) (m2/person)	200	200	200	200	200		4 0	4 0	4	4	43		83	го С	53	53	ຄ		200	200	200	200	200							
2010	Population Density	(person/na)	50	90	50	20	20		230	230	230	230	230		190	190	190	190	190		9	50	50	50	90							
	Number of Residential Dwellings		107	54	467	1,208	1,344	3,180	88	615	4,468	865	977	7,011	171	284	764	1.050	4 00 0	2,727	0	0	Ö	0	107	107	1,522	1.806	12 121	11.138	7,033	33,421
	No. of Persons per House	(persons)	6.56	6.56	6.56	6.56	6.56		6.56	6.56	6.56	6.58	6.56		5.56	6.56	6.56	6.56	6.56		6.56	6.56	6.56	6.56	6.56							
	Area per Person	(person/ha) (m2/person)	114	114	114	114	4 1 4		69	69	69	69	59		7.1	7.1	7.1	7.1	7.1		200	200	200	200	200							
1990	Population Density	(person/ha)	8	88	88	88	88		1 4 4	144	144	144	44		140	140	140	140	140		ъ С	50	20	20	50							
Total	Flood Prone Area (1000m2)		80	40	348	901	: 002	2.371	40	280	2,035	394	445	3,194	80	133	358	492	215	1.278	0	0	0	0	141	141	786	066	5 163	4 705	3,160	14,803
Inundation	Depth (cm)		0 <h<50< td=""><td>50sH<100</td><td>100SH<200</td><td>200≤H<300</td><td>300sH</td><td>Total</td><td>0<h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300≤H</td><td>Total</td><td>0<h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300SH</td><td>Total</td><td>0<h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300≤H</td><td>Total</td><td>04H<50</td><td>50<h<100< td=""><td>100×H×200</td><td>2005H<300</td><td>300≤H</td><td>Total</td></h<100<></td></h<50<></td></h<50<></td></h<50<></td></h<50<>	50sH<100	100SH<200	200≤H<300	300sH	Total	0 <h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300≤H</td><td>Total</td><td>0<h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300SH</td><td>Total</td><td>0<h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300≤H</td><td>Total</td><td>04H<50</td><td>50<h<100< td=""><td>100×H×200</td><td>2005H<300</td><td>300≤H</td><td>Total</td></h<100<></td></h<50<></td></h<50<></td></h<50<>	50≤H<100	1005H<200	200≤H<300	300≤H	Total	0 <h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300SH</td><td>Total</td><td>0<h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300≤H</td><td>Total</td><td>04H<50</td><td>50<h<100< td=""><td>100×H×200</td><td>2005H<300</td><td>300≤H</td><td>Total</td></h<100<></td></h<50<></td></h<50<>	50≤H<100	1005H<200	200≤H<300	300SH	Total	0 <h<50< td=""><td>50≤H<100</td><td>1005H<200</td><td>200≤H<300</td><td>300≤H</td><td>Total</td><td>04H<50</td><td>50<h<100< td=""><td>100×H×200</td><td>2005H<300</td><td>300≤H</td><td>Total</td></h<100<></td></h<50<>	50≤H<100	1005H<200	200≤H<300	300≤H	Total	04H<50	50 <h<100< td=""><td>100×H×200</td><td>2005H<300</td><td>300≤H</td><td>Total</td></h<100<>	100×H×200	2005H<300	300≤H	Total
qng	Ваѕіл		NO.						NO.2						SON SON						œ											
Name of	Flood Prone Area		Georgetown																			_					Total					