

10.4 Financial Expenditure of On Nut Incineration Plant

Table 10.4-1 Schedule of Construction

Real Year

Item Year	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001~
Road & Site Readjustment		33333									
Detail Design											
Civil Work		æ									
Building Work											
Mechanical & Electrical Work	-					·					
#1 Furnace Operation						Test Ru	n				
#2, 3 Furnace Construction											
#2, 3 Furnace Operation									8	Test	Run

Note: #1 Furnace including Pit, Stack, Water Treatment Facility for #2 and 3 will be constructed 1996. Then after #1 furnace, 2000 #2 and #3 will be constructed by 2 phase step.

Table 10.4-2 Cost Required

(Million Baht) in 1990 price

Fiscal Year	Parts& Repair	Emolu- ment	Utility	O/M Total	Construc- tion	Total	Waste Amount (t/d)
1991					1		
1992			.:			and the state	
1993		0.61		0.61	490.00		l de la companya de l
1994		0.63	1	0.63	490.00		
1995		3.90		3.90	229.00		
1996	4.00	6.20	15.04	25.24			150
1997	4.08	6.38	15.04	25.50			150
1998	10.91	6.58	14.81	32.30	280.00		150
1999	42.00	10.10	14.80	66.90	280.00		150
2000	19.50	13.12	30.45	63.07	73.00		470
2001	21.27	13.52	29.75	64.54			470
2002	36.68	13.93	29.59	80.20			470
2003	152.41	14.34	29.14	195.89			470
2004	36.59	14.77	29.93	81.29			470
2005	41.22	15.22	29.74	86.18			470
2006	47.15	15.67	29.74	92.56			470
2007	217.81	16.14	29.74	263.69			470
2008	42,24	16.63	29.74	88.61			470
2009	47.13	17.13	29.74	94.00			470
2010	52.97	17.64	29.74	100.35			470
2011	250,16	18,17	29.74	298.07			470
2012	45.52	18.71	29,74	93.97			470
2013	52.97	19.28	29.20	101.45			450
2014	57.30	19.85	29.20	106.35		ing a tod	450
Total	1,181.91 31%	278.52 7%	504.87 13%	1,965.30	1,842.00 48%	3,807 100%	2,777,650 t
Unit cost	t of incineration	on 1,371	Baht/t				

Table 10.4-3 Financial Expenditure

(Million Baht) in 1990 price

Items	for			.]	Fiscal Ye	ar			
	1993	1994	1995	1996	1997	1998	1999	2000	Total
Construction	490	490	229			280	280	73	1,842
Operation & Maintenance		1.							
Emolument	0.61	0.63	3.90	6.20	6.38	6.58	10.10	13.12	47.52
Utility				15.04	15.04	14.81	14.80	30.45	90.14
Parts *1				0.36	0.44	1.82	2.00	2.80	7.42
Repair *2				3.64	3.64	9.09	40.00	16.70	73.07
Subtotal	0.61	0.63	3.90	25.24	25.50	32.30	66.90	63.07	218.15
Total	491	491	233	25	26	312	347	136	2,061

Electricity: Note: (1)2.7 B/kWh (2) (3) 8.0 B/I Fuel

Water : 4.0 B/m3

Emolument 1990 price Engineer 180,000 B/y/person Skilled 120,000 B/y/person

Worker 60,000 B/y/person

3% of increase every year estimated

Total of Construction Cost 1,842 Million Baht

Parts include materials and equipment used for operation and maintenance.

Repair means mainly overhaul which will be done by a contractor. Cost of minor repair to be done by the BMA is also included.

Table 10.4-4 Construction Cost in one step totally #1, 2, 3

- New York 20

(Million Baht) in 1990 price

Items	Foreign portion	Local portion	Total
1. Mechanical and Electrical Work (including			
Engineering fee, Supervising fee, Inspection fee and			
other fees)	İ		
outer 1003)			1141
1.1 Equipment			
1) Waste Reception System	138.82	4.25	143.07
2) Incineration System	144.52	68.80	213.32
3) Gas Cooling System	13.00	5.34	18.34
4) Gas Treatment System	65.78	0.36	66.14
5) Water Supply System	15.98	3.16	19.14
6) Waste Water Treatment System	18.84	0	18.84
7) Heat Utilization System	1.66	0.38	2.04
8) Air Preheating System	63.54	21.13	84.67
9) Ash Handling System	51.00	0.85	51.85
10) Electrical Equipment	53.14	0	53.14
11) Measuring and Control System	57.20	0	57.20
12) Auxiliary Equipment	4.72	0	4.72
Sub Total	628.20	104.27	732.47
1.2 Freightage	44.94	0	44.94
1.3 Installation Work (including Painting, Insulating,	0	186.43	186.43
Refractory lining, Piping and Wiring)	1.211.0	100.15	100.43
	12.5		<i>1</i> .
2. Civil and Building Work		ert Herry	1. 1.
1) Civil Work	0	5.60	5.60
2) Building	77,16	551.27	628.43
3) Stack	5.38	38.51	43.89
Sub Total	82.54	595.38	677.92
3. Supplementary Work (Parking lot, Canal Water Inlet		0.45	2 1 5
3. Supplementary Work (Parking lot, Canal Water Inlet Facility, Gate and Fence, Plantation, Lighting,	0	2.45	2.45
Rainwater Drainage, Water Spray Equipment and			•
Payement of Sub-area)			
and the control of th			
4. Insurance	0.90	18.00	18.90
Intermediate Total	756.58	906.53	1,663.11
5. Tax			1
1) Custom	35.90	.0	35.90
2) Business & Stamp Tax (3.3 + 0.1%)	27.89	32.93	60.82
3) Labor Tax (3% on local portion)	0	29.06	29.06
Sub Total	63.79	61.99	125.78
	73.,,	01.77	123.70
Total	820.37	069.52	1 700 00
- VIIII	020.37	968.52	1,788.89

						(Baht)
Civil W	ork					, ,
	Piling	ø300 x 107 Pile ((x 25 m)	@ 9,000	1,500	1,123,500
		ø350 x 78 pile (x	25 m)	@ 12,000	2,000	1,092,000
		ø400 x 174 Pile ((x 25 m)	@ 14,500	2,500	2,958,000
				Sub Total		5,173,500
(Ground Worl	k (Pond, Rearrange	ment, Road)			
	•	Pond		$200 \mathrm{m}^2$	@ 500	100,000
		Rearrangement	1 1 .	1,000 m ²	@ 300	300,000
		Road		$100 \mathrm{m}^2$	@ 300	30,000
				Sub Total	1000	430,000
				Total		5,603,000
		÷ .			1	560 million B
Supplem	entary Work					
F	Parking Lot,	150 m2 @ 200		e de la constant		30,000
C	Canal Water	Inlet Facility (1.5 ki	m piping pur	np station)		2,251,000
•	Sate & Fence	• • • • • • • • • • • • • • • • • • •			. * *	50,000
P	Plantation			1 -	the second	20,000
· I.	ighting	Mark and Tools	1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Section 1	15,000
R	ain Water D	rainage			·	65,000
٧	Vater Spray					10,000
P	avement					10,000
				Total		2,451,000
						2.45 million B
Tax						
· C	Custom	[(Mechanical & El	lectrical Equi	ipment - Eng	gineering Fee,) x 50%
		+ Freightage] x 10)%			
. *		$= (628.20 \times 0.5 +$	44.94) x 0.1	= 35.90 m	illion B	
•						
		Total x 3.3%				
S	tamp Tax	Total 0.1%				·
		Total x 3.4%			7.89 million B	3
L	abor Tax	Local Total x 3.0%	b = 968.52	$\times 0.03 = 29.$	06 million B	

Note)

- 1. The price is the current price as of 1990.
- 2. The equipment cost includes design fee, supervisory fee and other related cost.
- 3. Following exchange rate is used for cost estimation.
 - 5 Yen = 1 Baht
- 4. Followings are out of our scope of work:
 - 1) General
 - 1 Items not described on this quotation
 - 2) Temporary work
 - 1 Countermeasure work against grade settlement
 - 3) Civil and Building work
 - 1 Special dewatering
 - 2 Furniture
 - 3 External work and Landscaping
 - 4) Building Service facilities
 - 1 Temporary electrical work for construction and permanent electrical work outside of construction site
 - 2 Telephone wiring work outside of construction site
 - 3 Expense for regular inspection

Table 10.4-5 Construction Cost in Steps

(Million Baht) in 1990 price

Items	#1 Furnace	#2,3 Furnace 1998-2000FY	Total
Construction Schedule	1993-1995	1998-2000 1	
Mechanical and Electrical Work			
1. Weendinear and December Work			
1.1 Equipment			
1) Waste Reception System	124.00	20.00	144.00
2) Incineration System	74.00	140.00	214.00
3) Gas Cooling System	9.00	10.00	19.00
4) Gas Treatment System	30.00	37.00	67.00
5) Water Supply System	10.00	10.00	20.00
6) Waste Water Treatment System	15.00	4.00	19.00
7) Heat Utilization System	1.00	1.00	2.00
8) Air Preheating System	35.00	50.00	85.00
9) Ash Handling System	32.00	20.00	52.00
10) Electrical Equipment	34.00	20.00	54.00
11) Measuring and Control System	28.00 4.00	30.00 1.00	58.00 5.00
12) Auxiliary Equipment Sub Total	396.00	343.00	739.00
Sub Total	390.00	545.00	739.00
1.2 Freightage	20.00	25.00	45.00
1.3 Installation Work	100.00	115.00	215.00
2. Civil and Building Work			
1) Civil Work	5.00	1.00	6.00
2) Building	547.00	94.00	641.00
3) Stack	44.00	0	44.00
Sub Total	596.00	95.00	691.00
3. Supplementary Work (Parking lot, Canal Water	2.00	1.00	3.00
Inlet Facility, Gate and Fence, Plantation, Lighting, Rainwater Drainage, Water Spray Equipment and Pavement of Sub-area)			
4. Insurance	15.00	6.00	21.00
Intermediate Total	1,129.00	585.00	1,714.00
5. Tax			
1) Custom	19.00	17.00	36.00
2) Business & Stamp Tax (3.3 + 0.1%)	41.00	22.00	63.00
3) Labor Tax (3% on local portion)	20.00	9.00	29.00
Sub Total	80.00	48.00	128.00
Total	1,209.00	633.00	1,842.00

Table 10.4-6 Emolument

(Million Baht) in 1990 price

					10 miles 200 (200 (200 (200 (200 (200 (200 (200				
					Fiscal Ye	ear			
Manpower	1993	1994	1995	1996	1997	1998	1999	2000	2001
Manager	0.20	0.21	0.21	0.22	0.23	0.23	0.24	0.25	0.26
Engineer									
Mechanical	0.20	0.21	0.21	0.22	0.23	0.23	0.24	0.25	0.26
Electric	0.20	0.21	0.21	0.22	0.23	0.23	0.24	0.25	0.26
Equip. controller		· 1:	0.11	0.15	0.15	0.16	0.16	0.33	0.34
Operator	٠								
Crane			0.96	1.18	1.22	1.25	1.82	1.99	2.05
Incinerator			0.96	1,18	1.22	1.25	1.82	1.99	2.05
Weigh Bridge		ar i i	0.29	0.59	0.61	0.63	1.18	1.33	1.37
Maintenance Crew			0.76	1.18	1.22	1.25	3.02	3.99	4.11
Cleansing Men				0.30	0.30	0.31	0.32	0.50	0.50
Guardmen				0.59	0.61	0.63	0.65	1.00	1.03
Clerk Chief			0.17	0.22	0.23	0.23	0.24	0.25	0.26
Clerk Sub	1.			0.15	0.15	0.16	0.16	0.50	0.51
Total	0.61	0.63	3.90	6.20	6.38	6.58	10.10	13.12	13.52

Table 10.4-7 Manpower List

(Unit: person)

Manpower	Unit of				Fisca	al Year		:	
	Emolument	1993	1994	1995	1996	1997	1998	1999	2000
Manager	180,000 B/y	1	.1	1	1	1	1	1	1
Engineer	- 10 m								
Mechanical	180,000	1	1	1	1	1	1	1	2
Electric	180,000	1	1	1	1	1	1	1	. 2
Equip, controller	120,000			0.8	1	1	1	1	2
Operator					:	1			
Crane	120,000			6.7	8	8	8	11.3	12
Incinerator	120,000			6.7	8	8	8	11.3	12
Weigh Bridge	120,000			2	4	. 4	4	7.3	8
Maintenance Crew	20,000			5.3	8	8	8	18.7	24
Cleansing Men	60,000				4	4	4	4	6
Guardmen	60,000		*. :		8	8	8	8	12
Clerk Chief	180,000			0.8	1	1	1	1	1
Clerk Sub	120,000				1	1	1,	1	3
Total		3	3	25	46	46	46	67	85

Operators of crane (8 persons), incinerator (8 persons), and Equipment Controller (1 person) will have trainings during 10 months 1995, and 4 months 1999 for new operators.

Weigh Bridge operators will have trainings 6 months and 4 months 1999.

Maintenance Crew will have also trainings 8 months 1995 and 4 months 1999.

Chief Clerk will work 10 months 1995.

Unit is 1990 price and 3% of increase estimated every year.

Table 10.4-8 Utility Cost

(Million Baht) in 1990 price

Items			4.4		Fisc	al Year	· · · · · · · · · · · · · · · · · · ·		14 17 <u>18 18 18 18 18 18 18 18 18 18 18 18 18 1</u>	<u> </u>
	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005-14
Electricity	10.37	10.37	10.37	10.37	18.66	18.66	18.66	18.66	18.66	18.66
Water	0.26	0.26	028	0.36	0.96	1.02	1.15	1.22	1.28	1.34
Fuel	2.30	2.30	2.05	1.54	3.07	2.30	1.54	1.02	0.51	0.26
Ca(OH) ₂	1.92	1.92	1.92	2.40	7.20	7.20	7.68	7.68	7.92	7.92
Coagulant	0.02	0.02	0.02	0.02	0.04	0.04	0.04	0.04	0.04	0.04
Coagulant aid	0.02	0.02	0.02	0.02	0.05	0.05	0.05	0.05	0.05	0.05
Polymer	0.07	0.07	0.07	0.07	0.22	0.22	0.22	0.22	0.22	0.22
Lubrication	0.01	0.01	0.01	0.01	0.04	0.04	0.04	0.04	0.04	0.04
Grease	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Others	0.06	0.06	0.06	0.06	0.19	0.19	0.19	0.19	0.19	0.19
Total	15.04	15.04	14.81	14.80	30.45	29.75	29.59	29.14	28.93	28.74

Table 10.4-9 Utility Factor

	Unit	Unit					Fisc	al Year	 			
		of Cost	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005-14
Electricity	kW	2.7 B/kWh	500	500	500	500	900	900	900	900	900	900
Water	m3/d	4 B/m ³	200	200	220	240	750	800	900	950	1,000	1,050
Fuel	1/d	8 B/I	900	900	800	600	1,200	900	600	400	200	100
Ca(OH) ₂	t/d	7,500 B/t	0.8	0.8	0.8	1.0	3.0	3.0	3.2	3.2	3.3	3.3
Coagulant	kg/d	7 B/kg	7	7	7	. 7	20	20	20	20	20	20
Al ₂ Cl ₃	kg/d	8 B/kg	7	7.	7	7	20	20	20	20	20	20
Polymer	kg/d	225 B/kg	1	1	1	1	3	3	3	3	3	3
Lubrication	kg/y	50 B/kg	250	250	250	250	750	750	750	750	750	750
Grease	kg/y	175 B/kg	50	50	50	50	75	75	75	75	75	75
Others	Æ	200 B/d	. 1	1	1	1	3	3	3	3	3	3

Table 10.4-10 Table of Maintenance Cost

(Million Baht) in 1990 price

	#1 Ft	ırnace	#2, #3 1	Furnace	Т	otal	Grand
	Parts	Repair	Parts	Repair	Parts	Repair	Total
1996	0.36	3.64	0.00	0.00	0.36	3.64	4.00
1997	0.44	3.64	0.00	0.00	0.44	3.64	4.08
1998	1.82	9.09	0.00	0.00	1.82	9.09	10.91
1999	2.00	40.00	0.00	0.00	2.00	40.00	42.00
2000	2.12	9.42	0.68	7.28	2.80	16.70	19.50
2001	3.05	10.10	0.84	7.28	3.89	17.38	21.27
2002	3.55	11.40	3.46	18.18	7.01	29.58	36.59
2003	3.61	65.00	3.80	80.00	7.41	145.00	152.41
2114	3.71	10.10	4.03	18.84	7.74	28.94	36.68
2005	3.83	11.40	5.80	20.20	9.62	31.60	41.22
2006	3.90	13.70	6.75	22.80	10.65	36.50	47.15
2007	3.95	77.00	6.86	130.00	10.81	207.00	217.81
2008	3.99	11.00	7.05	20.20	11.04	31.20	42.24
2009	4.05	13.00	7.28	22.80	11.33	35.80	47.13
2010	4.16	14.00	7.41	27.40	11.57	41.40	52.97
2011	4.65	84.00	7.51	154.00	12.16	238.00	250.16
2012	4.94	11.00	7.58	22.00	12.52	33.00	45.52
2013	5.27	14.00	7.70	26.00	12.97	40.00	52.97
2014	5.40	16.00	7.90	28.00	13.30	44.00	57.30
Total	64.80	427.49	84.63	604.98	149.44	1,032.47	1,181.91
Average	3.41	22.50	4.45	31.84	7.87	54.34	62.17

SUBSURFACE INVESTIGATION
FOR
THE STUDY ON BANGKOK SOLID
WASTE MANAGEMENT
AT
RAM INTRA AND ON NUT
BANGKOK

CONTENTS

			PAGE
1.	INTRODUCTION		. • 1
2.	SUBSURFACE INVESTIGATION PROCEDURE	in the second	2
3.	LABORATORY TESTING PROGRAMME		3
4.	APPENDIX		7

STS Job No. 2870 October 22, 1990

1. INTRODUCTION

The subsurface investigation for THE STUDY ON BANGKOK SOLID WASTE MANAGEMENT located at Lam Intra Final Disposal Site and On Nut Incinerator Facility Area has been completed. Total of six borings were performed at above sites. Four borings, namely BH-1L, 2L, 3L, and 4L, were conducted at Lam Intra Site whereas the remained boreholes, BH-1N and BH-2N for On Nut Site. The depth of boring is 20 m except BH-4L, BH-1N & 2N, down to 40 m. The location of boreholes is shown in Figure 1& 2.

At Lam Intra Site, the borings were carried out on the corner of the pit which was excavated about 25 m deep but for On Nut site, they were drilled on the garbage.

The purpose of this report is to summarize the field and laboratory testing data.

2. SUBSURFACE INVESTIGATION PROCEDURE

The boreholes were executed by skid mounted drilling rig. The drilling was commenced by means of augering within 2 m and afterwards continued by means of wash boring method till the end of boring. The upper part of borehole was stabilized by steel casing, while the lower part was stabilized by bentonite slurry.

The disturbed samples were collected at 1.5 m intervals by using standard split spoon sampler during the performance of the standard penetration tests carried out according to ASTM D-1586-84.

The six undisturbed samples were also taken in soft to medium clay layer by using pushed thin wall tube having diameter of 3 in. with 1 m length at the depth of 1 m and 4 m for BH-1L and BH-3L but at 4 m and 9 m for BH-2L.

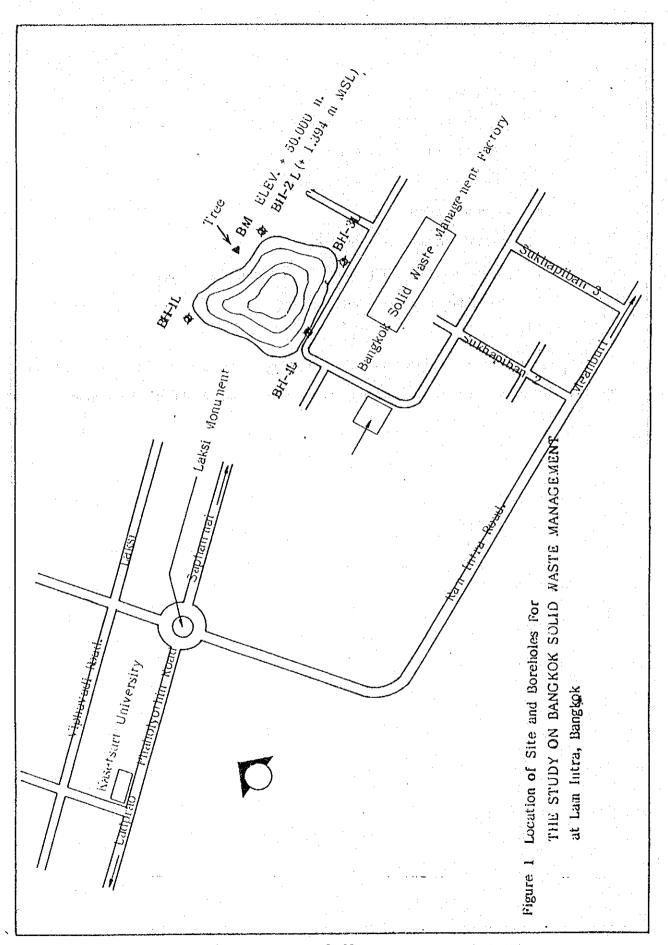
In a standard penetration test, a 2 in. O.D. split barrel sampler was driven into the soil stratum with a 140 lbs safety type hammer falling through a distance of 30 inches successively until a total of 18 in. has been achieved. The number of blows in the last 12 in penetration will be taken as the standard penetration resistance SPT N VALUE.

