4. RAINFALL ANALYSIS

4.1 DATA PROCESSING

4.1.1 ANNUAL RAINFALL

Fourteen out of thirty rainfall observation stations, listed in Table-2.1 (1) "List of Collected Rainfall Data", were selected for the purpose of analysis because of the availability of rainfall data on them for the last 31 years i.e. from 1951/52 to 1981/82.

These fourteen stations are listed in Table-4.1, which tabulates the annual rainfall and the maximum annual daily rainfall by each station.

(1) Relation Between Annual Rainfall and Altitude

Fig.-4.1 is an isohyetal map based on the mean annual rainfall of the fourteen rainfall observation stations mentioned above. Fig.-4.2 shows the relation between the mean annual rainfall and the altitude as a semi logarithmic graph.

The following observations can be made according to Fig.-4.1 and 4.2.

- (i) The isohyets of the mean annual rainfall and the contour lines are almost parallel i.e. when the altitude increases, the rainfall also increases.
- (ii) The mean annual rainfall increase almost in proportion to the altitude above 200 m.

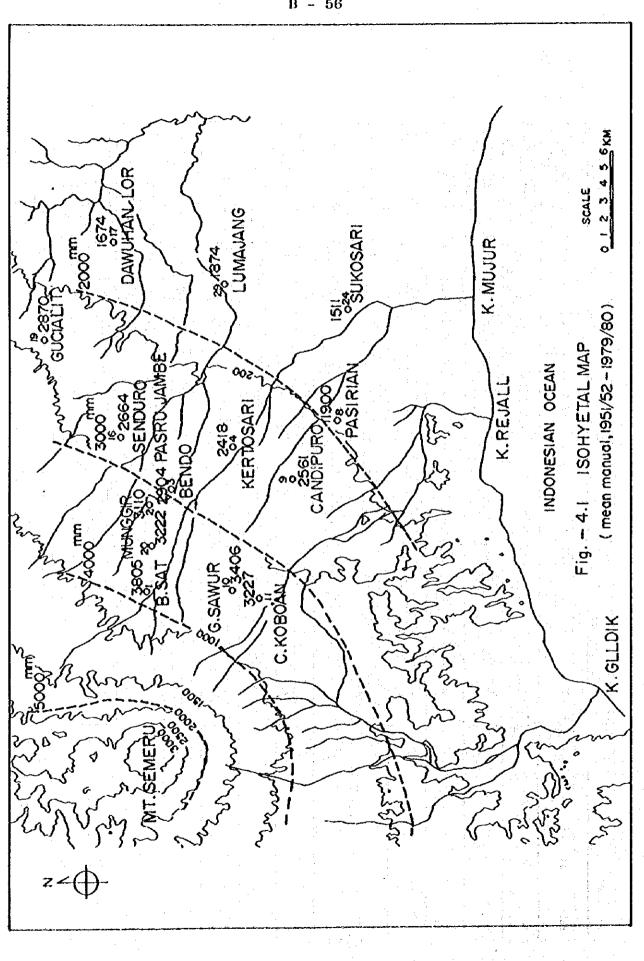
(2) Fluctuation of Annual Rainfall

Fig.-4.3 shows the fluctuation of annual rainfall for two stations given below.

Table-4.10)List of Maximum Anual Daily Rainfall & Annual Rainfall

1 P

										-					l			
No.	Station	El. (m)	51/52	52/53	53/54	54/55	55/56	56/57	57/58	58/59	59/60	60/61	61/62	62/63	63/64	64/65	65/66	66/67
	BESUK SAT	T95 RM	2,484	3.968	3,863	4,932	3,840	4,543	3,716 138	3,627	162	2,761	2,512	2,870 101	2,705	3,069	3,254 137	3,943
ei.	zawr axsva	187	2,108	3,619	2,634	4,463	3,308	3,940	3, 223 193	3,149	3,882	2,287	3,305	2,777	2,558	2,925 178	2,577	2,554
÷	BERO (SUMBER DUREN)	510	1,931	2,705	2,431	3, 596 160	3,262	3,730	2,626 116	2,556	2,918 1 120	1,782	2,364	1,987	2,052	2,109	2,036	2,265
4	KERTOSARI	345	1,884	2,850	1,382 90	3,258 124	3, 158 145	3,240	2,613	12,527	1 2,523 1 129	1,516	1,838	1,767	2,084	2,281	1,726 72	2,427
8.	PASIRIAN	155		1,862	1,484	2, 220	2,275	2,100	1.604	2,026	5 1 664 9 66	982	1,638	1,833	1.644	2.125 114	1,475 96	1.642
9.	CANDIPURO	322	2,076	2,585	2,102	3,519	3,434	3,574	3,16	9 2, 420 5 107	13,177	1,721	1,812	2,425	2,061	2,932	2,036 64	2,561
10.	CUNUNC SAWER	682	2,072	3,684	3, 732 218	4, 925	3,810	4,246	3, 631 225	3,731	210	2,890	2,784	2,710	2,996	3,172	2,487 92	1,968 90
11.	curah kobo'an	734		3.627	2.830 95	3,950	3, 133	4, 335	3,179	0 3 361	1 3 533 0 120	12,130	2,522	3,173	3,416	3, 221	2,757 92	3,072 186
76.	SENDURO	435			2,722	4,767	4,090 183	4,158	2,699	2,749				1.993	1,883 92	1,551	2,733 96	2,565 84
17.	DOWUTIAN LOR	- 97	1,547	1,939	1,841	2,117 90	1,964 95	1,801	1,637	1 1, 530 5 65	0 1, 635 6 81	1,117	1,389	1,606	1,471 83	1,511 96	1,341 99	1,383 79
19-	CUCIALIT	600	2,356	3,456	2,741	2,952	3,500	4,719	2,200	0 2, 72 88	2 2 492	1,785	3,027 83	2.785	2,810	2,495	2.917	2,550
20.	NUNCCIR	600		2,811	3,121	4,797	3, 276 130	4,176	3,195 165	2,37			3,679	2,210	1,955	2,855	2,474	3,059
24.	SUKOSARI	53				2,130	1,831	1,794	1,057	1,96	3 1,629 9 47	1,086	1,231 91	1.5 <u>19</u>	1.077	1.667 120	1,307	1.756
29.	LUMAJANG	50	1, 792 80	2,034	2,760	2,288	2,114	2,051	1,654 96	2,12	7 2.992	181	1,404	1,915	1, 234	1.647	88 88	1,234


B - 54

Ç

	•
1	H
1	ф Ч-
÷	4
	2
	ы
÷.	87
	8
	¥
÷	64
1	H
•	୍ ସ
	n 1
1	Sa.
÷	5
•	É.
	g
·	
	.e
	iu l
÷	~ а
1	and .
ī.	ป็
• •	a)
5	able-4.12)List of Max
	ö
- 2	4
2	Ϋ́.
÷.	<u>ନ</u> ି ।
÷ t	۲, E
٩,	1
)	0
:	<u>6</u>
	Table-4.12)List of Maximum Anual Daily Rainfall & Annual Rainfall
÷	1.11

[T				1				5				Γ.		2					-				~					
112	6	3		2]) 2]	V	2,904	\mathbf{N}	2,418	\mathbf{N}	1,900	\backslash	2,561	$\left \right $	3,406	$\left \right\rangle$	3,227	\backslash	2,931	\backslash	1.674	\mathbf{N}	2,806	\mathcal{A}	3,222		1,511	Ν	1.874	
81/82		340,5		2,433		2,860	66	2,087	66	1,917	82	1.497	81	2,596	76	1,879	72	2,664	139	1,732	77	2,161	72	3,062	.168	1,460	98	1.739	85
18/08		101	. I '	3,401		3,670	133	2,500	133	2,395	88	2,369		3,698	178	3,716	225	4,152	105	2,292	51	1,606	164	3,404	153	1,566	103	2,099	103
08/62		767		1,976		2,232	100	2,782	V6T	1,381	145	1,778	133	2,433	104	2,278	175	2,852	108	1,127	61	1,986	136	2,191	136	1,193	36	1,337	101
78/79		2.037		1,588		992	176	3,424	127		100	3.756			152		390		130		87	8	213		125			2,195	82
7/78		200		918 4		- a (188		196	6	195	640	155	,810	203	,145	105	3,104	221	956	114		96	\$45	195		Ì	177	183
76/77		2		5792	╤╋	.619 3	175		134	,839	171	107 2	200	-3	139	471 3	325	015	180	ി	. 85	960	140	•	167			5	20
5/76		+ 16		632 3	;†	367 3	125	,557 2	103	, 762 1	125	.776 2.	5	ι vo	63	500 3	95	,469 3,	109		101	586 2	125	402 3	66		$\overline{)}$	1671	141
4/75 7:	-	2/2/2		222 2		183 2	150	2112	250	1891	111	943 1	145	, 582 2,	146	,974 2,	208	188 2	157	795 2.	174	656 2	158	976 2	1067			224 2	162
3/74 74		230 4,		334 4		988 4,	225	732 4,	94	969 2,	125	970 2.	101	385 4	19.5	619 3,	210	478 3	151	061 2,	50	491 3.	113	552 3,	220			274 2	45
2/73 73				024 3	-	287 3,	146	604 2,	114	206 I.,	100	નં	152	530 3,	177	7.58 3,	165	2,	130	988 I.	111	794 2,	147	902 3,	108		Y	930 1,	116
71/72 72		1201		136 3.		683 3,		5	70	156 2,		, m		n,	98	<u> </u>	87	878 2,	96	ň	97[161 2.		ંસં	65		Y	нÌ	62
	1	181		50 2		109 2.4	1	97 1,	98	25 2,		4 2.		1,2,	176	92 2,	T67	1,	184	64 1,	87	3,		862 2.	06	262	011	53	46
12/02 02	<u> </u>			620 3, 6 1 2 5 1		910 3.1		853 2,7	112	91 1,9	97	84 1,8	Ĺ	105 3,5		778 3.2	128 1	306 2,9		496 7	84	65 3.	142 2	475 3,8	Ì	3	5	нÌ	126 1
69/70		ວ ⊷ 1]	લી	<u> </u>	3		_ #1		1,1		1.4		6		230 2.7		3				346 2.2	<u>_</u>	33,	5	7.7]	
8 68/69	ŀ	4 . 153		2 C	<u> </u>	7 3,535	-	~	0 112	2,0		5 2.009	ί.	33,571	5 122	က်	511 2	2.7	6	1		3	1 12	0.1	6 13		0/1 7	പ	8 127
67/68		134		3,839		3.837	5	2,721	13	2,205	FI	2.24	150	4,583		4.34	204	3,095	22	1 948	6	4 00	181	3,841	1	1,284	~	2,647	11
Year		795 RM		187			SLO	-	345	• • •	155		322		682		734	- x	435		97		600		600		66		20
				-			DUREN)		••••• ;'															÷.					
Station				rev T		•			t				0		SAWUR	19	80'AN				LOR								
Stal		BESUK SAT		PACRD TAWRY		BENDO	(SUMBER		KERTOSARI		PASIRIAN		CANDIFURO		conunc s		CURAN KOBO'AN		SENDURO		DOWURAN LOR		CUCIALIT		MUNCCIR		SUKOSARI	e	CUMALANC
							n		4		8.		9.	- .	10.	- 	- 11		16		17.		19.				24.	<u> </u>	29-

B - 55

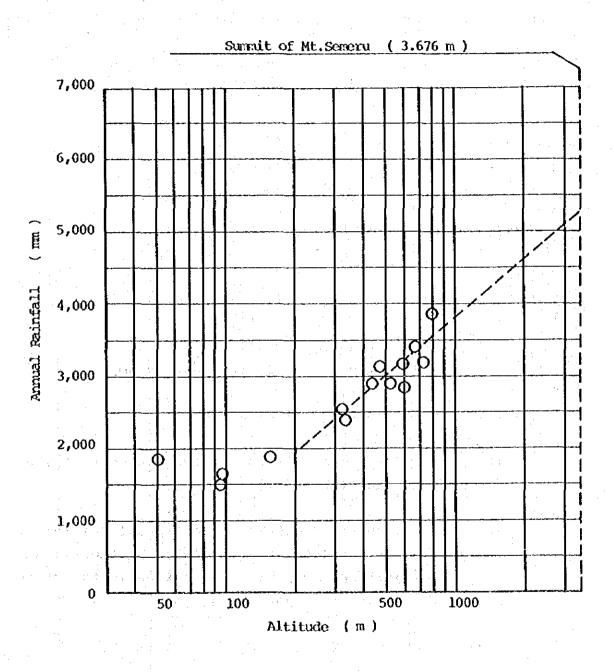


Fig.- 4.2

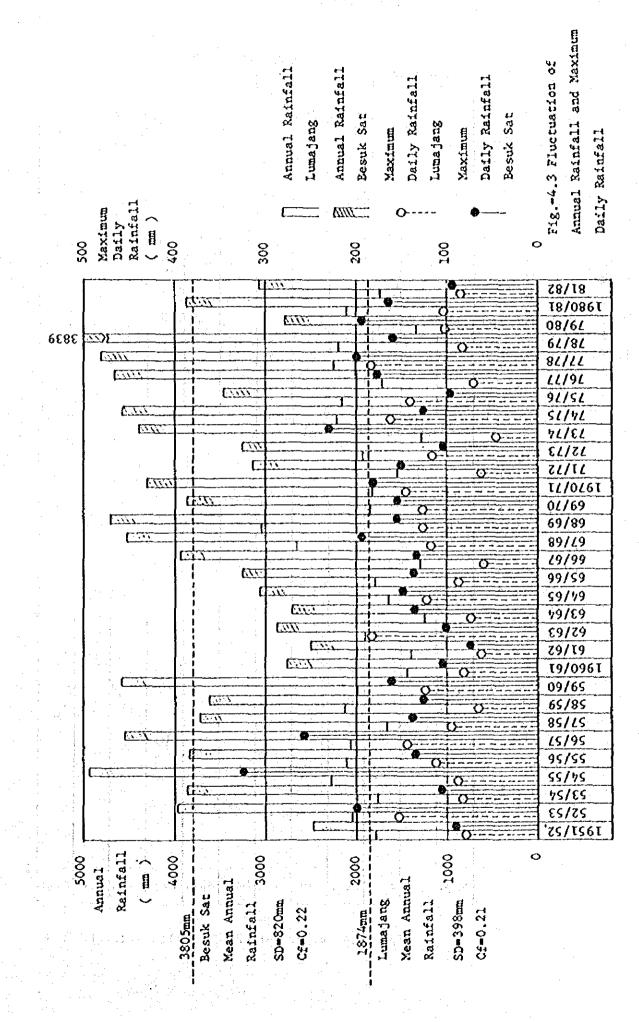
Relationship between Altitude and Annual Rainfall.

Rainfall Observation Station	Altitude(m)	Remakrs(s)
Lumajang	50	Representative Station in the plain area
Besuk Sat	795	Representative Station in the mountain area

(i) Lumajang : $\vec{R} = 1,870$ mm SD = 398 mm $C_{f} = 0.21$

(11) Besuk Sat: $\vec{R} = 3,800 \text{ mm}$ SD = 820 mm $C_f = 0.22$

R: Mean Annual Rainfall


SD: Standard Deviation

 C_{f} : Fluctuation Coefficient (= SD/R)

Fig.-4.3 indicates the following facts.

- (i) A place of higher altitude shows a bigger fluctuation of annual rainfall.
- (ii) The flucutuation coefficient of annual rainfall is constant regardless of altitude. In other words, the rainfall pattern of each station in the study area is uniform in any given year.
- (3) Fluctuation of Monthly Rainfall

Fig.-4.4 shows the monthly rainfall pattern of two stations i.e., Lumajang and Besuk Sat.

