pipe material and installation year.

As for service pipes, galvanized steel pipes, mostly 3/4 or 1 inch in diameter, were initially used. Recently, PVC has become more popular. The galvanized steel service pipes, especially those laid in moist, sandy clay and marshy areas are subject to corrosion in about 7 to 10 years time.

In the following sections, the unacceptable conditions prevailing in the distribution and service systems observed during the study are explained and illustrated in Figure 4.13. The countermeasures proposed for comprehensive rehabilitation are also indicated in Figure 4.13. Therefore, the effect of each measure can be easily understood.

#### 4.3.2 LOW PRESSURE AREAS

There are areas of the City receiving supplies only at night when demand in other areas drop and system pressures rise. Ground storage tanks are more common in these poorly supplied areas although the majority of properties have a single direct connection only. This is because the distribution pipe network is never fully pressurized. The service reservoirs are permanently empty, with incoming water going immediately into the network. Outlet pipes from the reservoirs flow partially full over initial lengths. This has been caused by;

- 1) lack of supply
- 2) high water demand along the transmission lines
- 3) high water demand in the distribution system
- 4) undersized main pipes, particularly in peripheral areas
- 5) lack of secondary and tertiary pipes
- 6) silt build-up and encrustation in the pipes
- 7) leakage and wastage

Pressure at critical points in the system were measured on January 17 and August 3, 1990 (see section 4.2, Appendix C). The pressures observed on the two days were almost the same. Day-time pressures were generally in the range of 0 - 1.5 bar (15 meters). Night-time pressures were about 1.0 bar (10 meters) higher. Figure 4.14 shows the pressure contours for the morning of January 17, 1990.

In general, water pressure is acceptable in areas near the New Bagamoyo road in the north, the Indian ocean in the east and Pugu road in the south. The hypothetical western boundary lies between Morocco/New Kigogo roads and Mandela road. These areas are urbanized areas where the secondary distribution system has been fairly well developed. More importantly, large-sized distribution mains surround the areas resulting in relatively high water pressures.

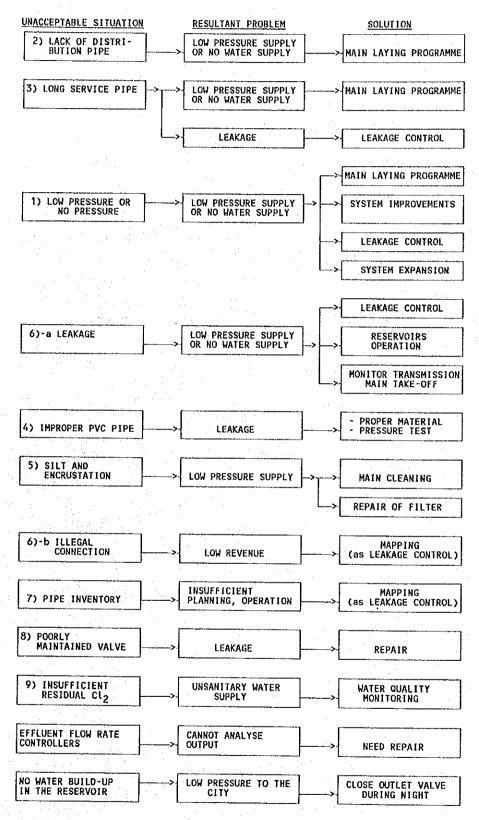
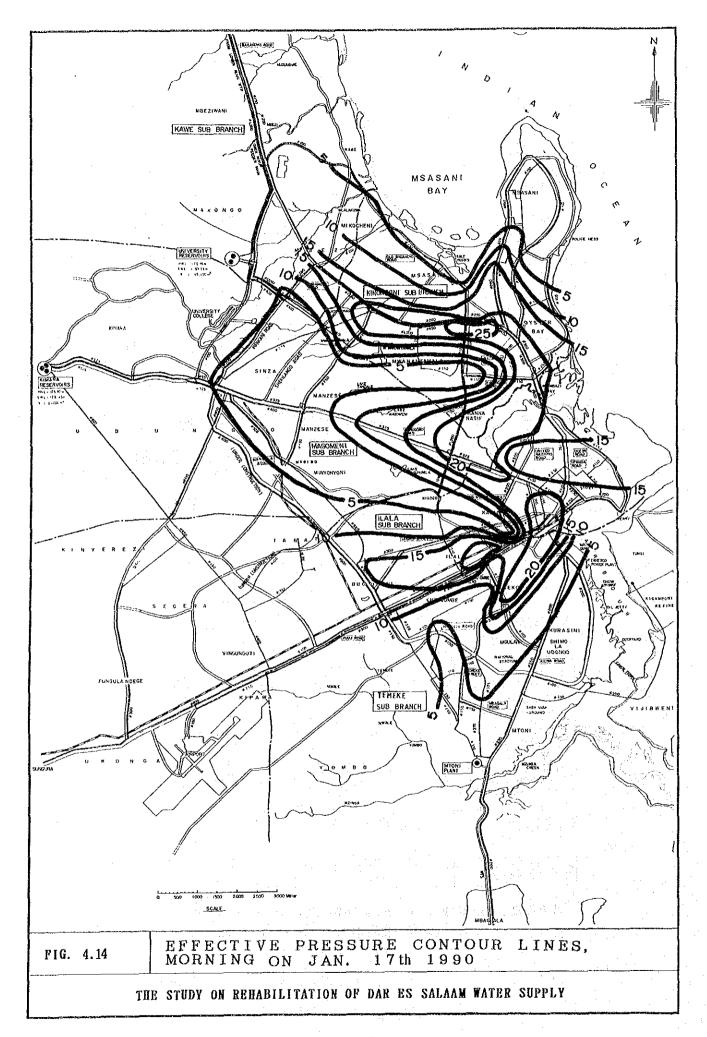
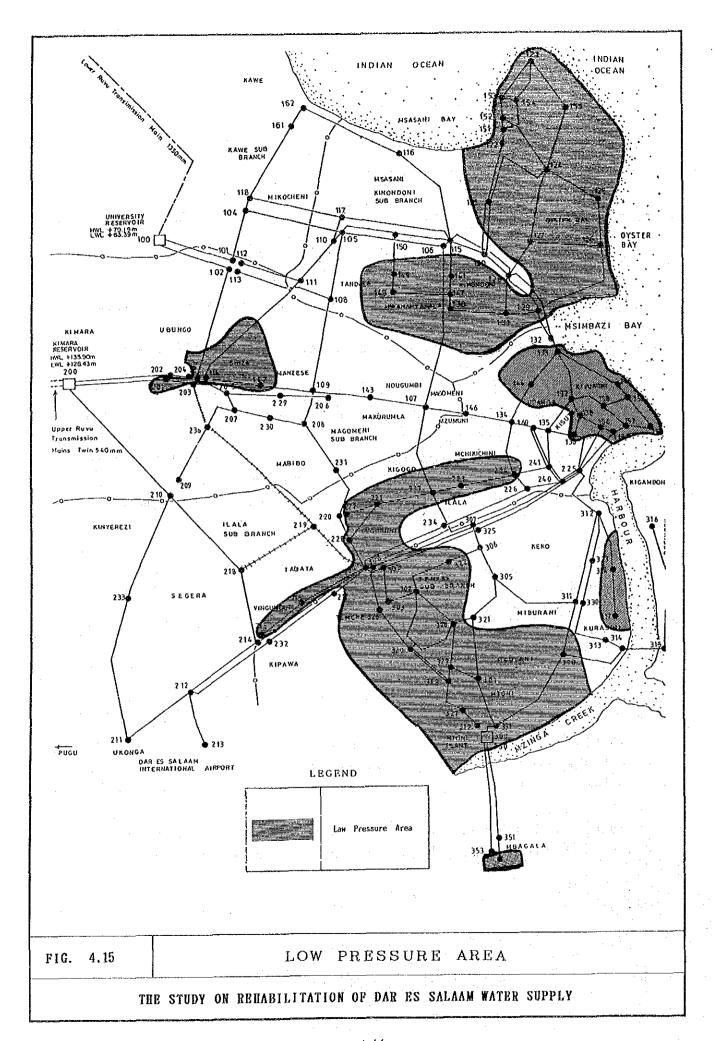




FIGURE 4.13 POSSIBLE REHABILITATION PROJECTS IN DISTRIBUTION SYSTEM




On the other hand, water pressures are low in the peripheral areas, outside the above-mentioned hypothetical boundaries. These areas are recently-developed areas, and hence the primary distribution mains have not been sufficiently developed or are under-sized in places where they exist. Hydraulic analysis (see section 5, Appendix C) of the present system confirms the above, as is shown in Figure 4.15.

Of the 11 areas identified in the hydraulic analysis, viz., 1) Oyster Bay, 3) Ubungo and Manzese, 5) Ubungo along the transmission main from Kimara reservoir, 6) Vingunguti, 7) Temeke, 9) Mtoni, 10) Mbagala and 11) also Mbagala, eight fall in the peripheral areas.

- 1) Inadequate pressures in the Oyster Bay area affecting distribution from nodes 121 to 127 and from 151 to 155.
- 2) Inadequate pressures in <u>Kinondoni</u> between pipe sections 115 to 141, 141 to 147, 147 to 130, 130 to 131, 147 to 148 and 148 to 149. This is mainly due to undersized pipes in these sections.
- 3) Inadequate pressure at nodes 103 and 114 in <u>Ubungo</u> and node 142 in <u>Manzese</u>.
- 4) Low pressure at nodes 133, 136, 137, 138, 139, 140, 144, 145, 156, 157, 158 and 159 affecting distribution in the <u>Kivukoni</u> area.
- 5) Inadequate pressure at node 201 in <u>Ubungo</u> along the transmission main from Kimara reservoir.
- 6) Inadequate pressure along Pugu road at Vingunguti affecting distribution at nodes 215 and 216.
- 7) Low pressure at key node 304, Tazara Junction, severely affecting distribution to nodes 302, 303, 308, 309, 318, 319, 320, 321, 322, 326, 327, 328 and 329 in the Temeke area.
- 8) Inadequate pressure along Uhuru Street affecting node 221.
- 9) Ineffective pumping, mainly due to a limited supply, from Mtoni source to the city resulting in low pressures at nodes 301, 310 and 331 in the Mtoni area.
- 10) Ineffective pumping to Mbagala resulting in adequate pressures at nodes 351 and 352.
- 11) Inadequately sized pumping main from Mtoni to Mbagala resulting in very high head losses along the 75 mm main to node 353.

Although available pressures of more than 1 bar within the rest of the network indicate that most of the distribution system should be adequately supplied, this is not reflected in the current level of service. The main problem is the state of the secondary pipe distribution system. Since most of the secondary distribution system consists of old cast iron pipes, there is significant hydraulic loss primarily due to tuberculation in the pipes.

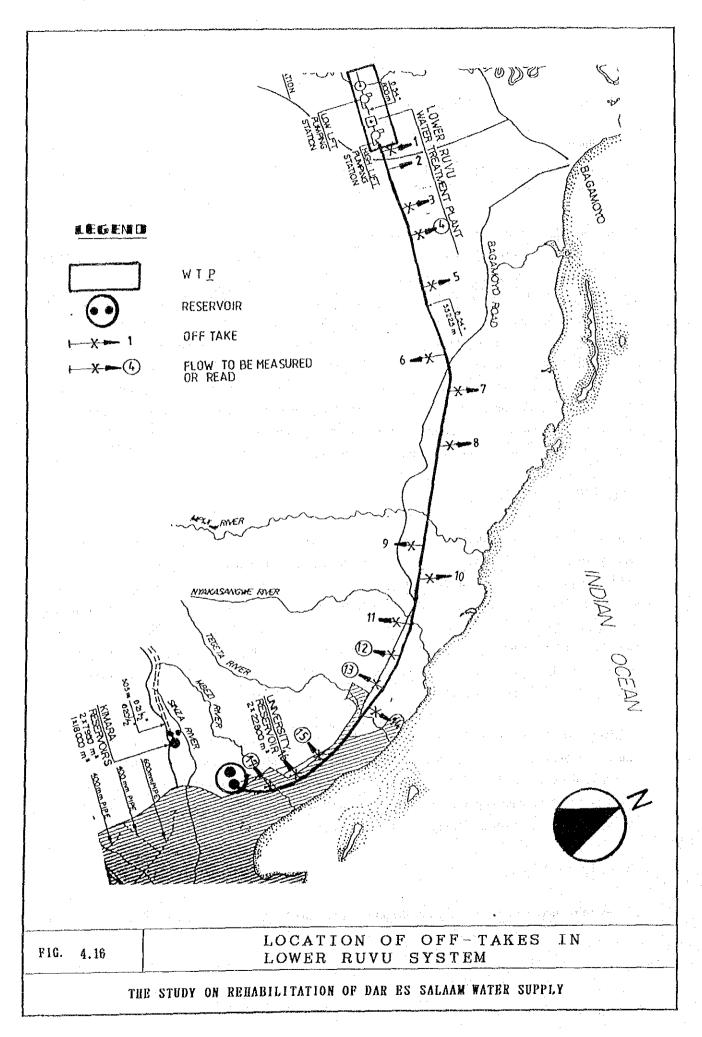
Further, owing to the lack of filtration at the Lower Ruvu treatment plant, there has been a continual decline in the hydraulic efficiency and capacity of the pipe system due to extensive deposits.



#### 4.3.3 LEAKAGE AND WASTAGE IN TRANSMISSION LINE

Measurements have indicated that large quantities of water are consumed or lost upstream of the service reservoirs, where high pressure exists - ranging up to 110 meters and averaging 60 meters. Countermeasures for reducing leakage and wastage are underway in the Upper Ruvu system.

Along the 50 km Lower Ruvu transmission pipe, approximately 20 percent of water was found to either be consumed or be lost by leakage in January 1990 (see section 4.7, Appendix C). Out of this 20 %, 7 % (about 13,000 m³/day) was leakage and is judged to be within the allowable range. The remaining 13 % (about 27,000 m³/day) was lost through consumption and leakage due to reasons other than off-takes (see section 4.8, Appendix C). This is much lower than those observed in Upper Ruvu, where it was as high as 83 % during the daytime and 62 % during the night. This has been attributed to the fact that different pipe materials are used in the two transmission pipes. Steel pipes are used in the Upper Ruvu, and tapping of illegal connections are easy, resulting in higher consumption through off-takes and leakage. On the other hand, illegal connection are almost non-existent in the thick prestressed concrete pipes of the Lower Ruvu pipeline. Nevertheless, transmission main leakage should be tested routinely by monitoring flows at both ends and at off-takes.


## WASTAGE CONTROL

Consumption and leakage after off-takes could be reduced by cost-effective means. According to the 1988 census, 173,918 inhabitants (136,059 in 1978 census) live in Bagamoyo district, through which district the pipeline passes. Out of this total, 40,190 persons, at the most, appear to benefit from the water taken from the transmission line. This number is the total of the four wards/branches; Magomeni (13,735 persons), Dunda (9,193), Zinga and Kerege (11,287) and Yombo (5,975) - through which wards the pipeline actually passes. The amount consumed in Bagamoyo district (off-take points 1 to 9 in Figure 4.16) is 11,228 m³/day (metered value) or 6,759 m³/day (measured value). This represents consumption of 279 or 168 liter per capita per day, which is extremely high.

Assuming that the water service level is by yard connections, the per capita consumption should be around 85 liters per day (refer to the per capita consumption study in section 2, Appendix A). Based on this per capita consumption value, the amount consumed should only be 3,400 m<sup>3</sup> per day. A possible reason for this high consumption observed is that water is used for irrigation also. In order to discourage wastage, existing malfunctioning meters in the 16 off-takes should be replaced.

#### LEAKAGE CONTROL

In order to reduce the high pressures in the villages and the Bagamoyo town supplied from the 16 off-



takes of the Lower Ruvu system to an acceptable level, pressure reducing valves and bulk meters have been installed in every off-takes. However, most of them are not functioning properly, and pressures in the off-take are high, being in the range 60 to 100 metres. Accordingly, leakage level should exceed 50 %, judging from the 35 % leakage level in the distribution system, despite of its low pressures. Therefore, the malfunctioning pressure reducing valves should be replaced with new ones, ranging from 3" to 8" in size. It is also important that any pressure reducing valves installed are relatively maintenance free, and valves incorporating pilot valves should be avoided. Further, all off-takes should be investigated periodically to identify the nature and size of consumption.

By reduction of pressures, the existing leakage of 13,000 m<sup>3</sup> can be reduced by half. The amount conserved will supply approximately another 70,000 persons.

#### 4.3.4 WATER LOSSES IN THE SYSTEM

Water losses also exist in the distribution system, house service pipes, valve seatings and public stand-posts, and have been estimated to be between 25% and 40% of the flow into the system. The Study team measured leakage ratios in two model areas in January, 1990 and one model area in July, 1990 and it ranges from 30% (pressure range - 5 to 23 m) to 50% (pressure range - 16 to 25 m). Details are shown in section 4.5, Appendix C.

The following factors are responsible for unaccounted for water or water lost and wasted:

- 1) leakage from reservoirs, pipe mains, appurtenances and service connections and wastage of water in treatment plant.
- 2) unauthorized or unknown use, and wastage of water through disused or abandoned connections.
- inordinate consumption of water by consumers due to excessive use of water for gardening, washing vehicles, floor etc.
- 4) misuse of water for miscellaneous purposes.
- 5) failure to turn off taps in premises, willfully or inadvertently.
- 6) in intermittent supplies, emptying of stored water in a receptacle, when fresh water arrives and, keeping the tap open throughout, thus allowing water to go waste.
- 7) unduly high pressures in the distribution system intensifying leakage and wastage.
- 8) water, which is legitimately used, but not properly accounted for, e.g. at public standpipes, etc.
- 9) errors in measurement at any stage of production, supply and distribution.

The current system of leakage control is passive control, where leaks are repaired when reported either by the public or NUWA personnel engaged in other tasks. The reporting can either take the form of a report of a visible leak, or a complaint of low pressure or no supply at all. No record is kept as to the types and location of leaks, the quantity of water lost and saved, and the nature of repairs.

This system has been modified so that most visible leaks are now dealt with speedily (see Table below), despite transportation problems, poor tools and old equipment. However, "first-aid" repairs are all that can be accomplished. Leak repairs are frequently carried out using rubber innertubes wrapped around the leaking pipe. These are rarely effective, and cannot withstand normal supply pressures. Hence, extensive leakage control is urgently required.

| YEAR    | Leaks Reported | Leaks Repaired |
|---------|----------------|----------------|
| 1984/85 | 848            | 807            |
| 1985/86 | 1,072          | 991            |
| 1986/87 | 1,575          | 1,299          |
| 1987/88 | 5,831          | 5,523          |

#### 4.3.5 SILT AND ENCRUSTATION

Flushing through hydrants at relatively low velocities in February, 1990 produced brown or black water which failed to clear even after half hour of flow. Field observations of pipe samples removed from various sites have revealed that the cross-sectional areas of the pipes have been reduced to less than 50%. Blockages mostly consisted of loose deposits of silt, typically, though tuberculation was also observed. Plates 1 and 2 highlight this problem with typical examples of the condition of small diameter pipes within the distribution system.

Encrustation was measured in 25 distribution pipes with the "scale checker" (refer to section 4.4, Appendix C). All pipes except one steel pipe were cast iron pipe without internal lining. It indicated that pipe blockage and reduction in effective internal area was large in smaller diameter pipes, i.e. less than 150 mm pipe. On the other hand, there was no blockage or area reduction in large diameter pipes, i.e. diameter greater than 200 mm (the largest diameter measured was 400 mm, which was the maximum diameter that the "scale checker" can measure).

However, even if no encrustation is observed with the scale checker, much silt is expected in the pipe. Observation of some pipes revealed that there was much siltation even when no blockage was observed.

Examination of the incrustation of small diameter mains showed that the hardened incrustation of silt and rust could have been prevented, if systematic and frequent cleaning of the mains by scientific flushing methods and use of polyurethane swabs (PIG) had been practiced. Removal of silt, coupled with better treatment ensuring that no flocs and silt escape from the treatment plants, could increase the carrying capacity of the pipes, resulting in an increase in residual pressures in the tertiary system and consequently at consumer premises.

On the contrary, no external corrosion was observed and the pipes were observed to be intact on the

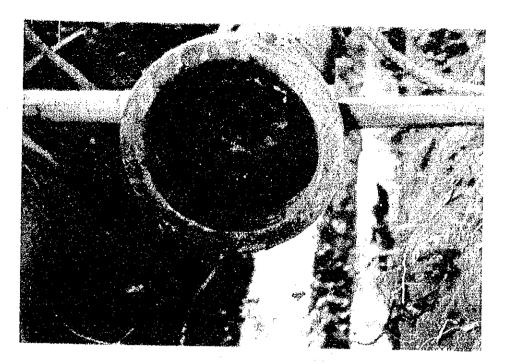



PLATE 1 PIPE INTERNAL CONDITION (1)

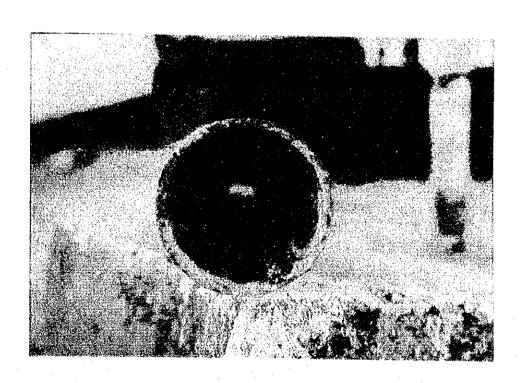



PLATE 2 PIPE INTERNAL CONDITION (2)

whole, based on inspection of 81 distribution pipes (see section 4.3, Appendix C). This means the existing pipes can be used further and pipe renewal method can be employed. Pipe renewal is much more feasible than pipe replacement, considering the relatively high cost of pipe replacement, and relatively low cost for labour required in pipe renewal.

#### 4.3.6 DISCONNECTING PIPES IN KEY LOCATIONS

An earlier report on the distribution system has already highlighted a number of suspected operational difficulties. This involved trial pitting to determine pipework details. Accordingly, pipe connections were inspected in key locations through trial pitting (refer to section 4.6, Appendix C). As a result, many disconnected pipes and closed valves were found.

Connection of existing pipes will obviously improve hydraulic efficiency of the network system. Therefore, pipe connections are proposed in strategic points.

#### 4.3.7 LACK OF DISTRIBUTION PIPE NETWORK

Few distribution pipes have been laid since the early 70s. As a result, existing pipeline areas as well as new areas need installation of new pipelines. Inadequate pipe diameter is a major cause of low pressure in areas identified in the preceding section.

#### 4.3.8 LONG SERVICE PIPE

Due to the inability of NUWA to install sufficient secondary distribution mains, an extensive network of long, small diameter service mains has developed. These mains encounter physical damage as a result of being installed at a very shallow depth; it is common for the service pipe to rise vertically from the mains and then run at a shallow depth into the consumer premises. Pipe are mostly of galvanized mild steel or polyethylene. Internal house fittings are generally old and of poor quality. Incomplete shut-off and leakage results.