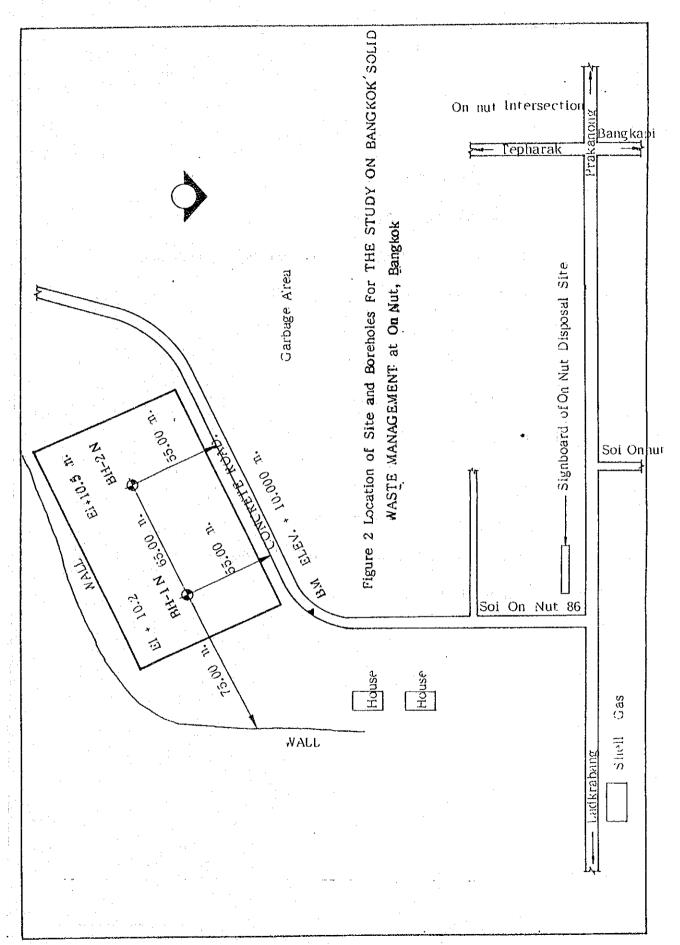
Field permeability tests were done at the depth of 20 m in sand layer in borehole no. BH-1L & 3L. The type of test is variable head method.

In addition, pocket penetrometer was also used to find undrained shear strength on all cohesive soil samples.

The elevation of boreholes referred to B.M. Ele + 50.00~m for Lam Intra Site and + 10.00~m for On Nut Site is shown as follow.

BOREHOLE NO.	Elevation, m
BH-1L	+ 45.2
BH-2L	+ 45.8
BH-3L	+ 44.1
BH-4L	+ 43.9
BH-1N	+ 10.2
BH-2N	+ 10.5


3. LABORATORY TESTING PROGRAMME


The laboratory programme for undisturbed samples includes the following.

 Scil Description (Visual description and Unifined Soil Classification)

- 2) Specific Gravity
- 3) Grain Size analysis including sieve and hydrometer test.
- 4) Natural moisture content
- 5) Unit Weight
- 6) Atterberg limit
- 7) Unconfined compression test
- 8) Unconsolidated undrained triaxial compression test
- 9) One-dimensional consolidation test

The testing procedures were done in accordance with ASTM specification. The test results were presented in the Appendix of this report.

APPENDIX

- 1. List of Terms Used
- 2. Unified Soil Classification
- 3. Characteristics Pertinent to Embankments & Foundations
- 4. ASTM Specification
 - D 1587 83
 - D 1586 84
- 5. Summary of Test Results
- 6. Log of Boring
- 7. Gradation Curve
- 8. Field Permeability Test Results
- 9. Unconsolidated Undrained Triaxial Test Results
- 10. Consolidation Tests Results

LIST OF TERMS USED

DRILLING & SAMPLING SYMBOLS

SS: Split-Spoon - 1 3/8" I. D., 2" O. D., except where noted ST: Shelby Tube - 2" O. D., except where noted

PA : Power Auger Sample

DR : Diamond Bit -NX; BX; AX; CB : Carbology Bit - NX: BX: AX:

OS : Osterberg Sampler - 3" Shelby Tube

HS: Housel Sompler WS: Wash Sample

FT : Fish Tail RB : Rock Bit WO: Wash Out

Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches

on a 2 inch OD split spoon, except where noted.

WATER LEVEL MEASUREMENT SYMBOLS

WD: White Drilling WL : Woter Level

BCR: Before Cosing Removal WC1: Wet Cove in ACR: After Cosing DCI: Dry Caye In Removal

WS: While Sampling AB : After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible in even several days observation, and additional evidence on ground water elevations must be sought

CLASSIFICATION

COHESIONLESS SOILS

"Trace"	:	1	%	to	10.	%
"Trace to some"	:	ÍO	%	10	20	%
"Some"	:	20	%	to	35	%
" And "	:	35	%	10	50	%
Very Laose	:	N =	0 -	4	bt	ows
Loose	; .	N =	4 -	10	ы	0W\$
Medium	:	N =	10-	30	bi	0W\$
Dense	•	N =	30 -	50	bl	OWS
Very Dense	•	N =	OVE	r:50	bi	OWS

COHESIVE SOILS

If clay content is sufficient so that clay dominates soil properties, then clay becomes the principle noun with the other major soil constituent as modifier; i.e., silty clay. Other minor soil constituents may be added according to classification breakdown for cohesionless soils, i.e., silty clay, trace to some sand, trace gravel,

Very Soft : 0.00 - 0.25 Tsf. or 2 blows Soft : 0.25 - 0.50Tsf. or Medium 0.50 - 1.00Tsf. or B blows Stiff 1.00 - 2.00 Tsf. or 8 - 16 blows Very Stiff : 2.00 - 4.00Tst. or 16 - 32 blows Hard 4.00 Tsf. or over 32 blows

LIST OF TERMS USED

for Laboratory Classification	oris un	13 tuo	And the season of the season o	avel and forth and soils are defined (fraudellus) (GC, S,	by blaft 1st 1g to segar of the series 1g of the series 1	บละบอส ขอะบอส	os as gi	Det Det	:	09 Signature state of the state	y judex	Pasticit	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0 10 20 30	Clquid limit Plasticity chart	for laboratory cla
Information Required for Describing Soils	tive typical mane; indicate and	and backets, national size, and said short and said said said said said said said sai	and other patitions descriptive information; and symbols in parentheses	867	drainage characteristics Example: Mity soud, gravelly; about 20.7.	nato, ankular stavet parteries 	plante three with few dry strength; well compacted and mist in place; allusial sand;	(SAC)			Givetypical name; Indicate degree and character of platfelly, amount and maximum slave character project.	condition, odour if any, local or geologic name, and other pertinent descriptive information, and symbol in parentheses	For undisturbed soils add infor-	tion, consistency in undisturbed and remoulded states, moisture and draman conditions.	Example: Clayer sill. brown; s	plastic; small percentage of the sand, numerous vertical
Typical Numes	Well graded gravels, gravels, sand mixtures, little or no flues	Pointy graded gravety, gravet-sand mixtures, little or no flues	Siliy gravely, pourly graded gravel-and-sift mixtures	Clayey gravels, pourly graded gravel-sand-clay infatures	3 8	Poorly graded sands, gravelly sands, little or no tines	Silty sands, Paurly graded saud-	Clayey sands, pourly graded sand-day mixtures.			Inorganic siles and very fine sands, rock flour, siley or clavey fine sands with slight plasticity	Inorganic clays of low to nedium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Organic silts and organic silt-	Inorganic silts, micacenus or diatomaceous time sandy or silty soils, elastic silts	Increase clays, of high plas- ifcity, fat clays.	plasticity of medium of man
Group Symbols	185	43	ĊИ	20)	A .	SM	200	 		7ML	77	00	Ж	ä	ЭЖ
tions on	grain size and substantial	or a range of sizes ate sizes missing	lentification pro-	ation procedures,	9.	of a range of sizes	entification pro-	atim prinedures,	do, 40 Sieve Size	Toughhess (consistency n near playtic s) limit)	Хопс	Medium	Silsht	Slight to medium	11fgh	
Field Identification Procedures (Excluding particles Jarger than 3 in, and basing fractions estimated weights)	ants of	Predominantly one size of a range of sizes with some intermediate sizes missing	Numplassic flors (for identification cedures see Aff. below)	LAND Thes (for Identification procedures, see (T. Below)	ange in graf	Predominantly one size of a range of si with sume intermediate sizes mass	Nunplastic fines (for identification cedures, see Mf. below)	Plastic thes (for identification prixedur	Fraction Smaller than No. 40 Sieve S	Ory Strength Dilatancy (crushing (reaction characters to shaking)	None to Quick to	Medium to None to	Slight to Stow	Silght to Stow to medium none	High to None	a dentis
Field Identification Procedures priviles larger than 3 in, and basin estimated weights)	necs)	USICO UIIU) I	dijw i si si of si of	ilayand anii anqqa) nuoma anii	dent to the	esiO iriii) li	cs) creolc creolc cs	นบู	Procedures on	Dry S Ceru Char	05 meut :	· ·	ails.		95 Hale	
Officiality pa	iyati thati	isit of i sicyc a sicyc a	CranD (nan) a (noi); (a) (b) (b) (b) (b) (b)	>old uml e.ni ‡ ≃d	Varible to r coarse theation, t	article half of smaller smaller si class	S tosati a si noti:	noly.	1 Jenethenton	i i 	o: 200 sie and clay	กแร	į	11mil	ons sil	i j

* Bunnary classifications. Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GF-GG, Well graded gravel-sand mixture with clay binder. Delt sieve stees on this chart are U.S. standard.

Field Mentification of the Grand on the minus No. 40 sieve size particles, approximately 14, in. For lield classification purposes, succening is not intended, simply remove by mind the coarse particles that interfere with the tests. Dry Strength (Chashing characteristics);
After removing partities larger than No. 40 sieve size, mould a pat of soil to the consistency of longit, adding water if necessary. Allow the pat to dry consistency of hitty, adding water if necessary. Allow the pat to dry completely by one, year or air Living, and then test its strength by ang between the thingers. This strength is a measure quantity of the enfloyed fraction contained in the Dilataury (Reaction to shaking):
After comoving particles larger than No. 40 slove size, prepare a pat of against fire other hand several times. A positive reaction the appearance of warer on the surface of the put which a heary consistency and becomes slowey. When the sample between the fineers, the yater and slows disappear to on the Londaffy; striking moust soil with a volume of about, one-half cubic lin water if necessary to make the soil soil but not sticky, are the pat in the open point of one hand and shake bori

to A typical High dry strength is characteristic for clays of the Cl

of water during shaking and of its disappearance during it in identifying the character of the fines in a soil. In this give the quick-six and most distinct reaction whereas has no reaction. Inorganic sitts, such as a typical rook has no reaction.

fine clean saids give the quickest and most distinct playtic clay, has no reaction. Increame silts, such which teaction.

ine, show a maderately

Toughness (Consistence, near playin limit):

After removing-practices larger than the No. 40 sieve sire, a specimen of whit about studied so the consistency of whit about so, and the cube in size, is modified to the consistency of the near than the studied of the specimen playing. If too dry, water must be added and, if sitely, the specimen bloods be spread out in a then layer and allowed to lose some mostine. The ten on specimen is rolled out by hand on a south that single conference the tenton of the studies of between the plants into a larger day and to expedit mah in this manipulation the mysture content is andually reduced and the specimen villens, manify loses as plastely, and etambles when the present that the tenton strumbles when the After the threat grantines, the places whould be fougated and said a slight to the admits a sound the funger that a structure of a single the structure of a single that the structure of a single that the structure of a single the structure of a single that the structure of a single that the structure of a single that the structure southers when the single structure of a single the structure southers when the single structure of a single the structure southers when the single structure of the structure southers when the single structure of the structure southers when the single structure of the structure southers are some southers.

such as kardon-type clays and segan a mady cumbers the meet self. Weakness of the friends of the fundament of

3-64

CHANCITERISTICS PERTITERS TO DOMODERS AND PORDATIONS

ſ	L.]	T	9 4	4:	9.3	T :				1	1]	
	Seepage Control (12)	Positire cutoff	Positive cutoff	TOR CTREED to BOSE	NO.	Upstream Manket and toe drainage or wells	Upetroes blanket and toe drainage or wells	Upstream blacket and toe drainage or wells	Ilose	Toe treach to none	Noce	Лоре	Fone	None	Jone	foundations
	Value for Foundations (11)	Good bearing value	Good bearing value	Good bearing value	Good bearing value	Good bearing value	Good to poor bearing walue depending on density	Good to poor bearing walue depending on density	Good to poor bearing value	Very poor, suscepti- ble to liquefaction	Good to poor bearing	Yair to poor bearing, may have excessive sottlements	Pour bearing	Pair to poor bearing	Yery .poor bearing	Resore free foundations
Std AASBO HAK	Unit Dry Weight Ib Per Cu Pt (10)	125-135	115-125	120-135	011-2TT	110-130	100-120	ऽटा-०रा	527-501	95-120	95-120	80-100	70-95	75-205	65-100	ical
	Compection Characteristics (9)	Good, tractor, rubber-tired, stael-uperlad, roller	Good, tractor, rubber-tired, steel-wheeled roller	Good, with close control, rubber-lied, shepstoot roller	Fair, rubber-tired, sheepsfoot	Good, tractor	Good, tractor	Cood, with close confrol, rubber-tired, sheepsfoot roller	Fair, sheepsfoot roller, rubber tired	Good to poor, close control essential, rubber-tired roller, sucepsion roller	Pair to good, sheepsfoot roller, rubber tired	Pair to poor, sheepsfoot roller	Poor to very poor, sheepsfoot roller	Fair to poor, sheepsfoot roller	Post to very poot, sheapsfoot roller	Compaction not practical
	Ch Pr Sec (8)	k > 30.2	x > 10-2	k = 10 ⁻³	2 10 4 5 10 9	£ > 10-3	k > 10 ⁻³	6 10 3	4 01 03 46 46 46 46 46 46 46 46 46 46 46 46 46	x 10-3	k = 10-6 to 10-8	k = 10-k to 10-6	4 10 4 to 10 6	k = 10-6 to 10-8	× 10-5	•
	Value for Salenbents (7)	Very stable, pervious shells of dikes and dams	Sensonably stable, pervious shells of dikes and dame	Reasonably stable, not particularly auttod to shells, but may be used for impervious cores or blankets	Fairly stable, may be used for impervious core	Very stable, pervious sections, slope protection required	Resecutive stable, may be used to dike section with flat slopes	Fairly stable, not particularly suited to shalls, but may be used for impervious cores or dikes	Pairly stable, use for Lapervious core for flood control otructures	Poor stability, may be used for embankments with proper control	Stable, impervious corre and blankets	Not suitable for emboarments	Poor stability, core of hydraulic fill dam, not desirable in rolled fill construction	Pair stability with flat slopes, thin cores, blankets and dike sections	Not suitable for embantments	Not used for construction
	(6)	Well-graded gravels or gravel-sand sixtures, little or no fines	Poorly-graded gravels or gravel-sand mixtures, little or so fines	Silty gravels, gravel-sand-silt six- tures	Clayoy gravel-and-clay mixtures	Well-graded sands or gravelly sands, little or no fines	Porly-graded sands or gravelly sands, little or no fines	Silty sands, sand-silt mixtures		Inorganic silts and very line sands, rock flour, silty or clayer fine sands or clayey silts bith slight plasticity	Isorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean cloys	1,4	Inorganic silts, atcaceous or distresseous fine sandy or silty solls, clastic silts	Inorganic clays of high planticity, for clays	we of medium to high organic silts	Peat and other highly organic soils
	10g Cotor (5)	P?!		ejjov			મ	:710A	y.		Green		· · · · · · · · · · · · · · · · · · ·	enig		22'00.5()
ľ	Batehing (4)	9.0			1113		<u> </u>	74.55	1888 1888 1888			X EVAL				ШШ
	3.5	Ü	ថ	ð	ន	AS		ā	ន	렸	2	70	SX.	Ŕ	80	ĸ
	(1) (C)		4	GRAVELLI SOILS			9	GAL SANCT	·	SILIS	e 13	;] S	STITS	STALTS	왕 *	MICHIE CHOCKIEC BOILS
	(1)			: 1 1	COARSE	Sorie	ı					E E	80T48			ELCELA ONC

1. Values in columns 7 and 11 are for gaidance only. Design should be based on test remitts.
2. In column 9, the equipment listed will usually produce the desired densities with a reasonable number of passes when moisture confusing the controlled.
3. Column 19, unit day weights are for comparted soil at optimum moisture content for Standard AMSDO (Standard Frector) compactive effort.

Standard Practice for THIN-WALLED TUBE SAMPLING OF SOILS

This standard is issued under the fixed designation D 1537; the number immediately following the designation indicates the year of original adoption of, in the case of revision, the year of last revision. A number in parentheses indicates the year of last recoproval, A number of the period of the year of last recoproval.

This practice has been approved for use by agencies of the Department of Defense and for listing in the DOO Index of Specifications and Standards

1. Scope

1.1 This practice covers a procedure for using a thin-walled metal tube to recover relatively undisturbed soil samples suitable for laboratory tests of structural properties. Thin-walled tubes used in piston, plug, or rotary type samplers, such as the Denison or Pitcher, must comply with the portions of this practice which describe the thin-walled tubes (5.3).

Note 1.—This practice does not apply to liners used within the above samplers.

2. Applicable Documents

2.1 ASTM Standards:

- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)²
- D 3530 Practice for Ring-Lined Barrel Sampling of Soils²
- D 4220 Practices for Preserving and Transporting Soil Samples²

3. Summary of Practice :

3.1 A relatively undisturbed sample is obtained by pressing a thin-walled metal tube into the in-situ soil, removing the soil-filled tube, and sealing the ends to prevent the soil from being disturbed or losing moisture.

4. Significance and Use

4.1 This practice, or Practice D 3550, is used when it is necessary to obtain a relatively undisturbed specimen suitable for laboratory tests of structural properties or other tests that might be influenced by soil disturbance.

5. Apparatus

54 Drilling Equipment—Any drilling equipment may be used hat provides a reasonably clean hole; that does not disturb the soil to be

sampled; and that does not hinder the penetration of the thin-walled sampler. Open borehole diameter and the inside diameter of driven casing or hollow stem auger shall not exceed 3.5 times the outside diameter of the thin-walled tube.

- 5.2 Sampler Insertion Equipment, shall be adequate to provide a relatively rapid continuous penetration force. For hard formations it may be necessary, although not recommended, to drive the thin-walled tube sampler.
- 5.3 Thin-Walled Tubes, should be manufactured as shown in Fig. 1. They should have an outside diameter of 2 to 3 in, and be made of metal having adequate strength for use in the soil and formation intended. Tubes shall be clean and free of all surface irregularities including projecting weld seams.
 - 3.3.1 Length of Tubes See Table 1 and 6.4.
- 3.3.2 Tolerances, shall be within the limits shown in Table 2.
- 5.3.3 Inside Clearance Ratio, should be 1 % or as specified by the engineer or geologist for the soil and formation to be sampled. Generally, the inside clearance ratio used should increase with the increase in plasticity of the soil being sampled. See Fig. 1 for definition of inside clearance ratio.
- 5.3.4 Corrosion Protection—Corrosion, whether from galvanic or chemical reaction, can damage or destroy both the thin-walled tube and the sample. Severity of damage is a function of

¹ This practice is under the jurisdiction of ASTM Committee O-13 on Soil and Rock and is the direct responsibility of Subcommittee D18 02 on Sampling and Related Field Testing for Soil Investigations

Current edition approved sug. (7-198). Published Orioter 1983. Oriunally published as D 1331-38 T. Last previous edition D 1331-34.

¹ Innual Book or ISTM Standards, Vol 04 08

time as well as interaction between the sample and the tube. Thin-walled tubes should have some form of protective coating. Tubes which will contain samples for more than 72 h shall be coated. The type of coating to be used may vary depending upon the material to be sampled. Coatings may include a light coat of lubricating oil, lacquer, epoxy, Teflon, and others. Type of coating must be specified by the engineer or geologist if storage will exceed 72 h. Plating of the tubes or alternate base metals may be specified by the engineer or geologist.

5.4 Sampler Head, serves to couple the thinwalled tube to the insertion equipment and, together with the thin-walled tube, comprises the thin-walled tube sampler. The sampler head shall contain a suitable check valve and a venting area to the outside equal to or greater than the area through the check valve. Attachment of the head to the tube shall be concentric and coaxial to assure uniform application of force to the tube by the sampler insertion equipment.

6. Procedure

- 6.1 Clean out the borehole to sampling elevation using whatever method is preferred that will ensure the material to be sampled is not disturbed. If groundwater is encountered, maintain the figuid level in the borehole at or above ground water level during the sampling operation:
- 6.2 Bottom discharge bits are not permitted. Side discharge bits may be used with cautiom letting through an open-tube sampler to clean out the borehole to sampling elevation is not permitted. Remove loose material from the center of a casing or hollow stem auger as carefully as possible to avoid disturbance of the material to be sampled.

Note 1—Roller hits are available in downwardjetting and diffused-jet configurations. Downward-jetting configuration rock bits are not acceptable. Diffusejet configurations are generally acceptable.

- 6.3 Place the sample tube so that its bottom rests on the bottom of the hole. Advance the sampler without rotation by a continuous relatively rapid motion.
- 6.4 Determine the length of advance by the resistance and condition of the formation, but the length shall never exceed 5 to 10 diameters of the tube in sands and 10 to 15 diameters of the tube in clays.

More 32 Weight of sample, laboratory handling ca-

papilities, transportation problems, and commercial availability of tubes will generally limit maximum practical lengths to those shown in Table 1.

- 6.5 When the formation is too hard for pushtype insertion, the tube may be driven or Practice D 3550 may be used. Other methods, as directed by the engineer or geologist, may be used. If driving methods are used, the data regarding weight and fall of the hammer and penetration achieved must be shown in the report. Additionally, that tube must be prominently labeled a "driven sample."
- 6.6 In no case shall a length of advance be greater than the sample-tube length minus an allowance for the sampler head and a minimum of 3 in for sludge end cuttings.

Note 4—The tube may be rotated to shear bottom of the sample after pressing is complete.

6.7 Withdraw the sampler from the formation as carefully as possible in order to minimize disturbance of the sample.

7. Preparation for Shipment

7.1 Upon removal of the tube, measure the length of sample in the tube. Remove the disturbed material in the upper end of the tube and measure the length again. Seal the upper end of the tube. Remove at least 1 in of material from the lower end of the tube. Use this material for soil description in accordance with Practice D 2488. Measure the overall sample length. Seal the lower end of the tube. Alternatively, after measurement, the tube may be sealed without removal of soil from the ends of the tube if so directed by the engineer or geologist.

POSTE S-Field extrusion and packaging of extruded samples under the specific direction of a geotechnical engineer or geologist is permitted.