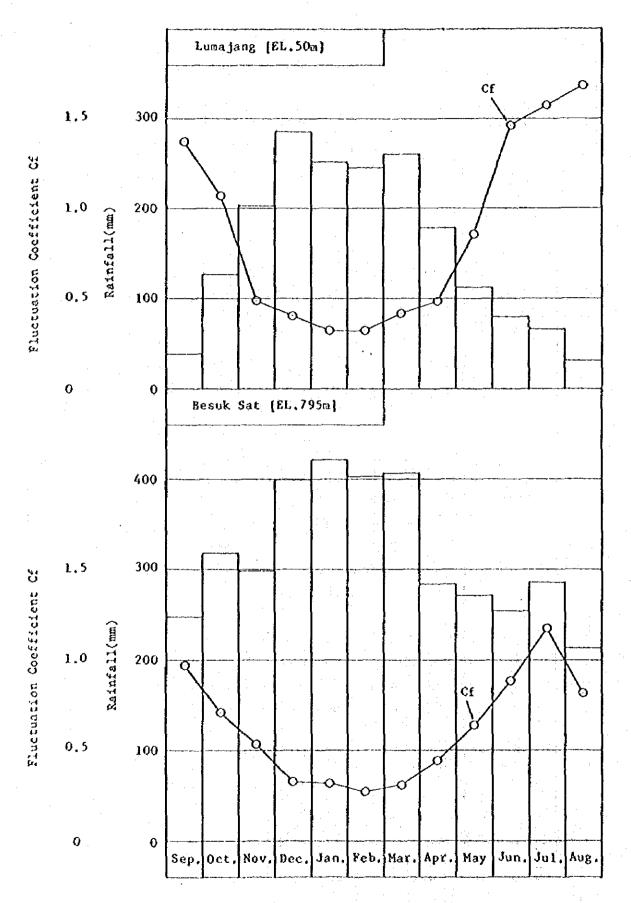
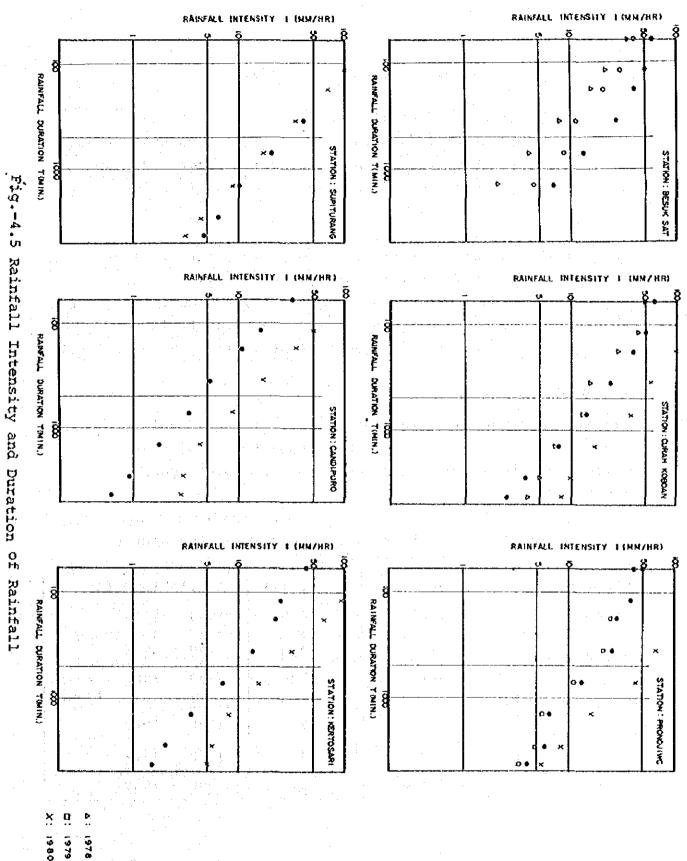



Fig. -4,4 Distribution of Monthly Rainfall

B-61

Legend

o : 1982 • 18

- Monthly rainfall fluctuation is small and the rainfall is generally large in the mountain area. In other words, the distinction between dry and rainy seasons is not very clear as it rains all the year round.
- (ii) In the plain area, the monthly rainfall fluctuation is large and, therefore, there is a clear distinction between the dry and rainy seasons. (From June to September expecially, the rainfall is small and the fluctuation coefficient is large at over 1.5.)

4.1.2 HOURLY RIANFALL

Six stations were selected for the purose of analysis from among the 15 stations listed in Table-2.1 (2) "List of Collected Rainfall Data (Automatic Type) and are shown in Table-4.2.

Station No.	Name	EL. (m)	Available Data
34	Pronojiwo	600	1979 - 1982
36	Kertosari	345	1980 - 1982
37	Besuk Sat	775	1978 - 1982 (except 1980)
38	Curah Kobo'an	734	1978 - 1982
39	Candipuro	322	1979 - 1982
42	Supit Vrang	675	1980 - 1982

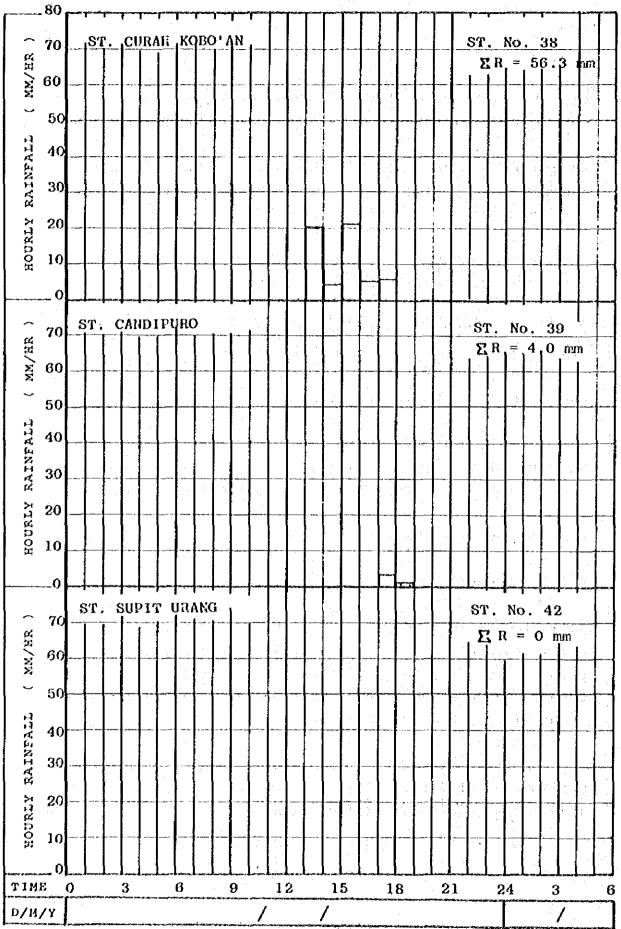
Table-4.2 Stations (Automatic Type) for Hourly Rainfall Analysis

Fig.-4.6 shows the relation between rainfall intensity and duration of rainfall in each year as a logarithmic graph.

As can be seen in Table-4.2, there are few hourly rainfall (automatic recording) observation stations and their period of data collection is short.

The debris flow which occured on May 14, 1981 was selected to understand the characteristics of hourly rainfall.

Fig.-4.6 shows the hourly rainfall on May 14, 1981 observed by six automatic rainfall recording stations in operation at that time. The daily rainfall at the same data, at all stations in the area, is shown in Fig.-4.7.


Based on these two figures, it can be said that the rainfall was concentrated for a few hours after 13:00 and that there were variations in the amount of local rainfall.

4.2 PROBABILITY ANALYSIS

4.2.1 SUMMARY

As Table-2.1 in Chapter 2 shows, there is little data for the hourly rainfall and as a result, it is difficult to conduct a probability analysis. For the daily rainfall, however, fourteen observation stations listed in Table-4.1 possess data for more than thirty years, which is enough for analytical purposes.

A probability calculation, therefore, is done by using the maximum annual daily rainfall data for 29 years (1951/52 - 1979/80) at these fourteen stations.

B - 64

Fig.-4.6 (1)

Rainfall on May 14, '81

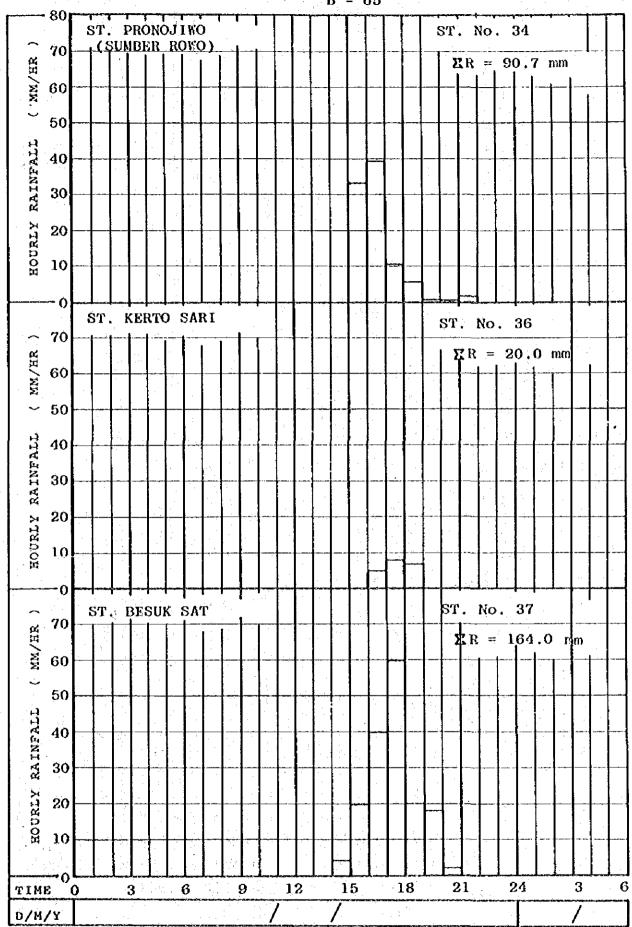
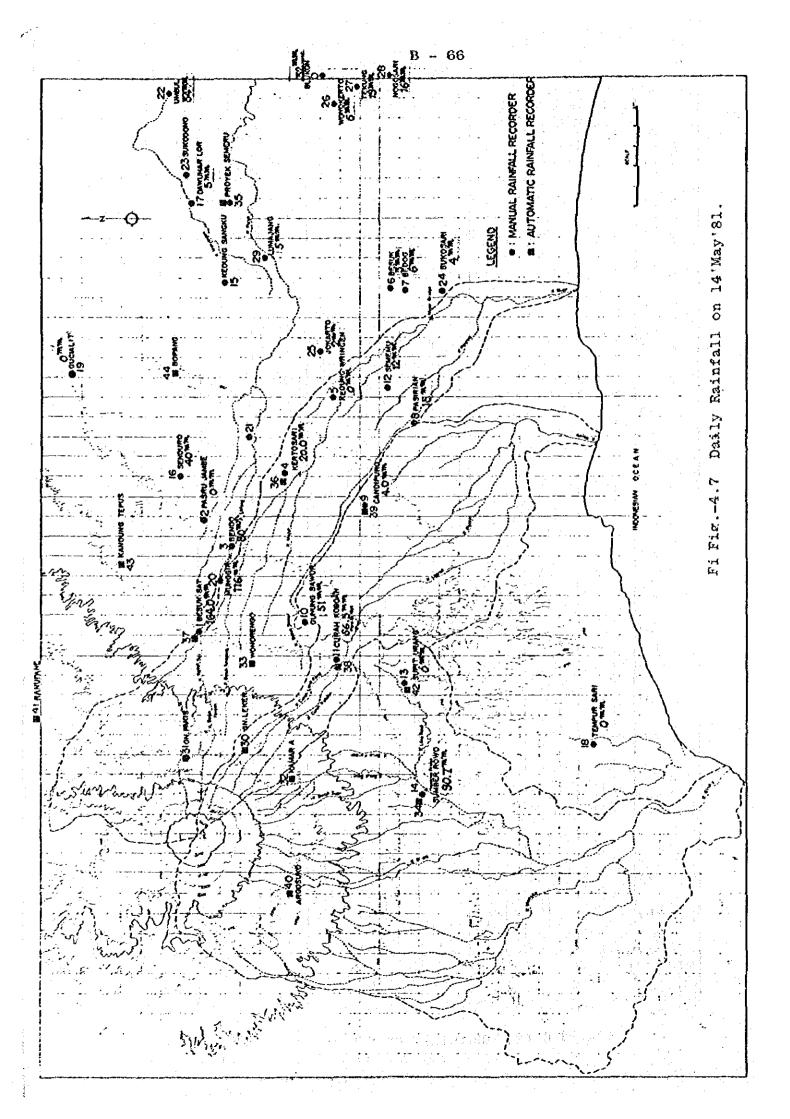



Fig.-4.8 (2) Rainfall on May 14, '81

4.2.2 METHOD OF CALCULATION

The Iwai method, which is the standard method for probability calculations in Japan, is used here.

> (i)**Basic Equations**

$$P(x) = 1 - F(x) = \frac{1}{1/2\pi} \int_{u}^{\infty} e^{-\frac{u^{2}}{2}} du = \frac{1}{1/\pi} \int_{\xi}^{\infty} e^{-\frac{u^{2}}{2}} d\xi$$

$$\mu = a^{1} \cdot \log \frac{x+b}{x_{0}+b} \quad \text{or} \quad \xi = a \cdot \log \frac{x+b}{x_{0}+b}$$

$$\log(x+b) = \log(x_{0}+b) + \frac{1}{a} \cdot u = \log(x_{0}+b) + \frac{1}{a} \cdot \xi$$

$$a, a^{1>0}, x_{0} > -b, -b < x < \infty$$
(For -4.1)

$$(Eq.-4.1)$$

Probable hydrometric volume Here, X: Conversed values of x and standard regular u and ξ: variables F(x): Non-exceeding probability of x Exceeding probability of x P(x):

 x_0 , a, a', b: Constants, a' $\sqrt{2}$.a, $\mu = \sqrt{2} \cdot \xi$

(ii)Estimation of b

> For the hydrometric volume x, its first approximate value (xg) is given as follows:

 x_g : log $x_g = \frac{1}{N} \sum_{i=1}^{N} \log x_i$ (N = Number of data available years)(Eq.-4.2)

Then, all values so attained are put in order from the highest to the lowest.

The value b_s is given by the equation shown below, based on the value x_s , which is the value of S' turn from the highest value, the x1 which is the value of S' turn from the lowest and x_g .

$$b_{\rm S} = \frac{x_1 x_{\rm S} - x_{\rm g}^2}{2x_{\rm g} - (x_{\rm S} + x_{\rm I})}$$
 (1 = N - S + 1) ... (Eq.-4.3)

Assuming $m \neq \frac{N}{10}$, b is given by bs (s = 1,2, ..., m)

$$b = \frac{1}{m} \sum_{s=1}^{m} b_s$$
 (Eq.-4.4)

(iii) Estimate of x_0 and $\frac{1}{a}$.

$$\log (x_{0} + b) = \frac{1}{N} \sum_{i=1}^{N} \log (x_{i} + b)$$

$$\frac{1}{a} = \int \overline{V} = \int \frac{1}{N-1} \sum_{i=1}^{N} (\log (x_{i} + b) = \log (x_{0} + b))^{2}$$

$$= \int \frac{1}{N-1} \sum (\log (x_{i} + b))^{2} - \frac{N}{N-1} (\log (x_{0} + b))^{2}$$

$$\dots (Eq. -4.5)$$

4.2.3 PROBABILITY RAINFALL

The result of the probability calculation by the Iwai method is given in the Supplements: "Computing Out-puts" and "Plot Diagrams".

Fig.-4.8 gives a plot diagram of the Besuk Sat observation station as an example.

The maximum annual daily rainfall for fourteen stations to main probability years are tabulated in Table-4.3.

4.2,4 CORRELATION BETWEEN PROBABILITY DAILY RAINFALL AND ALTITUDE

The probability daily rainfall and altitude of each observation station are plotted on the full logarithmic graphic paper and approximate values are estimated by the method of least squares.