# 4.3.9 MIDDLE ZONE

After the various measures proposed are implemented, low pressure areas will be alleviated to a considerable degree. However, excessive pressure will be experienced in some areas and will produce an adverse effect on the distribution system under the current zoning plan. This will result in loss of surplus water for distribution to, firstly, some high elevation areas and secondly to hydraulically unfavourable areas. Therefore, effective water use is to be considered - pressure control or pressure reduction in high pressure areas. Establishment of operational zones for the distribution system, based on the three

main sources at the University, Kimara and Mtoni is the most appropriate method.

Each distribution zone requires to be isolated to keep appropriate operational pressures. Water delivered from Kimara reservoir has high pressure and would better be distributed solely to high areas like the airport.

When setting up the middle zone, part of western Temeke area should be separated from the current lower zone and incorporated into the middle zone. The area has chronically suffered from low water pressure due to relatively small head differential. The ground elevation in the western Temeke area is 40 to 50 meters while the low water level in the University reservoir is about 60 meters. Hence, there is a differential of only 10 to 20 meters and, considering the head loss, effective pressure is not sufficiently available in the Temeke area.

#### 4.3.10 POORLY MAINTAINED VALVES

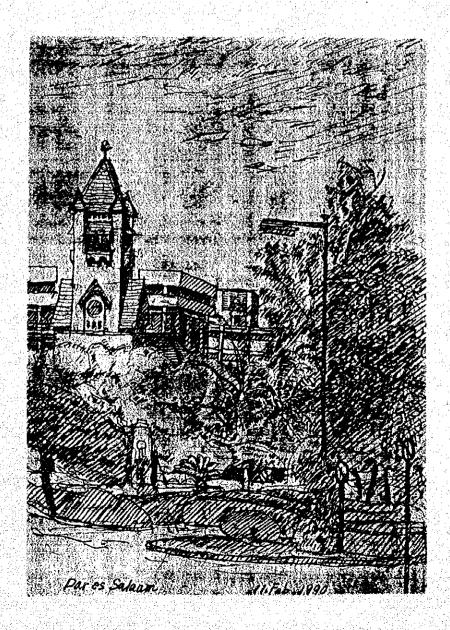
Valves within the network are in a state of repair. Lack of proper operation and maintenance over the years have taken their toll. Gate valves frequently leak from gland packings, especially after operations. Original packings have dried up and have deepened. Stocks of replacement material are old, if at all available. Deterioration of the internal components and frequent deposition of silt and other deposits in the pipeline means that drop tight closure of valves cannot be achieved. Fire hydrants are also frequently silted and gland packings cause leakage. Most air valves (if not all) have now been isolated from the mains to prevent leakage and therefore do not function. Many valve surfaces are damaged or missing or buried under tarmac. Spindle tubes are invariably full of silt.

# 4.3.11 WATER QUALITY MONITORING

Systematic and routine water quality monitoring of the distribution system as well as cleaning of the mains by flushing and swabbing is not being done on any regular basis. The quality of water supplied to the consumers through the distribution system is aesthetically unsatisfactory and occasionally, also bacteriologically unsafe. Residual chlorine is not to be found in the water supplied to the consumers in some areas.

Since no pH control is done to the treated water, the pH of the treated water is low. Output water volume fluctuates markedly, due to frequent suspension of water supply during power service interruptions leading to corrosion of the distribution pipes and release of red water. Countermeasures for these problems are given below:

(a) By using an alkaline agent, pH of the treated water should be raised to 7.5 - 8.0.


- (b) By injecting the optimum amount of the agent, impurities can be removed by settling and filtration.
- (c) The consumption of chlorine in the distribution network should be minimized by implementing the aforementioned measures, so that the necessary amount of residual chlorine will become available at end-use points.

# 4.3.12 RESERVOIR OPERATION

No build-up of water to any significant height is attempted at the University reservoir during the non-supply hours, due to the inoperability of the outlet sluice valves. This could have provided some storage and thereby improved supply to the distribution system during the peak demand period during the daytime. However, this is possible at the Kimara reservoir.

# CHAPTER 5

# REHABILITATION PROJECT



# CHAPTER 5 REHABILITATION PROJECT

The technical problems are identified and the technical solutions are proposed in Chapter 4. The solutions and objectives of the problems are summarized in this Chapter. Out of the solutions, measures requiring NUWA's commitment (in-house activity); improvement of operation and maintenance, leakage control measures, mapping and pipe cleaning, other than common contractual measures are described in Chapter 6.

#### 5.1 PRINCIPLES OF REHABILITATION

Before proposing a facilities rehabilitation project, the general principles of an improvement project for DSM water supply system and NUWA are explained in this section.

#### 5.1.1 IMPROVEMENT OF FINANCIAL CAPABILITY

## (1) AUTONOMY

A chronic water supply shortage problem is not merely a technical matter. It has long been caused by, to a great degree, inadequate financial resources. Capital investment has been covered by grants from either the central government or donor countries. However, provision of these grants have neither been timely nor adequate. As a result, even when the causes of inadequate supply have been discovered, only a few point to inadequate financial resources for capital investment. Inadequate maintenance, caused by inadequate financial resources have also shortened the life-span of the facilities.

Although continued reliance on external sources for capital investment is inevitable for some time to come, internal sources should also be vigorously explored. With internal sources, a more reliable investment project can be planned. In this connection, measures already initiated aimed at increasing revenue and listed below should be emphasized.

- 1) follow-up efforts to decrease illegal connections, thereby increasing revenue for NUWA;
- 2) improve revenue collection to increase the amount of cash being collected.

These will enhance NUWA's financial capability, autonomy and sustainability. This will also lead to gradually eliminating the annual operating deficit and reduce the need for government assistance. These are dealt in Chapter 7.

# (2) BENEFICIARY-PAY-PRINCIPLE AND BASIC HUMAN NEEDS REQUIREMENTS

Water has been regarded as one of the basic human needs. On the other hand, the water supply system is also an infrastructural item, like electricity and telephone systems. Due to water being vital for sustenance of human life, management of a water supply system is somewhat different from other infrastructural systems which can be managed as commercial enterprises.

Recently, a cross-subsidy structure has been introduced in water tariffs; the domestic tariff is cheaper than that for non-domestic consumption. This is aimed at better coverage of operations and maintenance costs. The next proposal is to institute a cross-subsidy system within domestic consumers, as this domestic segment constitutes a very large share in the number of connections and in the volume of water consumed. One method for this is by means of a progressively increasing unit charge system; low unit costs for consumption to satisfy basic human needs and progressively higher unit costs for consumption over and above this. Therefore, it is being proposed that meter installation be implemented for large domestic consumers, where meter installation and associated costs can be more than made up by the expected increase in revenue.

#### 5.1.2 PROPER OPERATION AND MAINTENANCE

The following improvements in operations are essential for managing water supply systems;

- 1) maintain and operate pumps and treatment plants with a minimum of breakdown to avoid supply disruptions;
- 2) identify the data base of NUWA and have accurate records of production, water supplied, leakage, consumers and their accounts; and
- 3) maintain and operate the vehicles and plants with the minimum downtime to enable the above activities to be undertaken in the shortest possible time.

Among the above measures, plant and pump operations have been improving. Maintenance of plant equipment, pumps and vehicles is essential for efficient production and distribution of water. The work is being done fairly well, despite severe financial constraints. Modifying the old adage, care and budget allocation for preventive maintenance is money better spent than that allocated for repair. Replacement of whole equipment is not cost-effective, compared to replacement of parts. Therefore, repair must be timely, without delay, as another adage aptly states - a stitch in time saves nine.

#### 5.1.3 EQUAL DISTRIBUTION

Only after financial, organizational and managerial improvements are initiated should technical solutions be initiated. If technical solutions predate non-technical ones, technical solutions will end up as

becoming merely patchwork and temporary in nature. Problems of the past will repeat itself.

Many problems have been identified in the Study. It has been discovered that only in a few areas is there adequate supply of water, 24 hours a day. Many women and children fetch water over long distances every day, due either to inadequate pressure in the existing distribution network or due to the lack of a distribution network worth its name.

Technically, the eventual goal is to supply adequate, clean and safe water efficiently at a reasonably low cost. However, this goal cannot be fulfilled immediately in DSM. Pursuing such a goal is neither economical nor practical, particularly, under the prevailing economic constraints in the country. Hence, the rehabilitation project does not intend to propose provision of piped water to all citizen, nor to supply water for 24 hours. Neither expansion in the treatment capacity nor area extension of the distribution capacity are included in the project. Implementation of the latter is useless at present. Demand has been exceeding supply by such a wide margin that expanding the distribution system alone will only redistribute water within the system; adequate supply in one area will be possible only at the cost of other areas. Expansion of treatment capacity will firstly, require a water resources study and secondly, a large outlay of capital.

As a first step, the technical goal of the 5 year rehabilitation project is to supply safe water equitably and at low-cost, postponing, for the time being, an abundant water supply.

#### **5.2 TARGET**

# 5.2.1 TARGET YEAR

The target date for the implementation of a rehabilitation plan should be in the near future. It cannot be in too short a period in the future, since numerous preparations need to be made for effective implementation - financial and manpower among other things. Balancing these two conflicting demands, the target year for the rehabilitation plan is set at 1995.

## 5.2.2 TARGET LEVEL

The fundamental problem in the DSM water supply system is inadequate supply. The conventional solution to counter this is system expansion. However, in the Study, this option has been excluded. Instead rehabilitation to the existing system is proposed. Neither inadequate facilities nor insufficient financial resources are the only cause of the current supply inadequacy, although these are the major causes.

Means for attaining sufficiency are studied first from the technical point of view. Financial, organizational and managerial aspects are also studied and presented in the following chapters.

The technical goal generally adopted is supplying adequate water in the target year, which means planning facilities from the intake to the service reservoir on a daily maximum demand basis in the target year and from a service reservoir down to consumers on an hourly maximum demand basis in the same target year. This planning is however impractical in DSM for the foreseeable future, from a simple glance at the supply and demand in the target year.

Supply cannot suffice daily maximum demand in 1995 (refer to the following section). Hence, the highest target level which can be reached is the daily average demand. Whether or not the available quantity can meet the daily average demand in the city, depends on the level of the leakage control attained, which is a part of the proposed rehabilitation project. It is possible if the leakage and wastage levels are reduced to less than 25% and nil from the current 35% and 6% level, respectively. This reduction will require the full commitment of NUWA, and we believe that NUWA can accomplish it. Further, this is the only practical way to supply water fairly adequately to DSM in 1995. The target level is set at supplying water on a daily average demand.

In addition, leakage control is definitely cheaper than expansion of water facilities. This is all the more so in this case, since any expansion will definitely involve water resources development. Leakage control is, among other measures, therefore essential to conserve water. It would result in availability of surplus water which can supply those currently not being served.

Increase of available water for supply will result in:

- (a) increase in revenue, and
- (b) deferring demand-related schemes requiring outlay of capital.

Needless to say, the set target assumes that the supplied water will be chlorinated and safe for consumption.

# 5.3 FRAMEWORK OF REHABILITATION PROJECT

# 5.3.1 SUPPLY TO THE CITY

The Mtoni system delivers its entire output directly to the distribution system. On the contrary, in the case of the Lower and the Upper Ruvu plants, the entire output is not delivered to DSM, partly because water is distributed to nearby towns and villages and partly because of leakage along the transmission lines. In the transmission lines from the Lower Ruvu plant, the current level of leakage and consump-

tion, which is 40,000 m<sup>3</sup>/day now, is expected to reduce to 32,700 m<sup>3</sup>/day in 1995, as a result of the proposed leakage control measures (discussed later). It is assumed, that the Lower Ruvu plant will operate at its nominal capacity rather than above its capacity, as is the case at present.

At the Upper Ruvu plant, rehabilitation work was completed at the end of 1990 and, consequently, its production capacity has been restored to the design capacity of 82,000 m³/day (18 mgd). Our measurements in early 1990 showed that about 13,000 m³/day reached Kimara reservoir out of a production of about 45,000 m³/day; i.e., 32,000 m³/day is consumed or is lost to leakage along the transmission line. This consumption and leakage is assumed to remain unchanged in 1995 and 50,000 m³/day will be available for DSM after the production capacity is restored to 82,000 m³/day. Therefore, out of the combined total output, 205,900 m³/day will be available for DSM in 1995. This amount is greater than the amount available now, which is 193,400 m³/day.

TABLE 5.1 WATER SUPPLY IN 1995

Unit: m3/day (mgd)

|                                               | Lower Ruvu  | Upper Ruvu | Mtoni       | Total      | Percentage |
|-----------------------------------------------|-------------|------------|-------------|------------|------------|
| Output at the Plant<br>Consumption or Leakage | 181,800(40) | 82,000(18) | 6,800(1.5)  | 270,600(59 | ) 100 %    |
| along Transmission Line At the Reservoir      | 32,700(7)   | 32,000(7)  | *********** | 64,700(14) | 24 %       |
| (for Dar es Salaam)                           | 149,100(33) | 50,000(11) | 6,800(1.5)  | 205,900(45 | ) 76 %     |

#### 5.3.2 WATER DEMAND IN 1995

## (1) POPULATION

The future population levels in DSM are estimated to determine the water demand in 1995. To project the population of DSM, it is assumed that the decrease in the population growth rate between two censual periods halves itself, i.e., the decrease in the population growth rate in a subsequent period is half the decrease experienced during the preceding period. The population levels and growth rates in the future, based on this assumption, is given in the tabulation below:

<sup>\*</sup> Details are presented in section 1 "1995 water demand", Appendix D.

| Year Population                               |                                     | Intercensus<br>Growth Rate | Decrease in<br>Growth rate |
|-----------------------------------------------|-------------------------------------|----------------------------|----------------------------|
| 1967 (record)<br>1978 ( " )<br>1988 ( " )     | 356,286<br>843,090<br>1,360,850     | 7.80 %<br>4.80 %           | 3.00 %                     |
| 1998 (estimation)<br>2008 ( " )<br>2018 ( " ) | 1,882,800<br>2,421,900<br>3,192,200 | 3.30 %<br>2.55 %<br>2.18 % | 1.50 %<br>0.75 %<br>0.37 % |

From the above, the population growth rate in DSM is 3.30 % for the decade 1988-1998. To provide a margin of safety, a population growth rate of 3.50 % is assumed to be the annual average growth rate from 1990 to 1995. The total population of DSM in 1995 would then be 1,731,381.

## (2) WATER DEMAND

In DSM, economic conditions seems to have hit the bottom and to have started rebounding, stimulated by the policy change of the Government. This will certainly increase the per capita consumption volumes.

On the other hand, reliability of the water supply and sewerage system will remain the same in terms of volume provided to customers even though this rehabilitation project intends to attain high reliability. This will conversely restrain per capita consumption from increasing. Under these circumstances, an increase in per capita consumption is not foreseen, at least by the target year 1995.

The per capita water consumption is, therefore, considered to remain at 1990 levels;

- house connection

| high                              | 400 lpcd (liters per capita per day) |
|-----------------------------------|--------------------------------------|
| middle                            | 250 lpcd                             |
| low                               | 160 lpcd                             |
| - yard connection                 | 85 lpcd                              |
| - kiosk/standpine (no connection) | 22 Ined                              |

It is further assumed that the proportion of house to yard to no connections within each ward in DSM would not change between 1990 and 1995. The basis for this is that while there is upgrading of the water service level with time, a large portion of the increase in the population in DSM would be migration (the other factor is natural birth - death). A large majority of the migrants from the countryside to the urban areas start city life without connections, relying on kiosks and standpipes. It is assumed that these two would largely balance out to result in a constant house to yard to no connection proportion.

TABLE 5.2 POPULATION ACCORDING TO SERVICE LEVEL IN 1995

|           |            |           |                  | tion by Service Leve |               |              |
|-----------|------------|-----------|------------------|----------------------|---------------|--------------|
| Sub       | Population | Total     | House C          | onnection            | Yard Yard     | Kiosk/       |
| Branch    | 1          | İ         | High (%) Mide    | lle (%) Low (%)      | Connection(%) | Standpipe(%  |
| ILALA     | 426,424    | 393,448   | 25,491 ( 6) 25,9 | 75 (7) 90,983 (23)   | 71,710 (18)   | 179,289 (46) |
| TEMEKE    | 556,547    | 474,576   | (`)              | ( -) 108,626 (23)    | 102,749 (22)  | 263,201 (55) |
| KINONDONI | 196,512    | 196,512   | 53,424 (27)      | ( -) 54,723 (28)     | 50,202 (26)   | 38,163 (19)  |
| KAWE      | 118,605    | 46,463    |                  | ( -) 20,908 (45)     | 9,293 (20)    | 16,262 (35)  |
| MAGOMENI  | 433,293    | 408,340   |                  | ( -) 107,593 (26)    | 113,977 (28)  | 186,770 (46) |
| TOTAL     | 1,731,381  | 1.519.339 | 78,915 ( 5) 25,9 | 75 ( 2) 382,833 (25) | 347,931 (23)  | 683,685 (45) |

Industrial, commercial and institutional water consumption in 1995 are assumed to increase by the GDP growth rate of last five years. Based on factors discussed above, the domestic, industrial, commercial and institutional water consumption in 1995 is given in Table 5.3. Total consumption in DSM will be 164,338 m<sup>3</sup>/day (36 mgd) in 1995 on a daily average basis.

**TABLE 5.3 WATER CONSUMPTION IN 1995** 

(Unit: m3/day)

| Sub Branch | Domestic | Industrial | Commercial | Institutional | Total   |
|------------|----------|------------|------------|---------------|---------|
| ILALA      | 42,388   | 1.268      | 3,106      | 2,684         | 49,446  |
| TEMEKE     | 31,905   | 2,641      | 1.301      | 1.497         | 37,344  |
| KINONDONI  | 35,233   | 40         | 1,610      | 657           | 37,540  |
| KAWE       | 4,493    | 303        | 228        | 1.292         | 6,316   |
| MAGOMENT   | 31.015   | 1.227      | 1,217      | 233           | 33,692  |
| TOTAL      | 145,034  | 5,479      | 7,462      | 6,363         | 164,338 |

Water demand in 1995 will vary depending upon the leakage (and wastage) level of that year. If the leakage level in 1995 is maintained at the present level of 35 %, demand in 1995 will be  $(164,338 \text{ m}^3/\text{day})/(1-0.35) = 252,800 \text{ m}^3/\text{day}$ . With this leakage level, water demand is larger than the projected supply to the city of 206,000 m<sup>3</sup>/day on a daily average basis.

Experience shows that leakage level rises with time. If the leakage level deteriorates to 50 %, which is quite reasonable, water demand will be more than 1.5 times as high as the supply to the city, as shown in Table 5.4. On the other hand, if leakage is controllable, the projected supply can meet the projected demand on a daily average basis. This controlled level, or the so-called break-even leakage level is 25%.

TABLE 5.4 WATER DEMAND VS. LEAKAGE AND WASTAGE LEVELS IN 1995
(Unit:m³/day)

| leakage<br>level | daily average o<br>total n | consumption<br>et wastage (level)       | daily average<br>demand | daily minimum<br>demand | hourly maximum demand |
|------------------|----------------------------|-----------------------------------------|-------------------------|-------------------------|-----------------------|
| 50%              | 164,338=154                | 478+9,860 (6%)                          | 329,000                 | 411,000                 | 617,000               |
| 40%              |                            | 478+9,860 (6%)                          | 273,000                 | 343,000                 | 515,000               |
| 35%              |                            | 478+9,860 (6%)                          | 253,000                 | 316,000                 | 474,000               |
| 35%              | 164,338=164                |                                         | 234,000                 | 293,000                 | 440,000               |
| 30%              | 164,338=164                | • • • • • • • • • • • • • • • • • • • • | 218,000                 | 273,000                 | 410,000               |
| 25%              | 164,338=164                |                                         | 203,000                 | 254,000                 | 381,000               |
| 20%              | 164,338=164                |                                         | 191,000                 | 239,000                 | 359,000               |
| 10%              | 164,338=164                |                                         | 169,000                 | 211,000                 | 317,000               |

Note: Ratio of daily maximum demand to daily average demand is 1.25.
Ratio of hourly maximum demand to daily maximum demand is 1.5.
Supply to DSM is 206,000 m<sup>3</sup>/day.

## 5.4 PROJECT SELECTION

#### 5.4.1 PROJECT IDENTIFICATION

A variety of measures are identified from the following considerations;

The Mtoni treatment plant has the advantages of better raw water quality than the Ruvu river, being near the place of consumption and being near a major traffic thoroughfare, easy to operate and maintain. However, all facilities are virtually worn-out due to age. Therefore, all equipment need to be replaced. The only exceptions are the intake and the distribution pumps, which were replaced in 1989.

On the other hand, it should be remembered that its rated capacity of 6,800 m<sup>3</sup>/day is only 3 percent of the total rated capacity. Further, the major problem with this plant is with respect to the source of water. Each one of its sources have very low flow during the dry season and, therefore, there are periods during which very little water can be intaken, thereby reducing the treated throughput of the plant. Even after rehabilitation, greater yield from the various sources cannot be expected.

Accordingly, despite the worn-out condition of the facilities, it is better to avoid full-scale rehabilitation until the future of the Mtoni system is decided, based especially on a water resources study. Instead, it is better to attempt a piecemeal rehabilitation for this system, aimed at prolonging the existing facilities for as long as possible at the least possible cost.

Unlike the Mtoni system, rehabilitation of the Lower Ruvu and distribution systems need to be approached from a more long-term point of view. The Lower Ruvu system has been working properly due to daily operation and maintenance by the staff and timely repair, aided by CIDA. Since these

favourable circumstances are expected to continue, this system will continue to function at its full capacity. Therefore, the rehabilitation strategy is geared towards improvement of water quality and simplified operations and maintenance practices.

The objectives of the rehabilitation project in the distribution system are to identify and remove bottlenecks in inadequately supplied areas.

The identified measures are as follows;

# Mtoni system

Repair Buza dam, repair leaking wall in coagulation basin, repair baffle wall in coagulation basin, replace sludge valve and effluent trough in clarifier, repair filter and repair chemical equipment.

# Lower Ruvu system

Additional intake main, repair leakage from sludge pipe, replace low water level sensor, repair pipe in chlorinator, repair chemical equipment, repair filter and install grit chamber.

# Distribution system

leakage control (transmission system), leakage control (distribution system), middle zone creation, meter installation, existing pipe connection, pipe cleaning and main pipe laying (primary and secondary).

