
No. 52

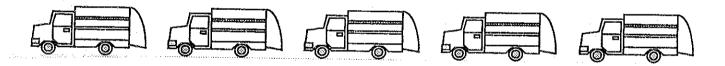
THE ROYAL THAI GOVERNMENT THE BANGKOK METROPOLITAN ADMINISTRATION

THE STUDY ON BANGKOK

SOLID WASTE MANAGEMENT

FINAL REPORT

MARCH 1991



THE ROYAL THAI GOVERNMENT THE BANGKOK METROPOLITAN ADMINISTRATION

THE STUDY ON BANGKOK

SOLID WASTE MANAGEMENT

FINAL REPORT

VOL.4

SUPPORTING REPORT

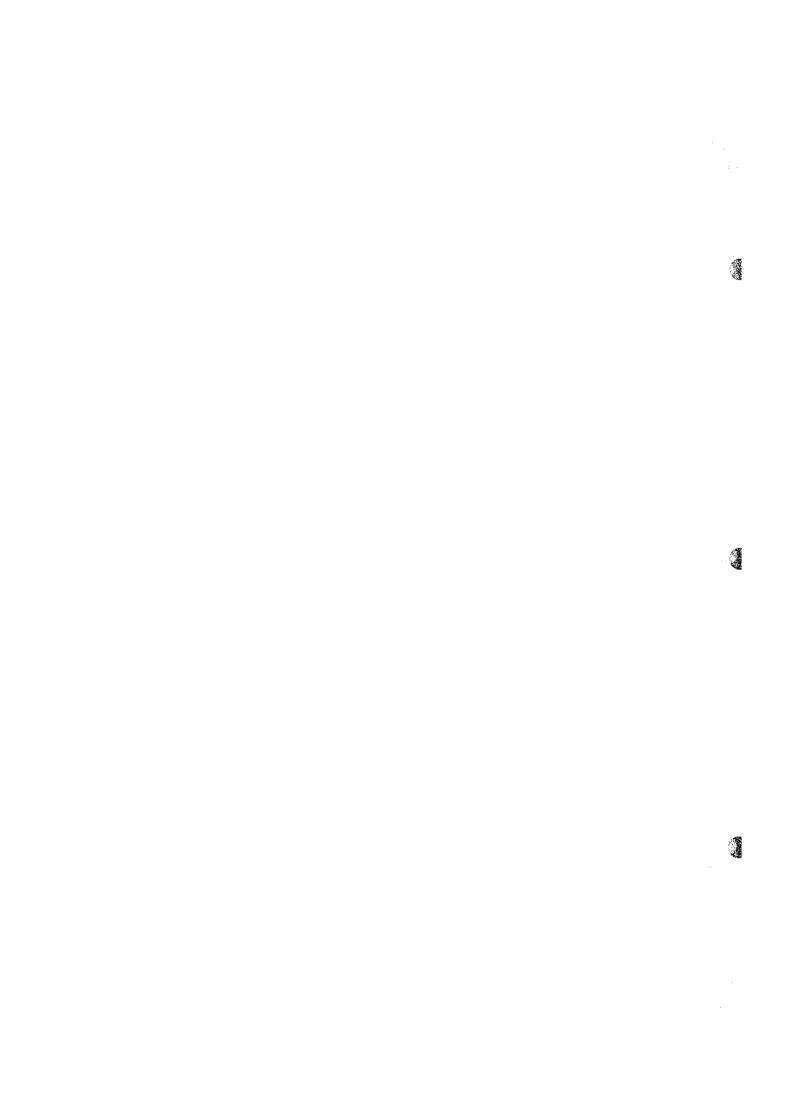
32266

MARCH 1991

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 22266

Abbreviations (Listed in alphabetical order)


```
В
                  Baht
BMA
                  Bangkok Metropolitan Admnistration
BOD
                  Biochemical Oxygen Demand
BPP
                  Beneficiary Pay Principle
Ca(OH)<sub>2</sub>
                  Calcium Hydroxide
COD
                  Chemical Oxygen Demand
DDS
                  Department of Dranage and Sewage
DPC
                  Department of Public Cleansing
DTEC
                  Department of Technical and Economic Cooperation
F/S
                  Feasibility Study
GDP
                  Gross Domestic Product
GPP
                  Gross Provincial Product
HC1
                  Hydrogen Chloride
JICA
                  Japan International Cooperation Agency
LHV
                  Low Heat Value
MB
                 Million Baht
MMD
                 Mechanical and Maintenance Division (Central Workshop)
                  of Finance Department, BMA
m3N/h
                 Cubic meter Normal / hour
M/P
                 Master Plan
N. D.
                 Not Detective
NESDB
                 National Economic Social Development Board
ONEB
                 Office of National Environmental Board
PPP
                 Polluter Pay Principle
Pt-Co unit
                 unit of Platinum-Cobalt method
PVC
                 Poly Vinyl Chloride
SWM
                 Solid Waste Management
SS
                 Suspended Solid
t/d
                 tons/day
T - KN (T - N) Total Nitrogen (Kjeldahl method)
```

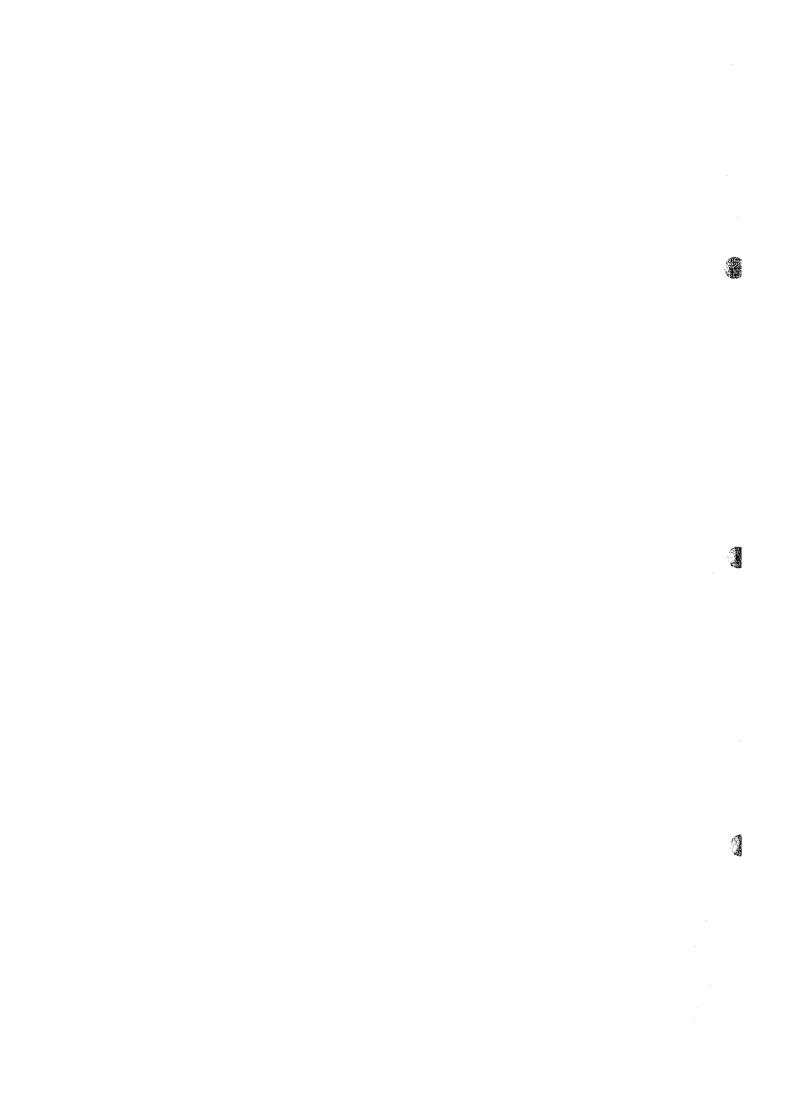
```
Rai (Thai Unit) = 1,600 \text{ m}^2
```

Soi (Thai Words): Narrow Street Khlong (Thai Words): Canal

Exchange Rate (as of January 1991)

1 \$ = 25 Baht = 130 Yen (Approximately)

Study on Bangkok Solid Waste Management


VOLUME 4 SUPPORTING REPORT

CONTENTS

Part I	Estimation of Waste Amount and Quality1-1
,s	
Chapter 1.	Waste Amount1-2
	and the second of the second o
1.1	Method of Estimation1-2
1.2	Results of Estimation1-10
1.3	Results of Questionnaire Survey regarding Business Waste1-14
Chapter 2.	Waste Quality1-23
2.1	Present Waste Quality1-23
2.2	Estimated Waste Quality1-27
•	
Part II P	resent Conditions of the Solid Waste Management2-1
Chapter 3.	Waste Collection and Haulage2-2
··. 3.1	Use of Contractors
3.2	·
il s.	
Chapter 4.	Intermediate Treatment2-8
÷.	
. 4.1	Existing Conditions2-8
4.2	Economic Evaluation of the BMA's Compost Business2-10
4.3	Evaluation of the New Compost Plant2-12
Chapter 5.	Evaluation of Private Contractors Regarding Final Disposal2-15
<i>-</i> •	
5.1	Criteria2-15
5.2	Evaluation of Private Contractors Who Apply Talang Project2-15

Chapter 6.	Environmental and Sanitary Conditions2-18
6.1	Standards and Regulation for Environmental Conditions2-18
6.2	Data of Environmental Conditions2-27
6.3	Present Conditions2-35
Chapter 7.	Organization and Institutional Conditions2-40
•	
7.1	Historical Background of Solid Waste Management in Bangkok2-40
7.2	The Present Organization and Institution for
	Solid Waste Management in Bangkok2-41
7.3	Legislation regarding Solid Waste Management2-51
7.4	Policies and Projects2-54
7.5	Private Contract2-57
7.6	Issues2-60
Chapter 8.	BMA's Budgets and SWM Cost Data2-66
Chapter 9.	Interview Sheets and Results Regarding the Pilot Project for
Cpw- 2.	the Bell Collection2-75
Port III S	upporting Information for
	he Proposed Solid Waste Management System3-1
· ·	ne Troposed Dona Waste Management System
Chantar 10	Intermediate Treatment3-2
Chapter 10.	incinculate realisest
10	1 Specification3-2
10.	2 Design Calculation
	3 Drawing List
	4 Financial Expenditure of On Nut Incineration Plant
10.:	5 Subsurface Investigation at Ram Intra and On Nut
	2.94
Chapter 11	. Disposal3-84
	1 Design of Leachate Treatment
11	2 Process Calculation 3-110

11.3	Drawing List
11.4	Cost Estimation3-144
	Cost Estimation Fill-up Type3-168
	Subsurface Investigation
	valuation of the Compaction and Binding System
ai	nd the Seashore Landfill in Bang Khun Thian4-1
Chapter 12.	Compaction and Binding System4-2
12.1	Background4-2
	Plan of Compaction and Wrapping System4-2
12.3	Specification of Compaction and Wrapping System4-7
12.4	Cost Estimation4-7
12.5	Conclusions4-8
Chapter 13.	Seashore Landfill4-10
13.1	Background4-10
13.2	Plan of Seashore Landfill on Bang Khun Thian4-10
13.3	Alternative4-14
13.4	Economic Evaluation4-15
13.5	Conclusion4-16
Appendix	Computer Program Used for Preparation of Figures

Part I

Estimation of Waste Amount and Quality

Chapter 1 Waste Amount

1.1 Method of Estimation

1.1.1 Data Abailability and Method of Estimation

The amount of Solid waste is projected in order to examine a final disposal plan, collection, and a haulage plan in particular, accordingly, the projection of each district is required. For this projection, data on the amount of waste, collection rate, population and economic statistics are required. However, the available data is limited as shown in Table 1.1-1.

Table 1.1-1 Data Availability

Data	Avai	lability
	Whole Bangkok	District Level
Population	Available	Available
GPP	Available (until 1987)	Not Available
Collected Waste Amount	Available	Available
Collection Rate	Available (1989 only)	Available (1989 only)

To project the waste amount by districts, the annual collection rate of Bangkok has to be estimated first, then, the total waste amount is divided into each district according to population.

The increase of per capita generation amount is projected using a regression analysis.

The flow chart showing the method of the waste amount estimation in Bangkok is given in Fig. 1.1-1.

1.1.2 Assumptions

For projection, certain conditions in the future have to be assumed and a desirable policy target also has to be set, in particular, the collection rate.

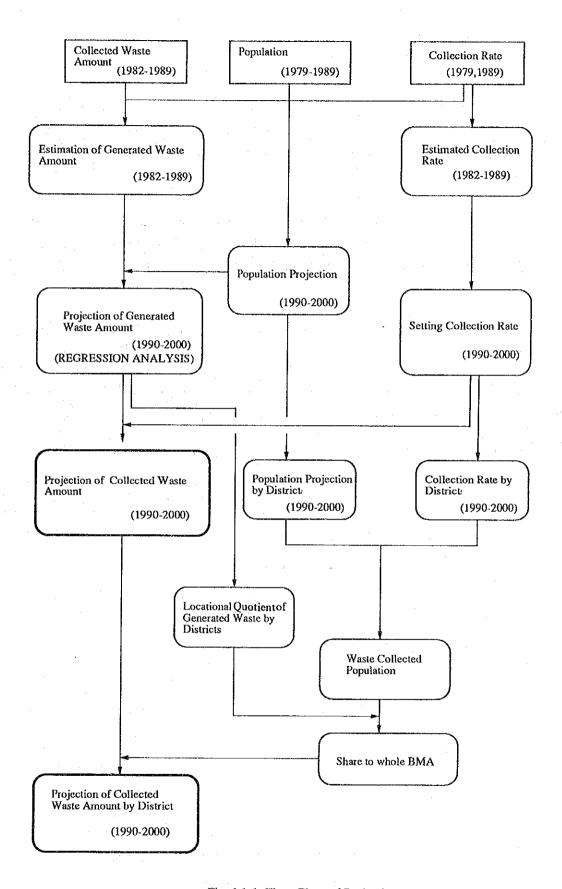


Fig. 1.1-1 Flow Chart of Projection

1) Population

The population of Bangkok is increasing at a stable rate of growth, which is 2.2 % per year. This trend, however, has slowed down in recent years. On the other hand, neighboring provinces are growing rapidly with new factories and residential areas, as are shown in Fig. 1.1-2 and Table 1.1-2.

The population of Bangkok will increase at a more modest rate of 1.5 % per annum until 2000, using data from the third BMA development plan and the master plan for garbage disposal prepared by the DPC. Table 1.1-3 shows the result of future estimation by districts.

Table 1.1-2 Population Growth of Bangkok Metropolitan Region(BMR) between 1970 and 1989

	N	umber(Thousan	ds)	Annual Growth	Rate(%)
	1970	1980	1989	1970-80	1980-89
Bangkok	3,185	4,852	5,717	4.30	0.18
Samut Prakan	341	503	742*	3.96	5.71
Nontha Buri	278	383	572*	3,26	5.90
Pathum Thani	242	332	415*	3.21	3.24
Nakorn Pathom	434	545	620*	2.30	1.86
Samut Sakhon	207	256	334*	2.15	3.87
BMR	4,687	6,871	5,717	3.90	2.72
* D-4 1007		····			2.,2

* Data in 1987 Source: NESDB

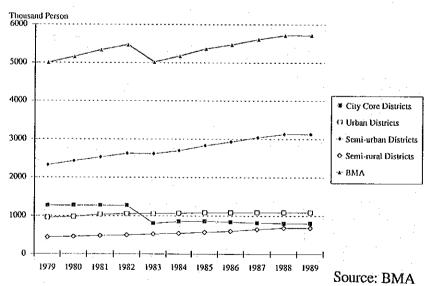


Fig. 1.1-2 Population Growth of Bangkok from 1978 to 1989

Table 1.1-3 Population Projection during 1990 to 2000

A	1990	1931	1992	1993	1994	1995	1996	1997	1008	10001	(Ferson)
	101,300	100,200	99,100	98.100	97,100	96.200	95.300	94 400	03 600	1999	2002
l	80,300	79,200	78,100	77,100	76,100	75,200	74,300	73.400	72,000	71 800	71,000
- 1	47,900	47,400	46,900	46,400	45,900	45,500	45.100	44,700	44.300	43.000	42 500
4. Phatum Wan	150,500	154,500	158,600	162,700	166,900	171,100	175,400	179,700	184,100	188 500	193,000
	87,000	86,800	86,600	86.400	86,200	86,000	85.800	85.600	85 500	85 400	85 200
6. Yannawa	115,800	116,400	117,000	117,600	118,200	118,800	119,400	120.000	120,600	121 100	121 600
- 1	149,000	149,800	150,600	151,400	152,200	152,900	153.600	154.300	155,000	155 700	156 400
8. Bang Kho Laem	149,700	150,500	151,300	152,100	152,900	153,700	154,400	155,100	155,800	156 500	157.700
9. Dusit	268,800	269,900	271,000	272,100	273,200	274,300	275.300	276,300	277 300	278 300	270 200
10. Bang Sue	306,200	307,500	308,800	310,000	311,200	312,400	313,600	314.800	316,000	37.700	218 200
 Phaya Thai 	227,800	227,400	227,000	226,600	226,200	225,800	225,400	225,000	224 700	007,12C	22.02
12. Rat Thewee	112,000	111,800	111,600	111,400	111.200	111.000	110,800	110 600	110 400	110.200	110,000
 Huai Khwang 	268,600	272,000	275,400	278,800	282,200	285.500	288.800	292,100	295 400	002,011	202 000
4. Phra Khanong	192,900	195,800	198,700	201,600	204,500	207,400	210,300	213,100	215.000	218 700	202,000
5. Klong Toi	281,200	285,400	289,600	293,800	298,000	302,200	306.400	310.500	314 6001	218 700	222 600
6. Pra Weat	200,200	203,200	206,200	209,200	212,200	215,200	218,200	221.200	224 100	227,000	220,000
7. Bang Khen	205,900	212,300	218,800	225,400	232,100	238,900	245,900	253,000	260,200	009,730	275 200
8. Dong Muang	213,400	220,000	226,700	233,500	240,500	247,600	254,800	262,200	269.700	277.300	285 100
19. Jatujak	205,800	212,200	218,700	225,300	232,000	238,800	245,800	252,900	260,100	267.500	275 000
20. Bang Kapi	223,100	231,900	241,000	250,300	259,900	269,800	280,000	290,500	301,300	312,400	323 800
21. Lad Phaow	121,200	126,000	130,900	136,000	141,200	146,600	152,100	157,800	163,700	169,700	175.900
7. bung Kum	153,500	159,600	165,800	172,200	178,800	185,600	192,600	199,800	207,200	214.800	222,700
23. Nong Cnok	62,300	63,200	64,100	65,000	65,900	008'99	67,600	68,400	69,200	70,000	70,800
54 1 MILL DUIL	89,400	92,300	95,300	98,400	101,500	104,700	107,900	111,200	114,600	118,100	121,600
25. Lad N. Bang	07,400	69,600	71,800	74,000	76,300	78,600	81,000	83,400	85,900	88,400	000.16
20. 111011 Duri	270,200	2/0,400	270,600	270,800	271,000	271,200	271,400	271,600	271,800	272,000	272,200
28 Bangkok Noi	140,000	147,300	148,000	148,700	149,300	149,900	150,500	151,100	151,700	152,300	152,900
29. Bano Plat	146 200	147,000	173,000	30,400	007,701	138,000	158,800	159,600	160,400	161,200	162,000
30 Bangkok Vai	100 000	000,441	147,000	20000	149,400	150,200	151,000	151,700	152,400	153,100	153,800
31. Pasi Charnen	202:/02	100,300	100,700	109,100	109,500	105,500	110,300	110,600	110,900	111,200	111,500
32. Bang Khun Thian	122 000	0001521	720,100	280.400	254,700	269,000	273,300	277,600	281,900	286,200	290,500
33. Jom Thong	185 400	188,400	101 900	152,400	20000	139,700	143,400	147,200	151,000	154,900	158,800
34. Taling Chan	107 8001	111 100	200,171	117,000	121,400	201,400	704,500	20/,800	211,000	214,200	217,400
35. Rat Burana	160,7001	164 300	168 000	302.171	121,400	000,021	128,600	132,300	136,100	139,900	143,800
36. Nong Khaem	73 2001	75,000	200,001	007.17	04.50	1/2,100	182,900	186,700	190,500	194,400	198,300
*		20,75	(6,700	01,000	000*+0	000'/0	00/1X	93,900	97,200	100,600	104,100
TOTAI			,	_					_		

2) Economic Growth

Thailand, particularly Bangkok, has experienced very rapid economic growth in recent years, which is illustrated in Fig. 1.1-3. This economic growth is expected to continue for several years. This study applies a 7.4 % per year growth rate until 1997 and 5 % per year until 2000 as estimated in the GPP growth rate of Bangkok.

