PRO	ECT	RENA	BILITAT	ION OF			AND IRRIGATION IMPROVEMENT PRO	HEGT, I	EPHBLI	C OF H	NOVRAS	l			SREET NO. 1 OF 3
KOLE		110					809.01 m. A. S. L. DEPTH	2.7	90 w	11.	DATE		Feb. 17 -	- Fel	b. 22, 1990.
ANI	GLE	100	夕	4 M		CTION	1 134. 134 W	\$10) ? {		\mathcal{D}		T	 -	
SCALE(M)	DEPTR(S)	ELEYATION (m. A. S. L.)	ROCK TYPE	COLUMN	CORE	ALTERATION	DESCRIPTION		BATE	BIT & DIAMETER	GREDHO WATER LEVEL	CORE RECOVERY % (m)	#. Q. D. % (m)	CLASSIFICATION	WATER PRESSURE TEST If value Laguer Value Value Value Value Value R Value : con 'soc 1 16 12 31 45 36 36
10 1 2 3 4 4 5 8 7 8 10 11 11 11 11 11 11 11 11 11 11 11 11				000000000000000000000000000000000000000			Fresh angular hard blocks reddish brown welded tuff fine to coarse size mor with irregular form of vo. and large thin void arouthe blocks. Some beige clay deposit imorter from 2.70m. Void is \$\phi\$ 8mm in maximum.	tar id nd					66 (6.00)		tomer Dooth: 5.00 K Yalue: 2.07 × 10** Lower Dooth: 10.00 K Yélue: 4.24 × 10**
ulmanufaniudmalmuludmalanlanlanlanlanlanlanlanlanlanlanlanlan			Wet Mesonry							NG (76/ 47. 6)		199 (18, 30)	(15. 0q)		Lower Depth : 15.00 K Velue : 9.50 × 10°
19 20 21 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24							Joint along the contact be ween block and mortar within reddish oxide and/or beige clay. Some inclusion of wooden	th	17/2 (20. 99)		AND	[100]	78 (20.00)		tower Ompth : 20.00 X Value : 6.30 × 10-3
25 26 27 27 28 28 29 30	21.90	781, 11					Top of the Phase I construction.						76 (25.00) 76 (310.00)		Lower Depth : 25.00 K Valua : 8.40 × 10 ** Lower Depth : 30.60 K Value : 6.60 × 10 **

^{*2.} C. D. is Bod Gestity Designation . C. C. D. "Tield loogth of cylindric costs longer than idea) (listed drill innight) × 198%

• Uniform value in 1 minim under injection water prayers of littly/cm

• Original and Cutfolium no in costs:

• Control of its minimization.

• Original Control of Laborat Tables.

• (16.0) is Control of Laborat Tables.

PRO	ECT .	REMA	BILITAT	ON OF	COYOLA	R DAM	AND IRRIGATION IMPROVEMENT PRO	IECT, R	EPVBLI	C OF N	NOURA:	<u>S.</u>					······································	
HOLE	HĐ.	N	1 .				809,01m. A. S. L. DEPTH		90 w		DATE		Feb. 17	Fe	b. 22, 19	990.		
AKG	Œ	100	D	M.	DIREC	IION .	E SH. N F	ste	PE		N C	1	<u></u>			<u> </u>	. دخت	:
SCALE(m)	DEPTH(m)	ELEVATION (M. A. S. L.)	RBCK TYPE	COLUMN	CORE	ALTERATION	DESCRIPTION		DATE	BIT & DIAMETER	GROUND WATER LEYEL	CORE RECOVER % (m)	R. Q. D. %	CLASSIFICATION	Yieldi	PRESSUR N Yeloo Lugoon Yahi ng Peessare : Yeloo : em 'i N 3	lg m'	11
30 31 32 33 33 34 35 36 37		ELEVATOR (T. A. A. S.	Welded Tuff	######################################	#####################################	Alterated Moderately Alterated Alterated Alterated	One meter of fine compacter with subround agree everage size of 2mm. Relatively good contact with major quantity of void. Some angular blocks (26-36 are seen irregulary. Some layers of orange coldoxide. Closed contact composed of layer of mortar & cement. Light pink to light red, figrain with white spot plagioclase and micro gramatrix. Sub-vertical joints are seen in general with reddish broclay and secondary silicated. Cracked section: 39.14 - 39.68m 43.45 - 44.60m A6.70 - 48.80m Irregular oxide along join with deposit of white clay with deposit of white clay in construction periods seen, but not good penditated. Light pink to light red, compact, fine rock. Sub-vertical open joints apredominant. Cracked section: 52.00 - 53.35m 54.00 - 54.45m Joints contain fine clay land/or oxide, sometimes secondary silicate veins.	ine of ine own i.e.		NO (76/ 47. 6)	13A31 7A ONODES 5.55	RECOVER % (m)	(#) (#) (#) (#) (#) (#) (41) (42, 10) (43, 00) (45, 60) (45, 60)	CM	Tields &	Upper Comer Dept Value : Upper Comer Come	h: 35.7.00 > h: 37.1.30 x south: septh:	70 10-1 10-1 45, 00 50, 00 (15.5)
56 57 58 59				~^~ ~^~ ~^~ ~~ ~~ ~~ ~~ ~~ ~~		No Alt	Intensive reddish yellow oxidation section: §7.35 - 80.00m Cracked section: §7.50 - \$7.83m §9.30 - \$0.00m						(56. 50) (56. 50) (59. 00) (69. 00)	СМ		lower D	epth : epth : Yalue :	60.00

J I C A
Japan Internalismal Cooperation Agency

PROIEC				ION OF			AND IRRIGATION IMPROVEMENT PROJ	ECT, R		C OF H	· · · · · · · · · · · · · · · · · · ·				SHEET NO. 3 OF 3
HOLE I		i be i be ip	К	J **	-	ATION CTION	809.01 m, A. S. L. DEPTH		90 m		DATE PROBE		Feb. 17 -	- Fe	b. 22, 1990.
	_	ELEVATION (m. A. S. L.)	ROCK TYPE X	COLUMN SECTION			DESCRIPTION		DATE	BIT & DIAMETER		CORE RECOVERY % (m)	R. C. D. % (m)	CLASSIFICATION	WATER PRESSURE TEST H false Legron Yafre Ticking Existence In Sm. L Takes Con (145)
60 61 62 65 66 67 68 69 70 71		9	Welded Tuff	~^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~		No Alterated	Cracked section with clay to recondary silicate. 61.5 - 61.50m 63.28 - 64.30m 65.00 - 65.30m 67.95 - 68.30m 69.53 - 89.73m Hany voids are seen a stratified layers.		20/2 (85.00)		33	(5,0)	(82°,00) (82°,00) (88°,00) (88°,00) (88°,00)	CH CH	Upper Depth: \$0.00 toner Depth: \$5.00 tugeon Value: {15.5} 8. Point: 1.2 Upper Depth: \$5.00 tugeon Value: {17.7} 8. Point: 1.2
73 74 75 76	-	736.31 730.91		A~A ~A~A ~A~A ~A~A ~A~A ~A~A ~A~A ~A~A	C, H.5		Hardly compact fine light pink rock. Little joint parallel stratified layers.			NO (76/ 47. 6)			94 (75, 00)	CH	Upper Depth : 10,00 Lower Depth : 75.00 Lower Depth : 75.00 Logeon Yalue : 7,6 B. Point :
- 81 - 82 - 83			ded Tuff	~0~ 0~0~ 0~0~ 0~0~ 0~0~ 0~0~ 0~0~		Alterated	Reddish brown, fine compact with many light grey tuffact spots showing agreemendid aspect. Hany voids ere seen parall to stratified layers.	eous	21/2 (60.00)	-		[100] [100] [100]	44 (30,00)	СИ	Upper Depth: 75.00 lower Depth: 80.00 lugeon Yalue: (26.4 8. Point
84 85 86 87 88			Spotted #elded	~0~ 0~0 ~0~ 0~0 ~0~ 0~0 ~0~ 0~0 ~0~ 0~0 0~0		Slightly Alter	Sporadic open sub-vertucal joints with orange/black orange white clay layer.	xide		*			89 (e8, 00)	CH	Upper Depth: 80.00 Lugeon Value: (17.0) B. Point: Upper Depth: 85.00 Lugeon Value: (17.0) Lugeon Value: (17.0)

^{*8,} C. B. in Noch Stallity Breifgration.

N. C. B. — Clain inglie of epidelic cover images (best librm) (Clain feillt breib) × 1905

*RECEN FARE (b. 1-106) in under Histolic maler pressure of libry "em"

*RECEN FARE (b. 1-106) in until belle.

* O in (Libral, Childre (Clain Clain and paid)

* O in (Libral, Childre (Clain and paid)

* O in (Libral, Childre (Clain and paid)

* O in (Libral, Childre (Clain and paid)

J I C A Japon laternational Cooperation Agency

⁺ B. B. d. Beck Bealty Designation. B. B. B. - (Total longth of cylindric curve longer than 18cm) (Cylind Gill longth) × 190%.

• 1851200 TAINE is 1'min' in under dejection water pressure of 1984 (cm'

• 185121 and ELEFATHE was in moder.

• 185121 and ELEFATHE was in moder.

• 18512 to 1851200 Elefathe 1851 performed point.

• 18512 Elefathe Elefathe 1851 performed point.

• 18512 Elefathe Elefathe 1851 performed point.

JICA Japan International Cooperation Agency

PROI				ION OF			AND IRRIGATION IMPROVEMENT PRO	JECT, R	EPUBLI	C OF H	NOURA	S .					` .			
HOLE	HO.	N		2	ELEV	ATION	809.01m, A. S. L. DEPTH		20 #		DATE			Feb. 26 ·	M	ar. 5,	990	<u>).</u>		
ANG	LE	117	N.	#* 41 M	BIRE	CTION	B THE THEM	Ste	PE		$_{\bullet}P$	Lan						as Albania	14	1. 111 1
SCALE(m)	DEPTH(m)	(m. A. S. L.)	ROCK TYPE	COLUMN	CORE	ALTERATION	DESCRIPTION		ELAC	BIT & DIAMETER	GROUND WATER Level	EB RECO	YERY 6 a)	R. Q. D. % (m)	CLASSIFICATION	WAT Ti	lage elding fo	ESSURE Tidea non Tidea nosoni : ha no : on isa no	en'	1 N
30	· .			~^~			Open contact with beige c	laγ.						0 (36,40)						
31				Δ~Δ ~Δ~ Δ~Δ			Light pink, fine grain a much quartz, white plagion in fine matrix.	with clase										$\otimes $		
33				~Δ~ Δ~Δ											CH					10.00
34				~∆~ ∆~∆ ~∆~			Sporadic sub-vertical join with secondary silicate ve and beige clay.										i (ower Be ower Be open Y Point	oth: alve:	35. 00
35				Δ~Δ										(35, 10)				\otimes		
38				~∆~ ∆~∆ ~∆~		:														
37				∆~∆ ~∆~							1.5				СМ					
38				Δ~Δ ~Δ~	:															
39				Δ~Δ ~Δ~													li.	oper De ower De Joseph V	oth :	40.00
40				Δ~Δ ~Δ~			Sub-verticel joints are produced to the sub- dominant with little frequency										8.	Point		<u> </u>
41				Δ~Δ ~Δ~																· ,
42			:	Δ~Δ											CM					78.7
43				~Δ~Δ		7	Voids are seen parallel stratified layers, sometim								CM		[to	Mot De	oth :	45. 90
44			uff	~^~ ^~	۵.	8	oxidated.										; B:	Point	elve : '	्राह्य
45			Welded Tuff	~^~ ^~	II ~ II	Alterated				KQ (76/ 47.6)	İstan					h-h	<u> </u>	8		.2.7
- 45			Wel	~^^ ^^	ပ	No A	·	Ì		47.0										jel I
47				~^~ ^~					79 (1				10							
48				~∆~ ∆~∆			Clare grey tuffaceous laye are seen.	ers	28/2 (41, 14)			- (±	70)		CM					
49				~^~ ^~													v	ocer De	oth : oth :	45. 00 50. 00
50				~∆~ ∆~∆		:	Sub-vertical joints are p										- 10	Poin)	alve :	
- 51				~∆~ ∆~∆			dominant and contain orang colour oxide, secondary silicate, organic materia													
- 52				~∆~ ∆~∆			and brecois.													
53				~^~ ^~				:							CM				.	
54				~∆~ ∆~∆														oper Da		
55				~∆~													1.	owar De ugeon Y Paint	alus :	\$5.00 :(19.1)
				Δ~Δ ~Δ~																
56				Δ~Δ ~Δ~																
57				Δ~Δ ~Δ~											СМ					
58				Δ~Δ ~Δ~																
59				Δ~Δ ~Δ~			Stratified layers are seen horizontal.	n						100			i lo	oper De mer De mer Y	oth: olus:	60.00
60					Ļ	L	tillimbrig owen forem fine them. Claim Gill tone	ا	<u> </u>	l	لـــا			(79, 30)	<u> </u>		[8.	Point	<u> </u>	

J I C A layan international Compension Agency

E-12

PRO							AND IRRIGATION IMPROVEMENT PRO			C OF HE							
HOLE		N Ng		-		ATION	809.01m. A. S. L. DEPTH		20 🛚	_	DATE		Feb. 26 -	- M	ar. 5, 19	90.	
ANG	ile	***	区	6 M.	DIRE	CTION	T IN WIN	St	350	<u> </u>	.P	H	·.				
SCALE(#)	DEPTR(m)	ELEVATION (M. A. S. L.)	NOCK TYPE	COLUMN	CORE	ALTERATION	DESCRIPTION	÷	BATE	BIT & DIAMETER	GROUND WATER LEVEL	CORE RECOVERY % (m)	R. Q. D. % (m)	CLASSIFICATION	. Ti sidia	PRESSURE TEST If Yalve Lageon Yalva g Foissers : bg 'cm' Yalve : cm'iret. 28 28 46	
60 - 61	7		:	~∆~ ∆~∆ ~∆~			:	. :									
- 62				Δ Δ ~Δ~										CM		\otimes	
- 63			. :	∆~∆ ~∆~													۸ ۸۸
64	. :			Δ~Δ ~Δ~	. و	18			1/3			100 (65, 00)				Upper Depth : 60 Lower Depth : 65 Lugeon Value : (8. Point :	5.00
- 65				∆~∆ ~∆~	111 ~ 111	Alterated			(65, 00)								
- 66				Δ~Δ ~Δ~	್ .	¥ o¥											
67			+ 2	Δ~Δ ~Δ~										CM			
68				Δ~Δ ~Δ~										:		Voper Depth : 65	S. 00
69			Tuff	Δ~Δ ~Δ~ Δ~Δ									100 (70, 30)			lower Depth : 76 Lugeon Velue : (1 B. Point :	0. 00 16. 4)
-70 71			Melded Tuff	~∆~	ΰ		Cracked section :						(10, 30)				
72			*	Δ~Δ ~Δ~ Δ~Δ	C. V.</td <td></td> <td>71.00 -71.70m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 (12.00)</td> <td></td> <td></td> <td></td> <td></td>		71.00 -71.70m						0 (12.00)				
73				~∆~ ∆~∆										CM		\otimes	
74				~∆~ ∆~∆	d. H.	b				1						Upper Depth : 10 Lower Depth : 75	g. 00
- 75				~∆~ ∆~∆	- ರ	Alterated	Cracked section:		\	NO (76/			90 (15, 00)	· 		Lugeon Value : (i B. Point :	19. 2
76				~∆~ ∆~∆	a.	Slightly /	75. 20 - 76. 15m 77. 90 - 79. 00m		2/3 (76.00)	47. 6)			65 (78, 00)				
77				~∆~ ∆~∆	ე ≣.	Slig							(77.00)				
78.				~∆~ ∆~∆										CM			
79				~∆~ ∆~∆	IV. C											Voper Depth : 75 Lower Depth : 80	0. 00
80	80.35	728.88		~∆.~ ∆~∆	٠ ئ			:					0 (80. 25)			Lugeon Value :{I 8.Point :	16. 6)
81		}		0~0 ~0~	۱۱ , ۵		Light brown to reddish bro fine compact with agromer aspect in fine compact ma	dic									
82				0~0 ~0~	: :		Copert In The Compact Ma	IX.					(82.00)				
83			4-	0~0 ~0~	S	p	Tuffaceous white spots are shown glassy fine grain w	nich						CM			
84			Welded Tuff	o~o ~o~ o~o	C. 1V. c	Alterated	trend to make voids betw 5 and 10mm in large.	een								Upper Depth : 89 Lower Depth : 89 Lugeon Value : (1	5.00
- 85				0~0 ~0~ 0~0	-											B. Point ;	
86			Spotted	~0~ 0~0	Ω.	Moderately	Cracked section is shown in the part of large presence										
87			S.	~0~ 0~0	-	Ş.	tuffeceous part : 88.25 - 88.73m 89.10 - 89.75m						52 (87, 25)	CM		$ \otimes $	
88				~0~ 0~0				·					(86. 70)	4			_
89				~0~ 0~0									0			Upper Depth : 85 Lower Depth : 95 Lugach Value : (19.00
90			i gratine	~0 <u>~</u>	لبيا	L	f cplindric cores langer (kan 150m) (fetal driff leng		لــــا	L			[90. 20]			8. Point :	

e 8.01 k. de de bei lit Beriepustum. 2.2.9. — Celul fength of cylindric cares longer than 1950) (field drift fength) × 1884;

• 1867 and Ellestina no de beform,

E — 1

• (1867 a Comparison Linguise Carbon.)

J I C A

PROJ	ICI	REHA	BILITAT	ION OF	COYOL	AR DAM	AND IRRIGATION IMPROVEMENT PRO	JECT, R	PUBLI	C OF HE	NDURA!							
HOLE		1M			ELEV	ATION	809.01 m. A. S. L. DEPTH		O m		DATE	1	Feb.26 -	<u>~ M</u>	ar. 5, 19	90.	<u> </u>	
AKS	LE .	1631	区	14 15 M	DIRE	CTION	r mr C mr	SLO	54		\mathbb{P}	•						
SCALE(m)	DEPTH(m)	ELEVATION (m. 4. S. L.)	RECK TYPE	COLUMN	CORE	ALTERATION	DESCRIPTION		DATE	BIT & DIAMETER	GROOMB WATER Level	CORE RECOVERY % (m)	R. Q. D. % (m)	CLASSIFICATION	T letter	PRESSY IN Tring Ingreat Yes In Printers Trings Con Hi	ri kg cm'	s 31
90 91 91 92 93				~	g. II. c	pe)	Gracked section: 90.10 - 90.25m 91.10 - 91.30m 93.30 - 93.70m Horizontal joints are seen predominant.		3/3 (91, 60)			(91080)	10 (93, 50)	СМ				
94 95 96 97	3		ed Tuff	\$ \$ \$ \$ \$ \$ \$ \$ \$		Moderately Alterated	Many voids in grey spots. Dark beige clay layer : 95.85 - 96.00m						(94, 40) 19 (95, 40)	СМ		Lower	Ogoth : Oepih : Yalue	\$5.00
98			Spotted Welded Tuff	<pre></pre>	B, III, c		Cracked section : 99.00 - 99.45m 100.00 - 100.30m 100.85 - 101.00m							CM		Loner	Depth : Depth : Value :	100.00
102 103 104				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3. اا ي	Slightly Alterated	102.00 - 102.15m 102.90 - 103.00m			NO (76/ 47. 6)			0 (102.50)	CM		Lower	Depth : Depth : Volue :	105.00
108	108. 20	102.81	uffaceous Welded Tuff	0-0 -0-0 -0-0 -0-0 -0-0 -0-0 -0-0 -0-0		5 7	Lithological gradation. Light pink, compact fine g Sporadic joints (45 ° ~ S vertical) with secondary s cate and/or orange colour oxide of clay. Sub-horizontal joints with clay layer or black organi material.	Sub- sili- red	-			100 (102.60)	97 (108, \$0)	CN		LOPER	Depth : Depth : Yalue ;	110.00
113		897, 81	Tuff To	~~ ~~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8, 11, c	Moderately Alterated	White, reddish brown, red, fine or granular, compact						35 (112,70) (112,70) (113,90)	CL		Upper	Depth :	310. 00 315. 00
115 116	116. 65	897. 36 897. 36	If Sand Stone	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-		Light gray, fine in upper coarse in lower part. Spot of oxide. White, compact.	and	5/3 117.50			100 (115,60)	(11 £ 90) (11 £ 90) 90 (117, 60)	CL.		Lugeon B. Foin	Value	(10.4)
118 119 120	120.00	689. 01	Welded Tuff	~Δ~ Δ~Δ ~Δ~ Δ~Δ	8, 111, d	Slightly Alterated	Sharp contact. Pinky grey, clare stratiflayer. Open joint (45 ° ~ Subverti					(100 (120, 00)	100 (120, 60)	CŁ		Loner	Deoth Deoth o Yalus ot :	:170.00

ROIECY DLE NO.	N N					AND IRRIGATION IMPROVEMENT PROTE 805,49m. A. S. L. DEPTH	CI, REPUBLI 90 m	s of AC	DATE	3.	Jan. 26 -	- Fet	5, 5, 19	90.	1	
MELE	110 100 100 100 100 100 100 100 100 100	K	M		ETION	1 211 N 1	SLOPE		P							-
DEPTH(#)	ELEVATION (m. A. S. L.)		COLUMN	CORE	ALTERATION	DESCRIPTION	DATE	BIT & DIAMETER		CORE RECOVERY % (m)	R. Q. D. % (m)	CLASSIFICATION	Tieldla	PRESSUR Il Talve Luggeo Talve I Pressuro : I Talva : cm 's	ra.ew	
2	805, 18 602, 19	Tuf÷	() () () () () () () () () () () () () (C, V, d</th <th>Moderately Alterated</th> <th>Gravestone (max. 5cm) Light pink, soft, moderatel compact, sandy coarse metri Ryolitic rock. Partially brown clay layer max. 30 -40 cm.</th> <th>y :</th> <th></th> <th></th> <th>[100 (3,30)]</th> <th>[3,40]</th> <th>CH</th> <th></th> <th>Upper D Lower O H Yalue</th> <th>epth :</th> <th>2, 65</th>	Moderately Alterated	Gravestone (max. 5cm) Light pink, soft, moderatel compact, sandy coarse metri Ryolitic rock. Partially brown clay layer max. 30 -40 cm.	y :			[100 (3,30)]	[3,40]	CH		Upper D Lower O H Yalue	epth :	2, 65
4 5 6 7			~A~ ~A~ ~A~ ~A~ A~A ~A~ A~A ~A~	c, 11. b	po ₁	Light pink to light red, compact. Inclusion of 2 - 5 cm large andestic engular fragments. Joints (sub-vertical, 45 -60 with orange colour oxide arpredominant.	0°)				(5. 00) (5. 00)					
8 9 10 11		Welded Tuff	Δ~Δ ~Δ~Δ ~Δ~Δ ~Δ~Δ ~Δ~Δ ~Δ~Δ	C, 11 & 111, 5	No Alterated	From 6.80m deposit of beige clay is seen along joints. Cracked sector :	27/1 (10.00)				96 ((1,00))	CM		Vocer D Loner D Lugeon B. Point	epth : Point :	10. Q
13 14.20 14.90	791, 29 790, 56 790, 69	1 ₩	~~~ ~~~ ~~~ ~~~	C. 111. b	per	Hollow (rubber piece is four Same as upper stratum. White to light beige, ryolisandy matrix, little compac	tic 30/1	NQ (76/		100 (14,00) 45,00	(12. 70)	CM		Upper Oc Lower De Lupson V B. Point	eeth : i	15.00
7 8 9			イル・イン・ドゥドゥ		Moderately Alterated	Rim of core is covered by d brown to reddish clay and/o silt. Dark reddish clay layers are	r			100 (20,00)				Upper Di Lower Do N Value	epih:	
22 22 23 24 25		Sandy Tuff	ハンクドングンクストング	E. <iv. d<="" td=""><td>Very Alterated</td><td>seen irregularly.</td><td></td><td></td><td></td><td>(21,00)</td><td></td><td>CL ?</td><td></td><td></td><td></td><td></td></iv.>	Very Alterated	seen irregularly.				(21,00)		CL ?				
27 28 28,60	778.89	Breccia	1 / / / C		Hardly Alt.	Fault breccia zone.				(27, 20)		-		Upper D Lower D X Value	eplh :	21.6 21.9

^{*2.} C. B. is Back Smally Geologistian.