The above measures have the following technical objectives, according to which they are classified and presented in Figure 5.1;

- a) maintain or increase water available to consumers
  - a)-1 increase water output or prevent decrease of water output
  - a)-2 water conservation
  - a)-3 improve hydraulic efficiency (carrying capacity)
- b) balanced distribution
- c) safe water
- d) clean water
- e) increase revenue and reduce cost

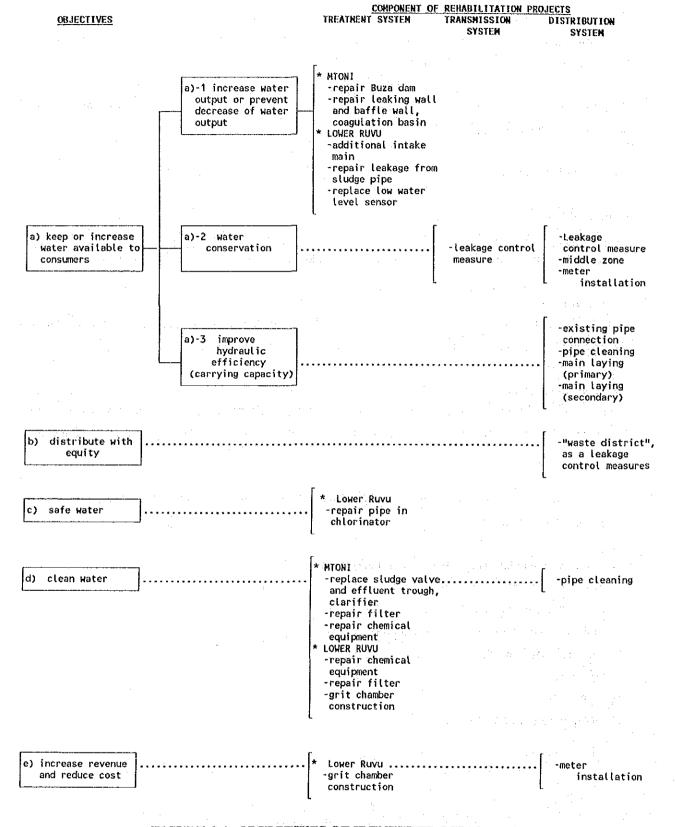



FIGURE 5.1 OBJECTIVES OF IDENTIFIED MEASURES

As is clear in Figure 5.1, every measures in the distribution system, once implemented, will keep or increase water amount to consumers although "pipe cleaning" and "meter installation " have simultaneously other objectives.

On the other hand, the measures for the treatment system have different objectives. They are grouped as shown below.

- Treatment Plant (water volume and safe water)
  repair leaking wall and baffle wall in coagulation basin (Mtoni), repair leakage from sludge pipe
  (Lower Ruvu), replace low water level sensor (Lower Ruvu), repair pipe in chlorinator (Lower Ruvu)
- Treatment Plant (prevention)
  repair Buza dam (Mtoni), additional intake main (Lower Ruvu)
- Treatment Plant (water quality clean water)
  repair chemical equipment (Mtoni), replace sludge valve and effluent trough in clarifier (Mtoni),
  repair filter (Mtoni), repair chemical equipment (Lower Ruvu), repair filter (Lower Ruvu), grit
  chamber construction (Lower Ruvu)

Accordingly, all measures are grouped as follows;

- a.Leakage control measures in the transmission system
- b.Leakage control measures in the distribution system
- c. Existing Pipe Connections
- d. Main pipe laying (primary)
- e. Main pipe laying (secondary)
- f.Pipe cleaning
- g. Middle zone creation
- h.Treatment Plant (water volume)
- i. Treatment Plant (prevention and water quality)
- i.Metering

# 5.4.2 PROJECT SELECTION

Since the project target is to supply adequate water, all measures except item j above can be selected. This selection is examined by a cost benefit analysis. However, metering is selected without the cost benefit analysis since it shows financially viability. The financial analysis is explained in section 6.4.2.

Cases considered in doing a cost benefit analysis are shown in Table 5.5, reflecting the implementation order, since the water quantity saved are governed by the order of implementation. For example, leakage control measures are assumed to be implemented first because other measures such as pipe laying

will not be effective, since no surplus water will be available, unless leakage control measures are implemented.

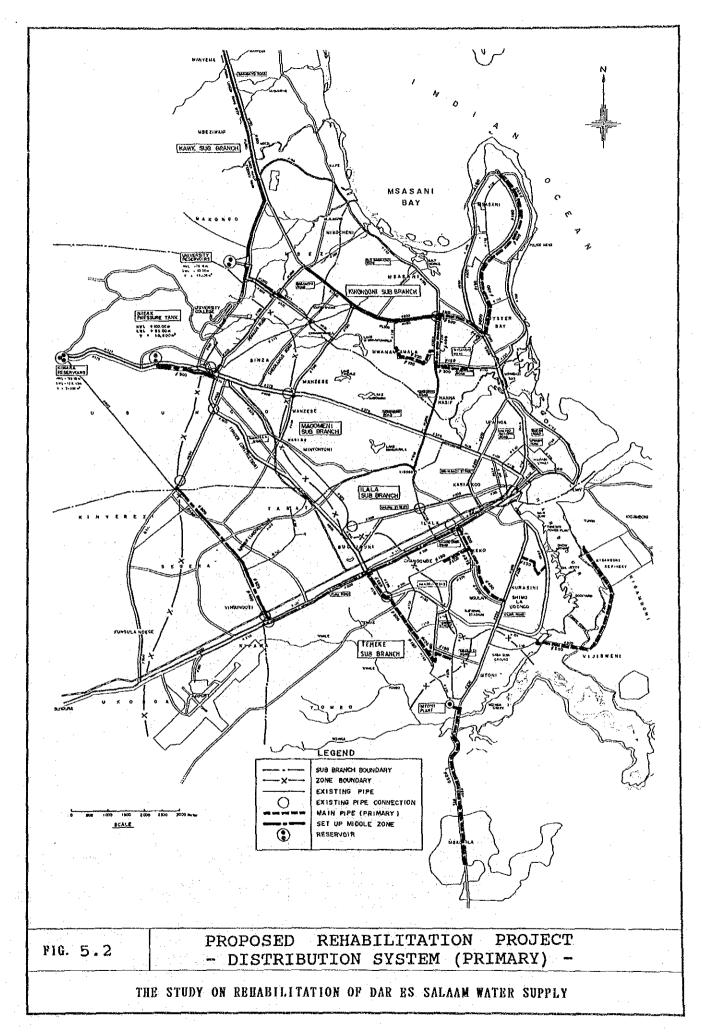
The cost-benefit analysis (explained below) shows that B/C ratio of case 5 exceeds 1.0 while that of case 6 does not reach to 1.0. Therefore, case 5 is selected, namely all measures in the distribution system. Measures relating to the water volume in the treatment system are also selected while those relating to the "prevention" and "water quality" are not selected. However, some measures belonging to "water quality" which is to be excluded from the above criteria, are included because they cannot function for another 5-year without urgently required minor repairs. The selected projects are listed in Table 5.6 and are shown in Figures 5.2 to 5.4.

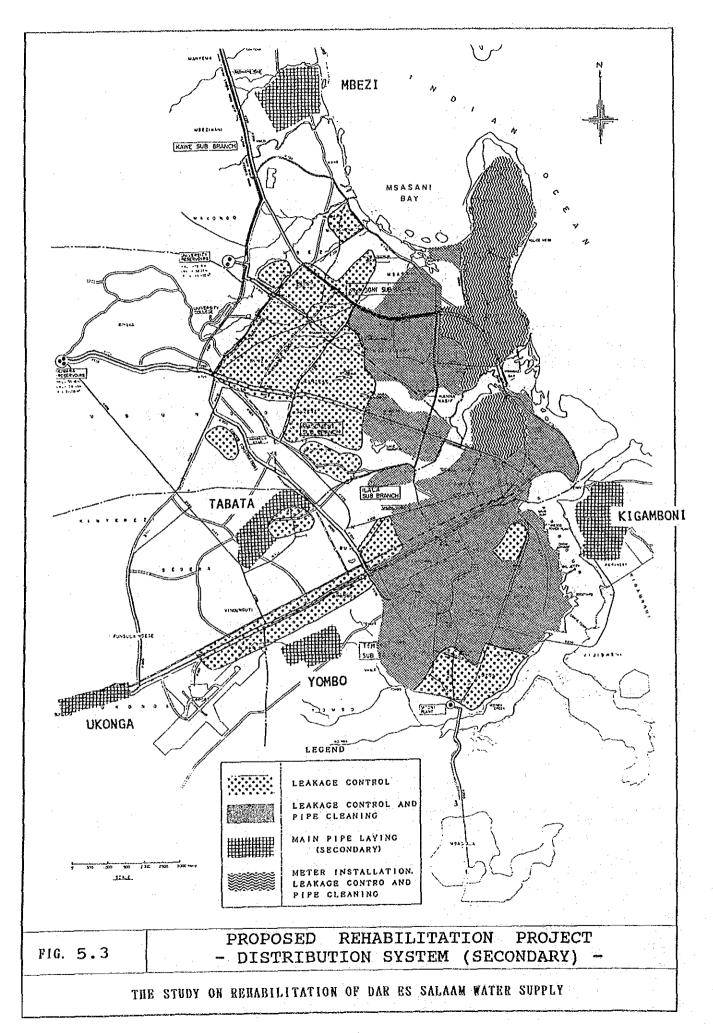
TABLE 5.5 ECONOMIC EVALUATION OF PROJECT ALTERNATIVE CASES

| MEASURE\                           | CASE      | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 |
|------------------------------------|-----------|--------|--------|--------|--------|--------|--------|
| a. Leakage control measures (tran- | smission) | 1 0    | 10     | 10     | 0      | 0      | 0      |
| b. Leakage control measures (dist  |           | 0      | 0      | 10     | 0      | 0      | 0      |
| c. Existing pipe connection        |           | X      | 0      | 0      | 0      | 0      | 0      |
| d. Main pipe laying (primary)      |           | X      | X      | 0      | 0      | 0      | 0      |
| e. Main pipe laying (secondary)    |           | l x    | X      | 0      | 0      | 0      | 0      |
| f. Pipe cleaning                   |           | X      | X      | 0      | 0      | 0      | 0      |
| g. Middle zone                     |           | X      | X      | X      | 0      | 0      | 0      |
| h. Treatment Plant (water volume)  | )         | l X    | X      | X      | X      | 0      | 0      |
| i. Treatment Plant (prevention and |           | X      | X .    | ) x    | X      | X      | 0.     |

LEGEND: O = WITH, X = WITHOUT

#### COST-BENEFIT ANALYSIS


Economic benefits, which would be realized from rehabilitation projects, are given as increased water consumption by distributing the water saved to users and it is measured by the consumers' willingness to pay.


#### SAVED VOLUME

The effect of the technical measures on the distribution system have been evaluated by hydraulic analysis using a hydraulic model (refer to section 2, Appendix D).

The projects are planned to produce and redistribute the deficit between water demand and water supply. Accordingly, 33,000 m<sup>3</sup>/day saved by leakage control measures is an effect of the total rehabilitation projects which are the cases 5 and 6. Table 5.7 shows the amount saved by each case.

<sup>\*</sup> repair of the worn-out chemical equipment only in the Mtoni is included in case 5.





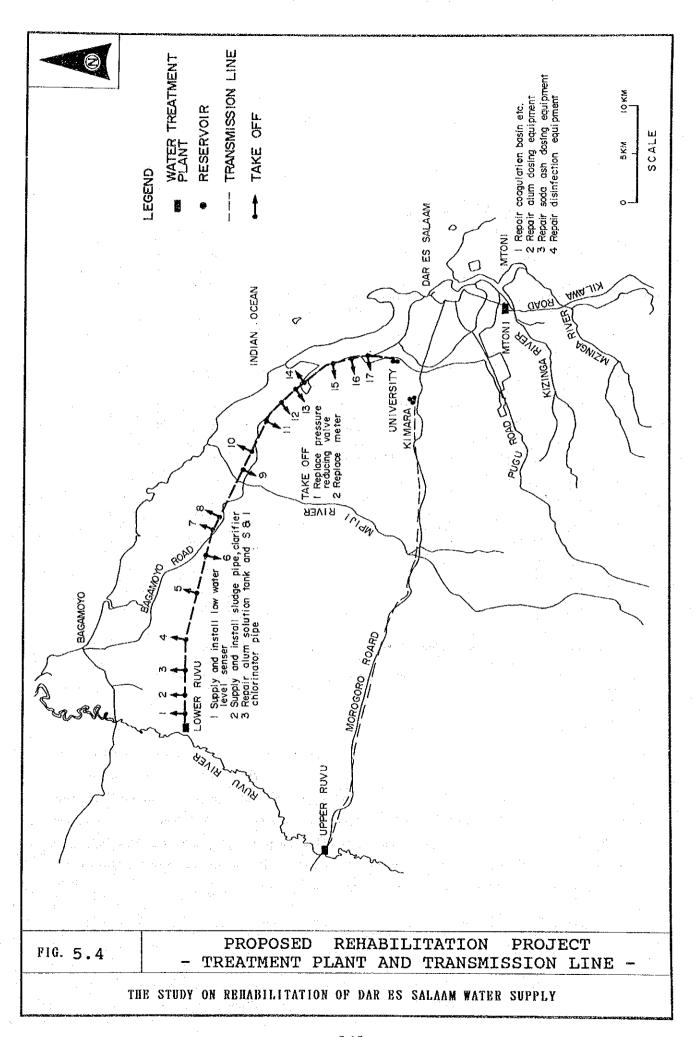



TABLE 5.6 SELECTED MEASURES

| Works Description                                       | Unit     | Quantity |
|---------------------------------------------------------|----------|----------|
| A.IN-HOUSE ACTIVITY (CONTINUOUS WORK ITEMS)             |          | 1        |
| HI) METER INSTALLATION                                  | each     | 15,000   |
| H2)-1 LEAKAGE CONTROL MEASURE(DISTRIBUTION SYSTEM)      | lump sum | 1        |
| H2)-2 MAPPING SYSTEM                                    | lump sum | 1        |
| H3) PIPE CLEANING                                       |          |          |
| 1 Air scouring                                          | meter    | 417,000  |
| 2 Scraping & lining                                     | meter    | 213,000  |
| B.CONTRACTUAL WORK (NON-CONTINUOUS WORK ITEMS)          | [        |          |
| C1) LEAKAGE CONTROL MEASURE (TRANSMISSION SYSTEM)       | i .      |          |
| 1 Replace pressure reducing valve                       | each     | 16       |
| 2 Replace meter in off-takes                            | each     | 16       |
| C2) LEAKAGE CONTROL MEASURE (DISTRIBUTION SYSTEM)       |          | }        |
| Replace service pipe with distribution pipe             | meter    | 90,000   |
| C3) EXISTING PIPE CONNECTION                            | each     | 14       |
| C4) MAIN PIPE LAYING (PRIMARY)                          |          |          |
| 1 Supply and Lay Pipe (Kinondoni, 400 - 200 mm)         | meter    | 4,600    |
| 2 Supply and Lay Pipe (Msasani, 500 - 200 mm)           | meter    | 6,700    |
| 3 Supply and Lay Pipe (Temeke, 500 - 400 mm)            | meter    | 4,300    |
| 4 Supply and Lay Pipe (Kurasini, 500 -200 mm)           | meter    | 4,800    |
| 5 Supply and Lay Pipe (Kigamboni, 300 mm)               | meter    | 5,100    |
| 6 Supply and Lay Pipe (Mbagala, 250 mm)                 | meter    | 5,100    |
| C5) MAIN PIPE LAYING (SECONDARY)                        |          |          |
| 1 Supply and Lay Pipe at Mbezi                          | meter    | 14,300   |
| 2 Supply and Lay Pipe at Tabata                         | meter    | 9,300    |
| 3 Supply and Lay Pipe at Ukonga                         | meter    | 4,400    |
| 4 Supply and Lay Pipe at Yombo                          | meter    | 8,300    |
| 5 Supply and Lay Pipe at Kigamboni                      | meter    | 10,500   |
| C6) MIDDLE ZONE                                         |          |          |
| 1 Break pressure tank                                   | m3       | 10,600   |
| 2 Supply and Lay Pipe at Ubungo                         | meter    | 2,800    |
| 3 Supply and Lay Pipe at Vingunguti                     | meter    | 5,000    |
| C7) TREATMENT PLANT                                     | 1        | 1        |
| A LOWER RUVU TREATMENT PLANT                            | 1        |          |
| S & I water level sensor, sludge pipe, chlorinator pipe | lump sum | 1        |
| B MTONI TREATMENT PLANT                                 | 1        | ļ        |
| Repair coagulation basin and chemical equipment         | lump sum | 1        |

The amount saved by leakage control measures, including middle zone creation is estimated to be 10,300 m³/day. Unsuppressed consumption is 33,300 m³/day "without" leakage control measures, as explained above. "With" leakage control measures unsuppressed consumption is 23,000 m³/day. This 23,000 m³/day is derived from the hydraulic analysis (refer to section 2, Appendix D). Consumption where there is less than 10 meter effective pressure in the analysis is judged to be suppressed as explained in section 1 "water demand", Appendix A. Accordingly, the difference of the two figures above is estimated to be the amount saved by leakage control measures.

This, is divided into 2 components, leakage reduction in the transmission and distribution systems and leakage reduction by the middle zone, based on the estimated leakage ratio at present. As a result, the amount saved in the former (case 2) is 8,800 m<sup>3</sup>/day and that in the latter (case 5) is 1,500 m<sup>3</sup>/day. Similarly the amount saved in other cases is estimated and presented in Table 5.7.

TABLE 5.7 REHABILITATION PROJECTS ALTERNATIVES AND THEIR EFFECTIVENESS

| (Unit: | m³/day) |
|--------|---------|
|--------|---------|

| Saved Volume | Accumulated Saved Volume |
|--------------|--------------------------|
| <br>8,800    | 8,800                    |
| 10,800       | 19,600                   |
| 12,200       | 31,800                   |
| 1,500        | 33,300                   |
| 0            | 33,300                   |
| 0            | 33,300                   |

<sup>\*</sup> Saved volume shown in this Table, is reduction only by leakage. In addition, there is a saved volume by wastage reduction as follows; 1. 1,800, 2. 8,300, 3. 1,800. Total=11,900

Based on the above value, increased water consumption resulting from rehabilitation projects during 1991 - 1995 are given in Table 5.8.

TABLE 5.8 INCREASE IN ANNUAL WATER CONSUMPTION FOR REHABILITATION PROJECT ALTERNATIVES (SUPPRESSED) (1991 - 1995)

(Unit:Thousand m³/year)

|                                                          | 1991                                             | 1992                                                        | 1993                                               | 1994                                                   | 1995                                                   |
|----------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| CASE 1<br>CASE 2<br>CASE 3<br>CASE 4<br>CASE 5<br>CASE 6 | 642<br>1,431<br>1,431<br>1,431<br>1,431<br>1,431 | 1,186<br>2,862<br>4,322<br>4,322<br>4,322<br>4,322<br>4,322 | 1,927<br>4,292<br>7,249<br>7,249<br>7,249<br>7,249 | 2,570<br>5,723<br>10,176<br>10,176<br>10,176<br>10,176 | 3,212<br>7,154<br>11,607<br>12,155<br>12,155<br>12,155 |

In order to evaluate the economic benefits of rehabilitation projects, the following assumptions are made:

- Project life is assumed to be 20 years after the target year, as the major costs are those for pipes and fittings, whose depreciation period is 20 years.
- It is assumed that water supply, consumption and revenue after 1996 will remain at the 1995 level.
- Water tariff is based on the present tariff system, while tariff increase at the rate of 68 % is taken into account from July 1, 1991.

Increased consumers' willingness to pay is estimated as follows, reflecting the prices charged for the increased water consumption:

- Increase of water consumption by legal customers is converted to the willingness to pay, based on the estimated billings by NUWA, according to the budget for 1990/91 fiscal year.
- Increase of water consumption by illegal connections, and kiosks and standpipes is estimated, based on Demand Analysis, and is also converted to willingness to pay.
- Distribution of increased water to the four consumer groups is estimated at the same share as that of the present consumption.

The average consumers' willingness to pay for the consumption of water is calculated to be T.Shs.54.8 per m³ (refer to Table section 6, Appendix D).

Table 5.9 shows the estimated increase of consumers' willingness to pay resulting from the rehabilitation project, of which 68 % is increase from legal consumers and the rest is from illegal, kiosk and standpipe users.

TABLE 5.9 INCREASE IN WILLINGNESS TO PAY FOR REHABILITATION PROJECT ALTERNATIVES (1991 - 1995)

(Unit: T.Shs, million/year)

|                                                          |                                        |                                              | (                                      |                                        |                                        |
|----------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| <u></u>                                                  | 1991                                   | 1992                                         | 1993                                   | 1994                                   | 1995                                   |
| CASE 1<br>CASE 2<br>CASE 3<br>CASE 4<br>CASE 5<br>CASE 6 | 35<br>78<br>78<br>78<br>78<br>78<br>78 | 65<br>157<br>237<br>237<br>237<br>237<br>237 | 106<br>235<br>397<br>397<br>397<br>397 | 141<br>314<br>558<br>558<br>558<br>558 | 176<br>392<br>636<br>666<br>666<br>666 |

#### PROJECT COST

The cost estimates are based on the result of the preliminary engineering design study. Table 5.10 gives the summary of the costs of the rehabilitation project for 9 measures and the detailed costs by measures are given in Table D.6.1, Appendix D.

The project costs are estimated based on the following:

- Cost estimates are based on November 1990 prices.
   Price escalation and inflation have not been considered.
- Unit price is estimated from the information given by various agencies in Tanzania and Japan, and similar study reports available.
- The exchange rate used is: T.Shs.200=US\$1.00, J Yen 140=US\$1.00
- Physical contingency is assumed to be 15% of the total cost.

Cost estimates by case are presented in Table 5.11.