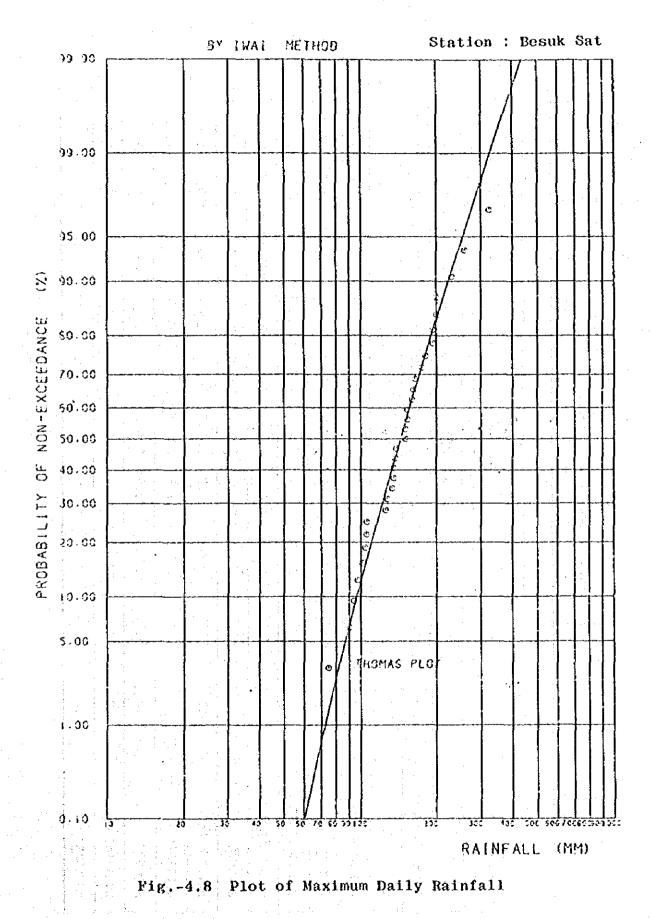


Table-4.3 Probable Daily Rainfall

	Station	-ra			Retur	Keturn Period (Year)	(Year)			
A.U. Station	• 007	E .	n	5	OT	20	40	50	70	001
BESUK SAT		795	165.8	0-161	223.2	254.5	285.5	295.6	310.8	327.0
PASRUJAYBE	5	184	153.3	173.6	198.2	221.2	243.2	250.1	260.6	271.5
BENDO (SUMBERDUREN)	m	510	136.8	158.0	184.9	210.9	236.7	245.1	257.7	271.1
KERTOSARI	4	345	130.8	151.6	178.2	204.3	230.4	238.9	251.7	265.4
PASIRIAN	8	155	128.0	146.0	167.4	187.1	205.6	211.4	220.1	229.1
CANDIPURO	6	322	136-0	156.1	180.8	204.3	227-1	234.4	245.3	256.8
CUNUNG SAWUR	OT	682	157.0	183.6	217.6	250.7	283.7	294_4	310-6	327.8
CURAH KOBO'AN	r F	734	174.8	214.4	270.0	329.0	392.3	413.6	446.8	483.4
SENDURO	16	435	143.0	169.2	205.0	242.0	280.7	293.6	313.5	335.1
DAWUHAN LOR	17	-65	103.8	116.3	131.5	145.8	159.6	164.0	170.6	177.5
CUCIALIT	19	600	140.5	159.8	183.8	206.0	227.4	234.2	244.4	255.1
MUNGGIR	20	600	157.9	182.9	214.5	245.1	275.4	285.2	299.9	315.6
LUMAJANG	29	50	6.911	136.7	156.9	175.4	192.9	198.4	206.6	215.2
SUKOSARI	24	93	95.9	1.111	129.3	147_3	164.3	169-7	177.9	186.5

()

Table-4.4 and Fig.-4.9 show the results of these estimation.

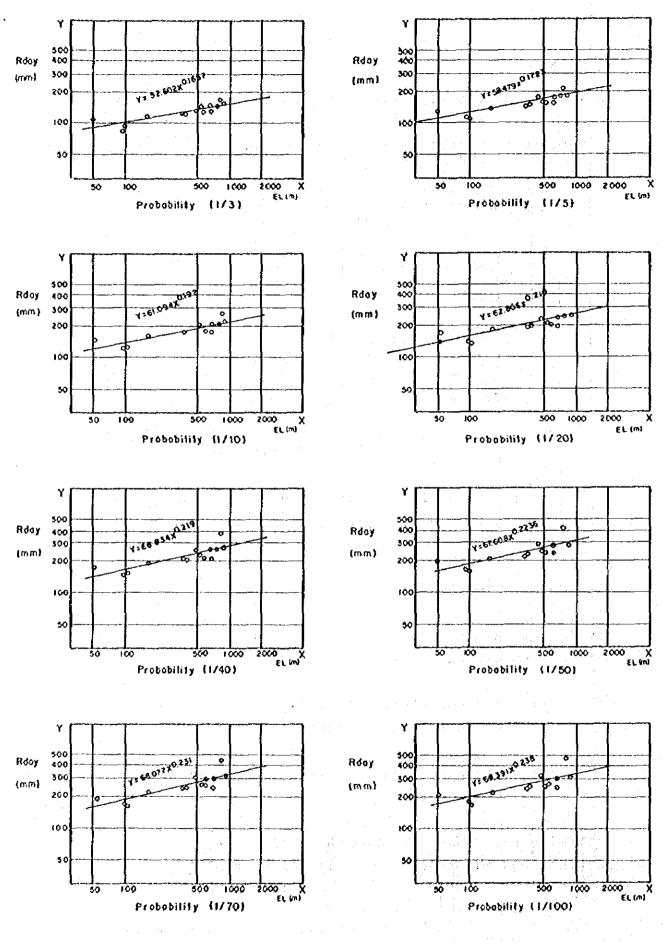
Probability	Equation
1/3	$y = 52.602 \cdot x^{0.1657}$
1/5	$y = 58.479 \cdot x^{0.1723}$
1/10	$y = 61.094 \cdot x^{0.192}$
1/20	$y = 62.806 \cdot x^{0.210}$
1/40	$y = 66.834 \cdot x^{0.219}$
1/50	$y = 67.608 \cdot x^{0.2236}$
1/70	$y = 68.077 \cdot x^{0.231}$
1/100	$y = 68.391 \cdot x^{0.238}$

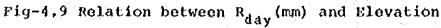
Table-4.4 Correlation between Probability Daily Rainfall and Altitude

> y = Probability Daily Rainfall Rday (mm) x = Altitude El. (m)

4.3 CORRELATION ANALYSIS

1997 - E.


The following correlations were examined by using the rainfall data of the eleven stations listed in Table-4.5.


(i) The correlation of daily rainfall (more than 50 mm/day) between these stations.

(ii) The correlation of annual rainfall between these stations.

Table-4.5 and Table-4.6 show the analysis results for the daily rainfall and the annual rainfall correlation respectively.

B-72

Ì.

Table-4.5 Correlation Analysis (Daily Rainfall>50mm)

~ <u></u>			·			·						
x	Y	1 Besuk Sat 158	2 Kert Sari 160	3 Pasur Jambe 161	4 Sumber Duren 162	S Curah Kobotan 164A	6 Dawuhan Lor 183	7 Lum- Jang 185	8 Gunung Sawut 1888	9 Pasiri- an 189	10 Tempeh Kidul 190	11 Bulkon 224
Besuk Sat 158		<pre>(1) (2) (3) (4)</pre>	-0.36 40.99 0.033 (643)	0.168 40.09 0.161 (685)	0,281 30,05 0,275 (647)	0.230 36.98 0.269 (679)	0.467 48.69 0.364 (664)	0.388 49.74 0.344 (602)	0,090 53,72 0,037 (725)	-0.323 46.70 -0.285 (633)	-432 60.26 -0.367 (599)	-0.495 96.790 -0.874 (781)
Kerto Sari 160				0.152 56.75 0.160 (466)	0.032 58.255 0.035 (475)	0,008 66.84 0.010 (485)	0,473 60,42 0,419 (401)	-0.332 60.80 -0.341 (351)	0.001 65.50 0.001 (559)	-0.275 60.05 -0.284 (362)	-0.391 62.32 -0.392 (348)	-0.475 112.07 -1.042 (509)
Pasur jande 161					0.363 34.83 0.367 (475)	0.074 54.03 0.091 (580)	-0.497 55.71 -0.420 (510)	-0.368 54.85 -0.361 (460)	0.130 52.86 0.142 (629)	-0.351 54.91 -0.336 (490)	-0.418 56.26 -0.387 (447)	-0.475 104.60 -0.938 (623)
Sumberduren 162						0.159 52,49 0.200 (543)	-0,551 58,90 -0,468 (485)	-0.432 59.65 -0.429 (435)	0.227 52.11 0.249 (584)	-0.391 58.95 -0.386 (458)	-0.445 59.52 -0.434 (420)	-0.502 106.44 -1.011 (598)
Curahkobo'an 164							-0.476 49.08 -0.326 (521)	-0.358 49.98 -0.274 (449)	0.443 43.11 0.387 (529)	-0.243 46.80 -0.193 (481)	-0.438 53.54 -0.329 (450)	-0.451 95.22 -0.737 (621)
Davuhanlor 183								0,223 64,902 -0,267 (283)	-0,500 80,00 -0,642 (592)	-0.685 76.15 -0.693 (344)	-0.499 69.66 -0.562 (322)	-0.402 112.44 -1.036 (465)
Luca jang 185									-0.388 78.25 -0.441 (524)	0.760 70.16 -0.464 (282)	-0.362 65.65 -0.378 (284)	-0.444 117.54 -1.018 (415)
Gunungsawur 188				. ¹ .					\sum	-0,292 49,28 -0.260 (548)	-0.455 53.98 -0.384 (533)	-0.478 97.73 -0.85 (699)
Pasirian 189											-0.299 65.59 -0.288 (282)	-0,363 109,95 -0,633 (445)
Tempehtengah 190												-0.333 106.97 -0.779 (427)
Blukon 224												\backslash

, . **t** (1) = Correlation Coefficient (2) = a (Y = a + b) (3) = b(4) = Number of Data Notes:

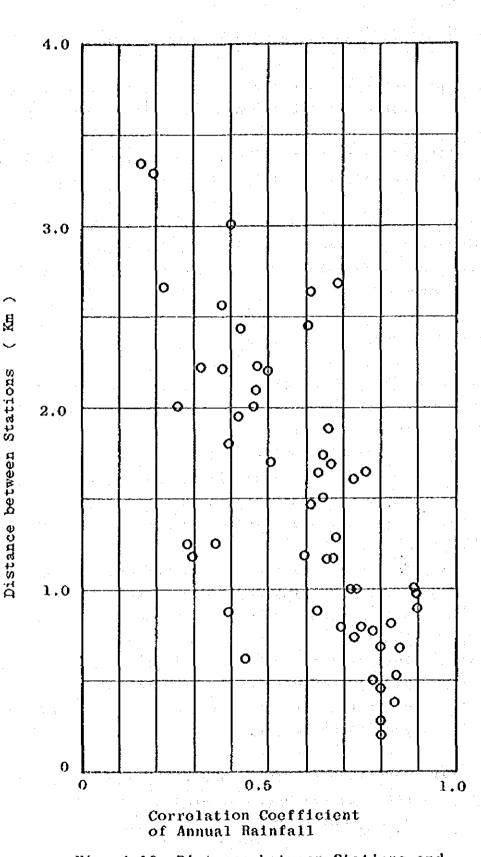
Table-4. 6 Correlation Analysis (Annual Rainfall)

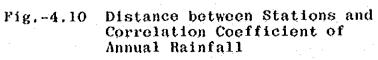
	· · · · · · · · · · · · · · · · · · ·										
x	l Beşuk Sat 158	2 Kert Sari 160	3 Pasur Janbe 161	4 Sumber Duren 162	5 Curah Kobo'an 164A	6 Dawuhan Lor 183	7 Lun- Jang 185	8 Gunung Savur 1888		10 Tempeh Kidul 190	11 Bulkon 224
Besuk Sat 158	{1} (2) (3) (4)	0.720 538.51 0.519 23	0.807 609.33 0.648 24	0.843 64.19 0.733 27	0.743 780.04 0.628 24	913.62	0.608 975.31 0.229 14	0.770 956.61 0.765 26		0.773 1026.40 0.202 16	0,19 372.0 0.51 2
Kerto Sari 160	5 10.0km		0.833 609.33 0.872 30	0,274 579,40 0,939 23	0.735 1293.82 0.768 20	330.46 0.525	0,668 1026.63 0,316 11	0.750 728.80 1.058 22	0,694 763,13 0,443 22	0.285 1472.85 0.137 14	0.37 -1224.0 1.39 2
Pasur jambe 161	6.9	3.9		0,802 83,10 0,899 25	0.891 718.71 0.812 21	252,23	0,660 945.62 0,293 14	1.094	0.658 546.85 0.418 24	0.740 558.65 0.358 13	0.37 -1544.0 1.25 2
Symberduren 162	5.3	4.6	2.9		0.824 990.78 0.754 24	891.02 0.264	0.462 1283.94 0.202 14	893,31 0.873	0,369	0.509 1013.92 0.269 17	0.22 407.9 0.65 2
Curahkobo'an 164	7.4	10.0	10.0	7.1		0.440 441.69 0.378 24	0.622 780.30 0.334 13	20.75 1.071	0.676 411.17 0.951 24	0.467 982.32 0.263 14	0,15 495.6 0,61 2
Davuhanlor 183	22.1	14.7	15,4	17,7	24.3		0.836 829.01 0.602 14			0,354 1398,23 0,230 17	0,24 495.6 0,61 2
Luzajang 185	24.5	16.9	18.7	20,7	26.0	6.6		0.688 564.23 1.681 16	0.759 37.09 1.004 13	0.908 -423.07 1.092 8	0.44 -3587.2 1.24
Gunungsawur 188	7.6	7.9	9.9	5.0	2,1	22.4	26.4		0.801 932.01 0.281 27	0.418 1167.01 0.177 16	0.40 -1501.2 1.11
Pasirian 189	16.4	7.9	11.7	11.7	12.9	17.4	16.3	11.9		0.628 765.67 0.540 17	
Tempehtengah 190	22.4	12.5	16.0	17.0	21.0	12.5	9.0	19,3	8.6		0,39 -2164.0 2.6
B]ukon 224	12.9	22.1	25.7	26.5	33,4	11.9	6.1	30,1	20.9	8.7	

Notes: (1) = Correlation Coefficient (2) = a (Y = a + bx) (3) = b (4) = Number of Data (5) = Distance between Stations

- (i) There is no daily rainfall (more than 50 mm/day) correlation between the stations; and
- (ii) There is a relatively strong correlation in the annual rainfall data of these stations,

Fig.-4.10 examines the relation of a correlation coefficient of annual rainfall to the distance between stations. There is a tendency that a correlation coefficient is in reverse relation to the distance.


4.4 CHARACTERISTICS OF RAINFALL


Characteristics of rainfall in the study area are described below based on study results reported 4.1 through 4.3.

- (i) Correlation exists between the annual rainfall and the altitude. The higher the altitude is, the larger the rainfall is; 2,000 mm at EL. 200m, 3,000 mm at EL. 500 m and 4,000 m at EL. 1,000 m.
- (ii) In the Mt. Semeru mountain range, a distinction between a rainy and a dry season is not so clear that there is much rain through out the year.
- (iii) In the plain area to the south of study area, a distinction between a rainy and a dry season is so clear that it rains little for four months from June to September.
 - (iv) Duration of rain is generally short and concentrates in few hours after one o'clock in the afternoon.

÷

age factor a final a second second

(v) Regional as well as time variations of rain can be arrested.

5. FLOOD STUDY

Flood runoff is defined as a process in which much rainfall in the catchment area will be changed, over a period of time, being to flow due to gravity. Suppose rainfall (or hyetograph) is regarded as the input, then the discharge (or hydrograph) can be considered as the output from a system called a catchment area. Catching this output at designated reference points with the help of a suitable runoff model, is the main target of this study, in order to establish a volcanic debris control plan or to accomplish a feasibility study.

5.1 FLOOD RUNOFF MODEL

5.1.1 SELECTION OF THE MODEL

(1) Preconditions for Selection of the Model

The followings were considered carefully when selecting the flood run-off model to be applied to this study.

- (1) Usefulness of the outcome from the model.
- (2) Dominant factor in flood runoff process.
- (3) Existence of enough data to calibrate a model.
- (4) Characteristics of the catchment area.

(2) Select Model

As the flood runoff model is to be calibrated with limited data, the Kinematic Wave Method was selected considering the characteristics of flood and catchment area.

