	-								(Unit:P	•											(Unit:P	•
====	Survey	Route	Ctl'	Dire-	======		Vehicle		=======	========			Survey	Route	Ctl'	Dire-			Vehicle			
Seq	Station Code	No.	Sect.	ction	PC	LB	МВ	НВ	. рр.	Total		Seq	Station Code	NO.	Sect.	Ction ~	PC	LB.	МВ	НВ	PP	Total
1	101030	340	201	IN	5.2	12.3	14.1	60.0	12.1	17.1		21	1061090	1	301	IN	4.2	12.9	23.0	50.8	9.0	43.1
				OUT	5.0	13.5	18.3	41.8	13.1	17.5						OUT Both	4.8 4.5	13.0 13.0	18.8 21.1	51.1 51.0	11.9 10.7	41.9
2	101071	303	100	BOTH In	5.1 4.9	12.6 11.2	15.0 23.7	51.3 60.2	12.6 10.5	17.3 37.1		22	1063050	33	101	IN	5 0	11.7	29.1	55.9	11.3	18.6
2	101011	303	100	OUT	4.9	12.4	18.6	53.2	5.1	20.8					. :	OUT	4.9	13.5	20.0	50.8	13.0	23.3
		_		BOTH	4.9	12.3	19.8	57.6	7.4	28.8		·:	4004000	0	101	BOTH	5.0	12.8 12.0	28.3 10.9	52.9 60.1	12. ₋ 0 12.0	20.7 18.2
3	101072	3	200	IN	5.0	13.2	20.4	44.4	11.3	13.2		23	1064060	2	101	IN :	5.0 5.0	12.0	18.5	60.0	13.0	21.0
				OUT Both	5.0	14.3 13.7	26.3 23.5	42.0 43.2	11.9 11.6	15.1 14.1			•			BOTH	5.0	12.3	12.8	60.0	12.4	19.6
4	103020	304	202	IN	5.0	12.8	17.5	75.6	12.9	15.1		24	1073021	34	100	. IN	5.0	13.9	23.3	40.5	13.6	19.0
				OUT	4.6	12.3	30.0	72.6	11.9	14.2					•	OUT	5.0	13.9	20.3	60.1	13.6 13.6	20.4 19.8
	405074		100	BOTH	4.8	12.6	25.0	74.1	12.3	14.6		9.5	1073022	3	301	BOTH In	5.0 5.0	13.9 20.0	21.4 28.6	50.1 55.4	14.5	20.5
5	105071	4	100	IN OUT	5.0 5.0	12.9 13.2	18.3 19.4	70.0 68.3	10.9 11.9	$ \begin{array}{c} 28.3 \\ 23.7 \end{array} $		Z 3	1013022		301	OUT	5.0	13.3	30.0	56.0	12.0	18.3
				BOTH	5.0	13.1	18.9	69.2	11.5	25.8					1, 1	BOTH	5.0	14.7	29.2	55.6	13.4	19.5
6	105072	35	100	ΙN	5.1	13.6	22.7	51.9	12.2	17.5		26	1082090	21	5.01	IN	5.0	12.0	18.2	60.0 60.0	12.0 12.2	16.0 17.1
-				OUT	5.0	11.5	13.8	61.5	12.1	16.2						OUT BOTH	5 : 0 5 : 0	12.8 12.4	16.8 17.8	60.0	12.1	16.5
Q	1022111	1	900	BOTH In	5.1 5.0	13.4 15.6	18.1 14.0	55.0 59.5	12.1 12.7	17:0 18.8		27	1082110	1	700	IN	5.1	12.0	15.0	64.8	12.9	17.8
O	1022111	1	300	OUT	5.0	12.0	27.5	59.9	12.0	15.7		- :			٠.	OUT	5.0	0.0	60.0	60.0	14.6	20.4
				BOTH	5.0	12.6	23.0	59.7	12.3	17.0		0.0		ο ο Γ	F 6.4	BOTH	5.1	12.0	55.7 20.0	62.6 · 52.5	13.7 13.3	19.1 18:1
9	1022112	1	1101	IN	5.1	12.1	30.0	58.4	12.9	14.8		28	1084030	205	501	IN OUT	5.0 5.2	15.0 12.0	20.0	52.8	12.5	17.4
				OUT Both	5.0 5.1	12.2 12.2	25.6 26.3	56.8 57.5	12.8 12.9	17.7 16.1						BOTH	5.1	13.5	20.0	52.6	12.9	17.8
10	1025060	340	600	IN	5.0	12.5	20.0	59.4	12.4	12.0		29	2012040	1	1600	IN	5.0	12.2	23.6	54.1	10.4	12.4
		• . •		OUT	5.1	12.5	20.0	59.7	14.1	13.2	÷	:				001	5.2	12.1	24.8	55.3	11.9 11.3	15.3 13.9
				BOTH	5.1	12.5	20.0	59.6	13.5	12.8		20	2012070	115	200	BOTH In	5 1 5 1	12.2 14.3	24.2 40.0	54.8 51.0	14.3	14.9
11	1031040	346	300	IN OUT	5.0 5.0	13.6 12.9	15.0 14.0	76.5 71.4	12.1 13.0	15.3 14.9		งเ	Z	110	200	OUT	5.0	15.0	40.0	61.1	13.8	15.7
				BOTH	5.0	13.4	14.0	74.0	12.5	15.1	* :					BOTH	5.0	14.4	40.0	55.6	14.0	15.3
14	1043050	305	102	IN	4.6	12.0	25.0	58.0	11.3	11.4		31	2012110	1	1301	IN	5.0	16.6	27.5	59.3	14.4 12.3	18.7 14.1
				TUO	4.5	11.8	28.1	56.5	10.5	11.2						OUT Both	5.0 5.0	15.0 16.4	20.0 26.0	58.5 59.0	13.3	16.4
4.6	1051000	311	100	BOTH In	4.5 5.0	12.0 12.4	26.6 20.0	57.1 57.0	10.9 14.4	11.3 15.6		32	2012150	101	301	IN	5.0	12.3	20.0	49.1	12.4	15.1
10	1051080	SII	100	OUT	5.0	12.4	20.0	50.4	11.9	13.5			72.2.			OUT	4.9	12.0	20.0	62.9	13.1	17.1
				BOTH	5.0	12.4	20.0	54.0	13.1	14.6		4.6		4040	0.00	BOTH	4.9	12.2	20.0	56.2	12.8	16.1 13.6
16	1051101	309	302	IN	5.0	12.1	20.0	43.6	13.5	13.6		33	2022030	1019	200	IN OUT	5.4 5.4	15.1 16.1	0.0 25.0	56.0 58.5	14.0 14.4	13.5
				OUT Both	5.0 5.0	13.0 12.5	18.0 19.2	44.8 44.3	12.4 12.8	13.4 13.5					.*	BOTH	5.4	15.6	25.0	57.2	14.2	13.6
17	1051102	32	500	IN	5.0	12.9	19.8	37.7	11.9	16.4		34	2022060	1	2903	IN	5.0	12.8	10.0	59.1	12.0	13.9
••		-		OUT	5.1	12 0	17.2	59.1	11.4	17.3					**	OUT	5.1	12.6	40.0	59.8	12.0	18.2 15.9
				BOTH	5.1	12.6	18.3	45.0	11.7	16.8		ሳ ሳር	. 0899498	1 1 1 2	602	BOTH In	5.0 5.0	12.7 25.2	25.0 50.0	59.6 60.0	12.0 11.9	17.6
18	1052110	11	101	IN OUT	5.0 5.0	11.7 12.0	22.0 22.0	80.0 58.4	12.0 12.0	14.3 13.8		ამ	2032120	100	002	- OUT	5.0	26.3	50.0	60.0	12.2	19.3
				BOTH	5.0	11.8	22.0	68.0	12.0	14.1			·			BOTH	5.0	25.8	50.0	60.0	12.1	18.5
19	1061081	1	500	IN	5.0	12.3	12.5	59.7	11.9	15.2		36	2032140	108	500		5.0	13.8	18.7	57.5	13.9	14.6 13.5
				OUT	5.0	12.3	10.0	38.4	12.1	13.7						OUT Both	5 . 1 5 . 0	15.6 15.2	0.0 18.7	55.0 56.3	13.9 13.9	14.0
ŋΛ	1861807	0.4	200	BOTH In	5.0 5.1	12.3 12.9	11.7 20.0	46.0 50.0	12.0 12.7	14.3 13.0		37	2042130	-1	1901		5.1	15.0	40.0	58.5	14.0	14.3
2 V	1061082	21	200	OUT	5.0	14.7	20.0	59.9	14.1	14.4		01		•		OUT	5.3	14.6	26.0	59.0	14.7	13.9
				BOTH	5.1	14.1	20.0	55.2	13.3	13.7						BOTH	5.2	14.8	30.0	58.8	14.4	14.1

Appendix 6.12 AVERAGE CAPACITY OF PASSENGER VEHICLES - 1990

									(Unit:P												(Unit:P	erson)
n===	Survey			===== Dire-	*****		====== Vehicle		=======	222222			Survey	Route	Cti'	Dire-	*		Vehicle			
Seq	01.11.00			ction	PC	LB-	НВ	нв	PP	Total		Seq	Station Code	NO.	Sect.	CE1011	PC	LB	МВ	НВ	PP	Iotal
38	2052100	101	1100	IN	5.0	12.0	12.0	60.0	12.0	16.2		55	3013040	3	1300		7.0	14.0	40.0 15.0	57.0 57.6	3.0 3.1	6.0 7.0
•			2	OUT	5.0	12.0	60.0	60.0 60.0	12.0 12.0	16.0 16.1				į.	r Lå	OUT Both	6.9 6.9	13.8	21.3	57.4	3.0	6.5
20	2062130	1	2603	BOTH In	5.0 5.2	12.0 11.9	40.8 20.0	56.6	14.1	14.3		56	3013060	317	302	IN	- 7.0	14.0	24.6	60.0	11.9	18.9
১৪	LVOLIO		2000	OUT	5.1	15.1	0.0	55.5	14.0	18.3						OUT BOTH	7.0	14.1 14.1	24.7 24.7	60.0 60.0	8.7 10.3	15.3 17.1
* 0	0070001	447	400	BOTH In	5.1 5.0	13.8 12.0	20.0 10.0	55.8 60.3	14.1 12.0	16.4 14.6		58	3023031	3	402	IN	5.0	13.5	42.0	44.3	12.8	40.1
40	2072081	117	400	017	5.0	12.0	10.0	60.3	12.0	14.3		•		٠.	•	001	4.9	13.7	22.0 40.3	45.6 45.1	14.4	27.9 31.9
				BOTH	5.0	12.0	10.0	60.3	12.0	14.5		5 Q	3023032	315	200	BOTH In	4.9 5.0	13.7 13.5	23.6	58.6	13.4	13.9
41	2072082	11	502	IN OUT	5.3 5.3	19.2 15.0	25.0 20.0	50.6 60.0	13.6 14.5	15.5 15.0		JU	0020002	010	2.00	OŪŤ	5.0	12.5	20.0	58.9	13.4	13.8
		-		BOTH	5.3	18.0	23.3	54.6	14 1	15.3		0.5	. 0 0 0 0 0 0 0	0.04	100	BOTH	5.0 5.0	13.1 13.7	22.6 30.0	58.7 69.8	13.4 12.0	13.8 13.0
42	2072090	113	202	I N	5.0	12.0	17.0	60.0 60.0	12.0 12.0	15.4 14.2		- 60	3023033	331	400	IN OUT	5.0	13.4	22.5	74.3	13.0	14.7
			•	OUT BOTH	5. V 5. 0	12.0 12.0	60.0 38.5	60.0	12.0	14.8				2		BOTH	5.0	13.6	26.3	72.2	12.4	13.8
43	2072111	117	200	: IN	5.0	11.1	20.0	59.5	12.1	16.4	•	61	3023061	319	200	IN OUT	5.1 5.0	14.3 12.8	21.5 20.0	61.1 41.9	13.0 11.7	12.3 11.2
				OUT	5.1	15.6	28.5 27.3	58.8 59.2	12.0 12.1	13.6 15.0				•		BOTH	5.1	13.7	21.3	50.6	12.4	11.7
<i>A 1</i>	2072112	11	201	BOTH In	5.0 5.0	12.7 20.0	16.5	56.3	14.4	16.8		62	3023062	304	400	IN	5.0	12.6	19.4	60.0	13.5	13.8
77	2012112	, ,		OUT	5.1	12.0	20.0	63.2	13.8	14.6				٠		OUT Both	5.1 5.0	12.8 12.7	20.0 19.5	59.8 59.9	13.6 13.5	13.9 13.9
A E	9099150	12	400	BOTH In	5.1 5.0	16.0 12.0	19.3 60.0	59.3 60.0	14.1 12.0	15.6 16.6	r*	63	3033071	3	800	IN	6.9	14.0	22.5	56.5	3.0	9.8
43	2082150	12	400	001	5.1	12.0	60.0	60.0	12.0	18.0						7U0	7.0	14.0	20.0 21.7	58.3 57.4	11.9 7.1	15.2 12.2
			***	BOTH	5.0	12.0	60.0	60.0	12.0	17.3		- 64	3033072	36	200	BOTH In	6.9 7.0	14.0 13.9	17.0	47.5	3.0	7.2
46	2082170	11	700	NI TUO	5.0 5.1	15.0 13.2	40.0 20.0	59.1 49.5	14.2 12.5	16.7 11.7			0000012			OUT	6.9	14.0	10.0	49.1	3.0	7.3
			: .	BOTH	5.1	13.8	30.0	56.0	13.3	14.3		. AE	4094074	2 4 4	200	BOTH In	7.0	13.9 14.1	13.5 24.9	48.3 49.3	3.0 3.0	7.2 8.6
47	2094020	12	1000	IN OUT	5.1 5.3	15.0 15.0	30.0 26.7	76.5 80.0	15.0 15.0	20.3 22.2		63	3033073	344	300	OUT	6.9	13.9	26.8	45.9	3.0	8.3
			:	BOTH	5.2	15.0	28.8	78.4	15.0	21.2					1:	BOTH	7.0	14.1	25.8	47.6	3.0	8.5
48	2094030	225	600	IN	-5.0	12.0	17.0	80.0	12.0	15.2	1"	67	3064060	304.	700	IN OUT	6.8	13.6 13.8	23.5 21.8	60.0 59.0	3.1 3.0	10.4 11.4
				OUT Both	5.0 5.0	12.0 12.0	20.8 20.2	60.0 64.4	12.0 12.0	18.1 17.0				٠	+ ,	BOTH	6.9	13.7	22.5	59.5	3.1	10.8
49	2094120	203	202		5.0	14.1	30.0	57.6	12.1	18.9		68	4014090	213	102	IN	5.0	15.9	30.0	51.6 53.2	12.5 13.2	22.9 23.6
				OUT	5.0	15.7	27.3	51.6	13.2	18.8						OUT	5.0 5.0	14.5 15.2	26.7 27.5	52.4	12.8	23.2
50	2102131	103	100	BOTH In	5.0 5.1	15.1 12.0	28.4 22.0	$54.4 \\ 60.3$	12.7 12.0	18.9 14.2	-	69	4014110	214	200	IN	5.1	14.2	23.4	59.9	14.9	19.8
30	2102101	100	, , , ,	OUT	5.0	12.3	22.0	60.8	12.0	14.1						OUT Both	5.0 5.1	14.5 14.3	45.0 35.6	68.0 63.4	11.9 14.2	22.5 20.9
F 4	0400409	4.1	4000	BOTH	5.0	12.1	22.0 25.0	60.5 58.4	12.0 13.6	14.1 11.8		70	4014130	213	303		5.0	12.0	32.2	80.0	13.9	20.4
51	2102132	1.1	1200	INOUT	5.2 5.2	14.4 15.0	20.0	59.1	14.1	12.6						OUT	5.0	15.0	30.0	75.0	14.6	20.1
				BOTH	5.2	14.6	22.5	58.8	13.9	12.2		71	1021020	201	702	BOTH In	5.0 5.0	14.5 13.5	30.4 25.5	77.2 71.5	14.4 15.0	20.3 22.3
52	2102150	101	700	NI Tuo	5.3 5.1	15.4 17.8	22.9 21.8	60.0 60.0	14.1 13.2	13.3 13.9	•		.4024030	4 V I	102	OUT	5.2	15.0	27.6	75.0	15.0	20.6
				BOTH	5.2	16.7	22.4	60.0	13.7	13.6	_		100100		700	BOTH	5.1	14.0	26.7	72.6	15.0	21.7
53	2122130	11	1300	IN	5.0	12.0	30.0	60.0	12.0	15.2	•	.72	4024060	2	702	IN TUO	5.1 5.0	11.7 13.0	17.5 30.0	72.3 78.4	13.3 14.2	31.0 27.4
				OUT Both	5.0 5.0	19.9 16.3	10.0 27.1	55.9 58.1	12.5 12.3	16.3 15.7						BOTH	5.0	12.6	21.7	74.9	13.7	29.3
54	2152170	102	100		5.0	12.0	41.4	59.2	12.0	16.9		73	4024091	208	102		5.0	15.4	24.4	54.3	12.5 12.0	31.8
٠.				OUT	5.1	12.0	34.0	60.0	12.0	14.4 15.7						OUT	4.9 4.9	15.7 15.6	25.8 25.0	53.4 53.8	12.0	29.7 30.7
				BOTH	5.0	12.0	38.3	59.5	12.0	15.7		 -		~~					#=======			

Appendix 6.12 AVERAGE CAPACITY OF PASSENGER VEHICLES - 1990

					<u></u>					Person)			:========				#=====				•	erson)
	Survey R	oute	Ctl'								and the second	•	Survey	Route	Ctl'	Dire-	er i e	11 1	Vehicle	Type	1. 5	
Seq	Station Code	NO.	Sect.	ction -	PC		НВ		PP	Total		Seq	Station Code	NO.	Sect.	CUION	PC	LB	MB	НВ	PP	Total
74	4024092	23	103	IN	5.0	14.5 16.0	29.5 29.0	70.7 71.4	14.6	24.4	ing series and series are series and series are series and series and series and series are series and series and series and series are series are series	91	4114140	214	500	IN	5.0 5.1	15.0 15.0	23.8 73.3	80.0 80.0	13.8 14.5	21.5 24.1
75	4024120	201	800	BOTH IN OUT	5.1 5.1 5.1	14.7 15.0 15.0	29.3 30.0 17.9	71.1 73.2 75.5	14.6 15.0 15.0	25.6 23.5 23.3			4124160	210	302	BOTH IN OUT	5.0 5.0 5.0	15.0 13.9 13.9	45.0 22.3 23.6	80.0 56.3 56.3	14.1 11.2 12.1	22.7 24.7 23.4
76	4024160	. 2	1100	BOTH IN OUT	5.1 5.0 5.0	15.0 13.8 14.3	19.4 20.0 27.6	74.4 53.8 55.1	15.0 12.4 11.5	23.4 24.1 21.2		93	4134160	22	301	BOTH IN OUT	5.0 5.0 5.2	13.9 12.0 15.0	23.2 30.0 65.0	56.3 77.4 80.0	11.7 14.4 14.5	24.0 26.3 26.9
77	4034061	205	702	BOTH IN	5.0 5.0	14.1 12.0	26.8 30.0	54.4 60.0	11.9 12.7	22.6 25.4	•	94	4144150	226	800	BOTH IN OUT	5.1 5.0 4.8	13.5 12.8 15.3	60.6 21.7 20.7	78.7 48.8 49.9	14.4 12.2 9.5	26.6 16.1 15.2
78	4034062	202	301	OUT BOTH IN	5.1 5.0 4.8	12.0 12.0 12.0	60.0 51.4 27.5	60.4 60.2 60.0	14.7 14.4 14.4	21.7 23.1 19.3	£51%	95	4154170	226	1200	BOTH	4.9 5.0	14.1	21.4 23.5	49.4	10.6 11.1	15.6 13.7
79	4044080	212	1302	OUT BOTH IN	4.6 4.7 5.0	12.0 12.0 14.4	27.0 27.2 30.0	60.0 60.0 52.4	12.7 13.7 10.7	21.2 20.2 21.9		96	5015050	323	103	OUT BOTH IN	5.0 ° 5.0 4.9	13.8 13.8 13.8	27.0 25.3 23.5	47.8 47.0 77.5	11.9 11.5 12.9	14.4 14.0 18.0
	4044130	22	502	OUT BOTH IN	5.0 5.0 5.0	13.7 14.0 13.6	27.5 29.0 22.8	52.8 52.6 50.1	11.7 11.1 11.4	21.5 21.7 20.2		97	5015060	324	202	OUT BOTH IN	4.8 4.9 4.8	13.0 13.2 10.0	20.9 22.3 25.0	69.9 73.7 56.9	12.1 12.4 13.2	15.5 16.7 15.9
		+! :*		OUT BOTH	5.0 5.0	14.4	30.0 26.4	52.8 51.3	11.5 11.5	19.4 19.8						OUT BOTH	4.7 4.8	15.0 13.3	20.0 21.0	27.4 43.0	12.4 12.8	12.5 14.3
81	4054160	2	1303	IN OUT BOTH	5.0 5.0 5.0	13.6 14.1 13.9	18.5 30.0 25.4	53.8 51.4 52.5	12.0 12.9 12.5	16.1 16.1 16.1		98	5025050	4	302	IN OUT BOTH	4.9 4.7 4.8	10.0 10.0 10.0	27.5 18.3 22.0	78.3 58.0 65.5	12.2 12.8 12.5	44.0 40.6 42.1
82	4064071	24	300	IN OUT BOTH	4.7 5.0 4.9	13.1 14.0 13.5	10.0 30.0 20.0	57.8 57.7 57.7	12.2 14.6 13.5	18.8 20.1 19.5	4 ¹¹ .	99	5025060	321	202	IN OUT BOTH	4.9 5.0 5.0	10.7 14.1 11.9	23.9 25.0 24.2	55.2 53.7 54.3	11.8 13.3 12.7	16.1 19.9 18.1
83	4064072	226	400	IN OUT	6.3 5.0	12.1 13.1	15.0 22.5	50.1 51.9	13.0° 11.7	14.2 12.2 13.1	Y	100	5035040	4	800	IN OUT BOTH	5.1 5.0 5.0	12.4 13.1 12.5	21.1 22.5 21.4	50.0 48.6 49.3	14.5 14.9 14.7	15.6 18.2 16.7
84	4074141	226	600	BOTH IN OUT	5.5 4.6 5.0	12.6 14.2 14.1	20.0 17.8 15.0	50.9 38.3 36.6	12.7 9.6 13.5	10.3 13.2	· {.	101	5036020	4	1400	IN TUO	5.1 4.9	12.6 13.7	20.0 20.0	60.8 63.2	12.1 11.4	14.1 13.2
85	4074142	219	400	BOTH IN OUT	4.8 5.1 5.2	14.2 15.0 15.0	17.4 30.0 17.5	37.3 77.0 75.0	11.4 15.0 13.8	11.6 36.9 32.9	· · · · 1.,	103	5055081	35	300	BOTH IN OUT	5.0 5.0 4.9	13.2 13.8 12.4	20.0 16.0 16.0	62.0 55.8 55.4	11.7 13.0 13.1	13.6 24.1 23.4
86	4084100	212	1400	BOTH IN OUT	5.2 5.0 4.5	15.0 15.9 12.4	21.7 36.7 32.0	76.0 54.1 53.7	14.2 11.5 111.7	34.8 24.4 22.4	<i>i</i>	104	5055082	325	200	BOTH IN OUT	5.0 5.0 4.6	12.7 14.1 13.3	16.0 19.6 22.9	55.5 58.4 27.0	13.0 15.0 11.5	23.7 17.4 11.5
87	4094111	23	303	BOTH IN OUT	4.8 5.1	14.2 10.0 12.0	34.3 23.3 20.0	53.9 76.2 78.7	11.6 15.0 14.7	23.5 31.8 28.1	£	105	5075080	35	201	BOTH IN OUT	4.8 4.8 5.0	13.7 14.1 14.7	20.8 25.0 17.7	45.7 30.0 55.3	13.2 12.9 15.0	14.6 13.2 16.7
88	4094112	202	700	BOTH IN	5.0 5.4	11.5 13.8	22.5 27.9	77.2	14.9 15.0	30.1 23.2	4 1 1	106	6016030	4	3500	BOTH In	4.9 5.2 5.5	14.5 12.9 13.5	20.0 25.0 15.0	42.3 56.0 60.0	13.7 11.1 10.3	15.0 13.0 11.3
89	4104110	23	501	OUT BOTH IN	5.1 5.3 5.0	12.9 13.2 12.0	21.7 24.3 24.3	76.0 74.4 67.1	14.5 14.8 13.4	31.6 27.4 19.9		107	6016070	4	3200		5.4 5.1	13.4 14.4	21.7 20.0	57.4 85.0	10.7 12.6	12.2 13.2
90	4104170	23	600	OUT BOTH IN	5.0 5.0 4.9	15.0 13.5 12.4	23.3 24.1 30.0	69.0 68.1 49.9	15.0 14.1 12.0	20.9 20.4 20.0		108	6016140	4035	200	OUT BOTH IN	5.1 5.1 5.2	13.7 13.9 14.1	25.3 24.6 18.3	63.4 69.9 48.7	13.0 12.8 12.6	14.4 13.9 13.6
. v		20		OUT BOTH	4.9 4.9	14.3	30.0 30.0	52.9 51.3	11.4	21.8				· · · · · · · · · · · · · · · · · · ·		OUT BOTH	5.0 5.1	15.0 14.5	25.5 23.5	56.3 53.0	14.3 13.3	15.2 14.4

Appendix 6.12 AVERAGE CAPACITY OF PASSENGER VEHICLES - 1990

(Unit:Person)

*==:	Survey f Station	e===: Route	Ct!'	Dire-	=====	(2222	vehicle	Type		: : : :
Seq	Station Code	No.	Sect.	ction	PC	LB	МВ	НВ	PP	Total
4 0 0	ሮ ሲባሮ 1 ሲለ		1000	1 M	k 9	19 G	2/ 0	/4 /	13.1	14.1
110	6026140	41	300	BOTH IN OUT	5.1 5.0 5.0	13.1 14.4 14.5	18.9 18.8 20.0	70.4 49.2 51.6	13.0 14.7 14.5	13.8 11.6 11.1
111	6036040	403	302	BOTH IN OUT BOTH	5.0 5.0 5.1	14.5 14.8 14.6	19.4 20.0 29.2 26.1	50.3 51.9 50.2 51.1	14.7 14.7 14.9	10.4 13.0 11.5
112	6036060	4	3800	IN OUT ROTH	5.3 5.4 5.4	13.3 12.7 12.9	30.0 56.3 51.0	59.4 60.0 59.7	12.7 11.8 12.4	12.5 11.6 12.1
113	6046060	41	1100	IN OUT	5. 2 5. 1	15.0 15.0	20.0 20.0	46.9 50.5 48.7	14.8 15.0 14.9	13. 1 12. 2 12. 7
114	6046120	408	302	I N O H T	5.2	14.9 14.5	0.0	51.4 53.6	14.9	13.5 13.9
115	6046141	41	800	IN TUO	5. 1 5. 0	12.8 13.5	0.0 40.0	60.0 60.0	12.2 12.9	10.9 11.8
116	6046141 6046142 6056080 6066120	401	801	IN OUT ROTH	5. 2 5. 2	14.8 14.7	12.0 22.5	58.1 59.8 59.0	12.0 12.7 12.4	12.6 13.9 13.3
117	6056080	42	701	IN OUT ROTH	5. 1 5. 1 5. 1	14.8 13.5	40.0 25.0 37.0	52.7 42.0 46.8	14.3 14.7 14.7	12.9 13.0 12.9
				KIIIH	n . 1	1 25 /	1 1 23 .3	:10 /	1.1.7	37.7
119	6076100 6076110	4	2300	IN OUT	5. 1 5. 2 5. 1	14.6 14.5	0.0 20.0 20.0	58.5 61.2 60.1	12.1 12.0 12.1	14.4 15.9
120	6076110	402	101	IN OUT BOTH	D. I	14.8 14.3 14.6	2 I . V	53.7 52.1 52.8	14.7	15.5 15.3 15.4
121	6086090	410	102	IN	5.3 5.1	13.9 14.6 14.1	19.2 15.8	60.0 60.0	11.4 12.9	14.5 16.1 15.3
122	6086120	4086	300	INOUT	5.1 5.3		25.0 15.0	52.9 53.0 52.9	14.9 14.3	10.5 7.9 9.4
	6126130	406	200	BOTH IN OUT BOTH	5.1 5.4 5.3	13.9 13.8 13.8	15.0 20.0 16.7	60.0 60.0 60.0	13.0 11.4 12.2	13.4 12.1 12.8

Appendix 6.13 AVERAGE OCCUPANCY OF PASSENGER VEHICLES - 1990

====	Encenare			w ====================================		~~~~~			Unit:P		55					=======================================	: 11 2 2 2 2 2 2	****	()	Jnit:P	erson)	
Seq	Survey	Route	Ctl'	Dire-		,	Vehicle				Seq	Survey Station			Dire-		.:	Vehicle	Type	1::. :	. 7 - 65 4 - 4 - 6	
	Code				PC	LB	MB	НВ	PP	Total	w- w- 0- A	Code	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:51	ia.	. PC	[]	B HB	НВ	PP	Total	
1	101030	340	201	IN	2.5	6.5	3.4	49.2	4.4	11.5	21	1061090	1	301	IN	2.4	7.		50.5	3.8	42.7	
				TUO	1.8	6.5	16.7	27.0	3.3	8.8					OUT BOTH	3,4	5. (6. (50.8 50.7	4.3 4.1	41.3 42.0	
2	101071	303	100	BOTH In	2.3 1.7	6.5 7.8	$\begin{matrix} 6.2 \\ 20.2 \end{matrix}$	$38.5 \\ 29.5$	3.8 2.3	10.4 17.7	22	1063050	33	101	IN	2.5	6.8		47 1	3.1	12.3	
۲.	101011	949	100	TÜO	1.9	3.6	7.7	35.5	2.3	12.9		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			OUT	2.2	3.2		31.2	3.0	12.0	
				BOTH	1.8	4.0	10.6	31.8	2.3	15.2			1	e 2	BOTH	2.3	4.6		37.6	3.1	12.2	
3	101072	3	200	IN	1.8	3.7	8.6	27.9	2.6	6.2	23	1064060	2	101	IN	2.6	4 (48.8	3.1	10.9	
				OUT	2.0	5.4	13.6	24.7	2.7	6.9					OUT	3.1	4.4		58.9	5.5	17.1	
				BOTH	1.9	4.5	11.2	26.2	2.7	6.5	0.4	4070004	0.4	400	BOTH	2.9	4.2		54.5	4.1	13.9	
4	103020	304	202	IN	2.3	4.5	4.0	34.3	3.2	5.6	24	1073021	34	100	IN	2.8	5 4 4		41.6 44.7	3.6	15.4 12.5	
				OUT	2.2 2.2	4.3	14.7 10.4	20.4 27.1	3.0 3.1	4.2			i i	100	BOTH	2.5	5.		43.1	3.8	13.7	
-5	105071	4	100	BOTH In	2.2	4 , 4 3 . 5	9.3	47.5	2.3	17.2	25	1073022	3	301	IN	2.2	9.(44 1	3.1	11.8	-
J	103011	4	100	out	1.9	3.1	4.0	30.1	2.3	9.5	2.0	1010022			OUT	2.1	5 (33.9	2.9	8.5	
				BOTH	1.9	3.3	6.3	39.1	2.3	13.0				1	BOTH	2.1	5.5		40.0	3.0	10.3	
6	105072	35	100		2.8	6.5	14.2	49.9	3.3	13.0	26	1082090	21	501	I N	2.8	4		50.7	3.5	9.0	
				OUT	2.7	2.0	8.1	54.3	3.2	10.3					OUT	2.7	4.		48.5	3.2	9.0	
				BOTH	2.7	6.1	11.0	51.3	3.3	11.9	9.7	1082110	4	700	BOTH IN	2.7 3.1	4. 2 5. 3		49.6 35.8	3.4 3.2	9.0 7.3	
8	1022111	1	900	IN	2.6	3.6	6.0	49.2 48.0	3.2 2.6	10.7 7.5	21			100	OUT	3.1	0.(22.1	3. Z	6.7	
				OUT Both	2.5 2.5	$\frac{3.5}{3.5}$	26.3 19.5	48. 6	2.0	8.9				5. 11	BOTH	3.1	5 (29.5	3.4	7.0	
q	1022112	1	1101	IN	3.1	8.8	20.0	40.1	3.8	7.9	28	1084030	205	501	IN	2.8	2. (33.1	4.0	8.6	
V	(0221)2	•	,,,,,	OUT	2.8	3.9	20.6	26.7	3.7	7.5					OUT	2.8	2.6	17.0	25.3	3.1	6.5	
				BOTH	3.0	6.1	20.5	32.6	3.8	7.7			1,	*	BOTH	2.8	2.{		29.7	3.6	7.6	
10	1025060	340	600	IN	2.9	6.5	4.0	42.8	3.4	5.2	29	2012040	-1.	1600	IN	3.1	8.2		40.2	4.4	7.5	
				OUT	2.8	10.2	12.7	28.1	3.6	4.7			.4	. , .	OUT	3.1	9.(28.7	4.0	7.3 7.4	
4.4	4004040	0.40	200	BOTH	2.9	9.3	10.5	33.4	3.6	4.9 4.2	2.0	2012070	115	200	BOTH In	3.1 2.9	8 8	3 17.1 3 10.0	33.5 33.6	4. Z 5. 6	7.2	
11	1031040	346	300	IN OUT	2.3 2.4	3.4 3.4	6.0 10.3	20.5 18.1	3.0 2.6	3.8	30	2012010	110	200	001	2.3	20. (32.3	5.0	$6.\overline{5}$	
	-			BOTH	2.3	3.4	9.3	19.3	2.8	4.0					BOTH	2.6	10.4		33.0	5.3	6.9	
14	1043050	305	102	IN	2.7	4.8	8.3	20.8	3.9	4.5	31	2012110	- 1	1301	IN	2.7	5.4	15.0	19.1	3.2	5.8	
• •				OUT	2.2	7.0	16.7	27.2	3.4	4.8					007	2.9	1. (54.5	3.4	8.5	
				BOTH	2.5	5.2	12.9	24.5	3.7	4.6	2.0	2242454			BOTH	2.9	5.6		33.1	3.3	7.2	
15	1051080	311	100		2.8	4.5	20.0	30.1	5.6	7.2	32	2012150	101	301	IN	2.2	8.4		30.1	3.6	6.8	
				007	2.2	2.2	14.0	24.9	2.6	4.7					OUT BOTH	2.1 2.2	9.1 8.7		45.9 38.2	3.2 3.4	8.0 7.4	
16	1051101	309	302	BOTH In	2.5 2.4	4.1 6.4	17.0 20.1	27.7 17.0	4.0 2.8	6.0 4.9	33	2022030	1019	200	IN	3.8	11.5		44.8	4,2	7. 2	
10	IVIIIOVI	งงฮ	302	OUT	2.6	5.5	5.6	20.6	2.9	4.9	00	LULLUUV	1010	0	OUT	3.4	10.2		29.2	3.8	5.6	
				BOTH	2.5	6.1	14.1	19.0	2.9	4.9				**	BOTH	3.5	10.9		37.3	4.0	6.4	
17	1051102	32	500		2.8	4.8	9.5	38.4	3.6	12.2	34	2022060	1	2903	IN	2.8	3.2	1.0	46.3	3.6	6.3	
Ÿ				OUT	3.1	4.2	4.8	51.0	3.6	11.6				F .	OUT	3.0	6.6		44.4	4.3	10.4	
				BOTH	3.0	4.6	6.9	42.6	3,6	12.0	n.r.	0000400	4.00	0.00	BOTH	2.9	5.0		45.0	3.9	8.2	
18	1052110	11	101		2.5	2.9	20.0	69.0	2.7	6.7	35	2032120	106	602	I.N	2.1	22.5		61.0	2.8	12.5	
				TUO	3.2	5.0	18.0	53.7	4.4	8.2 7.4					OUT BOTH	2 1 2 1	22.8 22.7		50.0 55.5	2.7 2.7	13.0 12.7	
4.0	1861884	4	ενν	BOTH	2.9	3.5	19.0 1.5	60.5 50.5	3.5 2.8	7.4 8.5	36	2032140	108	500	IN	2.8	6, 2		33.8	4.1	5.5	
19	1061081	1	500	IN OUT	2.3 2.2	3. 4 3. 4	2.0	40.1	2.8	8.3	00	~ V V L I 7 V	100	000	οÛΪ	2.9	12.2		23.8	3.6	5.0	
				BOTH	2.2	3.4	1.7	43.8	2.8	8.4					BOTH	2.9	10.6	13.7	28.8	3.8	5.2	
20	1061082	21	200		2.9	5.1	10.5	41.1	3 0	6.1	37	2042130	1	1901	IN	3.4	8.4		38.7	3.4	6.8	
				OUT	2.9	4.6	12.0	43.8	4.0	7.1					OUT	3.3	10.4		34.0	4.1	6.3	
				BOTH	2.9	4.7	11.5	42.5	3.5	6.6					BOTH	3.3	9.6	17.3	36.3	3.8	6.5	

	(Unit:Pe																::::::::::::::::::::::::::::::::::::::					(Unit:f	
===	Survey Station			Dire- ction			Vehicle							Survey Station	Route	Ctl'	Dire- ction			Vehicle		******	
Seq	Code	NV.	occi.	CLION	PC	LB	МВ	HB	PP	Total	· :		004	Code		0000.		PC	LB	НВ	НВ	PP	Total
38	2052100	101	1100	IN	2.7	5.0	2.0	52.7	2.8	9.2	: :		55	3013040	3	1300	IN	3.0	7.8	40.0	50;4	2.4	4.2
				TUO	2.2	4.3	40.3	49.0	3.5	8.4							OUT Both	3.3	5.7	3.0	44.2	2.8	4.9
9.0	2002120	4	ጋ ይለን	BOTH	$\frac{2.5}{2.1}$	4.6	25.0	51.2	3.1 3.5	8.8 6.7			5.6	3013060	317	302		3.2 2.4	6.9 5.6	12.3 17.0	46.5 31.3	2.6 3.1	4.5 7.9
39	2062130	. 1	2603	IN OUT	3.1 3.0	7.5 7.6	11.0	$44.0 \\ 33.9$	3.8	8.7				3013000	011	302	OUT	3.2	7.6	17.8	42.3	3.2	8.5
				BOTH	3.0	7.5	11.0	36.9	3.6	7.8							BOTH	2.9	6.5	17.4	36.2	3.1	8.2
40	2072081	117	400	IN	2.1	3.1	1.0	43.1	3.4	6.9			58	3023031	3	402	IN	2.2	7.5	40.4	43.8	4.8	38.8
		٠		OUT	2.1	3 . 6	1.0	57.8	3.4	7.9							OUT	2.7	5.7	12.2	39.7	5.3	23.3
			- 1	BOTH	2.1	3.3	1.0	50.2	3.4	7.4							BOTH	2.6	5 . 8	38.0	41:4	5.1	28.5
41	2072082	11	502	IN	3.3	12.8	15.5	31.2	5.3	7.7	•		59	3023032	315	200	IN:	2.7.	6.6	16.4	32.7	3.3	5.8
				OUT	3.7	3.0	8.0	30.1	5.6	6.8							OUT	2.6	5.2	9.5	29.6	3.3	5.2
4.0	0.070.000	112	202	BOTH In	3.5	10.0	13.0 3.3	30.7	5.4 2.9	7.2 7.2			e n	9099099	0.04	400	BOTH	2.7	6.0	14.5	31.3	3.3	5.5
4 Z	2072090	113	ZUZ	OUT	2.3 2.2	2.5 4.5	43.3	49.0 49.6	2.4	5.4			: 00	3023033	331	400	IN OUT	2.9 2.9	8.1 6.9	14,5 8.0	40.3 36.1	3.6 3.6	5.2 5.6
				BOTH	2.3	3.7	23.3	49.3	2.6	6.2							BOTH	2.9	7.5	11.3	38.0	3.6	5.4
43	2072111	117	200	IN	2.7	2.8	2.0	46.4	3.5	8.7		1	61	3023061	319	200	IN	2.5	3.8	7.4	51.9	4.4	5.4
10	2012111			OÛT	3, 1	3,7	9.3	50.1	4.2	7.2			0.	002000,	010	200	OUT	2.3	3.6	3.0	36.3	3.1	4.4
				BOTH	2.9	3.1	8.3	47.8	3.9	7.9							BOTH	2.4	3.7	6.9	43.3	3.8	5.0
44	2072112	11	201	IN	2.8	1.0	11.0	28.7	3.3	6.3			62	3023062	304	400	IN	2.5	4.6	5.0	50,2	3.0	7.3
				OUT	2.8	4.0	20.0	45.2	4.0	7.0							OUT	2.8	6.4	12.0	48.3	3.4	8.0
				BOTH	2.8	2.5	15.5	35.9	3.7	6.7			0.0	0000074		0.00	BOTH	2.7	5.5	6.2	49.3	3.1	7.7
45	2082150	12	400	IN	1.9	2.5	46.8	56.5	2.7	9.0			63	3033071	3	800	IN -	2.6	5.0	3.0	38.9	2.3	5.3
				OUT Both	2.8 2.3	3.9 3.3	47.3 47.1	47.7 51.6	$\frac{3.9}{3.3}$	10.3 9.6							OUT Both	2.4 2.5	4.4	3.0 3.0	28.6 33.6	2.2 2.3	4.9 5.2
AG	2082170	11	700	IN	3.0	8.3	20.0	19.3	4.0	5.7			6.4	3033072	36	200	IN	2.6	5.6	15.5	37.5	2.3	4.0
40	2002110	' '	100	OUT	3.3	6.8	20.0	44.0	3.7	6.4			04	0000012		200	OUT	2.5	4.3	4.0	37.0	3.1	4.4
				BOTH	3.1	7.3	20.0	27.3	3.8	6.0							BOTH	2.6	5.0	9.8	37.2	2.7	4.2
47	2094020	12	1000	IN	2.9	10.3	16.2	33.0	7.5	9.6			65	3033073	344	300	IN	2.6	6.2	16.8	45.0	2.2	5.7
				OUT	3.2	13.0	14.0	27.9	9.0	9.1							OUT	2.8	5.0	14.8	38.7	2.7	5.8
				BOTH	3.1	11.4	15.4	30.2	7.7	9.3					2.2.2		BOTH	2.7	5.8	15.8	41.8	2.4	5.7
48	2094030	225	600	I'N	1.9	4.6	3.0	80.0	. 4.3	8.6		•	67	3064060	304	700	IN	2.5	8.6	17.3	39.6	2.9	$\frac{7}{7}$. 3
				OUT	3.1	3.7	15.8	41.4	3.7 4.0	9.3							0UT	2.8	6.5	12.8	36.9	2.8	7.1
# Ci	2094120	203	202	BOTH In	2.6 2.2	4.2 9.7	13.7 19.6	50.0 30.4	2.2	9.8			6.9	4014090	213	102	BOTH In	2.7 2.5	7.5 6.6	14.5 25.0	38.3 32.0	2.9 2.9	7.2 12.6
40	2034120	200	2.02	ούΤ	3.0	8.4	12.6	32.1	2.0	8.9			00	4014000	210	102	OUT	2.2	5.3	19.0	36.8	2.8	13.9
				BOTH	2.6	8.9	15.6	31.3	2.1	9.3				•	•		BOTH	2.3	5.9	20.5	34.3	2.8	13.2
50	2102131	103	100	IN	2.9	4.3	4.0	44.0	4.5	7.0			69	4014110	214	200	IN	2.7	10.5	14.9	35.9	4.7	10.7
				OUT	2.9	5.6	1.0	46.9	3.8	7.0						- *	OUT	2.4	4.7.	21.7	27.6	3.9	9.4
				BOTH	2.9	4.7	3.0	45.5	4.2	7.0							BOTH	2,6	7.6	18, 7	32.3	4.5	10.2
51	2102132	11	1200	IN	2.9	10.7	9.5	49.6	3.9	5.4			70	4014130	213	303	IN	2.7	8.0	22.3	65.3	5.5	14.8
				TUO	3.2	12.0	2.0	51.9	3.9	5.5							OUT	2.8	10.4	16.9	61.3	5.1	13.2
£ 9	2102150	101	700	BOTH In	3.0	11.0	5.8 10.0	50.8 40.0	$\frac{3.9}{3.7}$	5.4 5.5			71	4024020	201	702	BOTH	$\frac{2.7}{2.7}$	10.0	18.0	63.0	5.3	13.8
JZ	2102150	IVI	700	OUT	3.4 3.0	11.6 6.4	19.0 11.2	38.3	3.7 3.1	4.5			1 1	4024030	201	102	IN OUT	2.7 2.6	4.5 1.0	21.8 19.5	43.1 51.3	5.5 2.5	13.6 12.6
				BOTH	3.2	8.7	15.5	38.8	3.4	5.0							BOTH	2.7	3.3	20.5	45.5	3.4	13.2
53	2122130	11	1300	IN	2.5	5.4	7.1	42.1	2.9	7.2			72	4024060	2	702	IN	2.4	4.0	11.0	38.9	3.4	15.4
- •				OUT	2.8	13.8	1.7	47.5	3.6	9.4	•						OUT	2.6	5.8	1.0	68.2	4.7	21.0
				BOTH	2.6	10.0	6.3	44.6	3.3	8.3							BOTH	2.5	5.2	7.7	51.3	4.0	18.1
54	2152170	102	100	IN	2.2	6.0	37.1	42.1	2.9	8.2			73	4024091	208	102	IN	2.4	8.3	12.6	39.7	2.9	21.4
				OUT	2.3	6.0	25.4	43.2	2.9	6.3					1 1		TUO	2.7	8.4	18.8	45.3	3.3	22.5
				BOTH	2.3	6.0	32.3	42.6	2.9	7.2	•						BOTH	2.5	8.4:	15.3	42.5	3.2	22.0