NOTE 6—Tubes sealed over the ends as opposed to those sealed with expanding packers should contain end padding in end voids in order to prevent drainage or movement of the sample within the tube.

7.2 Prepare and immediately affix labels or apply markings as necessary to identify the sample. Assure that the markings or labels are adequate to survive transportation and storage.

8. Report

- 3.1 The appropriate information is required as follows:
 - 3 it is brame and location of the project.
- 3.1.2 Boring number and precise location on project.

- 3.1.3 Surface elevation or reference to a da-
- 8.1.4 Date and time of boring—start and finish.
- 8.1.5 Depth to top of sample and number of Practice D 2488, sample, 8.1.12 Length
- 8.1.6 Description of sampler: size, type of metal, type of coating.
- 8.1.7 Method of sampler insertion; push or drive.
- 3.1.3 Method of drilling, size of hole, casing, and drilling fluid used.
 - 8.1.9 Depth to groundwater level; date and

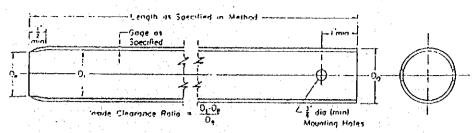
TUBLE 1 Suitable Tale-Walled Steel Sample Tuber

Outside diameter:	, ,	100	
in.	1	3	
m m	50 \$	76.7	127
Wall thickness:	*		4.00
844	18	16	11
in	0.049	0.065	0.120
mm.	1.24	1.65	3.03
Tube length:		9 Y 2	1.5
in.	36	36	54
m	0.91	0.91	1.45
Clearance ratio, %	1	1	in E

The three diameters recommended in Table 1 are indicated for purposes of standardization, and are not intended to indicate that sampling tubes of intermediate or larger diameters are not occeptable. Lengths of tubes shown are illustrative. Proper lengths to be determined as suited to field conditions.

time measured.

- 8.1.10 Any possible current or tidal effect on water level.
- 8.1.11 Soil description in accordance with Practice D 2488.
 - 8.1.12 Length of sampler advance, and
 - 8.1.13 Recovery: length of sample obtained.


9. Precision and Blus

9.1 This practice does not produce numerical data; therefore, a precision and bias statement is not applicable.

TABLE 2 Dimensional Tolerances for Thin-Walled Tubes

Nominal Tube Diameters from Table 1' Tolerances, in,						
Site Outside Diameter	1	,	5			
Outside diameter	+0.001	+0 010	+0.013			
	-0.000	-0.000	~0.000			
Inside diameter	+0.000	+0.000	10 000			
	-0.007	-0010	-0.015			
Wall thickness	±0.007	±0 010	±0015			
Ovality	0.015	0.010	0.030			
Straightness	0.030/A	0.030/0	0.030/0			

Intermediate or larger diameters should be procortional. Tolerances shown are essentially mandard commercial manufacturing tolerances for teamlers need mechanical tubing. Specify only two of the first three tolerances that is, O.D. and 4.D. or O.D. and Wall, or I.D. and Wall.

Mare 1-Minimum of two mounting holes on apposite sides for 1 to 11/1 in. sampler.

Note 1—Minimum of two mounting holes on opposite suites for a 10 Jyr in, sampler, Note 2—Minimum of four mounting holes spaced at 90 for samplers 4 in, and larger.

Note 3—Tube reld with hardened screws.

Note 3—Tube reld with hardened screws.

Note 4—Two-inch opiside diameter tubes are specified with an 18-gage wall thickness to comply with area ratio criteria accepted for "undisturbed samples." Users are advised that such tubing is difficult to locate and can be extremely expensive in small quantities. Sixteen-ange tubes are generally readily available.

			70 Edo-1400
		in.	wa
	:	15	6,77
		ч	12.7
		1 .	25.4
		1	50.8
	1.5	34	38.9
1.	7.	40 7 1	101.6
	<i>i</i> .	4 1	101.6

FIG. 1 Thin-Welled Tube for Sampling

The American Society for Festing and Materials takes no position respecting the validity of any patent rights asserted in connection with any term mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the east of infringement of such rights, are entirely their own responsibility.

This translated is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if any revised either reappeared or subdiams. Your comments are insuled either for revision of this standard or for additional translated and should be addressed to 45TM Headquarters. Your comments will receive carried consideration at a neeting of the responsible technical committee, which into may attend. If you feel that your comments have any received a fair bearing you though make your views known to the 45TM Committee on Standards 1916 Race St., Philadelphia, Pg. 1910.

Standard Method for PENETRATION TEST AND SPLIT-BARREL SAMPLING OF SOILS'

This trandard is issued under the fixed designation D 1586; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epolon (c) indicates an editorial change since the last revision or reapproval.

This method has been approved for use by agencies of the Department of Defense and for listing in the DOD Index of Specifications and Standards.

1. Scope

- 1.1 This method describes the procedure, generally known as the Standard Penetration Test (SPT), for driving a split-barrel sampler to obtain a representative soil sample and a measure of the resistance of the soil to penetration of the sampler.
- 1.2 This standard may involve hazordous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For a specific precautionary statement, see 5.4.1.
- 1.3 The values stated in inch-round units are to be regarded as the standard.

2. Applicable Documents

- 2.1 ASTM Standards:
- D 2487 Test Method for Classification of Soils for Engineering Purposes²
- D 2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)²
- D 4220 Practices for Preserving and Transporting Soil Samples²
- 3. Descriptions of Terms Specific to This Standard
- 3.1 anvil---that portion of the drive-weight assembly which the hammer strikes and through which the hammer energy passes into the drill rods.
- 3.2 cathead—the rotating drum or windlass in the rope-cathead lift system around which the operator wraps a roce to lift and drop the ham-

- mer by successively tightening and loosening the rope turns around the drum.
- 3.3 drill rods—rods used to transmit downward force and torque to the drill bit while drilling a borehole.
- 3.4 drive-weight assembly—a device consisting of the hammer, hammer fall guide, the anvil, and any hammer drop system.
- 3.5 hammer—that portion of the drive-weight assembly consisting of the 140 \pm 2 lb (63.5 \pm 1 kg) impact weight which is successively lifted and dropped to provide the energy that accomplishes the sampling and penetration.
- 3.6 hammer drop system—that portion of the drive-weight assembly by which the operator accomplishes the lifting and dropping of the hammer to produce the blow.
- 3.7 hammer fall guide—that part of the driveweight assembly used to guide the fall of the hammer.
- 3.8 N-vaine—the blowcount representation of the penetration resistance of the soil. The Nvalue, reported in blows per foot, equals the sum of the number of blows required to drive the sampler over the depth interval of 6 to 18 in. (150 to 450 mm) (see 7.3).
- 3.9 ΔN —the number of blows obtained from each of the 6-in. (150-mm) intervals of sampler penetration (see 7.3).
- 3.10 number of rope turns—the total contact angle between the rope and the cathead at the

This Method is under the jurisdiction of ASTM Committee D-18 on Soil and Rock and is the direct responsibility of Subcommittee D18 02 on Sampling and Related Field Testing for Soil Investigations.

Current edition approved Sept. 11, 1984, Published November 1984. Originally published as D 1586 - 58 T. Last previous edition D 1586 - 67 (1974).

¹ Immal Book or ISTM Standards, Vol 04 08

beginning of the operator's rope slackening to drop the hammer, divided by 360° (see Fig. 1).

3.11 sampling rods—rods that connect the drive-weight assembly to the sampler. Drill rods are often used for this purpose.

3.12 SPT—abbreviation for Standard Penetration Test, a term by which engineers commonly refer to this method.

4. Significance and Use

4.1 This method provides a soil sample for identification purposes and for laboratory tests appropriate for soil obtained from a sampler that may produce large shear strain disturbance in the sample.

4.2 This method is used extensively in a great variety of geotechnical exploration projects. Many local correlations and widely published correlations which relate SPT blowcount, or N-value, and the engineering behavior of earthworks and foundations are available.

5. Apparatus

5.1 Drilling Equipment—Any drilling equipment that provides at the time of sampling a suitably clean open hole before insertion of the sampler and ensures that the penetration test is performed on undisturbed soil shall be acceptable. The following pieces of equipment have proven to be suitable for advancing a borehole in some subsurface conditions.

5.1.1 Drag. Chopping, and Fishtail Bits, less than 6.5 in. (162 mm) and greater than 2.2 in. (56 mm) in diameter may be used in conjuction with open-hole rotary drilling or casing-advancement drilling methods. To avoid disturbance of the underlying soil, bottom discharge bits are not permitted; only side discharge bits are permitted.

5.1.2 Roller-Cone Bits, less than 6.5 in. (162 mm) and greater than 2.2 in. (56 mm) in diameter may be used in conjunction with open-hole rotary drilling or casing-advancement drilling methods if the drilling fluid discharge is deflected.

5.1.3 Hollow-Stern Continuous Flight Augers, with or without a center bit assembly, may be used to drill the boring. The inside diameter of the hollow-stern augers shall be less than 6.5 in. (162 mm) and greater than 2.2 in. (56 mm).

5.1.4 Solid. Continuous Flight, Bucket and Hand Augers, less than 6.5 in. (162 mm) and greater than 2.2 in. (56 mm) in diameter may be used if the soil on the side of the boring does not

cave onto the sampler or sampling rods during

5.2 Sampling Rods—Flush-joint steel drill rods shall be used to connect the split-barrel sampler to the drive-weight assembly. The sampling rod shall have a stiffness (moment of inertia) equal to or greater than that of parallel wall "A" rod (a steel rod which has an outside diameter of 1% in. (41.2 mm) and an inside diameter of 1% in. (28.5 mm).

NOTE 1—Recent research and comparative testing indicates the type rod used, with stiffness ranging from "A" size rod to "N" size rod, will usually have a negligible effect on the N-values to depths of at least 100 ft (30 m).

5.3 Split-Barrel Sampler—The sampler shall be constructed with the dimensions indicated in Fig. 2. The driving shoe shall be of hardened steel and shall be replaced or repaired when it becomes dented or distorted. The use of liners to produce a constant inside diameter of 1% in. (35 mm) is permitted, but shall be noted on the penetration record if used. The use of a sample retainer basket is permitted, and should also be noted on the penetration record if used.

NOTE 2—Both theory and available test data suggest that N-values may increase between 10 to 30 % when liners are used.

5.4 Drive-Weight Assembly:

5.4.1 Hammer and Anvil—The hammer shall weigh 140 ± 2 lb $(63.5 \pm 1 \text{ kg})$ and shall be a solid rigid metallic mass. The hammer shall strike the anvil and make steel on steel contact when it is dropped. A hammer fall guide permitting a free fall shall be used. Hammers used with the cathead and rope method shall have an unimpeded overlift capacity of at least 4 in (100 mm). For safety reasons, the use of a hammer assembly with an internal anvil is encouraged.

Note 3.—It is suggested that the hammer fall guide be permanently marked to enable the operator or inspector to judge the hammer drop height.

5.4.2 Hammer Drop System—Rope-cathead, trip, semi-automatic, or automatic hammer drop systems may be used, providing the lifting apparatus will not cause penetration of the sampler while re-engaging and lifting the hammer.

5.5 Accessory Equipment—Accessories such as labels, sample containers, data sheets, and groundwater level measuring devices shall be provided in accordance with the requirements of the project and other ASTM standards.

6. Drilling Procedure

6.1 The boring shall be advanced incrementally to permit intermittent or continuous sampling. Test intervals and locations are normally stipulated by the project engineer or geologist. Typically, the intervals selected are 5 ft (1.5 mm) or less in homogeneous strata with test and sampling locations at every change of strata.

6.2 Any drilling procedure that provides a suitably clean and stable hole before insertion of the sampler and assures that the penetration test is performed on essentially undisturbed soil shall be acceptable. Each of the following procedures have proven to be acceptable for some subsurface conditions. The subsurface conditions anticipated should be considered when selecting the drilling method to be used.

6.2.1 Open-hole rotary drilling method.

6.2.2 Continuous flight hollow-stem auger method.

6.2.3 Wash boring method.

6.2.4 Continuous flight solid auger method.

6.3 Several drilling methods produce unacceptable borings. The process of jetting through an open tube sampler and then sampling when the desired depth is reached shall not be permitted. The continuous flight solid auger method shall not be used for advancing the boring below a water table or below the upper confining bed of a confined non-cohesive stratum that is under artesian pressure. Casing may not be advanced below the sampling elevation prior to sampling. Advancing a boring with bottom discharge bits is not permissible. It is not permissible to advance the boring for subsequent insertion of the sampler solely by means of previous sampling with the SPT sampler.

6.4 The drilling fluid level within the boring or hollow-stem augers shall be maintained at or above the in situ groundwater level at all times during drilling, removal of drill rods, and sampling.

7. Sampling and Testing Procedure

7.1 After the boring has been advanced to the desired sampling elevation and excessive cuttings have been removed, prepare for the test with the following sequence of operations.

7.1.1 Attach the split-barrel sampler to the sampling rods and lower into the borehole. Do

not allow the sampler to drop onto the soil to be sampled.

7.1.2 Position the hammer above and attach the anvil to the top of the sampling rods. This may be done before the sampling rods and sampler are lowered into the borehole.

7.1.3 Rest the dead weight of the sampler, rods, anvil, and drive weight on the bottom of the boring and apply a seating blow. If excessive cuttings are encountered at the bottom of the boring, remove the sampler and sampling rods from the boring and remove the cuttings.

7.1.4 Mark the drill rods in three successive 6-in. (0.15-m) increments so that the advance of the sampler under the impact of the hammer can be easily observed for each 6-in. (0.15-m) increment.

7.2 Drive the sampler with blows from the 140-th (63.5-kg) hammer and count the number of blows applied in each 6-in. (0.15-m) increment until one of the following occurs:

7.2.1 A total of 50 blows have been applied during any one of the three 6-in. (0.15-m) increments described in 7.1.4.

7.2.2 A total of 100 blows have been applied.

7.2.3 There is no observed advance of the sampler during the application of 10 successive blows of the hammer.

7.2.4 The sampler is advanced the complete 18 in. (0.45 m) without the limiting blow counts occurring as described in 7.2.1, 7.2.2, or 7.2.3.

7.3 Record the number of blows required to effect each 6 in. (0.15 m) of penetration or fraction thereof. The first 6 in. is considered to be a seating drive. The sum of the number of blows required for the second and third 6 in, of penetration is termed the "standard penetration resistance", or the "N-value". If the sampler is driven less than 18 in. (0.45 m), as permitted in 7.2.1, 7.2.2, or 7.2.3, the number of blows per each complete 6-in. (0.15-m) increment and per each partial increment shall be recorded on the boring log. For partial increments, the depth of penetration shall be reported to the nearest 1 in. (25 mm), in addition to the number of blows. If the sampler advances below the bottom of the boring under the static weight of the drill rods or the weight of the drill rods plus the static weight of the hammer, this information should be noted on the boning log.

7.4 The raising and dropping of the 140-lb

(63.5-kg) hammer shall be accomplished using either of the following two methods:

7.4.1 By using a trip, automatic, or semi-automatic hammer drop system which lifts the 140-lb (63.5-kg) hammer and allows it to drop 30 ± 1.0 in, (0.76 m ± 25 mm) unimpeded.

74.2 By using a cathead to pull a rope attached to the hammer. When the cathead and rope method is used the system and operation shall conform to the following:

7.4.2.1 The cathead shall be essentially free of rust, oil, or grease and have a diameter in the range of 6 to 10 in. (150 to 250 mm).

7.4.2.2 The cathead should be operated at a minimum speed of rotation of 100 RPM, or the approximate speed of rotation shall be reported on the boring log.

7.4.2.3 No more than 21/4 rope turns on the cathead may be used during the performance of the penetration test, as shown in Fig. 1.

Note 4—The operator should generally use either 1% or 2% rope turns, depending upon whether or not the rope comes off the top (1% turns) or the bottom (2% turns) of the cathead. It is generally known and accepted that 2% or more rope turns considerably impedes the fall of the hammer and should not be used to perform the test. The cathead rope should be maintained in a relatively dry, clean, and unfrayed condition.

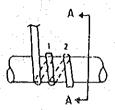
7.4.2.4 For each hammer blow, a 30-in. (0.76-m) lift and drop shall be employed by the operator. The operation of pulling and throwing the rope shall be performed rhythmically without holding the rope at the top of the stroke.

7.5 Bring the sampler to the surface and open. Record the percent recovery or the length of sample recovered. Describe the soil samples recovered as to composition, color, stratification, and condition, then place one or more representative portions of the sample into sealable moisture-proof containers (jars) without ramming or distorting any apparent stratification. Seal each container to prevent evaporation of soil moisture. Affix labels to the containers bearing job designation, boring number, sample depth. and the blow count per 6-in. (0.15-m) increment. Protect the samples against extreme temperature changes. If there is a soil change within the sampler, make a jar for each stratum and note its location in the sampler barrel.

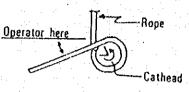
8. Report

8.1 Drilling information shall be recorded in the field and shall include the following:

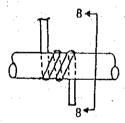
- 8.1.1 Name and location of job,
- 8.1.2 Names of crew.
- 8.1.3 Type and make of drilling machine,
- 8.1.4 Weather conditions.
- 8.1.5 Date and time of start and finish of boring,
- 8.1.6 Boring number and location (station and coordinates, if available and applicable),
 - 8.1.7 Surface elevation, if available,
- 8.1.8 Method of advancing and cleaning the boring,
 - 8.1.9 Method of keeping boring open,
- 8.1.10 Depth of water surface and drilling depth at the time of a noted loss of drilling fluid, and time and date when reading or notation was made,
 - 8.1.11 Location of strata changes,
- 8.1.12 Size of casing, depth of cased portion of boring,
- 8.1.13 Equipment and method of driving sampler.
- 8.1.14 Type sampler and length and inside diameter of barrel (note use of liners),
- 8.1.15 Size, type, and section length of the sampling rods, and
 - 8.1.16 Remarks.
- 8.2 Data obtained for each sample shall be recorded in the field and shall include the following:
- 8.2.1 Sample depth and, if utilized, the sample number.
 - 8.2.2 Description of soil.
 - 8.2.3 Strata changes within sample,
- 8.2.4 Sampler penetration and recovery lengths and
- 8.2.5 Number of blows per 6-in. (0.15-m) or partial increment.

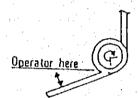

9. Precision and Bias

- 9.1 Variations in N-values of 100% or more have been observed when using different standard penetration test apparatus and drillers for adjacent borings in the same soil formation. Current opinion, based on field experience, indicates that when using the same apparatus and driller, N-values in the same soil can be reproduced with a coefficient of variation of about 10%.
- 9.2 The use of faulty equipment, such as an extremely massive or damaged anvil, a rusty cathead, a low speed cathead, an old, oily rope, or massive or poorly lubricated rope sheaves can significantly contribute to differences in N-values

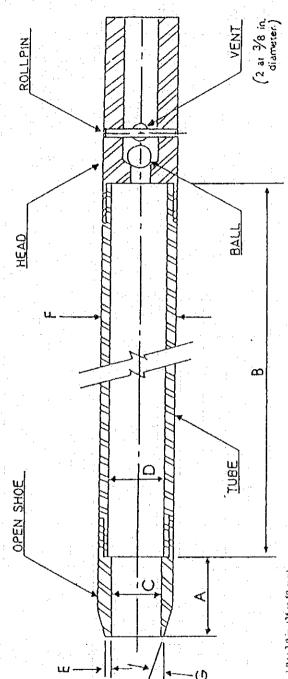

obtained between operator-drill rig systems.

9.3 The variability in N-values produced by different drill rigs and operators may be reduced by measuring that part of the hammer energy


delivered into the drill rods from the sampler and adjusting N on the basis of comparative energies. A method for energy measurement and N-value adjustment is currently under development.


(a) counterclockwise rotation approximately 1% turns

Section A-A



(b) clockwise rotation approximately 2% turns

Section B-B

FIG. 1 Definitions of the Number of Rope Turns and the Angle for (6) Counterclockwise Rotation and (b) Clockwise Rotation of the Cathead

- 18.0 to 30.0 to, (0.457.to 0.762 m) - 1.0 to 2.0 in, (25 to 50 mm)

- 1.313 ± 0.005 in (34.93 ± 0.13 mm) - 1.50 ± 0.005 - 0.000 in (1.81 ± 1.3 + 0.0 mm) - 0.10 ± 0.02 in (2.54 ± 0.25 mm) - 1.00 ± 0.05 = 0.00 in (50.8 ± 1.3 + 0.0 mm)

G = 16.0° to 23.0°

The 11st in, (38 mm) inside diameter spiri barrel may be used with a 16-gage wall thickness split liner. The penetrating end of the drive shoe may be slightly rounded. Metal or phasic retainers may be used to retain soil samples.

FIG. 2 Split-Burrel Sampler

The American Society for Tessing and Muserials takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical cummittee and must be reviewed every five years and if any eversed, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTNA Headquarters. Your comments white receive adepli constitutation at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTNA Committee on Standards, 1916 Race St., Philadelphia, Pa. 19103.

