5.2.20 Paper Products Factory (B)

1) Name of facility surveyed

Boiler (No. 1)

2) Specification of facility

Model

Water-tube type package boiler

Capacity

9.5 ton/hr

Draft and ventilation

Forced draft

Size of furnace

1,428W x 3,612D x 2,553H

Number of burner

1 unit (heavy oil burner)

Furnace pressure

Unknown

Ancillary facility

None

3) Specification of burner

Model

Steam atomization type

Type of fuel

Heavy oil

Fuel consumption

870 l/hr (estimated)

Fuel pressure

 $6.0 \text{ kg/cm}^2\text{g}$

Atomizing pressure

7.3 kg/cm^2g (steam)

4) Analytical data of flue gas

(S1	ack sampling	data)	13:00/Load at 80% of rating	
	NOx (ppm)*	204	Particulate matter (g/Nm ³)	0.034
	02 (%)	6.6	Flue gas temperature (°C)	345
	CO (%)	<0.05	Combustion chamber outlet O ₂ (%)	-
	CO ₂ (%)	9.6		

(Emission)			
kg/hr			
NOx	2.5		
SO2**	45		
Particulate	0.23		

- * Converted to oxygen concentration of 5%
- ** Calculated from analytical value of fuel

5) Observation

This boiler is used to generate steam to heat drums for production of corrugated fiberboard. The boiler is operated from 10:00 on Monday to 14:00 on Saturday continuously with total 124 hours per week.

Two units of the water-tube package boiler made by Combustion Engineering were installed in 1963, and are operated alternately by the 3-months period.

Water supply to the boilers are made directly from the hot-water tank, and air preheaters are not provided.

This plant is one of a few plants having the Orsat analyzer for measurement of CO, O₂, and CO₂ among those surveyed in this Study. The plant seemed to be highly concerned with heat control

The steam atomization type burner is used, and its performance is satisfactory during normal operation with no stack smoke observed. The NOx concentration was 204 ppm as converted to 5% O_2 , which is considered standard for a burner without NOx control.

The O_2 content was slightly high at 6.5 - 6.8% in the normal operation. As a result of closing of air damper to set the O_2 content to 5.0 - 5.4%, the NOx concentration became 188 ppm, about 7% down. Because of burner and boiler construction, the air ratio could not be decreased further.

As NOx reduction measures, the use of low-NOx burner to decrease the air ratio and the use of desulfurized heavy oil to reduce the SOx and fuel NOx generation are recommended.

6) Countermeasures

- i) Retrofitting of the boiler
 - (a) Low air ratio combustion through continuous monitoring of the flue gas O2
 - (b) Installation of low NOx burners

ii) Fuel change

- (a) Mixed combustion with 50% heavy oil and 50% diesel or natural gas up to the supply start of desulfurized heavy oil
- (b) When supply of desulfurized heavy oil is started, it should be used exclusively (100%)
- (c) Emulsified combustion of desulfurized heavy oil should be taken into consideration after thorough demonstration tests.

7) Expenses for boiler retrofitting

Retrofitting for low NOx burner installation, low air ratio combustion, and for mixed combustion of heavy oil and diesel

i)	Foreign	portion
----	---------	---------

		•	(US\$)
(a)	Survey and design	1 set	5,400
(b)	Burners (900 l/hr)	1 set	70,000
(c)	Combustion control system and		
	electric instrumentation	1 set	23,100
(d)	Package and freight	1 sct	11,300
(e)	Travelling	1 set	4,400
<u>(f)</u>	Unexpected expenses (5% of the above)		5,710
	Sub-total		119,910

ii) Local portion

(g) Burner removal and installation	1 sc	et 1,600
(h) Local installation on-site supervision	1 sc	et 1,600
(i) Test operation and adjustment	1 se	et 800
(j) Electric instrumentation installation work	1 se	et 4,700
(k) Customs and other taxes	1 se	et 29,410
(1) Warehouse, customs clearance, and		:
land freight (incl. IVA)	1 se	et 1,810
(q) IVA (15% excl. k + l)		1,890
Sub-total		41,810

Total US\$ 161,720

Note: There is one more boiler which is the similar type as the boiler No. 1 burning the same fuel. The similar retrofitting works are considered necessary for this boiler..

8) Summary of control measures

Table 5.2.20 summarizes the control measures for the Paper Products Factory (B).

Table 5.2.20 Summary of Control Measures for the Paper Products Factory (B)

		Current Status	Control measures		
			Α	В	С
Fuel type		Heavy oil	(·	Desulfurized heavy oil 100%	Desulfurized heavy oil 100%
Combustion method		<u></u>		_	Emulsified combustion
Fuel	Heavy oil (10 ³ m ³ /yr)	2.844	1.422	2.844	2.844
Consumption	Diesel (10 ³ m ³ /yr)		1.422		
Emission	NOx	1.27	0.71	0.91	0.71
(ton/yr)	SO ₂	170.64	99.54	45.29	45.39
	PM	0.839	0.671	0.671	0.503
Reduction	NOx		44	28	4.4
ratio (%)	SO ₂		41	73	73
:	PM		20	20	40
Equipment	Furnace retrofit, etc.		323.44	323.44	323.44
cost	NOx, SO _{2 telemeter}			-	
Running cost	(approx.)(1,000US\$/yr)				
Facility de	epreciation (15 yrs)	,	21.6	21.6	21.6
Interest (fi	rst 5 yrs: 8%)		25.9	25.9	25.9
Maintenanc	ce cost (5%)		16.2	16.2	16.2
Heavy oil		220.6	110.3	-	_
Diesel		- .	292.6	_	-
Desulfurize	ed heavy oil		_	309.6	-
Desulfurizo	ed heavy oil emulsion	<u> </u>		· -	377.3
Total (1,000 US\$/yr)		220.6	466.6	373.3	441.0

Alternative B: Applicable after the start of supplying desulfurized heavy oil.

Alternative C: Emulsified combustion should be taken into onsideration after thorough demonstration tests.

5.2.21 Metal Products Factory (A)

1) Name of facility surveyed

Heating furnace for casting billet

2) Specification of facility

Model

Pusher furnace

Capacity

4.7 ton/hr

Draft and ventilation

Forced draft

Size of furnace

 $2.560^{\mathrm{W}} \times 10.550^{\mathrm{D}} \times 1.200^{\mathrm{H}}$

Number of burners

Two units (natural gas burner)

Furnace pressure

Approx. atmospheric pressure

Furnace temperature

1,100 ~ 1,300°C

Ancillary facility

None

3) Specification of burner

Model

Cone mix type

Type of fuel

Natural gas

Fuel consumption

 $1,000 \text{ m}^3/\text{hr}$

Fuel pressure

 $0.8 \text{ kg/cm}^2\text{g}$

4) Analytical data of flue gas

 (Stack sampling data)
 12:00/Normal operation

 NOx (ppm)*
 130
 Particulate matter (g/Nm³)

 O2 (%)
 3.4
 Flue gas temperature (°C)
 925

 CO (%)
 <0.05</td>
 Combustion chamber outlet O2 (%)

 CO2 (%)
 9.3

(Emission)		
	kg/hr	
NOx	0.85	
so ₂ **		
Particulate	_	

NOx at rated operation is estimated to be 200 ppm (1.31 kg/hr).

- * Converted to oxygen concentration of 5%
- ** Calculated from analytical value of fuel

5) Observation

This is a pusher-type heating furnace for hot rolling of billets (80x80x2,000 mm) to produce bar steels for reinforcement. Advance of the billets and flow of combustion gas from two burners are in opposite direction. Loading and unloading with the pusher are made manually.

Operation is intermittent, at 16.5 hours per day, with breaks for meals. There is an opening for inspection and cleaning in the wall opposite to the Manipulation of the former opening causes a opening for unloading. substantial change in the air ratio. The furnace wall is made of refractories with thickness of 350 - 400 mm. Though the temperature of the outer wall surface is low at 43 - 47°C, the loss of accumulated heat is very large in this type of furnace operating intermittently. accumulation amount under the steady-state temperature is calculated to be equivalent to over 1,000 hours of fuel gas input. Operation of 16.5 hours a day will not bring about a steady-state temperature of the furnace wall. But reduction of the weight of the furnace wall may achieve a considerable degree of energy saving. It is also possible to shorten the start-up period in the morning.

The flue gas was discharged with a high temperature of 930°C. In this case also, energy saving of 20-30% may be easily achieved by installing the simple recuperator.

Introduction of draft control will also prove effective in preventing air intrusion from the above mentioned opening for inspection and cleaning.

Though assessment of the furnace alone is impossible due to the connection with the rolling mill, not only degradation of heating efficiency, but also increase in the scale loss is possibly induced by the multiplying effect of the unnecessarily high furnace temperature and the excessively high O_2 content due to the air intrusion.

The unit fuel consumption of this furnace is approximated at $1,400 \times 10^3$ kcal/ton though this value may not be accurate because of inadequacies in fuel gas measurement and heat control data. It is evident from comparison with the unit fuel consumption in Japan for wire rod heating furnaces being around 300×10^3 kcal/ton (Iron and Steel Handbook) that the heating efficiency of this furnace is low.

The NOx concentration was 130 ppm as converted to 5% O_2 , which is considerably low due to lack of air preheating. No particular NOx reduction measure seems to be necessary, but employment of some energy saving measures will lead to reduction of fuel consumption and reduction of NOx emissions. It is therefore recommended that the two-stage combustion type

low-NOx burner and the heat exchanger for waste heat recovery be adopted in combination.

6) Countermeasures

- (a) Installation of the two-stage combustion type low NOx burners
- (b) Installation of a heat exchangers for waste heat recovery

Expenses for facility retroffiting 7)

i) Foreign portion

Installation of two stage combustion type low NOx burners and a heat exchanger for waste heat recovery.

			(US\$)
(a)	Survey and design	1 set	19,300
(b)	Low-NOx burner	2 units	58,500
(c)	Waste heat recovery heat exchanger (incl.	\$5 × 5	•
	heat-resistant piping, and expansion joint)	1 set	153,900
(d)	Local work on-site supervision	1 set	23,100
(c)	On-site instruction for test operation	1 set	7,700
(f)	Package and freight	1 set	6,000

(h) Unexpected expenses (5% on al	bove) 14,300
Sub-total	300,000

17,200

(US\$)

1 set

ii) Local portion

(g) Travelling

(i) Burner removal and installation	1 set	800
(j) Duct fabrication	1 set	7,700
(k) Duct installation	l set	2,000
(1) Air heater foundation work	t:	
(steel frame, concrete, steel bar)	1 set	6,200
(m) Test operation and adjustment	1 set	800
(n) Customs and other taxes	1 set	61,320
(o) Warehouse, customs clearance, and		
land freight (incl. IVA)	1 set	8,130

(p) Duct, etc. freight, crane	rental	1 set	2,000
(q) IVA (15% excl. $n + o$)		aggan an an haife an an an haife and made and an an haife and an	3,000
Sub-total			91,950

Total

US\$ 391,950

Note: In this factory, there is another heating furnace of the similar type and capacity using the same fuel as the surveyed furnace, and the same countermeasures are considered to be required.

9) Summary of control measures

Table 5.2.21 summarizes the control measures for Metal Products Factory (A).

Table 5.2.21 Summary of Control Measures for Metal Products Factory (A)

		Current Status	Counter measures
Fuel type	<u>, a </u>	Natural gas	Natural gas
Fuel Consumption	Natural gas (10 ⁶ m ³ /yr)	7.07	5.66
Emission	NOx	7.7	5.4
(ton/yr)	PM	- (1)	
Reduction	NOx		30
ratio (%)	PM		20
Equipment cost (1,000 US\$)			783.9 (2)
Running cost	(approx.)(1,000 US\$/yr)		
Facility de	epreciation (15 yrs)		52.3
Interest (fi	rst 5 yrs: 8%)		62.7
Maintenanc	e cost (5%)		39.2
Natural ga	S	589.2	471.7
Total	(1,000 US\$/yr)	589.2	625.9

Note: (1) Measurement was not possible because of the high temperature of the exhaust gas.

(2) Installation expenses (US\$ 391,950) for low NOx burners and heat exchanger for waste heat recovery for the two heating furnaces.

5.2.22 Metal Products Factory (B)

1) Name of facility surveyed

Aluminum melting furnace

2) Specification of facility

Model Reverberatory furnace

Capacity 20 ton/hr
Draft and ventilation Forced draft

Size of furnace 3,960W x 3,860D x 1,715H

Number of burner One unit (natural gas burner)

Furnace pressure -1 ~ -2 mmH₂O

Furnace temperature 820°C Ancillary facility None

3) Specification of burner

Model Cone mix

Type of fuel Natural gas

Fuel consumption 264 m³/hr (estimated)

Fuel pressure 4.75 kg/cm²g (primary)

4) Analytical data of flue gas

(Stack sampling data) 15:30/Load at 75% of rating					
NOx (ppm)* 32		Particulate matter (g/Nm ³)	0.13		
O ₂ (%)	6.8	Flue gas temperature (°C)	890		
CO (%)	<0.05	Combustion chamber outlet O2 (%)	_		
CO ₂ (%)	7.3				

(Emission)		
	kg/hr	
NOx	0.10	
so ₂ **	~	
Particulate	0.22	

- * Converted to oxygen concentration of 5%
- ** Calculated from analytical value of fuel

5) Observation

This is a reverberatory type aluminum melting furnace with a natural gas burner. Aluminum ingot produced in this furnace is annealed and withdrawn to manufacture aluminum sashes. The plant is confident about competitiveness of the quality of their product in the international market.

The process from loading of raw materials to casting of ingots is completed in about eight hours. The NOx concentration in the flue gas was nearly

constant although there were some variations in the furnace operation. During certain operation stages such as loading of raw materials and addition of additives for sludge removal, smoke and soot were generated due to impurities from scrap materials and additives, deteriorating the neighboring and working environment. In this sense, control measures against smoke and soot are more necessary than NOx reduction measures.

6) Countermeasures

- (a) Installation of a hood on the furnace opening
- (b) Installation of a a bag filter or an EP on the furnace flue outlet

7) Expenses for installation of bag filter

;)	Foreign portion		
1)	Totorga portion		(US\$)
	(a) Survey and design	1 set	5,400
	(b) Bag filter	1 set	65,400
	(c) Blower	1 set	12,300
	(d) Local work on-site supervision	1 set	3,100
	(e) On-site instruction for test operation	1 set	3,100
	(f) Travelling	1 set	10,000
	(g) Unexpected expenses (5% on above)		5,000
	Sub-total	•	104,300
ii)	Local portion		
			(US\$)
	(h) Duct fabrication	1 set	7,700

Local portion		
		(US\$)
(h) Duct fabrication	1 set	7,700
(i) Foundation work	1 set	600
(j) Installation work	1 set	4,700
(k) Test operation and adjustment	1 set	800
(1) Work vehicles	1 set	1,600
(m) Customs and other taxes	1 set	22,000
(n) IVA (15% excl. m)		2,200
Sub-total		38,900
Total		US\$ 143,200

al US\$ 143,20

Note: Since freightage for bag filters differs with freight package conditions, their freightage from the shipping place to the destination and customs expenses are not estimated here.

