2.2 Study of Alternative Plannings

The main point of the development planning of this project is to irrigate the area through out year, introducing double cropping pattern, by the construction of weir in Selagan river.

Compared with the development area, the quantity of water is quite abundant, but as the construction cost would be comparatively expensive in view of the topographical conditions and the existing features of the benefited area. Thus, the following alternative studies have been carried out.

Alternative - 1 : In the case of an intake without diversion dam in Selagan river.

Alternative - 2 : In the case of construction of weir in the most down-stream of Selagan river.

Alternative - 3 : In the case of construction of pump station in Selagan river.

Alternative - 4 : In the case of getting water resources from small dams in the branches of Selagan river.

Each location of the plannings is shown in the following location map.

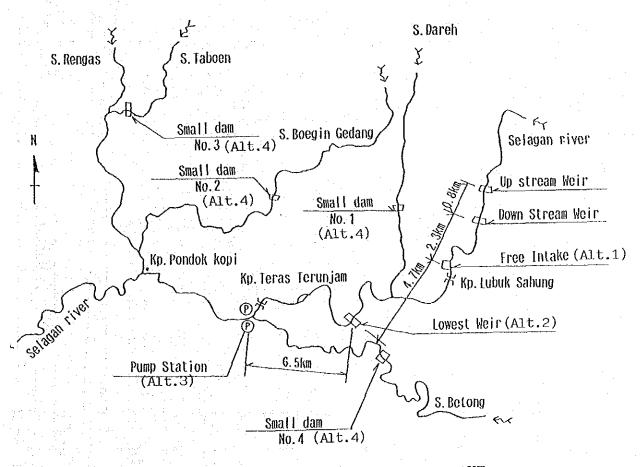
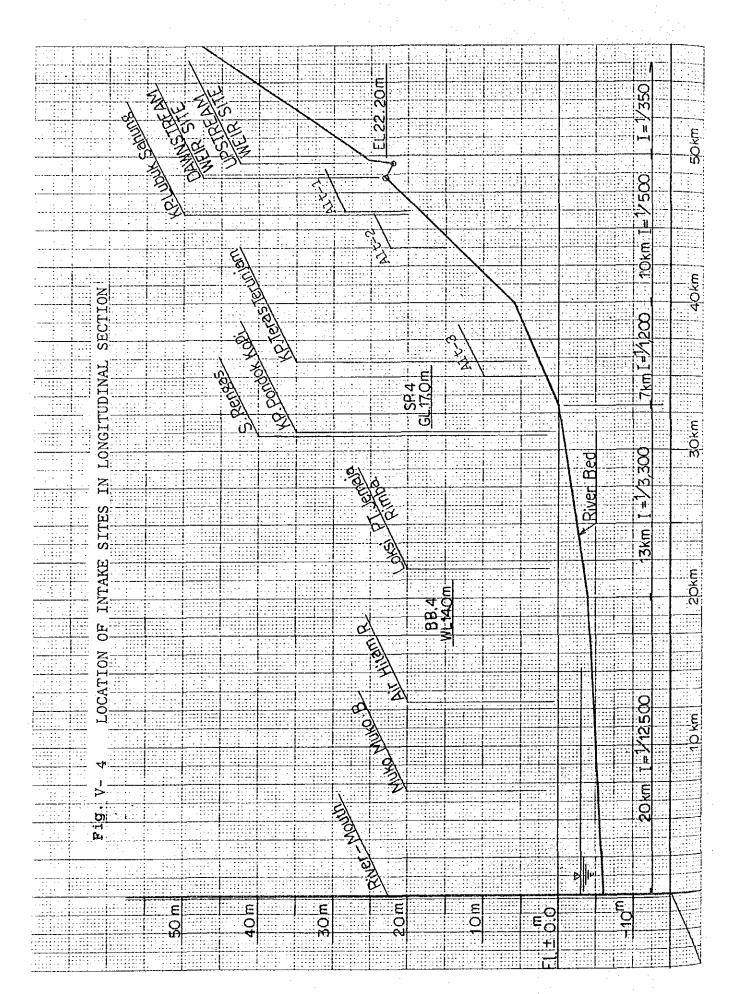



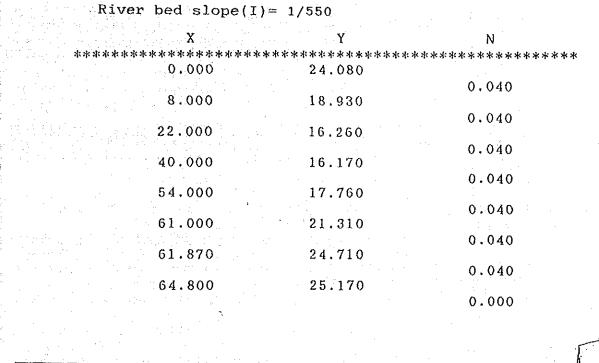

Fig. V- 3 LOCATION OF ALTERNATIVE INTAKE

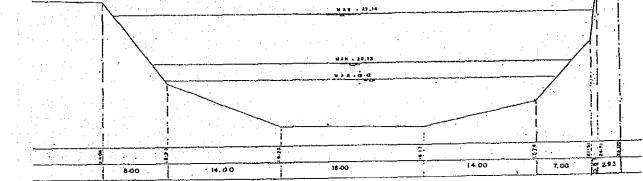


2.2.1 The planning of Free intake without diversion dam in Selagan River (Alt,-1)

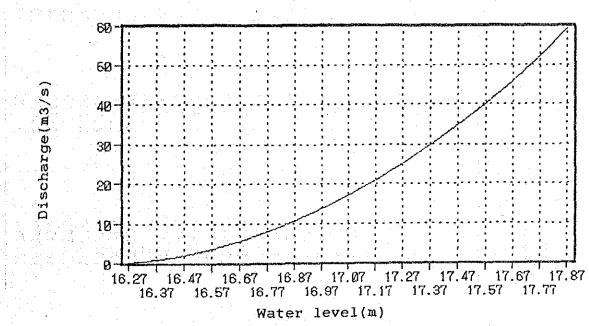
In the case of the intake without diversion dam, it is practically not possible to take the whole discharge of the river. As the intake capacity of the River is quite small during dry season, the irrigable scale would be much smaller compared with the case of constructing the weir.

With the above consideration, this planning is carried with the condition of constructing a small fixed concrete weir (about 1.0m in height) which is popular in the projects near-by. The location of the intake is selected with the conditions that the flow-line is smooth, the water route is stable, geological condition is good, river-bed is steady, it is easier to connect with the canal, the design discharge is stable for the intake and so on.


There is no such location to fulfill all the conditions. However, the proposed location is selected just the up-stream of Kp. Lubuk Sahung in view of stability of intake. The specific condition of the location is as follows.


- a. It is the ending point of the meandering and the water is taken in the right bank where the water route goes straight.
- b. There is the shallow bed-rock just in the downstream of the location.
- c. The river width is wide (100 m in the width) and the shoal is developed in the center of the River.
- d. The elevation of river-bed is EL.16.20m and the elevation of the benefited area is limited in low area.
- e. There are houses just in the down-stream of Lubuk Sahung village, the sand blow-off canal is required to pass through the village.
- f. The maintenance is not easy, because the back sand is easier to go into the intake from the water route.
- g. It is necessary to have a fixed weir of about 1.0m in height through the study of Q-H curve of the crosssection of the existing river.
- h. Possible quantity of water intake is about 20% of the river discharge. It is decided by the ratio between the width of intake and the same of the river as natural intake, even if the intake is effective, and irrigable area becomes smaller, and the cultivation ratio also lower in dry season.

As mentioned above, as it is difficult to ensure the design intake water, and to control the inflow of sand in this case, it is decided to be omitted from this planning. But, the approximate dimension in this case is shown as follows:


Table V-13 Approximate Dimension of Free Intake Plan

| $\operatorname{Item}$ and $\operatorname{Item}$ and $\operatorname{Item}$ and $\operatorname{Item}$ and $\operatorname{Item}$ | Dimension                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                               |                                                                                                                        |
| Location                                                                                                                      | Kp. Lubuk Sahung                                                                                                       |
| Distance from the river mouth                                                                                                 | 46.4 Km                                                                                                                |
| Width of existing river                                                                                                       | 100.0 m                                                                                                                |
| Elevation of existing river-bed                                                                                               | EL.26.20 m                                                                                                             |
| Slope of existing river-bed                                                                                                   | 1/540                                                                                                                  |
| Catchment area                                                                                                                | 396 Km <sup>2</sup>                                                                                                    |
| Design-flood discharge                                                                                                        | 에 가지 않고 한다. 이번 가지 않는 것이 있는 것이 있는 것이 있는 것이 있다.<br>같은 것은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없다. |
| (one hundred year flood discharge                                                                                             |                                                                                                                        |
| probability)                                                                                                                  | 1,056 m <sup>3</sup> /sec                                                                                              |
| Raising height of water surface                                                                                               | 1,00 m                                                                                                                 |
| Elevation of design intake bed                                                                                                | EL.17.20 m                                                                                                             |
| Designed intake water level                                                                                                   | WS 17.40 m                                                                                                             |
| River discharge                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                  |
| Rainy season (Jan May)                                                                                                        | 22.8 m <sup>3</sup> /sec                                                                                               |
| Dry season (Jul Nov.)                                                                                                         | 9.7 m <sup>3</sup> /sec                                                                                                |
| Probable quantity of water intake                                                                                             | 20%                                                                                                                    |
| Designed water intake                                                                                                         |                                                                                                                        |
| Rainy season                                                                                                                  | 4.6 $m^3/sec$                                                                                                          |
| Dry season                                                                                                                    | 1.9 m <sup>3</sup> /sec                                                                                                |
| Unit duty of water                                                                                                            |                                                                                                                        |
| Rainy season                                                                                                                  | 1.36 1/sec/ha                                                                                                          |
| Dry season                                                                                                                    | 1.53 l/sec/ha                                                                                                          |
| Probable irrigation area                                                                                                      |                                                                                                                        |
| Rainy season                                                                                                                  | 3,300 ha                                                                                                               |
| Dry season                                                                                                                    | 1,200 ha                                                                                                               |
| Cultivation ratio                                                                                                             | 136%                                                                                                                   |
|                                                                                                                               |                                                                                                                        |









| · · · · | SAHUNG             |
|---------|--------------------|
| · · · · | LUBUK              |
|         | AT KP.             |
|         | CALCULATION AT KP. |
|         | DI SCHARGE         |
|         | Table V-14         |

| Water level | Water depth | Area              | Wetted<br>Perimeter | Hydraulic<br>Radius | Roughness<br>Coefficient | Velocity | Discharge           |
|-------------|-------------|-------------------|---------------------|---------------------|--------------------------|----------|---------------------|
| (m)         | (ш)         | (m <sup>2</sup> ) | (m)                 | (m)                 |                          | (m/s)    | (m <sup>3</sup> /s) |
| 27          |             | .03               | 18.940              | 0                   | 0.040                    | 0.153    | 0.159               |
| 3           |             | 99.               |                     | -                   | 0.040                    | 29       | 0.891               |
| 16.470      | 0.300       | 5.102             | 21.780              | 0.234               |                          | 0.405    | 2.067               |
| 5           |             | 34                |                     | က                   |                          | 49       | 3.638               |
| 5           |             | 5                 |                     | ŝ                   |                          | 5.       | 5.587               |
| 5           |             | <u>5</u><br>С     |                     | 4                   |                          | 64       | 7.906               |
| 87          |             | 92                |                     | വ                   |                          | 2        | 10.594              |
| 2.0.0       |             | . 72              |                     | ŝ                   |                          | 12.      | 13,652              |
| 7.07        |             | .67               |                     | 9                   |                          | 8.       | 17.084              |
| 7.17        |             | . 76              |                     | 5                   |                          | 8        | 20.896              |
| 7.27        |             | 00.0              |                     | 8                   |                          | ្តី      | 25.095              |
| 3           |             | θ<br>B            |                     | 8                   | 0.040                    | 6.       | 29.686              |
| 7.47        |             | 86.8              |                     | Ω.                  |                          | 6.4      | 34.679              |
| 5.0         |             | 5                 |                     | 0                   |                          | 0        | 40.080              |
| 7.67        |             | 300               |                     | ୍                   |                          | 1.11     | 45.898              |
| 7.77        |             | 5.25              |                     | 1.126               |                          |          | 52.198              |
| 7.81        | 1.700       | 9.26              |                     | 1.204               |                          | $\sim$   | 59.433              |
| 7.9.1       |             | in<br>m           | 41.682              | 1.280               |                          |          | 67.084              |
| 8.01        | 1.900       | 7.54              |                     | 1.356               |                          | ~        | 75.150              |
| 5           |             | 79                |                     | 1.431               |                          | 1.353    | 83.630              |
| 8.2         |             | 5.40              |                     | 1 504               |                          | 1.400    | 92.521              |
| 8.3         |             | 0.45              | 4                   | I.577               |                          | 1.444    | 5                   |
| 8.4         |             | 4.96              |                     | 1 649               |                          | 1.488    |                     |
| ີ ທີ່<br>ເອ |             | 9.40              |                     | 1.720               |                          | 1.530    | 121.669             |
| 8<br>0      |             | 4.1(              | 46.957              | 1.791               |                          |          | 8                   |
| 8.7         |             | 60                |                     | 1.860               |                          | 1.613    | 143.166             |
| 8           |             | а<br>5<br>3<br>3  | .00                 |                     |                          |          | 4                   |

2.2.2 The planning of construction of weir in the most downstream of Selagan River (Alt.-2)

医无脊髓脊髓小管 化热力 法指定 的复数形式 化分子子

In this case, the location of weir is selected in the nearest point from the benefited area (6.5 Km up-stream from Kp. Teras Terunjam).

The specific character of the location can be estimated as follows:

a. The river-bed can be 8.5m lower in elevation.

- b. The elevation of water intake can be WS 16.40m as the maximum back water of weir can be 8.0m by the double closing system.
- c. As the elevation of water intake is low, the benefited area can be as small as Alternative-1 compared with the other alternatives.
- d. Cultivation ratio can be 200%.

f.

e. The structural scale is bigger with 8.0 m of raising water height and 100m in the width. Thus, though construction cost of the weir is expensive, total construction cost is rather cheaper as the irrigated area is smaller. But the unit cost per benefited area is higher and the investment ratio is low.

The main benefited area is not possible to be irrigated. (Over the elevation of 19.0m in SP-IV).

As the unit cost ratio is higher than the other alternatives, this planning is canceled. (Unit construction : 1.07)

The approximate dimension in this case is shown as follows:

Table V-15 Approximate Dimension of the most down-stream Weir Plan

| Item                            | Dimension                                               |
|---------------------------------|---------------------------------------------------------|
|                                 |                                                         |
| Location                        | 6.5 Km up-stream from Kp.                               |
|                                 | Teras Terunjam                                          |
| Width of existing river-bed     | 100.0 m                                                 |
| Elevation of existing river-bed | GH 8.50 m                                               |
| Slope of existing river         | 1/500                                                   |
| Catchment area                  | 418 Km <sup>2</sup>                                     |
| Design-flood discharge          | 1,115 m <sup>3</sup> /sec                               |
| Raising height of water surface | 8.00 m                                                  |
| Designed intake water level     | WS 16.40 m                                              |
| Elevation of the benefited area |                                                         |
| (SP-IV)                         | GH 11.20 m                                              |
| Actual irrigable area           | About 3,300 ha                                          |
| Main canal                      | 24.5 Km                                                 |
| Secondary canal                 | 31.2 Km                                                 |
| Cultivation ratio               | 200%                                                    |
|                                 | 이 너희 그 가슴 옷 감독한 것이 가지 않는 것 같아요. 이 가지 않는 것이 가지 않는 것이 같아. |

|                                                                           | A1 t-2 | take Weir in the Most<br>Down-stream | Cost Quantity Cost | Mill.Rp Mill.Rp 1,518 22,200 5,617 | 7,380 7,600 4,560<br>7,178 14,500 7,178                                                          | 14,558 11.738 | 10,358 31,200 10,358 | 2,475 3,300 2,475 | 28,909 30,188 | 0.80 0.83<br>4,748 4,958<br>1.02 1.07                                         |         |
|---------------------------------------------------------------------------|--------|--------------------------------------|--------------------|------------------------------------|--------------------------------------------------------------------------------------------------|---------------|----------------------|-------------------|---------------|-------------------------------------------------------------------------------|---------|
| CONSTRUCTION<br>INTAKE                                                    | Alt-I  | eam Gravity Intake                   | Quantity           | 6,000                              | -<br>12,300<br>14,500                                                                            |               | 31,200               | 3,300             |               |                                                                               |         |
| COMPARISON OF APPROXIMATE CONSTRUCTION<br>COST IN EACH LOCATION OF INTAKE | Plan-3 | Weir in Down-stream                  | Quantity Cost      | Mill.Rp<br>15,700 3,972            | 14,600 8,760<br>14,500 7,178                                                                     | 15,938        | 39,700 13,180        | 4,200 3,150       | 36,240        | 1.00<br>4,677<br>1.00                                                         |         |
| Table V-16 COMPARISO<br>COST IN E                                         | Plan-3 | Weir in Up-stream                    | Quantity Cost      | Mill.Rp<br>15,400 4,149            | 800 720<br>14,600 8,760<br>14,500 7,178                                                          | 16,658        | 39,700 13,180        | 4,200 3,150       | 37,137        | 1.02<br>4,792<br>1.02                                                         | Adopted |
|                                                                           |        | Unit Cost                            | TOX3KD.            | <sup>ற</sup> 3<br>253              | н<br>н<br>н<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |               | ш 332                | ha 1,000          |               | USs/ha                                                                        |         |
|                                                                           |        | Kind of Construction<br>Works        |                    | 1.1                                | <ol> <li>Main Canal</li> <li>Up-stream</li> <li>Middle-stream</li> <li>Down-stream</li> </ol>    | Sub-total     | 3. Secondary Canal   | 4. Tertiary Canal | Total         | Cost Ratio of<br>Whole Works<br>Cost Per Hectare<br>Cost Ratio per<br>Hectare |         |

2.2.3 The planning of construction of pump station (Alt.3)

It is examined to apply to construction of pump station in the down-stream without depending on the gravity irrigation.

1) Selection of the location for the pump station

The location is selected with the consideration of the following matters.

- The location where the main canal is the shortest in economic view.

- The location where the pump station can be set in higher place to avoid the influence of the flood.

- The location to avoid the tidal influence.

- The location where is nearer from the existing road.

The location where it is smoother for the connection with the main canal by pipe line.

Due consideration of the above matters, it is planned to set two (2) pump stations on the both banks in 800m down-stream from Kp. Teras Terunjam.

Dimension of Pump

c.

2)

i) Pump Station at Right Bank

| a. | Gross Pump Head Ha = 16.6m  |             |
|----|-----------------------------|-------------|
|    | Control Elevation (B.B.4)   | : EL.14.00m |
|    | Length of Main Canal        | : 12.5Km    |
|    | Average Slope of Main Canal | : 1/2,500   |

| b. | Total Pump Head H = 18.5m |                     |
|----|---------------------------|---------------------|
|    | Length of Pipe-line       | : L = 1,000m        |
|    | Maximum Pumping Water     | : Q = $2.57m^3/sec$ |
|    |                           | (A = 1, 680ha)      |
|    | Diameter of Delivery Pipe | : ø 1.500mm         |

Selection of Pump Unit Requirement of Pump Water

: Q = 2.57/3 = 51m/min/pump : Ø 700 x 3nos.

Mixed Flow Pump (High Head and Vertical Shaft Type) : Ø 700 x 3nos. Generating Power for Motor : 260Kw x 3nos.

ii) Pump Station at Left Bank

|              |                                                                                                                 |   | <u>.</u> |
|--------------|-----------------------------------------------------------------------------------------------------------------|---|----------|
| a.           | Gross Pump Head Ha = 18.6m                                                                                      |   |          |
| la de la com | Control Elevation (SP-IV)                                                                                       | : | EL.19.0m |
|              | Length of Main Canal                                                                                            |   | 6.2Km    |
| -            | Average Slope of Main Canal                                                                                     | : | 1/2,500  |
|              | and the state of the |   |          |

Total Pump Head H = 20.4m b. Length of Pipe-line Maximum Pumping Water

Diameter of Delivery Pipe

с. Selection of Pump 

Unit Requirement of

Pump Water

Mixed Flow Pump (High Head and Vertical Shaft Type) Generating Power for Motor :  $Q = 69m^3/min/pump$ 

: ø 800 x 3nos. : 370Kw x 3nos.

L = 800m

: ø 1,650mm

 $: Q = 3.46m^{3}/sec$ 

(A = 2, 260ha)

### 3) Silt Basin and Suction Tank

It is necessary to build a silt basin in front of a suction tank, as the Plan is to take the intake water from natural river, and for the suction tank to have the type that the motors are not inundated by flood water.

4) Construction Method

n na sala d 

The Pump Station is planned to construct by Copure Method at the right bank of existing meander utilizing the meander part of the River.

5) Outline of the pump stations

| arta<br>Maria |                                                                                             | Left bank                                           | Right bank                                          |
|---------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| •             | a) Designed duty of water                                                                   | 3.46m <sup>3</sup> /sec<br>(208m <sup>3</sup> /min) | 2.57m <sup>3</sup> /sec<br>(154m <sup>3</sup> /min) |
|               | b) Kind of the pump                                                                         | High head mixed<br>flow pump with<br>vertical shaft | The same                                            |
|               | c) Total pump head<br>d) Diameter & number of                                               | 20.4m<br>ø800mm x 3nos.                             | 18.5m<br>ø700mm x 3nos.                             |
|               | pumps<br>(e) Horse power of engine<br>f) Form of station house<br>g) Method of construction | 503 Ps x 3Nos.<br>Double stories<br>Copure method   | 354 Ps x 3Nos.<br>The same<br>The same              |

#### 6) Approximate Construction Cost

### Table V-17 APPROXIMATE CONSTRUCTION COST OF PUMP PLAN

Unit : Rp.1,000

| a) Pump Station                                                                                                                        |                                                                               |                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|
| a) Pump Station                                                                                                                        | Left Bank Right Bank                                                          | Total                                                     |
| <ul> <li>i) Civil Works</li> <li>ii) Earth Works by</li> <li>iii) Pump House</li> <li>iv) Equipment Cost</li> <li>Sub-total</li> </ul> | Copure Method135,600158,4002,890,0002,890,000261,900306,0003,266,0002,613,000 | 294,000<br>2,890,000<br>567,000<br>5,630,900<br>9,630,900 |
| b) Main Canal                                                                                                                          |                                                                               |                                                           |
| i) Pipe-line<br>ii) Middle-Stream<br>iii) Down-Stream<br>Sub-total                                                                     | 1,800m x 15,000 Rp/m<br>5,000m x 414,000 Rp/m<br>17,000m x 332,000 Rp/m       | 27,000<br>2,070,000<br>5,644,000<br>7,741,000             |
| c) Secondary Canal                                                                                                                     | 37,200m x 332,000 Rp/m                                                        | 12,350,400                                                |
| d) Tertiary Canal                                                                                                                      | 3,940ha x 750,000 Rp/ha                                                       | 2,955,000                                                 |
| .*                                                                                                                                     |                                                                               | · · ·                                                     |

Total

32,677,300

#### Fuel Cost for Pump Operation 7)

Pump operation cost is estimated by the following formula.

 $Q = P_E \cdot B_E \cdot 1/45 (1/hr)$ 

where,

P<sub>E</sub> : Pump Horse Power B<sub>E</sub> : Consumption Ration of Fuel (0.22) rt : Specific Gravity of Fuel (0.85 kg/l)

The fuel consumption per hour for the maximum irrigation requirement is as follows.

| Right Bank   | Qk<br>OI | 354<br>503 | x<br>x | $0.22 \\ 0.22$ | x 1/0.85<br>x 1/0.85 | x<br>x | 3nos. = 275<br>3nos. = 391 | l/hr<br>l/hr |
|--------------|----------|------------|--------|----------------|----------------------|--------|----------------------------|--------------|
| DOT 0. DUILL |          |            |        | otal           |                      |        | = 666                      | 1/hr         |

In the other hand, the annual water requirement is estimated 21,663  $m^3$ /ha/year based on the proposed cropping pattern.

As the cultivation area is 3,940 ha in this pump plan, the annual total water requirement (Q) is as follows.

 $Q = 21,663 \times 3,940 \text{ ha} = 85,352,200 \text{ m}^3$ 

It becomes 45% of 190,105,300  $m^3$  which is the annual total water quantity calculated by the maximum irrigation requirement all through a year.

Thus, the quantity of annual fuel consumption is estimated as follows.

 $666 \text{ l/hr} \times 24 \text{ ha} \times 365 \text{ days} \times 0.45 = 2,625,000 \text{ l/year}$ And the annual cost is,

2,625,000 1/year x Rp.240/1 = Rp.630,000,000.

8) Economic Comparison with Weir Plan

For the economic comparison with Weir Plan, the cost of Pump Plan is converted to the annual cost because the Pump Plan requires the fuel cost for operation and has difference upon the durable period.

Durable periods for the equipment and the structure are assumed as follows.

| Motor for Pump | 20 years | Irrigable area | (Weir Plan) |
|----------------|----------|----------------|-------------|
|                | -        |                | 4,200 ha    |
| Gate           | 30 years | Irrigable area |             |
|                |          |                | 3,940 ha    |
|                |          |                |             |

Civil Structure Works 50 years

Table V-18 COMPARISON OF WEIR & PUMP COST

Unit : Rp.1,000

|                                                                                                                 |                         |                   | Unii                                         | : Rp.1,000                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|----------------------------------------------|-------------------------------------------------|--|--|
| 0                                                                                                               | Weir                    | Weir Plan         |                                              | Pump Plan                                       |  |  |
| Construction<br>Works                                                                                           | Const.Cost              | Annual Cost       | Const.Cost                                   | Annual Cost                                     |  |  |
| I. Weir<br>I-1 Weir & Intake<br>I-2 Gate                                                                        | 3,472,842<br>499,950    | 69,457<br>16,665  |                                              |                                                 |  |  |
| II. Pump Station<br>II-1 Civil Works<br>II-2 Canal Works<br>II-3 Pump House<br>II-4 Equipment<br>II-5 Fuel Cost |                         |                   | 294,000<br>2,890,000<br>567,900<br>5,879,000 | 5,880<br>57,800<br>11,358<br>293,950<br>644,160 |  |  |
| III. Main Canal<br>III-1 Canal<br>III-2 Attached Gates                                                          | 15,828,000<br>110,000   | 316,560<br>3,667  | 7,637,810<br>103,190                         | 152,756<br>3,440                                |  |  |
| IV. Secondary Canal<br>IV-1 Canal<br>IV-2 Attached Gates                                                        | 13,080,000<br>100,000   | 261,600<br>3,333  | 12,256,590<br>93,810                         | 245,132<br>3,127                                |  |  |
| V. Tertiary System<br>Total                                                                                     | 3,150,000<br>36,240,792 | 63,000<br>734,282 | 2,955,000                                    | 59,100                                          |  |  |
| Cost per Hectare                                                                                                | 8,629                   | 103,202           | 8,294                                        | 1,110,100                                       |  |  |
| Annual Cost Ratio                                                                                               |                         | 1.00              |                                              | 2.01                                            |  |  |
|                                                                                                                 |                         |                   |                                              |                                                 |  |  |

As the result of the above study. Annual Cost of Pump Plan is about double from the same of Weir Plan and Pump Plan is not applied. 2.2.4 Planning of a group of small dams (Alt.-4)

It is examined for the planning to ensure the water recourses from a group of small dams near the benefited area for economizing the construction cost of the water resource facilities and the canals. In this case, there is no intake water from the main river of Selagan river.