Appendix 6.13 AVERAGE OCCUPANCY OF PASSENGER VEHICLES - 1990

								(Unit:P	erson)			===							Bause\$##	<u> </u>	(Unit: F	erson)
604		Route	Cti'	Dire-	::	_ = = = = = = = = = = = = = = = = = = =	Vehicle	 Type	=====	.======			Sen	Survey Station		Ctl' Sect.	Dire-			Vehicle	Type		
Seq	Statio Code		Sect.	ction -	PC	LB	МВ	НВ	PP	Total				Code				PC	L B	МВ	HB	PP	Total
74	4024092	23	103	IN	2.5	8.5	19.0	53.6	4.3	17.9	• • • •		91	4114140	214	500	IN	3.3	7.9	16.8	31.4	6.2	9.8
		1		OUT	3.5	11.0	21.7	68.1	9.1	21.5							OUT Both	2.8	4.0 7.1	46.7 29.6	45.4 37.9	5.0 5.6	12.8 11.1
75	4024120	201	800	BOTH IN	3.2 3.1	8.9 5.0	20.1 15.0	61.2 57.7	6.2 4.6	19.8 17.2	٧.,		92	4124160	210	302	IN	2.6	7.2	8.3	33.2	2.5	13.2
()	4024120	201	OVV	OUT	2.8	2.5	17.1	67.1	5.8	18.6			32	4124100	210	002	OUT	2.2	5.8	12.1	35.5	2.4	12.8
				BOTH	3.0	3.3	16.9	62.4	5.4	18.0							BOTH	2.4	6.3	11.0	34.3	2.5	13.0
76	4024160	2	1100	IN	2.2	3:5	2.0	40.1	3:0	15.7			93	4134160	22	301	IN	2.4	2.0	7.0	34.0	5.7	11.5
			*	OUT	2.6	7.2	23.1	43.2	3.0	14.3							OUT	2.7	1.0	39.3	39.0	3,4	13.3
~ ~	4004504	0.05	700	BOTH	2.4	6.2	21.0	41.5	3.0	15.0			0.4	4144150	226	800	BOTH In	2.6 2.3	1.5 5.2	35.3 12.8	$\begin{array}{c} 36.6 \\ 34.3 \end{array}$	$\begin{array}{c} 5.0 \\ 3.7 \end{array}$	12.5 9.4
11	4034061	205	702	IN	2.5	3.7	17.5 29.0	27.4 30.8	4:9 3.2	11.6			94	4144130	220	OVV	ี 700	2.4	3. Z 4. 7	15.9	32.3	2,2	8.2
				OUT Both	2.3 2.4	3.7 3.7	25.7	29.1	3.4	8.4 9.5							BOTH	2.3	4.9	13.9	33.3	2.8	8.8
78	4034062	202	301	IN	2.5	6.5	20.3	28.6	7.3	9,8			9.5	4154170	226	1200	IN	2.5	4.0	13.7	29.2	3.0	6.9
	1001002		00.	OUT :	2.6	2.0	19.6	26.3	4.8	9.8							OUT	2.7	3.1	15.5	30.7	3.0	7.0
		1 .		BOTH	2.5	4.3	19.9	27.4	6.2	9.8							BOTH	2.6	3.4	14.6	29.9	3.0	6.9
79	4044080	212	1302	IN	2.5	8.2	20.0	37.8	2.5	13.5	* •		96	5015050	323	103	IN	2.2	5.0	12.7	38.9	2.7	6.9
				OUT	2.4	4.9	20.0	35.0	2.5	11.9					*		TUO	2.3	5.7	6.7 10.0	45.1 42.0	2.6 2.7	6.9 6.9
	4044400		EAO	BOTH	2.5	6.5	-20:0	36.5	2.5	12.7			0.7	EN15060	324	202	BOTH In	2.3 2.4	5.5 3.0		29.8	3,0	5. A
89	4044130	22	502	INOUT	2.5 2.6	6.9 7.0	18.1 18.2	29.3 26.7	2.8 3.9	11.0 9.4			91	5015060	324	Z V Z	0UT	2.3	3.5	6.5	25.4	3.2	4.9
				BOTH	2.5	7.0	18.2	28.2	3.4	10.2							BOTH	2.4	3.3	9.2	27.7	3.1	5.1
81	4054160) 2	1303	IN	2.2	4.2	12.5	30.3	3.0	7.5			98	5025050	4	302	IN	2.2	2.0	19,0	56.1	2.5	30.2
٠.	1001100	, -	.000	OUT	2.5	$5.\overline{2}$	20.0	29.8	2.7	7.5							OUT	2.2	5.0	12.3	55.8	2.8	37.6
				BOTH	2.3	4.8	17.0	30.0	2.8	7.5							BOTH	2.2	3.0	15.0	55.9	2.6	34.4
82	4064071	24	300	IN .	2.5	4.5	1.5	37.7	2.9	8.7			99	5025060	321	202	IN:	2.9	6.3	18.5	41.3	3.8 2.8	10.0
				OUT	2.6	3.8	11.0	39.8	3.8	9.6							OUT Both	2 5 2 8	5.5	13.7 17.2	31.8 35.5	3.2	9.3 9.6
0.9	4004070		400	BOTH	2.5	4.3	6.3	38.8 30.9	3.4 3.3	9. 2 5. 1			108	5035040		800	IN	2.9	4.0	12.2	41.2	3.1	9.4
გა	4064072	2 226	400	IN	3.1 2.7	4.8 6.3	11.5 16.3	29.2	2.8	4.2			101	1 200040	4		อย์โ	2.6	3.9	5.5	34.4	3.1	9. 2
				BOTH	2.8	5.5	14.7	30.1	3.2	4.6							BOTH	2.8	4.0	10.7	38.0	3.1	9.3
84	4074141	226	600	IN	1.9	8.0	6.8	28.8	2.5	4.5			101	5036020	- 4	1400	IN	3.2	5.7	18.0	31.8	3.2	5.9
				OUT	2.3	6.6	8.0	27.5	3.0	5.3							OUT	2.9	4.9		38.6	3.3	6.1
				BOTH	2.1	7.4	7.0	28.0	2.7	4.8							BOTH	3.0	5.3	13.3	35.2	3.3	6.0
85	4074142	219	400	IN	2.6	3.5	17.5	51.5	7.1	23.8			103	5055081	35	300		2.7	7.5		37.9 41.4	3.8 3.1	14.7 15.3
				001	3.0	15.0	13.5	50.3	3.3	20.7					•		OUT Both	2.4 2.6	5.4 6.0	16.5 14.0	39.8	3.5	15.0
0.6	4084100	212	1400	BOTH In	$\frac{2.8}{2.5}$	7.3 7.9	14.8 12.3	50.9 36.6	4.5 2.8	22.1 13.9			10/	5055082	325	200		2.8	5.6		22.7	3.4	6.3
00	4004100	, 212	1400	OUT	2.5	4.9	15.0	39.7	2.8	13.6			104	3000002	. 020	200	οÛΤ	2.2	3.9		29.2	3.1	5.7
				BOTH	2.5	6.4	13.7	37.9	2.8	13.8							BOTH	2.5	4:8	7.7	25.3	3.3	6.0
87	4094111	23	303	IN	2,5	3.0	12.3	49.1	4.5	19.5			105	5075080	35	201	IN	2.9	6.8	12.0	31.7	3.8	8.7
				OUT	2.8	4.7	2.0	66.1	4.9	22.2							TUO	2.9	4.9	9.2	35.4	4.3	8.9
		_		BOTH	2.7	4.3	9.8	56.4	4.6	20.8				004000		0.00	BOTH	2.9	5.6		33.5	4.0	8.8 9.0
88	4094112	202	700	IN	3.7	8.6	22.8	60.5	5.5	17.0			106	6016030	4	3500	IN OUT	4.2 4.4	5.1 7.1	12.0 5.0	50.8 48.6	3.9 4.0	8 0 6 5
				OUT	2.7	4.7	14.9	43.9 50.1	4.2 5.0	17.5 17.2							BOTH	4.4	6.8	9.7	50.1	3.9	7.3
QΩ	4104110	23	501	BOTH In	3.3 2.4	5.8 4.0	18.2 10.5	30. i 46. 8	3. 0 3. 6	11.8			107	6016070	4	3200		3.2	7.0		82.5	2.8	6.3
υJ	4104110	, 23	301	OUT	2.4	12.0	4.3	51.4	4.0	13.6	-		101	4	•	~~***	οÛΪ	3.4	9.5	13.5	60.4	3.4	8.4
				BOTH	2.4	8.0	9.5	49.2	3.8	12.6							BOTH	3.3	9.0	13.0	67.1	3.1	7.4
90	4104170	23	600	IN	2.5	5.3	7.5	34.9	3.1	11.7		•	108	6016140	4035	200		2.4	9.9		46.7	4.6	8.1
				OÙT	2.9	7.6	19.7	33.8	4.0	13.0							7U0	2.9	11.8		46.7	4.1	9.2
				BOTH	2.7	6.4	11.6	34.3	3.5	12.3							BOTH	2.7	10.7	15.6	46.7	4.4	8.6

Appendix 6.13 AVERAGE OCCUPANCY OF PASSENGER VEHICLES - 1990

(Unit:Person)

===:	Survey	eeeee Route	ctl'	Dire-	. = = = = = = = =		vehicle	Type		======
Seq	Survey Station Code	No.	Sect.	ction	PC	LB	МВ	HВ	PP	Total
109	6026100	4	1800	IN OUT	3.6 2.9	8.0 8.2	13.0	59.4 58.8	3.7	6.9 6.9
110	6026100 6026140 6036040	41	300	BOTH	3.3 3.1 2.8	8.1 5.2 4.7	10.9 12.3 9.3	59.1 47.2 51.6	3.7 3.4 4.4	6.9 6.1 6.5
111	6036040	403	302	U () 1	ง. ซ	0.0	1V. (33.O	~ 4.0	1.0
112	6036060	4	3800	BOTH IN	3.5 4.3 4.1	4.4 7.7	9.2 18.0	36.2 49.4	5.2 4.0	7.0 6.9
113	6046060	41	1100	BOTH	4.2 3.3	6.4 4.4	35.6 12.2	49.4 38.7	4.0 3.8	6.8 7.9
114	6046120	408	302	BOTH	3.3	5.2	12.3	40.6	4.1 3.3	8.3 7.0
115	6046060 6046120 6046141	41	800	BOTH IN	3.5 3.8	9. 9 6. 7	40.0	44.7 52.9	3.6 4.9	8.2
					n r	~ ^	~ ~		4 4	^ ^
117	6046142 6056080 6066120 6076100	42	701	BOTH	3.6 4.0	6. 8 6. 5	4.0 25.6	53.3 32.0	3. 0 4. 0 3. 9	7. 2 8. 1
118	6066120	4	4100	OUT BOTH IN	3. 8 3. 8 3. 8	6.0 6.2 7.4	23.3 25.0	27.5 29.5 47.3	3.4	5.5 6.5 8.3
119	6076100	4	2300	OUT BOTH IN	4.0 3.9 2.8	7.3 7.3 4.1	13.2 16.6 0.0	53.3 50.1 42.1	$\begin{array}{c} 3.6 \\ 3.9 \\ 3.6 \end{array}$	6.7 7.3 7.7
	6076110									
	6086090		102	OUT BOTH IN	2.7 2.7		10.7 13.6	47.9 48.2 26.9	3.5	10.3 10.5 6.1
	. •			OUT Both	3.3 3.5	4.6 5.1	11.2 11.8	$\begin{array}{c} 39.6 \\ 33.6 \end{array}$	2.9 3.0	7.1 6.6
122	6086120	4086	300	IN OUT BOTH	4.4 4.3	10.1	1.0 13.0	38.1 41.8 39.9	3.6 4.9 3.8	5.1 5.9 5.5
123	6126130	406		IN OUT BOTH	4.6	7.6 8.2 8.0	15.0 25.0 18.3	49.1 55.7 52.4	3.6	7,0 8,0 7,5

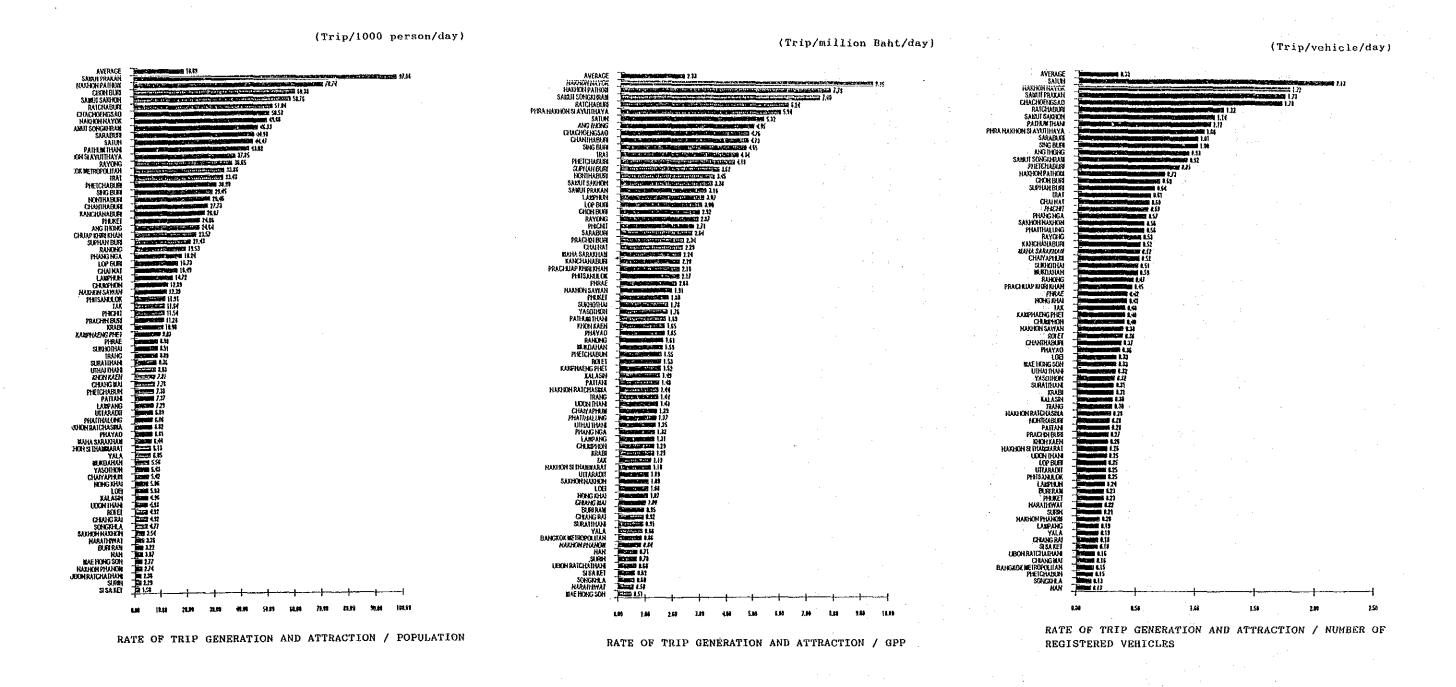
Appendix 6.14 PERCENTAGE OF TRIP PURPOSE - 1990

												Init:%)												-	Jnit:%)
	Survey	Route	Ctl'	Dire-	:	Passeng				Pickup-				survey Station	Route	Ctl'	Dire-		Passeng _e	er Car			Pickup-l		
Seq	Station Code	No.	Sect.	ction	Work	Priv.	lour	Other	Work	Priv.	Tour	Other	Seq	Code	NO.	sect.	CLIUII	Work	Priv.	Tour	Other	Work	Priv.	Tour	Other
1	101030	340	201	IN	46.4	40.4	7.5	5.6	44.9	44.2	6.5	4.3	21	1061090	1	301	IN	36.6	58.5	4.9	0.0	26.0	66.0	8.0	0.0
				OUT	44.3	47.0	6.1	2.6	42.9	50.6	4.5	1.9					100	36.2	63.8	0.0	0.0	21.3 23.2	77.3 72.8	1.3	0.0
9	101071	303	100	BOTH In	45.8 55.3	42.4 43.7	7.1 0.3	4.7 0.8	43.8 60.5	47.6 38.8	5.5 0.7	3.1 0.0		4000000	9.9	101	BOTH In	36.4 23.4	61.4 74.2	$\begin{array}{c} 2.3 \\ 2.3 \end{array}$	0.0	47.1	48.5	2.6	1.8
۲.	ווטועו	300	100	อน้ำ	50.6	43.3	1.9	4.1	49.6	43.6	2.2	4.6	22	1063050	33	IVI	OUT	55.7	39.6	3.8	0.9	39.0	56.0	0.7	4.3
				BOTH	52.4	43.4	1.3	2.9	54.3	41.6	1.5	2.6			1		BOTH	38.0	58.5	3.0	0.4	44.0	51.4	1.9	2.7
3	101072	3	200	IN	.47.0	46.8	1.8	4.4	61.5	33.0	1.5	4.1	23	1064060	2	101	1 N	39.0	50.8	10.1	0.0	57.6 47.8	33.1 41.6	9,4 10,6	0.0 0.0
		-		TUO	57.2	39.0	2.0	1.8	55.6	40.1	2.2	2.2 3.0					OUT	42.8	45.5 48.0	11, 4 10, 8	0.2 0.1	53.4	36.7	9.9	0.0
4	103020	304	202	BOTH In	51.1 44.4	43.7 41.0	1.9 11.5	3.3 3.2	58.3 52.7	36.8 37.7	1.9 6.9	2.6	3.4	1073021	. 34	100	i N	41.1	44.5	22.7	3.0	37.4	33.2	23.8	5.6
4	103020	374	2.02	0UT	24.7	66.3	9.0	0.0	36.1	57.1	6.8	0.0	24	(0/3021	: U-4		οθΤ	36.7	51.0	10.6	1.6	60.5	24.8	10.9	3.8
				BOTH	34.4	53.8	10.2	1.6	43.2	48.8	6.9	1.1			•		BOTH	34.1	48.6	15.2	2.1	51.5	28.0	15.9	4.5
5	105071	4	100	1 N	46.1	48.6	3.9	1.4	54.3	42.8	1.6	1.3	25	1073022	3	301	IN	18.5	74.1	7.4	0.0	50.4 59.3	48.9 36.1	0.0 3.7	0.7 0.9
				OUT	46.7	49.1	1.4	2.8	51.7	44.2	1.2	2.9 2.2			:		OUT Both	20.0 19.2	75.7 74.8	4.3 6.0	0.0	54.2	43.4	1.6	0.8
c	105072	35	100	BOTH In	46.5 30.5	48.9 54.9	2.4 14.3	2.2 0.2	52.8 45.5	43,6 51,1	1.4 3.1	0.3	26	1082090	21	501	IN	35.0	59.9	5.1	0.0	45.1	47.4	7.0	0.6
O	103012	33	100	0 U T	31.9	59.9	8.2	0.0	40.4	54.5	5.1	0.0	20			1	OUT	63.9	32.0	3.1	1.0	75.7	19.7	2.9	1.6
				BOTH	31.1	56.9	11.9	0.1	43.0	52.8	4.1	0.1					BOTH	47.0	48.3	4.3	0.4	59.3	34.6	5.1	1.0
8 1	022111	1	900	I N	26.9	61.5	10.6	1.0	34.1	61.7	3.8	0.3	27	1082110	1.	700	IN	25.0 51.6	71.4 48.8	3.6 1.6	0.0	41.6 49.0	56.0 51.0	2.4	0.0 0.0
				OUT	45.8	49.6	4.6	0.0	59.8	39.1	1.0 2.2	0.0 0.1			.*		BOTH	39.0	58.5	2.5	0.0	45.2	53.6	1.2	0.0
0 1	000110	1	1101	BOTH In	37.4 37.8	54.9 53.0	7.2 9.0	0.4 0.2	48.9 52.3	48.8 42.4	5.3	0.0	28	1084030	205	501	IN	65.9	34.1	0.0	0.0	61.0	37.3	1.7	0.0
9 1	022112	ı	1101	0UT	34.9	54.8	6.0	4.3	60.8	29.0	6.6	3.5	~ ~				OUT	37.0	55.6	7,4	0.0	42.0	56.3	0.9	0.9
				BOTH	36.6	53.8	7.7	1.9	56.3	36.2	5,9	1.6					BOTH	54.4	42.6	2.9	0.0	51.7	46.5	1.3	0.4
10 1	025060	340	600	IN	38.1	52.2	5.2	4.5	51.0	45.5	1.0	2.5	29	2012040	, 1	1600	IN	11.4	77.1	11.4	0.0 0.0	15.6 8.9	74::0 83:4	9.4 5.3	1.0 2.4
				011	58.5	38.8	2.7	0.0	49.2	49.4	1.4	0.0 0.9				-	OUT Both	24.4 16.7	67.2 73.1	8.4 10.2	0.0	11.8	79.3	7.1	1.8
44 4	011010	240	300	BOTH In	50.8 41.1	43.9 56.3	3.6 1.3	1.7 1.3	49.8 48.5	48.0 49.9	1.3 1.6	0.0	30	2012070	115	200	IN	51.5	35.3	13.2	0.0	56 1	23.7	19.1	1.2
111	031040	346	300	OUT	40.7	50.8	2.5	6.0	41.8	49.7	3.9	4.5	• •				OUT	31.1	57.8	8.9	2.2	26.7	47.7	21.5	4.1
				BOTH	40.9	53.1	2.0	4.0	45.4	49.8	2.7	2.1					BOTH	43,4	44.2	11.5	0.9	40.5	36.4	20.4	2.7
14 1	043050	305	102	IN	37.8	61.2	0.5	0.5	35.6	61.5	1.5	1.5	31	2012110	. 1	1301	IN	54.1	34.4	11.5 31.1	0.0 0.5	56.1 36.9	39.8 49.1	4.1 11.5	0.0 2.4
				001	33.8	65.0	0.8	0.4	41.3	56.3	1.0	1.3 1.4				•	OUT BOTH	25.9 38.2	42.5 38.9	22.5	0.3	46.4	44.5	7.8	1.2
1 [1	AE 4 A O A	311	100	BOTH In	35.6 58.0	63.3 39.3	0.7 2.3	0.5 0.4	38.6 54.1	58.8 44.4	1.2 1.4	0.0	32	2012150	101	301	IN	42.9	42.9	14.3	0.0	25.6	70.1	4.3	0.0
10 1	051080	SII	100	001	39.8	59.7	0.5	0.0	42.9	56.9	0.0	0.3					OUT	81.5	18.5	0.0	0.0	76.1	21.6	2.2	0.0
				BOTH	49.7	48.6	1.5	0.2	48.2	51.0	0.7	0.1					BOTH	61.8	30.9	7.3	0.0	52.6	44.2	3.2 19.3	0.0 0.0
16 1	051101	309	302		62.6	33.0	3, 3	1.1	53.4	44.3	2.3	0.0	33	2022030	1019	200	I N THO	35.4 28.9	26.0 33.9	38.6 37.2	0,0 0.0	40.4 46.7	40.4 39.4	13.9	0.0
				OUT	38.2	60.8	1.0	0.0	47.4 49.8	49.6 '47.5	3.0 2.7	0.0 0.0			£ .		OUT BOTH	32.0	30.1	37.9	0.0	43.4	39.9	16.7	0.0
17 1	AE 1 1 A 9	2.2	ΕΛΛ	BOTH In	49.7 36.7	47.7 53.7	2.1 7.8	0.5 1.8	48.5	40.7	9.0	1.9	34	2022060	1	2903		50.0	36.2	10.0	3.8	51.9	33.4	8.8	5.9
111	051102	32	500	0UT	50.2	37.9	9.9	2.0	56.5	33.8	5.1	4.6	* 1		·		OUT	57.1	25.5	17.3	0.0	55.4	32.5	11.6	0.6
				BOTH	43.2	46.1	8.8	1.9	52.1	37.6	7.2	3.1					BOTH	53.1	31.6	13.2	2.2	53.5	33.0	10.0	3.5
18 1	052110	11	101	IN	36.0	61.6	2.3	0.0	51.8	46.8	1.4	0.0	35	2032120	106	602	KI THO	36.1	54.4	9.5	0.0	45.5	51.1 38.7	3.4 5.6	0.0 3.7
				001	44.4	45.6	6.7	$\frac{3}{1}, \frac{3}{7}$	57.8	33.9	6.7	1.7					OUT BOTH	46.5 40.9	48.7 51.7	4.0 7.0	0.9 0.4	52.0 49.2	44.1	4.7	2.1
40.4	004004	4	5 0 0	HTOB	40.3	53.4	4.5 R 1	1.7 1.4	54.5 69.9	41.0 26.1	3.8 4.0	0.8 0.0	36	2032140	108	500	IN	65.5	27.6	6.9	0.0	73.1	21.0	5.9	0.0
19 1	061081	i	500	IN OUT	58.1 47.8	32.4 46.1	8.1 6.1	0.0	62.9	29.6	7.5	0.0	V 0			J • •	OUT	41.7	39.6	18.8	.0.0	54.5	37.5	8.0	0.0
				BOTH	52.2	40.3	6.9	0.6	66.0	28.0	6.0	0.0					BOTH	50.6	35.1	14.3	0.0	64.1	29.0	6.9	.0.0
20 1	061082	21	200	IN	45.5	52.5	2.0	0.0	61.2	37.0	1.8	0.0	37	2042130	1	1901	IN THO	23.2	42.4	33.8	0.5	33.2 37.2	53.1 48.4	12.2 13.9	1.5 0.4
				TUO	41.3	55.2	3.5	0.0	55.5	42.3	1.9	0.3 0.1					OUT BOTH	30.6 27.3	49. ₂ 46.1	20.2 26.4	0.0 0.2	35.3	50.6	13.1	1.0
				BOTH	43.2	54.0	2.8	0.0	58.6	39.4	1.9	().1 ====================================		, :========			PUIII	J	7V. I						

Appendix 6.14 PERCENTAGE OF TRIP PURPOSE - 1990

											•	Jnit:%)				-									•	Unit:%)
	Survey	/ Route	Ctl'	Dire-		Passeng	er Car			Pickup-I			÷		Survey	Route	Ctl'	Dire-		Passenge	er Çar			Pickup-		
Seq	Code	on No.	sect.	CTIOR	Work	Priv.		Other	Work	Priv.	Tour	Other		Sec	q Station Code	NO.	Sect.	CEIDN	Work	Priv.		Other	Hork	Priv.	Tour	Other
38	2052100	101	1100	IN OUT	61.9 46.3	34.9 46.3	3.2	0.0	57.8 64.2	37.5 30.8	4.7 5.0	0.0	4	55	5 3013040	3	1300	IN OUT	55.0 58.8	35.6 34.6	9, 4 6, 6	0.0 0.0	62.0 59.1	35.7 37.3	2.3 3.4	0.0 0.2
				BOTH	55.8	39.4	4.8	0.0	60.9	34.3	4.8	0.0						BOTH	56.8	35.2	8.1	0.0	60.6	36.5	2.8	0.1
39	2062130) 1	2603		30.1	45.4	24.5	0.0	42.0	50.5	7.5	0.0		5€	8 3013060	317	302		65.5	31.0	3.4	0.0	57.3	39.7	2.2	0.9
				001	43.7	31.7	24.6	0.0	43.3	42.4	14.0	0,3				÷		001	50.0	45.0	5.0	0.0	57.0 57.1	42.2 41.0	0.8	0.0
4.0	2072001	117	400	BOTH	36.7	38.8	24.5	0.0	42.7	46.4 34.5	10.8 14.3	0.2		5.0	3 3023031	-3	402	BOTH In	56.5 18.2	39.1 63.6	4.3 18.2	0.0	52.2	34.8	1.5 8.7	0.4 4.3
40	2072081	117	400	IN OUT	51.7 51.7	35.0 35.0	12.8 12.8	0.5	50.8 50.4	34.3 35.1	14.3	0.5 0.5		3.0	3 3023031	J	402	OUT	33.5	48.7	13.2	4.6	35.8	43.2	16.0	4.9
				BOTH	51.7	35.0	12.8	0.5	50.6	34.8	14.2	0.5						BOTH	32.7	49.5	13.5	4.3	39.4	41.3	14.4	4.8
41	2072082	2 11	502	IN	48.6	29.1	22.3	0.0	33.4	36.9	27.8	1.9		5 9	3023032	315	200		38.5	51.4	10.1	0.0	38.6	50.3	7.5	3.6
				OUT	48.7	35.5	15.7	0.0	44.4	40.5	15.1	0.0						OUT	37.2	58.7	2.9	1.2	46.5	48.6	2.9	2.0
4.0	9979891	111	0.60	BOTH	48.7	32.8	18.6	0.0	39.0	38.8	21.3	0.9		e o		224	400	BOTH In	37.9 22.1	54.7 45.5	6.8 31.7	0.5 0.7	42.1 37.0	49.5 53.8	5.4 9.2	2.9 0.0
4 Z	2072090) 113	202	OUT	52.7 46.8	43.6	1.8	0.0	63.9 67.2	32.2 31.5	2.2 1.3	1.8		OV	3023033	331	400	0UT	21.6	56.1	16.5	5.8	41.2	46.3	11.3	1.3
				BOTH	50.0	48.0	1.0	1.0	65.8	31.8	1.7	0.7						BOTH	21.8	50.7	24.3	3.2	38.8	50.6	10.1	0.6
43	2072111	117	200	_	31.7	49.1	19.2	0.0	41.8	47.3	10.9	0.0		61	3023061	319	200	IN	52.1	44.9	2.4	0.6	40.7	55.2	3.2	0.9
				OUT	27.8	50.4	21.7	0.0	38.5	36.2	25.3	0.0						OUT	44.7	48.2	7.1	0.0	44.2	52.1	3.6	0.0
		. 44	004	BOTH	29.5	49.9	20.7	0.0	40.1	41.5	18.3	0.0		en	3023062	204	400	BOTH	48.7 52.2	46.4 42.9	4.5 4.9	0.3 0.0	42.4 40.6	53.7 55.8	3.4 2.4	0.5 1.2
44	2072112	! 11	201	IN Tug	55.7 36.9	44.3 44.6	0.0 15.5	0 0 3 0	60.0 40.0	37.8 48.2	2.2 8.6	0.0 3.3		υZ	3023002	304	400	OUT	47.9	44.5	7.1	0.5	49.6	47.8	1.7	0.9
				BOTH	44.5	44.5	9.2	1 8	49.7	43.2	5.5	1.7						BOTH	50.1	43.7	5.9	0.2	44.3	52.5	2.1	1.1
45	2082150	12	400		63.3	29.4	7.3	0.0	61.8	33.8	4.3	0.0	1	63	3033071	3	800	IN	41.9	40.2	17.1	0.8	60.0	34.7	5.3	0.0
				OUT	42.3	42.3	8.2	7.2	51.6	36.2	6.3	6.0						OUT	40.7	39.2	20.1	0.0	51.4	40.7	8.0	0.0
	2000476		700	BOTH	53.4	35.4	7.8	3.4	56.5	35.1	5.3	3.1		C 4		20	200	BOTH	41.3	39.8	18.4	0.4	56.0	37.4	6.5 5.6	0.0 0.2
46	2082170) 11	700	_ :	47.6	34.6	17.8	0.0	49.2 56.3	44.2 32.3	6.6 11.3	0.0 0.0		04	3033072	36	200	NI OUT	49.0 45.2	33.8 35.7	16.9 19.1	0.3 0.0	54.6 38.2	39.5 46.1	5.6 15.2	0.5
				OUT BOTH	23.8 35.2	50.0 42.6	25.9 22.0	0.3 0.2	52.7	38.3	9, 0	0.0						BOTH	47.3	34.7	17.9	0.2	46.3	42.8	10.5	0.3
47	2094020	12	1000		24.6	70.5	4.9	0.0	45.5	27.3	27.3	0.0		65	3033073	344	300	1 N	47.5	39.9	11.8	0.8	46.5	47.1	5.9	0.4
				OUT	53.5	43.7	2.8	0.0	50.0	50.0	0.0	0.0						OUT	32.7	62. 0	4.7	0.6	36.0	57.4	6.4	0.2
				BOTH	40.2	56.1	3.8	0.0	46.2	30.8	23.1	0.0					~~~	BOTH	41.7	48.6	9.0	0.7	41.3	52.3	6.2	0.3
48	2094030	225	600		76.9	23.1	0.0	0.0	90.3	8.3	0.0	1.4		67	3064060	304	700	IN OUT	54.1 42.4	31.1 48.2	14.8 9.4	0.0 0.0	61.4 59.0	33.1 36.5	5.5 4.5	0.0 0.0
				OUT Both	36.8 53.1	63.2 46.9	0.0	0.0	54.5 69.6	45.5 29.8	0.0	0.0 0.6						BOTH	47.3	41.1	11.6	0.0	60.4	34.4	5.1	0.0
49	2094120	203	202		53.3	46.7	0.0	0.0	50.0	42.9	7.1	0.0		68	4014090	213	102	IN	31.3	64.1	4.6	0.0	41.6	55.1	3.4	0.0
,,,				OUT	38.5	53.8	7.7	0.0	33.3	61.9	0.0	4.8						OUT	53.6	33.6	9.1	3.6	58.1	25.6	12.8	3.5
				BOTH	46.4	50.0	3.6	0.0	40.0	54.3	2.9	2.9				24.4		BOTH	41.5	50.2	6.6	1.7	49.7	40.6	8.0	1.7
50	2102131	103	100		46.7	43.3	8.9	1.1	52.4	34.7	11.8 9.7	1.0 9.3		69	4014110	214	200	. IN	45,3	54.7 34.9	0.0 2.4	0.0 0.0	24.0 93.3	76.0 6.7	0.0 0.0	0.0 0.0
				OUT Both	49.5 48.2	35.9 39.4	12.6 10.9	1.9 1.6	51.9 52.2	29.1 32.0	10.8	5.0						OUT Both	62.7 53.4	45.5	1.1	0.0	40.0	60.0	0.0	0.0
51	2102132	11	1200		28.4	40.7	28.7	2.2	50.6	32.5	15.7	1.2		70	4014130	213	303	IN	59.1	37.9	3.0	0.0	64.3	14.3	21.4	0.0
٠.		• • •		OUT	49.4	31.3	19.3	0.0	52.0	41.5	6.5	0.0		•				OUT	19.6	79.3	1.1	0.0	23.1	73.1	3.8	0.0
				BOTH	38.6	36.1	24.2	1.1	51.4	37.6	10.5	0.5						BOTH	36.1	62.0	1.9	0.0	37.5	52.5	10.0	0.0
52	2102150	101	700		29.7	35.1	35.1	0.0	45.2	50.0	4.0	0.8		71	4024030	201	702	IN	29.0	69.9	1.1	0.0	25.0	50.0	25.0	0.0
				OUT Both	48.1 37.5	33.3 34.4	18.5	0.0	76.1 60.1	21.4 36.2	2.6 3.3	0.0 0.4						OUT Both	69.2 43.4	30.8 55.9	0.0 0.7	0.0 0.0	80.0 64.3	20.0 28.6	0.0 7.1	0.0 0.0
5.3	2122130	11	1300		41.3	46.7	28.1 12.0	0.0 0.0	45.8	50.1	4.1	0.0		72	4024060	2	702	IN	40.1	57.0	2.8	0.0	39.7	55.4	5.0	0.0
30	L 1 L L 1 U U		1000	OUT	47.5	34.8	17.6	0.0	57.0	31.3	11.7	0.0		1 4.	1941009	<i>c</i>	, 02	อบั	38.0	54.2	3.4	4.5	56.5	37.0	5.4	1.1
				BOTH	43.9	41.8	14.3	0.0	51.2	41.1	7.7	0.0				•		BOTH	38.9	55.5	3.1	2.5	46.9	47.4	5.2	0.5
54	2152170	102	100		63.6	33.3	3.0	0.0	70.4	26.4	3.1	0.0		73	4024091	208	102	IN	15.2	72.7	12.1	0.0	17.2	65.5	17.2	0.0
				001	61.8	38.2	0.0	0.0	69.4	27.9 27.1	2.7	0.0						OUT ROTH	20.0 17.2	60.0 67.2	20.0 15.5	0.0 0.0	70.4 51.8	22.2 37.3	7.4 10.8	0.0
				BOTH	62.5	36.4	1.1	V.V =======	69.9	27.1	2.9	0.0			=======			BOTH								U. V