8) Reduction ratio

Fuel consumption: 10%

NOx : 5%

PM : 50%

9) Summary of control measures

Table 5.2.22 summarizes the control measures for Metal Products Factory (B).

Table 5.2.22 Summary of Control Measures for Metal Products Factory (B)

		Present Status	Control measures
Fuel type		Natural gas	Natural gas
Equipment		. <u></u>	Hood on the openingBag filter
Fuel Consumption	Natural gas (10 ⁶ m ³ /yr)	2.97	2.83 (10% fuel saving)
Emission	NOx	1.0	0.95
(ton/yr)	PM	2.2	1.1
Reduction ratio	NOx		5
(%)	PM		50
Equipment cost (1,	000 US\$)		143.20
Running cost (ap)	prox.)(1,000US\$/yr)		
Facility deprec	iation (15 yrs)		9.5
Interest (first 5	5 yrs: 8%)		11.5
Maintenance cost (5%)		·	7.2
Natural gas	· · · · · · · · · · · · · · · · · · ·	247.5	235.8
Total	(1,000 US\$/yr)	247.5	264.0

5.2.23 Food Products Factory

1) Name of facility surveyed

Boiler for processing (No. 2)

2) Specification of facility

Model

Water-tube boiler

Capacity

45.4 ton/hr

Draft and ventilation

Forced draft type

Structure and size of furnace

1,920W x 5,310D x 3,600H

Number and layout of burner

1 unit (heavy oil burner)

Furnace pressure

100 mmAq

Ancillary facility

Air preheater

3) Specification of burner

Model

Steam pressure atomization type (Y-jet)

Type of fuel

Heavy oil

Fuel consumption

3,400 l/hr (estimated)

Fuel pressure

 $13 \text{ kg/cm}^2\text{g}$

Atomizing pressure

12 kg/cm²g (steam)

4) Analytical data of flue gas

(Stack sampling data) 14:30/Load at 80% of rating					
NOx (ppm)*	202	Particulate matter (g/Nm ³)	0.21		
O ₂ (%)	4.8	Flue gas temperature (°C)	235		
CO (%)	<0.05	Combustion chamber outlet O2 (%)			
CO ₂ (%)	11.5				

(Emission)		
	kg/hr	
NOx	10	
SO2**	260	
Particulate	4.9	

NOx at rated operation is estimated to be 220 ppm (11.0 kg/hr).

- * Converted to oxygen concentration of 5%
- ** Calculated from analytical value of fuel

5) Observation

Two boilers are used in parallel for generation of process steam. A drain recovery system is attached. The load during normal operation is low at about 50%. The boiler has an air preheater and the flue gas temperature was 205°C at the normal load and 262°C at the 80% load.

The burner is the steam-atomization type and the NOx concentration, as converted to 5% O₂, was 180- 190 ppm. When measurement was made at the 100% load while shutting down one boiler, the NOx concentration at 5% O₂ was 202 ppm.

NOx reduction measures to be considered include (1) operation with maintaining the appropriate O_2 level and (2) use of flue gas recirculation or low-NOx burner.

6) Countermeasures

- i) Retrofitting of the boiler
 - (a) Automatic control of air ratio
 - (b) Installation of flue gas fan for flue gas recirculation and installation of low NOx burners

ii) Fuel change

- (a) Mixed combustion with 50% heavy oil and 50% diesel or natural gas up to the supply start of desulfurized heavy oil
- (b) When supply of desulfurized heavy oil is started, it should be used exclusively (100%)
- (c) Emulsified combustion of desulfurized heavy oil should be taken into consideration after thorough demonstration tests.
- iii) Continuous monitoring of the flue gas by installing the NOx, SO₂ telemeters

7) Expenses for boiler retrofitting

Retrofitting for flue gas recirculation, low NOx burner installation, and for automatic control of air ratio

i) Foreign portion

		A second second	(022)
(a)	Survey and design	1 set	19,300
(b)	Burners (3,000 l/hr)	1 set	103,900
(c)	Flue gas recirculation fan (120 m ³)	1 set	25,400

(d) Combustion control system and

		electric instrumentation	1	set	77,000
	(e)	Automatic air ratio controller	1	sct	46,200
	(f)	Local joint work	1	sct	23,100
	(g)	On-site instruction for test operation	1	set	7,700
	(h)	Package and freight	1	set	13,500
	(i)	Travelling	1	set	17,200
	(j)	Unexpected expenses (5% of the above)			16,700
		Sub-total			350,000
ii)	Loca	al portion			
	(k)	Burner removal work	1	set	1,600
	(1)	Duct fabrication	1	set	53,900
	(m)	Burner, duct, fan installation	1	set	7,300
	(n)	Trial operation on-site attendance	1	set	800
	(o)	Customs and other taxes	1	set	76,300
	(p)	Warehouse, customs clearance, and land	fre	eight	
	٠	(incl. IVA)	1	set	5,420
	(q)	IVA (15% excl. o + p)			9,540
		Sub-total			154,860
		Total			US\$ 504,860

8) Installation of the NOx, SO_2 , O_2 telemeter

Expenses for telemeter instrumentation system on the flues of No. 1 and No. 2 boilers

i) Foreign portion

		(US\$)
(a) Survey and design	1 set	6,200
(b) NOx, SO ₂ , O ₂ instrumentation	2 sets	118,600
(c) Auxiliary units	2 sets	41,100
(d) Data logger	1 set	17,900
(e) Installation work on-site supervision	1 set	8,500
(f) On-site instruction for test operation	1 set	4,700
(g) Package and freight	1 set	25,900

	(h) Travelling	1 set	11,900
	(i) Unexpected expenses (5% of the above)		11,740
	Sub-total		246,540
ii)	Local portion		
			(US\$)
	(j) Materials	1 set	4,200
	(k) Survey assistant	1 set	1,300
	(1) Installation expenses	1 set	4,400
	(m) Trial operation on-site adjustment	1 set	1,400
	(n) Vehicle rental	1 set	2,200
	(o) Customs and other taxes	1 set	41,690
	(p) Warehouse, customs clearance,	8	
	and land freight	1 set	3,250
	(q) IVA (15% excl. o + p)		2,030
*.	Sub-total		60,470
. *	Total		US\$ 307,010

(Telephone installation work and central reception system are not included.)

9) Summary of control measures

Table 5.2.23 summarizes the control measures for the Food Products Factory.

Table 5.2.23 Summary of Control Measures for the Food Products Factory

		Current Status	Control measures		
			A	В	C
Fuel type		Heavy oil	Heavy oil 50% Diesel 50%	Desulfurized heavy oil 100%	Desulfurized heavy oil 100%
Combustion m	ethod	_		•••	Emulsified combustion
Fuel	Heavy oil (10 ³ m ³ /yr)	17.4	8.7	17.4	17.4
Consumption	Diesel (10 ³ m ³ /yr)	0.91	9.61	0.91	0.91
Emission	NOx	63	36	46	36
(ton/yr)	SO ₂	1,062	634	300	300
	PM	21.9	17.5	17.5	13.1
Reduction	NOx		43	27	43.
ratio (%)	SO ₂		40	72	72
	РМ		20	20	40
Equipment cost	Furnace retrofit, etc.		1,009.72	1,009.72	1,009.72
(1,000US\$)	NOx, SO ₂ telemeter		307.01	307.01	307.01
Running cost ((approx.)(1,000				
Interest (fi Maintenanc Heavy oil Diesel Desulfurize	epreciation (15 yrs) rst 5 yrs: 8%) e cost (5%) d heavy oil d heavy oil	1,349.4 187.3 - -	87.8 105.3 65.8 674.7 1,977.6	87.8 105.3 65.8 - 187.3 1,893.9	87.8 105.3 65.8 - 187.3 - 2,308.2
Total	(1,000 US\$/yr)	1,536.7	2,911.2	2,311.1	2,754.4

Alternative B: Applicable after the start of supplying desulfurized heavy oil.

Alternative C: Emulsified combustion should be considered adoption after thorough demonstration tests.

Note: (1) Boiler loading rate is assumed to be 50%.

with a first of the property of the con-

(2) Facility retrofitting cost is for 2 boilers.

5.2.24 Alcoholic Drinks Factory

1) Name of facility surveyed

Power generation boiler (No. 2)

2) Specification of facility

Model

Water-tube boiler (tangential firing)

Capacity

63 ton/hr

Draft and ventilation

Forced draft

Size of boiler

4,700W x 4,156D x 8,534H

Number and layout of burner

4 (one each at boiler corners)

Furnace pressure

+150 mmAq

Ancillary facility

Air preheater $(30 \rightarrow 200^{\circ}\text{C})$

3) Specification of burner

Model

Gas-Oil mixed combustion;

Gas: lance type,

Heavy oil: Y-jet type

Type of fuel

Heavy oil (only heavy oil is used at

present)

Fuel consumption

5,400 I/hr

Fuel pressure

5 kg/cm²g

Atomizing pressure

6 kg/cm²g (steam)

4) Analytical data of flue gas

(Stack samp)	ling dat	a) 15:30/Load is approx, 97%	of rating
NOx (ppm)*	232	Particulate matter (g/Nm ³)	0.41
02 (%)	4.3	Flue gas temperature (°C)	178
CO (%)	<0.05	Combustion chamber outlet O2 (%)	2.5
CO ₂ (%)	12.0		

(Emission)		
	kg/h	
NOx	31	
SO2**	310	
Portioulata	25	

5) Observation

This is a beer brewery of the largest beer manufacturer in Mexico. Because of its proximity to the center of the metropolitan area, its pollutant emission must be given serious attention; its emissions of both NOx and particulate matter are quite large. In addition to this boiler burning heavy

^{*} Converted to oxygen concentration of 5%.

^{**} Calculated from analytical value of fuel

oil, there are also two natural gas burning boilers (100 ton/hr and 27 ton/hr) in operation for power generation, and one 80 ton/hr boiler under construction; the total fuel consumption of all these boilers is quite large.

All the boilers in this plant are of the tangential firing type, in which one burner each is installed at the four corners of the boiler. This creates a swirling fire ball in the combustion chamber. Thus it is nicknamed the fireball combustion system. Generally, this combustion method gives lower NOx generation than the front-firing method. Inspection is required on leaks within the air preheater. The combustion chamber load is relatively high at 540,000 kcal/m³hr. Judging from the low O₂ concentration of 2.5% at the outlet of the combustion chamber, this boiler is operated under the nearly optimum level of air ratio.

6) Countermeasures

- i) Retrofitting of the boiler
 - (a) Air preheater repair
 - (b) Continuous monitoring of the flue gas O_2 for low air ratio combustion
- ii) Fuel change

Change of heavy oil to natural gas

iii) Continuous monitoring of the flue gas by installing NOx, SO₂, Ox telemeters.

7) Expenses for boiler retrofitting

Retrofitting for flue gas recirculation, low air ratio combustion, and for air repair

i) Foreign portion

			(US\$)
(a)	Survey and design	1 set	15,400
(b)	Flue gas recirculation fan	1 set	30,000
(c)	Combustion control system and		
	electric instrumentation	1 sct	46,200

	(d) Local work on-site supervision	1 set	23,100
	(e) On-site instruction for test operation	1 set	7,700
	(f) Package and freight	1 set	11,900
	(g) Travelling	1 set	17,200
	(h) Unexpected expenses (5% on above)	····	7.600
	Sub-total		159,100
;;)	Local portion		
11,	Down portion	e.	(US\$)
	(i) Dust fabrication (incl. heat insulation)	1 set	115,400
	(i) Duct and fan installation	1 set	30,800
	(k) Electrical instrumentation work	1 set	11,500
	(1) Trial operation on-site attendance	1 set	2,300
	(m) Customs and other taxes	1 set	22,500
	(n) Warehouse, customs clearance, and land	freight	
	(incl. IVA)	1 set	2,360
	(o) Duct, etc. freight, crane car rental	1 set	2,000
	(p) IVA $(15\% \text{ excl. } m + n)$		24,300
	Sub-total	%	211,180
	Total		US\$ 370,280

8) Installation of the NOx, SO₂, O₂ telemeters for constant monitoring of the flue gas

Expenses for telemetric monitoring of NOx and O_2 for No. 1, 3, 4 boilers and SO_2 , NOx and O_2 for No.2 boiler

i) Foreign portion

		(US\$)
(a) Survey and design	1 set	9,400
(b) NOx, SO ₂ , O ₂ instrumentation	4 sets	162,300
(c) Auxiliary units	1 set	79,000
(d) Data logger	1 set	17,900
(e) Installation work on-site instruction	1 set	8,500
(f) On-site instruction for trial operation	1 set	4,700
(g) Package and freight	1 set	51,800

	(h) Travelling	1 set	12,400
	(i) Unexpected expenses (5% on above)		17.300
	Sub-total		363,300
ii)	Local portion		
			(US\$)
	(j) Materials	1 set	8,400
	(k) Survey assistant	1 set	1,800
	(1) Installation expenses	1 set	8,200
	(m) Trial operation and adjustment	1 set	2,400
	(n) Vehicle rental	1 set	3,300
	(o) Customs and other taxes	1 set	70,760
	(p) Warehouse, customs clearance,		
	and land freight	1 set	5,810
	(g) IVA (15% excl, o + p)		3,620
	Sub-total	·	104,290
	Total		US\$ 467,590

(Telephone installation work and central reception system are not included.)

9) Summary of control measures

Table 5.2.24 summarizes the control measures for Alcoholic Drinks Factory.

Table 5.2.24 Summary of Control Measures for Alcoholic Drinks Factory

		Present Status	Control measures	
Fuel type		Heavy oil	Natural gas	
		Natural: gas		
Combustion mode		Mixed combustion		
Fuel	Heavy oil (10 ³ m ³ /yr)	40.6	0	
Consumption	Natural gas (10 ⁶ m ³ /yr)	54.0	86.4	
	NOx	408.1	217.2	
Emission	SO ₂	2,436	0	
(ton/yr)	PM	136.1	0	
Reduction NOx			47	
ratio (%)	SO ₂		100	
	PM		100	
Equipment cost	Facility retrofitting		1,110.84 (Note	
(1,000 US\$)	Nox, SO ₂ telemeter		467.59	
Running cost	(approx.)(1,000 US\$/yr)		-	
Facility de	preciation (15 yrs)		105.2	
Interest (first 5 yrs: 8%)			126.3	
Maintenance cost (5%)			78.9	
Heavy oil		3,148.6		
Natural gas		4,499.8	7,200.0	
Total	(1,000 US\$/yr)	7,648.4	7,510.4	

Note: Retrofitting expenss (US\$ 740,560) for the 100-ton/hr boiler (30-year old) and the 27-ton/hr boiler (36-year old) are included.