It is possible to select the locations in Rengas River for the right-side benefited area, and in Betong river for the leftside benefited area.

1) Plan of a group of small dams

Yest yest

Elevational control points for the location are WL 14.0m in water level at BB.4, SP-VI in the transmigrated area for the right-bank benefited area, and GH 19.0m in the ground height at SP-IV for the left bank benefited area.

Each independent river system is required for the construction of small dams since the benefited areas are distributed in the both banks of the Selagan River.

Actual paddy cultivation areas are 1,800 ha in the right bank and 2,400 ha in the left bank of the Selagan River. Hence, it is necessary to construct three (3) small dams in the right bank and one (1) small dam in the left bank as those water resources.

The dimension of each dam is as follows:

| No. | Location       | 1  | ne of River  | Catchment<br>area       | El. of crest<br>of dam | Length<br>of crest | lleight<br>of dam | Embank-<br>ment<br>volume |
|-----|----------------|----|--------------|-------------------------|------------------------|--------------------|-------------------|---------------------------|
| 1   | Right-<br>slde |    |              | 4 km <sup>2</sup><br>11 | EL m<br>28.0           | m<br>100           | M<br>6            | m <sup>3</sup><br>20,000  |
| 2   | Right-<br>side | s. | Boegingedang | 19                      | 25.0                   | 100                | 6                 | 20,000                    |
| 3   | Right-<br>side | s. | Taboen       | 35                      | 23.0                   | 200                | 8                 | 50,000                    |
| 4   | Left-<br>side  | S. | Betoeng      | 66                      | 25.0                   | 300                | 15                | 120,000                   |

Table V-19 APPROXIMATE DIMENSION OF SMALL DAMS

i)

#### Right Bank Side

- Benefited Area : 1,800 ha
- Annual Cultivation Ratio : 200%
   Annual Storage Capacity for unit Catchment Area: 500,000 m<sup>3</sup>/km<sup>2</sup>
- Unit Water Requirement : 1.36 l/s/ha ] 21,663 m<sup>3</sup>/ha : 1.53 l/s/ha ] Annual Water Rainy Season Dry Season Requirement - Irrigation Period
- : 105 days Rainy Season : 105 days Dry Season

Total annual storage capacity of three (3) days by the above condition is,

 $V = 500,000 \text{ m}^3/\text{km}^2 \text{ x} (11 + 19 + 35 \text{ Km}^2)$ = 32,500,000 m<sup>3</sup>

Annual Water Requirement:

 $Q = 21,663 \times 1,800$ ha = 38,993,400 m<sup>3</sup>

Accordingly, about 17% of water scarcity is assumed by the resources of right-bank side

#### ii) Left Bank Side

- Benefited area : 2,400 ha

- The other conditions are the same with the Right Bank Side was to repaired by and the order of

o Annual Storage Capacity

We storage capacity V = 500,000  $\text{m}^3/\text{Km}^2$  x 66  $\text{Km}^2$  = 33,000,000  $\text{m}^3$ 

o Annual Water Requirement

 $Q = 21,663 \text{ m}^3/\text{ha} \times 2,400 \text{ ha} = 51,991,200 \text{ m}^3$ 

Hence, about 37% of water scarcity is assumed by the resources of right-bank side.

Approximate Construction Cost

3)

| Construction Works      | Unit            | Appr.<br>Quantity | Unit Cost | Cost                                                                                                                                                                                                                               | Remarks     |
|-------------------------|-----------------|-------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1. Dan                  |                 |                   | Rp.       | Rp.1,000                                                                                                                                                                                                                           |             |
| 1-1 Dam Body            | ա3<br>m3        | 210,000           | 12,000    | 2,520,000                                                                                                                                                                                                                          | for 4 dams. |
| 1-2 Intake<br>Sub-total | ШС              | 4,500             | 310,000   | 1,395,000<br>3,915,000                                                                                                                                                                                                             |             |
| 2. Main Canal           |                 |                   | an Nasar  | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |             |
| 2-1 Down-Stream         | П               | 10,500            | 332,000   | 3,486,000                                                                                                                                                                                                                          |             |
| 2-2 Middle-Stream       | Ш               | 21,000            | 444,000   | 8,694,000                                                                                                                                                                                                                          |             |
| 2-3 Leading Canal       | m               | 8,000             | 495,000   | 3,960,000                                                                                                                                                                                                                          |             |
| Sub-total               | a<br>Bolga tori |                   |           | 16,140,000                                                                                                                                                                                                                         |             |
| 3. Secondary Canal      | m               | 39,700            | 332,000   | 13,180,400                                                                                                                                                                                                                         |             |
| 4. Tertiary System      | ha              | 4,200             | 750,000   | 3,150,000                                                                                                                                                                                                                          |             |
| Total                   | 4 g .           |                   |           | 36,385,400                                                                                                                                                                                                                         | · ·         |

Table V-20 APPROXIMATE CONSTRUCTION COST

#### 4) Conclusion

Specific character of this plan is as follows:

- It is unavoidable to reduce the benefited area due to the scarcity of the quantity of river discharge in the both banks and cultivation ratio is estimated as 143%.

There occurs 37 percent of the scarcity of water in the left bank, and it has to be constructed a dam or reservoir inside of Concession area.

Diversion works for the dams and canals will be in many numbers and it is complicated for the operation and maintenance.

It is not clear to say that the construction cost of this plan is cheaper than the plan of construction of weir. 2.3 Study on Canal Factors for Muko-Muko Left Bank Area

Based on the data listed below, the study on canal factors for Muko-Muko left bank area irrigation development including the effective use of the existing secondary canal (S.S. Baru) in Air Selagan project area will be analyzed :

- a) Laporan/Studi Analisa Kebutuhan Dan Keseimbangan Air/Wilayah Sungai Air Manjuto Kanan/Propinsi Bengkulu, 1985/86
- b) Gambar/Skema Sub Proyek Irigasi Muko-Muko
- c) Booklet/Proyek Irigasi Muko-Muko/Propinsi Bengkulu
- d) Second Provincial Irrigation Development Project/ANNEX 1/Action Plan for Muko-Muko Scheme/Executive Summary
- e) Gambar/Kerja Sub Proyek Irigasi Muko-Muko/Paket /XIII, XIV. XVI. XVII, XIX

#### (1) Target Area to be developed

| Muko-Muko left bank area :  | For paddy       | :   | 6,768 ha        |
|-----------------------------|-----------------|-----|-----------------|
| Muko-Muko right bank area : | 11 <sup>-</sup> | . : | <b>4,919</b> ha |
| Silauto area :              | H .             | : , | 5,000 ha        |

Total

16,687 ha

As mentioned below in detail, the above each area is decided based on the river discharge of Air Manjuto. At present, the development for left bank area, that is, the extension works for the development of about 1,000 ha based on the revision of planning for the existing secondary canal (S.S. Baru) on the left bank area, is on going under the Provincial Government for the political settlement to the urgent transmigrants into the Kedung Ombo area.

On the other hand, however, it is clear that the project will have a shortage of irrigation water requirement after developing the above total area (16,687 ha).

In order to recover such the shortage of irrigation water requirement on the coming developed stage, therefore, it is planned by the Provincial Public Works that the necessary irrigation water for the area commanded by the diversion B.B.3 of S.S. Baru (Existing secondary canal) should be supplied from the Air Selagan area.

#### (2) River Discharge of Air Manjuto and Intake Discharge Plan

The river discharge of Air Manjuto and intake discharge at the Air Manjuto headworks have already been studied in the report shown in the above data a).

The cropping plan stipulated in the above data a). is as follows:

Table V-21 IRRIGATION PLAN OF MUKO-MUKO PROJECT

| Сгор                                                            | Left Bank<br>Area          | Right Bank<br>Area         | Total                         |
|-----------------------------------------------------------------|----------------------------|----------------------------|-------------------------------|
| Paddy (Dry Season)<br>Upland (Dry Season)<br>Paddy (Wet Season) | 5,247 ha<br>6,768<br>6,768 | 7,690 ha<br>9.919<br>9,919 | 12,937 ha<br>16,687<br>16,687 |

Table V-22MONTHLY RIVER AND INTAKE DISCHARGE FOR<br/>MUKO-MUKO PROJECT

|       |                            | ••••                         | (I. C.L. D                              | (D1-1-4 D                                 | met a 3                      |                              |
|-------|----------------------------|------------------------------|-----------------------------------------|-------------------------------------------|------------------------------|------------------------------|
| Month | River<br>Discharge         | Unit Water<br>Requirement    | (Left Bank)<br>Discharge<br>(Left Bank) | (Right Bank)<br>Discharge<br>(Right Bank) | Total<br>Intake<br>Discharge | Remarks                      |
| 1     | m <sup>3</sup> /s<br>18.20 | m <sup>3</sup> /s/ha<br>0.78 | m <sup>3</sup> /s<br>4.09               | m <sup>3</sup> /s<br>6.00                 | m <sup>3</sup> /s<br>10.09   | Cropping<br>in Dry           |
| 2     | 20.70                      | 1.60                         | 8,40                                    | 12.30                                     | 20.70                        | season                       |
| 3     | 13.40                      | 1.00                         | 5.25                                    | 7.69                                      | 12.94                        | **                           |
| 4     | 22.90                      | 0.56                         | 2.94                                    | 4.31                                      | 7.25                         | **                           |
| 5     | 12.00                      |                              | - '                                     | **                                        | -                            | 18                           |
| 6     | 16.80                      | 0.23                         | 1.56                                    | 2.28                                      | 3.84                         | Cropping                     |
| 7     | 12.90                      | 0.37                         | 2.50                                    | 3.67                                      | 6.17                         | in Upland                    |
| 8     | 17.50                      | -                            | ****                                    |                                           | -                            | 11                           |
| 9     | 13.60                      | 0.74                         | 5.01                                    | 7.34                                      | 12.35                        | Cropping<br>in Wet<br>season |
| 10    | 17.70                      | 1.00                         | 6.77                                    | 9.92                                      | 16.69                        | #                            |
| 11    | 22.20                      | 0.14                         | 0.95                                    | 1.39                                      | 2,34                         | **                           |
| 12    | 20.80                      | 0.02                         | 0.14                                    | 0.20                                      | 0.34                         | **                           |

(3) Tertiary Network for S.S. Baru

The tertiary network for the existing secondary canal (S.S. Baru) planned by the Provincial Public Works is shown in the following sketch:

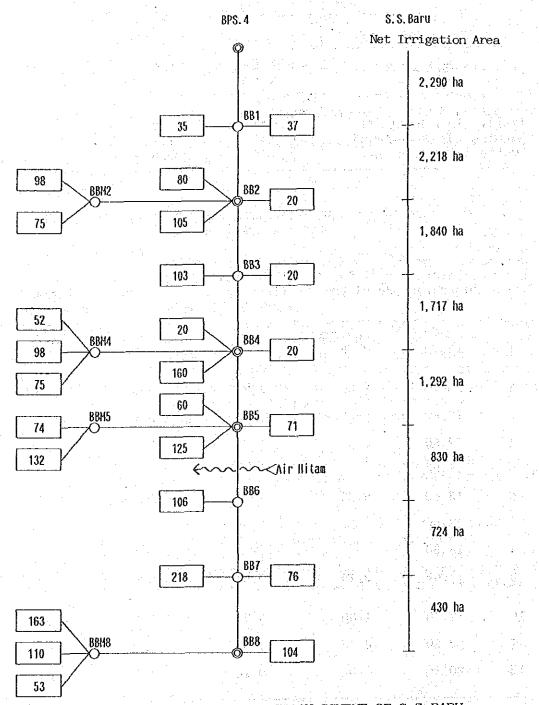



Fig. V-6 PRESENT TERTIARY SCHENE OF S.S.BARU

# (4) Present Condition of Canal Plan & Profile (S.S. Baru)

The following table shows the present condition of canal plan & profile for S.S. Baru indicated in the as build drawings for the canal construction:

| Canal Name             | No. of<br>Diversion | Sectional<br>Length | Design<br>Discharge | Canal Bed<br>Elevation | Normal<br>Water<br>Surface | Slope   |
|------------------------|---------------------|---------------------|---------------------|------------------------|----------------------------|---------|
|                        |                     | n                   | m <sup>3</sup> /s   | m                      | n                          |         |
| S.S. Baru              | BB.1                | 0                   |                     | 14.41                  | 15.41                      | · · ·   |
| 0.0, Dara              | BB.2                | 1,606               | 1.83                | 13.96                  | 14.96                      | 1/3,650 |
|                        | BB.3                | 1,780               | 1.33                | 23.34                  | 14.24                      | 1/3,100 |
|                        | BB.4                | 1,260               | 1.08                | 12.92                  | 13.67                      | 1/3,500 |
|                        | BB.5                | 1,767               | 0.85                | 12.29                  | 13.04                      | 1/2,900 |
| · · · ·                | BB.6                | 758                 | 1.33                | 11.82                  | 12.72                      | 1/2,900 |
|                        | ¥43                 | 146                 | 1.33                | 11.77                  | 12.67                      | 1/3,100 |
|                        | BB.7                | 1,661               | 1.16                | 11.21                  | 12.06                      | 1/3,000 |
|                        | BB.8                | 1,467               | 0,73                | 6.75                   | 7.45                       | 1/2,750 |
| х <sup>4</sup>         |                     |                     |                     |                        |                            | · .     |
|                        | Total:              | 10,445              |                     |                        |                            |         |
| S. Muka                | BB.2                |                     |                     | 13.98                  | 14.88                      |         |
| •<br>•<br>•            | BB.2M               | 978                 | 1.33                | 10.58                  | 11.40                      | 1/7,100 |
|                        | BB.4                | 94 - L              |                     | 23.77                  | 13.40                      |         |
|                        | BB.4M               | 1,187               | 0.39                | 12.35                  | 12.98                      | 1/2,850 |
|                        | BB.5                |                     |                     | 12.41                  | 13.04                      |         |
|                        | BB.5M               | 777                 | 0.38                | 8.17                   | 8.80                       | 1/3,300 |
|                        | BB.8                |                     |                     | 6.74                   | 7.44                       |         |
| an an Rùbh<br>Annsaich | BB.8M               | 726                 | 0.57                | 6.46                   | 7.11                       | 1/3,000 |

Table V-23 PRESENT CANAL SCALE OF S.S. BARU

#### (5) Present Capacity for Canal Water Discharge

The irrigation area commanded by each diversion under the present planning conditions, taking into account the unit water requirement for the development of Muko-Muko left bank area to be 1.0 (1/s/ha) in wet season and 1.6 (1/s/ha) in dry season and also the capacity for canal water supply from the diversion B.B.3 through the diversion B.B.5, is indicated in the following table:

| Name of<br>Canal                         | Diversion    | Canal Water<br>Discharge | Cropping in<br>Wet Season | Cropping in<br>Dry Season |
|------------------------------------------|--------------|--------------------------|---------------------------|---------------------------|
|                                          |              | m <sup>3</sup> /2        | ha                        | ha                        |
|                                          |              |                          |                           |                           |
| S.S. Baru                                | <b>B.B.1</b> |                          |                           |                           |
| 0.0                                      | <b>B.B.2</b> | 1.83                     | 1,830                     | 1,144                     |
|                                          | BB.3         | 1.33                     | 1,330                     | 831                       |
|                                          | BB.4         | 1.08                     | 1,080                     | 675                       |
|                                          | BB.5         | 0.85                     | 850                       | 531                       |
| en e | BB.6         | 0.85                     | 850                       | 531                       |
| · .                                      | BB.7         | 0.85                     | 850                       | 531                       |
|                                          | BB.8         | 0.73                     | 730                       | 456                       |
| S. Muka                                  | BB.2M        | 1.33                     | 1,330                     | 831                       |
| U. Mana                                  | BB.4M        | 0.39                     | 390                       | 244                       |
|                                          | BB.5M        | 0.38                     | 1,380                     | 238                       |
|                                          | BB.8M        | 0.57                     | 570                       | 356                       |
|                                          |              |                          |                           |                           |

Table V-24 PRESENT CAPACITY OF S.S. BARU

From the comparison of commanded area between the above table and the table shown in (3) of this chapter, the shortage of canal water requirement is pointed out:

| 1) |    | case of cropping<br>rainy season | : Shortage of water for<br>442 ha at BB.5 diversion |  |  |  |
|----|----|----------------------------------|-----------------------------------------------------|--|--|--|
| 2) | In | case of cropping                 |                                                     |  |  |  |
|    | ÷  | dwar aaaaan                      | · Shortage of water for                             |  |  |  |

in dry season : Shortage of water for 1,042 ha at BB.2 diversion

(6) Rehabilitation Plan for Secondary Canal (S.S. Baru)

In the future, the canal water from the Muko-Muko left bank area is supplied up to B.B.3 diversion of S.S. Baru. On the other hand, the downstream area from B.B.4 diversion is included into the Selagan area. Therefore, the canal water for such area is supplied through B.B.4 diversion from the Air Selagan area.

As for the planning for this area, the following matters were well employed:

- Soil conditions and ground surface elevations for the project area should be reviewed, and then the re-study for irrigation area to be available should be made.
- b) The canal water supply for the left bank area of S.S. Baru having rather high elevations shall be made by the application of direct supply from the re-alignment canal.

On the other hand, the existing canal water supply shall be applied for the right bank area.

c) Siphon structure is recommendable for the canal structure crossing Air Hitam.

In order to minimize the capacity for the siphon structure and the canal cross sections for the downstream area, the re-alignment canal should be connected to B.B.4 and B.B.6 diversions.

- d) The same unit water requirement employed for the Air Selagan area should be applied to this plan, too.
- e)

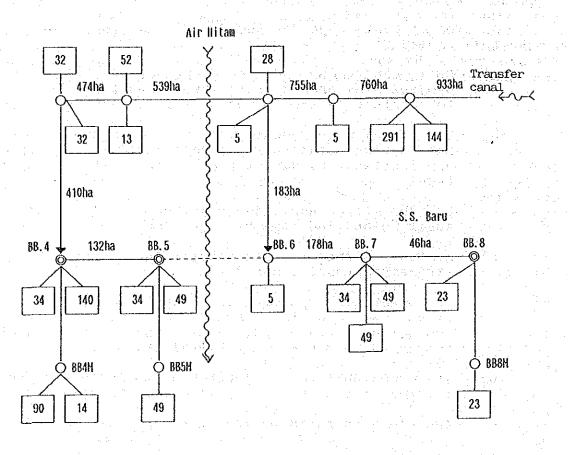
a)

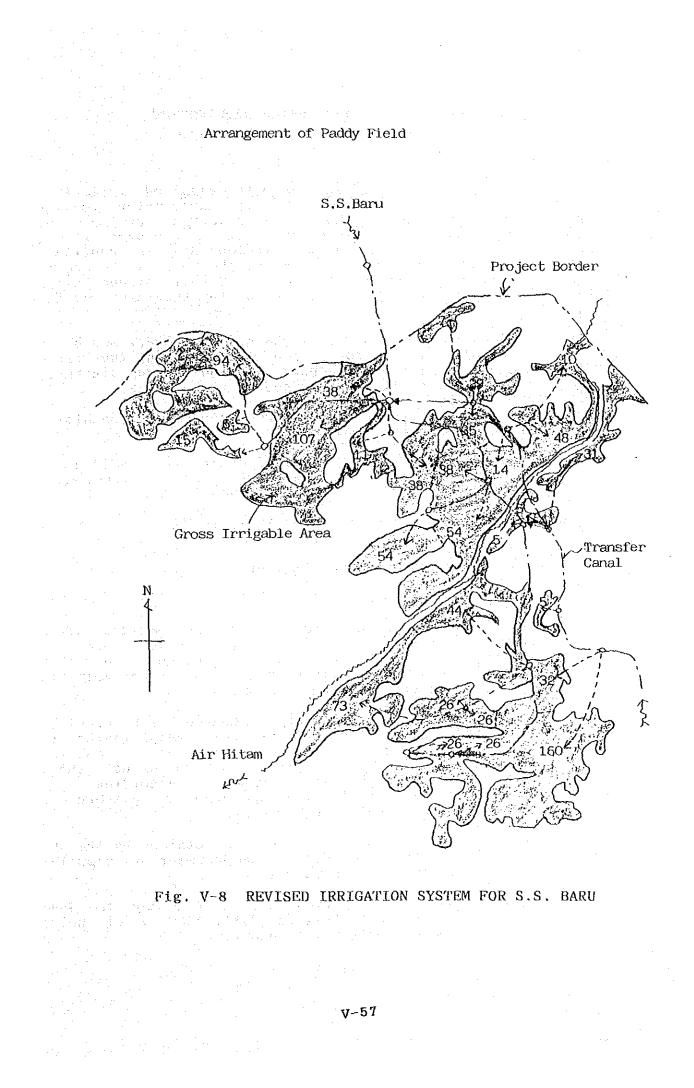
- The planning ratio for paddy field shall be 200 %.
- (7) Gross Irrigable Area

|                        | and the second |                                                         |
|------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Air Hitam<br>Left Bank | Air Hitam<br>Right Bank                                                                                          | Total                                                   |
| (ha)<br>233            | (ha)<br>143                                                                                                      | (ha)<br>376                                             |
| 226                    | 455                                                                                                              | 681                                                     |
| 459                    | 598                                                                                                              | 1,057                                                   |
|                        | Left Bank<br>(ha)<br>233<br>226                                                                                  | Left Bank Right Bank<br>(ha) (ha)<br>233 143<br>226 455 |

Table V-25 REVISED PLAN OF GROSS IRRIGABLE AREA

## (8) Tertiary Network (Rehabilitation Plan)





Fig. V-7 RELATION BETWEEN S.S.BARU AND TRANSFER CANAL

Accordingly, the irrigable area for the downstream from B.B.4 diversion is revised as follows:

| 1)<br>2) | Original Plan<br>Rehabilitation Plan |   |        |
|----------|--------------------------------------|---|--------|
|          | Reduction                            | : | 784 ha |

It is judged that the above area of 784 ha reduced from the original plan is inadequate for the use of paddy field.

Therefore, such area will be used for upland field, home yard, oil palm plantation and so on.



#### CHAPTER 3 IRRIGATION WATER REQUIREMENT

#### 3.1 Ten Day River Discharge

In comparing the river discharge with required irrigation water by months, the Air Selagan can fully supply water to the benefited area. However, in the case when they are compared by 10 days, there are cases when the river discharge is so insufficient that the area cannot be irrigated. In addition, effective storage is not expected because the weir is proposed for taking irrigation water. Therefore, 10 day discharge is estimated by the following methods to be on the safe side for the project:

a. The average of ten day discharges from every month is calculated first for 8 years, and then the ratio between the ten day discharge and the average discharge is calculated all the year round.

b. The monthly discharge of 1/5 non-exceedance probability is calculated every month.

c. The designed ten day river discharge is obtained by multiplying the monthly discharge of 1/5 non-exceedance probability into the ratio mentioned in a.

The calculation results are given in Table V-26.

3.2 Cropping Pattern and Crop Coefficient

a. Planning of cropping pattern

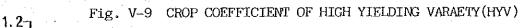
The growing period of paddy should be decided after doing comparative study of variety selection, meteorological condition, and river discharge. In this report, IR-64 which had been prevailing extensively in Indonesia is studied, and is adopted.

comparison of the river discharge with required Ĩn irrigation water, the river can fully supply water to the benefited area, which has little effect on the Therefore, the following are assumed according three period. planting to patterns according cropping meteorological condition and the cropping pattern is studied based on water requirements.

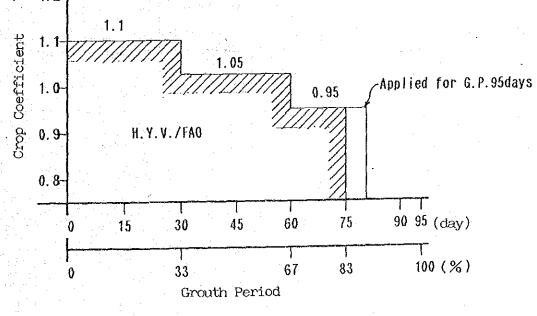
Case-1 : Maximum potential yield is obtained by the use of radiation data. Commencement of planting is to be on October 11th.

Case-2: Harvesting period is to be from May to June which are in less rainfall, January 1st being commencement day of planting. Case-3 : Considering nursery period, October 1st is to be commencement of planting.