				·																					-	
		e E		********					-					-						-						_
	AREA	-1.5		IAAGH AOITA	STA FENETT	m	-1	r-i	<i>г</i> -1	Ц	r{	r-4	Ţ	М	14	23	28	13		28	58	47	44	7.0	26	47
-	l		1	ККЕТ ИПОИ	วฯ อู่ หมายหว	ď		0.5	0.7	1.3	Ţ.3	0.7	1.9	10.7	11.3	20.0	20.0	11.3		•					16.9	
	FACILITY	OBSERVED W.L	UNDRAINED SHEAR STRI NGTH om. ²	ANE.	ò																:					
	INCINERATOR	Ö	EARSTR	FIELD VANE	7																					
	NCINE		VINED SI	Gant	0.0			-							-											
	TON	ву ск	UNDR	UNCOMFINED	Chr.C		-																			
OF TEST RESULTS	NO 1		NOL	TAORI:		(CH)	(EE)	품	CH	æ	СН	ъ	СН	E	H H J	-	CH	CH.	СН	СН	SM	SM	SM	M-SP	HO	님
TRES	LOCATION				ĝ ŝ														,					175		
FTES	CO	2870	AL YSIS	ER	2 \$																<u></u>	.,				
RY O	FI		SIEVE ANALYSIS	% FINER	No. No.		ļ					· 	-			•			:							
SUMMARY	MANAGEMENT	JO8 No.			ž ž			:																		
S			THDI:	VIT WE	n 13w																					
	WASTE	BH-1N	JANIT.	÷	ā	(×	(Ā:		•				: "	:												
	SOLID	N c	AT II RIG RC, LINGT	%	a.	Secovery)	Recovery)																-			
	BANGKOK	BORING: No.	ATI		ij	(NO R	(No																	11 1		. :
	ON BAN		l .	R CON.	WATE	<u> </u>																				
	STUDY	06/			2	1.95	3.45	4.95	6.45	7.95	9.45	0.95	2.45	3.95	5.45	5.95	3.45	9.95		95	.45	3.95	.45	28.95	.45	.95
	THE	22/10/90	шеш	Z	ROM	1.50	00	.50	00	7.50	0.0	10.50 10	.00 12	.50 13	.00 15	.50 16	18.00 18	50	.00 21	.50 22	.00 24	50 25	.00 27	28.50 28	.00 30	50 31
	PROJEC F	DATE		IPLE Na		SS-1 1	SS-2 3	3-3 4	SS-4 6	-5	85-6	SS-7 10	SS-8 12	SS-9 13	SS-10 15	SS-11 16	SS-12 18	SS-13 19	SS-14 ₂₁	SS-15 22.	SS-16 24.00	SS-17 25	SS-18 27	SS-19 28	SS-20 30	SS-21 B1
	ă.	â				SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS	SS

	THE CONTRACTOR		Power		ACA PRODUCT COLOR														-								
		1			ng (rankris)											-		-	-								
٠.	: .	EA	-1.5 m.		ADARD ATTON	STAN	1 6	7, 5	<u>, </u>	40	26	6,	-		-		-							-			
		ITY AREA	1	7	TION	NETRA	α α				-Chi-min						}	-			<u> </u>		*******		 -		
		FACILITY	OBSERVED W.L.	NCTH Va		7	-	+				30.00		 													-
		RATOR	5	AR STRI	FIELD VANE	SHEAR Ov							:	-	-					-				 		!	
		NUT INCINERATOR	×	UNDRAINED SPIEAR STRI NGTI I Vm. 2	NED C	8 C.5C	-	- -	-							! 			-						<u> </u>		 \
		TUN	BY CK	UNDRA	UNCONFINED	SHEAR Out Out		+	-				1.0	_		!			-					-			
	SUMMARY OF TEST RESULTS	NO		NOI	<u> </u>	CLASS	님		1 2	3	SC	SC				-							2 -1	110000		-	
	STRE	LOCATION	D			No.							:								,			_			
)F TE		2870	SIEVE ANALYSIS	ZE.	3 C			-	-						[-					
	 ARY C	L	e Z	SIEVE A	% FINER	Z c		-	+	\dashv																	
	IMM	MANAGEMENT	JOB No			Ž,¥	\dagger	1	-										• 1								
Ì	St	TE MANA		THOL	չ ՄԱ // Լե	WET U																					
		WAS	BH-1N	LINIT		ā																					
		SOLID	Z Z	AT LERBERCELINUT	%	7																					
		BANGKOK	BORING No.	A.T.		_																					
		NO.		ТИЗТ		TLYM	. :																				
-		E STUDY	22/10/90	111-110	Z.	.TG	33.45	34.95	36.45	1,	٠	39.45				1		_									
		r THE	22,	1	4	FROM	33.00	34.50	36.00			39.00							-		j						
		PROJEC F	DATE	'0	N Elgi	148	SS-22	SS-23	SS-24	20,00	3	82-56											,				

POWE TRANS				in fragment of the second	en anade e migris institée							~			· · ·		ACCORDED TO	nca Véri		whom now		/ # 0 # 7 4	Tanahara A		pull ve a	
		1 1 1		·								-										·			-15-16Ti-	<u> </u>
		m.	-							;		-														
	AREA	-2.0 n	J	ANDAR OTTAR				,	rH	H	r-4	1	н	7	10	20	27	25	20	25	45	52	.35	11	58	46
			1 / 1	OCKET	_				1.2		۳,		2.5	1.3	11.3	15.0	22.5	15.0	14.4	22.5	22.5					13.2
	FACILITY	OBSERVED W.L.	Tilom		<u>~-~</u>										-	محتصد				.(\)						rn.
		OBSE	STR! NC	FIELD VANE	-				-																	
	INCINERATOR	.	UNDRAINED SPIEAR STRI NGTH om. 2	띮	Ò					- 1		-														
	INCE	C K	RAINED	UNCONFINED SHEAR	04.0																					
	NUT	λg	G D	UNCOR	S S	AGE	J. S.	GE								-										
SUMMARY OF TEST RESULTS	ON		NOL	LYDHIS	SV10	GARBAC	GARBAG	GARBAG	CH.	СН	СН	СН	CH	СН	СН	H.	СН	Э	Ë	Œ	СН	ည္တ	SM	SM)	SM	J.
RES	LOCATION		 		S S	S	y	9											•			<u> </u>		_ <u>``</u>	*	_ _
TEST	001	2870	YSIS		S c																					
(OF	:		SIEVE ANALYSIS	% FINER	ž c																					
AAR	EMENT	JOB No.	SIEV		Ž •	:			:														:			
NM)	NAGE	<u> </u>			źź				-	<u>;</u> ,		12														
V)	WASTE MANAG	z	THOE	IW TIVI	MEL n							` .														
	- 1	BH-2	MIT		ಷ	y).	۲)	٧)								;	٠		i				:	cy)		
	SOLID		ATTERBERGLINIT	۶۲ -	~	ecovery)	Recovety)	Recove ty)				-								112				Recove		
	BANGKOK	BORING No.	ATILER	-	<u></u>	(No Re	(No Re	(No Re	-			- 1												(No Re		
	í	ä		۰,		5	5	2																		
	DY ON		TENT	е: :К СОЙ:	ΠΑW	10		-10																		
	STUDY	22/10/90	=		01	1.95	3.45	4.95	6.45	7.95	9,45	10.95	12.45	13.95	15.45	16.95	18.45	19.95	21.45	22.95	24 45	25.95	27.45	28.95	30.45	31.95
	THE	22/1	INPIH	2	FROM	1.50	3.00	4.50	0.09	7.50	00.6	10.50	12,00	13,50	15.00	16.50	18.00	19.50	21.00	22.50	4.00	25.50	00.	28.50	30.00	
	PROJECT	DATE	,	NPLE No		SS-1	SS-2	SS-3	SS-4	SS5	9-SS	SS-7 1	SS-8 1	SS-9 1	SS-10	SS-11	SS-12 1	SS-13 1	SS-14 ₂	SS-15 ₂	SS-16 24.00 24	55-17 2	SS-18 27	SS-19 ₂	SS-20 3	ss-21 B1.50
				WANTED AND ADDRESS OF	-10	ـــّـــ	L <u>`</u>			لـــــــــــــــــــــــــــــــــــــ		-78			<u> </u>			<i>01</i>	. vi	<i>01</i>	<u> </u>	U)	or]	S	တျ	<u> </u>

No.		eronia maipalityaya	Heriotopiski	- 	pagangagathinini						-			paners (-		-cours		designation of	-	سندمن	-	·	r	T	I	·	·
THE STUDY ON BANGKOK SOLID WASTE MANAGEMENT LUCATION ON NUT INCINERATOR FACILITY AREA 22/10/90 SURINCIAN BH-2N DOBN. 28/10/90 SURINCIAN BH-2N SURINCIAN																:				11								
THE STUDY ON BANGKOK SOLID WASTE MANAGEMENT LUCATION ON NUT INCINERALD FACILITY AREA 22/10/90 BUNINCINE. BN-2.N 106Ns. 2570 BY CK OSSERVED WILL 2. 2570 CK CK CK CK CK CK CK C				n.								-																
THE STUDY ON BANGKOK SOLED WASTE MANAGEMENT LOCATION ON NUT INCINERATOR PACELTY 10			A		11			38	45	53	8	17													1			
THE STUDY ON BANGROK SOLED WASTE MANAGEMENT LOCATION ON INTITIVERATOR PACEL. 22/10/90 SURINCIA. BH-2N Johns. 2870 ST CK COSSINGE LI PL PL PL PL PL PL PL				ij	1 1		ې نحر £TTSN3	18 8			1					~ III -						-					\$-2000 Year	
THE STUDY ON BANGROK'S GOLID WASTE MANAGEMENT LUCATION ON IUT INCINERATOR LUCATION ON IUT INCINERATIOR LUCATION ON IUT INCINERATIOR LUCATION ON IUT INCINERATIOR LUCATION ON IUT IUCINERATIOR LUCATION ON IUCINERATION ON IUCINERATIO			ACILI	ERVED W	√CT11 ¢n	i i	1 2) accordan				 				
THE STUDY ON BANGKOK SOLID WASTE MANAGEMENT LOCATION ON N 22/10/90 SORINGINA, BH-2N JOBAN, 2870 BY STUDY ON BANGKOK SOLID WASTE MANAGEMENT LOCATION ON N N N N N N N N N				OBS	AR STRI 1	FIELD VA	3																-					
THE STUDY ON BANGKOK SOLID WASTE MANAGEMENT LOCATION ON N 22/10/90 SORINGINA, BH-2N JOBAN, 2870 BY STUDY ON BANGKOK SOLID WASTE MANAGEMENT LOCATION ON N N N N N N N N N		-	CINER	м	NEL) SHE	ZED.										,												
SUMMARY OF TEST RESULTS 22/10/90 2					UNDRAI	NCONFIL						2	.															
10 10 10 10 10 10 10 10 10 10 10 10 10 1	.	ULTS	NO	Sa	NOL			G.	CL	/SM	SM.)	WS.										-						
10 10 10 10 10 10 10 10 10 10 10 10 10 1		T RESI	CATION	7.0		•				Ö)										`				:			
10 10 10 10 10 10 10 10 10 10 10 10 10 1		F TES	ŎŢ	287	AL.YSIS	K.				-	1																	
10 10 10 10 10 10 10 10 10 10 10 10 10 1		RY O		.n	EVE AN	% FINE									-		-											
10 10 10 10 10 10 10 10 10 10 10 10 10 1		IMMA	GEMEN	JOBS	i i																							
THE STUDY ON BANGKOK SOLID WAST 22/10/90 BURING NG. BH-2N N		SL			THOIS		n T3W																					
THE STUDY ON BANGKOK SOLE 22/10/90 BORING: No. 22/10/90 BORING: No. 33.00 33.45 No. 34.50 34.95 No. 34.50 34.95 No. 35.00 36.45 No. 36.00 36.45 No. 39.00 39.45 No. 10. 10. 10. 10. 10. 10. 10. 1			WASTE	BH-2'N	.IIII		, I				у)									·								
T THE STUDY ON 22/10/90 N N N N N N N N N N N N N N N N N N N			SOLID		FRIERC. 1.	%	٦,				scover																	
T THE STUDY ON 22/10/90 N N N N N N N N N N N N N N N N N N N			ANGKOK	BORING	ATI	-	=======================================				(No R																	
101 101 101 101 101 101 101 101 101 101			Ö				ПАW																					
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				06/0	1		01.	33.45	34.95	36.45	37.95	39.45																
		ي م		22/10		2	ROM	00	00	8		0																
			PROJEC F	DATE	70	NPLE K		SS-22	SS-23	SS-24	SS-25	SS-26															1	

							THE	ST	บอ	ΥC	N B							T	ING		*******						 	-			: 1	
PRO	÷ ,	-	<u> </u>	IAN	E.		MAN	AGE	ME	NT	: Terrioristana					· .		L	OCA	TIO	N.(NC	NUT	INC	INE	RATO	R FAC	JIC	ITY	AR	E A	
OWI	AC		TT		-					*			in in the second	- Annue	Visit de	-	erene.		_	Julius (19	****	HEVEL SERVICE	- Konsonis		e de la constante de la consta	- Control of the Cont	~		00450410	Conjunction of the last of the		
מייים מייים	SAMPLE NO.	E OF SAMPLE	SAMPLE DIST	RECOVERY		D	ESC	RIF	·τισ	NC	OF	М	1AT I	ERI	ΔL		3 3 3 4 4	GRAPHIC LOG	×	No Pio Liq	stic	L,	imit	Con	ten	1	Δ	S	u (UC u (FV p/2 s)	A 1/m ²)	รน์ (U รน์ (F
	"	TYPE	Ś							: *	:							GRA		0		(%				 _ i .	а	٠			(Blow	
		*****		С	AY.	wi	th (jar	baç	ge,	da	rk (дге	у.							40	_6	<u> </u>	<u> </u>	10	2	 	_2(] _	40	2	<u> 0 </u>
] ,		SS		-		•							-		1	1.5	m							-	-		O 3			+		
7					Y					es.	. :					:					5			1			1			+		-
2		SS			r.			2											• .		-	-		1-	\dashv		þ,			+		
3		SS																		-			7	\vdash	\dashv		L .			+	-	
								. !													-	1		 	-		 			\dashv		-
4		SS	1	2																		. <u></u>		 	\dashv	-	þi			+	<u> </u>	
5		SS							el:	l f	ragi	nen!	t, į	gre	enis	sh								-	\dashv		\parallel		- I	\dagger	4 4	
					еу, Н)	s	of t	•							1.					 	-		ļ	-	-		121-	\dashv	7 1	+		-
5 6	5	SS	7	a "	1							-					-				+			-			þi	\dashv		+		
	,	SS				٠			•		-		-								\dagger	••••		+			#			+		-
7		J.J	\prod	1											1						-			+			1			+	<u> </u>	
8		ss	7	4						:	:			٠											-) - -	\dashv		+	· .	
- - 9		SS					:				N 4						•			 	+	÷	<u> </u>	1,34,14	\dashv		1	1		+	-	
				٦											15	5.0	m						L	-	\dashv	-	₹3	-		+	<u>. 1 12</u> . 1	 -
1	۱	SS		4								-							:		+			\vdash	-		-	Ų	14	+		-
١,		SS					:												i iji	-	+	·		\vdash	\dashv			1		+		
┤ '	.	JO.		s	ltv	, CI	_AY	tr	ace	, f	ine	sar	nd.	o n	avie	: sh					+			+					Q 23	+	1 1	
1	2	SS	7	4 pi	OWI	b	ıt ç	re	eni	sh	gre	эў б	S	S-1:	2, s	stif	ff		1111		+				\dashv	- 1))	- - }	<u>.</u> 3	
	ا پ	SS) V6 (H)	гу	st	LT F	•								_			-	-		<u> </u>	-	+		<u> </u>	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	/	+		
										•							;			ļ	+	.		1	+	<u> </u>	-	{	13	+		-
٦¹،	4	SS	7	4																	+	-		 	\dashv	<u> </u>	-	_\	Q :	23		
1:	5	SS					,														1				+				/	+		
						·	·					v	····	-	2.	3,6	m		1 11		+		<u> </u>	-	+	7 . T			Ц.	*) :	_
	5	ss	7	s	ilty	, f	ine	SA	ND	bu	t ne	ed i u	um 1	to (coar	rse	4		•		 			-		100				+	<u>\</u>	58
<u>-</u>				g	air	0		19	, (jre	yisl						to					<u> </u>		<u> </u>	-		-	_		+	+	
				Lve	, i y	UBI	,5 0		JM,	<u> </u>		В	ORI	NG	ST.	AR1	ED.	ا ۱۵،	/10/9) ()	SIG.	Pr	ORTA	 	_	w	<u> </u>		М		24 HI	 RS
			-									_		·					/10/9				AN.	· · ·	1	17	DB No	, 20	AFT	ER	BOF	ING.

		**************************************		LOG OF BO	R	ING	No.	BH - 11	1	HOLE AND ALCOHOLOGY CHERY CHERY PA		
PF	ROJE	ECT	N/	THE STUDY ON BANCKOK SOLID ME. WASTE MANAGEMENT	L	OCA	TION.	ON NUT	INCINEF	ATOR F	CILITY A	RE A
OV	VNE	R			- Contract of							
0 DEPTH, m.	SAMPLE NO.	TYPE OF SAMPLE	SAMPLE DIST RECOVERY	DESCRIPTION OF MATERIAL	GRAPHIC LOG	Х	Plastic Liquid	l Water (Limit Limit (%)		×	Su (FV) (Qp/2 2.5 5	⊕ Sú(UC) ▲ Sú(FV) (1/m²) 7.8 (Blow/f1) 0 60
	17	SS						XXX				\wp_{47}
	18	SS		Silty fine SAND but medium to coarse grain @ SS-19, greyish brown, dense to very dense.								/
				(SM)								44
30	19	SS		29.8 m								10.70
	20	SS		Silty CLAY trace fine sand, li-brownish grey, very stiff. (CH) 31,5 m								26
	21	SS		Fine sandy CLAY, greyish brown, hard, (CL) 33.0 m								0 47
	22	SS	2		•							32
5	23	SS	2	Silty CLAY some fine to medium sand							C 19	
<u> </u>	24	SS		pocket, greyish brown, very sitff to hard.							+	9 40
	25	SS		(CL) 37,3 m Clayey fine SAND, grey, medium dense.							P 2	6
	26	SS		(SC) 39,45 m						<u> </u>		
40				END OF BORING		·					1,9	
						: '				.		
		. :										
	: 		\$1									
	L	L 	11	BORING STARTED.	10	/10/9	O RIG	PORTA	BLE.	WL1		24 HRS. R BORING.
				BORING FINSHED.	11	/10/9	O FOF	REMAN.	SR	JOË N		

						LOG	OF	BOR	IINC	N	0.	3H-2 N	· _		`			_
PF	≀oʻ	ECT	Ň	AME.	THE STUDY ON BAN WASTE MANAGEMEN	VGKOK SOL T	IO		OC4	TION	N ON	NUT	INCIN	ERAT	OR FAC	ILITY /	ARE A	2
OV	VN	ER		1 Tests are 1									:	-				***************************************
о рерти, т.	SAMPLE No.	TYPE OF SAMPLE	Pick		DESCRIPTION OF	MATERI	AL	GRAPHIC LOG	X	(Pla:	stic (imit 4)		nî	Δ 5 × 6	SPT, N	(1/m ²) 5 7 L (Blow	7.5 (/f1)
													X				<u> </u>	0
	1	SS		GARB	JAGE.													
\dashv	2.	SS																
-						٠.												
	3	SS					5.0	<u>m</u>			ļ							
	4	SS	2	2						-	ļ	: :			7 1			
	5						Video t					7			╟		15. 14	
4	ر. 	SS			trace shell frag	ment, gre	enish											
-	6	SS	72	(CH)	, soft,	•					<u> </u>				7			
	7	SS	ZZ	2														
	8				•									-	1			
	O	SS	22												7 1			
1	9	SS	22		•			i				-			Q 2	7.5		
1	10	SS					15,0	m										
-									L			-				10		
	11	SS	72	Silty	y CLAY trace fine	sand, gr	eyish									20		ļ
	12	SS	Zz	prowi	n but greenish gre f to hard.	y @ \$\$-1	2 & 14,							-	, .	\ \D 2		-
-	13	ss		(CH)										· 	: 	+	5	-
7	٠.٠															7	7.	
-	14	SS	22		•										Q	20		
┨;	15	SS					-			-				•		25		
╣.	16	c'c																
	16	3 5			•							İ		1			তি 4	5
1				(SC)			25,5	m _			 	· : : i						: '
- :		• .				BORING	STARTE	D. 1	2/10/	90 R	IG. P(ORTABI	LE	WL	-2.0	M. After	24 HR BORI	S. ING.
				•		BORING	FINSHE). I	3/10/	90 Ft	OREM	AN. S	SR		B No.	2870		

				LOG OF B	OR	INC	1 6	lo.	BH-2N	l .			DE 1200-12 124 - 124 - 1	**************************************	W Buttascuckowy
j	VNE		N/	AME. THE STUDY ON BANGKOK SOLID WASTE MANAGEMENT		oct	TIO	N. or	NUT	INCIN	ERATO	OR FAC	ILITY	AREA	
TH, M.	SAMPLE No.	SAMPLE	SAMPLE DIST RECOVERY	DESCRIPTION OF MATERIAL	GRAPHIC LOG	X Z	Plo	ostic uid i	Limit %)	Conter	:	Δ 5 × 0 2	SPT, N	(t/m ²) 5 (Blow	r.6 r/{t}
	17 18			(CH) 25,5 m Clayey fine SAND trace medium sand, grey, very dense. (SC) 27.0 m] .								101	T	52
30	19	SS	2	Silty fine SAND trace medium sand, brownish grey, dense to very dense. (SM)											
	20			31,5 m										F 4	58
35	22			Silty CLAY trace fine send, greyish li-brown, hard.		: ::							Ç) 38 45	
	24	SS		Silty fine SAND trace medium sand,											53
40	25	SS SS		brown, dense. (SM) 39.45 m					-					D 2 41	48
				END OF BORING					<u> </u>						
								-							
				BORING STARTED				. :	PORTA	·	<u> </u>	-2.00	AFTE		
**********	-	·		BORING FINSHED.		/10/9	90	FORE	AAN.	SR	JO	B No.,	2870	0	

Chapter 11. Disposal

11.1 Design of Leachate Treatment Plant

11.1.1 Study on Suitable Leachate Treatment System in Bangkok

At present, the BMA applies open-dumping methods for all landfill site Leachate from open-dumping. This creates a negative impact to surrounding environment, because of the highly concentrated leachate with considerable potential for problems caused from the leachate. Therefore a suitable leachate treatment system must be considered. In order to select the suitable leachate treatment system, the following items must be examined.

- 1. Present conditions leachate at existing disposal sites,
- 2. Design characteristics of influence leachate,
- 3. Design characteristics of the effluent from the leachate treatment plant, and
- 4. Proposal of the leachate treatment system design which is based on of effluent quality.

1) Present Conditions of Leachate at Existing Disposal Sites

Characteristics of the leachate at On Nut and, Nong Khaem are shown in Tables 11.1-1 and 11.1-2. The concentration of COD is higher than that of BOD; the range of SS is large (as thirty times at On Nut disposal site); the annual change of quality is not clearly observed.