5.2.25 Public Bathhouse

1) Name of facility surveyed

Boiler (No. 1)

2) Specification of facility

Model

Flue and smoke tube type

Capacity

1.56 ton/hr

Draft and ventilation

Natural draft

Size of furnace

610^ø x 3,000^L

Number of burner

One unit (heavy oil burner)

Furnace pressure

-1 ~ -2 mmH₂O

Ancillary facility

None

3) Specification of burner

Model

Steam atomization burner

Type of fuel

Heavy oil

Fuel consumption

100 l/hr

Fuel pressure

Unknown

Atomizing pressure

 $5.2 \text{ kg/cm}^2\text{g}$

4) Analytical data of flue gas

(Stack sampl	ing data) 13:30/Load at 80% of rating		
NOx (ppm)*	190	Particulate matter (g/Nm ³)	0.15	
O ₂ (%)	10.5	Flue gas temperature (°C)	170	
CO (%)	0.25	Combustion chamber outlet O2 (%)	·	
CO ₂ (%)	6.0			

(Emission)			
	kg/hr		
NOx	0.41		
SO2**	5.8		
Particulate	0.24		

NOx at rated operation is estimated to be 200 ppm (0.43 kg/hr).

- * Converted to oxygen concentration of 5%
- ** Calculated from analytical value of fuel

5) Observation

This smoke tube boiler for public bathhouse is operated daily from 6:00 to 20:00. As the steam atomization burner is operated manually, black smoke is generated at the times of ignition and change in combustion load. The combustion chamber load was small and the NOx concentration was high despite the high air ratio. This may be due to faulty atomization by the burner. Employment of automatic control is recommended because

reduction of smoke and soot rather than NOx is necessary. It can be done at the time of renewal of boiler in the future since it is very old.

6) Countermeasures

i) Regular monitoring of the O₂ level with a portable O₂ meter for operation at the appropriate air ratio.

ii) Fuel change

- (a) Mixed combustion with heavy oil and 50% diesel or natural gas up to the supply start of desulfurized heavy oil
- (b) When supply of desulfurized heavy oil is started, it should be used exclusively (100%)
- (c) Emulsified combustion of desulfurized heavy oil should be taken into consideration after through demonstration tests.

7) Expenses

O₂ meter : US\$ 2,400

(This amount does not include the customs duty, customs clearance expenses, domestic freight, etc.)

8) Reduction ratio

i) Before supply of desulfurized heavy oil (50% heavy oil and 50% diesel)

NOx : 30%

SO₂ : 41%

PM: 20%

ii) When desulfurized heavy oil is exclusively used

NOx : 10%

SO₂ : 73%

PM : 20%

iii) Emulsified combustion of desulfurized heavy oil

NOx : 44%

SO₂ : 73%

PM: 40%

5.3 Summary

5.3.1 Outlines of Proposed Measures

Equipment-related control measures proposed based on the diagnostic survey are summarized in Table 5.3.1

Table 5.3.1 Equipment Related Control Measures Proposed

Control Measure	Number of establishments (facilities) applied		
Reduction of combustion chamber loading	3 (8)		
Burner nozzle renewal	1 (1)		
Low-NOx burners	10 (25)		
Exhaust gas recirculation	11 (25)		
Tow-stage combustion	2 (5)		
Off-stoichiometric combustion	3 (6)		
In-furnace denitation combustion	2 (8)		
Installation of precalciner	1 (2)		
Heat insulation of furnace ceiling	3 (8)		
Bag filter	2 (4)		
Electrostatic precipitator (EP)	4 (10) *		
Air preheater	1 (2)		
Combustion control instruments	. 8 (18)		
HC reduction measures	1		
Simple repair by owner	2		
Automatic O ₂ analyzer	9		
Portable O ₂ analyzer	5		
Others	2		

Note: * Excludes 8 boilers in 2 power plants.

For fuel change or improvement in the facilities using heavy oil exclusively, the following 3 cases are considered.

- Case A: Mixed burning with diesel or natural gas in the 50:50 ratio:

 Until the supply start of desulfurized heavy oil
- Case B: Use of desulfurized heavy oil:

 After the supply start of desulfurized heavy oil and when its emulsification is not feasible.
- Case C: Use of desulfurized and emulsified heavy oil:

 After the supply start of desulfurized heavy oil and when its emulsification is feasible, except glass plants remaining in Case B

5.3.2 Effects and Costs

The pollutant reduction effects by introduction of desulfurized heavy oil and its emulsion are assumed to be as shown in Table 4.4.3.

The estimated pollutant reduction to be achieved through the combined effect of the fuel change and facility improvements at the 25 object establishments are summarized in Table 5.3.2.

Table 5.3.2 Pollutant Reduction Effects in the 25 Establishments

tanggang perministratura nanggang di seria tanggang di seria di seria di seria di seria di seria di seria di s			NOx	SO ₂	РМ
Present emission (1,000	ton/yr)		11.1	44.1	7.3
Emission after implement-	Fuel	A	6.6	29.2	2.5*1
ation of proposed	improvement	В	6.8	14.0	0.7*1
measures (1,000 ton/yr)	case	С	5.8	14.9	1.6*1
	Fuel	Α	40	34	66
Reduction ratio (%)	improvement	В	39	68	90*2
	case	С	48	66	78

Note: *1: Reduction of PM by 3,400 ton/yr by the proposed relocation of one factory is accounted.

As shown in the Table, the combination of the transient fuel change and facility improvement in Case A is expected to reduce NOx emission by 40%, SO₂ emission by 34%, and PM emission by 66%. In Case B, use of desulfurized heavy oil and installation of EPs in Power Plant (A) will reduce the SO₂ and PM emissions further. But the NOx emission will rather increase above the level of Case A. In Case C, where desulfurized and emulsified heavy oil is used, some more reduction is expected in NOx at 48%.

The expenses for the facility improvements are estimated to be as follows, excluding unestimative expenses such as in-house works, autonomous improvements and factory relocation.

Case A: NOx reduction measures and others US\$ 86,449,000

Case B: Installation of EPs in Power Plant (A) US\$ 77.381,000

Case C: Installation of heavy oil emulsifier in Poweer Plant (A) US\$ 2,113,000

^{*2:} EPs are installed in Power Plant (A).

CHAPTER 6 AIR POLLUTION CONTROL PLANNING FOR OTHER STATIONARY SOURCES

CHAPTER 6 AIR POLLUTION CONTROL PLANNING FOR OTHER STATIONARY SOURCES

6.1 Sources Investigated by the Detailed On-Site Questionnaire

6.1.1 Object Establishments and Facilities

Among the 97 establishments surveyed through the detailed on-site questionnaire, the 72 which remained after the study covered in Chapter 5 are the objects in this section. The breakdown by their types of industry is as shown in Table 6.1.1.

Table 6.1.1 Breakdown of the 72 Establishments by Types of Industry

Type of industry	Number
Food	8
Leather	1
Paper and its products	8
Chemical products	13
Petrochemical products	4
Coal and petroleum products	1
Rubber and plastic products	4
Non-metallic mineral products	6
Basic metals	7
Metal products	3
Transportation equipment	1
Other manufacture	1
Public bath	10
Sports center	1
Hospital	1
Hotel	2
Total	72

Broadly classified, 58 are factories, and 14 are service and commercial establishments. There are 180 furnaces covered by the survey as shown in Table 6.1.2. And there were additionally 16 electric furnaces operated in 6 establishments.

Table 6.1.2 Facilities Investigated by Detailed On-site Questionnaire

Capacity Type of Furnace	Large	Medium	Small	Micro	Total
Industrial boiler	6	19	46	44	115
Dryer	3	0	9	6	18
Metal melting	1	0	1	1	3
Metal heating	0	5	4	0	9
Ceramic	2	3	10	0	15
Glass melting	6	5	0	0	11
Aggregate dryer	0	0	0	2	2
Heating	1.	0	2	2	5
Others	0	2	0	0	2
Total	19	34	72	55	180

6.1.2 Planning Approach

(1) Selection of Survey Objects

In the detailed on-site questionnaire survey, the following features were examined through the simple measurement of the operational status of the combustion facility and the visual inspection of its appearance, with reference made to specifications and operation control records of the facility including fuel consumption, as prepared by the surveyed establishments.

- (a) Is the fuel consumption appropriate to the rated capacity of the facility?
- (b) Is the facility equipped with operation control instruments?
- (c) Is the air ratio proper?
- (d) Is the smoke and soot concentration in the flue gas controlled at an appropriate level?
- (e) Is the generated heat effectively utilized?
- (f) Is there any structural defect harmful to (d) and (e)?

On the basis of the survey results, control measures were studied for 48 establishments, after eliminating 64 furnaces in a total of 24 establishments: 13 establishments that need no measure, 4 under relocation plan, 3 under facility retrofitting or change, 2 in that no measure is possible, and 2 with no reliable data.

(2) Control Measures to be Applied

Control measures are selected from those applied to the sources subjected to the diagnostic survey considering similarity in type of combustion facilities, fuel used, facility size, and operation conditions. As the types of facility not covered by the diagnostic survey program, there are 15 kilns in 4 establishments and 2 gas turbines in 1 plant, and they are all among the eliminated 24 establishments.

Considering that there are many small to medium sized establishments, efforts have been made to select measures that give high pollutant reduction at limited facility investment costs, with emphasis given to the rationalization of operation control.

With respect to fuel change, it is assumed that the current heavy oil is replaced by the desulfurized heavy oil after the start of its supply.

6.1.3 Control Measures

(1) Outline of Control Measures

The twelve measures, as shown in Table 6.1.3, are selected as facility improvement measures for the object facilities.

Table 6.1.3 Facility Improvement Measures

Kind of facility improvement measure	Number of establishments applied (number of facilities)	Unit Cost (US\$)
Reduction of combustion chamber loading	3	-
Steam atomizing system	3 (3)	2,200
Burner nozzle renewal	3 (6)	4,700
Fuel preheater	3 (5)	200
NOx measurement device	3	13,600
Combustion control instruments	1 (2)	52,000
In-furnace denitration and flue gas recirculation	1 (2)	66,000
Thermometer for air preheating	1	1,500
HC removal system	1 (paint factory)	63,000
Increase of fuel atomizing air pressure	1	
Simple repair by owner	4	-
Portable O ₂ meter	33	2,400

For fuel change or improvement in the facilities using heavy oil exclusively, the following 3 cases are considered.

A: Mixed burning of heavy oil and diesel or natural gas in the 50:50 ratio:

Until the supply start of desulfurized heavy oil

B: Exclusive burning of desulfurized heavy oil:

After the supply start of desulfurized heavy oil and when its emulsification is not feasible

C: Emulsified combustion of desulfurized heavy oil:

After the supply start of desulfurized heavy oil and when its emulsification is feasible, except glass plants remaining in the case B

The pollutant reduction effects by introduction of desulfurized heavy oil and its emulsion are assumed to be as shown in Table 6.1.4.

Table 6.1.4 Pollutant Reduction Effects of Desulfurized Heavy Oil

	NOx (%)	SO ₂ (%)	PM (%)
Current heavy oil	0	0	0
Desulfurized heavy oil	10	73	20
Desulfurized & emulsified heavy oil	30	73	40

In addition to the above concrete measures in improvement of facility and fuel, future measures at the time of facility renewal and recommendation for operational control are also taken into consideration. These are summarized in Tables 6.1.5 (1) through (12) for each establishment.

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 1 Table 6.1.5 (1)

		24:0:083	14:	-	Consumo	Consumption of File	Filal		tries treat	r	Reduction	Γ
Name of Establishment V	Visit		Rating	Material	¥-83S	Diesel	Heavy	Poliution Countermeasures	ind:		Ratio (%)	
dustry		Name	capacity			0	oi!			Total	(Estimated)	<u></u>
(Products)	+		ton/nr/	1			╅		(\$2)		XPUZ PUR	ē
Chemical Products		# # # # # # # # # # # # # # # # # # #	ďπ		35			Ulagnostic Survey conducted.				
(detergent, cooking oil,		Water take holle	28		1.725		<u> </u>		_			
_		tabe	ထ		416	_						¥ 84 2
	_	tube boild	ιņ		382							
	တ္ ၊	Heat medium boiler	က		77				•			
	- 0	Heat medium boiler	នះ	1.0	3,5							
	0 0	meat medium politer	7 "		3 6				•••			
	2	near medium boller	n 11		e d							
	7	חשרים שבחיות ששויה שיבון	2.5	1000	3 6							
-	· ·	10,10	25		3 8							
	2 5	Dryer	36		3 8							
>	2.1	water tube boiler	3.3	Γ	272		r	1) Modification of combustion facility		ļ		<u> </u>
			7		22			 Periodical combustion control for operation at the 			_	
incecticide, giycolester/		Heat medium boller	er Small	5) t	_		appropriate air ratio with a portable U2 meter. It should	UZ #eter			
	_		capaci ty				-	be done simultaneously with GJ, since smoking takes place	7,400			
								even at an UZ concentration of 5.2 7.				
	_							(2) Since the boiler is outworn and no new low NOx burner	2,200xt		_	
	1				1		-+	can be installed, a steam injection should be employed.	9	9.800	2	П
PKUCTUK & GATBLE DE	÷	water tube boller	7.	>team			3,	Socialization of comparison facility				
realcu, s.A. ut c.v.								Coluce the poller control instrumentation is fully		-		~~
unemicai (Detergent, Soap)								equipped with meter for Us, Uss & Us, With the exception of the state		-	_	
	_						_1_	idel atomization pressure gauge, nonning special is required			-	T
					-			(1) Item of house oil 50% ± diopsi 50% michaes		8		
	_	•						(a) Use of Beautification house of		3 5	3.5	
								(3) Use of emulsified and desulfurized heavy oil.		3 2	25	ī
BANOS R10 BLANCO	4-1	Smoke tube boiler		Steam	7.	Diese		1) Modification of combustion facility		-		
		캶		Steam	۸.	Diesei	_	 Periodical combustion control for operation at the 				
	_				esa		_	appropriate air ratio with a portable 02 meter.	2,480	_		
								(2) Replacement of the burner nozzle for optimum atomization		- 6		
							-			Š.	1 2	ī
KALOCTOC O A		Water tube boller	2.5	5162m			C 250	1) Modification of combustion facility: (3) Desiration combustion control for committee of the				
	3	## CO 200	_			•		de les controls de la company	3 800	Se Con C	2	ġ
Food Ciecus - Plotessed								Application of the height when the course to more the loss had		<u></u> }	2	2
noise, prood and Sicase of								Applications of a site bolder if our book to prevent fixed loss by	41.0	.:		-
4111 ma 15/							.1.	Definate and entry.	Nei Lichair	-		T
										}		
	_		_	_		_		(1) USe of neavy oil out + diesel out all ture.		ή.	32	 t
	_							(2) Use of desulfurized heavy oil.		2	3.5	ı
7		1				1		(3) Use of emulsified and desulfurized heavy oil.		4		٦
	-5	Heat medium boiler	700,000 ** 01	1.0		Q		None				
Petrochemical (polyester,			KG8 /hr									
CIPA CELCY MEVICANA C A	7.	One through his	-	C+00#	,	S	T	1) Madification of combustion foot little	1		-	T
DE C V		One-through hir		O team		88	_	(i) Periodical combination control for operation at the				
Chemical (modicine due	4 0	Ore-through his	? -	C+co#	_	38		appropriate air ratio with a portable C2 meter	2 400	2 400 20	7	
ing soont incontinion		Order through bir		Cteam		38		מקלו כלו ומינו מינו מינו מינו מינו מינו מינו מי		<u></u>		-
		. 110 USSU 1111 - 2115	3		1-2 of	4 operating	ting.			~ ~		
1	8	Water tube boiler		Steam			G	Diagnostic survey conducted.		-		
Factory (B)	۲ ۰ -۵	Water tube boiler	40	Steam	Spare			See Sec. 5.2.10.				
_	2	Smoke tube borier i		Steam		1	4161			1	-	٦

