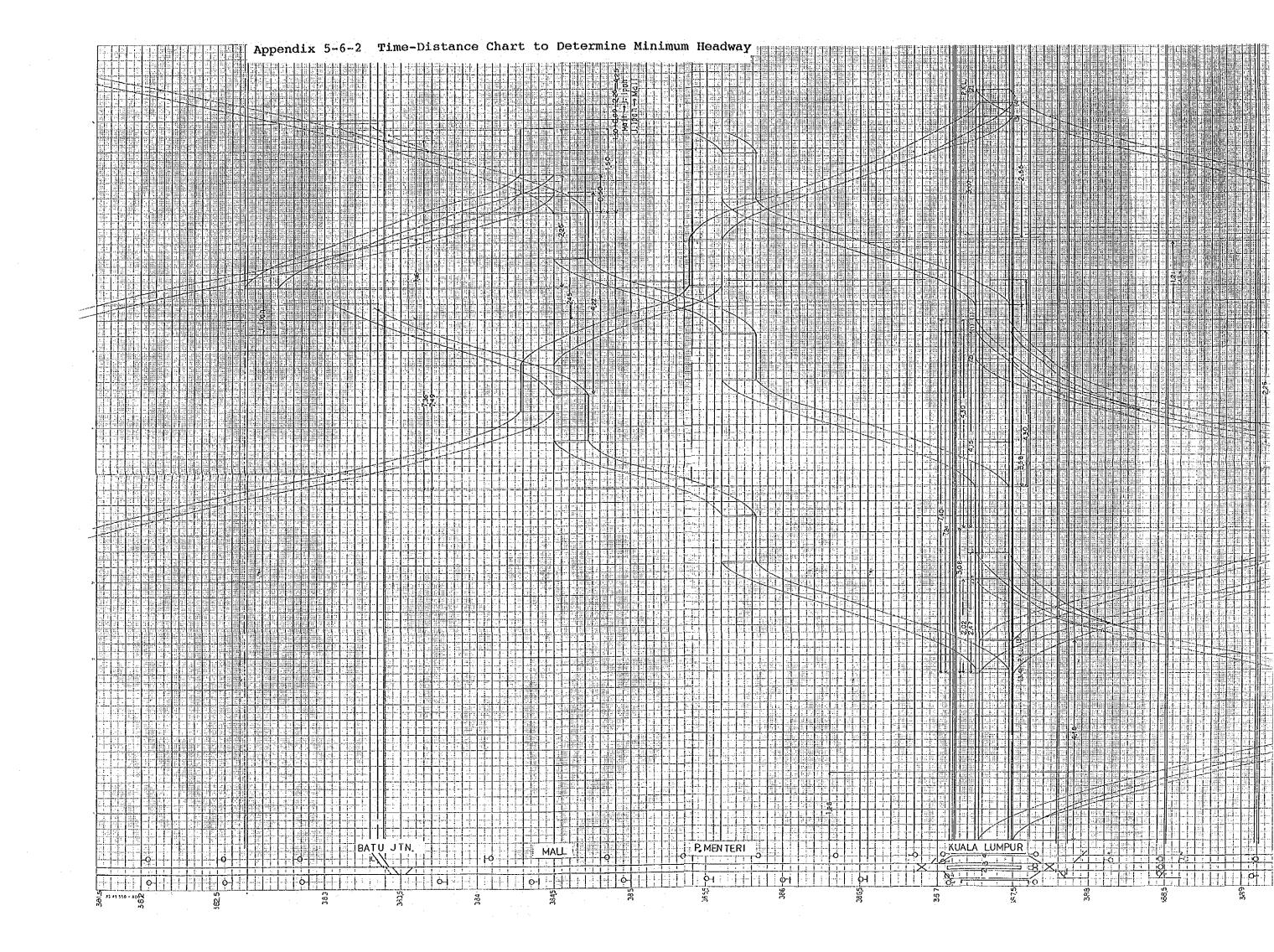
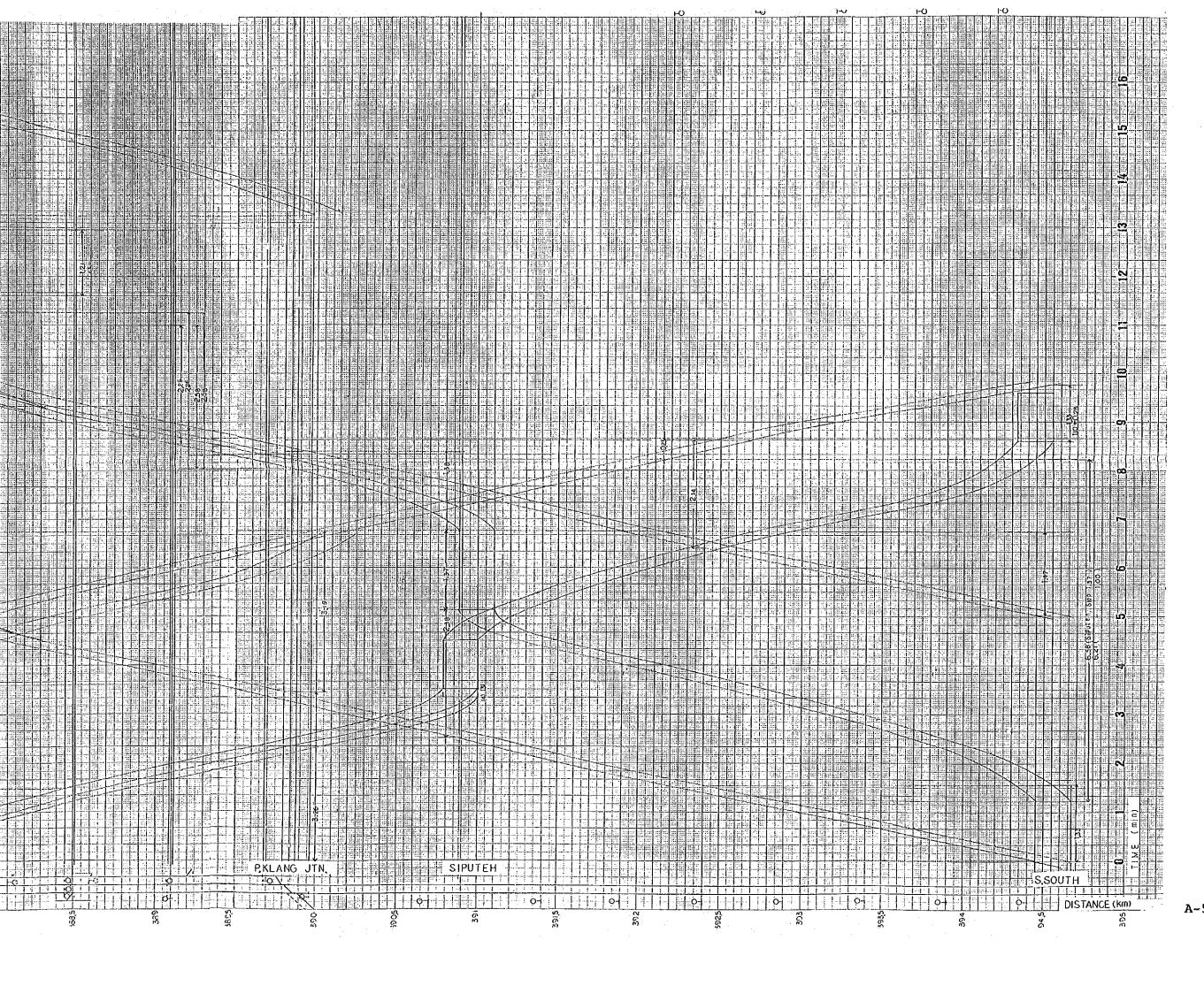

Appendix 5-6-1 Kuala Lumpur Station Minimum Train Headway Chart



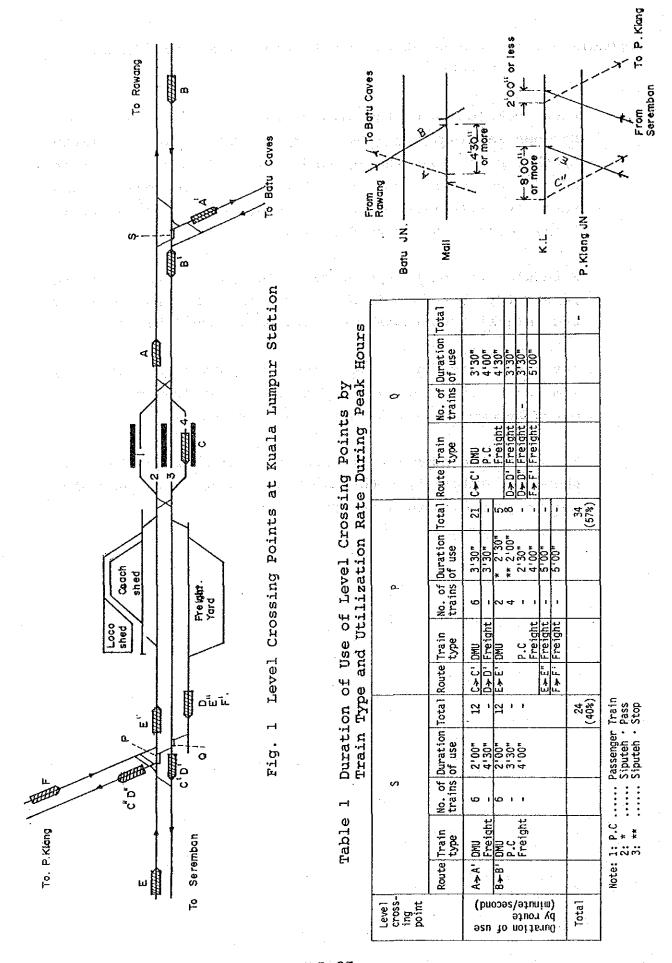
		<u></u>		·····	I
Tipe	Departur o	or Arrival	Time (Calculated) (min)	Time (Schedul (min-sec)	ed)
Α	M. L 2 • A	M. L 1~4 • D	1 3 0" (2'10")	2'15"	
В	M. L 3 · 4 · A	do	1 4 5" (2'25")	2'30"	
С	M. L 1 • A	do	165" (2'45")	3'00"	
מ	P. K. L 4 • D	M. L 1~4 • D	1 7 8" (2'58")	3'00*	
E	M. L 1 • A	P. K. L 2 • A	1 5 8" (2'36")	2'45"	
F	do	P. K. L 3 • 4 • A	1 7 1" (2'51")	3'00"	
G	M. L 1 • 2 • D	M. L 2 • A	226" (3'46")	4'00"	
Н	do	M. L 3 • 4 • A	241" (4'01")	4'15"	
J	do	M. L 1 • A	260" (4'20")	4'30"	
К	M. L 3 • D	M. L 3 • 4 • A	2 0 4" (3'24")	3'30"	
L	M. L 4 • D	do	2 1 1" (3'31")	3'45"	
М	P. K. L 2 • A	M. L 1 • A	1 5 4" (2'34")	2'45"	·
N	P. K. L 1 • A	M. L 2 • A	1 8 8" (3'08")	3*15"	
P	P. K. L 3 • 4 • D	M. L 1 • A	4 6 0" (7'40")	8,00,	8'00" or more
Q	M. L 2 • A	P. K. L 3 • 4 • D	1 2 2" (2'02")	2'00"	2'00" or less


- (Note) 1. DMUs are assumed to have performance curves drawn up by the JICA team.
 - 2. Each DMU train is assumed to consist of 10 cars (220m long).
 - 3. Existing signal facilities will be used between Kuala Lumpur and P.Klang Line Junction.
 - 4. Tracks at P.Klang Line Junction are assumed to cross on the ground level.
 - 5. M.L: Rawang Seremban Line
 - 6. P.K.L: P.Klang Line
 - 7. D: Departure (figure denotes departure track number)
 - 8. A: Arrival(figure denotes arrival track number)



Tipe	Departur	or Arrival	Time (Calculate)	Time (Schedule (min-sec)	d)
8	1 • 2 • D		8 1" (1'21")	1,30,	
ь	1 • A		1 4 6" (2'26")	2'30"	
c	1 • 2 • D	1 · A	227" (3'47")	4,00	
ď	4 • D		88" (1'28")	1'30"	ration in the state of the stat
e	4 • A		176" (2'56")	3,00,	
7	4 • D	4 · A	264" (4'24")	4'30"	
8	Rabbit-S. South (P)	Rabbit-P.K.L Jn (P)	206" (3'26")	3,30	
h	Rabbit P. K.L Jn (P)	P.X.L Train Jn (P)	198" (3,13,)	3,30,	
	Local S. South · D	local P.X.L in (P)	381" (6,51,)	6,30.	

Tipe	Departur	or Arrival	Time (Calculate) (min)	Time (Schedul (min-sec)	
Α	1 • 2 • D	1 • 2 • A	280" (4'40")	4'45"	
В	3 • 4 • D	3 • A	280" (4'40")	4*45"	
c	do	4 • A	287" (4'57")	5'00"	
D	do.	1 • 2 • A	3 3 4" (5'34")	5' 45"	
E	1 • 2 • D	1 · 2 · D	238" (3'58")	4'00"	
F	d o	3 • 4 • D	238" (3'58")	4.00.	
G	3 • 4 • D	1 • 2 • D	3 1 8" (5'18")	5'30"	
Н	Hell • D (To Sentul)	Mall . A (To Sentul)	50"	0.30.	K or H Batu In Single Track
J	M. L Mall . D	Sentul L • A	238" (3'58")	4'00"	Satu Jn Double Track
к	Wall + D (To Sentul)	Sentul L · D	(4"25")	4,30	Hor K Batu Jn Single Track


Appendix 5-7-1 Present Status and Problems of Level-Crossing of Tracks

Upon completion of the DTP, there will be two junctions between Rawaing, Kuala Lumpur and Seremban, where railway tracks cross on the ground level, hampering train scheduling when the number of trains is increased, and severely affecting overall train operation when a train delay occurs. (Refer to Fig. 1.)

Schedule for each type of train to pass level-crossing points (S, P, and Q) is determined from the train diagram and signal positions, as shown in the Table 1.

The use rate of a level crossing point is generally limited to 60%, and even at the levels of 40% to 50%, it often becomes difficult to operate trains.

In case the number of trains per peak hour in 2005 is shown in Table 1, the rate of using level crossing points (S and P) will be 40% to 57%.

Appendix 5-8-1 Traffic Assignment to Peak and Off-peak Hours

Traffic assignment to peak and off-peak hours was carried out on the basis of MRA Passenger Department's data as well as results of the bus transport survey, including the number of passing buses and the number of passengers carried.

(1) MRA Passenger Department's data (passenger demand forecast for commuter and subarban services)

MRA's data is shown in Table 1.