Table 11.1-1 Characteristics of the Leachate at On Nut Disposal Site

	r			- '					
				·	D a	ta			·····
Items	Unit	19	88			19	90	·	
		Oct.	Dec.	Feb.	Apr.	Jun.	Aug.	Oct.	Dec.
Temperature	°C	29.5	25.8	30.5	33.0	31.0	29.0	29.0	24.5
pН		8.2	8.3	8.2	8.5	8.2	8.2	7.0	8.0
Alkalinity	mg/l	8,500	6,000	6,000	5,650	3,000	2,040	3,060	3,400
BOD	n	682	106	167	449	48	95	205	300
COD	e e	3,840	2,400	2,530	3,094	2,491	2,744	1,744	1,700
T-KN	R	1,625	504.4	504	953	280	224	897	560
SS	u	1,177	886	117	135	63	76	460	37
TS	0	9,678	9,232	9,857	11,013	9,430	6,800	5,884	6,478
vs	. 19	2,753	4,964	2,440	2,693	2,170	1,708	1,568	1,606
Sludge	- 11	6,927	9,224	7,417	8,320	7,256	5,092	4,316	4,872

		D	ala					Siginificant Level
Items	Unit	19 Mar.	90 Jun.	Ave.	Range	SD	CV	(95%)
Temperature	°C	29.0	29.0	29.0	24.5 - 33.0	2.4	±8.3%	27.3 - 30.7
pН	-	7.9	8.3	8.1	7.0 - 8.5	0.4	±4.9%	7.8 - 8.4
Alkalinity	mg/i	2,460	3,980	4,409	2,040 - 8,500	2,048	±46.5%	2,944 - 5,874
BOD	u	90	300	244	48 - 449	198	±81.1%	126 - 362
COD	п.,	1,444	3,530	2,552	1,444 - 3,840	787	±30.8%	1,988 - 3,115
T-KN	u	168	616	633	168 - 1,625	435	±68.7%	322 - 944
SS	н	116	600	287	37 - 1,177	365	±27.2%	26 - 548
TS	н	6,576	14,092	8,904	5,884 - 14,092	2,541	±28.5%	7,086 - 10,722
VS	н	1,412	3,396	2,471	1,412 - 4,964	1,083	±43.8%	1,696 - 3,246
Sludge	16	5,164	10,696	6,928	4,316 - 10,696	2,089	±30.2%	5,434 - 8,422

Table 11.1-2 Characteristics of the Leachate at Nong Khaem Disposal Site

		. :			D	ata			
Items	Unit	19	88		:	19	90		
		Oct.	Dec.	Feb.	Apr.	Jun.	Aug.	Oct.	Dec.
Temperature	%C ·	29.9	24.5	30.4	29.0	28.0	29.5	29.5	24.5
рΉ	-	8.2	8.1	8.1	8.4	8.6	9.0	7.0	7.8
Alkalinity	mg/l	10,000	11,000	8,900	6,650	8,500	2,200	2,960	7,300
BOD	=	268	202	262	254	108	238	360	410
COD	11	3,940	2,040	4,346	9,724	10,041	7,115	1,958	5,440
T-KN	11	827	1,177	897	224	673	616	392	1,233
SS	н	113	238	138	69	102	68	1,070	83
TS	"	1,432	14,188	18,203	20,613	21,782	15,233	8,568	13,988
VS	17	2,768	2,428	6,183	6,580	6,348	5,087	2,064	3,810
Sludge	Ħ	6,663	6,804	12,020	4,033	15,434	10,147	6,504	10,178

				 			· · · · · · · · · · · · · · · · · · ·	
		D	ata					Significant
		<u>:</u>	: : :					Level
Items	Unit	19	990	Ave.	Range	SD	CV	(95%)
		Mar.	Jun.				. 575	
Temperature	~დ_	31.0	28.0	28.4	24.5 - 31.0	2.3	±8.1%	26.8 - 30.0
рН	- "	8.1	8.3	8.2	7.0 - 9.0	0.5	±6.1%	7.8 - 8.6
Alkalinity	mg/l	2,800	5,400	6,571	2,200 - 11,000	3,141	±47.8%	4,324 - 8,818
BOD	11	114	360	258	107 - 410	100	±38.8%	186 - 330
COD	11	3,376	5,940	5,392	1,958 - 10,041	2,866	±53.2%	3,342 - 7,442
T-KN	H.	168	953	716	168 - 1,233	371	±51.8%	451 - 981
SS	Ħ	47	820.0	275	47 - 1,070	362	±31.6%	16 - 534
TS	b	9,846	16,396	14,025	1,432 - 21,782	6,092	±43.4%	9,668 - 18,382
VS	TF -	2,878	5,212	4,336	2,064 - 6,580	1,748	±40.3%	3,086 - 5,586
Sludge	11	6,968	11,184	8,993	4,033 - 15,434	3,388	±37.7%	6,570 - 11,416

2) Design Characteristics of Influent Leachate

The characteristics of leachate at existing disposal site are shown in Table 11.1-3. Data in Table 11.1-3 is the upper limit of 95% reliable section (as shown in Tables 11.1-1 and 11.1-2) COD and colour is higher than that of Japanese disposal sites. Based on the existing characteristics of leachate, the design leachate is shown in Table 11.1-4.

Table 11.1-3 Characteristics of Leachate at Existing Disposal Sites

Items	Unit	On Nut*1	Nong Khaem	Assumed *3 Characteristics
Temperature	°C	30.7	30.0	30.4
pН	-	8.4	8.6	8.5
Alkalinity	mg/l	5,847	8,818	7,400
BOD	ŧı	362	330	350
COD	11	3,115	7,442	5,300
T-KN	. 11	944	981	970
SS	\$ 1	548	534	550
TS	n,	10,722	18,382	15,000
VS	11	3,246	5,586	4,500
Sludge	Ш	8,422	11,416	10,000
Colour*2			17,000 ~ 30,000	

^{*1:} The data at On Nut and Nong Khaem apply at the upper limit of 95% reliability.

^{*2:} Colour characteristics indicated in the study of the faculty of Engineering Chulalongkorn University, because there is no analytical data at both disposal sites between Oct. 1988 to June 1990.

^{*3:} Assumed characteristics is an average of both disposal sites.

Table 11.1-4 Design Characteristics of Influent Leachate

BOD	COD	SS	pН	Colour
(mg/l)	(mg/l)	(mg/l)	(-)	(Pt-Co unit)
350	5,300	550	8.5	30,000

3) Design Characteristics of the Effluence from Leachate Treatment Plant

For the design characteristics of the effluence from leachate treatment plant, three cases are set which accord with a degree of leachate treatment. The three cases are:

Case 1: leachate treatment method that satisfies the industrial effluent standards in Bangkok

Case 2: leachate treatment method that satisfies the industrial efflient standards except BODt

Case 3: leachate treatment method without using Fenton method

According to the above cased, the design characteristics of the effluence from leachate treatment plant are shown in Table 11.1-5.

Table 11.1-5 Design Characteristics of the Effluence from Leachate Treatment Plant

	BOD*1	COD*2	SS*1	pH*1	Colour*3
· · · · · · · · · · · · · · · · · · ·	(mg/l)	(mg/l)	(mg/l)	(-)	(Pt-Co unit)
Case 1	60	180	30	5~9	250
Case 2	350	180	30	5~9	250
Case 3	60	Not Specified	30	5~9	Not Specified

*1: BOD, SS and pH are based on the industrial effluent standards in Laws and Standards on Pollution Control in Thailand

*2: COD based on the study of Bangkok Metropolitan Nong Khaem Nightsoil Treatment Plant

*3: Colour needs the "preventing environmental pollution standards" of Ministry of Industry in Thailand

4) Proposed Leachate Treatment System

The leachate treatment system that is based on the degrees of effluent quality is shown in Figure 11.1-1, 11.1-2 and 11.1-3.

Since these leachate treatment systems, however, have some of merit and demerit, Case-1 is recommended as a suitable leachate treatment systems which can keep appropriate conditions on public aquifers.

Further, the another leachate treatment system are more economic when used with aerated lagoons. The design calculation of the aerated lagoon method is shown as follows:

(1) Design Tank Volume of Aerated Lagoon

Table 11.1-6 Design of Aerated Lagoon Method (1)

	BOD volumetric loading	$<= 0.1 \text{ kg/(m}^3 \text{ d})$
Aerated	BOD-SS loading	<=0.05 kg/(kg-SS·d)
Lagoon	MLSS	About 1,000 mg/l
	Return sludge rate	About 15%
Sedimentation	Surface loading	$<= 20 \text{ m}^3/(\text{m}^2 \cdot \text{d})$
Tank	Weir loading	$< = 70 \text{ m}^3/(\text{m}^2 \cdot \text{d})$
	Retention time	>= 4 hrs

Table 11.1-7 Design of Aerated Lagoon Method (2)

		Oswald (1963	3)		Metca	lf & Eddy (1	972)	
Items	Acrobic	Facultative	Anaerobic	Aerobic	Facultative	w/Surface	Anaerobic	Aerated
	Pond	Anaerobic	Pond	Pond	Anaerobic	Stirrer	Pond	Lagoon
Depth (feet)	0.6~1.0	1~4	8~10	3-4	3~6	3~8	8~15	6~20
Retention period (days)	2~6	7~40	30~50	10-40	7~30	7~20	20~50	3~10
Organic loading	100~200	20~50	300~500*	60~120	15~50	30~100	200~500	· -
(lb/acre-day)								
BOD removal rate (%)	80~95	70~85	50~70	80~95	80~95	80~95	50~80	80~95

 $^{1 \}text{ ft} = 0.3048 \text{ (m)}, 1 \text{ lb BOD/acre-day} = 1.12 \text{ kg BOD/ha-day}$

^{*:} Assuming BOD influent 1,200 (mg/l)

$$V = \frac{Q_S \cdot C_S}{C_A \cdot L_S}$$

where, $V = Volume (m^3)$

 Q_S = Quantity of influent (m³/d) [= 300 + 0.15 x 300 = 345 m³/d]

 $C_S = BOD \text{ concentration of influent (mg/l)}$ $[= \frac{300 \times 1200 + 0.15 \times 300 \times 60}{345} \pm 1050 \text{ mg/l}]$

C_A = Mixed Liquor Suspended Solid [1000 mg/l]

 $L_S = BOD-SS loading [0.05 kg/SS kg/d]$

$$V = \frac{345 \times 1050}{1000 \times 0.05}$$
$$= 7245 \div 7300 \,\mathrm{m}^3$$

where, depth (H) = 5.0 m

$$A = \frac{V}{H} = \frac{7300}{5.0} = 1460 \text{ m}^2 [L30\text{m x } B16\text{m x } 3 \text{ sets}]$$

and Retention time (t) is

$$t = \frac{V}{Q_S} = \frac{30 \times 16 \times 5}{345 \times 1/3} \neq 21 \text{ (day)}$$

tank BOD volumetric loading

$$Lv = \frac{Q_S \cdot C_S}{V} \times 10^{-3}$$

$$= \frac{345 \times 1/3 \times 1050}{30 \times 16 \times 5} \times 10^{-3}$$

$$= 0.05 \text{ kg/m}^3 \cdot d \le 0.1 \text{ kg/m}^3 \cdot d$$

Design of aerated lagoon volume is shown in the following:

 $_{\rm L30m~x~B16m~x~H5m~x~3~sets}$ It is possible to remove BOD load by 80 -95 %.

(2) Design of Sedimentation Tank

(a) Retention time : 4 hr.

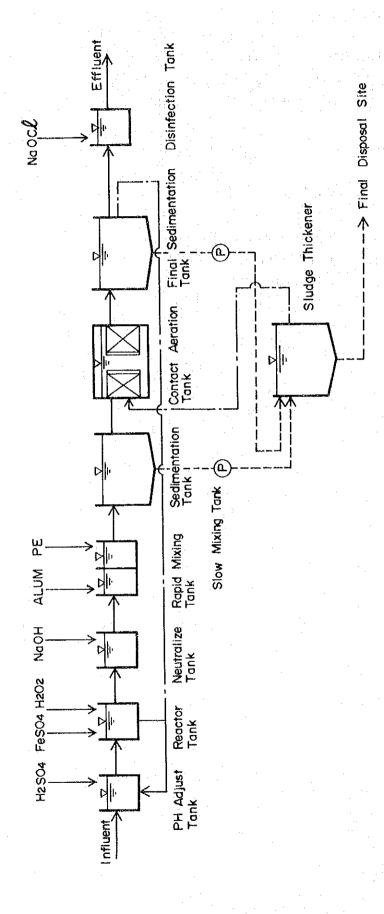
(b) Surface loading : 20 m³/m² d

(c) Sedimentation tank volume $V = 345 \text{ m}^3/\text{d x } 4 \text{ hr}$

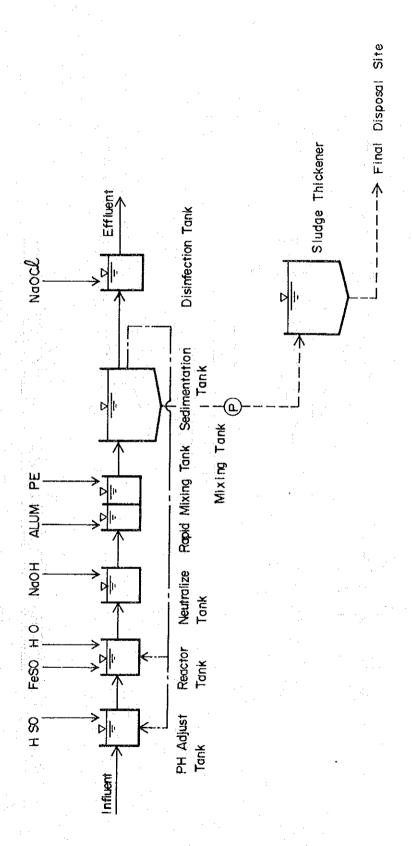
 $= 57.5 \text{ m}^3$

(d) Surface area $A = 345 \text{ m}^3/\text{d}/20 \text{ m}^3/\text{m}^2 \text{d}$

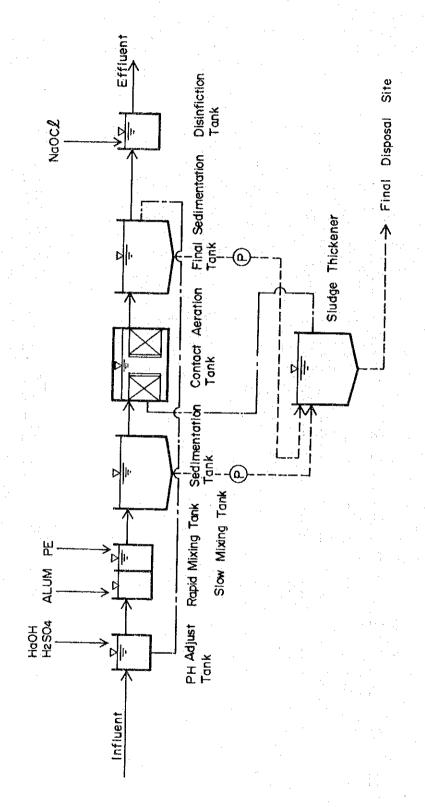
 $= 17.25 \text{ m}^2$


(e) Available depth $H = 57.5 \text{ m}^3/17.25 \text{ m}^2$

 $= 3.3 \,\mathrm{m}$


Design of sedimentation tank is shown in the following:

L6.0m x B3.0m x H3.3m


It is possible to remove SS load by 90 %.

(Fenton + Chemical + Biological Treatment Leachate Treatment Facilty

—Cdse 2— (Fenton + Chemical Treatment) Fig. 11.1-2 Leachate Treatment Facility

1.1-3 Leachate Treatment Facility — Case 3 —
(Chemical + Biological Treatment)

3-94

11.1.2 Capacity Calculation of Leachate Treatment Facility

1) Climate Condition in Bangkok

General climatological data of latest 10 years in Bangkok are attached on Appendix 1. These data show that average temperature is 28.6°C and average rainfall is 1,351.1 mm/year. Average temperature and average rainfall are presented on Table 11.1-8 and Table 11.1-9.

2) Water Balance

(1) Rainfall

Table 11.1-8 shows maximum rainfall for ten years up to 1988, and value is 1,673.7 mm/year. Average rainfall and maximum rainfall are presented on Table 11.1-10.

(2) Evaporation

Evaporation is calculated on "Thornthwaste Formula". The formulae is shown below and the evaporation calculation results are summarised in Table 11.1-11.

<Thornthwaste formulae>

Ep = 0.533Dj (10tj/J)^a
a = 0.000000675J³ - 0.000071J² + 0.01792J + 0.49239
J =
$$\sum_{J=1}^{12} (tj/5)^{1.514}$$

where, Ep = Average monthly evaporation (mm/d)

*Dj = Monthly coefficient (12 hrs/d=1.0)

tj = Average monthly temperature (°C)

* Monthly coefficient table is attached on Appendix 2.

Observed evaporation value data by Pan from 1961 to 1985 are attached as Appendix 3. These data show that calculated value is higher than observed evaporation value, moreover observed value is higher than actual possible evaporation value, so that the calculated value should be empirically modified.

It is emprically proved that the calculated value is higher than the observed value. The relationship between them are indicated as;

Observed value = 0.8 x Calculation value

The modified evaporation values are shown in Table 11.1-12. And these values are further modified by a monthly coefficient. The results are shown as Table 11.1-13. These relations are presented in Fig. 11.1-4. And actual possible evaporation value is almost 80% of observed value by Pan, so that the actual possible evaporation values can be estimated from 0.8 times of the modified evaporation values are shown in Table 11.1-13. The actual evapotation values are shown in Table 11.1-14

(3) Water Balance

Relationship between the evaporation and the rainfall is shown in Table 11.1-15, which shows that rainfall is evaporated except during the rainy season.

3) Capacity of Leachate Treatment Facility

To minimize capacity of the leachate treatment facility standing water in the rainy season should be treated on a one year cycle, as shown in Fig. 11.1-5. In the case of average rainfall year, leachate is treated by 1.16 mm/d.

X J	Monthly	Table 11.1-8 Monthly Rainfall month JAN FEB	MAR	APR	MAY	NDC	Inc	AUG	SEP	OCT	NOV	DEC	ANNAL
			7.5	17.3	12.8	205.8	22.9	78.3	178.1	ı	1	1	(522.7)
0 9.2 50		20	50.2	29.7	216.2	96.9	67.3	88.5	167.0	82.7			(801.7)
0 25.9 28.1		28.	-4	58.5	133.7	90.6	127.8	128.4	168.4	235.5	96.0	14.6	1,107.5
0 0 24.7		24.	~	0	2.4	109.4	132.0	558.8	272.8	272.7	285.9	11.0	1,669.7
0 0 47.3		47.3		39.5	143.1	39.2	150.4	115.8	149.9	65.2	50.6	0	801.0
0 0 0		0		0	1	I	152.1	156.1	309.9	272.7	68.2	0	(959.0)
0 2.4 0	·	0		10.4	375.7	54.3	143.0	135.1		252.7	1		(973.6)
0 0 32.5		32.5		41.8	35.0	185.4	25.9	136.2	380.7	379.0	305.0	0	1,521.5
0 63.2 15.7		15.7		91.5	283.9	146.1	126.9	312.8	373.1	260.2	0		(1, 673.4)
29.2 0.9 82.0		82.0		2.4	128.2	86.5	176.8	181.1	410.1	315.5	33.7	-	(1,496.4)
29.2 101.6 288.0		288.0		291.1	1,331.0	1,014.2	1, 125. 1	1,891.1	2,410.0	2,136.2	839.4	25.6	
3.2 11.3 28.8		28.8		29.1	147.9	112.7	112.5	189.1	267.8	237.4	139.9	5.1	1,357.1
												7	

PROCESSING SUB-DIVISION CLIMATOLOGY DIVISION METEOROLOGICAL DEPARTMENT FEBRUARY 14, 1990 DATA

Table 11.1-9 Monthly Temperature

		-		******	-	·	documents:	_		-	
ANNVAL	29.2	28.4	28.5	28.8	28.7	28.7	28.3	28.8	28.5	1	28.6
DEC	27.2	24.9	24.7	26.2	26.8	26.0	26.1	24.5	25.5		25.8
NOV	28.0	27.3	29.0	26.3	27.9	28.0	27.4	28.5	26.3		27.6
OCT.	28.6	28.5	28.5	28.1	27.9	27.8	28.3	28.6	27.9	28.2	28.2
SEP	28.8	29.0	28.3	28.6	28.6	28.3	28.7	28.7	28.9	28.7	28.7
AUG	29.3	28.7	28.5	28.9	29.3	28.9	29.5	29.9	28.4	29.1	29.0
JUL	29.4	29.0	28.9	29.7	28.8	28.4	28.7	30.1	29.1	29. 2	29.1
JUN	29.4	29.3	29. 2	30.0	29.1	29.3	29.7	29.8	29. 5	29.1	29.4
MAY	31.7	29.5	30.4	31.6	30.3	29.6	29.4	30.2	29.4	30.1	30.2
APR	31.5	30.3	29.9	31.6	31.0	30.6	30.6	30.8	30.5	31.5	30.8
MAR	30.5	29.7	29.7	29.8	29.5	30.2	28.7	29.5	30.4	28.8	29.7
FEB	28.8	28.3	28.6	28.5	28.7	29.3	27.6	28.1	28.6	28.1	28.5
JAN	27.5	26.3	26.2	26.3	26.0	27.6	25.4	26.9	27.4	28.0	28.8
month	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	Av.

DATA PROCESSING SUB-DIVISION CLIMATOLOGY DIVISION METEOROLOGICAL DEPARTMENT FFBRIARY 14, 1990

Table 11.1-10 Rainfall Data (Maximum, and Average latest 10 years)

permitted to the second		
ANNVAL	1,673.4	1,357.1
DEC		. i
NOV	0	139.9
00T	2,69.2	237.4
贸	373.1	267.8
AUG	312.8	189.1
JUL	126.9	112.5
NUC	146.1	112.7
MAY	283.9	147.9
APR	91.5	29.1
MAR	15.7	28.8
码	63.2	11.3
JAN	0	3.2
month	1988	Av.