The combination of cropping pattern is to be paddypaddy in a year in the above cases.


b. The crop coefficient of paddy is decided as in the following Table V-27 and Fig. V-9 based on the design standard KP-01 published by Directorate of Irrigation:

|         |         | Planning 10 Days                              |                                                                                                                  |                         |
|---------|---------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|
|         | 1 40    | <u></u>                                       |                                                                                                                  | <u>CA=375 km2</u>       |
| Month   | 10 days | Average 10 days                               | 1/5 Probable                                                                                                     | Planning 10 days        |
| т       | 1       | Discharge                                     | Monthly Dischar                                                                                                  | Discharge<br>51.67 m3/s |
| Jan.    |         | 66.24 m3/s<br>43.99                           | m3/s                                                                                                             | 34.31                   |
|         |         | 43.35                                         |                                                                                                                  | 34.59                   |
|         | Average | 51.53                                         | 40.19                                                                                                            | 40.19                   |
| Feb.    |         | 50.70                                         |                                                                                                                  | 35.31                   |
|         | 2       | 32.22                                         |                                                                                                                  | 22.44                   |
|         | 3       | 36.78                                         |                                                                                                                  | 25.62                   |
|         | Average | 39.90                                         | 27.79                                                                                                            | 27.79                   |
| Mar.    | 1       | 50.70                                         |                                                                                                                  | 39.68                   |
|         | 2       | 56.49                                         |                                                                                                                  | 44.21                   |
| •       | 3       | 52.11                                         | 41 50                                                                                                            | 40.79                   |
|         | Average | 53.10                                         | 41.56                                                                                                            | 41.56                   |
| Apr.    |         | 40.76                                         |                                                                                                                  | 23.48                   |
| · · · · | 23      | $\begin{array}{c} 34.10 \\ 53.95 \end{array}$ |                                                                                                                  | 37.14                   |
|         | Average | 42.94                                         | 29.56                                                                                                            | 29.56                   |
| May     |         | 33.72                                         | 20100                                                                                                            | 25.53                   |
| 1303    | 2       | 28.47                                         |                                                                                                                  | 21.56                   |
|         | 23      | 24.89                                         |                                                                                                                  | 18.85                   |
| · · .   | Average | 29.03                                         | 21.98                                                                                                            | 21.98                   |
| Jun.    | .1      | 23.21                                         |                                                                                                                  | 15.50                   |
|         | 2       | 25.83                                         |                                                                                                                  | 17.24                   |
|         | 3       | 17.15                                         | 14 70                                                                                                            | 11.45                   |
|         | Average | 22.06                                         | 14.73                                                                                                            | 14.73                   |
| Jul.    |         | 21.86                                         |                                                                                                                  | 16.61<br>16.47          |
|         | 23      | 21.67<br>25.64                                |                                                                                                                  | 19.48                   |
|         |         | 23.04                                         | 17.52                                                                                                            | 17.52                   |
| Aug.    | Average | 31.34                                         | 11.06                                                                                                            | 16.66                   |
| nug•    |         | 17.33                                         | a an                                                                         | 9.21                    |
|         | 3       | 24.15                                         | and the second | 12.83                   |
| · · ·   | Average | 24.27                                         | 12.90                                                                                                            | 12.90                   |
| Sep.    | 1       | 38.14                                         |                                                                                                                  | 27.69                   |
| •       | 2       | 36.48                                         |                                                                                                                  | 26.48                   |
|         | 3       | 50.71                                         | n an                                                                         | 36.82                   |
|         | Average | 41.78                                         | 30.33                                                                                                            | 30.33                   |
| Oct.    | 1       | 41.50                                         |                                                                                                                  | 27.23                   |
|         | 23      | 46.04                                         |                                                                                                                  | 30.21                   |
|         |         | 46.59                                         | 29.34                                                                                                            | 30.57<br>29.34          |
| Nor     | Average | <u>44.71</u><br>54.42                         | 20.04                                                                                                            | 32.37                   |
| Nov.    | 2       | 40.76                                         |                                                                                                                  | 24.25                   |
|         | 3       | 60.65                                         |                                                                                                                  | 36.08                   |
|         | Average | 51.94                                         | 30.90                                                                                                            | 30.90                   |
| Dec.    | 1       | 43.15                                         |                                                                                                                  | 30.81                   |
|         | 2       | 52.87                                         |                                                                                                                  | 37.75                   |
|         | 3       | 55.78                                         |                                                                                                                  | 39.83                   |
|         | Average | 50.60                                         | 36.13                                                                                                            | 36.13                   |


V-60

.

| Tabl                                                                                                             | e V-27 CROP | COEFFICIENT |
|------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| Growth                                                                                                           | Periol      | 95 days     |
| Month                                                                                                            | 5 days      |             |
| 1st                                                                                                              | 1           | 1.1         |
|                                                                                                                  | 2           | 1.1         |
|                                                                                                                  | 2<br>3      | 1.1         |
|                                                                                                                  | 4           | 1.1         |
|                                                                                                                  | 5           | 1.1         |
|                                                                                                                  | 6           | 1. 1        |
| 2nd                                                                                                              | 1           | 1.05        |
|                                                                                                                  | 2           | 1.05        |
| e e e<br>La substance                                                                                            | 3           | 1.05        |
|                                                                                                                  | 4           | 1.05        |
|                                                                                                                  | 5           | 1.05        |
|                                                                                                                  | 6           | 1. 05       |
| 3rd                                                                                                              | 1           | 0.95        |
|                                                                                                                  | 2           | 0.95        |
|                                                                                                                  | 3           | 0.95        |
|                                                                                                                  | 4           | 0.95        |
|                                                                                                                  | 5           | 0.0         |
| and a second s | 6           | 0.0         |
| 4th                                                                                                              | 1           | 0.0         |



•



#### 3.3 Irrigation Water Requirements

Irrigation water requirements are estimated using the meteorological data at Pondok Panjang, and rainfall data at Pondok Kopi.

The meteorological data which are rearranged in ten days are indicated in Table V-29.

#### a. Evapotranspiration

Crop evapotranspiration is obtained using Modified Penman Method as follows:

.

| Period | Evapotrans-<br>piration | Period | Evapotrans-<br>piration | Period | Evapotrans<br>piration |
|--------|-------------------------|--------|-------------------------|--------|------------------------|
| Jan. 1 | 43 mm                   | May 1  | 44 mm                   | Sep. 1 | 41 mm                  |
| 2      | 43                      | 2      | 44                      | 2      | 42                     |
| 3      | 50                      | 3      | 44                      | 3      | 39                     |
| Feb. 1 | 44                      | Jun. 1 | 40                      | 0ct. 1 | 42                     |
| 2      | 48                      | 2      | 39                      | 2      | 39                     |
| . 3    | 36                      | 3      | 46                      | 3      | 45                     |
| Mar. 1 | 40                      | Jul. 1 | 45                      | Nov. 1 | 41                     |
| 2      | 44                      | 2      | 44                      | 2      | 43                     |
| 3      | 49                      | 3      | 50                      | 3      | 41                     |
| Apr. 1 | 44                      | Aug 1  | 44                      | Dec. 1 | 41                     |
| 2      | 39                      | 2      | 43                      | 2      | 45                     |
| 3      | 47                      | 3      | 47                      | 3      | 49                     |

### Table V-28 TEN DAY EVAPOTRANSPIRATION

(Note: South latitude 2'35')

The detailed calculation is shown in the Table V-30.

|       | Temper  | Rel.          | Sunshine | Wind Vel |
|-------|---------|---------------|----------|----------|
| Month | -rature | Humidity      | dur      |          |
|       | (C)     | (%)           | (*)      | (Km/day  |
| JAN 1 | 31.1    | 92            | 39       | 27.      |
|       | 31.2    | 93            | 38       | 27.      |
| 2     | 31.3    | 92            | 44       | 29.      |
| FEB 1 | 31.1    | 92            | 40       | 29.      |
| 2     | 31.6    | 91            | 46       | 29.      |
| 3     | 32.1    | 90            | 40       | 28.      |
| MAR 1 | 31.4    | 92            | 30       | 32.      |
| 2     | 31.8    | 93            | 38       | 29.      |
| 3     | 31.6    | 92            | 40       | 29.      |
| APR 1 | . 31.9  | 91            | 43       | 28.      |
| 2     | 31.7    | 91            | 32       | 29.      |
| 3     | 31.9    | 92            | 49       | 26.      |
| MAY 1 | 32.0    | 191 <b>91</b> | 49       | 25.      |
| 2     | 32.1    | 91            | 48       | 25.      |
| 3     | 31.9    | 91            | 40       | 25.      |
| JUN 1 | 31.9    | 92            | 43       | 25.      |
| 2     | 32.1    | 93            | 41       | 25.      |
| 3     | 31.8    | 94            | 59       | 25.      |
| JUL 1 | 31.7    | 96            | 54       | 25.      |
| 2     | 31.8    | 95            | 51       | 25.      |
| 3     | 32.0    | 93            | 55       | 25.      |
| AUG 1 | 31.8    | 94            | 46       | 27.      |
| 2     | 31.8    | 92            | 43       | 30.      |
| 3     | 31.7    | 92.           | 43       | 33.      |
| SEP 1 | 31.2    | 91            | 34       | 36.      |
| 2     | 31.1    | 93            | 37       | 34.      |
| 3     | 30.9    | 95            | 33       | 34.      |
| OCT 1 | 31.0    | 94            | 37       | 34.      |
| 2     | 31.1    | 94            | 30       | 32.      |
| 3     | 30.7    | 93            | 35       | 30.      |
| NOV 1 | 31.0    | 94            | 35       | 31.      |
| 2     | 31.1    | 93            | 39       | 30.      |
| 3     | 31.0    | 94            | 36       | 29.      |
| DEC 1 | 31.1    | 93            | 37       | 29.      |
| 2     | 31.2    | 93            | 45       | 33.      |

# Table V-29 TEN-DAY METEOROLOGICAL DATA

Table V-30.1 CONSUMPTIVE WATER USE OF CROP BY MODIFIED PENMAN METHOD(1/2)

\*\*\* CONSUMPTIVE WATER USE OF CROP BY MODIFIED PENMAN METHOD \*\*\* ( 1 )

|                |    |               |       |          |        |          |        |              |               |                 |                                      |       |        |           | 1.5     |           |             | 1.1         |        |             |        |                | •              |       |       | ÷               |                   |       |
|----------------|----|---------------|-------|----------|--------|----------|--------|--------------|---------------|-----------------|--------------------------------------|-------|--------|-----------|---------|-----------|-------------|-------------|--------|-------------|--------|----------------|----------------|-------|-------|-----------------|-------------------|-------|
|                | ŝ  |               |       | 31.8     | 76     | ß        | 0.29   |              | 9.82          | 3.4             | 55.28                                | 2.48  | 53.16  | 1.027     | 2.12    | 0.113     | 0.24        | 7.69        | 0.447  | 3.44        | 9.74   | 0.20           | 3.24           | 11.15 | 11.39 | 4.59            | \$                | 5     |
| Jun.           | 7  |               |       | 32.1     | 33     | 4        | 0.29   |              |               |                 |                                      |       |        |           |         |           |             |             |        |             |        | 0.15           |                |       |       |                 |                   |       |
| •              |    |               | . 1   | 31.9     | 8      | 43       | 0.30   |              |               |                 |                                      |       |        |           |         |           |             |             |        |             |        | 0.19           |                |       |       |                 |                   |       |
|                | Ś  |               |       |          |        |          | 0.29   |              |               |                 |                                      | • 2   |        |           |         | - C       |             |             |        |             |        |                | · • •          |       |       |                 | 4                 | 132   |
| MAY.           |    |               |       |          |        |          | 0.30 0 |              |               |                 |                                      |       |        |           |         |           |             |             |        |             |        | 0.20           |                |       |       |                 |                   |       |
|                |    |               |       |          |        |          | 0.29 0 |              |               |                 |                                      |       |        |           |         |           |             |             |        |             |        | 0.200          |                |       |       |                 |                   |       |
| •              |    |               |       | ÷        |        |          |        |              |               |                 |                                      |       |        |           |         |           |             |             |        |             |        |                |                |       |       |                 |                   | 8     |
| - <b>- 1</b> - | S. |               |       |          |        |          | 0:31   |              | 0             | M               | 35.                                  | 2     | 32.    | 0 0       | 2       | 0         | 0           | ÷           | 20.4   | M           | 6      | 0              | M              |       | Ξ     | 4               | 2. <del>1</del>   | •     |
| APR.           | 7  |               |       | 51.7     | 6      | 8        | 0.34   |              | 9.81          | 3.42            | 35.08                                | 2.47  | 31.92  | 0.035     | 3.16    | 0.117     | 0.37        | <u>م</u>    | 0.342  | 2.92        | С<br>З | 0.19           | 2.7            | 2.2   | 9.7   | <u>.</u><br>3.9 | ж.<br>            |       |
| ۲              |    |               | :     | 31.9     | 5      | 53       | 0.32   |              | 9.84          | 3.46            | 35.48                                | 2.49  | 32.29  | 0.032     | 3.19    | 0.115     | 0.37        | 8.54        | 0.385  | 3.29        | 0.64   | 0.20           | 3.09           | 10.69 | 11.06 | 4.44            | 4                 |       |
| 4              | S  |               |       | 51.0     | 8      | 9        | 0.34   | •            | 9.80          | 3.41            | 54.88                                | 2.46  | 52.09  | 0.034     | 2.79    | 0.117     | 0.33        | 2<br>8      | 0.373  | 3.33        | 0.62   | 0.21           | 3.12           | 10.64 | 10.97 | 4.40            | 67                | 133   |
| MAR.           | 7  |               | i     | 31.8     | 33     | 89       | 0.34   |              | 9.82          | 3.44            | 5.28                                 | 2.48  | 2.81   | 020       | 2.47    | 117       | 0.29        | 8.92        | .365   | 3.26        | 0.60   | 0.17           | 3.09           | 0.63  | 0.92  | 4.40            | 1                 | ••••  |
| . *            |    |               |       |          | 1.     |          | 0.37   |              | 1.1           | 3.37            | 7.49 3                               | 5.4   | 1.73   | 036 0     | 2.76    | .120 0    | 0.33        | 8.8         | .334 0 | 2.98        | 0.5    | 0.19           | 2.79           | 9.40  | 9.73  | 3,99            | 3                 | -     |
|                | n  |               |       |          |        |          | 0.33   |              | 8.            | .49             | 89 3                                 | ŗ.    | . 30 3 | 032 0     | 65.5    | 116 0     | .42         | 3.98        | 373 0  | 2.35        | .62    | $1.20_{\odot}$ | 3, 15          | 66    | . [4  | ۲.<br>۲         | 36                | 128   |
| ູ<br>ມີມີ      | ~1 |               |       |          | 1      |          | 0.34 0 |              |               |                 |                                      |       |        |           |         |           |             |             |        |             |        | 0.23           |                |       |       |                 |                   |       |
| ١٣ ·           | •  |               |       |          |        |          |        |              | 5.0           | <u>5</u> 2<br>M | 1 34                                 | ~     | 0.31   | 0.0       | ž.<br>M | 20.       | 20          | 8.8         | 3.0.   | 22          | 50     | , 1<br>. 1     | <u> </u>       | 11    | 55.11 | 4               | <u>-</u> t        |       |
| ٣              |    |               |       |          |        |          | 0.34   |              | 6             | m               | 33.9                                 | 2     | 31.2   | 0.04      | 2       | 0         | 0           | <u>8</u>    | 5.0    | 2           | õ      | 0.24           | 5              | 2     | 2     | 4               |                   | _ :   |
|                | n  |               |       | 51.5     | 8      | 44       | 0.34   |              | 9.76          | 3.36            | 34.29                                | 2.43  | 31.55  | 0.037     | 2.74    | 0.117     | 0.32        | 8.70        | 0.389  | 3.42        | 0.04   | 0.23           | 3.19           | 10.72 | 11.04 | 4.54            | ន                 | 136   |
| JAN.           | 7  |               |       | 51.2     | 63     | 器        | 0.31   | • •          | 9.75          | 3.34            | 34.10                                | 2.42  | 31.71  | 0.036     | 2:39    | 0.115     | 0.27        | 8.79        | 0.305  | 3.21        | 0.00   | 0.2            | 3,00           | 10.02 | 10.29 | 4.25            | 4                 | -     |
| -              |    |               | 1     | <u>.</u> | 8      | 33       | 0.32   |              | 9.73          | 3.32            | 33.91                                | 2.41  | 31.20  | 0,40      | 2.71    | 0.115     | 0.31        | 8<br>2<br>2 | 0.369  | 3.24        | 0.61   | 0.24           | 3.00           | 96.6  | 10.27 | 4.26            | 43                | - 1   |
|                |    | Ē             | H S   | 5        | i<br>S | (%       | S)     | CALCULATION: |               | EAT             | ESS.                                 |       | SS.    | . —       | -       |           | <u>بر</u>   | 601         |        | °.<br>O     |        |                | . "            | -     | 6*EA  | AY)             | 19. ED (MM/10DAY) | Æ     |
|                |    | (<br>12<br>12 | 77. j | 2        |        | <u> </u> | £<br>≻ |              | 00            | J/L.H           | JR PR                                | AT.   | 0. PR  |           |         |           | <b>PORA</b> | /E AN       |        | /E RA       | ز<br>1 | RAD            | ATION          | T RAD | T.R.+ | (MM/D           | (YMU/10DAY)       | NOW/X |
| ITEM           |    | 5             |       | IURE     | LIOIM  | ATION    | LOCI   | ION          | 11/11         | A*100           | VAPOL                                | A+DEL | R. VAF | a         | 21%     | ନ         | A*EV        | T WAY       | F(IR)  | T WAY       |        | WAW            | RADIV          | A*NE  | A*NE  |                 | <u>چ</u>          | Σ     |
| <b></b> 1      |    | A:<br>        |       | MPARA    | <br>≅  | N DUR    | N VE   | CULAT        | 1. F(TAI)/100 | DELT            | <ol><li>SAT. VAPOUR PRESS.</li></ol> | GAMM  | WATE   | 6. F(TOP) | PLS-    | 8. RF(U2) | GAMP        | RERS<br>FOR | #S#    | E<br>E<br>S | F(M)   | LONG           | NET            | БЦ    | DEL   | ដ               | ដ                 | ß     |
|                | 1  | DATA          | 5     |          | R      | ĨS       | IM     | CAL          | '             | પં              | M.                                   | 4.    | ы.     | ó.        | ŗ.,     | ŝ         | ς.          | <u>.</u>    | -      | 12.         | 13.    | .+             | <del>ب</del> ا | 16.   | 1     | 8               | 6                 | 20.   |
|                |    |               |       |          |        |          |        |              |               |                 |                                      |       |        |           |         |           |             |             |        |             |        |                |                |       |       |                 |                   |       |

|                 |                                 |      |           |            |                      | M           | <u>8</u>  | ت            | <u>ዓ</u>         | 26      | : 23                | ¢۵    | <br>M       | 66                | ្ល       | 01          | 8       | 8              | 80               | ស្រ   | :<br>:          | *      | ผ        | 2             | œ ;           | 0 10                      | n o                 | 24          |
|-----------------|---------------------------------|------|-----------|------------|----------------------|-------------|-----------|--------------|------------------|---------|---------------------|-------|-------------|-------------------|----------|-------------|---------|----------------|------------------|-------|-----------------|--------|----------|---------------|---------------|---------------------------|---------------------|-------------|
|                 |                                 |      | Ч         | <b>)</b> ( |                      | 31.3        |           |              |                  |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     | 135         |
|                 |                                 |      | ر<br>الم  | 4          | •••                  | 31.2        | 8         | Ω.           | U.59             | 9.75    | 3.34                | 34.10 | 2.42        | 31.71             | 0.036    | 2.39        | 0.122   | 0 29           | 8.68             | 0.393 | 3.4             | . 0.65 | 0.23     | 3.18          | 10.62         | 10.91<br>1                | +.'+<br>- 14        | r           |
|                 |                                 |      | •         | -          | · .                  | 31.1        | 8         | : م <u>ا</u> | <del>ا</del> د.0 | 9.73    | 3.32                | 33.91 | 2.41        | 31.54             | 0.038    | 2.37        | 0.117   | 0.28           | 8.68             | 1.362 | 3.14            | 0.60   | 0.22     | 2.92          | 9.69          | 76.6                      | 4. 14<br>14         | ř           |
|                 |                                 | •    | м         |            | t di                 | 31.0        | \$        | 8            | ۲.54<br>۲.54     |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     | 125         |
|                 | · . ·                           |      | NDN C     | 4          | - 11                 | c = 0       | · .       | 8            |                  |         |                     |       |             |                   |          |             | . S. S. |                |                  |       | 1.1.1           |        |          |               |               |                           | ,<br>8, 14<br>8, 14 |             |
| -<br>-          | 2                               |      | ~<br>-    | _          |                      | 31.0        |           |              | 1.11             |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           | 4.00<br>4.10        |             |
| (2/2)           |                                 |      |           |            |                      | 30.7 3      |           |              | •                |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     |             |
| METHOD          | 2                               |      | ч.        | 3          |                      |             |           |              |                  |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     | 126         |
|                 | •                               | :    | ы<br>Б    | 1          |                      | 31          | 5         | 81           | کر تار<br>ا      |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           | 0<br>2<br>2<br>2    |             |
| PENMAN          |                                 |      | •         | -          |                      | 31.0        | 5         | 25           | 0+0<br>1         | 9.72    | 3.31                | 33.71 | 2.41        | 31.69             | 0.037    | 2.02        | 0.123   | 0.25           | 8.89             | 0.362 | 3.23            | 0.60   | <u>ย</u> | 3.00          | 9.93          | 10. 38<br>2 3             | 4.5<br>7.5          | 1           |
| 1.11.20         | 1<br>1<br>1<br>1<br>1<br>1<br>1 |      | ۲         | <b>,</b> 1 |                      | 30.9        | ŝ         | R            | 0.4U             |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     | 122         |
| MODIFIED        | 2)                              | :    | کر .<br>م | 4          |                      | 31.1        | ÷.,       | 4. Č. k.     |                  |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           | 4.10<br>67          |             |
|                 | )<br>**<br>*                    |      | <i>N</i>  |            |                      |             | •         |              |                  |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     |             |
| ВΥ              | EQC 1                           |      |           | -          |                      | 31.2        |           |              | •                |         |                     | · · · |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           | 0.4<br>14           |             |
| CROP            | L<br>W<br>N                     |      | M         |            | ••••••               | 31.7        | 8         | N C          | <b>чс.</b> и     | 9.81    | 3.42                | 35.08 | 2.47        | 32.27             | 0.033    | 2.81        | 0.122   | 0.34           | 8.24             | 0.385 | 3.17            | 97.0   | 0.21     | 2,96          | 10.12         | 10.46                     | 4.1-4<br>1-4        | 134         |
| 0F              | PENMAN METHOD                   |      | ~ ^ 406.  | ı          |                      | 31.8        | 8         | 1<br>1<br>1  | رد. ا            |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           | 17.4<br>17.4        |             |
| WATER USE       | LED L                           |      |           | -          |                      | 31.8        | 2         | 9            | .52              |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           | 4.40<br>77          |             |
| ATER            | BY MODI                         | - 11 |           |            |                      | 32:0        |           |              |                  | · · ·   |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     | 139         |
|                 |                                 | :    |           | •          |                      |             |           |              | •                |         |                     | -     | :           |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     |             |
| PTIVE           | F CROP                          | -    | 3,0       | ł          |                      | 31.8        | ō         | in i<br>c    | 5.0              | 00<br>0 | 1                   | 35.2  | 2.4         | 33.5              | 0.02     | <u>-</u> ۲  | 0.11    | 0              | ~.               | 1     | ~<br>~          | 0,0    | 0        | м.<br>О       | 10.6<br>0.6   | 10.8<br>7                 | 66. <del>4</del>    | F           |
| MNSN            | 0.3SN                           | ,.   | •         | -          | ۰.                   | 31.7        | 8         | : Å          | U.JU             | 9.81    | 3.42                | 35.08 | 2.47        | 33.68             | 0.023    | 1.40        | 0.114   | 0.16           | 7.79             | 0.428 | 3.33            | 0.7    | 0.16     | 3.17          | 10.84         | 11.00<br>27               | +<br>5.2            | ŀ           |
| ୍ଷ<br>ସ         | <b>IATER</b>                    | *    | <br>-     |            | HINC                 | 6           | 20        | <u> </u>     | 2                |         |                     |       |             |                   |          | · .         |         |                |                  |       |                 |        |          |               |               | ⊲                         | ~ ~                 | 1.1         |
| 30.1            | TVE V                           |      |           |            | ST S(                | <u>ی</u>    |           | ::<br>       |                  | 8       | H.J.VC              | JR PR | LTA         | WATER VAPD. PRESS |          |             |         | GAMMA*EVAPORAT | SHORT WAVE ANGOT | _     | SHORT WAVE RAD. | F (M)  | ERAD     | NET RADIATION | DELTA*NET RAD | UEL FARNET, R. FGRE<br>CO | TRU VIIII           | (HTNDM/MM)  |
| ۰<br>۲-         | LdWDS                           |      | 5         |            | E:2'3                | TURE        | MIDI      | ATIO         | in ci            | 11      | A*101               | VAPOI | GAMMA+DELTA | R VAI             | ы.<br>(- | Zmd         | (2)     | A*EV           | RT WA            | f (IR | RT WA           | _      | NAW 5    | RADI          | TA*NE         | A*NE                      | ξ                   | ξ. <u>Σ</u> |
| Table V-30.2 CO | *** CONSUMPTIVE WATER           |      |           | Å          | LATITUDE:2'35" SOUTH | TEMPARATURE |           | SUN DURATION | WIND VELUCIAT    | F(TA    | 2. DELTA*100/L.HEAT | SAT   | . GAM       | . WATE            | . F(TDP) | Zind-Sind . | . RF((  | . GAM          | ÊS.              | - ASH | ERS .           | н<br>Н | Ĭ        | . Net         |               | 17. PFL<br>17. PFL        | 3 E                 | 3 G         |
|                 | *                               |      | 1         | DA.        | Ľ                    | Ë           | <u>85</u> | ನ !          | s ₹              | -       | ы                   | Ň     | 4           | ц,                | 6        | r~          | ω       | Ъ.             | <u>e</u> :       | =     |                 | حر     | 14       | <u>ب</u>      | <u>9</u> ;    | - a                       | <u>;</u>            | 50          |
|                 |                                 |      |           | •          | . 1                  | · :         |           | • •          | •.               |         |                     |       |             |                   |          |             |         |                |                  |       |                 |        |          |               |               |                           |                     |             |

#### b. Effective Rainfall

Effective rainfall for rice is assumed by the following equation using rainfall data at Pondok Kopi for 9 years during the period from 1981 to 1989 (See Table V-31).

 $Re = 0.7 \times Rm$ 

#### where, Re : Effective rainfall mm/month Rm : Monthly rainfall with 1/5 nonexceedance probability mm/month

The planning ten day effective rainfall is distributed in proportion to the ratio of ten day rainfall to the above monthly rainfall of 1/5 non-exceedance probability.

#### c. Percolation

The measurement of percolation was carried out at 3 places in the newly developed paddy field of the transmigrated area called SP-III and IV, during the period from February 13 to February 14, 1990.

The required water for the paddy fields in SP-III relies on the water supplied from the swampy area. On the other hand, the required water for the paddy fields in SP-IV is supplied through the connecting canal (BB4M) of Muko-Muko Irrigation Project. The same measuring result of 1.0 mm/day was obtained in each place.

The following percolation data were collected as a supplemental data for the Project:

- Air Manjuto Project, 1985/86:

- Air Lais Project, 1981 :

Design Value P = 2.00 mm/day - Air Kutahun Project, 1980 : Field Survey P = 0.98 mm/day

- Air Bengkulu & Musi. 1975 : Design Value P = 2 - 6mm/day

- Air Buku/Dusun Curup, 1983 : Field Survey P = 2.8 mm/day

Comparing with the above collected data, the value of 1.0 mm/day resulted in the actual field survey is rather low. However, it is a result obtained under the field condition that the measured paddy field is laid on a low-lying area having rather clayey soil. Taking into account the above field condition, therefore, it is assumed that the value of 3.0 mm/day, which is adopted in this Study, is acceptable as a safety value for the Project.

Water Requirement for land preparation

理论 医尿道氏试验检试验检试验

In general, peak water requirements occur at the time of land preparation. Therefore, for lessening water requirements, land preparation period at each paddy field is staggered, and made longer. If rotation system is employed, time lag of land preparation is restricted by labour force and water availability.

In this project, 55 days are adopted for land preparation period.

Irrigation requirements at field level are calculated by the method of Van de Goor & Zijlstra.