3

3) Collection Rate

The collection rate shows the proportion of service provided to the population of the BMA to that of the total BMA's population. This data is new, and is collected from districts every four months by the DPC, so the only available data is that for 1989. This study applies the collection rate estimated by the JICA 1982 Study as the collection rate in 1980. The annual collection rate is estimated using the assumption that the collection rate has been increasing at a constant from 1980 to 1989.

The current collection rate is a result of the BMA policy. The present BMA governor has created the policy of "Clean Bangkok", hence, the collection rate has increased by the many efforts of BMA. It can be said that the collection rate depends greatly on the BMA's future policy on the solid waste management. This study assumes that the BMA will try to continue to increase the collection ratio at the same rate as in the recent years, under the present political structure of the BMA. The collection rate by districts is shown in Fig. 1.1-4.

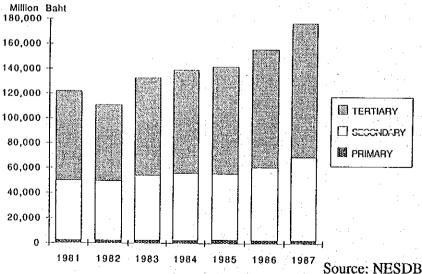


Fig. 1.1-3 Change of GPP of Bangkok from 1990 to 2000

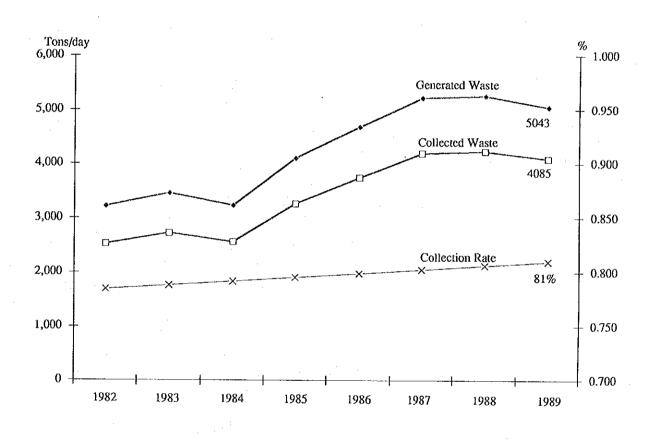


Fig. 1.1-4 Estimation of Collection Rate and Generated Solid Waste Amount

4) Generated Waste Amount

Generated waste per person (Generated Waste Unit) is the result of personal consumption and business activities. In Bangkok, both have changed rapidly under the recent favorable economic growth, Thus, the generated waste unit will increase in the future. If it is a short period, the increase of the generated waste unit can fit to a linear curve. This study, hence, applies simple regression analysis in order to estimate the generated waste unit. Table 1.1-4 and Fig. 1.1-5 show the results of the regression analysis.

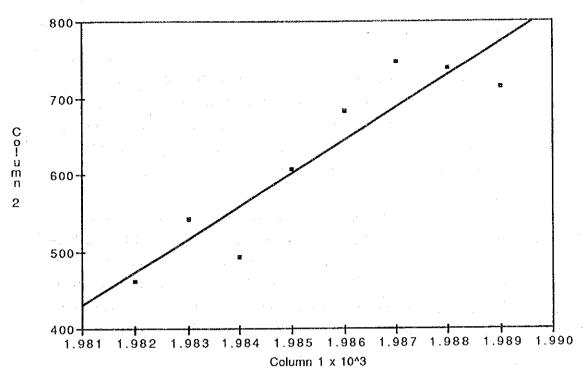


Fig.1.1-5 Result of Regression Analysis

Table 1.1-4 Result of Regression Analysis

Variable Name	Coefficient	Std. Err. Estimate	t Statistic	Prob > t
Constant	-84114.429	14572.981	-5.772	0.001
Column 1	42.679	7.340	5.815	0.001

Source	Sum of Squares	Deg. of Freedom	Mean Squares	F-Ratio	Prob>F
Model	76501.339	1	76501.339	33.811	0.001
Error	13575.536	6	2262.589		
Total	90076.875	7		شکر چندونه برند ردهندیون کندون بازا <u>ن سازان با برنا</u> به این بازان بازان استان بازان بازان بازان استان بازان بازان	
	Coefficient of Determ	nination (F	3^2) 0.849		
	Adjusted Coefficient	(R^2)	0.824		
	Coefficient of Correl	ation (R)	0.922		
	Standard Error of E	stimate	47.567		
	Durbin-Watson Stat	istic	1.749	•	

1.2 Results of the Estimation

Estimated generated waste amount and collected waste amount during 1990 to 2000 are shown in Fig. 1.2-1 and Table 1.2-1. In the year 2000, 10,200 tons/day of solid waste will be generated, and 8,700 tons/day are expected to be collected. At that time, the population will be 6,734 thousand people with a GPP per capita of 68,000 Baht. Estimated collected waste amount by districts is shown in Table 1,2-2.

There have been two main studies relevant to the solid waste management in Bangkok. There are two previous studies, one is the JICA study in 1982, and the other is "Feasibility Study on The Management of The Disposal of Bangkok Municipal Waste". Each study employs a different approach for projecting the solid waste amounts in Bangkok. Table 1.2-3 shows a comparison of the studies in terms of data used, method of projection and results.

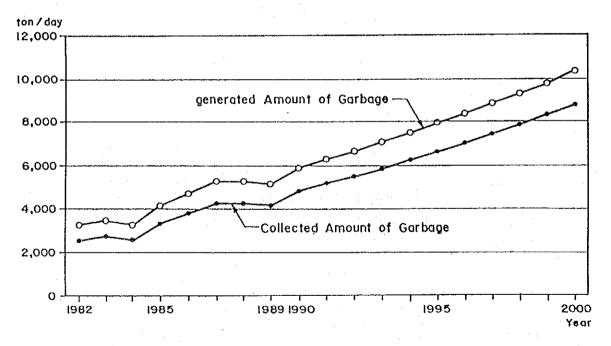


Fig. 1.2-1 Generated and Collected Waste Amount toward the Year 2000

Table 1.2-1 Result of Waste Amount Projection

			;		. :	٠	4.1	- 1		-:	-	
· · · · · · · · · · · · · · · · · · ·	1991	5.889.800	264.600	44 900	1.849.800	5.100	870	0.817	2 263 000	6.200	1.060	
PROJECTION	1990	5,802,600	246.400	42.500	1.740.600	4,800	830	0.814	2 139 100	5.861	10101	22.2
Д	1989	5,716,739	224.986	39.356	1.491,068	4.085	715	0.810	1.840.825	5.043	882	
	1988	5,716,779	200,522	35.076	1.546,291	4,225	739	0.806	1.917.700	5.254	919	
	1987	5,609,352	177,140	31.579	1,529,385	4,190	747	0.803	1.905.375	5,220	931	
:	1986	5,468,915	153,631	28,092	1,364,243	3,738	683	0.799	1.707.379	4.678	855	
	1985	5,363,378	142,092	26.493	1,189,973	3,260	809	0.795	1,496,062	4,099	764	
	1984	5,174,682	139,981	27,051	933,177	2,557	464	0.792	1,178,559	3,229	624	
	1983	5.018,327	132,818	26,467	993,770	2,723	543	0.788	1,260,803	3,454	889	. V∆G.¢
	1982	5,468,286	121,720	,22,259	922,379	2,527	462	0.785	1,175,561	3,221	685	F P-PERCON I
		POPULATION	GPP (M.BAHTS)	GPP/CAPITA(BAHTS)	COLLECTED WASTE	CW/DAY (TON)	CW/P/D (g)	COLLECTION RATE*	GENERATED WASTE	GW/DAY (TON)	GW/P/D (g)	CW-COLLECTED WASTE P-PERSON DIAN

CW;COLLECTED WANTE, F;FEKNON, D;DAY *; Collection rate is estimated.

2000	6,734,100	459.800	98,300	3,170,300	8,700	1,290		0.852	3,723,000	10,200	1 520
1999	6,634,600	437,900	96,000	3,032,100	8.300	1,250	-	0.848	3,577,000	9,800	1 470
1998	6,536,700	417,000	63,800	2,864,400	7,800	1,190		0.844	3,394,500	9,300	1 420
1997	6,440,100	397,100	61,700	2,698,100	7,400	1,150		0.840	3,212,000	8,800	1 360
1996	6,345,300	378,200	29,600	2,533,200	006'9	1,090		0.836	3,029,500	8,300	1.310
1995	6,251,600	352,100	56,300	2,400,200	0,09	1,060		0.832	2,883,500	7,900	1.260
1994	6,159,100	327,800	53,200	2,268,400	6,200	1,010		0.829	2,737,500	7,500	1,210
1993	6,068,000	305,200	50,300	2,107,500	5,800	096		0.825	2,555,000	7,000	1,160
1992	5,978,300	284,200	47,500	1,978,100	5,400	006		0.821	2,409,000	6,600	1,110

Table 1.2-2 Result of Collected Waste Amount Projection by Districts

2651	- 75	722	232	-						
2000	E70 0L	02000	84 510	89.826	02 783	95 569	99.346	103.008	106.472	108,690
20,007	20,00	TO 4 . 4	12,027	44 060	46 330	47 505	40 343	51.036	52.621	53.581
38,525	39,820	41,407	42,934	44,707	75.000	250.00	27,74	0000	22 500	27.277
24,065	24.957	26,039	27,058	28,404	29,333	50,254	51,408	27,0,75	72,02	110,40
61,655	66,330	71,801	77,364	84,216	90,011	95,942	103,153	110,511	117,965	124,370
50,299	52,591	55,329	57,979	61,384	63,849	66,233	69,345	72,431	75,424	11,5/4
44.082	46,647	49,668	52,674	56,437	59,409	62,366	66,077	69,760	73,362	76,200
47.225	49,983	53,230	56,462	60,507	63,662	66,799	70,742	74,650	78,534	81,601
39.848	42.174	44.913	47,639	51,050	53,746	56,393	59,720	63,019	66,295	68,883
098.08	85.085	90.08	95,006	101.225	105,960	110,575	116,462	122,228	127,887	132,160
64 604	000 29	71,999	75.916	80.871	84,640	88,343	93,065	169'16	102,202	105,603
73.048	76.418	80.441	84.340	89.341	92,981	96,506	101,097	105,578	109,923	113,038
67.872	65 545	808 308	72.996	77.675	81,205	84,666	89,095	93,423	97,664	100,841
54 185	58 831	63.099	862.298	72.723	77.056	81,414	608'98	92,222	97,662	102,138
53 7801	57.157	61 443	87.73	71.126	75.548	80,013	85.474	696'06	96,507	101,106
104 260	111 000	118 772	126 558	136.220	144.0221	151,829	161,467	171,079	180,681	188,443
37, 57,	36 900	30,772	42 574	46,035	48,895	51.783	55,341	58,897	62,480	65,456
27.70	51 584	56317	61 212	67.193	72.435	77,875	84,467	91,256	98,290	104,521
751.69	67 437	73,612	79.998	87,835	94.708	101,799	110,434	119,328	128,493	136,652
85.291	92.161	100,162	108,376	118,426	127,088	136,014	146.861	157,948	169,351	179,273
82.409	89.768	98.376	107,313	118,245	127,976	138,095	150,356	163,076	176,276	188,138
34,408	37,657	41,442	45,429	50,280	54,673	59,248	64,801	70,618	76,668	82,204
40.547	44,181	48,398	52,796	58,173	62,957	67,928	73,951	80,197	86.675	92,533
2,631	2,809	3,018	3,229	3,490	3,705	3,917	4,178	4,440	4,704	4,921
17,610	19,140	20,934	22,806	25,077	27,092	29,163	31,684	34,302	37,021	39,429
13.880	15.089	16,489	17,930	19,708	21,263	22,887	24,843	25,880	28.970	30,848
53.952	56.840	60,255	63,623	67,873	71,137	74,358	78,447	82,468	86,431	88,662
45,959	48,614	51,742	54,851	58,707	61,733	64,738	68,520	72,265	75,982	78,906
41,111	43,532	46,352	49,158	52,671	55,445	58,205	61,669	65,108	68.527	71,236
44,364	46.746	49,562	52,338	55,838	58,528	61,179	64,501	67,761	70,968	73,411
29,294	30,954	32,911	34,852	37,289	39,197	41,090	43,435	45,752	48,045	49,832
50.751	54.356	58.564	62,828	68,081	72,462	76,896	82,340	87,837	93,394	98,059
22.979	24.865	27,075	29,343	32,130	34,566	37,061	40,105	43,218	46,430	49,237
36.231	38.800	41.798	44,837	48,581	51,702	54,861	58,740	62,655	66,614	69,93
11.326	12,288	13,415	14,575	15,998	17,252	18,539	20,106	21,728	23,391	24.870
38,464	41,400	44,843	48,356	52,659	56,315	890'09	64,641	69,286	74,048	78,13
19,409	21.187	23,271	25,458	28,136	30,513	32,999	36,015	39,163	42,450	45,438
50,000	50,000	50,000	50,000	20,000	50,000	50,000	20,000	50,000	50,000	50,000
1,740,600	1 849 800	1 078 100	2 107 500	2 268 400	2 400 200	2 533 200	2 698 1001	2 864 4001	3 030 100	2 170 300

Table 1.2-3 Copmarison of Studies

	Present	JICA Study	JICA 1980 Study	Feasibility Study on the Management of the Disposal of Bangkok Municipal Waste
Hand Date		d Waste	Disposal Amount	Collected Waste
Used Data		1982-1989 on Rate	1960-1978 Collected Waste	1984-1987 Collection Rate
•		1979-1989	1979-1980	1987
Method of		ed waste amount	Generated waste amount	Waste amount is assumed
Projection of	is project regressi	ned by on analysis.	is projected by assumed formula.	by GDP growth.
	Variable	es are generated	Variables are generated	
	waste ur	nit and year.	waste and GPP.	•
Projected	1990	4,770	3,310	5,206
Waste Amount	1995	6,600	4,300	7,308
(Tons/day)	2000	8,700	5,540	9,896

1.3 Results of Questionnaire Survey Regarding Business Waste

1.3.1 Implementation of Questionnaire Survey

An "business waste questionnaire survey" has been conducted in order to obtain data regarding what is business waste and who is business waste discharger. The questionnaire survey was implemented in the following manner:

1) Survey Method

The questionnaire has been distributed by mail to 36 district offices. The district office completed the questionnaire from the records which the district office keeps for charging collection fees.

2) Survey Period

5 October to 2 November 1990

3) Sample

All waste dischargers who pay more than 500 Baht/year are targeted except residences. Data of 2,190 business establishments are obtained through 36 districts as a result.

1.3.2 Results of Questionnaire Survey

1) Business Waste Discharger

"Factory" and "office" have the two largest shares among all types of the business waste dischargers; which is approximately 35% and 30% respectively. "Market" follows with approximately 6% share to the total number of the business waste dischargers. Table 1.3-1 shows the number of dischargers by district and by types of business.

Table 1.3-1 Number of Dischargers by District sand by Types of Business

	9	ļ	5 6	; ;	; ;	191	01	?	3 8	ì	2 0		120	3	3 :	3 %		1 5	3	8	6	v	120	0	, ş	23	2	· 88	14	32	8	105	'n	8		385	9	2100
(0)	(Q)	1879	1800	0000	140	9000	8000	000	2	888	3	0.030	000	000	9000	8	000	300	2000	7100	0.018	800	000	000	9	000	000	000	0000	0.032	000	0.019	0000	0000	0000	0.013	3	0.013
1		¢	1 6	Ö		٠		0		·	0	40	0	0		ò	0		0	-			0	0	~	0	0	0	0		0	~	0	0	o'	v) c	•	ধ
(4))	0000	0.042	8	0.00	9000	0.151	0.100	0.162	000		000	0000	0.194	1600	0.013	000	0.235	0.591	0.072	0.333	0000	0.667	1.80	0.755	0.962	0,00	0.368	000	0.125	0.136	0.657	0.933	833	200	0.927	}	0.346
Pactons		o		0	0		80	7	vo	0	0	0	0	4	m	,4	0	-	8	'n	61	0	91	c.	33	જ	0	4	0	4	m	&	ĸ	ಜ	**	357		758
(%)		0.000	000	0000	0000	0000	0.000	0000	0000	0000		0000	0000	0000	0000	0000	.:	. 650.0	0000	0.014	0000	9000	0000	0000	900	0000	800	000	2000	000	000	8	8	8	8	0000		0.001
Single		0			0	0	0	0	0	0	0	0	0	0	0	0	0			_	-	- 0	-	•		0	0	~ ~	0	0	0	<u> </u>			•	00		2
8		285	3,208	0.056	750.0	3.036	255	0710	7,054	8/2/		583	83	828	7,182	0.013	1111	294	.136	8	158	8	83	8	8	38	27	2	6	.83	23	8	8	153	3	0.003		0.064
Market		13		4		9	S		~	'n	0	·-	ю С	~ ·	v	_	64	S	9	0	٥,	e en	6	0	-	0	5. 0	6.	۰.	0,	8	4.			٥.			9
(%)		.224	0.208	8	.057	8	8	8	8	ફ		8	86	8	8	623	98	235	g	8	8	8	8	8	8	8	8	8 8	5	8	5 5	3 5	3 5	3 8	3 8	0.071		0.036
3	Office	11 0		0	7	0	0	0	တ် တ	6	0 !		o' .	0	0	2	්	4	Ö	ō,	ö ,	o ,	ö	ē.	6	66	3		36	36	36	56	56	5 è	56	56		8
%) Cove	-	8	8	8	910	012	8	8	8	926	;	8	0	38	8	8	8	8	8	3	38	3 3	33	88	8 8	38	38	3.5	7 5	8 8	3 8	3 5	3 8	3 8	3 8	300		L RIO'O
ationa	cility	0	0	0 0	2	24	0		o .			9.0	<u>ټ</u>		oi +	ت ت	න් . න අ	0	o (٠ ٠	o	٠ د د	් ට ර	ت د د	⊃`¢	ತ		5 c	3 d	36	36	3 c	šč	šč	3 6	38	3	5
%) Recr	Fa	8	21.5	3:	9	2		3 3	3	8	: §		3 5	è	₹\$	2 3	8 8	8	33	3 5	3 3	3 5	2 5	38	3 3	3 3	3 5	3 5		8 8	3 8	2 8	38	3.8	Š	0.01		3
ctioo!		ā.	<u>.</u>	3 6	si è	56	5 c	3 6	5.		2	56	3 2 > .	5 è	56	5 6	3 6	5 6	; è	5	5 6	5 6	3 2	ś è	5 6	3 6		3 8	36		3 6	2 6	9 6	3 6	2	38	000	
(%)		3 8	2 5	2 8	2 2	2 8	3 8	3 :	9.5	·	,	3 2	3 %	3 8	? £	3 3	8 2	0 4	3 5	4 5	? 8	3 8	3 5	3 5	3 5	3 5		1 -	. 4	2 5	2 9	2				28		
	K	5 6	200	3 6	3 6	3 6	3 6	3 6	3 6	š	ć	; 6	3 6	200	5 6	3 6	2 -	3 8	3 6	2	5	5 6	5 6	5 6	5 6	66	000	č	2	òò	9 0	0	Ö	Ö	0	0000	0,040	200
Succe		19	9 1	9 5	: 4	: c	· c	•	, ,	۰ < د	, c	i =		٠.	• •) -	• •	יינ	4 v			, 0	•		, ,					. (5)		0	0	0	~	0	901	
(20)	į		989	3 6	2 -	3	3 6	200	3 8	3	0.10	2,2	Š	8 6	2 5	18	8 8	3 2	5 6	8	8	8	8	8	88	8	0	0.07	0.28	0	8	8	8	9.0	8	0000	0,00	
200	ľ) = -	. 0	٠.) C					, 2	2 5					-	۰ د	- ۱	er.						0	[e]	-	6		0	0	0	0		0	131	
2	21.0	2.5	28.0	0.38	0.89	0.731	0.70	0.53	000		0.316	0.34	0	0.60	0.60	0.444	0000	0.114	0.536	0.035	040	0.083	0.00	0.061	000	000	0.053	0000	0.125	0.045	8	000	0.135	000	0.049	0.643	0.309	
	×		. S	4	114	€	14	0	-	c	. S	4	32	ន	. 2	•	0	• •	3	7	~	7	0	m	0	0	~	0	4		ន	0	ដ	0	5	96 24	929	
<u>}</u>	0.04	000	0.028	0.164	0.060	0.042	000	0000	000		0.065	0.016	0.056	000	070	0.278	000	0.068	0.23	0.21	000	000	000	0.061	000	0.053	0.158	000	187 0	800	0.010	8	000	800	8	0.000	0.054	
	k	0	(1	20	9	v	0	0	0	0	2	H	4	0	∞	'n	0	m	16	12	٥	0	0	m	0		۰	0	Ф.	0		0	0	0	0	0	119	
	1. Phra Nakhon	2. Pom Prab	3. Sam Pan Thawong	4. Phatum Wan	5. Bung Rak	6. Увплажв	7. Sathon	8. Bang Kho Laem	9. Dusit	10. Bang Suo	11. Phaya Thai	12. Rat Thower	13. Huai Khwang	14. Phra Khanong	15. Klong Toi	16. Pra West	7. Bang Khen	18. Dong Muang	19. Jarujak	20. Berng Karpi	21. Lad Phaow	22. Binng Kum	23. Nong Chok	24. Min Buri	25. Lad Kra Bang	S. Then Buri	77. Klong San	28. Bangkok No.	29. Bang Plat	 Bangkok Yai 	II. Pasi Charoen	52. Bang Khun Thian	S. Jem Thong	F. Lame Chan	D. Kat Burana	6. Nong Khaem	Total	

2) Business Waste Amount

The business waste from office and factory are the largest amount, approximately 28% and 25% of the total respectively. "Hotel" and "Market" discharge relatively large amounts of waste, 8.3% and 16.4% respectively, compared their number of dischargers. It means that each hotel and market discharges a large amount of waste individually as shown in Table 1.3-2.