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 2 Table 6.1.5 (2)

		Facility		什十	Consumpti	Consumption of Fuel		Investment		Reduction
<u>.</u>	1			faterial	N-gas Di	N-gas Diesel Heavy	Poliution Countermeasures	ind:		Ratio (S)
•	24 HE		(ton/hr)		(m3/hr) (1	/hr) (1/hr)	_			NOXSOZ PIPLE
- c-	Snoke tube boiler Snoke tube boiler			Steam Steam	Alternate use	107 107	1) Modification of combustion facility ① Periodical combustion control for operation at the appropriate air ratio with a portable 02 meter. ② Because the fuel temperature is low, a fuel preheater should be installed. (A ribbon heater with thermometer and themostat is also usable.)	2,400		0 0
	· .						2) Fuel change ① Use of heavy oil 50% + diesel 50% mixture. ② Use of heavy oil 50% + diesel 50% mixture. ③ Use of edesulfurized heavy oil. ③ Use of emissified and desulfurized heavy oil.		용으를	888
1-01	Water tube boiler	boi ler		Steam			1) Modification of combustion facility ① Periodical combustion control for operation at the appropriate air ratio with a portable 02 meter. ② Colosura taperfluous openings to prevent heat loss by teriary air entry.	2,400	2,400 40 2	8 0 8
							 Fuel change Use of heavy oil 50% + diese! 50% mixture. Use of desulfurized heavy oil. Use of emulsified and desulfurized heavy oil. 		853	111 282 732
	11-1 Rotary kiln 11-2 Rotary kiln 11-3 Rotary kiln	c c c	888	Aggregate Aggregate Aggregate	-1-1-1	1,360 1,360	Diagnostic survey conducted. See Sec. 5.2.12.			
	12-1 Smoke tube boile	boi ler		Steam		28.4		2,400 2.	2,400 20	3 0 3
							 Fuel change Use of heavy oil 50% + diesel 50% mixture. Use of desulfurized heavy oil. Use of emulsified and desulfurized heavy oil. 		883	333 111
	3-1 Glass melting furnace tank oven 3-2 Glass melting	ing rik oven ing	8 8 8 8	Glass Cullet 75% Glass	1,282		 Modification of combustion facility When NOx concentration is high, the volumetric furnace load should desirably be reduced. (around 70.000 kps//m3hr. 			
		nk oven ing		Cuilet 75% Glass	1,282		When heat amount is insufficient for the intended process, electric heater free from NOx generation can be used as a			
	3-4 Glass melting	ing ing		Glass 75	1,282		supplement.) @ Combustion control to prevent abnormally high NOx	NOx meter 13,600 13,600 1	08 009) 0
	3-5 Glass melting	ing oven			1,282 №	Not operating				
	4-1 Water tube boiler 4-2 Water tube boiler 4-3 Water tube boiler	boiler boiler	0.6 4.6	Steam Steam Not to ton	3, 2	Not operating	Diagnostic survey conducted.			
1.2.5		boiler boiler		Steam	3hr/day 3hr/day	307 185	7 1) Modification of combustion facility (a) Periodical combustion control for operation at the appropriate air ratio with a portable 02 meter.	2,400 2.	2,400 20	4 0 4
							2) Fuel change ① Use of heavy oil 50% + diesel 50% mixture. ② Use of heavy oil 50% + diesel 50% mixture. ③ Use of equilitrized heavy oil. ③ Use of equils filed and desulfurized heavy oil.		823	111 888 388
ه دار دارا	16-2 Water tube boller	boiler	11 t	Steam	500 Not operating	1	Dia See			
		tube boiler		Steam	2.500	7,083				

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 3 Table 6.1.5 (3)

		Fac. 1	1		Tonestantion of	101/3		+ 1000	Dod	40,70	ſ
Name of Establishment	45		-	Material	N-8as Diesel H	Heavy	Pollution Countermeasures	Indi- Faci	28 82 28 25 27 25	Ratio (%)	ar Falar est
Type of Industry (Products)		Name	capacity (ton/hr)		#3/hr) (1/hr) (0 i l		vidual Total	Est Segre	(Estimated)	٦Ŧ
	17-1	l—	2010	1			Factory relocated by the administrative order.				
NOVAQVIM, S.A. Chemical (oxidation inhibitor, stabilizer)	18-1	Smoke tube boiler Smoke tube boiler	た. た. 2000	Steam	Alternate use	88	8 D) Modification of combustion facility. 2) The structure permits no retrofitting. 2) Fuel change © Use of heavy oil 50% + diesel 50% mixture. © Use of desulfurized heavy oil. © Use of emulsified and desulfurized heavy oil.		823	ន្ទន	1 1 1 1
Metal Products Factory (B) (aluminumsash, racket, tube)		Melting furnace Melting furnace Melting furnace Melting furnace Melting furnace Heat treating foo.	8 55:1:1: 8 55:1:1:1	A Lum num A Lum num	522222888888	1	Diagnostic survey conducted. See Sec. 5.2.22.			2	
PUNDICION CHORNE Rasic metals (cast iron)	70-1 20-1	Cupola		Scrap iron	Coke: 500 kg/day	day.	factory to be relocated.				Γ
	21-2	Smoke tube boiler Smoke tube boiler	1.27	Steam Steam	Alternate use	170	1) Modification of combustion facility ② Periodical combustion control for operation at the appropriate all ratio with a portable 02 meter. 2) Fuel change ③ Use of heavy oil 50% + diesel 50% mixture. ③ Use of desulfurized heavy oil. ③ Use of emulsified and desulfurized heavy oil.	2,400 2,400	% %5%	୦ ଝ୍ଲଞ୍ଚ	<u>∞</u> 111
Bands naucalpan Bathfouse	85. 1.52	Smoke tube boller Smoke tube boller	0.0 9.0 3.0	Steam Steam	A ternate use	88	1) Modification of combustion facility (a) Periodical combustion control for operation at the appropriate air ratio with a portable 02 meter. 2) Fuel change (a) Use of heavy oil 50% + diesel 50% mixture. (a) Use of desulfurized heavy oil. (b) We of emilsified and desulfurized heavy oil.	2,400 2,400	E 884	<u> </u>	m 111
Glass factory (C) (glass bottle)	23 23 23 1 23 24 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	Glass melting furnace tank oven Glass melting furnace tank oven Glass melting furnace tank oven Decorating furnace (12 furnaces) Amealing furnaces (17 furnaces)	7. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	Glass Cullet 55% Glass Cullet 55% Cullet 55% Glass Glass	2,160 1,500 800 2,980		Diagnostic survey conducted. See Sec. 5.2.16.				
	24-1 24-3 24-3	8888	-	Steam Steam Steam Steam			Diagnostic survey conducted. See Sec. 5.2.7.				
GENERAL PRODUCTOS CO., S.A. DE C.V Chemical (Na2S204, ZnO, SO2 Soln.)	8888 1754 1755		% % C :	Steam Steam Steam Steam	686 3 of 4 o	4 operat- None	Нопе				

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 4 Table 6.1.5 (4)

		000	1771		Condition and the Condition of the Condi				1	Ì		ſ
Name of Establishment	V io :+	1 90	Va I	Material	N-020	of Lose	T,	Pollution Companies		T:	Negociation (*)	
Transport of Laboration in College			- Jack		202			いた。これは、これは、一般におりにはない。	2	7	() O ()	
(Products)	<u>.</u>	vame	(ton/hr)		(1) (3/hr)	(1/hr) (1/hr)			2002 2002	1012 1012 1012 1012 1012 1012 1012 1012	(Estimated)	<u>.</u>
	1-90	Tinnel kiln	403,200 \$	Ceramin		-	╆	None	+			
Non-serial in a indus			403,200	Ceramic	225	_	-					
		Tunnel kiln	296,000 * Ceramic	Ceranic	88							
		Tunnel kiin	296,000 *	Ceramic	8	-						
	2,65	Downdraft Kiin Infrared hirner	453,500 # Ceramic	Ceranic 500 km 1	26	Kc1/hr 800 bar	Simple Simple					
FAEL	_	Black liquor boi.	12.5	Steam	Black	Ļ	185	Modification of the Black liquor boilers		t		7
its product	-	Black liquor bo:					4 480 O	The black liquor boiler is equipped with an Flectro-				
							416 st	static Precipitator for dust control. Since the company did				
	_	water tube boiler				- 2	,017 m	not permit the diagnostic survey, no details of EP is				
	_	water tube boiler				m	.600 av	(a) lable. Judging from the change in smoke meission				
	27-5	water tube boiler	90.0			· ~	3,500 re	resulting from a temporary interruption of EP operation.				
								ts soot precipitation efficiency must be good. On the				
							<u>.</u> 25	basis of the chracteristics of EP, also fine dust such as				
							2	1204 is thought to be well removed. The black liquor	_	_		
					_		8	ontains 3.5% S, and this is presumably recovered together				
							3	with chemicals such as NaOH, (In Japan, 98% is recovered in				
							£	this way.) With respect to NOx, the concentration is				
-							<u>8</u>	onsidered to be low, based on the composition and				
-							<u>8</u>	ambustion method for the black liquor. From the above, no				
								further measure is considered to be meeded, provided that				
							<u>=</u>	he EP is maintained sufficiently. For the future, adoption				
							of o	of a furnace with high S recovery rate is recommended at				
						_	Ŧ.	ie time of replacement.			_	
							<u>ন</u>	2) Fuel change for the water tube boilers		8	5	
							<u>) (</u>	The of deep funished bears of		3 5	3.5	J
FCA. DE PAPEL MEXICO		Water tube boiler		Steam	-	F	_	Modification of compustion facility			ુ _	
		Water tube boiler	30.00				. SS .	(1) Ungrading of the compustion control instruments	52,000			
						<u> </u>		including currently failing ones to secure optimum				
							8		86,000 x	66,000%2		
							<u>o</u> k		2	8,00%	80	
					_		==			}	-	
			••				36	JUSE OF REZVY OIL DUZ + DIESE! DUZ BIXTURE. Silve of desulfurioed beavy oil.		8 E	3.5 3.5	1 1
								Use of emulsified and desuffurized heavy oil.		1.57	유	-1
HACO MEXICANA, S.A	21.53	Smoke tube boiler	3.8				388	Modification of smoke tube boiler				
		Roasting furnace		Pigment		8) Periodical combustion control for operation at the			_	
		Drying Turnace		Pigment Digment		<u>.</u>	(10Ta: 28	jappropriate air ratio with a portable UZ meter; after the commistion of maintenance conks	2 400	2,400 80	2	r
		brying furnace	•	Pigment				File Change				-
	φ 9 83	Drying furnace		9 Smerit			<u>Θ</u>) Use of heavy oil 50% + diesel 50% mixture.		_ <u></u> xx	8	1
					•	·	<u>@</u> (Use of		<u>Q</u>	8: E:	1
							-+) Use of emulsified and desulfurized heavy oil.		¥	0 C	ı
Paper Factory		Water tube boiler Water tube boiler	16	Steam			000 2 80	Diagnostic survey conducted. See Sec. 5.2.18.			i	
Glass Factory (B) 81-1		Melting furnace	1.3	_	535.6		0	Diagnostic survey conducted.				
(glass wool, glass fiber)		Melting furnace	0.0		495.2		<u>~~</u>	ee Sec. 5.2.15.			·	
	2 4	Detring Turnace Uster time holler		C1888		14 ternste use	9					
	ie.	water tube boiler			2,300	<u>}</u>						
				1			-					l

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 5 Table 6.1.5 (5)

		Facil	lt	-	Sonsul		Fuel		1 57 h	ent	Reduction	uo i
11000	3 C	, one	Hatted	raterial	828-N	i ese	Teavy 0.1	Polition Countermeasures	<u> </u>	180	Katio (s)	3
					(#3/hr)		(JAPE)			(33)	0x802 PMFue	PrFile
PASTEURIZADORA LA LAGUNA 3 Food (dairy products, 3 milk, yogurt)	32-1 32-2	Smoke tube boiler Smoke tube boiler	2.5	Steam Steam	M tern	Alternate use		 Modification of combustion facility Since PM generation is expected due to defective fuel atomization, the burner nozzle should be renewed. 	4,700x2	3,400	0	l 8
								 Fuel change Les of heavy oil 50% + diese! 50% mixture. Use of heavy oil 50% + diese! 50% mixture. Use of heavy oil. Use of emulsified and desylfurized heavy oil. 			225	888
VIDRIO PLANO DE MEXICO, B	3-1	Glass melting furnace tank oven	3.3	Glass Juliet 30%	2,050			1) Modification of combustion facility (i) Upon Mix concentration is high, the volumetric furnace			-	
	33-2	Glass melting furnace tank oven	15.8		3,618			one should desirably be reduced. (around 70,000 kcal/mähr.) When heat amount is insufficient for the intended process,				
glass for automobile)					. —		<u> </u>	electric heater free from NOx generation can be used as a supplement.) © (ombustion control to prevent abnormally high NOx		Ş	5	
1	74-17	Water tube boiler	+	Steam			+	Diagnostic survey conducted.	9,000	3000	2	-
(A) (Pannled moner)	25	Smoke tube boiler		Steam		Not operating		See Sec. 5.2.19.				
	222	Smoke tube boiler	0000	Steam			388					
METALURGICA ALMENA B		Crucible furnace	·	Scrap &	18.300		207	1) Modification of the crucible furnace			-	+
er,	35-2	Electric furnace	* 009		(E)	11	ķ	(1) Repair of the damaged hood to improve the efficiency of	Self-repair	i g		
		Electric furnace	* * 8		E :	=:		recuperator.			_	
	85-4 85-5	Electric furnace		*: K8/charge	8e 5.66 51.66	11 KWN/K8	& &					
BANDS LA NARANJA B	¢	Satoke tube boiler Satoke tithe boiler	ο c	Steam	A ter	","		Anno				
	3 82	Hot water boiler		ter		Diesel		STATE OF THE PROPERTY OF THE P				
	¥-98	Hot water boiler		Hot water		Diesel	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-
********	88 88 6 6 6 1	Hot water boiler Hot water boiler		Hot water Hot water		Diesel						
4.2.12	37-1 87-2	Smoke tube boiler Smoke tube boiler	0.80	Steam		Spare	88	1) Modification of combustion facility (2) Periodical combustion control for operation at the				ļ
					_			appropriate air ratio with a portable 02 meter.	2.400	2,430	න න	6
								(1) Use of heavy oil 50% + diesel 50% mixture.			ref.	
•								(② Use of desulfurized heavy oil.			22	1 I
	 88	Smoke tube boiler	4.0	Steam			123	1) Modification of combustion facility			1	4
		Smoke tube boiler		Steam	Not op	Not operating		(1) Periodical combustion control for operation at the				
								appropriate air fatio with a portable UZ meter. (3) Revains the first temperature is ion a first probester	2,400			
		•		• ,				should be installed. (A ribbon heater with thereometer and				
	-							thermostat is also usable.)	200X2	200x2 2,800	85 15	0
								(2) Fuel change(3) Iso of beav oil 50% + diese 50% mixture.		,		
			• • •					② Use of desulturized heavy oil. ③ Use of emulsified and desulturized heavy oil.	.		23	88
MEDIDORES AZTECA, S.A. B	 	Electric furnace	kg/hr	Ingot	Elec	Elec. 1.2 kwh/kg		None				
1277	j		1,100	***************************************			1				-	-