Table 11.1-11 Evaporation Calculation Result by Thornthwaste Formulae

	I	T
ANNVAL	2,242.5	99.8 2,232.5
DEC	106.5	
NOV	116.0	135.3
0CT	166.2	166.8
SEP	190.4	178.8
AUG	192.6	206.8
Tag	222.8	218.6
JUN	221.1	217.2
MAY	231.3	266.0
APR	247.4	265.5
MAR	249.4	210.8
FEB	151.2	144.8
JAN	147.3	122.1
month	1988	Av.

Table 11.1-12 First Modified Calculation Values

ANNVAL	4.1	8.0
ANN	1,794.1	1,786.0
DEC	85.2	79.8
NOV	92.8	108.2
<u>0</u>	133.0	133.4
SEP	152.3	143.0
AUG	154.1	165.4
JUL	178.4	174.9
Sign	176.9	173.8
MAY	185.0	212.8
APR	198.1	212.4
MAR	199.5	168.6
FEB	121.0	115.8
JAN	117.8	97.7
month	1988	Åv.

Table 11.1-13 Second Modified Calculation Values (Table 5 x Monthly Coefficient)

丘	E	MAR	APR	MAY	Non	JIJ.	AUG	SEP	0CT	NOV	эва	ANNVAL
		1							_			
1.20 1.1		5	1.10 0.90	0.80	0.85	0.85	0.90	0.90	0.95	1.15	1.65	
145.2 219.5	219. 5		178.3	148.0	150.4	151.6	138.7	137.1	126.4	106.7	140.6	
136.8 139.0 185.5	185.5		191.2	170.2	147.7	148.7	148.9	128.7	126.7	124.4	131.7	

Table 11.1-14 Actual Evaporation Values (Table 6 x 0.8)

							À						
month JAN		FEB	MAR	APR	MAY	NUC	JIL TIL	JUL AUG	SEP.	DC	NOV	DEC	ANWAL
								The second second					
1988	131.9	116.2	175.6	142.6	118.4	120.3	121.3	121.3 111.0		109.7 101.1 85.4	85.4	112.5	
Av.	109.4	111.2	148.4	152.9	136.2	136.2 118.2		1.18.9 119.1		103.0 101.4	99.5	105.3	

Table 11.1-15 Volume of Standing Water

		-				
ANNVAL	1,673.4	1,446.0	821.1	1,357.1	1,423.5	422.9
DEC	0	112.5	I	5.1	105.3	ı
NOV	0	85.4	1	139.9	93.5	7.07
D0	260.1	101.1	159.0	237.4	101.4	136.0
SEP	373.1	109.7	263.4	267.8	103.0	164.8
AUG	312.8	111.0	201.8	189.1	119.1	70.0
Ę	126.9	121.3	9.6	112.5	118.9	ı
Min	146.1	120.3	25.8	112.7	118.2	
MAY	283.9	118.4	165.5	147.9	136.2	11.7
APR	91.5	142.6	1	29.1	152.9	ı
MAR	15.7	175.6	1	28.8	148.4	. 1
色	63.2	116.2	ı	11.3	111.2	1
JAN	0	131.9	1	3.2	109.4	1
month	Я	ω	◁	Я	ш	◁
year	213624	88			AV.	

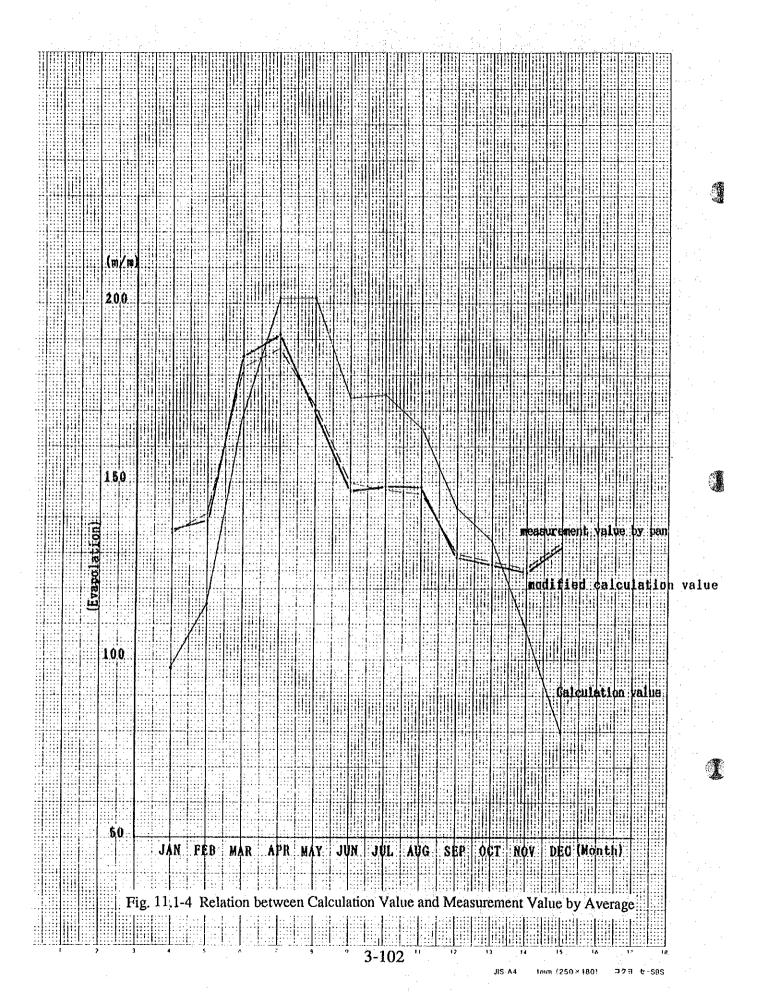
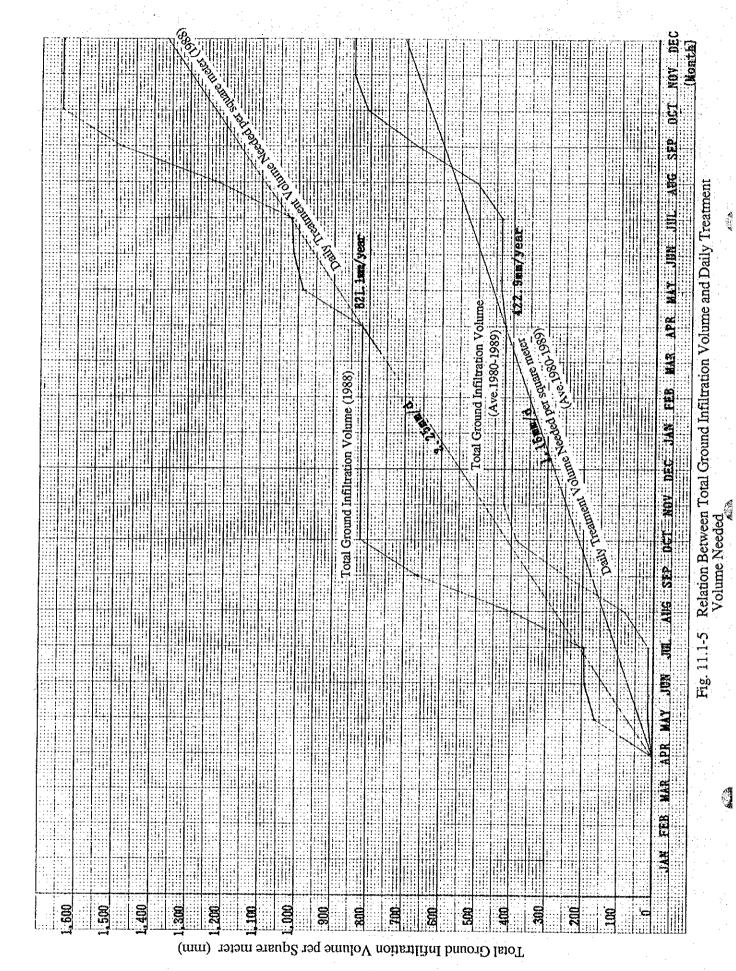



Table 11.1-16 Monthly Temperature in Celsius

YEAR	August 1997	JAN	F E B	MAR	400	21.0	11/44	1.64	100	0.00	0.57	11011	AC C	
					APR	YAH	 10N	JUL	AUG	SEP	007	HOV		ANNUAI
1980	MEAN	27.5	28.8	30.5	31.5	31.7		29.4	29.3	28.8	28.6	28.0	27.2	29.
	HUHIXAM	34.9	36.1	37.1	38.4	39.0	37.0	36.4	35.5	35.0		34.0	34.3	39.0
	DAY Hinimum	26 19.6	18 17.9	29	25	5	1	2	6,8	17		12,27	18	5/0
	DAY	30	16	23.3	23.0	25.2	43.8	. 24.2.	23.7 17	23.2 11	22.0	22.2	17.2	17.2 24/12
1981	MEAN	26.3	28.3	29.7	30.3	29.5	29.3	29.0	28.7		28.5	27.3	24.9	28.4
	MAXIMUM	35.5	34.7	35.5	37.8	36.3	33.8	34.5	35.0	34.8	34.9	34.6	33.2	37.8
1	DAY	31	. 14	30	2	29		14 - 17	23	9	23	1	12,13	2/04
	MUNIMIN	13.9	18.5	22.5	21.9	23.6	24.4	23.6	23.0	23.9	23.3	19.7	15.8	13.9
	DAY.	14	19	. 11	13	6	26	12	13	18	10	10	21	14/01
1982	MEAN	26.2	28.6	29.7	29.9	30.4	29.2	28.9	28.5	28.3	28.5	29.0	24.7	28.5
:	MUNIXAM	33.5	34.0	36.5	36.9	36.5	36.4	34.3	34.3	35.0	34.5	34.7	33.7	36.9
4.1	DAY	1,25	14	24	27	(3)	5	20	3	20	- 5	22,29	10	27/04
	MUMINIM	16.3	22.1		22.5	23.0	24.3	22.9	22.6	22.3	22.5	22.7	12.0	. 12.0
4222	DAY	. 10	1	26	9	12	18	.13	29	-10	. 9	11	. 29	29/12
1983	MEAN	26-3	28.5	9.95	31.6	31.6	30-0	29.7	28.9	28.6	28.1		26.2	28.8
	MAXIMUM	34.7	35.2	36.8	37.2	39.5	36.3	36.7	35,-5	34.3	34.3	33_5	33.7	39.5
	DAY	18	16	22	30	22	16	. 5	1	23	7,25	. 4	16	22/05
	MINIMUM	14-0	22.3	20.7	26.7	24.1	24.0	23.1	53-0	23.5	22.4	15.8	15.8	14.0
1984	DAY	24	3	. 6	1	9	3	16.	5,19	1, 7	31	59	. 1	24/01
1764	MEAN: MAXIMUM	26.0	28.7		31.0	30.3	29.1	28.8	29.3	28.6	27.9	27.9	26.8	28.7
:	DAY	34.1	34.6	35.8	37.0	38.0	34.5	34.6	34.5	34.8	33.8	34-6	34.0	38.0
	MINIMUM	31 14.0	19.5	21.5	23.8 8.85	23 .8	23.4	19	18	12	12	7	19	5/05
1.11	DAY	10	8	3	27	7	6	22.2	23.4	22.7 10	21.0 28	19.4 26	18.6 3.31	14.0 10/01
1985	MEAN	27.6	29.3	30.2	30.6		29.3	28.4	28.9	28.3	27.8		26.0	28.7
****	MUNIXAM	34.1	35.7	36.0	39.7	38.0	34.3	34.2	34.5	33.7	33.3	33.5	33.5	39.7
	DAY	53	8	3,30	13	5	8	22	. 18	2	30	21	8	13/04
	MINIMUM	20.4	21.8	21.4		23.8	23.5	22.6	22.6	23.3	23.2	20.4	16.0	16.0
	DAY	1	1	3	17		24	11	6	15	30	- 24	17	17/12
1986	MEAN	25.4	27.6	28.7	30.6	29.4	29.7	28.7	29.2	28.7	28.3	27.4	26.1	28.3
	MURIXAN	33.8	35.7	36,6	35.7		35.7	35.8	35.0	34.8	34.0	34.3	32.8	36.6
* 1	DAY	19	19	30	1/27	31	. 10	1	24	18	22	. 7	18	30/03
	MINIMUM	14.9	20.2	15.7	23.4	23.6	23.6	23.0	24.0	23.0	22.5	19.2	18.7	14.9
4007	DAY	8	20	. 4	7		19,27	24	10	3,24	31	30	24	8/01
1987	MEAN	26.9	28.1	29.5	30.8		29.8	30.1	29.9	28.7	28.6	28.5	24.5	28.8
•	MAXIMUN	34.0	33.9	37.0	37.7	36.3	35.3	36.0	37.0	35.4	34.5	34.1	33.3	37.7
	MUNINIM	21 18.9	27 19 . 1	22.2	11	25	25	22	14	. 4	31	25	30	11/04
	DAY	15	17.1	27	22.4	22_8 26	23.5	24.2	23.0	22.8	21.6	23_0 1	15.2	15.2
1988	MEAN	27.4	28.6	30.4	30.5	29.4	29.5	29.1	28.4	28.9	27 27.9	26.3	. 8 25-5	8/12 28.5
.,00	MUNIXAN	34.4	35.8	36.5	36.3	36.4	35.5	35.5	34.5	36.0	34.1	32.8	33.4	36.5
	DAY	30	7	30	22		11.28	8 91		. 3	3	2	20	30/03
1.0	MURINIM	18.0	21.2	22 4	23.0	23.6	23.9	23.2	22.2	22.7	20.2	19.2	17.4	17.4
	DAY	20	22	10	13	15	18	22	28	10		12	13	13/12
1989	MEAN	28.0	28.1	28.8	31.5	30.1	29.1	29.2	29.1	28.7	28.2	_		
	MAXIMUM	34.5	33.7	34.6	37.5	37.7	35.5	35.4	35.2	34.6	35.2		_	_
100	DAY	21	27	31	8	3	30	3	9	13	28		-	•
	MINEMUM	20.4	21.7	19.5	25.6	23.1	22.5	22.7	22.5	22.2	20.4	-	-	-
	DAY	17	13	9	5	15	17	12	12	13	22	-	-	
MEAN	REAN	26.8	28.5	29.7	30.8	30.2	29.4	29,1	29.0	28.7	28.2	27.6	25.8	28.6
EXT.	MAXIMUM	35.5	36.1	37.1	39.7	39.5	37.0	36.7	37.0	36.0	35.2	34.7	34.3	39.7
EXT.	MINIMI	. 13.9	17.9	15.7	21.9	22.8	22.5	22.2	22.2	22.2	20.2	15.8	12.0	12.0

DATA PROCESSING SUB-DIVISION CLIMATOLOGY DIVISION METEOROLOGICAL DEPARTMENT FEBRUARY 14, 1990

3-104

Table 11.1-17 Monthly Relative Humidity (%)

YEAR		JAN	FED	MAR	APR	MAY	JUN	1 OF	AUG	SEP	OCT	·NOV	DEC	ANNUAL
1980	MEAN	70.6	70.8	74.7	73.9	72.4	79.6	77.4	76.9	79.7	82.1	75.6	69.4	75.3
	MEAN MAX.	91.9	88.1	90.8	88 4		92.3	89.2	90.4	92.8	94.3	90.5	87.8	90.2
	MEAN MIN.	42.8	48.4	52.3	53.6	54.6	62.0	61.0	60.0	62.1	64 . 4	57.7	49.0	55.7
	MINIMUM	30.0	30.0	27.0	37.0	40.0	49.0	51.0	48.0	53.0	50.0	47.0	41.0	27.0
1981.	MEAN	67.9	74.2	75.3	75.3	80.3	78.1	77.9	77.9	80.3	79.6	80.0	. 67.7	76.2
	MEAN MAX.	87.8	91.8	90.6	90.0	93.5	89.8	91.0	90.1	92.8	92.2	91.6	84.0	90.4
	MEAN HIN.	43.3	50.6	55.8	54.9	63.0	03.5	62.6	63.6	62.6	62.7	65.0	49.8	58.1
	MINIMUN	35.0	30.0	48.0	45.0	53.0	51.0	55.0	53.0	50.0	54.0	52.0	39.0	30.0
1982	MEAN	68.2	76.6	76.5	75.0	76.3	78.4	78.1	79.4	81.4	82.0	75.9	70.4	76.5
	MEAN MAX.	88.1	91.1	89.5	90.0	89.9	89.7	91.6	91.7	92.5	94.1	91.2	87.1	90.5
	MEAN MIN.	44.3	56.7	58.5	55.9	58.8	64.1	62.5	63.2	65.1	65.4	57.7	50.9	58.6
	MINIMUM	32.0	42.0	42.0	39.0	44.0	52.0	52.0	53.0	50.0	55.0	46.0	38.0	32.0
1983	MEAN	69.4		74.8	73.6	72.3	76.1	77.1	81.9	83.3	84.6	77.0	69.1	76.3
	MEAN MAX.	86.6			87.2	85.6	89.4	90.5	94.6	94.7	84.6	91.6	84.0	89.3
	HEAN MIN.		53.5			54.7	60.5	60.3	65.6	67.0		59.5	52.0	58.2
	MINIMUM	38.0	30.0	31.0	48.0	40.0	50.0	51.0	49 0	55.0	58.0	46.0	44.0	30.U
1984	MEAN	71.7	73.5		74.1	74.3	76.5	76.7	73.7	80.4	78.7	72.5	68.6	74.5
	MEAN MAX.	88.7	88.7	88.8	89.2	88.5	88.3		86.3	93.7	92.7	88.0	85.3	89.0
	MEAN HIN.	51.0	54.0	52.2	54.9	57.0	62.6	60.2	59.8	62.2	60.4	54.3	49.4	56.5
	MINIMUM	7.1 B		40.0		40.0	57.0	48.0		53.0	36.0	44.0	42.0	36.0
1985	MEAN	, · ·	73.7	70.4	72.5	77.4	74.1		74.8	79.6	81.2	75.5	64.2	74.3
1703	MEAN MAX.	89.9		86.7	88 1	90.7	85.5	88 7	88.0	92.4	93.3	90.5	83.5	88.9
	MEAN MIN	49_0	51.5		52.2		61.1		58.8		63.7	56.7	42.7	54.5
	MINIMUM	49.0 36.0		23.0	31.0	43.0	46.0	44.0		63.6	37.0	38.0	36.0	23.0
1986	MEAN	63.6	72.6		71.4	73.4	72.6	75.7		78.8	81.7	71.1	70.0	72.0
	MEAN HAX.	84.2				86.3	86.7	89.2	88.3	_	94.3	85.7	87.3	88.1
	MEAN NIN.	39.1	50.1		50.2	57.8	56.9	60.4	56.9		63.4	52.6	50.7	53.7
	MINIMUM	29.0	24.0		39.0			45.0	47.0	45.0	53.0	45.0	38.0	24-0
1987	MEAN	63.6	69.8	68.8	69.7	73.6	75.4	68.6	71.5		79.6	79.1	62.0	71.8
1/51	MEAN MAX.	82.2		86.9	85.3	87.9	88.3	83.3	85.9	92.5	93.4	92.3	80.1	87.0
-		41.8			48.0	56.0	61.2		54.6	62.2	61.2	61.4	41.1	52.7
	MINIMUM	28.0		17.0		46.0	49.0		44.0		43.0	44.0	29.0	17.0
1988 .	MEAN	66.D	74.8		74.9	79.5		75.2	79.8		79.7	66.3	64.9	73.9
	HEAN MAX.	85.0	89.6	85.2	88.0	91.8	87.3	89.2	92.3	92.8	92.3	81.2	83.4	88.2
•	MEAN MIN.	45.2	55.1	52.7	57.7	63 t	57.3	59 0	64.7	62.9	62.5	50.2	46.2	56.4
		31.0		40.0	46.0	47.0	44.0	47.0	50 O		46.0	35.0	38.0	31.0
1989	MEAN	75.4		74.4	68.0	71.9	71.1		72.7	78.2	80.2	-	_	` ea
1707	HEAN MAX.	91.1	91.0	89.0	83.6	87.5	86.5	86.2		92.1	93.7	_		
-	MEAN MIN.	55.6	55.3		46.5	53.8	55.7	57.2	57.2	59.6	61.6			-
	MUNINIM	4.6	4.3	.4.1	2.6	3.5	4.3	4.0	4.6		4.7		· -	-
MEAN	MEAN	68.9	73.8	72.6	72.8	75.1	75.5	75.6	76.2	80.2	80.9	74.8	67.4	74.5
MEAN				88.3	87.6	88.7	88.4		89.4	92.9	92.5	89.3	84.7	89.0
MEAN	MEAN MIN.		52.3	52.1		57.7	60.5	59.4	00.4	61.5	63.4		48.0	55.9
* (- M ()	HINIMUM	46.0		4.1	2.6	3.5	4.3		4.6	4.8	4.7	35.0	29.0	2.6