More than half of business establishments who pay more than 500 Baht discharge less than 3m^3 waste. The business establishments who discharge more than 5m^3 are approximately 19% only. For the types of the business waste dischargers, office and market discharge relatively large amounts of waste. Table 1.3-3 shows waste amount by types of business.

3) Collection Fee

Approximately 61% of the business waste dischargers pay less than 1,440 Baht per year as a collection fee. Among types of business, 1,,440 Baht to 2,400 Baht is largest proportion for restaurants, 960 Baht to 1,440 Baht is largest for offices, shops and government offices, and 600 Baht to 960 Bahts is largest for factories. Hotels and markets pay more collection fee, with the largest proportion of dischargers belonging to 2,400 Baht to 4,800 Baht rate collection fee. Table 1-3-4 shows distribution of collection fee by types of business.

Table 1.3-5 shows a relationship between collection fee and waste amount. If the 1962 fee rate is applied, approximately 54% of the business waste dischargers pays appropriate level of collection fee and 15% of office pay lower than that and 31% of office pay higher that.

Table 1.3-2 Waste Amount by District sand by Types of Business

1

(Ton/day) Total		81.4	26.5	7000	3 1	147,7	177.3	151.0	3 10	0.17	457	12.6	0.0	92.2	150.2	7.75	1.25	3	3 6	2 2	4 7	200	2,	2	12.2	25.8	3.4	56.2	83.7	26.4	900		1 5		20.4	+ o	8	9	2	173.5	j J	2019.5
(%)		0.00	0.010	000	333	600	0.002	0.00	8	3 6	3	900		0.010	0000	000	000	8	2	3 5	3 8	33	98	0.010	0000	000	800	0.005	0000	8	000	200	3 2	8	3 8	700	3 8	3	88	888	3	6000
Others		1.3	1.0	6	2 0	2	1.0	21		9 6	2	0.0																												× 5		18.7
(%)		0000	2000	1000		300	2007	200	8201	200	000	880	-	800	800	950	1,014	100	000	200		, ,	200	900	8	7716	997	203	280	000	7500	8	3	223	136	1	3 8	100	3 5	677.0	1	0.252
Factory		0.0	0.5	00	6	2 .	9	45.0	2.2		107	2															_	_			_		_							101	-	509.7
g (%)		0.00												_	_	_	_	_	_		_												:						ĺ	300		0.001
Temple	1																								-	-	_				Ī		_					•	•	000	•	1.2
(%)		361.76																																						6200		25
Market		_			•	•	•	~	~	•			Ċ													į,														23		330.9
€) W	1	9707													:						:			:									-							410.0		0.033
Covernmental	ľ	2.1	•	_			3	_	_		, _	•																					·			_				1.4		8,0
(%) Govern		3					3 8																																	000		201/
Recreational (Ţ	9		_	4,		•		_	_	8	•					_	_	_	Ī		_								_	_	_	•	_	Ĭ		_	_	~	0.0		20
(%) Rear	L	200	_	_	920				_	_																							-							0.023		6000
School (ľ			_	_			•	_	_	_		:											•						-	_	_	33	_	_	_		_	_	_		1
(%) Sc										_	817		:																	-										0000	2000	ı
Shop (ľ		•	•	_	:		•		_	8		·																						_	_	Ī	_	_	_		ı
İ				_	~		_				8		34	_	•		_	_		_	_			_	_	_				•			7.8								160 6	
(%) [=	ľ	2			_					_	_																						0.036						_	_	2000	13
) Hote												Ö																					4			_	_	_		_	7	me of disc
(%) SS	001	č								_	900	-																					0.013	3 :	003	800	80	8	0.013	0.18	0.283	on at the to
Office	3,6	-		7		6 104.8					00	00				200												15					2 6							_	677.0	d to 0.26 to
ant (%)	0.00					0.016	-				000																						3 6						000		0,040	waste equa
Resturant	0.5	C			3	11.2	6.5	0	200	3	0,0	0.0	3.5	1.0	2.1	0	, c	ł t	ic	2 .	× ;	101	53	0.0	00	00	1.3	9	5 5		2	9 6	3 6				5 6	9	0	0.0	80.2	at 1m3 of
District	1. Phra Nakhon	2. Porn Prab					Yamawa	7. Sathon	0 0-4-Vir.I	o. Dang Nad Lacm	y Dust	10. Bang Suc	11. Phays Thai	12. Rat Thewee	13. Huai Khwane	14. Phra Khanens	15. Klone Toi	16 Per West	17 Bens Khan	TO DESIGNATION	to. Long munning	19. Jamijak	20. Bang Kapi	21. Lad Parow	22. Bung Kum	23. Nong Chok	24. Min Buri	25, Lad Kra Bane	25. Then Burn	27 Klyme San	28 Banekok Noi	20 Perso 21-1	30 Benchat Val	S. Prof.	22 Barry White Hill	The Date of the same	22. John 1868g		Jo. Kat Burana	30. Nong Kheem	Total	Note: It is assumed that Im3 of waste equal to 0.26 ton at the time of disch

Table 1.3-3 Waste Amount by Types of Business

1	ì	ł										-				J
	Total	611	724	3 -	151	3	108	\$	78	5 5	·	7.50	2	ì	2,190	
	(%)	0.000	0.007	400	2000	0.040	0000	0.000	0.000	0.093	0000	0000	0.00		0.014	
	20m3 -	0	v	, (4 v	n	-	0	0	13	0	V	0		31	
, 20,	(%)	0.025	0.025	0.153	2000	7.00	600.0	0.025	0,103	0.207	0000	0.029	0.000		0.051	
000	CM3 - CM	m	17	20	Ş	₹.			∞	প্ল	0	77	0		111	
100/	(62)	20.0	0.129	0.160	75.0		0.074	0.125	0.000	0.236	0.00	0.096	0.103		0.126	
10-2	. [2	87	2	28	o	0 1	'n	7	33	0	73	m		275	
2 (20)	1		0.342	0.176	0.174	2000	7777	0.775	0.167	0.250	0.000	0.092	0.103		0.205	
m3 - 5m3		7	231	23	19	2,4	5 (ν;	5	33	0	5	æ	:	449	
(%)	0.257	7000	707.0	0.328	0.211	0 278		3 5	701.0	0.136	90.	0.142	0.345		0.213	
2m3 - 3m3	GE.	į	//	54	23	30		7 7	2 4	<u>,</u>	7	801	10	767	١	
(%)	0.479	7010	201.0	3	0.220	0.380	2050	0440	000	200	200	9700	7 /100	. 172.0	7007	
1m3 - 2m3	51	126	3 2	77	4	41	22	y e) [: c	926	ç :	1	101		
(%)	0.025	0.049	000	0000	200	270.0	0.00	0.026	000	0000	000	0.027	600.0	0.030		
0- 1m3	m	33	!	٠ ،	> (ก	0	71		0	5	,	1	99		
I ype of Business	Kestaurant	Office	Hotel	Shop	School		Recreational Facility	Governmental Office	Market	Temple	Factory	Others		Total		

Table 1.3-4 Collection Fee by Types of Business

Type of Business	-600	(%)	996-009	(%)	960-1440	(%)	1440-2400	(%)	2400-4800	(%)	4800-9600	(%)	-0096	(%)	Total
Restaurant	,a	0.008	6	0.076	74	0.622	18	0.151	14	0.118	8	0.025	o.	0.00	119
Office		0.001	111	0.164	314	0.464	115	0.170	91	0.135	39	0.058	v	0.007	9/9
Hotel	0	0.000	4	0.031	34	0.260	25	0.191	35	0.267	22	0.168	Ħ	0.084	131
Shop	0	0.000	7	0.064	43	0.394	ĸ'n	0.028	13	0.119	29	0.266	14	0.128	109
School	0	0.000	σ	0.083	28	0.537	17	0.157	22	0.204	,	0.009		0.000	108
Recreational Facility	0	0.000		0.025	21	0.525	7	0.175	7	0.175	.	0.025	m	0.075	40
Governmental Office	-	0.013	-	0.013	37.	0.474	8	0.256	7	0.000	7	0.090		0.064	78
Market	0	0.000	7	0.014	23	0.164	53	0.207	45	0.321	53	0.207	12	0.086	140
Temple	0	0.000	0	0.00	_	0.500	0	0.000	, 4	0.500	. 0	0.00	0	0.000	7
Factory	-	0.001	433	0.571	140	0.185	52	0.069	24	0.124	27	0.036	11	0.015	758
Others :	0	0.000	9	0.207	12	0.414	4	0.138	4	0.138	m	0.103	0	0.000	53
Total	4	0.002	583	0.266	757	0.346	290	0.132	333	0.152	161	0.074	29	0.028	2,190

Table 1.3-5 Collection Fee by Waste Amount

(Bant)	Total	99	791	467	449	275	1-4 1-4 1-4	31	2,190
	-0096	0		0	2		26	22	62
	4800-9600	0	7	∞	21	55	69	9	161
	2400-4800	2	28	55	75	158	13	7	333
	1440-2400	. —4	38	44	165	41	-	0	290
	960-1440	15	257	293	184	Q	2	0	757
	096-009	46	464	. 29	. 7	m	0	←	583
	-600	2		0	0		0	0	4
		$0-1 \mathrm{m}3$	$1-2\mathrm{m}3$	$2-3\mathrm{m}3$	3 - 5 m3	5 - 10m3	10 - 20m3	20 m3 -	Total

4) Others

(1) Collection Frequency

Every day and 3 times a week are the most dominant collection frequency. The business establishments which are supposed to discharge perishable waste and are required to have a high sanitary condition such as restaurant, hotel, shop and market have a high percentage of daily collection service. Meanwhile, more than half of factories receive every other day collection service. Refer to Table 1.3-6.

(2) Type of Receptacle

The business establishments, use various types of receptacles for discharging the waste. In particular, bamboo basket, container and concrete container are widely used, see Table 1.3-7.

Table 1.3-6 Collection Frequency by Types of Business

Total	110	20	0	131	ş	100	9 5		90	140	}	7	758	20	ì	2.190
(%)	0.017	3000	0.0	0.015	0.000	0.037	200	20.0	0.029	0000	0000	3	000	0.103		
No Answer	2	1.	3 (7	Ċ	7	٠.	(7	C	•	>	0	т		31
(%)	0000	070	2000	0.000	0.000	000	800	30.0	0000	0000	200	3	0.020	0.000		
1 Time	0	7,0	ì	0	0	C	, ,	> 0	⊋,	C		>	15	0		42
(%)	0.118	0.10		0.069	0.037	0.167	0.075		20.0	0.057	0.000	2	0.191	0.069		
2 Times	4.	27	5 <	.	4	92	((1	١,	0,	00			145	(1		297
(%)	0.025	0.290	,	0.313	0.294	0.361	722	000	0,00	0.179	000	200	0.611	0.207		
3 Тітеѕ	m	196	-	7	32	39	σ	, ć	7†	55	c	, ;	403	v		856
(%)	2.00x	0.015	0.00	0.01	0.009	0.065	0.025	0.051		0.014	0.00		0.049	0.069		
4 Times	- 4	10	·	١,	_	,	-	•	٠,	7	0		'n	2		29
(%)	0.034	0.024	8000	000	33.5	0.102	0000	0.013	1 6	0.007	0000	6	3 :	0.069		
5 Times	4	16	-	٠,	>		0	-		 4	0	<	> (73		36
(%)	95.5	0.064	000	000	0.028	0.019	0000	0000	000	0.021	000	3000	200	0.138		
6 Times	>	43	c	> 0	ņ	7	0	c	• •	'n	0	Q	ŗ.	4		104
(%)	2,73	0,414	0.580		0.033	0.250	0.650	205		0.721	0.500	0.065	2000	0.345		
Every Day	S	280	76	2 (6	27	56	23	3	101		97	× •	10		757
Type of Business	Resturant	Office	Hotel		doug	School	Recreational Facility	Governmental Office	16.4	Market	Temple	Factory	i actori y	Others		Total

Table 1.3-7 Type of Receptacle by Types of Business

Tono of Ducinese	Domboo	100	Disaste Dag	100	4		K	1									
Type of Dustiess	Solling	(9/.)	riasiic Dag	(2/0)	riasuc bin	(%)	Container	(§	rianled-in-	8	Congret	(% (%	Others	(%)	No Answer	(%)	Total
	Basket					_	Less than 1m3,	_	Container		Container	-					
Restaurant	v	0.042	22	0.185	[0.092	57	0.479	2	0.017	13	0110	7	5000	,	0500	311
Office	¥	0000	160	2200	ç		***		: ;		;;	,	,	0.0	٥.	2	117
3	2	2000	20	0.700	Ó	CIT'S	193	0.286	99	0.058	76	0.112	55	0.033	32	0.047	9/9
Hotel		0.008	13	0,090	7	0.053	78	0.214	C	0.00	. 02	0.534	σ	0,060	, ~	600	121
Shon	7	0.054	_	000	·	0100	¥	034 0	t		- 6				,	200	101
2000			٠ .	200	7 (0.00	ક	C. 40A	•	0.004	₹	0.700	9	0.055	00	0.073	3
School	o	0.056	4	0.037	7	0.019	4]	0.380	90	0.074	30	0.361	P	0.037	•	0.027	100
Regressional Eacility	c	0.50	_	800	-	7000	٠,								•	3	9
treatment and the	4	0.00	>	30.0	-	0.02	23	0.475		0.025	O	0.225	9	0.150	7	0.050	07
Governmental Office	m	0.038	7	0.026		0.013	18	0.23	2	9200	3.7	0.449	,	2000	4	2	. 0
Markot	ć	, ,	•	200	•		3		1		3	,	4	23.5	3	747.5	
ואישועכר	77	0.10	3	0.029	7	0.014	23	0.164	12	0.086	19	0.436	'n	0.036	1	0.079	140
Temple	0	0.0 0.0	0	0000	0	0000	_	0.500	c	0000	c	0000	c	000		2	
Factori	722	077	1.4	0,0		000			,		> ,	3	>	3		3	7
I actual y	220	0.440	7	0.018	7	000	169	0.223	166	0.219	54	0.07	<u>~</u>	0.017	7	0000	758
Others	00	0.276	P	0.138	_	000	•	000	,		t) -		3
	>		•	3	>	30.0	t	0,130	n	0.105	,	0.241		0.000	m	0.13	53
Total	446	0.204	243	0 111	106	0.048	603	377.0	070	,	: 60.0		·.		;		
				,	3	5	3	7.7.0	240	2	293	2	2	0.032	0	200	5

Table A-1 Collected Waste Amount by Districts from 1982 to 1989

1982	1983	1984	1985	1986	1987	1988	1989
اف	64,028	66,255	68,675	70,744	73,430	66,69	66,063
55	55,387	32,273	34,252	36,208	36,109	34,497	32,855
22	860,	21,995	25,043	27,466	27,295	24,211	21,602
50,	888	42,698	47,698	57,236	56,471	51,026	52,533
44	44,387	40,073	43,607	48,392	48,963	44,796	44,320
- 62	62,731	65,364	95,619	107,091	116,158	114,830	72,123
							26,419
							15,359
2	101,594	90,294	156,88	104,368	128,500	126,884	111,405
	-						
2	84,381	83,111	108,847	120,552	130,339	129,527	104,368
	-	1					13,714
4	44,158	37,712	61,612	68,383	72,924	71,811	66,929
132	32,164	104,598	116,519	144,544	163,058	150,816	73,338
	-		34,219	38,376	42,335	40,511	100,690
							11,802
19	67,986	75,292	94,174	112,168	130,726	157,483	99,528
	_						20,438
							30,240
32,	32,292	31,113	64,390	88,757	108,902	113,770	98,505
							4,790
	-						12,996
-	1,747	1,456	1,274	1,953	1,984	1,955	1,888
	9,703	10,005	6,059	11,154	13,293	13,359	13,043
	4,935	4,026	3,997	6,023	9,936	9,480	11,467
3	31,674	33,270	35,292	41,117	47,591	48,567	45,107
3	35,890	30,864	32,609	37,128	42,101	42,926	40,131
4	47,868	45,771	47,786	47,414	55,389	67,349	68,148
			9,545	16991	22,218	22,708	21,723
	17,056	17,184	19,739	22,207	25,176	25,638	24,369
	18,923	16,005	29,890	34,814	38,499	42,356	40,332
2	2,808	24,692	26,185	33,142	39,847	43,096	30,297
	-						13,331
7	4,419	3,927	4,953	6,004	7,269	7,453	866'8
1	5,676	16,086	25,254	28,423	30,982	32,509	31.148
	3,599	4,639	5,968	7,115	9,614	10,921	11,532
	17,578	34,474	57,820	46,774	50,273	47,811	49,536
<u>ک</u> ر	993,770	933,177	1,189,973	1,364,243	1,529,385	1,546,291	1,491,068
	2,723	2,557	3,260	3,738	4,190	4,225	4,085

Table A-2 Population by Districts from 1979 to 1989

_	_	-										_			_						_								_			_						
1980	102.382	81.440	48 377	146 499	87175	115.132	148 242	748 807	267 601	304 854	228 734	112 230	265 164	190,044	276.978	197.226	199,670	206.925	199,606	214 519	116 505	147 634	61 417	86.558	653111	269.975	145,901	153,018	145.372	107.548	243.195	118,609	182 249	104.538	157 124	70,491		5,716,739
1 8861	102.382	81.440	48 377	146,499	87.175	412.31.1			572.455		340.473	2	265 164	664,248			606,201			478.748		,	61417	86.558	65,311	269,975	145,901	298,390		107.548	243.195	300,858	-	104.538	157.124	70,491		5,716,779
1987	104.791	83.412	50.089	145,110	88 554	414.235			561.979		350.780	23	262 262	650,572			581.508	-		442.420			60 142	81.110	63,875	274,949	146,781	297,324		108,171	236,572	286,165		98.552	154.177	65,822		5,609,352
1986	111,875	87.955	51.121	143,199	90.672	415.703			\$62.990		359.604		255.774	629,386			548,078	_		409.785			\$7.704	74,052	59.070	274,176	143,719	294,938		106,732	228,202	265,453		90,135	148.166	60,426		5,468,915
1985	114,124	89.539	52.397	155.868	91.088	410.2881			565.339		360,603		247.274	614,854			520,861			386,005		-	56.863	70,289	56,023	273,542	142,590	291,035		107,486	219,606	254,597		85,559	140,245	57,303		5,363,378
1984	112,332	89,330	52,816	157,330	88.197	396,420			558,832		357.726		239.742	594,902			483,717			356,033			54.952	996,999	50,541	267,616	139,444	285,265	1 1	104,716	211,125	240,835		81,349	131,550	52,946		5,174,682
1983	113,376	92,950	53,504	114,820	88,869	392,279			550,369		346,319		235,739	578,541			457,544			335,171			54,011	64,266	48,836	267,767	139,736	283,296		104,024	207,409	232,532		78,995	127,726	50,248	0	5,018,327
1982	117,649	189,207	75,581	233,978	141,667	386,843			546,868		520,507		231,069	559.812			429,977			314,780			51,799	61,349	45,303	268,662	139,310	388,325		103,365	196,138	223,388		72,608	122,614	47,487	200	2,408,280
1981	121,935	190,093	76,559	233,884	136,673	382,585			528,357		520,443		208 129	545,926			408,720			291,484			52.131	58,451	43,990	267,398	139,625	385,286		102,719	190,108	213,440		70,201	118,099	45,166	2007	5,331,402
1980	123,109	190,450	77,112	235,647	131,542	380,416			479,659		519,869		- 201,334	523,831			388,333			255,555			51,224	55,369	42,567	262,097	140,249	382,621		101,198	183,385	204,434		67,746	113,769	42,386	000000	3,133,904
1979	124,854	194,299	78,151	233,050	126,487	375,213			462,210		514,177		195,112	502,287			367,402			218,703			50,136	52,579	40,996	256.740	140,943	3/8/81/		100,051	176.282	197.082		65,269	108,447	40,228	1 000 616	1010,686,4
DISTRICTAYEAR	 Phra Nakhon 	2. Pom Prab	Sam Pan Thawong	4. Phatum Wan	5. Bang Rak	6. Yannawa	7. Sathon	8. Bang Kho Laem	9. Dusit	10. Bang Suc	11. Phaya Thai	12. Rat Thewee	 Huai Khwang 	14. Phra Khanong	15. Klong Toi	16. Pra Weat	 Bang Khen 	Dong Muang	19. Jatujak	20. Bang Kapi	21. Lad Phaow	22. Bung Kum	23. Nong Chok	24. Min Buri	25. Lad Kra Bang	26. Thon Buri	27. Klong San	28. Bangkok Noi	29. Bang Plat	30. Bangkok Yai	31. Pasi Charoen	32. Bang Khun Thian	33. Jom Thong	34. Taling Chan	35. Rat Burana	36. Nong Khaem	TV/TV	וסואר

Chapter 2 Waste Quality

2.1 Present Waste Quality

2.1.1 Physical Composition

Quality of solid waste affects the method of intermediate treatment, in particular the type or use of incineration plant. The composition of the solid waste, therefore, is analyzed from the viewpoint of possibility of using incineration plant.