Table 1 Passenger Demand Forecast of Commuter and Suburban Services (MRA)

Jane 1	+1.4	113 / TX	Ça irin	17 -	eg egen		5 1		· · ·	74 1 x 1 x 1	
Sector	DMU	No. of Trios/ Day	•	z			Off Peak Load- ing Trip	Z	No. of Trips	Trips/	No. of
K.L Rawang	3x4 car	68	450	102	34	15,300	300	68	34	10,200	25,500
K.L Seremban	6x4 car	68	600	136	34	20,400	350	80	34	11,900	32,300
K.L P.Klang	4x4 car	50	400	91	25	10,000	300	75	25	7,500	17,500
K.L Subang	2x3 car	50									4,000
. 5. 4	15 sets										79,300

From the table, the number of passenger trips is assigned to peak and off-peak hours as shown in Table 2.

Table 2 Comparison of Passenger Trips during Peak and Off-peak Hours

	No.	of Pa	assenger	trip	s/day	
Section	Pea	k	Off-pe	ak	Tot	al
K.LRawang K.LSeremban K.LP.Klang K.LSubang	15,300 20,400 10,000	60 63 57	10,200 11,900 7,500	40 37 43	25,500 32,300 17,500	100 100 100

As shown in the above table, the number of passenger trips during peak hours accounted for 60% of the total for K.L. and Rawang, and 40% during off-peak hours. On the other hand, the number of passenger trips between K.L. and Seremban was 63% for peak hours and 37% for off-peak hours.

The number of passenger trips per hour during morning peak hours, the rate of concentration, was calculated as follows:

(2) Estimate from bus traffic volume

The number of buses counted at points 10km from K.L. and the rate of concentration are shown in Table 3.

Table 3 Number of Buses Counted and Average Rate of Concentration

	Nur	nber of	E busse	98	Average rate of concentra-	No. of buses
	6:00-	7:00-	8:00-	Sub total	tion per hour	passing in 24 hours
Sungai Buloh	•				:	·
Number of outbound buses	9	10	10	29		141
Concentration rate	6.4			20.6	6.9	
Number of inbound buses	11	13	12	36		175
Concentration rate per hour	6.3	7.5	6.9	20.6	6.9	
Total Number of buses	20	23	22	65		316
Concentration rate	6.3	7.3	7.0	20.6	6.9	
Petaling				<u> </u>		
Number of outbound buses	87	107	81	275		1281
Concentration rate per hour	6.8	8.4	6.3	21.5	7.2	
Number of inbound buses	67	75	79	221		1104
Concentration rate per hour	6.1	6.8	7.2	20.0	6.8	
Total Number of buses	154		160	496		2385
Concentration rate	6.5	7.6	6.7	20.8	6.9	
Sangai Besi						
	16		12	37		229
Number of outbound buses Concentration rate per hour	16 7.0	4.0	5.3	1	5.4	
Number of inbound buses	21	13	15	49		206
Concentration rate per hour	10.2	6.3		23.8	7.9	
Total Number of buses	37	22	27	86		435
Concentration rate	8.5			19.8	6.6	

Average for inbound 7.2 % Average for outbound 6.5 %

Between 6:00 a.m. and 9:00 a.m., the average concentration rate of the number buses per hour is approximately 7%. On the other hand, in the road traffic survey conducted in the process of drawing up the master plan, the percentage of the number of bus passengers per hour (outbound and inbound) during peak hours was estimated at 15%. (Refer to

Klang Valley Transportation Study Technical Report E-12 Railway Study December 1986.)

From the concentration rate and the percentage of bus passengers during peak hours, the number of bus passengers during peak hours appears to be around twice the daily average bus number.

$$158 + 78 = 2.14$$

(3) Traffic assignment to daytime and nighttime off-peak hours

The following shows results of a periodical traffic survey conducted by former FNR in 1985.

Table 4 Traffic Concentration Rate during Daytime and Nighttime Off-peak Hours

Hour Traffic volume	8	9	10	11	12	13	14	15	Sub- total	19	20	21	22	23	24	Sub- total	Total
(thousand passengers) Outbound	39	74	56	59	60	65	63	94	510	261	192	165	103	64	32	817	1327
Inbound	204	209	98	74	66	63	59	65	838	57	42	34	20	12	4	169	1007
Total	243	283	154	133	126	128	122	159	1348	318	234	199	123	76	36	986	2334
Composition(%)	11	12	7	6	5	5	5	7	58	14	10	8	5	3	2	42	100

- (Note) 1. Total traffic volume on Tokaido, Sobu, Chuou, Tohoku, Takasaki, Joban lines
 - 2. For 8:00 a.m. zone, one third of the total traffic volume is assumed to be carried between 8:30 and 9:00.

In former JNR, the ratio of traffic between 8:30 a.m. and 4:00 p.m. to that between 7:00 p.m. and 12:30 a.m. was about 60:40.

Appendix 5-9-1 Traffic Volume Between Stations

Predicted Traffic Volume between Stations by Type of DMU Trains, Peak and Off-peak Hours, and Outbound and Inbound Traffic (Weekdays) (in 2005) Table 1

Vent 2005				f		(-)			Total		3				1		Total (-	•	[-]
1	Sections] Pe	Pesk	Off-peak		Sectional	Peax	Off-beak	. aak	Sectional:	Pesk	Off-peak	oak .	Sections	Posk	- Off-peak	Aso	Sectional	Peak	Off-peak	9ak
project	1	n (3 min	(Rorning) Daytine Nightline		25	187	Daytise Mightime	Ighttime		4	Daytine Highttine	fbitine	Traffie,	(Morning)	٠	Alshttige		(Norning)	Dartine Mightein	ightt ine
Station	Volume UP	ı	dh	4.0	Volume	dΠ	46	n n	No. und	n n	3	5	Yourse	ď	ď	å	Volume	ďβ	d.	d
T	(person/day)	1	ΧĞ	NG :	(person/day)	₩Q ·	ã	ž	Derson/dex/	ã	2	2	(perton/day)		×	ž	(person/day)	N.	Ā	5
KARAKU	1		1				•	t	1		ļ	,,,,		ŀ			333 %			, 69,
F 17 A H.C.	7 (69.) 2		00 M	766	8	400	- 4	1	0.07		9	7 109	001		27.5	7 7	900 100		2 2 2	2.524
2000	363 3	L						-	70 784	, , ,		35,9	178 5				519 96	2 79.	3 197	2 1 2 2
-	<u>}</u>	232	0			508	7 07	i.		. 03	2 6	98		55		9		200		32
	15.575	141	989	326	4,128	433	569	330	20, 704	2, 174	2, 434	1.656	5, 941	179	773	476	26.845	2, 798	3, 197	2,132
S. BULDH			1, 289	1, 326		303	56	1 000		4,037	2, 484	1.656		1,159	713	476		5, 196	3, 197	2,132
	27 955 2	2.895			4, 521	475	2 4 2	362	12 111	3.410	3.897	7 598	12 941	1.359	1.553	1.035	8 7 57	4.769		3,633
XEPONG	_	187.5	-	2, 256		582	242	362		6, 333	3.897	2.598		2,524		1.035		8,857	5. 480	3, 633
	2 888 22	2, 683	3 067	2.04	1,522	196	802	1 209	33,078	1 13	96.0	2 646	13.500	1 963	2 220	027	51.573	5.416	9	4, 126
			-	Z, 044	1	1, 467	206	203		9	3, 969	2.046		2 608		200	1.0	10,038	4.0	92
THOMADAS	956.62	7 0 0 0			775	180	206	7 6	32,010		2 4	374 6	10. 300	202	32.6			E 50 C		36.7
	2 431 81	150	Į.		7 937	133	957	8.35	650 95	068.5	6.737	1.488	37 615	3.950	L	3.909	93.714	9.540	11.246	7.497
MALL	_		2.3			100	952	1		626	737	188		1-	715.7	3.00		18,274	11,246	1.6
	20 218 2	2 125	2.429	6 9	8.208	862	985	657	28.446	2 987	3 (1.1	2.276	8 747	918	1.049	689	37, 193	3,905	4.463	2, 975
P. MENTER!		946	2. 429	619		1.601	100	557		5.547	3.414	2.276		1 705	1.049	6.9.9		7, 253	4, 163	2,975
	21 787 2	2. 288			2, 295	241	275	184	24 082	2, 529	2.890	1. 92T	13 059	1.371	L	1,044	37, 141	3, 906	1.157	2, 171
, , ,		4, 248	2.614	1,143		977	278			4 696	2 890	1 921		2.547		1,044		7,243	4.457	2.971
	57, 772	11.829	Ŀ	4.2.5	2, 295	470	154	170	180,09	12, 293	6, 867	1,445	35 631	7, 295	L	2,634	889'88	19.594	10,622	1.082
SIPUTEH		6, 369	6.413	4, 275		253	752	110		6, 522	5 567	4,445		3 928		2, 537		10.550	10.622	7,082
	64 254 13	13, 156	7, 132	4,755	1,582	938	805	3.59	68 535	160 11	1, 641	3 60 5	35, 631	7, 295	_	2,637	104.457	21.359	11,596	7.731
S SOUTH	\dashv	7.034	7, 1.12	4,755		503	503	339		1 589	7	2,63		3.528	_	2 6 3 7		- 22	3 2 6	
	62, 679 12	12, 334	976	200	10, 695	2.189	1, 87	122	73 374	15.073		5 430	35 63	7 295	3 955	2 633	109,005	22 3 8	12. 00	5.057
S. BES!	_	0 6 9	6.958	4,638		1, 179	1, 18.7	792		80	8 145	5, 430		3 828	353	2, 633		12.017	12, 100	6.057
	11, 30\$	3	. 321		25, 297	4. 170	2,588	124	35, 202	7.208	98.	2 603	35 631	1 20	90.0	2. 63.7	70,833	14, 503	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5,242
SERDANG	4	2 1	122	981		2 2 2	2,586	. 724		9 0 9	206	2007		3.928	1	2, 63,	44. 47		700	2. 646
-	2.010	929	0 4	5:	18, 525	000	2.056		23, 333		710.0		35. 63.	7 0	200	2000	27.100	****		
				7 4		50.5	, ,	-	100 00	7 280	130	5	16 611	106	ľ	7.5.6	56 535	11 575	6.275	78. 7
SKASAN	22.	2 2 2	262	17.5		510 2	7 0 5	335		2, 305	2, 320			3.6	3,955	2.637		6, 233	6, 275	4.184
	2 360	=	262	175	10.875	2, 227	207	209	3 235	2, 710	1 489	979	17 057	3.492	1.893	1.252	30, 292	5.203	3,362	2, 241
BANGI		260	162	175		1, 199	207	100		1,459	1, 669	979		1 581		1,262		3,340	3.362	2, 241
		_		1	303	29	34	2.2	303	62	ř	22	17.057	3,492	Ţ.	1.252	17, 366		1, 927	1, 284
8. BENAR		1				33	34	22		33	3	22		381	1	1.262		1, 914	1.927	722
				. 1.	250		28	2.	250		27 .	2.0	17 057	2	250	727	100.11	2 2 2	17.7.1	1.261
2110		1		1			3		0.4	ŀ	,	1	1.7 04.9		Ì		17 306	27.5	120	
LABU				1	,	27	2 2			. ~	22		200	192		262		1,906	1.921	1, 281
		-	-		249	-	21	-	573	5	28	-	17,057	3 492	1.893	1. 262	17, 306	2,543	1.921	1, 281
T1801				i		2.7	28			2.7	2.8	-61		1.88	1,893	1, 262		1,906	1,921	1,281
		-		1	249	1.8	2.2	61	249	15	2.2	61	17,057	3 492	1.893	1,262	17, 306	3.543	1, 921	1.281
SEXEMBAN		1				21	92	-		2.7	87	2		28	╛	792		7.00	7	-
TATAL									-		_		3							:

(Highting)	Down	0.4 x 0.4 x 0.5	0.37x 0.4 x 0.5
Off-peak	dΩ	50.4 x 0.4 x 0.5	50.37x 0.4 x 0.5
(Daytimo)	Down	50 4 x 0 6 x 0.	50. 37x 0. 5 x 0.
1 01f-pesk	dn l	0.4 × 0.6 × 0.	0.37x 0.6 x 0.
eak (Morning)	p Down	0. 3 50. 3 x 0. 6	o. 650. 315x 0. 33
	_	K. L. 10.3 x	Seremban 10.315x
	Section	Rawang	

Note:

1. L-1 and L-3 denote local trains, and L-2 denotes rapid trains (K.L. and Seremban only).

2. The traffic volume between stations is a sum of daily average traffic volume, both outbound and inbound, in 2005 (with project) on the basis of the demand forecast.

3. Morning peak shows traffic volume between stations (passengers/day) multiplied by 30% between Rawang and K.L. and Seremban, and divided by the ratio of 65:35 for inbound (to K.L.) and outbound trains.

4. "Off-peak" shows traffic volume between stations (passengers/day) subtracted by traffic volume during peak hours (morning peak x 2), multiplied by 60% for daytime and 40% for nighttime, and divided into half for outbound and inbound trains.