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 6 Table 6.1.5 (6)

to 12:	8	A (US\$) NOX502 PMFuel				0 888 0 888 0 111		8	0 2		0	888
Redu	£2.	\$ 00 \$ 00 \$ 00 \$ 00 \$ 00 \$ 00 \$ 00 \$ 00			0 323 0 325 0 325 8 885	27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		 0g	2,400 [10 2		- R3 - 73	288. 195 228.
ent	-	(SS)			6 400	2.400 80 10 10 10 10 10 10 10 10 10 10 10 10 10		1,500 [10	2,400	,	2,400	
Investa	Indi- Faci	(USS)			4,700x2	2,400		1,500	2,400		2.400	
	Pollution Countermeasures		None; relocation currently planned.	Diagnostic survey conducted. See Sec. 5.2.13.	1) Modification of communition facility ② Since PM generation is expected due to defective fuel atomization, the burner nozzle should be renewed. ② Fuel change ③ Use of heavy oil 50% + diesel 50% mixture. ③ Use of desulfurized heavy oil. ③ Use of emils fiel and desulfurized heavy oil.	1) Modification of combustion facility. (a) Periodical combustion control for operation at the appropriate air ratio with a portable 02 meter. (b) Fuel change (c) Use of heavy oil 50% + diesel 50% mixture. (d) Use of heavy oil 50% + diesel 50% mixture. (d) Use of emilsified heavy oil.	None	 Modification of the water tube boilers Regular combustion control to secure operation at optimum air ratio. Installed of a preheated air thermometer for enforced combustion control. 	 Modification of combustion facility Periodical combustion control for operation at the appropriate air ratio with a portable 02 meter. 	,333 [Diagnostic survey conducted. See Sec. 5.2.24.	1) Modification of combustion facility (a) Periodical combustion control for operation at the appropriate air ratio with a portable (2 meter. 2) Fuel change	(i) Use of heavy oil 50% + diesel 50% mixture. (iii) Use of desulfurized heavy oil.
Fue	Неачу	(1/hr)	311	8,000 9,000 2,250 1.0.1 1.0.1 1.0.1	400 270 Spare	88			Not ope	3,333 ion	32	
tion of	Diese	(1/hr)				at use		000 Tating	180 112 Diesel Diesel Diesel	combus. operat erating	es ase	
Consum	N-gas Diesel Heavy	(1/hr)		N. Sas. N. Sas. Sas.		Al terns te use	100 100 100 145.7	Not ope 1,681 2,162 250 250 242 467 854		Mixed combus. 3 6,250 2 of 3 operation Not operating	Alternate use	
	Material	-	Steam	Cement Cement Cement Cement Cement Cement Oil	Steam Steam Steam	Steam	Ceramic Ceramic Ceramic Ceramic	Steam Steam Steam Paper Paper Paper	Steam Steam Steam Steam	Steam Steam Steam Steam	Steam Steam	
ty	gunt			88288 882888 88288 8628 86288 8628 8628 8628 8628 8628 8628 8628 8628 8628 8628 8628 8628 8628 8		0.0 .c.	108,000 * Ceramic 108,000 * Ceramic 108,000 * Ceramic 875,000 * Ceramic 875,000 * Ceramic	8 8 8	2.6 1.6 1.3 0.8 5,040kc1/1	8828		
Facility			be boiler	Rotary kiln Rotary kiln Rotary kiln Rotary kiln drying furnace drying furnace drying furnace drying furnace medium boiler Heat medium boiler flot water boiler	Water Tube boller Smoke tube boller Smoke tube boller	Snoke tube boiler Snoke tube boiler	Tunnel Kiln Tunnel Kiln Tunnel Kiln Tunnel Kiln *	Water tube boiler Water tube boiler Water tube boiler Dryer Dryer Dryer	Smoke tube boiler Smoke tube boiler Smoke tube boiler Smoke tube boiler Heat medium boiler	Water tube boller Water tube boller Water tube boller	Smoke tube boiler Smoke tube boiler	
	1817		10-1	200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 255 - 255	43-1 43-2		15.1 15.2 15.3 15.5 15.6 15.6	46-1 46-2 46-3 46-4 46-5	47-1 47-2 47-3 47-4	48-1 48-2	
	Name of Establishment	(Products)	SALICILATOS DE MEXICO Precision instruments (medical supplies)		PAPELERA ATLAS Paper & its product (Recycled paper)	Bands Lupita Rathhouse	PORCELANITE, S.A. Non-metallic mineral product (tile for building)			nks factory	BANDS TACUBA Bathhouse	

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 7 Table 6.1.5 (7)

11ty Raterial Capacity Con/hr S Steam 112 Steam 113 Steam 1.8	biesel Heavy Poliution Countermeasures Indi- Facil	(1/hr) (1/hr)	erating None erating			 400 1) Modification of combustion facility		7,400 2,400 2,400	8	(4) Use of neavy oil 34% + diesel 34% #ixture.	71 Diagnostic survey conducted.			380 Ai ternate use None	634 Diagnostic survey conducted.	100	ec. /, 500 KAN/CRAESE	360 1) Modification of compustion facility			(② Use of heavy oil 50% + diesel 50% mixture.	353-450 Diagnostic survey conducted.	783 All refining operations were closed on March 18, 1991 by	 080 See Sec. 5.2.3.	1,055	220	061	899	000	0.25	018	0.72	210	050	5	tensor 27 (1) Periodical combination of the
Rating Raterial Capacity Capacity Capacity Steam 10 Steam 117 Petroleum 120 Steam 130 Petroleum 130 Petroleum 140 Petroleum 150 Steam 150 Ste	f Fuel Heavy	Ē	erating erating	539 1) Modification		 		2) Fire Change	2) ruei change		├	+-				100	Elec. /,500 km/chaege	≘€	<u>₹</u> €	2) Fuel change	90	5	783	 	1,055	4,270	2,140	1,600	400	470	810	270	0.10	4	5	① Periodical
	bing Material	_	Steam Steam Steam	Billet			S team				Steam	-1					ton/char							 		_				_				Petroieum	retro eum	0.4 Steam
No. Name 19-1 Water tube boiler 19-2 Water tube boiler 19-2 Water tube boiler 19-3 Water tube boiler 19-3 Water tube boiler 19-3 Water tube boiler 19-4 Water tube boiler 19-5 Smoke tube boiler 19-5 Smoke tube boiler 19-7 Water tube boil	Faci			Heating furnace	•	Heating furnace	Smoke tube boller		-				neating furnace	Smoke tube boiler Smoke tube boiler	Heating furnace	Heating furnace		Heating furnace	Heating Turnace			Water tube boiler	Vater tube boiler	Packaged boller	CO boiler	Heating furnace	heating furmace	Heating furnace	Heating furnace	Heating furmace	Heating furmace	Heating furnace	Heating furnace	Heating furnace	Heating furnace	Mater tube boiler
Name of Establishment Visit Type of Industry (ARTONALISE) Paper & its product Paper &			16-1- 16-2-1- 16-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1.3	2 2	7-16	7-70	_			- -	-+-		? Z.Z	12	181	? ?	<u>.</u>				57-1	57-2		57-4	5-70	9-29	2-1-2	0 6	57-10	57-11	2.5	51-10 24-10		91-1G	8.2

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 8

Table 6.1.5 (8)

		11000	. 457		Conculantion of	10119		+001,007	1	Post ion
	+1017	28	200	Matorial	Nego Di		Pollition Componence	TIVES CARCING		Regueer Con
Type of Industry (Products)	į	Name	capacity (ton/hr)			(17hr) (1/hr)	CO. IDORONICO INCIRATION			(Estimated)
N DE HIERRA V	9	1-	*	Seran	FIRT RED	REG kuh/charaa	None		_	
	. A.	Electric furnace	***	Scrap		800 kwh/charge				
fetal product (Wheel trait for the feet mail front)	72 72 73 73 73 73 73 73 73 73 73 73 73 73 73	Electric furnace	4 ton/charge	or se	Elec.	KWhy Change		•		_
	59-4	Annealing furnace		ting	420					
	96-5 56-5-5	Heating fumace Cupola	,	of iron	Not operating	20 E				
RA DE ACEROS	8	Electric furnace	2.5 #		Elec. 500	500 kuty/charge	1) Modification the annealing furnaces	Self-repair		
		Electric furnace	٠ ١	d S			(1) Repair of the furnace door to reduce energy loss by			
Basic metais (cast fron)	25	Electric Turnace	n c	de 15	3 6 3 6 3 6 3 6	KWIN Charge	tertlary air entry.			
		Electric furnace	* *	Scran	100 100 100 100 100 100 100 100 100 100		The quantitative evaluation of the fuel saving effect by			
		Electric furnace		Scrap	E.ec. 30		prevention of tertiary air entry is difficult. Assuming a	,		
	9	Annealing furnace	# Q	Casting	459.7		combation efficiency of 50%, the reduction of oxygen			
	8-05	Annealing furnace	* .	of iron	5.5		concentration from 8:5% to 2.1% will result in 11% saving.			_
	5-0g	Annealing furnace	ace 4 #	Casting	2.5					
FORD MOTOR COMPANY	1-19	Drying furnace	0.6-3.2	Mold	50-60	_	1) Reduction of hydrocarbon		-	
Rent	2-19	Hot water boiler	1-3.5	Hot water	88-91		(1) Hydrocarbon vapor generated from the painting process,			
ag Se	7	Air heater	0	250	2 2 2 3 3 3 3	oper order/street	Should be ducted for direct burning treatment. (The volume			
Dody assembly	, r.	dropping furnace	o.	Cacting		DOO NATION CITED SE	The abstract to be discussed in a notifier, and the control of and a filterant about the installed. (Kinds and one	E3 DOD E3 DOD		بد 6
				of iron			for incinerator and duct vary widely depending on the			
							Installation site, they are exectuded from the estimate.) Other combustion facilities are satisfactorily controlled.			
					_		and no special measure is needed.		_	
	-7- 83-83	Smoke tube boiler Heating furnace	2.6 100,000# #:kcal/hr	Steam		01 8g	Diagnostic survey conducted. See Sec. 5.2.5.			
4	53-1	i	0.25	Brass			Since no data were available from the factory, no detail is		_	
(msurator (ceramics)	313	tiectric turnace	88	Brass	N. gas		KROWII			
product (ceramics, wire-	83	Tunnel kiin	8	Ceramic	E E					
ectric	89-5 83-6	Tunnel kiln Tunnel kiln	0.33	Ceramic	132					
3M DE MEXICO, S.A. Others (spenge,brish)	25.5 C	Smoke tube boiler Smoke tube boiler	Z 6	Steam		330 Spare	 Modification of combustion facility Periodical combustion control for operation at the 			
			,				1	2,400 2,400	25 7	0
			_				(2) Fuel change(3) Use of heavy oil 50% + diesel 50% mixture.		8	<u>।</u>
ı						- {			00	8
	89.7 89.7	Water tube boiler	45.4	Steam	Alternate use	use 2,000	Biagnostic survey conducted. See Sec. 5.2.23.			
shortening)	33		504,000 #	ij	- CA	58.8				
	65-4	ě	504,000 # *:kca]/hr	0:1		8.8		,		
ESMALTES Y COLORANTES,	86-1 86-3	Melting furnace	0.0 0.0	Glass	38		Note; rejocation currently planned.			
Non-metallic mineral	98	Drying furnace		Pigment	Butane 25	25ki/mon total				·
product (Glaze Tor tile,	3 % T	Spray type onyen	de Aerda / e XOVC	rae raent	5	ner bestang				

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 9 Table 6.1.5 (9)

		7:1:000	1			Constant of Case	1.5					
	Visit		Rating	Material	N-8as	Diesell	Heavy	Poliution Countermeasures	Ind - Fac	Facili	Reduction Ratio (%)	<u> </u>
Type of Industry (Products)	Ão.	Name	capacity (ton/hr)		m3/hr)		oil.		vidua!	of S	Est	(Estimated)
	87-1 87-2	P P	mm	5.5			208 Spare	Diagnostic survey conducted. See Sec. 5.2.8.			7	3
ap>	33	Heat medium boiler	-	0 1		175	+					_
Glass Factory (A) (glass bottle, crystal	88	Glass melting furnace tank oven		Glass Juliet 55%				Diagnostic survey conducted. See Sec. 5.2.14.				
	27 88	Glass melting	 7	Glass Cellet 558			1,350					
	5-86	Glass melting			Under :	Under repair H.oil	H.o.il					
	2-4	furnace tank oven	•									
	}	furmoe	-		L.P.G	625 I/hr	j.					
Thermoelectric Power	1-68	Water tube boiler	476	Steam	1,717		1.950	Diagnostic survey conducted.				
	39-2	Water tube boiler	503.5	Steam	1,998							
	g	No.2	503,55	Steam	11.959		OC# 17		er-mer			
	}						2,000					
	93-1	Water tube boiler	8	Steam	2,600		3, 125					
Thermoelectric Power	2-1	Water tube boiler		Steam	- 1		10,246	Diagnostic survey conducted.			-	
	200	Water tube boiler	_	Steam	2,208		00,00	See Sec. 5.2.2.				
	56	Water tube boiler	3 8	Steam	23.480		 €					
ON DE FIERRO Y	71-1		* 008	Srap	1	1,285 kg/day		None			-	
METALES Basic metals (cast iron)			# kg/charge	e.				The cupola is using high quality U.S. made coke.				
lucts	2-1	Snoke tube boi	2.35	Steam	110	Alternate use	ase ase	Diagnostic survey conducted.	_			L
	22	Smoke tube boi	_	Steam							+	-
ORGANIZACION QUIMICA MEXICANA Food (food additions	2.5 2.5 2.5	Smoke tube boiler Smoke tube boiler	e 6	Steam			19.4	1) Modification of combustion facility Deriodical combustion control for operation at the	, P	2 600	π	c.
zinc chloride)						-		2) Fuel change			3	1
				.,				(g) Use of heavy oil 50% + diesel 50% mixture. (g) Use of desulfurized heavy oil.			32 32	88 1 1
						_					7 <u>7</u>	- 12
PRODUCTOS NUTRICIONALES Food (food additives)	74-7	Smoke tube boiler Smoke tube boiler	 	Steam		88		 Modification of combustion facility Periodical combustion control for operation at the appropriate air ratio with a portable 02 meter. 	2,400	2,400 20	 	<u>ه</u>
								We refloated the merking and cleaning of the muther mozzie to improve fuel atomization.				
က္ခ	75.1 75.2	Smoke tube boiler Smoke tube boiler	7.6	Steam			88	 Modification of combustion facility Addition of a portable 02 meter to the present 				
Petrochemical (styro)						•		instrumentation to secure operation at an optimum air ratio. 2,400 2,400	2,48	2,400		
pointer container, pullo- ing material)			•					2. ruel change O Use of heavy oil 50% + diesel 50% mixture.			됐	
								② Use of desulfurized heavy oil. ③ Use of emulsified and desulfurized heavy oil.		,	52 23	I I 88
Paper Products Factory (8)	76-1 76-2	Water tube boiler Water tube boiler	9.5	Steam	Aitern	Alternate use	440	Diagnostic survey conducted. See Sec. 5.2.20.				