Appendix 6.14 PERCENTAGE OF TRIP PURPOSE - 1990


(Birt 1) {Unit:%) Passenger Car Pickup-Passengal. Pickup-Passenger Survey Route Ctl' Dire-Passenger Car Survey Route Ctl' Dire-Seq Station No. Sect. ction -----Station No. Sect. ction ------Work Priv. Tour Other Work Priv. Tour Other Work Priv. Tour Other Work Priv. Tour Other Code Code . _____. 65.2 44.4 0.0 30.4 31.5 0.0 54.0 23 103 ΙN .67.41.1 28.6 71.4 74 4024092 91 4114140 214 500 IN 5.3 10.5 0.0 84,2 0.0 82.9 12,2 50.0 4.4 û.û 4,9 0.0 46.9 6.3 011 45.6 OUT 46.9 4.8 54.8 35.7 4.8 31.7 2.9 0.0 3.2 0.0 65.4 0.0 3.0 BOTH 40.5 56.3 37.3 59.7 BOTH 3.4 0:0 31.0 65.530.0 0.0 2.5 70.0 0.0 0.0 12.1 201 800 68.4 29.1 0.066.7 75 4024120 IN 210 302 21.2 1 N 92 4124160 37.0 11.1 2.6 48.1 3.7 10.5 89.50.0 0.0 63.2 7.9 THO 28.6 64.9 6.50.026.3 TIIA 39.3 5.4 51.8 3.6 69.0 0.0 9.91.4 31.0 0 0 64.8 BOTH 46.8 4.5 0.0BOTH 23.9 48.7 0.0 63.0 7.4 29.6 0.0 9.7 52.5 30.5 11.9 5.1 29.0 71.0 0.0 32.3 8.1 22 - 301 76 4024160 2 1100 IN 50.093 4134160 72.7 0.0 27.3 0.0 54.5 9.1 56.9 41.6 1.5 29.8 59.5 10.7 0.0 36.4 0.0OHT 0.0 42.1 44.7 5.3 7.9 54.5 44.1 10.3 44.7 0.8 45.7 4.1 43.4 2.2 BOTH BOTH 40.0 10.2 22.2 0.0. 0.0 72.4 42.9 55.6 0.0 1.6 77.8 24.1 0.0 0.0 3 4 800 IN 205 702 IN 44.4 55.6 0.0 226 77 4034061 94 4144150 3.0 34.6 0.0 0.0 65.4 3.950.9 46.7 0.6 1.8 31.3 65.70.0 52.9 2.0 OHT 41.2 70.5 29.5 0.00.0 0.0 2.3 60.8 36.9 43.1 54.5 0.8 1.6 47.0 50.5 0.5 2.0 BOTH BOTH 40.9 0.0 59.2 36.6 4.2 51.8 7.3 75.0 226 1200 IN 3.6 0.0 78 4034062 202 301 IN 22.6 74.2 3.2 0.021.4 95 4154170 38.6 14.3 38.6 34.3 38.9 14.8 12.0 71.4 28.6 0.0 0.0 0.0 OUT 32,0 64.04.0 37.6 4:3 6.0 48.9 39.9 42.9 55.1 0.0 BOTH 43,1 11.0 69.6 3.6 0.0 BOTH 26.8 6.2 8.9 42.6 48.8 2.4 57.7 4.0 22.9 29.4 212 1302 44.0 -48.08.0 0.0 57.1 20.0 0.0 96 5015050 323 . 103 IN 79 4044080 IN 41.5 56.4 2.0 0.1 42.8 6.0 0.0 46.2 26.9 OUT 51.2 26.9 0.0 DILL 19.2 46.2 34.6 0.0 50.0 44.9 2.2 2.9 4.0 31.1 24.6 BOTH 41.3 49.5 5.1 21.6 0.0 44.3 0 0 47.1 BOTH 31.4 19.2 80.5 0.30.0 3.4 0.0202 12.1 84.5 15.6 43.8 21.9 21.9 12.5 97 5015060 324 IN 22 502 24.4 15.6 80 4044130 ΤN 44 4 39.6 56.8 2.5 1.1 62.9 8.1 1.6 OUT 27.4 59.1 31.8 9.1 0.015.8 78.9 5.3 0.0OUT 0.8 28.8 69.3 1.3 0.5BOTH 20.0 73.3 5.8 27.6 14.5 5.3 10.8 8.4 52.6 BOTH 31.3 49,4 47.7 0.8 40.0 57.1 2.9 0.0 50.8 302 41.2 6.9 5.9 98 5025050 4 IN 46.1 2 1303 39.846.4 5.5 8.3 81 4054160 1 N 0.0 30.6 68.5 0.9 79.5 0.0 OUT 20.5 47.9 42.7 9.4 0.0 40.4 48.6 10.9 0.0AllT 41.4 57.3 0.8 0.4 0.0 1.3 BOTH 29.1 69.6 42.0 2.7 47.0 8.2 47.5 8.2 4.1 RTOB 40.1 66.1 0.0 27.8 68.7 3, 5 0.0 28.6 5.4 321 202 46.7 99 5025060 ·IN 52.5 0.4 0.4 0.0 300 24.5 75.5 0.0 82 4064071 24 OUT 21.1 74.7 3.2 1.1 18.5 80.8 0.7 0.06.7 25.8 69.5 1.3 3.4 OUT 56.2 3.4 33.7 22.6 75.6 0.0 0.5 1.9 2.0 BOTH 25.1 70.0 4.3 61.6 0.9 63.4 2.1 35.5 BOTH 30.3 4.2 38.4 41.1 8.2 12.3 6.0 61.0 9.5 68.6 0.0 0.0 100 5035040 4 800 IN 23.5 31.4 2.1 226 400 30.2 64.6 3.1 83 4064072 42.4 41.9 13.3 42.3 20.8 1.8 OUT 35.1 49.3 3.6 0.0 54.5 36.4 0.0 9.1 47:1 OUT 54.5 4.6 40.7 41.5 11.2 BOTH 27.5 13.5 60.90.0 2.2 BOTH 40.1 55.6 3.4 0.9 37.0 48.1 7.2 4.6 4 - 1400 35.8 41.9 18.9 3.4 40.1 42.5 101 5036020 2 3 1.7 0.0 53.4 84 4074141 226 600 45.6 52.4 1.9 43.1 50.2 5.1 1.6 48.6 0.7 0.7 OUT 27.7 62.5 8.7 1.1 50.0 49.3 1 4 1 4 ant 47 9 41.6 49.2 4.9 4.3 13.3 2.1 31.3 53.3 51.9 45.3 1.6 1.3 BOTH BOTH 46.6 51.1 1.7 0.646.2 7.6 0.0 11.9 0.0 46.2 35 300 IN 29.4 58.7 20.0 0.0 0 0 103 5055081 219 400 31.6 65.8 2.6 0.080.0 85 4074142 58.2 8.2 0.0 16.0 0.033.6 40.1 43.9 0.0 43.5 56.5 0.0 0.0 72.2 OUT 27.8 0.0 0.0 40.2 52.0 7.9 35.5 50.3 14.2 54.5 45.5 0.0 0.0 BOTH 68.9 1.4 0.0 BOTH 29.7 2.2 66.1 28.6 3.1 200 42.4 50.6 5.2 1.7 30.0 3.3 104 5055082 325 IN 42.1 0.0 53.3 13.3 212 1400 ĨΝ 26.3 31.6 86 4084100 44.1 4.1 0.4 51.4 38.0 46.5 12.4 3.1 40.9 0.0 OHT 54.5 4.5 OUT 33.3 38.9 27.8 0.0 2.3 58.5 36.7 3.6 1.3 48.8 BOTH 40.5 8.3 53.8 34.6 9.61.9 29.7 40.5 29.7 0 0 BOTH 41.9 41.4 15.1 35 201 27.2 38.1 33.5 1.2 105 5075080 90.0 3.3 3.3 3 3 - Y N 23 303 67.9 32.1 0.0 0.087 4094111 1 N 47.4 2.0 61.5 8.4 0.9 44.1 6.5 63.6 0.0 0.0 OUT 29.2 OUT 27.5 67.8 4.7 0.036.4 43.7 11.8 1.7 .1.0 42.8 2.4 28.4 51.7 18, 9 2.4 0.0 75.6 19.5 2.4 BOTH 50.7 BOTH 46.9 46.5 44.0 35.1 10.5 0.5 4 3500 53.9 66.7 0.0 0.0 106 6016030 IN 88 4094112 202 700 1 1 35.7 61.9 2.4 0.0 33.3 34.9 45.7 19.4 0.0 29.2 63.77.1 0.0 OBT 0.0 39.4 60.6 0.0 0.0 22.2 77.8 0.0 OHT 8.4 0.0 53.1 70.6 0.0 BOTH 44.6 40.3 14.9 0.3 38.5 0 0 0.029.4 BOTH 37.3 61.3 1.3 54.3 3.7 0.8 41.2 54.5 0.0 47.9 28.6 71.4 0.0 0.0 107 6016070 4 3200 33.3 12.2 23 501 52.1 0.0 0 0 89 4104110 ĮΝ 62.3 3.0 31.4 3.4 59.5 1.2 OUT 24.5 14.7 OUT 40.6 59.4 0.0 0.0 85.0 15.0 0.0 0.0BOTH 36.4 58.2 3.51.9 28.3 57.3 13.6 0.7 0.0 0.0 47.9 BOTH 46.4 53.6 0.0 0.0 52.1 3.8 22.0 21.9 65.8 12.3 0.0 67.4 6:8 39.3 21.4 0.0 108 6016140 4035 200: 1 N 600 50.0 39.3 90 4104170 ΙN 33.3 15.0 1.7 1.1 40.9 39.0 30.5 0.0 53.8 39.3 3.6 OUT 30.5 11.1 57.1 0.0 OUT 51.1 22 35.6 29.8 50.0 23.0 0.0 61.8 BOTH 27.0 48.2 39.3 10.7 1.8 BOTH 34.3 50.5 13.3 1.9

Appendix 6.14 PERCENTAGE OF TRIP PURPOSE - 1990

(Unit:%)

	Survey Station	Route	Ctl'	Dire-	=======================================	Passenge	er Car			eeeeeee Pickup-P	asseng	er
Seq	Station Code	NO.	Sect.	CTION	Work	Priv.	Tour	Other	Work	Priv.	Tour	Other
	6026100	4	1800	. IN	20.7	52.3	26.1	0.9	32.4	61.5	4.5	1.7
				0UT	48.1	43.2	7.4	1.2	64.2	28.5	3, b	
	0000440		0.00			48.4	18.2	- 1,0	48.9	44.4 62.0	4.V	2.7 2.8
110	6026140	4	300		18.3	31.4	15.2	0.9 0.0	25.9 38.5	43.1	17.7	0.8
				OUT Both	33.3		17.0	0.0	30.6	54.9	12.4	2.0
111	6036040	403	302	IN	29.1		15.8	0.0	35.0	27.5	35.0	2.5
1 1 1	0000040	400	087		50.4	31.3	15.4	2.9	19.8	52.3	16.3	11.6
				BOTH		46.0	15.7	2.9	24.6	44.4	22.2	8.7
112	6036060	Λ	3800	IN	51.4	34.1	14.5	0.0	54.3	37.6	7.8	0.3
	000000		0000	OUT	38.4	51 1	10.4	0.0	37.7	54.1	7.8	0.4
				BOTH	44.7	42.8	12.4	0.0 1.9	47.4	44.5	7.8 7.8	0.4
113	6046060	41	1100	IN	31.1	46.1	20.9	1.9	51.9	35.8	2.5	9.9
				OUT	30.0	49,4	20.6	0.0	48.5	39.4	9.1	3.0
				BOTH	30.5	47.9	20.7	0.9 0.7	50.9	36.8	4.4	7.9
114	6046120	408	302		65.1	30.6	3.6	0.7	51.4	47.2	1.4	0.0
				OUT	35.4	61.0	3.1	0.4	30.8	46.2	23.1	0.0
				BOTH	50.9	45.1		0.6	50.5	47.2	2.3	0.0
115	6046141	41	800		44.4	46.8	8.7	0.0	44.9	52.1	3.0 5.5	0.0
				OUT	30.1	65.4		0.0	41.0	53.3 52.8	J. J	0.3 0.2
440	0040440	404	0.04	BOTH	37.0	56.5	0.0	0.0	42.5 46.6	52. o 45. 8	4.5	0.2
116	6046142	401	801	N I Tuo	50.6 55.0	09. Z	9 0	0. V	57.5	39.6	7.6	0.0
				BOTH	52.5	30.1 37 0	0.5	0.0	52.7	42.4	5.0	0.0
117	6056080	# 2	701		39.9	57.1	1 5	0.0 0.0 0.0 1.5	64.3	21.4	14.3	0.0
	0020000	42	101	OUT	59.9	33.3		1.0	43.2	53.1	2.9	0.8
				BOTH	50.0	45.1	3.7	1.2	44.3	51.4	2.9 3.5	0.8
118	6066120	A	4100	IN	51.7	43.5	4.7	1.2	38.3	53.9	7.8	0.0
	0000120	•		OUT	61.1	36.2	2.7	0.0	56.1	42.2	1.7 3.3	0.0
				BOTH	56.3	39.8	3,7	0.1	51.5	45.2	3.3	0.0
119	6076100	4	2300	IN	35.2	51.9	13.0	0.0	51.6	45.2	3.2	0.0
				OUT	42.4	36.4	21.2	0.0	44.9	47.1	8.0	0.0
				BOTH	37.9	46.0	16.1	0.0 0.0	46.2	46.7	7.1	0.0
120	6076110	402	101		43.8	37.2		0.0	61.5	29.1	8.8	0.7
				OUT	30.8	42.8	24.4	2.0	48.1	34.6	13.6	3.7
		***	4.00	BOTH	36.9	40.2	21.9	1.1	54.5	31.9	11.3	2.3
121	6086090	410	102		60.6		4.3	0.0	50.2	47.4 37.5	2.4 1.4	0.0 0.0
				TUO	69.1				61.1		1.8	0.0
400	0000100	4000	200	BOTH	64.3	33.0	2.7	0.0	56.6	41.6 54.2	3.2	0.4
122	6086120	4086	300	N I Tuo	58.5 56.7	36.2 40.8	5.4 2.3	0.0	42.2 73.8	26.2	0.0	0.0
				BOTH	57.5	38.7	3.7	0.2	46.7	50.2	2.7	0.3
192	6126130	406	200		73.7	22.1	4.2	0.0	57.9	35.3	6.8	0.0
123	V17010A	400	200	OŪT	54.8	39.1	5.7	0.4	30.8	64.1	5.1	0.0
				BOTH	63.3	31.4	5.0	0.2	45.2	48.8	6.0	0.0

Appendix 6:15 SOSIO-ECONOMIC INDICATIONS AND TRIP GENERATION AND ATTRACTION BY CHANGWAT - 1990

PRESENT O-D TABLE	2 (1990	0)						VEHICLE	E TYPE :	TOTAL																												
	1	10	11	12	13	14	15	16	17	18	50	51	52	53	54	55	56	57	60	61	62	63	64	65	66	67	68	20	21	22	23	24	25	26	30	31	32	33
1 BANGKOK METROPOLITAN 10 CHAI NAT 11 SING BUR1 12 LOP BUR1 13 ANG THONG 14 SARHBURI 15 PHRA NAKHON SI AYUTTHAYA 16 PATHUN THANI 17 NONTHABURI 18 SAMUT PRAKAN 50 CHAING RAI 51 MAE HONG SON 52 CHIANG MAI 53 PHAYAO 54 NAN 55 LAMPHUN 56 LAMPHUN 67 PHARE 60 UTTARADIT 61 SUKHOTHAI 62 TAK 63 PHITSANULOK 64 KAMPHAENG PHET 65 PHICHIT 66 PHECHLBUN 67 NAKHON SAMAN 68 UTHAI THANI 120 NAKHON SAMAN 68 UTHAI THANI 20 NAKHON SAMAN 68 UTHAI THANI 21 CHACHOENGSAO 23 CRON BURI 24 RAYONG 25 CHARTHABURI 26 TRAT 30 CHAIYAPHUN 31 YASOTHON 32 UBON RATCHATHANI 33 SI SA KET 34 BURIRAN 35 NAKHON BATCHATHANI 33 SI SA KET 34 BURIRAN 35 NAKHON PHANON 41 LOEI 42 UDON THANI 43 NAKHON PHANON 44 SAKHON NAKHON 45 KHON KAEN 46 KALASIN 47 HAHA SARANHAN 48 ROI ET 49 MUKDAHAN 70 SUPHAN BURI 71 KANCHANBURI 72 HARHON PATHOM 73 RATCHABURI 74 HAHA SARANHAN 75 SANUT SONGKHRAH 76 PHETCHABURI 77 PERCHUAP EMIRI KHAN 76 CHUPPHON 77 RATCHABURI 78 PARCHUAP EMIRI KHAN 79 SUPHAN BURI 79 PERCHUAP EMIRI KHAN 70 SUPHAN BURI 71 RAKHON PATHOM 73 RATCHABURI 74 PARCHUAP EMIRI KHAN 75 SANUT SONGKHRAH 76 PHETCHABURI 77 PERCHUAP EMIRI KHAN 78 SANUT SONGKHRAH 79 PHATTHALUNG 91 THANG 92 SONGKHLA 93 SATUN 94 PATTHALUNG 91 TANG 94 PATTHALUNG 91 TANG 96 NARATHIWAT TOTAL	0 306 379 472 660 3166 5795 1172 3843 27151 164 57 424 57 424 118 83 120 90 130 288 220 191 273 790 200 1177 863 5096 8581 1359 937 276 199 53 256 47 92 1803 188 70 219 34 49 49 49 49 57 41 41 42 43 44 45 47 47 48 48 49 49 49 49 49 49 49 49 49 49	569 83126 5226 5255 526 526 527 5311 631	532 90 01188 372 107 73 119 41 20 8 02 23 55 02 22 22 14 33 22 19 428 35 10 00 00 00 00 00 00 00 00 00 00 00 00	1372 50 1444 06 2031 79 1048 89 0 9 0 17 2 2 2 6 8 15 14 17 31 28 29 374 476 133 54 82 194 2 4 3 5 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	702 633 462 66 0 11707 1219 200 600 205 1418 7568 7518 415 000 000 000 000 000 000 000 000 000 0	3135 134 2231 5 0 1804 1263 189 84 19 0 34 2 2 19 33 16 17 36 220 114 0 0 145 4 2 2 19 114 0 0 145 189 189 189 199 114 199 114 199 114 199 114 199 114 199 199	6054 53205 882 1962 1300 1562 100 100 1562 100 100 1563 1615 1615 1615 1615 1615 1615 1615	873 19 56 844 1117 1053 0 270 317 5 0 15 2 0 0 0 5 14 6 7 22 5 17 71 18 2114 198 229 167 14 198 241 198 241 198 241 198 241 25 5 0 0 0 156 5 9 0 0 156 5 9 0 0 157 5 0 0 0 0 158 132 147 147	7 3 0 91 1849 344 457 9 18 4 579 2 0 0 0 6 2 4 8 4 2 2 6 9 18 20 7 74 137 16 0 0 0 2 2 2 4 2 0 0 2 2 3 2 6 2 4 2 0 0 2 2 3 2 9 2 2 7 1128 230 5 88 8 51 128 230 5 88 8 51 168 8 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30483 12 33 11 46 44 4547 59 0 17 0 14 0 2 2 0 0 22 0 4 52 132 9053 218 108 14 90 97 15 171 820 97 15 174 820 97 15 174 820 97 174 820 97 185 174 820 97 185 174 820 97 185 174 820 97 185 174 820 97 185 174 820 97 185 186 187 99 187 188 188 188 188 188 188 188 188 188	252 3 11 0 5 13 9 5 14 0 5 747 8186 33 200 13 3 6 3 4 0 0 0 0 1 1 0 0 0 0 0 0 2 2 0 0 0 0 0 0	9000030000042208720000003800000000000000000000000000	616 3 7 43 33 14 2 29 11 783 14 2 29 11 3 15 2 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	109 2 0 6 0 10 ? 3 5 2 8 8 4 15 6 0 2 17 5 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60055502234006111020820223000740800000000000000000000000000000000	74 0 6 2 0 50 3 5 2 2 8 8 26 23 62 3 4 6 30 0 0 0 1 5 0 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	216 8 1 3 26 9 3 3 36 5 0 6 1 2 5 1 6 2 2 2 8 5 3 1 0 3 3 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96 10 31 0 12 12 14 12 13 14 12 15 10 10 11 14 12 15 10 10 10 10 10 10 10 10 10 10 10 10 10	138 2 2 11 2 6 3 0 4 18 1 1 2 2 5 9 6 5 1 8 4 4 2 0 2 10 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	165 2 4 5 11 20 4 7 6 0 21 1 30 7 12 12 60 0 4 117 260 0 4 117 260 0 2 5 0 0 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	145 8 0 6 0 26 14 11 1 8 0 0 74 6 6 15 5 20 5 4 19 7 6 6 15 5 6 6 8 9 11 33 3 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350 39 14 96 25 38 20 080 21 72 25 49 111 390 311 557 54 39 10 38 12 2 111 15 4 9 117 2 111 119 10 119 119 119 119 119 119 119	286 39 29 37 21 44 4 36 0 3 10 40 11 12 70 22 4 4 4 4 36 0 3 10 11 12 70 22 11 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	243 18 34 35 14 49 42 14 7 6 4 10 14 13 19 46 20 1093 282 0 712 5 0 0 10 0 0 0 3 15 0 0 6 3 0 0	102 113 113 113 113 113 113 113 113 113 11	209 1157 385 359 116 84 32 8 0 2 2 2 8 2 6 10 447 2 157 268 113 12 83 8 0 11 23 0 1 0 0 39 0 0 3 4 2 0 0 20 2 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2531 689 27 7 11 20 0 0 0 0 2 0 4 3 2 4 6 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1431 255 0 8139 1957 141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1111 0 2 40 0 280 33 150 2 0 0 2 0 4 0 2 0 0 2 0 0 2 0 4 0 2 0 0 2 0 0 2 10 0 2 0 0 2 10 0 1388 1595 534 434 240 1388 1596 1696 1797	4602 9 12 0 0 9 12 0 7 4 1 105 1264 9 2 2 0 0 0 0 7 12 2 3 0 0 0 7 12 2 3 1309 0 7 14 9 40 19 2 2 2 7 11 0 0 0 3 11 0 0 0 3 11 15 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9494 10 17 1 2 1363 347 4625 2 5 4 8 12 6 7 6 12 12 13 12 13 12 13 12 13 12 13 12 13 12 13 12 13 13 14 16 16 16 16 16 16 16 16 16 16 16 16 16	1274 0 0 7 7 0 15 0 2 2 0 0 2 2 0 4 2 5 2 0 0 7 6 2 7 6 38 2 0 5 0 0 2 2 0 4 2 5 2 0 0 7 6 2 48 5 0 3 14 5 3 8 10 70 2 0 0 0 0 7 0 0 6 0 0 0 12 0 0 6 0 0 0 11 0 0 4 4 0 6 0 0 0 11 0 0 4 4	717 0 2 0 0 0 2 4 3 3 6 0 0 4 7 7 3 3 4 0 4 7 7 3 3 4 0 4 7 7 3 3 8 6 0 0 2 6 0 0 7 0 0 0 3 0 7 0 0 0 0 0 0 0 0 0 0 0	394 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	170 176 176 41 34 33 32 00 7 22 00 37 4 37 00 24 57 00 01 10 10 10 10 10 10 10 10 10 10 10	60 2 0 0 0 11 0 8 0 0 2 0 0 0 0 0 0 0 5 0 3 0 0 0 0 0 4 8 7 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	179 0 7 7 6 0 2 2 0 0 0 0 3 2 0 2 0 2 9 1 0 0 6 17 23 7 3 0 3 371 0 4 3 4 7 2 7 9 8 1 3 0 2 3 3 5 2 6 5 10 1 1 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33 77 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix 6.16 INTER-CHANGWAT OD TABLE - 1990

PRESENT O-D TABLE (1990)

34 35 36 40 41 42 43 44 45 46 47 48 49 70 71 72 73 74 75 76 77 80 81 82 83 84 85 86 90	
10 STATE AND STA	1 20 7 0 0 0 1 2018 337 655 1130 10 48 40 17 4351 25 449 61 0 1 0 0 1674 8 36 42 0 5 1 2 2014 0 508 789 37 13 21 17 2055 125 0 359 0 7 7 8 2314 90 395 0 863 779 367 217 5266 34 0 760 0 11 11 2 893 6 9 756 6 0 1173 535 2628 1 7 21 0 1185 0 19 1376 21 2 269 7 600 146 0 1239

Appendix 6.17 GENERATION AND ATTRACTION OF INTER-CHANGWAT TRIPS - 1990

GENERATION									Trip/day		ATTRACTION									Trip/day		GENERATION, ATTRACTION									Fripend/d	
					VEHICLE	TYPE									1	Vehicle T	YPE					Code Changwat name					VEHICLE	TYPE				
ode Changwat name	PC	TB	₩B	ĦB	PP	PT	LI	TH	BT	TOTAL	Code Changwat name	PC	LD	MB	IIB	44	PT	LŢ	MT	HT	TOTAL	COUR VIRINGER HORE	PC	LD	HB	HB.	PP	PT	LT	MT	HT	T07
1 BANGKOK METROPOLITAN	34676	7341	605	10774	14839	8593	1978		15993	105030	1 BANGKOK METROPOLITAN .	34547	4195	1332	9101	16032	7328	1274	9943	15812	98564	1 BANGKOK METROPOLITAN	69223	11536	1937	19875	29871	15921	3252	20174	31805	2035
IO CHAI NAT	811	70	9	119	1108	265	70	245	220	2917	10 CHAI BAT	649	73	9	430	986	197	38	279	312	2973	10 CHAI NAT	1460	143	18	549		462 608	108	524	532	58
I SING DURI	797	54	66	168	1133	361	78	368	462	3487	11 SING BURI	829	34	72	124	1000	247	19	440	412	3237	11 SING BURI	1626	88	138	292	4496	008	261	1000	2120	12
LOP BURL	1008	95	87	452	2220	631	141	541	637	5912	12 LOP BUR1	1062	847	102	504	2276	713	120	747	552	6923	12 LOP BURI	2070	942	189 235	720	705	547	327	786	1105	- 1
ANG THONG	1107	380	129	329	354	173	166	416	625	3679	13 ANG THONG	782	421	106	428	351	374	161	370	390	3383	13 ANG THONG 14 SARABURI	1889 3939	801	235 145	101	4015	2649	323	2125	8231	2
SARABURI	1198	231	101	272	2597	1216	117	827	1936	11495	14 SARABURI	2741	860	44	270	5518	1433	206	1298	3295	12365	15 PHRA HAKHON SI AYUTTHAYA	9883 939	1031	315		2660	1377	685	4396	4724	2
THRA BAKHON SI AYUTTHAYA	3235	2079	169	251	1367	752	318	2099	2510	12780	16 PHRA HAMBON SI AYUTTHAYA	3648	2397	146	366	1203	615	357	230?	2214	13353	16 PATHUM THAN	3686	280	30	332	3243	1704	917	2755	6553	ĩ
PATHUM TRANT	2628	172	16	212	1706	802	422	1626	2671	10255	16 PATRUM THARI	1058	108	16	120	1537	902	395	1129	3892	9147	17 NONTHABURI	5227	773	46	518	3117	1945	365	2963	2711	î
NONTHADURI	3089	544	23	316	1660	8101	223	1617	1463	9953	17 NONTHABURI	2138	229	23	202	1457	927	142	1346	1248	7712	18 SABUT PRAKAN	30195	1010	1116	2313	9733	0323	1043	8312	14856	ė
SANUT PRAKAN	14937	828	858	3360	4680	3162	489	3743	6319	3B376	18 SAMUT PRAKAN	15258	991	257	3982	5053	3407	554	4599	8537	42638	50 CHAING RAI	1072	195	10	338	2355	380	43	369	319	•
CHAING RAI	524	101	6	156	1181	154	20	181	193	2516	50 CHAING RAI	548	94	12	182	1174	226	23	188	126	2573	51 MAE HONG SON	26	21		27	195	36	5	71	54	
MAE HONG SON	47	16	0	15	103	21	4	31	28	265	51 MAE HONG SON	29	5	U	277	92	10	.!	40	26	220	52 CHIANG MAI	2491	888	299	508	3288	2064	8Ğ	629	421	1
CHIANG MAI	1074	395	155	231	1243	1013	41	298	208	4658	52 CHIANG MAI	1407	493	144	277	2045	1051	40	331	213	6006	53 PHAYAO	546	97	6	98	1827	283	49	353	181	
PHAYAO	270	50	6	47	812	159	30	160	88	1630	53 PHAYAO	276	47	Ų	51	1015	124	19	185	73	736	54 NAR	224	27	4	133	508	243	55	81	001	
(AN	81	16	0	51	232	143	17	39	60	639	54 HAN	143	11	4	82	276	100	38	42	40	736 3122	55 LAMPRUR	838	702	285	42	1759	1886	68	329	341	
AMPRON	375	359	136	26	946	861	35	184	207	3129	55 LAMPHUN	463	343	199	10	813	1025	33	145 178	134 190	2456	56 LAMPANO	993	152	15	194	2727	846	101	453	381	
LAMPANG	545	82	12	107	1507	439	48	275	191	3206	56 LAMPANG	448	70	3	87	1220	207	53	178		4,00	57 PHRAE	1222	135	23	131	1858	392	167	406	183	
PHRAE	683	70	19	67	1042	182	91	191	77	2422	57 PHRAE	539	65	- 4	4D	531	73	76	188	106 160	2095 1636	60 UTTARADIT	952	61	36	166	1007	145	59	428	347	
FTTARADIT	382	37	8	126	476	72	36	240	187	1564	60 UTTARADIT	57D 637	24	85	182	531	7.3	62	199	307	2754	61 SUKHOTHAI	1023	138	117	311	2116	420	102	486	628	
SUKHOTHAI	486	68	67	129	1005	204	55	252	321	2587	61 SUKHOTHAT		70	. DU	182	701	210	47	234	167	2032	62 TAX	923	166	39	213	1342	733	16	340	331	
TAK	471	83	21	117	641	386	13	173	164	2071	62 TAK	462	83	18	448	1001	347		400	539	4012	63 PHITSANULOX	2164	108	100	854	3782	559	109	769	817	
PHITSANULOK	1037	56	41	406	1851	266	- 44	350	278	4349	63 PHITSANULOK	1127	52	25	***	1921	293	00	409	354	3433	64 KAMPHAENG PHET	942	138	45	238	2938	1074	69	602	670	
AMPHAENG PRET	476	80	20	95	1449	533	38	276	316	3283	64 KAMPHAENG PRET	466	98	23	143 313	1405	541 288	31	190	370	3423	65 PHICHIT	955	112	26	616	3142	594	85	395	65B	
PHICHIT	440	47	14	303	1528	306	29	206	288	3161	65 PHICHIT	515	100	12	313	964	642	60	221	312	3693	66 PHETCHABUN	1845	245	115	528	1943	1253	141	621	630	
PRETCHABUN	907	120	62	257	979	611	74	300	318	3628	66 PHETCHABUN	938	125	. 23	211	969	609	100	521	910	6230	67 NAKHON SAWAN	2394	248	88	1002	5144	1254	201	1277	1901	
NAKHON SAWAN	1365	129	60	593	2798	645	92	696	991	7279	67 NAKHON SAWAN	1029	119	20	409	2310	609	103	101	159	1339	68 UTHAI THANI	760	112	7	283	683	157	32	202	277	
ITRAI THANI	380	56	5	78	345	76	15	101	118	1174 -	68 UTHAI TRANI	380	20	2	205	338 986	585	225	101	1903	55BB	20 HAKHON NAYOK	2116	194	57	201	2137	1383	420	583	4112	
RAKHON NAYOK	862	91	28	127	1151	798	84	265	\$509	5615	20 NAKHON WAYOK	125 4 933	103 243	23	201	1481	563	252	. 316	802	5165	21 PRACHIN BURI	1934	376	61	580	2952	1574	374	836	1589	
RACHIN BURI	1001	133	20	219	1471	911	122	457	787	5121	21 PRACHIN BURI 22 CHACHOENGSAO	2333	775	100	410	3775	2617	312	1155	4003	15497	22 CHACHOENGSAO	4481	1161	125	747	7744	4063	467	2354	8140	
CHACHOENGSAO	2148	386	25	331	3966	1446	165	1199	4137	13795		4724	1570	100	803	5982	2961	277	1567	0644	26644	23 CHON BURI	9763	2792	402	1620	13676	5900	447	3010	17573	
MON BURI	5039	1222	186	617	7694	2939	170	1443	9029	28539	23 CHON BURI 24 RAYONG	1681	786	210	253	3000	964	27,	1001	1416	8807	24 RAYONG	3205	1829	120	530	5757	1852	195	1192	2559	
AYONG	1524	1043	48	277	2838	888	140	531	1143	8432		946	481	37	253	1820	1079	109	526	731	5973	25 CHANTHABURI	2186	1293	63	507	3824	1790	212	1118	1521	
CHANTHABURI	1240	812	36	253	2004	711	103	592	790	6541	25 CHANTHABURI				61			103	215	327	3502	26 TRAT	1054	998	5	137	2318	1035	45	434	577	
RAT	518	339	3	76	1020	656	20	219	250	3101	26 TRAT	536	659	2 22	170	1298 392	379 727	140	324	516	2735	30 CHALYAPHUM	645	69	165	372	775	1757	243	539	1018	
CHAIYAPHUN	299	41	82	193	383	1030	103	315	502	2948	30 CHAIYAPHUN	346 151	48	20	22	372	619	140	105	208	1420	31 YASOTHON	312	69	80	54	166	1260	159	343	419	
ASOTHON	161	26	52	32	75	641	66	178	211	1442	31 YASOTBON	390	45	22	143	202	798	67	217	292	2197	32 UBON RATCHATHANI	674	208	31	316	377	1566	145	408	841	
JBON RATCHATHANI	284	143	8	173	175	768	78	191	549	2369	32 UBON RATCHATHANI	152	102	23	50	128	493	50	100	161	1269	33 SI SA KET	110	145	14	125	249	990	115	233	355	
SI SA KET	258	37	5	67	121	497	65	124	194	1368	33 SI SA KET	15Z 334	100	9	160	538	423	81	264	510	2461	34 BURIKAN	804	219	41	289	945	801	104	504	975	
BURTRAN	470	91	18	129	407	378	23	240	465	2221	34 BURIERAN	1204	128	96	675	2109	1018	166	787	2280	8481	35 NAKHON RATCHASINA	2410	308	156	1409	4098	2012	346	1762	4094	7
NAKHON RATCHASIMA	1206	162	60	734	1987	994	180	975	1814	8112	35 NAKHON RATCHASIMA		140	30	133	239	407	57	181	175	1511	36 SURIN	396	155	26	203	457	868	136	353	414	
SURIN	171	81	6	70	218	461	79	172	239	1497	36 SURIN	225	74	20	133	239	407	3,	101	110	1311											

GENERATION								ι		frip/day	•	ATTRACTION								Voit : Tr			GENERATION, ATTRACTION									ripend/day)
					VEHIC	CLE TYP	Æ									1	VEHICLE 1	YPE					Code Changwat name					VEHICLE !	YPE			
Code Changwat name	PC	LB	ЖB	Ħ	IB	₽₽	Pf	LT	NT	HT	TOTAL	Code Changwat name	PC	LB	. MB	HB	PP	Pî	LŤ	HT.	HT	TOTAL		FC	LB	ЯB	HB	pr	PT	រេ	МT	нт тот.
40 NONG RHAT	430	91	3	19	23 1		897	41	207	356	2306	40 KONG KHAI	393	74	?	129	177	825	51	183	255	2094	40 NONG KHAI	823	155	14	252	341	1722	92 98	390	611 440
41 LOEI	200	14	20	11	Ŕ	A9	657	41	170	172	1481	41 LOE1	198	26	12	120	90	582	57	174	120	1379	41 LOE1	398	40	32	238	179	1239	98 957	344	292 281
42 UDON THANI	724	180	21	39	12 1	259	1621	136	443	693	4469	42 UDON THANI	771	104	15	448	318	1773	121	478	644	4672	42 UDON TRANI	1495	284	36	840	577	3394		721	1337 91
43 NAKHON PHANON	133	58		7	7	92	355	23	60	86	893	43 NAKHON PHANON	161	56	14	103	65	333	20	58	58	878	43 MAKHON PHANOM	294	114	23	180	157	688	43	128	144 17
44 SAKHON NAKHON	277	20	61	12	in 1	117	589	37	184	220	1642	44 SAKHON NAKHON	276	60	43	127	112	713	38	220	239	1828	44 SAKHON NAKHON	553	49	94	265	229	1302	75	404	459 34
45 KHON KAEN	969	156	146	40	13	112	2590	229	257	1005	6748	45 KHON KAEN	923	258	197	490	471	2558	180	691	976	6744	45 KHON KAEN	1892	414	343	973	884	5148	499	1448	1981 134
16 KALASIN	214	130	20	92	12	159	918	20	197	305	2226	46 KALASIN	294	37	47	241	171	826	39	247	307	2209	46 KALASIN	808	69	88	474	330	1744	58	444	612 44
IT MAHA SARAKHAM	398	0.0	112	23	10 1	100	1230	06	400	232	3022	47 MAHA SARAKHAN	345	70	92	191	144	1215	91	453	271	2872	47 MAHA SARAKHAM	743	158	205	427	365	2445	187	861	503 58
	460	00	413	20		06	1040	315	193	460	3091	48 ROI ET	441	14	70	215	216	1186	122	369	371	3004	48 ROI ET	901	42	135	427	302	2432	233	792	831 80
48 ROJ ET	460	20	69	41	6	60	357	111	743	125	837	49 MUKDAHAN	58	ÂŜ	2	62	88	353	32	65	344	830	49 MUKDAHAN	97	115	10	112	134	710	56	144	279 16
9 MUKDAHAN	39	70		9		00	221	94	1040	100	8893	70 SUPHAN BURI	1790	970	10	928	1187	1028	133	964	1669	8679	70 SUPHAN BURI	3878	1623	81	1490	2381	1967	410	2694	3138 17
O SUPHAN BURI	2088	653		50	2 11	194	323	211	1040	1103	0033	71 KANCHANABURI	1445	561	178	385	2512	1623	354	440	2903	10272	71 KANCHANABURI	2408	735	358	516	4778	2626	726	875	5830 18
I KANCHANABURI	963	184	180	25	0 27	365	1003	372	435	2927	8380	72 NAKHON PATHOH	5975	895	44	404	3357	2315	402	2618	6154	22254	72 NAKHON PATHON	11892	1383	187	988	7839	5420	989	5241	13397 47
NAKHON PATHON	5917	486	143	49	4 44	182	3105	587	2523	7243	25082	73 RATCHABURI	2799	264	940	424	4960	3284	656	1321	6359	20226	73 RATCHABURI	5665	644	512	847	8147	6161	1101	2410	12096 37
3 RATCHABURI	2866	380	263	41	13 37	287	2877	445	1089	5737	17357			203	110	110	2000	1092	222	1266	2764	11831	74 SAMUT SAKHON	5897	574	204	203	4307	1971	501	2700	4909 21
4 SAMUT SAKHON	2652	201	94	8	14 17	765	879	169	1444	2145	9433	74 SAMUT SAKSON	3245	3/3	110	117	1704	617	122	200	050	4490	75 SAMUT SONGERRAM	1276	230	120	652	2593	1359	251	812	2289 9
5 SAMUT SONGKHRAM	593	94	59	33	10 12	289	742	128	426	1431	5092	75 SAMUT SONGKERAN	683	136	61	322	1301	1224	220	300 E7E	969	1133	76 PHETCHABURI	3486	397	98	547	3021	2303	410	1242	1988 13
6 PHETCHABURI	1848	262	71	23	0 1	515	1079	180	667	1019	6871	76 PHETCHABURI	1558	135	41	317	1000	1224	230	420	822	4020	77 PRACHUAP KHIRI KHAN	2204	233	84	826	2375	1558	330	1023	1501 10
7 PRACHUAP KHIRI KHAN	1124	122	30	44	7 13	184	878	185	545	679	5194	77 PRACHUAP KRIRI KHAN	1080	111	31	319	1131	080	113	976	622	2250	80 CHUNPHON	866	163	63	457	1440	£02	73	518	959 5
O CHUMPHON	423	83	42	23	7 1	769	271	31	242	488	2586	80 CHUMPHON	443	74	10	220	671	331	42	276	471	1143	81 RANONG	270	71	30	150	654	205	98	173	445 2
1 RANONG	217	34	7	7	5 3	383	104	16	81	172	1089	81 RANONG	162	37	22	83	271	191	12	92 228	2/3	3216	82 SURATTHANI	1200	224	40	405	1897	901	40	510	934 6
2 SURATTHANI	652	115	14	14	0 9	145	440	39	282	429	3056	82 SURATTHANI	628	119	28	265	952	451	40	228	505	3216		749	239	96	125	1103	030	69	314	468 3
3 PHANG NGA	331	111	59	1	5 4	62	539	43	162	235	2018	83 PHANG NGA	418	56	9	69	641	391	15	152	232	1974	83 PHANG NGA		101	68	133	1103	330	89	914	1036 89
TARAMMART IS CONXAG IS	986	170	15	21	3 12	263	830	41	384	469	4351	84 NAKHON SI THAMMARAT	997	162	19	202	894	1259	48	45Z	567	4600	84 HAKHON SI THANMARAT	1963	332	34	113	1203	2003	33	298	387 33
5 KRABI	291	59	48	5	4 6	12	217	11	146	206	1674	85 KRABI	298	80	20	35	561	282	22	152	181	1631	SS KRABI	589	139	68	232	1203	489	20	235	475 40
6 PHULET	488	89	10	12	4 4	180	399	18	150	256	2014	86 PHUKET	476	123	66	103	426	469	42	138	219	2067	86 PHUKET	964	212	76	232	906	868	90	203	245 39
O PHATTHALUNG	472	39	13		3 5	3.38	594	32	165	129	2065	90 PHATTHALUNG	413	73	23	75	708	325	17	150	116	1900	90 PHATTHALUNG	885	112	36	158	1246	919	49	313	
TRANG	617	112	22	'n	2	547	369	30	177	228	2314	91 TRANG	609	71	14	88	758	328	15	183	213	2277	91 TRANG	1226	183	36	200	1405	697	45	360	439 45
2 SONGKHIA	1500	216	27	20	19 (227	1169	31	414	687	5266	92 SONGKHLA	1394	205	6	225	1246	744	54	372	478	4724	92 SONGKHLA	2992	420	33	427	2169	1913	85	786	1165 99
3 SATUR	1370	410		20	14 5	740	130	31	319	103	901	93 SATUN	256	28	19	47	345	83	5	89	118	990	93 SATUN	513	47	19	91	603	213	7	169	221 11
	201 659	106	ט פפ	11	19 2	105	207	36	157	200	9636	94 PATTANI	638	158	36	119	679	707	28	173	185	2723	94 PATTANI	1297	313	65	230	1564	1104	63	330	385 53
94 PATYANI		133	29	11	10 6	203	331	22	101	122	1376	95 YALA	535	93	27	83	500	298	16	108	171	1831	95 YALA	783	175	49	181	1113	376	39	198	293 32
95 YALA 96 NARATHIWAT	248 265	77	10	4	18 E	31	524	23 15	52	217	1239	96 MARATHIWAT	199	44	1	52	238	189	16	54	126	919	96 NARATHIWAT	464	121	11	100	269	713	31	106	343 21
TOTAL	117689				3 1008					92444		TOTAL					100811				92444		TOTAL	235378	45292	9960	58086	201622	128394	19118	93726	184888 97646