The DPC examines physical components of the solid waste monthly using sampling methods at the final disposal sites of On Nut and Nong Khaen. Table 2.1-1 shows that the physical composition in air dried waste basis. Moisture content is about 50 to 60% of total weight of the waste. Major composition items are paper, fruit/vegetable and plastic materials which are approximately 12% to 18%, 4% to 23% and 9% to 12% respectively. On the other hand, the JICA Team has conducted examination of physical composition of the waste at On Nut in August 1990. The results show the same trend as the DPC's examination.

Table 2.1-2 shows the physical composition of the waste by weight base by type of collection areas. Commercial waste has a higher percentage of paper, garbage and textiles, while industrial waste has a higer percentage of paper, textiles, rubber and leather, and residential waste contains more garbage and plastic. As a result, the commercial waste and the industrial waste have a higher calorific value than residential waste.

Table 2.1-1 Physical Composition of Solid Waste by Weight

Location			Nong Khaem	haem				On Nut	ut		-
Date		Jan./23/89	May/15/90	Jan./23/90	Jul./9/90	Mar./13/89	Jul./11/89	Nov./14/89	May/9/90	Aug./23/90	Aug./30/90
Agency		BMA	BMA	BMA	BMA	BMA	BMA	BMA	BMA	JICA	JICA
	Moisture	51.2	63.7	48.1	5.09	62.7	59.4	60.2	59.7	55.4	56.9
Component		30.9	27.1	33.8 8.02	22.3	24.6	5.5	22.4	19.4	35.0	32.3
(%)	Ash	17.9	9.2	28.1	17.2	12.7	15.1	17.4	20.9	96	10.8
	Paper	12.5	16.9	12.2	13.9	14.3	15.7	17.6	15.7	15.9	17.0
	Fruit. Vegetable	6.0	23.0	4.5	10.5	16.3	0.6	9.7	13.9	10.9	16.3
	Bone, Shell	ω ω	7.2	3.7	4.7	9.7	2.9	2.1	4.6	2.5	4.5
	Textile	17.7	6.0	5.6	8.0	4.7	5.3	4.7	4.4	6.1	3.1
Physical	WoodLeaves	4.0	16.5	11.0	5.6	5.2	18.3	9.1	2.9	8.0	3.9
Component	Plastic	11.1	9.4	8.6	8.6	6.6	10.7	11.8	9.1	13.5	10.1
(%)		1.4	0.2	4.0	5.4	0.3	0.4		0.2	5.0	0.2
	Metal	7.1	1.0	3,4	3.2	3.1	3.3	5.8	3.1	3.6	5.7
	Glass	1.9	8.9	5.6	7.2	3.5	3.3	9.8	6.6	7.4	5.6
	Stone, Ceramic	12.3	2.7	7.8	1.9	8.4	7.9	2.4	10.7	1.5	7.4
	Miscellaneous										
	< 5mm	13.4	6.2	12.2	8.1	12.0	15.5	12.8	9.3	6.9	11.2
	> 5mm	9.3	9.5	20.2	17.8	12.6	7.7	14.3	16.2	18.7	15.0
Note: Perce	Note: Percentage of physical component is cald	omponent is	calculated on dry basis.	iry basis.							

Table 2.1-2 Physical Composition of Waste by Weight by Type of Areas

		An	alytical Parameter	. A1	A2	В	C	D1	D2	E .	F
L _.	Was	te Com	ponents, wet weight					•			
	ί.	Com	bustible					٠			
		1.1	Paper	17.73	12.80	22.03	15.15	11,64	13.76	7.73	12.4
		1.2	Garbage	40.02	43.35	23.41	27.86	28.71	34.46	43.46	39.1
		1.3	Textile	5.55	10.13	11.42	1.96	9.12	7.18	3.97	3.2
	:	1.4	Wood and Grass	10,10	9.38	7.70	22.99	12.29	16.62	21.92	15.1
		1.5	Plastic	10.62	10.68	9.23	13.17	10.18	13.60	6.59	9.4
		1.6	Rubber and Leather	0.17	0.58	10.74	2.13	1.17	2.16	7.39	1.9
Sub-	Total			84.19	87.12	84.59	83.26	83.11	87.78	91.12	. 81.3
	2	Non-	Combustible								
		21	Ferrous Metal	1.71	1.58	4.01	1.46	1.21	1.52	0.94	1.9
		2.2	Non-ferrous Metal	0.21	0.11	0.05	0.19	0.62	0.11	0.12	0.0
		2.3	Glass	2.14	2.39	0.62	1.88	2.24	2.45	0.97	3.2
		2.4	Stone and Ceramics	5.58	2.56	2.14	8.56	5.20	3.68	3.20	6.1
Sub-	Fotal			9.64	6.64	6.02	12.03	3.27	7.76	5.23	11.0
	3.	Misce	Haneous								
		31	Size > 5 mm	4.30	4.41	5.44	3.81	5.84	3.32	3.12	6.4
		3.2	Size < 5 mm	1.89	1.85	3,17	0.83	1.76	1.14	0.58	0.0
Sub	rota!			6.19	6.26	8.61	4.64	7.60	4.46	3.71	7.0
Total				100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.0
Ł	Was	te Com	ponents, wet weight								
	i	Moist	ure Content, wet weight	60.52	60.05	43.19	56.08	60.44	59.50	67.00	60.4
	2	Ash (Content, % wet weight	10.29	10.01	21.25	17.28	12.37	11.92	9.05	15.0
	3.	Comi	oustion Content, wet weight	29.19	29.94	33.37	26.64	27.19	28.58	23.93	24.5
Total				100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.0
	4.	Gross	Calorific value	4,126.26	4,180.12	4,234.12	3,213.62	4,017.59	3,909.17	3,652.68	3,534.9
		(Kcal	/kg, adjusted dry basis)								
	5.	•	oustion Content of Miscellaneous	-	23.43	-		46.18	-	14.59	-
		Again	st Miscellaneous		٠						
IA.	Num	ber of 9	Samples	6	6	4	5	7	14	6	

Notes:

- Commercial Refuse, Central City Core and Urban Zones Commercial Refuse, Semi-Urban and Semi-Rural Zones A1 -
- A2 -B -C -D -Industrial Wastes, Factories within Industrial Estates
- Institutional Wastes, Government Offices and Educational Institutes
- Residential Refuse, Households in the Central city Core and Urban Zones
- D2 -Residential Refuse, Semi-Urban and Semi-Rural Zones
- Market Waste, Fresh Products Markets which include some Rating Stands
- E -F -Residential Refuse, Low Income Level (51 um) Housing Areas

Source: Feasibility Study on The Management of the Disposal of Bangkok Municipal Waste, 1989

2.1.2 Chemical Analysis

Chemical composition is analyzed in order to determine the probable composition of compost products and of the waste generated gases from the incineration plant. The chemical composition of combustible waste is shown in Table 2.1-3. The waste comprises prinncipally 51% - 54% carbon, 6% - 8% hydrogen and 38% oxygen.

Table 2.1-3 Chemical Composition of Combustible Waste at On Nut, 1990

(Unit: % Dry Base) Date: Carbon Hydrogen Nitrogen Chlorine Sulfur Oxygen Aug. 23 51.88 7.56 1.82 0.70 0.02 38.02 Aug. 30 53.13 6.56 1.91 0.33 0.06 38.01

Note: The waste of On Nut disposal sites comes from Phra Kanong, Praweet, Yannawa, Huai Khway, Bang Rak, Pathum Wan, Bay Kapi and Phaya Thai districts.

2.2 Estimated Waste Quality

Waste analyses were made by both the present and previous JICA Study Teams as well as by Mr. Sakai, the former JICA Expert attached to the DPC. Fig. 2.2-1 shows the results of the waste analyses (contents of moisture, volatile substances and ash). Fig. 2.2-1 also shows the percentages of respective contents projected for the year 2000.

Table 2.2-1 Past, Present and Future Waste Composition

	In 2000	In 1990	In 1980
Moisture	57% (±0%)	57%	57%
Volatile	31% (+4%)	29%	27%
Ash	12% (-4%)	14%	16%
Total	100%	100%	100%

It is estimated that LHV (low heat value) in 1980 was 1,000 Kcal/Kg, while LHV in 2000 will be 1,200 Kcal/Kg using the following formula:

LHV= 4500 Kcal/Kg (Volatile - Volatile x plastic ratio 12 %)

- +8000 Kcal/Kg (Volatile x plastic ratio 12 %)
- 600 Kcal/Kg (Moisture)

Table 2.2-2 shows the results of the chemical composition analyses made in 1980 and 1990.

Table 2.2-2 Chemical Composition

Cl	Total
0.70	100

Unit: %

SURVEY DATE	C	H	0	N	S	Cl	Total
Rainy season, 1980	54.96	8.23	34.38	1.40	0.25	0.79	100
Dry season, 1980	53.28	11.07	33.49	1.12	0.15	0.89	100
23, Aug, 1990	51.88	7.56	38.02	1.82	0.02	0.70	100
30, Aug, 1990	53.13	6.56	38.01	1.91	0.06	0.33	100

Note: The first two surveys were made by the previous JICA Study Team, while the last two surveys were made by the present JICA Study Team.

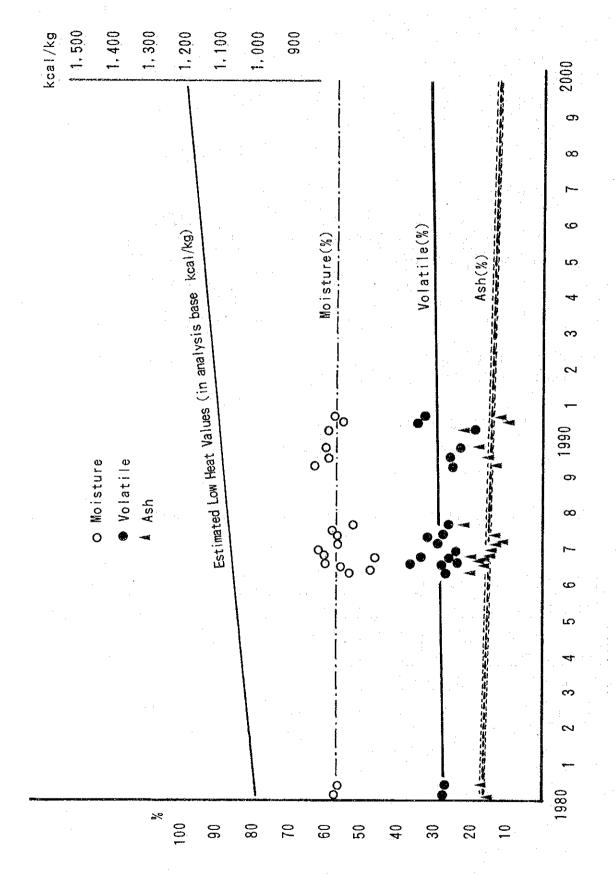


Fig. 2.2-1 Estimated Waste Composition and Low Heat Values of Waste

Part II

Present Conditions

of

the Solid Waste Management

Chapter 3. Waste Collection and Haulage

3.1 Use of Contractors

3.1.1 Areas Served and Waste Amounts Collected by Contractors

Private contractors served 7 % of the population in Bangkok from 1987 to 1989. As shown in Table 3.1-1, 84,451 households and 354,280 persons were served in Klong Toey, Klong Ton sub-districts and Bangkok Noi district.

Table 3.1-1 Area and Population served by Collection Contractors

AREA	NO. OF HOUSEHOLDS	NO. OF POPULATION
Klong Toey Subdistrict	27,676	103,790
Klong Ton Subdistrict	13,017	52,496
Bangkok Noi District	43,758	197,976
Total	84,451	354,280

Source: DPC, BMA

As shown in Table 3.1-2, contractors collected 467.9 tons/day on average in 1989, which represents approximately 13 % of the total solid waste amount. As shown in Table 3.1-3, the average tonnage per trip of the contractors was 4.04 tons/day in 1989, while the BMA's corresponding amount was 3.75 tons/day.

Table 3.1-2 The Amount of Waste Collected by BMA and Contractors (tons/day)

	1985	1986	1987	1988	1989
BMA	3,196.36	3,661.0	3,737.17	3,796.24	3,640,12
Private Contractor	63.86	121.43	452.93	440.17	467.9
- Klong Ton	63.86	121.43	190.87	145.58	138.69
- Klong Toey	-	-	113.32	110.60	137.32
- Bangkok Noi	_	-	148.76	183.99	191.89

Source: DPC, BMA

Tablé 3.1-3 Average Collection Amount Per Trip (ton/trip)

	1987	1988	1989
BMA	3.83	3.92	3.75
Contractors (average)	4,25	3.62	4.04
- Klong Ton	4.58	3.24	3.49
- Klong Toey	3.71	3.46	4.38
- Bangkok Noi	4.32	4.13	4.29

Source: DPC, BMA

3.1.2 Contents of Contract

Contracts between the BMA and private contractors include conditions on fees, fines, and terms of work as well as supervision and advice. For example, the contract of Bangkok Noi district has 20 sections. Sections 1 to 5 stipulated terms of work and fees. The Private contractor has to finish collection before 6:00 pm except in certain areas. Payment is made at the rate of 202 Baht/ton, not to exceed 33,178,500 Bahts. The private contractor must also give a guarantee to the BMA amounting to 5 % of total wages.

Section 7 of the contract stipulates fines. For instance, the private contractor has to pay 1,500 Bahts per day if he cannot arrange collection vehicles as stated in the contract. Sections 11 to 15 stipulate the supervision and inspection by the BMA. The BMA can appoint an inspection committee for inspecting, advising and ordering the private contractors.

3.1.3 Evaluation of Contractors

Several problems have arisen with the private contractors. Firstly, private contractors cheat on the volume of garbage collected by adding stones and water to the collected waste because the BMA pays fees by weight. Secondly workers of private contractors have a low consciousness of public cleansing; therefore, some garbage were left uncollected on the streets. Thirdly, there was not enough equipment used, and it was not well maintained.

In spite of those problems, the use of contractors is effective in reducing costs of waste collection and haulage.

3.2 Operation Records of Waste Collection Vehicles

Monthly operation records of the three (3) districts (Huai Khwang, Patuwan & Klong Toy) during the month of August 1990 are shown in the following tables.

- Table 3.2-1 Operation Records of Waste Collection Vehicles in Huai Khwang
 District for the Month of August 1990
 Table 3.2-2 Operation Records of Waste Collection Vehicles in Patuwan District
- Table 3.2-2 Operation Records of Waste Collection Vehicles in Patuwan District for the Month of August 1990
- Table 3.2-3 Operation Records of Waste Collection Vehicles in Klong Toy
 District for the Month of August 1990

Table 3.2-1 Operation Records of Waste Collection Vehicles in Huai Khwang District for the Month of August 1990

Third Annuar Annuar Annuar Annuar Third				1	1	<u>, </u>				<u> </u>	Γ	-	_	1-	\top			Γ-			\neg	1		_	1	7	7	_		Г	-	1	l
Third Automate Automate Automate Third 2 Unit East Ea								1100	1	1	1				1				1		3000	004				١	1	١	1			3910	1303
Third Automate Automate Automate Third 2 Unit East Ea	3.se Average	2300		30/3				1094	1	1			35/0		4600		1	2882			3/50	1000						1	000	2400		26,301	2,630
Title of Automata Augusta Augusta Augusta Augusta		-1	5893	2622	5333	4,52	3206	135/	57.33	27.25	>>>/	2/13	8655		5490	30.75	1	3256	3200	3837	3126	9601	5636	1. 8683	5320	7882	_	1164	7///	2262	***	86716	3.742
Total Haringa Angula Haringa 15th 2 that 15th			1442	4069	1527	1050	3629	1204	76-37	1-	T	\vdash	-	╁	5944	3/50	1	3478	-			П	92.43	6383	1565	一	1		1	16.7	3555		4/2/
10 10 10 10 10 10 10 10							1	1/00					-	-	-	-		-			0000	500			1			}			†	4900	1 25
Total	8	1	30		20 22	- 	-	500	-	 	1		0/2		00 97	_	_	- 700	 				1	1	1		_ - 	-	4000	200	-		
Total Average Average Average Average Second Marca Second Type 11 122 3226 6.36 1075 1075 1075 1075 1075 1075 1075 1075		ന	1			20407	27.00	20200	0000	かがっ	9230	360	!		4-	نسا	-	1	4400	2210	1300 2	4/00 1	0000	- 0560	320	1000		C90 S				725,620 /	8378
Total Auriora Average Average Average Average Second Wingston Twine of 12 year (2239 6.36 1075 172.11 1.82 3226 6.36 1075 172.66 1.59 6.25 5.39 866 182.38 1.59 5.39 866 222.09 1.62 3388 4.83 1129 123.80 1.62 3388 4.83 1129 123.80 1.62 3388 4.83 1129 123.80 1.62 3388 6.60 3368 120.34 1.65 3400 5.01 1133 97.04 1.73 3281 5.65 1088 130.38 1.65 3400 5.01 1133 97.08 1.70 3388 1.59 1088 225.09 1.81 3281 3.65 1088 225.09 1.81 3281 3.65 1088 225.09 1.81 3281 3.65 1088 225.09 1.82 3912 7.11 16.8	\sim		_				10/600	-		129/00		·			4	<u> </u>		104900 8		1-1		28400 2	200740 14	8 021791	109270 4	99 5-0 0		163830	25,600 2	3064012		() 8894582	9511 378. 32 ny 2901
Total Average		2000	200	1200	949	2953	79%	1147	2064	1444	1129	676	1/94		1909	1037		3368	1/33	П	\neg	9,001	2034	1391	910	100%		3191	7011	7771		39050	1462
Total Average Average Average Total Taips (246) 1825 (226) 182 3226 182 182 326 182 3226 182 182 326 182 326 182 3226 182 182 326 182 3226 182 182 326 182 3226 182 182 326 182 3226 182 182 326 182 3226 182 182 326 182 3226 182 182 326 182 3226 182 182 326 182 3226 182 182 3226 182 182 3226 182 182 3226 182 182 3226 182 182 3226 182 182 3226 182 182 3226 182 182 3226 182 182 182 182 182 182 182 182 182 182		-ri	20, 10	5 5	6.74	* -	4.39	27. 3	11.43	5.75	4 23	4 76	6.97	_	16.9	5.45			105	6.47	3.65	1.57	7.26			7.11		2.//				162.40	6.25
Total Average Twisq 1, 24 Twisq 1, 24 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 40 179, 179	Average Victoria	27.75	67.	1647	5383	, 3062	5948	97/1	1619	4333	3388	3487	5775		5927	3118		336€	3400	3795€	32%/	9801	70/9	5372	5730	30//		4853	1104	5776		260801	3,965
Total Twise of 172.66 177.90 1	Average T		64 /	1 72	1.29	1.57	39/	2.50	1.87	1.50	7.87	86.1	132	-	163	150		1.90	1.65	1 73	7/2	2.43	181	1.43	1.05	128		197	2.5%	1.70		04.94	1.79
		0000	195.66	1	1.4	187.64	150.05/	20.202			140.02		202.04	-	103.57	43.61	-	192.09	30.3%	30.66	102.20	` `	C1		186.28	220,33	11	1.1	74.44	25 8			-2.59/
- 16 3 12 성의 방법 지원 시설 시설 시설 원인 사업 시설			283610	197830	303,940	297580	15-3300	P7080	35.7100	194980	159280	128/40	74/45		143180	3 7500	-	192000		09986	┯	6 7300	34/640	247090	0/54/1	11/600	-1		84700	055 7/		4,95,042	180,579
10th Total 10th T	7 3	3 1.		-			25	77		45	47	45	CZ,	-	7	7	- 1	H		26	2.5	79	2	3	0,1	۲		33	5	X		1226	47.2
3 5 3 m n N m N 2 m n n m n m n n n n n n n n n n n n n	Service Servic	3	3	7	n	2	77	7,	'n	7	ارن	n	n		m	7			n	ກ	1		<u>,</u>	1	b '	カ		n ~		+		. 99	2.64
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(6)	A 2-	i.	'n	29	30	20	30	m	30	23	76	29		7			30	97	72	26	52				/ 5		ر ا	777	100		289	2.92
	7	, I J	12/3(cr -)	(21,25) 266	(aE do) E \$ 6	1298 (CP)	838(SL.12)	7 (12/5/cp 30)	952 (CP.30)	1066 (51.12)	1067 (54,12)	(St. (CP. 162)	1-3376 (24, -)	954 (CP. 30)	٦	T.	600 (0).10)	Ū.	₩	5		(4.es) ×/5/	(43 & (C, -)	12 9 9 (CP, -)	(21,15) 07'01	ショゴゴ()	955/2030)	뇌	1		×	Anerage
12	-32		ر ارام ارام	523	700	· `	905	5.50	۵۵ - ۵۵ -	623	0/65	11/005	C2/2	X/3 92	6/4	_4	\$ 9)X	CP 77]	′,	1	—L	77	1	*	27.5	3/ ×	200	9	22		10)	4