5.1.2 DESCRIPTION OF THE MODEL

(1) Division of the Study Area

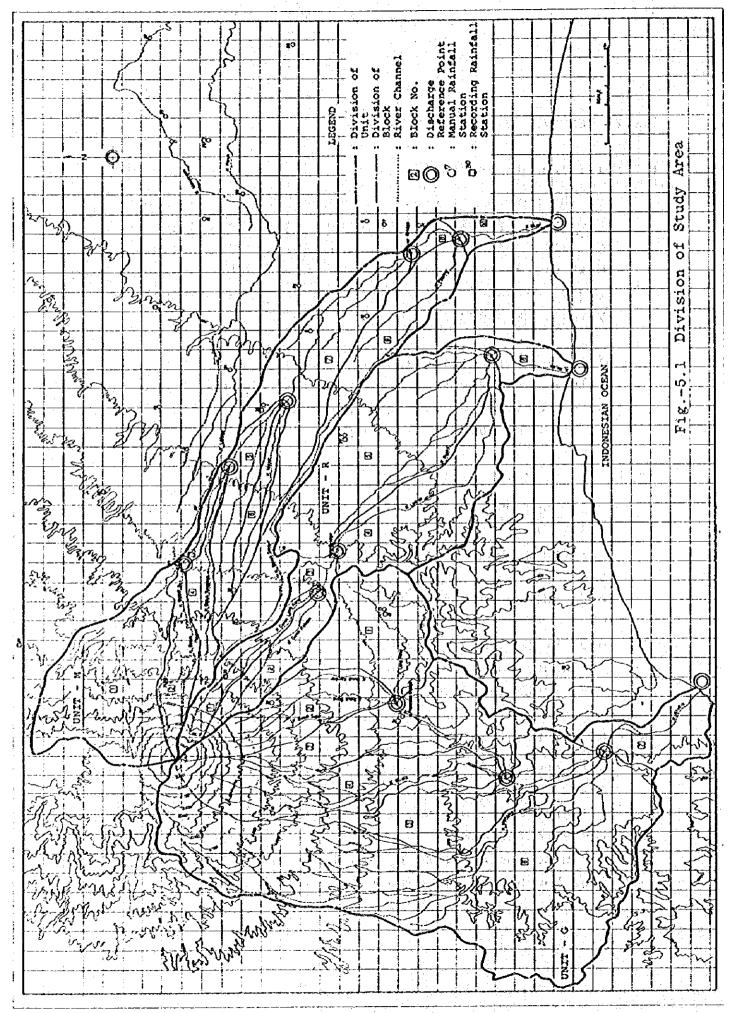
For the purpose of flood study, the study area is divided, into three hydrological units; namely: Kali Mujur basin (Unit-M); Kali Rejali basin (Unit-R) and Kali Glidik basin (Unit-G), as shown in Fig.-5.1. Each unit is composed of several blocks in accordance with the river channel systems, as shown in Fig.-5.2.

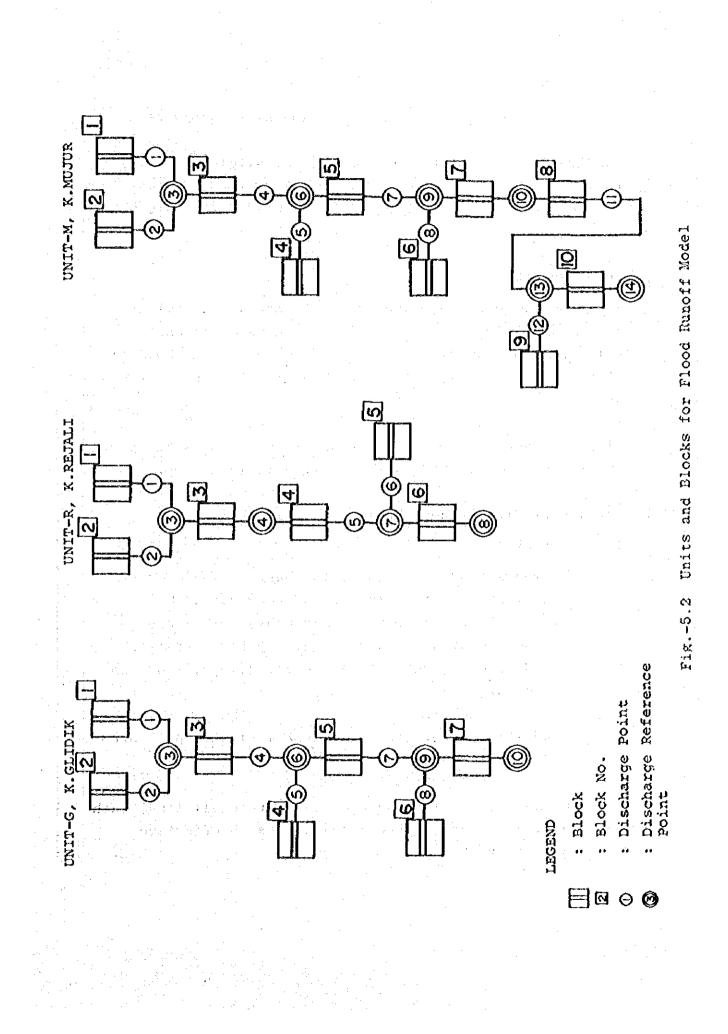
Discharge reference points of each unit are shown as follows. These points are located at the confluences of the main rivers or at significant points in view of flood and sediment control planning.

Unit-M: K. Mujur Basin

- Confluence point of K. Besuk Tompe and K. Besuk Sat (A = 56.4 km^2)
- Confluence point of K. Besuk Sat and K. Besuk Tungen (A = 68.3 km^2)
- Confluence point of K. Besuk Tungen and K. Mujur (A = 89.7 km^2)

- Mujur Bridge (A = 125.7 km^2)


- Confluence point of K. Mujur and K. Pancing (A = 164.7 km^2) - River Mouth (A = 170.6 km^2)


Unit-R: K. Rejali Basin

Confluence point of K. Curah Lengkong and K. Besuk Kobo'an $(A = 22.9 \text{ km}^2)$

K. Leprak Check Dam No. 1 (A = 27.6 km^2), 500 m downstream from Perok Bridge

- Confluence point of K. Legoyo and K. Rejali (A = 123.9 km²) - River mouth (A = 131.8 km²)

Unit-G: K. Glidik

- Confluence point of K. Besuk Bang and K. Lengkong (A = 54.3 km^2)
- Confluence point of K. Lengkong and K. Glidik (A = 129.4 km²)
- Confluence point of K. Monjng and K. Glidik (A = 310.0 km^2)
- River mouth $(A = 326.3 \text{ km}^2)$
- (3) Input Rainfall System

For flood computation, hyetographic data is essential. The hyetographic mean rainfall of each block or unit is calculated by applying the Thiessen Method with the data of the rainfall stations distributed in or near the study area.

Fig.-3.1 shows a Thiessen polygon of the study area, and the Thiessen coefficient is compliled in Table-5.1.

- (4) Outline of Flood Runoff Model
 - (a) Characteristics of the Model

The model adopts the specific characteristic curve method, showing the flow movement by using the formula for continuity and movement, for discharge computation by setting up several parameters established through such data as geomorphology, land use and channel condition.

In addition, the slope and channel flow is presented as Kinematic wayes.

Further, to depict the process of rainfall loss, both by time and space, the model adopts an effective rainfall system.

B	-	83
---	---	----

Z	HIOC Disc	K & barge	EA (Kd)						R	aiafi			Obsi	ervat	ion		Sta	tion	·]
UAS J	Refe Point	cence	ΈΛ	3	5	7	8	10	12	18	20	21	30	31	32	33	34	36	37	38	39	40	41	42
2	ļ		AR	162	185	190B	189	188H		167A			1		i Li	N	۷	Y	18	N.	X	<u>N</u> .	M	71
	1		45.2											0.64					0.10			· ·	0 26	
	2		11,										0.06	0.71		0.03			0 20	-				
	ļ	3	56.5										0.03	0.65		0.01			012				021	· .
	3		3 *	0 30					. !		0.23	· .					11		Q.47					
	ļ	0	59.1	0.02			L				001		0.01	0 61		0.01			0.14				0.20	
1	4		8.1	011	3.5	·*	 	·	1.1		0.09	· · ·	026	0.02	· · ·	026		:	0.26					
а С		0	68.1	0.03							0.02		004	0.55		0.04	· .		0.15	·			0.17	
Р	5		13.*	0 30							0.22					0.23		0.22	0.03	 				
5		0	82.	0.07							0.06		0.04	0.45		0.07		0.04	0.13		i		014	·
2	6		7.*	0.23			· .	0.40			0.03					0.21		013						
X		9	89.	0.09		:		003		:	0.05	<u>}</u>	0.03	0.42		0.08		0.04	0.12		· ·		0.14	
•	17_	~	36.*	0.01	0.30	0.04		0.04	0.22	<u>.</u>		0.02		•			· · ·	025	<u> </u>		0.12		:	[]
×		0	125.1	0.07	0.08	0.01	[0.04	0.06		0.04	0.01	002	0.30		0.05	 	0.10	0.09	. 	0.03	L	0.09	
н н. С	8		2.				ļ					1.00								L	ļ			
	<u> </u>	<u> </u>	128.3	0.06	0.08	0.01		0.04	0.06		0.04	0.03	002	0.30		0.06		0.10	0.08	 	0.03	ļ	0.09	Į
	9	6	36."		0.01		0.18	0.13	0.17			0.15	0.04		_	0.20	ļ				0.12	<u> </u>		
		0	164. ⁷ 5.*	0.05	0.06	0.01	0.04	006	0.08		0.03	0.05	003	0.23	<u>l</u> ina.	0.09	 	0.08	0.07		005		0.07	
	10	0										1.00									0.07			
	<u> </u>	8	170." 10.1	0.05	0.06	0.01	0.04	0.05	0.08		003	0.09	0.03	0.23	┝	0.08		0.07	0.06		0.05		0.07	
	2		12*										0.59	0.16	0.39	0.07	{_ <u>``</u>	{		0.18	{		 	[]
H	<u>ٿ</u>	0	22*					<u> </u>					031	0.07	0.21	0.03				0.25	 	 		
La l	3	<u> </u>	4.					0.13			 			0.07	13.0	0.03			 	0.87				
<	<u>├</u> ──	0	27 4			<u> </u>	<u> </u>	0.02					0.35	0.06	0.18	0.03	· ·			0.35				
5		<u> </u>	36.*				0.15		<u> </u>	<u> </u>	<u> </u>							{	{	0.12	0.36	╏───	<u> · · ·</u>	036
Ω.	·	6	63.1				0.09	0.01				<u>::</u>	016	0.03	0.08	0.01			}	0 22	0.20			0 20
Ř	5		60. ³	-		: 1	0.39	0.15												0.01	0.45			
¥	<u> </u>	0	123."				0.23	0.08				<u> </u>	0.08	001	0.04	0.01	<u> </u>			0.12	0.32			0.11
	6		7.9				3 00					1		1		†	[t	1		1		<u> </u>	
		۲	131.				0.28	0.07			1		0.08	0.01	0.04	0.01				0.11	0.30			0.10
	3		30.*		· .										0.06		0.11			0.16				0.67
·	2		23."	·			· · .		<u> </u>				0.02	0.04	0.69	[0 23	1	<u>†</u>	1	ļ			0.02
		٢	54.1								1		0.01	0.02	0.34	 	016		1	0.09				0.38
O.	3		39."							0.10					0.09	<u> </u>	0.72		1	1	1	0.08		0.01
H C		0	93.*		, ,					0.04			001	0.01	0.24	1	0.39		1	0.05		0.03		0.23
а 	4		36.1										0.01	0.02	0.01		0.41			1		0.55	<u> </u>	
		۲	1294							0.03			001	0.01	017		040			0.04		0.18		016
0	5		33*	:				l gi		0.32			0.10				0.58		ļ		<u> </u>	1		
		0	162*							0.09			0.02	0.01	0.14		641		1	0 03		0.14	T	013
ж	6		147.4							033				0.01			028	Γ				0.38		
		۲	310*							0 20			0 01	0.01	0.07		0.35	—	1.	002	1	026	1	0.07
i - 1	7		16.3							1.00								1	1	1	1	1		
		Ø	326.*	1.1						024			0.01	0.01	0.07		0.34	<u> </u>	1	0.02	1	025	1	005

Table-5.1 List of Thiessen Coefficient

(b) Composition of the Model

Each block is composed of the following systems.

(1) S1: Slope System

The amount of effective rainfall, rainfall loss and surface run-off at the slope are sought. This system is composed of the following two subsystems.

- Sll: Effective Rainfall System Rainfall is divided into run-off and rainfall loss.

S12: Slope Surface Flow System
 The run-off amount at the sloping surface
 downstream end of each block is calculated by
 using:

. Effective rainfall, as defined in Sll.

The specific characteristic curve method that uses the Kinematic wave method, based on the manning equation and the continuity formula.

(2) S2: Channel System

The movement of the channel water input from the upper reaches and the sloping surfaces is calculated by the specific characteristic curve method, as for the slope surface flow system and the out flow from the lower reaches is thus gained.

(c) Composition of Computer Program

The computer program is composed as follows.

Sub-program - 1:	Computation of the mean hourly
	rainfall amount of each
	discharge area.
Sub-program - 2:	Computation of effective
	rainfall at each block slope.
Main-program :	Computation of runoff amount
	at each discharge reference
	point.

The variables and parameters used in the above computer program are shown in Table-5.2.

(4) Effective Rainfall System

Effective rainfall is sought by the following formula, as a function of accumulating rainfall amount.

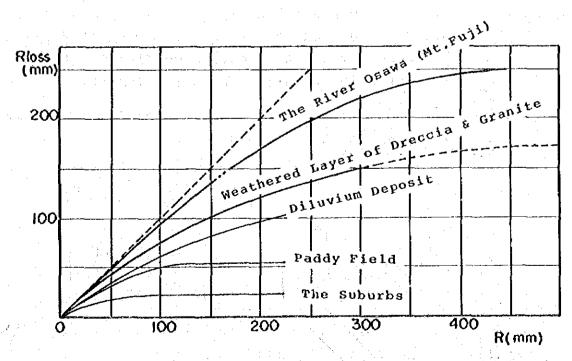
 $R_{e(i)} = R_{(i)} - R_{loss(i)}$ $R_{(i)} = R_{(i)} - R_{(i-1)}$ $R_{loss(i)} = R_{loss(i)} - R_{loss(i-1)}$ $R_{loss(i)} = R_{(i)} - (R_{(i)})$