Condition:

d.

| Presaturation                       |  |   |    |   |   | 275 mm<br>275 mm |
|-------------------------------------|--|---|----|---|---|------------------|
| Land preparati                      |  | • |    |   |   | 55 days          |
| Percolation                         |  |   | •. | P | ≓ | 3.5              |
| an di seria ta ang segara di<br>Gal |  |   |    |   |   | mm/day           |

 $IR = M.e^{k}/(e^{k}-1)$ 

where,

| • • • • • • |                                                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IR<br>M     | <ul> <li>: Irrigation requirement at field level, mm/day</li> <li>: Water requirement to compensate for evaporation<br/>and percolation of the fields already saturated.</li> <li>M = Eo + P</li> </ul> |
| Eo<br>K     | : Open water evaporation taken at 1.1 x ETo during<br>land preparation, mm/day<br>: M.T/S                                                                                                               |
| S           | : Presaturation requirement from below items<br>. Required water depth above soil                                                                                                                       |
|             | surface after puddling : 150 mm<br>. Saturation requirement : 90-140mm (mean 115mm)                                                                                                                     |
|             | . Nursery requirement : 5 mm<br>. Losses : 5 mm                                                                                                                                                         |
|             | S : 275 mm                                                                                                                                                                                              |

Table V-31Planning 10 Day Effective Rainfall

|         | <b></b>                                              | Average  | 1/5 Probable             | <u></u>                                                                                                         |
|---------|------------------------------------------------------|----------|--------------------------|-----------------------------------------------------------------------------------------------------------------|
| Month   | 10 days                                              | 10 days  | Monthly                  | Effective                                                                                                       |
| nonen   | TO GUID                                              | Rainfall | Rainfall                 | Rainfall                                                                                                        |
| Jan.    | 1                                                    | 130.8 mm | mm                       | 68 mm                                                                                                           |
| oun.    | 2                                                    | 116.3    |                          | 61                                                                                                              |
|         | 3                                                    | 126.4    |                          | 66                                                                                                              |
|         | Total                                                | 373.5    | 278.3                    | 195                                                                                                             |
| Feb.    | 1                                                    | 114.6    |                          | 59                                                                                                              |
|         | 2                                                    | 96.6     |                          | 50                                                                                                              |
|         | 3                                                    | 57.0     |                          | 29                                                                                                              |
|         | Total                                                | 268.2    | 196.8                    | 138                                                                                                             |
| Mar.    | 1                                                    | 139.2    |                          | 60° ang 60° ang 10° ang |
| ·       | 2                                                    | 154.3    |                          | 67                                                                                                              |
| •       | 3                                                    | 144.4    |                          | 62                                                                                                              |
| 1.00    | Total                                                | 437.9    | 269.6                    | 189                                                                                                             |
| Apr.    | 1                                                    | 113.4    |                          | 42                                                                                                              |
| -       | 2                                                    | 97.9     |                          | 37                                                                                                              |
|         | 3                                                    | 144.6    |                          | 54                                                                                                              |
|         | Total                                                | 355.9    | 190.6                    | 133                                                                                                             |
| May     | 1                                                    | 99.4     | in deployer about ones   | 52                                                                                                              |
|         | 2                                                    | 75.2     |                          | 39                                                                                                              |
|         | 3                                                    | 69.9     |                          | 36                                                                                                              |
|         | Total                                                | 244.5    | 181.7                    | 127                                                                                                             |
| Jun.    | 1                                                    | 65.4     |                          | 27                                                                                                              |
| 0 411 1 | 2                                                    | 73.2     |                          | 30                                                                                                              |
|         | 3                                                    | 44.2     |                          | 19                                                                                                              |
|         | Total                                                | 182.8    | 107.9                    | 76                                                                                                              |
| Jul.    | 1                                                    | 63.5     |                          | 24                                                                                                              |
| Jur.    | 2                                                    | 87.1     |                          | 32                                                                                                              |
|         | 3                                                    | 81.9     |                          | 30                                                                                                              |
|         | Total                                                | 232.5    | 123.6                    | 86                                                                                                              |
| Aug.    | 1                                                    | 54.6     |                          | 21                                                                                                              |
| Aug.    | 2                                                    | 66.2     |                          | 25                                                                                                              |
|         | 3                                                    | 66.8     |                          | 26                                                                                                              |
|         | Total                                                | 187.6    | 103.1                    | 72                                                                                                              |
| Sep.    | 1                                                    | 50.2     |                          | 29                                                                                                              |
| nch.    | 2                                                    | 102.6    |                          | 58                                                                                                              |
|         | 3                                                    | 188.8    |                          | 107                                                                                                             |
|         | Total                                                | 341.6    | 277.6                    | 194                                                                                                             |
| Oct.    | 1                                                    | 97.4     |                          | 38                                                                                                              |
| 000.    | 2                                                    | 117.6    |                          | 45                                                                                                              |
|         | 3                                                    | 159.9    |                          | 62                                                                                                              |
|         | Total                                                | 374.9    | 206.5                    | 145                                                                                                             |
| Nov.    | 100a1                                                | 96.9     |                          | 37                                                                                                              |
|         | 2                                                    | 111.9    |                          | 43                                                                                                              |
|         | 3                                                    | 174.3    | n dage so tradet so grad | 67                                                                                                              |
|         | Total                                                | 383.1    | 209.3                    | 147                                                                                                             |
| Dog     | <u>10tai</u>                                         | 106.6    | <u> </u>                 | 61                                                                                                              |
| Dec.    | 2                                                    | 134.2    |                          | 77                                                                                                              |
|         | 3                                                    | 134.2    |                          | 68                                                                                                              |
|         |                                                      |          | 294.9                    | 206                                                                                                             |
|         | <u>    Total                                    </u> | 359.1    | 2439.9                   | 1708                                                                                                            |

| · · · · ·                                                                                                                                                                                                                         |       |            |             |            |                  |            |       |                  |                |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-------------|------------|------------------|------------|-------|------------------|----------------|-----------------|
|                                                                                                                                                                                                                                   | pr de | · · · ·    | mm/d        | EO<br>mm/d |                  |            | k     | MS*e             | eS-1           | IR- 279<br>mm/d |
| period to be the second se<br>Second second | - (1  | )<br>)<br> |             | (3)        |                  |            | (6)   | (7)              | (8)            | (9)<br>7/8      |
| El provenció de milio                                                                                                                                                                                                             |       |            |             |            |                  |            |       |                  |                |                 |
|                                                                                                                                                                                                                                   | JAN.  |            |             | 4.7        |                  | 7.7        | 1.260 | 27.143           | 2,525          | 10.7            |
|                                                                                                                                                                                                                                   |       |            |             | 4.7        |                  | 7.7        |       | 27.143           | 2.525          | 10.7            |
|                                                                                                                                                                                                                                   |       | 3          | 4.5         | 5.0        | 3.0              | 8.0        | 1.309 | 29.616           | 2.702          | 11.0            |
|                                                                                                                                                                                                                                   | FEB.  | 1          | 4.4         | 4.8        | 3.0              | 7.8        | 1.276 | 27.940           | 2.582          | 10.8            |
|                                                                                                                                                                                                                                   |       | 2          | 4.8         | 5.3        |                  | 8.3        |       | 32.270           | 2.888          | 11.2            |
|                                                                                                                                                                                                                                   |       | 3          | 4.6         | 5.1        | 3.0              | 8.1        | 1.325 | 30.472           | 2.762          | 11.0            |
|                                                                                                                                                                                                                                   | MAD   | 4          | 10          |            | τņ               |            | 1 014 | 0.00             | 0 757          | 40.F            |
|                                                                                                                                                                                                                                   | MAR.  | 2          | 4.0         | 4.4<br>4.8 |                  | 7.4<br>7.8 |       | 24.842<br>27.940 | 2.357<br>2.582 | 10.5<br>10.8    |
|                                                                                                                                                                                                                                   | ÷.    | 3          | 4.5         |            | 3.0              |            |       | 29.616           | 2.702          | 11.0            |
|                                                                                                                                                                                                                                   |       |            | tan an<br>L | 100        | 1999 - 1999<br>1 |            | 1.201 |                  |                |                 |
|                                                                                                                                                                                                                                   | APR.  |            | 4.4         | 4.8        |                  | 7.8        |       | 27.940           | 2,582          | 10.8            |
| ·                                                                                                                                                                                                                                 |       | 2 3        | 3.9<br>4.7  | 4.3        |                  | 7.3        |       | 24.119           | 2.304          | 10.5            |
|                                                                                                                                                                                                                                   | · · · |            | 4.1         | 5.2        | 5.0              | 0.2        | 1.342 | 31.381           | 2.827          | 11.1            |
|                                                                                                                                                                                                                                   | MAY.  | 1          | 4.4         | 4.8        | 3.0              | 7.8        | 1.276 | 27.940           | 2.582          | 10.8            |
| •                                                                                                                                                                                                                                 |       | 2          | 4.4         | 4.8        |                  | 7.8        | 1.276 | 27.940           | 2,582          | 10.8            |
|                                                                                                                                                                                                                                   | · · · | 3          | 4.0         | 4.4        | 3.0              | 7.4        | 1.211 | 24.842           | 2.357          | 10.5            |
|                                                                                                                                                                                                                                   | JUN.  | 1.         | 4.0         | 4.4        | 3.0              | 7.4        | 1.211 | 24.842           | 2.357          | 10.5            |
|                                                                                                                                                                                                                                   |       | 2          | 4.0<br>3.9  | 4.3        |                  |            |       | 24.119           | 2.304          | 10.5            |
|                                                                                                                                                                                                                                   |       | 3          | 4.6         | 5,1        | 3.0              | 8.1        | 1.325 | 30.472           | 2.762          | 11.0            |
| · · ·                                                                                                                                                                                                                             |       |            |             |            |                  |            |       |                  |                |                 |
|                                                                                                                                                                                                                                   | JUL.  |            |             | 5.0        |                  |            |       | 29.616           | 2.702          | 11.0            |
|                                                                                                                                                                                                                                   |       | 2<br>3     | 4.4<br>4.5  | 4.8<br>5.0 | 3.U<br>3.0       |            |       | 27.940<br>29.616 | 2.362          | 10.8<br>11.0    |
|                                                                                                                                                                                                                                   |       | 5          | 4.5         | 5.0        | J.Q              | 0.0        | 1,307 | 27.010           | 2.102          | 11.0            |
|                                                                                                                                                                                                                                   | AUG.  | 1          | 4.4         | 4.8        |                  |            |       | 27.940           | 2.582          | 10.8            |
|                                                                                                                                                                                                                                   |       | 2          | 4.3         |            |                  |            |       | 27.143           | 2.525          | 10.7            |
|                                                                                                                                                                                                                                   | · · . | 3          | 4.2         | 4.6        | 3.0              | 7.6        | 1.244 | 26.364           | 2.469          | 10.7            |
|                                                                                                                                                                                                                                   | SEP.  | 1          | 4.1         | 4.5        | รัก              | 7.5        | 1.227 | 25.583           | 2.411          | 10.6            |
|                                                                                                                                                                                                                                   | JL1 . | 2          | 4.2         |            |                  |            |       | 26.364           | 2.469          | 10.7            |
|                                                                                                                                                                                                                                   |       | 3          | 3.9         | 4.3        | 3.0              |            | 1,195 |                  | 2.304          | 10.5            |
|                                                                                                                                                                                                                                   |       |            |             |            |                  |            |       |                  | · •            | 10 7            |
| · · · · ·                                                                                                                                                                                                                         | OCT.  |            | 4.2         |            | 3.0              | 7.6        |       | 26.364<br>24.119 | 2.469<br>2.304 | 10.7<br>10.5    |
|                                                                                                                                                                                                                                   |       | 2<br>3     | 3.9<br>4.1  | 4.3<br>4.5 |                  |            |       | 25.583           | 2.304          | 10.5            |
|                                                                                                                                                                                                                                   |       |            | 7.1         | т.J        | 5.0              |            |       | *******          |                |                 |
|                                                                                                                                                                                                                                   | NOV.  | 1          | 4.1         | 4.5        | 3.0              | 7,5        |       | 25,583           | 2.411          | 10.6            |
|                                                                                                                                                                                                                                   |       | 2          |             | 4.7        |                  | 7.7        | 1.260 | 27.143           | 2.525          | 10.7            |
|                                                                                                                                                                                                                                   |       | 3          | 4.1         | 4.5        | 3.0              | 7.5        | 1.227 | 25.583           | 2.411          | 10.6            |
|                                                                                                                                                                                                                                   | DEC.  | :<br>.1    | ;<br>4 : 1  | 4.5        | 3 0              | 75         | 1 227 | 25.583           | 2.411          | 10.6            |
|                                                                                                                                                                                                                                   | 060.  |            |             | 4.5<br>5.0 |                  | 8.0        | 1.309 |                  | 2.702          | 11.0            |
| and a second                                                                                                                    |       | 3          | 4.4         | 4.8        | 3.0              | 7.8        |       | 27.940           | 2.582          | 10.8            |

According to the Indonesian Design Standard, 2 replacement, each of 50mm (3.3 mm/day for 1/2 month) at about 1 month and 2 months after transplanting for fertilizer application.

A schematic cropping pattern with the layer replacement is shown as below.

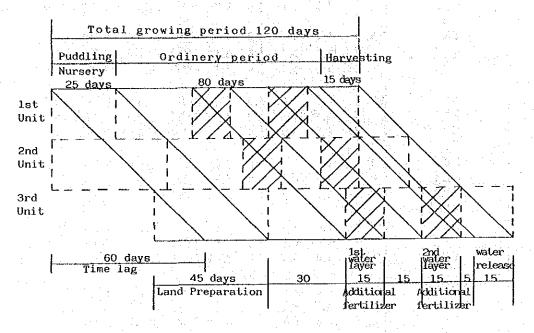



Fig. V-10 MODEL OF PADDY CULTIVATION

- Remarks: 1. Rectangular shapes show actual farming period at each unit.
  - 2. Inclined line is representative farming period for a whole area.
  - 3. Commencement period of pudding is staggered in two months, and paddy cultivation is performed in three groups.

#### f. Irrigation Efficiency

It is very difficult to have effective irrigation for water saving on irrigation development in new land reclamation and transmigration areas. It is found the case of 0.55 in overall irrigation efficiency in Jawa island where the development has been advanced. For this project the irrigation efficiency is adopted to be 55% in overall considering unlined canal system. The efficiency is divided into as follows:

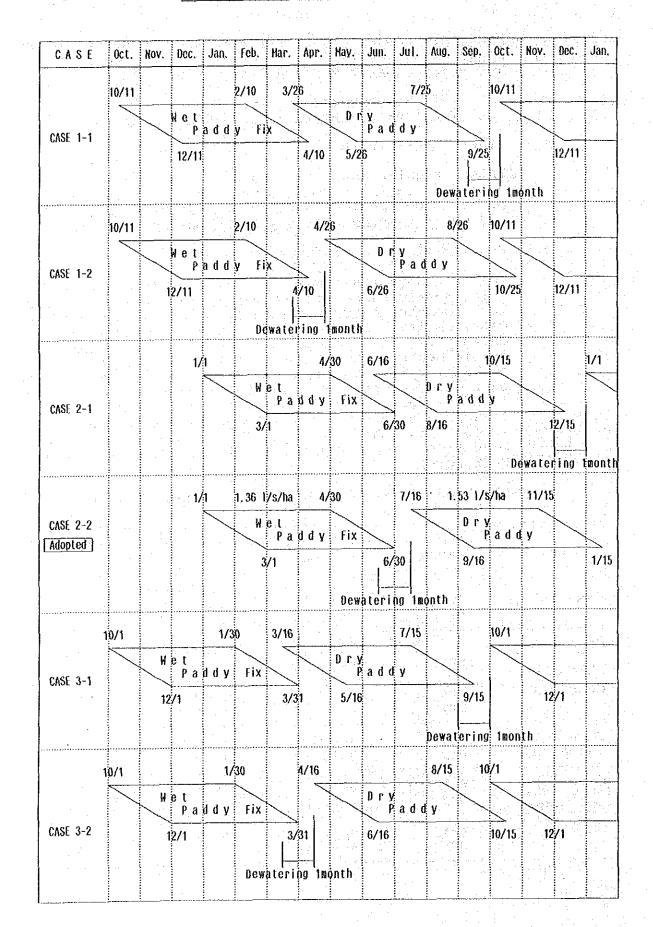
Main & secondary canals : 80% Tertiary system : 70%

Other coefficients

g.

Water requirements for each group are calculated according to the above groups. The conditions for land preparation period, nursery period, crop coefficient, and water layer are given in the following table:

h. Results of calculation


In the above three cases, two cases are considered in which repairing period for canals is established before the commencements of wet paddy cultivation and of paddy cultivation. Therefore, water requirements dry are calculated in six cases in total. The peak water requirements for each case are indicated in Table V-33 and Fig. V-11. As the river discharge is affluent, the case which shows less water requirements in dry season adopted is favorable. Subsequently, the case 2-2 is taking into account of the potential maximum yield. to the Appendix IV, Clause 3.3.3 "Basic (Refer Alternative for Settlement of Cropping Condition Pattern".)

| Case      | Crop<br>Season | 1st Date of<br>Puddling | Max. Unit | Month of  |
|-----------|----------------|-------------------------|-----------|-----------|
|           |                |                         | 1/s/ha    |           |
| Case 1-1  | Wet            | Oct. 11                 | 0.97      | Nov.      |
|           | Dry            | Mar. 26                 | 1.69      | Jun.      |
| Case 1-2  | Wet            | Oct. 11                 | 0.97      | Nov.      |
|           | Dry            | Apr. 26                 | 1.72      | Jun.      |
| Case 2-1  | Wet            | Jan. 1                  | 1.36      | Feb.      |
|           | Dry            | Jun. 16                 | 1,53      | Jul., Aug |
| Case 2-2  | Wet            | Jan. 1                  | 1.36      | Feb.      |
| (adopted) | Dry            | Jul. 16                 | 1.53      | Aug.      |
| Case 3-1  | Wet            | 0et. 1                  | 1.14      | Nov.      |
|           | Dry            | Mar. 16                 | 1.46      | Jun.      |
| Case 3-2  | Wet            | 0ct. 1                  | 1.14      | Nov.      |
| 0000 0 2  | Dry            | Apr. 16                 | 1.72      | Jun.      |

Table V-33 COMPARISON OF UNIT WATER REQUIREMENT

Fig. V-11

COMPARISON OF CROPPING PATTERN



# Table V-34

|                                        |                  | PUDDLI     |              |       |            |      | ******       |     |               |         |     |
|----------------------------------------|------------------|------------|--------------|-------|------------|------|--------------|-----|---------------|---------|-----|
| Honth                                  | 5 DAYS<br>PERIOD | C1         | C2           | C3    | lp<br>Area | C    | CROP<br>AREA |     | WLR2.<br>mm/d |         | ¥LR |
| <u>-</u>                               | 2                | 3          | 4            | <br>ς |            |      |              |     | 10            |         |     |
|                                        |                  |            |              |       |            |      |              |     |               |         |     |
| 1st                                    |                  | Γb         | LP           |       | 2/3        |      |              |     |               |         |     |
|                                        | 2                | ΓÞ         | LP           |       | 2/3        |      |              |     |               |         |     |
|                                        | - 3              | LP         |              |       | 2/3        |      |              |     |               |         |     |
|                                        | 4                | LP         |              |       | 2/3        |      |              |     |               | · · · · |     |
|                                        |                  | LP         |              |       | 2/3        | 1.15 |              |     |               |         |     |
|                                        | 6                | 1.1        | LP           |       | 1/3        | 1.1  | 1/3          |     |               |         |     |
| 2nd                                    | 1.               | 1 1        | LP           | ·     | 1/3        | 11   | 1/3          |     |               |         |     |
| .1                                     |                  | 1.1        |              |       | 1/3        |      | 1/3          |     |               |         |     |
| $\{ f_{i}^{(1)} \}_{i \in \mathbb{N}}$ |                  | 1.1        |              |       |            |      | 1/3          |     |               |         |     |
|                                        |                  | 1.1        | 1.1          |       | 1/3        | 11   |              |     |               |         |     |
|                                        |                  | 1.1        |              |       |            | 1.1  | 2/3          |     |               |         |     |
|                                        | 6                | 1.05       | 1.1          | LP    | 1/3        | 1.08 |              | 3.3 |               |         | 1.1 |
| 3rd                                    | 1 ·              | 1.05       | 11           | LP    | 1/3        | 1.08 | 2/2          | 3.3 |               |         | 1.1 |
| Ju                                     | 2                |            | 1.1          |       |            | 1.08 |              | 3.3 |               |         | 1.1 |
|                                        | 3                |            | 1.1          |       |            | 1.08 |              |     |               | +       |     |
|                                        | 4                |            | 1.05         | LP    | 1/3        | 1.05 |              |     | 3.3           |         | 1.1 |
|                                        | .*               |            |              | LP    | 1/3        | 1.05 |              |     | 3.3           |         | 1.1 |
|                                        | р<br>б.          |            | 1.05         |       | 1/5        | 1.03 | 1            | 3.3 | 3.3           |         | 2.2 |
|                                        |                  |            | a tract      |       |            |      |              | !   |               |         |     |
| 4th                                    | 1                |            | 1.05         |       |            | 1.03 |              | 3.3 |               |         | 1.1 |
| 1                                      | 2                |            | 1.05         | 1.1   |            | 1.03 |              | 3.3 |               |         | 1.1 |
|                                        | 3                |            | 1.05         |       |            | 1.03 |              |     |               |         |     |
|                                        | 4                |            | 0.95         | [1.1] |            |      | 2/3          |     | 3.3           |         | 1.1 |
|                                        | 5                |            | 0.95         | 1.1   |            | 1.03 |              |     | 3.3           |         | 1.1 |
|                                        | 6                | 0.00       | 0.95         | 1.05  |            | 1.00 | 2/3          |     | 3.3           | 3.3     | 2.2 |
| 5th                                    | 1.               | -          | 0.95         | 1.05  |            | 1.00 | 2/3          |     |               | 3.3     | 1.1 |
|                                        | 2                | -          | 0.00         | 1.05  | · •        | 1.05 | 1/3          |     |               | 3.3     | 1.1 |
| · .                                    | 3                | - '        | 0.00         | 1.05  |            | 1.05 | 1/3          |     |               |         |     |
|                                        | 4                | <b>-</b> . | 0.00         |       | 19 - P     | 1.05 | 1/3          |     |               |         |     |
|                                        | 5                | _          |              | 1.05  | 10<br>10   | 1.05 | 1/3          |     |               |         |     |
| · .                                    | 6                | -          | -            | 0.95  |            | 8.95 | 1/3          |     |               | 3.3     | 1.1 |
|                                        |                  |            |              |       | ÷ .        |      |              | ÷   |               |         |     |
| 6th                                    | 1                | -          | ~            | 0.95  |            | 0,95 | 1/3          |     |               | 3.3     | i.1 |
|                                        | 2                |            | -            | 0.95  |            | 0.95 | 1/3          | ·   |               | 3.3     | 1.1 |
|                                        | 3 .              | -"         | <sup>1</sup> | 0.95  | 1 A        | 0.95 | 1/3          |     |               |         |     |
| . *                                    | 4                |            | <b>-</b> 1   | 0.00  |            | 0.00 |              |     |               |         |     |
|                                        | 5                | - `        | -            | 0.00  | :          | 0.00 |              |     |               |         |     |
|                                        | 6                | -          |              | 0.00  |            | 0.00 |              |     |               |         |     |

| lit./s/ha<br>Case 1-2 |        | Bernang Bar<br>Kenang Kenang<br>Kenang Kenang | Case 1-2 | Case 1-1 |        |
|-----------------------|--------|-----------------------------------------------|----------|----------|--------|
| Oct.1                 | Oct.11 | Period                                        | 0ct.11   | 0ct.11   | Period |
| Apr.2                 | Mar.26 |                                               | Apr.26   | Mar.26   |        |
| 1.6                   | 1.33   | Jul.1                                         | 0.60     | 0.60     | Jan.1  |
| 1.3                   | 1.10   | 2                                             | 0.60     | 0.60     | - 2    |
| 1.3                   | 0.84   | 3                                             | 0.51     | 0.51     | 3      |
|                       | 0.84   | 4                                             | 0.51     | 0.51     | 4      |
| 1.5                   | 1.14   | - 5                                           | 0.34     | 0.34     | 5      |
|                       | 0.91   | 6                                             | 0.46     | 0.46     | 6      |
| 1.3                   | 0.61   | Aug 1                                         | 0.46     | 0.46     | Feb.1  |
|                       | 0.38   | 2                                             | 0.67     | 0.67     | 2      |
|                       | 0.35   | 3                                             | 0.63     | 0.63     | 3      |
|                       | 0.35   | 4                                             | 0.44     | 0.44     | 4      |
| 1.1                   | 0.55   | 5                                             | 0.29     | 0.29     | 5      |
|                       | 0.55   | 6                                             | 0.29     | 0.29     | 6      |
| 0.5                   | 0.51   | Sep 1                                         | 0.08     | 0.08     | Mar.1  |
| 0.3                   | 0.28   | 2                                             | 0.29     | 0.29     | 2      |
|                       | 0.00   | 3                                             | 0.26     | 0.26     | 3      |
| 0.1                   | 0.00   | 4                                             | 0.26     | 0.26     | 4      |
|                       | 0.00   | 5                                             | 0.12     | 0.12     | 5      |
| 0.0                   | 0.00   | 6                                             | 0.00     | 0.76     | - 6    |
| 0.4                   | 0.00   | Oct.1                                         | 0.00     | 0.93     | Apr.1  |
| 0.2                   | 0.00   | 2                                             | 0.00     | 0.93     | 2      |
| 0.8                   | 0.85   | 3                                             | 0.00     | 0.96     | 3      |
| 0.8                   | 0.85   | 4                                             | 0.00     | 0.96     | 4      |
| 0.7                   | 0.70   | 5                                             | 0.00     | 0.59     | 5      |
| 0.7                   | 0.70   | 6                                             | 0.80     | 0.59     | 6      |
| 0.9                   | 0.97   | Nov.1                                         | 0.79     | 0.57     | May 1  |
| 0.7                   | 0.74   | 2                                             | 0.79     | 0.97     | 2      |
| 0.6                   | 0.68   | 3                                             | 0.97     | 1.03     | 3      |
| 0.6                   | 0.68   | 4                                             | 0.97     | 1.03     | 4      |
| 0.6                   | 0.61   | 5                                             | 0.78     | 1.30     | 5      |
| 0.3                   | 0.39   | 6                                             | 0.78     | 1.30     | 6      |
| 0.5                   | 0.51   | Dec.1                                         | 0.87     | 1.42     | Jun.1  |
| 0.7                   | 0.73   | 2                                             | 1.43     | 1.19     | 2      |
|                       | 0.48   | 3                                             | 1.13     | 1.33     | 3.     |
|                       | 0.48   | 4                                             | 1 13     | 1.33     | 4      |
|                       | 0.54   | 5                                             | 1.72     | 1.69     | 5.     |
|                       | 0.75   | 6                                             | 1.72     | 1.46     | 6      |