DATA PROCESSING SUB-DIVISION CLIMATOLOGY DIVISION METEOROLOGICAL DEPARTMENT FEBRUARY 14, 1990

Table 11.1-18 Modified Coefficient of the Time from Sunrise to Sunset

										1 1	
NL	JAN	FEB	MAR APP	MAY.	JUN	JUL	AUG	SEP	OCT	YON	DEC
0	1.04	. 94	1.04 1.01	1.04	1.01	1.04	1.04	1.01	1.04	1.01	1.0
5	1.02	. 93	1,03 1,02	2 1.06	1.03	1.06	1.05	1.01	1.03	. 99	1.0
10	1.00	91	1.03 1.03	3 1.08	1.06	1.08	1.07	1,02	1.02	. 98	. 9
15	. 97	. 91	1.03 1.04	1.11	1.08	1, 12	1.08	1.02	1.01	. 95	9
20	. 95	. 90	1.03 1.05	5 1.13	1.11	1.14	1.11	1,02	1.00	. 93	. 9
25	. 93	. 89	1.03 1.08	1.15	1.14	1.17	1.12	1.02	. 99	. 91	. 9
26	. 92	.88	1,03 1.06	1.15	1, 15	1.17	1.12	1.02	. 99	. 91	. 9
27	. 92	. 88	1.03 1.07	1.16	1.15	1.18	1, 13	1.02	99	. 90	. 9
28	. 91	. 88	1.03 1.07	1.16	1.16	1.18	1.13	1.02	. 98	. 90	. 9
29	. 91	. 87	1.03 1.07	1.17	1.16	1.19	1.13	1,03	. 98	. 90	. 8
30	. 90	87	1.03 1.08	1.18	1.17	1.20	1, 14	1.03	. 98	. 89	. 8
31	. 90	. 87	1.03 1.08	1, 18	1, 18	1.20	1.14	1.03	. 98	. 89	8
32	. 89	.86	1.03 1.08	1.19	1. 19	1.21	1, 15	1.03	. 98	. 88	.8
33	. 88	.86	1,03 1,09	1.19	1.20	1.22	1. 15	1.03	. 97	. 88	. 8
34	. 88	. 85	1.03 1.09	1, 20	1.20	1.22	1.16	1.03	. 97	. 87	. 8
35	. 87	85	1.03 1.09	1.21	1.21	1.23	1, 16	1.03	. 97	. 86	, 8
36	. 87	. 85	1.03 1.10	1, 21	1. 22	1.24	1, 16	1,03	97	. 86	. 8
37	.86	. 84	1.03 1.10	1.22	1.23	1.25	1.17	1.03	. 97	. 85	. 8
38	. 85	. 84	1.03 1.10	1.23	1.24	1.25	1.17	1.04	. 96	. 84	8
39	. 85	. 84	1.03 1.11	1.23	1.24	1.26	1.18	1.04	. 96	. 84	. 8.
10	. 84	. 83	1.03 1.11	1.24	1.25	1.27	1.18	1.04	96	. 83	. 8
11	. 83	. 83	1.03 1.11	1. 25	1.26	1.27	1.19	1.04	. 96	. 82	. 80
12	. 82	.83	1.03 1.12	1.26	1.27	1.28	1.19	1.04	. 95	. 82	.79
13	. 81	. 82	1.02 1.12	1.26	1.28	1.29	1.20	1.04	. 95	.81	.7
14	. 81	. 82	1.02 1.13	1, 27	1, 29	1.30	1.20	1.04	. 95	.80	70
15	. 80	. 81	1.02 1.13	1.28	1, 29	1, 31	1.21	1.04	. 94	. 79	.7
16	.79	. 81	1.02 1.13	1.29	1.31	1.32	1.22	1.04	. 94	.79	.74
17	.77	. 80	1.02 1.14	1.30	1.32	1.33	1.22	1.04	. 93	.78	.73
18	.76	. 80	1.02 1.14	1.31	1.33	1.34	1.23	1.05	. 93	.77	.73
9	. 75	. 79	1.02 1.14	1.32	1.34	1.35	1.24	1.05	. 93	. 76	.7
50	.74	. 78	1.02 1.15	1, 33	1.36	1.37	1.25	1.06	. 92	.76	.70

Table 11.1-19 Monthly Rainfall (mm), Rain-Days and Daily Maximum

HIT. SC.	
SINGHARAT P	METROPOLIS
455066	BANGKOK
••	•••
STATION	PROVINCE

YEAR		Z Y	FEB	MAR	APR	¥ X	200	101	AUG	SEP	0.0	>02	DEC	ANNUAL
9.7		œ		Ç	0.			14.1	261.0	162.6	c	O	0	
	R-DAY	4-	0	o	0	9		. 7	':		O	0	0	141
	*XXE	18.5	0					Ö	.vo	o	Q	0	· •	58.2
1980	AMT.		ı		17,3	ď	'n	22.9	78.3	178-1	•	t	1	
	R-DAY	ŧ	3		 73	M)	7			÷	F		1	
	*XXE	ī		~	o,		'n		္ခံ	4		ı		
1981	AM-	0	5 . . .		29.7	216.2	6.96		82.5	167.0	2	t	1	ľ
	R-DAY	0	•			4			'		,	1	,	1
	MAX.	: •	o,	50.2	27 .3	90	Ø	œ	+	~	26.3	t	1	ı
1982		ą		œ	00	133.7	9.06	127.8	128.4	168-4	235.5	0.96	14.0	1107.5
	R-DAY	0							*-	Sec.	Ţ		•	
	ZAX.	0		13.0	27.6		35.9	2	31	×0	6	~		ار. 1
1983		Ç	•	*	C _a	3	6		558.8	272-8	272.7		0,11	
	R-DAY	o i	0		0			*-	N	4				_
	XXX			2 * 52	•	Ŋ	31.9		67.	50.1		'n	8.6	Ŷ,
7861		.	C ₁	~	39.		o.	ď	Š	ġ.	·	50.6		
-	R-DAY	.				•		₹		6	∞	'n	0	
(HAX.	o.	.	Ö	3	21.9	21.2	•	22.6	42	 N	9	0	
1985	•	Q i	o,		9	1	•	7	9		ď	00	C	. 1
	RIDAY	(3)	0	φ.	0	9	ŧ	4			4		0	1
	XXX	_	æ		•	•		, E			٠. الم	33.5	0	•
1986			7.2	O I	10.4	375-7	54.3		'n		252.7	1		1
	X I O A	.		9						i	***	1	1	1
6	XXX	ə	7 7	•				58.6	38	٠	61.		•	1
786			- ·			'n		'n	ģ	380.7	ó		-	1521.5
	4014) -	-				ς,			τ-	4.0	•	ø	ω
0	- K Z Z	ຼີ່	•	21	54.7	6.1	67		62	69	99	2.67	0	7.69
0	- C) # (0	•	•	י" י	9	9	ณ์.	m M	0	o,	1	1
					r		`		۳.	- 1	•	<u>.</u>	1	
	******		*	٥.,	76.87	70°) # O O			45.	Ö	o,	ŧ	1
		2.1	11.2		28.9					0		j	4.3	1176-5
w	R-04Y	8	*				4.9	7. 8	ö	7.	6	in		67
× 1	≪ (•				•		71.5	47.		95.4	9 8	136.2
1989		29. 2	0.9	82.0	2.4	128.2	86.5	176.8	181.1	410.1	315.5	33.7	 	(1496.4)
;		-					-							(F. 000 - 1
;	:										DATA	PROCESS	NG SUB-D	SUB-DIVISION
	-											CLIMATOL	LOGY DIVI	VISION
												METEUROLUGI GEDDIIADY 14	3 5	DEFAKIMENI
												redroam	FT '5-1	5

2 102

Table 11.1-20 Monthly Mean Wind Speed (Knots) and Prevailing Wind

SPD. C. C. C. C. C. C. C. C. C. C. C. C. C. C	STATION	NO : 4552U1	BANGKOK	OK MEIKOFOL	270					1 1 1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111111111111			
SPD. 4.0 5.5 7.3 6.0 5.4 5.5 5.0 4.8 2.5 7.3 N.E. SPD. 5.8 4.0 4.6 5.2 4.8 4.8 5.4 7.8 <th>YEAR</th> <th></th> <th>NA 7</th> <th>l W</th> <th>-C</th> <th>APR</th> <th>MAY</th> <th>NO.</th> <th>JUL</th> <th>A UG</th> <th>111</th> <th>100</th> <th>NON</th> <th>DEC</th> <th>ANNUAL</th>	YEAR		NA 7	l W	-C	APR	MAY	NO.	JUL	A UG	111	100	NON	DEC	ANNUAL
SPREV. 2.8 6.2 5.9 4.9 6.5 5.8 4.5 4.8 3.2 5.7 8.7 8.8 5.7 8.8 5.7 8.8 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7<	1979	SPD.	0.4	, .	2 ° 2				0.# S	4 80 N		IN Z	a .	28 88 88	4 B M N
SPD. 3.0 4.7 6.1 4.8 3.5 4.7 4.3 4.7 2.6 2.8 2.3 3.3 4.7 2.6 5.8 5.3 4.7 2.6 5.8 5.3 4.7 2.6 5.8 5.0 SPD. 2.3 3.1 4.2 4.7 4.3 4.7 2.2 2.2 8.0 <td>1980</td> <td>SPD PRD EV</td> <td>2 8 8 8</td> <td>•</td> <td>9</td> <td>5</td> <td></td> <td>8.8 8.4</td> <td></td> <td>4 8 N 06 38</td> <td>• v2</td> <td>e</td> <td>u z N</td> <td>2 N N N N N N N N N N N N N N N N N N N</td> <td>4</td>	1980	SPD PRD EV	2 8 8 8	•	9	5		8.8 8.4		4 8 N 06 38	• v2	e	u z N	2 N N N N N N N N N N N N N N N N N N N	4
SPD. Z.3 S.1 6.4 4.4 4.7 4.3 3.3 1.7 2.2 2.0 SPD. S.4 6.9 7.8 6.0 5.2 4.5 5.7 2.2 2.2 2.2 8.8 SPD. S.4 6.4 6.9 7.8 6.0 5.2 4.5 6.0 8.7 8.2 8.5 8.7 8.7 8.7 8.2 8.7	1981	8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	о ш 12 М	> 5		4 8 8		4 × × × × × × × × × × × × × × × × × × ×		7 × 7	N	N 80 80 80	N N	M Z	о v
SPD. 3.1 6.4 6.9 7.8 6.0 5.2 4.5 3.7 2.2 2.2 3.5 5.5 5.6 5.0 5.2 4.6 6.0 2.9 2.2 2.7 3.5 5.6 5.3 3.6 5.3 4.6 6.0 2.9 2.2 2.7 5.6 5.3 3.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5	1982	SPD.	. M . M . M	E Ω	M N3		4 0 %	4 s	4 7 a N	4 B X E 38	M 38	. 8	์ เก็ก	• 22	M S N
SPD. 2.6 4.2 5.6 5.3 3.8 5.3 4.6 6.0 2.9 2.2 6.6 3.7 5.7 5.1 4.1 6.1 4.2 5.0 3.0 1.8 2.2 2.7 5.7 5.1 4.1 6.1 4.2 5.0 3.0 1.8 2.2 2.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5	1983	SPD PREV	€U # 4± m	6 4 = 8 32	0, 38 0, 38	80 TB	•	N 38 10	0	N 38	N B	2 8 N E E		ν ε Σ Ν	
SPD. 2.9 5.4 5.7 5.1 4.1 6.1 4.2 5.0 3.0 1.8 2.2 2.7 8PREV. SE W W W W W W W W W W W W W W W W W W	1984	0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0.0 0 0 0 0	ν 9 m	7 7 %	.υ .π.α .π.α .π.α .π.α .π.α .π.α .π.α .π			N 38		. CD 38 	V 3	У	å М	M E M	OS ESE MI
SPD. 3.2 5.1 6.7 5.5 5.7 4.3 4.6 2.8 2.1 2.1 2.6 SPD. 5.9 5.0 5.1 5.1 2.1 2.1 2.1 2.6 SPD. 5.9 5.0 5.1 5.2 3.1 SPD. 5.9 5.0 5.1 5.2 3.1 SPEV. 5W 5W 5W 5W 5W 5W 5W 5W 5W 5W 5W 5W 5W	08 5 5	S P P P P P P P P P P P P P P P P P P P	.ς .ε.ς .Ε.σ.	7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		tu ←3	4.3		4 5 3	0 35 N N	D 33	ωz	•		03
SPD. 3.4 6.0 5.6 4.9 4.4 4.8 5.0 5.1 2.2 3.1 PREV. E SySW SW	1986	P P P P P P P P P P P P P P P P P P P		N 6 N	5 s	ເບ ເບີ ຄ		10 N 32	# (/)	93	80 38 80 38 80 38	₩ • ₩ • ₩	2 N N T	2 N N N N	4 SE 2
SPD. 2.9 4.1 6.5 4.4 3.4 4.8 4.1 2.8 2.4 4.8 4.1 PREV. SW SW SW SW SW SW SW SW NE/E SPD. 3.0 5.3 6.3 5.2 4.7 4.7 4.5 4.6 2.7 2.2 3.0 WIND E S S S S S S S S S S S S S S S S S S	1987	. > 0 m 0 m	พ 4 ก	S & S	. 9	4 6 N	4 S	4 8 v	ω • Ν • Β	N 	N N	∞ til •-	2 4 Z 10 D		4
SPD 3.0 5.3 6.3 5.2 4.7 4.5 4.6 2.7 2.5 3.0 WIND SE S S S S S S S S S S S S S S S S S S	1988	S S S S S S S S S S S S S S S S S S S	2 8 8 8	* (r)	■ <i>U</i> 3	4 33 8 0 7 34	♥ 6 0 .	4 * N S 3	s 3 3 3 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4	00 38 18 (3) N	2.4 SE	7 3	2 N N N N N N N N N N N N N N N N N N N	NE 4 8 1	0 38 0 38
	MEAN PREV	SPO		1 . 0 1				4 7	1 . 1	4 8.6 3.8	K - 7	1	1 • 1	1. • 22. 1	4 4

DATA PROCESSING SUB-DIVISION CLIMATOLOGY DIVISION METEOROLOGICAL DEPARTMENT FERRIFARY 14 1990

Table 11.1-21 Climatological Data for th	ne Period 1956-1985		
Station BANGKOK METROPOLIS Index Station 48455 Latituds 13 44 M. Longitude 100 34 E.	Elevation of station above MSL Height of barometer above MSL Height of thermometer above ground Height of wind vane above ground Height of raingauge	2 20 and 1.25 d 33.10	meters meters meters meters

				· · · ·		• .					•		
	Jan	Feb	Mar	Apr	Мау	Jun	Juï	Aug	Sep	Oct	Nov	Dec	Year
Pressure (+1000 or 9	(, ádu 00						 	1.	 		1	 	-
Lioan	12.47	10,99	-09:96	08.40	06.85	06.34	06.46	06,51	1		1		
Ext. liax.	26.50	20,96	20.97	17.74	11.06	13.00	15.54	13,50	07.56	10,02	11,60	12.63	09.13
Ext. Uin.	04,42	02,27	02.08	99,66	99.40	97.76	98.78	99.36	98.20	01.22	20.58	21.32	26.50 97.76
Reon daily range	4.61	4.80	4.85	4.85	4,46	3,80		3.93	4.39	4.45	.4.28	4.51	4.40
Temporature (°C)													
Hean	25.6	27.2	28.6	29.6	29.3	28,7	28,1	27.9	27.6	27.5	26,7	25.5	77.7
iloan ilox.	31.9	32.8	33.9	31.9	31.2	33.1	32.6	32.4	32.0	31.6	31.5	31.4	27.7 32.7
lioan litu.	20.6	23.1	24.8	25.9	න.6	25.3	24.9	24.8	21.5	24.3	25.0	20.9	24.0
Ext. Hax.	35.7 .	36.6	39.8	10.0	39.5	37.7	37.8	36.3	36.0	35,3	35.1	35.2	40.0
Ext. Ilin.	11.5	15.9	. 16.5	19.9	21.1	21.7	22.2	21.2	21.6	18.3	14.2	10.5	10.5
Relative Humidit	7 (g)				. *								
tle an	72.1	75.7	76.0	76:0	78,4	78,5	79.3	50.2	82.8	82,2	77.5	72.5	77.6
iloan ilax	90.6	92.2	91.6	90.7	92.2	91.5	91.8	93.2	94.8	94.3	92.5	90.0	92.1
Bean Bin.	48,6	53.4	55.2	55.8	60.1	62.5	63.5	63.9	66.0	65.6	59.4	52.1	58.8
Ext. Ilin.	27.0	17.0	23.0	28.0	30,0	38.0	. 45.0	17.0	49.0	. 36,0	36.0	31.0	17.0
Dow Point (OC)]	l .					1			ļ		}	}
llean	19.6	22.1	23,6	24.5	24.6	24.2	25,9	23.9	24.2	25.9	22.1	19.7	25.0
Evaporation (mm.	! }		٠,										
llean - Pan	135.9	141.1	182.1	187.5	171.4	150.1	147.9	.157.1	270	40- 6			
Cloudiness(0-10)						,,,,,	. 17/07	,14761	130,4	127.9	125.8	155.5	1780.5
0100011109910-101							1			•	· .		
lean .	5.9	6,5	6,6	7,0	8.2	8,5	8.6	8.9	9.0	8.2	6.8	5.9	
Sunshine Duration	n(hr.)							,	,,,,			7.9	7.5
Moon	276,6	252,5	270,0	256.0	222\4	178.5	169.1	159,4	152.6	202.0	242,6	266.1	2647.8
Visibility (lam.)		-						3,7				20021	207760
0700 f.s.t.	5.2	4.9										٠.	
llean	9.6		5.9	7.5	6.6	8.7	8,4	8,1	8,0	8.0	8.1	7,5	7.4
	9.0	9,2	9,4	10,7	11,9	12.1	11.9	11.6 .	. 8,6	11.4	11,7	11.2	10,8.
Wind (knots)				٠.		٠.							
Preveiling wind	NE	S	8	s	s	. S#	SW	SW	S	NZ:	XE,	80	
Uson wind speed	2.6	4.1	5,0	4.6	3.0	3.8	3.5	3.6	2.7	2.3	2.5	NE 2.4	
llax, wind speed	31 HHE	37 H		52 E,	41 SSW	41 W	41 W,NW,	43 8	44 55%	40 NZ	37 SE.	31.58	52 B.ESE
Rainfall (mm.)				ESE			THE S				ESE	NHE,	
llean	9.3	29,1	26,2	66,4	169.9	156.1	158.7	204.6	339.4	239.5	48.3	9.7	11.22 0
lean rainy doys	1.3	2.9	3.0	6.4	15.7	16.7	18,1	20.6	21.5	17.0	5.9	1.3	1477.0
Greatest in 24 hr	39.3	73.0	88.	89.7	124.2	167.3	108.6	97.8	153.7	123.2	81.2	32.0	167.3
Day/Year	31/61	11/64	30/82	29/57	15/66	15/79	28/76	26/71	23/68	5/60	2/69	8/72	13/79
llumber of days w	<u>ith</u>						۲					•	
Hoze	19.1	15.9	16.3	9.3	2,9	1,3	0,0	0.8	1.0	2.2	6.3	11.8	87.7
Fog	3.5	1,2	0,4	0.0	0.1	. 0.0	0.1	0.0	0,0	0.1	0.3	0.7	6.4
Hell	0,0	0.0	0,0	0.0	0.0	0.0	0.0	0,0	0.0	0,0	.010	0.0	0.0
Thunderstorn	0.5	0.8	2.4	8.1	15.8	9.7	10.3	11.0	16.5	14.7	3,7	0.7	94.0
Squal1	0.0	0,0	0,0	0,1	0.0	0.0	0.0	. 0.0	0.1	0.0	0.0	0,0	0.2
							اا						

Remark :

11.2 Process Calculation

11.2.1 Generality

1) Capacity of plant : 100 m3 x 2 lines

2) Working period : 24 hr

3) Characteristics of leachate

	Influent	Effluent
pН	8.5	5 - 9
BOD	350	60
SS	550	40
Color	30,000	250

- 4) Flow sheet (See Figure 11.1-6)
- 5) Water & Material Balance
 - (1) Excess sludge amounts
 - a. CAT

$$200 \text{ m}^3/\text{d} \text{ x } (175 - 60) \text{ x } 0.5 \text{ x } 10^{-3} = 11.5 \text{ kg/d}$$

 $(0.8\% \text{ solution} = 230 \text{ m}^3/\text{d})$

- b. Coagulation
 - SS Removal $200 \text{ m}^3/\text{d} \times (550 40) \times 10^{-3}$

$$200 \text{ m}^3/\text{d} \text{ x } (550 - 40) \text{ x } 10^{-3} = 102.0 \text{ kg/d}$$

Conversion alum

$$200 \text{ m}^3/\text{d} \times 2,000 \text{ mg/l} \times 0.4 \times 10^{-3} = 160.0 \text{ kg/d}$$

Sub total =
$$11.5 + 102.0 + 160.0$$
 = 273.5 kg/d

c. Sludge Amounts

$$0.8\%$$
 Sol = 273.5 kg/d/8 kg/m³ = 34.2 m³/d
1.5% Sol. = 273.5 kg/d/15 kg/m³ = 18.2 m³/d

Separated water amounts = $34.2 - 18.2 = 16.0 \text{ m}^3/\text{d}$

d. Defoaming Water amount

pH Adjustment tank =
$$10 \text{ l/min x } 1,440 \text{ min/d x } 2 = 28.8 \text{ m}^3/\text{d}$$

Fenton tank = $15 \text{ l/min x } 1,440 \text{ min.d x } 2 = 43.2 \text{ m}^3/\text{d}$

Sub total =
$$28.8 + 43.2 = 72.0 \text{ m}^3/\text{d}$$

e. Chemical Use Amount

- i) H_2SO_4 98% sol. s.g. 1.84 200 m³/d x 1.5 l/m³ x 10⁻³ x 1.84 = 0.55 t/d (300 l/d)
- ii) FeSO₄ 10% sol. s.g. 1.45 $200 \text{ m}^3/\text{d} \times 2,500 \text{ mg/l} \times 10^{-3} = 500 \text{ kg/d}$ $500 \text{ kg/d} \times \frac{100}{10} \times \frac{1}{1.45} = 3.5 \text{ m}^3/\text{d}$
- iii) H_2O_2 35% sol. s.g. 1.13 $200 \text{ m}^3/\text{d} \times 150 \text{ mg/l} \times \frac{100}{35} \times \frac{34}{16} = 182 \text{ kg/d}$ $182 \text{ kg/d} \times \frac{1}{1.13} = 161 \text{ l/d}$
- iv) Alum 8% sol. s.g. 1.32 $200 \text{ m}^3/\text{d} \times 1.5 \text{ l/m}^3 \times 0.35 \text{ t/m}^3 \times 10^{-3} = 105 \text{ kg/d}$ $105 \text{ kg/d} \times \frac{100}{8} \times \frac{1}{1.32} = 944 \text{ l/d}$
- v) NaOH 24% sol. $200 \text{ m}^3/\text{d} \times 3.0 \text{ l/m}^3 \times 240 \text{ kg/m}^3 \times 10^{-3} = 144 \text{ kg/d}$
- vi) Polymer $200 \text{ m}^3/\text{d} \times 5 \text{ mg/l} \times 10^{-3} = 1 \text{ kg/d}$
- vii) Disinfection $200 \text{ m}^3/\text{d} \times 5 \text{ mg/l} \times \frac{100}{12} \times 10^{-3} = 8.4 \text{ kg/d}$

11.2.2 Calculation

1) Intake Equipment

(1) Intake Pump

- a. Intake amounts: $200 \text{ m}^3/\text{d} \times \frac{1}{1,440 \text{ min}} = 0.14 \text{ m}^3/\text{min}$
- b. Type : Submersible waste water pump
- c. Spec : $\emptyset 80 \text{ m/m} \times 0.2 \text{ m}^3/\text{minx } 14 \text{ m} \times 2.2 \text{ kW}$
- d. Number: 2 (included spares 1)