	•	ह्यें हु	Γ					l	T	4	-	1	1	<u> </u>			Γ	00	Γ	Ľ	,	1 1	1						· • · · · ·			~~~~	Τ		o,	1	l
Reduction	Ratio (3)	(Estimated)						0	-			83	55 83	_	8		-	0	-	C Lr	+-	8 <i>8</i>											-		0	8.	 83 99
Red								8	1	Ķ	3	8	2 Z		0		-	8	-	Ķ	3	3E	2.5	 									1		8	8	6
ent	Paci.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						13,600		2 400	3				2,400			2.400		2 400	3														2,488		
nvestment	- 2	vidua!						3,600		2,400					2,400			2,400	+	2 430															2,400		
	Pollution Countermeasures		Modification of the glass melting furnace	load should desirably be reduced, (around 70,000 kcal/m3hr.	hen hear amount is insurficient for the intended process, ectric heater free from NOx generation can be used as a	Supplement.)	(4) Community in Some to prevent abnormality high NUX concentration using a NOx meter.		Modification of combustion facility	Periodical combustion control for operation at the contints air ratio with a nortable CO meter		Use of heavy oil 50% + diesei 50% mixture.	Use of desulturized heavy oil. Use of emulsified and desulfurized heavy oil.	1) Modification of for the incinerator	3 3		Modification of combustion facility	Feriodical combustion control for operation at the propriate air ratio with a portable 02 meter.		at the		(a) Use of heavy oil 50% + diesel 50% mixture.	Use of employing and desulturized heavy oil.	None									1) Modification of the smoke tube boilers	present optimum air ratio.) Use of heavy oil 50% + diesel 50% mixture.	Use of desulfurized heavy oil.
le le	<u></u>	(1/hr)		9.≏:	<u> </u>				(1 gg		2	Θ.	90	≘€	9 6		Ė	9 8	ļ-	9		<u>@</u> @	90	<u> </u>			,						160 1)	⊕. <u>=</u>		3 53 3 ⊖0	
of Fu	P .	<u>= </u>		<u>89</u>	· 82	E.	5*	Heavy Oil use		operating					. 7.	- 9			92											%/hz			\perp	∞ ∞		Ŋ.	300
tion	Diesel	5		ratir	ratir			ea c	:	Not				145 145	Diesel	Diesel	1=:	ite use	te us											1,250			} ;	operating operating	1	ອ <u>ິ</u>	
Consumption of fue	888-H	m3/hr) (1/hr)	958	Not operating	Not operating	1040	#250	**								al torns		Alternate use	Alternate use						Total	% & 				Coke :1,250kg/hr	3	83		Not operating Not operating	7	Al verse use	L.P. G STEAT ATTOUNT
	Material		Glass	Glass	Class	<u></u> c	Steam	Steam	Steam	Steam Steam				Steam		⇒.J	T	Stea E	Steam					Steam		Steam	Steam	Cteam Cteam		9.0		Aigae		55		Steam	
>		(ton/hr)	8.33	3.33	0.17	9		8	1	- t-		•		12.8	: K3	* 0.1	0.47		⊢	60 60	•	•				88	_			9.5			_	* * 88	•	ດ ເດ	
Facilit		Name Ca	Glass melting	Glass melting	Turnace tank oven Glass melting	furnace tank oven	Smoke tube boiler	Smoke tube boiler	Smoke tube boiler	Snoke tube bottler	2			Smoke tube boiler Smoke tube boiler		Incinerator	Smoke tube boiler	Marke tube bolier	Smoke tube boiler	Smoke tube boiler				Water tube boiler	t pe	Water tube boiler	tube	Water tube boiler	Water tube boiler	Roasting furnace	(8 furnaces)			Heat medium boller		Smoke tube boiler	Lon
	Visit.		77-1	77-2	77-3		- C			2 00				79-1			8.	7	81-1	24.6	<u>.</u>									2 2 2 3 3		82-12		388	8	88 55.4	o Si
	Name of Establishment		SILICATOS Y DERIVADOS,	Chemica!	sium silicate, etc.)				GANADEROS PRODUCTORES DE					HOSPTAL 20 DE MOVIEMBRE ISSSTE			HOTEL DEL ANGEL	-	ISABEL SHERATON					SOSA TEXCOCO, S.A.									AMERICAN TEXTIL, S.A. DE	C.V. Petrochemical (Synthetic	fiber)		

ć

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 11 Table 6.1.5 (11)

٥	Ω.	8 2		ļ	·	<u></u>				111	52		111		111
Reduction	Ratio (S)	(estimated)	- 6			8	 -			338 888	2 2		888 335		#65 883
2			· · · · · · · · · · · · · · · · · · ·	855		K				852	88		854 334		854 325
į	Facil.	5 5 5 5 5 5				2.400			2,400		2,400				
rives takent		Segal Segal				2.400			2,400		2,400 2,400 80				
	Poliution Countermeasures		1) Modification of combustion facility (a) The factory has a plan of renewing the boiler and the burner. Adoption of a boiler which is fully equipped with combustion control instrumentation and a low NOx burner is recommended at the time of the renewal.	2) Fuel change © Use of heavy oil 50% + diesel 50% mixture. © Use of desulfurized heavy oil. © Use of equal sifted and desulfurized heavy oil.	On account of the rotary kiins being out of operation, no detail was known.	1) Modification of compustion facility (2) Periodical compustion control for operation at the appropriate air ratio with a portable 02 meter.		 Modification of the gas turbines five factory has a plan to chang the gas turbines to electric moters. 	Modification of combustion facility Periodical combustion control with a portable 02 meter keep a good combustion.			on of combustion facility f atomizing air pressure to improve fuel	2) Fuel change (a) Use of heavy oil 50% + diesel 50% mixture. (b) Use of heavy oil 50% + diesel 50% mixture. (c) Use of heavy oil. (d) Use of emulsified and desylfurized heavy oil.	1) Modification of combustion facility ② Because of the superannuation, retrofitting is considered to be difficult.	2) Fuel change © Use of heavy oil 50% + diesel 50% mixture. © Use of desulfurized heavy oil. © Use of equisified and desulfurized heavy oil.
Fuel	Heavy		625	1000		-0%	88		& &			39.7		48.7	
on of	Diesel P	1/hr) (: 741/h		38.6 38.6 38.6	88	ating		981 9		64				
Consumption of Fuel	N-gas D	#3/hr) (1/hr) (1/hr)	Propane : 741/hr	<u>.</u>			Not operating	800 800 Total	Alternate use						
-	Material	\neg			55 Aggregate 75 Aggregate 7504,000 ± 0!1 r 630,000 ± 0!1	Steam Steam	Steam		team team		Steam	Steam		Steam	
acility	Rating	(ton/hr)	13.6 Steam 625,000 # Paper #:kcal/hr		55 75 504,000 # 630,000 #	0.77	1.92	4,250 Hp 4,250 Hp 2,5ton/5,5hr 2,5ton/5,5hr 2,5ton/5,5hr 10ton/5,5hr 0,85ton/3hr	3.2		1.28	3.2		1.02	
Faci		Name	Water tube boiler Gas burner		Rotary kiln Rotary kiln Heat medium boiler Heat medium boiler	Smoke tube boiler Smoke tube boiler	Smoke tube boiler Smoke tube boiler	Gas turbine Gas turbine Drying furnace Drying furnace Drying furnace Annea ing furnace	Smoke tube boiler Smoke tube boiler		Smoke tube boiler	Swoke tube boiler		Snoke tube boiler	
Γ	Visit	į	24-2		38 88 8 - 5 5 4 - 5 6 4	86-1 86-2	87-1	\$\$\$\$\$\$\$\$ 4.04.44.66	88-1- 2-1-		-: 28	91-1		92-1	
	Name of Establishment		MANUFACTURAS CARCO, S.A. E DE C.V. Paper & its product (carton)		INDUSTRIAL PAVIMENTADORA, B5-7 S.A. Coal and petroleum prod- B5-3 uct (asphalt mix)	HULE INDUSTRIAL, S.A. Rubber & plastic product (rubber cacking)	Petrochemical Products Factory (C) (whenol)	XICO, S.A. DE (O2, N2, H2, Ar, ling rod)	TAMM V CIA, S.A. DE C.V. Petrochemical (acrylic, cotton)		CIA. HULLRA ATLAS, S.A. B Rubber & plastic product (rubber for automobile)	CORRUGADO Y FIBRA, S.A. Paper & its product (carton)		SALES INDUSTRIALES DE MEXICO Chemical	(ammonium chloride, zinc chloride, etc.)

Control Measures for Sources Investigated by Detailed On-site Questionnaire - No. 12 Table 6.1.5 (12)

	اــا	Facility	ìty		Consumption of Fuel	Fuel		Investment		Reduction	S.
Name of Establishment Vi	Visit		Rating	ateria	N-gas Diesel	Heavy	Pollution Countermeasures	Indi- F	•	Ratio (3)	Şē
	<u>۔</u>	Name	capacity	-		-5		Vidual	Total	(Estimated)	8
1			(ton/hr)		(#3/hr) (1/hr)	3		_		MOXEOZ PIPuel	Puel
TENERIA TEMOLA, S.A. DE BE	3.1	Swoke tube boiler	3.2	Steam	16hr/day				-	-	_
	8-2	Snoke tube boiler	8.0	Steam	3hr/day	48		_			
	3-3	Smoke tube boiler	8.0	Steam	Spare	48		2,400 2,400	400	-	
					-					_	
							① Use of heavy oil 50% + diesel 50% mixture.		8	83 24 83	1
									2	e E	1
	-							-	77	S	_
۸	94-1	Frying oven	0.47	Food	08		1) Modification of the smoke tube boilers		_		
Food (potato chips, 94	2-2	Frying oven	0.47	- 50d	8		 Installation of a steam injection system to reduce the 				
	4-3	Swoke tube boiler	2.6	Steam	195-237		high PM concentration for a natural gas burning boiler.	2,200 2	2,200 20	유 1	1
and the second	7.7	Snoke tube boiler		Steam	83				-		
.a.	R-5	Snoke tube boiler	1.3	Steam	83						
d.	9-1-	Oven		Food	N. gas						
LA HACIENDA, S.A. DE C.V.E.	_	Snoke tube boiler	1.9	Steam		0,	1) Modification of combustion facility		-	-	
Feed (livestock feed)							(1) Periodical combustion control for operation at the				
				_			appropriate air ratio with a portable 62 meter.	2,400			
							② Because the fuel temperature is low, a fuel preheater				
	-						should be installed. (A ribbon heater with thermometer and				_
				_			thermostat is also usable.)	200 2	2,600 10	8	8
				-			2) Fuel change			-	
			_				⊕ Use of heavy oil 50% + diesel 50% mixture.		8	8	1
	-								2	e	1
							(3) Use of earthsified and desulfurized heavy oil.		77	14 73 80	1
EMPAQUES Y CARTON BA	B6-1	Water tube boiler		Steam		220	1) Modification of combustion facility				
	2-9	Water tube boiler	8.00	Steam		F. 0	 Deriodical combustion control for operation at the 				
ىد							appropriate air ratio with a portable 02 meter.	2,400 2	2,400 10 4	_	9
(carton)				_			(2) Increase of atomizing air pressure to improve fuel				
							atomization.				
				_		_	2) Pilet change	-		-	-
							(i) Use of heavy oil 50% + diesel 50% mixture.		8	11	1
							(2) like of plessification heavy oil.		£	2	
							(3) Use of emulsified and desulfurized heavy oil.		3	12 15 15	_
DOW QUIMICA MEXICANA, S.AB	7.1	Smoke tube boiler	3.8	Steam	329		Hone		-		_
[Chemical (insecticide) B7-2 Smoke tube boiler	7-2	Snoke tube boiler	1.3	Steam	Not op	Not operating					-
										ì	ł

(2) Effects and Expenses

The estimated pollutant reduction to be achieved through the combined effect of the fuel change and facility improvements at the object establishments are summarized in Table 6.1.6.

Table 6.1.6 Pollutant Reduction Effects of the Control Measures for the 48 Establishments

AND CHAIR CHAIR PART AND CHAIR			NOx	SO ₂	PM
Present emission (1,000	ton/yr)		4.7	11.2	2.6
Emission after implement-	Fuel	Α	3.5	6.5	2.4
ation of proposed	improvement	В	3.7	3.2	2.4
measures (1,000 ton/yr)	case	C	3.6	3.2	2.4
	Fuel	Α	25	42	7
Reduction ratio (%)	improvement	В	21	71	7
	case	С	23	7.1	7

As can be seen, the combination of the transient fuel change (mixed burning with 50% current heavy oil and 50% diesel or natural gas) and facility improvement in the case A is expected to reduce NOx emission by 25%, SO₂ emission by 42%, and PM emission by 7%. When desulfurized heavy oil is exclusively used, although the SO₂ emission will decrease by 71%, NOx will rather increase above the level of the case A, while PM will remain unchanged. When desulfurized and emulsified heavy oil is used, some more reduction is expected in NOx at 23%.

The expenses for these measures are estimated at approximately \$460,000 (March 1991 price), excluding those unspecifiable portions of facility improvements resulting from in-house work, autonomous improvement and relocation plan.

6.2 Other Pollution Sources

6.2.1 Object Establishments and Facilities

The establishments for which control measures have been studies so far are mostly large ones covered by the detailed on-site questionnaire and the diagnostic survey. In this section, the establishments not included in the above surveys will be considered. They consist of some 7,000 establishments, broken down as shown below, accounting for 25% each of the total consumption of heavy oil and natural gas at stationary emission sources in AMCM.

- 1) Establishments surveyed by SEDUE as a part of the present Study; 969 firms, 3,336 furnaces,
- 2) Establishments included in the SEDUE's existing data base; 371 firms excluding those covered by 1)
- 3) Establishments covered by the DDF's past survey; 6,070 firms, excluding those covered by the detailed on-site questionnaire and 4)
- 4) Bathhouses surveyed by the National Bathhouse Association; 203 bathhouses

Among these, 1) and 2) are mostly factories, and 3) and 4) are service and commercial establishments. Two thirds (2/3) of the combustion facilities for the group 1) are industrial furnaces and 1/3 are boilers. Assuming the same ratio for the group 2), the total number of industrial furnaces is 2,400. Assuming that all of the facilities in the groups 3) and 4) are boilers, the total number of boilers is over 7,500.

6.2.2 Planning Approach

The establishments covered in this Section are large in number but their size and the fuel consumption are relatively small. For this reason, the combustion facility improvement measures are not expected to bring about marked pollutant reduction effect, despite considerable amount of work required.

Therefore, facility improvement measures are to be applied to relatively

large establishments only, and the measures having wide applicability are selected from those measures proposed to the establishments covered by the detailed on-site questionnaire. Therefore, the overall effect of the pollutant emission reduction is largely dependent on the supply of desulfurized heavy oil.