TABLE 5.10 COST ESTIMATES OF REHABILITATION MEASURES

(Unit: T.Shs.million)

|                    |            |                                 |                                   |              |                  |                                   |                   |            |                             | . ]   |          |                        |                               |              |             |                                 |              |               |                |              |                       |                         |              | ,                           |                |          |                                       |                   |            |
|--------------------|------------|---------------------------------|-----------------------------------|--------------|------------------|-----------------------------------|-------------------|------------|-----------------------------|-------|----------|------------------------|-------------------------------|--------------|-------------|---------------------------------|--------------|---------------|----------------|--------------|-----------------------|-------------------------|--------------|-----------------------------|----------------|----------|---------------------------------------|-------------------|------------|
|                    |            | Measure a                       | 8 92 (                            |              | We.              | Measure b                         |                   | . خے ا     | Measure                     | O     |          | Measure d              | ire d                         | ;            | Measure e   | ıre e                           |              | Measure f     | ire f          | <u> </u>     | Mea                   | Measure g               |              | Mea                         | Measure h      |          | Me                                    | Measure i         |            |
| •<br>              | ਤ <b>ਦ</b> | eakage Contro<br>(transmission) | Leakage Control<br>(transmission) | <del></del>  | eakag<br>(distri | Leakage Control<br>(distribution) | <br>102<br>20     | exa<br>Exa | Existing Pipe<br>Connection | tion  | Ma<br>—— | in Pipe L<br>(Primary) | Main Pipe Laying<br>(Primary) | Ma<br>       | (Secondary) | Main Pipe Laying<br>(Secondary) | — <u> </u>   | Pipe Cleaning | aning          |              | Middle Zo<br>creation | Middle Zone<br>creation | <del></del>  | Treatment Plant<br>(volume) | it Plan<br>ne) |          | Treatment Plant<br>(quality & preve.) | ent Pla<br>Se pre | ie.)       |
|                    | F.C.       | T.C.                            | Total                             | _            | F.C. L           | L.C. To                           | Total             | F.C.       | F.C. L.C.                   | Total | F.C.     | . L.C.                 | Total                         | F.C.         | L.C.        | Total                           | E            | EC LC         | . Total        |              | F.C. L.C.             | . Total                 | -            | EC. L.C.                    | C. Total       | -        | F.C. L                                | L.C. Te           | Total      |
| 1 1991             | E          |                                 |                                   | =            | 374              | 28                                | 402               | 238        |                             | 296   | -        |                        |                               | 0 }          |             |                                 | 4            |               | •              |              | 0                     |                         | 0            |                             |                |          | 0                                     | .0                | 0          |
| 2 1992             | 0          |                                 |                                   |              | 240              | 36                                | 276               | 0          |                             | 0     | - 33     |                        |                               | °            | 4,          |                                 |              | 53 16         |                |              | 0                     | 0                       | _            |                             |                | _        | C                                     | 0                 | 0          |
| 3 1993             | 0          | :                               | ٠.                                |              | 217              | 36                                | 253               | 0          |                             | 0     | 856      |                        | ÷                             | 0            |             |                                 |              |               |                | _            | Ö                     |                         | _0           |                             |                | _        | 0                                     | Ö                 | 0          |
| 4 1994             | 0          | 0                               | 0                                 | <del>-</del> | 149              | 36                                | 184               | 0          | 0                           | 0     |          | 0                      | Ö                             | 121          | ń           | 366                             |              | 53 16         |                |              |                       |                         | <del>-</del> | 0                           | 0 0            |          | 0                                     | 0                 | 0          |
| 5 1995             | <u> </u>   | · .                             |                                   |              | 364              | 465                               | 829               | 0          |                             | 0     |          |                        |                               | 0            |             |                                 |              | 71 16         | 87             | <del>-</del> | 181 66                | 667 1,848               | <u></u>      |                             |                | _        | 0                                     | 0                 | 0          |
| 9661 9             | 0          | 0                               | 0                                 | -            | 170              | 22                                | 194               | 0          |                             | 0     | <u> </u> | 1                      |                               |              |             | 0                               | ~            | 269 15        | 5 283          | -            | 0                     | i                       | -            | 22                          | 1 2            | 2        | ,273                                  | 733 2             | 88         |
| 7 1997             | 0          | 42.                             |                                   | _            | 0                | 24                                | 57                |            | ÷                           | 0     |          |                        |                               | -            |             | 0                               |              | . :           |                |              | 0                     |                         |              | 0                           | 0              |          | 0                                     | 0                 | 0          |
| 8661 8             | _          |                                 |                                   |              | 0                | 54                                | 42                | 0          |                             | 0     |          |                        |                               | ·            |             | 0                               | · —-         |               |                | _            | 0                     |                         |              |                             |                | _        | 0                                     | 0                 | 0          |
|                    | °          | 0                               | 0                                 |              | 2                | 52                                | - 56              | 0          | 0                           | 0     |          | 0                      | 0                             | 0            | 0           | 0                               |              | 18            | 13 31          |              | O.                    | 0                       |              | 0                           | 0              | <br>0    | 0                                     | 0                 | 0          |
| 10 2000            | о.<br>     |                                 |                                   | _            | 0                | 24                                | 24                | 0          |                             | 0     |          |                        |                               | 0            |             | 0                               | Anadron      |               |                |              | 0                     | je.                     | ·            |                             |                | `        | 0                                     | 0                 | 0          |
| 11 2001            | 31         |                                 | 43                                | -            | 170              | 24                                | 194               | 0          | 0                           | 0     |          |                        |                               | _            |             | 0                               | <u>~</u>     | F .           | <b> </b> ``    |              | 0                     | 0                       | _<br>0       | !                           |                |          | 4                                     |                   | \sigma     |
| 12 2002            | 0          |                                 |                                   |              | 0                | \$                                | 24                | 0          | ۵                           | 0     |          |                        |                               | 0            |             | 0                               | _            |               | 13 13          |              | 0                     | 0                       |              |                             |                |          | 0                                     | 0                 | 0          |
|                    | <u> </u>   | 0                               | 0                                 |              | 2                | K)                                |                   | <u> </u>   | 0                           | 0     |          | 0                      | 0                             |              | 0           | 0                               |              | 18 II         |                | <u>-</u> -   | 0                     | 0                       | <br>         | 0                           |                | <br>0    | 0                                     | •                 | 0          |
|                    | _          |                                 |                                   | _            | 0                | 42                                | 77                | 0          | 0                           | 0     |          |                        |                               | o<br>        |             | 0                               |              |               | 13 13          |              | 0                     | 0                       | -<br>-       |                             |                |          | 0                                     | 0                 | 0          |
| 15 2005            | <b>O</b> , |                                 |                                   |              | 0                | 54                                | 24                | °          | Ö                           | 0     |          |                        |                               | <del>-</del> |             | 0                               |              |               |                |              | 0                     | 0                       | _            |                             |                | _        | 0                                     | o .               | Ò          |
| 16 2006            | 0          | 0                               | 0                                 |              | 170              | 24                                | 194               | 0          | 0                           | 0     | _        | 1                      |                               | )            |             |                                 | 7            |               | 5 283          | 3-           | .0                    |                         | - 0          |                             |                |          | 4                                     | <b>₩~4</b>        | δ.         |
|                    | ٥<br>_     |                                 |                                   |              | 2                | 52                                | 95                | 0          |                             | 0     |          |                        |                               | •<br>        |             |                                 | <b>-</b> .   |               |                |              | 0                     | ٠.                      |              |                             |                |          | φ.                                    | 0                 | 0          |
|                    | <b>О</b>   |                                 |                                   |              | 0                | #                                 | 54                | • ·        |                             | 0     |          |                        |                               | <u> </u>     |             |                                 |              |               |                |              | O                     |                         |              |                             |                |          | φ (                                   | 0 (               | <b>e</b> ( |
| 19 2009<br>20 2010 |            | 00                              | 00                                |              | 00               | 74 75<br>75                       | 4 4               |            | 00                          | 00    |          | 00                     | 00                            |              | 00          | 00                              |              | 00            | 13 13<br>13 13 |              | 00                    | 00                      |              | 00                          | 90             |          | 00                                    | 90                | 00         |
| 21 2011            | 31         | 12                              | £3                                |              | 306              | 28                                | 333               | 238        | 1                           | 296   | ·        | 0                      | 0                             | -            |             | .0                              | (r)          | 38 17         | 1              | - 8          | ł                     | 0                       | -            | 53                          | 1              | 6        |                                       |                   | 2          |
|                    |            | ٠                               |                                   |              | 171              | 38                                | 207               | 0          | 0                           | 0     | 534      |                        | Ö                             | •<br>-       | 0           |                                 |              | 53 16         |                | _            | 0                     | 0                       | <u></u>      |                             | 0              | -<br>0   | 0                                     | 0                 | 0          |
|                    | 0          | 0                               |                                   |              | 148              | 36                                | 184               | 0          |                             | 0     | 658      | 2                      | 1,1                           | <u> </u>     |             | 0                               |              |               | 69 9           |              |                       | 0                       | . <u>.</u> . | 0                           |                |          |                                       | 0                 | 0          |
| 24 2014            | _          | 0                               | 0                                 | <del>-</del> | 149              | 38                                | 184               | 0          |                             | 0     |          | 0                      | 0                             | 121          | -           |                                 | <del>-</del> |               |                |              |                       |                         | _<br>o       |                             |                | ~        |                                       | 0                 | 0          |
| 25 2015            | 0          | 0                               |                                   |              | 364              | 465                               | 829               | 0          |                             | 0     |          | 0                      |                               | °<br>        | 0           |                                 | _            |               |                |              |                       | ٠Ĵ                      | 194          | 0                           |                | _        |                                       | 0                 | 0          |
| Salvage cost       | -16        | φ.                              | -22                               | _            | . 177            | -451 -1                           | 228               | -179       | 44                          | -222  | -1242    | 12 -281                | 1 -1,523                      | -109         | -221        | -329                            | -5           | 237 -11       | 1 -248         | -            | -1029 4               | 416 -1,445              | -            | -24                         | •              |          | 422 .;                                | 272               | 694        |
| Sub-total          | 78         | 30                              | 108                               | .2,          | 2,424 1          | ,113 3                            | 1,113 3,537       | 298        | 73                          | 370   | 1,743    | 3 395                  | 5 2,137                       | 133          | 270         | 403                             | 11,8         | 1,829 346     | 6 2,175        | 5   1,138    | [                     | 459 1,597               |              | 149 1                       | 11 160         | 0        | 864                                   | 460 1             | 1,324      |
| Contingency        | 12         | 3                               | 16                                | _            | 364              | 167                               | 531               | 45         | 11                          | 56    | 261      | 1 59                   | 321                           | 1 20         | 7 40        | 09                              | 2            | 274 52        | 2 326          |              | 171 6                 | 69 24                   | 240          | 22                          | 2              | 24       | 130                                   | 69                | 199        |
| Grand total        | 68         | 35                              | 124                               | 2,           | 788 1            | , 280,                            | 2,788 1,280 4,068 | 342        | 83                          | 426   | 2,004    | )4 454<br>)4 454       | 4 2,458                       | 153          | 310         | 463                             | 2,           | 2,103 398     | 8 2,501        | 1 1,308      |                       | 528 1,837               |              | 171                         | 13 184         | <b>4</b> | 666                                   | 529 1             | 1,522      |
|                    |            |                                 |                                   |              |                  |                                   |                   |            |                             |       |          |                        |                               |              |             |                                 |              |               |                |              |                       |                         |              |                             |                |          |                                       |                   |            |

F.C. = Foreign currency portion, L.C. = Local currency portion

TABLE 5.11 COST ESTIMATE OF REHABILITATION PROGRAMME ALTERNATIVES

### COMPARISON OF COSTS AND BENEFITS

Table 5.12 shows the comparison of costs and benefits (increased consumers' willingness to pay) during the project life, including the indices of economic efficiency; the net present value (NPV), the benefit cost ratio (B/C ratio) and the internal rate of return (IRR) used in conventional economic analysis.

Figure 5.5 compares the costs and benefits for the 6 cases, using a discount rate at 3 %.

The benefit cost ratio exceeds 1.0 in cases 2, 3, 4 and 5. Cases 1 and 6 are not acceptable from an economic point of view, because the benefit is lower than the cost, even using a low discount rate of 3%.

### FIGURE 5.5 COMPARISON OF COSTS AND BENEFITS FOR ALTERNATIVE CASES

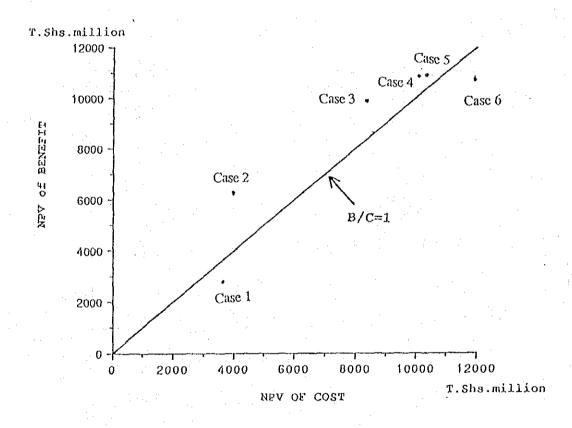



TABLE 5.12 COSTS AND BENEFITS OF REHABILITATION PROGRAMME ALTERNATIVES (1991 - 2015)

|          | -     |                      |              |          |                                       |                                              |            |                |              |                               |              |                               |            |           | Unit:        | T.Shs.      | (Unit: T.Shs.million) | े<br>द      |
|----------|-------|----------------------|--------------|----------|---------------------------------------|----------------------------------------------|------------|----------------|--------------|-------------------------------|--------------|-------------------------------|------------|-----------|--------------|-------------|-----------------------|-------------|
|          | BENEF | CASE<br>BENEFIT COST | 1<br>PROFIT  |          | CASE<br>T COST                        | CASE 2 CASE 8ENEFIT COST PROFIT BENEFIT COST | BENEFI     | CASE<br>T COST | 3<br>PROFIT  | 3 CASE<br>PROFIT BENEFIT COST |              | 4 CASE<br>PROFIT BENEFIT COST | BENEF1     |           | 5<br>PROFIT  |             | CASE<br>BENEFIT COST  | 6<br>PROFIT |
| 1 1991   | 35    | 512                  | -477         | <u>چ</u> | 3.5                                   |                                              | ۶          | 27.0           |              |                               |              | Ī                             |            |           |              |             |                       |             |
|          | 59    | 317                  | -252         | 157      | 444                                   |                                              |            | 700            | 107          | 82                            | 1,339        | -1261                         | 22         | 1,407     | -1329        | 82          | 1,407                 | -1329       |
| 3 1993   | 106   | 291                  | -185         | 7,7      | ֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 2 1                                          |            | 64)            | 215-         | 237                           | 1,149        | -912                          | 237        | 1,149     | -912         | 237         | 1,149                 | -912        |
|          | 141   | 212                  | 1 (          | 7 2      | ָה נָאַ נָּי                          |                                              |            | 1,721          | -1,323       | 397                           | 1,721        | -1323                         | 397        | 1,721     | -1323        | 397         | 1,721                 | -1323       |
|          | 17.   | ÿ                    | 1            | t (      | 717                                   |                                              | 258        | 712            | -154         | 558                           | 712          | -154                          | 558        | 712       | -154         | 558         | 712                   | -154        |
|          |       |                      |              | 2%5      | 723                                   | -561                                         | 929        | 1,053          | -417         | 999                           | 3,178        | -2512                         | 999        | 3,178     | -2512        | 999         | 3,178                 | -2512       |
| 9661 9   | 176   | 224                  | -48          | 392      | 224                                   |                                              | 727        | 250            | 8            | ***                           | 1            |                               |            | j         |              |             |                       | T           |
|          | 176   | 28                   | 148          | 392      | , c                                   |                                              | 727        | 27             | 8 2          | 0 ;                           | ָ<br>אַ<br>נ | 91                            | 90         | 276       | 06           | 999         | 2,880                 | -2214       |
| 8 1998   | 176   | 28                   | 148          | 392      | 3 8                                   |                                              | 3 7 7      | £ 4            | , c          | 8                             |              | 624                           | 900        | 43        | 624          | 999         | 43                    | 624         |
|          | 176   | 109                  | 29           | 392      | 505                                   |                                              | 3 %        | 1, t           | * 6          | 8                             | ţ.           | 470                           | 900        | 5 ;       | 624          | 999         | ξ3                    | 624         |
|          | 176   | 82                   | 148          | 392      | 82                                    | 35.                                          | 636        | ž Đ            | 265          | 8 9                           | £ 23         | 725                           | 8 %<br>8 % | 145       | 521          | 99 3        | 145                   | 22,         |
|          | i     |                      |              |          |                                       |                                              |            |                |              |                               |              | 5                             | 3          | î         | *100         | 9           | ĵ.                    | 570         |
| 12 2007  | 176   | 273                  | -97          | 392      | 22                                    | 119                                          | 636        | 599            | 37           | 999                           | 286          | 67                            | 999        | 625       | 4.1          | 999         | 129                   | *           |
|          | 7.    | 9 6                  | ž (          | 292      | 58                                    |                                              | 636        | 63             | 594          | 999                           | 5            | 624                           | 999        | 7         | 624          | 999         | ¥ 7                   | 3 2         |
|          | 2 2   | 2 6                  | 0            | 392      | 109                                   |                                              | 636        | 145            | 167          | 999                           | 145          | 521                           | 999        | 145       | 521          | 999         | 172                   | 7 6         |
|          | 17.0  | 9 6                  | Ş .          | 392      | 53                                    |                                              | 929        | £3             | 594          | 999                           | 53           | 624                           | 999        | ₹3        | 624          | 999         | 7.7                   | 7,77        |
|          | 2     | O V                  | 24           | 392      | 88                                    |                                              | 636        | 43             | 594          | 999                           | 43           | 929                           | 999        | 43        | 624          | 98          | 1,2                   | 624         |
| 16 2006  | 176   | 224                  | 87-          | 392      | 224                                   | 168                                          | 75.9       | 250            | 3            | 777                           | 1            | 1                             |            | 1         |              |             |                       | T           |
|          | 176   | 109                  | 67           | 392      | 100                                   | 787                                          | 727        | 2 1            | 3 5          | 0 ;                           | 000          | <u>o</u> ;                    | 9          | 2/6       | 8            | 8           | 581                   | 8           |
| 18 2008  | 176   | 887                  | 148          | 362      | Š                                     | 3 2                                          | 25,        |                | <u>}</u>     | 8                             | ζ.           | 521                           | 999        | 145       | 521          | 999         | 145                   | 521         |
|          | 176   | 28                   | 148          | 365      | 2 %                                   | 3 %                                          | 970        | £ (            | , č          | 9                             | Ţ :          | 624                           | 999        | <b>43</b> | 624          | 999         | 43                    | 624         |
|          | 176   | 28                   | 14.8         | 6        | 3 8                                   | 777                                          | 0 2        | ָזָ נָ         | 7 7          | 9                             | <b>;</b>     | 624                           | 999        | £3        | 624          | 999         | £3                    | 624         |
|          |       |                      |              |          | 3                                     | \$                                           | oc<br>oc   | 3              | 274          | 999                           | 43           | 624                           | 999        | ţŢ.       | 929          | 999         | 43                    | 929         |
| 21 2011  | 1,26  | 433                  | -257         | 392      | 55                                    | -381                                         | 636        | 1,181          | -545         | 999                           | 1, 181       | -515                          | 999        | 1 240     | -583         | 1 3         | 1 255                 | 000         |
|          | 9 ;   | ŝ                    | 7            | 392      | 238                                   | 154                                          |            | 1,070          | -434         |                               | 070          | -404                          |            | 070       | 707-         |             | 5 5                   | ) è         |
|          | 2 7   | 217                  | ئ<br>م       | 392      | 212                                   | 180                                          |            | 1,642          | -1006        |                               | 1,642        | -976                          | -          | 1,642     | -976         |             | 1,642                 | -976        |
|          | 2 2   | 787-                 | 0 7          | 202      | 22.6                                  | 180                                          |            |                | -76          |                               |              | -46                           |            | 712       | 97-          |             | 712                   | 94          |
|          | }     | 5                    | 3            | 2%5      | ر ر ر<br>ا                            | 5                                            | 929        | -3,055         | 3,691        | 999                           | 343          | 600,4                         | 999        | 3,375     | 4,041        | •           |                       | 4,839       |
| TOTAL    | 4,043 | 4,192                | -149         | 9,017    | 4,617                                 | 4,400 14627 10,039                           | 14627 1    |                | 4,589 1      | 15258 11                      | 11,875       | 3,382 1                       | 15258 1    | 12,059    | 3,199        | 15258 1     | 13,581                | 1,677       |
| NPV(3%)  | 2,810 | 3,425                | -615 6,270   |          | 3,828                                 | 2,442 10166                                  |            | 8,451          | 1,715 1      | 1,715 10589 10,198            | 198          | 392 10589                     |            | 10,347    | 242          | 242 10589 1 | 11,952 -              | -1,363      |
| NPV(10%) | 1,431 | 2,436                | -1,005 3,198 |          | 2,801                                 | 397                                          | 397 5, 174 | - 525'9        | -1,151 5,369 |                               | 7,747 -2     | -2,378 5,369                  |            | 7,855 -   | -2,486 5,369 |             | 9,208 -               | -3,839      |
| 8/c(3%)  |       |                      | 0.82         |          |                                       | 1.64                                         |            |                | 1.20         |                               |              | 1.04                          |            |           | 1.02         |             |                       | 68.0        |
| 8/c(10%) |       |                      | 0.59         | . •      |                                       | 7.1                                          |            |                | 0.82         |                               | J            | 69.0                          |            |           | 89.0         |             |                       | 58          |
| IRR      |       | •                    | -0.7%        |          |                                       | 13.0%                                        |            |                |              |                               | ,            |                               |            | ,         |              |             |                       |             |
|          |       |                      |              |          |                                       |                                              |            |                | . r.e        |                               | ٠,           | %<br>0.0                      |            |           | N.           |             | •                     | 7.7%        |

### 5.5 PRELIMINARY DESIGN

Preliminary designs are made for the contractual works in this section while those for the in-house works are dealt with procedures, manning requirements etc. in Chapter 6.

### 5.5.1 DESIGN CONDITIONS

Locally manufactured items shall conform to Tanzania Bureau of Standards (TBS). Where the TBS Specification is not published, the items should meet the requirements of the International Standards Organization (ISO). Where neither a Tanzania Standard nor an ISO Specification are available, the locally manufactured items should be in accordance with the relevant British Standard Specification.

Imported items should meet the requirements of the ISO. Where an ISO Specification is not published, the item should be in accordance with the requirements of the National Standards of the country of origin (i.e. JIS for Japanese products, DIN for German products etc.).

### (1) Ductile Iron Pipe (DIP)

Ductile iron pipes are designated by ISO standard and pressure classes.

100-300mm 1.6 - 5.0 MPA more than 300mm 1.6 - 4.0 MPA

### (2) Unplasticized Polyvinyl Chloride Pipe (uPVC)

The uPVC pipe is designated by its nominal outside diameter and lettered pipe class, in accordance with Kenya standard (KS 06-149). Table 5.13 shows the outside diameter of uPVC pipes and conditions.

TABLE 5.13 upvc specifications

| Items<br>Nominal Diameter (mm) | Descriptions Outside Diameter (mm)                         |
|--------------------------------|------------------------------------------------------------|
| 100<br>75<br>50<br>Water Head  | 110<br>90<br>63                                            |
| Working Head                   | 5.6 kg/cm <sup>2</sup><br>10 bar or 7.5 kg/cm <sup>2</sup> |
| Standard<br>Joint              | ISO<br>RR Joint                                            |

### 5.5.2 LEAKAGE CONTROL MEASURES FOR TRANSMISSION SYSTEM

The worn-out pressure reducing valves and water meters in 16 off-takes along the Lower Ruvu transmission line, are to be replaced with new ones, so as to reduce wastage and leakage, resulting from

high pressures, in the 16 settlements.

### 5.5.3 REPLACEMENT OF SERVICE PIPE

This measure should allow NUWA to gradually extend the distribution network, thereby eliminating excessively long service pipes. The amount of work envisaged is estimated. Replacement of long sections of small diameter service mains is estimated to be 90,000 m in length, derived from the three model areas. The required length is 1,490 m (see Figures D.3.5 to D.3.7, Appendix), while there are 9,600 m of existing pipes in the three model areas. The ratio of the former to the latter is 0.16. Using this ratio in conjunction with the fact that the total length of the secondary pipeline is 584 km in the city, the required length is approximately 90,000 m.

TABLE 5.14 REQUIRED DISTRIBUTION PIPE EXTENSION TO REDUCE LONG, SMALL SERVICE PIPE

| · · · · · · · · · · · · · · · · · · ·                                      | <del></del>          |                      |                      | ·                      | and the second second     |
|----------------------------------------------------------------------------|----------------------|----------------------|----------------------|------------------------|---------------------------|
|                                                                            | Kariakoo             | Magomeni             | Kinondoni            | Sub-Total              | Dar es Salaam             |
| Existing pipe length (meter) Pipe required Pipe required per existing pipe | 4,170<br>510<br>0.12 | 2,000<br>480<br>0,24 | 3,430<br>500<br>0.15 | 9,600<br>1,490<br>0.16 | 583,832<br>90,000<br>0.16 |

### 5.5.4 EXISTING PIPE CONNECTION

Existing pipe connections involve repair or replacement of existing valves. The following points are proposed (node numbers are referred to Figure 4.9, chapter 4 and schematic connections in each node are shown in Figures C.4.15 and 16, Appendix C).