CP = Contractor CT = Container SD = Side Loader

Table 3.2-2 Operation Records of Waste Collection Vehicles in Patuwan District for the Month of August 1990

	4 4	TVC SX				Ī						32/0	2874	3/2/5				1	ı	1										1			9267	3080		
٠		L Concincion	1			3860	27.0					2362		29.74		1	3023								1		5252				22.20	. 11	2476	3026	 -	
ī	4 trip										1	3210	06871	12740		١		1		1		1		 	1							1.1	2 305.20	10103		
	3 47.10				1	3860	077				1	14/70	24400	3830		1	9030	1			1						5250				- 1 3 1		7,8550	9186	ı	
	2.5T	200 t	2/30	3/60		2252	243/	///9	5830	27.40	7777	19.5	20341	2745	3293	35-70 1	35.52	3046			4230		6/23	7730	>480		9300	2940	57.5	4206	47.47		112485	4326		
	the sap	, (, //	4-	<u> </u>	1	4727	2862	+	\dashv	4250	2//0	- -	t				34/2	2798	2/18	296	_1		5/55	- 1		55/9	Ш		2007	100-10	722		(80 620 148383	7844 4497		-
	2 74	May W	27.7		0,	4		_ 1	5330			1	53080 44750	06/02 0			53.20	48730			4330			2 1	2680		162510 18600	02630 3820	8	22.25	+			<u> </u>	-	
	45	~	†	1	Π	3/180	4/23/4	73365/	17/-1	74230	 	H	8067	3397	84120	13020	02.520	86 730	0/28	15,140	83690	42030	01.6057	24/25	15330	7.7	1 1	1	2/7/10	104/20	04/021	11	39.63.10	L96611	<u> </u>	
			505/	2681	2.53	5/3	674		100	370	1040			}	209	200	× 09	191		476	2749	150	1529	1885	73.57	1543	6122	1200	1,492	842	696	LI	3703 /	1323		
	Asperal S	48 6	20.8	9.13	7.52	47.00		55.4		70.0		£.32	4.59	77.25	20 6	7 6	10.76	7.62	20%	4.57	6.27		1,2,4	1.	25.8	17.8	2.65	10.10	76.8	89 &	567	C 7 7 C	3	8.36		
>	Average		8209	2528	8613	2567	7.7	1208 1208	125	2529	4159	8002	71/16	2834	20 32	13:	24.52	7887	3/8	284	2947	17/0	13314	2688	7.97	1.23	9599	4800	2989	9988	38 76	ווחדווה	けいた	4471	-	
gust 177	Average	7-	1,03	1.16	00/		╁	+	-	×5.	H	6		+	1	\dagger	+	+	00.	1.00	†	, ,	20	-		00	100)E:/	1.29	ر, کو	1.00	77 (17	j.	1,32	>	
AND THE LANGUAGE OF TAKEBUSE 1990		777	249 62	173.55	233 /2	X X X	74. 45				64.10	3	2)	00 70	207.52	4.35		276.10	20.55	07 7	170.30		. ,	227.10	25 42	7 ()/ (72.22	293.19	289,29	260.35	2.58	रह हो।	<u> </u>	2/5,56		
	Total 7	206660			-}-	2/A/20	H	-			87330 1	-4-	14600		T	28/80	- -	ï	- 1	25070	-	189340 2		-		0/8/4/	130850		-	-	751 05/07/	P 99680TA		C 288 Eth		
2	7.04.07 tripus x	32	32	1	7/4	 -	一		26 14	7	7	-	1	0.4	\dagger	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ť	╁	4	╁	十	34 1		1	30	-	42		\vdash	27	71 /8	820/	F _	32.97 14		
	New Sec	×	7	3/2	\ \ !	7 3			8	×	7		† \	L	20	1	\ \ \	1	1	-		Λ)	*	-	m			7	8	×	8	102	;	7.9		
	Total Wark Dak	171	3/		75	1 2	77	31	57	2,	3 ,	29	1 2	-	+	30	1~			29	797	3/	3/	29	29	7.	2.9	٥		2			+,	米第一ジ		
No4		8	3	463 (09.30)	1	ال	846 (cr. 12)	(CP.12)			7 X CCP, M.I.	(4 2) 10	(67.8)	(71 75)	(51,12)	L	L	ļ.,	3348(51)	7943(2)	(4)6889	ᆛ		1		1.5	Ц	\$ (05.4)	L	_	1.E) 31	807	· '	オー		1
W I G	Nerice	8611	85.3	763	(21.12) 2/01	10/5 (51, 12)	856	27.2	7	784 (52,10)	7,69	1/2	1 7 7 X	,	<u>۱۲</u>	(4/15) / 60 /	1092	120 126		3.4. 79		쇳	1304 (cr)	(-12) 15 TC	(L'40) 22 25 5	(08.92) 6 6 11	1093 (51.12)	[123 (CP, 30)	1122 (CP 30)	1075(51,12)	1074(52,12)	8	{	The sage	7/2/10 2	, , , ,
ĺ			7	2	1	9	7	4	9	0		1 2	1 2	5	19	2	4	2	8	7	7	77	*	á	3	8	SX.	102		3) - -	0 <	さし		25
																	2.	G													•					

Table 3.2-3 Operation Records of Waste Collection Vehicles in Klong Toy
District for the Month of August 1990

 !	Brd. Average				28/81			1					- 		-		1			-	1				1			-	-		2818	28/3	1
1	Strip g			- 	5 650 12	<u> </u>			Ī		١	1	<u>'</u>	' 	_' <u> </u> 	ا ا		1			1	1	,	1		_					2 42%	8450 2	
		25.20			\$ 6092	 		-		 			_ 		,		1	[1	\ 			\ Fi				ا.ــــــــــــــــــــــــــــــــــــ			_			-
	y year	\downarrow	<u>'</u>	-		 - 					-	1	: I	1	1			-	1	1						+		_	L		5429	5/27	
	<u> </u>	0 / 10	֓֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֜֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֓֡֡֡֓֡֓֡֓֡֡֓֡		0 210B	-			1	-			-	!	\		1	1	1									Ĺ	L	-	4009	2005 -	
		7820			26090			<u> </u>			J			1			۱	1		1											28910	1445	
		133/0		١	35.20		1				1							1													49/50	2005 24475 14455 0525	
	Average		1	 	560€	1	1				1						١			2500			2511								12649	ه کر کرد	
	3rd. Average	7/0	2655	26.29	20/2		40 %0		4595						3270		0587	32.20		4939			1942	25.20									
	4 trip Weight	2010		6830	48220	}	}	ļ	١	1			1					I	_	15,900	$\ $		150		1	_		1	1	1	59/03	73/82 295/	-
		24380	6/25	37.500	04595	-	2040		9/10	1			1		3220	1	200	3740	-1	1 05789	1			1970		+	1	1	1	+	265890 115910 35415	2 85/22	
(36	17	7	7	5	7	7	7	<	<u>, </u>	' %	1		⇆	⇆	⇆	2	∹	S	5	× //	$\sum_{i=1}^{n}$	<	$\stackrel{\sim}{\Box}$	7	1	7	4	7			-	स्रो
	1	H			-#-	12/2/	-j			-}-	-1-	-1	- -		-1		4	-		-	3872	2330	2492		232	₹/ ₹ /		_				72/69 6	4575/ 48080 (2874 12765
	The said	7/77 0	2730 2748	4587 00	1520	1870	3	10	2027 12	Ή.	-1-			27.0	5625 10	21,00 307/2	3/10	77 0	27.6	23.5	3233	25.0	2321	0 1313	28180	58120	-		L			1527	2,277
٠.	4 3				27/20 63.830 28.77	77-1-17-17-18-7	2440 31 130 138 4	·	19/10 01/20	000000000000000000000000000000000000000	05/05 05906	0720 0000	1	0 2490	5675 108055 1007101	0 1/1	109%	35.820 3660	3422 002-52 108988	64010 - 565012 3P3	12010 17420 3893	27240 58260 2575	73490 42370 2371	23.20	073350	034/50	_	_	ļ.			1777 189021058170	1 4808
,	3 3		43170	09.20	188	200	2/2		200	2	906	0020		17030	0770	28.28	12440	Ž :	3369	07029	200	7724	7349	42720	82220	66.240	- -				8	28/7 81	1
2000 1000 a	Arease /															$\left\ \cdot \right\ $	$\ $	$\ $! 	
9	Special Strates	11.02	ر ا ا ا	2 2	16.91	25.0	(,)	105	8/2	78	4.3%	24	72.4		11 × 0	7 17	200	()		20.4	2000			52.	5	7.36				1	72 17		
	8 140	<u>ာ</u>	XXX	1967	21/3	23/2	19	30	3	20	12	,	_	-	- - - }	1		-		╁		8	y à		-		-	1	+	+	21 000		
	N	╬	╁		L		2961	_	5453	3346	2\$23	7837	7312	- -	- -	- -	-	+		- -	4/00	7460	400		J. 7	2136		-	1	+	6 3/000		~
	America	4.00	00/	2.32	4 70	1.39	1.91	1,45	1.79	95%	1.45	0.70	-		7.7	1	5,0	1	88	1:	A G		(0)	12	× 1	7 2 2				ľ	48.36	ر با	
	Total Average	P. 3/	241.45	1.24	309.39	218.34	175.52	127.40	27.52	19 55	35.42	198 03	178:00	128 41	22 00	5 CZ 6	24 42 24 42	18 31	20 00	10 10		9/8/5	PX 39			3			Ī		3519631 4636.19	3.47	
1	11		-1-	-1-1		2102.021		1				-1	104020 17		í-	7	2005	_	- -	- -	·}		1-		扯	+			-	-	163/ 4	142785 185.47	-
	74-75 124	507260	169740	1 197230	0155051			72661	300110	130490	129250	1 44490	104	12.4090	134/	20	2	02227	120 44.0	-]	1-	11/ 5860	0///6	1133390	100 390	_			_			ļ	
	2013 12 132	1 2	6-5	92	141	55	40	29	25	7	74		4	96	44	9	3.6	30	8	7.7.2		4	4.2		43						2621	21.88	
	Sanda Como			1)	1		١		1)		1	Ì	1	ļ	١	١		1						1)	
	24.00 P	19	18	3/	30	29	20	20	-	1		+	n	200	76	3	-5/	/5	23	- 6×	30	3.7	27 -	_	-		+	-			75.59	26.16	1
1/2			L	Ll		7	1	_[_	_L	ᆚ.	4	4,	7	-		1		(CP; 1C)	<u>'</u>	7	()) (c		€	-				_	-	√ 0	77	
14-6	Nebuck Number	1.53 (cp	(75) 626	21.57(cr)	¥. % (CT. →	15) 7/0/	312(1)	75 590	7+0 CCP, -)	(-12) (6/1	776 (32, -7		222(37	457 (?	592 (?	do) 55/	523 (51.6)	413 CP	1.8 (?	12.43 (CP.	494(440	0.40	291 (3	(1)						Ŕ	3	
70%	33	7	3 9			_ .]_	1	7		ı	-1	× × ×	5/	161. 11	5	5 . 131	1710	20 02	7	7		7 175	35	9	7	\bar{x}	× ×	e,	1. st. 2	Aurage	
 - -		-1	ł	<u> </u>	l		1-	-1.	_1_	L	_L	_ _	_1	_	<u>. </u>	7	 7				<u> </u>	Ц]					<u>.</u>		, }] .

Chapter 4. Intermediate Treatment

4.1 Existing Conditions

At present, there are 3 compost plants of the building type (2 in On Nut and 1 in Nong Khaem) and 1 compost plant of the rotary kiln type in Nong Khaem as shown in Fig. 4.1-1.

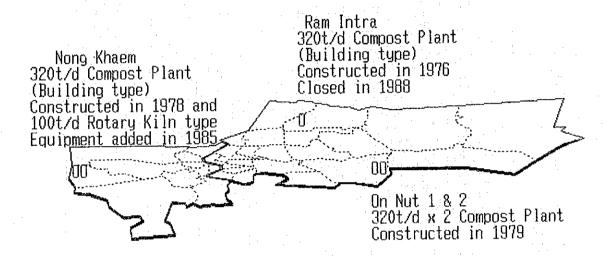


Fig. 4.1-1 Location & Situation of Compost Plants

Actual mass balance of a typical compost plant (building type) is estimated below. Incoming waste is 90 - 100 tons/day, the final compost production is about 3 tons/day.

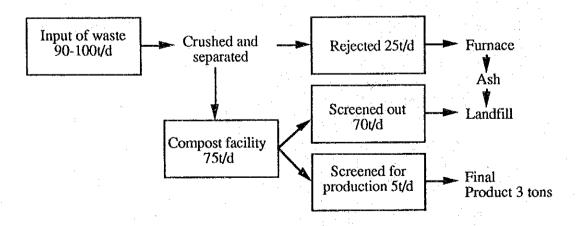


Figure 4.1-2 Mass Balance of Compost Plant

Figure 4.1-3 schematically shows the process of the compost plant at Nong Khaem. The existing rotary disc separator has not been working effectively. Compost materials still contain much plastic even after separation. On the other hand, much of the kitchen garbage has been rejected together with other rejected materials. The process flow of the compost plant in On Nut is same as the one in Nong Khaem except that the plant in On Nut does not have a rotary kiln digester.

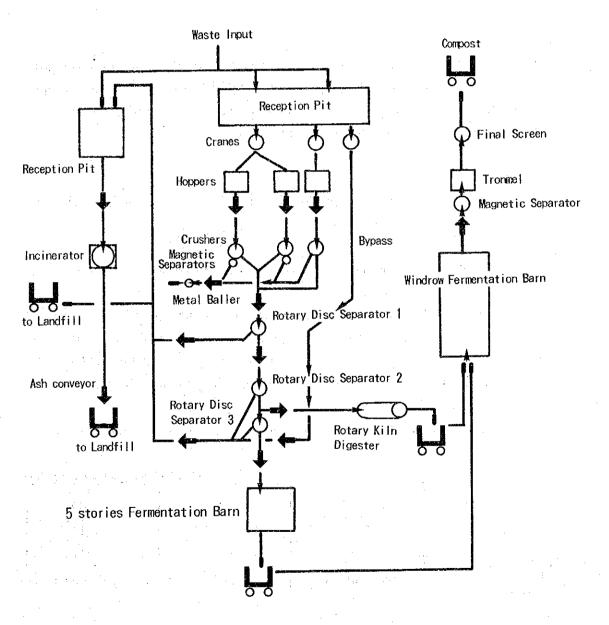


Figure 4.1-3 Process of the Compost Plant in Nong Khaem (Rotary Kiln Type)

4.2 Economic Evaluation of the BMA's Compost Business

1) Introduction

DPC has four units of compost plant: 3 building-type units and 1 rotary-kiln type unit.

At present, it is the BMA Fertilizer Enterprise that produces marketable compost products. DPC supplies "compost materials" to the Enterprise.

2) Important Facts

Fact 1

For the production of the marketable compost products, the BMA Fertilizer Enterprise uses mostly natural old waste lying on the dump site instead of using "compost material" produced by DPC's compost facilities because the Enterprise judges that the quality of former is better than that of the latter.

Fact 2

Majority of "compost materials" produced by DPC's plants are carried back to the dumping ground due to its poor quality.

3) Estimated Costs and Benefit of the BMA's Compost Business

It is estimated that the BMA's compost business, during the past 11 years since 1979 (the opening of the DPC's compost plants), brought about a total benefit to the BMA worth 174 million Baht, while it cost 905 million at least, resulting in a net loss of at least 731 million Baht. See the table below for the estimation of the benefits and costs.

BMA's Benefits and Costs of Compost Business Accumulated during the Past 11 years 1979 - 1989

		Unit:	million Baht at present price
	(1) BMA FERTILIZER ENTERPRISE	(2) DPC	(3) (1) + (2) BMA TOTAL
a. Benefit	172	2	174
b. Cost	165	740	905
c. Net Benefit (a - b)	+7	-738	-731

(The construction cost of the rotary Kiln type compost plant is not included in the above costs.)

Note: Basis of the Estimation of the Benefits and Costs

1) Benefit (172 million Baht) of the BMA Fertilizer Enterprise

750 Baht/ton x 230,000 ton = 172,500,000 Baht

where: 750 Baht/ton is an average present sales price of the compost products. 230,000 ton is the total amount of compost product sold during 11 years from 1979 till 1989.

2) Cost (165 million Baht) of the BMA Fertilizer Enterprise

172,500,000 Baht x 96% = 165,600,000 Baht

where: 172,500,000 Baht is the above-estimated benefit. 96 % is an estimated cost percentage assuming the Enterprise's profit is 4 % of the sales. (According to some officials of the Enterprise, the Enterprise yielded a slight profits over the period.)

3) Benefit (2 million Baht) of DPC

This benefit is indirect benefit deriving from the waste volume reduction effect.

 $230,000,000 \times 1.0 \times 10 \text{ Baht/ton} = 2,300,000 \text{ Baht}$

where: 230 million is the total amount of compost products produced and sold by the BMA. 10 Baht/ton is the current cost of waste disposal that was saved because of the waste reduction. It is assumed that the production of 1 ton of compost would contribute to 1.0 ton of the waste reduction.

4) Cost (7.4 million Baht) of DPC

300,000,000 Baht + 440,000,000 Baht = 770,000,000 Baht

Where: 300,000,000 Baht is the cost of construction of 4 building-type compost plants in On Nut, Nong Khaem and Ram Intra excluding the construction cost of the existing rotary kiln-type compost plant in Nong Khaem. 440,000,000 Baht is the total operation/maintenance costs estimated for 11 years with an average cost of 40 million per year.

- 4) Conclusion
- The BMA should discontinue the DPC's compost operation as soon as possible because:
 - a. DPC's composting plants have not been performing the function for which they were constructed.
 - b. The continuation of the DPC's plants would incur roughly 100 million Baht of loss to the BMA a year.
- 2) The compost business is feasible for the Fertilizer Enterprise which produces compost mostly from natural old waste by using simple facilities such as screening and conveyors.
- Composting business employing large capital investments as in the case of DPC are not feasible.

4.3 Evaluation of the New Compost Plant

The BMA in August 1990 concluded a contract for the construction of a new compost plant with capacity of receiving 1,000 tons/day, and producing 300 tons/day of compost product. After studying the contract specifications of the compost plant, the JICA Study Team has evaluated the compost plant as follows:

- 1) It is not technically possible for the BMA to produce 300 tons/day of compost product from 1,000 tons/day of general waste of Bangkok. It is estimated that the compost production will be 170 tons/day at most, judging from the following:
 - a. The existing compost plant produces only 3 tons/day of final product from 100 tons/day of general waste.
 - b. The removal of plastics will be still far from perfect even with the introduction of an air separator. It is very likely that good compost material will be rejected together with unremoved plastics at the sieving process.
 - c. Removal of materials unsuitable for composting such as glass, will be very difficult even if mechanical separators are introduced. It is even more difficult to

remove those materials by manual sorting. (The manual sorting will be effective only for sorting useful materials.)

2) It is anticipated that operation costs of the new compost plant may exceed the sales of the final compost.

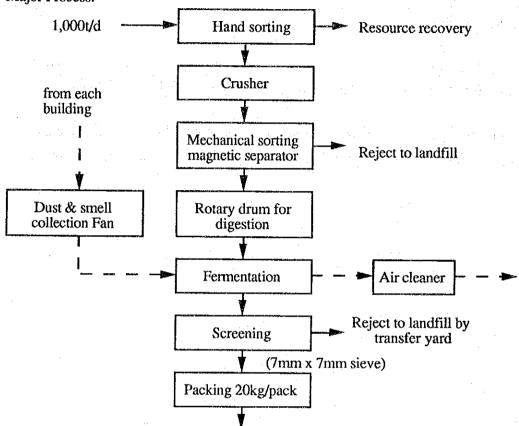
Recommendations

- 1. It is advisable for the BMA/DPC to selectively collect waste suitable for compost such as vegetable market waste, and use it as much as possible for composting.
- 2. If there is an offer from a contractor to take the responsibility for the plant operation and the right of selling final compost product, the BMA should accept such offer.