Predicted Traffic Volume between Stations by Type of DMU Trains, Peak and Off-peak Hours, and Outbound and Inbound Traffic (Weekdays) (in 1997) Table 2

(ear 1997		-3				1-3			10131	1-3	\$ - 1 +						10121		,	-
with the	Sections	Posk	0.0	0 f f - Deak	7.00	1	-	000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			1,000	,					,	I
-		Morning	Day! ime	Daytine Mighttine		٦,	2	Hightine	L	140	Daytime Mighttime	1811186	Treffic	Morning	Daytine Mighttine	ue Mighttiac	Traffic	Moraing	Dayrine Wightein	Spiring
(a)	Tolume Derson/day)	NG.	NG NG	NG NG	Yolune Fortable	318	5 2	5 Z	Volume	d a	3 2	5 2	Volume Aprendiction	40	- N.	40	Yolune Young			
RAWANG								-	100 100				1000000	5	**	5	1	5	Т	5
1 11	11.045	- 1.0	. 325	98	637			- I - :	11,682	1.227	1,402	\$35	201'2	253	728	215	14, 384	1, 510	1, 126	1, 151
+	1000	,	646	000		7			000	2,7	204	2		527	124	215		2, 805	1 725	12
-	1,302		000	2 00		9 7 8	2 6	_L	9, 20,9		-	9 4	3, 234	242	36	250	12, 563	1. 2.2	2, 508	1,005
	7, 5\$2	161	706	603	1 777	186	213	142	9.509	377	4.1	7.45	3, 254	342		260	12, 563	1 319	1 508	500
BULCK		1,489	904	603		346	213	142		1,815	1,117	1.65		635	191	260		2, 150	1.508	300
	14, 532	1,526	1,744	1,163	2 013	211	2		16, 345	1,197	586	7.25	6.061	636	728	=	909 22	2, 373	2, 713	1.808
VE PURC		2.034	1	1		382	2.41	2		3, 226	985	1,324		1, 162	728	484		4, 108	2, 713	1.808
2 1	6, 445	3, 597	2, 213	473	4,073	25			22,518	7 6 F	2, 702	- L	11, 425	7 228	1, 37	916	33, 943	3, 56	4.073	1115
	18,445	1,937	2, 213	1. 475	4 073	427	489	328	22.518	2,364	2, 702	109'	11,425	1, 200	1.3.1	3.13	33, 943	3.564	6.013	2.735
SECAMBUT	200	3.597	2,2	478		794	687	326		4.391	2, 702	1,801		2, 228	1.371	ř		6.619	4.073	2.715
KALL	33,729	5.54	7,04	7.692	4 732	- F	AD 10	0 0	38, 461	, 6 6 8 8 8 8 8 8	5.6	3,077	17, 196	9 00 H	2,054		55 657	5, 844	5 2 2	254.4
	15, 499	1.627	1, 860	1, 240	- 36	521	588	285	20 456	2,148	2.4.55	523	8 114	852	973	679	28 570	3,000	\$ 428	2 286
MENTERI		3,022	1.860	٠		967	\$88	397		3, 989	2.455	1.637		1.582	973	573		5 571	3 428	2 286
+	18, 364	1,981	2, 254		2, 188	727	092	173	21,030	202 2	725'2	1, 552	9, 590	1,007	1, 151	768	30, 620	3, 215	3.675	2,450
-		8.078	2 264	1		122	260	 		101	2, 524	1, 582		1.570	121	768		5 971	3, 875	2 450
SYPINER	18.811	200	200		2 186	P 0	2.0	25	48.977	10,028	2,430	25.0	24, 519	5,020	2,122	1.815	73 496	15,048	5.158	. 139
+	51.398	725	ı	3 20	3 946	808		282	55 344	11, 832			24 518	\$ 020	22 . 2		79 862	6,103	2 4 8	
SOUTH		5, 667	٧,	3,803		435	438	282		201'9	5,163	4,005		2, 703	2, 722	1.815		808.8	8,865	\$ 910
1040	47, 575	11.6	5, 281	5, 52	8, 112	1,561	008	009	55, 687	11, 402	12:	2	24, 519	5,020	2, 122	1.815	80, 206	16, 122	8, 903	5. 936
25.3	2,0		ł	2		293	300	000		0, 140	0, 0	121		\$ 0 2	7, 722	1,815		5.043	808	976
SERBANG	10,031	1, 109	1, 116	3.5	18 83	2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	2.091	,	28.831	2 50	3, 201	7 2 2	24.519	2,020	22. 2	1.815	33, 430	5.888	5, 929	955
	4, 363	658	181	323	13.960	2,859	1.550	1.033	18, 525	. 3, 7.52.	2.034	1,356	24,518	5,020	27.12	1.815	42, 842	5. 772	4, 756	171
		3	2	323		1.539	1.550	1.053		2.020	2,034	1,356		2, 103	2, 122	1 815	A contract of the	4, 723	4.756	- 1
Za take	2.810	2.5	27.5	508	14 059	2,679	99	000	18.869	, ,	1, 672	2.5	24,519	5,020	7. 7.7	1.615	41 383		. 23	3.063
	2.810	373	312	203	7 912	1, 520	8.18	3 5 5	10 122	2, 195	100	3 5	11 402		77. 7	244	27 124	025	2 456	
BANGI		310	312	208		22.5	42	28.5		1.182	051			1.257	1, 256	844		13	2.656	637
					100	62	13	7.7	101	. 62	65	7.2	11,402	2, 335	1, 266	779	11, 703	2,397	1. 299	865
BENA K						33		22		33		22		1.257	-	315		1 290	1 29 1	\$66
XILAI					oc.	- F		===	00	7		==	11, 402	2,333	1.266	978	11. 552	356.2	233	200
-					150	=	-	Ξ	150	-	-	=	11, 402	2, 335	786	178	11 552	2.366	1 283	855
LABU						1.1	1.7	11 :			11	. 11		1, 257	1, 268	844		1. 274	1 283	\$5\$
7 80					150		r~ r-	l- -::	150	- 6	===	==	11,402	2.535	1,265	119	255'11	2,366	1.233	855
					150	31			150	15	11	Ξ	11.462	2,335	1.266	:	11, 552	2,366	1 283	855
SEREMBAN						11				12	-			1. 257	1, 266	844		1, 274	1.233	**
TOTAL						-		-	:											

Note: 1, L-1 and L-3 denote local trains, and L-2 denotes rapid trains (K.L. and Seremban only).

2. The traffic volume between stations is sum of daily average traffic volume, both outbound and inbound, in 1997 (with project) on the basis of the demand forecast:

3. "Morning peak" shows traffic volume between stations (passengers/day) multiplied by 30% between Rawang and K.L. and 31.5% between K.L. and Seremban, and divided by the ratio of 65:35 for inbound (to K.L.) and outbound trains.

4. "Off-peak" shows traffic volume between stations (passengers/day) subtracted by traffic volume during peak hours (morning peak x 2), multiplied by 60% for daytime and 40% for nighttime, and divided into half for outbound and inbound trains.

Appendix 5-10-1 Number of Long-distance Passenger Trains and Freight Trains to be Operated

(1) Long-distance passenger trains

MRA does not have a concrete plan for operation of long-distance passenger trains in the future.

According to the yearbook, passenger traffic declined gradually between 1982 and 1986, in terms of number of passengers and passenger-kilometers. However, for the purpose of determining the number of trains, increase in passenger traffic at an annual 3% is assumed. As a result, the number of long-distance passenger trains to be operated in 1990 and 2005 is shown as follows.

Table 1 Number of Long-distance Passenger Trains by Time Zone

	_		5:30) - 5:30	6:	30 - 8:30		0 - 6:00	16:0 19	0 -	19:0	0 - 4:00	Tot	a1
		UP		0		0		5		0		3		8
Rawang	1990	DN		2		0		3		0		3		8
-		UP	0 -		0		7	<u> </u>	0		4		11	
K.L.	2005	DN	3		0		4		0		4		11	
		UP		2		0	 	2		0		1		5
K.L.	1990	DN		0		0		3		0		2		5
-		ŲΡ	3		0		3		0		1		7	
Seremban	2005	DN	0		0		4		0		3		7	

- Note: 1. The time zone for operating trains is based on the situation at K.L. Station.
- 2. The time zone is modified for 1990.
- 3. Among trains to be operated in 1990, two trains between Rawang and K.L. (one for each direction) will be operated three times per week.
- 4. The number of trains in 1990 does not include rail buses operated between P.Klang and Sentul.

(2) Freight trains

Again, MRA does not have a concrete plan for oeration of goods trains in the future. According to the yearbook, freight traffic levelled off between 1982 and 1986 in terms of tonnage and ton-kilometers.

Nevertheless, increase in freight traffic at 3% annually was assumed again, for the purpose of estimating the number of freight trains, as shown below.

Table 2 Number of Freight Trains by Time Zone

	_		3:00		6:00 8:		8:30 16	100	16,00	00	19:00 - 24:00		Tota	11
		UP		3		0		3		0		6		12
Ravang	1990	DH		5		0		5	^	0		2		12
Batu	2005	UP	8		0		3		.0_	i.	6		, 17	
78	2005	DH	7		G		6		0		4	1	17	
Batu .	1990	OP		3		0		4		0		5		12
	1990	DN		4		0		6		0		3		13
K.L.	2005	UP	8		0		4	1 1	0		.5 :	4	17	
	2003	DN	6		0		7		0		6	_	19.	. " "
K.L.	1990	UP		3		0		1. 4		0		5		12
		DИ	<u> </u>	•		, 0		5		Ç		3		13
K.L.	2005	O.S	8		•		4 .		0		- 3	-}	17	_
Yard		DĦ	. 6		٥		7		0		6.	4	19	
K.L. Yard	1990	UP		-6		.0		. 5.	<u> </u>	0	-	6		16
		DH	<u> </u>	5		0		7	 	0	}	4		16
P.Klarg	2005	UP	. 9		0				0		8	_	- 23	
JN		DN	,		0		9		0		7	4	23	
P.Klarg JH	1990	UP	<u> </u>	• •		0		3	ļ	0	.	6		13
_		DH	ļ	•		٥		7		0	ļ	2		12
Salak	2005	UP	7								8	-	19	
South		DH	6	_	0		8		-		. 5	4	19	
Salak South		UP		*		0	ļ. <u> </u>	2	 	Ó	 	•		10
_		DH		3		. 0		. 5	ļ	0		2		10
Seremban	2005	UP	7	_	0		3		0		5	-1	15	
	l i	DN	5		0	ļ	6		0		4	_[15	

- Note: 1. The time zone for operating trains is based on the situation at K.L. Station.
 - 2. The time zone is modified for 1990.
 - 3. The number of freight trains in 1990 is modified under the assumption that a bypass line for Batu Junction, P.Klang Junction, and Salak South Junction has been completed.

Appendix 5-11-1 Estimation of DMU Train Consist

	102	5-2005	/ coach		<u>ا</u>	140	person	/ coach	
Year 2005	107	person	x200%		H		= 245	x200%	= 280
T=10 Min.	x177%			LOCAL		RAPID	LOCAL	RAPID	LOCAL
(Down) (On peak)	RAPID	LOCAL	RAPID	TOCKE	li	KALID	LUUNG	1	
1. RAWANG								1	اه و ا
		2.7		2.4			2.1		1.8
2. KUANG				·			. [1	
		2.3		2.0	li		1.8		1.6
3. H 1		· ·		!		. 1		1	
3. <u>H 1</u>		2.3		2.0	i	:	1.8		1.6
l *	İ	2.5		2.0					
4. S. BULOR	. :		1				3.0	i	2.6
		3.9		3.5			3.0		2.0
5. KEPONG		51.8	1	: 1		. :	!		امما
		4.4		3.9			3.4		3.0
6. H 2		l i	1						. [
'` 		4.4		3.9			3.4		3.0
a CROAURUT							,		
7. SEGAMBUT				7.1			6.2	1	5.5
		8.1		' • +			0.2	[
8. MALL		<u> </u>		1			2 -		2.2
	:	3.2		2.8	- 1		2.5		2.2
9. P. MENTERI					4			1	
		3.2	1	2.8	1		2.5	i	2.2
10. K.L.			'					1	
	7 - 71	7.2	6.8	6.4	М	6.0	5.6	5.2	4.9
(Up)	7.7	1.2	0.0	0.4			""		
II. SIPUTEH				7.3		6.0	6.4	5.2	5.6
	7.7	8.3	6.8	/.3		0.0	0.4.		
12 S. SOUTH			1. 1						
	7.7	8.8	6.8	7.8		6.0	6.8	5.2	6.0
13. S. BESI		L		L			L	1 1 1	<u> </u>
**-	7.7	4.2	6.8	3.7		6.0	3.3	5.2	2.9
14. SERDANG	' '	, , ,	1 1 1 1					1 1 1	
14. SERDANG	7.7	2.8	6.8	2.5		6.0	2.2	5.2	1.9
'	' - '	2.0	0.0	2.5		" "	***	1 1 1 1	
15. H 3							ا ۾ ا	5.2	, , ,
	7.7	2.5	6.8	2.2		6.0	1.9	1 2.2	1.7
16. KAJANG	لبــــا								
	3.7	1.6	3.3	1.4		2.9	1.2	2.5	1.1
17. BANGI									
11. Dang	2.6	0.1	2.3	0.1		2.0	0.1	1.8	0.1
10 0 00040	Z . Q			***]	
18. B. BENAR	انتما		2.3	0.1	1	2.0	0.1	1.8	0.1
	2.6	0.1	2.3	0.1		2.0	"	***	""
19. NILAI	1, 1			1 20			, ,		, ,
	2.6	0.1	2.3	0.1		2.0	0.1	1.8	0.1
20. LABU							1		
	2.6	0.1	2.3	0.1		2.0	0.1	1.8	0.1
21. TIROI	2.0						·	1	
21. TIROI		0.1	2.3	0.1		2.0	0.1	1.8	0.1
	2.6	4.1	4.3	"			***	~	
22. SEREMBAN	<u>. </u>		1	L		L	L		

1	Station	RAPID	LOCAL					
1 .	RAWANG	*	*					
Number		0	12		•			
1 .	K.L.	*	*				4-1- m.s.	h.aa
of		5	9	(Note)	der	notes	the nu	mper
	KAJANG	*	*		of coaches p	ner tr	rain con	sist
Train		7	9	***	or conouch F	,		
	BANGI	*	*		or the sec	tion	having	the
1	7.7.	7	(3)					
	SEREMBAN	*	7 - \$ 5]	nighest traff	ic vo	lume.	
				and the second second				

Appendix 5-12-1 Current Transport Volume at Each Station (Seremban - Rawang)

	1							•	•			
Station	.a	Passenger transport	transpor	ų			FT	Freight transport	ansport			
	No. o	No. of boarding passengers	ng passen	gers		Tonnage	Inward			Tonnage	Outward	
Fiscal year	186	-87	-88	68-	-86	-87	88-	-89	-86	-87	88-	68-
SEREMBAN	337	465	407	555	48	53	58	7.5	57	88	23	21
LABU	ı		t	1	l l	1	,	ı	į	1	1	,
BIG. BENAR	1	1	1	ı	1	•	-	•	38	68	54	74
KAJANG	56	61	70	73	17	12	17	14	0	0	0	0
* SERADANG	ŀ	0.20	0.63	1.33	ı	1	•	•	2		1	1
KUALA LUMPUR	3,219	3,193	4,060	3,633	291	298	381	442	20	20	137	57
* SEGAMBUT	,	0.44	0.66	0.72	S	ı	9	ß	•		•	1
SG.BULOU	21	24	32	45	.i	1.	1	•	0	0	0	0
RAWANG	35	31	28	07	133	85	86	103	957	1,432	1,562	1,288
		1				1 1 1			3 1			

(Note) 1. Source: MRA
2. * denotes satellite stations.

Appendix 5-13-1 Recent Trends in Train Delays

			Number (of Expr	ess Traiı	n.		:
}			<u> </u>	1111	delay t	ime (min)		
Year	То	tal	0	1~10	11~20	21~30	31~60	60 or more
1982	No. of train	2190	198	347	422	349	414	460
	rate (%)	100	9.04	15.84	19.27	15.94	18.90	21.01
1933	No. of train	2190	499	457	326	216	344	348
	rate (%)	100	22,79	20.87	14.88	9.86	15.71	15.89
1984	No. of train	3225	1601	271	243	203	243	664
	rate (%)	100	49.64	8.40	7.54	6.29	7.54	20.59
1985	No. of train	3635	2422	187	209	232	145	440
	rate (%)	100	66.63	5.15	5.75	6.38	3.99	12.10
1986	No. of train	3647	2773	162	160	155	107	290
	rate (%)	100	76.04	4.44	4.39	4.25	2.93	7.95
1937	No. of train	3650	2198	138	197	191	191	. 735
	rate (%)	100	60.22	3.78	5.40	5.23	5.23	20.14
1988	No. of train	2812	1536	145	148	187	148	648
	rate (%)	100	54.62	5.16	5.26	6,65	5.26	23.05
1989	No. of train	2535	886	138	180	221	.198	912
	rate (%)	100	34.95	5.44	7.10	8.72	7.81	35.98

(Note) Sections between Butterworth, Kuala lumpur and Singapore (Source: MRA)

			Nur	mber of	Norma	l, Mail	Train		
						delay t	ime (min)	<u> </u>	
	Year	То	tal	0	1~10	11 ~20	21~30	31~60	60 or more
	1982	No. of train	4375	1282	800	692	510	688	403
		rate (%)	100	2930	18,28	15.82	11.66	15.73	9.21
	1983	No. of train	4376	1482	860	644	407	555	428
		rate (%)	100	33.87	19.65	14.72	9.30	12.68	9.78
	1984	No. of train	4385	2294	490	477	286	404	434
·		rate (%)	100	52.32	11.17	10.88	6.52	9.21	9,90
	1985	No. of train	4368	3102	188	197	164	148	569
		rate (%)	100	71.01	4.30	4.51	3.76	3,39	13.03
•	1986	No. of train	4380	3449	137	133	139	105	417
		rate (%)	100	78.74	3.13	3.04	3,17	2.40	9.52
	1987	No. of train	4380	2962	123	151	174	171	799
		rate (%)	100	67.63	2.81	3.45	3.97	3.90	18.24
	1988	No. of train	4392	2818	120	202	229	194	829
		rate (%)	100	64.16	2,73	4.60	5.21	4.42	18.88
	1989	No. of train	4380	2351	161	219	287	242	1120
		rate (%)	100	53.68	3.67	5.00	6.55	5.53	25.57

.