There are 10 relatively large establishments (all covered by the SEDUE's surveys) that are next to the top 20 in the pollutant emission (Figure 3.5.5) subjected to the on-site or the diagnostic survey.

The measure most widely proposed for the on-site surveyed establishments is the introduction of a portable oxygen meter, being proposed to 33 firms among the 48 for which control measures were proposed. The real purpose of this measure is to control the generation of NOx by maintaining appropriate air ratio in combustion. For similar purposes, introduction of other simple equipment and simple facility improvement measures are also taken into consideration.

6.2.3 Control Measures

(1) Outline of Control Measures

The simple facility improvement measures for operation control effective in reducing pollutant emission are listed in Table 6.2.1.

Table 6.2.1 Simple Facility Improvement Measures

Measures to be applied	Unit Price (US\$)
Steam atomizing system	2,200
Fuel preheater	200
Thermometer for air preheating	1,500
Portable O ₂ meter	2,400
Simple repair by owner	

Fuel change is limited to the heavy oil burning facilities as in the case of large factories. But since majority of the firms are of small size, no transitory stage is considered, and the following two cases

B: Exclusive use of desulfurized heavy oil:

After the supply start of desulfurized heavy oil and when its emulsification is not feasible.

C: Emulsified combustion of desulfurized heavy oil:

After the supply start of desulfurized heavy oil and when its emulsification is feasible.

(2) Effects and Expenses

Since the pollutant reduction effects by simple facility improvement measures are not quantifiable unless the actual situation is known, overall effects of fuel change only are shown in Table 6.2.2

Table 6.2.2 Pollutant Reduction Effects by Fuel Change in 7,600 Establishments

			NOx	SO ₂	РМ
Present emission (1,000	ton/yr)		5.0	21.0	1.4
Emission after	Fuel change	В	4.8	7.7	1.2
fuel change (1,000 ton/yr)	case	С	4.1	7.7	1.0
Reduction ratio (%)	Fuel change	В	. 4	63	14
	case	С	18	63	28

The pollutant reduction effects by changing to desulfurized heavy oil in the heavy oil burning facilities are 4% for NOx, 63% for SO₂, and 14% for PM. When emulsified combustion is adopted in addition, more reduction is expected: 18% for NOx and 28% for PM.

Among expenses required to bring about the above effects, the total expenses for facility improvement measures can be estimated to be within US\$ 25,000, assuming that one of the measures shown in Table 6.2.1 is applied to the 10 firms.

CHAPTER 7 PLAN FOR CONTROL OF STATIONARY AIR POLLUTION SOURCES IN THE METRROPOLITAN AREA

CHAPTER 7 PLAN FOR CONTROL OF STATIONARY AIR POLLUTION SOURCES IN THE METROPOLITAN AREA

7.1 Outline of the Plan

7.1.1 Object Sources for air Pollution Control

According to "Integrated Program Against Atmospheric Pollution in the Mexico City Metropolitan Zone - A Common Agreement, October 1990", the stationary air pollution sources in the metropolitan area account for nearly 3/4 of the total emission of SO₂, and 1/4 of that of NOx as shown in Figure 7.1.1.

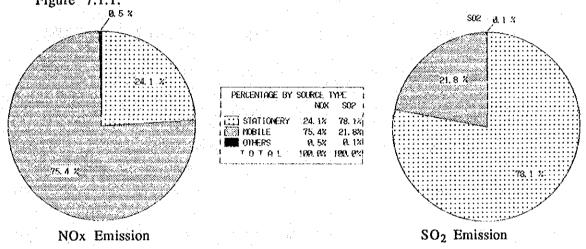


Figure 7.1.1 Shares of Stationary Sources in Emission of NOx and SO₂

These pollutants are emitted mainly through fuel combustion. Fuel consumption and the pollutant emission from stationary combustion facilities obtained through this Study's investigation and the SEDUE's past investigation are summarized in Table 7.1.1

Table 7.1.1 Fuel consumption and Pollutant Emission in Stationary Air Pollution Sources (1990)

Fuel Consumption	Heavy oil (10 ³ m ³ /yr)	1,100
	Natural gas (10 ⁶ /m ³ /yr)	3,300
	NOx (10^3 ton/yr)	21
Pollutant Emission	SO_2 (10 ³ ton/yr)	76
The state of the s	PM (10 ³ ton/yr)	11

A total of about 8,000 establishments are covered by the present Study including 1,400 factories, nearly all the factories having air pollutant emitting facilities in the metropolitan area, and about 70% of the service and commercial establishments in the area having such facilities.

With the large scale establishments preferentially included in the investigation, these 8,000 establishments are considered to represent sufficiently the overall situation of stationary pollution sources in the metropolitan area.

Table 7.1.2 shows the annual emission of NOx and SO_2 from the top ranked 10 establishments covered by the present Study. They are all factories, and the emissions from the top 5 are particularly large.

Table 7.1.2 Large Individual Emission Sources of NOx and SO2

	NOx Emission		SO ₂ Emission				
Rank	Source	Nox (ton/yr)	Rank	Sources	SO ₂ (ton/yr)		
1	Power plant (A)	5,219	1	Power plant (A)	17,460		
2	Cement	1,365	2	Cement	12,383		
3	Glass sheet	1,154	3	Paper	5,830		
4	Power Plant (B)	1,044	4	Power Plant (B)	3,409		
5	Glass bottle	1,043	5	Petrochemical (B)	1,803		
6	Glass (C)	809	6	Alcoholic drinks	1,747		
7	Petroleum refinery	742	7	Petroleum refinery	1,432		
8	Рарег	533	8	Paper	1,310		
9	Glass (B)	471	9	Glass (A)	1,274		
10	Chemical	346	10	Petrochemical (A)	1,092		

7.1.2 Fuel Improvement Measures

(1) On-going Oil Desulfurization Project

PEMEX has a plan of constructing a hydro-desulfurization plant for heavy oil in the Tula refinery near the metropolitan area. When this project is implemented, a low sulfur heavy oil (S: 0.8%) will be supplied in AMCM and supply of the current heavy oil (S: 3.0 - 3.5%) will be ceased.

This project is one of the themes that were presented in the "Integrated Program Against Atmospheric Pollution in the Mexico City Metropolitan

Zone - A Common Agreement" published in October 1990, and is underway with the common agreement among the authorities concerned including the energy, finance and environmental sectors of the Government. Produced desulfurized heavy oil (DHO) is expected to be used as an effective means of stationary pollution source control, by making available to all consumers including small-to-medium-sized establishments under the present system of fuel supply in Mexico which is unitarily carried out by PEMEX.

When the fuel demand at the time of the operation start of the projected desulfurization plant is assumed to be unchanged from 1990 and the composition of fuel kinds is also assumed to remain unchanged, and the currently used heavy oil is totally replaced by desulfurized heavy oil (DHO), the amount of pollutant emission is estimated to be as shown in Table 7.1.3.

Table 7.1.3 Pollutant Emission Reduction by Changing
Current Heavy Oil to Desulfurized Heavy Oil

	Emission from sources (1,000	-	Reduction ratio (%)				
Pollutant	Present	Future	Stationary sources	All Sources			
NOx	20.8	20.1	5	1			
SO ₂	76.3	23.2	70	55			
PM	11.3	10.3	9	-			

The above reduction ratios are based on the assumption that the improvement in the quality of heavy oil will reduce SO₂ emission by 73%, NOx emission by 10%, and PM emission by 20% per unit amount of heat. The total SO₂ emission is expected to decrease to a half.

(2) Fuel Change

The replacement of heavy oil with DHO is postulated as the mainstay in this Study in the medium to long-term fuel improvement measures, while the pollution reduction effect, fuel cost and the PEMEX's policy of natural gas usage are taken into consideration. And the change to diesel or natural gas is limited to special cases. However, since the use of DHO is directed to the reduction of SO₂, and not sufficient in reducing NOx and PM, additional measures are required. As a measure to reduce NOx and SO₂ emissions through fuel improvement, the emulsification of heavy oil is considered.

However, since the effect of this measure is basically dependent on the quality of the oil used and method of combustion, and there are not many examples of practical application in Japan, the result of the principle test conducted in the present Study should be further verified by the commercial scale test in order to assure the effectiveness when applied to Mexican heavy oil.

Since the supply of DHO will start in 1995 according to the current schedule, partial replacement of the current heavy oil by diesel or natural gas is proposed as an interim measure. This means the replacement of the combustion facilities for heavy oil by those for mixed combustion of heavy oil and diesel or natural gas. Therefore, the applicable facilities are limited to relatively large ones. Specifically, this measure is proposed to those establishments where the diagnostic survey or the detailed on-site questionnaire was conducted.

Other fuel change patterns are also considered depending on the situation of individual sources such as that where mixed combustion of heavy oil and natural gas is currently practiced. Specific proposals in fuel change are given in Table 7.1.4.

7.1.3 Managerial Measures

(1) Factory Relocation

Among the 97 establishments surveyed by the diagnostic survey program and/or by the on-site questionnaire program, shut-down of one factory and relocation of one factory were determined through the administrative order. Voluntary relocation is planned by three factories. Although relocation means only the displacement of pollution sources and not reduction of pollutant emission, it is an effective measure for improvement of air quality in AMCM.

In addition, when a huge cost is required in air pollution control by extensive modification of old facilities, renewal of facilities associated with relocation can be more positively evaluated in economical viewpoint. In such a case, factory relocation is a good alternative in air pollution control, and therefore taken into consideration.

Table 7.1.4 Proposed Fuel Change Patterns

Fuel change pattern	Category of applicable pollution sources	Applicable pollution source (Visit No.)
From HO to Case A: HO 50% + D or NG 50% Case B: DHO Case C: DEHO	Establishments surveyed by the diagnostic survey or the detailed on-site questionnaire	40 establishments of the visit number: (3, 5, 8, 9, 10, 12, 14, 15, 16, 18, 21, 22, 28, 29, 30, 32, 34, 37, 38, 42, 43, 48, 52, 65, 67, 68, 73, 75, 76, 78, 81, 83, 84, 87, 89, 91, 92, 93, 95, 96)
From HO to Case A: HO 50% + D or NG 50% Case B and C: DHO	Ditto	Paper (27) Basic metals (51, 56) Other Manufacture (64)
From HO to Case A: HO 50% + NG 50% Case B and C: DHO 50% + NG 50%	Ditto	Cement (41)
From HO to Case A, B, C: D or NG	Ditto	Chemicals B (62)
From NG 80% + HO 20% to Case A: same as present Case B: NG 50% + DHO 50% Case C: NG 50% + DEHO 50%	Ditto	Power Plant A (69)
From NG 80% + HO 20% to Case A: same as present Case B: NG 80% + DHO 20% Case C: NG 80% + DEHO 20%	Ditto	Power Plant B (70)
From HO to Case A: HO (same as present) Case B: DHO Case C: DEHO	Others	Many

Note: 1) HO = heavy oil, D = diesel, NG = natural gas

DHO = desulfurized heavy oil, DEHO = desulfurized and emulsified heavy oil

- 2) Case A applies for the period before the start of supply of DHO.
- 3) Case B or Case C is applied after the start of supply of DHO.
- 4) Case C requires verification of effects of DEHO.

(2) Operation Management

The first effective step in the NOx control is to maintain an appropriate air ratio in combustion. It must be fully understood by operation managers and operators. It is necessary that the administrative authority and company managers cooperate in establishing a guidance system for the dissemination of usage of measuring instruments and the methods of combustion control based on the measurements.

7.1.4 Facility Improvement Measures

(1) Combustion Facilities

The following 23 measures are proposed for facility improvement to the establishments covered by the diagnostic survey or the detailed on-site questionnaire survey, and these measures are also proposed to other pollution sources where the effects are expected.

1) Introduction of operation control and monitoring devices

0	Portable oxygen meter	(38	establishments)
σ	NOx meter	(3	establishments)
0	Automatic oxygen meter	(9	establishments)
٥	Thermometer for air preheating	(1	establishments)
o	Combustion control meters		
	(installation or improvement)	(11	establishments)
٥	Telemeter for flue gas monitoring	(10	establishments)

2) Improvement of combustion system for NOx control

0	Low-NOx burner	(11	establishments)
٥	Flue gas recirculation .	(13	establishments)
o	Two-stage combustion	(2	establishments)
0	Off-stoichiometric combustion	(3	establishments)
0	In-furnace denitration combustion	(3	establishments)
0	Steam injection	(2	establishments)
0	Burner nozzle replacement	(4	establishments)
0	Reduction of volumetric load		
	of combustion chamber	(6	establishments)
o	Installation of precalciner	(1	establishment)
0	Increase of fuel atomizing air pressure	(2	establishments)

3) Improvement of combustion efficiency

٥	In-house repair	(5	establishments)
0	Improvement of heat insulation		
	of furnace ceiling	(3	establishment)
۰	Installation of fuel preheater	(4	establishments)
0	Installation of air preheater	(1	establishment)
0	Installation of recuperator	(2	establishments)

4) Flue gas treatment

· Bag filter

(2 establishments)

· Electrostatic precipitator

(4 establishments)

(2) Pollution Sources Other Than Combustion Facilities

As pollution control measures for non-combustion facilities, hydrocarbon removal measures are proposed to Chemical Products Factory (C) which has been covered by the diagnostic survey. The measures consist of a hydrocarbon incinerator and a leak prevention measure by cooling.

7.1.5 Effects of Control Measures

The proposed measures for fuel improvement and facility improvement for all the stationary sources are summarized in Table 7.1.5.

Table 7.1.5 Summary of Fuel and Equipment Improvement Plans

Case		Power	Plant (A)	Other Sources			
	Fuel	use	Equipment improvement	Fuel use	Equipment improvement		
Present	HO NG	20% 80%	None	Various	None		
A	same as	above	Low-NOx measures	A in Table 7.1.4			
В	DHO NG	50% 50%	Low-NOx measures + EP	B in Table 7.1.4	Low-NOx measures and others		
С	DEHO NG	50% 50%	Low-NOx measures	C in Table 7.1.4			

Note: (1) HO = current heavy oil, DHO = desulfurized heavy oil
DEHO = desulfurized and emulsified heavy oil
NG = natural gas

- (2) Case A applies to the period up to the start of supplying DHO.
- (3) Case B or Case C applies after the start of supplying DHO.
- (4) Case C requires verification of effects of DEHO.

Table 7.1.6 shows the pollutant reduction effect in Power Plant (A) and all the stationary sources for each of the above cases.

Table 7.1.6 Effect of Pollution Control Plans

			itant emi 000 ton/	ssion yr)	Reduction ratio (%)			
Source	Case	NOx	SO ₂	PM	NOx	SO ₂	PM	
	Present	5.2	17.6	2.1	0	0	0	
Power	Α	3.6	17.6	2.1	30	0	0	
Plant (A)	В	3.8	9.6	0.3	27	45	87.5	
	C	3.0	10.6	1.3	4 2	40	37.5	
	Present	20.8	76.3	11.3	0	0	0	
All stationary	A	15.1	56.7	6.4*	27	26	43	
sources	В	15.3	24.9	4.4*	26	67	61	
İ	С	13.5	25.8	5.1*	35	66	5.5	

Note: * Includes the reduction of 3,400 ton/yr at one factory for which plant relocation is proposed.