Table 4.3-1 Specification of New compost Plant

Capacity:

1000 t/d (20h continuous work)


Truck Scale:

30t (10kg sensitive) with computer printer

Reception Platform:

4 cars at a time; 3500m³ pit with spot light equipment

Major Process:

Packed compost product 300t/d (not less than 300t/d)

Control:

Local/Central control room with air conditioner

ITV 8 points

Communication:

Inner telephone 10 set, Wirless phone 5 set

Equipment:

Bulldozer, shovel loader, truck, pick-up truck, typewriter,

photo copy machine, microcomputer, 2 cars

Chapter 5 Evaluation of Private Contractors Regarding Final Disposal

5.1 Criteria

To evaluate the private contractors who tender for SWM work of the BMA, certain criteria are required. For the criteria, five of the following aspects should be covered;

- 1. Technical aspects of proposed final disposal plan,
- 2. Environmental considerations.
- 3. Cost,
- 4. Reliability of the company, and
- 5. Experience of similar work.

To ease evaluation of the contractors proposals and supervise their work, the Appendix of the master plan volume includes proposed technical guidelines to establish criteria and to rate Contractors potential performance.

5.2 Evaluation of Private Contractors who tendered for the Talang Project

In 1990, the BMA issued tender documents to employ a private contractor to construct a transfer station at Talang, and provide secondary transport from Talang to his proposed final disposal site, and to provide final disposal. In response with this, four private companies applied with documents such as transportation and disposal plan, detailed design of the proposed disposal site with proposed landfill method and estimated costs. Table 5.1-1 shows their proposed items.

According to their proposals, the private companies describe the necessity of soil covering, impervious work and leachate treatment, which are major items in the sanitary landfill method. However, the leachate treatment facility in their proposals were not adequate in terms of treatment ability.

The BMA does not have any standard format for the proposal, so each private company has to make his proposals in his own way. It makes it difficult for BMA to evaluate the proposals. This is one reason to suggest establishing a standard format and to provide technical guidelines.

Table 5.1-1 Main Items of the Documents (2)

		reprised and increased an decre						E E
V соправу		H=2.5m×2steps Out side 1:2 In side 1:1.5	Depth=2m Slope=1:1.5	Natural Clay Layer			1, 020 (m²/d)	Facultative pond×2 Depth=2.5m Maturation pond ×2 Depth=1.5m
Р Сопралу			Depth=14m Slope=1:2	Natural Clay Layer		Porous pipe with crushed stone		Oxidation Chlorination
L. Company			Depth=27m Slope=1:3	P.E. SHEET LINING 0.3mm CNPACTED CLAY 0.3m	Vinyl chloride pipe with crash stone	ol50 Vinyl chloride pipe with crushed stone	500 (m³/d)	Anaerobic pond Acration Tank Sedimation Tank Studge Sump Sand dry bed Chlorination Tank Polishing Pond Fressure Sand Filter Activated Carbon Tank Control room and Stock room EDD 3,000 (Original)
В Сопрату		H=2.5m×2steps Slope=1:2	Depth=5.0m Slope=1:2	NATURAL CLAY LAYER (1.2×10 ⁻⁷ ~8.6×10 ⁻⁷ cm/s)		o300 Vinyl chloride pipe with crushed stone		Anaerobic pond (Depth=3.0m) Facultative pond (Depth=2.5m) Maturation pond (Depth=1.5m)
COMPANY	Chain link fence	Structure of embankment	Internal structure	Impervious material	Leachate collection facility	Structure of gas out let pipe	Leachate treatment facility	
ITEMS	•			Final disposal site sturcture				

Note: ---- are not clarified

Table 5.1-1 Main Items of the Documents (1)

TEMS		COMPANY	В Сопралу	L Company	Р Сотралу	V company	
	Site location	ш	©SOI RONGLOR HONGMANEE EKACHAIRL SAMUT SAKORN PROVINCE ©KROK SOMBOON SRIMAHAPOO PRAJEANBURI PROVINCE	NEAR MITR-MITREE ROAD MOO4 BANNCHADOO KOOH FANGNVA NONGJOK BANGKOK	MOO3 BAN-LVANG DONTOOM NAKORN PHATOM PROVINCE	©PHANOM THUAN KANCHA NABURI PROVINCE ©KAMPANG SAEN NAKORN PHATOM PROVINCE	
	The distance from the transfer	transfer station	©150km ©170km	27. 1km	105fcm	©170km ©110km	· p
	The site area	23 .	O400rai ©440rai	482RAI (315RAI)	206RAI future (240RAI)	Q450rai Q250rai	
	Topographic	Topographical condition of the site	Flat land	Hole (Old borrow pit)	Hole (Old borrow pit)	Flat	
Main contents of		Solid waste	1. 1,500 2. 1,620 3. 1,740 4. 1,880 5. 2,020 (Tons/day)	1. 1,500 2. 1,650 3. 1,800 4. 1,980 5. 2,250 (Tons/day)	1. 1,500 2. 1,700 3. 1,900 4. 2,100 5. 2,400 (Tons/day)	1. 1,500 2. 1,620 3. 1,750 4. 1,890 5. 2,040 (Tons/day)	·
disposal site	Land fill volume	Covering material					
		Total (5 years)	3, 197, 400 (Tons) 7, 993, 500 (m³)	.3,350,700(Tons) 11,189,000(m³)	3, 504, 000 (Tons)	3,212,100(Tons) 7,137,800(m³)	
	Land owner		Company's own land	Leased land	giong to buy	giong to buy	
	Completion	Completion of landfill	Agricultural space or recreation facilities		Trees will be planted all over the place	Ocolf course Ocolf course	T
:.	Offerd price inclus Construction of Toransportation Final disposal	Offerd price including •Construction of 1/5 •Toransportation •Final disposal	288B/t	298B/t	169B/t	173B/t	

Chapter 6 Environmental and Sanitary Conditions

6.1 Standards and Regulations for Environmental Conservation

1) Requirements Regarding the Environmental Impact Assessment

The Improvement and Conservation of National Environmental Quality Act was enacted in 1975. Environmental assessment was systematized by this act, which authorised:

- 1. The National Environmental Board (NEB) shall have the power to require government agencies, state enterprises, and other persons to submit documents on surveys of consequence affecting the environmental quality and documents or data concerning projects and schemes for its consideration.
- 2. Categories and projects of magnitude or activities by government agencies, state enterprises, or private organization, are required to prepare reports concerning the study of prevention of and remedy for the adverse effects on environmental quality during the construction period. These reports should be submitted to the National Environmental Board for consideration and approval.

The procedure for environmental assessment is shown in Fig.6.1-1, and types and sizes of projects or activities requiring environmental impact assessment reports are shown in Table 6.1-1.

2) Environmental Standards

Environmental standards concerning air quality and water quality are show in Table 6.3-2-8.

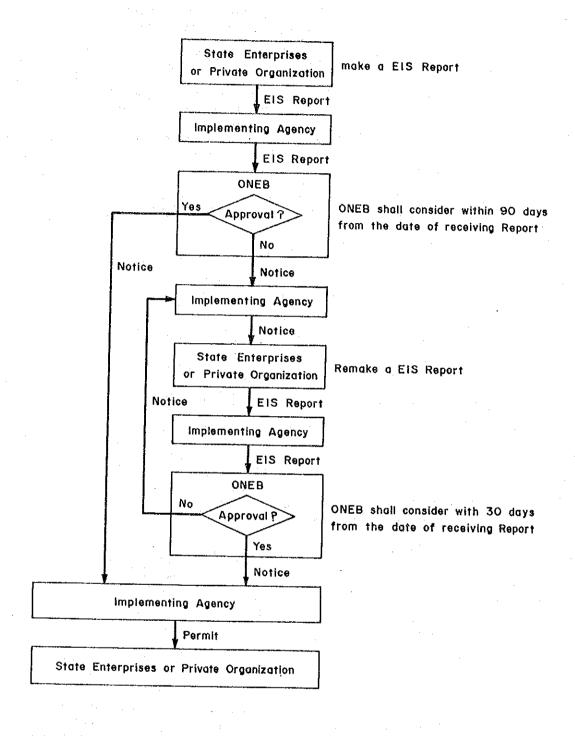


Fig.6.1-1 Procedure of Environmental Assessment Flow in Thailand

Table 6.1-1 Types and Sizes of Projects or Activities Requiring Environmental Impact Assessment (EIA) Reports

Items	Types of Projects or Activities	Sizes
i	Dam or Reservoir	storage volume greater than 100,000,000
- 1	54.1.33.1.1.	cubic meters or storage surface area greater
- 1		than 15 square kilometers
. 2	Irrigation	irrigated area greater than 80,000 rais
. 4	mganon	(12,800 flectures)
3	Commercial Airport	all sizes
4	Hotel or Resort Facilities environmentally	greater than 80 rooms
7	sensitive area such as areas adjacent to rivers	
ς,	coastal areas, lakes or beaches or in the	
	vicinity of national parks	
5	Mass Transit System and Expressway as	all sizes
,	defined by the Announcement of the Revolu-	
	tionary Party No. 290, 24 November B.E.	
	2515	
	Mining as defined by the Mineral Act No.1	all sizes
6	B.E. 2510, No. 2 B.E. 2516 and No. 3 B.E.	
	2522	
7	Industrial Estate as defined by the Industria	l all sizes
- 1	Estate Authority of Thailand Act, B.E. 2522	
	Commercial Port and Harbour	with capacity for vessels of greater than 500
8	Commercial Fort and Francom	ton-gross
	1 Day on Maria	Capacity greater than 10 MW.
9	Thermal Power Plant	Capacity greater same 25
10		greater than 100 tons/day of raw materials
	(1) Petrochemical Industry	required in production processes of oil
		refinery and/or natural gas separation
		all sizes
	(2) Oil Refinery	all sizes
	(3) Natural Gas Separation of Processing	production capacity of each or combined
	(4) Chlor-Alkaline Industry requiring NaCl	product greater than 100 tons/day
	as raw material for production of Na ₂	product greater than 100 tons any
	CO ₃ , NaOH, HCl. Cl ₂ , NaOCl and	
	Bleaching Powder	requiring from are and/or scrap iron as
	(5) Irons and/or Steel Industry	raw materials for production greater than
		100 tons/day or using furnaces with com-
		bined capacity greater 5 tons/batch
	(6) Coment Industry	all sizes
	(6) Cement Industry	production capacity greater than 50 tons/
	(7) Smelting Industry other than Iron and	day
	Steel	Production capacity greater than 50 tons/da
	(8) Pulp Industry	Troubetten capacity greater than so tons an

Source: Notification of the Ministry of Science, Technology and Energy, B.E. 2524 issued under National Environmental Quality Act, B.E 2518 as amended in B.E. 2521, published in the Royal Government Gazette (Special issue), Vol. 98, Part 158, dated September 27, B.E. 2524 (1981)

Table 6.1-2 National Ambient Air Quality Standards

Pollutants	1—hr average value mg/m3	8-hr average value mg/m3	24—hr average value mg/m3	1-yr average value mg/m3	Methods of Measurement
Carbon	50	20	_	– ' ,	Non-Dispersive
Monoxide (CO)	· ·				Infrared Detection
Nitrogen	0.32	· - ·	_	-	Gas Phase
Dioxide (NO ₂)					Chemiluminescence
Sulfur	- : [0.30	0.10*	Pararosaniline
Dioxide (SO)					
Suspended	-	_	0.33	0.10*	Gravimetric-High
Particulate				•	Volume
Matter (SPM)		-	·		
Photochemical	0.20	–	· –	_	Chemiluminescence
Oxidant (O ₃)			·		
Lead (Pb)		-	0.01		Wet Ashing

Note: * = Geometric mean value.

Sources: (1) Standards: Notification of Office of the National Environment Board, No.2, dated November 6, B.E. 2524, published in the Royal Government Gazette, Vol. 98, Part 197, dated December 1, B.E. 2524 (1981) P. 4322-4323.

(2) Methods of Measurement: Notification of the Ministry of Science, Technology and Energy, issued under National Environmental Quality Act B.E. 2518, B.E. 2521, published in the Royal Government Gazette, Vol. 98, Part 197, dated December 1, B.E. 2524 (1981) P. 4299-4306.

Table 6.1-3 Industrial Emission Standards

In order to avoid industrial nuisance problems, the intensity of smoke at the mouth of the stack shall not exceed 40 percent of total blackness by the Ringlemann scale except for the short periods of time during starting of operation, soot blowing, or other malfunctions of the soot control system.

Penalty: According to Factory Act No.2, B.E. 2518 (1975) which rules that violator are subjected up to one month imprisonment or fined not more than 10,000 baht or both.

Source: Notification of the Ministry of Industry No.4, B.E. 2514 (1971) issued under Factory Act B.E. 2512 (1969) dated August 11, B.E. 2514 (1971), published in the Royal Government Gazette, Vol. 86 (Special issue) dated August 14, B.E. 2514 (1971)

The Industrial Environment Division, Ministry of Industry has set up the emission guidelines for new industry or expansion or setting conditions after complaints.

The proposed emission standards are shown as follows:

Proposed Industrial Emission Standards by Ministry of Industry Table 6.1-4

1. 1																								•					
Proposed Standard Values	1.4 N/u 5.0		0.5 g/lvm:	400 mg/nm	10×100111 00×	FN/au 00+)		500 mg/Nm ³	not exceed 40%	Ringlemann scale	(dust) 300 mg/Nm3	(AI) 50 mg/Nm ³	0.05 lb/min	0.05 lb/min	25 ppm	25 mg/Nm³	0.05 lb/min	27 ug/Nm³	20 mg/Nm ³	10 ug/Nm³	25 ppm	20 mg/Nm ³	0.03 lb/min	0.05 lb/min	0.3 lb/ton P2 Os	200 mg/Nm ³	10 mg/Nm ³	100 ppm
Sources	-Boiler & furnance Heavy oil as fire!	Conjugation of the conjugation o	Cour as rue	- Seed intaining	colour cather and	- Rock and gravel	aggregate plants (production capacity	more than 50,000 tons per year)	- Other source	Boiler and Furnace		Furnace or smelter	•	any source	any source	gas plant	any source	any source	any source	any source	any source	Burning refuse	any source	from production or by usage	any source	any source	any source	any source	any source
Substances	Particulate									Smoke opacity		Aluminium		Alcohol	Aldehyde	Ammonia	Antimony	Aromatics	Asbestos	Arsenic	Beryllium	Carbonyls	Chlorine	Ethylene	Ester	Fluorine	Hydrogen Chloride	Hydrogen Fluoride	Hydrogen Sulphide
Š.	-									¢1		m		4	'n	9	_	es:	6	2	=	2	2	≇.	15	16	12	81	2

χ,	Substances	Sources		Proposed Standard Values
20	Cadmium	any source		1.0 mg/Nm ³
77	Copper	any source		dust 300 mg/Nm ³
ä	Lead	any source		(Cu) 20 mg/Nm ³ dust 100 mg/Nm ³
23	Mercury	any source		(Fo) 30 mg/Nm 0.1 mg/Nm ³
24	8	any source		1,000 mg/Nm ³
23	SO ₂	H2 SO4 production		200 ppm
		Other activities:		
		- Bangkok and its vicinities		400 ppm
		- other area		700 ppm
32	NO.	Combustion source		1,000 mg/Nm ³
		HNO3 production	-	2,000 mg/Nm ³
•		and others		
12	Nitric acid	any source		70 mg/Nm ³
83	Organic Material	any source		0.01 ld/min
83	Phosphoric acid	any source		3 mg/Nm ³
8	Sulfur trioxide	any source also in] 35 mg/Nm³
		combination with H ₂ SO ₄		as H ₂ SO ₂
31	Suffuric acid	any source		35 mg/Nm ³

Table 6.1-5 Surface Water Quality

(2) ecosystem conservation which basic living organisms can spread

(1) conservation, not necessary pass through water treatment processes

Extra clean fresh surface water resources using for :

require only ordinary process for pathogenic destruction

Objectives/Condition & Benificial usages

Classifications

Class 1

(1) consumption which require the ordinary water treatment process

Very clean fresh surface water resources using for :

breeding naturally

Class 2

(2) aquatic organism conservation for living and assisting for fishery

before uses (2) aquatic (3) fishery (1) consumption but have to pass through an ordinary treatment

process before uses

(2) agriculture

Class 4

Medium clean fresh surface water resources using for

(4) recreation

Class 3

(1) consumption but require special water treatment process before

Fairly clean fresh surface water resources using for

Temperature °C PH value						
		1	3	3	4	5
	1	u	E	E	c	í
	1	=	5-9	5-9	5-9	i
I Mg/I	P20		9	4	7	ı
BOD (5 days, 20°C) mg/1	P80	-	1.5	2.0	4.0	ı
MPN/100 m	P80		5,000	20,000	1	1
2	P80		1,000	4,000	ı	ì
mg/1	Max. allowance	c	1	5.0	1	ı
ŧ	2	¢:		0.5	÷.	1
	2	Ľ	••	0.002		1
"	2	_		0.1		1
*	2	<u>_</u>		0.1	••	ı
				1.0		1
		E		1.0		ı
3	2	E	· ·	0.005*,0.05*		ı
*		E		0.05		ı
*	z	E		0.05		1
*		=		0.005		1
•	•	æ		0.01	•	ı
2	:			0.003		
Becqurel/1	•	c		0.1		ı
:	•	c		1.0		1
mg/1		C:		0.05	•••	ı
Jug/1		_		1.0	•	1
*	2	=		0.02	٠.	
2	•	=		0.1		1
3			٠.	0.1		ł
•		<u>_</u>	•••	0.2		. }
		=	1	none	1	ŀ

Note: P = Percentile value

n = naturally

of = naturally but changing not more than 3°C

* = when water hardness not more than 100 mg/l as CaCO₃

* * = when water hardness more than 100 mg/l as CaCO,

* * * = Water Classification

(1) navigation

Source: Notification of the Ministry of Science. Technology and Energy (B.E. 2528

The resources which are not classified in class 1-4 and using for

(3) other activities

Class 5

uses, (2) industry (1985.)), published in the Royal Government Gazette, Vol. 103, Part 60.

dated April 15, B.E. 2529 (1986)

2-23

Table 6.1-6 Groundwater Quality Standards for Drinking Purpose

Durantita	D	¥1	Standar	d values
Properties	Parameters	Units	Suitable allowance	Max, altowance
Physical	Colour	Platinum - Cobalt	5	50
•	Turbidity	JTU	5	20
	рН	. ÷	7.0-8.5	6.5-9.2
Chemical	Fe	mg/l	0.5	1.0
	Mn	15	0.3	0.5
	Cu	**	1.0	1.5
	Zn	31	5.0	15.0
	Sulphate	11	200	250
•	Chloride	11	200	600
	Fluoride	,,	1.0	1.5
	Nitrate	»	45	45
•	Total hardness as CaCO ₃	11	300.	500
	Non Carbonate hardness			
	as CaCO ₃	"	200	250
	Total solids	"	750	1,500
Toxic	As	2)	none	0.05
	Cyanide	n	none	0.2
	Pb	***	попе	0.05
	Hg	***	none	0.001
	Cd	>1	none	0,01
,	Se	,,	none	0.01
Bacterial	Standard Plate Count	colonies/ml	500	
	Coliform Bacteria	MPN/100 ml	2.2	- :
	E. Coli	**	none	

Penalty:

A licensee who does not comply with this notification shall be punished

by fine not exceeding twenty thousand baht

Source:

Notification of the Ministry of Industry No. 4 B.E. 2521 (1978) issued under in the Groundwater Act B.E. 2520 (1977), published in the Royal Government Gazette, Vol. 95, Part 66, dated June 27, B.E. 2521 (1978).

Table 6.1-7 Industrial Effluent Standards

-		ì																												
Remarks	Fishery canning Max. 100 Starch industry	Мах.	Sedimentation Max. 100 Noodle industry Max. 100	stry Max.	Max.	Ratio Ratio	1/8 to 1/150 Max. 30		1/301 to 1/500 Max. 150	If salinity of recieving water is	higher than 2,000 mg/l, DS in	the effluent should not be higher	than 5,000 mg/t of the DS in the	recieving water						Refinery & Lubricant oil industry	Max. 15.0						Zinc industry Max, 3.0	Max.	•	
Standard values	20–60		:			Depend on dilution	ratios of wastewater	and receiving water		Max. 2,000 or under	office's consideration	but not more than	2,000	-	5-9	Max. 60	Max. 1.0	Max. 0.2	none	Max. 5.0		Max. 1.0	Max. L.U	1412X, 1,U	9 400		Max. 5.0	Max. 0.5	Max. 0.25	Max. 1.0
Units	I/Sm					mg/l				mg/!				-	1	mg/l	=		:	•		:	=	=	Becoure [/]		l/Sm	:	=	
Items	BOD (5 days, at 20°C)		:			Suspended solids (SS)				Dissolved solids (DS)			-		ЬH	Permaganate value	Sulfide as H, S	Cyanide as HCN	Tar	Oil & Grease	Champildobudo	Denni P. Comi	Free Orlering	Inserticides	Radioactivity	Heavy metals	Zinc (Zn)	Chromium (Cr)	Arsenic (As)	Copper (Cu)

llems	Units	Standard values	Kemarks	· · · · · · · · · · · · · · · · · · ·
Mercury (Hg)	;	Max. 0.005	Zinc industry	Max. 0.002
Cadmium (Cd)	:	Max. 0.03	Zine, industry	Max: 0.1
Barium (Ba)	:	Max. 1.0.		
Selenium (Se)	;	Milx, 0.02		
Lead (Ph)	:	Max. 0.2		
Nickel (NI)		Max. 0.2	Zinc industry	Max. 0.2
Manganese (Mn)	;	Max. 5.0		
Silver (Ag)	:	1	Zinc industry	Max. 0.02

Penalty: A licensee for operation a factory who dose not comply with this notification shall be punished-by-fine-ind execeeding ten thousand baht.