Appendix 6.18 DIVISIONAL OD TABLES - 1990

H1 H2 N3 N61 N62 N63 N64 C1 C2 C3 BUR S2 S3 TOTAL	O-D TABLE [1390] VEHICLE TYPE : PC N1	O-D TABLE (1990) VEHICLE TYPE: PT N1 N2 N3 RE1 NE2 NE3 NE4 C1 C2 C3 EMB S1 S2 S3 TOTAL N1 1976 240 69 8 6 7 4 15 0 2 7 0 0 0 2334 N2 193 360 83 5 2 7 7 20 12 2 19 0 0 0 710 N3 55 50 1195 307 6 15 93 433 20 24 110 0 0 0 2308 NE1 16 12 327 2728 1149 527 927 13 31 8 30 0 0 0 6098 NE2 0 2 7 1525 958 567 37 4 2 0 14 0 0 0 3166 NE3 0 2 10 630 527 1526 394 2 6 110 43 0 0 0 3166 NE4 0 10 58 897 63 413 866 218 132 34 152 0 0 0 0 2863 NE4 0 10 58 897 63 413 866 218 132 34 152 0 0 0 0 2863 C1 9 19 441 9 3 0 78 133 208 24 87 2213 2 0 0 2 8319 C3 6 2 19 2 13 7 4 2 102 622 5254 87 2213 2 0 2 8319 C3 6 2 19 2 0 0 16 255 98 855 1865 NMR 30 34 101 10 0 32 45 355 3455 4520 8907 39 15 16 17559 S1 0 0 0 0 0 2 0 4 0 4 134 48 307 261 55 815 S2 2 0 2 0 0 0 0 0 0 2 0 2 8 16 419 1468 435 2354 S3 2 0 0 0 0 0 0 0 2 0 2 8 16 419 1468 435 2354 TOTAL 2298 733 2325 6128 3050 3096 2575 3280 9248 9445 16971 973 2729 2346 64197
N1 N2 N3 NE1	O-D TABLE (1990) VEHICLE TYPE: LB N1	O-D TABLE (1990) VEHICLE TYPE: LY N1
NE2 NE3 NE4 C1 C2 C3 BWR S1 S2 S3 TOTAL	0 0 0 0 1 0 7 119 44 7 0 3 0 0 0 0 0 0 270 0 1 0 7 11 131 43 0 6 0 5 0 0 0 0 234 0 0 0 9 34 5 36 231 3 42 1 14 0 0 0 373 2 4 105 1 1 0 8 274 145 53 42 0 0 0 635 2 0 2 9 9 9 27 22 3250 5 685 3 3 0 4026 33 0 0 0 0 0 0 0 3 9 4 1357 2716 3 0 3 1154 0 0 0 0 0 0 0 0 0 3 9 4 1357 2716 3 0 3 1154 0 0 0 0 0 0 0 0 0 0 9 9 19 32 83 87 2 237 5 0 0 0 0 0 0 0 0 0 9 19 32 83 87 2 237 5 0 0 0 0 0 5 0 0 0 0 5 94 292 140 541 0 0 0 0 0 0 0 0 0 0 0 0 0 9 20 107 451 687 911 241 453 458 272 230 376 1989 4617 4985 6791 230 492 601 22646	NEZ 0 0 0 1 154 39 0 0 0 0 0 0 0 0 0 0 164 NEZ 0 0 0 1 154 S4 39 170 40 0 5 0 110 0 0 0 0 154 NEZ 0 154 39 170 40 0 5 0 110 0 0 0 0 320 NEZ 0 154 39 170 40 0 5 0 110 0 0 0 0 320 NEZ 0 154 39 170 40 0 5 0 110 0 0 0 0 325 NEZ 0 154 154 154 154 155 NEZ 0 155
61 N2 N3 NEI NE2 NE3 NE4 C2 C3 DAR S1 S2 S3 TOTAL	O-D TABLE [1990] VEHICLE TYPE: MB N1 N2 N3 NE1 NE2 NE3 NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 250 4 3 0 0 0 0 3 0 0 3 0 0 0 30 0 0 39 2 20 9 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N1 N2 N3 NE1 NE2 NE3 NE4 C1 C2 C3 EMR S1 S2 S3 TOTAL N1 460 180 59 4 2 0 3 18 6 6 50 0 0 0 788 N2 131 498 124 3 0 2 12 20 3 12 14 0 0 0 819 N3 30 91 863 53 0 3 35 358 18 20 93 3 0 0 1567 NE1 1 0 62 876 337 172 251 19 6 7 42 0 0 0 0 1577 NE1 1 0 62 876 337 172 251 19 6 7 42 0 0 0 0 1577 NE2 0 0 1 327 224 138 11 0 9 0 16 0 0 0 726 NE3 0 0 2 203 172 348 141 0 3 3 4 30 0 0 0 726 NE4 5 2 41 221 33 135 638 104 92 15 369 0 0 0 0 768 NE4 5 2 41 221 33 135 638 104 92 15 369 0 0 0 0 1702 C1 10 13 399 25 11 2 165 1203 152 249 460 3 0 0 2888 C2 7 4 4 3 3 3 0 85 148 261 249 185 3 3 0 0 2888 C2 7 4 4 3 3 3 0 85 148 261 279 155 3 3 3 3 0 4766 C3 0 0 17 0 0 0 2 284 10 1612 3514 133 19 16 7307 EMR 50 30 97 26 0 59 210 1369 1901 4761 12702 40 23 25 21281 S1 0 0 0 0 0 0 2 0 0 0 8 63 55 244 185 25 605 S2 0 0 0 0 0 0 0 0 6 6 6 20 17 253 854 955 TOTAL 694 818 1647 1796 784 860 1556 3536 4821 6841 20891 596 1077 946 48683
R1 N2 N3 NE1 RE3 NE4 C1 C2 C3 ENR S1 S2 S3 TOTAL	0-D TABLE (1990) VEHICLE TYPE : HB N1 N2 N3 NEI NEZ NE3 NE4 C1 C2 C3 RMR S1 S2 S3 TOTAL 65 87 25 15 0 0 12 0 4 0 171 0 0 0 379 105 123 100 4 0 0 2 0 0 0 113 0 0 0 447 42 54 657 49 0 0 48 211 6 0 246 0 0 0 1307 B 5 31 468 323 78 118 9 0 0 189 0 0 0 1229 0 0 0 300 168 76 3 0 0 0 74 0 0 0 0 1229 0 0 0 0 300 168 76 3 0 0 0 74 0 0 0 621 1 0 0 76 65 82 74 1 4 0 120 0 0 0 621 1 0 0 76 65 82 74 1 4 0 120 0 0 0 484 0 0 42 163 3 87 330 55 79 0 364 0 0 3 11726 7 0 327 6 0 0 77 558 54 130 513 0 0 0 1682 2 0 0 0 0 0 6 97 75 558 54 130 513 0 0 0 1682 2 0 0 0 0 0 73 0 712 1876 139 0 62 1812 158 150 259 168 102 110 386 950 1509 2187 8753 83 58 47 15240 0 0 0 0 0 0 0 0 0 0 0 0 0 111 76 171 80 20 452 0 0 0 0 0 0 0 0 0 0 0 0 111 76 171 80 20 452 0 0 0 0 0 0 0 0 0 0 0 0 0 111 76 171 80 20 452 0 0 0 0 0 0 0 0 0 0 0 0 0 111 76 171 80 20 452 0 0 0 0 0 0 0 0 0 0 0 0 0 111 76 171 80 20 452 0 0 0 0 0 0 0 0 0 0 0 0 0 171 156 156 218 128 128 156 158 149 156 139 58	N1 N2 N3 NE1 NF2 NE3 NE4 C1 C2 C3 EIR S1 S2 S3 TOTAL N1 N5
N1 N2 N3 ME1 SE2 ME3 NE4 C1 C2 C3 EXR S7 S2 S3 TOTAL	C-D TABLE [1990] VEHICLE TYPE: PP 81 N2 N3 NEI NE2 NE3 NE4 C1 C2 C3 RME S1 S2 S3 TOTAL 2134 1181 306 0 0 2 7 44 23 15 79 4 2 2 3799 1296 1689 5099 0 2 2 9 59 24 28 121 0 2 2 3143 317 513 4282 76 4 10 136 1571 34 123 385 4 2 6 7463 0 0 56 328 231 63 98 43 26 15 120 2 0 0 952 0 0 0 237 198 81 14 5 10 9 44 0 0 0 598 0 0 0 2 13 42 219 62 12 24 5 56 0 2 0 457 5 6 167 90 14 68 937 542 270 126 747 13 0 10 2935 87 125 1684 44 3 17 591 5284 432 849 1083 2 0 0 1023 36 38 38 185 12 0 13 134 729 183 5983 483 284 2 1 2 12455 255 188 513 164 76 110 870 580 580 595 185 28 291 22 2 2 0 0 6 2 2 2 8 20 187 580 593 483 284 21 2 12455 255 188 513 164 76 110 870 580 4955 6528 11653 77 55 28 29132 2 2 0 0 6 2 2 2 8 20 211 785 879 84 2097 0 0 2 0 4 0 0 0 4 2 0 30 42 570 180 577 55 58 29132 2 2 2 0 0 6 2 2 2 8 202 117 785 879 84 2097 0 0 2 0 4 0 0 0 4 2 0 30 42 700 1800 99 3494 0 0 0 0 0 0 0 0 2 2 0 0 4 14 35 10 513 2667 3248 4170 3812 7800 1023 593 637 3278 9161 18252 14204 28978 1294 3280 3716 100811	NI

Appendix 6.19 REGIONAL OD TABLES - 1990

VEHICL	в туре	: PC				AEHICI	e type	: PT				
	Я	NE	. c	\$	JATOT		Ж	NB	C	\$	JATOT	
N	6156	151	1485	Ĝ	7798	H	4221	467	864	0	5352	
NВ	148	5696	945	4	6793	HE	444	14064	721	0	15229	
C	2144	311	92270	389	95614	C	. 685	310	36331	229	37555	
S	10	4	403	7067	7484	\$	6	8	228	5819	6061	
TOTAL	8458	6662	95103	7466	117689	TOTAL	5356	14849	37944	6048	64197	
ARHICE	E TYPE	: 68				VENIC	E TYPE	: 11				
	N	NE	C	S	TOTAL		N	NE	·	\$	TOTAL	
Ŋ	1436	11	131	2	1580	N	461	43	69	2	575	
NE	12	1217	88	0	1317	NE	25	1243	103	0	1371.	
C	152	103	18089	45	18389	C	93	113	7012	28	7246	
S	5	5	74	1276	1360	· \$	0	6	- 19	. 342	367	
JATOT	1605	1336	18382	1323	22646	TOTAL	579	1405	7203	372	9559	
VEHICL	e type	: MB				VEHICL	E TYPE	: HT				
	И	NE	C	S	LATOT		Ŋ	NE	C	S	TOTAL	
N	490	52	25	0	567	N	2436	117	618	3	3174	
NE	31	648	31	0	710	NE	122	4284	716	0	5122	
C	41	75	3269	0	3385	C	601	591	34528	265	35985	
\$	Û	6	12	300	318	. 8	0	4	227	2351	2582	
TOTAL	562	781	3337	300	4980	TOTAL	3159	4996	36089	2691	46863	
AEHICTE	E TYPE	: HB				VEHICL	E TYPE	; HT				
	N	HE	C	\$	TOTAL		N	NE	C	8	TOTAL	
X	1258	130	745	0	2133	n	1395	118	1391	20	2924	
NE	87	2415	955	3	3460	NE	95	5009	2522	12	7638	
C	919	952	19620	343	21834	C	1595	2375	72935	1035	77940	
S	0	0	300	1316	1616	S	32	25	1099	2786	3942	
TOTAL	2264	3497	21620	1662	29043	JATOT	3117	7527	77947	3853	92444	
VEHICLE	TYPE	: PP				VEHICLE	TYPE :	TOTAL				
	H	NE	C	\$	TOTAL		N	NB	c	\$	TOTAL	
N	12227	248	2506	24	15005	N	30080	1337	7634	57	39108	
NE	236	2715	2054	27	5032	NE	1200	37291	8135	46	46672	
C	3313	2540	65591	491	71935	C	9543	7870	349645	2825	369883	
S	8	28	457	8348	8839	S	59	86	2819	29605	32569	
TOTAL	15782	5531	70608	8890	100811	TOTAL	40382	46584	368233	32533	488232	

Appendix 6.19 Appendix 6.20

Appendix 6.20 GENERATED AND ATTRACTED REGIONAL TRIPS - 1990

GENERATION:										(Trip/day)
B					VEHI	CLE TYPE				
Region	PC	6.8	ХВ	HB	PP	PT	LT	TK	НТ	TOTAL
Northern	7798	1580	567	2133	15005	5352	575	3174	2924	39108
Northeastern	6793	131.7	710	3460	5032	15229	1371	5122	7638	46672
Central	35614	18389	3385	21834	71935	37555	7246	35985	77940	369883
Southern	7484	1360	318	1616	8839	6061	367	2582	3942	32569
Total	117689	22646	4980	29043	100811	64197	9559	46863	92444	488232
ATTRACTION:										(Trip/day)
					VEHIC	e type				
Region	PC	LB	KB	HB	pp	PT	LT	HT	НТ	TOTAL
Northern	8458	1605	562	2264	15782	5356	579	3159	3117	40882
Northeastern	6662	1336	781	3497	5531	14849	1405	4996	7527	46584
Central	95103	18382	3337	21620	70608	37944	7203	36089	77947	368233
Southern	7466	1323	300	1662	8890	6048	372	2619	3853	32533
Total	117689	22646	4980	29043	100811	64197	9559	46863	92444	488232
GENERATION+ATTR	RACTION:								(Tr	ip-end/day)
					VEHIC	LB TYPE				
Region	PC	LB	MB	ĦВ	pp	PT	6T	НT	HT	TOTAL
	16256	3185	1129	4397	30787	10708	1154	6333	6041	79990
Northeastern	13455	2653	1491	6957	10563	30078	2776	10118	15165	93256
Central	190717	36771	6722	43454	142543	75499	14449	72074	155887	738116
Southern	14950	2683	618	3278	17729	12109	739	5201	7795	65102
Total	235378	45292	9960	58086	201622	128394	19118	93726	184888	976464
GENERATION + AT	TRACTION:									(%)
· · · · · · · · · · · · · · · · · · ·				*******	AEHI	CLE TYPE				
Region	PC	68	НB	HB	PP.	PT	LT	NT.	HT	TOTAL
Northern	20.3	4.0	1.4	5.5	38.5	13.4	1.4	7.9	7.6	100.0
Northeastern	14.4	2.8	1.6	7.5	11.3	32.3	3.0	10.8	16.3	100.0
Central	25.8	5.0	0.9	5.9	19.3	10.2	2.0	9.8	21.1	100.0
Southern	23.0	4.1	0.9	5.0	27.2	18.6	1.1	8.0	12.0	100.0
Total	24.1	4.6	1.0	5.9	20.6	13.1	2.0	9.8	18.9	100.0

Appendix 6.21 Appendix 6.22

Appendix 6.21 GENERATED AND ATTRACTED REGIONAL TRIPS BY COMMODITY GROUP

GENERATION:			e.			. •		. •		(1990)
B .:		COMMODITY (GROUP (Trip/da	ıy)			CONNODITY (GROUP (Ton/da	y)	
Region	AGRICULTURE	CONSTRUCTION	NAROFACTURE	OTHERS	TOTAL	AGRICULTURE	CONSTRUCTION	NANOFACTURE	OTHERS	TOTAL
Northern	1968	598	1714	1637	5917	8900	4074	12505	6954	32433
Northeaster	1 3367	1164	1677	2195	8403	32337	10837	11903	12710	67787
Central	18115	27284	18853	21099	85351	114378	320546		73712	737022
Southern	2431	860	1060	1987	6338	12334	6299	7027	8438	34098
Total	25881	29906	23304	26918	106009	167949	341756	159821	01814	871340
ATTRACTION:										
		CONNODI	ry GROUP (Trip	/day)			CONNODIT	GROUP (Ton/	'day)	
Region	AGRICULTURE	CONSTRUCTION	NANUFACTURE	OTHERS	TOTAL	AGRICULTURE	CONSTRUCTION	MANUFACTURE	OTRERS	JAPOT
Northern	1515	813	1533	1822	5683	5459	6239	9270	8454	29422
Northeaster		1450	1577	2131	7477	16146	13810	11749	12391	54096
Central	20147	26688	18999	20805	86839	139352	314723	130389	171252	755696
Southern	1900	955	1195	2160	6210	6992	6984	8433	9717	32126
Total	25881	29906	2304	26918	106009	167949	341756	159821	201814	871340
GENERATION:										(X)
		CONNODITY GR	OUP (Trip/day,	, X)		C	ONKODITY GROUP	(Ton/day, I)	·	
Region	AGRICULTURE	CONSTRUCTION	NANUFACTURE	OTHER	s foral	AGRICULTURE	CONSTRUCTION	MARUPACTURI	C OTHERS	TOTAL
Northern	33.3	10.1	29.0	27.7	100.0	27.4	12.6	38.6	21.4	100.0
Northeasteri	ı (Ö.1	13.9	20.0	26.1	100.0	47.7	16.0	17.5	18.7	100.0
Central	21.2	32.0	22.1	24.7	100.0	15.5	43.5	17.4	23.8	100.0
Southern	38.4	13.6	16.7	31.4	100.0	36.2	18.5	20.6	24.7	100.0
Potal	24.4	28.2	22.0	25.4	100.0	19.3	39.2	18.3	23.2	100.0
ATTRACTION:										(%)
		COMMODITY GRO	JP (Trip/day,	1)		C	ONNODITY GROUP	(Yon/day, 1)		
Region	AGRICULTURE	CONSTRUCTION	MANUFACTURE	OTHER	s total	AGRICULTUR	E CONSTRUCTION	NARUPACTU	LE OTHER	S POTAL
Northern	26.7	14.3	27.0	32.1	100.0	18.8	21.2	31.5	28.7	100.0
Northeastern		19.4	21.1	28.5	0.001	29.8	25.5	21.7	22.3	100.0
Central	23.3	30.8	21.9	24.0	100.0	18.4	41.6	17.3	22.7	100.0
Southern	30.6	15.4	19.2	34.8			21.7	26.2	30.2	100.0
Total	24.4	28.2	22.0	25.4	100.0	19.3	39.2	18.3	23.2	100.0

Appendix 6.22 GENERATED AND ATTRACTED REGIONAL TRIPS BY PURPOSE

GENERATION:						•				(1990)
anaray		TRIP PUI	rpose (Trip/da	у)		TRIP PU	RPOSE (Person/	day)
REGION	WORK	PRIVATE	TOUR	OTHERS	TOTAL	YORK	PRIVATE	TOUR	OTHERS	TOTAL
Northern	10418	8460	1821	182	20881	30232	25036	12501	762	68531
Northeastern	5279	5597	624	155	11655	14279	18279	3069	429	36056
Central	79669	73606	3113	3607	164995	191417	177979	37092	9995	416483
Southern	7687	7470	1023	126	16306	28899	24687	5361	469	59416
Total	103053	95133	11581	4070	213837	264827	245981	58023	11655	580486
ATTRACTION:										(1990)
		TRIP	PURPOSE	(Trip/	day)		TRIP PU	RPOSE (Person/	day)
REGION	WORK	PRIVATE	TOUR	OTHERS	TOTAL	WORK	PRIVATE	TOUR	OTHERS	TOTAL
Northern	10373	9271	2443	217	22034	29912	27662	15605	882	74061
Northeastern	5754	5573	517	152	12026	15161	15313	2577	418	33469
Central	79207	98859	7520	3538	163164	190854	178386	34268	9759	413267
Southern	7719	7390	1071	163	16343	28900	24620	5573	596	59689
Total	103053	95133	11581	4070	213837	264827	245981	58023	11655	580486
GENERATION:										(x)
n a gray		TREP PUR	Pose (1	'rip/day	, X)	. T	RIP PURPO	OSE (Pe	rson/da	y, %}
REGION	WORK	PRIVATE	TOUR	OTHERS	TOTAL	WORK	PRIVATE	TOUR	OTHERS	TOTAL
Northern	49.9	40.5	8.7	0.9	100.0	44.1	36.5	18.2	1.1.	100.0
Northeastern	45.3	48.0	5.4	1.3	100.0	39.6	50.7	8.5	1.2	100.0
Central	48.3	44.6	4.9	2.2	100.0	46.0	42.7	8.9	2.4	100.0
Southern	47.1	45.8	6.3	0.8	100.0	48.6	41.5	9.0	0.8	100.0
Total	48.2	44.5	5.4	1.9	100.0	45.6	42.4	10.0	2.0	100.0
ATTRACTION:										(%)
		TRIP PUR	Pose (1	rip/day	, x)	TR	IP PURPO	SE (Per	son/day	, %}
REGION	WORK	PRIVATE	TOUR	OTHERS	JATOT	WORK	PRIVATE	TOUR	OTHERS	TOTAL
Northern	46.5	41.6	11.0	1.0	100.0	40.4	37.4	21.1	1.2	100.0
Northeastern	47.8	46.3	4.5	1.3	100.0	45.3	45.8	7.7	1.2	100.0
Central	48.5	44.7	4.6	2.2	100.0	46.2	43.2	8.3	2.4	100.0
Southern	47.2	45.2	6.6	1.0	100.0	48.4	41.2	9.3	1.0	100.0
Total	48.2	44.5	5.4	1.9	100.0	45.6	43.4	10.0	2.0	100.0

Appendix 6.23 COMMODITY FLOW FROM/TO BMR - 1990 i. From BMR

(TRIP/DAY)

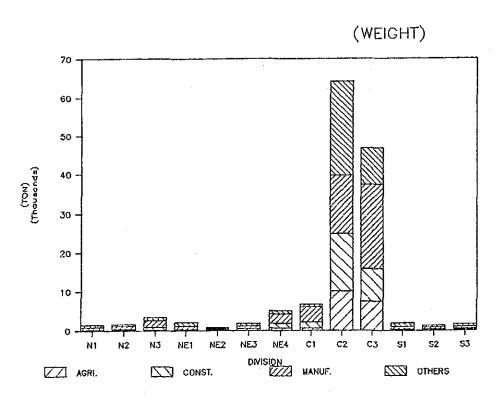
TOTAL	OTHERS	MANUFACTURE	CONSTRUCTION	AGRICULTURE	DIV.
130	72	35	18	5	N1
152	37	79	14	22	N2
371	103	170	65	33	И3
144	55	65	12	12	NE1
5 3	12	18	23	0	NE2
155	59	51	38	7	NE3
530	85	183	151	. 111	NE4
1136	152	732	167	85	C1
7011	2361	1916	1497	1237	C2
7158	1625	3091	972	1470	C3
243	115	79	17	32	S1
150	53	54	24	19	S2
167	63	45	15	4 4	S3
17400	4792	6518	3013	3077	otal

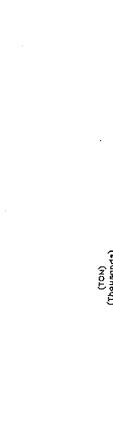
(TON/DAY)

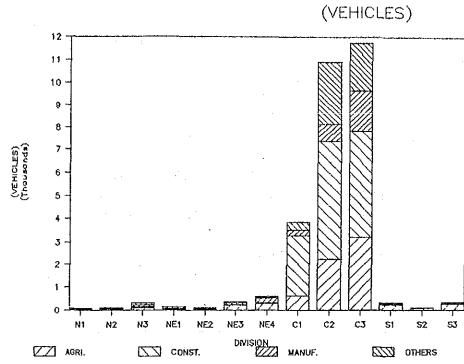
DIV.	AGRICULTURE	CONSTRUCTION	MANUFACTURE	OTHERS	TOTAL
N1	20	222	503	679	1424
N2	195	159	914	335	1603
N3	177	647	1890	738	3452
NE1	191	183	847	896	2117
NE2	0	391	252	138	781
NE3	83	444	643	644	1814
NE4	664	1176	2391	924	5155
C1	610	1513	3920	599	6642
C2	10170	14751	14769	24479	64169
С3	7534	8305	21447	9398	46684
S1	199	132	723	992	2046
S2	177	174	517	491	1359
S3	388	108	458	677	1631
Total	20408	28205	49274	40990	138877

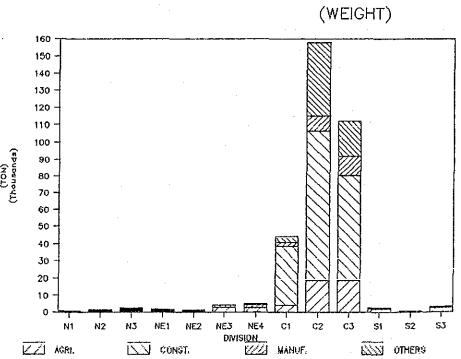
Appendix 6.23

Appendix 6.23 COMMODITY FLOW FROM/TO BMR — 1990 ii. To BMR


(TRIP/ DAY)


TOTAL	OTHERS	MANUFACTURE	CONSTRUCTION	AGRICULTURE	DIV.
88	21	24	0	44	N1
123	36	42	0	45	N2
311	75	96	19	121	N3
164	61	29	8	66	NE1
121	20	13	12	76	NE2
387	57	84	15	231	NE3
607	82	225	26	274	NE4
3853	326	268	2622	637	C1
10934	2779	803	5126	2226	C2
11756	2072	1857	4617	3210	C3
316	50	33	10	223	S 1
125	29	10	2	84	S2
342	62	7	17	256	S3
29128	5670	3491	12474	7493	otal
29128 N/DAY)		3491	12474	7493	


TOTAL	OTHERS	MANUFACTURE	CONSTRUCTION	AGRICULTURE	DIV.
876	218	200	0	458	N1
1519	438	605	0	476	N2
2673	626	938	143	966	N3
1887	783	357	47	700	NE1
1493	148	191	162	992	NE2
4507	508	863	180	2956	NE3
5348	857	1521	253	2717	NE4
43968	3354	2397	33949	4268	C1
157947	42968	8607	87396	18976	C2
111887	20016	11573	61099	19199	C3
2654	433	265	8	1948	S1
1013	215	113	1	684	S2
3560	619	37	155	2749	S3
339332	71183	27667	183393	57089	[otal

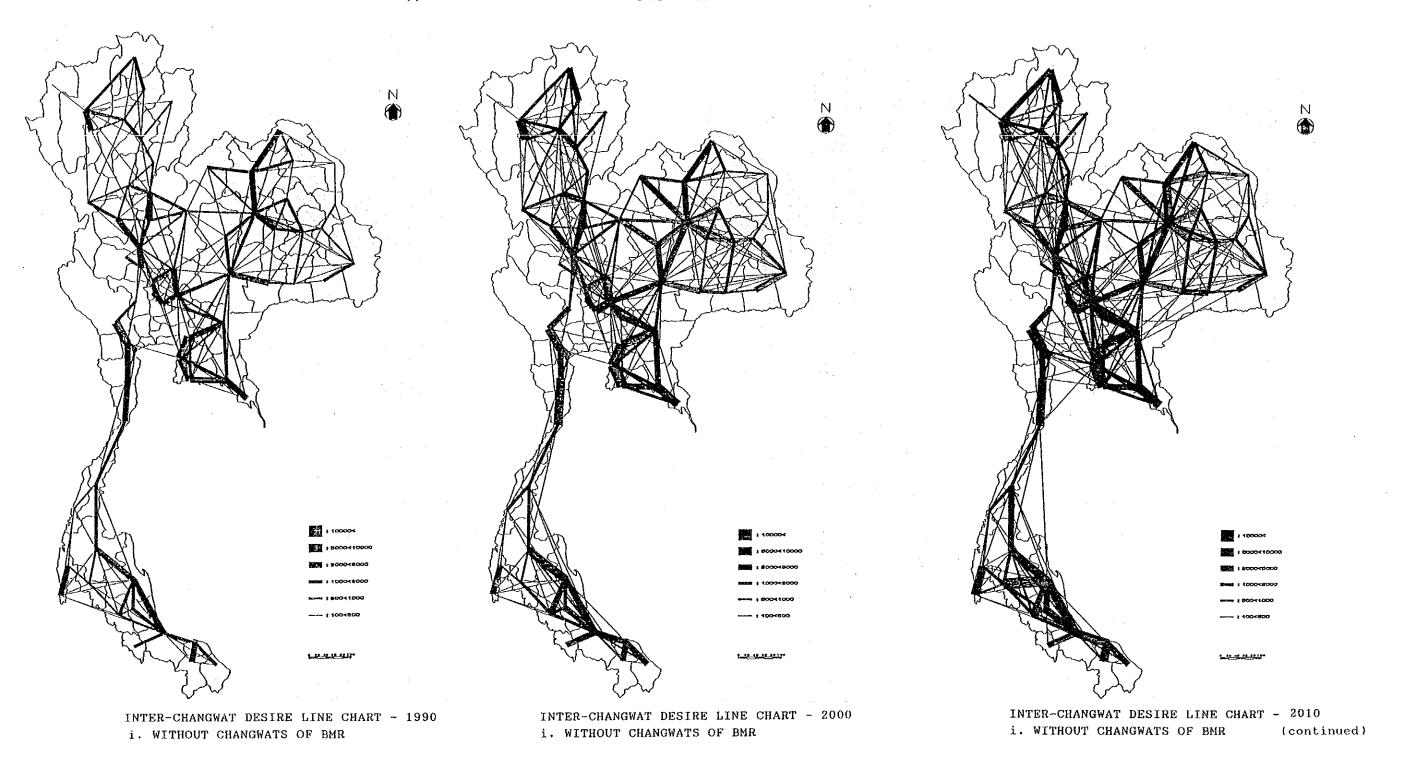

Appendix 6.24 COMMODITY FLOW COMPOSITION FROM/TO BMR - 1990

ii. To BMR

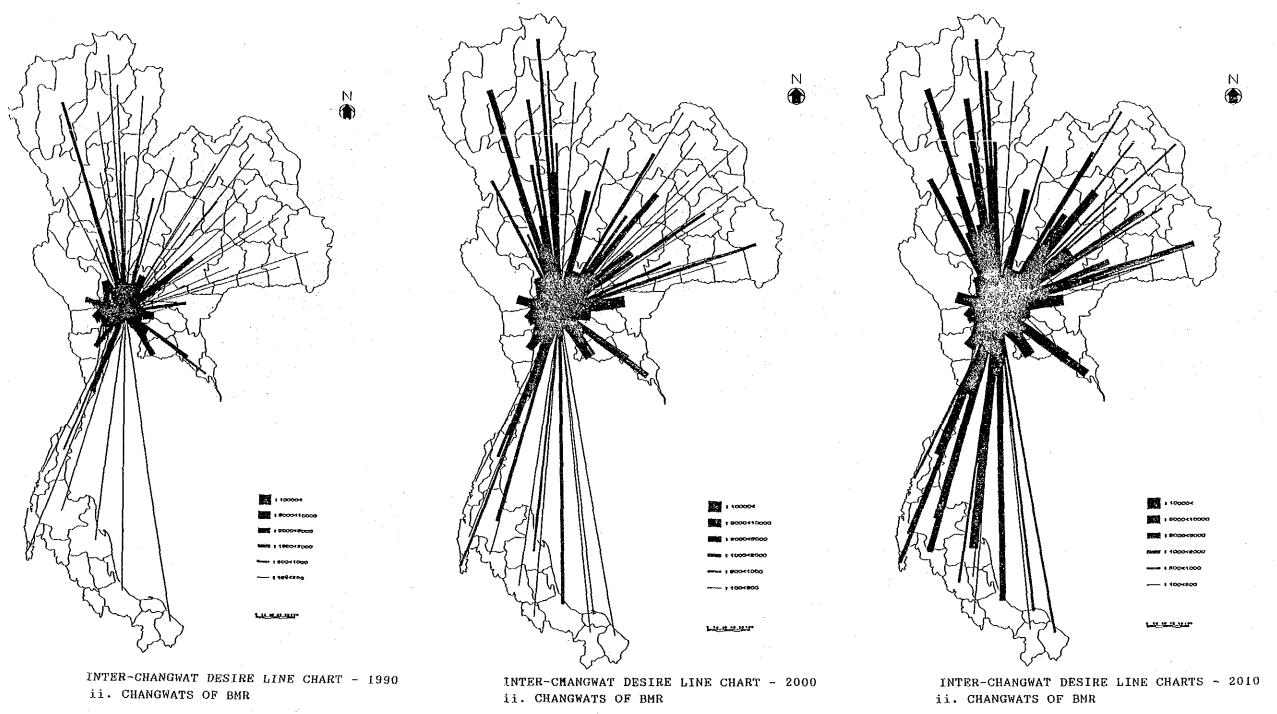
Appendix 6.25 INTER-CHANGWAT OD TABLE - 2000

VEHICLE TYPE : TOTAL

							'	EHICLE																									2.4		00 500	
	34	35	36	40	41	42	43	44	45	46	47	48	49	70	71	72	73	74	75	76	77	80	81	62	83	84	85	88	90	91	92	93	94	95	96 TO	
1 BANGKOK METROPOLITAN 10 CHAI NAT 11 SING BURI 12 LOP BURI 13 ANG THOMG 14 SARABURI 15 PHERA NAKHON SI AYUTTHAYA 16 PATHUN THANI 17 NONTHABURI 18 SAMUT PRAKAN 50 CHAING RAI 51 MAE RONG SON 52 CHIANG MAI 53 PHAYAD 54 HAN 55 LAMPHUN 56 LAMPANG 57 PHERAE 60 UTTARADIT 61 SURHOTHAI 62 TAK 63 PHITSANULOK 64 KAMPHABUR PHET 65 PHICHIT 66 PHETCHARIN 67 NAKHON SAWAN 68 UTHAI TRANI 20 NAKHON HAYOK 21 FRACHIN BURI 22 CHACHOENGSAD 23 CHON BURI 24 BAYONG 25 CHANTABURI 26 TRAT 30 CHAITAPHUN 31 YASOTHON 32 UBON RATCHATHANI 33 SI SA RET 34 BURIBAN 35 NAKHON RATCHASIMA 36 SURIN 40 NONG RUAI 41 LOCI 42 LOCI 43 KARON MAKHON 45 KRON KARON 46 KALASIN 47 HAHA SARAKHAH 48 ROI ET 49 MUKDAZAN 40 SURHAN BURI 71 KANCHANBURI 72 HAHA SARAKHAH 48 ROI ET 49 MUKDAZAN 73 RATCHABURI 74 SARUT SARHON 75 SANUT SONGSHEM 76 PHETCHABURI 77 PRACHUAP KHIRI KHAH 77 PRACHUAP KHIRI KHAH 78 CHUMPHON 78 LARNON 78 SARHON 78 SARH	703 2 0 7 2 19 12 7 2 19 12 7 7 2 33 1 0 0 5 0 0 0 1 0 1 1 2 1 2 1 3 3 1 0 1 1 2 1 2 1 3 1 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 30 181 29	658 0 0 3 0 3 12 6 2 2 0 0 0 2 1 1 1 0 0 0 0 0 8 1 3 0 6 3 4 7 7 3 3 9 11 1576 5 13 9 1 4 4 2 8 9 8 0 3 12 7 2 1 6 0 0 4 0 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	208 0 0 0 1 7 6 10 1 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	258 0 2 11 1 12 1 5 2 8 0 0 0 0 1 0 0 0 3 5 3 3 3 7 9 293 5 0 0 0 4 1 1 4 8 1 0 101 2 11 14 24 0 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	496 0 0 9 0 14 31 9 2 3 1 0 0 3 0 0 0 0 0 2 7 10 9 7 28 7 0 3 1 3 1 3 2 0 6 5 3 3 5 4 2 2 2 7 2 2 17 3 9 0 0 0 0 2 0 3 6 0 0 0 0 0 2 0 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	144 0 2 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0	243 0 1 0 0 8 7 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1345 3 0 26 1 161 14 58 2 79 16 0 29 9 2 11 21 4 26 23 76 37 32 540 36 5 36 30 79 46 7 11730 1431 127 26 1441 77 361 147 36 148 31 127 76 1441 77 36 147 76 17 36 17 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	227 4 5 0 0 11 4 4 0 10 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 0	206 201 222 005 500 2100 055 0628 3715 0671 0062 150 000 000 000 000 000 000 000 000 000	688 0 0 1 0 44 21 10 125 10 4 00 4 00 1 1 2 2 2 2 1 9 0 1 1 1 4 0 2 2 2 1 9 0 1 1 1 4 0 2 2 2 1 9 0 1 1 1 4 0 2 2 2 1 9 0 1 1 1 4 0 2 2 2 1 9 0 1 1 1 5 3 7 3 € 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9020 265 29 0 3 0 6 142 340 1 0 5 5 5 0 7 9 6 1 4 3 8 3 11 1 13 1 1 2 2 4 4 4 4 4 3 8 3 1 3 3 6 3 4 4 0 4 0 0 0 0 2 7 0 0 2 5 2 0 8 0 1 5 0 0 0 0 5 3 1 6 5 8 4 2 8 17 10 4 0 1 2 2 2 0 0 0 0 0 3 1 0 0 0 0 6 1 6 5 8 4 2 8 17 10 4 0 1 2 2 2 0 0 0 0 0 3 1 0 0 0 0 1 4 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4213 10 5 4 0 7 0 320 244 2 0 27 1 1 1 1 1 1 5 5 3 1 0 2 3 2 3 2 3 1 1 1 1 1 2 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0	36 276 90 1873 2432 2432 2432 2432 2432 2432 2432 24	12016 17 18 7 0 15 0 378 80 9 0 1 1 5 0 2 2 3 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	27980 5 0 19 895 73 685 637 1329 5 0 2 6 0 1 8 8 6 2 1 3 10 0 0 2 8 6 0 0 0 0 0 0 0 2 8 5 0 0 0 0 0 0 0 0 0 1 2 9 0 0 0 0 0 1 2 9 1 3 3 6 6 6 0 1 3 1 2 9 1 3 3 6 6 6 0 1 3 1 2 9 1 3 5 6 6 0 1 3 6 7 2 6 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 7 3 6 8 8 8 7 3 6 8 8 8 7 3 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5482 10 10 10 11 11 11 11 11 11 11	3514 47 26 0 1 0 1 63 170 285 1 0 6 6 1 4 0 2 0 0 6 6 9 9 1 4 3 3 0 4 0 0 0 0 0 4 1 0 0 0 2 0 0 0 6 9 9 1 1 60 3 3 8 1 7 160 8 2 7 2 5 7 19 16 4 7 0 8 0 0 0 1 1 0 0 2 0 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 1 1 0 0 2 0 0 0 1 1 0 0 2 0 0 0 1 1 0 0 2 0 0 0 0	2853 1 3 0 0 23 0 60 62 137 4 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	832 0 0 0 0 8 2 5 5 3 4 0 0 0 0 0 1 5 5 5 5 5 5 6 2 0 0 0 0 0 2 0 3 0 1 0 1 2 4 6 8 19 7 6 15 8 10 4 0 2 19 7 6 15 6 1 1 2 0 4 8 2 19 7 6 3 6 8 8 3 6 8 8 8 8 8 8 8 8 8 8 8 8 8	195 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	745 0 0 0 4 3 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	122 00000000000000000000000000000000000	430 24 20 28 0 14 3 14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65 00 00 00 00 00 00 00 00 00 00 00 00 00	348 0 2 0 0 4 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 236 0 1 1 236 0 1 1 236 0 1 1 2 3 6 0 1 1 2 3 6 0 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	\$1 000000000000000000000000000000000000	125 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	762 0 27 0 27 0 27 0 27 40 0 0 0 27 40 0 0 0 26 18 2 5 0 0 0 0 0 3 3 24 12 8 4 11 313 566 325 8 6 325 8 6 326 8 6 326	103 0 2 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2040 971	0 108	3 51 0 101 0 221 1 222 1	244 4 226 4