Table-5.2 Variables and Parameters for Flood Runoff Model

Variable or ParameterSignUnitDescriptionInput Variable(Subroutin-1 : Mean Hourly Rainfall) rimm/hHourly Rainfall)ParametersCt-Thiessen CoefficientLs1mLeft Slope Length Right Slope LengthLcmCutput Variablermm/hMean Hourly RainfallOutput Variablermm/hMean Hourly RainfallInput Variablermm/hMean Hourly RainfallInput Variablermm/hMean Hourly RainfallInput Variablermm/hMean Hourly RainfallInput Variablermm/hBaturated RainfallOutput Variablermm/hBaturated RainfallOutput Variableremm/hBffective RainfallInput Variableremm/hBffective RainfallParametersKs1-Left Slope ConstantPs1-Left Slope ConstantPs2-Right Slope ConstantPs3-Left Slope ConstantPs4gsm3/s.mSlope Discharge /mOutput Variableqsm3/s.mSlope Discharge /mParameterskc-Gannel DischargeParameterskc-Gannel ConstantPs4gsm3/s.mSlope Discharge /mParameterskc-Gannel ConstantParameterskc-Gannel ConstantParameterskc-Gannel Constant<				ᅸᆕᇃᆕᆊᅋᅸᇏᅒᆘᄣᅶᅋᅶᅸᇤᅸᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕᆕ
Input Variablérimm/hHourly RainfallParametersCt-Thiessen CoefficientLs1mLeft Slope LengthLs2mRight Slope LengthLcmChannel LengthOutput Variablermm/hMean Hourly Rainfall(Subroutin-2 : Effective Rainfall)Input VariablerMm/hMean Hourly RainfallParametersRsaRsammSaturated RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallParametersKslParametersKslPsi-Left Slope Constant PsiPsi-Left Slope Constant PsiLs1mLeft Slope Length LsrLs1mLeft Slope Length LsrLs1mLeft Slope Length LsrOupput VariableQcm3/sSlope Discharge /m-Input VariableQcm3/sSlope Discharge /mParameterskc-Gannel Constant PcQutputOutputUpput VariableQcM3/sSlope Discharge /m <td< td=""><td></td><td>Sign</td><td>Unit</td><td>Description</td></td<>		Sign	Unit	Description
Input Variablérimm/hHourly RainfallParametersCt-Thiessen CoefficientLs1mLeft Slope LengthLs2mRight Slope LengthLcmChannel LengthOutput Variablermm/hMean Hourly Rainfall(Subroutin-2 : Effective Rainfall)Input VariablerMm/hMean Hourly RainfallParametersRsaRsammSaturated RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallParametersKslParametersKslPsi-Left Slope Constant PsiPsi-Left Slope Constant PsiLs1mLeft Slope Length LsrLs1mLeft Slope Length LsrLs1mLeft Slope Length LsrOupput VariableQcm3/sSlope Discharge /m-Input VariableQcm3/sSlope Discharge /mParameterskc-Gannel Constant PcQutputOutputUpput VariableQcM3/sSlope Discharge /m <td< td=""><td>an an a</td><td>(Subrouti</td><td>n-l : Mean</td><td>Hourly Rainfall)</td></td<>	an a	(Subrouti	n-l : Mean	Hourly Rainfall)
ParametersCt-Thiessen CoefficientLs1mLeft Slope LengthLsrmRight Slope LengthLcmChannel LengthOutputrmm/hWarlablermm/hInput(Subroutin-2 : Effective Rainfall)Yarlablermm/hMean Hourly RainfallParametersRsaRsammSaturated RainfallOutputreVarlablereRsammSaturated Loss RainfallOutputreVariablereInputVariableremm/hEffective RainfallOutput- Slope Surface Flow -InputreMainroutin : Discharge)- Slope Surface Flow -InputreMarkEffective RainfallParametersKs1Ps1-Left Slope ConstantPs7-Right Slope ConstantLs1mLeft Slope LengthLs1mLeft Slope LengthLs2mAlght Slope LengthQcm3/s.mSlope Discharge /mInputQcm3/s.mSlope Discharge /mGunnel ConstantPc-Qutput-Qcm3/s.mSlope Discharge /mQannel ConstantPc-Qannel LengthOutput <t< td=""><td></td><td></td><td>n 1 (in 1997) - 🖬</td><td></td></t<>			n 1 (in 1997) - 🖬	
Ls1mLeft Slope Length Right Slope Length LcOutput Variablermm/hMean Hourly RainfallInput Variablermm/hMean Hourly RainfallInput Variablermm/hMean Hourly RainfallParametersRsammSaturated RainfallOutput Variablermm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallInput Variableremm/hEffective RainfallParametersKs1-Left Slope ConstantPs1-Left Slope ConstantPs2-Right Slope ConstantPs3mLeft Slope LengthLs1mLeft Slope LengthLs2mRight Slope LengthQupput Variableqsm3/s.mSlope Discharge /mOupput VariableQcm3/sChannel DischargeParameterskc-Cannel ConstantLcmChannel ConstantLcmChannel Length	21 A		-	
LsrmRight Slope Length LcOutput Variablermm/hMean Hourly RainfallInput Variablermm/hMean Hourly RainfallInput Variablermm/hMean Hourly RainfallParametersRsammSaturated RainfallOutput Variablermm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallInput Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantPs1-Left Slope ConstantPs2-Right Slope ConstantPs3-Right Slope LengthLs1mLeft Slope LengthLs2mSlope Discharge /mOupput Variableqsm3/s.mSlope DischargeParameterskc-Qannel DischargeInput VariableQcm3/s.mSlope Discharge /mParameterskc-Qannel ConstantLcmGannel ConstantCannel Length	I dI dine coi b		m	
LcmChannel LengthOutput Variablermm/hMean Hourly RainfallInput Variablermm/hMean Hourly RainfallParametersRsammSaturated RainfallRlsaRMSaturated Loss RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallInput Variableremm/hEffective RainfallInput Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantPsi-Left Slope ConstantRight Slope ConstantPsi-Right Slope ConstantLsimLeft Slope LengthLsimRight Slope LengthOupput Variableqsm3/s.mSlope Discharge /m-Channel Surface FlowInput VariableQcm3/sChannel Dischargegsm3/s.mSlope Discharge /mParameterskc-Qannel ConstantParameterskc-Qannel ConstantPor-Channel ConstantConstantParameterskc-Qannel Constant			ter an ter ter	
Output Variablermm/hMean Hourly RainfallInput Variable(Subroutin-2 : Effective Rainfall)Input Variablermm/hMean Hourly RainfallParametersRsammSaturated RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallInput Variableremm/hEffective RainfallInput Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantPs1-Left Slope ConstantPs2-Right Slope ConstantLs1mLeft Slope LengthLs2mRight Slope LengthOupput Variableqsm3/s.mSlope Discharge /mChannel Surface Flow -Input VariableQcm3/sChannel DischargeParameterskc-Qannel ConstantDuput VariableQcm3/sChannel DischargeParameterskc-Qannel ConstantPoc-Cannel ConstantConstantParameterskc-Qannel Constant				
Variablermm/hMean Hourly RainfallInput Variable(Subroutin-2: Effective Rainfall)Input Variablermm/hMean Hourly RainfallParametersRsammSaturated RainfallRlsaRMSaturated Loss RainfallOutput Variableremm/hEffective Rainfall(Mainroutin : Discharge) - Slope Surface FlowInput Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantPsl-Left Slope ConstantPsr-Right Slope ConstantLslmLeft Slope LengthLsrmSlope Discharge /mChannel Discharge /mInput Variableqsm3/s.mSlope Discharge /mChannel DischargemOupput Variableqsm3/s.mSlope Discharge /mChannel ConstantDuput VariableQcm3/s.mSlope Discharge /mChannel ConstantParameterskc-Cannel ConstantDuput VariableQcm3/s.mSlope Discharge /mCannel ConstantParameterskc-Cannel ConstantDuputCannel ConstantCutputCannel Length		TG	IQ .	Channel Length
Input Variable(Subroutin-2 : Effective Rainfall)Input Variablermm/hMean Hourly RainfallParametersRsammSaturated RainfallRlsaRmSaturated Loss RainfallOutput Variableremm/hEffective Rainfall(Mainroutin : Discharge) - Slope Surface FlowInput Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantPslreRight Slope ConstantPsl-Right Slope ConstantLslmLeft Slope ConstantLslmLeft Slope LengthLsrmSlope Discharge /mOupput Variableqsm3/s.mSlope Discharge /m-Channel Surface Flow -Input VariableQcm3/sChannel DischargeGupput VariableQcm3/s.mSlope Discharge /m-Channel Surface Flow -Input VariableQcm3/s.mSlope Discharge /mOutputChannel DischargeMarketChannel ConstantDuputChannel ConstantOutputChannel ConstantOutputChannel Length		r	mm/h	Mean Hourly Rainfall
Input Variablermm/hMean Hourly RainfallParametersRsammSaturated RainfallRisammSaturated Loss RainfallOutput Variableremm/hEffective RainfallInput Variableremm/hEffective RainfallInput Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantParametersKsl-Left Slope ConstantPsi-Right Slope ConstantLsimLeft Slope LengthLsimRight Slope LengthCupput Variableqsm3/s.mSlope Discharge /mOupput VariableQcm3/sChannel DischargeParameterskc-Gannel ConstantLptDep LischargefmSlope DischargeOupput VariableQcm3/sChannel DischargeParameterskc-Gannel ConstantLcmGannel LengthOutput				،
ParametersRsammSaturated RainfallOutput Variableremm/hEffective RainfallOutput Variableremm/hEffective RainfallInput Variable(Mainroutin : Discharge) - Slope Surface Flow -Input Variableremm/hÉffective RainfallParametersKsl-Left Slope ConstantPsi-Left Slope ConstantPsr-Right Slope ConstantPsr-Right Slope ConstantLsimLeft Slope LengthLsrmRight Slope LengthVariableQcm3/s.mSlope Discharge /mOupput VariableQcm3/s.mSlope Discharge /mParameterskc-Gannel DischargeParameterskc-Gannel ConstantDuput VariableQcm3/s.mSlope Discharge /mOutputQcm3/s.mSlope Discharge /mOutputQcm3/s.mSlope Discharge /mOutputUUU		(00.2000		
RlsaRmSaturated Loss RainfallOutput Variableremm/hEffective Rainfall(Mainroutín : Discharge) - Slope Surface FlowInput Variableremm/hÉffective RainfallParametersKsl-Left Slope ConstantPs1-Left Slope ConstantRsr-Right Slope ConstantPsr-Right Slope ConstantLslmLeft Slope LengthLsrmRight Slope LengthOupput Variableqsm3/s.mSlope Discharge /m-Channel Surface Flow -Input VariableQcm3/sChannel DischargeParameterskc-Qannel ConstantDuput VariableQcm3/s.mSlope Discharge /mLpcmGannel ConstantDuputMainsideMainsideOutputWariableMainsideOutputWariableMainsideM	Variable	r	mm/h	e age in the second to Take in the second
Output Variableremm/hEffective RainfallInput Variable(Mainroutin : Discharge) - Slope Surface Flow - Input Variable- Slope Surface Flow - Ieft Slope ConstantParametersKsl- Ieft Slope ConstantPsl- Right Slope ConstantPsr- Right Slope ConstantLslm Ieft Slope LengthOupput Variableqsm3/s.mSlope Discharge /m- Channel Surface Flow -Input VariableQcm3/s.mSlope Discharge /m- Channel Surface Flow -Input VariableQcm3/s.mSlope Discharge /m- Channel ConstantDuput VariableQcm3/s.mSlope Discharge /m- Channel ConstantDuputQcm3/s.mSlope Discharge /mChannel ConstantDuputLcMannel LengthOutput-	Parameters	Rsa	m	Saturated Rainfall
Variableremm/hEffective RainfallInput Variable(Mainroutin : Discharge) - Slope Surface Flow - Input Parameters- Slope Surface Flow - Iteft Slope ConstantParametersKsl-Left Slope ConstantPsl-Left Slope ConstantPsr-Right Slope ConstantPsr-Right Slope ConstantLslmLeft Slope ConstantLslmLeft Slope ConstantLslmSlope Discharge /mOupput Variableqsm3/s.mSlope Discharge /m-Channel Surface Flow -Input VariableQcm3/sChannel DischargeParameterskc-Gannel ConstantDutputChannel ConstantOutputGannel Constant		Rlsa	m	Saturated Loss Rainfall
Input Variable(Mainroutin : Discharge) - Slope Surface Flow - Imm/hParametersremm/hParametersKsl-Left Slope ConstantPslPsl-Left Slope ConstantKsr-Right Slope ConstantPsr-Right Slope ConstantLslmLeft Slope ConstantLslmLeft Slope ConstantLslmLeft Slope ConstantLsrmSlope Discharge /mOupput Variableqsm3/s.mInput VariableQcm3/sChannel Surface Flow -Input Gannel ConstantParameterskc-Comput LcmGannel ConstantComput VariableQcm3/s.mChannel ConstantConstantComput VariableMComput QcM3/s.mChannel ConstantConstantComput-Comput				ne se
Input Variable- Slope Surface Flow -Input Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantPsl-Left Slope ConstantKsr-Right Slope ConstantKsr-Right Slope ConstantPsr-Right Slope ConstantLslmLeft Slope LengthLsrmRight Slope LengthOupput Variableqsm3/s.mSlope Discharge /m- Channel Surface FlowInput VariableQcm3/sChannel Dischargegsm3/s.mSlope Discharge /mParameterskc-Gannel ConstantLcmGannel ConstantLengthOutputGannel Length	Variable	the second s		and the second secon
Input Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantPsl-Left Slope ConstantKsr-Right Slope ConstantPsr-Right Slope ConstantLslmLeft Slope LengthLsrmRight Slope LengthOupput Variableqsm3/s.mInput VariableQcm3/s.mSlope Discharge /m-Channel Surface Flow -Input VariableQcm3/s.mSlope Discharge /mParameterskckc-Qannel ConstantLcmOutput				
Variableremm/hEffective RainfallParametersKsl-Left Slope ConstantPsl-Left Slope ConstantKsr-Right Slope ConstantPsr-Right Slope ConstantLslmLeft Slope LengthLsrmRight Slope LengthVariableqsm3/s.mInput VariableQcm3/sChannel Surface Flow-Input Parameterskc-Qcm3/s.mSlope Discharge /mParameterskc-Quput Qc-Gannel ConstantLcmChannel Length	Toput	- Slope Su	irface Flow	han an ann an Aonaichte an Aonaichte an Aonaichte an Aonaichte ann an Aonaichte an
Psl-Left Slope ConstantKsr-Right Slope ConstantPsr-Right Slope ConstantLslmLeft Slope LengthLsrmRight Slope LengthUpputqsm3/s.mVariableqsm3/s.mInputQcm3/sChannel Surface Flow -InputQcqsm3/s.mParameterskcPc-Cannel ConstantLcmOutput		re	mm/h	Effective Rainfall
Ksr-Right Slope ConstantPsr-Right Slope ConstantLslmLeft Slope LengthLsrmRight Slope LengthOupput Variableqsm3/s.m- Channel Surface Flow -Input VariableQcm3/sChannel Surface Flow -Input VariableQcqsm3/s.mSlope Discharge /mParameterskcPc-Cannel ConstantLcmOutput	Parameters	Ksl	- :	Left Slope Constant
Psr-Right Slope ConstantLs1mLeft Slope LengthLsrmRight Slope LengthOupput Variableqsm3/s.m- Channel Surface Flow -Input VariableQcm3/sGannel Discharge (qsm3/s.mParameterskc-Pc-Gannel ConstantLcmGannel Length		Psl		Left Slope Constant
Ls1mLeft Slope LengthOupput Variableqsm3/s.mRight Slope LengthOupput Variableqsm3/s.mSlope Discharge /mInput VariableQcm3/sChannel Dischargeqsm3/s.mSlope Discharge /mParameterskc-Qannel ConstantPc-Qannel ConstantLcmQannel Length		Ksr	-	Right Slope Constant
Ls1mLeft Slope LengthOupput Variableqsm3/s.mRight Slope LengthOupput Variableqsm3/s.mSlope Discharge /mInput VariableQcm3/sChannel Dischargeqsm3/s.mSlope Discharge /mParameterskc-Qannel ConstantPc-Qannel ConstantLcmQannel Length		Psr	-	Right Slope Constant
Upput VariableLsrmRight Slope LengthOupput Variableqsm3/s.mSlope Discharge /mInput Variable- Channel Surface Flow -Input ParametersQcm3/sChannel Dischargeqsm3/s.mSlope Discharge /mParameterskc-Gannel ConstantPc-Gannel ConstantLcmGannel Length		Lsl	m	
Oupput Variableqsm3/s.mSlope Discharge /mInput Variable- Channel Surface Flow -Input VariableQcm3/sChannel Dischargeqsm3/s.mSlope Discharge /mParameterskc-Qannel ConstantPc-Qannel ConstantLcmQannel Length		Lsr	m	
Variableqsm3/s.mSlope Discharge /mInput Variable- Channel Surface Flow -Input VariableQcm3/sChannel Dischargeqsm3/s.mSlope Discharge /mParameterskc-Gannel ConstantPc-Gannel ConstantLcmGannel LengthOutput-Gannel Length	Oupput			
Input VariableQcm3/sChannel DischargeQsm3/s.mSlope Discharge /mParameterskc-Gannel ConstantPc-Gannel ConstantLcmGannel LengthOutput-Gannel Length		qs	m3/s.m	Slope Discharge /m
VariableQcm3/sChannel Dischargeqsm3/s.mSlope Discharge /mParameterskc-Gannel ConstantPc-Gannel ConstantLcmGannel LengthOutput-Gannel Length		- Channel	Surface Fl	OW -
qsm3/s.mSlope Discharge /mParameterskc-Gannel ConstantPc-Gannel ConstantLcmGannel LengthOutput-Gannel Length		0c	m3/s	Channel Discharge
Parameterskc-Qannel ConstantPc-Cannel ConstantLcmCannel LengthOutput	val labic			
Pc - Cannel Constant Lc m Cannel Length Output	Daramatara	[mJ/ J + M	
Lc m Cannel Length Output	Farameters		-	
Output		l	-	
	0	210	BL	Wanner Pendel
		0c	m3/s	Channel Discharge

R_{e(i)} : Effective rainfall at time i
R_(i) : Rainfall at time i
R_{loss(i)} : Rainfall loss at time i
R_(i) : Total rainfall until time i
R_{loss(i)}: Total rainfall loss until time i

$$Q'$$
: Const. $(=\frac{1}{(R_{sa})^{p}-1})$


$$\beta$$
: Const. (= $\frac{R_{sa}}{R_{sa}}$)

R_{sa} R_{esa}

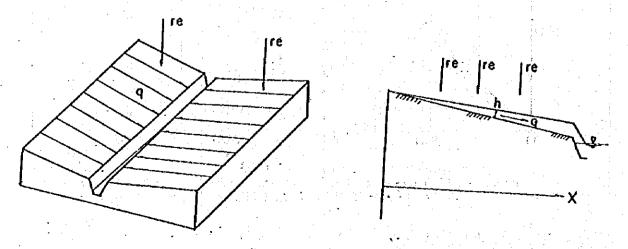
where,

: Saturated rainfall amount : Saturated loss rainfall amount

Fig.-5.3 shows an example of total rainfall loss usually employed in Japan.