*2. C. B. is Back Smally Geologistian.

*2. Electric Holds is l'adia in under dejection water pressure of l'Alg'en'

*2. Electric Holds is l'adia in onder dejection water pressure of l'Alg'en'

*2. Electric L'Algorit are in meter.

*3. Electric L'Algorit Holds (L'Algorit Holds)

*4. Electric L'Algorit Holds (L'Algorit Holds)

*4. Electric L'Algorit Holds (L'Algorit Holds)

*5. Electric L'Algorit Holds (L'Algorit Holds)

*6. Electric L'Algorit Holds (L'Algorit Holds)

J I C A layan International Cooperation Agency

PRO							AND IRRIGATION IMPROVEMENT PROJ		IC OF HI							
	NO.	12	\$.	N			805.49m. A. S. L. DEPTH	90 m		DATE		Jan.26 -	– Fe	b. 5, 19	90.	<u> </u>
ÀN		, #45 1	Y	5.0		CTION	T 2H N	SLOPE		, D,			- 		n kirosymp	
SCALE(m)	DEPTH(m)	ELEYATION (m. A. S. L.)	ROCK TYPE	COLUMN	CONDITION	ALTERATION	DESCRIPTION	DATE	BIT & BIAMETER	GROUND WATER LEVEL	CORE RECOVERY % (M)	#, Q, D, % (m)	CLASSIFICATIO	,†ie l€	PRESSURE N Years Lagron Yalon N Fressure ha Yalon 2 cm 1866 18	ra'
31 31 32 33 34 35 36 37 37 38 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38		285.04	Sandy Tuff	グライン・ファイン グング・ス・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン	E.< W.d	Hardly Alterated	White, fragile, soft. Some reddish brown clay lay are seen. Alteration grade is disminito the lower part. Light pink, fine compact wi	31/1 (35.00 shed		38.65	20 13 1		Ct.		N Yalue	th : 38.60
42 43			Clayey Tuff		D.< IV. d	Slightly Alterated	Irregular joints (60° ~ 70° Broken section: 44.60 - 45.00m		NO			(42, 10) (42, 90)	CM		Lower Dep	th : 40.00 th : 45.00 fue : (13.7)
- 46 - 47 - 48 - 49	45, 20	160, 29		(*)	D, II.c	Almost No Alterated	White to light pink, compact sometimes granular fragile with reddish brown spots. Stingy joints are seen.	2/2	(76/ 47. 6)			(45.50) (45.50) (48.30)			Lower Dop Lugeon Va	th : 45.00 th : 50.00 lue :(10.7)
- 50 - 51 - 52 - 53 - 54 - 55			Silty Tuff	スプスプスプスプスプスプスプスプスプスプスプスプスプスプスプスプスプスプスプ	۵٬۱۱٬۵	Moderately Alterated	Principal joints are incli 70° with deposit of clay. Stingy joints are seen in general.	(50.00	75.			\$44.70) \$8 (52.00)	CL		Lower Des	th : 50.00 th : 55.00 lue :(12.6)
-		748, 79	Forous Welded	~0~ 0~0 ~0~ 0~0	9, II .c	**	Pink to reddish brown, comp frieble, sometimes with grad aspect in fine matrix.				(57, 20) (57, 20)	87 (57. 20) 85 (50. Q0)	CL		Lower Dep	th: 55.00 th: 60,00 loe: (9.8)

⁺ B. C. C. S. Sech Contilly Designation.

R. B. G. — Clotal length of epidedic cores longer than 10cm? Clotal drill lengths × 100%

- LEVERA VALUE to 1 mile in under Operation water pressure of 106g cm²

- DEFERMAND to continue the lengths.

- S. In LATERAL LEADURG TEST parliament point.

- S. In LATERAL LEADURG TEST parliament point.

- D. LATERAL LEADURG TEST parliament point.

Japan faltenetional Cooperation Agency

PROI	ECT	RENA	BILITAT	ION OF	COYOL	R DAN	AND IRRIGATION IMPROVEMENT PRO	DECT, R			NOURAS				:		il Mu.		
HOLE	X₽.	N	0. 3				805,49m, A. S. L. DEPTH		90 m		DATE			Jan.26 -	- Fe	b. 5, 19	90.		
ANG	HE.	16 16 16	3	# #	BIRE	CTION	F 1Hr SHLM	Sto	PE		"D	H .				•			
SCALE(m)	DEPTH(m)	ELEYATION (m. A. S. L.)	RECK TYPE	COLUMN Section	CORE	ALTERATION	DESCRIPTION		DATE	BIT & DIAMETER	GROUND WATER LEVEL	CORE RECOVE (m)	RY 110	R. C. O. % (m)	CLASSIFICATION	Tield	PRESSUI N Valen Lugera Valen Ing Pressyra : N Valen : cm	i kr co	1
60		F 1		~Δ~		-	Many voids are seen.								-		T		
61				Δ~Δ ~Δ~		·	Stingy joints are seen.												
62	·			Δ~Δ					Ť										
- 63				~∆~ ∆~∆			Reddish brown, yellow, bro orange, granular rough ass	own, pect							CL		'		
				~∆~			with little voids.				ž								•••
64				Δ~Δ ~Δ~			Many exidated spots are s	een.	3/2						. '		Loner	Depth : Depth : Value	65,00
- 65				ΔΔ	P.				(85.00)								8. Pain		-
- 66				~∆~ ∆~∆		:	Almost horizontal stratif	ied							•		$ \otimes $		
- "				~^~		}	layers are seen in general	l.'											
- 67			·	∆~∆ ~∆~															
- 68				Δ~Δ	s :										:				
- 69				~∆~ ∆~∆	1,										CL		Upper) Depth :	65.00
03				~Δ~										100 (70,00)			Lower Lugeon B. Poin	Bepth : Value	70.00 : (14.2)
→70				Δ~Δ ~Δ~			Thin reddish brown clay la along the joint.	вүег						30,007			B. FO.II	·	
- '71				Δ~Δ			11												
20				~^~ ^~															
- 72			1	~Δ~			Alteration zone and it's	grade											
- 73				۵∼۵		. P	are irrgular.												
- 74				~^~ ^~		Alterated								04 (74,00)			Upper Lower	:- Depth : Depth :	70.00 75.00
			Į,	~∆~ ∆~∆	.∪ ==	ĮĄ ,	Granular aspect with many	voids		NQ (76/								Yalue:	
→ 75			Welded Tuff	~Δ~	ಪ	ately				47. 6)									
→ 76			5	Δ~Δ ~Δ~		Hoder	Large thin voids are seen	along											
- 77				Δ~Δ		ž	stratified layers.										\otimes		
70				~∆~ ∆~∆															
- 78				~^~															
- 79			-	ΔΔ													Upper (Lower (Lucson	epth:	80.00
-80				~A~ A~A			Yellow gray with oxidation regular bands.	ı ir-									B. Poin		
- 81				~A~ A~A			. 030201 0011001								CM				
. 01				~∆~										100 (82,00)	₹				
- 82				Δ~Δ ~Δ~															
- 83				Δ~Δ											CL.				
- 84				~∆~ ∆~∆			Stingy joints are seen.										Upper (epth:	80.00
34				~Δ~			·		4/2 (85. 00)								Lover Lugeon B, Point	enth: Value:	(1.3)
- 85				Δ Δ ~Δ~					100. 001								2,1011		
- 86				۵۰۵				:											
- 87				~∆~ ∆~∆			Many little voids along								;				
. "				~۵~			stratified layers.										\otimes		
- 88				Δ~Δ ~Δ~															
- 89				۵~۵													Lower C	lepth :	90.00
90	90.00	715.49		~∆~					5/2 (90.00)			100 (90,00		93 (90,00)			Légeon B. Point	Value :	

⁺ B. C. B. is Buck Builtig Australian.

B. C. B. = Clatal laugh at explosive cases laugus than 18cm). (Claim drill length) × 188%

• Execute faller is to make lauguster pressure of 184g cm²

• Execute and Extillers have be nowles.

• Execute an indifference in the control of
PROS		<u> </u>		ION OF			AND IRRIGATION IMPROVEMENT PRO	JECT, F	EPUBLI	COFHO							
HOLE	NO.	N 'iii			ELEV	ATION	794.27m. A. S. L. DEPTH	2, 1	60 m		DATE		Jon. 27 -	Fe	b. 5, 19	90.	* + 1
ANG	<u> </u>) (3	96 (5 M)	DIRE	CTION	W THE BOOK THE REAL PROPERTY.	Sti	PĒ		, D	1			1.12		
SCALE(m)	(m)HLd3G	ELEVATION (m. A. S. L.)	RECK TYPE	COLUMN	CORE COMDITION	ALTERATION	DESCRIPTION		UATE	BIT & DIAMETER	GROUND WATER Leyel	CORE RECOVERY % (m)	R. Q. D. % (m)	CLASSIFICATION	Yieigi	PRESSUR N Tales Ingent Tales N Fresser : I Tales : cm 's n	[m]
0 1 2 3	2.85	791.42	Silty Tuff		ο, ν.σ	Weathered	Completely wheathered White to light gray, scatt pieces, fine grain. White to light pink, with voids.					100 (2.85)	0 (2. 85)	CM → CL			
- 5 - 6	6.38	787.89	1 4#	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C. III. c	Moderately Altera	Scattered broken core. Ryolitic rock. Light pink compact with sawdy	herd	27/1 (5. 00)				(6. ³ 0)	СМ			
- 7 - 8 - 9 10				Δ~Δ ~Δ~Δ ~Δ~Δ ~Δ~Δ ~Δ~Δ			metrix. Sub-vertical and sub-horiz joints are predominant, so times open joints.						(9. 00)			Lower D	enth : 5.00 epth : 10.00 falue : (13.4)
11 12 13			Welded Tuff	~~~ ^~ ~~ ^~ ~~ ~~ ~~ ~~ ~~	В. IV. Ь	No Alterated	Orange colour clay layers oxide are seen along the jo Length of core is cut betwin 10.00 - 15.00cm.	ints.	78/1 (12. 71)				20 (t1.00)	CH }			eath : 10.00
- 15 - 16 - 17 - 18				~^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~			Reddish oxide and black or material are seen along th joints.		29/1 (15.00)	NO (16/ 47. 6)			(15,00)			Lugeon B. Point Upper to Lower Do	pth: 15.09 pth: 20.08 alue: (52.0)
- 19 20 21		714. 83 774. 40		Δ~Δ ~Δ~ Δ~Δ ~Δ~			Hollow (open joint) Light grey to light brown, compact hard, with many cro of quartz and plagioclase.	ystal				(19, 44)	(19.87)			8	
- 22 - 23 - 24 - 25			Welded Tuff	~^^ ^^ ~^ ^^ ^^ ~^ ^^ ~^	III, b	Alterated	Slightly stratified. Irregular sub-vertical and joints are predominant.	3 60°	30/1 (24, 21)				(75.00)	СН		Lower D	opth : 20.00 opth : 25.09 (alue : (17.2)
26 27 28			We.]	Δ~Δ ~Δ~ Δ~Δ ~Δ~ Δ~Δ			Some joints contain second silicate and orange colour oxide. Stingy joints are seen.									Voper D	epth : 25.0
- 29 30				Δ~Δ ~Δ~									69 (31.00)			Lugeon B. Point	epth : 30.00 /elue : (18.0 :

^{+9.} C. D. is Bord Seality Bestgration.

8. C. D. Class langue than form of the state of the stat

1011	NO.	N	0. 4			ATION	AND IRRIGATION IMPROVEMENT PROJECT 79427m. A. S. L. DEPTH	60 m		DATE		Jan.27 -	Fe	eb. 5, 19	90.	
ANG	ŧĒ) M M	9)E 45 90°	Dike	CTION	to the title to th	LOPE		, D				•		
SUALE(E)	DEPTH(m)	ELEVATION (m. A. S. L.)	ROCK TYPE	COLUMN	CONDITION	AUTERATION	DESCRIPTION	DATE	BIT & BLAMETER	SIN GROUND WATER	CORE RECOVERY % (m)	R. Q. D. % (m)	CLASSIFICATION	Yleldi	PRESSURE TEST IN Value Lugoni V	
30				~_^		ļ	Light brown, compact, hard with many crystales of plagicalese.			고 30, 25	u i	69 (31.00)	<u> </u>			T
31				Δ~Δ ~Δ~	'n			31/1 (31, 41					CH			
32				Δ~Δ ~Δ~	8. 111.							42				
33				۵۰۵						,		(33,00)	ļ			
34				~Δ~ Δ~Δ			Sub-horizontal open joints ar								Upper Depth : Loner Depth :	: /3
٠				~∆~			predominant, sometimes contains secondary silicate of 0.5cm								Lugeon Value B. Point :	
35		:		Δ~Δ ~Δ~			in maximum.						ŀ			Γ
36				Δ~Δ ~Δ~									CH			
17				Δ~Δ			Stingy joints.	į,								
88				Δ~Δ				1/2 (38, 28)								l
				~△~	ٰ م			No. Le				85 (39. 90)			Upper Depth :	 : :
19	-			Δ~Δ ~Δ~	=		Voids along the contact between andestic inclusion and matrix	n							Lower Depth : Lugeon Valus B. Point :	: 4
0				Δ~Δ ~Δ~	8		andest to the tost of and matt to	"							B. FOIRT :	1-
ıı				Δ~Δ												
2				~A~ A~A			Many white plagiculases are sec	201							<u> </u>	
l				~4~	.								. CH		Upper Depth :	 : 4
13	-			Δ~Δ ~Δ~											Lugeon Value	: 4
14			Tuf f	Δ~Δ ~Δ~		9 2		2/2	NO				ľ		8. Point:	ŀ
15				Δ~Δ		Alterated		(45. 00	(76/					L L	 -	-
16			Welded	~Δ~Δ		No.A	Stratified layers are clare.	1	47. 6)							Ì
-				~4~			·					59 (47.60)				
7				Δ~Δ ~Δ~		·		1								
8		·		Δ~Δ ~Δ~			Large voids along stratified layers.	l								
19				Δ~Δ	,			.							Upper Depth : Lower Depth :	: 5
0		·		~^~ ^~								(50, 00)		J. J	Lugeon Value B. Point :	: }-
1				~∆~												l
1				Δ~Δ ~Δ~	ა.			İ					СН		-	
2				Δ~Δ ~Δ~	6			3/2								
3				Δ~Δ			·	(53.00)								
4	-			~^^ ^~											Upper Depth : Loser Depth :	 -
				~∆~			Welded micro breccia with								Lugeon Value 8. Point :	: (1
5				Δ~Δ ~Δ~			secondary dark grey silicate.									ſ
6				Δ~Δ ~Δ~				4/2 (56, 61)				54				
7				△~△								(57. 00)			$ \otimes $	
8				~∆~ ∆~∆	۰.								i.			
		•		~4~	=		Stingy joints are seen.						CH		Unper Depth :	5.
9				Δ~Δ ~Δ~	ai l			5/2 (80.00)			100 (60.00)	. 86 (60.00)			Lower Depth : Lugeon Value : 8.Point :	6(

	PROI					~~~~~		AND TRAIBATION IMPROVEMENT PRO	JECT, REF	PUBLI	OF 80	MOURAS	3 ,						
-	HOLE	NO.	N In			ELEV	ATION	790.49 m. A. S. L. DEPTR	60	O m	- 13	DATE		Feb. 16 -	- Fe	b. 22,	1990.		
	ANG	ilE .	Hers		# :-	OIRE	CLIGH	3 1H: () H E	SLOP	E		" [7	in .						
	SCALE(m)	(@)NLd30 ·	ELEYATION (d. A. S. L.)	ROCK TYPE	COLUMN	CORE	ALTERATION	DESCRIPTION		DATE	BIT & BIANETER	GROUND WATER LEYEL	CORE RECRYERY % (m)	R. Q. D. % (m)	MOLECULOR		R PRESSU IL Volve Lugane Val Hing Pressers Il Valve : em je	i in ca	•
netend	0	1, 10	789.39	Te.	~Δ~ Δ~Δ	C. II.	M. AIt∷		act.						CM CM				
entlegalourinenbudhe	- 2 - 3				~^^ ^^^ ^^^		Alterated	Light grey to light pir compact, massive with man inclusion of sub-angular and grey andesite in fine matrix.	γ					(2. 90)					
Bestadoctedays	- 4 - 5 - 6				Δ~Δ ~Δ~ Δ~Δ ~Δ~ Δ~Δ		Slightly Alte	Irregular sub-vertical op joints with secondary sil veins and orange colour o	icate					82 (7.00)					
to the street endered and	- 7 - 8 - 9				Δ~Δ ~Δ~ Δ~Δ ~Δ~ Δ~Δ			Sometimes deposits of beig clay are seen along the op joints.	ge Jen (8	16/2 8.60)			(66 (8,60)	10 (8.00)			Lover	Depth : Depth : Value	10,00
pedinostrationalionibus	10 - 11 - 12				Δ~Δ ~Δ~ Δ~Δ ~Δ~			Pertially tuff rich soft are found. Joints (70 - 75°) are prodominant.						(10, 60) 12 (11, 90)			8. Poin		
deschools on involved the	- 13 - 14 - 15	-		ed Tuff	~^~ ^^ ~^ ^^ ^^ ^^	i ~II. b		Some primary open fracture	ae.		XO (76/ 47. 6)			54 115-30	СМ		Lower	Depth : Depth : Value	15,00
Southertrophysical	- 16 - 17 - 18			Welded	~^~ ^~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	C. 1	rated	with oxide and breccisare between 15,30 & 16,30m. Stingly joint.	seen	17/2 18. 00]			(1886)		.				
Cardinardornierotypyku	- 19 20 - 21				~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A		No Alter										Lower	Depth : Depth : Value t :	20.00
attention the parties	- 22 - 23 - 24				~^~ ^~^ ~^~ ^~^ ~^~ ^~			Many voids along the contabetween inclusion and mate	rix.								Upper	Depth :	20. 00
appropriate property of	- 25 - 26				~^^ ^^^ ^^^ ~^^ ^^			predominant.	(2	18/ 2 16. 901			100 (76,00)				Lower	Depth: Yelue:	25.00
<u>appropriate propriate</u>	- 27 - 28 - 29				Δ-Δ ~Λ~ Δ-Δ ~Δ~			little open joints with or colour oxide and secondary silicate are seen.	Y	-							Lower	Depth :	39.00
tratter.	30				~∆~				(3	19/2 10. 00)			(30, 60)	100 (31,00)			Lower	Cepih! Value:	

^{*}R. C. B. is Aoch Seality Designities.

2. C. B. — Cletal bergit of cylischic creas larger than 18cm.) (letal delli hogita) × 1883,
*Cletal Vallet is a min meder injection water prassure of 1884 co.
*SPECIAL 2006 (Cletalites are in medies.
*Districts is in millionates.
*O is Luttered to from 1873 partnungd print.
*(18.9) is Corrected Argons Tobin.