TENTULE	HPE	•	TOTAL

							,	ENILLE	nre : ic	1140															••		ća	20	41	22	23	24	25	26	30	31	32	.33
	1	10	11	12	13	14	13	16	17	18	50	51	52	33	54	55	56 -	5,7	60	61	62	63	. 61	65	66	67	68	20	21									·
1 BANGKOK METROPOLITAN 10 CHAI NAT 11 SING BURI 12 LOP BURI 13 ANG THONG 14 SARABURI 15 PHRA NAKHON SI AYUTHAY. 16 PATHUM THANI 17 NONTHABBURI 18 SAMUT PRAKAN 50 CHAING RAI 51 MAE HONG SON 52 CHIANG MAI 53 PHAYAO 54 NAN 55 LAMPMUR 56 LAMPAUR 56 LAMPAUR 57 PHRAE 60 UTTARADIT 61 SURSHOTHAI 62 TAK 63 PHITSANULOK 64 KAMPHAERG PHET 65 PHICHIT 66 PHETCHABUN 67 NAKHON SAWAN 68 UTHAI THANI 120 NAKHON NAYOK 12 PRACHIN BURI 122 CHACHOENGSAO 123 CHON BURI 124 RAYONG 125 CHANTHABURI 126 TRAT 130 CHAIYAPHUN 11 YASOTHON 12 UBON RATCHATHANI 13 SI SA BET 130 CHAIYAPHUN 11 YASOTHON 12 UBON RATCHATHANI 13 SI SA BET 14 BURIRAN 15 NAKHON RATCHASINA 16 SERIN 10 NONG RHAI 11 LOEI 12 UDON THANI 13 NAKHON PIANON 14 SARHON RATCHASINA 16 SARHON RATCHASINA 16 KALASIN 17 NAHA SARRKHAN 18 ROI ET 19 NUKBAHAN 18 ROI ET 19 NUKBAHAN 17 NAHAN SARRKHAN 18 ROI ET 19 NUKBAHAN 18 ROI ET 19 ROI ET 19 ROI ET 18 ROI ET 18 ROI	0 2530 2236 4228 226007 4268 29834 238527 939 2518 586 683 990 1293 2984 1371 1086 2286 3231 22303 41370 1057 415 1541 7596 1098 443 423 230 1307 1873 1060 3291 1280 368128 468 468 468 468 468 468 468 468 468 46	2626 0 132 183 170 144 109 238 52 81 30 55 0 8 0 21 8 52 22 2310 755 8 13 2 67 35 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2359 142 00 1750 743 230 751 230 150 4 71 22 36 128 43 27 588 13 466 843 10 00 00 00 00 00 00 00 00 00 00 00 00	1667 1889 1718 102 1998 1282 235 10 157 62 1998 116 155 126 458 120 131 131 131 131 131 131 131 131 131 13	175 734 109 129 129 129 129 129 129 129 129 129 12	155 346 5242 19 3717 7038 787 591 22 60 618 3169 5105 613 289 91915 1161 148 540 351 1625 117 29 107 108 109 109 109 109 109 109 109 109	115 238 3109 3707 0 2985 913 632 18 0 12 3 15 9 5 6 20 43 44 44 48 2 151 120 37 37 310 120 37 37 37 37 37 37 37 37 37 37 37 37 37	265 235 342 97 6939 2910 0 2438 3535 24 0 32 13 7 12 8 3 9 54 123 34 105 222 185 1266 5682 1002 1266 5692 1266 57 187 11 15 161 27 24 11 39 0 0 20 131 8 0 20 131 8 0 20 131 8 0 20 131 8 0 20 131 8 0 20 131 8 0 20 131 8 0 20 131 8 131 8 131 8 131 8 131 8 131 8 131 8 131 8 131 8 131 8 131 8 131 8 131 8	0 1175 1 1 5 30 6 0 0 3 12 14 9 19 24 7 7 30 14 26 63 18 180 276 276 30 0 0 1 1 0 0 3 52 12 3 0 0 7 0 0 954 369 575 5635	82 122 23 97 604 6636 636 636 636 636 636 636 636 636 6	67 228 552 033 155 167 173 173 173 174 175 175 175 175 175 175 175 175 175 175	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 16 5 3 7 12 4 2 5 5 0 9 5 7 7 7 2 6 6 7 7 7 2 6 7 7 7 2 6 7 7 7 2 6 7 7 7 2 6 7 7 7 2 6 7 7 7 2 6 7 7 7 2 6 7 7 7 2 6 7 7 7 7	$\begin{smallmatrix} 4 & 0 & 7 & 7 & 16 & 6 & 11 & 7 & 1 & 17 & 10 & 6 & 11 & 7 & 17 & 17 & 17 & 17 & 17 &$	0 4 6 0 2 5 5 0 1 28 2 7 6 2 1 9 1 1 2 0 4 9 1 0 1 0 0 0 0 0 2 0 2 0 0 0 0 0 0 1 0 1	7	1558 1063 481 972 153 163 171 105 105 105 105 105 105 105 105 105 10	781 18 2 18 0 9 10 2 3 6 10 2 3 6 5 9 9 0 4 10 2 2 7 3 1 16 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	53	821 23 5 1 4 9 4 5 6 9 0 0 17 1 0 1 16 8 6 7 6 6 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1254 20 1 14 18 17 46 17 20 151 13 4 509 16 21 904 0 293 1319 45 269 5 0 12 0 30 11 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 31 10 0 0 0	80 25 112 23 100 41 22 5 39 40 0 133 31 91 94 295 677 2153 762 66 2 2153 762 66 2 123 762 67 762 67 762 67 762 67 762 67 762 67 762 67 762 67 762 67 762 762	1315 82 49 47 28 38 47 110 26 110 3 51 2 3 51 17 80 14 136 614 1365 5 5 11 20 7 5 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1012 31 41 43 49 49 28 12 25 16 32 24 20 37 376 0139 863 12 21 32 21 32 21 37 21 00 35 00 00 00 00 00 00 00 00 00 00 00 00 00	23 28 487 14 532 31 86 22 12 0 22 0 12 13 86 29 10 13 86 20 21 20 20 20 10 20 20 20 20 20 20 20 20 20 2	3187 2234 579 617 167 167 167 167 167 167 167	551 851 851 863 87 865 87 87 87 87 87 87 87 87 87 87 87 87 87	10 13 36 1 1 19 60 12 2 20 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 4 127 129 1173 1271 116 5 9 3 0 6 6 15 15 29 2 8 6 8 4 8 3 3 6 6 6 7 2 6 8 7 2 6 8 7	3 7 14 2 151 37 581 183	14549 69 87 93 103 302 983 103 302 983 15927 41 30 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63	34 44 58 56 339 139 487 264 212 21 21 21 21 21 21 21 21 21 21 21 21	4136 0 16 0 18 59 30 317 8 0 19 4 11 6 3 8 7 0 0 5 6 12 5 10 10 10 10 10 10 10 10 10 10	3275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1035 1 16 257 5 25 5 1 80 3 12 3 0 10 2 1 10 5 11 8 7 13 3 6 14 1 2 2 8 6 0 0 3 3 1321 1 1 1 3 4 4 2 2 8 6 0 0 3 3 1321 1 1 1 1 3 4 5 1 1 2 2 3 8 7 5 6 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	319 3 0 1 0 7 1 1 8 0 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 7 0 80 80 80 80 80 80 80 80 80 80 80 80 8	387 0 0 2 0 1 1 8 0 6 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Appendix 6.26 INTER-CHANGWAT OD TABLE - 2010

	34	35	36	40	41	42	43	44	45	46	47	48	49	70	71	72	73	74	75	76	77	80	81	82	83	84	85	86	90	91	92	93	91	95	96	TOTAL
1 BANGKOK HETROPOLITAN	1195	1712	1095	118	453	856	262	154	2547	130		197		2039		75635	18130	70830	9210	5971	4654	1631	255	1517	295	2612	1853	503	82	237	1331	213	387	197		748680
10 CHAI NAT	3	10 36	0	0	0	0	0	0	4	7 6	2	0	0.	302 30	14 5	73 30	18 22	10 0	11 2	6 R	1	0 0	0	0	0	3	0	0	0	Q 1	0	0 3	0	0	2	7702 6949
11 SING BURI 12 LOP BURI	9	213	3	ő	11	າາ	Ď	ô	31	ňě	ĭ	ì	Ŏ	11	5	128	8	32	Õ	31	ò	ŏ	0	ŏ	ŏ	3	ŏ	ŏ	Ŏ	ō	3	ŏ	ŏ	· ŏ	ő	14721
13 ANG THONG	2	35	0	1	1	.0	0	0	2	0	2	0 19	0 26	0 3	0 8	163 273	0 17	133 153	0 19	0	0 27	0 10	1	1	0	0 37	0	Õ	0	0	8 n	4	0	0	0	8209 52266
14 SARABURI 15 PHRA NAKHON SI AYUTTHAYA	23 15	1635 499	45 3	8 9	15	17 41	0. 10	10	199 18	12 6	23 0	3	12	ŏ	ő	395	ō	101	19	0	0	2	ő	0	3	0	0	0	ŏ	Ö	ő	ō	ō	0	0	33882
16 PHAR MARINA ST ATTITUDE TO	14	442	20	24	11	35	0	ō	120	8	0	19	0	205	543	6289	578	1692	310	248	96	31	0	0	16	32	0	5	0	0	45	0	0	ĩ	15	55118
17 NONTHABURI	65	53 281	8	2 21	? 13	49 3	0	. 1	2 133	0 17	δ 9	208	0 34	872 419	365 485	5825 2939	624 1081	1364 2708	131	241 395	88 193	8 5 î	0. 9	18 37	0	ა 26	3	21	9	29	14 74	0	0 30	3 2	7	47113 276901
18 SANUT PRAKAN 50 CHAING RAI	1	6	ő	0	0	0	. 0	ò	17	3	ō	2	0	1	2	18	9	8	2	1	6	0	ō	Đ	ŏ	ŏ	ŏ	i	0	0	5	Ö	0	2	0	4744
51 MAE HONG SON	0	0	0	. 0	0	0	0	0	0 36	0	0	9	1	9	0 33	2.1	. 11	0 6	0	0	0 a	0	0	0	0	0	0	9	0	0	0	0	0	0	0	403 10116
52 CHIANG MAI 53 PHAYAO	0	18	í	0	ŏ	0	1	ő	10	ō	1	ŏ	ô	5	2	0	0	4	4	i	2	ō	Ö	ò	ő	0	Û	ŏ	· ŏ	3	3	ő	ŏ	Ö	o	3704
:54 NAN	0	0	2	0	1	0	0	0	2	0	0	0	0	- 0	1	0	1	.0	0	. 4	0	0	. 0	0	0	. 0	0	0	0	0	0 g	0	0	0	0	1275 5416
55 LANPHUN 56 LANPANG	7	3	0	0	0	0	2	0	14 24	2	ő	ō	ŏ	10	Ť	2	5	7	. 0	3	Ö	2	Ö	ō	ő	Ď	ŏ	ő	Ď	. 0	ő	5	ŏ	ŏ	ĭ	6997
57 PHRAE	0	8	.0	0	0	. 0	٥	0	25	2	5 0	2	0	î	2	18	0	- 0	3 n	0	0	. 0	0	0	0	5	0	0	2	0	0	0	0	0	0	6028 3421
60 UTTARADIT 61 SURHOTHAL	0 13	17	3 7	0	3 6	2	Q Q	0	30	0	7	2	ŏ	â	. \$	7	4	ŏ	Ŏ	7	1	Ó	Ó	0	ő	0	ő	Ó	ŏ	ŏ	ร้	o	ő	Ď	3	6182
62 TAK	8	16	1	Đ	4	9	0	0	31	0	2	. 0	0	3 22	1 13	10 42	9 21	- 11	Ð 1	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0 2	5397 11749
63 PHITSANULOR 64 KANPHAENG PHET	20 0	44 19	7	0	9	12 10	0	2	99 16	3	10 3	2	1	34	13	25	3	ô	õ	ő	ò	ŏ	Ö	. 6	0	0	0	ó	ő	ō	ů	0	0	. 0	ő	6498
65 PHICHIT	7	20	õ	2	10	8	0	0	38	0	. 7	1	1	13	6 6	13 13	12 5	1 14	0 0	0	0	0	0.	0	0	0	0	0	0	0	0	0	4	0	0	5925 8719.
66 PHETCHABUN	8	106 66	8	6 0	36E	30 7	5 1	3	752 41	5 2	16 3	10 0	0	16 326	38	17	29	95	13	. 0	8	8	0	3	4	0	0	0	· ŏ	Ö	0	0	ő	0	ő	13542
67 HAKHON SAWAN 68 UTHAI THANI	ō	6	ŝ	ŏ	ŏ	Ö	Ō	0	6	ō	1	1	0	29 5	0	21 132	. 2	· 1	2.	0	5	. 0	4	0	0	0	0	0	U	0	0	0	0	0	0	1989
20 NAKHON MAYOK 21 PRACHIN BURI	1 25	71 606	0	0 14	0 5	4 13	0 8	0 7	6 39	3	5	5	8	17	3	8	ő	11	ō	7	9	0	0	4	0	0	0	0	0	0	0	ő	0	ő	3	16505 21095
22 CHACHOENGSAO	18	227	4	8	ĭ	33	ō	4	34	10	0	0	1	41	69	212 773	27 359	85 672	3 189	11	1	18	1	3	0	0	0	1	0	1	0	0	0	0	4 8	39231
23 CHON BURI	85 58	395 167	62 21	28 13	19 11	37 26	10 6	21 14	95 56	47 14	43 21	44 29	6	173 80	154 66	110	165	283	105	121 60	51 31	42 45	16 8	25 23	11 9	32 26	9	12 9	7	17 9	31 22	20 15	13 8	23 7	. 8	88410 31891
24 RAYONG 25 CHANTHABURI	27	117	3	. 0	î	7	ŏ	2	8	0	0	ī	0	17	0 0	13	0	38 39	9 22	4	1	3	Û	5	0	0	0	0	0	0	3	0	4	0	0	13177 8954
26 TRAT 30 CHAI YAPHUN	0 43	32 1239	10	9	0 125	6 51	. 0	- 4 2	13 2251	2 5	6	12	0	4	10	2	l	1	1	5	8 0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	5974
31 YASOTHON	84	59	138	9	2	6	50	22	193	21		800	511	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	6	0	0	3312
32 UBON RATCHATHANI	85 66	123 43	. 206 465	12	13 0	65 2	87 0	40 40	186 42	33 5	72 18	139 6	267 9	12	1	: 0	o O	ő	Ö	0	0	10 0	9	0	0	3	0	0	0	0	0	0	0	. 0	. 0	5530 2845
33 SI SA KET 34 BURIRAN	0	2151	1186	6	6	3	ă	31	181	26	546	324	29	0	2	22 77	14 34	0 38	0 20	0	0	0	. 0	0	0	0	Ó	0	0	0	0	Ð	0	ō	0	6792
35 NAKHON RATCHASIMA 36 SURIN	1975 1193	0 170	164 0	34 5	34 5	267 3	11 9	52 8	1603 91	29 14	80 29	84 645	11	33 0	28 0	7	0	7	ŏ	3 1	9	13	9	3 0	0	9	U U	0	. 0	0	0	0	0	0	ó	18966 1315
40 KONG KHAI	6	39	š	ō	23	2231	310	694	531	17	18	19	16 0	0	1	0 6	0	0	o)	0	0	0	0	0	0	ð	0	0	U	0	0	.0	0	0	0	4542 3617
41 LOEI 42 UDON THANI	6	38 256	5 3	23 2132	0 852	822 0	1 103	25 1084	1507 2717	2 48	18 45	28 51	5	7	ō	7	2	ő	0	2	0	2	0	3 ;	0	0	0	1	0	3	0	0	0	0	0	875t
43 NAKHON PRANON	4	12	10	308	1	104	0	543	129	32	9	9	480	2	0	20 6	0	0	0.	0	0	0	0	3	0	2	0	0	0	0	0	C	0	0	0	2130 3951
44 SAKHON NAKHON 45 KHON KAES	38 197	53 1801	10 96	690 491	27 1507	1109 2613	540 120	0 316	311 0	318 1538	35 2902	36 937	63	9	1	22	37	20	8,	0	0	ნ 0	0	3 1	0	0	9	0	0	ů	5	ů	0	Ü	0	20135
46 KALASIN	28	26	14	16	2	54	30	311	1580	0	605	951	0 14	Ģ	5 0	0	3	0	1	O	0	1	0	0	0	Û	0	o	0	9	0	0	0	Ú	G D	4300 6089
47 MAHA SARAEHAN 48 ROL ET	591 337	75 93	29 655	16 17	18 29	51 50	8 8	33 33	2928 924	393 955	0 971	980 0	13	5	3	10	5	9	Q	3 5	0	2	0	0	0	6	0	1	ő	ő	Ö	ő	ů	ő	9	6788
49 HUKDAHAN	33	8	17	16	0	ā	481	76	64	0	14	15	0	0	0 1264	8 2076	0 101	0 375	Q.	0	0	. 2	0	0	Đ	Ð	0	0	0	0	0	0	0	0	0	1837
70 SUPHAN BURI 71 KANCHANABURI	7 O	34 27	0	0	2	7	2	0	8 1	0 5	0	3	0	1264	0	2779	5530	180	112	21 192	12 75	- 5 19	0	1 0	1 2	2 0	0	0	O.	1 6	3)	3	0	0	17277 18151
72 NAKHON PATHOM	17	72	7	ō	4	6	13	3	12	0	0	9 -	8	2061 101	2771 5530	0 10384	10241	66 1692	498 3346	477	219	31	0	26	ō	29	7	4	Ö	-1	39	2	į	7		102244
73 BATCHABURI 74 SANUT SAKHON	12	34 36	7	0	0	0	. 0	7	33 11	ő	0	3	ŏ	375	178	66	1672	0	3186	2089 517	344 177	44 61	-16	10 30	2 7	10 18	. 0	3	0	7	13 13	2 13	0 12	4	6 0	43753 77137
75 SAMUT SONGKHRAN	ō	18	0	0	0	0	0	0	î	4	0 3	3	0	9 21	113 192	478 479	3335 2091	3222 528	482	177	158	23	3	9	0	4	0	0	0	0	. 5	0	0	0	0	17598
76 PHETCHABURI 77 PRACHUAP KHIBI KHAN	0	ծ 8	0	0 0	0	0	0	0	0	. 0	ŏ	ō	ŏ	12	15	221	319	183	16#	0 3122	3327 0	. 81 903	26 66	16 76	12 12	18 10	0 9	40 40	0 2	ī	11 34	0	2 2	4	15	13983 10175
80 CHUMPHON	0	11	0	0	. 0	2 0	0	5	0	1	O D	2	4	5 0	19 0	35 0-	46 6	66 47	26 4	78	934	0	739	1119	58	109	25	22	9	17	69	1	15	0	3	5346
81 RANONG 82 SURATTHANI	0	4	0	0	3	7	3	2	4	Ö	ő	Ō	Ŏ	1	ō	36	13	35	9	24 22	68 98	739 1176	0 189	179 0	240 81	19 3826	17 507	83 122	3 77	13 246	65 462	13	5 30	3	2 13	1847 8857
83 PHANG NGA	ō	Ó	0	0	0	0	0	0	0	0	0	0	0	2	2	0 42	2 17	11 19	0 5	Š	15	68	282	91	0	83	647	2672	14	60	61	6	0	2	3	4438
84 HAKHON SI THAMMARAT 85 KRABI	0	3 0	0 0	0	0	0	2 0	0	0	0	0	Û	Ö	Õ	ŏ	9	0	0	O,	10 0	60 10	123 23	20 17	4012 534	79 619	8904 0	8895 0	131 283	19 1031	1657 799	4353 991	43 0	204 4	72 4		23867 14139
86 PHUKET	ō	2	. 0	0	0	2	ó	0	0	0	2	4 n	0	Đ N	1 n	6 0	6	9	0	9	41	19	79	126	2524	141	277	0	14	107	115	0	10	i	3	4161
90 PHATTHALUNG 91 TRANG	0 n	2	0	0	υ 0	0 3	0	0	0	ŏ	ŏ	0	ŏ	ŏ	4	4	7	7	0	0	3 5	7 16	3 12	84 270	13 58	1121 1698	47 795	14 109	0 959	984 0	1806 1088	63 0	30 31	21 13	25 8	4331 5455
92 SONGKHLA	õ	10	Ď	Ō	ō	Ŏ	0	0	5	0	0	0	0	3	4	7 42	16 2	14 13	5; 0.	14	44	81	67	493	\$6	1323	979	107	1733	1032	0	2222	3577	338	102	176B4
93 SATUN	0	3 0	0	0	0	0	0	U 0	0	0	0	0	ŏ	ó	ĭ	•	0	43	O.	. 2	0 2	i 19	4 5	14 34	0	14 219	0	0 10	63 30	30 0	2276 3740	0 36	0 31	10 3110	7 1513	2778 9307
94 PATTANI 95 YALA	ŏ	5	ŏ	ŏ	Ö	Ŏ	ő	ō	Ō	0	0	0	0	0	0	7 11	0 δ	4 0	0	Ō	1	0	4	1.4	2	69	ì	1	21	12	346	10	2857	0	128	3740
96 HARATHIWAT	0 6637	2 19333	0 4340	0 4340	0 3585	0 8686	0 2089	0 3833	0 19835	0 4231	0 5968 6	670	1793 J		18718 3			84944	10366	4 4215 1	16 10820	5 5347	2 1869	13 8828	3 4099	36 23511	12051 0	3 4201	26 4215	8 5302	405 17682		1398 8697	128 3968	0 2531 20	2149
TOTAL	0001	12000	7010	1010	2000	2200		5.554												1		4017	-403	JULD	1000	1	1001	1001	7210	2006	- 1 404	2000	~~.		-951 20	-2071

Appendix 6.27 PRESENT AND FUTURE INTER-CHANGWAT DESIRE LINE CHARTS

Appendix 6.27 PRESENT AND FUTURE INTER-CHANGWAT DESIRE LINE CHARTS

Appendix 6.28 GENERATED AND ATTRACTED INTER-CHANGWAT TRIPS - 2000

		GENERATION			ATTRACTION			GENERATION + ATTRA	CTION
LANK		Changwat	Trip	Code	e Changwat	Trip	Code	. Changwat	Trip-end
<u>1</u>	[BANGKOK METROPOLITAN	360387	!	BANGKOK METROPOLITAN	338360	1	BANGKOK HETROPOLITAN	698747
2	18	SANUT PRAKAN	132003	18	SAKUT PRAKAN	142690	18	SAKUT PRAKAN	274693
3	23	CHON BURT	62983	23	CHON BURI	64469	23	CHON BURI	127452
4	12	NAKHON PATHON	50777	72	NAKHON PATHON	53111	72	NAKHON PATHON	103888
S	74	SANUT SAKHON	34368	14	SAKUT SAKHOH	36450	74	SANUT SAKRON	70818
6	73	RATCHABURT	33241	14	SARABURÍ	33871	73	RATCHABURI	66827
7	14	SARABURI	32825	73	RATCHABURI	33586	14	SARABURI	66696
8		CHACHOENGSAO	26900	22	CHACHOENGSAO	21111	22	CHACHOENGSAO	54677
9		PATHUR THANI	25646	16	PATHUM THANI	25615	16	PATHUN THANI	51261
10		AYUTTHAYA	22406	15	AYUTTHAYA	24231	15	AYUTTHAYA	46637
11		NONTHABURI	22095	17	NONTHABURI	22983	17	NONTHABURI	45078
12		RAYONG	22015	24	RAYONG	21873	24	RAYONG	43888
13		KHON KAEN	15441	21	PRACHIN BURI	15377	45	KHON KAEN	30574
14		PRACHIN BURI	15092	45	RHON KAEN	15133	21	PRACHIN BURI	30469
15		NAKHON RATCHASIKA	14671	35	NAKHON RATCHASINA	14860	35	NAKHON RATCHASINA	2953
16		SUPHAN BURE	13725	70	SUPHAN BURI	14416	70	SUPHAN BURT	2814
17		RANCHANABURI	13476		KANCHANABURI	13698	71	KANCHANABURI	27174
18		SAMUT SONGKHRAM	12123		SANUT SONGKHRAN	12425	75	SAKUT SONGKHRAK	24548
19		NAKHON NAYOK	12020		NARHON NAYOR	12321	20	NAKHON NAYOK	2434
20		SONGKHLA	10675		SONGKHLA	10719	92	SONGRHLA	2139
21		LOP BURI	10386		LOP BURI	10472	12	LOP BURI	2085
22		CHANTHABURI	10297		CHANTHABURI	10416	25	CHANTHABURI	2071
23		PHETCHABURI	10249		PHETCHABURI	10261		PHETCHABURI	2050
24		NARHON SAWAN	10143		NAKHON SAWAN	10102	67	NAKHON SAWAN	2024
25		PHITSANULOR	8583		PHITSANULOK	8447		PHITSANULOK	1703
26		NAKHON SI THANKARAT	8468		NAKHON SI THAMKARAT	8339	84	NAKHON SI THAMMARAT	1680
27		PRACHUAP KHIRI KHAN	7673		PRACHUAP KHIRI KHAN	7908	77	PRACHUAP KHIRI KHAN	1558
28		CHIANG HAI	7641		CHIANG HAI	7626	52	CHIANG WAI	1526
29		UDON THANI	6961		UDON THANI	6958	42	UDON THANI	1391
30		TRAT	6637		TRAT	6703	26	TRAT	1334
31		PHETCHABUN	6609		PHETCHABUN	6572	66	PHETCHABUN	1318
32		PATTANI	6268		PATTANI	5959		PATTANI	1222
33		ANG THONG	6034		ANG THONG	5909		ANG THONG	1194
34		SURATTHANI	5815		SURATTHANI	5805		SURATTHANI	1162
35		SING BURI	5520		SING BURI	5605		SING BURI	1112
36		LAKPANG	5485		LAMPANG	5431		LAMPANG	1091
37		CHAI NAT	5244		CHAI NAT	5185		CHAI NAT	1042
38		ROI ET	5164		ROI ET	5103		ROI BT	1026
30 39		RAHA SARAKHAN	4985		HAHA SARAKHAH	4988		NAHA SARAKHAN	997

Appendix 6.28

Appendix 6.28 GENERATED AND ATTRACTED INTER-CHANGWAT - 2000

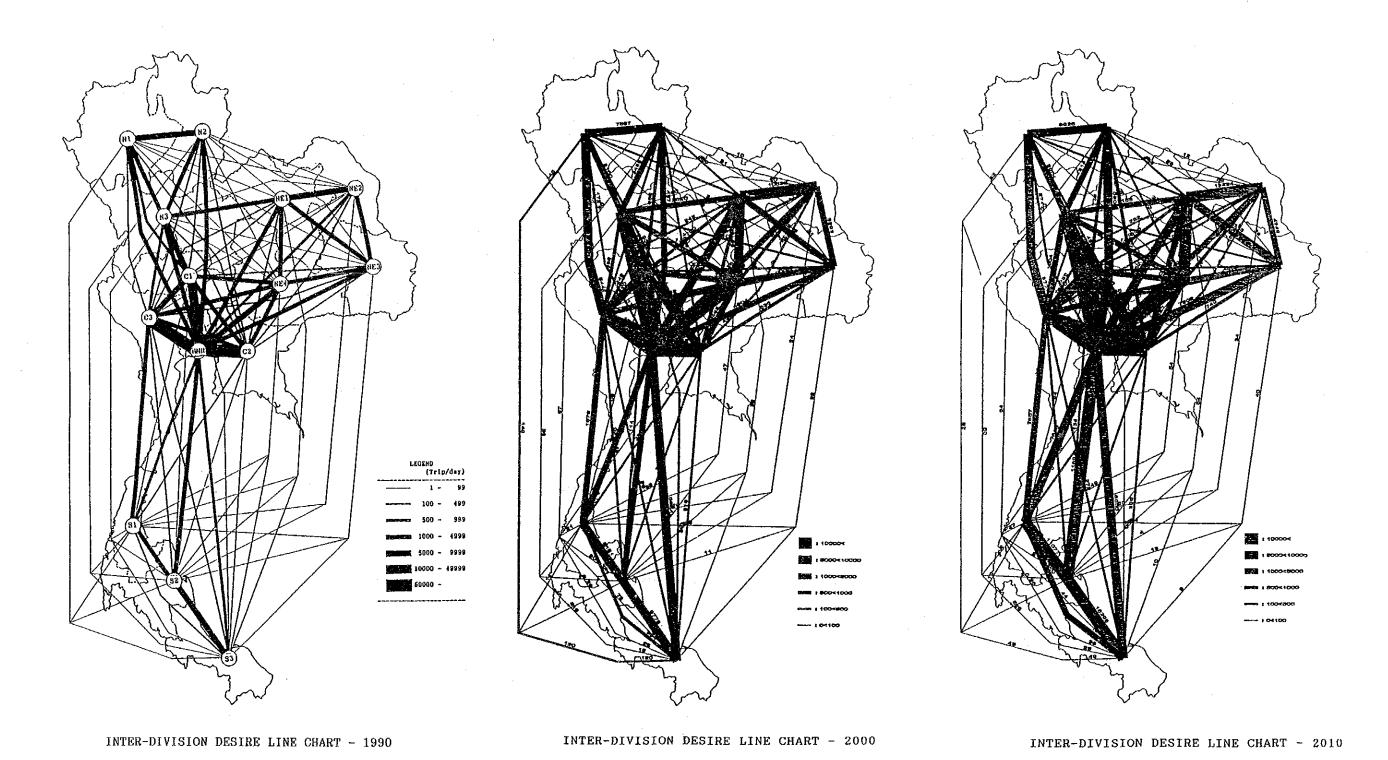
		GENERATION			ATTRACTION		Gl	ENERATION + ATTRA	CTION
RANK	Code	Changwat	Trip	Code	Changwat	Trip	Code	Changwat	Trip-end
40	34	BURIRAN	4978	65	BURERAM	4900	65	BURIRAN	9868
41	65	PHICHIT	4968	61	SUKHOTHAI	4879	34	BURIRAN	9856
42	61	SUKHOTHAI	4962	34	BURERAM	4878	61	SUKHOTHAI	9841
43	57	PHRAE	4789	64	KAMPHAENG PHET	4764	64	KANPHAENG PHET	9517
44	64	KAMPHABNG PHET	4753	. 57	PHRAE	4663	57	PHRAE	9452
45	30	CHAIYAPHUK	4462	. 30	CHAIYAPHUK	4565	30	CHAIYAPHUN	9027
46	55	PANSHAN	4453	55	GAMPHUN	4346	55	LANPHUN	8799
47	32	UBON RATCHATHANI	4116	32	UBON RATCHATHANI	4134	32	UBON RATCHATHANI	8250
48		TRANG	3916	91	TRANG	3849	91	TRANG	7765
49		TAK	3710	80	CHUMPHON	3688	62	TAK	7372
50		CHIANG RAI	3682		TAK	3662	80	CHUMPHON	7353
51		CHUMPHON	3665	50	CHIANG RAI	3658	50	CHIANG RAI	7340
52		PHUKET	3343		PHUKET	3340		PHUKET	6683
53		NONG KHAT	3295		SURIN	3274	46	KALASIN	6536
54		KALASIN	3279		RALASIN	3257	36	SURIN	6528
55		SURIN	3254	40	NONG KHAI	3219	40	NONG KHAI	6514
56		PHANG NGA	3116		PHATTHALUNG	2998	83	PHANG NGA	6114
57		PHATTHALUNG	3041		PHANG NGA	2998		PHATTHALUNG	6039
58		SAKHON NAKHON	3023		SAKHON NAKHON	2974	44	SAKHON NAKHON	5997
59		PHAYAO	2888	53	PHAYAO	2853	53	PHAYAO	5741
60		FORI	2828		YALA	2822	41	1301	5629
61		YALA	2673		POEI	2801	95	YALA	5495
62		UTTARADIT	2580		UTTARADIT	2551	60	UTTARADIT	5131
63		YASOTHON	2564		YASOTHON	2531	31	YASOTHON	5095
64		SI SA KET	2156		SI SA KET	2126	33	SI SA RET	4282
65		KRABI	2012		KRABI	1988		KRABI	. 4000
66		SATUK	1822		SATUN	1783		SATUN	3605
67		NARATHIWAT	1705		NARATHIWAT	1758	96	NARATHIVAT	3463
68		NAKHON PHANOK	1622		UTHAI THANI	1660		UTHAI THANI	3242
69		INART IARTU	1582		HARHON SHAHOK	1602		NAKHON PHANOK	3224
70		RANONG	1545		RANONG	1553		RANONG	3098
71		MUKDAHAN	1385		HURDAHAN	1369		HURDAHAN	2754
72		NAN	1010		MAN	1014		NAN	2024
73		KAE HONG SON	323		HAR HONG SON	316		HAE HONG SON	639
IATOT			1174527			1174527			2349054

Note: The used code is the code of the Land Transport Department (LTD).

Appendix 6.29 GENERATED AND ATTRACTED INTER-CHANGWAT TRIPS - 2010

21110		GENERATION			ATTRACTION			GENERATION + ATTRA	CTION
RANK	Code	Changwat	Trip	Code	Changwat	Trip	Code	Changwat	Trip-end
1	1	BANGKOK NETROPOLITAN	748680	ì	BANGKOK METROPOLITAN	678457	. 1	BANGKOK HETROPOLITAN	1427137
2		SAHUT PRAKAN	276901		SAKUT PRAKAN	312273	18	SANUT PRAKAR	589174
3	72	NAKHON PATHON	102244	72	NAKHON PATHON	110423	72	NAKHON PATHOK	212674
4	23	CHON BURI	88410	23	CHON BURI	91510	23	CHON BURI	179920
5	74	SAMUT SAKHON	77137		SANUT SAKHON	84944	74	SARUT SAKHON	162081
6	16	PATHUN THANI	55118	16	PATHUN THANI	55417	16	PATHUK THANI	110535
7	14	SARABURT	52266	14	SARABURI	55064	14	SARABURI	107330
8	17	NONTHABURI	47115	17	NONTHABURI	50585	17	NONTHABURI	97700
9	73	RATCHABURT	43753	73	RATCHABURI	44706	73	RATCHABURI	88459
10		CHACHOENGSAO	39231	22	CHACHORNGSAO	41398	22	CHACHOENGSAO	80629
11	15	AYUTTHAYA	33882	15	AYUTTHAYA	38020	- 15	AYUTTHAYA	71902
12	24	RAYONG	31891	24	RAYONG	31985	24	RAYONG	63876
13		NAKHON SI THANNARAT	23867	84	NAKHON SI THAMMARAT	23511	84	NAKHON SI THANHARAT	47378
14		PRACHIN BURI	21095	21	PRACHIN BURI	21892	21	PRACHIN BURI	42987
15		KHON KAEN	20435		KHON KABN	19835	45	KHON KAEN	40270
16		NAKHON RATCHASIKA	18966		NAKHON RATCHASINA	19333	35	NAKHON RATCHASIKA	38299
17		KANCHANABURI	18151		KANCHANABURI	18718	71	KANCHANABURI	36869
18	92	SONGKHLA	17684	70	SUPHAN BURI	18631	75	SAHUT SONGKHRAN	35958
19	75	SAHUT SONGRHRAN	17598	75	SAKUT SONGKHRAK	18360	70	SUPHAN BURI	35908
20	70	SUPHAN BURI	17277	92	SONGXILA	17682	92	SONGKHLA	35366
21	20	NAKHON NAYOK	16505	20	NAKHON NAYOK	17201	20	NAKHON NAYOK	3370
22	12	LOP BURI	14721	12	LOP BURI	14937	12	LOP BURI	29658
23	85	KRABI	14139	76	PHETCHABURI	14215	85	KRABI	28223
24	76	PHETCHABURI	13983	85	KRABI	14084	76	PHETCHABURI	28198
25	67	NARHON SAWAN	13542	25	CHANTHABURI	13641	67	NAKHON SAVAN	27054
26	25	CHANTHABURI	13177	67	NAKHON SAWAN	13512	. 25	CHANTHABURI	26818
27	63	PHITSANULOK	11749	63	NOTIFIED	11486	63	PHITSANULOK	23235
28	77	PRACHUAP KHIRI KHAN	10175	77	PRACHUAP KHIRI KHAN	10820	77	PRACHUAP KHIRI KHAN	20995
29	52	CHIANG WAI	10116	52	CHIANG MAI	9985	52	CHIANG WAI	20101
30	94	PATTANI	9307	26	TRAT	9098	26	TRAT	1805
31	28	TRAT	8954	82	SURATTHANI	8828	94	PATTANI	18004
32	82	SURATTHANI	8857	94	PATTANI	8697	82	SURATTHANE	1768
33		UDON THANI	8751	42	UDON THANI	8686	42	UDON THANI	17435
34		PHETCHABUN	8719	66	PHETCHABUR	8568	66	PHETCHABUN	17287
35	13	ANG THONG	8209	13	ANG THONG	8121	13	ANG THONG	16330
36		CHAI NAT	7702	10	CHAI NAT	7689	10	CHAI NAT	15391
37		LAMPANG	6997		SING BURI	7097	11	SING BURI	14046
38		SING BURI	6949		LAMPANG	6873	- 56	LAMPANG	13870
39		BURIRAN	6792	48	ROI ET	6670	48	ROI ET	13458

		GENERATION	,		ATTRACTION			GENERATION + ATT	
LAHK		Changwat	Trip	Code	Changwat	Trip	Code	Changwat	Trip-end
40	48	ROI BT	6788	34	BURIRAM	6637	34	BURIRAN	13429
41	64	KAMPHARNG PHET	6498	61	RAMPHARNG PHET	6476	64	KAMPHARNG PHET	1297
42	61	SURHOTHAI	6189	30	CHALYAPHUK	6166	61	SUKNOTHAI	12179
43	47	MANA SARAKHAN	6089	61	SURHOTHAI	5990	30	CHAIYAPHUH	1214
44	57	PHRAE	6028	47	NAHA SARAKHAN	5968	47	NAHA SARAKHAH	1205
45	30	CHAIYAPHUN	5974	65	PHICHIT	5938	65	PHICHIT	1186
46	65	PHICHIT	5925	57	PHRAE	5800	57	PHRAE	1182
47	32	UBON RATCHATHANI	5530	32	UBON RATCHATHANI	5541	32	UBON RATCHATHANI	1107
48	91	TRANG	5455	80	CHUMPHON	5347	91	TRANG	1075
49		LAMPHUN	5416	91	TRANG	5302	62	TAK	1069
50		TAK	5397	62	TAK	5301	80	CHURPHON	1069
51		СИИИРНОИ	5346	55	LAKPHUN	5275	55	GAMPHUN	1069
52		CHIANG RAI	4744	50	CHIANG RAI	4678	50	CHIANG RAI	942
53		NONG KHAI	4542	40	NONG KHAI	4340	40	NONG KHAI	888
54		PHANG NGA	4438	36	SURIN	4340	. 36	SURIN	865
55		PHATTHALUNG	4331		KALASIN	4231	90	PHATTHALUNG	854
56		SURIN	4315		PHATTHALUNG	4215	83	PHANG NGA	853
57		KALASIN	4305		PHUKET	4201	46	KALASIN	853
58		PHUKET	4161	83	PHANG NGA	4099	86	PHUKET	836
59		SAKHON NAKHON	3951		YALA	3968	44	SAKHON NAKHON	778
60		YALA	3740		SAKHON NARHON	3833		YALA	770
61		РНАЧАО	3704		РНАЧАО	3599		PHAYAO -	730
62		POEI	3647		LOEI	3585	41	POEI	723
63		UTTARADIT	3421		UTTARADIT	3329	60	UTTARADIT	675
64		YASOTHON	3312	-	YASOTHON	3220	31	YASOTHON	653
65		SI SA KET	2845		SI SA KET	2775		SI SA KET	562
66		SATUN	2778		SATUN	2686		SATUN	546
67		NARATHIVAT	2449		NARATHIWAT	2531		HARATHIVAT	498
68		NAKHON PHANON	2130		UTHAI THANI	2110		NAKHON PHANOK	421
69		INART IAHTU	1989		NAKHON BANNON	2089		UTHAL THANI	409
70		RANONG	1847		RANONG	1869		RANONG	371
71		NAHADAUN	1837		KARDYHYN	1793		KUKDAHAN	363
72		NAN	1275	•	NAN	1263		NAN	253
73		NAE HONG SON	403		NAE HONG SON	390		NAE HONG SON	79
тота		<u></u>	2091844			2091844	 -		418368


Note: The used code is the code of the Land Transport Department (LTD).