Source: (1) Notification of the Ministry of Industry No. 12, B.E. 2525 (1982) issued under the Factory Act B.E. 2217 (1978), published in the Royal Government Gazette, Vol. 99, Part 33, duted March 5, B.E. 2525 (1982).

Gazette, Vol. 99, Part 33, duted March 5, B.E. 2525 (1982).
(2) Notification of the Ministry of Industry No. 10, B.E. 2521 (1978) issued under the Factory Act B.E.2521,(1978), published in the Royal Government Gazette, Vol. 95, Part 132, dated November 28, B.E. 252f (1978).

Regulation of Industrial Pollution Control Facilities Table 6.1-8

- 1. The following industrial plants must have the supervisors and machine Operators to take responsibility of the system of prevention of pollution, whose qualifications are specified in article 2.
- 1.1 An industrial plant discharging waste water at higher than 60 cubic meters/hour (with the exception of cooling water), or having the BOD load of influent at higher than 100 kilogram/day.
- An industrial plant using heavy metals in the production process the content of heavy metals in the discharge waste water at the discharging waste water at higher than 50 cubic meters/day, and having following values:
 - (a) Zinc at higher than 250,000 milligrams/day
- (b) Chromium at higher than 25,000 milligrams/day
 - Arsenic at higher than 12,500 milligrams/day
- (d) Copper at higher than 50,000 milligrams/day
- (f) Cadmium at higher than 1,500 milligrams/day (e) Mercury at higher than 250 milligrams/day
 - Barium at higher than 50,000 milligrams/day <u>6</u>
- Selenium at higher than 1,000 milligrams/day (h) Selenium at higher than 1,000 milligrams/d (i) Lead at higher than 10,000 milligrams/day
- (j) Manganese at higher than 250,000 milligrams/day
 - An industrial plant dealing with iron and steel: ...
- (a) Using drying furnace or acids or other substances which may be production process, with production capacity of higher than 100 tons/day. polluting the environment in the
 - (b) Using steel smelters with the total capacity of 5 tons/batch.
- 1.4 An industrial plant producing Petrochemicals from the raw materials obtained as by-products of the Oil refinery in the production process at higher than 100 tons/day.
- 1.5 An industrial plant of any size separating or processing the natural gas.
- 1.6 An industrial plant producing chlor-alkali, using sodium chloride caustic soda (NaOH), hydrochloric acid (HCl), chlorine (Cl₂) and bleaching (NaOCI) each or several combined at higher than (NaCl) as raw material in the production of soda ash (Na2 CO3)
- 1.7 An industrial plant of any size producing cement.
- 1.8 An industrial plant engaged in ore smelting or production of metals at higher than 50 tons/day.
- 1.9 An industrial plant producing paper pulp at higher than 50 tons/day.
 - 1.10 An industrial plant of any size engaged in crude oil refinery

- 2. The supervisor, machine operators responsible for the system of pollution control, shall meet the following qualifications:
- it must be operated by person(s) having the qualifications mentioned 2.1 The supervisors are holders of bachelor degree in engineering, or science in chemistry, or other branches of study with experiences in the field of environment, and who has been approved by the Industrial Factory Department. In the case of an Engineering Consultant Firm, aboved.
- lower level, with the certification from the persons as mentioned in 2.1. 2.2 The machine operators must be graduates of the secondary education,
- Industrial Works Department, and complying with the regulations 2.3 The persons stated in 2.1 and 2.2 must register themselves with the and procedures as prescribed by the Industrial Works Department.
- 3. Factories mentioned in article 1.1 to 1.10 must arrange to make Poisionous Matter Analysis Reports and submit them to the Industrial factories Department every Factories Department. The analysis of the qualities of poisonous matter must be performed by a government analysis laboratory or a private analysis laboratory approved by the 3 months on the form and according to the procedures prescribed by the Industrial Industrial Factories Department in accordance with the regulations and procedures prescribed by the Industrial Factories Department.
- Penalty: A licensee for operating a factory who does not comply with this notification shall be punished by fine not exceeding ten thousand buint.
- Source: Notification of the Ministry of Industry No. 13 B.E. 2525 (1982), as amended in No. 22 B.E. 2528 (1985), issued under the Factory Act B.E. 2512 (1969), published in the Royal Government Gazette, Vol. 99, Part 89, dated June 29, B.E. 2525 (1982).

6.2 Data of Environmental Conditions

Basic data of environmental condition is shown in as follows:

- Climate Table 6.2-1

Fig. 6.2-1

-Groundwater Table 6.2-2

-Air pollution Table 6.2-3, 4

Fig. 6.2-2

Table 6.2-1 Climatological Data in Bangkok, 1956-1985

Station

BANGKOK METROPOLIS

Index Station Latituds Longitude

48455 13 44 N 100 34' E Elevation of station above MSL Height of barometer above MSL Height of thermometer above ground Height of wind vane above ground Height of raingauge

2 meters 1.25 meters 33.10 meters 1.00 meters

•													
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec	Year
								A			1		
Pressure (+100	00 or 9		7				7.1						
Mean	12.47	10.99	09.96	08.40	06.85	06.34	06.46	06.51	07.56	09.75	11.60	12.63	09.13
Ext. Max.	26.50	20.96	20.97	17.74	14.06	13.00	13.34	13.50	14.38	18.02	20.38	21.32	26,50
Ext. Min.	04.42	02.27	02.08	99.66	99.40	97.76	98.78	99.36	98.20	01.22	04.60	03.87	97.76
Mean daily range	4.81	4.80	4.85	4.83	4.46	3.80	3.75	3,93	4.39	4.43	4.28	4.51	4.40
Temporature ((c)		1						• •	- 1			٠.
Mean	25.6	27.2	28,6	29.6	29.3	28.7	28.1	27.9	27.6	27.5	26.7	25.5	27.7
Mean Max.	31.9	32.8	33.9	34.9	34.2	33.1	32.6	32.4	32.0	31.8	31.5	31.4	32.7
Mean Min.	20.6	23.1	24.8	25.9	25.6	25.3	24.9	24.8	24.5	24.3	23.0	20.9	24.0
Ext. Max.	35.7	36.6	39.8	40.0	39.5	37.7	37.8	36.3	- 36.0	35.3	35.1	35.2	40.0
Ext. Min.	11.5	14.9	16.5	19.9	21.1	21.7	22.2	21.2	21.6	18.3	14,2	10.5	10.5
Relative Humi	dity (%)	ì							1			+	
Mean	72.1	75.7	76.0	76.0	78.4	78.5	79.3	80.2	82.8	82.2	77.5	72.5	77.6
Меал Мах.	90.6	92.2	91.6	90.7	92.2	91.5	91.8	93.2	94.8	94.3	92.5	90.0	92.1
Mean Min.	48.6	53.4	55.2	55,8	60.1	62.3	63.5	63.9	66.0	65.8	59.4	52.1	58.8
Ext. Min.	27.0	17.0	23.0	28.0	30.0	38.0	43.0	47.0	49.0	36.0	36.0	31.0	17.0
Dew Point (C)	! 1										,		
Mean	19.6	22.1	23.6	24.5	24.8	24.2	23.9	23.9	24.2	23.9	22.1	19.7	23.0
		22.1	2.0.0	2		2.4.2							, i
Evaporation (r			أممما	187.5	171.4	150.1	147.9	147.1	130.4	127.9	125.8	133.3	1780.5
Mean-Pan	135.9	141.1	182.1	187.5	171.4	130.1	141.5	147.1	150.4	127.5	123.0	100.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Cloudiness (0		i										5.9	7.5
Mean :	5.9	6.5	6.8	7.0	8.2	8.5	8.6	8.9	9.0	8.2	6.8	2,9	/.5
Sunshine Dura								ĺ		2.5			
Mean	276.6	252.5	270.0	256.0	222.4	178.5	169.1	159.4	152.6	202.0	242.6	266.1	2647.8
Visibility (km.)													
0700 L.S.T.	5.2	4.9	5.9	7.5	8.6	8.7	8.4	8.1	8.0	8.0	8.1	7.5	7.4
Mean	9.6	9.2	9.4	10.7	11.9	12.1	11.9	11.6	8.6	11.4	11.7	11.2	10.8
Wind (knots)													
Prevailing wind	NE	\$	S	S	S	SW	SW	SW	SW	NE.	ΝE	NE .	- '
Mean wind speed	2.6	4.1	5.0	4.6	3.8	3.8	3.5	3.6		2.3	2.3	2.4	·
Max. wind speed	31 NNE	37 N	48 ENE	52 E	41 SSW	41 W	41 W NW	43 E	44 SSW	40 NE	37 SE	31 SE	52 E ESE
				ESE			WNW, S				ESE	NNE	}
Rainfall (mm.)	1												ľ
Mean .	9.3	29.1	26.2	66.4	189.9	156.1	158.7	204.6	339.4	239.3	48.3	9.7	1477.0
Mean rainy days	1.3	2.9	3.0	6.4	15.7	16.7	18.1	20.6	21.5	17.0	- 5.9	1.3	
Groatest in 24 hr.	39.3	73.0	88.4	89.7	124.2	167.3	108.6	97,8	153.7	123.2	81.2	32.0	
Day/Year	31/61	11/64	30/82	29/57	15/66	13/79	28/76	26/71	23/68	5/60	2/69	8/72	13/79
Number of da	Vs with												
Haze	19.1	15.9	16.3	9.3	2.9	1.3	0.8	0.8	1.0	2.2	6.3	11.8	87.7
Fog	3.5	1,2	0.4	0.0	0.1	0.0		0.0	0.0	0.1	0.3	0.7	6.4
Hail	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Thunderstorm	0.5	0.8	2.4	8.1	15.8	9.7	10.3	11.0	16.3	14.7	3.7	0.7	94.0
Squali	0.0	0.0	0.0	0.1	0.0	0.0	0.0		0.1	0.0	0.0	0.0	0.2
1-3													

Remarks: Evaporation 1961 - 1985

Climatological Data of Thailand 30 years Period (1956-1985) source: Meteorogical Department, Ministry of Communications

Wind Rose of Thailand 30 years Period (1951-1980) Meteorogical Department, Ministry of Communications Fig. 6.2-1 Wind Rose in Bangkok, 1951-1980 source:

Table 6.2-2 Characteristic of Aquifers in Bangkok

			· · · · · · · · · · · · · · · · · · ·	
AGE	AQUIFER	Thickness (meters)	Lithology	Water-bearing Properties
NE TO RECENT	1 BANGKOK (50-m zone)	± 50	Topmost clay is generally dark gray to black, limonitic lateritic in the upper portion. Coarse sand, gravel and pebble are subangular to rounded, moderately to well sorted; composed mostly of various types of fragments.	Yields considerable quantity of water of poor quality, brackish to salty and highly mineralized. Normally not developed for ground water resource.
LATE-PLEISTOCENE TO RECENT	2 PHRA PRADAENG (100-m zone)	± 50	Separated from the Bangkok aquifer by a dark stiff clay bed. Gravel-sand is characteristically white to pale gray, subrounded to rounded, fairly well sorted; composed mostly of quartz, chert and other rock fragments; with carbonised woods and peats at the lower part. Clay lenses interbed in places.	Yields water of good quality only in the south and southwest of Bangkok; in other areas the aquifer yields brackish to salty water.
	3 NAKHON LUANG (150-m zone)	± 50	Overlied by thick and hard clay bed. Sand-gravel layers which form the aquifer are rather thick (10-15 m). Fragments; mostly quartz, feldspar and quartzite; are subangular to subrounded, moderately to well sorted. Interbedding clays are whitish to yellowish to grayish brown, sandy and limonitic, non-plastic.	Has been heavily developed for public water supply. Yields 100-250 m³/hr of water of excllent quality. Only in the south and southwest of Bangkok wells yield salty water due to salt water intrusion into the aquifer.
CENED ?	4 NONTHABURI (200-m zone)	± 50	General characteristics of the formation are the same as the Nakhon Luang aquifer. It is consisted of rather uniform thick sands and gravels with minor sandy clay lenses. The formation can be divided into three units separated by leaky clay layers.	It is one of the most productive aquifers which yield up to 200 m ² /hr of water of exellent quality. The water has been extensively used for bottled drinking water and brewerage as well as domestic supplies.
LOWER TO MIDDLE PLEISTOCENE	5 SAM KHOK (300-m zone)	± 100	The formation is consisted of sand, gravel and clay. Sand-gravel is yellowish brown to dirty brown, but may grade to white color, medium to very coarse grained, angular to sub-rounded, fairly well sorted, feldsparthic, calcareous due to limestone fragments in places; with interlayering clays. Both sand-gravel and clay beds are moderately to highly compacted.	Yields slightly less than those of the Nakhon Luang and Nonthaburi aquifers. Normally pennetrated by production wells in Northern Bangkok since shallower aquifers yield water of higher iron content.
LOWER T	6 PHAYA THAI (350-m zone)	± 50	Consisted of sand gravel and clay. Sand and gravel are dirty brown, angular, sizes ranged from medium sand to gravel size, poorly to fairly well sorted; quartz and chert being major composition. Clay is brown to dark brown, compact, calcareous and lateritic.	Wells drilled in Central and Southern Bangkok yield brackish to salty water while those in Northern Bangkok produce fresh water. The aquifer is generally not popular due to its greater depth.
	7 THON BURI (450-m zone)	± 100	Separated from the upper formation by hard and compact clay. Sand and gravel beds are usually alternated layering with clay beds. Color is generally gray to brownish gray to occasional white sand layers.	No production wells ever constructed, but the packer tests of several test holes indicate that the water is fresh to slightly brackish or mineralized in places. The aquifer is not so productive as the above aquifers due to the presence of clay in many horizons.
PLIOCENE (?)	8 PAK NAM (550-m zone)	± 100	Separated from the upper formation by a leaky clay to sandy clay layer. Sand and gravel beds, generally thicker than that of the Thon Buri aquifer, are white to gray and well sorted. The clay is generally very compact, olive gray to dark gray, with earbonaceous matters.	The aquifer is very permeable and yield a considerable quantity of water of good quality, Water temperature is as high as 43°c It is, however, too deep to reach by domestic wells, except in areas where there is no alternative potential aquifer; i.e. the Southern Bangkok.
1	ı	1		

Note: Detail stratigraphic sections of Bangkok and adjacent areas and their water-bearing properties is after Chiamthaisong, 1980.

Mitigation of Groundwater Crisis and Land Subsidence in Bangkok Metropolitan Area Project, Department of Mineral Resources

Table 6.2-3 Air Quality Monitoring Stations

Station Number	Landuse
1. Office of the National Environmental Board	Urban Residential
2. Chankasem Teachers' College	Suburban Residential
3. Ban Somdet Teachers' College	Mixed
4. Rat Burana Post Office	Industrial
5. Queen Saovabha Memorial Institute	Commercial
6. The meteorological Department Sukhumvit	Urban Residential
7. Bangna Meteorological Office	Industrial
8. King Mongkut's Institute of Technology	Rural

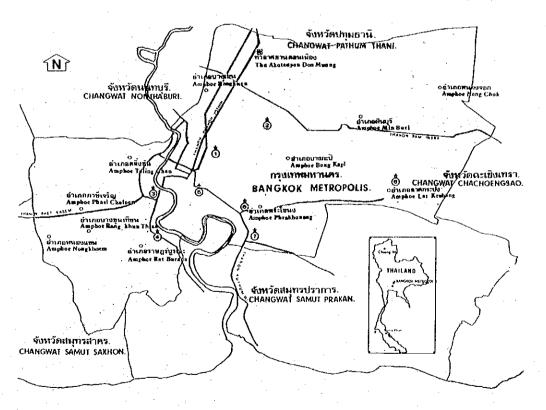


Fig. 6.2-2 Location of Air Quality Monitoring Stations in Bangkok

source: Office of the National Environmental Board

Table 6.2-4 Results of Ambient Air Quality (1)

HONTH	. !						:			\$	TATION							. 4	
						CHARKAS	En ¦		BANSOMO	ĖJ ;		SUKUNH	II ;					BANGN	,
! ! !	!	MAX	AVG	HIN ,	ВАХ	AV6 ;	MIN ;	MAX	AV6	MIN ;	HAX 1	AVE	HIN :	MAX :	AVE .	MIN	. MAX	AV6	nin ;
JAN		9.34	.73	.00	2.31	.95}	.00	8.87	2.28	.00;	3.39	1.01	.00	6.75	1.07	.00	4.80	1.05	.00
FEB	;	2.58					.00;										3.60		
HAR	į	1.70	.37;	.00;	8.43	1.96	.00	4.97	1.09	.00;	3.18	.73	.00	5.26	.61;	.00	3.98	.79	.00
APR	١,	2.64	.19	.00	16.55	1,11;	.00 ;	7.49	1.26	.00	2.33	.59	.00;	10.70;	.58	.00	6.67	.95	.00;
BAY	ł	3.98	. 65	.00¦	4.16	.93	.00	3.26	.85	.00	1.84	.37	00;	3.28	. 24	.00	2.30	.41	.00
JUN	ŀ	8.18	.15;	.00;	4.16	1.09	.00	1	- 1		2.33	-41	.00;	3.11	.17	.00	2.28	.41	.00;
JUL			1.16	.,	5.52	1.25	.00;	4.44	.92	.00	2.14	.57	.00	4.52	. 26	.00	3.52	.77	.00
AUG			1.22		3.89	.97	.00	3.73	. 86	.00	2.33	40	.00;	5,94	.61;	.00	3.52	.62	.00
SEP			1.66		3.89	.96	.00	7.73	1143	.00	12.98	92	.00	5,60	1.16	.00	3.32	.73;	.00
OCT			1.27			1. 11		11.34	1.99	.00	3.98	1.01	.00	5.55	1.31;	.00	2.86;	. 20	,00;
NOV			1.18		5.80			7.21			3.39			8.61;	1.80;	00	3.55	.70	.00
DEC	:	4.09	1.17	.00;	8.28	1.12	.00;	6.44	1.20	.00	4.63	96	.00	5.46	1.68	00	2.98	.43	.00

CO Concentration (Milligram/cubicmeter) 1988 1 hour average

1	Ronth	STATION												;							
1	11034111	1			ONEB	:	: CHANKASEM		: BANSOMDEJ ;		SUKUNNIT :		RATBURANA		ANA	BANGNA		'A .			
1		1 1 1	MAX	1	AV6	HIN ;	XAH :	AVG	MIN	MAX	AVG	, MIN .	MAX	AV6	HIN :	MAX	AVS :	MIN :	BAX	AVG :	NIM
į	JAN	:	4.9	0¦	.68	.11	6.16	1.44	.11	11.22	1.91	.11	€.18	. 91	. 11	19.91	1.59	.11	2.85	.37	.11
-	FEB	;	8.4	7¦	1.22	.11;	3.99	. 84	.11	9.96	1.50	.11	4.06	.75	,111,	5.65	.87	11	, ;	:	;
	HAR						4.56			7.98		-	4.06	.62	. 11.	6.04	.77	.11	2.00	.21	.111
- 1	APR						3.71			13.82		•	1.45	.30	.11;	3.77	.91	.11	3.99	. 60	.11
-	YAN						€.73	-		9.96		-	2.61			5.26	.88	.11	2.85	.48	.11
	JUN				1.23	-	3.99		-	9.83	1.60	.11	1.74	.35	.11	6.06	. 89	.11	3.62	.73;	.11
- 1	JUL				91		3,42					.11	1.74	.34	.11	4.21	. 82	.11	2.75	.60	11.
					1.25	•	3.99;	.82	-	11.30			2.58			3.08			6.55	.62	.11
•	SEP				1.08	.11;	13.11	.99	-11	21.24	2.91	.11	2.44	.63	.11	3.87	.96	.11	6.27	.89;	.11;
ł	OCT	-	7;3	ı;	99	.11}	7.13	1.10	.11	14.69	1.38	.11	2.13	.38	.11	7.15	1.24	11)	7.98	1.22	.11;
ì	NOV		16.6	_			3.42					.11			.11	4.49	1.31	11	9.12	1.05	.11;
;	DEC	;	3.82	2¦	1.70	.11;	7,67	1.07	.11;	8.22	1.66	11	1.43	.58	.11	5.80	1.45	.11	13.20	1.46;	.11;
. =	******	==:	:	===	======		======	======			======		======			FEE:====	******		======		======[