Slope Surface Flow System

This system examines hydrologically the downflow phenomenon of rainwater over the sloping surface of a partitioned river basin (partitioned in blocks), employing the current movement equation and the continuity formula. Here, the input will be the above-mentioned effective rainfall, and the run-off amount at the downstream end of the slopes will be obtained as output.


The formula of continuity and movement of the current, when the rainwater flowing down the sloping surfaces is assumed to be transmitted in the form of a Kinematic wave, can be expressed as follows: (See Fig.-5.4)

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = \alpha re \qquad (Eq.-5.1)$$

$$h = K_{s} \cdot q^{Ps} \qquad (Eq.-5.2)$$

where,

h	:	Water depth (m)		
q	:	Slope discharge per unit slope width (m ³ /sec.m)		
α	. :	Constant of unit conversion $(1/3.6 \times 10^{-6})$		
re	:	Effective rainfall intensity (mm/h)		
t	:	Time (sec)		
x		Distance (m)		
K _s ,	Ps:	Constant		

Fig.-5.4 Slope Flow System

⁽⁵⁾

When Manning's law is applied to the slope flow:

$$V_s = 1/N \cdot h^{2/3} \cdot i^{1/2}$$
 (Eq.-5.3)
q = h · v (Eq.-5.4)

where,

V_c: Mean velocity of slope surface flow (m/sec)

- N: Equivalent roughness $(m^{-1/3}, sec)$
- h : Water depth (m)
- i : Gradient of slope (non-dimension)

Using Eq.-(5.3) and (5.4), the Eq. (5.2) can rewritten as follows.

$$q = 1/n \cdot h^{5/3} \cdot i^{1/2}$$
(Eq.-5.5)

$$h = (\frac{N}{i})^{3/5} \cdot q^{3/5} = K_s \cdot q^P s$$
(Eq.-5.7)

$$K_s = (\frac{N}{i})^{0.6}, P_s = 0.6$$
(Eq.-5.7)

The flow over the sloping surfaces can be obtained through the specific characteristic curve method with Eq.-(5.1) and (5.2).

(6) Channel Flow System

The water flowing through the channels can be expressed by the following formula of continuity and movement. (See Fig.-5.5)

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q \qquad (Eq.-5.8)$$

$$A = K_{c} \cdot Q^{Pc} \qquad (Eq.5.9)$$

where,

A

0

q

: Discharge area (m²)

: Channel discharge (m³/sec)

: Slope discharge per unit channel length (m³/sec.m)

t : Time (sec)

x : Distance (m)

K_c, P_c: Channel constant

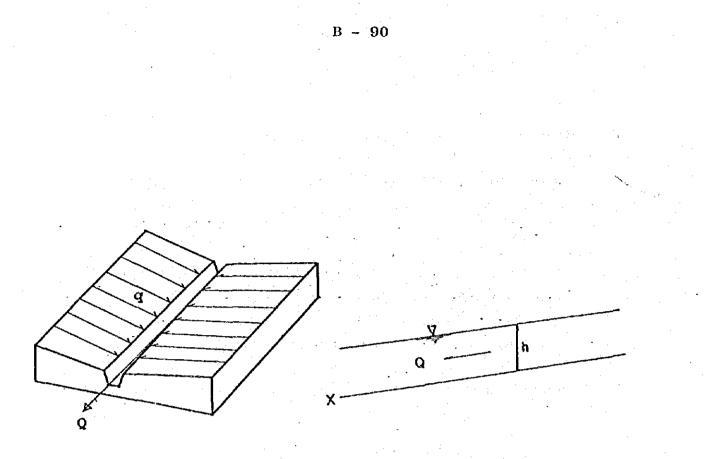


Fig.-5.5 Channel Flow System

When Manning's law is applied to channel flow:

$$V_{c} = \frac{1}{n} \cdot R^{2/3} \cdot I^{1/2}$$
 (Eq.-5.10)
 $Q = A \cdot V$ (Eq.-5.11)

where,

V: Mean velocity of channel flow

n: Roughness $(m^{-1/3}/sec)$

R: Hydraulic radius (m)

I: Gradient of channel (non-dimension)

 K_{c} and P_{c} of the formula (5.9) are determined by the graph method, using the Eq.-(5.10), (5.11) and the survey data of channel.

States 1

The flow in the channels is sought by utilizing the specific characteristic curve method with Eq.-(5.8) and (5.9).

5.1.3 CALIBRATION OF THE MODEL

(1) Target of the Model Calibration

Judgement of the degree to which the simulated flood matches the observed flood has been based chiefly on the following items:

- (1) Shape of hydrograph
- (2) Runoff volume
- (3) Peak discharge
- (2) Data Used
 - (a) K. Mujur Basin Model

As there were not enough floods to calibrate the model of the K. Mujur Basin, no profitable calibration was made regarding the K. Mujur Flood Runoff Model.

(b) K. Rejali Basin Model

Table-5.3 shows the main observed floods (exceeding peak discharge 100 m^3/s) and the availability of rainfall data. From this flood data, the following two floods were used for the model calibration due to the availability of rainfall data.

Flood in 17/Mar./1983 (Peak discharge: 135 m⁸/s)

Flood in 19/Mar./1983 (Peak discharge: 176 m³/s) (c) K. Glidik Basin Model

Table-5.4 shows the main observed floods (exceeding peak discharge 200 m^3/s) and the availability of rainfall data. From this flood data, the following three floods were used for the model calibration due to the availability of rainfall data.

- Flood in 19/Apr./1983 (Peak discharge: 244 m³/s)

- Flood in 28/Apr./1983 (Peak discharge: 222 m³/s)

- Flood in 6/May/1983 (Peak discharge: 421 m³/s)

Table-5.3 Main Observed Floods in K. Rejali

RAINFALL STATIONS & THIESSEN COEFFICIENT

DATA (in 1983)	PEAK DISCHARGE (m ³ /s) RP - 4	10 G. SAWUR	30 G. LEKER	31 G. PAKIS	32 KAHAR A	33 Wonorenggo	38(11) CURAH KOBO'AN
	K. LEPRAK NO.1 CHECK DAM	0.02	0.36	0.06	0.18	0.03	0.35
17/MAR	135.5	0	×	×		0	Ò
19/HAR	175.9	0	×	×	0	0	0
20/MAR	191.5		×	X	0	×	0
1/HAY	422.0	0	×	×	×	0	0
26/MAY	289.0	0	X	X	X	0	0

DATA AVAILABLE () : YES X : NO

Table-5.4 Main Observed Floods in K. Glidik

an ^a lana An a			RAINFAL	L STATIONS	thiessen c	defficient	
DATA (in 1983)	PEAK DISCHARGE (m ³ /s)	30 G. Lekel	31 G. PAKIS	32 KAHAR A	34(14) PRONOJ LWO	38(11) C. Kobo'an	42(13) S. URANG
tan tan salata Panakan	RP - 3 PLANNED PRONOJIWO DAM	0.01	0.02	0.34	0.16	0.09	0,38
26/FEB	720.5	X • • •	$\sum_{i=1}^{n} a_i \in \mathbf{X} \times \mathbf{X}$	0		×	
3/MAR	468,4	×	×	0	0	×	0
13/HAR	436.0	×	×	0	0	0	0
19/MAR	436.0	×	×	0	0	0	0
20/MAR	517.0	×	×	0	0	0	0
29/MAR	232.6	×	×	×	0	0	0
19/APR	243.7	×	0	0	0	0	0
28/APR	221.6	×	0	0	0	0	0
1/MAY	2,956.8	×	×	×	0	0	O
3/MAY	221.6	×	0		0	0	0
6/MAY	421.0	×	0	0	0	0	0
7/HAY	532.0	×	×	0	0	0	0
13/MAY	243.7	×	X	0	0	0	0
25/MAY	998.2	×	×	X	0	0	0
27/MÁY	243.7	×	×	X	0	0	0

DATA AVAILABLE () : YES X : NO

The parameters that were finally adopted are indicated in Table-5.5.

Fig.-5.6 and 5.7 show the simulated discharges compared with the observed discharges.

Summary of the verification is as follows:

 A flood wave pattern peculiar to steep slopes with an outstanding run-off phemonemon is expressed relatively well.

(2) A small discrepancy in the time between the simulated and the observed hydrographs is believed to be caused by a difference in accuracy of the time pieces employed in the instrument for rainfall measurement and the one used for observation.

The simulated and observed hydrographs for the (3) flood of K. Glidik of May 6, as shown in Fig.-5.7, do not coincide. While it has never been confirmed, the said flood is thought to have been Since the flood was laden sediment discharge. with sediment, the apparent discharge swelled It is not surprising, therefore, to find greatly. that the simulated hydrograph based on water only would not coincide with the hydrographs based on It is also plausible that accurate observation. measurement of the average rainfall in the basin could not have been obtained since out of the three rainfall observation stations located, one each in G. LEKER, G. PAKIS and KAMA A, the station at G. LEKER, failed to take measurement.

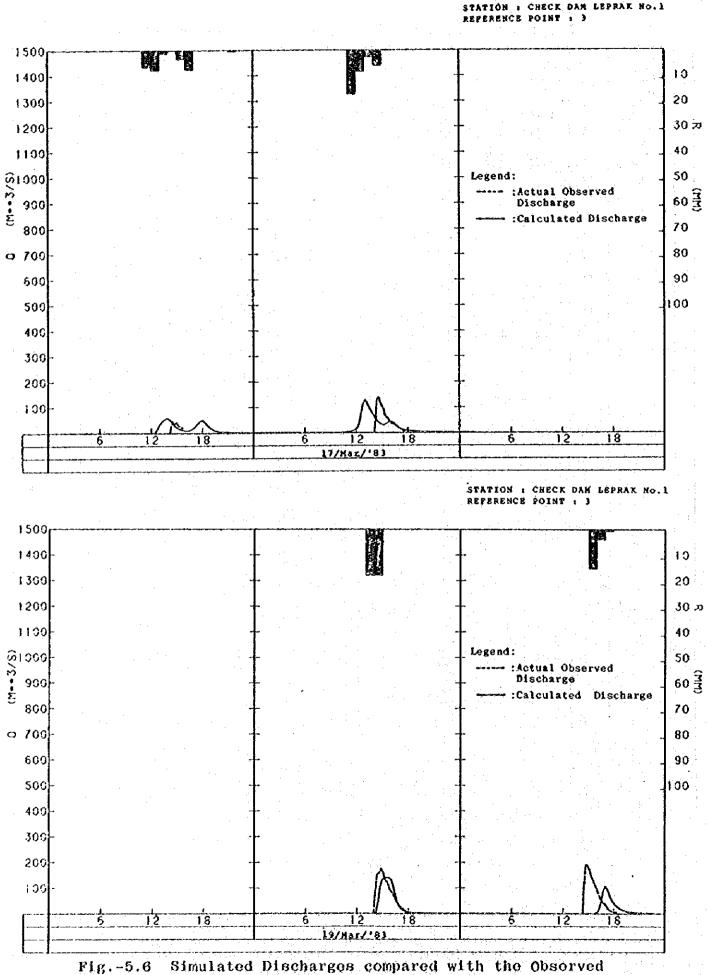
	. J	Table-	5.5	Fixed 1	Para	mete	rs f	or F	100d	Runoff	Model	i.
-	A	[Slope			••••			Ċ	lanel	
	(G))	Length (=)	Gradieni (%)	Equiv. Roogbaess	Ps	K s	R sa (mm)	R lsa (mm)	Length (=)	Gradient (%)	Roughness	Pe
	29.1	6110	2157	0.098	0.6	0.39	450	<u>250</u> 250	4.300	628	0.040	0.16
	2.1 8.5	230	369.8	0.095	0.6	033	450	250	1 2.0 0 0	189.2	0.040	0.7 6
-	5 6.4											
	15	260	1303	0100	0.6	048	450	350	\$100	47.4	0.040	0.71