### (1) Valves to be replaced

- \* Nodes 101 to 112 at BP University gasoline stand, Mwenge (825mm) and the valve is kept open
- \* Nodes 106 to 115 at Kinondoni junction (450mm) and kept open.
- \* Nodes 103 to 114 at Ubungo Junction (525mm) and kept open.
- \* Nodes 103 to 204 at Ubungo Junction (525mm) and kept open.
- \* Nodes 220 to 222 at Buguruni (300mm) and kept open.
- (2) Install new connection pipe with sluice valve.
- \* Nodes 109 to 206 at Friendship Textile Mill Company, Manzese (400mm, double) and the valve is

kept open.

- \* Nodes 207 to 209 at southern part of Ubungo (600mm double)
- \* Nodes 214 to 215 and 214 to 232 at Kipawa, Pugu Road (400mm double and 300mm double) and kept open,
- \* Nodes 221 to 223 at Ilala, Uhuru Street (400mm)
- \* Nodes 303 to 326 at Temeke, Nelson Mandela Road (250mm)
- \* Nodes 307 to 325 (400mm) and 307 to 234 (300mm) at Chang'ombe, Pugu Road and the valves are kept open.
- \* Nodes 209 to 210 at Ubungo (600mm).
- (3) Open the existing valves
- \* Nodes 102 to 113 at BP University gasoline stand, Mwenge (800mm)
- (4) Close the existing valve

The valves between the following nodes are the boundary of the Upper and the Lower zones and it is proposed that they be kept closed although, depending on water balance in each zone, the location of some valves may need to be shifted;

```
* 102 and 103 (700 mm),
                            * 111 and 114 (525 mm),
                                                          * 109 and 142 (375 mm),
* 206 and 229 (400 mm),
                            * 208 and 230 (525 mm),
                                                          * 220 and 228 (450 mm),
                            * 234 and 304 (250 mm),
* 221 and 228 (300 mm),
                                                          * 307 and 308 (550 mm),
* 309 and 325 (300 mm).
                            * 302 and 322 (150 mm),
                                                          * 321 and 328 (150 mm),
* 301 and 321 (375 mm),
                            * 310 and 311 (250 mm),
                                                          * 310 and 314 (250 mm),
* 301 and 331 (375 mm) and * 318 and 327 (350 mm)
```

When the middle zone (discussed later in this chapter) is set up in the future, the above-mentioned boundary will become the boundary between the middle zone and the lower zone. The following valves will become boundary valves between the middle zone and the upper zone;

### 5.5.5 MAIN PIPE LAYING MEASURE (PRIMARY)

Additional pipes are planned in order to improve distribution to areas identified earlier where effective pressures are less than 10 meters during hourly maximum demand periods. The areas are mostly in the outlying areas and are presented in Table 5.15 and in Figure 4.15, chapter 4 (also superimposed onto Figure C.4.17 "distribution pipe drawings", Appendix C). The planned pipe sizes can provide at least

15 meters pressure during the same periods and, the pipe routes are chosen so as to ensure the shortest possible distance from the adjacent mains.

The Vijibweni booster pump station pumps water to Vijibweni and Kigamboni areas. However, this can be abandoned when additional 12" mains are laid along the existing 8" pipe, between nodes 315 and 316. The current 8" pipe shows a very steep hydraulic gradient - 31 meters head losses for 1,000 meters length against a demand of 4,000 m³/day. Head losses total 110 meters for a length of 3,600 meters against the pumping head of 50 meters. Installation of the 12" pipe will give an effective pressure of 19 meters at node 316 without the boosting head.

TABLE 5.15 MAIN PIPE LAYING MEASURE (PRIMARY)

| Node                      | Major<br>Improved Area | Pipe<br>Diameter | Pipe<br>Length |
|---------------------------|------------------------|------------------|----------------|
| 115 - 120                 | Msasani peninsular     | 500 mm           | 1,000 m        |
| 120 - 128 - 127 - 124     | or Oyster bay          | 400              | 2,900          |
| 124 - 155                 | ditto.                 | 300              | 1,300          |
| 155 - 123                 | ditto.                 | 200              | 1,500          |
| 115 - 141 - 147 - 130     | Kinondoni              | 400              | 1,600          |
| 130 - 131                 | ditto.                 | 300              | 1,000          |
| 147 - 148 - 149           | ditto.                 | 200              | 2,000          |
| 304 - 326 - 320           | Temeke, Mtoni          | 500              | 2,300          |
| 320 - 318 - 329 - 301     | ditto.                 | 400              | 2,000          |
| 307 - 306 - 305           | Kurasini, Miburani     | 500              | 1,300          |
| 305 - 311 - 330           | ditto.                 | 400              | 1,700          |
| 323 - 324                 | ditto.                 | 250              | 1,300          |
| 306 - 322                 | ditto.                 | 200              | 500            |
| 313 - 314 - 315 - 316     | Vijibweni, Kigamboni   | 300              | 5.100          |
| Mtoni(350)- 351, 352, 353 | Mbagala                | 250              | 5,100          |
| 400 - 203 for Middle Zone |                        | 900              | 2,800          |
| 210 - 218 - 214           | Vingunguti, Kipawa     | 500              | 5,000          |
| TOTAL                     |                        |                  | 38,400 m       |

### 5.5.6 MAIN PIPE LAYING MEASURE (SECONDARY)

It is also proposed to establish a main pipe laying measure for secondary distribution mains and branch pipes to extend the network to new consumers once sufficient water is available.

There are areas where very little of the distribution system has been developed, particularly those in the recently developed outskirts of the city. Among them, entire areas are not selected for the short-term project, since only limited surplus water will be available. Water gained through leakage control should be diverted firstly to relatively important developed areas. Extension to all areas must await system expansion, as the investment cost required is enormous.

The five selected areas \*- Mbezi, Tabata, Ukonga, Yombo and Kigamboni (see Figure 5.2) - are relatively developed and are worthwhile investing in at an early stage. Further, the selected areas are all near the existing distribution system. Therefore, it is relatively easy to extend the secondary distribution pipe network.

The selected areas have been planned in accordance with the existing conditions and future development plans, as is shown in Table 5.16. The diameters of the proposed branch lines are between 100mm to 150mm PVC pipes.

New mains to be laid must be built to a higher standard than in the past. Materials, particularly pipes, need to be of a higher quality. With proper quality control, it should be possible to locally produce pipes to an acceptable standard. It is important that integrally moulded sockets should be used where PVC pipes are laid. It is also recommended that pipe classes are over specified with a minimum specification of Class D (working pressure 120 m). Construction techniques must be improved and work must be properly supervised. Adequate pressure testing must also be performed.

TABLE 5.16 MAIN PIPE LAYING MEASURE (SECONDARY)

| NAME OF AREA | SIZE OF AREA | PIPE LENGTH |
|--------------|--------------|-------------|
| <u> </u>     | (ha)         | (meter)     |
| TABATA       | 270          | 9,300       |
| YOMBO        | 150          | 8,300       |
| UKONGA       | 150          | 4,400       |
| MBEZI BEACH  | 260          | 14,300      |
| KIGAMBONI    | 190          | 10,500      |

### 5.5.7 MIDDLE ZONE CREATION

Establishment of operational zones for the distribution system, based on the three main sources at the University, Kimara and Mtoni is the most appropriate method. Zoning will need to be designed using the calibrated network model of the system and based on the general topography and major demand locations. Well defined zones should be capable of providing an adequate supply, with sufficient storage, at pressures of between 1.5 to 2.5 bar.

By designing the zones carefully, the need for costly and high maintenance pressure and flow regulating

<sup>\*</sup> Areas are explained in section 3, Appendix D.

or sustaining devices can be kept to a minimum. Consideration should also be given to increase the available storage capacity for DSM by including an additional, intermediate, reservoir and establishing a new zone; creation of a middle zone between the existing Kimara (upper) zone and the University (lower) zone. The cost-benefit of providing such a reservoir should be considered and the most appropriate location chosen so as to maintain gravity flow in the system as much as possible. Each distribution zone requires to be isolated to keep appropriate operational pressures. Water delivered from Kimara reservoir has high pressure and would better be distributed solely to high areas like the airport.

Highest static pressure in the lower zone is 66 meters, while that in the upper zone reaches 108 meters. The areas with high pressure stretch from along the Mandela road with ground elevation of about 40 meters towards the west. These areas are proposed to be part of the middle zone, and separated from the Upper zone.

When setting up the middle zone, part of western Temeke area should be separated from the current lower zone and incorporated into the middle zone. The area has chronically suffered from low water pressure due to relatively small head differential. The ground elevation in the western Temeke area is 40 to 50 meters while the low water level in the University reservoir is about 60 meters. Hence, there is a differential of only 10 to 20 meters and, considering the head loss, effective pressure is not sufficiently available in the Temeke area. To continue as a part of the Lower Ruvu system, other alternatives such as adding distribution mains leading to the Temeke within the lower zone and installing booster pumps will be required. But these alternatives appear uneconomical. Alternatively, the area is supplied from the Upper Ruvu system as long as surplus water is available in the Upper Ruvu system. In this case, its effective water pressure will become as high as 60 to 70 meters.

Water pressure control is necessary in the proposed middle zone to reduce the expected increase in leakage and wastage. Break pressure tanks or service reservoirs should be considered. In the long-term, new reservoirs are to be constructed for the middle zone. The high water levels of the reservoirs are to be about 100 meters, which is between the level of the two other reservoirs, 136 m and 70 meters, respectively. By doing so, the highest pressure in the middle zone can be reduced to 73 meters. By separating the middle zone from the upper zone, the highest pressure in the upper zone will also be reduced to 75 meters. Effective pressures of more than 70 meters will be reduced.

The reservoir should preferably be near the distribution mains along Morogoro road, between the Kimara reservoir and Ubungo junction, near the University reservoir, since water is taken from the Upper Ruvu system at Kimara and the additional pipes required will be short in length. The required capacity is equivalent to six hours detention time in 1995. The 2 proposed tanks should be 50 meters in length, 25 meters in width and 5 meters in side wall depth requiring 1.5 hectare of land. In connection with this, separate pipeline (refer to Figure 5.2) is required.

The break pressure tanks can be used even after water flow diverted from Kimara stops due to increased demand in the high zone. Instead, water is supplied either from the University reservoir or directly from the expanded Lower Ruvu transmission pipeline. The former needs booster pumps in the University reservoir, while the latter needs higher head than that available from expanded high-lift pumps in the Lower Ruvu plant.

The problem with the construction of a reservoir is cost. As the volume of the Kimara reservoir is 34,000 m<sup>3</sup>, it is sufficient for a 50,000 m<sup>3</sup>/day supply. Alternatively, cheaper pressure reducing valve can be used for the time being.

### 5.5.8 TREATMENT PLANT \*

### (1) LOWER RUVU SYSTEM

a) Reinstallation of low water level sensor in intake pumping station.

Two sets of low water level sensors are proposed to be installed in the intake pumping station

Type of sensor ...... Electrode bar sensor

Number of Sensor ...... Two sensors

b) Replacement of sludge drain pipe in clarifier.

Due to a lot of leakage from the existing sludge pipe, it is proposed that it be replaced with a new one to ensure proper drain of the settled sludge.

- \* Material of pipe ...... Ductile Iron Pipe (DIP)
- \* Inside diameter ...... 200 mm
- \* Proposed length ...... 30 metres
- \* Method of installation .... Jacking method
- c) Replacement of pipe in chlorinator

### (2) MTONI SYSTEM

- a) Repair of receiving well and coagulation basin.
  - \* Entire wall Painting to prevent corrosion by chemicals and patching works by steel plate to stop

<sup>\*</sup> Drawings for repairs in the treatment plants are shown in section 3, Appendix D.

leakage from the wall.

- \* Baffle works Reinstallation of baffle walls to prevent short-circuiting, in order to ensure provision of the design detention time.
- b) Repair chemical dosing equipment

### 5.6 PROJECT COST

### 5.6.1 BASIC IDEA

Unit costs, obtained in November 1990, and given in section 4, Appendix D are used for a cost estimation. Major cost components are as follows:-

- \* Pipe material costs ...... Imported
- \* Machine and equipment cost .... Market price in DSM
- \* Labour Cost ...... Market price in DSM

The costs include those for the site camp, insurance, temporary work, set-up, materials testing and transport. Direct foreign currency costs include pipe and equipment costs including materials, sales tax, duty, transport, handling, storage, trenching and laying (for pipes), erection and installation (for equipment) and testing.

### 5.6.2 COST ESTIMATETION

Costs required for the proposed rehabilitation projects are estimated, based on prices prevailing in November, 1990. Basic costs are provided here, and these do not include physical contingencies and administrative costs, which are given in the "disbursement schedule".

Table 5.17 summarizes the basic cost estimated for each rehabilitation item, broken down into foreign and local currency portions. The total estimated cost can be broken down into a foreign currency portion of T.Shs. 55 million and a local currency portion of T.Shs. 21 million.

The breakdown of the contractual and the in-house works are given in Table 5.18 and 5.19, respectively.

### TABLE 5.17 TOTAL PROJECT COST

(Unit: T.Shs.million)

| Measures Description                             | F.C.  | L.C.       | TOTAL |
|--------------------------------------------------|-------|------------|-------|
| IN-HOUSE WORKS (CONTINUOUS WORKS)                |       |            |       |
| H1 Meter installation                            | 524   | 15         | 538   |
| H2 Leakage control measure (Distribution system) |       |            |       |
| including mapping system                         | 1,095 | 171        | 1,266 |
| H3 Pipe cleaning                                 | 619   | 80         | 699   |
| H4 Arrears, illegal connection                   | 0     | 123        | 123   |
| SUB-TOTAL                                        | 2,237 | 388        | 2,625 |
| CONTRACTUAL WORKS (NON-CONTINUOUS WORKS)         |       |            |       |
| C1 Leakage control measure (Transmission System) | 31    | 12         | 43    |
| C2 Leakage control measure (Distribution system) | 180   | 432        | 612   |
| C3 Existing pipe connection                      | 238   | <i>5</i> 8 | 296   |
| C4 Main pipe laying (primary)                    | 1,492 | 338        | 1,830 |
| C5 Main pipe laying (secondary)                  | 121   | 245        | 366   |
| C6 Middle zone                                   | 1,181 | 667        | 1,848 |
| C7 Treatment plant                               | 54    | 5          | 59    |
| SUB-TOTAL                                        | 3,297 | 1,757      | 5,054 |
| TOTAL                                            | 5,535 | 2,146      | 7,680 |

TABLE 5.18 PROJECT COST OF CONTRACTUAL WORKS
(Unit: T.Shs. million)

|                                                                                                                                                                                                                                                                                   |                                                 | (                                       |                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------------|
| MEASURES DESCRIPTION                                                                                                                                                                                                                                                              | F.C.                                            | L.C. TO                                 | AL                                              |
| C1) LEAKAGE CONTROL MEASURE (TRANSMISSION L 1 Replace pressure reducing valve 2 Replace meter in off-takes SUB TOTAL                                                                                                                                                              | INE)  24 7 31                                   | 9<br>3<br>12                            | 33<br>10<br>43                                  |
| C2) LEAKAGE CONTROL MEASURE (DISTRIBUTION SY<br>1 Replace service pipe with distribution pipe                                                                                                                                                                                     | (STEM)<br>180                                   | 432                                     | 612                                             |
| C3) EXISTING PIPE CONNECTION                                                                                                                                                                                                                                                      | 238                                             | 58                                      | 296                                             |
| C4) MAIN PIPE LAYING (PRIMARY)  1 S & L pipe at Kinondoni (400 - 200 mm)  2 S & L pipe at Msasani (500 - 200 mm)  3 S & L pipe at Temeke (500 - 400 mm)  4 S & L pipe at Kurasini (500 - 200 mm)  5 S & L pipe at Kigamboni (300 mm)  6 S & L pipe at Mbagala (250 mm)  SUB TOTAL | 186<br>348<br>313<br>268<br>204<br>173<br>1,492 | 43<br>78<br>67<br>58<br>51<br>41<br>338 | 229<br>426<br>380<br>326<br>255<br>214<br>1,830 |
| C5) MAIN PIPE LAYING (SECONDARY)  1 S & L pipe at Mbezi  2 S & L pipe at Tabata  3 S & L pipe at Ukonga  4 S & L pipe at Yombo  5 S & L pipe at Kigamboni SUB TOTAL                                                                                                               | 37<br>24<br>11<br>22<br>27<br>121               | 75<br>48<br>23<br>44<br>55<br>245       | 112<br>72<br>34<br>66<br>82<br>366              |
| C6) MIDDLE ZONE  1 Break pressure tank 2 S & L pipe at Ubungo (900 mm) 3 S & L pipe at Vingunguti (500 mm) SUB TOTAL                                                                                                                                                              | 195<br>566<br>420<br>1,181                      | 459<br>118<br>90<br>667                 | 654<br>684<br>510<br>1,848                      |
| C7) TREATMENT PLANT<br>A LOWER RUVU TREATMENT PLANT<br>B MTONI TREATMENT PLANT<br>SUB TOTAL                                                                                                                                                                                       | 26<br>28<br>54                                  | 2<br>3<br>5                             | 28<br>31<br>59                                  |
| TOTAL                                                                                                                                                                                                                                                                             | 3,297                                           | 1,757                                   | 5,054                                           |

Note: F.C. = Foreign currency, L.C. = Local Currency portion, at November, 1990 price level, Exchange rate US\$ 1 = T.Shs. 200 = Japanese Yen 140, Total values may not match due to rounding-off.

TABLE 5.19 PROJECT COST OF IN-HOUSE WORKS

(Unit: T.Shs. million)

|                               |                 |                  |                                       | Cint . 1.5ns. min | 1011)        |
|-------------------------------|-----------------|------------------|---------------------------------------|-------------------|--------------|
| Measures                      | Personnel       | Equipment        | Operation                             | Material          | Total        |
| C1) METER INSTALL             | ATION           | -                |                                       |                   |              |
| F.C.<br>L.C.                  | 9               | 26               | .0                                    | 498               | 524          |
| TOTAL                         | 2               | 0<br>26          | 10<br>10                              | 408               | 15           |
|                               | ~ <del>~~</del> |                  |                                       | 498               | 538          |
| C2)-1 LEAKAGE CON             | TROL MEASUI     | RE               |                                       |                   |              |
| (distribution system)<br>F.C. | 206             | 237              | 0                                     | 648               | 1,091        |
| L.C.                          | 49              | 0                | 68                                    | 47                | 163          |
| TOTAL                         | 254             | 237              | 68                                    | 695               | 1,254        |
| C2)-2 MAPPING SYST            | EM              |                  |                                       |                   | <del></del>  |
| F.C.<br>L,C.                  | 0               | 4                | 0                                     | 0                 | 4            |
| TÖTAL                         | 4               | 0<br>4           | 4                                     | 0                 | 8<br>12      |
|                               |                 | •                | · · · · · · · · · · · · · · · · · · · | <u> </u>          | 12           |
| C3)PIPE CLEANING<br>F.C.      | 69              | 287              | 0                                     | 263               | <i>C</i> 10  |
| F.C.<br>L.C.                  | 28              | 2                | 38                                    | 13                | 619<br>80    |
| TOTAL                         | 96              | 289              | 38<br>38                              | 276               | 699          |
| C4)ARREARS, ILLEGA            | L CONNECTION    | ON               |                                       |                   |              |
| F.C.<br>L.C.                  | 0               | 0                | 0                                     | 0                 | 0            |
| L.C.<br>TOTAL                 | 0               | 120<br>120       | 3<br>3                                | 0                 | 123          |
|                               | U               | 120              | 3                                     | 0                 | 123          |
| Grand-Total                   | 224             | المراجع والمراجع |                                       |                   |              |
| F.C.<br>L.C.                  | 274<br>84       | 554<br>122       | 102                                   | 1,409             | 2,237        |
| TOTAL                         | 358             | 676              | 123<br>123                            | 60<br>1,468       | 388<br>2,625 |
|                               | ·               |                  |                                       | <u> </u>          | 2,023        |

Note: F.C. = Foreign currency, L.C. = Local Currency portion (at November, 1990 price level, Exchange rate US\$ 1 = T.Shs. 200 = Japanese Yen 140)

### 5.6.3 IMPLEMENTATION AND DISBURSEMENT SCHEDULE

The proposed rehabilitation measures must be carried out systematically in order to obtain the maximum benefit from the limited resources available.

The projects should be planned in such a way that those with high cost effectiveness are implemented first. Project selection in the sub-section 5.4.2 can serve to guide in the formulation of the order of implementation. Such an order is as follows;

- 1. Leakage control in the transmission line, Lower Ruvu system
- 2. Leakage control in the distribution system
  - 2.1 Wastage control
  - 2.2 Above-ground leakage control
  - 2.3 Underground leakage control
  - 2.4 Service pipes replacement with distribution pipe

- 3. Middle zone creation
- 4. Existing pipes connection
- 5. Main pipe laying (primary)
- 6. Main pipe laying (secondary and tertiary)
- 7. Connect existing pipes

Water conservation measures, i.e., items 1 and 2 above should generally precede other measures. In order to improve water supply in DSM, unaccounted-for water, including leakage and wastage needs to be decreased.

Items 1 and 2 are independent of each other and either can start first. Among the sub-item in item 2, the measures are arranged in the order of cost-effectiveness and ease of implementation. Item 2.1; wastage control and 2.2; above-ground leakage control can be easily started and resulting leakage reduction is high. Item 2.3; underground leakage control needs time-consuming preparatory works, such as making pipe drawings and construction of "waste districts". Item 2.4 may be delayed to come after item 6, since its cost-effectiveness is low.

After or during the leakage control measures, other measures such as pipe laying should start in order to distribute water adequately within the distribution system. The order of some of the measures in the above-mentioned list can be changed. Item 3 is a preventive measure against future leakage increase, and its implementation can be delayed. Item 4 can be conducted along with the leakage control measures since, it will improve hydraulic efficiency, once surplus water is produced within the distribution system.

The above discussions are applicable to conventional measures, which can be contractual works, and not to in-house works. All in-house works should commence from the beginning, since they will not only need some preparatory work but also take a long period to be implemented and to produce effects.

Pipe cleaning work should start immediately, even though cost-effectiveness is not high, since it requires a lot of preparatory work. Its immediate and direct effect is not so large, but if this is not started right from the beginning, the objectives cannot be attained by the target year. These types of work require planning, staff recruitment or relocation, training, procurement of equipment etc. in advance. Consequently, the implementation schedule is planned in Figure 5.6

The estimated costs and the implementation schedule were incorporated to prepare a project cost disbursement schedule, as given in Table 5.20. Fifteen percent was added to the basic cost as physical contingency and administrative costs. Inflation was assumed to be 5 % per annum for the foreign currency portions and 30 % for the local currency portions.