CO Concentration (Milligram/cubicmeter) 1989 1 hour average

MANTU:	;										TATION				ć <u>.</u>				
KONTH	-	ONE8								SUKUNITT									
							nin	MAX	AVG .	MIN :	MAX	AVG	nin ;	MAX	AVG	MIN :	TIAX	AVG	
JAN							.11;												
FE3	1	6.03;	2.60	.11			;				4.11	1.33	.11	5.25	2.90	· 11	: :		
HAR	ť	6.25	2.48	.11	2.37	1.38	: .11;	į.	1 5	la de la constantia	3.53	.87	.11	1.78	. 96	.11	: :	: :	
APR	ŀ	2.87	2.10	.11	2.83	1.25	.111				1.87	58	.11:	2.60	1.55	. 11	: :		
MAY	ŀ	4,48	2.67	.11	t i	;	:	1		1	2.16	.85	.11		1	ł	ا, ا	: ;	
JUN	-	12.66	3.59	.11	24.62	4.83		19.78	3.60	. 23	1.81	.92	.11	4.88	2.31	.11	19.75	6.19	1
JUL	ì	6.15	3.03	: :11	27.25	5.15	.11:	7.91	3.61	.17	1.81	.84	.11	4,00	1.64	.11	6.50	1.52	. 1
AUG	ŀ	5.45	3.64	.11	6.83	2.88	.11;	5.65	3.32	. 11	2.11	. 85	11	4.71	2.42	11	3,47	2.00	. 1
SEP	-1	16.16	4.08	11	10.68	3.18	.111	11.44	- 4.37	.11	2.27	1.36	111	6.53	2.11	11	7.67	3.68	. 1
OCT	¦	22.78	3.98	.11	11.96	4.87	.11;	11.96	4.42	.11	3.65	1.38	(.11	5.59	3.19	. 11	7.90	2.91	. 1
NOV	ŀ	24.26	2.98	.11	12.43	3.51	.11:	5.42	3.50	. 27	14.88	1.57		6.06	3.29	.11	5.74	2.99	. i
DEC	ł	9.86	4.42	.11	11.55	5.59	111.	12.71	4.72	.28	8.28	4.64	.11	6.98	4.63	.11	8.37	4.12	. 1

^{*} ONE8 Standard 1 hour average = 50 ag/m 3

Table 6.2-4 Results of Ambient Air Quality (2)

NO2 Concentration mg/m 3

1 hour average

HONTH	<u> </u>		******		station	: 045	5						station	: SAOVA	8HA	
1101111		1987			1988		1989			1988			1989			
	i	HAX ;	AVG	MIN	MAX	AVG :	HIN	MAX	AYG	HIH	нах	AV6	MIR	HAX .	AVG	HIN
JAN	!				.004	.004	.004	1671	.041	.004			: !	.159		
FE8	ŀ	;	i			.004;				.002			:	.191		
MAR	:	.0941	.019¦	.006	004	.004!	.004	.067	.019	.002			i	.144		
APR	1	.070;	.019	.004;	1110	.004	.004	.065	014	.002		i	į	.130		
MAY	1	.067	.021	.004;	.007;	.004;	.004	.093	022	.004		ţ	:	.093		
JON	:	.048	.007	.002	.004	.004;	.004	.167	.012	.002	:		1	1		
JUL	:	.004;	.004			.014		.170¦	.025;	.002	.100	028	.009	.146	.034	019
AUG	:	.004 ;	.004			.030¦	.007	.035	.028¦	.002	.122:	.020;	.009	.080	.030	009
SEP	:	.061;	.004			.028;			.032	.002	.026:	.009	.009	.270	.043	
OCT	į	.091;	.024			.037;			.016¦	.002	.100	.026	.009	.146	.049	003
NOA	:	.059;	.007			.036							.009;	. 204	.061;	.020
030	i	.004;	.004	.004;	122	.045;	.004	.168;	.068	. 024	.207	.040;	.009!	.179	042	009

* ONE8 Standard 1 hour average = 0.32 mg/s^{-3}

S02 Concentration ng/m 3!

26 hours average

1	MONTH	-		s	tation	: ONE8		;
1	301(1)	1		1988			1989	
			XAK	AVG	HIR	HAX :	AVG	MIN ;
i	JAN	- -	.021	.015	013	.090	038	.026
ŀ	FEB	;	.025	.016;	.013	.091	.038	.026
i	MAR	ì	.022	.014	.013;	.101	.042	015
į	APR	ł	.013	.013	.013;	.086	.033	.013
:	YAK	;	.013	012	010	.181	.082	.013
ł,	JUN	ŀ	.013	.013	.013	.085	.024	.013
1	JUL	ť	.014	.013	.013!	.154	.032	.013
ŀ	AU6	;	.017	.013	.013	.021	.014;	.013;
;	SEP	;	.015	.013!	.013	. 024	.015	.013;
;	0C1	ļ	.030	.013;	.013;	.052	.019!	.013;
ŀ	NOV	1	.066	031	.013;	.056	.037	.022
ŀ	DEC	1	.054	.028;	013;	.038	.023	.013;
;=		==	======			******		

* ONEB Standard 24 hours average \approx 0.30 $pg/m^{2}3$

SPM Milligram/cubicmeter ANNUAL AVERAGE

	STATION											
BANGNA	RATBURANA;	SAOWABHA :	SUKUMWIT	BANSOMDEJ	CHANKASEM	ONEB	YEAR 					
.12	.10	.09	.10	.11	.12	.10	1983					
. 14		· •	.10	.11	10	.10	1984					
.10		.09	.10	.12		. 09	1985					
, 11	.19	.11	.12	12		.08	1986					
.10	.10	.13	.10	.12	.09	.09	1987 ;					
.12	.12	. 12	.11	. 12	.11;	.07	1988					
.14	.12	. 14	.12	.13;	13;	10	1989 ;					

* ONEB Standard 1 year average : 0.10 mg/m^3

Table 6.2-4 Results of Ambient Air Quality (3)

03 Concentration (mg/m³)

1 hour average 1989 MONTH : | MAX | AVG | MAX | AVG .07| .02| JAN FE8 .07 .02; .07 .02; MAR APR .10 02 MAY .05 .01 JUN 104 .011 JUL .04 .01! .05 .01! AUG .02 .00; .03 .01! SEP .04; .01; .03! .01; 130. .03; 01; .08 .01; NOV .04 .01; .091 ,01; DEC .06 .01; .06

ONE8 standard 1 hour average : 0.20 mg/m 3

Lead Microgram/cubicmeter
ANNUAL AVERAGE

!		; !	STATION										
1 1	YEAR	; ! !	ONE8	CHANKASEM	BANSOMDEJ	SUKUMWIT	¦SAOWABHA	RATBURANA	BANGNA				
i .	1983	i !	. 3874	,3494	2962	.4158	. 6663	3547	.3180				
i	1984	•	.2700	.3287	2779	3933	.3800	. 2684	.5771				
į	1985	Ì	. 3175	2904	. 2666	4442	, 3481	1911	.4095				
!	1986		.3104	.3268	. 2335	4311	. 3939	.2859	. 3459				
	1987	7	. 4789	.4570	3650	5636	.5473	.3413	. 4598				
•	1988	•	.3475	3475	3211	4576	4776	.3305	. 3578				
į	1989		. 3926	• • • • • • • • • • • • • • • • • • • •		•	, 5272	.3097	. 3496				

ONEB = Office of the National Environment Board

source: Office of the National Environmental Board

^{**} Ambiemt Air Quality Standards of Thailand

^{* 24} hrs. average value $= 10 \text{ ug/m}^{-3}$

6.3 Present Conditions

6.3.1 Collection and Haulage

1) Market Waste

In Bangkok, "market" is divided into two types by management body, BMA market and private market. The waste discharged from both types of market is collected by the BMA.

In BMA's market, the collection crews spend a lot of time on collecting the market waste because market workers throw their waste to the collection stations without using garbage bins or any other types of containers. The collection crews have to gather the scattered waste into bamboo baskets and carry them to collection vehicles.

The market waste consists mainly of food waste with a high moisture content. Therefore, the collection stations are a source of leachate and odor. The leachate remains in the collection stations or flows out without treatment. Odor brings rodents and flies at the collection stations.

2) Household waste

Household waste is collected by door to door collection, which is nearly 100% of coverage.

Apartment has two types of storage method such as:

- i) Apartment house waste is carried to storage site by residents. This storage site is open dumping method, thereby odor and flies occur. The waste is scattered from the storage site by residents and dogs.
- ii) Multistory apartment waste is carried to storage site through dust chute. The dust chute has some problems as follows.
 - It is dangerous work for collecting crews.
 - Poor environmental conditions for collection work
 - Collection crews spend a lot of time collecting waste.

3) Haulage

The BMA uses large and small sizes of vehicle for haulage. The waste in the small size vehicles are transferred to larger size compactor vehicles on street or vacant ground. The waste is not scattered at this place. The collection vehicles, however, emit leachate and odor, because these collection vehicles do not have a leachate tank.

The collection vehicles spend a lot of time travelling to disposal sites due to traffic jams and flooding.

4) Collection Crew

The BMA provides collection crews with the following:

Working Uniform

2 sets/year

Working Boots

1 set/year

However, many collection crews do not wear the uniform and the boots. Because of unsanitary conditions and inconsistent use of gloves and the boots, they have high risk of contracting diseases.

The collection crews of the DPC have a physical examination by the BMA's doctors every six months, including blood analysis and lung and hearing tests. The number of patients of the collection crews and site workers is show in Table 6.3-1.

Table 6.3-1 Number of Patients (Collection Crew and Site Worker of the BMA)

Table 0.5-1 Number of Patients (Conection C	new ai	in sue	AAOTKE	i or me	DIVIA	<i>.</i>)
Categories of Diseases	1985	1986	1987	1988	1989	TOTAL
Infections and Parasitic diseases	2	2	2	3	6	15
Neoplasms	1		5	6	1	13
Endocrine, Nutritional and Metabolic Diseases			1	2	1: -	: 3
Diseases of the Blood and Blood Forming Organs]]		1	2		4
Mental Disorders	1	1	1	2	2	7
Diseases of the Nervous System and Sense Organs			2	2	4	8
Diseases of the Circulatory System		2	2	2	2	. 8
Diseases of the Respiratory System	74	73	112	139	155	553
Diseases of the Digestive System	35	35	59	- 78	103	310
Diseases of the Genitourinary System		2	2	1	5	10
Complications of Pregnancy, Childbirth and the Puerperium		1		2	1	4
Diseases of the Skin and Subcutaneous Tissue						
Diseases of the Musculoskeleton system and Connective Tissue	6	9	10	9	10	44
Congenital Anomalies	e.	·				
Certain Causes of Perinatal Morbidity and Mortality						
Symtoms and undefined Conditions		2		1	. 1	4
Accidents, Poisoning and Violence	29	15	21	30	54	149
Alcoholism	-3	2	4	2 :	2	13
Total	152	144	222	281	346	1,145

District:

Phra Nakhon

Pom Prab

Phra Khanong

Phatum Wan

Sam Pam Thawong Phaya Thai

Bang Rak Thon Buri

Huai Khwang Klong San On Nut Compost Plant

Bangkok Noi

Bang Kapi Bangkok Yai Min Buri

Lad Kra Bang Bang Khun Thian Nong Khaem

Public Cleansing Service Division

Except:

Dusit

Yannawa

Bang Khen

Nong Chok

Thaling Chan

Rat Burana

Pasi Charoen

5) Complaints

The number of complaints to the DPC concerning environment and disposal sites is shown in Table 6.3-2. This data shows that complaints on waste are more frequent than complaints on other topics, indicating that uncollected waste exists in Bangkok. Odor also causes many complaints, which may include stench from the collection vehicles, collection stations and waste. Thus, from an environmental point of view, the collection and haulage systems have problems of odor and leachate.

Table 6.3-2 The Number of Complaints Concerning Environment and Disposal Sites Directed to the DPC.

YEAR	AIR	WATER	NOISE	ODOR		DISPOSAL SITE	OTHERS	TOTAL
1985	1			13	49		14.	77
1986	2			26	65	3	-3	99
1987	1	2		6	37	1	1	48
1988		2	1	30	43	1	11	88
1989	1			23	35		6	65
TOTAL	5	4	. 1	98	229	. 5	35	337

Source: Department of Public Cleansing, BMA

6.3.2 Treatment and Disposal

1) Compost Plant

There are three compost Plants in Bangkok as follows:

- On Nut

2 sites

- Nong Kheam

1 site

There is no complaint to the DPC about odor and noise from the compost plants. BMA has a plan to rebuild a compost plant in Ram Intra, which is located close to residences for workers.

2) Incineration Plant

There are three incineration plants in Bangkok as follows:

- On Nut

2 plants

- Nong Kheam

1 plant

These incineration plants do not have a pollution control facility.

3) Disposal Site

There are four disposal sites to treat the waste collected in Bangkok.

- On Nut

(belongs to the BMA)

Nong Kheam

(belongs to the BMA)

- Ram Intra

2 site

(belongs to private company)

Nakhon Pathom

(belongs to private company)

The disposal sites use an open dumping method except the Nakhon Pathom site. In recent years, houses have been developed near the final disposal sites, due to the rapid urbanization in Bangkok. Therefore, the problem of odor in nearby areas is getting worse.

At Nong Kheam, the number of complaint to the DPC's disposal plant office concerning odor is 20 to 30 per year.

There are treatment facilities for leachate from disposal sites at On Nut and Nakhon Pathom. The treatment system of leachate at On Nut is shown in a supporting report. Treatment facility of Nakhon Pathom is only two facultative ponds.

At Nong Kheam, there is canal for collecting leachate around the site. The canal can keep leachate. However, in rainy season, leachate over flows out side the boundary and rice fields.

Private disposal site at Ram Intra will be closed due to complaints concerning contaminated rice fields and odor from farmers.

The leachate without treatment diminishes through seepage into the ground and evaporation. The leachate is rich in organic matter and includes heavy metals, therefore, groundwater can be contaminated. The quality of leachate is shown in Table 6.3-3.

Each disposal sites are regularly sprayed with insecticide.

Table 6.3-3 Quality of leachate from disposal sites

Oct. 1988 - Aug. 1989

ITEN	1	NONG-KHEA	AM	ON-NU	Γ
		RANGE	AVERAGE	RANGE	AVERAGE
Temperature	С	24.5 - 30.4	28.6	25.8 - 33	29.8
рН		8.1 - 9.0	8.4	8.2 - 8.5	8.3
Alkalinity	mg/1	2,200 - 11,000	7,875	2,040 - 8,500	5,198
BOD	mg/1	108 - 268	222	48 - 682	258
COD	mg/l	2,040 - 10,041	6,201	2,400 - 3,840	2,850
T-KN	mg/1	224 - 897	735.6	224 - 1,625	681.8
Suspended- Solid	mg/l	69 - 238	121	76 - 1,177	276
Total Solid	mg/l	1,432 - 74,188	25,242	9,232 - 11,013	9,335
Volatile- Solid	mg/1	2,428 - 6,580	4,899	1,708 - 4,964	2,789
Sludge mg/l		6,663 - 15,434	10,850	5,092.7 - 7,416	7,373

Source: Department of Public Cleansing, BMA

CHAPTER 7 Organizational and Institutional Framework

7.1 Historical Background of Solid Waste Management in Bangkok.

The solid waste management in Bangkok began in 1887 with an act prescribing the sanitary area of Bangkok. The Road Division of the Public Works Department, under the Ministry of the Interior, has a responsibility for maintaining the cleanliness of the city.

Thailand changed its administration to a democratic system in 1933, accordingly promoting the status of the local area into a municipality. This was done to allow local areas, needing their own management power, to contend with high density population and urbanization. As a result of this change, the solid waste management is under responsibility of the municipality. At the same time, the Public Cleansing Division was established under the municipality of Bangkok.

In 1963, the Ministry of Interior instructed the municipality of Bangkok to establish an office responsible for disposal of garbage and refuse. The office of Maintenance of Cleanliness was established under a ministerial regulation by the Ministry of Interior, consisting of three sections: Garbage Disposal Section, Night Soil Section and Compost Plant Section. The compost plant began operation in November 1963, with aiming at reducing waste volume and stabilizing waste quality as a process of the solid waste management.

In 1972, the Bangkok Metropolis was established under the Revolutionary Party. The Ministry of Interior arranged to transfer all solid waste management works to the Public Cleansing Section under the Public Works Office for a period. The Bangkok Metropolis created a new administration in 1974. The Public Cleansing Section was made independent of Public Works Office and established the Public Cleansing Bureau, which was the basis of the present organization and consisted of eight divisions: Office of Secretary, Sanitary Technology Division, Water Drainage System Control Division, Public Cleansing Service Division, Din Daeng Garbage Disposal Plant, Ram-Intra Garbage Disposal Plant, On-Nut Garbage Disposal Plant, and Thon Buri Garbage Disposal Plant. After that, the Water Drainage System Control Division was made independent as the Bureau of Sewage and Drainage and the other divisions were restructured in time to form the present organization of the Department of Public Cleansing.

7.2 The Present Organization and Institution for Solid Waste Management in Bangkok

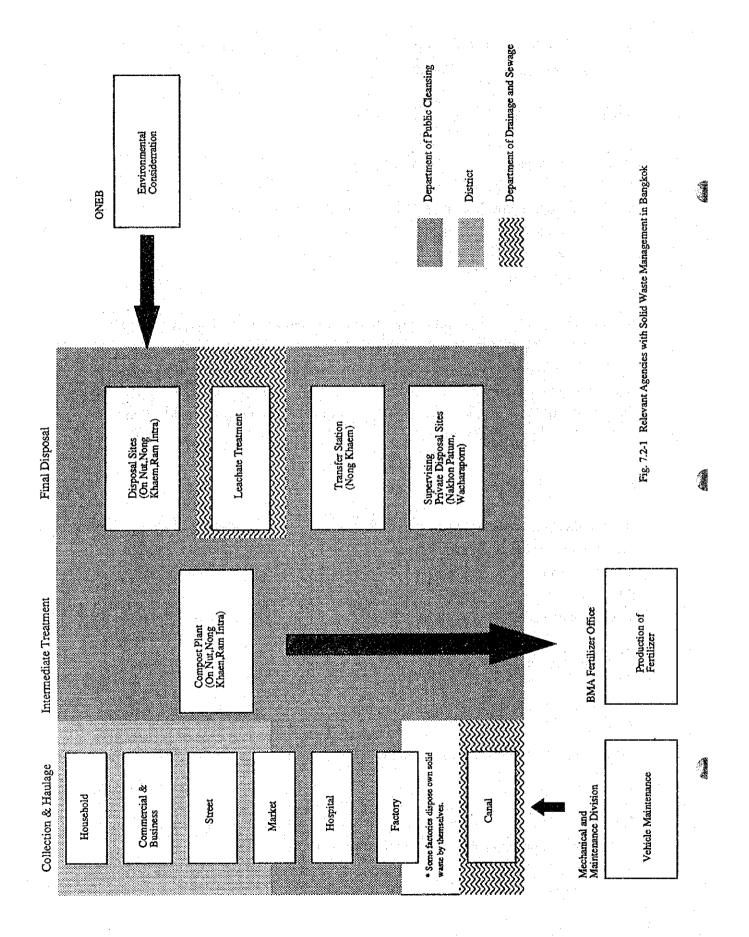
7.2.1 Relevant Agencies and Their Responsibilities

Solid waste management is covered by several agencies in Bangkok. Fig. 7.2.1 shows relevant agencies for the solid waste management of Bangkok. Processes of the solid waste management can be sub-divided into three categories: collection and haulage, intermediate treatment and final disposal.

1) Collection and Haulage

The Sanitary Section of districts are responsible for collecting and hauling solid waste from households, offices, hotels, shops, markets and hospitals. The Department of Public Cleansing (DPC) is responsible for managing toxic and hazardous waste of hospitals, some markets and some factories. Canal waste is managed by the Department of Sewage and Drainage (DSD). Collection by the districts 85.2% of the total amount of collection in 1989.

2) Intermediate Treatment


Intermediate treatment, which employs only compost plans at present, is managed by the Garbage Disposal Division of the DPC. It operates On Nut and Nong Khaem disposal sites at present. The compost plant at Ram Intra disposal site is now closed due to the total closure of Ram Intra disposal site. On the other hand, hospital waste is specially incinerated in the attached furnace of the compost plants.

3) Final Disposal

Final disposal sites with the open dumping method are managed by the Garbage Disposal Division of the DPC. They are located in On Nut area of Phra Kanong district and Nong Khaem district. There is no leachate treatment system in final disposal sites at present.

Furthermore, there are several other tasks which are related to the solid waste management, such as vehicle management and production of fertilizer.

4) Vehicle Management