Renurks

Ke

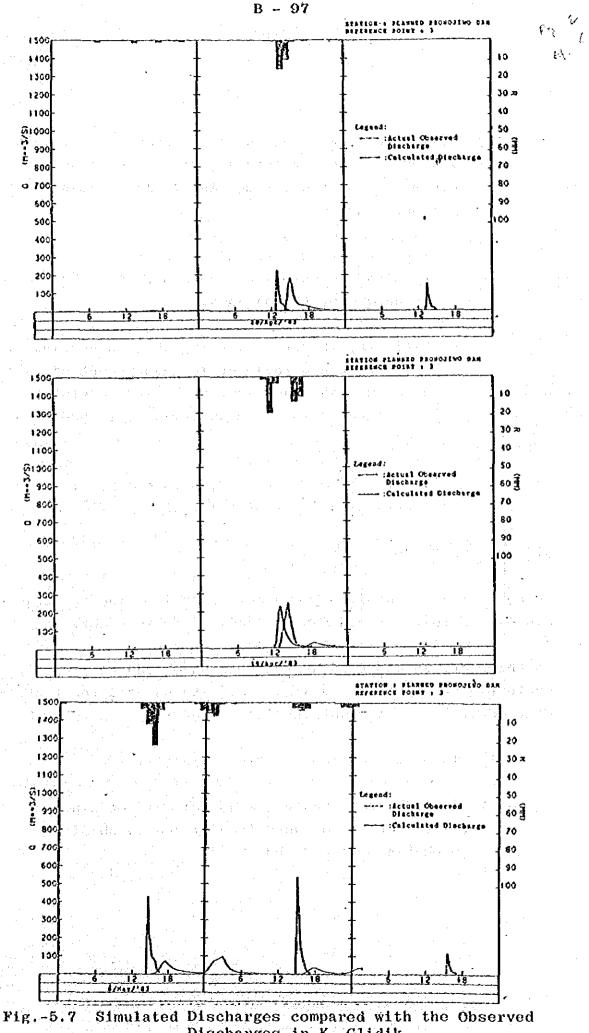
0.4 L

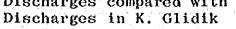
			R	161	3140	2631	0.093	9.6	036	450	250	4.300	628	0.040	0.16	0.41	
	2		R	2.7	236	3 6 9.8	0.095	0.6	0.33	450	250	12.000	1892	0.040	0.7.6	0.27	
		0		56.4		3349				- 322	6.7V			· · · · · · · · · · · · · · · · · · ·		[SVB
1.1				1										·			<u>89-1</u>
	3		Ř	15	260	1303	0100	0.6	0.4 8	450	250	\$100	4.7.4	0.040	0.71	0.68	
		0		59.4				4. 4		450	250				<u> </u>	[·
.	 	<u> </u>							ļ						 	[]	
	4		2. R	5.6 2.3	630	1281	0.090	0.6	0.44	450	250	10.500	80.0	0040	0.70	0.39	SUB 8P-2
č.		6	<u> </u>	68.3						450	250			· · · · · · · · · · · · · · · · · · ·	<u></u> ~		
	<u> </u>	্জ		· · · · · · · · · · · · · · · · · · ·												Į	
\mathbf{P}	5		-¥-	13	220	<u>265</u> \$4.8	0.200	0.6	060	125	55	1,900	25.5	0040	0.10	0.78	1 1
5		- 0		822		3 4 9				212	84						
																[
P .	6			- 15	510	5 5.6	0.161	0.6	0.80	-131	56	8.8 0 0	41.5	0.040	0.70	0.6.6	
X		9		8 9.7						_135	58						
	1			121												ļ	
	17			23.9	1100	<u>290</u> 327	0176	0.6	102	124	<u>54</u> 61	11,000	232	0.040	0.71	0.80.	
\mathbf{X}		60	<u> </u>	125.7						142					<u> </u>		
1				1.2										;		'	
	8		L R	1.6	390 520	15.0	0.146	0.6	043	179	74	3,100	136	0.040	0.75	0.70	1.
1		0		1285						364	132				1	f	[
	-			26.4	1.1.1		0131			100					}	[ł
1	9		1. R	20.4	1,160	66.5 67.8	0.056	0.6	0.61	<u>207</u> 374	<u>99</u> 179	22,800	334	0.040	0.71	0.70	1
		- 3		1617						- 319	_112				<u>+</u>		R. P.
1	 						0.065	0.6		100	233				1		····
	10) (R	12	820	10.3	0.036	0.6	0.96	450	184	5,100	7.4	0.035	0.81	0.81	:
	<u> </u>		L	170.6					1	450	- 104			·	}	┟┶╾╺╾╍┤	
	<u> </u>				<u>.</u>					-	- 260						
	1		<u>}</u>	5.0	470	350.5	0.096	06	0.43	450	250	10,700	165.9	0.040	0.76	0.28	ł.
	2		<u> </u>	4.1	170	2761	0.1.9.0	0.6	9.37	450	2.50	8.700	146.5	0.040	0.7 6	0.30	
· ·	14	·	R	8.7	1.000	2037	0.075	0.6	0.3.4	450	223					0.30	
-		3		22.9	1.1	1.14											
1	3		L	3.4	1.620	160.9	0.066	0.6	0.3.4	288	205	2.100	1024	0.040	0.7 1	052	
	3		R	1.3	620	269.4	0.077	06	0.3 2	397	139	2,100	102.3			032	Perron
<		: 🛈		21.6	17 J. H. 19					·		4			. I	1.1	SUB RP
\sim		· .	L I	103	750	36.8	0.148	0.6	0.8 6	184	83	13.899	30.8	0.0 4 0	0.8 5	0.18	
ω	4		R	251	1.860	1705	0.101	0.6	0.4 3	315	194					V.10	
		. (5)		636				11. 11.	· · · ·	1.11	1 I I		5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
Ľ,	5		L	521	1050	114	0.158	0.6	073	285	81	13.000	29.2	0.040	0.14	0.5.2	
	L_		R	7.6	\$80	5 0.7	0.103	0.8	0.53	231	. 93						
		• 🛈		1239		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	· · ·		1 			$(1,1,2,\dots,2,n) \in \mathbb{R}^{n}$					8.8.
\mathbb{Z}	6		Ļ	5.3	1.180	10.9	0.140	0.6	119	186	21	4,500	133	0.035	0.74	0.78	
1			R	26	580	136.9	0117	0.6	0.5 0	313	159						
		€	1.11	1318										1.2			
	Π.		L L	131	1.620	1417	0102	0.6	0.46	303	104	9.200	8.7	0.040	0.76	0.74	
1	1		R	113	1.880	630	0.137	0.6	0.70	-223	532		· · · · · · · · · · · · · · · · · · ·				
	2			126	1,330	1155	0085	0.5	0.44	450	250	9.500	1211	0.040	0.7 4	0.31	
1		3		543													SUB
0	}	<u> </u>		17.3			0.063	0.6	030	-332	19/		<u></u>				RP-2
11	3		- Ř -	$-\frac{1}{2}\frac{3}{17}$	2.160	2131	0.063	0.8	096	412	_184 _199	8.000	58.1	0.040	Q.13	0.43	1.
1-					. 2,710						به الم الم ال				r	┍━━╍╌╍━┉╴┦	
D.		<u> </u>			2710							100 B		1.		1 1	
		Э		933			0.0.0.4			641	244						
1			L	933	1.260	2131	0.092	0.6	0.38	441	244	1 5.0 0 0	1 1 9.7	0040	0.7 2	0.3.3	
	4		L R	933 202 159				0.6		441 443	244 238	16.000	119.7	0040	072		SCB
		0	Ŕ	933 202 159 1294	1.260	2131 1226	0089	0.6	0.1.4	443	_2 38						SCB RP-1
ы	5	0		933 202 159 1294 85	1.260	2131				443		1 5.0 0 0	119.7	0040	0.7 2		SCB RP-1
1.1	5	0	R	933 202 159 1294 85 247	1.260	2131 1226 2942	0.0 9 5	0.6	0.4.4	443	_2 38						SCB RP-1
ы	5	© ①	R L R	933 202 159 1294 85 247 1626	1.2 6 0 9 9 0 1.4 7 8 1.2 6 0	2 1 3 1 1 2 2 6 2 9 4 2 2 2 2 0	0089	0.6	038	 	_2 18 _144. _153	5.800	2 2 4	0035	0.7 3	0.7 2	SCB RP-1
- 0 F	5	© ①	R	933 202 159 1294 85 247 1626 548	1.260	2 1 3.1 1 2 2 6 2 9 4 2 2 2 2 0 1 4 4 8	0.0 9 5	0.6	0.4.4	443 339 400 414	_2 18 _144 _153 						SCB RP-1
ы	5	0		933 202 159 1294 85 247 1626 548 926	1.260 990 1.470 4.250 2.130	2 1 3 1 1 2 2 6 2 9 4 2 2 2 2 0	0089	0.6	036	 	_2 18 _144. _153	5.800	2 2 4	0035	0.7 3	0.7 2	SCB RP-1
- 0 F	5	© ⑦		933 202 159 1294 85 247 1626 548 926 3100	1.4 70 9 30 1.4 70 4.2 60 2.1 30 3.6 00	2131 1226 2942 2820 	0089	0.6	0.44 0.36 0.25 0.38 0.46	443 339 400 414 414	2 18 144 153 196 198	5.800	2 2.4	0035	0.73	0.7 2	<u>RP-1</u>
- 0 F	5	© ⑦		933 202 159 1294 85 247 1626 548 926 3100 52	1.410 990 1.410 4260 3.600 7.40	2131 1226 2942 2220 1448 79.5	0089	0.6	036	443 339 400 414 414 392	2 18 144 153 196 198 207	5.800	2 2 4	0035	0.7 3	0.7 2	<u>RP-1</u>
- 0 F	5	© ⑦		933 202 159 1294 85 247 1626 548 926 3100	1.4 70 9 30 1.4 70 4.2 60 2.1 30 3.6 00	2131 1226 2942 2820 	0098 0047 0077 0077 0077	0.6 0.6 0.6 0.6 0.6	038 025 038 046	443 339 400 414 414	2 18 144 153 196 198	5.800	2 2.4	0035	0.73	0.7 2	<u>RP-1</u>


B - 95

Block and Discharge Reference Point

Ļ


BASIN


í

Discharges in K. Rejali

B - 96

(4) Taking the preceding considerations into account, improvement in the accuracy of a flood run-off model could be attained through the implementation of the following actions.

- Improve the accuracy of flood measurement through raising the existing standard of the observation technique of technicians.

Minimize, if not eliminate, the disfunction of timepieces and failures in measurement of rainfall data through loser inspection and careful maintenance of rainfall measurement instruments on a regular basis.

Verify the parameters of a runoff model through increase in a set of rainfall runoff data at flood.

5.2 DESIGN FLOOD

We can obtain an arbitrary hydrograph by inputing an arbitrary hydrograph to the flood run-off model described above.

As there are no observed hydrographs which can be properly evaluated, the probable design floods to be used for the sediment control plan are obtained as follows:

(1) To make a probable design rainfall:

To input a probable design rainfall obtained above
 (1) to the flood run-off model and to obtain a probable design flood.

B - 98

5,2.1 DESIGN RAINFALL

(1) Rainfall Intensity Curve

Judging from Fig.-4.5, rainfall intensity curve can be expressed by the following Sharman Type formula.

 $I = a \cdot t^b$

(Eq.-5, 12)

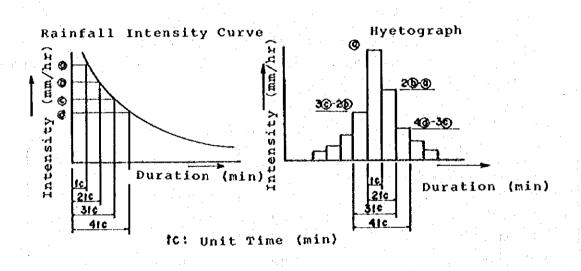
Where, I: Rainfall Intensity (mm/h) t: Rainfall duration a, b: Constant

A list of constant b (gradient of curve) of each station, which is calculated by the least squares method, is shown in Table-5.6.

Station		EL.(m)	b	Remarks
BESUK SAT	1	775	-0.821	1978 - 1982
KERTOSARI	4	345	-0.872	1980 - 1982
CURAH KOBO'AN	11	734	-0.780	1978 - 1982
CANDIPURO	9	322	-0.887	1979 - 1982
SUPITURANG	13	675	-0.827	1979 - 1982
PRONOJ IWO	34	600	-0.717	1979 - 1982

Table-5.6 List of Constant b

As can be seen from Table-5.6, the rainfall intensity curve for each station is approximated by the following equation.


 $I = a.t^{-0.85}$

(Eq.-5.13)

(2) Probable Design Rainfall

The probable rainfall intensity curve for each station can be obtained by substituting the probable daily rainfall (shown in Table-4.3) into Eq.5.13.

Using the curve obtained above, the probable design rainfall, or probable design hydrograph is established in the manner shown in Fig.-5.8.

Fig.-5.8 Preparation of Hydrograph

The probable design rainfall for each unit basin is indicated in Fig.-5.9, 5.10 and 5.11.

B - 100

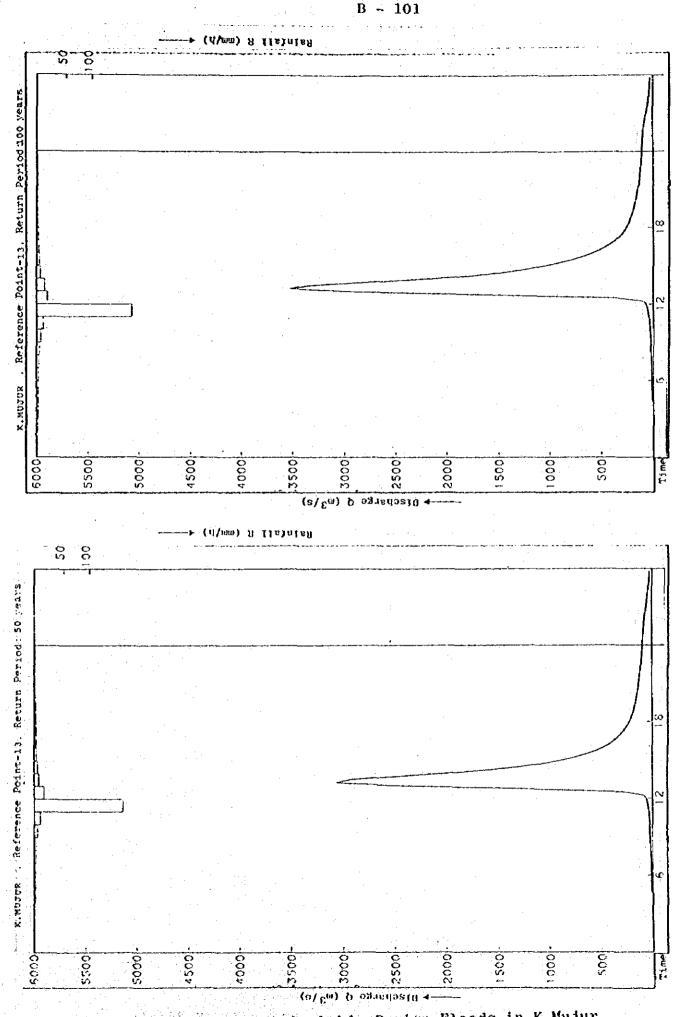
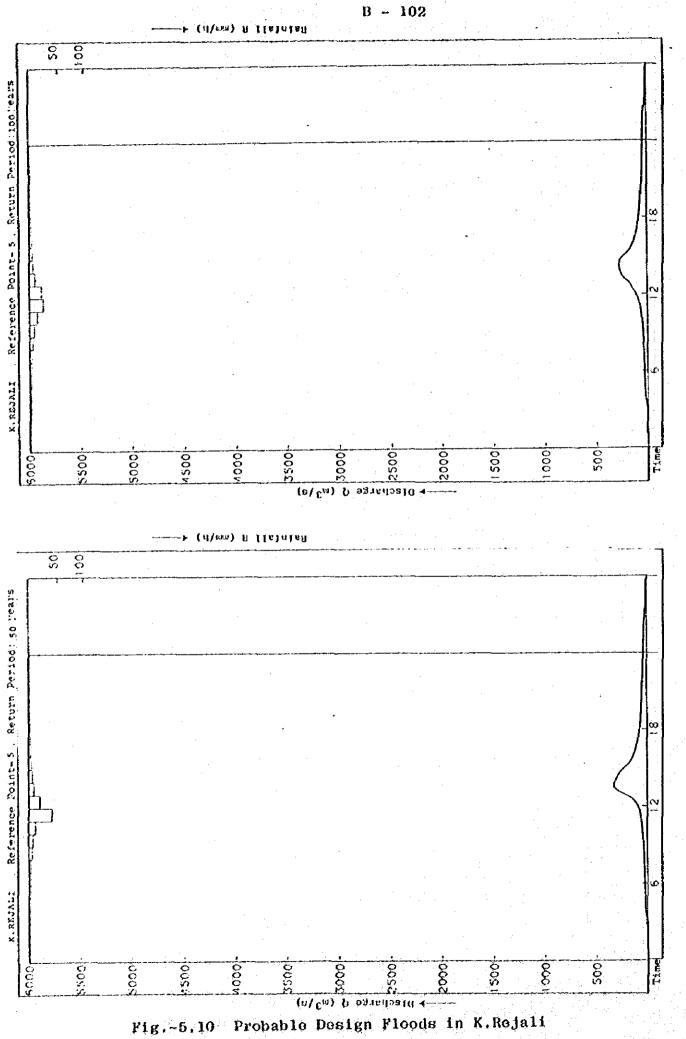
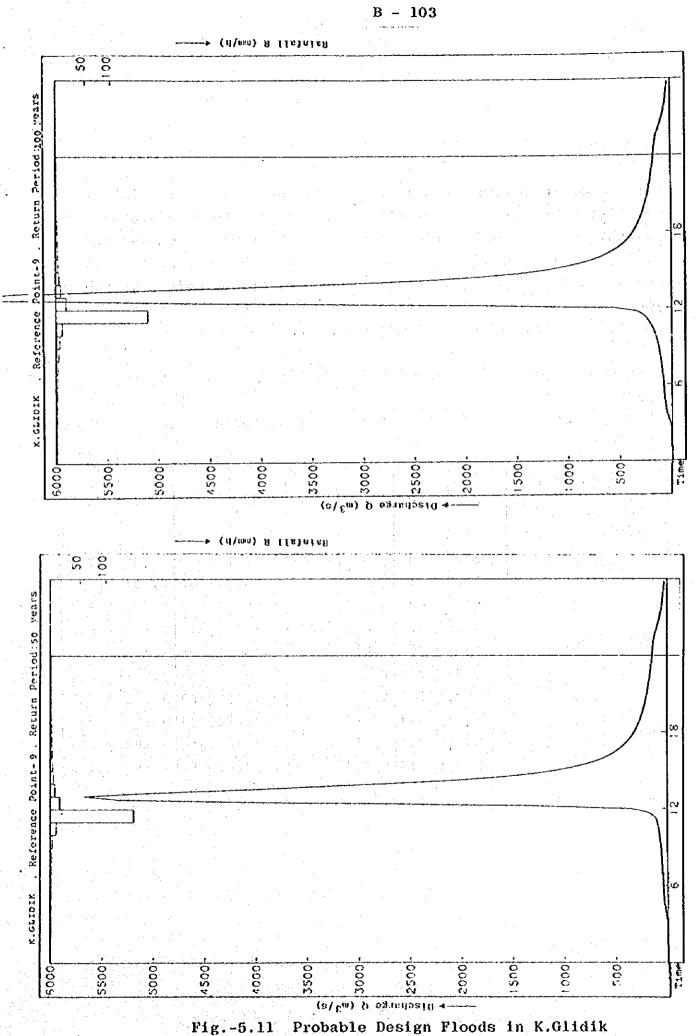




Fig.-5.9 Probable Design Floods in K.Mujur

N. E.

5.2 DESIGN FLOOD

The probable design flood for each unit and reference point is simulated by the flood run-off model and the probable design flood. The probable design floods of return period of 50 and 100 years at the sabo reference point of each river system are shown in Fig.-5.9 to Fig.-5.11. Further, the principal probable design floods at the sabo reference and sub sabo reference points for each river system are in the supplement.

The peak discharge is tabulated in Tables-5.7, 5.8 and 5.9.