### FIGURE 5.6 IMPLEMENTATION SCHEDULE

| Ì            | Measures                                                                                      | 1991            | 1992                   | 1993          | 1994                                     | 1995                 |
|--------------|-----------------------------------------------------------------------------------------------|-----------------|------------------------|---------------|------------------------------------------|----------------------|
|              | A.IN-NOUSE WORKS (CONTINUOUS WORKS)<br>H1) METER INSTALLATION                                 | *====           | 22222                  |               |                                          |                      |
| <u> </u>     | H2)-1 LEAKAGE CONTROL MEASURE(distribution system) -1 Establish Leakage Control Strategy      | <br> <br>       |                        |               |                                          |                      |
|              | -2 Prepare Pipe Drawing and Record<br>-3 Conduct Leakage Detection and Repair                 | ======          |                        | ======        | <br>                                     | <br>======           |
|              | (Above-ground) -4 Conduct Leakage Detection and Repair (Underground and Above-ground)         |                 | <br> ======<br>        | =====         | =====<br>                                | <br> ≈=====<br>      |
| \<br> <br>   | (Underground and Noove ground) H2)-2 MAPPING                                                  | <br> ======<br> | <br> =====<br>         | ======        | =====                                    | <br> ====            |
|              | H3) PIPE CLEANING 1 Air scouring                                                              | 1               | 1                      | 22223         | •                                        | •                    |
| į            | 2 Scraping & lining                                                                           | =====<br>       |                        |               | =====<br>                                | ====<br>             |
|              | B.CONTRACTUAL WORKS (NON-CONTINUOUS WORKS) C1) Leakage Control Measure (transmission line)    | <u> </u>        |                        |               |                                          |                      |
|              | 1 Replace pressure reducing valve<br>2 Replace meter in off-takes                             | ======          |                        |               | <br> <br>                                | <br> <br>            |
| <br>         | C2) Leakage Control Measure (distribution system) Replace service pipe with distribution pipe |                 |                        |               | =====                                    | <br> <br> =====      |
|              | C3) EXISTING PIPE CONNECTION                                                                  | ======          |                        |               |                                          |                      |
| 1            | C4) MAIN PIPE LAYING (PRIMARY)  1 S & L pipe at Kinondoni 2 S & L pipe at Msasani             |                 | <br> s=====<br> s===== |               |                                          |                      |
| ]            | 3 S & L pipe at Temeke<br>4 S & L pipe at Kurasini                                            |                 |                        | =======       |                                          |                      |
|              | 5 S & L pipe at Kigamboni<br>6 S & L pipe at Mbagala                                          |                 | [<br>]<br>             | 222222        | <br>                                     | <br> <br>            |
|              | C5) MAIN PIPE LAYING (SECONDARY) 1 S & L pipe at Mbezi                                        |                 | <br> <br>              |               | <br> -====                               | <br> <br>            |
| <u> </u><br> | 2 S & L pipe at Tabata<br>3 S & L pipe at Ukonga<br>4 S & L pipe at Yombo                     |                 | <u> </u><br>           |               | ======<br>  ============================ | ļ                    |
|              | 5 S & L pipe at Kigamboni                                                                     | ļ<br>           | ļ<br>}                 | i<br>         | === <b>==</b><br>                        | i<br>}               |
|              | C6) MIDDLE ZONE<br>1 Break pressure tank                                                      | <u> </u>        | <u> </u>               | <u> </u>      |                                          | <br> =====           |
| }            | 2 S & L pipe at Ubungo<br>3 S & L pipe at Vingunguti                                          | ]<br> <br>      | \<br> <br>             | <br>  · :<br> | A                                        | =====<br> ======<br> |
|              | C7) TREATMENT PLANT<br>C7)-A LOWER RUVU TREATMENT PLANT                                       |                 |                        |               |                                          |                      |
|              | 1 S & I low water level sensor                                                                | }               | ======                 | ļ             | 4                                        | ١                    |
| ļ            | 2 \$ & I sludge pipe in clarifier 3 \$ & I chlorinator pipe                                   | =====<br> ===== |                        |               |                                          |                      |

### TABLE 5.20 DISBURSEMENT SCHEDULE

(Unit: T.Shs.million)

| **                                                                                                                                                                                                                                                |                                                 | 1004       | 4000              | 4007                              | 400/                               | 1995                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|-------------------|-----------------------------------|------------------------------------|----------------------------|
| Measures                                                                                                                                                                                                                                          | TOTAL                                           | 1991       | 1992              | 1993                              | 1994                               | 1993                       |
| A.IN-HOUSE WORKS (CONTINUOUS WORKS)                                                                                                                                                                                                               | ļ i                                             |            |                   |                                   |                                    |                            |
| 1) METERING SYSTEM                                                                                                                                                                                                                                | 538                                             | 277        | 253               | 3                                 | 3                                  | 3                          |
| 2)-1 LEAKAGE CONTROL MEASURE(DISTRIBUTION SYSTEM) 2)-2 MAPPING SYSTEM                                                                                                                                                                             | 1,254                                           | 397        | 275<br>2          | 252<br>2                          | 184<br>2                           | 145<br>2                   |
| SUB TOTAL                                                                                                                                                                                                                                         | 1,266                                           | 403        | 277               | 254                               | 186                                | 147                        |
| 3) PIPE CLEANING                                                                                                                                                                                                                                  | 699                                             | 424        | 69                | 69                                | 69                                 | 69                         |
| 4) ARREARS AND ILLEGAL CONNECTION                                                                                                                                                                                                                 | 123                                             | 25         | 25                | 25                                | 25                                 | 25                         |
| SUB-TOTAL (IN-HOUSE ACTIVITY)                                                                                                                                                                                                                     | 2,625                                           | 1,129      | 622               | 350                               | 281                                | 243                        |
| B.CONTRACTUAL WORKS (NON-CONTINUOUS WORKS)                                                                                                                                                                                                        |                                                 |            |                   |                                   |                                    |                            |
| LEAKAGE CONTROL MEASURE (TRANSMISSION LINE)     Replace pressure reducing valve     Replace meter in off-takes                                                                                                                                    | 33<br>10                                        | 33<br>10   |                   |                                   |                                    |                            |
| 2) LEAKAGE CONTROL MEASURE (DISTRIBUTION SYSTEM) Replace service pipe with distribution pipe                                                                                                                                                      | 612                                             |            |                   |                                   |                                    | 612                        |
| 3) EXISTING PIPE CONNECTION                                                                                                                                                                                                                       | 296                                             | 296        |                   |                                   |                                    |                            |
| 4) MAIN PIPE LAYING (PRIMARY) 1 Supply and Lay Pipe at Kinondoni 2 Supply and Lay Pipe at Msasani 3 Supply and Lay Pipe at Temeke 4 Supply and Lay Pipe at Kurasini 5 Supply and Lay Pipe at Kigamboni 6 Supply and Lay Pipe at Mbagala SUB TOTAL | 229<br>426<br>380<br>326<br>255<br>214<br>1,830 |            | 229<br>426<br>655 | 380<br>326<br>255<br>214<br>1,175 |                                    |                            |
| 5) MAIN PIPE LAYING (SECONDARY) 1 Supply and Lay Pipe at Mbezi 2 Supply and Lay Pipe at Tabata 3 Supply and Lay Pipe at Ukonga 4 Supply and Lay Pipe at Yombo 5 Supply and Lay Pipe at Kigamboni SUB TOTAL                                        | 112<br>72<br>34<br>66<br>82<br>366              |            |                   |                                   | 112<br>72<br>34<br>66<br>82<br>366 |                            |
| 6) MIDDLE ZONE 1 Break pressure tank 2 Supply and Lay Pipe at Ubungo 3 Supply and Lay Pipe at Vingunguti SUB TOTAL                                                                                                                                | 654<br>684<br>510<br>1,848                      |            |                   |                                   |                                    | 654<br>684<br>510<br>1,848 |
| 7) TREATMENT PLANT 1 LONER RUYU TREATMENT PLANT 2 MTONI TREATMENT PLANT SUB TOTAL                                                                                                                                                                 | 59                                              | 59         |                   | ••                                |                                    |                            |
| SUB-TOYAL (CONTRACTUAL WORK)                                                                                                                                                                                                                      | 5,054                                           | 398        | 655               | 1,175                             | 366                                | 2,460                      |
| TOTAL                                                                                                                                                                                                                                             | 7,680                                           | 1,526      | 1,280             | 1,526                             | 648                                | 2,704                      |
| PHYSICAL CONTINGENCY<br>PRICE CONTINGENCY                                                                                                                                                                                                         | 1,151<br>5,606                                  | 229<br>132 | 191<br>288        | 229<br>631                        | 97<br>775                          | 405<br>3,780               |
| GRAND TOTAL                                                                                                                                                                                                                                       | 14,436                                          | 1,888      | 1,756             | 2,384                             | 1,519                              | 6,888                      |

<sup>(1</sup> US\$ = T.Shs.200 = Japanese Yen 140, at November, 1990)

# TABLE 5.21 DISBURSEMENT SCHEDULE (CONTRACTUAL WORKS)

|                                                                                                                                                                                                                                                                                      |                      |                                             |                                               | i                                               |                                                |                |                       | :               |                        |                           |                                 |              |                                  | (Unit                 | **                | T.Shs. f   | million)                                | 2                      | ı     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------------------------|----------------|-----------------------|-----------------|------------------------|---------------------------|---------------------------------|--------------|----------------------------------|-----------------------|-------------------|------------|-----------------------------------------|------------------------|-------|
| MEASURES DESCRIPTION                                                                                                                                                                                                                                                                 | Unit                 | Quan-<br>tity                               | F.C.                                          | TOTAL<br>L.C. TO                                | TOTAL                                          | 19<br>F.C. L   | 1991<br>L.C. S.T.     | u<br>U          | 1992<br>C. L.C.        | s.T.                      | F.C.                            | 1993<br>L.C. | S.T.                             | 1994<br>F.C. L.C.     |                   | S.T. F     | 1995<br>F.C. 1.C.                       | S.T.                   |       |
| 1) LEAKAGE CONTROL MEASURE (TRANSMISSION LINE)<br>1 Replace pressure reducing valve<br>2 Replace meter in off-takes<br>SUB TOTAL                                                                                                                                                     | each<br>each         | 35                                          | 24<br>7<br>31                                 | o พ บี                                          | £3 43 43 43 43 43 43 43 43 43 43 43 43 43      | 3,7 24         | 9 33<br>3 10<br>12 43 | w C N           | ·                      |                           |                                 | ·            |                                  | İ                     | ·                 |            | e <sup>*</sup>                          |                        |       |
| 2) LEAKAGE CONTROL MEASURE(DISTRIBUTION SYSTEM) 1 Replace service pipe with distribution pipe                                                                                                                                                                                        | E                    | 90,000                                      | 180                                           | 432                                             | 612                                            |                |                       |                 |                        |                           |                                 |              |                                  |                       |                   |            | 180 432                                 | 2 612                  |       |
| 3) EXISTING PIPE CONNECTION                                                                                                                                                                                                                                                          | each                 | 14                                          | 238                                           | 58                                              | 962                                            | 238            | 58 296                |                 |                        |                           |                                 |              |                                  |                       |                   |            |                                         |                        | ·     |
| 4) MAIN PIPE LAYING (PRIMARY) 2 S & L pipe at Kinondoni 400 - 200 mm 2 S & L pipe at Msasani 500 - 200 mm 3 S & L pipe at Temeke 500 - 400 mm 4 S & L pipe at Kurasini 500 - 200 mm 5 S & L pipe at Kigamboni 500 mm 6 S & L pipe at Kigamboni 300 mm 8 S & L pipe at Mbagala 250 mm | EEE88E               | 4,600<br>6,700<br>4,300<br>4,800<br>5,100   | 186<br>348<br>348<br>313<br>268<br>204<br>173 | 43<br>67<br>58<br>58<br>51<br>338               | 229<br>426<br>380<br>326<br>255<br>255<br>1830 | 1 1            |                       | 186 348 348     | 26 43<br>8 43<br>78 78 | \$ 229<br>\$ 426<br>1 655 | 313<br>268<br>204<br>173<br>958 | 588 51 277 1 | 380<br>326<br>255<br>214<br>1175 |                       |                   | <u>[</u>   |                                         |                        | r     |
| 5) MAIN PIPE LAYING (SECONDARY) 2 & L pipe at Mbezi 2 S & L pipe at Tabata 3 S & L pipe at Vonga 4 S & L pipe at Yombo 5 S & L pipe at Kigamboni                                                                                                                                     | 86888                | 14,300<br>9,300<br>4,400<br>8,300<br>10,500 | 37<br>24<br>11<br>22<br>121                   | 25 24 23 25 25 25 25 25 25 25 25 25 25 25 25 25 | 122<br>365<br>366<br>366                       |                |                       | <u> </u>        |                        |                           |                                 |              |                                  | 25<br>11<br>121<br>27 | 7832483<br>783483 | 388822     |                                         |                        | [     |
| 6) MIDDLE ZONE 1 Break pressure tank 2 S & L pipe at Ubungo 900 mm 3 S & L pipe at Vingunguti 500 mm SUB 10TAL                                                                                                                                                                       | ME E E               | 10,600<br>2,800<br>5,000                    | 195<br>566<br>420<br>1181                     | 459<br>118<br>90<br>667                         | 654<br>684<br>510<br>1848                      |                |                       |                 |                        |                           |                                 |              |                                  |                       |                   |            | 195 459<br>566 118<br>420 90<br>181 667 | 654<br>8 684<br>7 1848 |       |
| 7) TREATMENT PLANT LOWER RUVU TREATMENT PLANT MYONI TREATMENT PLANT SUB TOTAL                                                                                                                                                                                                        |                      |                                             | 28<br>28<br>54                                | NWN                                             | 28<br>31<br>59                                 | 54<br>28<br>28 | G W W                 | 28<br>331<br>59 |                        |                           |                                 |              |                                  |                       | *.  <br>*.        |            |                                         |                        |       |
| TOTAL (1 7)                                                                                                                                                                                                                                                                          |                      |                                             | 3297                                          | 1757                                            | 5054                                           | 323            | 75 398                | ļ               | 534 121                | 1 655                     | 958                             | 217          | 1175                             | 121                   | 245 3             | 366 1.     | 1361 1099                               | 79 2460                | _ [   |
| PHYSICAL CONTINGENCY PRICE CONTINGENCY                                                                                                                                                                                                                                               |                      |                                             | 494<br>718                                    | 263<br>4000                                     | 757<br>4718                                    | 48<br>19       | 11<br>26 4            | 59 3            | 80<br>63<br>9          | 18 98<br>96 159           | 144<br>174                      | 32<br>298    | 92t<br>472                       | 85 GZ                 | 37<br>523 5       | 553        | 204 165<br>432 3057                     | 55 369<br>57 3489      | ^ ^ ] |
| GRAND TOTAL                                                                                                                                                                                                                                                                          |                      |                                             | 4209                                          | 6020                                            | 10529                                          | 389            | 112 501               |                 | 678 235                | 5 913                     | 1275                            | 247          | 1822                             | 169                   | 305 9             | 976 19     | 1997 4321                               | 1 6318                 |       |
| Note : F.C.= Foreign currency portion, L.C.= (1 US\$ = T.Shs.200 = Japanese Yen 140, at                                                                                                                                                                                              | L.C.= Lo<br>0, at No | Local currency portion<br>November, 1990)   | ency po<br>1990)                              | rtion                                           | "                                              | S              | supply and install,   | and             | instal                 |                           | 5 % L                           | ddns -       | = supply and lay,                | lay,                  | .s.               | <b>3</b> 3 | uns dun₁ ⊭                              |                        |       |

## TABLE 5.22 DISBURSEMENT SCHEDULE (IN-HOUSE WORKS)

(Unit : T.Shs. million)

| Measures                                                                                                     | F.C.                              | Total*1<br>L.C.      | TOTAL                               | ٦.<br>ن.                        | 1991<br>L.C.                             | TOTAL                   | . n                   | 1992<br>L.C. TC          | TOTAL F                      | 1993<br>F.C. L.C.                                 | 73<br>TOTAL                                 | F.C.              | 1994<br>L.C. TOTAL   | TOTAL                               | U.                   | 1995<br>L.C. 7 | TOTAL                        | 1995 (       | 5 (Replace) | ace)      |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|-------------------------------------|---------------------------------|------------------------------------------|-------------------------|-----------------------|--------------------------|------------------------------|---------------------------------------------------|---------------------------------------------|-------------------|----------------------|-------------------------------------|----------------------|----------------|------------------------------|--------------|-------------|-----------|
| 1) METER INSTALLATION<br>(1)Labor<br>(2)Machine Parts<br>(3)Maintenance<br>(4)Material<br>Sub-Total          | 0<br>26<br>0<br>498<br>524        | 2000                 | 26<br>26<br>10<br>498<br>538        | 25<br>249<br>274                | -00 W                                    | 25 27 249 277           | 1<br>249<br>250       | ← 0 .w.                  | 1<br>2<br>249<br>253         | 6 4 62 6<br>6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 4 2 4<br>4000                               |                   | - N M                | 4000m                               | 0                    | - N M          | monom                        | 5 5          | 0 0         | 02005     |
| 2)-1 LEAKAGE CONTROL MEASURE<br>(1)Labor<br>(2)Machine Parts<br>(3)Maintenance<br>(4)Material<br>Sub-Total   | 206<br>237<br>0<br>648<br>1,091   | 64<br>68<br>0<br>163 | 254<br>237<br>68<br>695<br>1,254    | 69<br>237<br>66<br>371          | 00 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 23.7<br>44<br>59<br>397 | 69<br>172<br>240      | 5 45K                    | 78<br>0<br>14<br>183<br>275  | 69 149 217                                        | 10 78<br>0 14 14<br>12 160<br>35 252        | 149               | 5 45K                | 01<br>0 0<br>161<br>184             | 114<br>114           | 32 22          | 0 0 125<br>122<br>145        | 8 8          | 0 0         | 03003     |
| 2)-2 MAPPING SYSTEM<br>(1)Labor<br>(2)Machine Parts<br>(3)Maintenance<br>(4)Material<br>Sub-Total            | 04004                             | 40408                | 4 N 4 O Ú                           | 4. 4                            | <b>←o</b> ⊷ 0                            | - n-00                  | •                     | 2                        | -0-0N                        | 0                                                 | 2<br>- 0 - 0 2                              |                   | 4                    | -0-0N                               | 6                    | e              | -0-0N                        | 4 4          | 0 0         | 01000     |
| 3) PIPE CLEANING (1)Labor (2)Machine Parts (3)Maintenance (4)Material Sub-Total                              | 69<br>287<br>0<br>263<br>619      | 28<br>138<br>80      | 96<br>289<br>38<br>276<br>699       | 69<br>287<br>51<br>407          | 27.88.7                                  | 289<br>289<br>53<br>53  | 53.53                 | 0 00 m                   | 20 m 20 %                    | 22.23                                             | 6 69 64 64 64 64 64 64 64 64 64 64 64 64 64 | 53.53             | o oné                | 20826                               | 21.23                | တ ဆကည္         | AC 8 76 0                    | <u>€</u> €   | 0           | 0 % 0 0 % |
| 4) ARREARS, ILLEGAL CONNECTION<br>(1)Labor<br>(2)Machine Parts<br>(3)Maintenance<br>(4)Material<br>Sub-Total | 00000                             | 120<br>3<br>123      | 120<br>3<br>3<br>123                | 0                               | 24<br>1<br>25                            | 3,00                    | . 0                   | 25<br>25                 | 220 7 50                     | 0                                                 | 24 24<br>1 1 1 25 25 25                     | 0                 | 25 75                | 0% - 0%                             | .0                   | 25 - 25        | 042-08                       | <b>C</b> ) - | 0           | 00000     |
| SUB TOTAL (1)Labor (2)Machine Parts (3)Maintenance (4)Material Sub-Total                                     | 274<br>554<br>0<br>1,409<br>2,237 | 388                  | 358<br>676<br>123<br>1,468<br>2,625 | 137<br>553<br>0<br>365<br>1,056 | 77<br>26<br>25<br>6<br>74 1              | 154<br>580<br>25<br>371 | 69<br>1<br>474<br>543 | 24<br>24<br>14 4<br>80 6 | 85<br>25<br>24<br>488<br>622 | 69<br>0<br>0<br>202<br>270<br>8                   | 17 85<br>24 24<br>24 24<br>14 216<br>80 350 | 202<br>202<br>202 | 24<br>24<br>24<br>28 | 17<br>24<br>24<br>216<br>216<br>281 | 0<br>0<br>167<br>167 | 24<br>11<br>76 | 17<br>24<br>24<br>178<br>243 | ဝထိဝဝဆိ      | 0~00~       | 08008     |
| PHYSICAL CONTINGENCY                                                                                         | 336                               | 58                   | 394                                 | 158                             | Ξ.                                       | 170                     | 81                    | 12                       | 93                           | 1.4                                               | 12 53                                       | 30                | 12                   | 4.2                                 | 52                   | 4.             | 38                           | 15           | ۵           | 172       |
| PRICE CONTINGENCY                                                                                            | 276                               | 809                  | 888                                 | 19                              | 52                                       | 87                      | \$                    | 63                       | 129                          | 4.8                                               | 110 159                                     | 50                | 171                  | 222                                 | 23                   | 238            | 29.1                         | 31           | 3           | 뀱         |
| GRAND TOTAL                                                                                                  | 2,849                             | 1,056                | 3,907                               | 1,275                           | 111                                      | 1,386                   | 888                   | 155 8                    | 844                          | 359 20                                            | 202 562                                     | 282               | 263                  | 545                                 | 245                  | 325            | 570                          | 144          | 4           | 148       |

Note: \*1 Except Replace Parts in 1995. F.C.= Foreign currency portion, L.C.= Local currency portion (1 USS = 1.Shs.200 = Japanese Yen 140, at November, 1990)

S & I = supply and install, S & L = supply and lay, [.s. = [ump sum

### 5.7 PROJECT EVALUATION

### 5.7.1 FINANCIAL ANALYSIS

### (1) FRAMEWORK

The principle objective of financial analysis is to evaluate the financial viability of the proposed projects and clarify the effect of the investment on the financial position of NUWA, DSMB.

The proposed rehabilitation project consists of the facility rehabilitation projects, meter installation and administrative improvement programmes (reduction of arrears and illegal connections). The projects have been evaluated as following.

It has been primarily examined whether the revenues generated from implementation of the proposed facility improvement projects and meter installation cover the investment costs of the project including operations and maintenance costs. Secondly, revenue increase through administrative improvement programmes has been evaluated in order to clarify the financial viability of the proposed projects. Furthermore, financing by means other than from project revenue has also been reviewed.

The financial efficiency of meter installation has been evaluated in Chapter 6 (refer to 6.4.2).

The proposed rehabilitation project is intended to be implemented over a period of five years, ending in 1995. Tables 5.23 and 5.24 give the costs schedules of the projects, including operations and maintenance costs, and physical contingency which is estimated to be 15 % of the total costs.

### (2) ASSUMPTIONS

The following assumptions have been made to evaluate the project:

- Project costs have been estimated at November 1990 market prices.
- For revenue estimation, the revised tariff including the proposed 68 % increase from July 1, 1991 is assumed.
- Project term is assumed to be 20 years, after the target year when rehabilitation projects will be completed.
- Physical contingency is assumed to be 15% of the total costs.
- Inflation has not been taken into account both for revenue and for expenditure projections in financial analysis. However, for the present financial plan, inflation has been estimated at 5 % for the foreign currency portion and 30% for the local currency portion.

- Depreciation has been calculated according to NUWA regulations. Depreciation schedule is given in Table D.6.2, Appendix D. Replacement costs after the depreciation period are included in the estimates.
- The salvage value (undepreciated value) is assumed as a negative cost in the final year of the project life.
- Income tax has not been taken into account, because NUWA is exempted from paying income tax.