Chapter 6

DIESEL MULTIPLE UNIT (DMU)

Appendix 6-2-1 Maximum Load Factor of DMUs for DTP

To determine the load factor; i.e. the ratio of overcrowdness to passenger capacity, standing capacity is calculated.

The car width is assumed to be 2,550mm from the maximum load gauges width of 2,819mm. Assuming that each chair is 975mm long, the width of aisle will be 600mm (= 2,550 - 2 x 975).

On the basis of this, the aisle area (including door ways and an area occupied by each passenger (m^2) are estimated.

(Head car)
$$0.6 \times 17.025 + 2.55 \times 1.2 \times 2 = 16.335 \text{ m}^2$$

 $16.335 / 36 = 0.453 \text{ m}^2/\text{passenger}$

(Mid car)
$$0.6 \times 17.940 + 2.55 \times 1.2 \times 2 = 16.884 \text{ m}^2$$

 $16.884 / 36 = 0.469 \text{ m}^2/\text{passenger}$

In Japan, the congestion rate at the maximum load factor of commuter train is assumed to to be $0.14~\text{m}^2/\text{passenger}$. By using this rate, the number of standing passengers is estimated to be 116~(=16.335/0.14) for the head car and 120~(16.884/0.14) for the mid car.

When the number of seating passengers is added, 187 passengers are accommodated in the head car and 191 in the mid car. Thus, if a DMU train consists of three cars, the planned maximum transport capacity becomes 565 passengers/train.

(= 188 passengers/car)

It should be noted, however, that this congestion degree $(0.14 \text{ m}^2/\text{passenger})$ may not be applicable to Malaysia due to difference in culture and custom, thus detailed survey and discussion will be required.

The maximum load factor in this case is determined at 177%, and should be permitted for a short period of time.

Appendix 6-2-2 Running Performance of DMU Train for DTP
Running Performance Curve,

Running Performance Curve, Speed-Distance, Tractive Force, Running Resistance, Travel Time Tables

	V I	km/h	F	kg		Z kg		R kg		S	m		T se	ec.	A	km/	h/s		
	•	0	100			0405	4 + 5, ·	350			.0			.00			940	·	
•		5		36		9500		364			. 5			.17			752 344		
		10		24		8505		380			. 6			. 58 . 27			361		
		15		92		7690		399			.0			. 30			374		
		20		57		6876		419			. 2			.72			489		
		25		65		6107		442 467			.1	: .		.63			814	41 [
		30		62		5429		493		122				.10			$2\overline{42}$,	
		35		02		4795	1.4	522	100.00	176				. 22			096		
		40		20		4343				244				. 99			053		
		45		82		3936		554		331				.55			004		
		50		42		3529		587		437		· · .		.86			596	1.0	57.
		55		70		3393		622		561				.58			291		
		60		42		3302	· 1	660		703				.75			874		
		65		67		3167		700		869				. 58			343		
		70		44		2986		742	1	062				.17			023		
		75		10		2895		785		291		44.72		. 79			267	5, 100	1 : 3
		80		92		2624		832		.291 .588			104				291		
		85		82		2262		880		.566 .974			120				955		
		90		41		2171		930					137				830		
		95		89		2171		983		417			156				485		
		100		44		2081	14. 3	1037		921			177				242		
		105		42		2036		1094		519			201				778		٠.
		110		47		1900		1153		249			232				418		
		115		95		1810		1214		210			272 272				052		
		120	4	42		1719		1277		504			212			U . L	002		
ŗ	<u>.</u>		<u> </u>	<u> </u>				<u>'. :</u>	1							<u> </u>	T-		1

		W	/ =	140	to	n	į												i
•		G	RA≓	0%.															Į.
į		F	S =	950									İ	·		•			
. [.		}			: [1.								7	
4 5 5 1 /																	<u> </u>		_[
120km/h		_																	
100km/h				<u> </u>					 					,			1	٠.	-
1		-1		<u>. </u>					}		<u></u>					12.0	1		1
Ļ				<u> </u>			<u>-</u> -	•	 		Ļ						+-		-
L				<u> </u>					<u> </u>		<u> </u>								-
. [ļ. · ·			: [Ť	İ										1
		1		İ										÷					
-				<u> </u>			十		<u> </u>								İ		1
50km/h				<u>i</u> I			+		 		<u> </u>		خننا	-			 		-
L	/	1		<u> </u>					<u> </u>		<u> </u>						ļ	<u> </u>	-
	7_						Ī												
r	/ -			<u></u>			- 		 										
<u>//</u>	·			<u> </u>							<u> </u>	- -	<u> </u>		-	+	1		- 1
ij,				<u> </u>			1								<u> </u>		<u> </u>		4
									L								<u> </u>		
0	m		100	Om		2	200	0m		300	Om			40	00m			50	00m

Appendix 6-3-1 Car Particulars by Seat Arrangement Type

0.44 1.6 Rear Total Impossible Seating Standing Standing Carrying 0.14 Maximum	
	Capacity Capacity Max.
Areas Capacity	
Capacity Area	10/
	n space
	all Length
7 O - T	Box seat #2
0.44	2 Long seat
W 2	or-iboor-
Middle 1.	Wall Doc
Driver's	Коош
Front	Wall
Semi-cross Front Driver's	seat type

			_	 			١ .				
Loadability	1			175.77 %	-			Total	991	967	139.86
Max. no. of Passengers	1,737	1,704	33	1,721		245.82		Standing	482	P L P	68.28
No. of Passengers	, 66 6	198	2.4	979		139.86		No. of Seat	503	493	71.57
Train Consist	2 D + 5 M	4 D + 3 M	(Difference)	Average	per 1 DMU Car	(/ 1)		Train Consist	2 D + 5 M	4 D + 3 M	Average

Appendix 6-3-2 Number of Cars Per Train in 2005 (During Peak Hours)

Year 2005	107	person	/car (DTP)	Γ	140	person ,	car (RBCS)
T=10 Min.	x177%		x200%	= 214	1		= 245	x200%	= 280
(Down) (On peak)		LOCAL	RAPID	LOCAL	1	RAPID	LOCAL	RAPID	LOCAL
1. RAWANG			1.		1				
	1	2.7	}	2.4			2.1		1.8
2. KUANG	1	{ i	-		١.		!!		
	1	2.3	}	2.0	١		1.8	}	1.5
3. H 1	1	1 [ı		1		i i	i	
	1	2.3		2.0			1.8	1	1.5
4. S. BULOH						1			
	1	3.9	1	3.4			3.0		2.6
5. KEPONG	1	1		1	1				
	1	4.4		3.9			3.4	1	3.0
6. H 2				1. 1	l				
	1	4.4	1	3.9	1	İ	3,4		3.0
7. SEGAMBUT	1						l		
	1	8.1		7.1	•	,	8.2		5.4
8. MALL	1				·	•		1 .	
	1	3.2		2.8			2.5		2.2
9. P. MENTERI]]							
		3.2		2.8			2.5	:	2,2
10. K.L.	1	1							
(Up)	7.7	7.2	6.8	6.4		6 0	5.6	5.2	4.9
11. SEPUTEH	1 .								
	7.7	8.3	6.8	7.3		6.0	6.4	5.2	5.6
12 S. SOUTH									<u> </u>
	7.7	8.8	6.8	7.8	1	6.0	6, 8	5.2	6.0
13. S.BESI			: .		l				
	7.7	4.2	6.8	3.7	l	6.0	3.3	5.2	2.9
14. SERDANG									
	7.7	2.8	6.8	2.5	1	8.0	2.2	5.2	1.9
15. H 3]		1]	1]]]
	7.7	2.5	6.8	2.2		6.0	1.9	5.2	1.7
16. KAJANG	ļ								
	3.7	1.6	3.3	1.4	ł	2.9	1.2	2.5	1.1
17. BANGI							 	L	<u> </u>
<u> </u>	2.6] . [2.3		l	2.0	i i	1.8	
18. B. BENAR			1	1	l	1			i.
	2.6	1	2.3	1	1	2.0	1	1.8	1
19. NILAI	ļ __	l-car	1	1-car	l		1-car		l-car
	2.6	Shuttle	2.3	Shuttle		2.0	Shuttle	1.8	Shuttle
20. LABU		Train		Train] , .	Train		Train
	2.6	\	2.3	↓		2.0		1.8	↓
21. TIROI		:	1						
000000000000000000000000000000000000000	2.6		2.3			2.0]	1.8	
22. SEREMBAN	<u> </u>				L		<u> </u>	<u> </u>	LJ

	Station	RAPID	LOCAL
	RAWANG	*	*
Number		0	12
	K.L.	*	*
of		5	9
	KAJANG	¥	*
Train		5	9
	BANGI	*	*
		7	3
	SEREMBAN	*	*

Appendix 6-3-3 Load Factor by Section (6-car train and 7-car train)

	T	140 per	sons /	car (S	Semi-cro	ss Sea	t Type)
Year 2005	6	cars			7			
T=10 Min.	Ü	P	DO	W N	Ū	P	D0	W N
(On peak)	RAPID	LOCAL	RAPID	LOCAL	RAPID	LOCAL	RAPID	LOCAL
1. RAWANG	1							-
	Ī	0.3		0.6	1	0.3		0.5
2. KUANG	1							1
	1	0,3		0.5	İ	0.2		0.4
3. 11 1	1	,,,,		, , ,	1 :	- 1		
	1	0.3	'	0,5	1	0.2	i '	0.4
4. S. BULOH	1	0.0		0,0		"."		
1. 0. 202011	1 .	0.5		0.9	1	0.4		0.8
5. KBPONG	1 :	0.0		(0.1		"."
J. KBIONG	1	0.5		1.0		0.5		0.9
6. H 2	1	0.0		1.0	}	0.0	ļ	0.9
0 1 2	-	0.5		الماا	1	0.5		0.9
7. SEGAMBUT	1	V. 0		1.0		0.0		0.9
1. SEGRMBUI	1	1.0				0.8		1.6
147.7	1	[1.0]		1.8		U. 0		[[1.0]]
8. MALL	1	ا نہ ا			1		'	
	-	0.4		0.7	1	0.3	l .	0.6
9. P. MENTER	Į į				l			
ļ <u></u>	ļ	0.4		0.7]	0.3		0.6
10. K.L.								
i and a second second	1.7	1.6	0.9	0.9	1.5	1.4	0.8	0.8
11. SEPUTEH]]
	[1.7]	1,9	0.9	1.0	1.5	1.6	0.8	0.9
12 S. SOUTH]		* * :					ļ,
	1.7	2,0	0.9	1.1	1.5	1.7	0.8	0.9
13. S. BESI		100000000				'لـــا ا) .	
] 1.7	1.0	0.9	0.5	1.5	0.8	0.8	0.4
14. SERDANG]						ļ	
] [1.7]	0.6	0.9	0.3	1.5	0.5	0.8	0.3
15. H 3]			'		ļ		
	1.7	0.6	0.9	0.3	1.5	0.5	0.8	0.3
16. KAJANG] .				i	L]
	0.8	0.4	0.4	0.2	0.7	0.3	0.4	0.2
17. BANGI]			[•			Ì	
and the second second	0.6		0.3		0.5	<u> </u>	0.3	
18. B. BENAR	1]]]	1]]
	0.6		0.3		0.5	1	0.3	
19. NILAI	1	1		4		! ↑	!	ħ I
	0.6	1-car	0.3	l-car	0.5	1-car	0.3	1-саг
20. LABU	-1	Shuttle		Shuttle		Shuttle		Shuttle
34.	0.6	Train	0.3	Train	0.5	Train	0.3	Train
21. TIROI	1 ""	1 1 1	""	1	1 ""	1	""	`````
61, 11801	0.6	*	0.3	, , ,	0.5	, ,	0.3	'
22. SEREMBAN	1 ""]	υ, ν		1 "."] "."	
66. OBREMDAN				<u></u>	<u>. </u>	<u> </u>	<u> </u>	ليسييا

	Station	RAPID	LOCAL
	RAWANG	*	*
Number		0	12
1	K.L.	*	*
o f		5	9
	KAJANG	*	*
Train		5	9
100	BANGI	*	*
	1 3 K 3 T 3	7	3
	SEREMBAN	*	*

1.73 means maximum passenger carrying capacity (245 passengers/car)
1.00 means passenger carrying capacity

(140 passengers/car)

Appendix 6-3-4 Seat Occupancy Ratio by Section (6-car train and 7-car train)