PROJ	FCT	REHA	BILITAT	ISN OF	COYOLA	R DAM	AND IRRIGATION IMPROVEMENT PROJEC	CT, REPU	BLIC OF	HONOURA	\$	 	****)F 2
HOLE		N	0. E				790.49m. A. S. L. DEPTH	60		DATE		Feb.16 -	- Fe	b, 22, 19	90.	
ANE	ιŧ	; 18 37 37 37 47	9	44 44	DIRE	KOITS	# 276 H i	SLOPE		, P						v
SCALE(m)	DEPTH(m)	ELEVATION (m. A. S. L.)	ROCK TYPE	COLUMN	CORE	ALTERATION	DESCRIPTION	32.00	317 &	SROUND WATER LEVEL	CORE RECOVERY % (m)	R. Q. D. % (m)	CLASSIFICATION	i . Yieldii	PRESSURE TES R Table Legeon Yabes og Fressure: kg 'cm' Yabes : cm sec. N N	इ ग
30				~∆~			White silty tuff of 20cm.					(3), (6)				
31				∆~∆ ~∆~												
32				Δ Δ ~Δ~						22.05						
- 33	-		-	Δ~۵		_				35.62		51 (33, 60)				1
34				~∆~ ∆~∆		ate									Upper Depth Lower Depth	
	:			~∆~		Alterated	Contain aboundant quartz.						CM		Lugeon Value B. Point :	
35				Δ^Δ ~Δ~		<u>.9</u>							٠.			
36				Δ~Δ ~Δ~			Slightly stratified.									
37				∆∻۵												
38				~∆~ ∆~∆	o	:									$ \otimes $	
39			Welded Tuff	~∆~ ∆~∆	≘					1	108 (39, 20)	(39, 00)			Upper Depth	: 35.00
			Ided	~△~	į		Pink, compact, hard.	20 (40	/2 00)			45 (40, 00)			Loser Depth Lugeon Value 8. Point :	: (1.2)
40	-		#e	Δ~Δ ~Δ~	່=		Almost horizontal joints containing secondary silice									
41			2	∆~∆ ~∆~			veins.			.						
42				Δ~Δ												
43	.			~ <u>^</u> ~	١	ated										
				~∆~ ∆~∆		Alterated							CM 1		Voper Death	: 60.00
44				~∆~					NO						Logeon Value B.Point:	
45				Δ~Δ~		lightly	Light pink, compact, hard wi clare stratification.		(76, 47.				٠.			
46				Δ~Δ		S							!			
47				~∆~ ∆~∆			Open irregular joint with secondary silicate.									
48				~∆~ ∆~∆												
40	49. 65	741.83	> 4-	<u>~≙~</u>	۹	<u>_</u> _	Pinky white, soft,friable wi	th				(48, 66)			Upper Depth Lower Depth	: 50.00
49			laye Tuf		8. IV. b	Very	white clay layers.					22 (50,00)	Đ		Lugeon, Value 8. Point :	: (6.8)
- 50	20. 60	740, 49	<u> </u>				Fault breccia zone with redc	dsh				**************************************				
51				場		79		(51	/2 49		100 (51, 48)					
52			Clay	崂	ס	Alterated	Reddish brown, yellow crange colour, soft, friable, broke									
53	,		⇔ 8	Př.	١٨,		part.						CL			
.			Breccia	Ų,), <	Hardley	Hardly alterated matrix.								Upper Depth	: 50.00
54			ģ	页		Har									Lower Bepth Lugeon Value B. Point :	: '55.00
- 55				赏			Many irregular joints.							" "		1
56	56. 20	734. 29		191		<u>.</u>						(56.24)				
57			,4	$\frac{1}{1}$		e ed	Light pink, brown grey, compa with little joints,	act								
58			Tuff	777	11.0	Alterat							CM			
			Sandy	Ċΰ	- -	tly.									Uðpar Depih	: 55. nn
59 80		730, 49		33		Slightly		22, (60.	2		100 (60,00)	98 (60,00)			Lower Depth Lugeon Value B. Point :	; 60.00

^{*8.} C. B. is dock haulity designation.

8. C. B.—(lotal length of cylindric cores longer than libem) (fatal doill length) × 100% or lattet fatal for in on modern injection water pressure of 100g/cm²

* direct and fitterform cas in moter.

* directly and fitterform cas in moter.

* directly and fitterform cas in moter.

* directly and fitterform cas in moter.

* directly and fitterform cas in moter.

* directly and fitterform cas in moter.

* (i.e. D) is formation language form.

E-21

J I C A Japan Laternational Cooperation Agency

PROJECT HOLE NO.	REHAI		ION OF		R DAN	AND ERRISATION IMPROVEMENT PRO 75828m. A. S. L. DEPTH	7	PUBLI O m	C OF HO	MDERAS Date		Esh OC	Me		1000		
ANGLE	IN IP Street	0	95		CTION	# 2H () N C	SLO		g V	PARTY.		Feb, 26 -	- IVIC	II. O,	1990.	· · ·	:
SCALE(m) DEPTH(m)	ELEVATION (M. A. S. L.)	ROCK TYPE	COLUMN	CONDITION	ALTERATION	DESCRIPTION		DATE	BIT & DIAMETER	GROUND WATER	CORE RECOVERY % (m)	R. Q. D. % (m)	CLASSIFICATION		ER PRESSU IL Takes Lugeon Tal felding Pressace IL Talon : cm	el Egirca	
0 1 2 2 3 3 4 4 5 5 6 8 9 9 8 8 7 7 8 8 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	7-6-46	Welded Tuff	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8, II. b C. IV. d	Slightly Alterated	Angular to sub-engular blof welded tuff ranging from the compact of the compact with a sub-engular to sub-engular and silt. Fine sand and silt zone, fine gravel of welded tuffine gravel of welded tuffine gravel of welded tuffine gravel of angular to sub-engular and site. Almost horizontal open journaliel to stratified large predominant. Secondary silicate veins a seen along joints. Cracked section: 14.26 - 14.80m 15.65 - 15.75m 16.00 - 16.15m 16.25 - 16.55m 19.10 - 19.20m Slightly stratified layers seen along stratified layers. Cracked section: 20.60 - 21.05m 22.00 - 22.40m 24.50 - 24.68m Reddish brown, compact, hwith clare stratified lay Cracked section: 26.21 - 26.35m 28.55 - 29.00m 30.45 - 30.80m 32.00 - 32.47m 32.67 - 33.70m	with f. with f. with are	28/2 (3. 00) 27/2 (8. 00) 2/3 (25. 00)	NO (76/ 47. 6)	2.20	100(5)	(9, 70) 0 (11, 00) 22 (12, 90) (14, 50) (17, 30) (17, 30) (17, 30) (17, 30) (17, 30)	CL		Lover Lugeon B. Poin Upper Lover Lugeon B. Poin Upper Lugeon B. Poin Upper Lugeon B. Poin	Depth : Depth : 1	15. 00 20. 00 (10. 8) 20. 00 20. 00 2

^{+8. 8.} B. is Bock Sealily Designation.

8. 8. B. = Unlik leogth of cylindric cores (voger than 18cm) (Intal drill length) × 188% of United and United in a mediar foliation mater pressure of 184g cm²

8. Birling and United are in moder.

8. On is thinkel thinke (1861 performed point.

8. On is thinkel thinke (1861 performed point.

8. On is thinkel thinke (1861 performed point.)

J I C A lagus Interestianal Congeration Agency

PROIECT	REM	LBILLITAT	ION OF	COYOLA	ir dam	AND IRRIGATION IMPROVEMENT PROI	ECT, REPUBLI	C OF H	ONDURAS.				N Joseph	NO. 2 (
HOLE NO.		10. (75828#. A. S. L. DEPTH	60 m		DATE	Fo	eb.26 -	- M	ar. 6 , 19	90.	
ANGLE	N.	\triangleright	17 M. M.	DIREC	ETION	27 271" (1 in it	SLOPE		N CH			, ÷ .	: .		
SGALE(m) DEPTH(m)			COLUMN	CORE COMDITION	AUERATION	DESCRIPTION	DATE	BIT & DIAMETER	SE SE SE SE SE SE SE SE SE SE SE SE SE S	DRE BYERY % m)	R. Q. D. % (m)	CLASSIFICATION	Yieldin	RESSURE TE In Tologo Ingent Volve Pressure : he 'em' Isine : em 'soc.	
30 31 31 32 33 34 35 36 36 37 36 37 38 39 40 41	75 <u>721.5</u> 50 716.7 716.2	Spotted Welded Tuff. Welded Tuff	~A~A ~A~A	q	Alterated Moderately Alterated Slightly Alterated	Very scattered. Some white tuffaceous bands along primary joints. Reddish brown, compact, has rock with grey spots somet voids. Scattered zone is seen in 38.34 - 41.50m. Fault breccia. Light pink, brown, dark grewhite, compact, friable. Sometimes breccia aspect.	4/3 (35.00			(34	15 33. 00)	CM		Upper Depth Lugeon Value B. Point :	: 35.00 : (11.2) : 35.00 : 40.00 : (6.7)
45 44.8 46 47 48 49 50 51 52 53 54 55 56 57 59 59	85 713.4	1	\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C, 11 ~111, c	Moderately Alterated Hardly	Grey, pink, reddish brown, compact, fragile, sometimes with granular aspect. Stingy joints are seen. Orange colour oxidation irregular zones. Slightly stratified layers.		NQ (76/ 47.6)			(100 (60,00)	CM CL		Upper Depth Lugeon Value B. Point : Upper Depth Lugeon Value B. Point : Upper Depth Lugeon Value B. Point :	: 45.00 : 50.00 : 50.00 : 55.00 : (6.6)

J I C A layer International Cooperation Agency

	CY REHA	RICHAL	DN OF	COVOLA	IN DAM	AND IRRIGATION IMPROVEMENT PRO	JECT, RE	PUBLIC	OF H	NDURA:	S .					1 144 4 4
HOLE N				ELEV	ATION	806.95m. A. S. L. DEPTH	6	O m		DATE		Mar.8	- Mo	ır. 15, 19	90.	
ANGLE	""	区	ម សូម	DIRE	CTION	# 777 SH H	SLOP	ξ	<u>. 1.2.</u>	N D		ing the second s				
SCALE(m)	DEPTH(m) ELEVATION (m. A. S. L.)	ROCK TYPE	COLUMN	CORE	AUTERATION	DESCRIPTION		DATE	BIT & Diameter	GROUND WATER Level	CORE RECOVER (m)	R. O. D. % (m)	CLASSIFICATION	Tield	PRESSURE II Taloe Sugan Yahn ing Prissure: Ing Tahun : cm 3ac. 28	
0 1 2 2 3 4 5 6 7 8 9 10 - 11 - 12 - 13 - 15 - 16 - 17 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28		Welded Tuft		. 8. 8. 11. d D. 10. 111. c	*Alterated	Pinky grey, compact, with angular to sub-angular respects and an angular aspect seen in general. Almost horizontal joints predominant. Cracked section: 0.65 - 1.00m 1.30 - 1.42m 4.30 - 4.37m 4.43 - 4.50m 4.76 - 4.87m 6.13 - 6.25m 7.15 - 7.61m 8.25 - 8.33m 8.44 - 8.53m 9.15 - 9.22m Slightly stratified. Cracked section: 11.84 - 11.95m 12.40 - 13.50m Core with clayey rim of seffractured section. Light reddish brown with a stratified white tuffaceous layers. Joint dips 70 * with second layers. Rough surface of core due high content of tuffaceous layers. Rough surface of core due high content of tuffaceous layers. Sub-vertical open joints: preclominant with beige claisers from 23.00m to 26. Irregular white tuffaceous bands are included.	oft, clare us to s	8/3 (5.00)	NO (76/47. 8)	19. 60		(300) (300) (1,00) (47 (4,00) (2) (5,00)	CM. CM.		Upper Deplomer Oeplomer Oeplogeon V6 S. Point ;	h: 10.00 th: 10.00 th: 15.00 th: 15.00 th: 15.00 th: 20.00 th: 20.00

^{*} B. & 8. is Bock Carlley Configuition.

8. 4. B. — Catal largels of epilositic cones larger than tocol atland drift tength × 1887;

• United Village to 1 min in votes (signifus water pressure of 1884; cm.)

• SECTION and Catallage has be noted.

• SECTION and Catallage has been noted by the configuration of 1884; cm.)

• On in Catallage Catallage (US) parlament point.

• Cit Clif Catallage Catallage Balon.

	• .	í .				Fig.E.1-	·2 n	ril	1 La	og (18/2			-	Shee.	l No :	2 OF 2	•
PROJECT	REHA	DILITAT	ION OF	COYBL	R DAM	AND IRRIGATION IMPROVEMENT PRO									QIIII)			
HOLE NO.	19	0. 7	•	ELEV	ITION -	80695m. A. S. L. 0EPTH	. (60 M		DATE			Mar. 8 -	- M	or. 15, 19	990,	· . · .]
ANGLE	100	夕	#" - 45 HT .	Olati	CTION	# 110° - 1100 M* C	Ste			ロフ	•					<u> </u>		
SCALE(m) DEPTH(m)	ELEVATION (4. S. L.)	ROCK TYPE	COLUMN	CORE	AUTERATION	DESCRIPTION		DATE	BIT & DIAMETER	GROUND WATER =	CORI RECOVI (m)	RY	R. Q. D. % (m)	CLASSIFICATION	Yieldl	PRESSUR IL Yelee Lugeon Yelee IL Pressero : I Yelee : cm 3 10 H	kg cm'	
30 31 32 33 33 34 35		#elded Tuff	~^~ ^^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~	8, II, ¢ 8, III ~ IV, c	M. Alt. Slightly Alterated	Light reddish brown, compa with almost horizont stratified layers. Predominant cracked sector 31.56 - 31.72m 31.83 - 32.00m 32.16 - 32.25m 32.36 - 32.63m 32.74 - 33.25m 33.40 - 33.60m 33.70 - 33.86m	al	10/3 (33, 00) 12/3 (35, 00)				į	(31. 90) (33. 90) (35. 60)	CH		Loner D	epth : 30.0 epth : 35.0 Yelue : (14.3	70 F
36 37 38 38 39 39, 12	161, 83		~^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~	C. 111.d B, 11.d	Moderately Alt. Alterated	All joints contain beige o layer and orange colour o							(37, 20) (55 (30, 20) (39, 12)	CM { CL		Vaper D	aoth : 35.0	0.0
10 41 42 43 44 45 46 47 48 48 48	758-42	Sandy Tuff, Clay	HGSBGGGGGBDIODGBBGG	E.< 1V, d		breccia ìrregular bands.	nant.	13/3 (45.00)	NO (76/ 47.6)					CL		Logen B. Point	epth : 40.0 Velue : (12.3	03)
50 51 52 52 55 56 57 56 58 59 59 59 59 59 59 59 59 59 59 59 59 59		Welded Tuff	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	C. III.c D. IV.d C.V.d	Moderately Alterated Alterated	White, pink, reddish brown scattered, soft fragile wigranular rough surface of White tuffaceous sector. Stingy joints are seen in general.	ith core	14/3 155: 00)			100		(\$0.00) 25 (\$0.00) (\$3.00) (\$3.00) (\$5.00)	CL		Lower D Lugeon B. Point Upper D Loner D	opth: 50.0 cpth: 55.0 Velue: (16.8 :	8)

A. C. D. is Beck Seatily Prignation.
 A. C. D.—(Istal length of cylindric coars longur than 10cm) (Istal dill) (ength) × 150%
 SEASCH TRICE is 1-win-worder folgetim water pressure of 18kg/cm²
 SEASCHER is to multimeter use to norther.
 SEASCHER is to multimeter.
 B. C. D. LITERAL (Edition H3) performed point.
 A. C. D. LITERAL (Edition H3) performed point.
 A. (H. D.); Connected Lagons Talen.

J I C A Japan laternational Cooperation Agency

PROIEC	7	REHAL	BILITAT	ION OF	COYOL	AR DAN	AND IRRIGATION IMPROVEMENT PRO	JECT, RE	PUBLI	C OF HO	NDURA:	S.				994 Tg.	15.5		
HOLE N	0.	N i			ELEV	ATION	807.48 m. A. S. L. DEPTH		Om		DATE		Mar.16	Ma	r. 18	, 199	90.	, i	i lis
ANGLE		344.	<u>></u>	N N	DIRE	CTION	# 181 - M 1	SLO				9 <i>8</i> 1					1 11 1 15 1 1 15 1		gir.
SCALE(ra)	UEP (BCm)	ELEVATION (M. A. S. U.)	ROCK TYPE	COLUMN	CORE	ALTERATION	DESCRIPTION		BATE	BIT & DIAMETER	GROUND WATER LEVEL	CORE RECOVERY (m)	R. Q. D. % (m)	CLASSIFICATION	*	Titleng I	RESSUR Il Yatob geor Tator Pressura : Itob : con il	l lgʻen ^t	
1			Tuff.	VVV		Very Alt.	light grey, compact, soft, friable and broken, Hardly weathered.							CL					
- 3	. 90	805.58	 ;	~ ~			Fault zone. White grey, very soft, fri	isble											-
- 4				Δ ~		: :	Reddish brown clay rim of	core											
7				~ ^ ~ \			Mony irregular clay layers	s.			 								
8			Welded Tuff	~ A ~	P., 4	Alterated	Hardly alteration is seen general.	in	ž										
10 : - 11			Tuffaceous We	~ ~ ~ ~ ~ ~	9, <iv, d<="" td=""><td>Hardly Alt</td><td>Breccia of fine grain white</td><td></td><td>16/3 (11, 32)</td><td></td><td></td><td>100 (11,50)</td><td></td><td>D</td><td></td><td></td><td>-</td><td></td><td></td></iv,>	Hardly Alt	Breccia of fine grain white		16/3 (11, 32)			100 (11,50)		D			-		
13		·	Tu	^ ~ && &&			from 12.48m to 12.76m.											-	
14				Δ ~ / ~	1		large proportion of reddis	h	:	NQ (76/ 47. 6)						. :			
16 17 17	. 00	790, 48		~^~		- Pg	Reddish brown, granular ro with variable hardness.	ck					0 (17.30	СМ					
18 19			Welded Tuff	Δ~Δ ~Δ~ Δ~Δ ~Δ~		Slightly Alterat	Broken section :							CL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
21		785, 98 786, 03	4.	Δ~Δ '	=	: .	White, very fine micro gra friable rock.		17/3 21, 00)			100 (21, 20)	65 (20, 60)	CH					
23		784. 62	₩. T. S. S.	~^~ ^^		Alterated	Dark grey volcanic sandsto friable. Dark reddish grey rock wit white reddish spots with g	h						CM					
24 <u>24</u> 25	. 00	783, 48				p	rim. Dark raddish brown, very funiforme, compact, friable						20 (74, 10) 75 (75, 00)				locer D Lower D Lugeon 3. Point	epth : Yalu e :	25. 0
26 27			Tuff	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B, III. 5	ery Alterated	Stingy joints are seen in general.							CL					
28 29						Moderatery			17/3 30.00)				70 (30, 20)			***	Upper I Lower I Lugeon	epth:	30.

^{*}R. C. D. is Back Grafity Berigstlian. R. D. D. Clotal legith of cylindric cours lenger than 18cm). (Intal drill length) × 165%
• 1656th Vollet is I min in each rejection water pressure of 18th 'cm'
• DEFFE and Elefactors are in malar.
• DEFFE and Elefactors is in millimeter.
• DEFFE is in millimeter.
• DEFFE is in millimeter.
• DEFFE is constituted to the pressure of 18th period point.
• Constitute the profit Est period point.

J T C A

Input International Congression Agency

E-26

PROI	ECT	REHAI	BILITAT	ION OF	COYOL	R DAM	AND IRRIGATION IMPROVEMENT PR	DIECT, F	EPUBLI	C OF HO	NDURA:	\$.					
HOLE	NO.	N.		} .	ELEY	ITION	807.48m. A. S. L. DEPTH		50 m		BATE		Mar. 16 -	– Mo	ır. 18, 19	90.	
AKE	ilE	130 100 100 100 100 100 100 100 100 100	\Rightarrow	(1 H)	DIRE	CTION	# 161 1 191 W	\$L	OPE		" \overline{\pi}	uw		<u>:</u>			
SCALE(m)	DEPTH(m)	ELEVATION (m. A. S. L.)	RECK TYPE	COLUMN	CORECTION	ALTERATION	DESCRIPTION	:	OATE	BIT & DIAMETER	SROUND WATER LEVEL	CORE RECOVERY % (m)	R. Q. D. % (m)	CLASSIFICATION	Yletdio K	PRESSURE TÉSI N Valua Lugana Valua Lugana Valua Lugana Che (chi Valua C chi 'sac. H N	n 11
30 31 32 33 33 34	34.50	772. 85	Túff	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	B. III.,b	Moderately Alterated	Inclusion of white irregulayers. Intensity of exidation chithe colour. Major granulometry. May be lake deposit.	ange					77 (34. 60)	CL		Voper Depth: Lower Depth: Lugeon Value	35,00
35 36 37 37 38 39 40	:			~^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~ ^~	6, II ~ II , 5	No Alterated	White grey, greenish whit very fine. White soap like tuffaceou inclusions. Sporedic sub-vertical joi with black oxide and/or clayer.	s					96 (41,00)	CN		Upper Depth : Lower Depth : Lugeon Value 8. Point :	40.00
41 42 43 45 45 46			#elded Tuff	~ \(\times \) \(C, III. 5 CLIII—W.D C, II. b		Wany inclusions of reddis brown angular to sub-angu andesite.			NQ (76/ 47. 6)	45.80		(41, 00) 69 (47, 00) (48, 00) (45, 10) (45, 10) (46, 00)			Upper Depth Loser Depth Lugeon Value B. Point :	: 45,00
48 49 50 51 52			Welde	~~~ ^~\lambda ~\lambda	C. II .	No Alterated	No clare stratified layer are seen.	s	18/3 (50.00)	•	-		(45,00) (50,00)	СМ		Upper Depth Lower Depth Lugeon Value B. Point :	: 50.00
53 54 55 56 57 57				۵~۵ ~۵~ Δ~۵ ~Δ~ Δ~Δ ~Δ~ Δ~Δ ~Δ~ Δ~Δ	C. II ~ III .		Cracked sector :						(53,00) (54,00)			Upper Depth : Lower Depth : Lugeon Value B. Point :	55.00
58 59 60		747.48		~∆~ ∆~∆ ~∆~ ∆~∆	C, III C, III.	Slightly Alterated	58. 17 - 58. 28m 58. 40 - 58. 80m		18/3 (60, 00)			100 (60, 60)	18 (60. 90)			Upper Depth : Lower Depth : Lugeon Value 8.Point :	60.00

^{+2.} C. D. is Rock decility Besignation.

2. C. D. = (field length of epiliotic cores imager flow lifem) (field drift feegth) × 168% of 1966 fis finds we do motion personne of 188g (m)

4. Refill and frequent on th motion.

4. Refill and frequent of the motion of the personne of 188g (m)

4. Refill and frequent finds.

E — (

J I C A

2) Rock Classification

In the drill log, classification of the rock condition is made based on the Japanese Electric Power Central Institute Method and Institute of Civil Engineering of Japan by the following criteria.