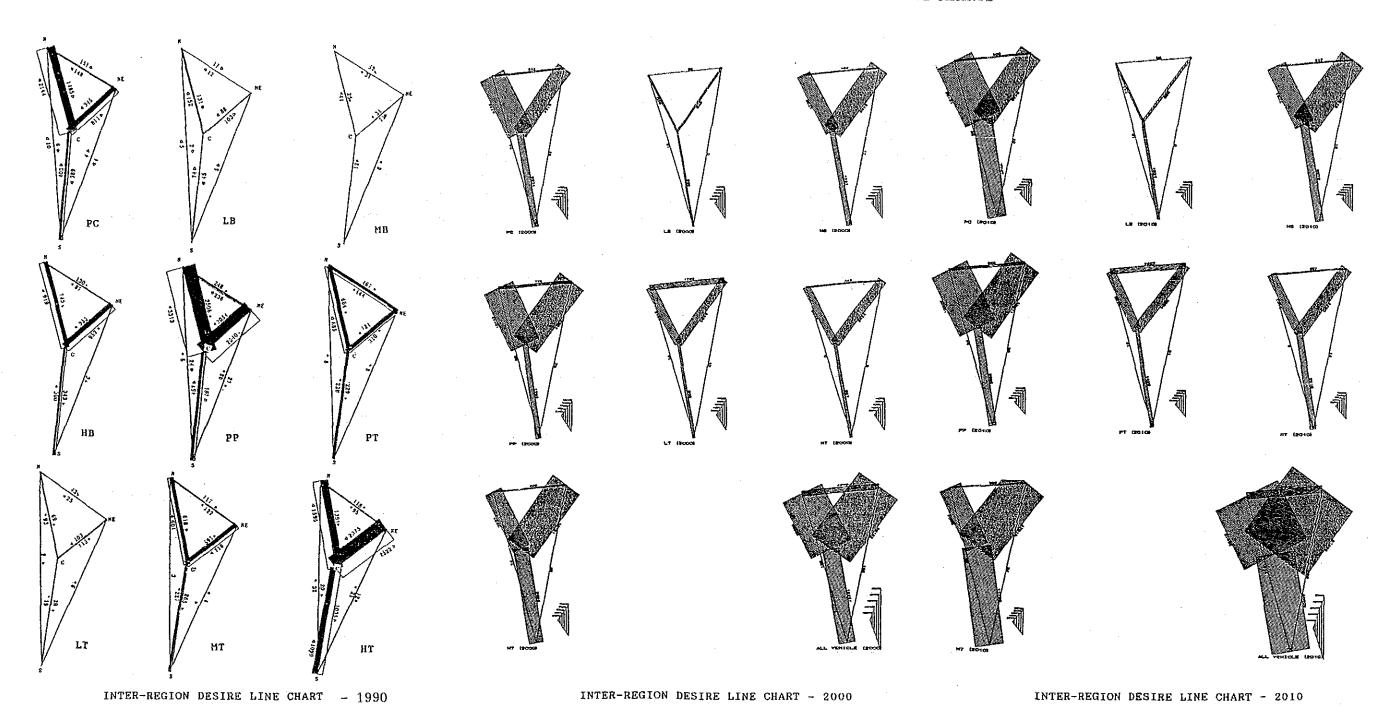
																	•												
FUTURE O-	D TABLE (2000))	VEHICL	E TYPE	: PC	;					•			Ft	TURE O-D	TABLE	(2000)		VEHIC	LE TYPE	: L	T							
N1	N2 N	3 NEI	NE2	NE3	NE4	C1	C2	C3	BMR	S1	82	S 3	TOTAL		N1	NZ	N3	NE1	NE2	NE3	NE4	C1	C2	C3	BMR	SI	S2	S 3	JATOT
N1 1139 N2 949 N3 248 NE1 15 NE2 2 NE3 3 NE4 9 C1 93 C2 63 C3 27 BMR 1008 S1 2 S2 0 S3 3 TOTAL 3561	1465 35 349 369 25 13 1 4 4 5 4 39 100 61 13 24 5 498 143 0	25 23 127 1673 7 1003 364 496 25 12 24 52 21 13 367 367 40 00 00 00 00 00 00 00 00 00	2 1 5 965 536 146 51 1 40 2 71 2 0	3 4 8 373 149 809 201 6 46 4 273 0 0	9 5 48 546 53 208 1536 117 161 33 1529 0 1 0 4246	96 40 1040 15 1 7 108 4027 433 468 6851 3 0 0	65 54 134 50 34 39 158 426 12580 548 20119 30 26 30 34293	27 20 55 12 2 4 33 468 546 6083 16916 117 29 17	462 267 316	2 0 0 3 2 0 0 5 36 116 411 614 716 157 2062	0 1 4 0 2 0 1 0 28 30 210 678 2143 1238 4335	143 1229 4612	3563 3454 7215 4238 1879 1891 4152 12578 32407 23233 200531 2054 4418 6375 307988	N1 N2 N3 NE1 NE2 NE3 NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL	2816 426 113 26 4 5 2 19 8 7 49 0	442 698 139 21 3 6 13 29 13 2 89 0 0	127 143 2029 685 11 23 117 653 22 42 305 1 2 0 4160	30 23 637 6142 2339 1090 1815 25 46 9 77 2 0 0 12235	5 3 9 2294 1710 822 76 4 5 0 17 4 0 0	5 6 200 1086 834 2781 846 2 13. 7 119 0 0 0 5719	2 13 113 1907 82 862 1612 305 251 35 271 2 1 0 5456	24 31 671 32 5 2282 908 563 2312 0 2 0 7167	10 16 27 59 8 19 289 926 8381 139 9053 8 2 2	7 3 45 12 0 7 40 575 138 7065 9628 184 26 12	67 115 365 100 23 152 321 2379 8956 9616 41862 122 78 51 64207	0 0 1 2 3 0 2 0 6 176 100 459 620 141 1510	1 0 2 0 0 0 1 1 1 2 2 0 58 598 2353 1296	3 0 0 0 0 0 0 0 2 11 39 138 1302 3708 5203	3539 1477 4171 12366 5022 5769 5469 7200 18751 17692 63979 1518 4387 5213 156553
FUTURE O-	D TABLE (2000))	VEHICL	Е ТҮРЕ	: LB	3	:							· FU	TURE O-D	TABLE	(2000)		VEH1C:	LE TYPE	: M	ľ							
NI	N2 N	13 NE1	NE2	ne3	NE4	C1	C2	C3	BMR	Š1	S2	S 3	TOTAL	•	N1	N2	N3	NE1	NE2	NE3	NE4	C1	C2	C3	BMR	S1	S2	S3	TOTAL
N1 1089 N2 155 N3 20 NE1 0 NE2 0 NE3 1 NE4 0 C1 1 C2 2 C3 21 BMR 0 S1 0 S2 3 S3 0 TOTAL 1292	201 1 10 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 646 0 151 2 7 9 57 35 1 2 21 0 0 0 0 13 14 0 0 0 0	0 0 0 164 200 69 8 1 9 0 0 0 0 451	1 1 2 8 70 218 65 0 10 0 14 0 393	1 1 10 64 9 75 386 7 49 1 156 0 0	1 5 142 1 1 0 7 330 107 107 2612 0 0 3313	4 0 3 25 9 12 50 106 5015 7 4310 8 3 0	20 0 0 0 0 0 0 100 7 1896 7486 15 0 2	0 38 48 17 0 16 149 2103 3758 6059 15332 145 34 60 27759	0 0 0 0 0 0 0 0 8 15 155 101 134 16	5 0 0 0 4 0 0 3 0 31 125 457 233 858	0 2 0 0 0 0 0 0 0 0 0 3 3 56 15 243 941 1260	1310 414 790 936 440 405 732 2789 8991 8109 30239 412 878 1254 57699	N1 N2 N3 NE1 NE2 NE3 NE4 C1 C2 C3 BMR S1 S2 S3	633 268 88 5 1 0 8 22 16 3 138 0 0	263 823 162 3 0 2 9 19 18 9 53 0 0 0	89 171 1494 140 1 4 51 455 44 22 309 3 0 0 2783	5 3 132 1755 502 322 492 42 6 114 0 0 3 3418	1 0 1 190 410 209 30 9 25 0 19 1 0 0	0 2 4 324 217 535 256 9 20 3 143 0 0	9 9 53 527 30 262 1075 176 175 9 754 0 0 3079	20 23 486 48 10 11 185 1692 424 323 3179 3 6 0	18 22 50 44 31 22 178 417 4480 233 5628 20 25 21	134 27 19	160 67 346 134 23 164 784 3159 5743 9241 47000 148 80 67129	0 0 3 0 1 0 0 2 17 132 130 311 310 41 947	0 0 0 0 0 0 0 4 21 21 62 297 884 436 1725	37 436 1281	1202 1395 2840 3181 1226 1535 3077 6329 11288 12118 67078 954 1768 1881 16172
FUTURE O-	D TABLE (2000) ·	VEHICL	E TYPE	: HE	3					٠.			FU	TURE O-D	TABLE	(2000)		VEHIC	LE TYPE	; H	r							
N1	N2 N	N3 NE1	NE2	NE3	NE4	C1	C2	C3	BMR	S1	S2	53	TOTAL		หา	N2	из	NEI	NE2	NE3	NE4	C1	C2	C3	BMR	S1	S2	S 3	TOTAL
N1 422 N2 133 N3 47 NE1 16 NE2 0 NE3 1 NE4 8 C1 9 C2 4 C3 3 BMR 524 S1 0 S2 0 TOTAL 1167	3 188 12 7 130 113 6 6 12 0 0 1 0 3 3 8 0 4 34 1 0 3 1 400 110 0 0	337 115 21 1201 0 477 0 120 326 48 16 3 1 2 0 000 824 0 0 0 0	0 0 455 363 106 3 0 0 0 346 0 0	1 0 0 113 93 250 131 1 5 0 534 3 0 0	8 3 77 337 3 133 545 98 143 0 1334 0 2 2683	9 4 357 17 0 1 98 978 146 185 2474 0 0 0	4 0 4 0 0 5 145 150 1144 33 5038 0 0 0 6523	3 1 2 0 0 0 0 185 33 1582 6021 156 4 4 7991	492 377 1058 821 343 506 1255 2276 4529 5430 40717 289 275 178 58546	0 0 0 0 3 0 0 0 156 289 268 217 40 973	0 0 0 0 0 0 0 0 4 263 212 448 249 1176	0 0 0 0 0 0 3 0 0 3 166 39 248 964 1423	1132 840 2927 3087 1279 1125 2599 4065 6008 7399 60030 967 1192 1437 94087	NI N2 N3 NE1 NE2 NE3 NE4 C1 C2 C3 EMR S1 S2 S3 TOTAL	214 126 49 3 0 0 1 294 33 18 264 0 0	126 168 142 4 0 0 2 75 56 20 377 0 4 7	49 142 1037 109 7 1 46 699 115 108 970 2 2 2 9	3 4 109 1146 631 222 1009 126 165 63 656 5 3 0	0 0 7 630 279 250 62 41 88 39 379 0 0	0 0 1 223 252 360 257 136 148 31 846 6 0	1 2 46 1019 63 258 1556 433 410 391 1691 2 0 8 5880	2254 8176 17 44 12	84 61 96	18 20 108 65 40 32 392 2237 915 6822 17653 219 42 28616 1	54425 686 464 882	0 0 2 5 0 6 2 16 79 218 674 339 494 104 1939	0 4 2 3 0 0 0 42 56 41 449 490 975 384 2446	89	1953 2479 2809
FUTURE O-I	D TABLE (2000))	VEH1 CLI	E TYPE :	PP									FU	TURE O-D	TABLE (2000)		VEHICL	E TYPE	: TOTAI	,						~.	TOTAL
		_				=	~~		D-10		66	ćo	ተያረሰጥ ላ የ				,	,,,,,,,		.100		,	~~	~~	D140				4 4 4 4 4 5 .
N1 N1 2861	N2 N		NE2 O	NE3	NE4	C1 99	C2 47	C3 34	ВМR 514	S1	S2	s3 2	TOTAL 6132	N1	N1 9174	N2 4127	N3 1071	NE1	NE2 8	NE3	NE4 39	C1 545	C2 186	C3 113	BMR 2528	S1	52		17902

Appendix 6.31 DIVISIONAL OD TABLES - 2010

NUMBER OF BUREF (0010)	New Company			
FUTURE O-D TABLE (2010)	VEHICLE TYPE : PC		FUTURE O-D TABLE (2010) VEHICLE TYPE :	LT
N1 N2 N3 NE		S1 S2 S3 TOTAL		NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL
7	15 2 4 10 115 88 34 1841 28 1 5 5 45 77 22 959	2 0 3 4745 0 1 2 4461	N1 3469 552 165 41 6 6 N2 504 810 173 27 3 8	4 31 13 9 142 0 2 3 4443 15 37 20 4 218 0 0 0 1819
NE1 19 31 163 192		0 4 0 9964 4 0 0 5420	NEI 36 29 909 7681 2934 1365 2	128 839 32 58 699 1 2 0 5394 523 44 75 16 213 3 0 0 15828
NE2 2 2 8 127 NE3 4 4 10 40	03 171 939 246 9 60 4 583	3 2 0 2484 0 0 0 2433	NE3 6 9 29 1366 1052 3568 1	110 5 11 0 50 4 0 0 6599 104 4 26 10 319 0 0 0 7493 1044 423 339 48 584 2 1 0 7045
	14 1 6 143 4938 630 564 11196	0 1 0 5644 6 0 0 18837 53 46 51 48204	C1 21 31 770 28 4 2	1044 423 339 48 584 2 1 0 7045 340 2881 1043 691 4418 0 2 0 10231 275 1024 9582 157 14010 8 2 2 25176
C3 34 29 63 1	87 63 72 235 642 17309 874 28388 11 2 4 39 565 861 7302 22532 06 141 505 2580 12530 32987 25379 326368	139 35 14 31630 754 2013 487 410100	C3 8 3 47 10 0 8	39 668 159 8361 14247 209 23 12 23794 415 4233 14201 14340 101691 179 98 68 136266
S1 3 0 0	4 2 0 0 3 48 142 882 0 2 0 1 0 42 35 2190	735 908 192 2919 1008 10857 2499 16640	S1 0 0 1 3 5 0 S2 2 0 2 0 0 0	2 0 11 226 248 626 844 197 2163 1 2 3 36 167 913 3141 1888 6155
S3 6 3 0 TOTAL 4805 4372 9827 521	0 0 0 0 0 0 48 20 739 18 2330 2384 5815 20249 52716 34498 402264	226 2518 6208 9768 2930 16385 9456 573249	S3 3 0 0 0 0 0 0 OTAL 4278 1765 5315 15417 6413 7323 7	0 0 3 17 109 208 1885 5294 7519 000 10191 25518 23973 137115 2153 6000 7464 259925
FUTURE O-D TABLE (2010)	VEHICLE TYPE : LB		FUTURE O-D TABLE (2010) VEHICLE TYPE :	MT
N1 N2 N3 NE	EI NE2 NE3 NE4 C1 C2 C3 BMR	S1 S2 S3 TOTAL	N1 N2 N3 NE1 NE2 NE3	NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL
N1 1400 222 28 N2 184 245 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 6 0 1690 0 0 3 536	N1 753 304 127 6 1 0 N2 323 1024 228 3 0 2	11 24 20 5 295 0 0 0 1546 11 28 25 7 126 0 0 0 1777
N3 27 12 699 1	12 0 2 12 164 3 0 113 49 198 12 88 1 32 0 11	0 0 0 1044 0 0 0 1238		64 600 55 23 687 4 0 0 3817 703 63 49 9 273 0 0 5 4505 38 15 39 0 48 2 0 0 1652
NE2 0 0 0 20 NE3 1 1 2	02 264 94 11 1 11 0 0 11 88 283 94 0 16 0 37	0 0 0 583 0 4 0 537		38 15 39 0 48 2 0 0 1652 330 14 27 4 324 0 0 0 2024 349 226 206 10 1262 0 0 0 4109
C1 1 6 154	73 9 77 459 8 58 0 298 1 1 0 8 386 128 130 3270 23 11 11 60 130 5610 8 6690	0 0 0 994 0 0 0 4085 9 4 0 12561	C1 26 22 537 48 9 10	210 2095 487 381 5658 2 5 0 9490 206 502 5173 274 9092 21 23 21 15487
C3 25 0 0	23 11 11 60 130 5610 8 6690 0 0 1 146 8 2389 9394 29 0 28 304 4411 8161 12609 40214	18 0 4 11985 315 60 132 66412	C3 3 11 25 6 0 3	10 384 263 2521 13187 156 24 20 16613 157 5746 9002 13778 108299 247 532 119 140239
BMR 0 53 96 3 S1 0 0 0 S2 4 0 0	0 0 0 0 0 9 18 278 0 0 4 0 0 4 0 76	124 150 17 596 179 640 362 1269	S1 0 0 5 0 2 0 S2 0 0 0 0 0 0	0 4 24 159 298 414 417 52 1375 0 8 28 33 579 450 3304 849 5251
S3 0 2 0	0 0 0 0 0 0 2 152	19 344 1380 1899	53 0 0 0 5 0 0	0 0 24 23 166 60 847 1841 2966
TOTAL 1645 543 1019 120	01 571 514 1039 5255 14046 15180 60646	664 1208 1898 105429	OTAL 1492 1686 3691 4312 1568 1946 4	089 9709 15422 17227 140294 1356 5152 2907 210851
FUTURE 0-D TABLE (2010)	01 571 514 1039 5255 14046 15180 60046 VEHICLE TYPE: HB	664 1208 1898 105429	OTAL 1492 1686 3691 4312 1568 1946 4 FUTURE O-D TABLE (2010) VEHICLE TYPE:	089 9709 15422 17227 140294 1356 5152 2907 210851
FUTURE O-D TABLE (2010)		S1 S2 S3 TOTAL	FUTURE O-D TABLE (2010) VEHICLE TYPE:	
FUTURE O-D TABLE (2010) N1 N2 N3 Ni N1 449 159 54 N2 158 222 152	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595	S1 S2 S3 TOTAL 0 0 0 1503 0 0 0 1142	FUTURE O-D TABLE (2010) VEHICLE TYPE:	HT NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BNR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475	S1 S2 S3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041	FUTURE O-D TABLE (2010) VEHICLE TYPE : N1	HT NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404
FUTURE O-D TABLE (2010) N1 N2 N3 N1 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 0 55 NE3 1 0 0 14	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BNR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845	S1 S2 S3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561	FUTURE O-D TABLE (2010) VEHICLE TYPE: N1	HT NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074
FUTURE O-D TABLE (2010) N1 N2 N3 N4 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 57 NE3 1 0 0 14 NE4 10 3 96 33 C1 11 5 393	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979	S1 S2 S3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 0 4 3527 0 0 0 6108	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147	HT NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 0 57 NE3 1 0 0 14 NE4 10 3 96 37 C1 11 5 393 C2 5 0 12 C3 4 1 2	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 0 222 47 1898 7799	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40	NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 0 55 NE3 1 0 0 14 NE4 10 3 96 35 C1 11 5 393 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 156 S1 0 0 0	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 0 222 47 1898 7799	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 EMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7	HT NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 0 55 NE3 1 0 0 14 NE4 10 3 96 35 C1 11 5 393 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 156 S1 0 0 0	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 222 47 1898 7799 <t< td=""><td>\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222</td><td>FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 S3 15 7 10 0 0 0</td><td>HT NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856</td></t<>	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 S3 15 7 10 0 0 0	HT NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856
FUTURE O-D TABLE (2010) N1 N2 N3 N8 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 5 NE3 1 0 0 0 14 NE4 10 3 96 33 C1 11 5 393 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 156 S1 0 0 0 S2 0 0 0 S3 0 0 0	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 222 47 1898 7799 <t< td=""><td>\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222</td><td>FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BNR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 S3 15 7 10 0 0 0</td><td>NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232</td></t<>	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BNR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 S3 15 7 10 0 0 0	NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 0 55 NE3 1 0 0 14 NE4 10 3 96 35 C1 11 5 393 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 150 S1 0 0 0 S2 0 0 0 TOTAL 1596 1209 4162 405	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 222 47 1898 7799 <t< td=""><td>\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222</td><td>FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 S3 15 7 10 0 0 0 DTAL 1293 1286 4400 5335 2407 3066 7</td><td>NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232</td></t<>	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 S3 15 7 10 0 0 0 DTAL 1293 1286 4400 5335 2407 3066 7	NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 57 NE3 1 0 0 0 14 NE4 10 3 96 33 C1 11 5 393 12 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 150 S1 0 0 0 S2 0 0 0 S3 0 0 0 0 TOTAL 1596 1209 4162 403 FUTURE O-D TABLE (2010) N1 N2 N3 N1	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 222 47 1898 7799 <t< td=""><td>\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222 1470 2148 2180 179608</td><td>FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 13 15 7 10 0 0 0 0 DTAL 1293 1286 4400 5335 2407 3066 7 FUTURE O-D TABLE (2010) VEHICLE TYPE :</td><td>HT NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232</td></t<>	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222 1470 2148 2180 179608	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 13 15 7 10 0 0 0 0 DTAL 1293 1286 4400 5335 2407 3066 7 FUTURE O-D TABLE (2010) VEHICLE TYPE :	HT NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 13 NE2 0 0 0 0 57 NE3 1 0 0 14 NE4 10 3 96 37 C1 11 5 393 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 150 S1 0 0 0 S2 0 0 0 0 S3 0 0 0 0 TOTAL 1596 1209 4162 405 FUTURE O-D TABLE (2010) N1 N2 N3 N1 N1 3368 2492 4618 N2 2494 3271 992 N3 572 947 8064 13	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 0 222 47 1898 7799	\$1 \$2 \$3 \$TOTAL\$ 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 0 4 3527 0 0 0 6108 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222 1470 2148 2180 179608 \$1 \$2 \$3 \$TOTAL\$ \$5 2 2 7706 1 4 2 8132 6 2 8 15836	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 EMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 S3 15 7 10 0 0 7 FUTURE O-D TABLE (2010) VEHICLE TYPE: N1 N2 N3 NE1 NE2 NE3 N1 10929 4936 1359 80 9 14 N2 4900 7491 2212 69 6 19 N3 1281 2102 20127 1481 29 51	NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 338 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232 TOTAL NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 49 646 229 136 4505 7 10 23 22932 51 409 291 108 3591 1 10 14 19172 693 6760 584 515 10813 13 10 18 44477 678 424 527 149 5024 16 5 5 38922
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 0 52 NE3 1 0 0 14 NE4 10 3 96 33 C1 11 5 393 12 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 150 S1 0 0 0 S2 0 0 0 S3 0 0 0 0 TOTAL 1596 1209 4162 405 FUTURE O-D TABLE (2010) N1 N2 N3 N1 N1 3368 2492 4618 N2 2494 3271 992 N3 572 947 8064 15 NE1 0 0 0 137 66 NE2 0 1 2 33	VEHICLE TYPE: HB E1 NE2 NE3 NE4 C1 C2 C3 BMR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 1 16 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 0 0 222 47 1898 7799 09 653 930 2233 4548 7747 9087 99758 0 0 3 0 0 0 0 187 565 0 0 0 0 0 0 22 47 1898 7799 09 653 930 2233 4548 7747 9087 99758 0 0 3 0 0 0 0 187 565 0 0 0 3 0 0 0 4 361 98 1732 1610 3768 6687 9592 11456 127900 VEHICLE TYPE: PP E1 NE2 NE3 NE4 C1 C2 C3 BNR 0 0 2 12 123 55 40 987 0 2 2 14 202 94 49 1005 55 3 12 288 2677 136 233 2733 45 370 72 160 124 92 24 857 73 398 112 19 8 25 6 327 70 108 413 140 46 73 11 475	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1561 0 0 0 1561 0 0 0 4 3527 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222 1470 2148 2180 179608 \$1 \$2 \$3 TOTAL \$5 2 2 7706 1 4 2 8132 6 2 8 15836 3 2 0 2486 6 0 0 0 1277 2 2 1 1353	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 0 S3 15 7 10 0 0 0 S3 15 7 10 0 0 0 DTAL 1293 1286 4400 5335 2407 3066 7 FUTURE O-D TABLE (2010) VEHICLE TYPE: N1 N2 N3 NE1 NE2 NE3 N1 10929 4936 1359 80 9 14 N2 4900 7491 2212 69 6 19 N3 1281 2102 20127 1481 29 51 NE1 81 74 1675 15980 6615 2669 5 NE2 9 6 33 6879 4955 2151 NE3 13 17 57 2644 2098 6516 2	NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232 TOTAL NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 49 646 229 136 4505 7 10 23 22932 51 409 291 108 3591 1 10 14 19172 693 6760 584 515 10813 13 10 18 44477 678 424 527 149 5024 16 5 5 38922 306 224 381 70 4060 12 6 1 18475
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 0 55 NE3 1 0 0 14 NE4 10 3 96 35 C1 11 5 393 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 150 S1 0 0 0 S2 0 0 0 TOTAL 1596 1209 4162 403 FUTURE O-D TABLE (2010) N1 N2 N3 N1 N1 3368 2492 618 N2 2494 3271 992 N3 572 947 8064 13 NE1 0 0 137 66 NE2 0 1 2 33 NE3 1 1 10 7 NE4 11 14 269 15 C1 107 182 2563 12	VEHICLE TYPE : HB E1	\$1 \$2 \$3 \$TOTAL\$ 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 0 43527 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222 1470 2148 2180 179608 \$1 \$2 \$3 \$TOTAL\$ \$5 2 2 7706 1 4 2 8132 6 2 8 15836 3 2 0 2486 6 0 0 1277 2 2 1 1353 18 2 9 7029 4 1 0 24412	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 DTAL 1293 1286 4400 5335 2407 3066 7 FUTURE O-D TABLE (2010) VEHICLE TYPE : N1 N2 N3 NE1 NE2 NE3 N1 10929 4936 1359 80 9 14 N2 4900 7491 2212 69 6 19 N3 1281 2102 20127 1481 29 51 NE1 81 74 1675 15980 6615 2669 5 NE2 9 6 33 6879 4955 2151 NE3 13 17 77 2644 2098 6516 2 NE4 45 52 689 5284 296 2276 9 C1 615 369 6422 384 74 213 25	NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 338 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232 TOTAL NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 49 646 229 136 4505 7 10 23 22932 51 409 291 108 3591 1 10 14 19172 693 6760 584 515 10813 13 10 18 44477 678 424 527 149 5024 16 5 5 38922 322 81 252 63 1997 15 2 0 16765 376 224 381 70 4060 12 6 1 18475 506 2478 2113 783 12477 22 4 22 36047 471 25078 5227 6597 49608 32 64 15 97169
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 0 53 NE3 1 0 0 14 NE4 10 3 96 33 C1 11 5 393 3 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 156 S1 0 0 0 S2 0 0 0 S3 0 0 0 0 TOTAL 1596 1209 4162 403 FUTURE O-D TABLE (2010) N1 N2 N3 N1 N1 3368 2492 4618 N2 2494 3271 992 N3 572 947 8064 15 NE1 0 0 137 66 NE2 0 1 2 33 NE2 0 1 2 33 NE3 1 1 10 7 NE2 0 1 2 33 NE3 1 1 10 7 NE4 11 14 269 15 C1 107 182 2563 12 C2 50 75 123 56 C3 41 46 219 23	VEHICLE TYPE : HB E1 NE2 NE3 NE4 C1 C2 C3 BNR 15 0 1 10 11 5 4 795 6 0 0 3 5 0 1 595 25 0 0 91 404 6 2 1892 33 529 133 393 20 2 0 1475 72 421 106 3 0 0 0 631 43 126 282 154 1 6 0 845 75 3 148 593 116 171 0 2008 18 0 1 116 1183 181 221 3979 2 0 6 170 177 1427 47 6606 0 0 0 0 222 47 1898 7799 09 653 930 2233 4548 7747 9087 99758 0 0 0 3 0 0 0 187 565 0 0 0 0 0 222 47 1898 7799 09 653 930 2233 4548 7747 9087 99758 0 0 3 0 0 0 187 565 0 0 0 0 0 0 0 0 5 591 0 0 0 0 2 0 0 4 361 98 1732 1610 3768 6687 9592 11456 127900 VEHICLE TYPE : PP E1 NE2 NE3 NE4 C1 C2 C3 BNR 0 0 2 12 123 55 40 987 0 2 2 14 202 94 49 1005 55 3 12 288 2677 136 233 2733 45 370 72 160 124 92 24 857 73 398 112 19 8 25 6 327 70 108 413 140 46 73 11 475 58 19 139 1541 1101 623 198 2927 27 10 47 1134 11456 1181 1609 5991 94 24 70 618 1122 22392 302 25521 27 10 47 1134 11456 1181 1609 5991 94 24 70 618 1122 22392 302 25521	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1561 0 0 0 1561 0 0 0 1561 0 0 0 1561 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222 1470 2148 2180 179608 \$1 \$2 \$3 TOTAL \$5 2 2 7706 1 4 2 8132 6 2 8 15836 3 2 0 2486 6 0 0 1277 2 2 1 1353 18 2 9 7029 4 1 0 24412 14 4 10 50419 327 40 15 29833	FUTURE O-D TABLE (2010) N1 N2 N3 NE1 NE2 NE3 N1 239 139 55 3 0 0 N2 144 190 162 4 0 0 N3 55 162 1208 125 8 1 NE1 3 4 128 1370 762 258 1 NE2 0 0 8 760 349 294 NE3 0 0 1 255 292 370 NE4 1 2 52 1165 69 307 1 C1 334 81 823 148 49 147 C2 36 66 129 183 102 173 C3 20 25 133 83 55 40 BMR 446 605 1687 1230 721 1469 2 S1 0 0 2 6 0 7 S2 0 5 2 3 0 0 S3 15 7 10 0 0 0 DTAL 1293 1286 4400 5335 2407 3066 7 FUTURE O-D TABLE (2010) VEHICLE TYPE: N1 N2 N3 NE1 NE2 NE3 N1 10929 4936 1359 80 9 14 N2 4900 7491 2212 69 6 19 N3 1281 2102 20127 1481 29 51 NE1 81 74 1675 15980 6615 2669 5 NE2 9 6 33 6879 4955 2151 NE3 13 17 57 2644 2098 6516 2 NE4 45 52 689 5284 296 2276 9 C1 615 369 6422 384 74 213 2 C2 207 265 542 484 231 368 2 C3 135 115 489 133 63 66	NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 664 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232 TOTAL NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 49 646 229 136 4505 7 10 23 22932 51 409 291 108 3591 1 10 14 19172 693 6760 584 515 10813 13 10 18 44477 678 424 527 149 5024 16 5 5 38922 3076 224 381 70 4060 12 6 1 18475 506 2478 2113 783 12477 22 4 22 36047 471 25078 5227 6597 49608 32 64 15 97169 044 5195 73726 2759 132904 200 145 193 219263 773 6570 2708 39822 110557 1296 174 127 163028
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 53 NE3 1 0 0 0 14 NE4 10 3 96 33 C1 11 5 393 3 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 150 S1 0 0 0 S2 0 0 0 S3 0 0 0 0 TOTAL 1596 1209 4162 403 FUTURE O-D TABLE (2010) N1 N2 N3 N1 N1 3368 2492 618 N2 2494 3271 992 N3 572 947 8064 15 NE1 0 0 137 63 NE2 0 1 2 S1 0 0 137 63 NE3 1 1 10 NE4 11 14 269 15 C1 107 182 2563 12 C2 50 75 123 52 C3 41 46 219 2 BMR 761 772 2332 85 S1 5 1 6	VEHICLE TYPE : HB E1	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1561 0 0 0 43527 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222 1470 2148 2180 179608 \$1 \$2 \$3 TOTAL \$5 \$2 \$2 7706 1 4 \$2 8132 6 \$2 8 15836 3 \$2 0 2486 6 0 0 1277 2 2 1 1353 18 \$2 9 7029 4 1 0 24412 14 4 10 50419 327 40 15 29833 464 263 229 184059 1477 2104 132 4697	N1	NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 2 0 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232 TOTAL NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 49 646 229 136 4505 7 10 23 22932 51 409 291 108 3591 1 10 14 19172 693 6760 584 515 10813 13 10 18 44477 678 424 527 149 5024 16 5 5 38922 322 81 252 63 1997 15 2 0 16765 376 224 381 70 4060 12 6 1 18475 506 2478 2113 783 12477 22 4 22 36047 471 25078 5227 6597 49608 32 64 15 97169 944 5195 73726 2759 132904 200 145 193 219263 773 6570 2708 39822 110557 1296 174 127 163028 163 52427 140116 118875 942835 3757 5723 3042 1307195 5 70 154 208 6171 5692 30558 9177 52060
FUTURE O-D TABLE (2010) N1 N2 N3 N3 N1 449 159 54 N2 158 222 152 N3 53 153 1270 12 NE1 17 6 133 133 NE2 0 0 0 52 NE3 1 0 0 0 14 NE4 10 3 96 33 C1 11 5 393 12 C2 5 0 12 C3 4 1 2 BMR 888 660 2050 156 S1 0 0 0 0 S2 0 0 0 0 S3 0 0 0 0 TOTAL 1596 1209 4162 405 FUTURE O-D TABLE (2010) N1 N2 N3 N1 N1 3368 2492 618 N2 2494 3271 992 N3 572 947 8064 15 NE1 0 0 137 65 NE2 0 1 2 33 NE3 1 1 10 7 NE4 11 14 269 15 C1 107 182 2563 12 C3 41 46 219 2 BMR 761 772 2332 84 BMR 761 772 2332 84	VEHICLE TYPE : HB E1	\$1 \$2 \$3 TOTAL 0 0 0 1503 0 0 0 1142 0 0 0 3996 0 0 0 4041 0 0 0 1733 3 0 0 1561 0 0 0 4 3527 0 0 0 6108 0 0 0 8452 187 5 3 10168 577 568 325 131533 347 288 54 1444 299 909 374 2178 57 378 1420 2222 1470 2148 2180 179608 \$1 \$2 \$3 TOTAL \$5 \$2 \$2 7706 1 4 2 8132 6 2 8 15836 3 2 0 2486 6 0 0 1277 2 2 1 1353 18 2 9 7029 4 1 0 24412 14 4 10 50419 327 40 15 29833 464 263 229 184059 1477 2104 132 4697 2159 3763 1994 8338 133 1945 8549 10973	N1	NE4 C1 C2 C3 BNR S1 S2 S3 TOTAL 1 340 42 20 445 0 0 15 1299 2 86 75 25 605 0 5 7 1305 52 827 147 132 1695 2 2 10 4426 165 153 197 86 1269 6 3 0 5404 70 51 110 55 740 0 0 0 2437 308 150 173 41 1477 7 0 0 3074 739 471 491 488 2903 2 0 9 7699 520 2139 1577 3001 15096 20 56 15 24006 480 1598 12233 1097 42597 95 66 109 58964 487 3050 1070 8291 25385 260 47 59 39005 877 15298 41790 25522 141849 1221 2189 1682 238586 2 20 103 261 1227 418 674 136 2856 0 58 73 48 2221 684 7924 1211 12229 9 15 119 61 1695 137 1204 1670 4942 712 24256 58200 39128 239204 2852 12170 4923 406232 TOTAL NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 49 646 229 136 4505 7 10 23 22932 712 24256 58200 39128 239204 2852 12170 4923 406232 TOTAL NE4 C1 C2 C3 BMR S1 S2 S3 TOTAL 49 646 229 136 4505 7 10 23 22932 712 24256 58200 39128 239204 2852 12170 4923 406232

Appendix 6.32 PRESENT AND FUTURE INTER-DIVISION DESIRE LINE CHARTS

Appendix 6.33 Appendix 6.34


Appendix 6.33 REGIONAL OD TABLES - 2000

VEHICL	E CATEGO	DRY: PC				VEHICLE	CATEGOR	Y: PT+LT				VEHICE
	N	NE	Ĉ	S	TOTAL		¥	NE	c	5	TOTAL	
N	9377	250	4593	12	14232	N	6933	866	1381	7	9187	N
NE	262	9109	2781	8	12160	NB	916	26298	1404	3	28626	NE
C	4439	2725	260462	1123	268749	C	1238	1186	104783	415	107622	, C
S	12	8	1297	11530	12847	S	?	9	487	10615	11118	S
TOTAL	14090	12092	269133	12673	307988	TOTAL	9094	28359	108055	11045	156553	TOTAL
						المنافعة الم						
VEHICL	E CATEGO)RY: LB				AEHICUS	CATEGOR	Y: HT				AEHICT
	N	NE		\$	TOTAL		N -	NE	C	S	TOTAL	
N	2219	27	261	7	2514	H	3991	219	1224	3	5437	N
ЯB	25	2197	287	4	2513	NE	224	7436	1655	4	9319	NE
C	239	283	49335	271	50128	C	1108	1546	93671	488	96813	C
S	5	4	267	2268	2544	\$	3	4	563	4033	4603	\$
TOTAL	2488	2511	50150	2550	57699	TOTAL	5326	9205	97113	4528	116172	TOTAL
AEHICP	E CATEGO)RY: HB+	HB			VEHICL	E CATEGO	RY: HT				ARHICP
	N	NE	С	S	TOTAL	¢	N	NE	C	S	LATOT	
N	2363	225	2311	0		K	2053	173	3075	36		И
NE	237	4656	3191	6	8090	NE	173	8217	5727	24	14141	NE
С	2398	3302	70921	188	77502	C	3029	5643	188668	2598	199938	C
S	0	5	906	2685	3596	S	38	24	2660	4519	7241	S
LATOT	4998	8188	77329	3572	94087	TOTAL	5293	14057	200130	7177	226657	TOTAL
							÷ .					
VEHICL	B CATEGO	DRY: PP				VEHICL	E CATEGOI	RY: TOTAI				AEHICP
	Н	NE	C	S	TOTAL		. Ж	NE	C	S	TOTAL	
N	18976	401	5428	25	24830	Ŋ	45912	2161	18273	90	66436	N.
NE	378	4122	4798	37	9335	NE	2215	62035	19843	91	84184	HE .
C	5014	4796	154413	868	165091	c	17465	19481	922253	6644	965843	C
S	25	41	925	15124	161.15	S	90	95	7105	50774	58064	\$
TOTAL	24393	9360	165564	16054	215371	TOTAL	65682	83772	967474	57599	1174527	TOTAL

Appendix 6.34 REGIONAL OD TABLES - 2010

٠	VEHICL	E CATEGO	RY: PC				AEHICTI	VEHICLE CATEGORY: PT+LT										
		N	NE	c	S	TOTAL		H	NE	С	S	TOTAL						
	N	11172	290	7696	12	19170	N	8519	1027	2102	8	11656						
	NE	315	10839	4817	10	15981	NE	1200	33588	2167	10	36965						
	C	7499	4609	493065	3598	508771	C	1631	1527	191706	603	195467						
	S	18	. 9	4149	25151	29327	S	8	11	822	14996	15837						
	TOTAL	19004	15747	509727	28771	573249	TOTAL	11358	36153	196797	15617	259925						
			÷															
	VEHICLI	E CATEGO!	RY: LB				AEHICLE	CATEGO	RY: HT									
		N	N.B.	C	s	TOTAL		N	NE	C	S	TOTAL						
	N	2828	32	401	9	3270	N	1976	265	1895	• 4	7140						
	. NE	33	2812	503	4	3352	NE	292	9422	2569	7	12290						
	C	340	477	93684	542	95043	c	1596	2221	176842	1170	181829						
	S	. 6	4	539	3215	3764	S	5	7	1346	8234	9592						
	TOTAL	3207	3325	95127	3770	105429	TOTAL	8869	11915	182652	9415	210851						
			-															
	VEHICLE	CATEGO!	RY: NB+I	18			VEHICLE	CATEGO:	RY: HT									
		N	NE.	C	S	TOTAL		N	NE	C	S	TOTAL						
	N	2670	251	3720	0	6641	Й	2354	196	4439	41	7030						
	NE	266	5314	5275	7	10862	NE	199	9533	8855	27	18614						
	C	4031	5638	144927	1665	156261	c	4385	8764	341593	5819	360561						
	S	0	5	1713	4125	5844	S	41	27	5901	14058	20027						
	TOTAL	6967	11208	155635	5798	179608	TOTAL	6979	18520	360788	19945	406232						
	VEHICLE CATEGORY: PP						VEHICLE	VEHICLE CATEGORY: TOTAL										
		N	NB	C	S	TOTAL		N	NE	C	\$	TOTAL						
	N.	22818	490	8334		31674	N	55337	2551	28587		86581						
	NE	446	4737	6917		12145	NB	2751	76245	31103		110209						
	C	7271		273187		288723	C	26753		1715004		1786655						
	S	32	53			24008	S	110	116			108399						
	TOTAL	30567		290105		356550	TOTAL	84951		1790831		2091844						

Appendix 6.35 PRESENT AND FUTURE INTER-REGION DESIRE LINE CHARTS

-- 89 --

Appendix 6.36 Appendix 6.37

GENERATION:

Appendix 6.36 GENERATED AND ATTRACTED REGIONAL TRIPS - 2000

(Trip/day)

				-															
	·.	:	VEH	ICLE CAT	EGORY		٠.												
Region	PC	LB	НВ	PP	LT	мт	НТ	TOTAL											
Northern	14232	2514	4899	24830	9187	5437	5337	66436											
Northeastern	12160	2513	8090	9335	28626	9319	14141	84184											
Central	268749	50128	77502	165091	107622	96813	199938	965843											
Southern	12847	2544	3596	16115	11118	4603	7241	58064											
TOTAL	307988	57699	94087	215371	156553	116172	226657	1174527											
							 -												
ATTRACTION:		•				·	(T)	rip/day)											
			VEH	IICLE CAT	EGORY		(Trip/day)												
Region	PC	LB	нв	PP	LT	MT	нт	TOTAL											
Northern	14090	2488	4998	24393	9094	5326	5293	65682											
				9360	28359	9205	14057	83772											
Central	269133	50150	77329	165664	108055	97113	200130	967474											
Southern	12673	2550	3572	16054	11045	4528	7177	57599											
TOTAL	307988	57699	94087	215371	156553	116172	226657	1174527											
GENERATION +	Orthern 14232 2514 4899 24830 9187 5437 5337 ortheastern 12160 2513 8090 9335 28626 9319 14141 entral 268749 50128 77502 165091 107622 96813 199938 outhern 12847 2544 3596 16115 11118 4603 7241 OTAL 307988 57699 94087 215371 156553 116172 226657 TRACTION: VEHICLE CATEGORY	nd/day)																	
			VEH	IICLE CAT	EGORY														
Region	PC	LB	НВ	PP	LT	МТ	нт	LATOT											
Northern	28322	5002	9897	49223	18281	10763	10630	132118											
Northeastern								167956											
Central							400068	1933317											
Southern						9131	14418	115663											
TOTAL	615976	115398	188174	430742	313106	232344	453314	2349054											

Appendix 6.37 GENERATED AND ATTRACTED REGIONAL TRIPS - 2010

GENERATION:				····	·····		(11)	ip/day)	
n			VEH	IICLE CAT	EGORY				
Region	PC	LB	НВ	PP	LT	МТ	нт	ATOT	
Northern	19170	3270	6641	31674	11656	7140	7030	8658	
Northeastern	15981	3352	10862	12145	36965	12290	18614	11020	
Central	508771	95043	156261	288723	195467	181829	360561	178665	
Southern	29327	3764	5844	24008	15837	9592	20027	10839	
TOTAL	573249	105429	179608	356550	259925	210851	406232	209184	
	V				· · · · · · · · · · · · · · · · · · ·	•••			
ATTRACTION:		+5					(T)	rip/day	
	÷								
Region —	PC	LB	НВ	pp	LT	MT	нт	ATOT	
Northern	19004	3207	6967	30567	11358	6869	6979	8495	
Northeastern	15747	3325	11208	12174	36153	11915	18520	10904	
Central	509727	95127	155635	290105	196797	182652	360788	179083	
Southern	28771	3770	5798	23704	15617	9415	19945	10702	
TOTAL	573249	105429	179608	356550.	259925	210851	395592	209184	
GENERATION +	ATTRACT	'ION:					(Trip-e	nd/day)	
			VEH	ICLE CAT	FCORY			<u> </u>	
Region —						_,,_			
	PC	LB	НВ	PP	LT	MT 	HT	TOTA	
Northern	38174	6477	13608	62241	23014	14009	14009	17153	
Northeastern	31728	6677	22070	24319	73118	24205	37134	21925	
Central :	1018498	190170	311896	578828	392264	364481	721349	357748	
Southern	58098	7534	11642	47712	31454	19007	29972	21541	
TOTAL	1146498	210858	359216	713100	519850	421702	812464	418368	

Appendix 6.38 GROWTH RATES OF GENERATED AND ATTRACTED INTER-CHANGWAT TRIP-ENDS (1990=1.0)