[140 per	sons /	car (Sē	mi-cro	ss Sea	t Type)
Year	r 2005	6	cars	(432 s	eats)	L	7	cars	(504 s	eats)
): T=10	O Min.		Р		WN		υ			W N
(On	peak)	RAPID	LOCAL	RAPID	LOCAL		RAPID	LOCAL	RAPID	LOCAL
1.	RAWANG									
۱ ،	KUANG		0.6		1.2	1		0.5		1.0
2.	KUANG		0.5		1.0			0.5		0.9
3.	H 1		V. V		1			0.0		, ,
1 "			0.5		1.0	1		0.5		0.9
4.	S. BULOH		1			1		• • •		53330000000000
			0.9		1.7		;]	0.8		1, 5
5.	KEPONG		330000000000000000000000000000000000000							
			1.0	i i i	1.9			0.9		1.7
6.	Н 2							1.1		
			1.0		1.9			0.9	11 11 11	1.7
7.	SEGAMBUT									
1	MALL		1.9	*.	3,5			1.6		3.0
8.	WYPP		0.8			1	٠. ,	0.6		
9.	P. MENTERI		0.0		1.4		1	0.0		1.2
"F	I. MENIEKI	7	0.8		1.4			0.6		1.2
10.	K.L.	V 2 4 5 1								
<u> </u>		3.4	3.2	1.8	1.7	1	2.9	2.7	1.6	1,5
11.	SEPUTEH									
		3.4	3.6	1.8	2.0		2.9	8.1	1.6	1.7
12	S. SOUTH					1.				
		8.4	8, 9	1.8	2.1		2,9	- 8.3	1.6	1.8
13.	S. BESI									
l	CDDDANG	3.4	1.9	1.8	1.0	1	2, 9	1.6	1.6	0.9
14.	SERDANG	3.4	1.2	1.8	0.7	1	2.8	1.1	1.6	0.6
15.	Н 3	U. ¶	1 . 4	1.0	V (١	6.8	1 ***	1.0	
1 1	11 0	3.4	1.1	1.8	0.6		2.9	0.9	1.6	0.5
16.	KAJANG		***************************************							
		1.6	0.7	0.9	0.4		1.4	0.6	0.7	0.3
17.	BANGI					L				
- [1.2		0.6			1.0		0.5	
18.	B. BENAR				. i	1				
		1.2		0.6		 - -	1.0		0.5	
19.	NILAI		T		î	1		1	0.5	1
1 20 1	LABU	1.2	1-car	0.6	l-car Shuttle		1.0	1-car	0,5	1-car
20.	LADU	. 199700000000000	Shuttle Train	0.6	Snuttle Train		1.0	Shuttle Train	0.5	Shuttle Train
21.	TIROI	1.2	lrain	0.0	1 11911		1.0	11914	0.9	11.211
""	11101	1.2	₩ .	0.6	₩	1	1.0	. *	0.5	. *
22.	SEREMBAN			V. V			F *, ,		J	
<u> </u>	ADDINGTOR I			<u></u>					<u> </u>	

	Station	RAPID	LOCAL
	RAWANG	*	*
Number		0	12
	K.L.	*	*
of		5	9
	KAJANG	*	*
Train		5	9
	BANGI	*	*
		7	3
	SEREMBAN	*	*

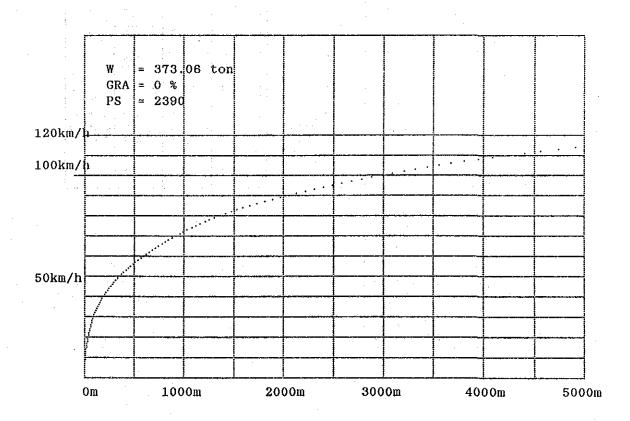
Note: *1.0 means all seats are just occupied by passengers, and everyone can get seat. (Rapid train from Seremban)

Appendix 6-3-5 Table 1 Number of Cars Per Train (During Daytime Off-Peak Hour)

Yea	r 2005	140 p	erson	s / co	ach (Semi-cı	ross S	eat T	уре)
	O Min.		1 ca		%)=		erson		
(0f	f peak)		V	P			DO	Y N	
[Day	time]	RAP	1 D	LO	CAL	RAI	PID	L	OCAL
1.	RAWANG								
2.	KUANG			1 - 1	2.3			÷	2.3
3.	H 1	i			1.9	i · ·			1.9
4.	S. BULOH				1.9 3.2				1.9 3.2
5.	KEPONG				3.7	· ·			3.7
6.	H 2				3.7				3.7
7.	SEGAMBUT MALL		·		6.7		-		6.7
9.	P. MENTERI		• •		2.7				2.7
10.	K.L.		 - =		2.7		T-2		2.7
11.	SEPUTEH		7.1		5.4 6.2		7.1		5.4 6.2
12.	S. SOUTH	-	7.1		6.6		7.1		6.6
13.	S. BESI		7.1		3. 2		7.1		3. 2
14. 15.	SERDANG H 3		7.1		2.1	,	7.1		2.1
16.	KAJANG		7.1		1.9		7.1		1.9
17.	BANG1		4.2		0.1		4.2		0.1
18.	B. BENAR		4.2		0.1	·	4. Z 4. 2		0.1
19.	NILAI		4. 2		0.1		4.2		0.1
20. 21.	LABU TIROI		4.2	† 	0.1		4.2		0.1
22.	SEREMBAN		4.2		0.1		4.2		0.1

	Station	RAPID	LOCAL
	RAWANG	*	*
Number		Ö	15
	K.L.	*	*
of		5	11
	KAJANG	*	*
Trains		4	11
! !	BANGI	*	*
		4	3
	SEREMBAN	*	*

Appendix 6-3-5 Table 2 Number of Cars Per Train (During Nighttime Off-Peak Hour)


Year 2005	. 140 person	s / coach (Semi-cross S	eat Type)
T≖10 Min.	1 ca	r (80 %) =	112 person	8
(Off peak)		p	DO	
[Night time]	RAPID	LOCAL	RAPID	LOCAL
1. RAWANG 2. KUANG		2.3		2.3
3. 11	:	1.9		1.9
4. S. BULOH		1.9		1.9
5. KEPONG	. •	3.2		3, 2
6. H 2	<u>.</u>	3.7		3.7
7. SEGAMBUT		3.7		3.7
8. MALL	•	2.7		[6. 7] 2. 7
9. P. MENTERI		2.7		2. 7
10. K.L.				
11. SEPUTEH	5.9	5.7	5.9	5.7
12. S. SOUTH	5.9	6.5	5.9	6.5
13. S. BESI	5. 9 5. 9	3.3	5.9 5.9	6. 9 3. 3
14. SERDANG	5.9	2. 2	5.9	2. 2
15. Н 3	5.9	2.0	5.9	2.0
16. KAJANG	3.8	1. 2	3.8	1.2
17. BANGI	3.8	0.1	3.8	0.1
18. B. BENAR	3.8	0.1	3.8	0.1
19. NILAI 20. LABU	3.8	0.1	3.8	0.1
20. LABU 21. TIROI	3.8	0.1	3.8	0.1
22. SEREMBAN	3.8	0.1	3.8	0.1

			and the second second second second
1	Station	RAPID	LOCAL
	RAWANG	*	*
Number		0	10
	K. L.	*	*
of		4	7
[KAJANG	*	* .
Trains		3	7
	BANGI	*	*
1		3	2
Γ	SEREMBAN	*	*

Appendix 6-3-6 Running Performance Required of DMUs for PBCS (7-car Train)

DMUs for RBCS: Running Performance Curve, Speed-Distance, Tractive Force, Running Resistance, Travel Time Tables

V	km/h	F kg	Z kg	R kg	S m	T sec.	Akm/h/s
	0	25244	26176	933	0.0	0.00	2.2555
	5	22931	23900	969	1.6	2.30	2.0489
	10	20387	21396	1009	7.0	4.86	1.8216
1.	15	18294	19348	1053	17.0	7.72	1.6346
	20	16198	17299	1101	32.6	10.93	1.4473
	25	14212	15364	1153	55.4	14.57	1.2698
	30	12450	13657	1208	87.2	18.72	1.1124
	35	10797	12064	1267	130.2	23.47	0.9647
	40	9597	10926	1329	186.9	28.90	0.8575
	45	8506	9901	1395	259.3	35.02	0.7600
1.	50	7412	8877	1465	351.1	41.96	0.6623
	55	6997	8536	1539	463.9	49.69	0.6252
-	60	6692	8308	1616	594.0	57.83	0.5979
•	65	6269	7967	1698	743.2	66.41	0.5601
	70	5729	7511	1782	916.9	75.66	0.5119
	75	5413	7284	1871	1118.3	85.65	0.4836
1	80	4638	6601	1963	1355.2	96.64	0.4144
	85	3631	5690	2059	1659.9	109.91	0.3245
	90	3304	5463	2159	2049.2	125.91	0.2952
	95	3200	5463	2262	2490.3	143.06	0.2860
	100	2866	5235	2370	2985.6	161.32	0.2561
	105	2641	5121	2480	3560.5	181.49	0.2360
	110	2185	4780	2595	4242.9	204.31	0.1952
	115	1839	4552	2713	5100.4	231.71	0.1643
	120	1490	4325	2835	6180.3	264.75	0.1331

Appendix 6-3-7 Number of Cars Required Per Train in 1997

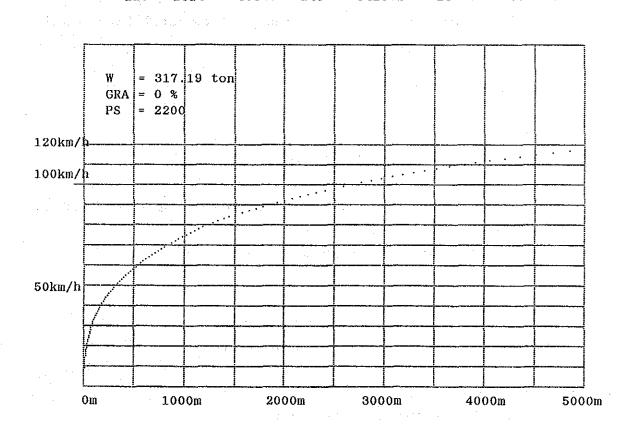
1000		1/0		7		نسننيل		+ Y	7
Year 1997		140 pe		/ car (3.0	mı-cr	oss sea	tlype	/ ~ ~ ~ \
T=10 Min.		rsons /		x175%)	12		rsons /		x200%)
(On peak)		P	DO	WN	L_		Р	D0	
[Morning]	RAPID	LOCAL	RAPID	LOCAL	R.	APID	LOCAL	RAPID	LOCAL
1. RAWANG					Т				
		0.8		1.5	1		0.7		1.3
2. KUANG		4 6 7 7 7						.1	}
		0.7		1.2			0.6		1.1
3. II 1			4.1	* * * *		1	" "		
3. <u>1. 1. 1</u>		۸ و	4				امما		1.1
		0.7		1.2			0.6		1,1
4. S. BULOH		S		1	1		1 44		. 1
		0.9		1.7	i I		0.8		1.5
5. KEPONG			*	,					
		1.3	1	2.5	1		1.2	1.2	2.2
6. H 2									
	:	1.3	5	2,5			1.2		2.2
7. SEGAMBUT							```		```]
1. SEGRADUI		2.3		4.3			2.0		3.8
<u> </u>		4. 3		4.3			2.0		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
8. MALL		4. 1.	-				! !		
		1.3		2.3			1.1		2.0
9. P. MENTERI								. 1	
		1.4		2.5			1 2		2.2
10. K.L.					ı		3.5		
	4.1	4.8	2.2	2.6		3.6	4.2	1.9	2.3
11. SEPUTEH	• • •	7.0	5.5			,,,		2.0	
11. 351 011/1	4.1	5, 2	2.2	2.8		3.6	4.6	1.9	2.5
10 0 0011211	4.1	9.4	6.6	2.0		3.0	9.0	1.5	
12. S. SOUTH									
	4.1	4.2	2.2	2.2	10.0	3.6	3.6	1 9	2.0
13. S. BESI	1								
	4.1	2.5	2.2	1.3		3.6	2.2	1.9	1.2
14. SERDANG]		
	4.1	1.6	2.2	0.9	11	3.6	1.4	1.9	0.8
15 H 3					\prod				
1 *	4.1	1.4	2.2	0.8		3.6	1 3	1.9	0.7
16. KAJANG	4.1.	1	0.6	V. V		0.0	'.'	1. 7	, , , I
10. KAJANO	19	ا م ا	1 0	0.4	-	1.7	0.7	0.9	0.4
] ,,	12	0.8	10	U, 4		1. (• 0 1	0.8	4
17. BANGI		<u> </u>					}		
	1.4		0.7			1.2		0.6	
18. B. BENAR						:			
	1.4		0.7		П	1.2		0.6	
19. NILAI	•	1		†			<u> </u>		
[[]	1.4	1~car	0.7	1-car	l	1.2	1-car	0.6	1-car
20. LABU		Shuttle		Shuttle		2. 5	Shuttle		Shuttle
LO. LADO				Tarin		1.2		0.6	Tarin
1 0	1.4	Tarin	0.7	141111		1.4	Tarin	V 0	i . 1
21. TIROI		↓		₩	1		↓		↓
	1.4		0.7		1	1.2		0.6	
22. SEREMBAN									

	Station	RAPID	LOCAL
	RAWANG	*	*
Number		0	10
1	K.L.	*	*
of		. 5	9
	KAJANG	*	*
Train		5	9
]	BANGI	*	*
		7	3
	SEREMBAN	*	*

Appendix 6-3-8 Number of Cars Required Per Train in 2001

Year 2001	140 persons / car (Semi-cross seat Type)					
T=10 Min.	245 n					280 persons/car (x200%)			
(On peak)		245 persons/car (x175%) U P DOWN			U P DOWN				
[Morning]	RAPID	LOCAL	RAPID	LOCAL	RAPID		RAPID	LOCAL	
1. RAWANG	MALID	TOOUR	KULID	LOCAL	KKIID	LUCKE	MALID	POOUR	
2. KUANG		1.0		1.8		0.9		1.6	
		0.8		1.6		0.7		1.4	
3. H 1		0.8		1.6		0.7		1.4	
4. S. BULOR		1.5		2.7		1.3		2.4	
5. KEPONG		1.8		3.4		1.6		3.0	
6. H 2		1.8	· 	3.4					
7. SEGAMBUT						1.6		3.0	
8. MALL	r	3.2		5.9		2.8		5.2	
9. P. MENTERI		1.4		2.6		1.2	•	2.3	
10. K. L.		1.5		2.7		1.3		2.4	
11. SEPUTEH	5.0	5.1	2.7	2. 7	4.4	4.4	2. 4	2.4	
12. S. SOUTH	5.0	5.8	2.7	3.1	4.4	5.0	2.4	2.7	
13. S. BESI	5.0	6.0	2.7	3.2	4.4	5. 2	2.4	2.8	
	5.0	3.0	2. 7	1.6	4.4	2.6	2.4	1.4	
14. SERDANG	5.0	1.9	2.7	1.0	4.4	1.7	2.4	0.9	
15. H 3	5.0	1.8	2.7	0.9	4.4	1. 8	2.4	0.8	
16. KAJANG	2.4	1.1	1.3	0.6	2.1	1.0	1.1	0.5	
17. BANGI	1.7		0.9		1.5		0.8		
18. B. BENAR	1.7		0.9		1.5		0.8		
19. NILAI	1.7	† 1-car	0.9	† 1-car	1.5	↑ 1-car	0.8	↑ 1-car	
20. LABU		Shuttle		Shuttle	1	Shuttle		Shuttle	
21. TIROI	1.7	Train ↓	0.9	Train ↓	1.5	Train ↓	0.8	Train ↓	
22. SERBMBAN	1.7	:	0.9		1.5		0.8		