2) pH Adjustment Equipment

(1) pH Adjustment Basin (No. 1 Rough)

- a. Structure : Rectangular Reinforced Concrete
 - Inside Rubber lining
- b. Supply amount : $114.4 \text{ m}^3/\text{d} \times 2$
- c. Detention time : 5 min
- d. Capacity plan : $114.4 \text{ m}^3/\text{d} \times 5/1,440 = 0.4 \text{ m}^3 \times 1.2$
 - $= 0.48 \text{ m}^3 \text{ x 2 sets}$
- e. Actual capacity and dimension: $0.6 \text{ m} \times 0.6 \text{ m} \times 1.5 \text{ m} = 0.54 \text{ m}^3$
- f. Rapid mixer : Marine Propeller Type
 - D = 200 m/m, 3 Blades x 0.2 kW

Impeller, Shaft (both SS) + Rubber lining

(2) pH Adjustment Basin

- a. Structure : Same 1)-(1)
- b. Supply amount : $114.4 \text{ m}^3/\text{d} \times 2$
- c. Detention time : 10 min
- d. Capacity plan : $114.4 \text{ m}^3/\text{d} \times 10/1,440 = 0.8 \text{ m}^3$
 - $0.8 \text{ m}^3 \text{ x } 1.2 = 0.966 \text{ m}^3 \text{ x } 2 \text{ sets}$
- e. Actual capacity and dimension : $0.8 \text{ m} \times 0.8 \text{ m} \times 1.5 \text{ m} = 0.96 \text{ m}^3$
- f. Rapid mixer : Double Marine Propeller
 - D = 400 m/m, 3 Blades x 0.4 kW

Impeller, Shaft (both SS) + Rubber lining

3) Color Removal Equipment

(1) Reactor

a. Structure : Same 1)-(1)

b. Supply amount : $130.6 \text{ m}^3/\text{d} \times 2$

c. Detention time : 30 min

d. Capacity plan : $130.6 \text{ m}^3/\text{d} \times 30/1,440 = 2.8 \text{ m}^3$

 $2.8 \text{ m}^3 \text{ x } 1.2 = 3.36 \text{ m}^2 \text{x } 2 \text{ sets}$

e. Actual capacity and dimension: $1.6 \text{ m} \times 1.6 \text{ m} \times 1.5 \text{ m} = 3.84 \text{ m}^3$

f. Rapid mixer : Double Marine Propeller

D = 1,000 m/m, 4 Blades x 1.5 kW

Impeller, Shaft (both SS) + Rubber lining

4) Neutralize Basin

a. Structure : Same 1)-(1)

b. Supply amount : $136.0 \text{ m}^3/\text{d} \times 2$

c. Detention time : 15 min

d. Capacity plan : $136.0 \text{ m}^3/\text{d} \times 15/1,440 = 1.4 \text{ m}^3$

 $1.4 \text{ m}^3 \text{ x } 1.2 = 1.7 \text{ m}^3 \text{ x } 2 \text{ sets}$

e. Actual capacity and dimension: $1.1 \text{ m} \times 1.1 \text{ m} \times 1.5 \text{ m} = 1.82 \text{ m}^3$

f. Rapid Mixer : Same 2)-(2)

5) Coagulation

(1) Rapid Mixing Tank

a. Structure : Rectangular Reinforced Concrete

Inside Epoxy Coating

b. Supply amount : $136.0 \text{ m}^3/\text{d} \times 2$

c. Detention time : 3 min

d. Available volume : $136.0 \text{ m}^3/\text{d} \times 3/1,440 = 0.3 \text{ m}^3$

 $0.3 \text{ m}^3 \text{ x } 1.2 = 0.36 \text{ m}^3 \text{ x } 2 \text{ sets}$

e. Dimension : $0.6 \text{ m x } .6 \text{ m x } 1.5 \text{ m} = 0.54 \text{ m}^3$

f. Rapid mixer : Same 2)-(1)

Materials SUS 304

(2) Slow Mixing Tank

a. Structure : Same 1)-(1)

b. Supply amount : $136.0 \text{ m}^3/\text{d} \times 2$

c. Detention time : 20 min

d. Available Volume : $136.0 \text{ m}^3/\text{d} \times 20/1,440 = 1.9 \text{ m}^3$

 $1.9 \text{ m}^3 \text{ x } 1.2 = 2.28 \text{ m}^3 \text{ x } 2 \text{ sets}$

e. Dimension : $1.3 \text{ m} \times 1.3 \text{ m} \times 1.5 \text{ m} = 2.54 \text{ m}^3$

f. Slow Mixer: Puddle type, 4 Blades, D = 800 m/m, 0.75 kW

(3) Sedimentation Tank

a. Structure : Reinforced Concrete

Inside epoxy coating

b. Supply amount : $136.0 \text{ m}^3/\text{d} \times 2$

c. Detention time : 3 hrs

d. Available Volume : $136.0 \text{ m}^3/\text{d} \times 3/24 = 17.0 \text{ m}^3$

 $17.0 \text{ m}^3 \text{ x } 1.2 = 20.4 \text{ m}^3 \text{ x } 2 \text{ sets}$

e. Surface area : $136.0 \text{ m}^3/\text{d}/20 \text{ m}^3/\text{m}^2 \cdot \text{d} = 6.8 \text{ m}^2$

f. Depth $20.4 \text{ m}^3/6.8 \text{ m}^2 = 3.0 \text{ m}$

g. Dimension : $\emptyset 3.0 \text{ m } (7.1 \text{ m}^2) \text{ x } 3.0 = 21.2 \text{ m}^3$

h. Scraper : ø3.0 m x 0.75 kW x 2

(4) Sludge Pump

a. Sludge amounts : $32.8 \text{ m}^3/\text{d} (16.4 \text{ m}^3/\text{d} \times 2)$

 $16.4 \text{ m}^3/\text{d} = 0.02 \text{ m}^3/\text{min}$

b. Type : Submersible waste water pump

c. Spec. : $\emptyset 80 \times 0.2 \text{ m}^3/\text{min} \times 10 \text{ m} \times 1.5 \text{ kW}$ (with Timer)

d. Number : 4 units (included Spares 2)

6) Contact Aeration Tank Equipment

(1) CAT

a. BOD amounts : $200 \text{ mg/l} \times 200 \text{ m}^3/\text{d} = 40 \text{ kg/d}$

b. BOD/CAT load : 0.5 kg/m³·d

c. CAT volume : $40 \text{ kg/d} / 0.5 \text{ kg/m}^3 \cdot d = 80 \text{ m}^3$

 $80 \text{ m}^3 \text{ x } 1.2 = 48 \text{ m}^3 \text{ x } 2 \text{ sets}$

(2) CAT Basin

a. CAT surface area/volume : 100 m²/m³

b. CAT surface area : $40 \text{ m}^3 \times 100 \text{ m}^2 = 4,000 \text{ m}^2$

(3) Sedimentation Tank

a. Structure : Reinforced Concrete

b. Supply amounts : $127.6 \text{ m}^3/\text{d} \times 2$

c. Detention time : 4 hrs

d. Available volume : $127.6 \text{ m}^3/\text{d} \times 4/24 = 21.3 \text{ m}^3$

 $21.3 \text{ m}^3 \text{ x } 1.2 = 25.6 \text{ m}^3 \text{ x } 2 \text{ sets}$

e. Surface area : $127.6 \text{ m}^3/\text{d} / 15 \text{ m}^3/\text{m}^2 \cdot \text{d} = 8.5 \text{ m}^2$

f. Depth : $25.6 \text{ m}^3/8.5 \text{ m}^2 = 3.0 \text{ m}$

g. Dimension : $\emptyset 3.3 \text{ m} (8.6 \text{ m}^2) \times 3.0 \text{ m} = 25.7 \text{ m}^3 \times 2$

h. Scraper : Ø3.3 m x 0.75 kW

(4) Sludge Pump

a. Sludge amounts : $1.4 \text{ m}^3/\text{d} (0.7 \text{ m}^3/\text{d} \times 2)$

b. Type : Submersible waste water pump

c. Spec : Same 5)-(4)

d. Number : 4 sets (included Spares 2)

(5) Scum Skimming Pump

a. Type : Submersible waste water pump

b. Spec : Same 5)-(4) (without Timer)

c. Number : 4 sets (included Spares 2)

7) Sludge Treatment

(1) Excess Sludge Amounts

	Volume (m3/d)	D.S. (kg/d)	Conc. (%)
Coagulation	32.8	262	0.8
CAT	1.4	11.5	0.8
Total	34.2 m3/d	273.5 kg/d	0.8%

(2) Sludge Thickener

a. Structure : Reinforced Concrete

b. Supply amounts : 34.2 m³/d
c. Detention time : 12 hrs

d. Available volume : $34.2 \text{ m}^3/\text{d} \times 12/24 = 17.1 \text{ m}^3$

 $17.1 \text{ m}^3 \text{ x } 1.2 = 20.5 \text{ m}^3$

e. Depth : 4 m

f. Surface area : $20.5 \text{ m}^3/4 \text{ m} = 5.13 \text{ m}^2$

g. Dimension : $\emptyset 2.6 \text{ m } (5.3 \text{ m}^2) \text{ x } 4 = 21.2 \text{ m}^3$

h. Scraper : Ø2.6 m x 0.75 kW

(3) Sludge Draw Off Pump

a. Sludge amounts : $18.2 \text{ m}^3/\text{d} = 0.01 \text{ m}^3/\text{min}$

b. Type : Submersible waste water pump

c. Spec : Same 5)-(4)

d. Number : 2 sets (included Spare 1)

8) Chemical Usage

(1) pH Adjustment

a. H₂SO₄

i) Composition : 98% sol. s.g. = 1.84

ii) Use amounts : $0.30 \text{ m}^3/\text{d} = 0.55 \text{ t/d [max]}$

b. Stock Tank

i) Structure : FRP

ii) Capacity : $0.30 \text{ m}^3/\text{d x 7 days} = 2.1 \text{ m}^3$

iii) Number : 2 sets (included Spare 1)

c. Supply pump

i) Supply amounts : $0.30 \text{ m}^3/\text{d} = 0.10 \text{ l/min x 2}$

ii) Type : Diaphragm pump

iii) Spec : $\emptyset 15 \times 300 \text{ ml/min } \times 5 \text{ kg/cm}^2 \times 0.2 \text{ kW}$

iv) Number : 3 sets (included Spare 1)

v) Materials : Pump head PMMA

Diaphragm PTFE

Check ball or equivalent FPM

(2) Fenton Process

a. FeSO₄•7H₂O

i) Composition : 10% sol. s.g. = 1.45

ii) Use amounts : $2.1 \text{ m}^3/\text{d}$, 300 kg/d

b. Stock tank

i) Structure : FRP

ii) Capacity : $3.5 \text{ m}^3/\text{d} \times 7 \text{ days} = 24.5 \text{ m}^3$

iii) Number : 3 units (included Spare 1)

c. Supply Pump

i) Supply amounts : $3.5 \text{ m}^3/\text{d} = 1.22 \text{ l/min x 2}$

ii) Type : Diaphragm pump

iii) Spec : $\emptyset 15 \times 1.8 \text{ l/min } \times 5 \text{ kg/cm}^2 \times 0.2 \text{ kW}$

iv) Number : 3 sets (included Spare 1)

v) Materials : Same 8)-(1)-c

d. Rapid Mixer

i) Type : Vertical mixer

Double marine propeller type

ii) Spec : ø600 m/m, 3 Blades x 5.5 kW

Impeller, Shaft (both SS) + Rubber lining

iii) Number : 3 sets

e. H₂O₂

i) Composition : 35% sol. s.g. = 1.13

ii) Use amount : $0.161 \text{ m}^3/\text{d}$, 0.18 t/d [max]

f. Stock Tank

i) Structure : FRP

ii) Capacity : $0.16 \text{ m}^3/\text{d} \times 7 \text{ days} = 1.12 \text{ m}^3$

iii) Number : 2 sets (included spare 1)

g. Supply Pump

i) Supply amounts : $0.161 \text{ m}^3/\text{d} = 56 \text{ ml/min x 2}$

ii) Type : Diaphragm pump

iii) Spec : Ø15 x 150 ml/min x 5 kg/cm2 x 0.2 kW

iv) Number : 3 sets (included spare 1)

v) Materials : Same 8)-(1)-c

(3) pH Neutralize

a. NaOH

i) Composition : 24%, s.g. = 1.2

ii) Use amounts : $0.6 \text{ m}^3/\text{d} = 144 \text{ kg/d} \text{ [max]}$

b. Stock Tank

i) Structure : FRP

ii) Capacity : $0.6 \text{ m}^3/\text{d} \times 7 \text{ days} = 4.2 \text{ m}^3$ iii) Number : 2 sets (included Spare 1)

c. Supply Pump

i) Supply amounts: $600 \text{ l/d} = 210 \text{ ml/min } \times 2$

ii) Type : Diaphragm pump

iii) Spec : $\emptyset 15 \times 400 \text{ m}^3/\text{min } \times 5 \text{ kg/cm}^2 \times 0.2 \text{ kW}$

iv) Number : 3 sets (included Spare 1)

v) Materials : Same 8)-(1)-c

(4) Coagulation

a. Alum

i) Composition : Al₂O₃
 ii) Use amounts : 1.0 m³/d

b. Stock Tank

i) Structure : FRP

ii) Use amounts : $1.0 \text{ m}^3/\text{d}$, 0.105 t/d

iii) Number : 2 sets (included Spare 1)

c. Rapid Mixer

i) Type : Vertical mixer (SUS 316)

Double marine propeller type

ii) spec : ø550 m/m x 3 blades x 2.2 kW

iii) Number : 2 sets (included Spare 1)

- d. Supply Pump
 - i) Supply amounts : $1,000 \text{ l/d} = 0.35 \text{ l/min } \times 2$
 - ii) Type : Diaphragm pump
 - iii) Spec : $0.5 \times 700 \text{ ml/min } \times 5 \text{ kg cm}^2 \times 0.2 \text{ kW}$
 - iv) Number : 3 sets (included Spare 1)
 - v) Materials : Same 8)-(1)-c
- e. Polymer
 - i) Composition : Nonion powder
 - ii) Use amounts : $1.0 \text{ m}^3/\text{d}$, 1.0 kg/d (0.1% sol.)
- f. Stock Tank
 - i) Structure : FRP
 - ii) Capacity : $1 \text{ m}^3/\text{d} \times 7 \text{ days} = 7 \text{ m}^3$
 - iii) Number : 2 sets (included Spare 1)
- g. Rapid Mixer
 - i) Type : Vertical mixer (SUS 316)
 - ii) Spec : Same 8)-(4)-c
 - iii) Number : 2 sets (included Spare 1)
- h. Supply Pump
 - i) Supply amounts : 1,000 l/d = 350 ml/min x 2
 - ii) Type : Diaphragm pump
 - iii) Spec : $\phi 15 \times 70 \text{ ml/min } \times 5 \text{ kg/cm}^2 \times 0.2 \text{ kW}$
 - iv) Number : 3 sets (included Spare 1)
- (5) Disinfection
 - a. NaOCl
 - i) Composition : 12% sol. s.g. = 1.21
 - ii) Use amounts : 8.4 kg/d, 7 1/d
 - b. Stock Tank
 - i) Structure : FRP
 - ii) Capacity : 1 m³
 - iii) Number : 1 set

c. Supply Pump

i) Supply amounts: $7 \frac{1}{d} = 2.5 \frac{ml}{min} \times 2$

ii) Type : Diaphragm pump

iii) spec : $\emptyset 10 \times 5 \text{ ml/min} \times 10 \text{ kg/cm}^2 \times 0.1 \text{ kW}$

iv) Number : 2 sets (included Spare 1)

v) Materials : Pump head, Diaphragm, Checkball: PTFE or

Equivalent

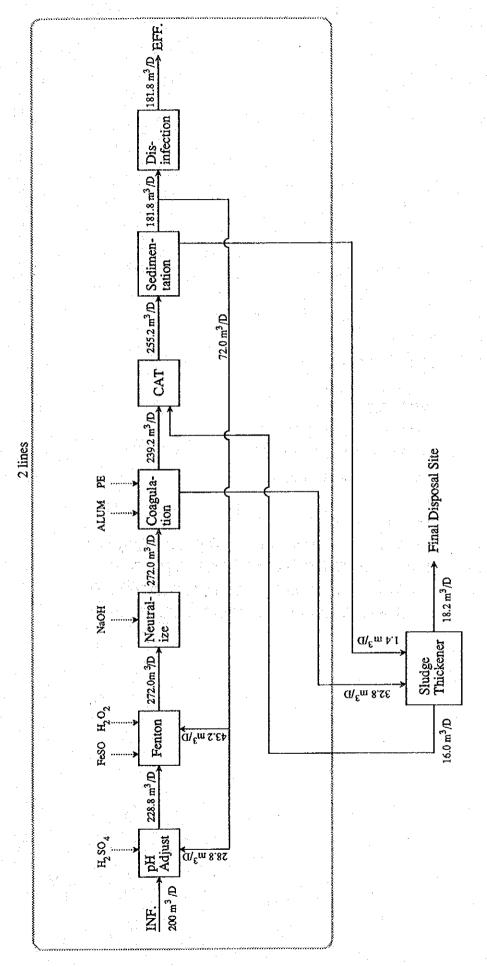
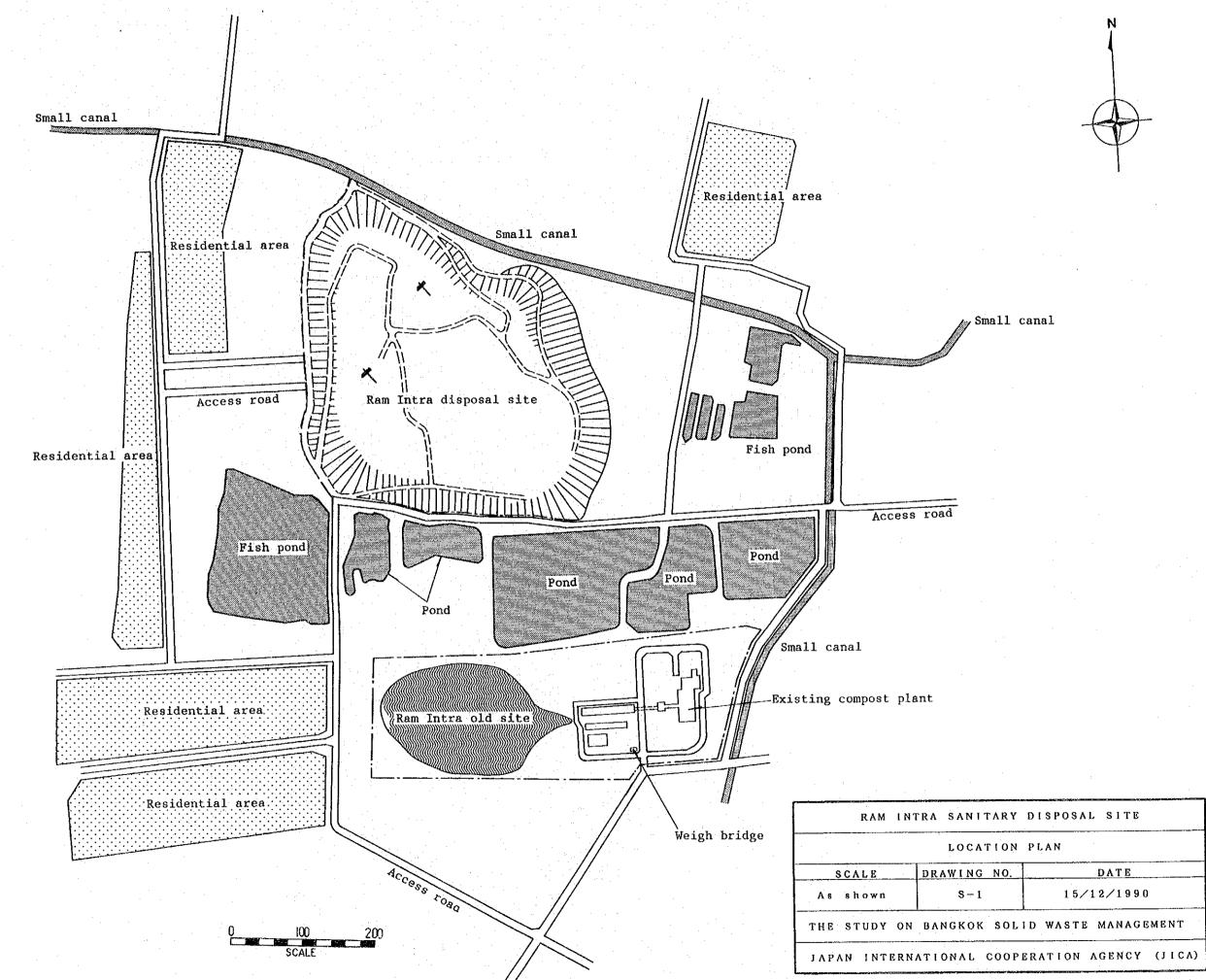



Fig. 11.1-6 Leachate Treatment Flow

11.3 Drawing List

No.	Name
S-1	LOCATION MAP
S-2	TOPOGRAPHICAL MAP
S-3	PLAN
S-4	TYPICAL CROSS SECTION
S-5	PROFILE
S-6	CROSS SECTION (1)
S-7	CROSS SECTION (2)
S-8	CROSS SECTION (3)
S-9	CROSS SECTION (4)
S-10	CROSS SECTION (5)
S-11	CROSS SECTION (6)
S-12	CROSS SECTION (7)
S-13	FACILITY STRUCTURE (1)
S-14	FACILITY STRUCTURE (2)
S-15	FACILITY STRUCTURE (3)
S-16	FINAL PLAN
S-17	PLAN (CASE 2)
S-18	LEACHATE TREATMENT FACILITY FLOW CHART
S-19	LEACHATE TREATMENT FACILITY STRUCTURE (1)
S-20	LEACHATE TREATMENT FACILITY STRUCTURE (2)
S-21	LEACHATE TREATMENT FACILITY STRUCTURE (3)