Probability (Year) Reference Point	1/3	1/5	1/10	1/20	1/40	1/50	1/70	1/100
2	338	393	473	556	631	659	699	738
3	350	416	559	738	941	1,030	1,171	1,325
4	416	495	639	811	1,008	1,093	1,229	1,377
6	570	672	832	1,028	1,248	1,341	1,488	1,648
7	650	789	1,012	1,270	1,559	1,676	1,863	2,052
9	758	944	1,213	1,526	1,863	2,003	2,211	2,417
10	867	1,086	1,455	1,860	2,311	2,480	2,714	2,965
11	845	1,053	1,414	1,820	2,272	2,443	2,650	2,901
13	980	1,239	1,716	2,218	2,834	3,066	3,186	3,517
14	973	1,239	1,703	2,226	2,831	3,054	3,161	3,478

Table-5.7 Probable Peak Discharge for K. Mujur

(m³/s)

Probability (Year) Reference Point	1/3	1/5	1/10	1/20	1/40	1/50	1/70	1/100
1	303	356	433	515	591	620	660	714
2	375	443	539	638	739	778	835	902
3	678	800	972	1,151	1,330	1,397	1,495	1,616
4	809	964	1,175	1,393	1,608	1,672	1,802	1,943
5	910	1,143	1,486	1,855	2,251	2,385	2,603	2,815
7	1,119	1,438	1,893	2,387	2,924	2,982	3,405	3,697
8	1,140	1,449	1,883	2,352	2,882	2,949	3,386	3,698

Table-5.8 Probable Peak Discharge for K. Rejali

(m³/s)

Table-5.9 Probable Peak Discharge for K. Glidik

Probability 1/20 1/70 1/100 1/40 1/50 1/3 1/5 1/10 (Year) Reference · s ⁻ x 14 Point 613 829 902 1,009 1,129 292 441 201 1 935 1,099 1,236 1,289 1,363 1,435 770 658 2 1,795 1,916 2,099 2,301 1,482 °901 1,182 734 3 3,370 3,627 3,879 1,882 2,329 2,776 3,201 1,553 4 4,933 5,184 5,889 3,022 3,677 4 328 5,542 2,524 6 6,284 5,505 4,592 5,245 5,891 3,199 3,895 2,670 7 6,290 5,516 6,769 3,988 4,757 5,824 2;696 3,245 9 6,143 2,665 5,380 5,683 6,618 3,190 3,897 4,636 10

(m¹/s)

6. BASE FLOW STUDY

In the study area, the main rivers, K. Mujur, K. Rejali and K. Glidik have plentiful base flow which is discharged from the great natural reservoir of Mt. Semeru, and which does not dry up in the dry season. The river water is such widely used in relation to livelihood and also for irrigation and domestic use.

The object of the study discussed in this chapter is the comprehension of the characteristics of the base flow in the study area, with the help of a suitable base flow model in order to provide a useful information for the study on water conservation.

6.1 BASE FLOW MODEL

- 6.1.1 SELECTION OF THE MODEL
- (1) Preconditions for Selection of the Model

The following were considered carefully when selecting the base flow model.

(1) Usefulness of the outcome from the model.

- (2) Dominant factor in the base flow run-off process.
- (3) Existence of enough data to caribrate a model.
- (4)

Characteristics of the catchment area.

(2) Selected Base Flow Model

After consideration of the followings, the monthly stochastic base flow model, described in the next section, was chosen.

- Output most desired from the model is the long-term base flow distribution in order to understand the monthly or seasonal distribution and their fluctuation.
- (2) As the daily fluctuation in base flow is small, due to the large capacity of the natural reservoir of the basin, the minimum unit of the base flow discharge can be considered as the monthly discharge.
- (3) There is not enough necessary data for a definite model, however, data on one year of observation and Monthly base flow discharge and rainfll records provide enough information for our study Model.
 - Such factors as evapotranspiration and the infiltration of rainfall which control the base flow are not investigated in the field.

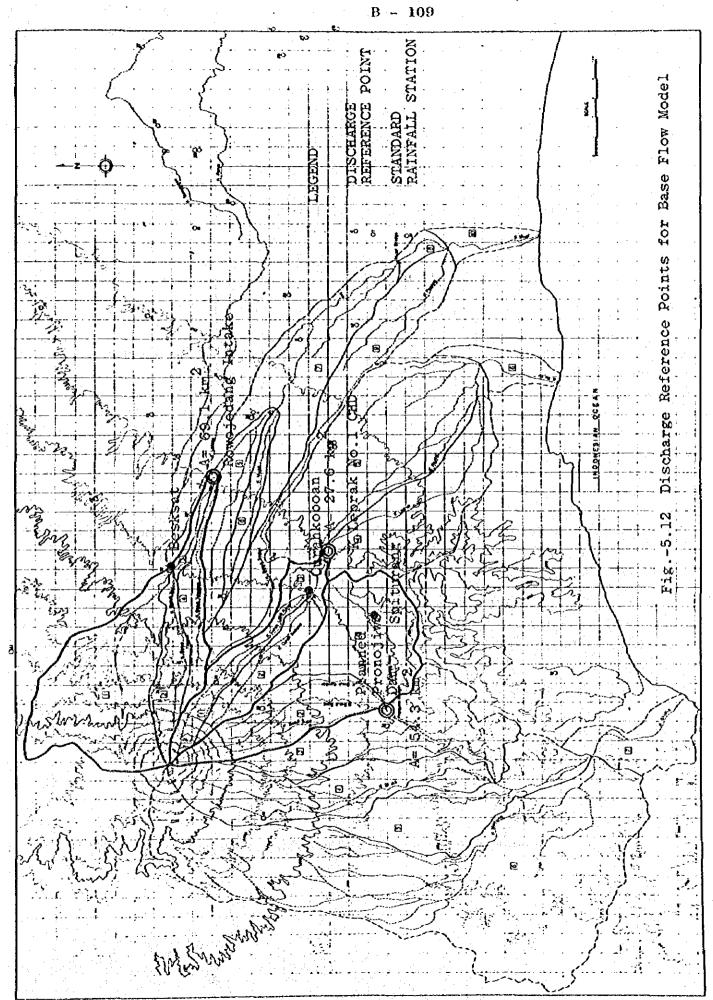
(4)

6.1.2 DESCRIPTION OF THE MODEL

- Discharge Reference Point
 The discharge reference point for each unit is as follows: (Refer to Fig.-5.12.)
 - Unit M, K. Mujur Rowojedang Intake (Catchment area = 69.1 km²)
 - Unit R, K. Rejali
 K. Leprak No.1 Check Dam (Catchment area = 27.6 km²)
 - (3) Unit G, K. Glidik
 - Planned Pronojiwo Dam (Catchment area = 54.3 km²)

There is no intake upstream from these points, therefore, we can obtain a real amount of monthly base flow discharge from this model.

(2) Basic Equation


The basic equation to obtain a monthly mean base flow discharge (Q) is given below. (Refer to Fig.-5.13.)

$$Q = Ca \sum_{i=1}^{n} (Cm(i)Rm(i))$$
 (Eq.-6.1)

Where,

Q:	Monthly mean base flow discharge (m 3/s)
Rm(1):	Monthly rainfall amount of i-month
Car	Coefficient of area and discharge rate
Cm(i);	Coefficient of i-month rainfall contribution
. i:	Past month from simulated month
n:	Total contribution month
	$\sum C_{in}(i) = 1.0$

B = 108

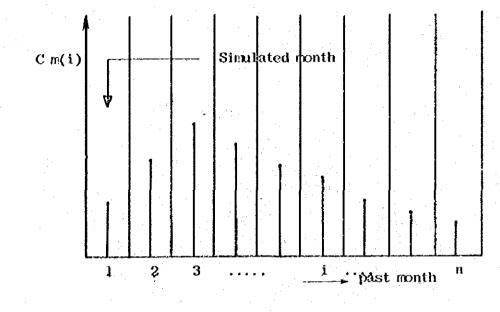


Fig.-5.13 Base Flow Model

The equation 6.1 means that the monthly mean discharge of an arbitrary month is composed of the past n-months monthly rainfall, however, the contribution rate of i-month rain- fall is restricted to Cm(i).

6,1.3 VERIFICATION OF THE MODEL

(1) Data Used

The data used for verification is as follows:

(1) Unit M, K. Mujur

- Monthly rainfall: Besuk Sat

- Base flow : Rowojedang Intake

Unit R, K. Rejali

(2)

- Monthly rainfall: Curah Kobo'an
- Base flow : K. Leprak No. 1 Check Dam

(3) Unit G, K. Glidik

- Monthly rainfall: Supit Urang

Base flow : Planned Pronojiwo Dam

The base flow data used was obtained through actual observation from Jul. to May of this year, and can be considered that there is no direct effect of flood.

(2) Results of Verification

The results of verification are shown in Fig.-5.14.

The fixed parameters are tabulated in Table-5.10.

Table-5.10 Parameters for Base Flow Model

and the second				
Parameter	Unit	Unit M K. Mujur	Unit R K. Rejali	Unit G K. Glidik
Total Contribution	n Month n	12	12	12
Coefficient Ca	in a state and a state of the s	0.243	0.323	0.723
Coefficient Cm	Cm(1)	0.070	0.210	0.065
	Cm(2)	0.100	0.180	0.100
	Cm(3)	0.135	0.150	0.140
	Cm(4)	0.145	0.120	0.145
	Cm (5)	0.130	0.090	0.130
	Cm (6)	0,110	0.070	0.110
	Cm(7)	0.095	0.055	0.095
	Cm(8)	0.075	0.045	0.075
	Cm (9)	0.060	0,035	0.060
	Cm(10)	0.045	0.025	0.045
	Cm (11)	0.025	0.015	0.025
	Cm(12)	0.010	0.005	0.010

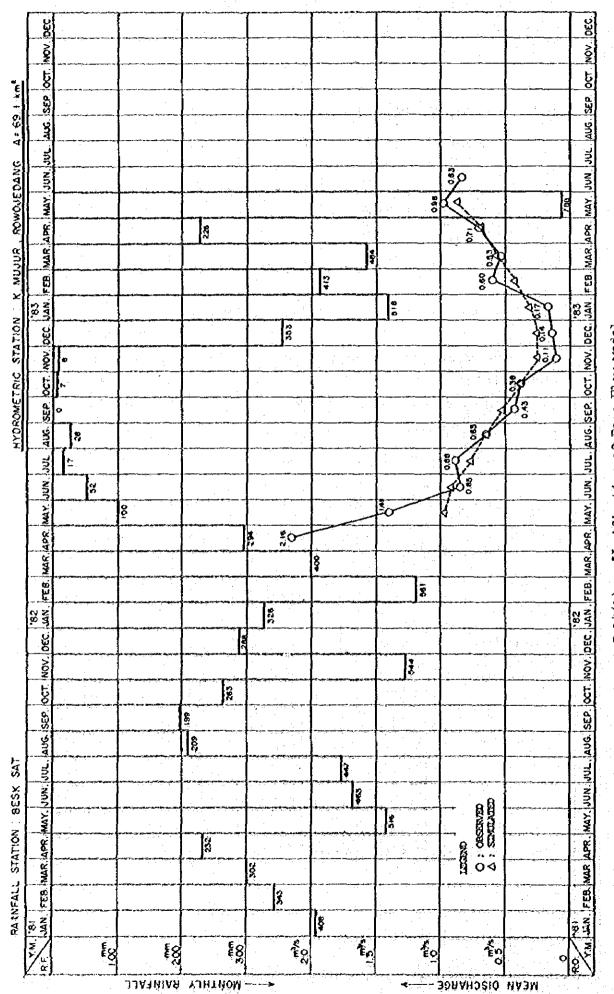
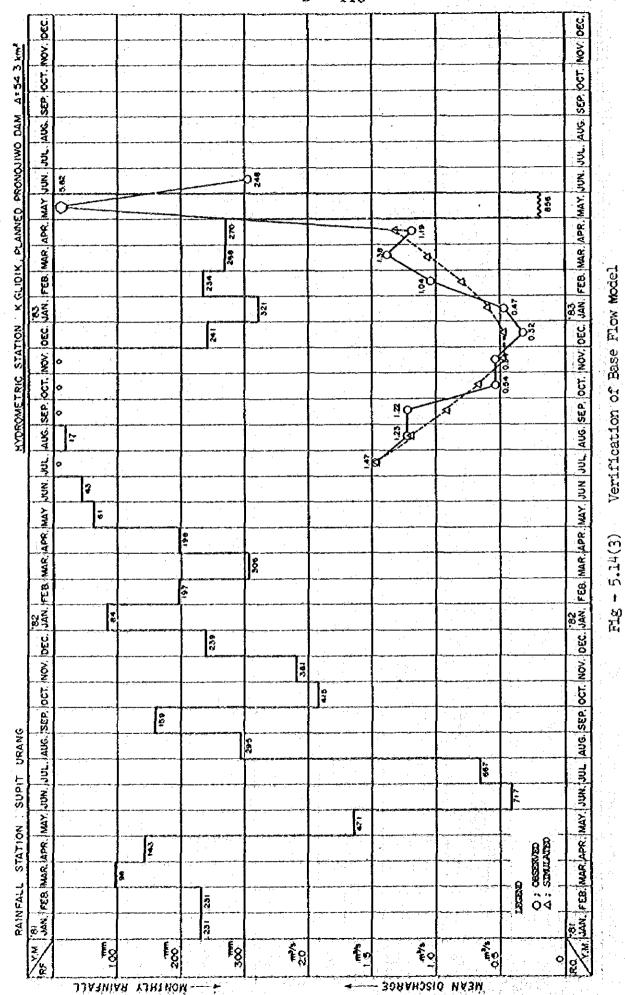



Fig - 5.14(1) Verification of Base Flow Model

B - 111

1001 1001 117 101 </th <th>173 173 173 173 173 173 173 173 173 173</th>	173 173 173 173 173 173 173 173 173 173
000000000000000000000000000000000000	TT3 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 173 10 174 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 175 10 <tr td=""> <tr td=""> </tr></tr>
OCCT NOV OEC. JAIN 101 JUIN	173 173 173 173 173 173 173 173
Occ: 100' 117 28 MAR JAP. MAY JUN JUL JUL AUG. SEP OCT NOV DEC. 100' 111 11 23 3 1 100' 111 17 28 3 1 100' 111 17 28 3 1 100' 111 17 28 3 1 100' 111 17 28 3 1 333 233 334 3 1 105	173 173 319 219 219 217 217 217 217 217 217 217 217
OCT. NOV. DEC. 14N. FEB. MAR. ARR. MAY. JUN. JUL. AUG. SEP. IOCT. NOV. International array	173 19 173 19 173 19 173 19 173 173 173 173 173 173 173 173 173 173
OCT. NOV. DEC. 148. FEB. MAR. LAR. MAY. JUN. JUL. AUG. SEP. OCT. 1001 117 28 1001 117 66 34 233 33 117 233 117 28 234 117 28 235 54 56 34 117 28 34 117 28 34 117 28 34 117 28 34 117 117 34 117 117 34 117 117 34 319 117 34 319 117 34 319 117 34 319 117 34 319 117 34 319 117 34 319 117 34 319 34 34 319 34 34 34 34 34 34	173 173 319 319 319 319 319 319 319 31
OCT. NOV. DEC. JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. 1 100 11 20 101 11 20 101 11 20 101 11 20 101 11 20 101 11 20 101 11 20 101 11 20 101 11 20 101 11 20 101 11 20 101 11 11 101 11 11 101 11 11 101 11 11 101 11 11 233 34 113 343 34 113 344 113 113 344 113 113 344 113 113 344 113 113 344 113 113 345 113 113	173 173 319 319 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
OCT: NOV. DEC. JAN JUN JUN<	173 319 319 310 310 310 310 310 310 310 310 310 310
OCT: NOV DEC. JAN JUN JUN 101 - - - - - - 17 - - 17 - - 17 - 17 - - 17 - - 17 - - 17 - - 17 - - - 17 - - - 17 -<	173 319 319 40R, JACK, JULN, JUL, JA
OCCT: Nov OECL MAR JUN 1001 1001 1 1 1 1 101 111 1 1 1 1 1 101 101 1	173 319 MAR, APR, MAY, JUN, J
OCCT NOV OEC JAPR MAR 1001 101 1 1 6 101 111 1 1 1 6 101 101 111 1 1 1 1 101 101 101 117 1	173 319 MAR, APPR. MAX
OCT: NOV OEC. JAN FEB MAR APR 1001 101 117 117 117 117 117 117 117 117	173 319 MAR, APR.
0CT: NOV DEC. JAN FEB A	MAR
00011 NOV DEC	
0001: NOV	204 201 201 201 201 201 201 201 201 201 201
	Š
	6.1
SQ1	AUG.
Yun Rin Rin Rin Line Lin	2
	179 179 161 3300 330 352 161 340 340 352 352 110 446 445 446 110 0 0 0 110 0 0 0 110 0 0 0

.

B - 113