	Station	RAPID	LOCAL
	RAWANG	*	*
Number		G	10
	K.L.	*	*
of		5	9
	KAJANG	*	*
Train		5	8
	BANGI	*	*
		7	3
	SEREMBAN	*	*


Appendix 6-3-9 DMUs Introduction Schedule

1996	2000	2004
5-car train (average)	6-car train	7-car train
1		+
9 sets -car train) 1	+	+ × + × + × + × + × + × + × + × + × + ×
3 sets 2 × 1-car train 3 cars 3 × (spare)		
Total Number of cars 120 cars to be operated :	138 cars	172 cars
Total Number of cars 87 cars to be purchased :	- 18 cars	34 cars

x shows DMUs with engine introduced by RBCS

Appendix 6-4-1 Running Performance of DMUs for RBCS (6-car train)

V km	h F kg	Z kg	R kg	S m	T sec.	Akm/h/s
	23302	24095	793	0.0	0.00	2.4488
, !	5 21176	22000	824	1.5	2.12	2.2254
10	18837	19695	859	6.4	4.47	1.9795
19	5 16913	17810	896	15.6	7.11	1.7774
20	14986	15924	938	30.0	10.06	1.5749
29	5 13161	14143	982	51.0	13.40	1.3831
30	11542	12571	1030	80.1	17.21	1.2129
35	5 10024	1.1105	1081	119.6	21.57	1.0534
40	8922	10057	1135	171.4	26.54	0.9376
4	7921	9114	1193	237.6	32.13	0.8325
5	6917	8171	1254	321.3	38.46	0.7270
5	5 6539	7857	1318	424.0	45.50	0.6872
6	6262	7648	1386	542.4	52.90	0.6580
6	5 5876	7333	1457	677.8	60.69	0.6175
70	5383	6914	1531	835.2	69.07	0.5657
7	5 5096	6705	1609	1017.3	78.11	0.5355
. 8	4386	6076	1690	1230.9	88.01	0.4610
8	3464	5238	1774	1503.9	99.90	0.3640
9	3167	5029	1862	1850.3	114.14	0.3328
9	5 3076	5029	1953	2241.1	129.33	0,3232
10	2772	4819	2047	2678.2	145.45	0.2913
10	5 2570	4714	2145	3182.3	163.14	0.2701
11	2155	4400	2245	3775.5	182.98	0.2264
11	5 1841	4190	2350	4510.6	206.46	0,1935
1.2	1524	3981	2457	5420.2	234.29	0.1601

Running Performance Curve (6-car Consist)

Appendix 6-4-2 Major Running Performance Specification of RBCS Railcar

(1) Required performance

1) Acceleration

If five engines of 550 PS are selected for a 7-car train, output per Car will be 392 PS and the required time for 0 - 100 km/h will be less than 134 seconds.

2) Deceleration

Deceleration by ordinary brakes will be 2.6 km/h/s and that by emergency brakes 2.88 km/h/s, with stopping distance from the maximum speed being less than 700m.

Relatively short distance between stations requires high deceleration, and rail surface conditions may be deteriorated due to rain, so a device to prevent wheel slipping needs to be equipped. At the same time, to prevent early wearing of brake shoes, engine exhaust brakes will be used for braking at high to medium speeds.

(2) Major features

1) Car body

General dimensions are as follows:

· Length

: 21.00 m

(distance between couplers:21.50 m)

· Width

: 2.75 m

· Floor surface level : 1.10 m

Layout:

· Entrances

: 3 on one side

· Driver's cab

: Pass-through type

Construction:

· Light weight stainless steel body

The stainless steel body will be used in consideration to rainy weather, together with reduction of painting cost and simplification of cleaning outer plate.

Stainless steel body is either of semi-stainless steel or all-stainless steel type. The former uses stainless steel in some part of shell plate or structural members, while the latter uses it for almost all part of body; in particular, high tension stainless steel is effectively used to reduce the body weight by around 70% compared to ordinary steel body.

As commuter trains repeat rapid acceleration and deceleration, light weight stainless body is expected to improve fuel economy.

and the second of the second of the second

2) External appearance

Karamer Description of State of the Con-

DMUs will be designed by taking advantage of stainless body so as establish a public image as a modern commuter service.

3) Engine/transmission

en jakiste rasion in jakin internalisi kestifa si hori s

To maximize cohesion of wheels, a 1-engine and 2-axle drive system will be used.

Use of 550 PS engines will reduce the number of cooling, hydraulic and fuel-related parts, in addition to engine and transmission, by 71% (for 7-car train) compared to 350 PS engines, leading to significant saving in maintenance cost.

4) Accommodation

Bearing to the following the second of the

Semi-cross type seats will be used. Spacing for facing seats will be 1,600mm, and long seat width for one person will be 440mm, compared 1,500mm and 430mm for Japanese ordinary commuter trains.

5) Bogie de la companya del companya del companya de la companya del companya de la companya del companya de la companya del companya del la companya del companya de la companya de la co

Air spring will be used to improve riding comfort, and light weight bolsterless bogie will be used for improving of efficiency in maintenance work as well as manpower saving.

and the second of the second o

6) Safety device and the state of the state

As the minimum headway will be 5 minutes around Kuala Lumpur, the automatic train protection (ATP) device (continuous control) and the dead-man device will be installed.

was a constitution of the second of the seco

Also, for effective communication at the time of train delay or accident, train radio will be installed.

7) Airconditioning system

A centralized airconditioning system will be installed at the center of rooftop. No heating system will be provided.

Ventilation will be of centralized duct type embedded in ceiling, with line fans for air circulation.

文学的文学的 1911年 - 1911年 - 1911年 - 1911年 - 1911年 - 1911年 - 1911年 - 1911年 - 1911年 - 1911年 - 1911年 - 1911年 - 1911年 -

A diesel engine generator will be installed in each intermediate car to supply electricity for airconditioning to all cars.

8) Door

3 double sliding doors will be provided on one car side, with width of 1,300mm to allow smooth passenger flow during peak hours.

1. "我们是一个一个一个一个一种放弃的数据的。" 电电影 电影響

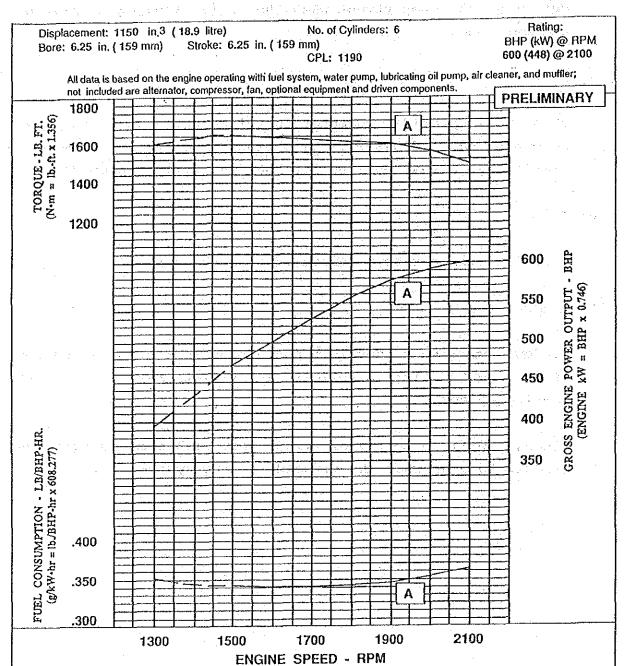
A semi-automatic door opening system will be designed to allow passengers to open doors from the inside or outside by pressing a button installed near doors, if lock is released by a conductor.

This system will prevent conditioned air from flowing out by unnecessary opening of doors. Also it will prevent rain from entering the compartment when the train stops at a platform without roof.

9) Step

RBCS will provide commuter service between Rawang and Seremban, and doors will be designed to fit 1,054mm-high platforms, so that no step for boarding will be provided.

10) Toilet


A toilet will not be provided in this DMU car.

11) Window

Windows will be of double construction for high soundproof effect, with tint to reflect ultraviolet rays for better cooling effect.

Windows will be mostly of fixed type, with some single-hung windows to open when the airconditioning system fails.

Appendix 6-6-1 Revolution Number and Fuel Consumption of Engine

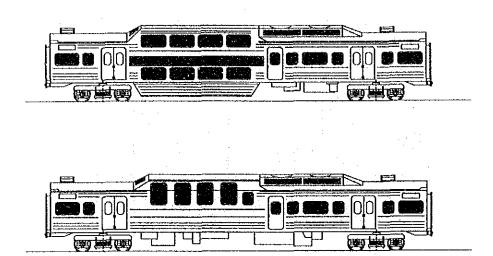
Curves shown above represent gross engine performance capabilities obtained and corrected in accordance with SAE 11349 conditions of 29.61 in Hg (100 kPa) barometric pressure [300 ft (90 m) altitude], 77°F (25°C) inlet air temperature, and 0.30 in Hg (1 kPa) water vapor pressure with No. 2 diesel fuel. The engine may be operated without changing the fuel setting up to 8,500 ft (2 600 m) altitude. For sustained operation at high load factors at higher altitudes, the fuel rate of the engine should be adjusted to limit performance by 4% per 1,000 ft (300 m) above 8,500 ft (2 600 m) altitude. The engine altitude capability is based upon an inlet temperature representative of the ambient temperature for that altitude.

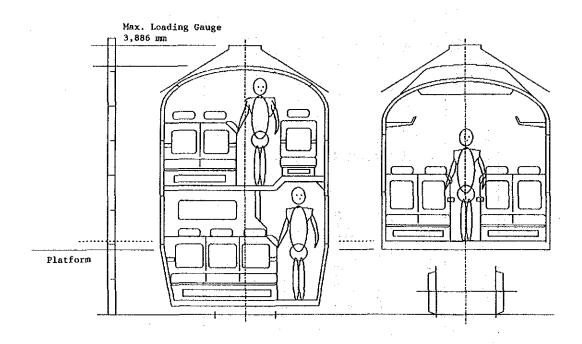
See reverse side for application rating guidelines.

TECHNICAL DATA DEPT.

Appendix 6-6-2 Fuel Consumption Per Engine by Service Section

Fuel Consumption (liter) stion lng etc. Estimation 1,445 0.232 0.058 (Allowance (ltr/min)(ltr/min)include 5%)	0.667 e) Liter	27.371 4.886 0.551 34.448 one way/one engine) Total 32.807 Liter	38.244 7.084 0.261 47.859 one way/one engine). Total 45.589 Liter	22.087 0.495 0.187 Liter 23.907
Station (2 Smin)	9, 0 2: 5 26 (On Tr	7. 0 2. 5 (One Took	2.0 2.5 38 (One	6.0
AccelerationCruising. Stoppin Ratio (%) Coastering Time at and BrakingStation Ratio (%) (1 min		2 2 . 6 5	53.57	12.26
Acceleration Accelera Period (Sec.)Ratio (00.09	47.35	1,582 1,782 1,736 1,736 1,440 3,176	87.74
Sheduled Accele Operation Period Time (Sec.)		2.400 1.124 2.400 1.124 2.400 2.273	3,420 6,840	1,950 1,124 1,950 2,298
Soute Section Of	Rawang>> K.L.		K.L>> Seremban (KL 1/2) (Rapid) (KL 4) (KL 4) Average K.L. << Seremban Round Trip Time	Bangi>> Seremban (Shuttle) Bangi << Seremban (Shuttle)
Area	Northern Part		SS a so a state of the state of	· · · · · · · · · · · · · · · · · · ·


Appendix 6-6-3 Calculation Process for Annual Fuel Consumption


		H.101		Vest 1997			Vear 2001			Year 2005	
			1 2 4 7 7 7 7		1,7,7,7						_
Area	Route Section	Consumption (Liter/	Number	number	Fuel	Number of	region	Sectional Fuel	Number	number of	Fuel
		one way and	7	Engines / Train	Consumption per Day	Trains / Day	Engines / Train	Consumption per Day	Trains	Engines / Train	Consumption Der Day
Northern Part	Rawang>> K.L. (Local) Rawang << K.L. (Local)	Liter /min. 32.396	eo eo	Ave. 3.6842	10, 503	∞	4	11,403	102	V7	16, 522
	<pre>K.L>> Bangi (Local) K.L. << Bangi (Local)</pre>	34. 448	69	3.6842	8,757	5. 5.	4	9, 508	22		12, 401
Southern Part	<pre>K.L>> Seremban (Rapid) K.L. << Seremban (Rapid)</pre>	6.00 6.00 6.00	en en	3, 68 4.2	10 00 16	F. 65	**	0 Ts .	(n)		8, 138 8, 138
	Bangi>> Seremban (Shuttle) Bangi << Seremban (Shuttle)	23.907	22	-	\$ 2 \$	22	1	5. 2. 5.	22	: :	\$ 2.0 \$ 2.0
	Grand Total			Liter/Year	9,410,429	1. : 	Liter/Year	10,200,611		Liter/Year	r 13,719,080

Appendix 6-6-4 Train Kilometerage and DMU Car Kilometerage (1993 in DTP, 1997 and 2005 in RBCS)

DMU Car kilometerage (km/day)	7,680 14,943 22,623	14,080 13,780 5,485 6,435 787	22,848 20,601 7,980 9,009 787
Train kilometerage (km/day)	2,560 4,981 7,541	2,816 2,756 1,097 1,287 787 8,743	3,264 2,943 1,140 1,287 787 9,421
Train consist	ოოl	សលសក	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Number of train Total(up/down)	80 68 148	(8)88 103 102 36 22	(4)102 (2)110 (2)106 36 22
Distance (km)	32.0 73.25 Total	32.0 26.75 10.75 35.75 35.75	32.0 26.75 10.75 35.75 35.75
Route Section	Rawang~K.L.	Rawang~K.L. K.L.~Kajang Kajang~Bangi Bangi~Seremban ditto	Rawang~K.L. K.L.~Kajang Kajang~Bangi Bangi~Seremban ditto
Year	1993 (DIE)	1997	2005

Appendix 6-7-1 Example of Double-Decker and High-Deck Railcar Appearance

Chapter 7

RAILWAY GROUND FACILITIES

Appendix 7-1-1 Measures for Speed Improvement on Narrow Gauge

(1) Recent trend

In the last half decade Japanese National Railways (JNR), and its successor, Japan Railway Group (JR), have been making efforts to increase train speeds in order to develop competitive power against road transport modes. After privatization profitability of speed-up investment has been put higher emphasis than before.

Hence, instead of such speed-up measures taken by JNR as re-routing with construction of new bridges and tunnels, or double tracking, more cost-effective speed-up measures are taken by JR.

(2) Improvement of speed restriction on curves

and the fact of the second of

Committee the figure of a consideration of the contract of the

1) Basic theory

Basically restricted speed on curves is imposed to prevent outword overturning of the train running on the track without cant (Refer to Fig. 1).