Class	Description
СН	Fresh rock, with no trace of weathering. Cracks are closed tightly in fresh condition.
CM	Moderately fresh rock, slightly weathered. Cracks
	are a little strained from weathering and are rather frequent.
CL	Weathered rock, Almost all cracks are strained from weathering. Frequently cracked.
D	Very soft, fragile, intensively weathered or fractured rock. Cracked very frequently. Often clay
	is observed in open cracks.

Moreover the core condition is made by the following criteria.

llardness of Core

A	Very hard core. Difficult to broke.
В	Hard core. Metalic sound by hammer hit.
C	Moderately hard core. Easy to broke by hammer hit.
D	Soft core. Turn to fragments by hammer hit.
E	Highly soft core showing clayish or sandy aspects.

Form of core

1		More than 50 cm length
II		Between 50 and 15 cm length
III		Between 15 and 5 cm length
IV	[ATTOSH8Y/V2]81	Less than 5 cm
V	ARMENT TO A STATE OF THE STATE	Brecha-like core
VI	anian property and the second second	Sandy-like core
VII		Clayish-like core
VIII	•	Impossible to obtain core

Condition of crack

a Close joint or slightly open joint without weathered and alteration aspects.

despite the first of the first of the graph of the control of the

- b Weathered and alteration aspects only along the joints.
- c Weathered and alteration aspects showing soft band.
- d Brecha, sandy and clayish core without showing joints.

3) Lugeon Test

The Lugeon test is performed generally to obtain the Lugeon values and coefficient of permeability of strata. The test shall be carried out for every section not exceeding 5 m on length of the hole and in the descending method as a principle. The injection water should be clean water, without any fine materials suspension.

- Apparatus

Usually, the apparatus to be used for the test are as follows:

- a. Packer; mechanical expansion packer or air packer.
- b. Water flow meter and pressure gauge.
- c. Pump; pumping capacity of more than 100 lit/min at 10 kg/cm².

- Method

- a. After drilling the test section, the hole should be washed out by low pressured clean water.
- b. Packer shall be set at the top of the test section, and water flow meter and pressure gauge shall be set at the hole mouth.
- c. After setting all apparatus, the supply of water is started for more than 10 minutes under the pressure of less than 1 kg/cm^2 as measured at the hole mouth.
- d. Then, the measurement of water injection shall be started.

The test pressure shall be 1, 3, 6, 8, 10, 6, 3 and 1 kg/cm² in principle. The injection for the measurement for each pressure shall be done for more than 5 minutes.

j, skriver i Lavi, Shriva tersion

- e. The items to be measured and recorded are as follows:
 - Depth of test section.
- 2 Depth of water level in borehole.
 - 3 Height of pressure gauge as against the hole mouth.
 - 4 Bore hole diameter of test section.
 - 6 Diameter of water injection pipe.
 - ® Reading records of pressure gauge and water flow meter.

The above items shall be recorded in an appropriate data sheet. The test results, Lugeon values and/or coefficients of permeability, shall be mentioned in the drilling log.

- Testing method
- a. Effective Water Injection Pressure

Below figure shows how the Lugeon value has been determined.

 $P = Po + \gamma w (h_1 - h_2 - h_3) (kgf/cm^2)$ where,

P: Effective Water Injection Pressure (kgf/cm2)

Po: Pressure at the hole mouth (kgf/cm²)

h : Distance between the pressure gauge and the

middle point of the test section (m)

 h_2 : Head from the subterranean water level to the middle

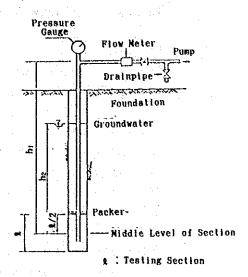
of the test section (m)

This is the head appropriate for the confined water case.

h₃: Head loss depending on the water pipe resistance (m)

 γ w : Specific gravity of water volumen (1 tf/m³ = 0.1

kgf/cm²/m)


The head loss has been calculated by the following formula:

h₃ ≈ γQ² L

where,

Q: Volumen of water injected (2/min)

L: Injection pipe lenght γ : $7x10^{-5}$ (min²/liter²)

b. Lugeon Value, Yielding Pressure Determination

Above values have been determined by a graphic method (curve P - Q) as shown in the following figure.

The curve P - Q pattern (1), (4)b has confirmed that with an effective water injection pressure (P) of 10kgf/cm^2 there is no indication of existence of yielding pressure. The Lugeon value (Lu) has been taken when the injected water volume (Q, liter/min/m) reached a level of 10kgf/cm^2 .

When P is less than 10kgf/cm², through the curve P-Q pattern (2), (3), (4)a, (5), and before the apperance of yielding pressure, a line has been extended from the curves in order for it to reach the level of 10kgf/cm² and the Q value reached through this procedure is considered as the Lugeon value.

Concerning the yielding pressure (P_1) , as we can see from the following figure , the effective water injection pressure has been determined by a sudden increase of the volumen of injected water. However, for the curve P-Q pattern (3), it was very difficult to determine the yielding pressure.

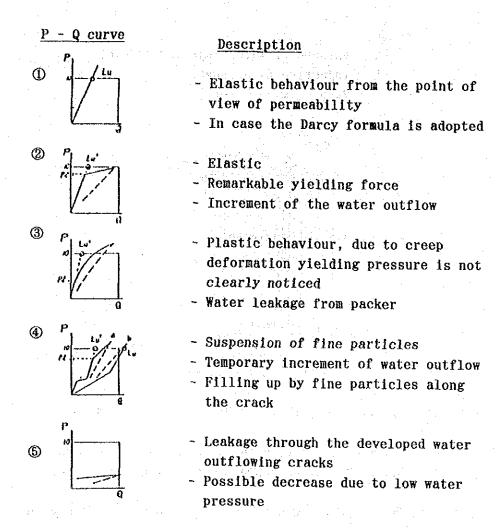
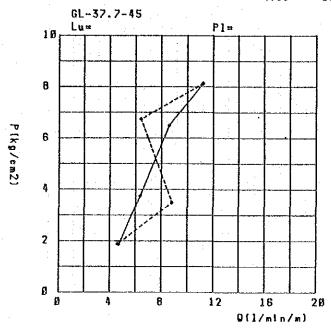



Fig.E.1-3 show curve of Pressure vs. Invected Water Volume for the performed Lugeon test in boreholes.

Hole No. 1 Test Section (m)= 37.7 - 45
Radius of Borehole r(cm)= 3.8
Longitude of Test 1(m)= 5
Groundwater Level N(m)= 9.75
Longitude of Inyection Tube L(m)= 41.35
Height h1(m)= 41.90

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2) Q(1/min/m)	K(cm/sec)
23.70	1.00	1.63	1.87 4.74	0.0003285930
31.80	3.00	2.93	3,74 6,36	0.0002203040
43.00	6.00	5.35	6.49 8.60	0.0001714170
56.00	8.00	9.08	8.12 11.20	0.0001785100
32.00	6.00	2,96	6.73 6.40	0.0001230420
44.00	3.00	5.60	3,47 8,80	0.0003283390
23.00	1.00	1.53	1.88 4.60	0.0003172800

| liole No. 1 Test Section (m)= 45-50 | Longitude of Test 1(m)=5 | Groundwater Level 1(m)=5 | Longitude of Inyection Tube L(m)=62.50 | leight h2(m)=37.90 | leight h2(m)=37.90

	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
26.00	1.00	2.96	1.71	5.20	0.0003938400
41.00	3.00	7.35	3.27	8.20	0.0003246730
51.20	6.00	11.47	5.86	10.24	0.0002262890
61.10	8 00	16.33	7.37	12.22	0.0002145970
47.00	6 00	9.66	6.04	9.40	0.0002015190
42.00	3.00	7.72	3.23	8.40	. 0.0003363270
30.00	1.00	3.94	1.61	6.00	0.0004820700

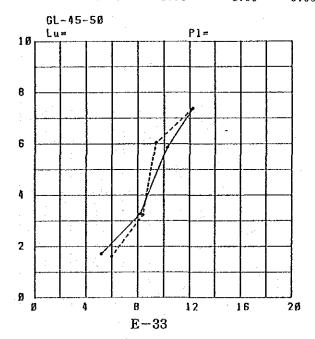
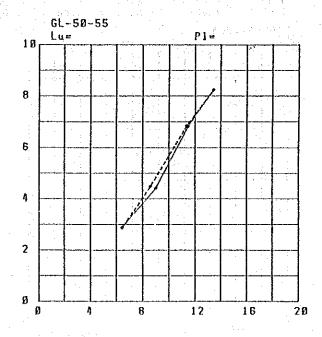
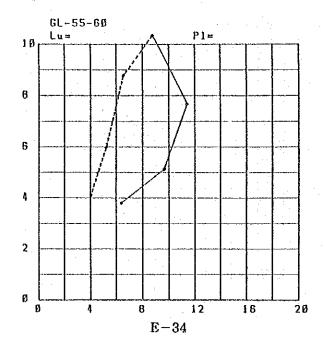
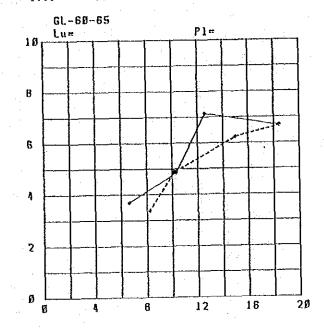



Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (2/46)

Hole No. 1 Test Section (m)= 60-55 Longitude of Test 1(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level H(m)=23.10 Regitude of Inyection Tube L(m)=67.50 Height h2(m)=53.00


Q0(1/min) 32.20	PO(kg/cm2)	h3(m)	P(kg/cm2) Q	(1/min/m)	K(cm/sec)
45.00	1.00 3.00	4.90 9.57	2.87 4.40	6.44 9.00	0.0002904770
57.20 67.20	6.00 8.00	15.46 21.34	6.81 8.23	11.44	0.0002173410
56.80 43.10	6.00	15.24	6.84	13.44 11.36	0.0002115040
32.40	3.00 1.00	0.78 4.96	1.48 2.86	8.62 6.48	0.0002489610 0.0002929040

Hole No. 1 Test Section (m)= 55 - 60 Radius of Borchole r(cm)= 3.8 Longitude of Inyection Tube L(m)= 72.50 Height h2(m)= 25.00


Longitude of Test 1(m)= 5 Groundwater Level 11(m)= 32.50 Helght h1(m)= 58.10

90(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/mln/m)	K(cm/sec)
32.10	1.00	5.23	3.79	5.42	0.0002194590
48.30	3.00	11.84	5.13	9.66	0.0002439580
57.00	6.00	16.49	7.66	11.40	0.0001926340
43.90	8.00	9.78	10.33	8.78	0.0001100110
32.80	6.00	5.46	8.76	6.56	0.0000968998
26.20	3.00	3.48	5.96	5.24	0.0001137860
20.20	1.00	2.07	4.10	4.04	0.0001274710

Hole No. 1 Test Section $(m) \approx 60 - 65$ Longitude of Test $1(m) \approx 5$ Radius of Borehole $r(cm) \approx 3.8$ Groundwater Level $11(m) \approx 32.40$ Longitude of Inyection Tube $L(m) \approx 77.50$ Height $h2(m) \approx 30.10$

Q0(1/min) 33.20 51.70	PO(kg/cm2) 1.00 3.00	b3(m) 5.98 14.50	P(kg/cm2) Q(1/min/m) 3.68 6.64 4.83 10.34	0.0002771400
63.00	6.00	21.53	7.13 12.60	0.0002288740
92.20	8.00	46.12	6.67 18.44	0.0003579880
75.00	6.00	30.52	6.23 15.00	0.0003117700
50.80	3.00	14.00	4.88 10.16	0.0002685230
41 20	1.00	9.21	3.36 8.24	0.0003175570

Hole No. 1 Test Section (m)= 65 - 70 Lon Radius of Borehole r(cm)= 3.8 Gro Longitude of Inyection Tube L(m)= 82.50 Height h2(m)= 35.70

Longitude of Test 1(m)= 5 Groundwater Level 11(m)= 31.80 Height h1(m)= 68.10

	00(1/min)	P0(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/m1n/m)	K(cm/sec)
	25.00	1.00	3.61	3.88	5.00	0.0001668650
	45.20	3.00	11.80	5.06	9.04	0.0002312740
	61.80	6 00	22.06	7.03	12.36	0.0002274650
	70.00	8.00	28,30	8.41	14.00	0.0002154970
	58.80	8.00	19.97	7.24	11.76	0.0002101800
-	50.20	3.00	14.55	4.78	10.04	0.0002716460
	30.20	1 00	8.78	3.36	7.80	0.0003003780

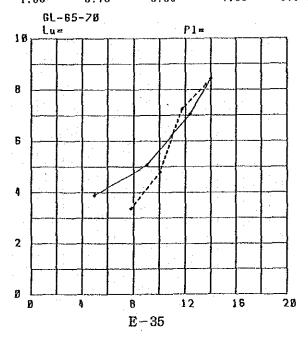
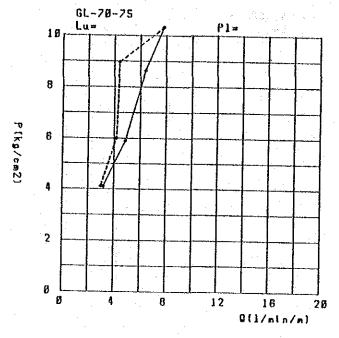
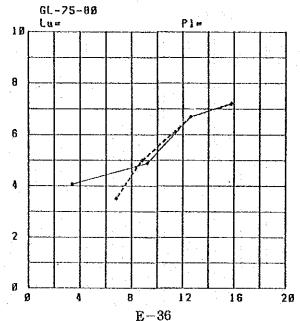



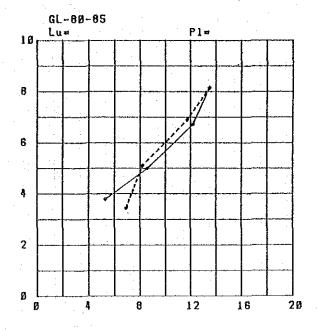
Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (4/46)

Hole No. 1 Test Section (m)= 70 - 75
Radius of Borchole r(cm)= 3.8
Longitude of Injection Tube L(m)= 87.50
Height h2(m)= 40.55

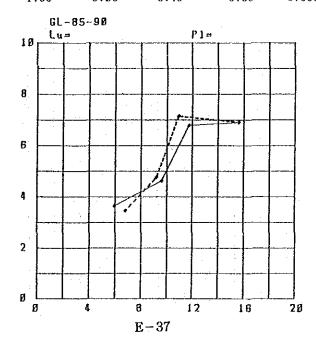
Longitude of Test 1(m)= 5 Groundwater Level 11(m)= 31.95 Height h1(m)= 73.10


16.00 1.00 24.30 3.00 32.00 6.00 38.00 8.00 22.00 6.00 20.90 3.00	h3(m) P(kg/cm2) Q(1/min 1.57 4.10 3.20 3.62 5.89 4.86 6.27 8.63 6.40 9.32 10.32 7.80 2.96 8.96 4.40 2.68 5.99 4.18	0.0001010830 0.0001067570 0.0000960289 0.0000978125
16 00	1.38 4.12 3.00	0.0000903766

Hole No. 1 Test Section (m)= 75 - 80 Radius of Borchole r(cm)= 3.8 Longitude of Invection Tube L(m)= 92.50 Height h2(m)= 45.60


Longitude of Test 1(m)= 5 Groundwater Level 11(m)= 31.90 Height h1(m)= 78.15

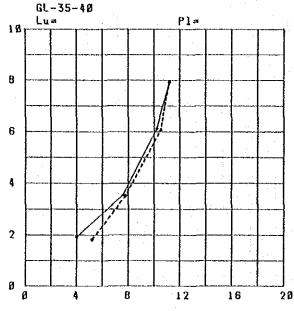
•		PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
	17.00	1.00	1.87	4.07	3.40	0.0001082020
	46.00	3.00	13.70	4.88	9.20	0.0002438120
	63.00	6.00	25.70	6 69	12.60	0.0002439980
	79.00	8.00	40.41	7.21	15.80	0.0002835340
	63.00	6.00	25.70	6.69	12.60	0.0002439980
	44.00	3.00	12.54	5.00	8.80	0.0002277770
	34.00	1.00	7.49	3.51	6.80	0.0002510490


| Hole No. 1 | Test Section (m)= 80 - 85 | Longitude of Test 1(m)= 5 | Radius of Borehole r(cm)= 3.8 | Groundwater Level II(m)= 32.05 | Height h2(m)= 50.45 | Height h2(m)= 50.45 | Groundwater Level II(m)= 83.05 | Height h2(m)= 50.45 | Height h2(m)= 83.05 | Height h2(m)= 80 - 85 | Longitude of Test 1(m)= 5 | Groundwater Level II(m)= 5 | Height h2(m)= 80 - 85 | Longitude of Test 1(m)= 5 | Groundwater Level II(m)= 5 | Height h2(m)= 80 - 85 | Height h2(m)= 5 | Height h2(m)= 5 | Height h2(m)= 50 - 45 | Height h2(m)= 5 | H

90(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
26,50	1.00	4.79	3.78	5.30	0.0001814780
42.90	3.00	12.56	5.00	8.58	0.0002219720
61.00	6.00	25.40	6.72	12.20	0.0002350100
67.50	8.00	31,10	8.15	13.50	0.0002144270
58.80	6.00	23.60	6.90	11.78	0.0002206280
41.00	3.00	11.47	5.11	8.20	0.0002076270
34.60	1.00	8.17	3.44	6,92	0.0002601950

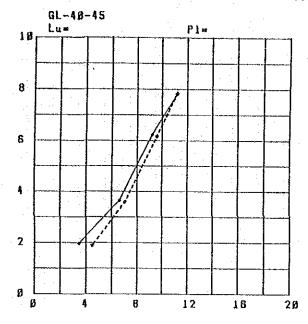

Hole No. 1 Test Section (m) = 85 - 90 Longitude of Test 1 (Radius of Borehole r(cm) = 3.8 Groundwater Level H (Longitude of Inyection Tube L(m) = 102.50 Height h2(m) = 55.40 Longitude of Test 1(m)= 5 Groundwater Level H(m)= 32.10

Q0(1/min)	P0(kg/em2)	h3(m)	P(kg/cm2)	Q(1/m1n/m)	K(cm/sec)
29.80	1.00	6.37	3.64	5.96	0.0002120930
48.00	3.00	16.53	4.62	9.60	0.0002688900
58.80	8.00	24.81	6.79	11.76	0.0002240710
78.10	8.00	43.76	6.90	15.62	0.0002931210
54.60	6.00	21.39	7.14	10.92	0.0001981020
46.00	3.00	15.18	4.76	9.20	0.0002503790
34.00	1.00	8.29	3.45	6.80	0.0002554880


Note No. 2 Test Section (w)= 30 - 35 | Longitude of Test $\{w\}=5$ | Radius of Borehole r(cw)=3.8 | Groundwater Level H(w)=10.20 | Longitude of Inyection Tube L(w)= 47.50 | Height ht(w)=33.15 | Height ht(w)=22.30

Q0(1/min)	PO(kg/cm2) h3(m)	P(kg/cm2)	Q(1/min/m) K(cm/sec)
22.30	1.00	1.65	1.92	4.46	0.0003007700
41.00	3.00	5.59	3.53	8.20	0.0003010550
58.00	6.00	11.19	5.97	11.60	0.0002516880
64.80	8,00	13.96	7.69	12.96	0.0002182060
57.00	6.00	10.80	6.00	11.40	0.0002457740
42.80	3.00	6.09	3.48	8.56	0.0003188060
29.00	1.00	2.80	1.81	5.80	0.0004158960

| Radius of Boroholo $r(c_{m})=35-40$ | Longitude of Test l(m)=5 | Radius of Boroholo $r(c_{m})=3.8$ | Groundwater Level ll(m)=10.15 | Reight ll(m)=38.10


Q0(1/min)	PO(kg/cm2)	հ3 (ա.)	P(kg/cm2)	Q(1/min/m)	K(cm/see)
20.00	1.00	1.47	1.93	4.00	0.0002885810
38.00	3.00	5.31	3.54	7.60	0.0002775890
51.00	6,00	9.56	6.12	10.20	0.0002157910
56,00	8.00	11.52	7.92	11.20	0.0001830110
52.50	6.00	10.13	6.06	10.50	0.0002242280
39.00	3.00	5.59	3.52	7.80	0.0002871860
26.00	1.00	2.48	1.83	5.20	0.003685440

E - 38

Hole No. 2 Test Section (w)= 40-45 | Longitude of Test 1(m)=5 | Radius of Borchole r(cm)=3.8 | Groundwater Level 11(m)=10.25 | Longitude of Inyection Tube 1.(m)=57.50 | Reight h1(m)=43.15 | Height h2(m)=32.25

	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
17.30	1.00	1,20	1.97	3.46	0.0002274230
33.00	3.00	4.38	3.65	6.60	0.0002339770
46.00	6.00	8.52	6.24	9.20	0.0001909180
56.00	8.00	12.62	7.83	11.20	0.0001852260
47.80	6.00	9.24	6.17	9.58	0.0002011170
35.20	3.00	4.99	3.59	7.04	0.0002537730
22.40	1,00	2.02	1.89	4.48	0.0003071770

Hole No. 2 Test Section (m)= 45 - 50 Radius of Borchole r(cm)= 3.8 Longitude of Invection Tube L(m)= 62.50 Height h2(m)= 34.15

Longitude of Test 1(m)= 5 Groundwater Level H(m)= 13.35 Height h1(m)= 48.15

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(l/min/m)	K(cm/sec)
23.80	1.00	2.48	2.15	4.76	0.0002863190
35.70	3.00	5.58	3.84	7.14	0.0002405560
43.30	8.00	8.20	6.58	8.66	0.0001703850
51.00	8.00	11.38	8.26	10.20	0.0001598210
46.20	6.00	9.34	6.47	9.24	0.0001849890
36,00	3.00	5.67	3.83	7.20	0.0002431730
27.00	1.00	3.19	2.08	5.40	0.0003359160

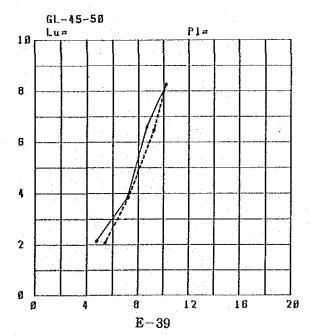
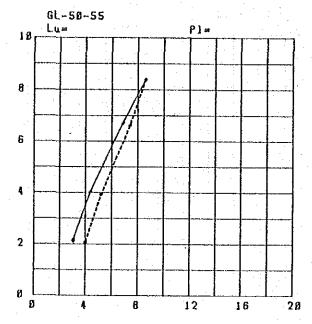



Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (8/46)

and the same of the same	فالمنا والمنطا أوامسوا	Call Control of the Call	ARREST ARREST MATERIAL
Q0(1/min) P0(kg/qm2)	h3(m) P(kg/cm2)	Q(l/min/m)	K(cm/sec)
15,30 1,00	1.11 2.15		0.0001843010
22.00 3.00	2.29 4.03		0.0001412960
34,20 6.00	5.53 8.71		0.0001320160
43.00 8.00	8.74 8.39		0.0001327540
36.90 6.00	6.43 6.62		0.0001443910
26.00 3.00	3.19 3.94		0.0001708300
20.00 1.00	1.89 2.07		0.0002500360

Hole No. 2 Test Section (m)= 55 ~ 60 Radius of Borchole r(cm)= 3.8 Longitude of Inyection Tube L(m)= 72.50 Height h2(m)= 46.25

longItude of Test 1(w)= 5
Groundwater Level II(w)= 11.25
Height h1(w)= 58.20

Q0(1/min)	P0(kg/cm2)	h3(m)	P(kg/cm2) Q(1/min/m) K(cm/sec)
7.00	1.00	0.25	2.17 1.40	0.0000835149
8.00	3.00	0.32	4.16 1.60	0.0000497608
32.10	6.00	5.23	6.67 6.42	0.0001245650
42.50	8.00	9.17	8.28 8.50	0.0001329220
34.80	6.00	6.15	6.58 6.96	0.0001369240
23.20	3.00	2.73	3.92 4.64	0.0001531620
17.50	1.00	1.55	2.04 3.50	0.0002221520

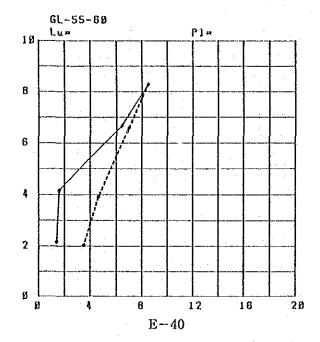
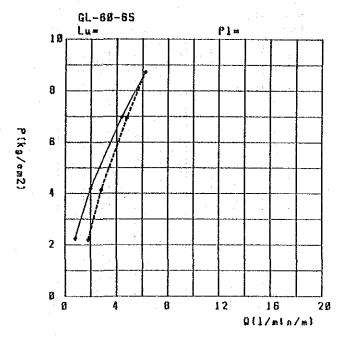



Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (9/46)

Hole No. 2 Test Section (m)= 60-65 Radius of Borcholo r(cm)= 3.8 Groundwater Level ||(m)|=5 Longitude of Inyection Tube L(m)= 77.50 Height h2(m)=50.65

Q0(1/min)	PO(kg/cm2)	h9(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
4,00	1.00	0.09	2,24	0.80	0.0000463104
9,90	3,00	0,53	4.19	1.98	0,0000611482
21.90	6.00	2.60	6.98	4.38	0.0000811786
31.00	8.00	5.21	8.72	6.20	0.0000920058
23.80	6.00	3.07	6.94	4.76	0.0000888205
14.00	3.00	1.06	4.14	2.80	0.0000875829
9.00	1.00	0.44	2.20	1.80	0.0001058680

Hole No. 2 Test Section (m)= 65 - 70 Radius of Borchole r(cm)= 3.8 Longitude of Injection Tube L(m)= 82.50 Height h2(m)= 51.75

Longitude of Test 1(m)= 5 Groundwater Level H(m)= 15.75 Height hi(m)= 68.15

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
21.00	1.00	2.55	2.39	4.20	0.0002279420
38.00	3.00	8.34	3.81	7.60	0.0002584980
53.90	6.00	16.78	5.96	10.78	0.0002340620
61.50	8.00	21.84	7.46	12.30	0.0002135680
51.00	6.00	15.02	6.14	10.20	0.0002151300
42.00	3.00	10.19	3.62	8.40	0.0003002880
32 20	1 00	5.99	2.04	6.44	0.0004084300

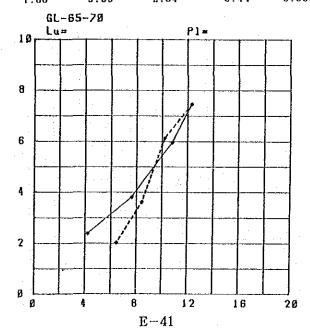
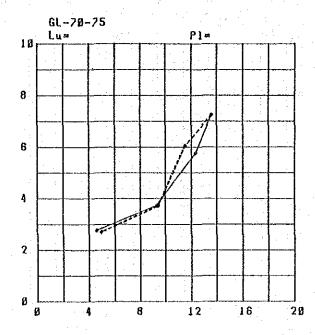



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (10/46)

Hole No. 2 Test Section (m) = 70 - 75
Radius of Borehole r(cm) = 3.8
Longitude of Injection Tube L(m) = 87.50
Height h2(m) = 52.25

Longitude of Test 1(m)= 5 Groundwater Level H(m)= 20.25 Height h1(m)= 73.15

		The second secon	and the second s	4 (4)
Q0(1/min) P0(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
23.00 1.00	3.24	2.77	4,60	0.0002152930
46.70 3.00	13,36	3.75	9.34	0.0003220710
61.50 6.00	23.17	5.77	12.30	0.0002758020
68.00 8.00	28.32	7.26	13.60	0.0002425810
57.50 6.00	20.25	6.06	11.50	0.0002454680
47.20 3.00	13.65	3.73	9.44	0.0003280320
24.80 1.00	3.77	2.71	4.96	0.0002366510

Hole No. 2 Test Section (m)= 75 - 80 Radius of Borchole r(cm)= 3.8 Longitude of Invection Tube L(m)= 92.50 Height h2(m)= 55.85

Longitude of Test 1(m)= 5 Groundwater Level H(m)= 21.65 Height h1(m)= 78.10

Q0(1/min)		h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
28.60	1,00	5.30	2.70	5.72	0.0002747260
40.50	3.00	10.62	4.16	8.10	0.0002518880
55.60	6.00	20.02	6.22	11.12	0.0002313150
64.60	8.00	27.02	7.52	12.92	0.0002223310
51.60	6.00	1.7 . 24	6.50	10.32	0.0002055050
40.40	3.00	10.57	4.17	8.08	0.0002509500
28.40	1.00	5.22	2.70	5.68	0.0002720600

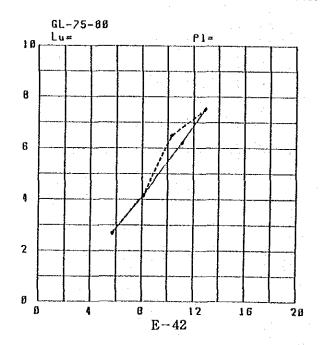
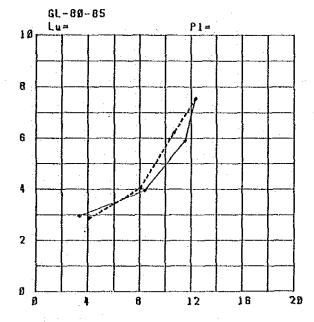



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (11/46)

Hole No. 2 Test Section (m)= 80 - 85 Longitude of Test l(m)=6 Radius of Borehole r(cm)=3.8 Groundwater Lovel ll(m)=20.85 Longitude of Inyection Tube L(m)=97.50 Height h1(m)=83.20 Height h2(m)=61.65

Q0(1/min) P	0(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
16.90	1.00	1.95	2.96	3.38	0.0001478210
42.20	3.00	12.15	3,94	8,44	0.0002773420
57.60	6.00	22.64	5.88	11.52	0.0002531700
61.80	8.00	26.07	7.55	12.36	0.0002119760
53.30	6,00	19.38	6.22	10.66	0.0002220050
40.30	3.00	80.11	4.05	8.06	0.0002578520
20.50	1.00	2.87	2.87	4.10	0.0001850550

Hole No. 2 Test Section (m)=85-90 Longitude of Test 1(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level 11(m)=5 Longitude of Inyection Tube L(m)=102.50 Height h2(m)=65.90

QO(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
17.30	1.00	2.15	3.02	3,46	0.0001485500
34.40	3.00	8.49	4,38	6.88	0.0002033030
46.60	6.00	15.58	6.67	9,32	0.0001808370
53.40	8.00	20.46	8.18	10.68	0.0001689380
44.20	6.00	14.02	6.83	8.84	0.0001675960
31.90	3.00	7.30	4.50	6.38	0.0001835450
19.50	1.00	2.73	2.96	3.90	0.0001707300

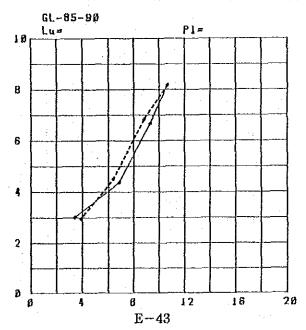
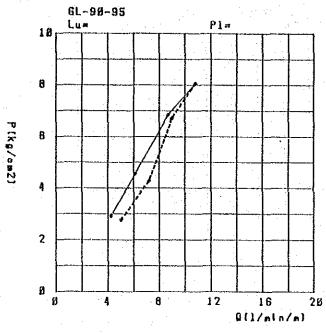



Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (12/46)

Note No. 2 Test Section (m)= 90 - 95 Longitude of Test l(w)=5 Radius of Borchole r(cm)=3.8 Groundwater Level H(w)=21.95 Longitude of Injection Tube L(m)= 107.50 Height h2(m)=70.55

		for the second second		A CONTRACT OF STREET	
Q0(1/min)	Pů(kg/cm	2) h3(m)	P(kg/cm2)	Q(1/mln/m)	K(cm/sec)
21.20	1.00	3,38	2,91	4.24	0.0001888310
30.60	3.00	7.05	4.64	6.12	0.0001744840
43,40	6.00	14.17	6.83	8.68	0.0001645780
54,00	8.00	21.94	8.05	10.80	0.0001736650
45.00	6.00	15.24	6.72	9.00	0.0001733480
36.00	3.00	9,75	4.27	7.20	0.0002182990
25.00	- 11- AA	· 4 · 70	2 77	5.00	0.0002332800

Hole No. 2 Test Section (\mathbf{m})= 95 - 100 Longitude of Test 1(\mathbf{m})= 5 Groundwater Level II(\mathbf{m})= 22.05 Longitude of Thyection Tube L(\mathbf{m})= 112.50 Height h2(\mathbf{m})= 75.45

	PO(kg/cm2)	ի3(տ)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
23.30	1.00	4.28	2.84	4.66	0.0002122320
31.90	3.00	8.01	4.47	6.38	0.0001848280
45.10	6.00	16.02	6.67	9.02	0.0001751130
55.20	8.00	24.00	7.87	11.04	0.0001815900
46.90	6.00	17.32	6.54	9.38	0.0001857350
37,90	3.00	11.31	4.14	7.58	0.0002370900
25.70	1.00	5.20	2.75	5.14	0.0002419770

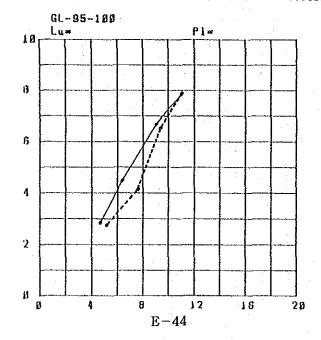
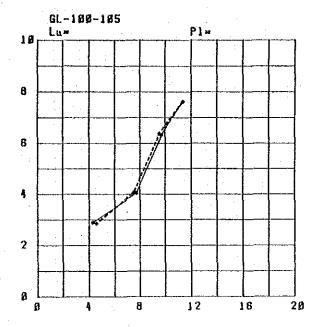



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (13/46)

Hole No. 2 Test Section (m)= 100 - 105
Radius of Borchole r(cm)= 3.8
Longitude of Test 1(m)= 5
Groundwater Level II(m)= 22.05
Longitude of Inyection Tube L(m)= 117.50
Height h2(m)= 80.45

Q0(1/min)	PO(kg/cm2)	- h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
21.40	1.00	3.77	2.89	4.28	0.0001915000
38.60	3.00	12.25	4.04	7.72	0.0002471010
48.60	6.00	19.43	6.33	9.72	0.0001988710
56.80	8.00	26.54	7,62	11.36	0.0001930860
47.80	6.00	18.79	6,39	9.56	0.0001936560
37.70	3.00	11.69	4.10	7,54	0.0002380150
22.70	1.00	4.24	2.85	4.54	0.0002064980

liole No. 2 Test Section (w)= 105-110 Longitude of Test 1(m)=5 Radius of Borehole r(cm)=3.8 Groundwater Level 11(m)=22.65 Longitude of Inyection Tube L(m)=122.50 Height h1(m)=108.10 Height h2(m)=84.85

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(l/min/m)	K(cm/sec)
20.00	1.00	3.43	2.98	4.00	0.0001736500
29.70	3.00	7.56	4.57	5.94	0.0001683160
40.60	6.00	14.13	6.91	8.12	0.0001520910
48.70	8 00	20.34	8.29	9.74	0.0001520760
43.20	6.00	16.00	6.72	8.64	0.0001663270
31.00	3.00	8.24	4.50	6.20	0.0001783240
22.60	1.00	4.38	2.89	4.52	0.0002026800

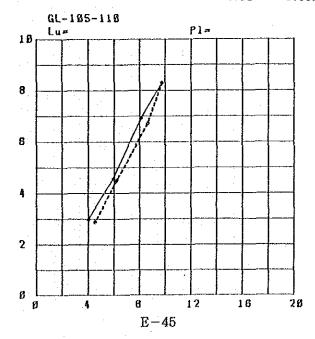
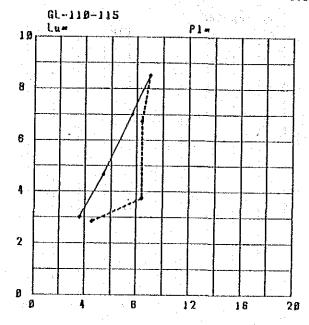



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (14/46)

| Hole No. 2 Test Section (m)= 110 - 115 | Longitude of Test l(m)=5 | Radius of Boreloje r(cm)=3.8 | Groundwater Level H(m)=22.65 | Longitude of Thyection Tube L(m)=127.50 | Hoight h2(m)=89.85

Q0(1/min) 18,20 27,00 38,20 45,00 42,00	1.00 2.96 3.00 6.51 6.00 13.02 8.00 18.07 6.00 15.74 3.00 15.74	3.02 4.66 7.01 8.51 6.74 3.74	3.64 5.40 7.64 9.00 8.40	K(cm/sec) 0.0001560660 0.0001498730 0.0001410380 0.0001368470 0.0001613250 0.0002907080
22.80	1.00 4.64	2.85	7.1.7	0.0002907080 0.0002070640

Hole No. 2 Test Section (m)= 115-120 Longitude of Test 1(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level 11(m)=28.90 Region of Injection Tube 1.(m)=132.50 Groundwater Level 11(m)=28.90 Region has 118.20 Region and 118.20 Region of 118.20 Region has 118.20 Region and 118.20 Region has 118.20 Regio

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
19.60	1.00	3.56	3.60	3.92	0.0001408190
30.30	3.00	14.33	4.53	7.88	0.0002247440
56.00	6.00	29.08	6.05	11.20	0.0002396000
64.50	8.00	38.59	7.10	12.90	0.0002351630
55.60	6.00	28.67	6.09	11.12	0.0002362720
43,00	3,00	17.15	4.25	8.60	0.0002622630
22.00	1,00	4.49	3.51	4.40	0.0001622310

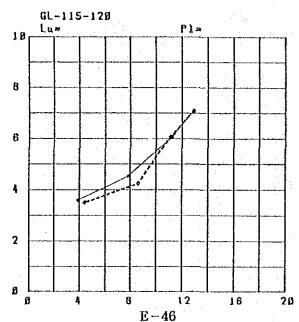
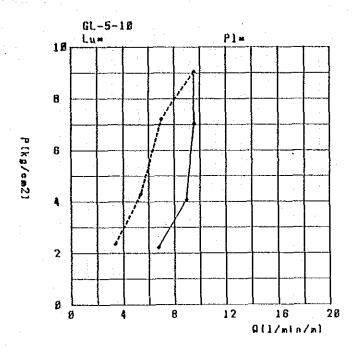



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (15/46)

| Hole No. 3 | Test Section (m) \times 5 - 10 | Longitude of Test 1(m) = 5 | Radius of Borehole r(cm) \times 3.8 | Groundwater Level H(m) = 6.00 | Height h2(m) \times 1.50 | Height h2(m) \times 1.50 |

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
33.80	1.00	1.80	2.23	6.76	0.0003924200
44.80	3.00	3.16	4.09	8.96	0.0002833310
47.70	6.00	3,58	7.05	9.54	0.0001751380
47.60	8.00	3.57	9,06	9,52	0.0001361320
34.90	6.00	1.92	7.22	6.98	0.0001251850
26.90	3.00	1.14	4.30	5.38	0.0001621200
16,90	1.00	0.45	2.37	3.38	0.0001850140

| Hole No. 3 | Test Section (m)= 10 - 15 | Longitude of Test 1(m)= 5 | Radius of Borchole r(cm)= 3.8 | Groundwater Level | H(m)= 14.00 | Height h2(m)= 0.00 | Height h1(m)= 13.30

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
95.50	1.00	17.56	0.57	19.10	0.0043050400
117.60	3.00	26.62	1.67	23.52	0.0018256700
110.80	1.00	23,63	-0.03	22.16	0862691000

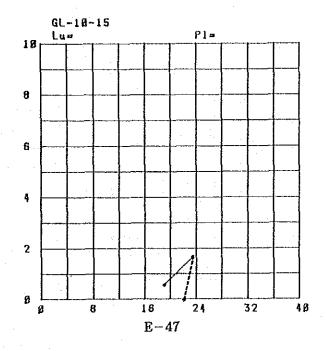
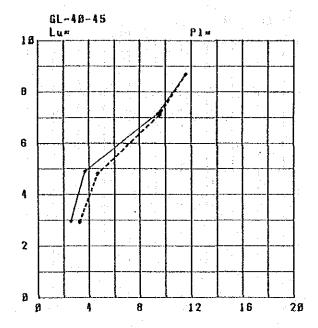



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (16/46)

Hole No. 3 Test Section (m)= 40 - 45
Radius of Borehole r(cm)= 3.8
Longitude of Test 1(m)= 5
Groundwater Level H(m)= 19.60
Height h2(m)= 22.90

Oction 100 (had constant to the constant to th

QO(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
12.90	1.00	0.67	2.97	2.58	0.0001123420
18.40	3.00	1.36	4.90	3.68	0.0000971501
47.00	6.00	8.89	7.15	9.40	0.0001701730
57.90	8.00	13.49	8.69	11.58	0.0001724960
47.80	6.00	9.20	7.12	9.56	0.0001738110
23.40	3.00	2.20	4.82	4.68	0.0001257060
16.30	1.00	1.07	2.93	3.26	0.0001438860

QO(l/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
12.60	1.00	0.69	5.26	2.52	0.0000620733
17.50	3.00	1.34	7.19	3.50	0.0000630086
18.60	6.00	10.33	9.29	9.72	0.0001354240
58.60	8.00	15.02	10.82	11.72	0.0001401900
47.50	6.00	9.87	9.34	9.50	0.0001317030
33.20	3.00	4.82	6.84	6.64	0.0001256200
22.90	1.00	2.29	5.10	4.58	0.0001163580

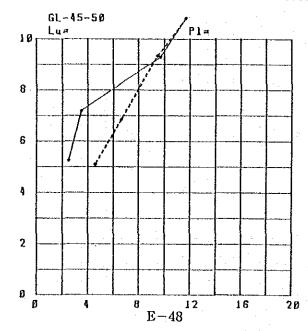
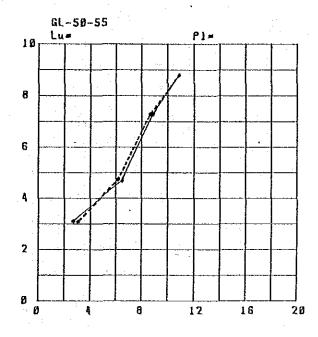



Fig. E.1-3 Curve of Pressure vs. Inyected Water Volume (17/46)

Q0(1/min) P0(kg/cm2) h3(m) 13.40 1.00 0.85 32.40 3.00 4.96 44.20 6.00 9.23 54.30 8.00 13.93 43.30 6.00 8.86 31.00 3.00 4.54 16.30 1.00 1.11	P(kg/cm2) Q(1/min/ 3.11 2.68 4.69 6.48 7.27 8.84 8.80 10.86 7.30 8.86 4.74 6.20 3.08 3.06	m) K(cm/sec) 0.0001117310 0.0001787130 0.0001574800 0.0001534870 0.0001694760 0.0001286410
---	--	--

Hole No. 3 Test Section (w)= 55-60 Longitude of Test l(w)=5 Radius of Borehole r(cw)=3.8 Groundwater Level ll(w)=11.10 Longitude of Invection Tube L(w)=72.50 Height hl(w)=58.20 Height hl(w)=46.10

Q0(1/min) 18.60 25.30 38.50 42.40 34.00	1.30 3.00 6.00 8.00 6.00	h3(m) 1.76 3.25 7.52 9.12 5.87	2.03 3.89 6.46 8.30 6.62	Q(1/min/m) 3.72 5.06 7.70 8.48 6.80	K(cm/sec) 0.0002367140 0.0001886030 0.0001543590 0.0001323010 0.0001329090
23.00 12.90	3.00 1.00	2.68	3.94 2.13	4.60 2.58	0.0001510830