Comparison of "With and Without Project" is used to evaluate the Project. Water demand, suppression factors, suppressed consumption, water billings and collected revenues "Without the Project" and "With the Project" are assessed in Table D.6.3, Appendix D.

TABLE 5.23 COST ESTIMATE OF PROPOSED PROGRAMMES

(Unit: T.Shs.million)

|    | -      | GR     | AND TOT | AL     |        | ABILITA<br>JECT (F | TION<br>ACILITY) |       | METER<br>TALLATI | ON    |      | INISTRA<br>MPROVEN |       |
|----|--------|--------|---------|--------|--------|--------------------|------------------|-------|------------------|-------|------|--------------------|-------|
|    | - 1    | F.C.   | L.C.    | TOTAL  | F.C.   | L.C.               | TOTAL            | F.C.  | L.C.             | TOTAL | F.C. | L.C.               | TOTAL |
|    | 1 1991 | 1,585  |         | 1,755  | 1,268  | 139                | 1,407            | 315   | 3                | 318   | 2    | 28                 | 30    |
| 1  | 2 1992 | 1,238  |         | 1,467  | 951    |                    | 1,149            | 287   | 3                | 290   | 0    | 28                 | 28    |
|    | 3 1993 | 1,412  |         | 1,752  | 1,412  |                    | 1,721            | 0     | . 3              | 3     | 0    | 28                 | 28    |
|    | 4 1994 | 371    |         | 743    | 371    |                    | 712              | 0     | 3                | 3     | -0   | 28                 | 28    |
| L  | 5 1995 | 1,869  | 1,351   | 3,220  | 1,858  | 1,320              | 3,178            | 11    | 3                | 14    | 0    | 28                 | 28    |
|    | 5 1996 | 550    |         | 627    | 530    | 46                 | 576              | 18    | 3                | 21    | 2    | 28                 | 30    |
|    | 7 1997 | . 1    | 74      | . 74   | 0      | 43                 | 43               | 1     | 3                | 4     | 0    | 28                 | 28    |
|    | 3 1998 | 0      |         | 74     | 0      | 43                 | 43               | 0     | -3               | 3     | Ö    | 28                 | 28    |
|    | 7 1999 | 113    |         | 187    | 102    | 43                 | 145              | 11    | - 3              | - 14  | -0   | 28                 | 28    |
| 11 | 2000   | 0      | 74      | 74     | 0      | 43                 | 43               | 0     | 3                | 3     | 0    | 28                 | 28    |
|    | 2001   | 872    |         | 963    | 566    | 60                 | 625              | 304   | 3                | 307   | . 2  | 28                 | 30    |
|    | 2002   | 287    | 74      | 361    | 0      | 43                 | .43              | 287   | 3                | 290   | Õ    | 28                 | 28    |
|    | 2003   | 113    | 74      | 187    | 102    | 43                 | 145              | 11    | 3                | 14    | o    | 28                 | 28    |
|    | 2004   | 0      | 74      | 74     | 0      | 43                 | - 43             | 0     | 3                | 3     | Ó    | 28                 | 28    |
| 15 | 2005   | 0      | - 74    | 74     | . 0    | 43                 | 43               | 0     | 3                | ે 3   | 0    | 28                 | 28    |
|    | 2006   | 550    | 77      | 627    | 530    | 46                 | 576              | 18    | 3                | 21    | 2    | 28                 | 30    |
|    | 2007   | 113    | 74      | 187    | 102    | 43                 | 145              | 12    | 3                | 15    | ō    | 28                 | 28    |
|    | 2008   | 0      | 74      | 74     | 0      | 43                 | 43               | . 0   | 3                | 3     | Ō    | 28                 | 28    |
|    | 2009   | : 0    | 74      | 74     | 0      | 43                 | 43               | 0     | 3                | 3     | Ō    | 28                 | 28    |
| 20 | 2010   | 0      | 74      | 74     | 0      | 43                 | 43               | 0     | 3                | 3     | 0    | 28                 | 28    |
|    | 2011   | 1,428  | 170     | 1,597  | 1,111  | 139                | 1,249            | 315   | 3                | 318   | 2    | 28                 | 30    |
|    | 2012   | 1,159  | 229     | 1,388  | 872    | 198                | 1,070            | 287   | 3                | 290   | ō    | 28                 | 28    |
|    | 2013   | 1,333  | 340     | 1,673  | 1,333  | 309                | 1,642            | 0     | 3                | . 3   | ŏ    | 28                 | 28    |
|    | 2014   | 371    | 372     | 743    | 371    | 341                | 712              | Ö     | 3                | 3     | 0    | 28                 | 28    |
|    | 2015 . | 1,645  | 823     | 2,468  | 1,634  | 792                | 2,426            | 11    | 3                | 14    | ŏ    | 28                 | 28    |
| Sa | lvage  | 111    |         |        |        | •                  |                  | ''    | -                | - ''' | . •  | 0                  |       |
|    | cost   | -4,476 | -1,647  | -6,123 | -4,153 | -1,647             | -5,801           | -323  | 0                | -323  | 0.   | 0                  | ٥     |
| T  | OTAL   | 10,532 | 3,880   | 14,412 | 8,958  | 3,101              | 12,059           | 1,562 | 83               | 1,645 | 12   | 696                | 707   |

TABLE 5.24 COST ESTIMATE OF PROPOSED PROGRAMMES BY DEPRECIATION PERIOD (Unit: 1.5hs.million)

|         | GRA    | ND TOTA | L      | TOTAL O | FCAPITA | AL COST | TOTAL | L OF 0&1 | 1 COST | BI   | JILDIA | IG .  | PIPE   | & FITTI | NGS    |
|---------|--------|---------|--------|---------|---------|---------|-------|----------|--------|------|--------|-------|--------|---------|--------|
|         | F.C.   | L.C.    | TOTAL  | F.C.    | L.C.    | TOTAL   | F.C.  | L.C.     | TOTAL  | F.C. | L.Ç.   | TOTAL | F.C.   | 1.C.    | TOTAL  |
| 1 1991  | 1,585  | 170     | 1,755  | 1,585   | 96      | 1,681   | 0     | 75       | 75     | 0    | 0      | . 0   | 443    | 78      | 522    |
| 2 1992  | 1,238  | 229     | 1,467  | 1,238   | 156     | 1,393   | 0     | 74       | 74     | 0    | . 0    | 0     | 872    | 156     | 1,028  |
| 3 1993  | 1,412  | 340     | 1,752  | 1,412   | 266     | 1,678   | lo    | 74       | 74     | 0    | . 0    | . 0   | 1,333  |         | 1,599  |
| 4 1994  | 371    | 372     | 743    | 371     | 298     | 669     | 0     | 74       | 74     | 0    | 0      | 0     | 371    | 298     | 669    |
| 5 1995  | 1.869  | 1,351   | 3,220  | 1.869   | 1,277   | 3,146   | 0     | 74       | 74     | 224  | 528    | 752   | 1.532  | 749     | 2,281  |
| 6 1996  | 550    | 77      | 627    | 550     | 3       | 553     | lo    | 74       | 74     | 0    | 0      | 0     | 0      | 0       | 0      |
| 7 1997  | 1      | 74      | 74     | 1       | 0       | 1       | 0     | 74       | 74     | 0    | .0     | 0     | 0      | 0       | 0      |
| 8 1998  | Ò      | 74      | 74     | Ò       | 0       | 0       | 0     | 74       | 74     | 0    | Đ      | 0     | 0      | 0       | 0      |
| 9 1999  | 113    | 74      | 187    | 113     | 1       | 113     | la    | 74       | - 74   | lo   | 0      | 0     | 0      | 0       | . 0    |
| 10 2000 | 0      | 74      | 74     | 0       | 0       | 0       | 0     | 74       | 74     | 0    | 0      | 0     | 0      | 0       | 0      |
| 11 2001 | 872    | 91      | 963    | 872     | 17      | 889     | 0     | . 74     | 74     | 0    | 0      | 0     | Ü      | 0       | 0      |
| 12 2002 | 287    | 74      | 361    | 287     | Ö       | 287     | 0     | 74       | 74     | 0    | 0      | 0     | 0      | 0       | 0      |
| 13 2003 | 113    | 74      | 187    | 113     | 1       | 113     | 0     | 74       | 74     | 0    | 0      | 0     | 0      | 0       | 0      |
| 14 2004 | Ö      | 74      | 74     | 1 0     | . 0     | 0       | 0     | 74       | 74     | 0    | 0      | 0     | 0      | 0       | 0      |
| 15 2005 | ŏ      | 74      | 74     | ٥       | Ō       | 0       | 0     | 74       | 74     | 0    | 0      | 0     | 0      | 0       | 0      |
| 16 2006 | 550    | 77      | 627    | 550     | . 3     | 553     | 0     | 74       | 74     | 0    | 0.     | 0     | 0      | 0       | 0      |
| 17 2007 | 113    | 74      | 187    | 113     | 1       | 114     | 0     | 74       | .74    | 0    | 0      | 0     | 0      | 0       | 0      |
| 18 2008 | ا ا    | 74      | 74     | l õ     | Ó       | 0       | 0     | 74       | 74     | 0    | 0      | 0     | 0      | 0       | 0      |
| 19 2009 | ŏ      | 74      | 74     | Ò       | Ō       | 0       | 0     | 74       | 74     | 0    | 0      | 0     | . 0    | 0       | 0      |
| 20 2010 | ŏ      | 74      | 74     | 0       | Ö       | 0       | 0     | 74       | 74     | 0    | 0      | 0     | - 0    | . 0     | · 0    |
| 21 2011 | 1,428  | 170     | 1,597  | 1,428   | 96      | 1,524   | 0     | 74       | 74     | 0    | 0      | 0     | 443    | 78      | 521    |
| 22 2012 | 1,159  | 229     | 1,388  |         | 156     | 1 314   |       | 74       | 74     | ) 0  | 0      | 0     | 872    | 156     | 1,028  |
| 23 2013 | 1,333  | 340     |        | 1,333   | 266     | 1,599   |       | 74       | 74     | 0    | 0      | 0     | 1,333  | 266     | 1,599  |
| 24 2014 | 371    | 372     | 743    | 371     | 298     | 669     | Ò     | 74       | 74     |      | 0      | 0     | 371    | 298     | 669    |
| 25 2015 | 1,645  | 823     | 2,468  | 1 .     | 749     | 2 394   |       | 74       | 74     | 0    | 0      | 0     | 1,532  | 749     | 2,281  |
| Salvage | 1,043  | OL.J    | L,400  | ''''    | , ,,    | -,-,-   | _     | - •      |        |      |        | 2.1.7 |        |         | -      |
| cost    | -4,477 | -1,647  | -6,124 | -4,477  | -1,647  | -6,124  | 0     | 0        | 0      | -107 | -251   | -357  | -3,953 | -1,389  | -5,342 |
| TOTAL   | 10,532 | 3,880   | 14,412 | 10,532  | 2,037   | 12,569  | 0     | 1,843    | 1,843  | 118  | 277    | 395   | 5,151  | 1,705   | 6,855  |

|    |      | MACHI | HERY | nstall | MACHI | NERY | MOBILE | MOTOR  | VE  | HICLE | EQUI | PME  | T, TOOL | l     | ABOUI  | R     | 0.8  | M L   | ABOUR | C    | 8 M  | <u> </u> |
|----|------|-------|------|--------|-------|------|--------|--------|-----|-------|------|------|---------|-------|--------|-------|------|-------|-------|------|------|----------|
| _  |      | F.C.  | L.G. | TOTAL  | F.C.  | L.C. | TOTAL  | F.C. L | .с. | TOTAL | F.C. | .L.0 | .TOTAL  | F.C.  | L.C.   | TOTAL | F.C. | L.C.  | TOTAL | F.C. | .c.1 | OTAL     |
| 1  | 1991 | 322   | 14   | 336    | 296   | 3    | 299    | 254    | 0   | 254   | 113  | 1    | 113     | 158   | 0      | 158   | 0    | 48    |       | 0    | 26   | 26       |
|    | 1992 | 286   |      | 286    | 0     | ō    | 0      | 1      | ٥   | - 1   | 0    | . 0  | 0       | 79    | . 0    | 79    | 0    | 48    |       | 0    | 26   | 26       |
|    | 1993 | 0     | Ğ    | . 0    | ā     | 0    | 0      | Q      | 0   | 0     | 0    | 0    | 0       | 79    | 0      | 79    | 0    | 48    |       | 0    | 26   | 26       |
|    | 1994 | ا     | . o  | . 0    | Ō     | Ō    | 0      | 0      | 0   | 0     | 0.   | - 0  | 0 - 1   | 0     | 0      | 0     | 0    | 48    |       | 0    | 26   | 26       |
|    | 1995 | ìò    | Ö    | 0      | Ó     | 0    | 0      | - 0    | 0   | . 0   | 113  | 1    | 113     | D     | 0      | Đ     | 0    | 48    |       | 0    | 26   | 26       |
|    | 1996 | ا     | 0    | 0      | 296   | 3    | 299    | 254    | 0   | 254   | ( 0  | 0    | 10      | 0     | 0      | 0     | 0    | 48    |       | 0    | 26   | 26       |
|    | 1997 | 0     | 0    | 0      | 0     | 0    | . 0    | 1      | 0   | 1     | 0    | 0    | 0       | 0     | 0      | 0     | 0    | 48    |       | 0    | 26   | 26       |
|    | 1998 | 0     | 0    | 0      | 0     | . 0  | . 0    | 0      | 0   | 0     | 0    | C    | _       | 0     | 0      | 0     | 0    | 48    |       | 0    | 26   | 26       |
|    | 1999 | Ò     | Q    | . 0    | . 0   | - 0  | 0      | 0      | 0   | : 0   | 113  | 1    | 113     | 0     | . 0    | 0     | 0    | 48    |       | 0    | 26   | 26       |
| ,  | 2000 | ا ا   | 0    | 0      | 0     | . 0  | 0      | 0      | 0   | 0     | 0    | 0    | ) · 0   | 0     | 0      | .0    | 0    | 48    |       | 0    | 26   | 26       |
|    | 2001 | 322   | 14   | 336    | 296   | 3    | 299    | 254    | 0   | 254   | 0    | . 6  | ) 1 0   | 0     | 0      | 0     | 0    | 48    |       | 0    | 26   | 26       |
|    | 2002 | 286   | 0    | 286    | Q     | Û    | 0      | 1      | 0   | 1     | 0    | 0    | 0       | 0     | 0      | . 0   | 0    | 48    |       | 0    | 26   | : 26     |
|    | 2003 | 0     | 0    | Ö      | 0     | 0    | 0      | . 0    | 0   | 0     | 113  | 1    | 113     | 0     | 0      | 0     | 0 -  | 48    |       | 0    | 26   | 26       |
|    | 2004 | 0     | Ô    | 0      | 0     | . 0  | . 0    | 0      | . 0 | 0     | 0    |      | 0       | 0     | Đ      | 0     | 0    | 48    |       | 0    | 26   | 56       |
|    | 2005 | 0     | Ď    | 0      | lò    | 0    | O      | .0     | 0   | . 0   | 0    | . 0  | . 0     | ( = 0 | 0      | 0     | ,O   | 48    |       | 0    | - 26 | 26       |
|    | 2006 | lo    | Õ    | 0      | 296   | 3    | 299    | 254    | 0   | 254   | 0    | . 0  | 0       | 0     | 0      | 0     | 0    | 48    |       | 0    | . 26 | 26       |
|    | 2007 | Ŏ     | ñ    | ō'     | 0     | 0    | 0      | 1      | 0   | - 1   | 113  | 1    | 113     | 0     | ្រ     | 0     | Ð    | 48    |       | 0    | 26   | . 26     |
|    | 2008 | ľ     | ō    | ان ب   | l o   | 0    | . 0    | Q      | 0   | - 0   | 0    | Ċ    | ) 0     | 0     | 0      | 0     | 0    | 48    |       | 0    | 26   | 26       |
|    | 2009 | ة ا   | ŏ    | 0      | 0     | 0    | 0      | 0      | 0   | . 0   | 0    | (    | 0       | 0     | 0      | 0     | 0    | 48    |       | . 0  | 26   | 26       |
|    | 2010 | Ó     | Õ    | 0      | Ó     | 0    | . 0    | 0      | 0   | D     | 0:   | t    | 0 (     | 0     | .0     | 0     | 0    | 48    |       | 0    | 26   | 26       |
|    | 2011 | 322   | 14   | 336    | 296   | 3    | 299    | 254    | 0   | 254   | 113  | 1    | 113     | 0     | 0      | 0     | . 0  | . 48  |       | 0    | 26   | 26       |
|    | 2012 | 286   | . 0  | 286    | 0     | . 0  | 0      | 1.     | 0   | 1     | 0    | . (  | 0       | 0     | -, 0 , | 0     | 0    | 48    |       | 0    | 26   | 26       |
|    | 2013 | 0     | ō    | 0      | 0     | 0    | 0      | . 0    | 0   | 0     | .0   | . (  | ) 0     | 0     | ø      | 0     | 0    | . 48  |       | 0    | 26   | 26       |
|    | 2014 | ŏ     | Ğ    | 0      | 0     | Ó    | 0      | 0      | 0   | 0     | ( 0  | 0    |         | 0     | 0      | 0     | .0   | 48    |       | 0    | 26   | 26       |
|    | 2015 | ľŏ    | Ö    | Ŏ.     | 0     | 0    | 0      | 0      | 0   | 0     | 113  | 1    | 113     | 0     | 0      | 0     | 0    | . 48  | 48    | 0    | 26   | 26       |
|    | vage | 1     | -    |        |       |      |        |        |     |       | 1    |      |         | 1     |        | . 1   |      |       |       | }    |      | _        |
|    | ost  | -333  | -7   | -340   | 0     | 0    | Q      | 0      | 0   | 0     | -84  | 0    | -85     | 0     | 0      | 0     | 0    | 0     | 0     | 0    | 0    | 0<br>    |
| TO | TAL  | 1,491 | 35   | 1,526  | 1,479 | 17   | 1,497  | 1,274  | 0   | 1,274 | 703  | 4    | 707     | 315   | 0      | 315   | 0 1  | 1,205 | 1,205 | 0    | 638  | 638      |

### (3) WATER TARIFF AND REVENUE

Incremental revenue resulting from the proposed improvement projects are:

- 1) to increase water consumption and to increase revenue from legal customers by (facility) rehabilitation programmes
- 2) to increase water billings by meter installation at "high" domestic customers
- 3) to decrease illegal connections, thereby increasing income
- 4) to increase the amount of cash being collected.

By implementing the Project, water consumption will increase. However, revenue cannot increase if NUWA bills customers using the presently assessed charges. Presently, users can consume more water without extra water charges.

It is required that the average water consumption, which is used in order to bill unmetered consumers at present, must be reassessed. The rank of zones must be raised, according to the increase in the volume of water consumption. The suppression factor will increase - from 0.87 in 1990 to 1.00 in 1995. In 1995, water consumption is expected to increase 15% over its 1990 level.

The incremental revenue resulting from the rehabilitation projects is estimated in Table 5.25, before considering the effects of the administrative improvement projects. In 1995, the increased revenue from rehabilitation projects is expected to be T.Shs. 455 million. However, 30% of the revenue is assumed to remain uncollected without administrative improvement.

TABLE 5.25 ESTIMATED REVENUE OF "FACILITY" REHABILITATION PROJECTS (1991 - 1995)

|                         |                            |             |      | (Unit: | T.Shs.         | million) |
|-------------------------|----------------------------|-------------|------|--------|----------------|----------|
|                         |                            |             | 1991 | 1992   | 1993           | 19941995 |
| LEAKAGE CO              |                            | <del></del> | ···· |        | <del>- :</del> |          |
| INCREASED               | BILLINGS                   |             | 54   | 162    | 271            | 381455   |
| INCREASED<br>METER INST | REVENUE COLLECTED ALLATION |             | 38   | 113    | 190            | 267319   |
| INCREASED               | REVENUE COLLECTED (1       | ) [         | 27   | 109    | 96             | 109109   |
| TOTAL INCI              | REASED REVENUE COLLE       | CTED        | 65   | 195    | 299            | 376428   |
|                         |                            |             |      |        | ·              |          |

<sup>(1)</sup> refer to 6.4.2 in Chapter 6

As it is difficult to define the effect of administrative improvement programmes (reduction of illegal connection and arrears), the financial viability of the Project including the effects of administrative improvement has been examined, according to the improvement level.

The effects of administrative programmes have been assumed for 11 cases in Table 5.26, according to the improvement level of reduction in illegal connections and arrears by 10%. The basis has been assumed as reduced by 50%.

TABLE 5.26 IMPROVEMENT LEVEL IN REDUCTION OF ILLEGAL CONNECTION & ARREARS

| (1) Reduction in illegal connection & bad debts               | (2) Number of illegal connections in 1995                                                       | (3) Per cent of arrears<br>of total billings in 1995 |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0 % 10 % 20 % 30 % 40 % 50 % (Basic Case) 60 % 70 % 80 % 90 % | 63,000<br>56,700<br>50,400<br>44,100<br>37,800<br>31,500<br>25,200<br>18,900<br>12,600<br>6,300 | 30 % 27 % 24 % 21 % 18 % 15 % 12 % 3 % 3 %           |

Table 5.27 shows the financial benefit of the Project by adopting this basic case to estimate the revenue resulting from the proposed project. The incremental revenue per illegal connection reduced is estimated at T.Shs. 641 per month (multiplying T.Shs. 381.6 by 1.68), adopting Rank 9 of the domestic assessed charge.

TABLE 5.27 INCREASED REVENUE COLLECTION FROM THE PROJECT (50 % REDUCTION, 1991 - 1995)

(Unit: T.Shs.million) 1993 1994 1995 1991 1992 Increased Revenue by: 1)Leakage Control 38 113 190 267 319 (33%) 2) Meter Installation 27 82 109 109 109 (11%) 19 60 104 150 195 (20%) 3)Illegal Reduction (Number of Illegal connection) (59,500) (52,500)(45,500)(38,500)(31,500) 4) Arrears Reduction (28%) (25%) (22%) (18%) (15%) (% of Arrears) 140 193 244 (25%) 29 86 In current Billings 69 35 110 (11%) In increased Billings by Project 1 12 115 354 578 788 977(100%) Total Increased Revenue collected

Incremental revenue from leakage control, meter installation, reduction of illegal connections and arrears in the basic case is estimated at 319, 109, 195 and 354 T.Shs. million, or 33%, 11%, 20% and 36% of the total incremental revenue, respectively, in 1995. Incremental revenue of the 10 other cases are presented in section 6, Appendix D.

### (4) FINANCIAL ANALYSIS

The schedule of costs and benefits during the project life are given in Table 5.28 and the financial internal rate of return (FIRR) is calculated. Table 5.29 shows a summary of the calculated results of the FIRR and the net present value (NPV) at discount rates of 3% and 10%.

As shown in Table 5.29, the NPV of costs exceed benefits discounted at 3% in four cases, where the improvement is estimated to be 0%, 10%, 20% and 30%, respectively. If reduction of illegal and bad debts cannot be expected at 40% or more, the Project cannot be acceptable from a financial point of view. When they are reduced to 40%, the FIRR to the project is estimated at 4.9% which indicates the minimum rate to justify the Project.

The FIRR of the basis case is 7.2 %. However, it is expected that there is room for improvement greater than 50%. Accordingly, it is desirable to reduce it to 70% by raising the efficiency of administrative improvement programmes, when the benefit cost ratio exceeds 1.0, discounted at 10%.