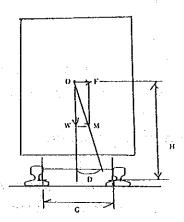


Fig. 1 Forces Functioning to Car on Track without Cant

The safety condition of running train is described below. The compound force (M) of gravity (W) and centrifugal force (M) from the centroid (O) of the car should cross the gauge line which connecting two rail heads, within the certain distance (D) from the centerline of the track.

Then, and a subsequently and the second of t

$$D = \frac{GV^2}{127R} \times \frac{H}{G} = \frac{1}{a} \times \frac{G}{2}$$

Where,

V: Restricted velocity (km/h)

R: Radius (m)

G: Gauge (mm)

a: Safety factor (non-dimentional, $a = \frac{G}{2D}$)

H: The height of the centroid of the car from the rail head (mm).

Hence,

$$V = \sqrt{\frac{127GR}{2aH}}$$
 --- (a)

In practice restricted speed grades on curves are set at every 5 km/h. (Refer to Table 7-1)

In MRA the following values are used for DMUs of RBCS,

$$a = 3$$

H = 1,650 mm (the Team estimate),

G = 1,000 mm

Then,

$$V = 3.58\sqrt{R}$$

The results of the calculation are also shown in Table 1. And refer to Main Report Fig. 5-3-2.

(3) Raising the restricted speed

On curves, with cant, the speed restriction is determined also taking into account other factors, such as riding comfort, track structure strength, etc.

and the first of the companies of the first of the significant of the

The passengers of the train running on curves at the speed (V) and the eqilbrium cant (E), receive the overcentrifugal force which gives them discomfort. This is positively car-related with cant deficienty (Cd), if $E \geq C$ (the cant laid in practice).

From Fig. 2,

tan
$$\theta = \frac{F}{W} = \frac{E}{G} = \frac{C+Cd}{G}$$
 (G: Gauge)

where,
$$F = m \frac{V^2}{R}$$
 (F: Centrifugal force)
$$(m: Mass)$$

$$W = mg$$
 (R: Radius of the curve)
$$(W: Weight)$$

$$E = C + Cd$$
 (g: Gravity constant)

Then,
$$V = \sqrt{\frac{127(C+Cd)R}{G}}$$
 --- (b)

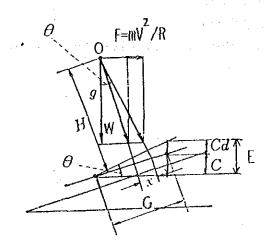


Fig. 2 Forces Functioning to Car on Track and Cant

The newly inaugurated super performance car; Super express "Hitachi" of JR has realized high permissible cant deficiency of 70 mm by maintaining the riding comfort in terms of lateral acceleration less than 0.08 g by adoption of high quality spring without pendlum car composition.

From the equation (b),
$$V = \sqrt{\frac{127(C+Cd)R}{G}} = 4.56\sqrt{R}$$
 where, $C = 105$ mm (the maximum in JR),
$$Cd = 70$$
 mm,
$$G = 1,067$$
 mm

The relationship between R and V are also shown in Table 1. If MRA adopts the same super performance car which will realize in the future, the theoretical restricted speed on curves is calculated as follows.

In consideration of the difference of the gauge;

$$Cd = 70 \text{ mm} \times \frac{1,000 \text{ mm}}{1,067 \text{ mm}} = 65.6 \text{ mm}$$

From the equation (b),

$$V = 4.45 \sqrt{R}$$

where, C = 90 mm (the maximum in MRA),

$$Cd = 65.6 \text{ mm}$$

$$G = 1,000 \text{ mm}$$

The results of the calculation is listed in Table 1.

and the contract of the contra

and the second of the second o

Constitution of the Consti

Table 1 Speed Restriction on Curves

(Gauge)	JR, JNR (1,067 mm), (1	MRA ,000 mm)
Curve Radius	DMUs Super P EMUs formanc #1	e car in RBCS	Super Per- formance car in future #1 #3
m 300 400 500 600 700 800 1000 1200 1400 Straight	km/h km/ 65 80 75 90 85 100 90 110 95 115 105 130 110 130 115 130 120 130	60 70 80 85 90 95 100 100	km/h 75 85 95 105 115 125 130 130 130 130

- #1 Super Express 'Hitachi' (series 651 AC/DC EMU)
- #2 Equilbrium Cant = Maximum Cant + Maximum Cant Deficiency = 105 mm + 70 mm = 175 mm
- #3 Equilbrium Cant = Maximum Cant + Maximum Cant Deficiency = 90 mm + 65.6 mm = 155.6 mm

(4) Ground facilities

The ground facilities are improved considering the train operation curve (the distance-speed curve). The countermeasures taken by JR are as follows:

September generation of the second and the second of

1) Track Structure

- a. Strengthen the track structure;
 50 or 60 kg/m, PC-sleeper with 64 mm spacing at the minimum, 250 mm ballast depth.
- b. Upgrading controll method of track condition.
- C. Efficient scheduling of track maintenance works.

2) On Curves

- a. Reinforcing the fastenings
 The fastenings installed on the curve (R ≤ 600 m)
 receive the lateral force of equivalent to 80 % of
 the wheel load, while those of straight track get
 40 %. Therefore PC-sleeper with reinforced fastenings which resist the above forces are adopted.
- b. Realignment of sharp curves.
- c. Elevating the cant, and increasing the transition curve length.

3) Turnout

- Mitigating the track maintenance works at the turnout. -
- a. Using heavier rail. (70, 80, & 90 kg/m)
- b. Welding lead rail and tongue rail into one piece.
- c. Strengthen the slip plate.
- d. Strengthen the H guard to resist the innerside wheel thrust, when passing the crossing.
- 4) Introduction of light weight cars

Reducing axel load and unsprung weight.

Appendix 7-1-2 Alternative Track Layout Plan of the Bangi Station

This alternative plan, where stabling tracks are located in the Seremban and east side, minimizes track modification of the DTP plan. This plan has, however, two disadvantages; i.e. level crossing to main tracks and swampy ground condition.

By comparison of the original plan mentioned in <u>Main Report 7-1-3(6)</u> and the alternative plan, the original plan is adopted as shown in the table below.

Table 1 Comparison and Conclusion

	Original Improvement Plan Fig. 7-1-9 (Main Report)	Alternative Plan Fig. 1
Traffic Disturbance due to Level Crossing (Delay Recover), etc.	None	Exist
Minimum Radius of Stabling Tracks	800 m	Less than 200 m
Ground Condition	Better	Swampy
Future Development (Application to Train Number Increase)	Excellent	Poor
Modification Cost (From Existing DTP Plan)	More	Less
(From Revised DTP Plan)	Less	Less
Conclusion	Adopted	Non-adopted

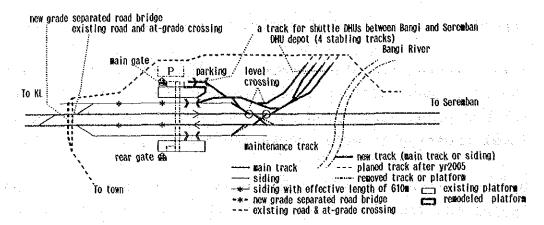


Fig. 1 Alternative Track Layout Plan of Bangi Station in RBCS

In case the shifting of a new road bridge in the original plan is not approved, another track layout plan (Plan-II) will be as shown in Fig. 2.

In this plan, however, the following problems are considered;

- 1) Inner two sidings have sharp curves of 200 m radius.
- 2) Tracks 2 and 5 have effective length of 610 m including cross-over, while Track 3 has 504 m.
- 3) Additional installation of signals

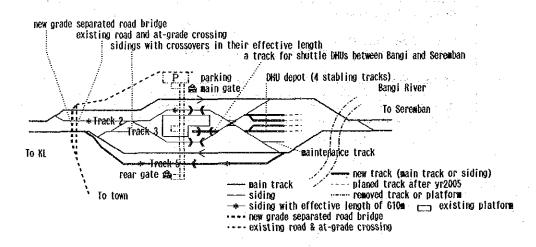


Fig. 2 Alternative Track Layout Plan (II) of Bangi Station in RBCS

Appendix 7-1-3 The Growth of Track Irregularity and its Theory

(1) Track subsiding

In Japan, since 1961 track conditions have been periodically measured by high speed track inspection cars. The behavior of subsiding of the track has been analyzed by the above data. The equation below was produced by using 2 train operation factors and 3 track ones. In parallel with this, it was found that the standard deviation, which represents the track irregularity, of the track subsiding is in proportion to the average value of track subsiding.

$$S = 2.09 \times 10^{-3} \cdot T^{0.31} \cdot V^{0.98} \cdot M^{1.10} \cdot L^{0.21} \cdot P^{0.26} \cdot \dots (a)$$

where

- S: Growth of track irregularity [mm/100 days]
- T: Passing tonnage [million ton/year]
- V: Average velocity (km/h)
- L: Explaining factor for rail gap

 (L=1 for a long welded rail, & L=10 for standard length rail)

[NDF= non dimentional factor]

- P: Explaining factor for roadbed condition
 (L=1 for good roadbed & L=10 for bad one)
 [NDF]
- M: Track structure coefficient [NDF]

(2) Track structure coefficient

Track structure strength represents the pressure on the base ground caused by the wheel weight and impact through the track structure. For the convenience of the calculation, the coefficient (M) is set up, representing the relative strength to the standard structure strength (50kg/m rail with PS type, PC sleeper with 56.7cm spacing, ballast with 200mm depth). Therefore the more the track structure strength increases, the more the coeffi

cient M decreases. M is calculated by use of the continuous elastic support model of track dynamics, consisting of mass of each track material (rail, sleeper, ballast & roadbed), unsprung parts of a car, and spring inter-connecting of each mass. The lowest spring is connected to the base ground. The spacing of springs is as same as that of fastening (sleeper) spacing. (Refer to Fig. 1)

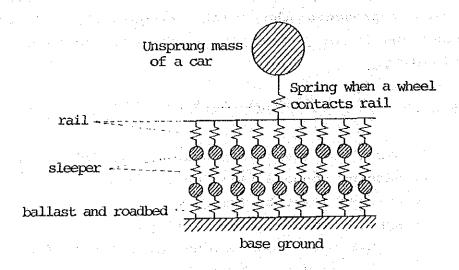


Fig. 1 Track Dynamics Model

(3) Calculation results of the growth of track irregularity of RBCS

Track irregularity of RBCS is caluculated by equation (a). According to the results shown in Table 1, the growth value of track irregularity per 100 days in 1990 is 0.71mm and for that "with-the-project" case in 2005 becomes 0.55mm, because the track structure will have been strengthened adopting PC sleeper and ballast with 250mm depth. Required track maintenance work is in proportion to that value, in principle. Considering double track in 2005, the track maintenance increase ratio from year 1990 to year 2005 becomes 55% as follows;

$$\frac{0.55 \text{mm} \times 2}{0.71 \text{mm}} = 1.55$$

The growth values of track irregularity per 100 days in 2005 are 0.55mm in "with-the-project" case and 0.47mm in "without-the-project" case. Therefore the track maintenance increase ratio between "with-" and "without-the-project" case becomes 17% as shown below;

$$\frac{0.55 \text{mm} \times 2}{0.47 \text{mm} \times 2} = 1.17$$

In "with-the-project" case, if 50kg/m rail (JR N-type) is adopted in 2005, the maintenance work can be reduced by 25%.

$$\frac{0.41 \text{mm} \times 2}{0.55 \text{nm} \times 2} = 0.75$$

Table 1 Growth of Track Irregularity

	Year		1990		2005	
	Items	Unit		'without'	'with'	'with' alter- native
Track	Rails: Mass per Meter	kg/m	40	40	40	50
	Stiffness (EI)	kgf-cm ³ (x 10 ⁷)	2.89	2.89	2.89	4.12
	Sleeper: Width x Length Spacing	cm X cm	20 x 210 60	24 x 200 70	24 x 200 70	24 x 200 70
	Ballast: Depth	cm	20	25	25	25
	Track Structure Coefficient (M)	non- dimen- tional	1.43	1.37	1.37	1.06
	Factor for Rail Gap (L)	_ H _	10 standard rail	1 welded rail	1 welded rail	1 welded rail
	Factor for road- bed (P)	_ в _	10 bad	10 bad	10 bad	10 bad
Train Operation	Annual Passing Tonnage (T)	million ton	6.85	6.33	10.87	10.87
	Average Velocity (V)	km/h	46.8	53.0	53.0	53.0
	Growth of Track Irregularity (S)	nm/100 days	0.71	0.47	0.55	0.41

T and V come up from Main Report Table 7-1-5

Appendix 7-1-4 Measures to Improve Work Productivity

(1) Training

According to the JNR's experience, intensive training both on the job and in the academy have been executed for the maintenance crew with emphasis on the items below.

- 1) Operating skill of MTT (multiple tie-tamper)
- 2) Control method of track irregularity
 Eventually the total MTT-tamping length increased by 5
 times within 5 years, without increasing the number of
 maintenance crew. (Refer to Fig. 1)

(2) Maintenance Train

Maintenance trains should be operated with fixed and periodical schedule, carrying track maintenance materials such as rail, sleeper, ballast, etc.

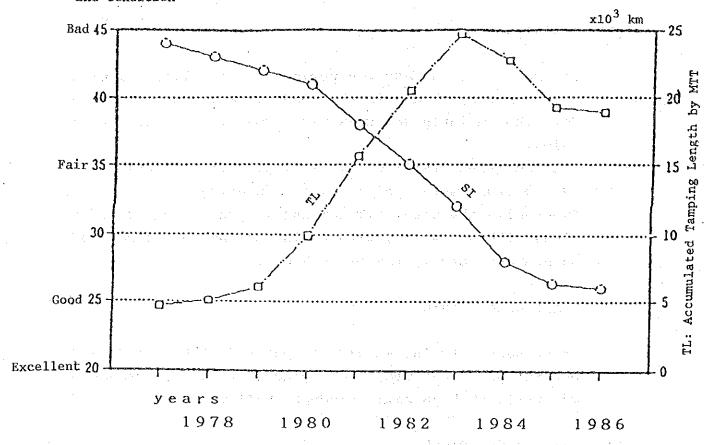
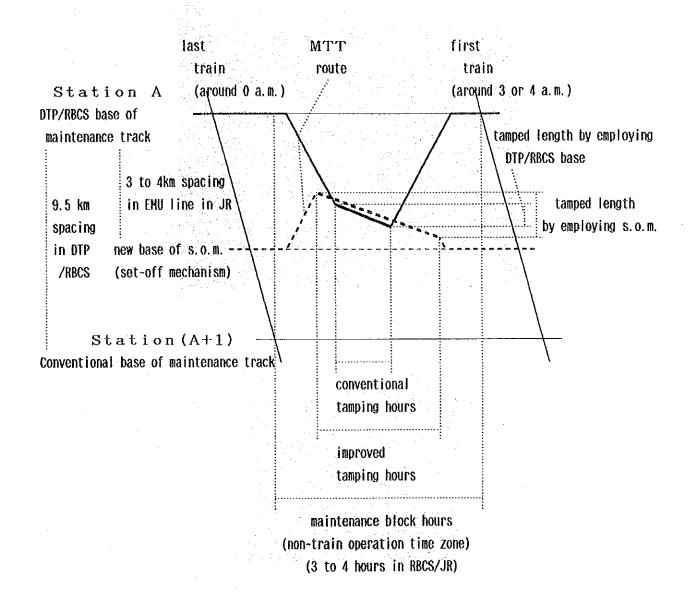
(3) Maintenance Block

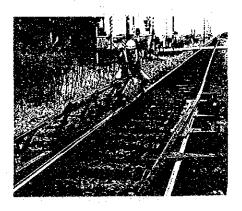
Setting appropriate non-operation time zone to facilitate large-scale track maintenance work. (Refer to Fig. 2)

(4) Set-off Mechanism

In order to maximize the net-working ratio in the maintenance block hours, installation of set-off mechanism for branching off the MTT is required. (Refer to Fig. 2 and Pictures)

SI = Track Irregularity Index (P-value) and Condition


Fig. 1 The Improvement of Track Irregularity (SI) by Increasing of Tamping Length (TL) by MTT in JNR (Japanese National Railways)

EMU = Electric Multiple Unit

Fig. 2 Effective Use of Maintenance Block - Example of MTT Tamping by Employing Set-off Mechanism-

Pictures: Set-off Mechanism at JR halt.