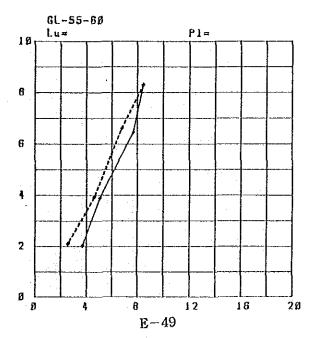
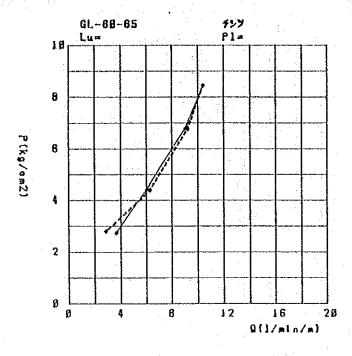



Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (18/46)

Hole No. 3 Test Section (m)= 60-65 Longitude of Test 1(m)=5 Rudlus of Borehole r(cm)=3.8 Groundwater Level II(m)=18.30 Longitude of Inyection Tube I.(m)=77.50 Height h1(m)=63.25 Height h2(m)=44.20

10(1/min)	PO(kg/ca	i2) h3(m)	P(kg/cm2)	Q(1/m1n/m)	K(cm/sec)
18.10	1.00	1.78	2.73	3.62	0.0001718310
30.00	3,00	4.88	4.42	6.00	0.0001758610
45.10	6.00	11.03	6.80	9.02	0.0001716800
51.90	8,00	14.61	8.44	10.38	0.0001591420
45.90	6,00	11.43	6.76	9.18	0.0001757460
31.20	3.00	5.28	4.38	6.24	0.0001845610
14.00	1.00	1.06	2.80	2.80	0.0001295170
	18.10 30.00 45.10 51.90 45.90 31.20	18.10 1.00 30.00 3.00 45.10 6.00 51.90 8.00 45.90 6.00 31.20 3.00	18.10 1.00 1.78 30.00 3.00 4.88 45.10 6.00 11.03 51.90 8.00 14.61 45.90 6.00 11.43 31.20 3.00 5.28	18.10 1.00 1.78 2.73 30.00 3.00 4.88 4.42 45.10 6.00 11.03 6.80 51.90 8.00 14.61 8.44 45.90 6.00 11.43 6.76 31.20 3.00 5.28 4.38	18.10 1.00 1.78 2.73 3.62 30.00 3.00 4.88 4.42 6.00 45.10 6.00 11.03 6.80 9.02 51.90 8.00 14.61 8.44 10.38 45.90 6.00 11.43 6.76 9.18 31.20 3.00 5.28 4.38 6.24

Q0(1/min)	PO(kg/cm2)	h3 (m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
7.90	1.00	0.36	3.58	1.58	0.0000570711
32.00	3.00	5.91	5.03	6.40	0.0001647600
50.00	6.00	14.44	7.18	10.00	0.0001803950
58.00	8 00	19,43	8.68	11.60	0.0001730600
50.00	6.00	14.44	7.18	10.00	0.0001803950
31.00	3.00	5.55	5.07	6.20	0.0001584650
8.00	1.00	0.37	3.58	1.60	0.0000578083

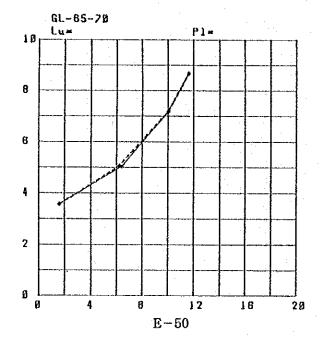
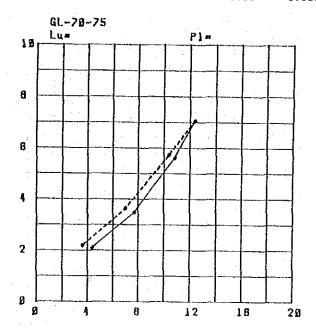



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (19/46)

Hote No. 3 Test Section (m) = 70 - 75	Longitude of Test 1(m) = 5
Radius of Borcholo r(cm) = 3.8	Groundwater Level H(m) = 13.30
Longitude of Injection Tubo L(m) = 87.50	Height hi(m) = 73.25
Height h2(m) = 59.20	Constant of the section (m) = 75
Constant of the section (m) = 70 - 75	
Longitude of Test 1(m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of the section (m) = 5	
Constant of	

Q0(1/min)	PO(kg/cm2)	h3 (m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
21.80	1.00	2.91	2.11	4.36	0.0002670060
38.50	3.00	9.08	3.50	7.70	0.0002850380
54.00 :::	6.00	17.86	5.62	10.80	0.0002488230
61.80	8.00	23.39	7.07	12.36	0.0002264560
52.00	6.00	16.56	5.75	10.40	0.0002341950
35.00	3.00	7.50	3.65	7.00	0.0002479590
18.00	1.00	1.98	2.21	3.60	0.0002112080

Hole No. 3 Test Section (m)= 75 - 80 Longitude of Test 1(m)= 5 Radius of Borehole r(cm)= 3.8 Groundwater Level H(m)= 25.90 Longitude of Inyection Tube L(m)= 92.50 Height h1(m)= 78.40

Q0(1/min)		h3(m)	P(kg/cm2)		K(om/sec)
4.00	1.00	0.10	3.67	0.80	0.0000282221
7.00	3.00	0.32	5.65	1.40	0.0000320874
39.00	6.00	9.85	7.70	7.80	0.0001312200
65.10	8.00	27.44	7.94	13.02	0.0002123920
39.90	6.00	10.31	7.65	7.98	0.0001350550
15.10	3.00	1.48	5.53	3.02	0.0000706673
10.00	1,00	0.65	20.8	8.00	0.0000716166

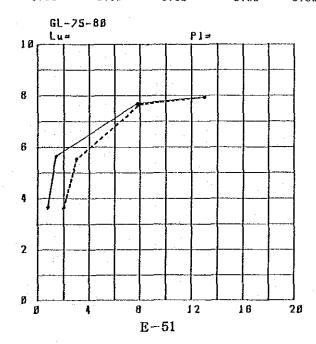
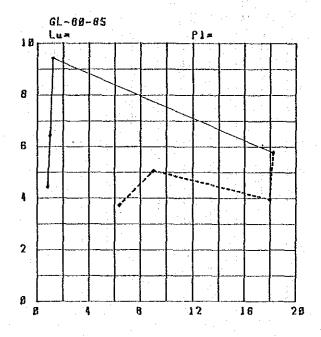



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (20/46)

Note No. 3 Test Section (N)= 80 - 85 Longitude of Test l(u)=5 Radius of Berchole r(cu)=3.8 Groundwater Lovel l(u)=33.60 Longitude of Invection Tube $l_1(u)=97.50$ Height $l_2(u)=48.90$

Q0(1/min) P0(kg/cm2) h3(m)	P(kg/cm2) Q(1/m1n/m)	K(cm/sec)
4.10 1.00 0.11	4.43 0.82	0.0000239434
5.00 3.00 0.17	6.43 1,00	0.0000201396
6.10 6.00 0.25	9.42 1.22	0.0000167668
81.20 8.00 56.77	5.77 18.24	0.0004093510
89.70 6.00 54.91	3.95 17.94	0.0005874330
45.00 3.00 13.82	5.00 9.00	0.0002301240
32.00 1.00 8.99		0.0002211670

Hole No. 3 Test Section (m)= 85 - 90 Longitude of Tost 1(m)= 5 Radius of Borchole r(cm)= 3.8 Groundwater Level II(m)= 32.00 Longitude of Inyection Tube L(m)= 102.50 Height h1(m)= 88.30 Height h2(m)= 55.50

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
22.00	00.1	3.47	3.93	4.40	0.0001448370
40.00	3.00	11.48	5.13	8.00	0.0002018020
53.00	6.00	20.15	7.26	10.60	0.0001888950
57.00	8.00	23.31	8.95	11.40	0.0001649150
48.20	6.00	16.67	7.61	9.64	0.0001639230
35.00	3.00	8.79	5.40	7.00	0.0001677800
24.00	1.00	4.13	3.87	4.80	0.0001607020

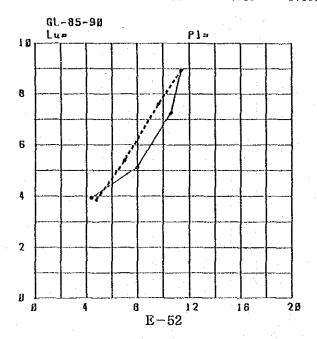
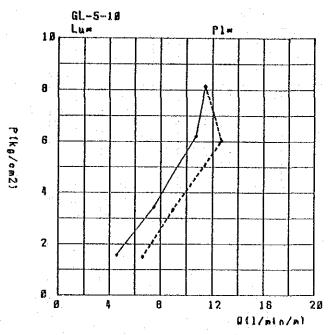



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (21/46)

| Hole No. 4 | Test Section (w)= 5 - 10 | Longitude of Test 1(w)=5 | Radius of Borehole r(cm)=3.8 | Groundwater Level 11(w)=6.00 | Height 12(w)=1.50 | Height 12(w)=1.50

Q0(1/min)		h3(m)		Q(1/min/m)	K(cm/sec)
22.80	1.00	0.83	1.58	4.58	0.0003758760
37.40	3.00	2.20	3.44	7.48	0.0002815160
53,50	6.00	4.51	6.21	10.70	0.0002230850
57.20	8.00	5.15	8.14	11.44	0.0001818330
63.40	6.00	6.33	6.03	12.68	0.0002723620
45.00	3.00	3.19	3.34	9,00	0.0003487230
33.00	1.00	1.72	1.49	6.60	0.0005740140

| Hole No. 4 | Test Section (m)= 10 - 15 | Longitude of Test 1(m)= 5 | Radius of Borchole r(cm)=3.8 | Groundwater Level H(m)=15.00 | Longitude of Inyection Tube L(m)=27.50 | Height h1(m)=13.10 | Height h2(m)=0.00

Q0(1/min)	PO(kg/cm2)	հ3(ա)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
32.50	1.00	2.03	2.11	6.50	0.0003994280
42.20	3.00	3.43	3.97	8.44	0.0002754110
54.00	6.00	5.61	6.75	10.80	0.0002071700
64.40	8.00	7.98	8.51	12.88	0.0001958960
51.80	6.00	5.17	6,79	10.36	0.0001974190
41.50	3.00	3.32	3.98	8.30	0.0002700750
32.10	1.00	1.98	2.11	6.42	0.0003935830

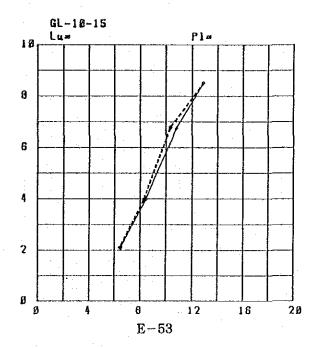
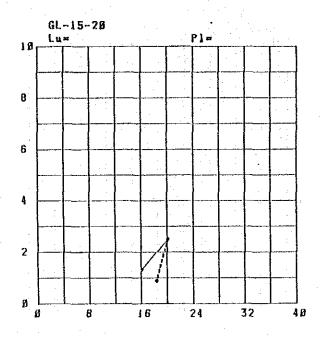



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (22/46)

Hole No. 4 Test Section (m)= 15 - 20 Longitude of Test 1(m)= 5 Redius of Borchole r(cm)= 3.8 Groundwater Level 11(m)= 20.00 Longitude of Inyection Tube L(m)= 32.50 Relight h1(m)= 18.10 Relight h2(m)= 0.00

Q0(1/min) P0(kg/cm2)) h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
80.80 1.00	14.85	1 32	16.16	0.0015791900
100.70 3.00	23.07	2.50	20.14	0.0010416300
92.00 1.00	19.26	0.88	18.40	0.0026932200

| Hole Ro. 4 Test Section (m)= 20 - 25 | Longitude of Test 1(m)= 5 | Groundwater Level | H(n)= 20.30 | Longitude of injection Tube | L(m)= 37.50 | Height | h2(m)= 2.20

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
45.20	1.00	5.36	2.64	9.04	0.0004426680
57.00	3.00	8.53	4.33	11.40	0.0003410560
69.40	6.00	12.64	6.92	13.88	0.0002598220
77.60	8.00	15.81	8.60	15.52	0.0002336420
67.20	6.00	11.85	6.99	13.44	0.0002487480
55.30	3.00	8.03	4.38	11.06	0.0003270960
46.40	1.00	5.65	2.61	9.28	0.0004594350

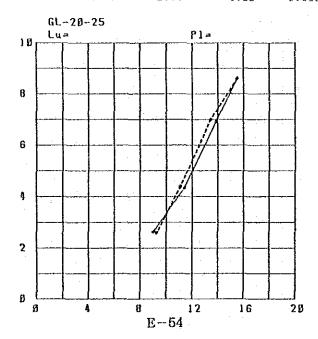
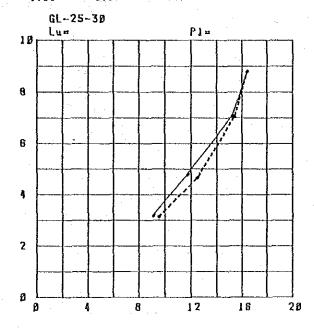



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (23/46)

Hole No. 4 Test Section (m)= 25 - 30 Longitude of Test 1(m)=6 Radius of Borehole r(cm)=3.8 Groundwater Level ii(m)=29.00 Longitude of Inyection Tube L(m)=42.50 Height h2(m)=0.00

00(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
45.70	1.00	6.21	3,20	9.14	0.0003693350
58.70	3.00	10.25	4.80	11.74	0.0003166340
76.20	6.00	17.27	7.10	15,24	0.0002779690
82.20	8.00	20,10	8.81	16.44	0.0002414400
77,10	6.00	17.68	7.06	15.42	0.0002828880
62.50	3.00	11.62	4.66	12.50	0.0003470380
47:80	1.00	6.80	3.15	9.56	0.0003934810

Hole No. 4 Test Section (m)= 30-35 Longitude of Test l(m)=5 Groundwater Level l(m)=31.80 Longitude of Injection Tube l(m)=47.50 Height h1(m)=33.05

Q0(1/min)	PO(kg/cm2)	-h3(m)	P(kg/cm2)	(m\aim\l)	K(cm/sec)
50.80	1.00	8.58	3.38	10.16	0.0003894870
58.70	3.00	11.46	5.09	11.74	0.0002986290
68.90	6.00	15.78	7.66	13.78	0.0002329900
73.80	8.00	18.11	9.42	14.76	0.0002027550
64.30	6.00	13.75	7.86	12.86	0.0002118000
53.80	3.00	9.62	5.27	10.76	0.0002641860
48 10	1.00	7.69	3 47	9.62	0.0003593380

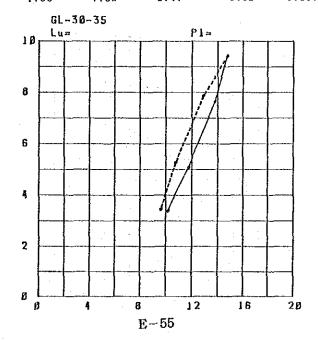
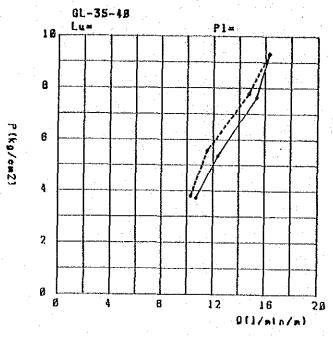



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (24/46)

Hole No. 4 Test Section (m)= 35 - 40 Longitude of Test 1(m)= 5
Radius of Borchole r(cm)= 3.8 Groundwater Level H(m)= 36.35
Longitude of Injection Tube L(m)= 52.50 Height h2(m)= 1.15

4	The second secon				· ·
	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/suc)
63.60	1.00	10.56	3.72	10.72	0.0003731370
61.80	3.00	14.04	5.37	12.36	0.0002978860
76.60	6.00	21.56	7.62	15.32	0.0002603160
81 60	8.00	24,47	9.33	16.32	0.0002264930
73.70	6.00	19.96	7.78	14.74	0.0002453040
57.70	3.00	12.24	5.65	11.54	0.0002691030
51.60	1.00	9.78	3.80	10.32	0.0002031030

Hole No. 4 Test Section (m)= 40 - 45
Radius of Borchole r(cm)=3.8
Longitude of Inyection Tube L(m)=57.50
Height h2(m)=3.90

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
52.40	1.00	11.05	3.83	10.48	0.0003542450
50.30	3.00	13.68	5.57	11.66	0.0002711460
72.40	6.00	21.10	7.83	14.48	0.0002395500
78.70	8.00	24,93	9.44	15.74	0.0002158050
69.20	6.00	19.27	8.01	13.84	0.0002237470
56.40	3.00	12.35	5.70	11.08	0.0002516590
50.20	1.00	10.14	3.92	10.04	0.0003315080

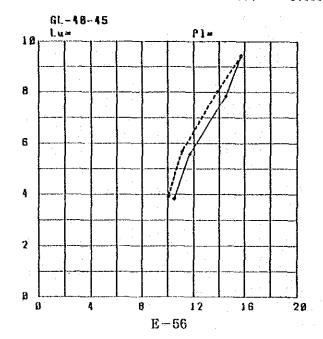
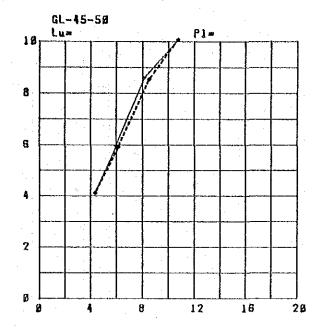



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (25/46)

Hale No. 4 Test Section (m)= 45-50 Longitude of Test 1(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level 11(m)=32.50 Longitude of Invection Tube 1.1(m)=62.50 Height 11(m)=48.30 Height 11(m)=15.00

Q0(1/mln)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
21.70	1.00	2.06	4.12	4.34	0.0001362370
29.80	3.00	3.89	5.94	5,96	0.0001298590
40,70	6.00	7.25	8.61	8.14	0.0001224660
53.60	8.00	12.57	10.07	10.72	0.0001377700
42.50	6.00	7.90	8.64	8,50	0.0001288530
30.70	3.00	4 12	5.92	6.14	0.0001343200
21.70	1.00	2.06	4.12	4.34	0.0001362370

Hole No. 4 Test Section (m)= 50 - 55 Longitude of Test 1(m)= 5 Groundwater Level H(m)= 32.05 Longitude of Inyection Tube L(m)= 67.50 Height h1(m)= 53.05

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
24.10	1.00	2.74	3.99	4.82	0.0001565590
40.60	3.00	7.79	5.48	8.12	0.0001917810
50.50	6.00	12.05	8.06	10.10	0.0001623220
58.50	8.00	16.17	9.64	11.70	0.0001570710
48.40	6.00	11.07	8.15	9.68	0.0001537000
38.20	3.00	6.89	5.57	7.64	0.0001775500
30 30	1.00	4 34	3.83	6.06	0.0002050340

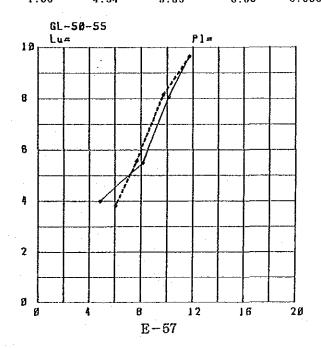


Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (26/46)

Hole No. 4 Test Section (m)= 55 - 60 Longitude of Test 1(m)= 5
Radius of Rorchole r(cm)= 3.8 Groundwater Level H(m)= 31.95
Longitude of Inyection Tube L(m)= 72.50 Height h1(m)= 58.20
Height h2(m)= 25.55

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
24.60	1.00	3.07	3.96	4.92	0.0001609250
34.90	3.00	6.18	5.65	6.98	0.0001600190
45.30	6.00	10.41	8.22	9.06	0.0001426230
54.30	8.00	14.96	9.77	10.86	0.0001439190
44.50	6.00	10.05	8.26	8.90	0.0001394860
35.10	3.00	6.25	5.64	7.02	0.0001611380
27.80	1.00	3.92	3.87	5.56	0.0001858550

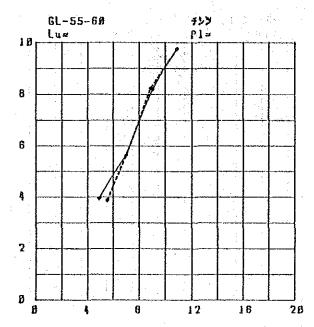
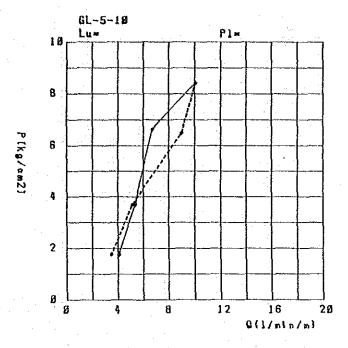



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (27/46)

Hole No. 5 Test Section (m)= 5 - 10 Longitude of Test 1(m)= 5 Radius of Borehole r(cm)= 3.8 Groundwater Level H(m)= 7.70 Longitude of Invection Tube 1(m)= 22.50 Height h2(m)= 0.00

QU(1/min)	PO(kg/cm2)	ե 1 (ա)	P(kg/em2)	Q(1/min/m)	K(cm/sec)
20.30	1.00	0.65	1.75	4.06	0.0003003210
26.70	3.00	1.12	3.70	5.34	0.0001866990
33.40	6.00	1.76	6.64	6,68	0.0001302500
50.20	8.00	3.97	8.42	10.04	0.0001543980
44.80	6,00	3.16	6.50	8.96	0.0001784810
25.60	3.00	1.03	3.71	5.12	0.0001785710
13.40	1.00	0.48	1.77	3.48	0.0002549100

Hole No. 5 Test Section (m)= 10 - 15 Longitude of Test l(m)=5 Radius of Borehole r(cm)=3.8 Groundwater Level ll(m)=12.85 Longitude of Inyection Tube L(m)=27.50 Height h1(m)=13.10

Q0(1/min)	PO(kg/cm2)	1:3 (m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
17.80	1.00	0.61	2.25	3.56	0.0002049180
22.80	3.00	1.00	4.21	4.56	0.0001402210
44.70	6.00	3.85	6.93	8.94	0.0001671160
59.80	8.00	6.88	8.62	11.96	0.0001795830
47.60	6.00	4.36	6.87	9.52	0.0001792910
32.30	3.00	2.01	4.11	6.46	0.0002035170
22 RA	บ้าก	1.00	2.21	4.56	0.0002671210