The proposed project can be acceptable from a financial point of view by raising the efficiency of administrative improvement programmes. The required reduction of illegal connections and arrears is 40% or more at the lowest.

TABLE 5.29 SUMMARY OF FINANCIAL ANALYSIS OF THE PROJECT

|                                           | NPV<br>at discou |         | B/0<br>at discour |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIRR  |
|-------------------------------------------|------------------|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                           | 3%               | 10%     | 3%                | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                                           | (T.Shs.m         | illion) |                   | in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |       |
| Reduction in illegal connection & bad del | ots              |         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 0 %                                       | -5,259           | -5,500  | 0.57              | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 10 %                                      | -3,644           | -4,690  | 0.70              | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 20 %                                      | -1,982           | -3,856  | 0.84              | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3%  |
| 30 %                                      | -262             | -2,995  | 0.98              | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6%  |
| 40 %                                      | 1,504            | -2,111  | 1.12              | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.9%  |
| 50 % (Basic Case)                         | 3,330            | -1,198  | 1.27              | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.2%  |
| 60 %                                      | 5,199            | -265    | 1.43              | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.4%  |
| 70 %                                      | 7,117            | 692     | 1.58              | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.6% |
| 80 %                                      | 9,079            | 1,671   | 1.75              | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.8% |
| 90 %                                      | 11,099           | 2,678   | 1.91              | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.0% |
| 100 %                                     | 13,180           | 3,714   | 2.08              | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.2% |

TABLE 5.28 COSTS AND BENEFIT OF THE PROPOSED PROJECT(1/2)

| million | 4 |
|---------|---|
| -       | • |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
| •       | • |
| 200     | 1 |
| г       |   |
| Ę-      | • |
|         |   |
|         |   |
|         |   |

|          | IMPROVEMENT<br>100        | 100%   | 7         | IMPROVEMENT<br>90         | FN3<br>808 |        | IMPROVEMENT<br>80 | NT 80% | ) si     | IMPROVEMENT<br>70 | 4T<br>70% | <u> </u>    | IMPROVEMENT<br>60 | ENT<br>60% | <u>H</u> | IMPROVEMENT<br>S0 | 50.5<br>50.98 |       |
|----------|---------------------------|--------|-----------|---------------------------|------------|--------|-------------------|--------|----------|-------------------|-----------|-------------|-------------------|------------|----------|-------------------|---------------|-------|
|          | REVENUE COST<br>COLLECTED |        | PROFIT R  | REVENUE COST<br>COLLECTED |            | PROFIT | REVENUE COST      |        | PROFIT R | REVENUE COST      | PROFIT    |             | REVENUE COST      |            | PROFIT   | REVENUE COST      |               | РКОРП |
| 81       | :                         | 1 755  | 1 400     |                           | 1 755      | W.7 (- | 3/1               | 3.766  | -        | , , ,             | 350       | -           | ١                 |            | - 00     |                   | 1             | 3     |
| 1,000    |                           |        | 1         | 7 2                       | 1,46       | 3 8    |                   | 3      | 010-1-   |                   | 2         | 0,0,1       | 3                 | 3          | 200      |                   | 0,1           | 8     |
| 10001    | 325                       | 1047   | ĻĒ        |                           | 3 5        | 100    | 25.5              | 1,40/  | 410,1    | 419               | , 66,     | 80,0        | 386               | 1,467      | 3        |                   | 1,40/         | 11.15 |
| 700      | -                         | 77.    | ŝ         |                           | 1,40       | , ;    | 600               | 7,17   | 3 ;      |                   | 70,5      | 8 :         | 620               | 757        | 0 1      |                   | 1,7           | 1111  |
| F 1      | ٠.                        | 2      | 2.5       |                           | ,          | 110    |                   | 4,00   | 2 6      | •                 | 743       | វី          | 878               | 5          | 5        |                   | 5 6           | 3 5   |
| 28.5     | i.                        | 027    | 010,1     | •                         | 3 6        | 1 000  |                   | 3 5    | 6/8      |                   | 3220      | 0<br>7<br>7 | 1,097             | 3,220      | 2,123    |                   | 35            | 5     |
| 1887     | 1,610                     | 74     | 1 536     | 1.476                     | 4 5        | 1.60   | 3                 | 74     | 1 272    | 1 220             | 770       | 146         | 3 8               | 77         | 2 5      | ; E               | 75            | 8 8   |
| 861      |                           | 14     | 3         |                           | 74         |        |                   | 7      | 13       |                   | 1 7       | 146         | 160               | 4          | 8        |                   | 4             | 8     |
| 9 1999   | . ; ;                     | 187    | 1,433     | 1,476                     | 81         |        |                   | 187    | 1,159    | _                 | 187       | 1.033       | 1,097             | 187        | 910      |                   | 187           | 8     |
| 10 2000  |                           | 7      | 1,536     |                           | 75         |        |                   | 74     | 123      | _                 | 74        | 1,146       | 1,097             | 7.         | 1,033    |                   | 74            | g     |
|          |                           | 8      | Ą         |                           | 8          |        |                   | 88     | 383      | _                 | <b>8</b>  | 257         | 1,097             | 8          | 134      |                   | 963           | 14    |
| 12 2002  | į. :                      | 361    | 1249      |                           | 8          |        |                   | 361    | 88       | _                 | 361       | 829         | 1,097             | 361        | 736      |                   | 361           | 616   |
|          |                           | 187    | 1,423     | ,                         | 18         |        |                   | 83     | 1,159    |                   | 182       | 1,033       | 1,097             | 187        | 01       |                   | 183           | 8     |
|          |                           | 4      | 1,536     |                           | 7          |        |                   | 74     | 1,272    |                   | 4         | 1,146       | 1,097             | 4          | 1,83     |                   | 7             | Ŗ     |
| 15 2005  |                           | ţ      | 1,536     |                           | 74         |        |                   | 4      | 1,272    | _                 | 4         | 1,146       | 1,097             | 72         | 132      |                   | ā             | 8     |
|          |                           | 23     | 8         |                           | 62         |        |                   | 627    | 719      | _                 | 627       | 88          | 1,097             | 627        | 6        |                   | 627           | 8     |
| 7002     |                           | 183    | 1,423     |                           |            |        |                   | 187    | 1,159    | _                 | 183       | 1,033       | 1,997             | 187        | 016      |                   | <u>8</u>      | 8     |
|          | ٠                         | 7      | 1,536     |                           | 77         |        |                   | ž      | È.       | _                 | \$        | 1,146       | 1,097             | 젇.         | 8        |                   | 7             | 8     |
|          |                           | 74     | 1,536     | .'                        | 4 !        |        | ٠                 | 7.     | 272      |                   | 7.        | 1.146       | 1,097             | 4          | 8        |                   | 7 1           | 8     |
| ٠        |                           | ¥      | 1,536     |                           | 4/         |        |                   | 74     | 1,272    |                   | 4         | 1,146       | 1.097             | 2          | <u> </u> |                   | 4.            | Ş.    |
|          | ."                        | 1,597  | 2         |                           | 5          |        |                   | 1,597  | ij       |                   | 1,59      | -377        | 1,097             | 1,597      | Ŗ        |                   | 1.297         | 959   |
| 22 2012  | 2 1,610                   | 1,388  | 27        |                           | <b>X</b>   |        |                   | 88     | 4        |                   | 83        | 897         | 1,097             | 1,388      | -291     |                   | 88            | 7     |
|          | ٠.                        | 1,673  | Ø,        |                           | 1,6/3      |        |                   | 1,673  | 25       |                   | 1,613     | 3           | χ.<br>            | 1,673      | 9        |                   | 2,6/3         | \$    |
|          |                           | 55     | 867       | 1,476                     | 743        |        |                   | 43     | 8        | 220               | 743       | 47          | 1,097             | 743        | <u> </u> |                   | 5             | 77    |
|          |                           | 3,656  | \$28<br>8 | :                         | 3,656      | 5,132  |                   | -3,656 | 5,002    |                   | -3,656    | 4,876       | ) (SO) 1          | -3,656     | 4,753    |                   | δ<br>δ<br>δ   | 4,633 |
| TOTAL    | 36,626                    | 14,412 | 22,214    | 33,609                    | 14,412     | 19,197 | 30,680            | 14,412 | 16,268   | 27,837            | 14,412    | 13,425      | 25,060            | 14,412     | 10,648   | 22,352            | 14,412        | 7,940 |
| NPV(3%)  | 25,356                    | 12,177 | 13,180    | 23,276                    | 771,21     | 11,099 | 21,255            | 12,177 | 9,079    | 19,293            | 12,177    | 7,117       | 17,376            | 12,177     | 5,199    | 15,507            | 12,177        | 3,330 |
|          |                           |        |           |                           |            |        |                   |        |          |                   |           |             | - 1               | ,          |          |                   | ;             |       |
| NPV(10%) | 12,767                    | 9,053  | 3,714     | 11,731                    | 9,053      | 2,678  | 10,72             | 9,053  | 1,6,1    | 9,745             | 9,053     | 8           | 8,783             | 9,053      | -265     | 7,855             | 9,053         |       |
| B/C(3%)  |                           |        | 2.08      |                           |            | 1.91   |                   |        | 1.75     |                   |           | 88          |                   |            | 1,43     |                   |               | 127   |
| 13/U/J/B |                           |        |           |                           |            | -      |                   |        | 1.18     |                   |           | 8           |                   |            | 0.93     |                   |               | 280   |
| ,        |                           |        |           |                           |            |        | _                 |        |          |                   |           |             |                   |            |          |                   |               |       |
| FTERR    |                           |        | 18.2%     | <del></del>               |            | 16.0%  |                   |        | 13.8%    |                   | 1.        | 11.6%       | ,                 |            | 9.4%     |                   |               | 12%   |
|          |                           |        |           |                           |            |        |                   |        |          |                   |           | 1           |                   |            |          |                   |               |       |

T.Shs. million

TABLE 5.28 COSTS AND BENEFIT OF THE PROPOSED PROJECT(2/2)

|              |          |                                                                   | \$<br>% | 1.     |                           | 36%    |             |                           | 20%    |        | 10                        | 10%    |        | TAILKOVEMEN 099 | 860<br>080 |        |
|--------------|----------|-------------------------------------------------------------------|---------|--------|---------------------------|--------|-------------|---------------------------|--------|--------|---------------------------|--------|--------|-----------------|------------|--------|
|              |          | 1                                                                 | - 1     |        |                           | Ì      | $\neg \neg$ |                           |        |        |                           | .**    |        |                 |            |        |
|              |          | KEVENUE COST<br>COLLECTED                                         |         | PROFIT | REVENUE COST<br>COLLECTED |        | PROFIT      | REVENUE COST<br>COLLECTED |        | PROFIT | REVENUE COST<br>COLLECTED | Tost.  | жоғт   | REVENUE COST.   | l          | PROFIT |
|              | 1991     | 105                                                               | 1,755   | -1,650 | 8                         | 1,755  | 1,660       | 85                        | 1.755  | -1.670 |                           | 1 755  | -1 680 | ¥               | 1          |        |
| N            | 1992     | 321                                                               | 1,467   | -1,146 | 289                       | 1,467  | -1,178      | 258                       | 1.467  | 1 209  | 22                        | 1.467  | -1 241 | 3 5             | 1.467      | 6 6    |
| 3            | 1993     | ٠.                                                                | 1,752   | -1,232 | 463                       | 1,752  | -1,289      | 407                       | 1.752  | 1345   |                           | 1752   | 1 405  | 3 8             | 1757       | 7      |
| 4            | 8        |                                                                   | 743     | 41     | 617                       | 743    | -126        | 535                       | 743    | -208   |                           | 743    | 280    | 32.6            | 2011       | 1.7    |
| v)           | 1995     |                                                                   | 3,220   | -2,360 | 747                       | 3,220  | -2,473      | 637                       | 3,220  | -2 583 |                           | 3 220  | 2,689  | 2 6             | 3 2        | , ,    |
| 9            | 198      |                                                                   | 129     |        |                           | 627    |             | 637                       | 627    | 22     |                           | 63     | 50     | 2 2             | 23.6       | V, 'A  |
| <u></u>      | 1997     |                                                                   | 7,      |        |                           | 74     |             | _                         | 27     | 563    | ٠.                        | 1,     | 457    | 428             | 3 6        | 77-    |
| 90           | 1998     | ٠.                                                                | 74      | 786    | 747                       | 74     | 673         |                           | 74     |        |                           | 74     | 457    | 428             | 7          | ,      |
| ō. ;         | 86       | :                                                                 | 187     |        |                           | 187    |             |                           | 187    |        | 531                       | 187    | *      |                 | 8          | 2, 2   |
| ₹,           | 200      |                                                                   | 74      |        |                           | 74     |             |                           | 7,     | - 563  | 531                       | 74     | 457    |                 | 74         | 350    |
| ; ;          | 007      | 2                                                                 | 8       |        |                           | 8      |             |                           | 83     |        | . 231                     | 83     | 432    |                 | 83         | S      |
| 3 ;          | 707      | 200                                                               | 391     |        |                           | 361    |             |                           | 361    |        | 231                       | 361    | 170    |                 | 361        | vo     |
| 3            | 2003     | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00 | 187     |        |                           | 187    |             |                           | 187    | : :    | 531                       | 187    | *      |                 | 25         | 24     |
| 4            | 200      | 860                                                               | 7,      |        |                           | 4      |             |                           | 74     |        | 531                       | 74     | 457    |                 | 74         | 35     |
| Ω;           | 2007     | 98                                                                | 4       |        |                           | 74     |             |                           | 74     |        | 53                        | 7,     | 457    |                 | 74         | 35     |
| 9 1          | 2006     | 9                                                                 | 627     |        |                           | 129    |             |                           | 627    |        | 531                       | 129    | 8,     |                 | 627        | -19    |
| 1            | 2007     | 860                                                               | 187     | ٠,     |                           | 187    |             |                           | 183    | 450    | 531                       | 187    | 7      |                 | £          | 3      |
| 20 1         | 2008     | 98                                                                | 4       |        |                           | 27     |             |                           | 74     |        | 531                       | 74     | 457    |                 | 7,         | . K.   |
| <u> </u>     | 200      |                                                                   | 4       |        |                           | 7      |             |                           | 74     | •      | 23.                       | 74     | 457    |                 | 74         | 33     |
| R            | 2010     |                                                                   | 4       |        | 747                       | 74     |             | 637                       | 74     |        | 531                       | 74     | 457    | 428             | 74         | 35     |
| 77           | 2011     |                                                                   | 1,597   |        |                           | 1.597  |             |                           | 1,597  |        | 531                       | 1.597  | -1.066 | 428             | 1.597      | -1.36  |
| ผ            | 2012     | 98                                                                | 1,388   |        | ٠                         | 1,388  |             |                           | 1,388  |        | 531                       | 1,388  | -857   | 428             | 1388       | 8      |
| Ñ            | 2013     | 98                                                                | 1,673   | ٠.     |                           | 1,673  |             |                           | 1,673  | ٠      | 231                       | 1,673  | -1,142 | 428             | 1.673      | -1 245 |
| 3            | 2014     | 98                                                                | 743     |        | 747                       | 743    | 4           | 637                       | 743    | -18    | 531                       | 743    | -212   | 428             | 743        | 31     |
| <del>ر</del> | Cio      | 098                                                               | -3,656  | 4,516  | -                         | -3,656 | 4,403       | 637                       | -3,656 | 4,293  | 531                       | -3,656 | 4,187  | 428             | -3,656     | 4,084  |
| roral        | ,        | 19,708                                                            | 14,412  | \$2%   | 17,151                    | 14,412 | 2,739       | 14,662                    | 14,412 | 85     | 12,258                    | 14,412 | -2,154 | 9,923           | 14,412     | 4,489  |
| NPV(3%)      | <u>%</u> | 13,681                                                            | 12,177  | 1,50   | 11,915                    | 12,177 | -262        | 10,195                    | 12,177 | -1,982 | 8,532                     | 12,177 | 3,644  | 6,918           | 12,177     | -5,259 |
| %01)AdN      | (%)      | 6,942                                                             | 9 053   | 2,111  | 6,058                     | 9,053  | -2,995      | 5,197                     | 9,053  | -3,856 | 4,363                     | 9,053  | 4,690  | 3,553           | 9,053      | -5,500 |
| B/C(3%)      | (g       |                                                                   |         | 1.12   |                           |        | 0.98        |                           |        | 0.84   |                           |        | 0.70   |                 |            | 0.57   |
| B/C(10%      | (%       |                                                                   |         | 0.77   |                           |        | 0.67        | •                         |        | 0.57   |                           |        | 0.48   |                 |            | 0.39   |
| FIRR         |          |                                                                   |         | 4.9%   |                           | ٠      | 2.6%        |                           |        | 0.3%   |                           | ٠.     | .239%  |                 |            |        |

### 5.7.2 FINANCIAL PLAN

Table 5.30 provides the cost schedule during the period 1991-1995, including inflation estimated at 5% for the foreign currency portion and 30% for local currency portions.

TABLE 5.30 DISBURSEMENT SCHEDULE OF CAPITAL COSTS

| Year   | Foreign curre<br>US\$ million | ncy<br>(T.Shs.million) | Local currency T.Shs.million |
|--------|-------------------------------|------------------------|------------------------------|
| 1991   | 8.32                          | (1,665)                | 125                          |
| 1992   | 6.82                          | (1,365)                | 263                          |
| 1993   | 8.17                          | (1,635)                | 584                          |
| 1994   | 2.25                          | (451)                  | 852                          |
| 1995   | 11.93                         | (2,385)                | 4,742                        |
| 'Total | 37.50                         | (7,500)                | 6,566                        |

The total capital costs in foreign currency portion and in local currency portion amount to US\$ 37.50 million and T.Shs.6,566 million, respectively.

The financing of the project has yet to be identified, however tentative financing plans have been formulated. Other than generated project revenue, project costs will be financed by:

- Grant from government
- Soft loans at subsidized rates
- Hard loans at commercial rates

Using the most optimistic projection (100% reduction) to estimate the benefits of administrative improvement, the FIRR of the Project has been estimated at 18.2%. It is lower than the commercial interest rate of long-term loans in Tanzania, which was 20-30% in 1990. Therefore subsidies in a form of soft loan or grants are required to implement the Project.

If the improvement in illegal connection and bad debts is only 40%, it is required that a greater part of the capital costs of the Project is subsidized grants.

In order to implement the Project, being financed by soft loans, illegal connections and arrears are required to reduce 30% as the present level in 1995.

Tentative financing plans have been formulated for two cases, financed by grants and by soft loans at subsidized rate, and the cash-flow of the Project has been examined in section 6 "Financing plan", Appendix D.

### 5.7.3 ECONOMIC IMPACT

The principal economic benefit of a water supply project is reduction of water borne diseases, due to improved water quality and quantity. The impact of drinking water quantity on health is high in condition of water shortages when water borne diseases can pass from person to person in different ways.

The prime objective of the proposed project is to provide an adequate supply of water to the customers in DSM. Water savings of 33,000 m<sup>3</sup> per day is realized from leakage control and 11,900 m<sup>3</sup> from wastage control. Water saved is re-distributed to the users and increase the water consumption.

The consumers' willingness to pay resulting from increased water consumption has been estimated, as reflected by the charges for water consumption in 5.4.2. The rehabilitation projects have been selected at the level in which the benefit cost ratio exceeds 1.0 discounted at 3%. Increased consumers' willingness to pay and the costs of the proposed project is estimated at T.Shs. 10,589 million and T.Shs. 10,347 million, respectively, discounted at 3%.

The time saved from carrying water is also an economic benefit of water supply project. The time saving is highly valued in the condition where so much time and energy of women and children are spent in order to provide water. The time saving would be also realized from the Project to some extent.

Metering is also efficient from an economic point of view. Water loss is expected to reduce by 10 % by meter installation and saved water in 15,000 households will amount to 1,996 thousand m<sup>3</sup> per year.

### BENEFICIARY

About 70 % of people lives in an inadequately supplied areas in 1990, according to the water pressure measurement (refer to section 4.2, Appendix C) and the hydraulic analysis (refer to section 5, Appendix C). Those in 1995 will surely increase, taking into account of the increasing demand and the no-increasing supply amount. 80 % is not an unrealistic estimation, namely about 1.2 million people will suffer from water shortage, more or less. The rehabilitation project will consequently benefit the 1.2 million people.

The benefit of each component of the rehabilitation project is tabulated in Table 5.31. This is derived from the same hydraulic analysis, used in the project selection. Considering that the saved amount is 33,300 m3/day, per capita saved amount is 27 liters. In other word, 27 liters suppression will be alleviated with the project, out of the overall 100 liters demand.

TABLE 5.31 NUMBER OF BENEFICIARIES FROM EACH REHABILITATION PROJECT

(Unit: person)

| MEASURE                                                                                              |   | Number of<br>Beneficiary     | Accumulated<br>Beneficiary      |
|------------------------------------------------------------------------------------------------------|---|------------------------------|---------------------------------|
| 1 LEAKAGE CONTROL MEASURE                                                                            |   | 62,000                       | 62,000                          |
| (Lower Ruvu Transmission System) 2.LEAKAGE CONTROL MEASURE (Distribution System)                     |   | 288,000                      | 350,000                         |
| 3.MIDDLE ZONE 4.EXISTING PIPE CONNECTION 5.MAIN PIPE LAYING (PRIMARY) 6.MAIN PIPE LAYING (SECONDARY) | ] | 62,000<br>388,000<br>415,000 | 412,000<br>800,000<br>1,215,000 |

### 5.8 STAFF AND TRAINING

System changes and increase in number of staff members is envisaged, though not a drastic ones, with the introduction of the following works.

- (1) Leakage Control,
- (2) Pipe Cleaning,
- (3) Mapping and
- (4) Metering

Requirement of human resources in the above works is discussed in Chapter 6, and the total requirement except labourers is given below. Their availability is also discussed in section 7.2.6.

TABLE 5.32 PERSONNEL REQUIREMENT FOR REHABILITATION PROJECT (Unit: Person)

|                                                            |                  |                     |                        | *                 | 11            | 335 T             |  |
|------------------------------------------------------------|------------------|---------------------|------------------------|-------------------|---------------|-------------------|--|
|                                                            | ENGINEER         | TECHNICIAN          | SURVEYOR/<br>DRAFTSMAN | DRIVER            | CRAN<br>OPERA |                   |  |
| 1. Leakage Control 2. Pipe Cleaning 3. Mapping 4. Metering | 4<br>2<br>1<br>0 | 74<br>24<br>0<br>36 | 0<br>0<br>8<br>0       | 14<br>8<br>0<br>4 |               | 11<br>8<br>0<br>0 |  |
| TOTAL                                                      | 7                | 134                 | 8                      | 26                |               | 19                |  |

The necessity to train related staff members will arise with the commencement of the first stage of rehabilitation projects. The training programme ought to go hand in hand with the progress of structural change of the distribution and maintenance sections. Among the four projects to be carried out, repair sub-section of leakage control section, mapping section and meter installation work in metering section does not require any specific courses apart from ordinary on-the-job brushes-up. This is discussed in section 7.4.5.

### CHAPTER 6

## OPERATION/MAINTENANCE IMPROVEMENT PROGRAMME