- No signalling equipments are required -

Appendix 7-1-5 Criteria for Establishing New Station, Rear Station Gate and Over-the-track Station

1) New Station

a) Where there is a sharp increase in the number of passengers in the suburbs of large cities. (in this project, H2)

b) Where a large project is planned.

(in this project, H1, H3)

c) Where a considerable effects are expected in developing tourism.

2) Conditions for Establishing a New Station

a) To be viable from MRA's financial viewpoint and serve to promote public welfare

b) To have more than 6,000 passengers per day

c) The station's revenue exceed its expenditure. d) Flat place (the gradient shall be less than 3.5/1000)

e) Select track alignment as straight as possible.

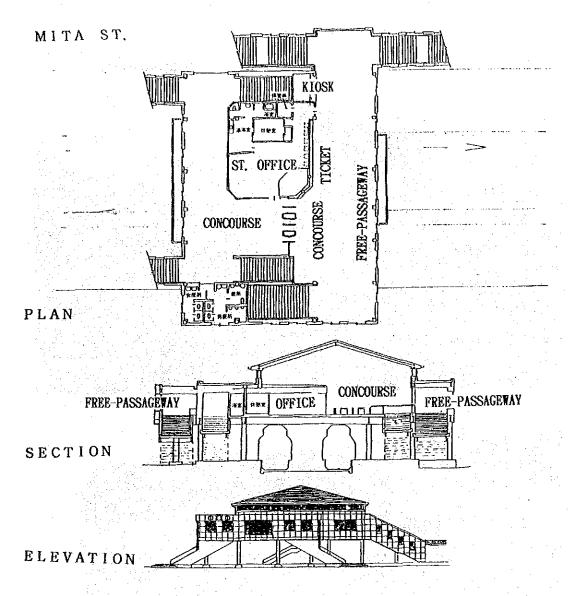
f) Place which requires earthwork volume as little as possible.

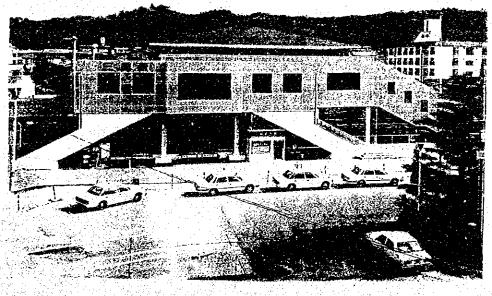
g) Easy improvement or expansion in future.

3) Conditions for Establishing a Rear Station Gate

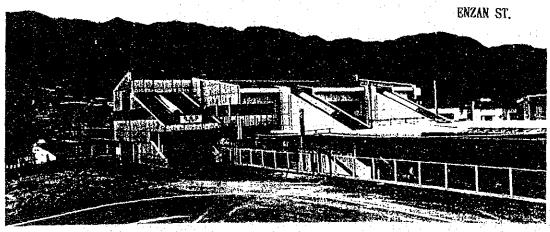
a) More than 6,000 persons per day who use the rear gate

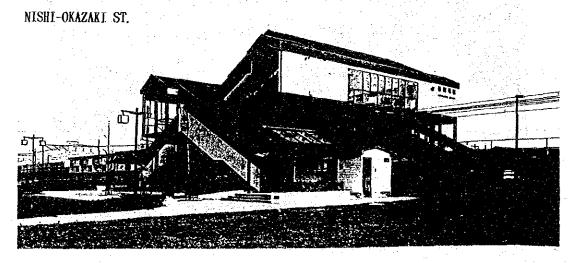
b) Local inhabitants have a request to prepare the rear gate

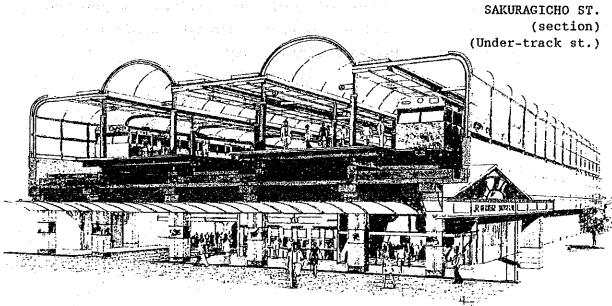

c) Easy to acquire required land


4) Merits and Demerits of Over-the-track Station

1 :	Merits	Demerits
Relative to inhabi- tants	-The free through-passage saves the city from getting separated into twoWhen the station front plaza is also double-decked by constructing pedestrian deck, the flows of cars and pedestrians can be separated	-Staircases trouble the free flow of the passengers, especially handicapped -As to the management of the free passage and pedestrian decks, special agreements with local government will be required
Land space	-Land space for station build- ing can be economized (Concourse etc. can be built upstairs) -The existing station building can be utilized for other purposes	
Management	-Station man-power can be economized (less wickets, offices, etc.)	-For platform operation, special staffing is necessary
Plans and Structure	-The over-track passage leads directly to all platforms (convenient) -The Plan can be simple (rectangular), convenient for passengers	-The entire building becomes higher than an ordinary two storied building (overhead clearance) -The locations of the pillar holes are subject to the track layoutThe floor designs is not free -Staircases make the effective space of the floor smaller
Construction	on Cost	-Higher
Maintenance	Work	-More complicated and expensive
Future improve- ment		-Free hands in future improvement are lost, more or less


5) Bearing the Cost

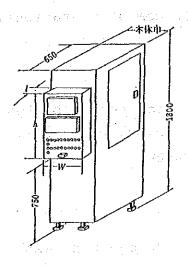

- a) The cost for establishing a new station, a rear station building or an over-track station is borne by a petitioner (city) in principle.
- b) In case when expenses are shared, the cost born by MRA is limited to the facilities required to operate trains, to handle passengers and to conduct station business.



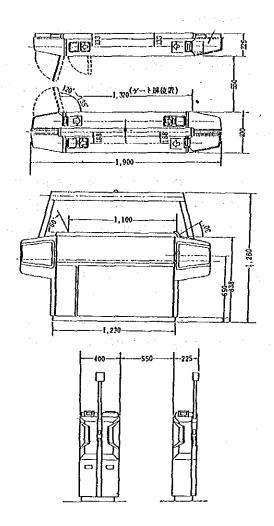
Appendix 7-1-6 Station Facilities

1) Platform:

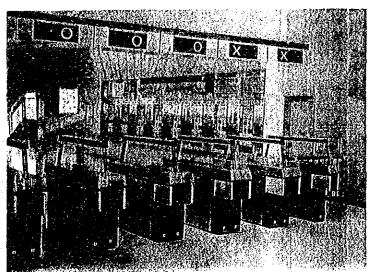
There are 3 types, i.e., lower level, medium level and higher level.


Sheds, over-track passageways, etc. are attached.

In this project, higher level platforms are planned (H=1,050mm). Sheds cover about 50% to 80% of platform length and over-track passageways connect platforms.


2) Station Building:

It has flow-functions to connect the station plaza to the platform and stay-function for facilitating passengers to wait for trains.


- a) Flow- : hall, concourse, passageways, etc. Facilities
- b) Passenger : ticket office, wickets, fare adjustment office, tourist information office, Facilities baggage office, etc.
- c) Service : waiting room, kiosk, coin lockers, facilities telephone corner, toilet, etc.
- d) Work : station master's room, station office, Facilities lecture room, rest room, etc.

TICKET SELLING MACHINE

AUTOMATIC TICKET BARRIER

TICKET SELLING MACHINES & AUTOMATIC TICKET BARRIERS

3) Equipments:

To improve efficiency of passenger handling functions, the following equipments are installed in commuter stations.

a) Ticket vending machine

A commuter put in coins or bank notes, push a button for destination and in the dish a ticket will come out printed a sum of money and the change.

b) Automatic ticket barrier

Some couples of units are installed together with one ordinary wicket at least.

Appendix 7-1-7 Station Plaza

The station plaza has two functions, i.e. passenger collecting/distributing function and smoothening function of related traffic flow.

- 1) Sidewalk :From the station entrance to the bus stop, the taxi stand and the streets.
- 2) Roadway :One way traffic to avoid crossings among roadways.
- 3) Car :The parking lot are divided into two, i.e. for parking private cars and taxis, with easy access to roadways.
- 4) Taxi Stand :To be located near to the ticket counter and wickets.
- 5) Bus Stop :Located at convenient place for accessing from the road and the station entrance.
- 6) Green Belt :Provided to alleviate congestion and to add beautiful sight of station plaza.
- 7) Others :Comply with needs for providing underpasses, pedestrian decks, facilities for rental cars, etc. Bicycle parking are provided at suburban stations.

Appendix 7-1-8 Off-rail Business Operated at Station

- 1) Passenger service business in the station building:
 - a) mini-shop, kiosk
 - b) buffet, restaurant
 - c) stall (foods, drinks, cigarettes, newspapers, magazines, etc.)
 - d) porter and shoe shiner
 - e) baggage checking office, coin lockers
 - f) telephone corner, post office
 - g) pay toilets, barbershops, etc.
 - h) hotel information counter, taxi guide, rental car office, etc.
 - i) car parking, bicycle parking
- 2) Transportation business in the station plaza:

buses, taxis

3) Off-rail business:

Restaurant (large-scaled or high-graded), shopping complex, department store, hotel, rental office, etc.

to the common heart is better

4) Others:

Advertising business, recreation business, amusement center, warehouse, etc.

Appendix 7-1-9 Calculation Methods for Scaling

1) Platform Width

- a) The smallest platform width
 - 3 m or determined by the following method:
 - * Side Platform:

W = 1.5 m + width of staircase or the house built on it

* Island Platform:

W = 1.5 m x 2 + width of staircase or the house built
on it

b) Method A

 $W = W_1 + W_2 + r$

W : width (m)

r : allowances (m)

 W_1 : width according to the number of entraining passengers (m)

* PC, DC

$$W_1 = 0.44 (n_1/a)^{1/2}$$

* EC

$$W_1 = 0.20 (n_1/a)^{1/2}$$

W2: width according to the number of detraining passengers (m)

* PC, DC

$$W_2 = 2n_2/3al : n_2/a < 2al$$

$$W_2 = 4a/3$$
 : $n_2/a > 2a1$

* EC

 $W_2 = 2n/3al : n_2/a < 6.4al$

 $W_2 = 13a/3$: $n_2/a > 6.4a1$

n₁ : number of passengers per train
 getting on during rush hours

 n_2 : number of passengers per train getting off during rush hours

a : number of carriages

1 : length of one carriage (m)

b) Method B

* Island Platform

A = 0.8N + 3(n + 20) + a

* Side Platform

A = 0.8N + 1.5 (n + 20) + a

A: area of platform (m^2)

N: number of passengers using the platform during rush hours

n : length of train (m)

a: area of staircases and houses on it (m^2)

2) Over-track Passageway and Staircase Width

Over-track passageway width is obtained usually by means of dividing number of passengers at rush hours by 3,000 persons and adding some allowances. The smallest value is 1.5 m.

Staircase width is equal or wider a little to the passageway width.

3) Area of Station Building

The area of a station building varies according to the number of passengers, the types of the station, the arrangement of tracks, the situation and location of the station, etc. To get a rough estimate, the following formulas are used:

a) General Station:

$$A = (10.5/((n) + 0.24) + 4.5) \times 10(n) + a$$

b) Commuter Station:

$$A = (3.6/(0.1(n) + 1) + 0.9) \times 10(n) + a$$

A: area of station (m^2)

n: number of passengers (1,000 person per day)

a: extra or reduction (m²)

4) Ticket window

There are three types of ticket windows;

- a) common ticket window
- b) ticket vending machine

New your visit means of the ter-

c) open counter

The width of a common window is about 1.5 m to 2.0 m. The ticket vending machine is about 90 cm wide per unit.

The number of windows are determined as follows:

- a) commuter tickets 2,500 to 3,000 per window
- b) long distance tickets 1,000 to 1,500 per window
- c) special tickets 250 per window

and some spare windows are added.

5) Wicket:

Number of wickets are calculated as follows: (some allowances are included)

$$N = (n_1/p_1 + n_2/p_2)/T + a$$

N : number of wickets

 n_1 : number of passengers getting on during rush period

 n_2 : number of passengers getting off during rush period

 p_1 : getting on speed of passengers 0.7/sec

p₂: getting off speed of passengers 1.0/sec

T : 1 hour = 3600 sec

a : spare

6) Toilets

Toilets are usually set up in accordance with the following tables: (for commuters station)

(a = 10%)9 10 11 12 13 14 15 16 *bowl : men *bowl : ladies (a = 5%)12 *urinal 10 11 *bowl : men 5 *bowl : ladies 5 6 24 *number of 12 16 20 passengers getting on/off

a = number of passengers during rush period(30min) a number of passengers per day

(10,000 per day)

7) Area of Station Plaza

The area of the station plaza varies according to the number of passengers, the types of the station, the layout and situation of the station, etc. The following formulas are given to make a rough estimate.

a) General Station (passengers less than 30,000):

maximum : $A = 11.22 \sqrt{x} + 0.271x$ standard : $A = 9.846 \sqrt{x} + 0.238x$

minimum : $A = 8.989\sqrt{X} + 0.217X$

b) General Station (passengers more than 30,000):

maximum : $A = 58.88 \sqrt{X}$ standard : $A = 51.657\sqrt{X}$ minimum : $A = 47.162\sqrt{X}$

c) Commuter Station (passengers less than 73,000):

maximum : A = 0.128 X standard : A = 0.119 X minimum : A = 0.0878X

d) Commuter Station (passengers more than 73,000):

maximum : $A = 26.846\sqrt{X} + 0.0277X$ standard : $A = 25.088\sqrt{X} + 0.0259X$ minimum : $A = 18.316\sqrt{X} + 0.0189X$

A: area of station plaza (m^2)

X : Number of passengers expected after 20 years (person/day)