Table V-35.1 Comparison of Water Requirement(1/3)

|       | e e<br>e e e e e | Case 2-1 | Case 2-2 |        | Unit:<br>Case 2-1 | lit./s/ha<br>Case 2-2 |
|-------|------------------|----------|----------|--------|-------------------|-----------------------|
| P     | eriod            | Jan. 1   | Jan. 1   | Period | Jan. 1            | Jan. 1                |
|       |                  | Jun.16   | Jul.16   |        | Jun.16            | Jul.16                |
| • • • | Jan.1            | 0.55     | 0.55     | Jul.1  | 1.21              | 0.00                  |
|       | 2                | 0.55     | 0.55     | 2      | 1.21              | 0.00                  |
|       | 3                | 0.65     | 0.65     | . 3    | 0.85              | 0.00                  |
|       | . 4              | 0.65     | 0.65     | 4      | 0.85              | 1.07                  |
|       | 5                | 0.70     | 0.70     | 5      | 0.94              | 1.17                  |
|       | 6                | 0.48     | 0.48     | 6      | 1.53              |                       |
| _ }   | Feb.1            | 0.48     | 0.48     | Aug.1  | 1.41              | 1.23                  |
|       | 2                | 0.48     | 0.48     | 2      | 1.41              | 1.23                  |
|       | -3               | 1.10     | 1.10     | 3      | 1.53              | 0.93                  |
|       | 4                | 0.89     | 0.89     | 4      | 1.53              | 0.93                  |
|       | 5                | 1.14     | 1.14     | 5      | 1.53              | 0.94                  |
|       | 6                | 1.36     | 1.36     | 6      | 1.30              | 1.53                  |
| Ċ,    | Mar.1            | 0.73     | 0.73     | Sep.1  | 1.39              | 1.18                  |
|       | 2                | 0.73     | 0.73     | - 2    | 1.39              | 1.18                  |
|       | . 3.             | 0.43     | 0.43     | 3      | 0.78              | 0.82                  |
|       | 4                | 0.65     | 0.65     | 4      | 0.55              | 0.82                  |
|       | . 5              | 0.91     | 0.91     | 5      | 0.00              | 0.00                  |
|       | 6                | 0.89     | 0.89     | 6      | 0.00              | 0.00                  |
|       | Apr.1            | 0.93     | 0.93     | Oct.1  | 0.73              |                       |
|       | 2                | 0.93     | 0.93     | 2      | 0.73              | 1.22                  |
|       | 3                | 0.70     | 0.70     | 3      | 0.80              | 0.99                  |
|       | 4                | 0.70     | 0.70     | 4      | 0.57              | 0.76                  |
|       | 5                | 0.58     | 0.58     | - 5    | 0.35              | 0.57                  |
|       | 6                | 0.79     | 0.79     | . 6    | 0.12              | 0.34                  |
| ·]    | May 1            | 0.54     | 0.54     | Nov.1  | 0.25              | 0.73                  |
|       | 2                | 0,40     | 0.40     | 2      | 0.25              | 0.73                  |
|       | 3                | 0.26     | 0.26     | 3      | 0.42              | 0.89                  |
|       | 4                | 0.26     | 0.26     | 4      | 0.42              | 0.65                  |
|       | 5.               | 0.27     | 0.27     | 5      | 0.25              | 0.27                  |
|       | 6                | 0.47     | 0.47     | 6      | 0.01              | 0.04                  |
|       | Jun.1            | 0.52     | 0.52     | Dec.1  | 0.00              |                       |
|       |                  | 0.52     | 0.52     | 2      | 0.00              | 0.08                  |
| -     | 23               | 0.26     | 0.26     | . 3    | 0.00              | 0.20                  |
|       |                  | 1.06     | 0.00     | 4      | 0.00              | 0.20                  |
|       | 4<br>5<br>6      | 1.28     | 0.00     | 5      | 0.00              | 0.30                  |
|       | 6                | 1.28     | 0.00     | 6      | 0.00              | 0.07                  |

Table V-35.2 Comparison of Water Requirement(2/3)

V-75

.

| lit./s/ha | linit  |                                               |          | 2 M      |        |
|-----------|--------|-----------------------------------------------|----------|----------|--------|
| Case 3-2  |        | d Adama ya<br>Kata ya kata ya<br>Kata ya Kata | Case 3-2 | Case 3-1 |        |
| Oct. 1    | 0ct. 1 | Period                                        | Oct. 1   | 0ct. 1   | Period |
| Apr.16    | Mar.16 |                                               | Apr.16   | Mar.16   |        |
| 1.58      | 0.97   | Jul.1                                         | 0.36     | 0.36     | Jan 1  |
| 1.58      | 0.97   | 2                                             | 0.36     | 0.36     | 2      |
| 1.37      | 1.06   | 3                                             | 0.28     | 0.28     | 3      |
| 1.14      | 0.82   | 4                                             | 0.42     | 0.42     | 4      |
| 1.27      | 0,58   | 5                                             | 0.46     | 0.46     | 5      |
| 1.04      | 0.35   | 6                                             | 0.67     | 0.67     | 6      |
| 1.00      | 0.38   | Aug.1                                         | 0.44     | 0.44     | Feb.1  |
| 1.00      | 0.38   | 2                                             | 0.35     | 0.35     | - 2    |
| 1.14      | 0.55   | . 3                                           | 0.21     | 0.21     | 3      |
| 0.91      | 0.55   | 4                                             | 0.21     | 0.21     | 4      |
| 0.58      | 0.55   | 5                                             | 0.29     | 0.29     | 5.,    |
| 0.35      | 0.32   | 6                                             | 0.49     | 0.49     | 6      |
| 0.31      | 0.00   | Sep.1                                         | 0.29     | 0.29     | Mar 1  |
| 0.31      | 0.00   | 2                                             | 0.29     | 0.29     | 2      |
| 0.31      | 0.00   | 3                                             | 0.03     | 0.03     | . 3    |
| 0.31      | 0.00   | 4                                             | 0.00     | 0.58     | 4      |
| 0.00      | 0.00   | 5                                             | 0.00     | 0.76     | 5      |
| 0,00      | 0.00   | 6                                             | 0.00     | 0.76     | 6      |
| 0.97      | 0.97   | Oct.1                                         | 0.00     | 0.93     | Apr.1  |
| 0.97      | 0.97   | 2                                             | 0.00     | 0.93     | 2      |
| 0.85      | 0.85   | 3                                             | 0.00     | 0.72     | .3     |
| 0.85      | 0.85   | 4                                             | 0.96     | 0.72     | 4      |
| 0.70      | 0.70   | 5                                             | 0.80     | 0.59     | 5      |
| 0.48      | 0.48   | 6                                             | 0.80     | 1.00     | 6      |
| 0.74      | 0.74   | Nov.1                                         | 0.79     | 0.76     | Hay.1  |
| 0.74      | 0.74   | 2                                             | 0.79     | 0.76     | 2      |
| 1.14      | 1.14   | . 3                                           | 0.75     | 1.25     | 3      |
| 0.93      | 0.93   | 4                                             | 0.75     | 1.25     | 4      |
| 0.39      | 0.39   | 5                                             | 0.78     | 1.30     | 5      |
| 0.60      | 0.60   | 6                                             | 1.30     | 1.07     | 6      |
| 0.73      | 0.73   | Dec.1                                         | 1.20     | 1 41     | Jun 1  |
| 0.73      | 0.73   | 2                                             | 1.20     | 1.41     | 2      |
| 0.25      | 0.25   | 3                                             | 1.35     | 1.31     | 3      |
| 0.46      | 0.46   | 4                                             | 1.35     | 1.08     | ·      |
| 8.75      | 0.75   | 5                                             | 1.72     | 1.46     | 5      |
| 0.74      | 0.74   | 6                                             | 1.49     | 1.23     | . 6    |

Table V-35.3 Comparison of Water Requirement(3/3)

| Period |             |            |      | WLR        | Area  | (LP)         | Area    | c f  | (c)                      |             |       | Total        | DR<br>1/s/ha     |
|--------|-------------|------------|------|------------|-------|--------------|---------|------|--------------------------|-------------|-------|--------------|------------------|
| (1)    | (2)         | (3)        | (4)  | (5)        | (6)   | (7)          | (8)     | (9)  |                          |             | (12)  |              |                  |
|        |             |            |      |            |       | i.<br>A ja j | •       |      | 2*9                      | (7-4)<br>*6 |       | )11+12<br>+5 | 13/(0.5<br>8.64) |
| Jan 1  | 4.3         | 3.0        | 6.8  | نو د. هم م | 0.67  | 10.7         |         |      |                          | 2.6         |       | 2.6          | 0.5              |
| 2      | 4.3         | 3.0        | 6.8  |            | 0.67  | 10.7         | ÷       |      | 1.5                      | 2.6         | : •   | 2.6          | 0.5              |
| ં 3    | 4.3         | 3.0        | 6.1  | · ·        | 0.67  | 10.7         |         |      |                          | 3.1         |       | 3.1          | 0.6              |
| 4      | 4.3         | 3.0        | 6.1  | · · ·      | 0.67  | 10.7         |         |      |                          | 3.1         |       | 3.1          | 0.6              |
|        |             | 3.0        |      |            | 0.67  | 11.0         |         | <br> | an tha sha               | 3.4         |       | 3.4          | 0.7              |
| 6      | 4.5         | 3.0        | 6.0  |            | 0.33  | 11.0         | 0.33    | 1.10 | 5.0                      | 1.7         | 0.6   | 2.3          | 0.4              |
| Feb.1  | 4.4         | 3.0        | 5.9  |            | 0.33  | 10.8         | 0.33    | 1.10 | 4.8                      | 1.6         | 0.6   | 2.3          | 0.4              |
| 2      | 4.4         | 3.0        | 5.9  |            | 0.33  | 10.8         | 0.33    | 1.10 | 4.8                      | 1.6         | 0.6   | 2.3          | 0.4              |
| 3      | 4.8         | 3.0        | 5.0  | -          | 0.67  | 11.2         | 0.33    | 1.10 | 5.3                      | 4.2         | 1.1   | 5.2          | 1.1              |
| 4      | 4.8         | 3.0        | 5.0  | ан .       | 0.33  | 11.2         | 0.67    | 1.10 | 5.3                      | 2.0         | 22    | 4.2          | 0.8              |
|        | 1 A A       | 3.0        |      |            |       |              |         |      |                          | 2.4         | . 3.0 | 5.4          | 1.1              |
| 6      |             | 3.0        |      |            |       |              |         |      |                          |             |       | 6.5          | 11.              |
| Mar 1  |             | 3.0        |      |            |       |              |         |      |                          |             |       | 3.5          | <u>`0.'</u>      |
| 2      |             | 3.0        |      |            |       |              |         |      |                          | 1.5         | 0.9   | 3.5          | 0.1              |
|        |             | 3.0        |      |            |       |              |         |      |                          |             |       |              |                  |
| 4      |             |            |      |            |       |              |         |      |                          |             | 0.6   |              | 0.0              |
| -      |             | 3.0        |      |            |       |              |         |      |                          |             |       |              | 0.9              |
|        |             | 3.0        |      |            |       | 11.0         | 1.00    | 1.03 | 4.6                      |             | 2.0   | 4.2          | 0.8              |
| Apr 1  |             |            |      |            |       | 10.8         | 1.00    | 1.03 | 4.5                      |             | 3.3   | 4.4          | 0.9              |
|        |             | 3.0        |      |            |       | 10.8         | 1.00    | 1.03 | 4.5                      |             | 3.3   |              |                  |
|        |             | 3.0        |      |            |       | 10.5         | 1.00    | 1.03 | 4.0                      |             | 3.3   |              |                  |
|        |             |            |      |            | 21    | 10.5         | 0.67    | 1.03 | 4.5<br>4.5<br>4.0<br>4.0 |             | 2.2   |              |                  |
| ς      | 4.7         | 3.0<br>3.0 | 5.4  | 1.1        |       | 11.1         | 0.67    | 1.03 | 4.8                      |             | 1.6   |              |                  |
|        |             | 3.0        |      |            |       | 11.1         | 0.67    | 1.00 | 4.7                      |             |       | 3.7          |                  |
| May 1  | 4 4         | 3.0        | 5.2  | 11         |       | 10.8         | 0.67    | 1.00 | 4.4                      |             | 1.5   |              |                  |
|        |             | 3.0        |      |            |       | 10.8         | 0.33    | 1.05 | 4.6                      |             |       | 1.9          |                  |
|        |             | 3.0        |      |            |       | 10.8         | 0.33    | 1.05 | 4.6                      |             |       | 1.2          |                  |
|        |             | 3.0        |      |            |       |              |         |      |                          |             | 1.2   |              | 0.2              |
| 5      | 2.1         | 3.0        | 3 3  |            |       | 10:5         | 0.33    | 1.05 | 4.2                      |             | 1.3   |              |                  |
| ر<br>6 |             | 3.0        | 3.3  | 1 I        |       | 10.2         | 0.33    | 0.95 | 3.8                      |             | 1.2   |              |                  |
| Jun.1  | -7-0<br>N N | 2.0        | 313  | 1 1        |       | 10.5         | in 33   | 0.95 | 3:8                      |             | 1.4   |              |                  |
| oun.1  | . N U       | 3 U        | ·) 7 | 11         |       | 10.5         | 1.33    | 0.02 | 3.8                      |             | 1.4   |              |                  |
| 3      |             |            |      |            |       |              |         |      | 3.7                      |             | 1.2   | -            |                  |
|        |             | 3.0        |      |            |       |              | 0.55    |      | 0.1                      |             |       | 0.0          |                  |
| P      | 158 0       | 2.0        |      | ,          |       | 11.0         | - 1 - E |      |                          |             |       | 0.0          | 1 ព              |
|        | 4.0         | 0.0        | 1.2  | · · ·      | e e s | 1110         |         |      |                          |             |       | 0.0          | 0.0              |

V-77

| Period | ETo<br>mm/d | P<br>nm/d | Re<br>mm | WLR<br>mm/d | Area             | (LP)  | Area      | c.f                  | (c) | (LP)  | (c)        | NFR<br>Total<br>mm/d | DR<br>1/s/ha                            |                                                                                                                 |
|--------|-------------|-----------|----------|-------------|------------------|-------|-----------|----------------------|-----|-------|------------|----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| (1)    | (2)         | (3)       | (4)      | (5)         | (6)              | (7)   | (8)       |                      |     | (7-4) | (10+3-4)   | 11+12                | (14)<br>13/(0.55<br>8.64)               |                                                                                                                 |
|        | 4.5         |           | 1.0      |             |                  | 11.0  |           | * *** *** *** *** ** |     | 3 .i  |            |                      | 0.00                                    |                                                                                                                 |
|        | 4.5         |           |          |             | an Rei<br>Martin | 11 0  |           |                      |     |       |            |                      | 0.00                                    |                                                                                                                 |
|        | 4.4         |           | - C      |             |                  |       |           | 1                    |     |       |            | 0.0                  | 0.00                                    |                                                                                                                 |
|        | 4.4         |           |          |             | 0.67             |       |           | 1.1                  |     | 5.1   |            | 5.1                  |                                         |                                                                                                                 |
|        | 4.5         |           |          |             | 0.67             | 11.0  |           | · · ·                |     | 5.6   |            |                      | <u> </u>                                | 1                                                                                                               |
|        | 4.5         |           | 1 2      |             | 0.67             | 11.0  | la este d | e el tr              |     | 5.6   |            | 5.6                  |                                         |                                                                                                                 |
|        | 4.4         |           |          |             | 0.67             | 10.8  | 티신        | 149                  |     | 5.8   |            | 5.8                  |                                         |                                                                                                                 |
|        | 4.4         |           |          |             | 0.67             | 10.8  |           |                      |     | 5.8   |            | 5.8                  | 1.23                                    | · ·                                                                                                             |
|        | 4.3         |           |          | 1           | 0.33             | 10.7  | 0.33      | 1.10                 | 4.7 | 2.7   | 1.7        | 4.4                  | 0.93                                    |                                                                                                                 |
| 4      | 4.3         | 3.0       | 2.5      |             | 11               | 111.7 |           | 1.117                |     |       |            |                      |                                         |                                                                                                                 |
| . 5    | 4.2         | 3.0       | 2.4      |             | 0.33             | 10.7  | 0.33      | 1.10                 | 4.6 | 2.7   | 1.7        | 4.5                  | 0.94<br>1.53<br>1.18<br>1.18            | 1                                                                                                               |
| . b    | 4.2         | 3.0       | 2.4      |             | 0.67             | 10.7  | 0.33      | 1.10                 | 4 b | 5.0   | 1.7        | 1.5                  | 1.55                                    | 1                                                                                                               |
| ep.1   | 4.1         | 3.0       | 2.9      |             | 0.33             | 10.6  | 0.6/      | 1.10                 | 4.5 | 4.5   | 3.1        | 5.0                  | 1.18                                    |                                                                                                                 |
| : 2    | 4.1         | 3.0       | 2.9      |             | 8.33             | 10.6  | 0.67      | 1.10                 | 4.5 | 4.5   | 3.1        | 5.0                  | 1.18                                    |                                                                                                                 |
|        |             |           |          |             |                  |       |           |                      |     | 1.6   | 1.2        | 3.9                  | 0.82                                    |                                                                                                                 |
|        | 4.2         |           |          |             |                  |       |           |                      |     | 1.0   | 1.6        | 3.9                  | 0.82                                    |                                                                                                                 |
| . 5    |             |           |          | 1.1         | 0.33             | 10.5  | 0.07      | 1.00                 | 4.6 | -0.1  | -2.3       | ~100<br>             | *0.00                                   |                                                                                                                 |
| - 6    | 3.9         | 3.0       | 10.7     |             | 0.33             | 10.5  | 0.67      | 1.08                 | 4.2 | ~0.1  | -2.3       | - 4,9                | *0.00                                   | 1.1                                                                                                             |
|        | 4.2         | 3.0       | 3.8      | 1.1         | 0.33             | 10.7  | 0.67      | 1.05                 | 4.4 | 2.3   | 4.4        | 5.8                  | 1.22<br>1.22                            |                                                                                                                 |
| 2      |             |           |          |             |                  |       |           |                      |     | 6.3   | 24         | 5.8                  | 1.44                                    |                                                                                                                 |
| 3      |             |           |          | 2.2         |                  | 10.5  | 1.00      | 1.03                 | 4.0 |       | 2.5<br>2.5 | 4.1                  | 0.99                                    |                                                                                                                 |
|        | 3.9         |           |          |             |                  |       |           |                      |     |       |            |                      |                                         |                                                                                                                 |
| 5      |             |           |          |             | · .              | 10.5  | 1.00      | 1.03                 | 4.2 | n es  | 1.6        | 61                   | 0,57                                    | •                                                                                                               |
|        | 4.1         |           |          |             |                  |       |           |                      |     |       |            |                      | 0.34                                    |                                                                                                                 |
|        |             |           |          |             |                  |       |           |                      |     |       |            |                      | 0.73                                    | р. — — — — — — — — — — — — — — — — — — —                                                                        |
|        | 4.1         |           |          |             |                  |       |           | 1.03                 |     |       | 1.1.1      | 3.5                  |                                         |                                                                                                                 |
|        |             |           |          |             |                  |       |           |                      |     |       |            |                      |                                         |                                                                                                                 |
|        | 4.3         |           |          | -           |                  |       |           |                      |     |       |            |                      | 0.65<br>0.27                            | e generale de la composition de la comp |
|        | 4.1         |           |          |             |                  |       |           | 1.05                 |     |       |            |                      |                                         | ÷                                                                                                               |
|        | 4.1         |           |          |             |                  |       |           | 1.05                 |     |       |            |                      | 0.04                                    |                                                                                                                 |
|        | 4.1         |           |          |             |                  | 10 4  | 0.33      | 1.05                 | 4.3 |       | 0.4        | 0.4                  | 0.08                                    |                                                                                                                 |
| 2      | 4.1         | 3.0       | 0.1      | 4 4         |                  | 11.0  | 0.33      | 1.02                 | 4.3 |       | 0.4        | 0.4                  | 0.00                                    |                                                                                                                 |
|        |             |           |          |             |                  |       |           |                      |     |       |            |                      | 0.20<br>0.20                            | ter taka di s                                                                                                   |
|        | 4.5         |           |          |             |                  |       |           |                      |     |       |            |                      | 1 A A A A A A A A A A A A A A A A A A A |                                                                                                                 |
|        | 4.4         |           |          |             |                  |       | -         | 0.95                 |     | ·     |            |                      | 0.30                                    |                                                                                                                 |

V-78

| eriod<br>Jan.1<br>2<br>3<br>4<br>5 | Jan. 1<br>Jul.16<br>0.82<br>0.82                                                           | Jul.16<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                 | Feb.11<br>Aug.26                                     | Period                                               | Jan. 1<br>Jul.16                                      | Jan. 1                                                | Feb.11                                                |
|------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Jan.1<br>2<br>3<br>4<br>5          | Jul.16<br>0.82<br>0.82                                                                     | Jul.16<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                 | Aug. 26                                              | 101104                                               |                                                       |                                                       |                                                       |
| 2<br>3<br>4<br>5                   | 0.82                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       | Jul.16                                                | Aug.26                                                |
| 2<br>3<br>4<br>5                   | 0.82                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                 | Jul.1                                                | 0.00                                                  | 0.00                                                  | 0.00                                                  |
| 3<br>4<br>5                        |                                                                                            | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                 | 2                                                    | 0.00                                                  | 0.00                                                  | 0.00                                                  |
| 4<br>5                             | 0.97                                                                                       | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                 | 3                                                    | 0.00                                                  | 0.00                                                  | 0.00                                                  |
| 5                                  | 0.97                                                                                       | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                 | 4                                                    | 1.60                                                  | 1.60                                                  | 0.00                                                  |
|                                    | 1.05                                                                                       | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                 | 5                                                    | 1.75                                                  | 1.75                                                  | 0.00                                                  |
| . 6                                | 0.41                                                                                       | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                 | 6                                                    | 1.75                                                  | 1.75                                                  | 0.00                                                  |
| eb.1                               | 0.41                                                                                       | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                 | Aug.1                                                | 11.83                                                 | 1.83                                                  | 0.00                                                  |
| 2                                  | 0.41                                                                                       | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                 | 2                                                    | 1.83                                                  | 1.83                                                  | 0.00                                                  |
| 3                                  | 0.69                                                                                       | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                                                 | 3                                                    | 1.10                                                  | 1.73                                                  | 0.00                                                  |
| 4                                  | 0.69                                                                                       | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                                                 | 4                                                    | 1.10                                                  | 1.73                                                  | 0.00                                                  |
| 5                                  | 0.94                                                                                       | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.56                                                 | 5                                                    | 1.10                                                  | 1.75                                                  | 0.00                                                  |
| 6                                  | 1.58                                                                                       | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.56                                                 | 6                                                    | 1.10                                                  | 1.75                                                  | 1.7                                                   |
| lar.1                              | 0.95                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                 | Sep.1                                                | 0.97                                                  | 0.97                                                  | 1.62                                                  |
| 2                                  | 0.95                                                                                       | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                 | 2                                                    | 0.97                                                  | 0.97                                                  | 1.6                                                   |
| 3                                  | 0.19                                                                                       | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86                                                 | 3                                                    | 1.03                                                  | 0.38                                                  | 1.0                                                   |
| 4                                  | 0.19                                                                                       | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86                                                 | 4                                                    | 1.03                                                  | 0.38                                                  | 1.0                                                   |
| 5                                  | 0.45                                                                                       | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.14                                                 | 5                                                    | 0.00                                                  | 0.00                                                  | 0.0                                                   |
| 6                                  | 1.05                                                                                       | 1 14                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.49                                                 | 6                                                    | 0.00                                                  | 0.00                                                  | 0.0                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Oct.1                                                |                                                       |                                                       | 1.4                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 1.4                                                   |
| -                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 0.5                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 0.5                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 0.40                                                  |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 0.40                                                  |
|                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 0.80                                                  |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 0.80                                                  |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 1.3                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 1.3                                                   |
|                                    |                                                                                            | 1 4                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |                                                      | 0.00                                                  | 0.00                                                  | 0.8                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       | 0.00                                                  | 0.13                                                  |
| -                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 0.2                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       | 0.00                                                  | 0.2                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       | 0.00                                                  | 0.6                                                   |
| 4                                  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       | 0.00                                                  | 0.6                                                   |
|                                    |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                       |                                                       | 0.90                                                  |
| 5                                  | 0.00                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                 | 5                                                    | 0.00                                                  | 0.00                                                  | 0.91                                                  |
| H.                                 | pr.1<br>2<br>3<br>4<br>5<br>6<br>ay.1<br>2<br>3<br>4<br>5<br>6<br>1<br>un.1<br>2<br>3<br>4 | pr.1       1.32         2       1.32         3       0.63         4       0.00         5       0.00         6       0.00         2       0.00         3       0.00         4       0.00         5       0.00         6       0.00         3       0.00         4       0.00         5       0.00         6       0.00         6       0.00         1       0.00         2       0.00         3       0.00         4       0.00 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Table V-37 Unit Water Requirement for Each Block

#### 3.4 Diversion Requirement

Three basic plans for irrigation are studied in which water is delivered to the existing settlers, to the existing settlers plus new settlers, and to the settlers for oil palm plantations. Finally the last one (Plan-3) is adopted as mentioned in the Clause 2.1 (7), Chapter 2.

Intake discharges and remaining river discharges for three cases are given the following table.

|                       |         |         |         | Plan-1                 | Plan-2                 | Plan-3                 |
|-----------------------|---------|---------|---------|------------------------|------------------------|------------------------|
| Period                |         |         |         | Aug. last<br>10 days   | Aug.mid.<br>10 days    | Aug.mid.<br>10 days    |
| Maximum I             | ntake D | lscharg | çe      | 3.33 m <sup>3</sup> /s | 6.43 m <sup>3</sup> /s | 6.45 m <sup>3</sup> /s |
| River Dis             | charge  |         | · · · · | 9.21                   | 9.21                   | 9.21                   |
| The Remai<br>Discharg |         | ver     |         | 7.19                   | 5.30                   | 5.28                   |

Table V-38 COMPARISON OF REMAINING RIVER DISCHARGE

For the above Plan-3, domestic water of 0.02  $m^3/s$  is included. The objective supply of domestic water is based on about 3,000 households, 15,000 persons along main canal. The quantity of water supply is planned to be 10 lit/day/person.

Furthermore the maximum irrigable area is confirmed using the above relationship between river discharge and intake discharge in the Table V-34. As the result, the maximum dry paddy area becomes 8,373 ha if the field can be prepared.