In the transient Case A, although the emissions of SO₂ and PM can not be reduced in the Power Plant (A), NOx is expected to decrease by 30%, and all the three pollutants are expected to decrease in all the stationary sources combined by at least one-fourth. After the start of supply of DHO, Case C is more advantageous in the reduction of NOx, and Case B brings about more reduction of PM than Case C. Case C requires verification of reduction effect and cost effectiveness of emulsified combustion of DHO, therefore, thorough considerations should be made.

7.2 Capital Requirements and Implementation Schedule

7.2.1 Equipment Investment

(1) Investment Amount

The total amount of investments for facility improvements proposed to the establishments investigated through the diagnostic survey and/or the detailed on-site questionnaire is shown in Table 7.2.1 for the two cases described previously: Case B and Case C.

Table 7.2.1 Investment Amount for Facility Improvements

	Case C DEHO in Power	•	Case B: EP in Power Plant (A)			
:	Investment (million US\$)	Ratio (%)	Investment (million US\$)	Ratio (%)		
Foreign portion	28.208	33	26.611	16		
Local portion	58.241	67	135.106	8 4		
Total	86.449	100	161.717	100		

Note: Emulsification of desulfurized heavy oil to make DEHO for the Power Plant (A) is assumed to be carried out by the plant itself in Case C.

The investment amounts shown in Table 7.2.1 are the totals of the estimations for individual establishments for each of which control measures are proposed to each of the surveyed combustion facilities. There are 19 establishments where the estimated investment exceeds US\$ 100,000, and 11 establishments, as shown in Table 7.2.2, where the amount exceeds US\$ 1 million. As indicated, the establishments where a large investment is required are also emitters of large amount of pollutants.

In the case when EPs are installed in Power Plant (A), the additional investment is about US\$ 76 million, making the total for the plant close to US\$ 90 million. There considered to be some more establishments, besides those subjected to the detailed on-site questionnaire and the diagnostic survey, where facility improvement is possible and effective. But since they are considered to be rather small establishments, operation improvements by introduction of operation monitoring instruments are more suitable than substantial equipment improvements. Because such improvements require only minor equipment investment, the total investment amount for all the stationary pollution sources is not expected to exceed US\$ 100 - 200 million.

Table 7.2.2 Establishments With Facility Investment Exceeding US\$ One Million

	Establishments		Investment	Rank in emission			
Rank	(Visit No.)		(million US\$)	NOx	SO ₂	PM	
1	Cement	(41)	45.082	2	2	4	
2	Power Plant (A)	(69)	13.043	1	1	2	
3	Power Plant (B)	(70)	6.778	4	4	8	
4	Glass (C)	(23)	5.819	6	<u>.</u>	11	
5	Glass (A)	(68)	3.009	13	9	9	
6	Glass (B)	(31)	2.522	9	-	13	
7	Alcoholic Drinks	(47)	1.578	11	6	10	
8	Chemicals (A)	(1)	1.420	21	-	22	
9	Petrochemicals (B)	(8)	1.350	14	5	19	
10	Foods	(65)	1.317	32	12	30	
11	Petrochemicals (A)	(16)	1.058	15	10	29	

Note: The investment amount in Power Plant (A) corresponds to the case when emulsification of desulfurized heavy oil is carried out by the plant itself.

(2) Evaluation of Scale of Equipment Investment

To evaluate the scale of the proposed equipment investment, first, the amount of national fixed capital formation was extracted from the economic statistics in Mexico, and then, its equipment investment portion was compared with the amount estimated in this Study for the proposed pollution control measures.

The latest statistic figure for the GDP in Mexico is 494,054,824 million pesos in 1989 according to the temporary report of INEGI, or about US\$ 200 billion, as converted by the average exchange rate of that year, i.e. 2,453.2 pesos/US\$. Since the figure for the fixed capital formation in that year was not available, its ratio to GDP at 18.9% in 1987, with 13.4% for private and 5.5% for government, was used to estimate the national fixed capital formation in 1989 to be about US\$ 38.0 billion.

The breakdown of this fixed capital formation is estimated based on the statistics in 1983 - 1984 as follows:

Domestic: 91.8%

Construction: 63.2%

Transportation equipment: 8.9%

General equipment: 19.7%

Import: 8.2%

Transportation equipment: 1.0%

General equipment: 7.2%

The investment in air pollution control belongs to the general equipment sector whose share in the total fixed capital formation is 26.9% by adding the domestic and the import portions. The amount in the equipment sector is therefore, US\$38.0 billion x 26.9% = US\$10.2 billion or about US\$10 billion.

Of this amount, the total pollution control investment as estimated previously at US\$ 100 - 200 million constitutes only 1 - 2%.

For reference, Table 7.2.3 shows the ratios of the investment in air pollution control to the total equipment investment in Japan based on the data from the Ministry of International Trade and Industry (MITI).

Table 7.2.3 Percentage of Air Pollution Control Investment in Total Equipment Investment in Japan (1972 - 1984)

Year	All sectors	Iron & Steel	Petro-	Thermal power	Paper & pulp	Non- ferrous metal	Chemical	Machines	Petro- chemical	Textile	Cement	Ceramic
1972	4.7	8.1	8.4	19.9	3.2	7.3	3.9	0.6	3.1	3.0	12.7	6.7
1973	5.8	9.9	15.2	20.8	4.8	9.6	5.2	1.0	6.1	4.0	11.5	12.1
1974	9.8	11.1	30.9	30.2	7.7	8.6	6.0	2.0	10.1	8.0	19.2	9.4
1975	10.5	13.4	26.9	42.9	6.5	8.9	7,1	1.3	10.6	9.0	13.9	7.3
1976	9.4	15.7	18.6	38.9	4.8	7.0	6.8	1.0	7.4	3.2	8.8	6.1
1977	5.1	8.0	3.9	27.7	2.5	7.2	5.0	1.0	6.1	1.5	6.4	7.1
1980	2.5	2.1	4.5	27.0	1.4	1.0	0.4	0.2	0.4	0.7	3.2	2.0
1981	3.3	1.8	2.8	32.8	2.1	0.8	0.5	0.2	0.6	0.5	8.0	1.1
1982	4.3	2.1	3.1	37.4	1.1	0.4	1.9	0.2	1.6	0.8	2.7	1.5
1983	5.7	1.8	3.7	49.4	0.8	0.7	0.8	0.2	0.7	3.0	3.2	0.9
1984	3.6	1.8	1.3	36.7	1.3	0.2	0.7	0.2	0.4	1.7	2.9	1.1

Source: MITI, Japan, "Report of Survey on Equipment Investment for Industrial Pollution Control", 1972-1984.

In Japan, the emission standards for air pollutants were promulgated in August 1973 as required by the Air Pollution Control Law. From that year, equipment investments in air pollution control increased rapidly, and the

percentage of such investments in the total equipment investment was maintained at around 10% for three years. Although the percentage dropped below 5% subsequently, and has been remaining in that level ever since, the thermal power generation sector is an exception, maintaining the high percentage to date.

7.2.2 Organization for Implementation

The control measures recommended in this Study can be broadly classified into the following three categories, all requiring human resources and capital investments.

- 1) Management improvement measures
- 2) Fuel change measures
- 3) Equipment improvement measures

The main responsibility in implementing these measures should naturally be assumed by the enterprisers who own and operate combustion facilities, and the extra expenses for implementing air pollution control measures should be considered as a part of the production or service cost.

In the case of private establishments, however, they may not be positive in implementing the measures because higher cost means lower competitiveness. Considerable amounts of investment proposed to certain types of industry may be heavy financial burdens to them at least temporality. In addition, there are not sufficient number of experts in the air pollution control technology, and individual establishments may not be able to secure these experts by themselves.

To overcome these difficulties, it is desirable to make organizational arrangements that induce enterprisers to make unified efforts and facilitate procurement of equipment funds and introduction of air pollution control technologies. Such organizational function may be assumed by existing associations such as the National Bathhouse Association (CANAIBAL), or if possible, new organizations may be established.

The role of administrative authorities include provision of subsidiary measures in the both aspects of human resources and capital resources to promote implementation of the control measures by enterprisers and to bring about sustained effects of those measures.

As economic incentive measures, the tax reduction systems for plant relocation and acquisition of pollution control equipment were introduced in Mexico and carried into effect for a certain period of time in the past. Recently, a low-interest financing program for such activities has been started and implemented for some types of industry. As additional measures to develop human resources and air pollution control technologies, the following are recommended:

- 1) Training for combustion control
- 2) Training for air pollution control
- 3) Consultation for equipment improvement
- 4) Training for exhaust gas measurement
- 5) Leasing of exhaust gas measuring instruments
- 6) Interest subsidy and favorable taxation on pollution control investment

7.2.3 Time schedule for Implementation

Because the proposed air pollution control measures are classified into two groups, i.e., those to be carried out by the initiative of individual establishments, and those whose implementation is dependent on the availability of desulfurized heavy oil, the overall implementation schedule is proposed to be as follows:

Phase 1: up to 1995

- 1) Installation of basic combustion control instruments
- 2) Training of combustion and air pollution control engineers and technicians
- 3) Transient fuel change

- 4) Provision of stimulative measures such as low-interest loans and favorable tax system
- 5) Installation or leasing of exhaust gas measuring instruments
- 6) Plant relocation
- 7) Implementation of the facility improvement measures including low-NOx measures
- 8) Verification of new control technologies
- 9) Consolidation of the administrative organizations

Phase 2: after 1995

- 1) Fuel change
- 2) Consolidation of the stimulative measures
- 3) Implementation of advanced measures for improvement of combustion facilities and combustion methods

7.3 Recommendation

For the effective implementation of the proposed plan for controlling stationary sources of air pollution in the Metropolitan Area of the City of Mexico, the following actions are highly recommended.

(1) Installation of Basic Measuring Instruments in Combustion Facilities

Virtually all of combustion facilities in AMCM are not equipped with a fuel flow meter which is an indispensable tool for effective combustion control. Installation of the flow meter should be made obligatory.

Other basic instruments that are usually not provided include the pressure gauges and the thermometers for fuel and combustion air and the pressure gauge for fuel atomizing steam. If provided, most of them employ percent-scale indicators rather than indicating actual values, making operation monitoring difficult.

Installation of these gauges and meters should also be made obligatory with the indicators showing actual values compensated for barometric pressure.

(2) Provision of Exhaust Gas Measuring Instruments for Monitoring of Pollutant Emitting Facilities

Factories having pollutant emitting facilities of large capacity should be obliged to install continuous measuring devices for the flue gas velocity and concentration of pollutants in the flue gas including CO, CO₂, NO_x, smoke and soot, and NO_x. A telemetric monitoring system should be established through which the measured data are transferred to a monitoring center of SEDUE.

Establishments having pollutant emitting facilities of small-to-medium capacities should have a flue gas oxygen analyzer for routine measurement. Concentration of CO₂, CO, smoke and soot, and NOx in the flue gas should be also measured at an appropriate interval. The results should be periodically submitted to the responsible government agency.

(3) Guidance for Combustion Control

Guidance should be given to the engineers in stationary sources by the combustion technology specialists on the control of pollutant generation and emission from combustion facilities and on the methods of energy saving. As a first step, importance of the appropriate air-fuel ratio in combustion should be realized by the engineers at the sources. It can be realized through such a practice as measuring concentration of CO, NOx and smoke and soot in the flue gas at varying concentration of oxygen and constructing a chart showing their relationship. Early conduct of this practice with obligatory submission of the result is highly recommended.

(4) Technical Consolidation in the Administrative Sector

1) Establishment of Industrial Pollution Control Assistance Center

It is desirable to establish an "Industrial Pollution Control Assistance Center (IPCAC: tentative name)" attached to SEDUE which assumes a leading role in implementation of the activities stated above by extending assistances and guidances to concerned sectors in control of industrial pollution.

The Government of Mexico has a plan to establish an "Environmental Research and Training Center (ERTC: tentative name)" which deals with various environmental problems including air quality, water quality, solid wastes and hazardous wastes. If ERTC is to be established, IPCAC may be positioned as a part of ERTC.

Functions of IPCAC concerning air pollution include the following:

- i) inspection and authorization, selling, renting and leasing of exhaust gas measuring instruments, and technical training for the measurement
- ii) technical guidance for industrial pollution control
- iii) training of the experts who assume the above roles
- 2) Fosterage of Personnel for Exhaust Gas Inspection

It is highly important for the administrative sector to know technical realities concerning emissions of pollutants at stationary sources.

Accordingly, it is indispensable for the relevant sections of SEDUE, DDF, and GEM to have competent technical personnel for inspection of the emissions at stationary sources. These personnel should be fostered and reasonably treated, desirably as permanent employees, so that the technical knowledge in this field is accumulated within the administrative sector.

3) Consolidation of Emission Inventory

The existing inventory data for stationary air pollution sources in AMCM are considered to be not adequate in terms of the number of sources covered, data items, and accuracy of the data. Preparation of a comprehensive emission inventory of the Metropolitan Area under cooperation of SEDUE, DDF and GEM is recommended.

(5) Practical Application of Stationary Source Control Technologies

The control technologies of stationary pollution sources proposed in this Study include 1) two-stage combustion type low-NOx burners for heavy oil, and 2) emulsified heavy oil combustion, as well as others including exhaust gas recirculation, two-stage combustion, off-stoichiometric combustion, infurnace denitration combustion, and burners atomized with natural gas for furnaces with particularly high NOx concentration such as glass melting tank ovens.

Since the desulfurized heavy oil scheduled to be supplied from 1995 will have still a high content of nitrogen, combination of the measures for reducing fuel NOx and thermal NOx is indispensable.

The two-stage combustion type low-NOx burner is effective in reducing fuel NOx, and therefore, its early development is recommended.

Effects of emulsified combustion as a measure to reduce thermal NOx and smoke and soot are technically recognized. But since there are not many practical examples in Japan, a careful study is necessary on the applicability of this technology to the Mexican heavy oil. A laboratory-scale test conducted in the present Study confirmed the effects of this technology. In order to apply the emulsified combustion of the Mexican heavy oil to industrial boilers and furnaces in Mexico, it is necessary to carry out a feasibility study including a pilot-scale test and practical application tests.

(6) Economic Incentives for Pollution Control Investment

Since investments in environmental pollution control generally do not bring about economic benefits to business establishments, it is desirable to introduce economic measures such as financial assistance and tax incentives that indirectly promote such investment. It is desirable that the favorable taxation system once adopted in Mexico be re-introduced and the existing low-interest credit system be consolidated.

(7) Control of Stationary Sources and Mobile Sources

This Study has been concerned with the control of stationary air pollution sources, and priorities have been given to the reductions of NOx and PM emissions. The amount of emission of NOx from mobile sources is said to make up three-quaters of the total emission in AMCM. Against this situation, the Mexican Government has established an emission control program applicable to new automobiles of respective models. Long-term effects are expected if this program is implemented steadily. On the other hand, implementation of the control measure for stationary sources brings about immediate effects although the total NOx emission is smaller than that from mobile sources. Therefore, early implementation of stationary source control measures is highly desirable.