					20	00							201	0			
Code	Changwat	PC	L.B	AB	PP	LT	ИT	AT	JATOT	PC	LB	AB	PP	LT	Hr	H?	TOTAL
l	BANGKOK METROPOLITAN	3.32	3.47	3.47	3.40	3.52	3.53	3.54	3.43	6.69	7.14	7.11	6.91	7.30	7.29	7.34	7.01
10	CHAI NAT	1.71	1.74	1.99	1.79	1.62	1.70	1.90	1.77	2.42	2.55	3.07	2.69	2.31	2.43	2.88	2.61
11	SING BURI	1.70	2,25	1.77	1.58	1.53	1.69	1.70	1.65	2.20	2.94	2.42	1.93	1.81	2.24	2.13	2.09
12	LOP BURI	1.67	1.88	1.79	1.56	1.54	1.66	1.66	1.64	2.45	2.76	2.77	2.11	2.10	2.44	2.36	2.33
13	ANG TRONG	1.63	1.54	1.91	1.66	1.62	1.81	1.70	1.69	2.40	2.02	2.62	2.16	2.12	2.48	2.23	2.31
14	SARABURI	3.05	3.10	3.04	2.57	2.53	2.88	2.82	2.80	5.10	5.02	5.19	3.99	3.84	4.70	4.57	4.50
15	PERA NAKHON SI AYUTTHAYA	1.64	2.09	1.90	1.84	1.65	1.70	1.78	1.78	2.34	3.59	2.95	2.96	2.44	2.52	2.75	2.75
16	PATHUK THANI	2.65	3.45	3.38	2.48	2.67	2.71	2.60	2.64	5.77	7.95	8.41	5.15	5.90	5.91	5.52	5.70
17	NONTHABURI	2.52	3.16	3.73	2.43	2.53	2.42	2.49	2.55	4.96	8.51	10.68	5.26	5.77	5.10	5.28	5.53
18	SANUT PRAKAH	3.31	4.31	3.97	3.19	3.39	3.34	3.26	3.39	8.97	10.11	9.30	6.69	7.38	7.08	8.82	7.27
50	CHIANG RAI	1.41	1.38	1.63	1.45	1.31	1.37	1.57	1.44	1.81	1.85	2.21	1.86	1.60	1.69	2.08	1.85
51	NAE HONG SON	1.33	1.24	1.81	1.26	1.27	1.27	1.39	1.32	1.59	1.76	2.48	1.56	1.51	1.54	1.70	1.64
52	CHIANG HAI	1.53	1.44	1.59	1.35	1.35	1.45	1.56	1.43	2.09	1.88	2.18	1.74	1.72	1.90	2.09	1.88
53	PHAYAO	1.61	1.61	1.98	1.70	1.59	1.62	1.86	1.68	2.10	2.19	2.69	2.15	1.95	1.99	2.45	2.14
54	NAN	1.44	1.56	1.64	1.46	1.39	1.44	1.59	1.47	1.75	1.89	2.27	1.84	1.70	1.79	1.99	1.85
55	LANPHON	1.43	1.44	1.45	1.37	1.38	1.45	1.54	1.41	1.79	1.82	1.81	1.61	1.68	1.77	1.35	1.71
56	CAMPANG	2.04	1.85	2.36	1.86	1.83	2.00	2.06	1.93	2.77	2.30	3.32	2.30	2.24	2.53	2.60	2.45
	PHRAE	2.03	2.06	2.18	2.12	2.03	2.11	2.35	2.09	2.55	2.56	3.03	2.65	2.47	2.62	2.95	2.82
60	UTTARADIT	1.74	1.46	1.77	1.43	1.49	1.64	1.88	1.60	2.35	1.82	2.51	1.78	1.86	2.18	2.29	2.11
61	SUKHOTHAI	1.78	1.89	1.85	1.86	1.79	1.81	1.92	1.84	2.18	2.38	2.33	2.31	2.19	2.23	2.42	2.28
62	TAK	2.10	1.56	2.20	1.54	1.62	2.04	1.95	1.80	3.21	2.10	3.45	2.12	2.24	3.06	2.88	2.61
63	PALTSANULOR	2.04	1.91	1.99	1.67	1.78	1.92	1.86	1.84	3.04	2.71	2.89	2.11	2.37	2.68	2.48	2.51
64	KAMPHAENG PHET	1.46	1.35	1.58	1.37	1.36	1.41	1.60	1.42	2.05	1.75	2.29	1.85	1.81	1.90	2.24	1.93
85	PHICHIT	1.63	1.66	1.55	1.44	1.47	1.51	1.52	1.50	2.02	1.95	1.91	1.72	1.67	1.79	1.90	1.80
86	PHETCHABUN	1.75	1.91	1.89	1.81	1.75	1.81	1.87	1.80	2.26	2.58	2.58	2.39	2.25	2.37	2.50	2.36
67	HARRON SAWAR	1.87	1.51	1.78	1.36	1.41	1.53	1.54	1.50	2.34	1.96	2.56	1.74	1.82	2.07	2.06	2.00
68	THAT THANK	1.28	1.15	1.29	1.27	1.24	1.28	1.47	1.29	1.62	1.38	1.68	1.59	1.51	1.60	1.92	1.63
20	NAKHON NAYOK	2.26	2.36	2.26	2.14	2.04	2.21	2.18	2.17	3.27	3.52	3.22	2.89	2.66	3.00	3.05	3.01
21	PRACHIN BURI	2.82	3.41	3.02	3.02	2.80	2.87	3.18	2.97	4.05	5.46	4.24	4.30	3.78	3.83	4.52	4.18
	CHACHOENGSAO					1.64						3.56					
	CHON BURI								2.31	4.35	3.48	3.27	2.69	2.58	3.24	3.31	3.26
	RAYONG								2.55			4.29					
	CHARTHABURI					1.56						2.67					
	TEAT									2.86							
	CHATYAPBON								1.59								
	YASOTHON									2.16							
	UBON BATCHATHANI								1.81			2.92					

a 1	a) t		2000								2010								
Coge	Changwat	PC	ſ.B	ØB	pp	LT	TK	RT	TOTAL	PC	LB	RB	PP	ľ.	NT	HŤ	TOTAL		
33	SI SA KET	1.50	1.63	1.71	1.76	1.59	1.62	1.74	1.62	1.90	2.14	2.33	2.38	2.05	Ž.13	2.39	2.13		
34	BURIRAN	2.30	1.94	2.33	1.87	1.99	2.22	2.18	2.11	3.27	2.58	3.35	2.41	2.64	3.10	2.97	2.87		
35	NAKHON RATCHASINA	1.92	1.94	1.95	1.70	1.69	1.82	1.73	1.78	2.59	2.68	2.64	2.17	2.11	2.38	2.21	2.31		
36	SURIN	2.18	2.28	2.27	2.10	2.10	2.21	2.28	2.17	2.96	3.12	3.23	2.73	2.70	2.91	3.08	2.88		
40	NONG KHAI	1.52	1.39	1.66	1.36	1.42	1.56	1.57	1.48	2.09	1.71	2.39	1.79	1.91	2.16	2.19	2.02		
41	LOEI	1.89	1.98	2.17	1.99	1.92	1.97	2.11	1.97	2.38	2.58	2.96	2.61	2.43	2.52	2.75	2.53		
12	UDON THANI	1.44	1.81	1.64	1.60	1.49	1.51	1.55	1.52	1.74	2.42	2.13	2.07	1.86	1.85	1.95	1.91		
43	NAKHON PHANOK	1.70	1.88	1.88	1.95	1.78	1.82	2.00	1.82	2.12	2.50	2.55	2.67	2.31	2.35	2.71	2.38		
44	SARHON NAKHON	1.36	1.79	1.84	1.83	1.67	1.72	1.87	1.73	2.05	2.28	2.47	2.40	2.14	2.26	2.50	2.24		
45	REON KAEN	2.24	2.34	2.33	2.23	2.21	2.31	2.38	2.27	2.95	3.16	3.12	2.94	2.88	3.06	3.15	2.98		
46	RALASIN	1.48	1.67	1.54	1.50	1.41	1.47	1.56	1.47	1.88	2.25	2.05	1.97	1.83	1.93	2.08	1.92		
47	NAHA SARAKHAN	1.67	1.78	1.75	1.69	1.65	1.72	1.80	1.69	2.04	2.15	2.18	1.97	1.98	2.11	2.19	2.05		
48	ROI ET	1.61	1.71	1.90	1.82	1.62	1.67	1.81	1.88	2.05	2.26	2.70	2.48	2.08	2.16	2.11	2.21		
49	NARADADA	1.60	1.63	1.68	1.74	1.59	1.61	1.83	1.65	2.00	2.14	2.29	2.35	2.05	2.12	2.50	2.18		
70	SUPBAN BURI	1.66	1.59	1.69	1.59	1.48	1.61	1.59	1.60	2.11	1.96	2.20	2.08	1.86	2.02	2.05	2.04		
71	KANCHANA BURI	1.54	1.55	1.62	1.36	1.38	1.47	1.47	1.44	2.09	2.03	2.23	1.89	1.88	1.96	1.95	1.98		
72	NAKHON PATHON	2.10	2.97	3.11	2.18	2.20	2.14	2.14	2.19	3.91	7.39	8.27	4,66	4.73	4.18	4.30	4.49		
73	RATCHABURI	1.86	2.22	2.05	1.66	1.70	1.86	1.80	1.78	2.56	3.09	2.85	2.16	2.23	2.48	2.34	2.35		
74	SANUT SAKHON	3.39	4.59	5.55	2.97	3.27	3.41	3.23	3.33	7.70	12.62	18.77	6.40	7.60	7.86	7.15	7.62		
75	SANUT SONGKHRAN	2.70	2.75	2.73	2.45	2.43	2.59	2.82	2.56	3.99	4.58	4.09	3.52	3.48	3.75	3.89	3.75		
76	PHETCHABURI	1.59	2.00	1.78	1.41	1.37	1.56	1.63	1.53	2.23	2.82	2.49	1.89	1.84	2.16	2.26	2.10		
77	PRACHUAP KHIRI KHAN	1.67	1.97	1.80	1.35	1.37	1.56	1.64	1.54	2.31	2.73	2.52	1.74	1.79	2.10	2.25	2.08		
80	CHUNDHON	1.44	1.75	1.59	1.36	1.36	1.39	1.49	1.44	1.96	2.66	2.40	2.03	1.90	1.98	2.22	2.09		
81	RANONG	1.47	1.35	1.42	1.34	1.27	1.36	1.47	1.39	1.82	1.63	1.70	1.58	1.50	1.62	1.78	1.66		
82	SURAT THANI	.1.81	2.02	1.94	1.85	1.76	1.85	1.93	1.85	2.70	3.11	3.07	2.83	2.63	2.79	2.98	2.82		
83	PHANG NGA	1.48	1.50	1.60	1.55	1.49	1.55	1.63	1.53	2.00	2.08	2.36	2.21	2.01	2.17	2.36	2.14		
84	NAKHON SI THANNARAT	1.79	1.95	2.00	1.91	1.83	1.89	1.99	1.88	7.97	2.95	4.06	2.89	2.68	6.08	11.36	5.29		
85	KRABI	1.26	1.26	1.36	1.20	1.12	1.19	1.23	1.21	19.71	1.91	4.89	1.77	1.62	10.89	24.16	8.54		
86	PHUKET	1.58	1.61	1.71	1.71	1.56	1.64	1.74	1.84	1.95	2.04	2.18	2.14	1.95	2.00	2.19	2.05		
90	PHATTHALUNG	1.47	1.46	1.59	1.55	1.48	1.56	1.65	1.52	2.05	2.02	2.33	2.21	2.07	2.23	2.42	2.18		
91	TRANG	1.54	1.75	1.73	1.81	1.64	1.65	1.82	1.69	1.95	2.48	2.48	2.65	2.22	2.27	2.59	2.34		
92	SONGRALA	2.01	2.42	2.30	2.25	2.08	2.13	2.23	2.14	3.44	3.85	3.71	3.45	3.05	3.70	4.55	3.54		
93	RUTAR	1.70	1.89	1.97	2.03	1.80	1.91	2.19	1.91	2.33	2.79	3.09	3.28	2.65	2.80	3.46	2.90		
94	PATTANI	2.08	2.33	2.16	2.41	2.26	2.31	2.57	2.28	2.86	3.46	3.25	3.70	3.27	3.39	4.00	3.36		
95	YALA	1.45	1.77	1.85	1.88	1.64	1.62	1.81	1.71	1.80	2.50	2.67	2.79	2.22	2.21	2.65	2.40		
98	HABATHIRAT	1.36	1.72	1.93	1.96	1.51	1.56	1.73	1.60	1.75	2.50	2.98	3.10	2.12	2.23	2.60	2.31		
	TOTAL	2.62	2.55	2.77	2.14	2.12	2.48	2,45	2.41	4.87	4.86	5.28	3.54	3.52	4.50	4.39	4.28		

Note: The used code is the code of the Land Transport Department (LTD).

Appendix 6.39 Appendix 6.40 Appendix 6.41

Appendix 6.39 GROWTH RATES OF DIVISIONAL TRIP-ENDS (1990=1.0)

	N			· V	EHICLE	CATEG	ORY		
YEAR	DIVISION	PC	LB	нв	PP	LT	МТ	HT	TOTAL
	N1	1.62	1.48	1.68	1.53	1.43	1.61	1.70	1.54
	N2	1.71	1.62	1.79	1.67	1.62	1.68	1.78	1.69
	N3	1.83	1.73	1.84	1.60	1.62	1.75	1.77	1.70
	NE1	1.85	2.06	2.00	1.93	1.87	1.93	2.02	1.91
	NE2	1.56	1.64	1.69	1.61	1.53	1.60	1.70	1.59
	NE3	1.64	1.72	1.91	1.83	1.66	1.72	1.85	1.73
	NE4	1.97	1.99	1.98	1.74	1.74	1.89	1.81	1.83
2000	C1	2.10	2.33	1.98	1.78	1.90	2.05	2.38	2.03
	C2	2.70	2.15	2.43	1.94	1.91	2.36	2.29	2.21
	C3	1.72	1.93	1.92	1.64	1.60	1.73	1.75	1.72
	BMR	3.16	3.54	3.62	3.07	3.17	3.18	3.09	3.19
	S1	1.63	1.83	1.70	1.59	1.54	1.58	1.66	1.62
	S2	1.59	1.68	1.75	1.68	1.62	1.67	1.76	1.66
	S3	1.82	2.12	2.04	2.07	1.89	1.96	2.11	1.97
	TOTAL	2.62	2.55	2.77	2.14	2.12	2.48	2.45	2.41
	N1	2.18	1.89	2.26	1.90	1.78	2.05	2.17	1.97
	N2	2.20	2.10	2.47	2.11	1.97	2.12	2.33	2.15
	N3	2.52	2.27	2.55	2.04	2.08	2.34	2.36	2.24
	NE1	2.35	2.72	2.63	2.48	2.37	2.47	2.61	2.45
	NE2	2.03	2.13	2.29	2.13	2.00	2.13	2.30	2.10
	NE3	2.10	2.27	2.68	2.48	2.15	2.24	2.51	2.27
	NE4	2.69	2.71	2.74	2.24	2.24	2.52	2.37	2.42
2010	C1	3.19	3.56	3.04	2.50	2.70	3.08	3.71	3.03
	C2	4.08		3.50				3.25	3.13
	C3	2.40	2.97	2.69	2.25	2.16	2.39	2.40	2.38
	BMR	6.44	7.76	7.92	6.35	6.75	6.65	6.44	6.66
	S1	2.32	2.73	2.55	2.33	2.19	2.27	2.44	2.36
	S2	6.01	2.40	3.20					4.14
	S3	2.77					3.08	3.72	3.02
	TOTAL	4.87	4.66			3.52		4.39	4.28

Appendix 6.40 GROWTH RATES OF INTER-REGION AND INTRA-REGION TRIP-ENDS (1990=1.0)

VEAD	FARRED TO	UTT) A			V	EHICLE	CATEG	ORY		
IBAR	INTER-, INTER-, INTER-	VIKA~	PC	LB	НВ	PP	LT	MT	нт	TOTAL
2000	INTER- REGION	N - NE N - C N - S NE - C NE - S C - S	1.71 2.49 1.50 3.14 2.00 3.06	2.26 1.77 1.71 2.98 1.60 4.52	1.54 2.72 - 3.23 1.22 2.73	1.61 1.79 1.67 2.09 1.42 1.89	1.82 1.73 1.75 2.08 1.21 1.79	1.85 1.91 2.00 2.45 2.00 2.14	1.62 2.04 1.42 2.32 1.30 2.46	1.72 2.08 1.55 2.46 1.41 2.44
2000	INTRA- REGION	N - N NE - NE C - C S - S	1.52 1.60 2.82 1.63	1.55 1.81 2.73 1.78	1.35 1.52 3.10 1.66	1.55 1.52 2.35 1.81	1.48 1.72 2.42 1.72	1.64 1.74 2.71 1.72	1.47 1.64 2.59 1.62	1.53 1.66 2.64 1.72
2010	INTER- REGION	N - NE N - C N - S NE - C NE - S C - S	2.02 4.19 1.88 5.37 2.38 9.78	2.83 2.62 2.14 5.13 1.60 9.08	1.72 4.48 - 5.42 1.33 5.16	1.93 2.68 2.13 3.01 1.78 3.20	2.27 2.47 2.00 2.96 1.50 2.83	2.33 2.86 3.00 3.66 3.50 5.11	1.85 2.96 1.58 3.60 1.46 5.49	2.09 3.22 1.86 3.83 1.71 5.48
2010	INTRA- REGION	N - N NE - NE C - C S - S	1.81 1.90 5.34 3.56	1.97 2.31 5.18 2.52	1.53 1.73 6.33 2.55	1.87 1.74 4.17 2.67	1.82 2.19 4.42 2.43	2.04 2.20 5.12 2.43	1.69 1.90 4.68 5.05	1.84 2.04 4.90 3.11

Appendix 6.41 GROWTH RATES OF REGIONAL GENERATED AND ATTRACTED TRIPS 2000/1990 (1990 = 1.0)

2000/1990					•		(1990) = 1.0)
			VE	HICLE	CATEGO	RY		
Region	PC	LB	НВ	PP	LT	МТ	HT	TOTAL
Northern Northeastern Central Southern	1.74 1.80 2.82 1.71	1.57 1.89 2.73 1.90	1.79 1.93 3.09 1.84	1.60 1.77 2.32 1.81	1.54 1.73 2.40 1.73	1.70 1.83 2.69 1.76	1.76 1.86 2.57 1.85	1.65 1.80 2.62 1.78
TOTAL	2.62	2.55	2.77	2.14	2.12	2.48	2.45	2.41
2010/1990								
			VE	HICLE	CATEGO	RY		
Region —	PC	LB	НВ	PP	ĻT	МТ	НТ	TOTAL
Northern Northeastern Central Southern	2.35 2.36 5.34 3.89	2.03 2.52 5.17 2.81	2.46 2.61 6.22 2.99	2.02 2.30 4.06 2.69	1.94 2.23 4.36 2.45	2.21 2.39 5.06 3.65	2.32 2.45 4.63 5.13	2.14 2.35 4.85 3.31
TOTAL	4.87	4.66	5.28	3.54	3.52	4.50	4.39	4.28

Appendix 6.42 TRIP LENGTH DISTRIBUTION BY VEHICLE CATEGORY - 1990

			YPE	HICLE 3	VE				,		
TOTA	HT	МТ	LT	PT	PP	НВ	мв	LB	(km) ————PC	VGTH	RIP LEI
27.	18.9	25.8	26.2	26.1	24.6	30.5	40.8	19.4	39.3	50	0-
36.	45.2	38.2	40.0	34.4	34.5	25.0	31.1	42.6	31.5	100	50-
17.	15.6	18.9	16.9	17.9	19.6	15.5	12.9	27.0	14.2	150	100-
7.	6.3	7.1	7.7	10.6	7.5	8.5	6.9	5.6	6.7	200	150-
3.	3.5	3.7	5.0	5.3	4.9	4.9	4.8	2.0	2.4	250	200-
2.	2.2	2.4	1.7	1.9	2.6	3.4	0.7	1.0	1.9	300	250~
1.	1.5	1.2	0.7	1.4	1.8	3.2	0.5	0.9	1.1	350	300-
0.	0.8	0.5	0.4	0.8	0.9	1.1	1.1	0.3	0.5	400	350-
0.	0.9	0.3	0.2	0.3	0.8	1.5	0.3	0.2	0.4	450	400-
0.	0.8	0.4	0.3	0.4	0.6	1.3	0.3	0.3	0.4	500	450-
0.	0.8	0.2	0.3	0.2	0.5	0.6	0.1	0.1	0.2	550	500-
0.	0.6	0.2	0.2	0.2	0.4	0.9	0.3	0.0	0.3	600	550-
0.	0.9	0.1	0.0	0.2	0.2	0.9	0.0	0.1	0.2	650	600-
0.	0.5	0.3	0.1	0.1	0.4	1.1	0.1	0.4	0.5	700	650-
0.	0.2	0.1	0.0	0.1	0.2	0.3	0.0	0.0	0.1	750	700-
0.	0.2	0.1	0.1	0.0	0.2	0.5	0.1	0.0	0.1	800	750-
0.	0.2	0.1	0.1	0.0	0.1	0.3	0.0	0.0	0.1	850	800-
0.	0.2	0.1	0.0	0.1	0.1	0.3	0.0	0.0	0.1	900	850-
0.	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	950	900-
0.	0.2	0.1	0.0	0.0	1.0	2.0	0.0	0.1	0.1	000	950-1
0.	0.6	0.1	0.1	0.0	0.1	0.2	0.1	0.1	0.1		1000-

Appendix 6.42 Appendix 6.43

Appendix 6.43 TRIP LENGTH DISTRIBUTION OF PASSENGER VEHICLES BY TRIP PURPOSE - 1990

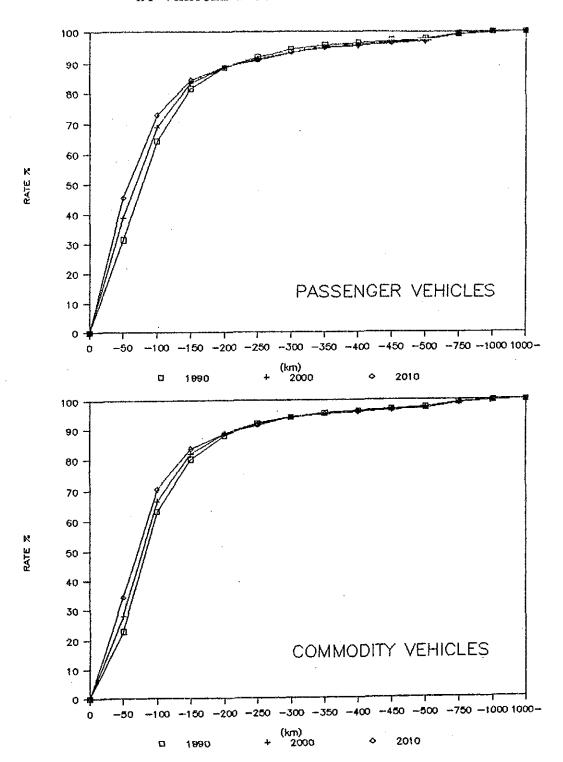
(%)

RIP LENG	. (12.17	WORK	PRIVATE	TOUR	OTHERS	TOTAL
0	50	35.3	31.3	9.0	35.9	32.1
50-	100	32.3	33.4	38.7	31.7	33.2
100-	150	16.8	17.3	15.7	20.1	17.0
150-	200	5.8	7.1	11.6	6.6	6.7
200-	250	3.4	3.6	5.1	2.8	3.6
250-	300	2.1	2.1	5.2	0.8	2.2
300-	350	1.3	1.5	2.7	0.3	1.5
350-	400	0.6	0.7	1.4	0.2	0.7
400	450	0.5	0.7	1.5	0.3	0.6
450-	500	0.4	0.5	0.9	0.1	0.5
500-	550	0.3	0.3	0.7	0.1	0.3
550-	600	0.3	0.4	1.0	0.1	0.3
600-	650	0.2	0.2	0.5	0.0	0.2
650-	700	0.3	0.4	3.2	0.3	0.5
700-	750	0.1	0.1	0.7	0.0	0.1
750-	800	0.1	0.1	0.9	0.0	0.1
800-	850	0.1	0.1	0.4	0.2	0.1
850-	900	0.0	0.1	0.2	0.1	0.1
900-	950	0.0	0.0	0.1	0.0	0.0
950-	1000	0.0	0.1	0.4	0.0	0.1
1000-		0.0	0.1	0.3	0.2	0.1
AVE. TRI	P LENGTH	97.3	105.9	179.1	86.5	105.4

Appendix 6.44
Appendix 6.45
Appendix 6.44 TRIP LENGTH DISTRIBUTION OF COMMODITY VEHICLES
BY COMMODITY GROUP - 1990

•		TRIF	PURPOSE		
TRIP LENGTH (KM)	AGRI.	CONST.	MANUF	OTHERS	TOTAL
0- 50	17.9	22.9	23.2	28.6	23.2
50- 100	36.4	50.3	35.9	40.8	41.3
100- 150	18.7	16.9	19.3	13.6	17.1
150- 200	8.0	4.5	7.0	5.8	6.2
200- 250	5.3	1.8	4.2	3.4	3.6
250- 300	2.8	1.1	2.7	1.5	2.0
300- 350	1.9	0.6	1.7	1.2	1.3
350- 400	0.9	0.4	0.9	0.8	0.
400- 450	1.0	0.2	0.9	0.5	. 0 . '
450- 500	0.8	0.3	0.6	0.8	0.6
500- 550	1.0	0.3	0.7	0.5	0.6
550- 600	0.8	0.1	0.5	0.4	0.9
600- 650	1.2	0.2	1.0	0.3	. 0 .
650- 700	0.6	0.1	0.5	0.6	0.
700- 750	0.1	0.1	0.1	0.1	0.1
750- 800	0.3	0.0	0.2	0.1	0.2
800- 850	0.3	0.1	0.2	0.2	0.3
850- 900	0.2	0.0	0.2	0.2	0.1
900- 950	0.0	0.1	0.1	0.0	0.
950- 1000	0.4	0.0	0.1	0.3	0.2
1000-	1.2	0.1	0.2	0.3	0.
AVE. TRIP LENGTH	154.6	91.8	125.2	113.6	120.0

Appendix 6.45 TRIP LENGTH DISTRIBUTION BY VEHICLE CATEGORY - 2000

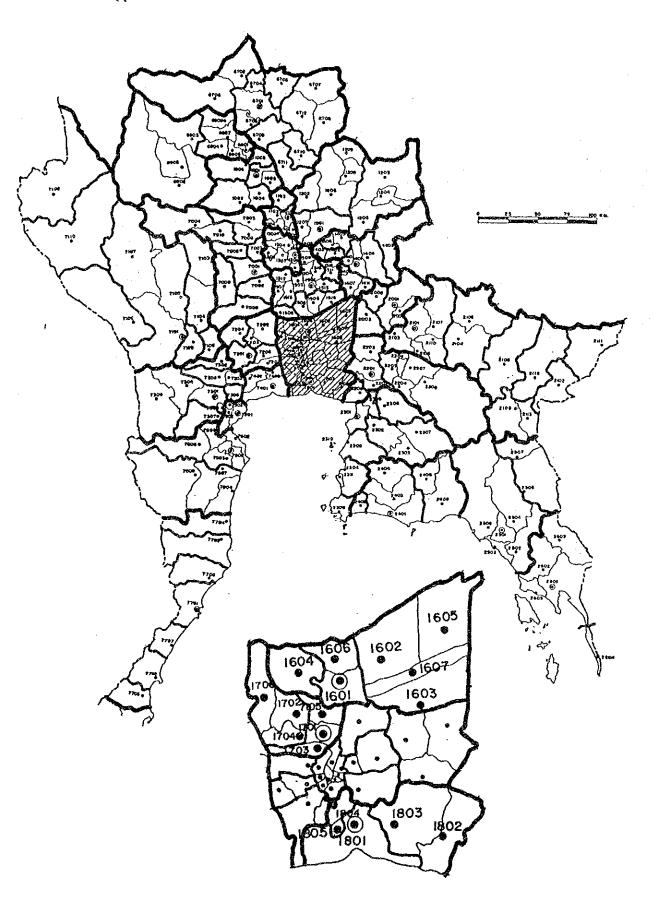

, , , , , , , , , , , , , , , , , , ,	NOME ()				VEHICLE	CATEGO	RY		
LKIL PE	NGTH (km)	PC	LВ	НВ	PP	LT	МТ	НТ	TOTA
. 0~	50	46.9	25.9	41.9	29.1	31.5	35.7	21.4	34.
50-	100	27.4	40.1	22.3	34.4	34.2	33.1	44.1	33.
100-	150	11.8	22.8	11.9	17.5	16.1	15.9	15.4	15.
150-	200	5.2	4.6	5.5	6.0	8.4	5.8	5.6	5.
200-	250	2.1	1.8	3.4	3.9	4.5	3.1	3.0	3.
250~	300	1.8	1.1	3.0	2.4	1.8	2.4	2.0	2.
300-	350	1.1	1.8	2.2	1.9	1.2	1.0	1.3	1.
350-	400	0.6	0.2	1.1	0.9	0.6	0.5	0.7	0.
400-	450	0.7	0.3	2.2	1.0	0.3	0.4	1.2	0.
450-	500	0.4	0.3	1.2	0.6	0.4	0.5	0.7	0.
500-	550	0.2	0.1	.0.6	0.5	0.2	0.2	0.7	0.
550-	600	0.4	0.0	1.0	0.5	0.2	0.3	0.6	0.
600-	650	0.2	0.1	0.9	0.3	0.2	0.2	0.8	0.
650-	700	0.6	0.5	1.0	0.5	0.1	0.4	0.5	0.
700-	750	0.1	0.0	0.3	0.1	0.0	0.1	0.2	0.
750-	800	0.1	0.0	0.5	0.2	0.0	0.1	0.2	0.
800-	850	0.1	0.1	0.3	0.1	0.0	0.1	0.3	0.
850~	900	0.1	0.1	0.3	0.1	0.1	0.1	0.2	0.
900-	950	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.
950-	1000	0.1	0.2	0.3	0.1	0.0	0.1	0.3	0.
1000-		0.1	0.0	0.1	0.1	0.0	0.1	0.6	0.
 AVE. TR	IP LENGTH	90.9	95.0	130.5	114.0	99.8	96.8	128.2	107.

Appendix 6.46 TRIP LENGTH DISTRIBUTION BY VEHICLE CATEGORY - 2010

										(%)	
			VEHICLE CATEGORY								
TRIP LE	NGTH .	(km)	PC	LB	НВ	PP	LT	ТМ	НТ	TOTAL	
0-	50		52.8	32.8	51.2	34.5	38.2	43.8	26.7	40.7	
50-	100		23.6	39.2	19.6	33.5	33.0	29.7	41.7	30.0	
100-	150		9.4	17.6	9.3	14.9	13.7	12.7	13.1	12.3	
150-	200		4.1	4.1	3.9	5.1	6.8	4.4	4.4	4.7	
200-	250	•	1.7	1.6	2.6	3.2	3.6	2.4	2.3	2.5	
250-	300		3.1	1.0	2.5	2.1	1.5	3.0	3.4	2.6	
300-	350		1.0	1.8	1.8	1.8	1.1	0.9	1.3	1.3	
350-	400		0.6	0.1	1.1	0.9	0.5	0.5	0.6	0.6	
400-	450		0.7	0.3	2.1	1.0	0.3	0.4	1.1	0.9	
450~	500		0.4	0.3	1.1	0.5	0.4	0.4	0.7	0.5	
500-	550		0.2	0.1	0.5	0.4	0.2	0.2	0.6	0.3	
550-	600		0.3	0.0	0.9	0.5	0.1	0.2	0.6	0.4	
600-	650		0.2	0.1	0.8	0.2	0.1	0.2	0.7	0.3	
650-	700		0.6	0.5	0.9	0.5	0.1	0.3	0.5	0.5	
700-	750		0.3	0.0	0.3	0.1	0.0	0.2	0.5	0.3	
750-	800		0.1	0.0	0.4	0.2	0.0	0.1	0.2	0.1	
800-	850		0.4	0.1	0.4	0.1	0.0	0.3	0.6	0.3	
850-	900		0.1	0.1	0.3	0.1	0.1	0.0	0.2	0.1	
900-	950		0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	
950-			0.2	0.3	0.3	0.1	0.0	0.1	0.4	0.2	
1000-			0.1	0.0	0.1	0.1	0.0	0.1	0.6	0.2	
AV. TRI	P LEN	IGTH	91 4	88.2	116.4	107.0	90.5	91.2	125.8	102	

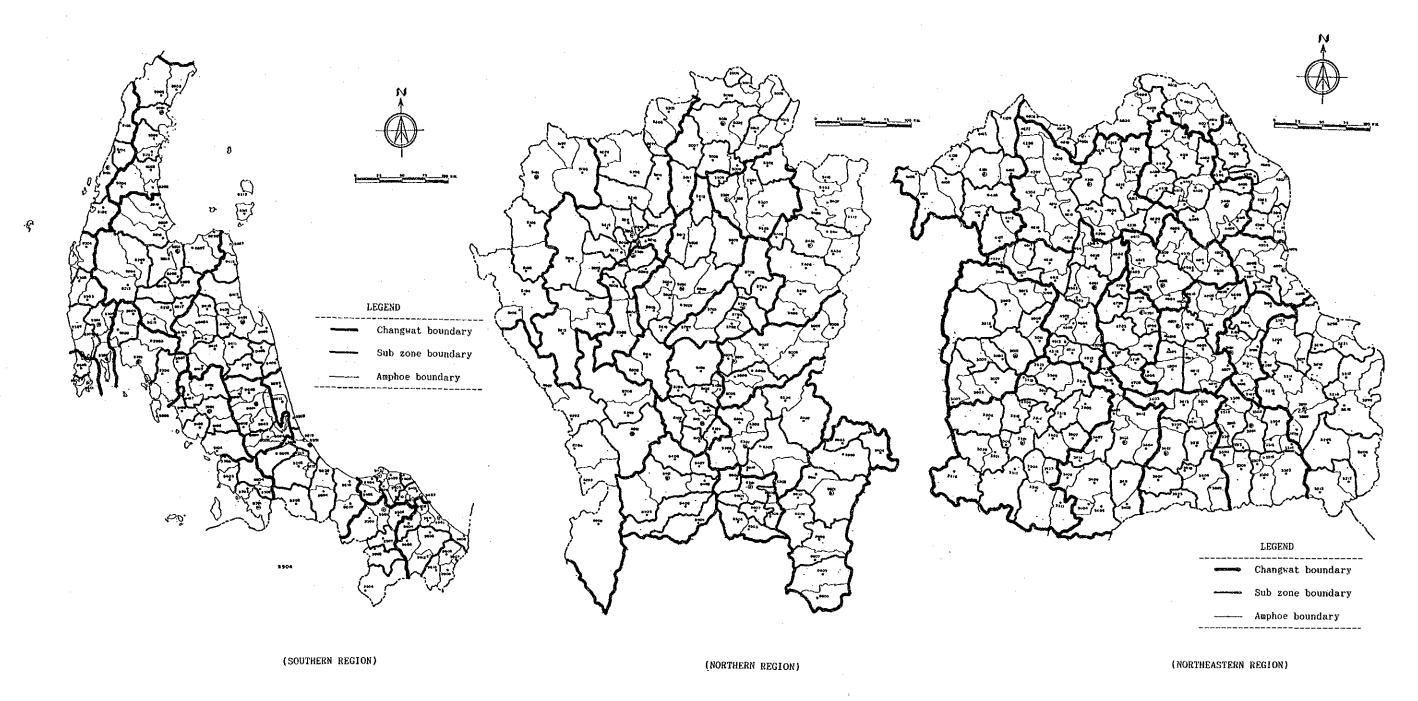
Appendix 6.46 Appendix 6.47

Appendix 6.47 PRESENT AND FUTURE TRIP LENGTH DISTRIUTION BY VEHICLE GROUP



Appendix 6.48 NUMBER OF SUB-ZONES FOR TRAFFIC ASSIGNMENT BY CHANGWAT

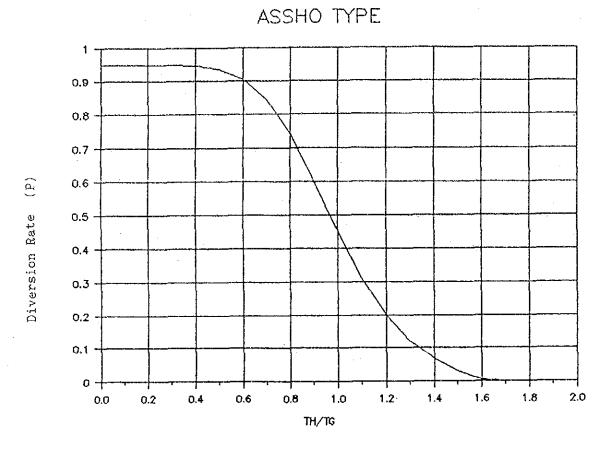
CODE		NO. OF UB-ZONES	CODE	CHANGWAT	NO. OF SUB-ZONES	CODE		NO. OF SUB-ZONES
1	BANGKOK METROPOLITAN *	8	41	LOBI	6	68	UTHAI THANI	?
10	CHAI NAT	3	42	UDON THANI	5	70	SUPHAN BURI	8
11	SING BURI	3	43	NAKHON PHANON	4	71	RANCHANABURI	?
12	LOP BURI	3	44	SAKIION NAKHON	5	72	NAKHON PATHON	4
13	ANG THONG	1	45	KHON KAEN	б	73	RATCHABURI	5
14	SARABURI	5	46	KALASIN	2	74	SAHUT SAKHON	1
15	PHRA NAKHON SI AYUTTHAYA	5	47	MAHA SARAKHAN	5	75	SAHUT SONGKHRAK	1
16	PATHUK THANI *	3	48	ROI ET	4	76	PHETCHABURI	2
17	NONTHABURI *	2	49	MUKDAHAN	2	77	PRACHUAP KHIRI KHA	N 7
18	SAMUT PRAKAN *	3	50	CHIANG RAI	7	80	CHUMPHON	4
20	NAKHON NAYOK	3	51	HAE HONG SON	3	81	RANONG	4
21	PRACHIN BURI	7	52	CHIANG HAI	9	82	SURATTHANI	7
22	CHACHOENGSAO	3	53	РНАЧАО	ş	83	PHANG NGA	4
23	CHON BURI	6	54	NAN	3	84	NAKHON SI THAMMARA	т ?
24	RAYONG	3	55	LYALHAN	4	85	KRABI	3
25	CHANTHA BURI	2	56	LAMPANG	6	86.	PHUKET	2
26	TRAT	2	57	PHRAE	4	90	PHATTHALUNG	2
30	CHAIYAPHUK	5	60	UTTARADIT	2 .	91	TRANG	4
31	YASOTHON	2	61	SUKHOTHAI	б	92	SONGKHLA	8
3 2	UBON RATCHATHANI	6	62	TAK	4	93	SATUN	3
33	SI SA KET	5	63	PHITSANULOK	3	94	PATTANI	4
34	BURIRAN	4	64	KAMPHARNG PHRT	4	95	YALA	4
35	NAKHON RATCHASIMA	11	65	PHICHIT	5	96	MARATHIWAT	3
36	SURIN	б	66	PHETCHABUN	7		-	
40	NONG KHAI	. 4	67	NAKHON SAWAN	9	TOTA	ւն .	317


Notes:

Appendix 6.49 SUB-ZONING SYSTEM OF THE STUDY AREA

^{1. *} Sub-zone OD table is estimated from BMA OD data.

^{2.} The used code is the code of the Land Transport Department (LTD).