#### Table V-39 RIVER DISCHARGE & DIVERSION REQUIREMENT

Case-1: Irrigable area 2,175 ha Case-2: Irrigable area 4,200 ha Case-3: Irrigable area 4,200 ha

|       |                                                                                                                                                                                                                                     |       |       | Case                                    | -1              | Case              | -2    | Case              | -3              |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------------------------------------|-----------------|-------------------|-------|-------------------|-----------------|
|       | Unit<br>Req.                                                                                                                                                                                                                        |       |       | Diversion<br>Reg.                       | Surplus<br>Dis. | Diversion<br>Req. |       | Diversion<br>Req. | Surplus<br>Dis. |
|       | 1                                                                                                                                                                                                                                   | /s/ha | m3/s  | m3/s                                    | m3/s            | m3/s              | m3/s  | m3/s              | m3,             |
| Jan.1 | in in in                                                                                                                                                                                                                            | 0.55  | 51.67 | 1.20                                    | 50.47           | 2.31              | 49.36 |                   | 49.             |
| 2     |                                                                                                                                                                                                                                     | 0.65  | 34.31 | 1.41                                    | 32.90           |                   | 31.58 |                   | 31.9            |
| 3     |                                                                                                                                                                                                                                     | 0.70  | 34.59 | 1.52                                    | 33.07           | 2.94              | 31.65 | 2.96              | 31.0            |
| Feb.1 |                                                                                                                                                                                                                                     | 0.48  | 35.31 | 1.04                                    | 34.27           | 2.02              | 33.29 |                   |                 |
| 2     | ang <sup>1</sup> .                                                                                                                                                                                                                  | 1.10  | 22.44 | 2.39                                    | 20.05           |                   | 17.82 |                   | 17.8            |
| 3     |                                                                                                                                                                                                                                     | 1.36  | 25.62 |                                         | 22.66           |                   | 19.91 |                   | 19.8            |
| Mar.1 |                                                                                                                                                                                                                                     | 0.73  | 39.68 | 1.59                                    | 38.09           | 3.07              | 36.61 | 3.09              | 36.5            |
| 2     |                                                                                                                                                                                                                                     | 0.65  | 44.21 | 1 41                                    | 42.80           | 2.73              | 41-48 | 2.75              | 41.4            |
| 3     | l.                                                                                                                                                                                                                                  | 0.91  | 40.79 | 1.98                                    | 38.81           | 3.82              | 36.97 | 3.84              | 36.9            |
| Apr.1 |                                                                                                                                                                                                                                     | 0.93  | 28.06 | 2.02                                    | 26.04           | 3.91              | 24.15 | 3.93              | 24.             |
| 2     | 5 . F                                                                                                                                                                                                                               | 0.70  | 23.48 | 1.52                                    | 21.96           | 2.94              | 20.54 | 2.96              | 20.             |
| 3     |                                                                                                                                                                                                                                     | 0.79  | 37.14 | 1.72                                    | 35.42           | 3.32              | 33.82 | 3.34              | 33.8            |
| May 1 | 149 - Y                                                                                                                                                                                                                             | 0.54  | 25.53 | 1.17                                    | 24.36           | 2.27              | 23.26 | 2.29              | 23.             |
| 2     |                                                                                                                                                                                                                                     | 0.26  | 21.56 |                                         | 20.99           | 1.09              | 20.47 | 1.11              | 20.4            |
| 3     |                                                                                                                                                                                                                                     | 0.47  | 18.85 | 1.02                                    | 17.83           | 1.97              | 16.88 | 1.99              | 16.8            |
| Jun.1 |                                                                                                                                                                                                                                     | 0.52  | 15.50 |                                         |                 |                   | 13.32 | 2.20              | 13.             |
| 2     |                                                                                                                                                                                                                                     | 0.26  | 17.24 | 0.57                                    | 16.67           | 1.09              | 16.15 | 1.11              | 16.             |
| 3     |                                                                                                                                                                                                                                     | 0.00  | 11.45 |                                         | 11.45           | 0.00              | 11.45 | 0.02              | 11.0            |
| Jul 1 |                                                                                                                                                                                                                                     | 0.00  | 16.61 | 0.00                                    | 16.61           | 0.00              | 16.61 | 0.02              | 16.5            |
| 2     |                                                                                                                                                                                                                                     | 1.07  | 16.47 |                                         | 14.14           | 4.49              | 11.98 | 4.51              | 11.9            |
| 3     |                                                                                                                                                                                                                                     | 1.17  | 19.48 |                                         | 16.94           |                   | 14.57 | 4.93              | 14.9            |
| Aug.1 | ter en la composition de la composition<br>Composition de la composition de la comp |       | 16.66 | 2.68                                    | 13.98           | 5.17              | 11.49 | 5.19              | 11.4            |
| 2     |                                                                                                                                                                                                                                     | 0.93  | 9.21  |                                         | 7.19            | 3.91              | 5.30  |                   | 5,5             |
| 3     |                                                                                                                                                                                                                                     | 1.53  | 12.83 |                                         | 9.50            | 6.43              | 6.40  | 6.45              | 6.              |
| Sep.1 | in eta<br>Line interes                                                                                                                                                                                                              | 1.18  | 27.69 | 2.57                                    | 25.12           | 4.96              | 22.73 | 4.98              | 22.             |
| 2     |                                                                                                                                                                                                                                     | 0.82  | 26.48 | 1 A A A A A A A A A A A A A A A A A A A | 24.70           | 3.44              | 23.04 | 3.46              | 23.0            |
| 3     |                                                                                                                                                                                                                                     | 0.00  | 36.82 |                                         | 36.82           | 0.00              | 36.82 | 0.02              | 36.8            |
| 0ct.1 | · . ·                                                                                                                                                                                                                               |       | 27.23 |                                         | 24.58           | 5.12              | 22.11 | 5 14              | 22.1            |
| 2     |                                                                                                                                                                                                                                     | 0.99  | 31.21 |                                         | 29.06           | 4.16              | 27.05 |                   | 27.0            |
| 3     |                                                                                                                                                                                                                                     | 0.57  | 30.57 | 1.24                                    | 29.33           | 2.39              | 28.18 | 2.41              | 28.1            |
| Nov.1 |                                                                                                                                                                                                                                     | 0.73  | 32.37 | 1.59                                    | 30.78           | 3.07              | 29.30 | 3.09              | 29.7            |
| 2     |                                                                                                                                                                                                                                     | 0.89  | 24.25 |                                         | 22.31           |                   | 20.51 | 3.76              | 20.4            |
| 3     |                                                                                                                                                                                                                                     | 0.27  | 36.08 |                                         |                 |                   | 34.95 | 1.15              | 34.             |
| Dec.1 |                                                                                                                                                                                                                                     |       | 30.81 |                                         | 30.64           | 0.34              | 30.47 | 0.36              | 30.4            |
| 2     |                                                                                                                                                                                                                                     |       | 37.75 | 1 A A A A A A A A A A A A A A A A A A A | 37.32           |                   | 36.91 |                   | 36.8            |
| 3     |                                                                                                                                                                                                                                     | 0.30  | 39.83 |                                         | 39.18           | 1.26              | 38.57 | 1.28              | 38.5            |

Note; For the Case-3, domestic water of 0.02 m3/sec

are included.

## Table V-40 NAXINUM IRRIGABLE AREA (CASE STUDY)

Sec. 1 a P

| Jan.1<br>2<br>3<br>Feb.1<br>2<br>3<br>Har.1<br>2<br>3<br>Har.1<br>2<br>3<br>Har.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>Sep.1<br>Sep.1<br>Sep.1<br>Sep.1<br>S          | L/s/ha<br>0.55<br>0.65<br>0.70<br>0.48<br>1.10<br>1.36<br>0.73<br>0.65<br>0.91<br>0.93<br>0.70<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26                |                                                                                                                                                                         |                                                              |                                             | m irrigabl<br>hrea<br>93909<br>52754<br>49386<br>73521<br>20382<br>18824<br>54329<br>67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769<br>66231 |                                       | <b>ks</b>                                |                    |                                                                                                                 |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|
| Jan.1<br>2<br>3<br>Feb.1<br>2<br>3<br>Har.1<br>2<br>3<br>Har.1<br>2<br>3<br>Har.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>Sep.1<br>Sep.1<br>Sep.1<br>Sep.1<br>S          | 0.55<br>0.65<br>0.70<br>0.48<br>1.10<br>1.36<br>0.73<br>0.65<br>0.91<br>0.93<br>0.70<br>0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00  | 51.67<br>34.31<br>34.59<br>35.31<br>22.44<br>25.62<br>39.68<br>44.21<br>40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |                                             | 93909<br>52754<br>49386<br>73521<br>20382<br>18824<br>54329<br>67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                |                                       |                                          |                    |                                                                                                                 |                 |
| 2<br>3<br>Feb.1<br>2<br>3<br>Har.1<br>2<br>3<br>Apr.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>3<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2<br>Sep.1<br>2 | 0.65<br>0.70<br>0.48<br>1.10<br>1.36<br>0.73<br>0.65<br>0.91<br>0.93<br>0.70<br>0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00          | 34.31<br>34.59<br>35.31<br>22.44<br>25.62<br>39.68<br>44.21<br>40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61          | 0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02<br>0,02 | 「「「「「「「「「「「「」」」」」」「「「「」」」」」」」」」」」」」」」」      | 52754<br>49386<br>73521<br>20382<br>18824<br>54329<br>67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                         |                                       |                                          |                    |                                                                                                                 |                 |
| 3<br>Feb.1<br>2<br>3<br>Mar.1<br>2<br>3<br>Apr.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Cct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 0.70\\ 0.48\\ 1.10\\ 1.36\\ 0.73\\ 0.65\\ 0.91\\ 0.93\\ 0.70\\ 0.79\\ 0.54\\ 0.26\\ 0.47\\ 0.52\\ 0.26\\ 0.00\\ 0.00\\ \end{array}$ | 34.59<br>35.31<br>22.44<br>25.62<br>39.68<br>44.21<br>40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                   | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 「「「「「「「「「「」」」」「「「」」」」」「「「」」」」」「「」」」」」「「」」」」 | 49386<br>73521<br>20382<br>18824<br>54329<br>67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                  |                                       |                                          |                    |                                                                                                                 |                 |
| Feb.1<br>2<br>3<br>Har.1<br>2<br>3<br>Apr.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Cct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48<br>1.10<br>1.36<br>0.73<br>0.65<br>0.91<br>0.93<br>0.70<br>0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00                          | 35.31<br>22.44<br>25.62<br>39.68<br>44.21<br>40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                            | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 「「「「「「「「「「」」」」」」「「「」」」」」」」」「「」」」」」」」」」      | 73521<br>20382<br>18824<br>54329<br>67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                           |                                       |                                          |                    |                                                                                                                 |                 |
| 2<br>3<br>Har.1<br>2<br>3<br>Apr.1<br>2<br>3<br>Hay 1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Cct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1.10\\ 1.36\\ 0.73\\ 0.65\\ 0.91\\ 0.93\\ 0.70\\ 0.79\\ 0.54\\ 0.26\\ 0.47\\ 0.52\\ 0.26\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$        | 22.44<br>25.62<br>39.68<br>44.21<br>40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                     | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 「御御客する山村」となるため自己である。                        | 20382<br>18824<br>54329<br>67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                                    |                                       |                                          |                    |                                                                                                                 |                 |
| 3<br>Har.1<br>2<br>3<br>Apr.1<br>2<br>3<br>Hay 1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1.36\\ 0.73\\ 0.65\\ 0.91\\ 0.93\\ 0.70\\ 0.79\\ 0.54\\ 0.26\\ 0.47\\ 0.52\\ 0.26\\ 0.00\\ 0.00\\ \end{array}$                      | 25.62<br>39.68<br>44.21<br>40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                              | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |                                             | 18824<br>54329<br>67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                                             |                                       |                                          |                    |                                                                                                                 |                 |
| <pre>Har.1 2 3 Apr.1 2 3 Hay 1 2 3 Jun.1 2 3 Jul.1 2 3 Jul.1 2 3 Sep.1 2 3 Oct.1</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.73<br>0.65<br>0.91<br>0.93<br>0.70<br>0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00                                                  | 39.68<br>44.21<br>40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                       | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 化化学 建立 化二乙基 化医疗工作                           | 54329<br>67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                                                      |                                       |                                          |                    |                                                                                                                 |                 |
| 2<br>3<br>Apr.1<br>2<br>3<br>Hay 1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jun.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.65<br>0.91<br>0.93<br>0.70<br>0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00                                                          | 44.21<br>40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                                | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |                                             | 67985<br>44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                                                               |                                       |                                          |                    |                                                                                                                 |                 |
| 3<br>Apr.1<br>2<br>3<br>Hay 1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.91<br>0.93<br>0.70<br>0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00                                                                  | 40.79<br>28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                                         | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |                                             | 44802<br>30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                                                                        |                                       |                                          |                    |                                                                                                                 |                 |
| Apr.i<br>2<br>3<br>Hay 1<br>2<br>3<br>Jun.i<br>2<br>3<br>Jul.i<br>2<br>3<br>Aug.i<br>2<br>3<br>Sep.i<br>2<br>3<br>Oct.i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.93<br>0.70<br>0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.26<br>0.00<br>0.00                                                                  | 28.06<br>23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                                                  | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |                                             | 30151<br>33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                                                                                 |                                       |                                          |                    |                                                                                                                 |                 |
| 2<br>3<br>Hay 1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.70<br>0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00                                                                                  | 23.48<br>37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                                                           | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |                                             | 33514<br>46987<br>47241<br>82846<br>40064<br>29769                                                                                                                          |                                       |                                          |                    |                                                                                                                 |                 |
| 3<br>Hay 1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.79<br>0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00                                                                                          | 37.14<br>25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                                                                    | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |                                             | 46987<br>47241<br>82846<br>40064<br>29769                                                                                                                                   |                                       |                                          |                    |                                                                                                                 |                 |
| Hay 1<br>2<br>3<br>Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.54<br>0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00                                                                                                  | 25.53<br>21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                                                                             | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02         |                                             | 47241<br>82846<br>40064<br>29769                                                                                                                                            |                                       |                                          |                    |                                                                                                                 |                 |
| 2<br>3<br>Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.26<br>0.47<br>0.52<br>0.26<br>0.00<br>0.00                                                                                                          | 21.56<br>18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                                                                                      | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                 |                                             | 82846<br>40064<br>29769                                                                                                                                                     |                                       |                                          |                    |                                                                                                                 | 24 <sup>3</sup> |
| 3<br>Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.47<br>0.52<br>0.26<br>0.00<br>0.00                                                                                                                  | 18.85<br>15.50<br>17.24<br>11.45<br>16.61                                                                                                                               | 0.02<br>0.02<br>0.02<br>0.02<br>0.02                         |                                             | 40064<br>29769                                                                                                                                                              |                                       |                                          |                    |                                                                                                                 | n)              |
| Jun.1<br>2<br>3<br>Jul.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.52<br>0.26<br>0.00<br>0.00                                                                                                                          | 15.50<br>17.24<br>11.45<br>16.61                                                                                                                                        | 0.02<br>0.02<br>0.02                                         |                                             | 29769                                                                                                                                                                       |                                       |                                          |                    |                                                                                                                 | e)              |
| 2<br>3<br>Jul.i<br>2<br>3<br>Aug.i<br>2<br>3<br>Sep.i<br>2<br>3<br>Oct.i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26<br>0.00<br>0.00                                                                                                                                  | 17.24<br>11.45<br>16.61                                                                                                                                                 | 0.02<br>0.02                                                 |                                             |                                                                                                                                                                             |                                       |                                          | and the second     |                                                                                                                 |                 |
| 3<br>Jul.i<br>2<br>3<br>Aug.i<br>2<br>3<br>Sep.i<br>2<br>3<br>Oct.i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                  | 11.45<br>16.61                                                                                                                                                          | 0.02                                                         | · · · · · · · · · · · · · · · · · · ·       |                                                                                                                                                                             |                                       |                                          |                    |                                                                                                                 | · · ·           |
| Jul.1<br>2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                  | 16.61                                                                                                                                                                   |                                                              |                                             |                                                                                                                                                                             | - 18 - 18 <u>-</u> 18                 |                                          | e e i gi           | a ser e de la composición de la composi |                 |
| 2<br>3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                                                                                                         |                                                              |                                             |                                                                                                                                                                             |                                       |                                          |                    | a<br>Alan ara                                                                                                   |                 |
| 3<br>Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       | - 10.47                                                                                                                                                                 | 0.02                                                         |                                             | 15374                                                                                                                                                                       |                                       | n i se sella<br>1 to se to               | - 11<br>- 11       |                                                                                                                 |                 |
| Aug.1<br>2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17                                                                                                                                                  | 19.48                                                                                                                                                                   | 0.02                                                         |                                             | 16632                                                                                                                                                                       |                                       |                                          |                    |                                                                                                                 |                 |
| 2<br>3<br>Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.23                                                                                                                                                  | 16.66                                                                                                                                                                   | 0.02                                                         |                                             | 13528                                                                                                                                                                       | 11 년 년<br>17 월 3일                     |                                          |                    |                                                                                                                 |                 |
| Sep.1<br>2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.93                                                                                                                                                  | 9.21                                                                                                                                                                    | 0.02                                                         |                                             | 9882                                                                                                                                                                        |                                       | an a |                    |                                                                                                                 |                 |
| 2<br>3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       | 12.83                                                                                                                                                                   | 0.02                                                         | t de la                                     | 8373                                                                                                                                                                        | K Max.                                |                                          |                    | 1                                                                                                               |                 |
| 3<br>Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.18                                                                                                                                                  | 27.69                                                                                                                                                                   | 0.02                                                         | · ·                                         | 23449                                                                                                                                                                       | Dry pa                                | addy                                     |                    |                                                                                                                 |                 |
| Oct.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.82                                                                                                                                                  | 26.48                                                                                                                                                                   | 0.02                                                         |                                             | 32268                                                                                                                                                                       |                                       | i s s ja si                              |                    |                                                                                                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                  | 36.82                                                                                                                                                                   | 0.02                                                         |                                             |                                                                                                                                                                             | i i i i i i i i i i i i i i i i i i i |                                          |                    |                                                                                                                 | -               |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.22                                                                                                                                                  | 27.23                                                                                                                                                                   | 0.02                                                         |                                             | 22303                                                                                                                                                                       | 8                                     |                                          |                    |                                                                                                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99                                                                                                                                                  | 31.21                                                                                                                                                                   | 0.02                                                         | $\{1, \dots, n\}$                           | 31505                                                                                                                                                                       |                                       | 가지 같아.                                   |                    | 1. T                                                                                                            |                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.57                                                                                                                                                  | 30.57                                                                                                                                                                   |                                                              | 12121                                       | 53596                                                                                                                                                                       |                                       |                                          |                    |                                                                                                                 |                 |
| Nov.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.73                                                                                                                                                  | 32.37                                                                                                                                                                   | 0.02                                                         |                                             | 44315                                                                                                                                                                       |                                       |                                          |                    |                                                                                                                 |                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.89                                                                                                                                                  | 24.25                                                                                                                                                                   | 0.02                                                         |                                             | 27225                                                                                                                                                                       |                                       |                                          |                    | a di tere                                                                                                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       | 36.08                                                                                                                                                                   | 0.02                                                         |                                             | 133556                                                                                                                                                                      |                                       |                                          |                    |                                                                                                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       | 30.81                                                                                                                                                                   | 0.02                                                         | e e e e                                     | 384875                                                                                                                                                                      |                                       |                                          |                    |                                                                                                                 |                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       | 37.75                                                                                                                                                                   | 0.02                                                         |                                             | 188650                                                                                                                                                                      |                                       |                                          |                    |                                                                                                                 |                 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30                                                                                                                                                  | 39.83                                                                                                                                                                   | 0.02                                                         |                                             | 132700                                                                                                                                                                      | ang sa<br>Santara                     |                                          | na.<br>An an an An |                                                                                                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                       | **************************************                                                                                                                                  |                                                              |                                             |                                                                                                                                                                             |                                       |                                          |                    |                                                                                                                 |                 |

#### CHAPTER 4 IRRIGATION AND DRAINAGE PLAN

4.1 INTAKE FACILITIES

4.1.1 General

The objective area for the study on the Air Selagan Irrigation Project is estimated at 14,800 ha on both the sides of the Selagan river. The weir is proposed as the intake facility for the irrigation to the objective area.

4.1.2 Study on the location

In viewing the ground elevation in the objective area and the intake water level, the site of weir is proposed at a certain place of the Selagan river within about 4 km from the upstream part of the river near Kp. Lubuk Sahung to the downstream part near Kp. Surian Bungkal.

As a result of the study by the available topographical maps and the field reconnaissance, two (2) weir sites are compared taking the following points into consideration.

a) Factors to select the site

- Line of existing river,

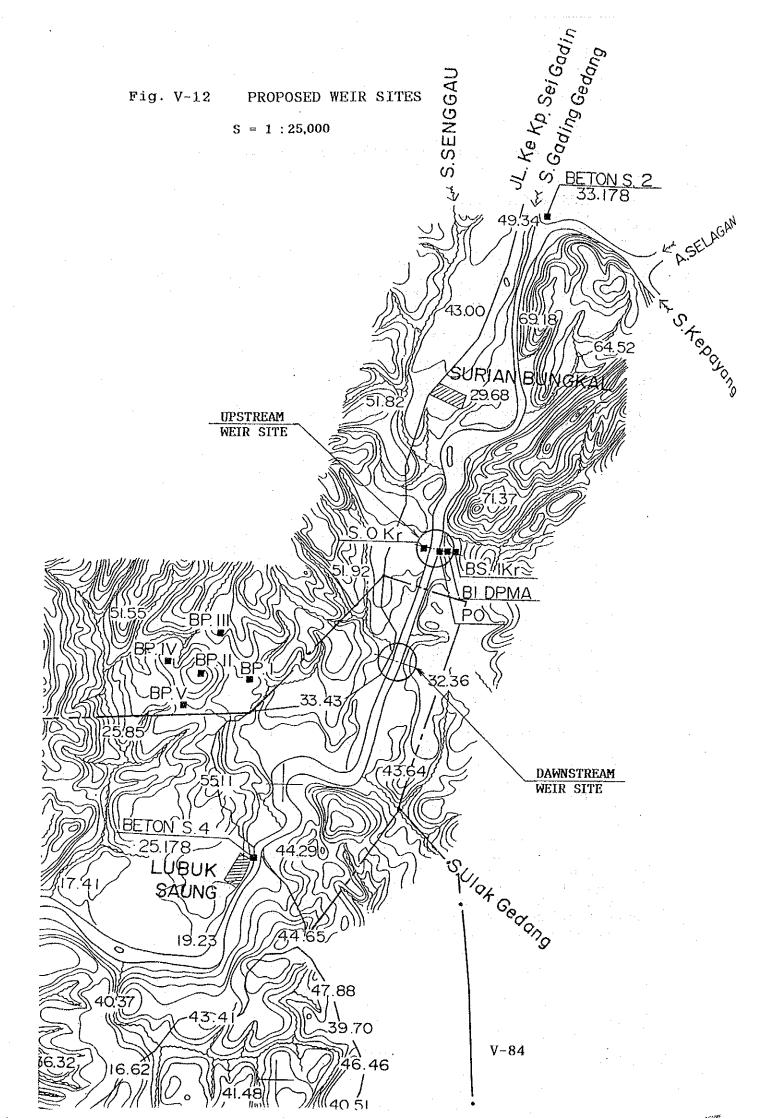
- River bed elevation, and shape and elevation of both the sides of the river,

- Location and condition of tributaries,

- Geological condition,

- Back water level at the time of flood which might influence to the villages in the upstream, and

- Construction method by temporary diversion channel or Coupure method.


b) Comparative sites

- Downstream site : at the place about 2.3 km in the upstream from the Kp. Lubuk Sahung bridge (Plan of DPU, Province)

- Upstream site

: at the place about 0.8 km in the upstream from the downstream site (Plan of D.P.M.A)

The location of the weir and the geological investigation has been carried out by the Directorate of Irrigation II, Provincial Public Work Office and the Hydraulic Institute in Bandung. During the Feasibility Study, additional geological investigation was carried out for the confirmation of bed condition and soil materials.



c) Outline of downstream site and upstream site for weir

| Item                                                                  | Downstream<br>Site      | Upstream<br>Site       |
|-----------------------------------------------------------------------|-------------------------|------------------------|
| Location from estuary                                                 | 48.7 km                 | 49.5 km                |
| Existing river width                                                  | 64 m                    | 50 m                   |
| Existing river bed elevation                                          | 22.20 m                 | 21.00 m                |
| Existing river slope                                                  | 1 : 500                 | 1 : 500                |
| Catchment area                                                        | 375 km <sup>2</sup>     | 374 km <sup>2</sup>    |
| Planning flood discharge                                              | 1,000 m <sup>3</sup> /s | 997 m <sup>3</sup> /s  |
| Planning width of weir                                                | 74 m                    | 73 m                   |
| Planning elevation of weir crest                                      | 26.00 m                 | 26.35 m                |
| Planning height of weir                                               | 3.80 m                  | 5.50 m                 |
| Planning elevation of river bank                                      | 31.55 m                 | 31.90 m                |
| Planning flood elevation                                              | 30.05 m                 | 30.40 m                |
| Construction method                                                   | Temporary<br>diversion  | Temporary<br>diversion |
| Influence of back water to Kp.<br>Surian Bungkal at the time of flood | None                    | None                   |
| Ratio of economical comparison                                        | 1.00                    | 1.23                   |

Table V-41 COMPARISON OF PROPOSED SITES FOR WEIR

The conditions of the above comparative study are as follows:

- The planning flood discharge is estimated by the hydrological data at downstream site.