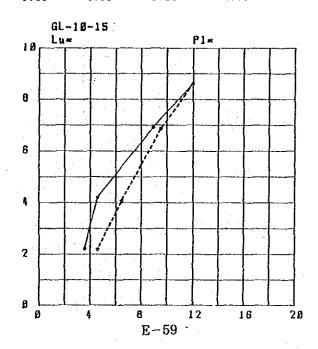


Fig. E.1-3 Curve of Pressure vs. Inyected Water Volume (28/46)

| Hole Ho. 6 | Test Section (m)= 15 - 20 | Longitude of Test l(m)=5 | Radius of Horehole r(cm)=3.8 | Groundwater Level l(m)=5 | Longitude of Inyection Tube L(m)=32.50 | Height ht(m)=18.00 | Height ht(m)=18.00

Q0(1/mln) P0(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
17.80 1.00	0.72	2.40	3.56	0.0001917930
34.10 3.00	2.65	4.21	6.82	0.0002096900
50.20 6.00	5.73	6.90	10.04	0.0001883220
60.40 8.00	8.30	8 65	12.08	0.0001808930
62.40 6.00	6.25	6 85	10.48	0.0001980480
33.00 3.00	2.48	4.23	6.60	0.0002031190
25.00	1.42	2.33	5.00	0.0002774680

Hole No. 5 Test Section (m)= 20-25 Longitude of Test 1(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level 11(m)=14.20 Longitude of Inyection Tube L(m)=37.50 Height h1(m)=23.10 Height h2(m)=8.30

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
12.00	1.00	0.38	2.44	2.40	0.0001272190
13.80	3.00	0.50	4.43	2.76	0.0000806541
22.80	6.00	1.36	7.34	4.56	0.0000803862
35.50	8.00	3.31	9.15	7,10	0.0001004610
24.60	6.00	1,59	7.32	4.92	0.0000869978
15.80	3.00	0.66	4.41	3,16	0.0000926682
13.50	1.00	0.48	2.43	2.70	0.0001437120

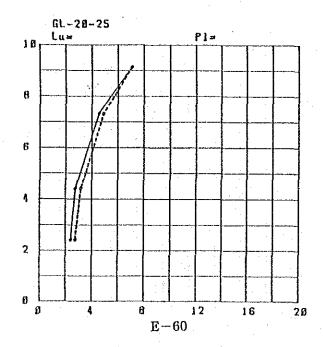
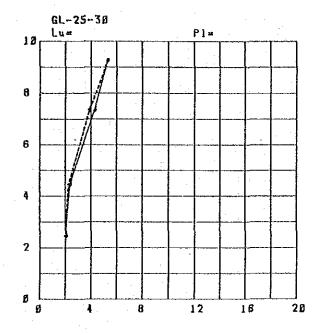



Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (29/46)

Hole No. 5 Test Section (m)= 25 - 30 Longitude of Test i(m)= 5 Radius of Borchoie r(cm)= 3.8 Groundwater Level ii(n)= 14.30 Longitude of Inyection Tube L(m)= 42.50 Height h1(m)= 28.10 Height h2(m)= 13.20

00414-3-3	no (1 (n)	En/1	D. 1	0/1/ 1/1/	12.4
Q0(1/min)	PO(kg/cm2)	h3(m)	P(Kg/cm2)	Q(1/min/m)	K(cm/sec)
10.20	1.00	. 0.31	2.46	2.04	0.0001073950
11.80	3.00	0.41	4 . 45	2.36	0.0000686773
21.40	6.00	1.36	7.35	4.28	0.0000753454
26.60	8.00	2.10	9.28	5.32	0.0000742180
19.40	6.00	1.12	7.38	3.88	0.0000680790
11.30	3.00	0.38	4.45	2.26	0.0000657165
10.20	1.00	0.31	2.46	2.04	0.0001073850

Note No. 5 Test Section (m)= 30 - 35 Longitude of Test 1 (Radius of Borcho)e r(cm)=3.8 Groundwater Level II (Longitude of Inyection Tube L(m)=47.50 Height h2(m)=18.40

Longitude of Test 1(m)= 5 Groundwater Level II(m)= 14.10

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(l/min/m)	K(cm/sec)
10.60	1.00	0.37	2.43	2.12	0.0001128180
12.90	3.00	0.55	4.41	2.58	0.0000756561
18.80	6.00	1.18	7.35	3.76	0.0000662028
27.80	8.00	2.57	9.21	5.56	0.0000781258
21.70	6.00	1.57	7.31	4.34	0.0000768229
13.10	3.00	0.57	4.41	2.62	0.0000768591
11.60	1.00	0.45	2.43	2.32	0.0001238370

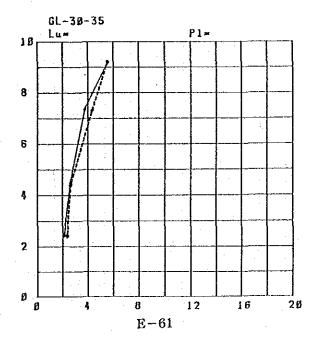
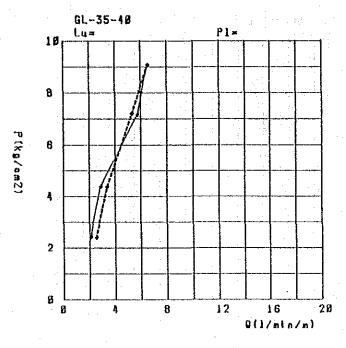



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (30/46)

Hole No. 5 Test Section (m)= 35 - 40 Longitude of Test l(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level l(m)=14.10 Longitude of Injection Tube l.(m)=52.50 Height h1(m)=38.10 Height h2(m)=23.40

Q0(1/min) P0(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/mln/m)	K(cm/sec)
10.40 (.00	0,40	2.43	2.08	0.0001107990
14.30 3.00	0.75	4.30	2.86	0.0000842450
28.70 6.00	3.03	7.17	5.74	0.0001036760
32.70 8.00	3.93	80.0	6,54	0.0000932730
26.50 6.00	2,58	7.21	5.30	0.0000951364
16.80 3.00	1.04	4.37	3.36	0,0000996208
12.50 1.00	0.57	2.41	2.50	0.0001341470

Hole No. 5 Test Section (m)= 40 - 45
Radius of Borchole r(cm)= 3.8
Longitude of Test 1(m)= 5
Groundwater Level II(m)= 13.90
Holght h2(m)= 28.60

Longitude of Test 1(m)= 5
Hole No. 5 Test Section (m)= 5
Hought h2(m)= 43.10

Q0(1/min) 10.20 15.20 34.40 40.60 32.60 21.70	1.00 3.00 6.00	h3(m) 0.42 0.93 4.76 6.63 4.28	P(kg/cm2) 2.41 4.36 6.97 8.79 7.02 4.26	Q(1/min/m) 2.04 3.04 6.88 8.12 6.52 4.34	K(cm/sec) 0.0001096660 0.000903249 0.0001277170 0.0001196360 0.0001201970 0.0001318730
21.70 22.30	3.00 1.00	1.90 2.00	1.26 2.25	4.34	0.0001318730

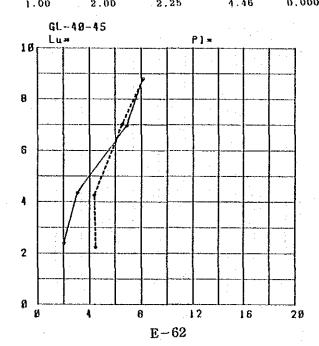
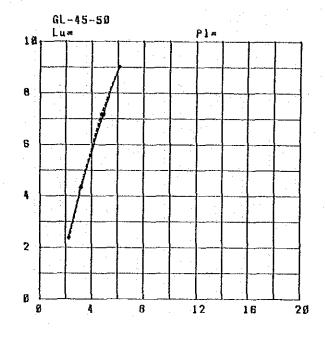



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (31/46)

Hole No. 5 Test Section (m)= 45 - 50 Longitude of Test 1(m)=6 Radius of Borehole r(cm)=3.8 Groundwater Level H(m)=13.80 Longitude of Inyection Tube L(m)=62.50 Height h2(m)=33.70

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
11.10	1.00	0.54	2.39	2.22	0.0001204450
16.00	3.00	1.12	4.33	3,20	0.0000957161
24.40	6.00	2.60	7.18	4.88	0.0000879926
30.50	8.00	4,07	9.03	6,10	0.0000874217
23.60	6.00	2.44	7.20	4.72	0.0000849089
15.70	3.00	1,08	4.33	3.14	0.0000938312
11.40	1.00	0.57	2.38	2.28	0.0001238530

Hole No. 5 Test Section (m)= 50 - 55 Longitude of Test l(m)= 5 Radius of Borehole r(cm)= 3.8 Groundwater Level R(m)= 13.90 Longitude of Inyection Tube L(m)= 67.50 Height hi(m)= 53.10 Height hi(m)= 53.10

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
19.20	1.00	1.74	2.28	3.84	0.0002184320
27.30	3 00	3.52	4.10	5.46	0.0001724880
39.70	6.00	7.45	6.71	7.94	0.0001532940
55.40	8.00	14.50	8.00	11.08	0.0001793010
38.40	6.00	6.97	6.75	7.68	0.0001472210
30.50	3.00	4.40	4.01	6.10	0.0001969060
21.10	1.00	2.10	2.24	4.22	0.0002439250

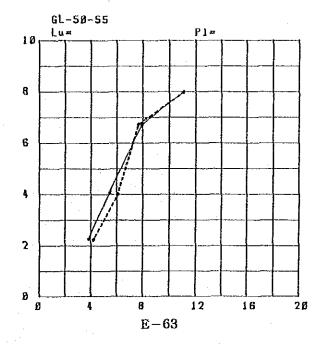


Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (32/46)

| Hole No. 5 | Test Section (m)= 55 - 60 | Longitude of Test 1(m)= 6 | Radius of Norchole r(cm)= 3.8 | Groundwater Level || f(m)= 13.90 |
| Longitude of Inyection Tube L(s)= 72.50 | Height h1(m)= 58.10 |
| Height h2(m)= 43.60 |

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(ca/sec)
12.40	1.00	0.78	2.37	2.48	0.0001353520
19.60	3.00	1.95	4.26	3.92	0.0001192630
36.20	6.00	6,65	6.78	7.24	0.0001381390
44.00	8.00	9.83	8.47	8.80	0.0001345400
33.80	6.00	5.80	8.87	6.76	0.0001273790
20.60	3.00	2.15	4.23	4.12	0.0001259510
18.10	1.00	1.66	2.28	3.62	0.0002052030

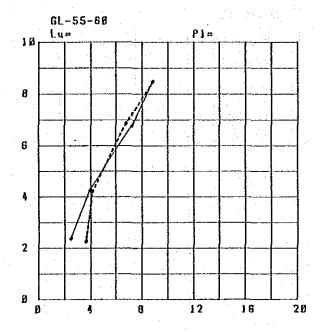
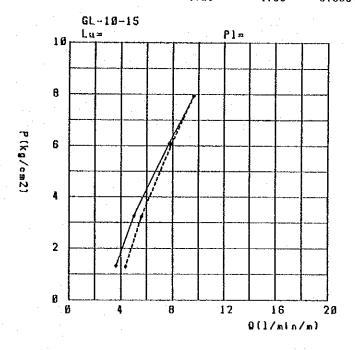



Fig. E.1-3 Curve of Pressure vs. Inyected Water Volume (33/46)

ilole No. 6 Test Section $\{w\}=10-15$ Longitude of Test 1(m)=5 Radius of Borehole r(cm)=3.8 Groundwater Level $ii\{m\}=3.25$ Longitude of Inyection Tube L(m)=27.50 Height $hi\{m\}=13.10$

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/em2)	Q(1/min/m)	K(cm/soc)
18.10	1.00	0.83	1.32	3.62	0.0003545040
25.10	3.00	1.21	3.26	5.02	0.0001991190
38.60	6.00	2.87	6.10	7.72	0.0001638850
48.20	8.00	4.47	7.94	8.64	0.0001572170
39.60	6.00	3.02	6.08	7.92	0.0001685470
28.00	3.00	1.51	3.23	5.60	0.0002241610
21.80	1.00	0.91	1.29	4.36	0.0004363520

Hole No. 6 Test Section (m)= 15 - 20 Inongitude of Test 1(m)= 5 Radius of Borchole r(cm)= 3.8 Groundwater Level H(m)= 3.75 Longitude of Inyection Tube L(m)= 32.50 Height h1(m)= 18.10 Height h2(m)= 13.75

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
10.70	1.00	0.26	1.41	2.14	0.0001966250
20.00	3.00	0.91	3.34	4.00	0.0001548520
33.80	6.00	2.60	81.8	6.76	0.0001417180
44.10	8.00	4.42	7.99	8.82	0,0001428580
26.20	6.00	1.56	6.28	5.24	0.0001080370
18.90	3.00	0.81	3.35	3.78	0.0001459100
16.00	1.00	0.58	1.38	3.20	0.0003008940

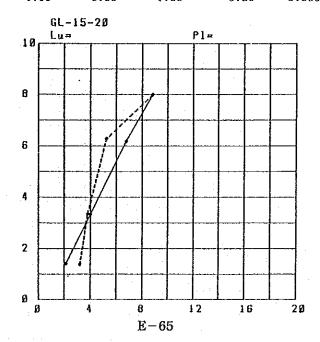
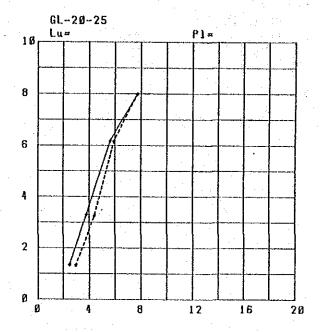



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (34/46)

Hole No. 6 Test Section (m)= 20 - 25 Longitude of Test 1(m)= 5
Radius of Borchole r(cm)= 3.8 Groundwater Level 11(m)= 3.25
Longitude of Inyection Tubo L(m)= 37.50 Height h1(m)= 23.10
Height h2(m)= 19.25

Q0(1/min) P0(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
12,40 1.00	0.40	1.34	2.48	0.0002387640
18.90 3.00	0.94	3,29	3.78	0.0001486810
28.10 6.00	2.07	6.18	5.62	0.0001177690
38,60 8.00	3,91	7.99	7.72	0.0001250210
29.60 6.00	2.30	6.16	5.92	0.0001245130
22.00 3.00	1.27	3.26	4.40	0.0001748360
14.80 1.00	0.57	1.33	2.96	0.0002886550

Hole No. 6 Test Section (m)=25-30 Longitude of Test 1(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level 1(m)=3.25 Longitude of Inyection Tube L(m)=42.50 Height h2(m)=24.25

Q0(1/min)	PO(kg/cm2)	հ3(m)	P(kg/em2)	Q(1/min/m)	K(cm/sec)
19.80	1.00	1.17	1.27	3.96	0.0004041770
28.30	3.00	2.38	3,15	5.66	0.0002328510
41.30	6.00	5.07	5.88	8.26	0.0001819300
60.20	8.00	10.78	7.31	12.04	0.0002133140
41.70	6.00	5.17	5.87	8.34	0.0001840020
30.60	3.00	2.79	3.11	6.12	0.0002550420
21.60	1.00	1.39	1.25	4.32	0.0004487650

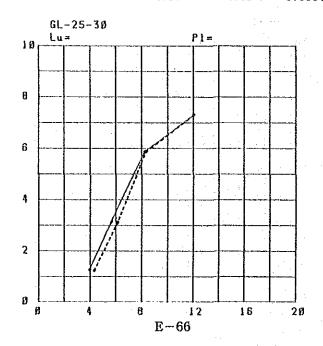
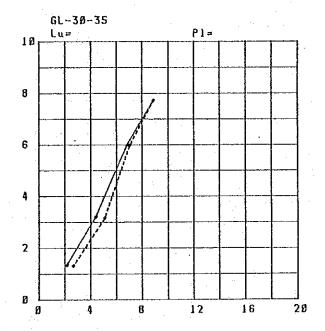



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (35/46)

Hole No. 6 Test Section (m)= 30 - 35
Radius of Borehole r(cm)= 3.8
Longitude of Test 1(m)= 5
Groundwater Level II(m)= 3.25
Longitude of Invection Tube 1.(m)= 47.50
Redius of Borehole r(cm)= 3.8
Groundwater Level II(m)= 3.25
Redius of Invection Tube 1.(m)= 47.50
Redius of Invection Tube 1.(m)= 47.50
Redius of Invection Tube 1.(m)= 3.25

Q0(1/min) 10.90	PO(kg/cm2) 1.00	h3(m) 0.40	P(kg/cm2) 1.35	Q(1/min/m) 2.18	K(cm/sec) 0.0002097470
22.10	3.00	1.62	3.22	4.42	0.0001775570
34.20	6.00	3.89	6.00	6.84	0.0001476760
44.40	8.00	6.55	7.73	8.88	0.0001487240
35.20	6.00	4 12	5.97	7.04	0.0001525810
25.40	3.00	2.15	3.17	5.08	0.0002074250
13,30	1.00	0.59	1.33	2.66	0.0002596570

Hole No. 6 Test Section (m)= 35 - 40 Longitude of Test l(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level ll(m)=1.60 Longitude of Inyection Tube L(m)=62.50 Height h1(m)=38.10 Height h2(m)=35.90

Q0(1/min)	PO(kg/cm2)	հ3(տ)	P(kg/cm2)	Q(l/min/m)	K(cm/sec)
10.70	1.00	0.42	1.18	2.14	0.0002351900
16.40	3.00	0.99	3.12	3.28	0.0001360440
21.20	6.00	1.65	6.05	4.24	0.0000906538
28.20	8.00	2.92	7.93	5.64	0.0000920983
23.80	6.00	2.08	6.01	4.76	0.0001025000
13.70	3.00	0.69	3.15	2.74	0.0001125700
10 10	1.00	0.37	1.18	2.02	0.0002211410

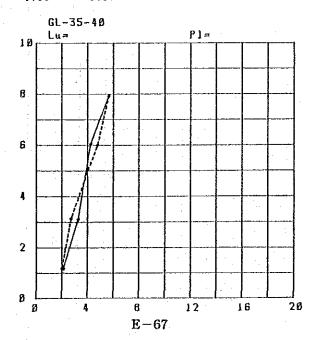
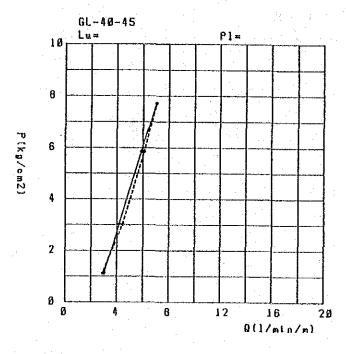



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (36/46)

Note No. 6 Test Section (m)=40-45 Longitude of Test l(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level R(m)=1.60 Longitude of Inyection Tube l.(m)=57.50 Height h1(m)=43.10 Height h2(m)=40.90

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
15.20	1.00	0.93	1.13	3.04	0.0003491960
20.90	3.00	1.76	3.04	4.18	0.0001777570
29.40	6.00	3.48	5.87	5.88	0.0001296300
35.10	8.00	4.96	7.72	7.02	0.0001176550
30.50	6.00	3.74	5 85	6.10	0.0001350910
22.20	3.00	1.98	3.02	4.44	0.0001902230
14.60	1.00	0.86	1 13	2.92	0.0003332840

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
13.90	1.00	0.85	1.14	2.78	0.0003169500
18.70	3.00	1.53	3.07	3.74	0.0001578620
20.60	6.00	1.86	6.03	4.12	0.0000883872
28.10	8.00	3.45	7.87	5.62	0.0000923917
19.70	6.00	1.70	6.05	3.94	0.0000843039
17.50	3.00	1.34	3.09	3.50	0.0001468220
11.60	1.00	0.59	1.16	2.32	0.0002586600

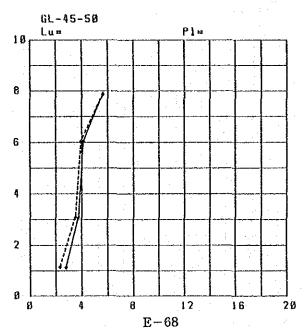
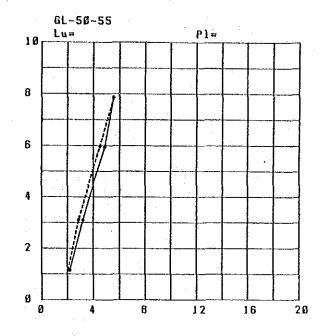



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (37/46)

Hole No. 6 Test Section (m)= 50 - 55 Longitude of Test 1(m)= 5 Radius of Borchole r(cm)= 3.8 Groundwater Level ||(m)= 1.60 Longitude of Injection Tube L(m)= 67.50 || Height hi(m)= 53.10 ||

m) P(kg/cm2)	Q(1/min/m)	K(cm/sec)
8 1.16	2,22	0.0002473720
3,10	3.20	0.0001336730
9 5.94	4.86	0.0001059010
0 7.86	5.52	0.0000909149
9 5,98	4.50	0.0000974037
8 3.12	2.88	0.0001194200
1 1.17	2.08	0.0002303620
	1.16 1.10 19 5.94 10 7.86 19 5.98 18 3.12	8 1.16 2.22 21 3.10 3.20 9 5.94 4.86 60 7.86 5.52 19 5.98 4.50 18 3.12 2.86

Hole No. 6 Test Section (m) = 55 - 60 Longitude of Test l(m) = 5 Radius of Borehole r(cm) = 3.8 Groundwater Level ll(m) = 1.60 Longitude of Inyection Tube L(m) = 72.50 Height hl(m) = 58.10 Height hl(m) = 55.90

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
10.20	1.00	0.53	1.17	2.04	0.0002262600
12.20	3.00	0.76	3.14	2.44	0.0001004540
16.30	6.00	1.35	6.09	3.26	0.0000693534
21.30	8.00	2.30	7.99	4.26	0.0000690237
18.10	6.00	1.66	6.05	3.62	0.0000774118
14.40	3.00	1.05	3.11	2.88	0.0001196990
08.11	1.00	0.71	1.15	2.36	0.0002658200