Appendix 6.50 LINK CLASSIFICATION AND Q-V EQUATION PARAMETERS

Codo	Standard	Class	Surface	Vertical	No of	Velo	city	r	apacity	
Loue		~ I & 3 3		Alignment			l Vmin	00	Qmax	Qover
1	<u> </u>		Condition	F	6	140	35	36000	72000	86400
	Toll Mot	001104		F	4	120	30	24000	48000	57600
3	l oti moe	ULWALF		RH	4	100	25	24000	48000	57600
4			1	Mount	4	80	20	24000	48000	57600
5	l (P)	1 D	G G/F F	FRH	4	90	25	16000	32000	38400
6	1 (17	יי	0 0/1 1		4	70	20	16000	32000	38400
7	}		F/P P	Mount FRH	4	$\frac{70}{70}$	20	16000		
8			111		4	50			32000	38400
	<u> </u>		G G/F F	Mount FRH	6	90	15	16000	32000	38400
9		Đ	G G/F F		6	70	25	24000	48000	57600
10	1		F/P P	Mount	6	70	20	24000	48000	57600
11	j		r/P P	FRH		7.0	20	24000	48000	57600
12			- C / F F	Mount	6	50	15	24000	48000	57600
13]	D	G G/F F	FRH	10	90	25	40000	80000	96000
14	<u>}</u>	}	5 (5)	Mount	10	70	20	40000	80000	96000
15			F/P P	FRH	10	70	20	40000	80000	96000
16	1		0.00	Mount	10	50	15	40000	80000	96000
17		l	G G/F F	FRH	2	90	25	4000	8000	9600
18			L	Mount	2	70	20	4000	8000	9600
19			F/P P	FRH	2	70	20	4000	8000	9600
20				Mount	2	50	15	4000	8000	9600
21		2	G G/F F	FRH	2	80	20	2000	4000	4800
22]		ļ <u></u>	Mount	2	60	15	2000	4000	4800
23	•		F/P P	FRH	2	60	15	2000	4000	4800
24				Mount	2	4.0	10	2000	4000	4800
25		3	G G/F F	FRH	2	80	20	1000	2000	2400
26]			Mount	2	60	15	1000	2000	2400
27			F/P P	FRH	2	60	15	1000	2000	2400
28				Mount	2	40	10	1000	2000	2400
29	2(S)	D	G G/F F	FRH	4	80	20	16000	32000	38400
30	1 .			Mount	4	60	15	16000	32000	38400
31			F/P P	FRH	4	60	15	16000	32000	38400
32				Mount	4	40	10	16000	32000	38400
33		D	G G/F F	FRH	. 6	80	20	24000	48000	57600
34			<u></u>	Mount	6	60	15	24000	48000	57600
35			F/P P	FRH	6	60	15	24000	48000	57600
36				Mount	6	40	10	24000	48000	57600
37		1	G G/F F	FRH	2	80	20	4000	8000	9600
38				Mount	2	60	15	4000	8000	9600
39			F/P P	FRH	2	60	15	4000	8000	9600
40	[Mount	2	40	10	4000	8000	9600
41		2	G G/F F	FRH	2	70	15	2000	4000	4800
42	1			Mount	2	50	10	2000	4000	4800
43	[F/P P	FRH	2	50	10	2000	4000	4800
44				Mount	$\frac{2}{2}$	30	5	2000	4000	4800
45	•	3	G G/F F	FRH	2	70	15	1000	2000	2400
46	ļ			Hount	2	50	10	1000	2000	2400
47	[F/P P	FRH	2	50	10	1000	2000	2400
48	Í			Mount	2	30	. 5	1000	2000	2400
49		4	G G/F F	FRH	2	60	15	500	1000	1200
50		-		Mount	2	40	10	500	1000	1200
51	[F/P P	FRH	2	40	10	500	1000	1200
52			1	Mount	$\frac{2}{2}$	20	5	500	1000	1200
53		5	G G/F F	FRH	2	60	15	150	300	360
54	1		0,11	Mount	2	40	10	150	300	360
			F/P P	FRH	$\frac{\tilde{2}}{2}$	40	10	150	300	360
		ı	1 1 1 1							
55 56			ł	Mount	2	20	5 🤄	150	300	360

-										
Cod	eßtandard		Surface		No of	Velo			apacity	
				Alignment				Q()	Qmax	Qover
57		D	G G/F F	FRH	4	80	20	16000	32000	38400
58		j		Mount	4	60	15	16000	32000	38400
59			F/P P	FRH	4	60	15	16000	32000	38400
.60				Mount	4	40	10	16000	32000	38400
61		D	G G/F·F	FRH	6	80	20	24000	48000	57600
62	:	J		Hount	6	60	15	24000	48000	57600
63	i	i i	F/P P	FRH	6	60	15	24000	48000	57600
64	. T			Mount	6	40	10	24000	48000	57600
68	;	1	G G/F F	FRH	2	80	20	4000	8000	9600
- 66	;			Mount	2	60	15	4000	8000	9600
67	' '	٠.	F/P P	FRH	2	60	15	4000	8000	9600
68	:		. :	Mount	2	40	10	4000	8000	9600
69) [2	G G/F F	FRH	2	7.0	15	2000	4000	4800
70				Mount	2	50	10	2000	4000	4800
71			F/P P	FRH	2	50	10	2000	4000	4800
72		:		Mount	2	30	5	2000	4000	4800
73	;	3	G G/F F	FRH	2	70	15	1000	2000	2400
74	.)	,		Mount	2	50	10	1000	2000	2400
7.5			F/P P	FRH	2	50	10	1000	2000	2400
76				Mount	2	30	5	1000	2000	2400
77		4	G G/F F	FRH	2	60	15	500	1000	1200
78				Mount	2	40	10	500	1000	1200
7.9			F/P P	FRH	2	40	10	500	1000	1200
80				Mount	2	20	5	500	1000	1200
81		5	G G/F F	FRH	2	60	15	150	300	360
82				Mount	2	40	10	150	300	360
83	,		F/P P	FRH	2	4 0	10	150	300	360
84	r I		İ	Mount	2_	20	5	150	300	360
85	;	6	G G/F F	FRH	2	50	10	150	300	360
86	;			Mount	2	30	5	150	300	360
87	' [F/P P	FRH.	2	30	5	150	300	360
88		<u> </u>		Mount	2	10	1	150	300	360
88	Express	way(ET	A)		6	80	20	36000	72000	86400
90	Ordinar		in Bangkok	1	2	40	10	5000	10000	12000
91	.;- [.			•	4	4.0	10	20000	40000	48000
92					6	40	10	30000	60000	72000
93	Ramp				2_	20	10	5000	10000	12000

Note: Surface G=Good, F=Fair, P=Poor
Alignment F=Flat, R=Rolling, H=Hilly, Mount=Mountainous

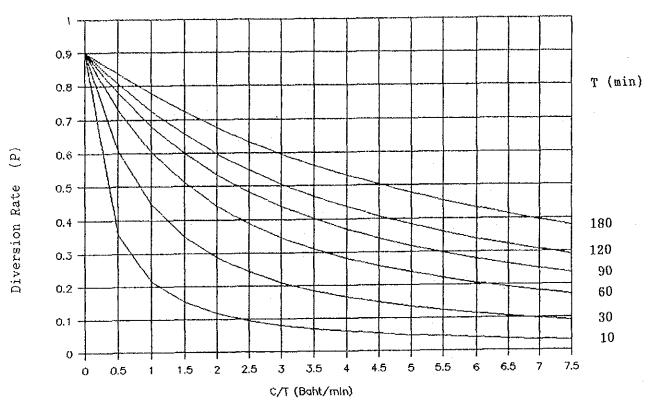
Appendix 6.51 AASHYO DIBERSION CURVE

Example: Assume a trip on both motorways and ordinary highways in the year 2010 under the following conditions:

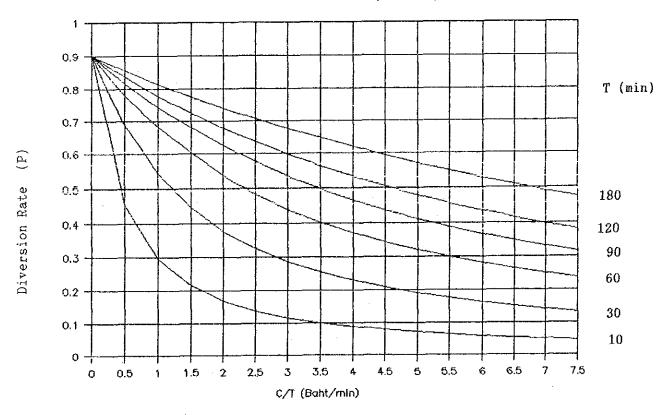
	Motorways	Ordinary highways
Length (km)	500	500
Speed (km/hr)	90	50
Time (min.)	333	250
Toll Rate "C" (Baht)	500	_

Time difference "T" = 333 - 250 = 83 min.

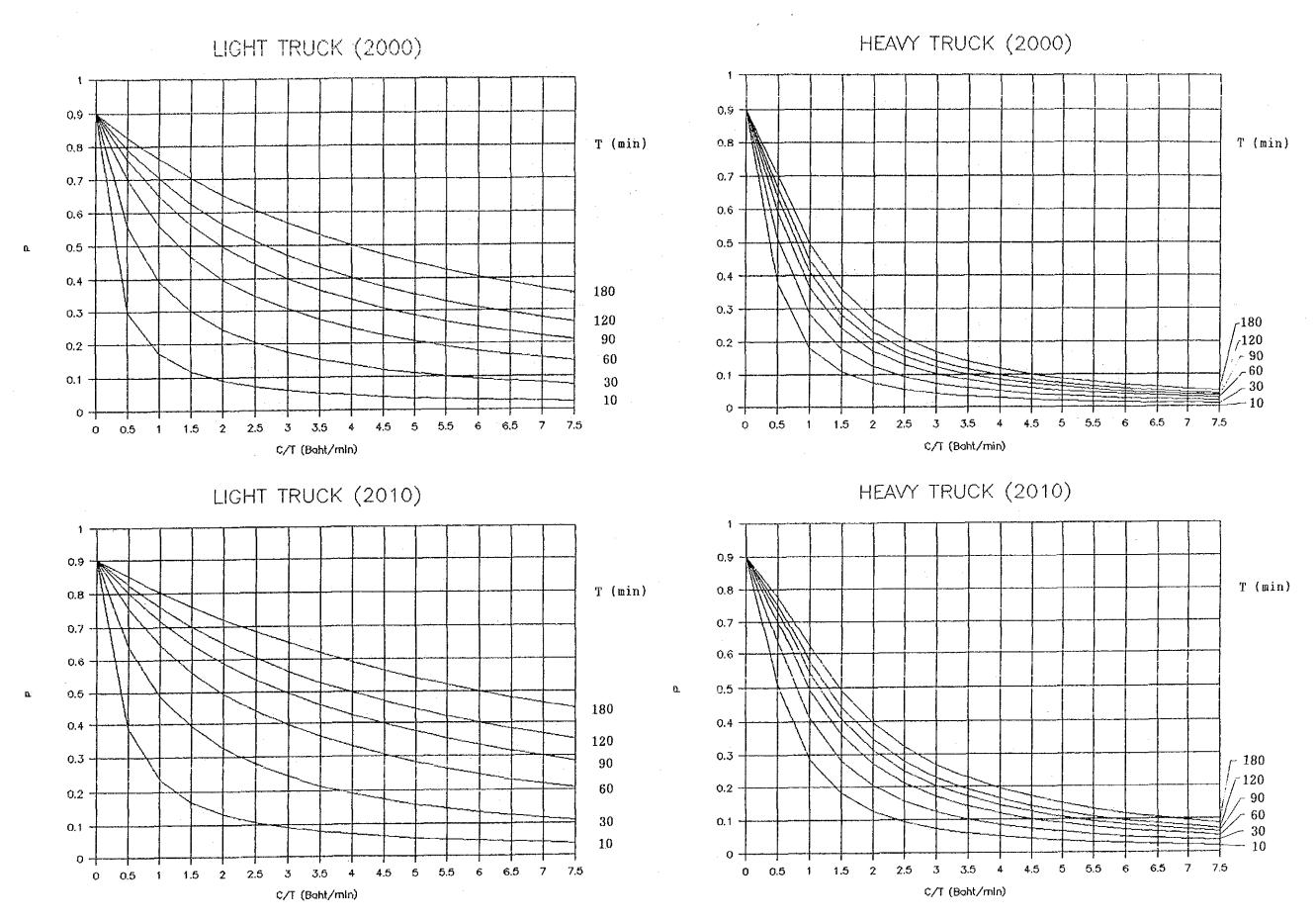
C / T = 500 / 83 = 6.02


Using the curves of Nihon Doro Kodan in Appendix 6.52 for the case of passenger car:

Diversion Rate "P" = 35 % (approximately)


Appendix 6.51 Appendix 6.52(1/2)

Appendix 6.52 NIHON DORO KODAN DIVERSION CURVES


PASSENGER CAR (2000)

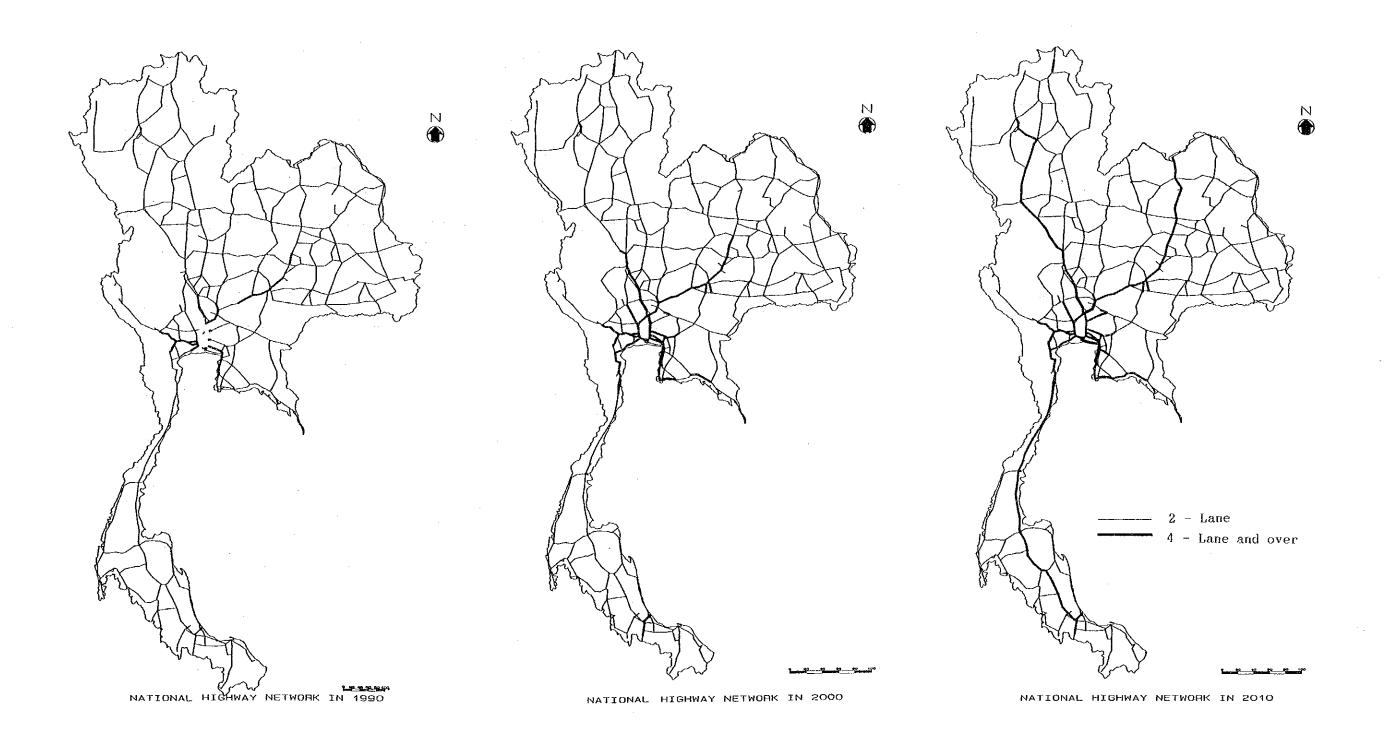
PASSENGER CAR (2010)

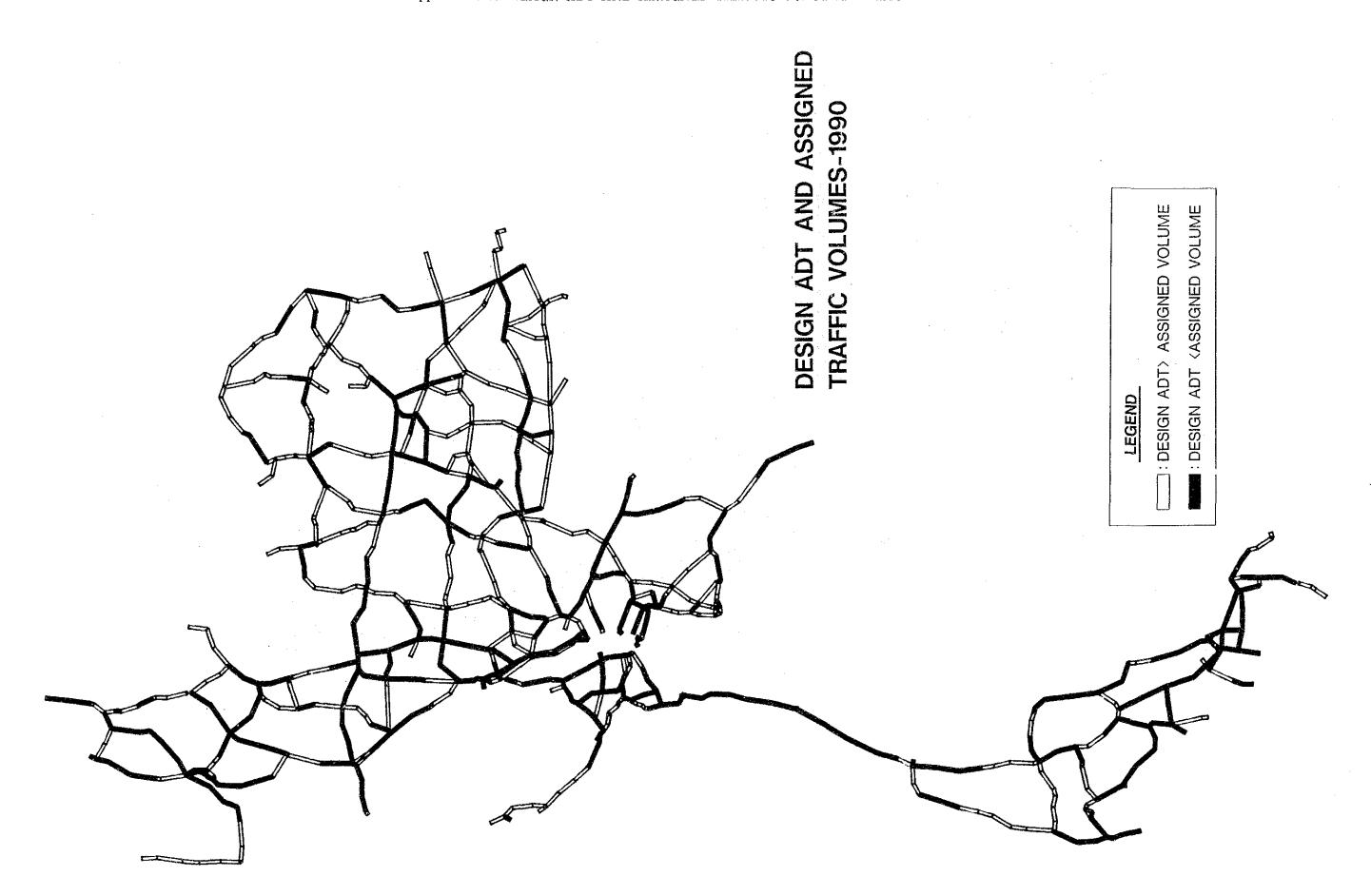
-99-

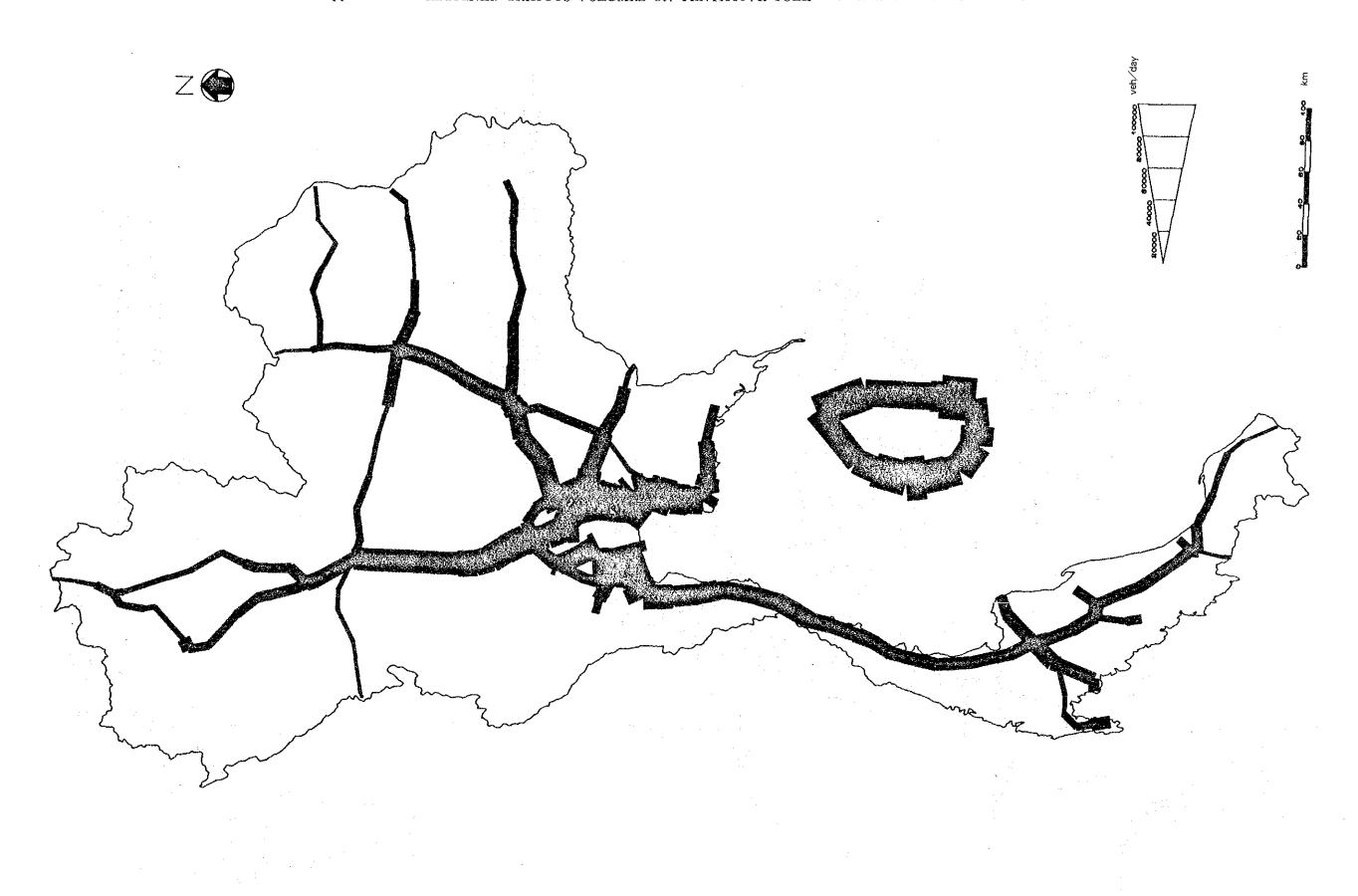
Appendix 6.53 TRAFFIC ASSIGNMENT CASES

Case	Year	Tol	l Motorways	5	Toll Rate	Induced Traffic	Diversion Formula
No.	iear	Network L	ength (km)	Lanes	(Bt/km)	Hallic	POTHULA
I. "	Without	t Project" Ca	ses (for na	ational hi	ighway netwo	ork only):	
1	1990				•		
2	2000					•	
3	2010					· · · · · · · · · · · · · · · · · · ·	···
<u>II.</u> '	"With F	Project" Case	s (for bot)	networks	<u>s):</u>		
4	2010	Tentative	5851	4-L	0.0	With	AASHTO
5					0.25		
6					0.5		
7					0.75		
8					1.0		
9					3.0		
10			•		$\begin{smallmatrix} 5.0\\10.0\end{smallmatrix}$		
11					10.0		
12	2010	Tentative	5851	4-L	0.0	With	KODAN
13					0.25		
14					0.5		
15					0.75		
16		••			1.0		
17					3.0 5.0		
18					10.0		
19					10.0		
20	2010	Tentative	5851	4-L	0.0	Without	KODAN
21					1.0		
22	2010	Proposed	4345	4-L	1.0	With	KODAN
23 24	2010	Proposed	4345	4&6-L	1.0	With Without	KODAN
III.	Implem	nentation Sta	ging Plans:	-			
25	1995	Scenario 1	701	4&6-L	1.0	With	KODAN
26	2000	Case 1-1	1891				
27	2000	Case 1-2	1201				
28	1995	Scenario 2	1004				
29	2000	Case 2-1	2126				
30	1995	Scenario 3	704				
31	2000	Case 3-1	1668				
32	2000	Case 3-2	1497				

Appendix 6.53 Appendix 6.54 Appendix 6.55


Appendix 6.54 TRAFFIC VOLUME MATCHING RATES ON REGION BOUNDARIES — 1990


Tumas statou	COUNT	ED TRAF	FIC VOL	UNE (A)	ASS[GN	ED TRAF	RIC VOL	AK	TCHING	RATE	(B/A)	
INTER-REGION	PC	BUS	PU+T	JATOT	БС	BUS	PU+T	TOTAL	PC	BUS	7+09	TOTAL
N - NE	311	269	1987	2567	351	390	2260	300[1.13	1.45	1.14	1.17
C - N	4042	2014	12222	18278	4080	2331	13317	19728	1.01	1.16	1.09	1.08
C - NB	1973	1985	11908	15866	1766	2184	12123	16073	0.90	1.10	1.02	1.01
c - s	837	645	4330	5812	816	795	4281	5892	0.97	1.23	0.99	1.01
TOTAL	7163	4913	30447	42523	7007	5681	31872	44560	0.98	1.16	1.05	1.05


Appendix 6.55 TRAFFIC VOLUME MATCHING RATES ON DIVISION BOUNDARIES - 1990

DDATON	THORE DEVICES		D TRAF	FIC VOLU	HE (A)	ASSIGN	IBD TRA	FFIC VOL	UNE (B)	OTAR	HING	RATE (B/A)		
KEGLUN	INTER-DIVISION	PC	BUS	PU+T	TOTAL	PC	BUS	PU+T	JATOT	PC	BUS	PU+T	TOTAL	
N	N1 - N2	2459	1107	6717	10283	2368	954	6436	9758	0.96	0.86	0.96	0.35	
	N1 - N3	803	371	1837	3011	1088	502	2359	3949	1.35	1.35	1.28	1.31	
	N2 - N3	1349	566	2968	4883	1183	584	3503	5270	0.88	1.03	1.18	1.08	
	REGION TOTAL	4611	2044	11522	18177	4639	2040	12298	18977	1.01	1.00	1.07	1.04	
NE	NB1 - NB2	1604	1065	6216	8885	1682	1206	7121	10009	1.05	1.13	1.15	1.13	
	NE1 - NE3	552	405	2200	3157	499	337	2376	3212	0.30	0.83	1.08	1.02	
	NE1 - NE4	1701	1480	6792	9973	1147	1353	7629	10129	0.67	0.91	1.12	1.02	
	NE2 - NE3	389	360	2435	3184	377	389	2671	3437	0.97	1.08	1.10	1.08	
	NE3 - NE4	569	667	3675	4911	469	498	3164	4131	0.82	0.75	0.86	0.84	
	REGION TOTAL	4815	3977	21318	30110	4174	3783	22961	30918	0.87	0.95	1.08	1.03	
C	C1 - C2	385	622	3372	4379	300	217	2488	3005	0.78	0.35	0.74	0.69	
	C1 - C3	6247	3818	32307	42372	8031	6767	29456	44254	1.29	1.77	0.91	1.04	
	C2 - BMR	12121	4375	43638	60134	12719	5446	45306	63471	1.05	1.24	1.04	1.08	
	C3 - BKR	24027	13817	60496	98340	21071	15188	69945	106204	0.88	1.10	1.16	1.08	
	REGION TOTAL	42780	22632	139813	205225	42121	27618	147195	216934	0.98	1.22	1.05	1.06	
S	31 - 52	1570	859	6310	8739	1466	887	5948	8301	0.93	1.03	0.94	0.95	
	S2 - S3	1868	749	5035	7652	2002	797	5783	8582	1.07	1.06	1.15	1.12	
	REGION TOTAL	3438	1608	11345	16391	3468	1684	11731	16883	1.01	1.05	1.03	1.03	
DIVISION	BOUNDARY TOTAL	55644	30261	183998	269903	54402	35125	194185	283712	0.98	1.16	1.06	1.05	

-101-

Appendix 6.61 TRIP LENGTH DISTRIBUTION OF INDUCED TRIPS - 2010

		· · · · · · · · · · · · · · · · · · ·						(%)
m t t anth			Veh	icle C	ategor	у		
Trip Length (km)	PC	LB	НВ	PP	LT	МТ	НТ	Total
0- 50	2.8	4.6	1.5	3.5	3.6	2.6	2.4	3.0
50- 100	30.1	29.1	18.9	32.9	38.2	34.6	43.0	34.5
100- 150	28.3	41.7	25.0	26.2	29.6	32.4	22.7	27.7
150- 200	12.9	11.2	10.5	12.9	14.3	11.3	7.7	11,9
200- 250	3.6	2.3	4.5	5.3	4.6	4.2	3.2	4.2
250- 300	4.4	2.0	6.0	3.8	2.7	4.2	2.9	3.6
300- 350	1.9	1.7	2.9	2.3	1.7	1.4	1.6	1.9
350- 400	2.1	0.4	3.3	2.0	1.2	1.4	1.1	1.6
400- 450	2.3	1.1	5.9	2.4	0.7	1.3	2.6	2.1
450- 500	1.3	1.2	3.2	1.3	0.9	1.2	1.5	1.3
500- 550	0.5	0.3	1.0	1.0	0.4	0.5	1.1	0.7
550- 600	1.7	0.1	3.3	1.4	0.4	0.9	1.4	1.3
600- 650	1,2	0.2	3.1	0.8	0.4	0.7	2.1	1.1
650- 700	3.8	1.9	4.4	1.9	0.5	1.7	1.6	2.1
700- 750	0.1	0.0	0.7	0.3	0.1	0.1	0.3	0.2
750- 800	0.6	0.2	1.3	0.6	0.1	0.2	0.4	0.4
800- 850	0.6	0.3	1.5	0.4	0.1	0.5	1.0	0.6
850- 900	0.4	0.3	1.2	0.3	0.2	0.2	0.6	0.4
900- 950	0.0	0.1	0.0	0.0	0.0	0.0	0.2	0.1
950-1000	1.0	1.3	1.4	0.3	0.2	0.5	1.3	0.7
1000-	0.3	0.1	0.3	0.3	0.1	0.3	1.5	0.5

Av. Trip Length 203.5 156.9 280.7 185.3 142.0 165.7 203.9 185.6

Appendix 6.61 Appendix 6.62

Appendix 6.62 ASSIGNED TRAFFIC VOLUMES OF IMPLEMENTATION PLANS

Plan		Route No.	Length (k	n) 1000 Veh-km	Veh-hr	Av. Vol.
Scenario 1	(1995)	1 3 4 31 32 36	264 196 108 46 47 40	2251 2179 1267 474 697 120	20192 19150 11172 4150 6123 1045	8528 11117 11735 10311 14839 2989
Case 1-1	(2000)	1 2 3 4 31 32 34 36 41	387 199 196 608 170 47 60 40	5621 4093 4728 8195 5314 1091 339 25 523	49862 36298 41748 72730 46626 9587 2961 223 4622	14525 20567 24125 13478 31260 23217 5649 636 2842
Case 1-2	(2000)	1 2 3 4 31 32 36	264 376 196 108 170 47 40	3341 6221 4674 2097 5182 1096 29	29781 55284 41195 18519 45526 9627 258	12654 16547 23848 19417 30481 23315 736
Scenario 2	(1995)	1 2 3 4 31 32 33 34 36	68 62 126 54 170 47 62 60 355	689 939 1781 191 2959 982 266 160 1355	6039 8317 15668 1683 25904 8619 2328 1403 11913	10130 15143 14139 3533 17405 20897 4295 2673 3817
Case 2-1	(2000)	1 2 3 4 31 32 33 34 36	449 376 126 481 170 47 62 60 355	6260 6090 3548 6509 5178 1090 325 255 2019	54937 54056 31419 57680 45578 9604 2831 2225 17799	13943 16198 28161 13532 30459 23185 5237 4247 5686
Scenario 3	(1995)	1 3	578 126	6332 1502	57451 13270	10955 11918
Case 3-1	(2000)	1 3 4 41	578 126 780 184	8190 3454 9845 452	74032 30705 87256 3980	14170 24710 12622 2455
Case 3-2	(2000)	1 2 3 4	578 376 126 417	8225 6314 3535 6652	74346 56098 31501 58990	14229 16793 28055 15953

Appendix 7.1 Appendix 7.2

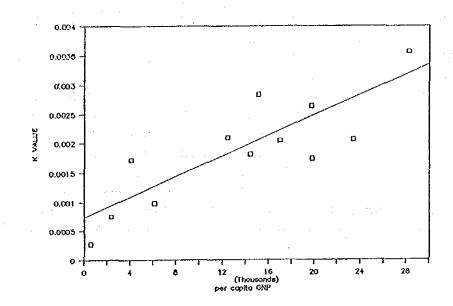
Appendix 7.1 LENGTH OF MOTORWAYS AND INDICES IN VARIOUS COUNTRIES

	Length of Motorways (km)	Population (1,000 persons) (1988)	Area (1,000km) (1988)	Per Capita GNP (US\$) (1988)
USA	83,214	244,523	9,363	19,813
ITALY	7,515	57,399	301	14,384
FRANCE	11,330	55,990	551	16,962
F.R. GERMANY	10,300	61,242	249	19,741
JAPAN	14,000	122,890	378	23,382
AUSTRIA	1,666	7,602	84	12,412
BELGIUM	1,567	9,865	31	15,125
SWITZERLAND	1,856	6,625	. 41	28,213
INDONESIA (JAVA	Is.)1,016	105,796	132	540
MALAYSIA (penins		10,267	132	2,356
TAIRAN	818	19,450	36	6,147
KOREA	3,500	42,080	99	4,082

Note: The length of motorways in each country is totaled by the existing, constructing and planning in 1988.

Appendix 7.2 RELATIONSHIP BETWEEN K AND G

$$L = K \sqrt{A \times P}$$
 (equation 1)


where, L: road length

K: function of GNP Per Capita Income (G)

A: area

P: population

$$K = 0.000686056 + 0.000000087 \times G$$
 (equation 2)

RELATIONSHIP BETWEEN K AND G

Appendix 7.3 DETAILS OF MAJOR POINTS BY CHANGWAT

REGION		DESI	GNAT		MALI	((C(Pr	ALITY			DESIGNATED INDUSTRIAL			GE USTRIAL	AIRPORT			HAI)	HAIN INLAN	IAN IN 10	N EREST	TOTA
		-1	-2	•3	1	**2	+-3	CITY NAME		DEVELOPHENT			ATES	NAT LONAL	rocal		109	t T	PORT	PLF	CES	
	PHICHIT								7													
	NAKHON SAWAN	ì	1		1] 	1	TUKHLI	1			1			\ 				Ĭ			
	LAMPHUN							TRACE L	1			1	MORTHERN REGION						***************************************	1		1
	SUKHOTHAI								1			†								1		S 77 2 G
	CHIANG RAL		 	1			1					1			1				ļ			3
	PHAYAO								Ţ			\downarrow				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>		-			
	PHRAE					ļ			4		_	4			1		 		 	┿		11
	KAN PHAENG PHET								-												to the second	
ORTHERN	PHETCHABUN						<u> </u>					1							1			
									1										ļ			
	PHITSANULOK		1	1 1 1 1		1.								•	t 						realist e	3
	CHIANG MAI	i			1	 	 		╁			+		1			-	 	 	1	1 1 1 1 1 1 1 1	4
,		:	- :													10 1						
	LAMPANG			1.1			1					T			t							3
							'						<u> </u>									
	UTTARADIT						1					\Box	:						<u> </u>	1		1
	UTHAI THANI								_			1				<u> </u>			1	 	<u> </u>	1 1
	NAN			 					-			+			1	ļ	-	 		╂──	 	 1
	TAK														1	MAE SOT						2
	MAE HONG SON					 -			†			1			1							
		1															}	. <u>i.</u>	<u> </u>			1
ţ		1	2	. 2	2	1	4				ī	Ť			8				5	2		26
	HAHA SARAKHAM						1].							 	-		1 1
	SURIN	ļ		1			_1_		4			4		pi			ļ			 		2
	KHON KAEN	. 1			i		1	BAN PHAI	-			1			1		1				er i ye	
				ļ				HUANG PHON	1						<u> </u>				<u> </u>	-		5
	ST SA KET							<u> </u>	_			1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u> </u>	 		 	-		
	ROI ET			1		ļ	11					- -				 	 -		· 		<u></u>	5
	BURIRAN			1					İ													
	KALASIN						1		T											-		1
	YASOTHON			L			ļ		4		_	4		-			 			-	ļ	
EASTERN	NONG KHAI			<u> </u>		ļ			+			+;	O SURANAR I			ļ			 		PHI MAI	+
, ,	NAKHON RATCHASIMA	1	.		i			PAK CHONG	-	į			U SUKANAKI		1	1		Į			KHUO AUI	8
	UDON THANL		1						1			Ī			1							3
Ĩ	NAKHON PHANON						1		Ţ			4				<u> </u>		ļ	 	+		1-1
	UBON RATCHATHANI			1	1		1	PHEBUN MANGSAHA	IN				·		1							4
	SAKHON NAKHON			1					1			Ţ			1							5
	СНА І УАРНИИ																1					
ţ	HUKDAHAN								士			士										1
	LOEI								T						1	}	l					1
l		2	1	4	3	1	8	ļ	4		1 2	+			6	 	ļ		 	2		30

Appendix 7.3 DETAILS OF MAJOR POINTS BY CHANGWAT

			(GNA)	ED	HAIL	ł						IGE Control of	ALRPORT				IN	1.00	HALN	HAII	N FOCOT	TOTE
EGION	CHONGNAT	CIT				CIPA				USTRIAL.	INI	USTRIAL	INTER-				EA DRT	· 16	INLAND	INI	EKEDI:	HOLE
	9	. 41	#2	+3	1	a • 5	9.93	<u> </u>	DE	ELOPHENT	ESI	ATES ***	JAMOT TAN	1 3 1					PORT			
	CHON BURI	1				1	1	PATTAYA		LAEM CHABANG	i	O SAHAPATTANA		1	GAGAT-U		STRACH SATTAR			1	PATTAYA	18
	RAYONG			t			1		1	MAP TA PHUT	1	DEASTERN		4,44,			l i					
	CHACHOENGSAD			1			ī				3	□ BANG PAKONG □ WELL GROW □ GATE WAY CITY						:				,
ASTERN	NAKHON NAYOK	1	1																			
	PRACHIN BURI	1.	1																		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	ļ
																			1			
	TRAY		 		70.00			<u> </u>			1						i l				1, 1, 1, 2	
	CHANTHABURI	+		-]		· · · · · · · · · · · · · · · · · · ·	_					<u> </u>	1	-						\prod
	SANUT SONGKHRAN	:	 		 -		 			-			1	<u> </u>	1		MAEKLO	NG	1			
1	SUPHAN BURI	+	1			 	· ·			<u> </u>	1-								1		:	
	RATCHABURI	- -	 	 			1			i	1			·	-	ì		:	1			
	KNICHHOURI	4.					١.		:													
STERN	PHETCHABURI	1		1			1					3					I BAN LA	EH			:	
	PRACHUAP	1:							_		-			1			1					T
•	KHIRI KHAN		1				1	HUA HIN				<u> </u>		L							HUA HIN	_
	KANCHANABURT	1		1			1					1		<u> </u>					1	1		
100	ANG THONG																		<u> </u>	ļ		}
	SING BURI	1									<u> </u>	i							1	├ ─		
	AYAHTTUYA		ĺ	1		1			H		3	□HI-TECH	1						1	1		
B-			1	• • •	}				: }			□BANG PA-LN		.	1 .:	- :						1
NTRAL	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		<u> </u>							2. 5.44	 	ORPJANA		[<u> </u>				 		<u> </u>	
	SARABUR I			1		1					2	SARABURI									A N	
	CHAI NAT		ļ															<u>.</u>	1			<u> </u>
	LOP BURE	T	T				1							·								
	вин				î					1. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	3	MALAT KRABANG MBAN CHUN	l				1 BANGKO	K	1	1	Territoria.	
		1	<u> </u>	L				:		<u> </u>	L	ONINBURI								_		
	NONTHABUR I				1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u> </u>					1	 		
	SAMUT PRAKAN	1				1			- 1	***	3	BANG BO				- 1			1			
₹		Ì	1	1			· ·		: {			O THEPARAK (M. THAT)			: 1			1 .			- 1
											L-	BANG PLI	-					· · ·		1	<u> </u>	+
	SAMUT SAKHON					1	L			Į	1											+
	NAKHON PATHON	ļ					1			 	<u> </u>				<u> </u>		 			-		
:	PATHUM THAMI										3	NAVA NAKHORNBANGKADI							1			
											1	OHAN BOOKKRONG		<u> </u>	1							
. 1		1	1	5	2	5	11		2		55	1 2	1	2			8		12	5		

Appendix 7.3 DETAILS OF MAJOR POINTS BY CHANGWAT

REGION	CHANGNAT	DES!	Es		MALI	ICIP:	ALITY	J	tni	SIGNATED DUSTRIAL		USTRIAL	AIRPORT		s	AL EA		MAIN INLAND	INT	EREST	TOTA
		•1	4.5	• 3	-+1	- + 2	••3		DEI	DELOPHENT		ATES YET	NATIONAL	L	q	OR	T	PORT	PLA	CES	<u> </u>
-	PHUKET						l				II	Q	1			1			1		6
	PATTANI			1			1				J			. 1		1					4
	SONGKIILA HAT YAT	1			1	1	Ì				1		1			1			1	HAT YAI	8
	NAKHON SI THANNARAT			1		1								1		2	\$1CHON		,		
	gradient de la seconda					4.4											PAK PHANANG				1
		ļ	· ·													_	FRK FIIHRANG			<u> </u>	5
	PHATTHALUNG		~~~		ļ		1				 										1 1
	NARATHIWAT				ļ		1				ļ			1	ļ	1			1	SUNGAL KOL#K	·
SOUTHERN	TRANG					1 .	1	ļ		}				l t		1	KHANTANG				3
	SATUN								-							1					1
	YALA					1			1							1					1
	СНИМРНОМ															1					1
	KRABI			4.7	1				1	KRAÐ I						1					5
	SURAT THANI		i	·· .			t			KHANON BAN NA SAN				i		I I	BANDON		1	KO SAHUI	7
	PHANG NGA																				
	RANONG															1					1
	TOTAL	1	2	2	1	3	6		3		3		2	5		2			A		44
GRO	AND TOTAL	5	6	13	В	19	38		5		28		4	21	2	яŢ		14	13		177

LEGEND

- •1:Designated cities (1st Priority) *2: Designated cities (2nd Priority)
- *3: Designated cities (3rd Priority)
- **1: Nore Than 199,000 persons(as of 1988)
- --2: Nore Than 58,888 persons
- ****: 置[EAT(EXISTING]
 - DIEAT (ON GOING OR PLANNED)
 - PRIVATE (EXISTING)
 - OPRIVATE (ON GOING OR PLANNED)