Q in one of 100 year probability :  $1,000 \text{ m}^3/\text{s}$ Q in one of 1,000 year probability :  $1,300 \text{ m}^3/\text{s}$ 

- The planning width (B) of weir is based on the IDS-HEADWORKS:

i. Existing river width x 1.2 and

11. Maximum flood discharge flow per meter, 14 m<sup>3</sup>/s

#### In case of downstream site

1. 64 x 1.2 = 77 m > B ii. 1,000 + + width of pier = 74 m < B B = 74 m is adopted

In case of upstream site

i. 50 x 1.2 = 60 m > B 1. 50 x 1.2 = 60 m > B ii. 997 + 14 + width of pier = 73 m < B B = 73 m is adopted The planning elevation of weir crest: In case of downstream site

In case of downstream site alite di la constante di la con La constante di la constante di

Right side

| n case of downs | stream site  | an a                                                                        |                                                       |
|-----------------|--------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                 |              |                                                                                                                 | seculo generale com                                   |
|                 |              |                                                                                                                 | والمراجع والمراجع والمراجع والمحادثات والمعرب والمحاد |
| Right side      |              |                                                                                                                 |                                                       |
| Water level a   |              |                                                                                                                 | = WL. 14.00 m                                         |
| Head loss of    | canal, 22 km | x 1/2,600                                                                                                       | = 8.50 m                                              |
| Head loss at    | the intake   | n in the second state of the se | = 0.40 m                                              |
| Allowance at    |              |                                                                                                                 | = 0.10 m                                              |
| Total           |              |                                                                                                                 | EL. 23.00 m                                           |

\* Light side Ground elevation at SP4 = GL. 19.00 m Head loss of main canal 17 km = 6.50 mx 1/2,600Head loss at the intake Allowance at the crest = 0.10 m  $EL \sim 26.00$  m Total

In case of upstream site Crest elevation of downstream site = EL. 26.00 m Head loss of canal  $800 \times 1/2,600$  for 1/2,000 = 0.35 m EL. 26.35 m a sa Sana a Total

In the above, the head loss of canal is obtained by the average gradient of canal including the head loss due to the attached structures. - The planning height of weir:

Height of weir = Planning elevation of crest - existing river bed elevation

> Downstream plan : EL. 26,00 - GL. 22,20 = 3.80 m Upstream plan : EL. 26.35 - GL 21.00 = 5.35 m

> > 化间接 化分子式 计分子算法分子

一般的 计相同时分钟

V-86 🗉

#### - The planning flood water level (HWL):

HWL = Planning crest elevation + Critical water

The bool Downstream plan = ELL 28.00 + 4.05 = HWL 30.05 m (Upstream plan ) = ELL 26.35 + 4.05 = HWL 30.40 m

#### - The planning elevation of river bank:

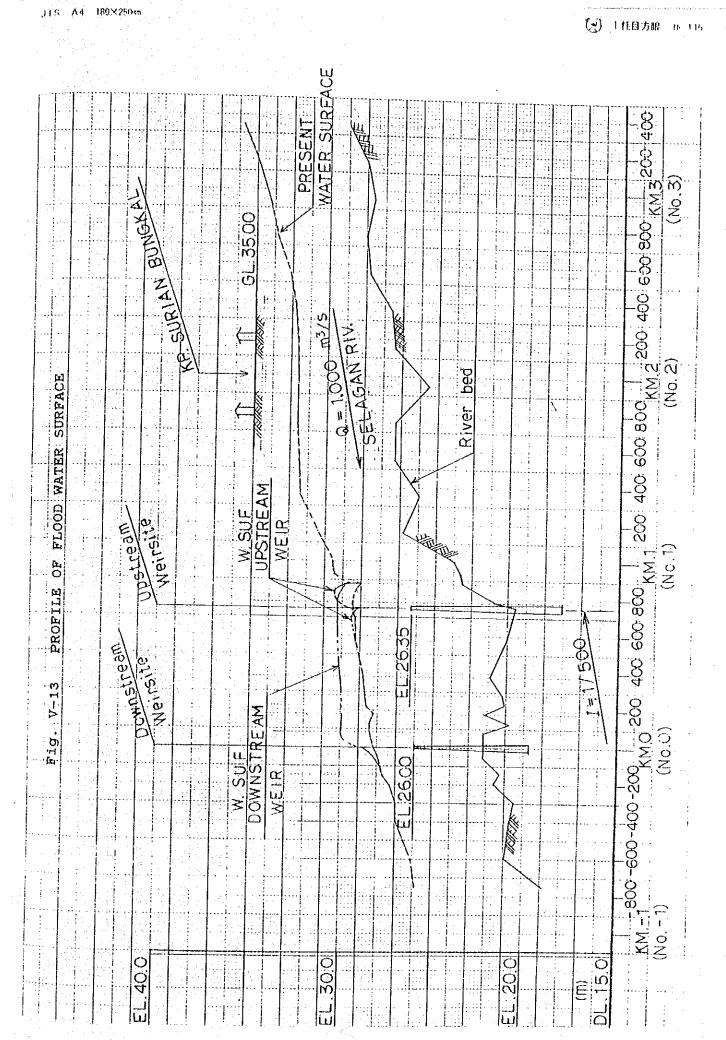
- River bank elevation = HWL (in 100 year 3. Fb (1.50 m) (1.50 m) (1.50 m) Downstream plan = HWL 30.05 + 1.50 = EL. 31.55 Upstream plan<sup>(1)</sup> Upstream plan<sup>(2)</sup> HWC<sup>(1)</sup> 30.40 + (1.50) = EL. 31.90 mV2V<sup>2</sup>m f. kf = (m 08.2 m 0.85) \2\0 m V02 m p - Construction method: (1.41 & V84.0 - 2000 H

temporary diversion is proposed for The the construction method because the river line is straight and the land space assured in the right side.

| Table V-42 COMPARISON | 0F | WEIR | SITE | PLAN |
|-----------------------|----|------|------|------|
|-----------------------|----|------|------|------|

|                     |                              | and the second |                                 |
|---------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Item                | Unit                         | Downstream Plan                                                                                                  | Upstream Plan                   |
| Width of weir       | m                            | 74.00                                                                                                            | 73.00                           |
| Height of weir body | Ш                            | 26.00-22.20=3.80                                                                                                 | 26.35-21.00=5.35                |
| Concrete Volume     | <u>т</u> 3                   | 15,700                                                                                                           | 16,400                          |
| Canal length        | m                            |                                                                                                                  | 800                             |
|                     | Unit Price                   |                                                                                                                  |                                 |
| Weir                | RP/m <sup>3</sup><br>253,000 | 10 <sup>3</sup> Rp<br>3,972,100                                                                                  | 10 <sup>3</sup> Rp<br>4,149,200 |
| Main canal          | RP/m<br>900,000              | -                                                                                                                | 720,000                         |
| Total               |                              | 3,972,100                                                                                                        | 4,869,200                       |
| Ratio               |                              | 1.00                                                                                                             | 1.23                            |
|                     | <u> </u>                     | · · · · · · · · · · · · · · · · · · ·                                                                            |                                 |

- The back water at the time of flood:


The influence of the back water at the time of flood to Kp. Surian Bungkal in the upstream is studied by the calculation taking the crest planning hydraulic elevation as the control point. The result is shown in Fig. V-13 and Table V-43.

The flood discharge per unit width of weir and the maximum overflow depth:

According to the Irrigation Design Standards (Headworks), the maximum overflow depth (H max) is 3.5 m to 4.5 m in the case that the flood discharge per unit width of weir (q) is  $12 \text{ m}^3/\text{s/m}$  to  $14 \text{ m}^3/\text{s/m}$ .

In case of the downstream plan,  $q = 1,000 \text{ m}^3/\text{s}/(74.0 \text{ m} - 2.20 \text{ m}) = 13.9 \text{ m}^3/\text{s/m}$ H max = 0.467 x 13.9<sup>2/3</sup> x 1.5 = 4.05 m

In case of the upstream plan, q = 997 m<sup>3</sup>/s/(73.0 m - 2.20 m) = 14.1 m<sup>3</sup>/s/m H max = 0.467 x 14.1<sup>2/3</sup> x 1.5 = 4.09 m



V-89

.

Table V-43.1 HYDRAULIC CALCULATION OF SELAGAN RIVER DURING FLOOD(1/3) PRESENT CONDITION

•

•

| ·                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy<br>Height<br>(m)                                  | **<br>***<br>***<br>***<br>***<br>***<br>***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| lction<br>Loss<br>(m)                                    | **<br>00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| iydraulic<br>Fradient                                    | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| city<br>ead<br>m)                                        | COOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| vetociu<br>(m/s)                                         | *<br>* 100 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| fic.                                                     | * 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                          | *<br>* 0.0 4 50 U.G. G.Y.G. G.Y.A. D. A. P. A. P. G. G. G. G. G. G. G. A. G. S. A. A. G. G. G. G. G. G. A. A. G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| er Surfac<br>Kidth<br>(A)                                | <pre>*** *********************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| , , , , , , , , , , , , , , , , , , ,                    | * 0 / 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Бассег<br>Гессе]<br>**********************************   | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                  | 001480000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 01s0barge<br>(53/s)<br>*******                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Distance<br>(12)<br>*********                            | D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 01 t a t 1 0 C<br>6 t a t 1 0 C<br>중 한 한 한 한 한 한 한 한 한 한 | X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X       X |
| ** 00<br>**<br>**                                        | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

V-43.2 HYDRAULIC CALCULATION OF SELAGAN RIVER DURING FLOOD(2/3) DOWNSTREAM PLAN Table

32.482 32.565 32.608 32.642 32.642 31.176 32.015 33.023 33.667 34.335 34.928 35.522 36.041 Energy Height 1.25 <u>e</u> 0.052 0.058 0.058 0.058 0.058 0.538 0.559 0.559 0.513 0.055 0.055 0.003 0.036 0.036 0.086 0.158 0.113 0.050 0.045 0.236 0.066 0.078 Friction Loss 0.237 0.757 0.474 Ê Hydraullc Gradient Velocity Head  $\begin{array}{c} 0.359\\ 0.359\\ 1.20\\ 0.359\\ 0.084\\ 1.40\\ 0.084\\ 0.0235\\ 0.0235\\ 0.235\\ 0.235\\ 0.031\\ 0.575\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.555\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.031\\ 0.$ Ē Velocity ( m/s) Coefficient of Roughness 0.0400.0400.04000.0400 0.040 0.040 0.040 0.040. 0.040 0.040 0.040 0.040 Mean Depth . 557 .389 .086 .926 .513 1.149 .950 4.811 3.663 4.666 4.966 5.186 5.186 . 255 . 436 ..937 .678 . 533 ດ ເວີ ເວີ (E) of Water Surface 366.711 381.617 347.081 224.697 101.491 101.387 67.250 79.658 145.310 95,342 89,223 86.076 95.372 75,936 . 82:9 84.146 282.680 70.050 00.76 83.49 30.16 61.67 e) ŝ 1020.590 469.363 313.775 329.766 959.757 1290.700 651.384 491.595 465,595 482,881 240.010 430.375 297.983 301.707 821.486 287.823 301.963 Area o Flow (m2) 394.697 229.163 299:281 431.27 398.77 32.510 32.578 32.658 33.866 34.313 1.440 35.766 32.608 33.149 .407 0.036 30.286 30.383 29.976 30.607 30.084 30.107 0.282 30.691 32.797 34.96 0.37 Water Level (m) 6.406 5.149 5.278 5.258 5.258 5.258 4,399 .004 . 866 . 166 .756 .426 6.977 4.640 4.866 5.766 .682 Hater Depth 6.691 5.962 Ĵ 1000.00 Discharge \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 000.000 000.000 000.000 (s/Em) 200,000 45.000 75.000 55.000 000.000 200.000 200.000 20.000 200.000 200,000 200-003 200.000 200.000 200,000 200.000 Distance (m) 550.000 950.000 150.000 350.000 350.000 750.000 150.000 950.000 350.000 350.000 755.000 875.000 930.000 350.000 950.000 50.000 Station ÷÷ <del>;</del> + 

V-91

Critical Depth

×

|                        | . •                                                                                              | ¥                                                                                                 |                                                          |                                                      |                                        |                                              |                                                      |
|------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------------|
|                        | Energy<br>Height<br>(m)                                                                          | **<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**<br>**                        | 30.438 *<br>30.457 *<br>30.467<br>30.486                 | 30.682 *<br>31.077 *<br>31.160<br>31.986             | F 10 0                                 | 32.636<br>32.702<br>33.020<br>33.666         | 34.334<br>34.928<br>35.521<br>36.041                 |
|                        | <u>н</u>                                                                                         | **************************************                                                            | 0.029<br>0.028<br>0.013<br>0.013                         | 0.112<br>0.401<br>0.820                              | 0.498<br>0.078<br>0.052                | 0.040<br>0.059<br>0.311<br>0.640             | 0.676<br>0.600<br>0.599<br>0.513                     |
| FL00D(3/3              | Hydraulic<br>Gradient                                                                            | ¥                                                                                                 |                                                          | 0.010879<br>0.003693<br>0.003664<br>0.003664         | 0.000439<br>0.000343<br>0.000181       | 0.000219<br>0.000367<br>0.002740<br>0.003661 | 0.003101<br>0.002897<br>0.003091<br>0.002042         |
| DURING FL              | 2<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | **<br>***<br>0.120<br>0.120<br>0.120<br>0.120<br>0.120                                            | 1.363<br>0.111<br>0.688<br>0.688                         | 1.69.1<br>0.620<br>0.595                             | 0.076<br>0.055<br>0.031                | 0.033<br>0.239<br>0.5133<br>0.5133           | 0.469<br>0.616<br>0.560<br>0.275                     |
| RIVER DUI              | velocit<br>(m/s)                                                                                 | 00000<br>                                                                                         | 10 m m m                                                 | 000000<br>0444<br>00444<br>00044                     |                                        | 0.808<br>0.982<br>0.135<br>1.135<br>1.135    | 0 4 0 0<br>0 0 0 0                                   |
| SELAGAN RI<br>M PLAN   | n Depth<br>(f) of                                                                                | 818<br>707<br>973<br>914<br>0                                                                     | 2,215 0,015<br>7,409 0,035<br>7,693 0,035<br>6,411 0,037 | 223<br>223<br>2472<br>284<br>284<br>2000             | 553<br>384<br>508<br>0.                | 231 0.<br>933 0.<br>084 0.<br>061 0.         | 216<br>149<br>678<br>950                             |
| TION OF SI<br>UPSTREAM | r Surfac<br>Mdth<br>(m)                                                                          | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*       | 000<br>216<br>216<br>216                                 |                                                      | 003<br>569<br>589                      |                                              | 38690<br>5569<br>308<br>308                          |
| HYDRAULIC CALCULAT     | Area of<br>Flow<br>(m2)                                                                          | **************************************                                                            | 193.499<br>678.619<br>753.491<br>559.604                 | 6.933<br>0.307<br>3.095                              | 4.00                                   | 0072                                         | 329.701<br>287.802<br>301.949<br>430.362             |
| AULIC C                | ater<br>.evel<br>(m)                                                                             | * 0 0 0 0<br>* 0 4 0 0<br>* 0 0 0 1 0<br>* 0 0 0 0                                                | 29.075<br>50.346<br>30.379<br>30.323                     | 000-                                                 | 000                                    |                                              | 0440                                                 |
|                        | Mate<br>Dept                                                                                     | 8.177<br>8.177<br>8.658<br>8.619<br>8.619<br>8.519<br>8.519                                       |                                                          | . 2 0 7 8<br>2 0 1 8                                 | 410                                    | 0.55                                         | 80.710                                               |
| V-43.3                 |                                                                                                  | <b>F</b>                                                                                          | 1000.00<br>1000.00<br>1000.00                            | 1. A.            |                                        | 1000.00<br>1000.00<br>1000.00                | <b>на</b> на                                         |
| Table                  | Distance<br>(3)                                                                                  | * * * * * * * * * * * * * * * * * * *                                                             | 25.000<br>25.000<br>25.000<br>50.000                     | 20,000<br>55,000<br>20,000<br>200,000                | 200.000<br>200.000<br>200.000          | 200.000<br>200.000<br>200.000                | 200.000<br>200.000<br>200.000<br>200.000             |
|                        | ation                                                                                            | * 0 0 0 1 * 0 0 * 1 0 0 0 * 1 0 0 0 * 1 0 0 0 * 1 0 0 0 * 1 0 0 0 * 1 0 0 0 * 1 0 0 0 * 1 0 0 0 0 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                    | 0+ 875,000<br>0+ 930,000<br>0+ 950,000<br>1+ 150,000 | 1+ 350.000<br>1+ 550.000<br>1+ 750.000 | + + + +                                      | 2+ 750.000<br>2+ 950.000<br>3+ 150.000<br>3+ 350.000 |
|                        |                                                                                                  | *                                                                                                 |                                                          | 00000                                                | 0000                                   |                                              | ار<br>افراف رو در د                                  |

\* Critical Depth

•

#### d) Composite Comparison

The following matters could be mentioned by the above approximate comparative study.

- Both the sites have almost the same catchment area and flood discharge.

- Both the sites have straight and stable river line.

상태는 영화품을 알았다. 신상

- River bed elevation of downstream plan is higher than upstream site because of present river condition.

- The size of the weir in the upstream site is smaller by 1.0 m of the weir width and higher 1.55 m of the weir height, also the upstream site needs the additional canal of 0.80 km in length with deep excavation. Therefore, the upstream plan is not economical.

- As there is no influence of the back water to the upstream villages, the type of the weir is proposed more economical fixed weir type for both the plans than movable weir type.

- The upstream site has more difficult hydraulic conditions on the flood discharge because the expansion rate of natural river width is more than 1.2 times against the basis of the Irrigation Design Standard.
  - Both the sites have almost the same geological condition and almost no problem as the foundation of the weir.
    - The temporary diversion channel is proposed for the construction method of both the plans.

stream Sahung

Since, the site of the weir for the Project is more favorable on the downstream plan than the upstream one by the all-round study.

4.1.3 Design & hydraulic calculation on size of facility

(1) Dimension of the structure

| a)        | Dimension of the structure                                                                                      |     |                     |
|-----------|-----------------------------------------------------------------------------------------------------------------|-----|---------------------|
| ,         | Water source                                                                                                    |     | Selagan river       |
| · ·       | Location of intake facility                                                                                     | :   | about 2.3 Km up     |
|           |                                                                                                                 |     | from Kp. Lubuk      |
|           | Catchment area                                                                                                  | · • | 375 Km <sup>2</sup> |
|           | Elevation of river bed                                                                                          | · • | EL 22.20 m          |
|           | Elevation of crest                                                                                              | . : | EL 26.00 m          |
| 1997 - A. | Height of weir                                                                                                  | :   | 3.80 m              |
|           | Height of weirbody                                                                                              | :   | 6.30 m              |
|           | Width of weir                                                                                                   | :   | 74.00 m             |
|           | Intake water level                                                                                              | :   | NWL. 25.90 m        |
|           | Flood discharge                                                                                                 | :   | HWL. 30.05 m        |
|           | the second se |     |                     |

|           |                                                                                                                | 승규는 잘 물었는 것을 가 없는 것을 가지 않는 것이다.       |
|-----------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|
|           |                                                                                                                | (1 in 100 year probabi-               |
|           |                                                                                                                | lity)                                 |
|           | Flood discharge                                                                                                | : HWL, 30,85 m                        |
|           |                                                                                                                | (1 in 1000 year probabi-              |
|           |                                                                                                                | lity)                                 |
|           | Elevation of river bank                                                                                        | : EL. 31.55 m                         |
|           | Freeboard                                                                                                      | : 1.50 m (1/100 y. prob.)             |
|           | Freeboard                                                                                                      | (0.70  m (1/1000  v  prob))           |
|           | Type of weir                                                                                                   | : Fixed type                          |
|           | Flood way                                                                                                      | : Fixed weir (Length of               |
|           |                                                                                                                | span 68.0 m)                          |
|           |                                                                                                                | : Under sluice                        |
|           |                                                                                                                | (2 m x 2 gates x 2                    |
| · · · · · |                                                                                                                | stairs)                               |
| 1.<br>1   |                                                                                                                | : Sluice type gate                    |
| 2 -       | 이번 이 물건법이 제공을 알았는 것을 통하는 것을 것                                                                                  | (2.90 x 2.05 m x 3                    |
|           |                                                                                                                | gates)                                |
|           | Design intake discharge                                                                                        | : 6.45 m <sup>3</sup> /s              |
|           | Scale of fishway                                                                                               | : Step type, width 2.00 m             |
| 100 A.    |                                                                                                                | Length 21.24 m                        |
|           | Small-scale Hydro-power                                                                                        |                                       |
|           | Generation                                                                                                     | : 290 Kw, available head              |
|           |                                                                                                                | 3.50 m                                |
| * .       | Construction method                                                                                            | Temporary diversion                   |
|           | 이 것 이 같이 같아. 이 아이가 있는 것이 같이 하는 것을 했다.                                                                          |                                       |
| b)        | Hydrologic condition (From the                                                                                 | e hydrologic data)                    |
|           | 그는 그에도 이 그는 그는 것으로 관계되었다. 동물 등 등                                                                               |                                       |
|           | 1 in 5 year flood discharge                                                                                    |                                       |
|           |                                                                                                                | 21/15 = 660 m <sup>3</sup> /s         |
|           | 1 in 25 year flood discharge                                                                                   |                                       |
|           |                                                                                                                | $1/25 = 840 \text{ m}^3/\text{s}$     |
|           | 1 in 50 year flood discharge                                                                                   | probability                           |
|           |                                                                                                                | 1/50 = 910 m <sup>3</sup> /s          |
|           | 1 in 100 year flood discharge                                                                                  | probability                           |
|           | ан алаасаан | $1/100 = 1,000 \text{ m}^3/\text{s}$  |
| · · ·     | 1 in 1000 year flood discharge                                                                                 |                                       |
|           | $\mathbf{Q}$                                                                                                   | $1/1000 = 1,300 \text{ m}^3/\text{s}$ |
|           |                                                                                                                |                                       |

(2) Study of weir width

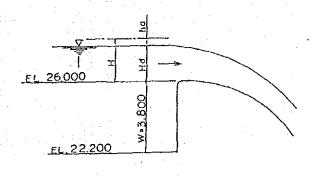
Total width of weir is decided by unit flood quantity which is the standard, q = 12.0 ~ 14.0  $m^3/s/m$ 

B' =  $Q1/100/q = 1,000 \text{ m}^3/\text{s}/14.0 \text{ m}^3/\text{s}/\text{m} = 71.43 \text{ m}$ 

Design width of weir crest B;

B = 71.43 + (width of pier of scouring sluice 1.00 m x 2 piers)

 $= 71.43 + (1.00 \times 2) = 73.43 = 74.00 \text{ m}$ 

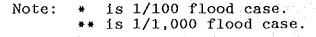

Width of flood way crest = 74.00 - 6.00 = 68.00 m

(3) Hydraulic calculation at the time of flood

a) Calculation of overflow depth

| Q = Cd | $x Be x H^{2/3}$                         |    |
|--------|------------------------------------------|----|
| Here Q | : Quantity of overflow m <sup>3</sup> /s |    |
| Be     | : Width of crest m                       |    |
| H      | : Overflow head                          | ·  |
|        | (Overflow depth, Hd + Volocity head, h   | a) |
| Cd     | : Coefficient of discharge               |    |
|        | $= 2.200 - 0.0416 (H/W)^{-0.990}$        |    |
| ***    |                                          |    |

W : Height of weir = 3.80 m




o Calculation of effective width of overflow (Be) Be = B - 2 (n  $\cdot$  Kp + Ka) x H = 74.00 - 2 x (2 x 0.01 + 0.0) x H = 74.00 - 0.04 H

Here Bn: Total width of overflow (m) Kp: Coefficient by pier (Circle = 0.01) n : Number of piers (3 Nos.) Ka: Coefficient by side wall (0.00) H : Overflow head (m)

| · · · · · · · · · · · · · · · · · · · |        |        |       |                       |
|---------------------------------------|--------|--------|-------|-----------------------|
| H (m)                                 | WL (m) | Be (m) | Cd    | Q (m <sup>3</sup> /s) |
| 0.200                                 | 26.200 | 73.99  | 2.198 | 0.7                   |
| 0.400                                 | 26.400 | 73.98  | 2.196 | 5.2                   |
| 0.600                                 | 26.600 | 73.98  | 2.193 | 17.5                  |
| 0.800                                 | 26.800 | 73.97  | 2.191 | 41.5                  |
| 1.000                                 | 27.000 | 73.96  | 2.189 | 80.9                  |
| 1.200                                 | 27.200 | 73.95  | 2.187 | 139.7                 |
| 1.400                                 | 27.400 | 73.94  | 2.185 | 221.6                 |
| 1.600                                 | 27.600 | 73.94  | 2.182 | 330.5                 |
| 1.800                                 | 27.800 | 73.93  | 2.180 | 470.0                 |
| 2.000                                 | 28.000 | 73.92  | 2.178 | 644.0                 |
| 2.200                                 | 28.200 | 73.91  | 2.176 | 856.2                 |
| 2.300                                 | 28.300 | 73.91  | 2.175 | 977.8                 |
| 2.350                                 | 28.350 | 73.91  | 2.174 | 1042.7 *              |
| 2.400                                 | 28.400 | 73.90  | 2.174 | 1110.3                |
| 2.500                                 | 28.500 | 73.90  | 2.173 | 1254.3                |
| 2.550                                 | 28.550 | 73.90  | 2.172 | 1330.7 *              |
| 2.600                                 | 28,600 | 73.90  | 2.171 | 1410.1                |
| 2.800                                 | 28.800 | 73.89  | 2.169 | 1759.3                |
| 3.200                                 | 29.200 | 73.87  | 2.165 | 2620.2                |
| 3.400                                 | 29.400 | 73.86  | 2.163 | 3139.4                |
| 3.600                                 | 29.600 | 73.86  | 2.161 | 3722.5                |
| 3.800                                 | 29.800 | 73.85  | 2.158 | 4373.1                |
| 3.850                                 | 29.850 | 73.85  | 2.158 | 4546.8                |
| 4.000                                 | 30.000 | 73.84  | 2,156 | 5094.9                |

Table V-44 OVERFLOW DEPTH AND DISCHARGE FOR WEIR



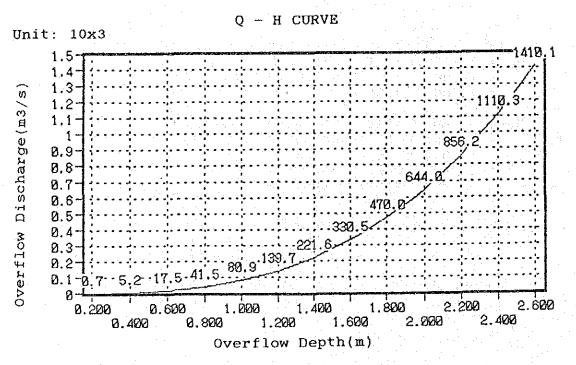
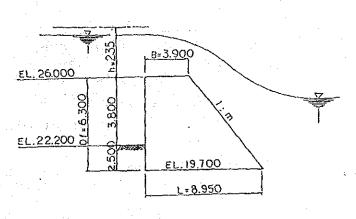
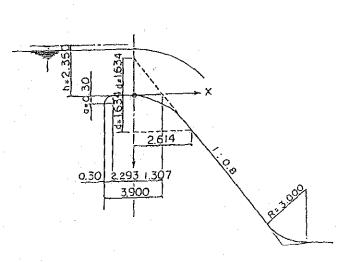



Fig. V-14 Q-H CURVE AT WEIR SITE


### Basic cross section of weir

#### o Assumption of the cross section


当日二 行草

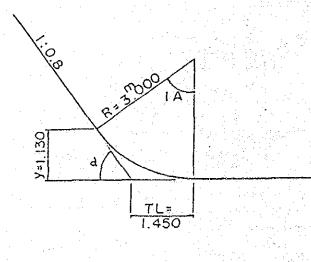
**b)**E

- When m = 0.8 is applied safe and economic section modulus ( $\alpha$ ) is considered as  $\alpha = 0.62$ B =  $\alpha$  x Df = 0.62 x 6.30 = 3.900 m L = ( $\alpha$  + m) Df = (0.62 + 0.8) x 6.30 = 8.95m



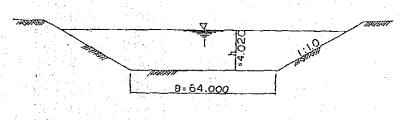
o Modification of the trapezoid section.