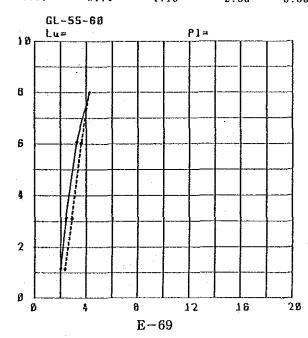
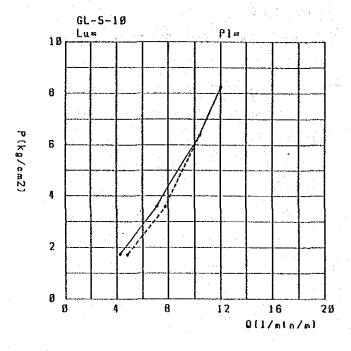



Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (38/46)

Hole No. 7 Test Section (m)= 5 - 10 Longitude of Test 1(m)= 5
Radius of Borcholo '(cm)= 3.8 Groundwater Level 11(m)= 9.85
Longitude of Injection Tube 1.(m)= 22.50 Height hi(m)= 8.10
Height h2(m)= 0.00

Q0(1/min) P0(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
21.20 1.00	υ.7ι	1.74	4.24	0.0003155990
35.70 3.00.	2.01	3.61	7.14	0.0002560950
51.90 6.00	4.24	6.39	10.38	0.0002104300
60.00 8.00	5.67	8.24	12.00	0.0001884600
51.90 6.00	4.24	6.39	10.38	0.0002104300
38.90 3.00	2.38	3.57	7.78	0.0002819880
24.00 1.00	0.91	1.72	4.80	0.0003614240

Q0(1/min)		h3(m)		Q(1/min/m)	K(cm/sec)
27.00	1.00	1.40	2.17	5.40	0.0003221980
38.20	3.00	2.81	4.03	7.64	0.0002454750
53.00	6.00	5.41	6.77	10.60	0.0002027150
61.30	8.00	7.23	8.59	12.26	
53.20	6.00	5.45	6.77		0.0001848370
43.20	3.00			10.64	0.0002036030
32,20		3.59	3.95	8.64	0.0002831110
34.40	1.00	2.00	2.11	6.44	0.0003950400

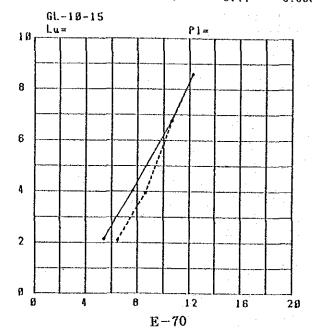
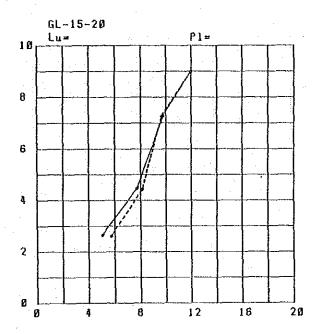



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (39/46)

Note No. 7 Test Section (m)= 15 - 20 Longitude of Test 1(m)= 5 Radius of Dorehole r(cm)=3.8 Groundwater Level H(m)=18.55 Longitude of Inyection Tube L(m)=32.50 Height h1(m)=18.10 Height h2(m)=0.00

Q0(1/min) P0(kg	(/cm2) h3(m)	P(kg/cm2)	$Q(1/m\ln/m)$	K(cm/sec)
25.30 1.0		2.66	5.06	0.0002458540
38.60 3.0	0 3,39	4.47	7.72	0.0002235280
48.80 6.0	0 5.42	7.27	9.76	0.0001738380
59.90 8.0	0 8.16	8.99	11.98	0.0001724400
48.30 6.0	5.31	7.28	9.66	0.0001717950
40.60 3.0	0 3,75	4.44	8.12	0.0002370200
28.60 1.0	1.86	2.62	5.72	0.0002822070

Hole No. 7 Test Section (m)= 20-25 Longitude of Test 1(m)=5 Radius of Borchole r(cm)= 3.8 Groundwater Level 11(m)=21.30 Longitude of Inyection Tube L(m)=37.50 Height h1(m)=23.10 Height h2(m)=1.20

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
28.20	1.00	2.09	2.98	5.64	0.0002449080
43.00	3.00	4.85	4.70	8.60	0.0002366430
55.60	6 00	8.11	7 38	11.12	0.0001951000
62.40	8.00	10.22	9.17	12.48	0.0001762250
56.40	6.00	8.35	7 36	11.28	0.0001985400
44.30	3.00	5.15	4.67	8.86	0.0002453519
34.70	1.00	3.16	2.87	6.94	0.0003126120

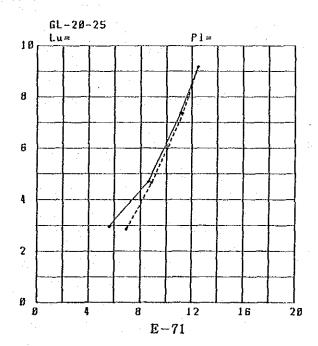
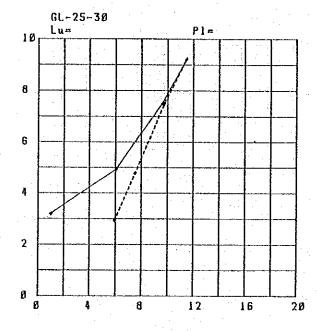



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (40/46)

Hole No. 7 Tost Section (m)= 25 - 30 Longitude of Test 1(m)= 5
Radius of Horehole r(cm)= 3.8 Groundwater Level H(m)= 21.45
Longitude of Inyection Tube L(m)= 42.50 Height h1(m)= 28.10
Holght h2(m)= 6.05

QO(1/min)	PO(kg/cm2)	113 (m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
5.00	1.00	0.07	3.20		0.0000404858
30.30	3.00	2.73	4.93	6.06	0.0001590680
48.00	6.00	6.85	7.52	9.60	0.0001652730
57,30	8.00	9.77	9.23	11.46 (0.0001607640
48.70	6.00	7.06	7.50	9.74	0.0001681330
37.60	3.00	4.21	4.78	7.52	0.0002034750
29.60	1.00	2.61	2.94	5.92	0.0002602890

Hole No. 7 Test Section (m)=30-35 Longitude of Test l(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level ll(m)=21.30 Longitude of Inyection Tube l.(m)=47.50 Height $h2\{m\}=11.20$

	PO(kg/cm2)		P(kg/cm2)	Q(1/min/m)	K(cm/sec)
27.60	1.00	2.53	2.94	5.52	0.0002433320
46.20	3.00	7.10	4.48	9.24	0.0002669850
58.50	6.00	11,38	7.05	11.70	0.0002147780
64.40	8.00	13.79	8.81 .	12.88	0.0001892400
50.90	6.00	11.54	7.04	11.78	0.0002167260
47.50	3.00	7.50	4.44	9.50	0.0002770020
37.40	1.00	4.65	2.72	7.48	0.0002770020

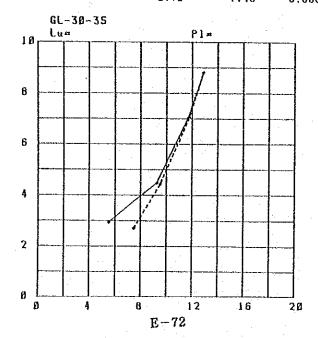
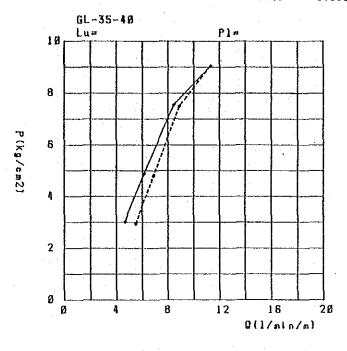



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (41/46)

Hole No. 7 Test Section (m)= 35 - 40 Longitude of Test l(m)=5 Groundwater Level ll(m)=21.60 Longitude of Inyection Tube l.(m)=52.50 Height h1(m)=38.10 Height h2(m)=15.90

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
23,30	1.00	2.00	3.02	4.66	0.0001997240
30.60	3.00	3.44	4.88	6.12	0.0001624870
42.30	6.00	6.58	7.56	8 46	0.0001448210
56,40	8.00	11.69	9.05	11.28	0.0001613370
44.40	6.00	7.24	7.50	, ,	0.0001533670
34.30	3.00	4.32	4.79	6.86	0.0001854920
27.40	1.00	2.76	2.94	5.48	0.0002409630

Hole No. 7 Test Section (m)= 50-55 Longitude of Test 1(m)=5 Radius of Borchole r(cm)=3.8 Groundwater Level 11(m)=20.80 Longitude of Inyection Tube 1.(m)=67.50 Height h2(m)=31.70

Q0(1/min)	PO(kg/cm2)	h3(xa)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
20.60	1.00	2.01	2.94	4.12	0.0001814460
45.60	3.00	9.82	4.16	9.12	0.0002839780
59.50	6.00	16.73	6.47	11.90	0.0002382050
66.30	8.00	20.77	8.06	13.26	0.0002128960
60.40	6.00	17.24	6.42	12.08	0.0002437300
46.20	3.00	10.09	4.13	9.24	0.0002895270
36.00	1.00	6.12	2.53	7.20	0.0003687560

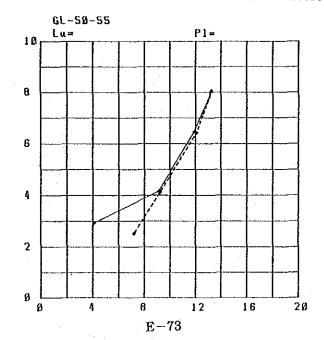


Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (42/46)

Hole No. 7 Test Section $\{m\}=55-60$ Longitude of Test $\{m\}=5$ Radius of Borchole r(cm)=3.8 Groundwater Level ll(m)=5 19.80 Height h2(m)=37.70

	and the second second	2000 100 400 100 100		
QO(1/min) PO(kg/cm	2) h3(m)	P(kg/cm2)	Q(I/min/	
0.00 1.00	0.00	3.04	0.00	0.0000000000
1.00 3.00	0.01	5.04	0.20	0.0000051377
35.00 6.00	6.22	7 42	7.00	0.0001221560
46.90 8.00	11.16	8 92	9.38	0.0001360760
40.30 6.00	8.24	7.22	8 06	0.0001446020
21.70 3.00	2.39	4 80	4 34	0.0001170250
5.25 1.00	0.14	3.03	1.05	0.0000449201

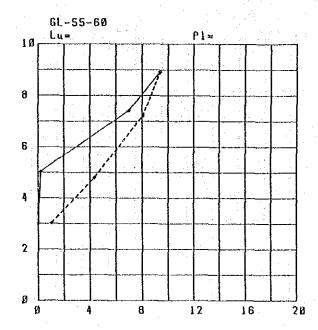
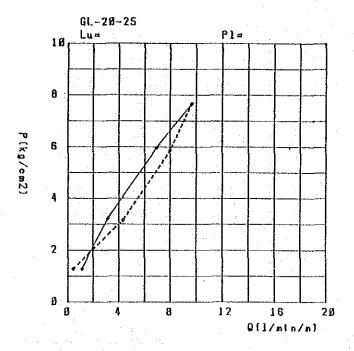



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (43/46)

Hole No. 8 Test Section (w)= 20-25 Longitude of Test 1(m)=5 Radius of Borehole r(cm)=3.8 Groundwater Level ||(m)=1.80| Longitude of Inyection Tube L(m)=37.50 | Height h1(m)=17.50 | Height h2(m)=14.64

Q0(1/min)	PO(kg/cm2	2) h3(m)	P(kg/cm2)	Q(1/min/m) K(cm/sec)
5.60	1.00	0.08	1.28	1.12	0.0001134380
15.70	3.00	0.65	.3.22	3.14	0.0001261740
34.70	6.00	3.16	5.97	6.94	0.0001504820
48.30	8.00	6.12	7.67	9.66	0.0001629590
40.00	6.00	. 4.20	5.87	8.00	0.0001765400
21.60	3.00	1.22	3.16	4.32	0.0001767590
2.00	1.00	10.0	1.29	0.40	0.0000402873

Hole No. 8 Test Section (m)= 25-30 Longitude of Test 1(m)=5 Groundwater Level 1(m)=5 Groundwater Level 1(m)=5 Height

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	(m\mim\l)Q	K(cm/sec)
14.20	1.00	0.60	1.06	2.84	0.0003456200
34.10	3.00	3.46	2.78	6.82	0.0003178370
52.50	6.00	8.20	5.30	10.50	0.0002562880
59.20	8.00	10.43	7.08	11.84	0.0002184570
54.20	6.00	8.74	5.25	10.84	0.0002673060
38.30	3.00	4.36	2.69	7.66	0.0003890010
18.20	1.00	0.99	1.03	3.64	0.0004596370

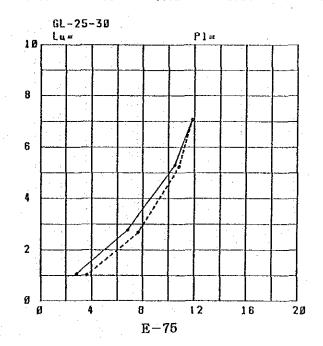
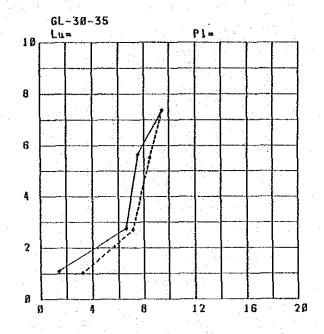



Fig.E.1-3 Curve of Pressure vs. Invected Water Volume (44/46)

Hole No. 8 Test Section (m)= 30 - 35 Longitude of Test 1(m)= 5
Radius of Boreholo r(cm)= 3.8 Groundwater Level II(m)= 0.00
Longitude of Inyection Tube L(m)= 47.50 Height h1(m)= 24.22
Height h2(m)= 24.98

90(1/min) PO(kg/cm2)	h3(m) (kg/cm2)	Q(1/mlu/m) K(cm/sec)
7.10 1.00	0.17 1.11	1.42 0.0001660620
33.00 3.00	3,62 2,76	6,60 0.0003093840
37.60 6.00	4.70 5.65	7.52 0.0001721910
47.30 8.00	7.44 7.38	9.46 0.0001658460
42.40 6.00	5.98 5.53	8.48 0.0001986590
35,60 3.00	4.21 2.70	7.12 0.0003410840
16.20 1.00	0.87 1.04	3.24 0.0004046740
10,20		T T T T T T T T T T T T T T T T T T T

Hole No. 8 Test Section (m)= 35 - 40 Longitude of Test 1(m)= 5 Radius of Borchole r(cm)=3.6 Groundwater Level ll(m)=0.00 Longitude of Inyection Tube l.(m)=52.50 Height hi(m)=27.75 Height hi(m)=27.75

					The state of the s
90(1/mln)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(1/min/m)	K(cm/sec)
12.40	1.00	0.57	1.07	2.48	0.0003008240
31.60	3.00	3.67	2.76	6.32	0.0002967820
52.40	6.00	10.09	5.11	10.48	0.0002652560
59.30	8.00	12.92	6.83	11.86	0.0002247480
53.50	6.00	10.52	5.07	10.70	0.0002731100
34.40	3.00	4.35	2.69	6.88	0.0003312400
14 60	1.00	0.78	1.05	2.92	0.0003615930

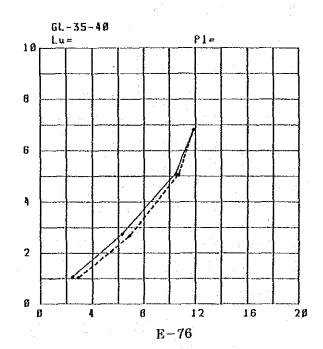
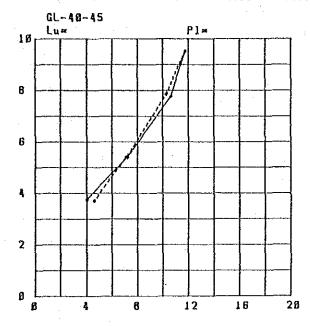



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (45/46)

Note that the second contains the second contains a second contains a second contains the second contains the second contains a second co

Q0(1/min)	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(l/min/m)	K(em/sec)
20.00	1.00	1,61	3.76	4.00	0.0001376140
36.10	3.00	5.25	5.40	7.22	0.0001731080
53.30	6.00	11.43	7.78 -	10.66	0.0001773680
58.80	8.00	13.93	9.53	11.76	0.0001597100
51.40	6.00	10.63	7.86	10.28	0.0001693030
35.70	3.00	5.13	5.41	7.14	0.0001708250
22.80	1.00	2.09	3,71	4.56	0.0001589170

| Hole No. 8 Test Section (m)= 45 - 50 | Longitude of Test l(m)=5 | Radius of Borchoic r(cm)=3.8 | Groundwater Level ll(m)=44.10 | Longitude of Inyection Tube L(m)=62.50 | Height hl(m)=35.14 | Height hl(m)=2.40

Q0(1/min)	PO(kg/cm2)	li3(m)	P(kg/cm2)	Q(1/mln/m)	K(cm/sec)
14.60	1.00	0.93	4.18	2.92	0.0000904194
45.80	3.00	9.18	5.36	9.16	0.0002213920
58.40	6.00	14.92	7.78	11.68	0.0001943060
70.30	8.00	21.62	9.11	14.06	0.0001997590
57.60	6.00	14.52	7.82	11.52	0.0001906490
47.40	3.00	9,83	5.29	9.48	0.0002319520
30.90	1.00	4.18	3.86	6.18	0.0002074690

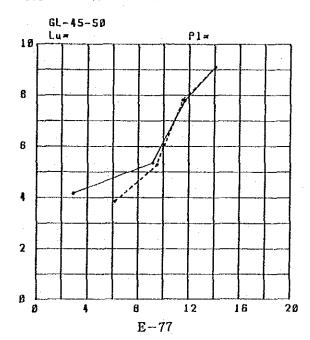
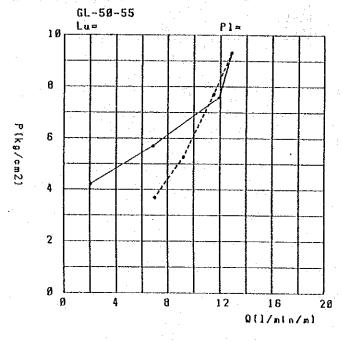
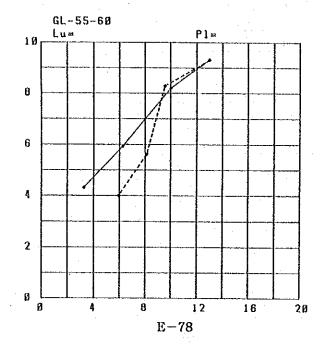



Fig.E.1-3 Curve of Pressure vs. Inyected Water Volume (46/46)

ilole No. 8 Test Section (m) = 50 - 55 Longitude of Test l(m) = 5 Radius of Borchole r(cm) = 3.8 Groundwater Level l(m) = 44 Height h2(m) = 5.87


Groundwater Level H(m)= 44.20

2) h3(m) 0.60 5.56 16.78 19.47 15.62	4.22 5.71 7.59 9.32 7.71	Q(1/min/m) 2.06 6.86 11.92 12.84 11.50	K(cm/sec) 0.000631906 0.0001554070 0.0002032560 0.0001782940 0.0001831390
10.00 5.78	5.27 3.69	9.20	0.0001931390 0.0002259710 0.0002454770
	0.60 5.56 16.78 19.47 15.62 10.00	0.50 4.22 5.56 5.71 16.78 7.89 19.47 9.32 15.62 7.71 10.00 5.27	0.60 4.22 2.06 5.56 5.71 6.86 16.78 7.89 11.92 19.47 9.32 12.84 15.62 7.71 11.50 10.00 5.27 9.20

Hole No. 8 Test Section (m)= 55-60 Longitude of Test 1(m)=5 Radius of Borehole r(cm)=3.8 Groundwater Level 11(m)=46.80 Height h2(m)=7.57 Height h2(m)=7.57

					Take the second
	PO(kg/cm2)	h3(m)	P(kg/cm2)	Q(l/min/m)	K(cm/sec)
16.30	1.00	1.35	4.32	3.26	0.0000977054
31.40 50.00	3.00	5.00	5.95	6.28	0.0001365480
64.90	.6.00 8.00	12.69	8.19	10.00	0.0001581530
47.80	6.00	21.38 11.60	9.32	12.98	0.0001803590
40.80	3.00	8.37	8.29 5.62	9.56	0.0001492040
29.70	1.00	4.48	4.01	8.12	0.0001871210
				5.94	0.0001919280

4) Lateral Loading Test

Lateral loading tests were conducted at twenty eight points in the drill holes Nos. 1, 2, 3, 4, 5, 6 and 7, by use of OYO Elatmeter 100. The stratas in dam foundation were tested in order to correlate the results with those of the in-situ tests.

The loading was made in two parts; (1) the step loading with 3 cycles of loading up to a peak load and unloading to 5 kg/cm², increasing the peak load in a general sequence of 10, 20 and 30 kg/cm², and (2) the maximum loading up to the maximum peak load. Rates of loading and unloading were 2.5 kg/cm²/min. and 5 kg/cm²/min., respectively. The minimum load of 5 kg/cm² during the step loading was at that level in order to keep the drill hole from collapsing.

5) Standard Penetration Test

Standard penetration tests were carried out in the drill hole No.3 for the purpose of examing compaction of unconsolidated alterated clay and rock zone. The test was made by counting the number of blows for each 10 cm of drop hammer with 63.5 kg of weight falling 75 cm of height that was necessary to make standard Raymond sampler penetrate 30 cm into the rock.

However, this test was performed in the strate with containing infiltrated water and fragments of rock, therefore the values have to been considered as reference.

The results are presented in Fig.E.1-2.

6) Laboratory Test

Laboratory tests were performed according to an approved and standardized testing method such as ASTM (American Society for Testing and Materials, referred by the designation number ASTM C-97. ASTM D-2938.D-3148.etc.).

The results are presented in the Table E.1-3.