There are several modified sections for the modification of trapizoid section which is the basic section of weir. However it is always required to apply a curve formula considered that the vein of overflow must fit to the body, satisfy the hydraulic conditions, and be easy for the construction works.

| X2 = 4 • | $m^2 \cdot d \cdot \gamma$ | d ≧ 1.78h                          | /4m2                     |
|----------|----------------------------|------------------------------------|--------------------------|
|          |                            | d = 1.78                           | $x 2.35/4 \times 0.80^2$ |
| = 4 x    | m <sup>2</sup> xdxY        | = 1.634<br>= 4 x 0.80 <sup>2</sup> | x 1.634 x Y              |
|          |                            | $= 4.183 \cdot Y$                  |                          |

| Y | 0.0 0.05  | 0.10 0.20 0.40 0.80 1.60      | 2.614 |
|---|-----------|-------------------------------|-------|
| X | 0.0 0.457 | 0.647 0.915 1.294 1.829 2.587 | 2.614 |


o Upstream top side of weir is a quarter circle a = 0.125h = 0.12 x 2.35 = 0.30m

- o Bucket curve is set at the water cushion to change the direction of the falling vein into the horizontal one. R = Df x (1/2 - 1/3) = 6.30 x (1/2 - 1.3) = 3.15 - 2.10 = 3.00m
  - - $\tan \alpha = 1/0.8 = 1.250$ = IA = 51'20'25"  $TL = R \tan IA/2$ = 1.442 = 1.450m $y = \sin \alpha \cdot TL$ = 1.126 = 1.130m



c) Calculation of canal sections by Coupure method

| Quantity                    | $Q = 1,000 m^3/s$ |
|-----------------------------|-------------------|
| Longitudinal slope of canal | I = 1/500         |
| Slope                       | Z = 1:1.0         |
| Width of canal              | B = 64.0          |
| Coefficient of roughness    | n = 1/30 = 0.033  |
|                             | ÷                 |



A = Bh + Zh2 R = A/P $Q = A \times V \quad (m^3/s)$ 

P = B + 2h + 1+22  $V = 1/n \cdot R2/3 + 1$   $= 30 \times R2/3 \times 0.0020$   $= 1.3416 \cdot R2/3$ 

|       |         |        |                   |                                                                                                                |         | <u>ya na kata ka na ka</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|---------|--------|-------------------|----------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| h (m) | A (m2)  | P (m)  | R (m)             | R 2/3                                                                                                          | V (m/s) | Q (m3/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.50  | 37.250  | 75.414 | 0.494             | 0.625                                                                                                          | 0.838   | 31.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.00  | 75.000  | 76.828 | 0.976             | 0.984                                                                                                          | 1.310   | 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.50  | 113.250 | 78.243 | 1.447             | 1.280                                                                                                          | 1.716   | 194.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 152.000 | 79.657 | 1.908             | 1.538                                                                                                          | 2.063   | 313.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.00  | 191.250 | 81.071 | 2.359             | 1.772                                                                                                          | 2.376   | 454.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.50  | 231.000 | 82.485 | 2.801             | 1.987                                                                                                          | 2.664   | 615.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.00  | 271.250 | 83,899 | 3.233             | 2.186                                                                                                          | 2.932   | 795.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.50  |         | 85.314 | 3.657             | 2.374                                                                                                          | 3.183   | 993.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.00  | 312.000 | 85.342 | 3.665             | 2.377                                                                                                          | 3.188   | 997.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.01  | 312.820 |        | 3.674             | 2.381                                                                                                          | 3.193   | 1001.4 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.02  | 313.640 | 85,370 | 3.682             | 2.385                                                                                                          | 3.198   | 1005.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.03  | 314.461 | 85.398 | Report Management | the first of the second se | 3,203   | 1009.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.04  | 315.282 | 85.427 | 3.691             | 2.388                                                                                                          |         | 1013.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.05  | 316.103 | 85.455 | 3.699             | 2.392                                                                                                          | 3.207   | the process of the factor of t |
| 4.09  | 319.388 | 85.568 | 3.733             | 2.406                                                                                                          | 3.227   | 1030.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.10  | 320.210 | 85.596 | 3.741             | 2.410                                                                                                          | 3.232   | 1034.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.50  | 353.250 | 86,728 | 4.073             | 2.550                                                                                                          | 3.420   | 2308.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.00  | 395.000 | 88.142 | 4,481             | 2.718                                                                                                          | 3.645   | 1439.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table V-45 HYDRAULIC CALCULATION OF DOWNSTREAM SECTION

Note: \* means the case of 1/100 flood discharge.

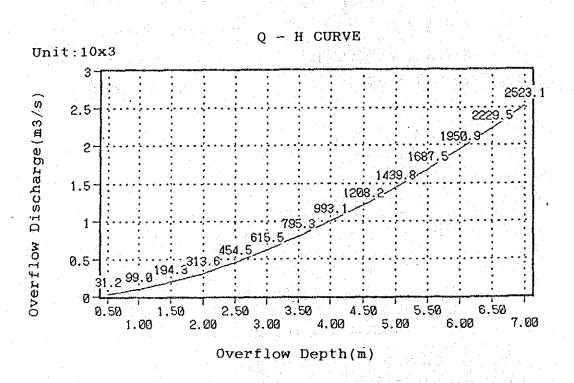
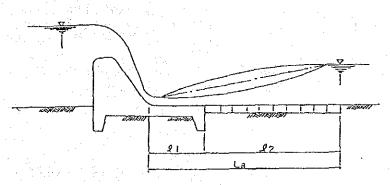




Fig. V-15 Q-H CURVE AT DOWNSTREAM SECTION

#### (4) Study of energy dissipator

a) Study of fore apron and the protection works of river bed

The lengths of fore apron and downstream protection works of river bed are calculated against scouring the downstream bed by overflow water.



o Length of fore apron

 $L1 = 0.6 \cdot C\sqrt{\overline{D}1}$ 

Where C: Bligh's coefficient (Coarse sand 12)

D1: Height between the crest and apron (3.80m)

 $= 0.6 \times 13 \sqrt{3.80} = 14.04 = 14.50m$ 

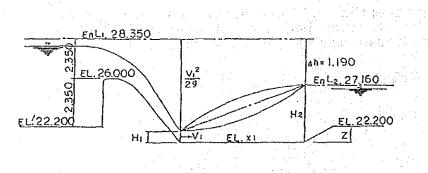
o Length of the protection works of river bed LB =  $0.67 \cdot C \sqrt{\text{Hd} \cdot q}$ 

| Here | 3                | · C:  | Bligh's coefficient (Coarse    |
|------|------------------|-------|--------------------------------|
| ÷    | . <sup>1</sup> . |       | sand 12)                       |
|      | 1. 1. 1          | Hd:   | Difference of water elevation  |
|      |                  | · : . | between flood stage & draughty |
|      |                  |       | water Jerral                   |

water level  $(D_1 = Hd = 3.80m)$ 

q: Unit quantity of flood discharge 1,000m<sup>3</sup>/s/74m = 13,514m<sup>3</sup>/s/m

$$= 0.67 \times 13 \sqrt{3.80} \times 12.8$$
  
= 57.62 = 58.00m


L2 = LB - L1 = 58.00 - 14.50 = 43.50m

As a result of the above calculation, the structure of downstream side of weir is decided as the type of energy dissipator.

- The river bed protection works is uneconomic by increasing the length of the protection works because the back water height is high.

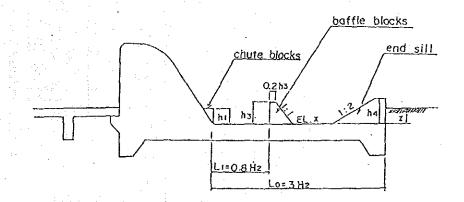
- Most of the results of Indonesian construction are also in the type of energy dissipator.

b) Hydraulic calculation of energy dissipator



Height of hydraulic jump  $H_2/H_1 = 1/2(\sqrt{1+8F2} - 1)$ V = q/H1  $H_2 = H_1(\sqrt{1+8F2} - 1) \times 1/2$ q = 13.514 m<sup>3</sup>/s

Froude number  $F1 = V1/\sqrt{g \cdot H1}$ EL x 1 = 28.35 - (H1 + V1<sup>2</sup>/2g) EL x 2 = 26.74 - H2


Table V-46 HYDRAULIC CALCULATION OF ENERGY DISSIPATOR

|           |             |                | n an |           |                        |
|-----------|-------------|----------------|------------------------------------------|-----------|------------------------|
| H1<br>(m) | V1<br>(m/s) | V1^2/2g<br>(m) | ELX1 F<br>(m)                            | H2<br>(m) | ELX2 ELX1<br>(m) -ELX2 |
| 2.50      | 5.41        | 1.49           | 24.36 1.09                               | 2.81      | 23.93 0.43             |
| 2.00      | 6.76        | 2.33           | 24.02 1.53                               | 3.43      | 23.21 0.71             |
| 1.50      | 9.01        | 4.14           | 22.71 2.35                               | 4.29      | 22.45 0.26             |
| 1.49      | 9.07        | 4.20           | 22.66 2.37                               | 4.31      | 22.43 0.23             |
| 1.48      | 9.13        | 4.25           | 22.62 2.40                               | 4.33      | 22.41 0.21             |
| 1.47      | 9.19        | 4.31           | 22.57 2.42                               | 4.35      | 22.39 0.18             |
| 1.46      | 9.26        | 4.37           | 22.52 2.45                               | 4.37      | 22.37 0.15             |
| 1.45      | 9.32        | 4.43           | 22.47 2.47                               | 4.40      | 22.34 0.12             |
| 1.44      | 9.38        | 4.49           | 22.42 2.50                               | 4.42      | 22.32 0.09             |
| 1.43      | 9.45        | 4.56           | 22.36 2.52                               | 4.44      | 22.30 0.06             |
| 1.42      | 9.52        | 4.62           | 22.31 2.55                               | 4.46      | 22.28 0.03             |
| 1.41      | 9.58        | 4.69           | 22.25 2.58                               | 4.48      | 22.26 0.00             |
| 1.40      | 9.65        | 4.75           | 22.20 2.61                               | 4.51      | 22.23 -0.04            |
| 1.30      | 10.40       | 5.51           | 21.54 2.91                               | 4.74      | 22.00 -0.46            |
| 1.20      | 11.26       | 6.47           | 20.68 3.28                               | 5.01      | 21.73 -1.06            |

·c) Type of energy dissipator

> As a result of the above hydraugh calculation, height of the jump (H<sub>2</sub>) is H<sub>2</sub> = 4.48mt with a condition of the vein of inflow H<sub>1</sub> = 1.410 m, F = 2.58, V<sub>1</sub> = 9.580 m<sup>3</sup>/s and it can be connected smoothly with the downstream water surface.

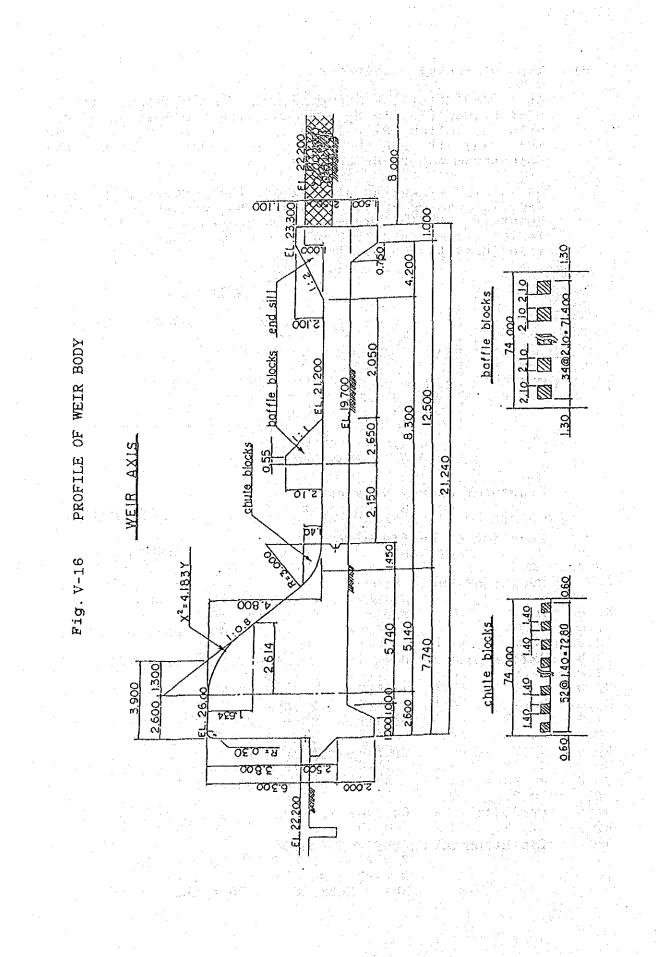
> As a type of energy dissipator, the forced jump USBR type III can be applied based on the condition of unit quantity of flow (less than  $18.5 \text{ m}^3/\text{s/m}$ ), Velocity of inflow (less than 18.0 m/s), Froude number of inflow vein (Less than 4.5).



Length of energy dissipator  $L0 = 3 \cdot H2 = 3 \times 4.48 = 13.44 = 13.50m$ 

Location of baffle pier  $L1 = 0.8 \cdot H2 = 0.8 \times 4.48 = 3.584 = 3.60m$ 

Height of chute block


Height h 1=H 1=1.41 = 1.40mWidth W1 = H1 = 1.40mS1 = H1 = 1.40m (edge 0.6m) Distance  $h3/H1 = 2, H3 = 2 \times 1.41 m =$ Height 2.80 m  $W3 = 0.75 + H3 = 0.75 \times 2.80 =$ Width 2.10 mDistance  $S3 = 0.75 \cdot h3 = 0.75 \times 2.80 =$ 2.10 mCrest width of weir  $= 0.20 \cdot h3 = 0.20 \times 2.80$ ≈ 0.55m

Baffle pier

End sill h4/H1 = 1.5 h4 = 1.5 x 1.41 = 2.10m

Elevation of energy dissipator

Z = EL22.20 - ELX1 22.25 = -0.05Giving a surplus : Z = 1.0mELx = EL22.20 - 1.00 = EL21.200m



(5) Study of creep length

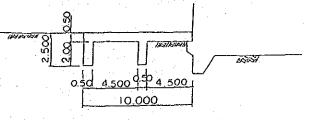
o Bligh's method

 $L \geq V \cdot 4h$ Here

C: Bligh's coefficient (Coarse sand 12) h: Maximum head between the upstream and the downstream (3.80m)  $h \cdot C = 12 \times 3.80 = 45.60 \text{m}$ 

Actual length of weir body (See the above figure)  $L = 4.5 + 21.24 + 4.0 + (2.0 + 1.5) \times 1.118$ = 33.653m

\* 45.60m ≥ 33.65m ..... No (Short length = 11.95m)


o Lane's method

L'  $\geq$  C' ·  $\lambda$ h Here C': Lene's creep ratio (Coarse sand 6)

Actual length of weir body (See the above figure)  $L' = (4.5+2.0+1.5+4.0) + (21.24 \times 1/3) = 19.08m$ 

 $22.80m \ge 19.08m$  .... No (Short length = 3.72m)

According to the above calculation, it is found that the creep length is not enough against the length of weir body. Generally, it is secured by water stop board, fore apron etc. but geologically it is very hard to apply water stop board because of construction Thus, rear apron is provided to prevent difficulty. piping by securing creep length as there were many construction examples in Indonesia, too.



rear apron is provided like the above figure, When creep length can be as follows.

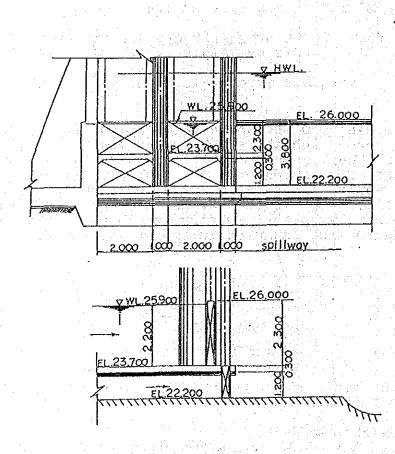
o Bligh's method

 $\Sigma L = 33.65 + (10.00+2.00 \times 3+2.50) = 52.15m$ 

 $* \ge L \ge C + 4h = 52.15 \ge 45.60m$  .... OK

o Lane's method  $\Sigma L' = 19.08 + (2.50+2.00 \times 3+10.00 \times 1/3) = 30.91m$ 

 $* \ge L \ge C \cdot Ah = 30.01 \ge 22.80m \ldots$  OK


Thus, creep length can be secured by rear apron.

#### (6) Scouring sluice

Under sluice type is selected because it has many construction example of the same type for scouring sluice in Indonesia Numbers and each length of the spans are decided referring to similar scale of Indonesian ones.

| Number of s  | pan N = 2 gates            |            |
|--------------|----------------------------|------------|
|              | B = 2.00m (Scale of gate s |            |
|              | possible to be             | controlled |
|              | by hand.)                  |            |
| Width of sco | ouring sluice              |            |

(Width of the inflow mouth x about 0.6) =  $6.60 \times 0.6 = 3.96$ = 4.00m

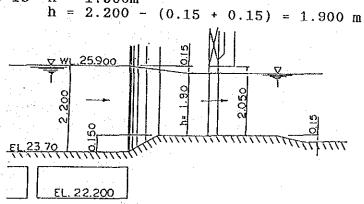


#### (7) Study of intake

### o Maximum regulated intake quantity $Q = 6.61 \text{ m}^3/\text{s}$

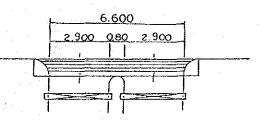
o Design velocity of standard intake flow  $V = 10 \cdot d^{0.5}$ 

Where


d = Grain size of river bed material accord-ing to the study of the grain size of river bed material at the proposed point of weir in the present condition, average grain size is around 3.5mm by the sieving study of 50% grain size.

In this Design, intake velocity is applied to stop grain size of 3.5mm.

 $* V = 10 \times 0.00350.5$ = 0.592 = 0.60 m/s

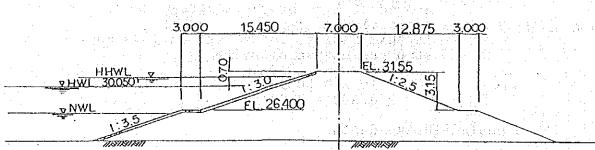

#### o Design intake depth

the intake loss head is 0.15m and intake sill When is about 0.15m, water depth of immediate downstream intake is h = 1.900mof



o Design width of inflow

Design width of inflow =  $6.61m^3/s/1.90m \times 0.60m/s$ = 5.798 = 5.80mWidth of each gate = 5.80m/2 gates = 2.900m



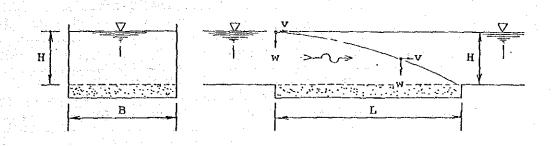

(8) Study of sub-dike

Section of sub-weir is assumed as follows and upstream slope is protected by stone.

的复数形式 化合理

| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |      |         | and the second | and the second |
|------------------------------------------|------|---------|----------------|----------------|
| Fig.                                     | V-17 | PROFILE | OF SUB         | -DIKE          |




#### (9) Study of Sand Trap

a) Relation between Velocity and Grain Diameter

Vd=10xd<sup>0.5</sup>

where Vd : Average Velocity (m/s) d : Grain Diameter (m)

b) Dimension of Sand Trap (Length and Width)



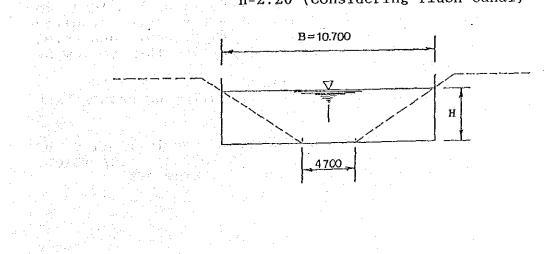
Therefore : H/W = L/V with  $V = Q/H \cdot B$ 

 $\mathbf{L}_{\mathbf{M}} = \left(\mathbf{H} \cdot \mathbf{V} / \mathbf{W}\right) \mathbf{F}_{\mathbf{M}}$ 

where H: Depth of Canal Flow (m) W : Falling Velocity of Sediment 

Particle (m/s)

L : Length of Sediment Trap (m)


V : Flowing Velocity of Water (m/s) Q : Canal Discharge (m/s)

B : Width of Sediment Trap (m)

F : Safety Rate (1.5 - 2.0)

Qmax=6.61 m<sup>3</sup>/s B=10.70m  $V=Q/H \cdot B=0.281 \text{ m/s}$ 

H=2.20 (Considering flush canal)



Relation between Length of Sediment Trap and Grain Diameter under the condition of Maximum Canal Discharge

c)

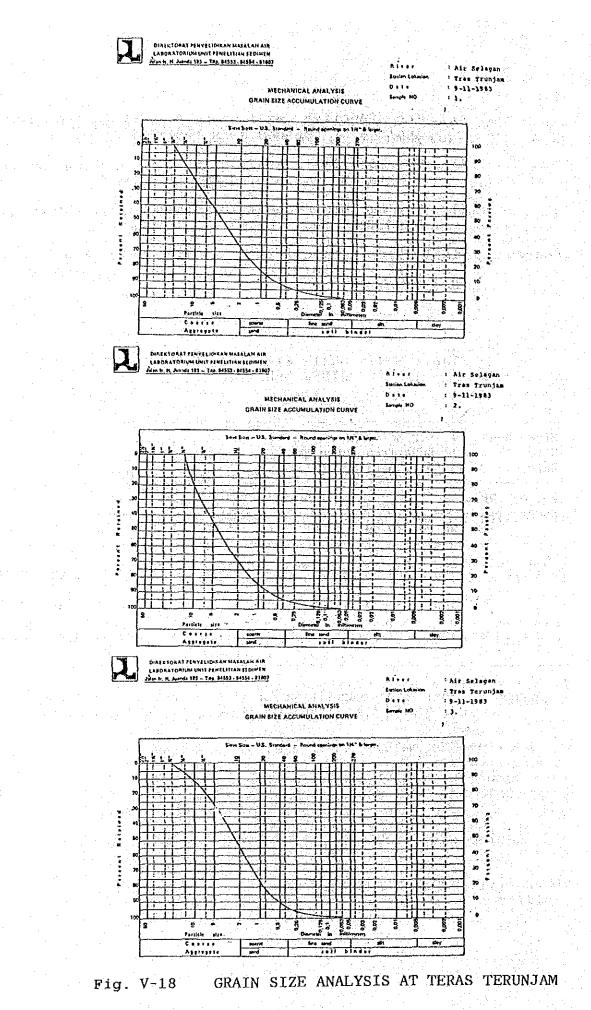
| 1       |        |                                           |                                                                                                                        |                                                                                                                                                                 |
|---------|--------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vd(m/s) | W(m/s) | II (m)                                    | L (m)                                                                                                                  |                                                                                                                                                                 |
| 0.600   | 0.280  | 2.20                                      | 5.00                                                                                                                   | (*1)                                                                                                                                                            |
|         |        |                                           |                                                                                                                        |                                                                                                                                                                 |
| 0.300   | 0.095  | 2.20                                      | 14.00                                                                                                                  | (*2)                                                                                                                                                            |
|         |        |                                           |                                                                                                                        |                                                                                                                                                                 |
| 0.173   | 0.030  | 2.20                                      | 42.00                                                                                                                  | (*3)                                                                                                                                                            |
|         |        |                                           |                                                                                                                        |                                                                                                                                                                 |
| 0.084   | 0.004  | 2.20                                      | 309.00                                                                                                                 | (*4)                                                                                                                                                            |
|         | 0.600  | 0.600 0.280<br>0.300 0.095<br>0.173 0.030 | 0.600         0.280         2.20           0.300         0.095         2.20           0.173         0.030         2.20 | 0.600         0.280         2.20         5.00           0.300         0.095         2.20         14.00           0.173         0.030         2.20         42.00 |

From the above table, the following matters can be pointed out:

- The maximum grain size flowing from the Intake is 3.5mm.(\*1)
- 2) The maximum grain size of bed load following under the condition of minimum water velocity is 0.9mm.(\*2)
- 3) In the case of the application of grain material (0.3mm) produced in Japan, the required length of Sediment Trap gets 42.0m.(\*3)
- 4) In the case of the application of grain material (0.07mm) produced in Indonesia, the required length of Sediment Trap gets 309.0m.(\*4)
- 5) The grain sizes less than 0.065mm of bed load in the vicinity of the Head Works were resulted within the range between 0.47 percent and 0.81 percent of bed load as shown in the following table and chart.

Judging from the above study, the following points are concluded:

1) The actual length of Sediment Trap is limited by the conditions such as geological condition, necessity of drainage canal for blow off.


- 2) The function as a sand trap shall be employed instead of the one as a sediment trap.
- 3) The available grain size to be applied shall be within the range of 0.3mm to 3.5mm.
- 4) Taking into account the above point, the length of Sand Trap shall be  $42.0 \div 45.00$ m.

Source : Final Report/Penelitian Kualitas Air dan Sediment Transport Air Dikit, Air Selagan dan Air Manjuto, April 1984/DPMA.

#### Table V-47 GRAIN SIZE ANALYSIS OF SELAGAN RIVER BED LOAD

| River ho<br>Site<br>Date | n en j | : Des | a Tras | Terunja | m · · · |         |       |       |         |       |
|--------------------------|--------|-------|--------|---------|---------|---------|-------|-------|---------|-------|
| No. of                   | Unit   |       |        | Perce   | ntage o | f Grain | Size  |       | <u></u> |       |
| Sample                   | mm     | 20.00 | 10.00  | 5.00    | 2.00    | 1.00    | 0.50  | 0.25  | 0.125   | 0.063 |
| 1                        | %      | 100   | 68.33  | 53.29   | 33.94   | 26.20   | 21.20 | 12.41 | 2.63    | 0.81  |
| 2                        | %      | 100   | 86.74  | 72.08   | 45.62   | 31.30   | 22.84 | 12.94 | 3.35    | 0.65  |
| 3                        | %      | 100   | 93.89  | 73.50   | 32.32   | 21.56   | 13.58 | 5.84  | 1.49    | 0.47  |

Source : Final Report/Penelitian Kualitas Air dan Sediment Transport Air Dikit, Air Selagan dan Air Manjuto, April 1984/DPMA



#### 4.2 Irrigation System

(1) Water Source

Irrigation water is required for the study area all the year round and is supplied from the weir on the Air Selagan where location was decided during the study.

According to low water discharge analysis, mean annual discharge is  $39.6 \text{ m}^3/\text{sec}$ , and minimum monthly discharge with 5 year probability of non-exceedance is  $12.9 \text{ m}^3/\text{s}$ . Annual discharge of the Air Selagan is  $875 \times 10^6 \text{ with 5}$  year probability of non-exceedance to be supplied is  $44.3 \times 10^6 \text{m}^3$  during rainy season, being  $51.5 \times 10^6 \text{m}^3$  during dry season respectively. As to the domestic water, annual water supply is planned to be  $0.6 \times 10^6 \text{m}^3$  in maximum. Namely, 11.0% of annual discharge is utilized for irrigation and domestic supply.

The maximum and minimum intake discharge are as follows:

| · · · · · · · · · · · · · · · · · · · |                        |                        |
|---------------------------------------|------------------------|------------------------|
|                                       | Maximum                | Minimum                |
| Wet season paddy                      | 5.84 m <sup>3</sup> /s | 0.88 m <sup>3</sup> /s |
| Dry season paddy                      | 6.59                   | 0.29                   |
| Domestic water supply                 | 0.02                   | 0.02                   |

#### (2) Distribution Method of Irrigation Water

Golongan system and plot to plot irrigation will be adopted for the project area.

As to the wet paddy also dry paddy, the whole area of 4,200 ha will be divided into two Golongan blocks. The area of one Golongan block will become about 2,100 ha. For the sake of canal capacity, however, the Golongan system will be adopted about each secondary canal during wet and dry seasons paddy cultivation. Conception of Golongan system is shown as below.

|            | Ont  | Nov.    | Dee  | lan               | Coh  | Иал   | Ane                                          | Hav    | lun   | hit   | Auro  | Sen    | Oct | Nov.  | Dec. | Jan.  |
|------------|------|---------|------|-------------------|------|-------|----------------------------------------------|--------|-------|-------|-------|--------|-----|-------|------|-------|
|            | UCL. | NOV.    | Dec. | Jall.             | 100. | 1101, |                                              | 1 KU Y |       |       |       |        |     |       |      | ••••• |
|            |      |         | 1/   | 1                 | 1.39 | /s/ha | 4/                                           | 30     |       | 7/16  | 1.    | 57 l/s | /ha | 11/15 |      |       |
|            | G    | olongan | 1    | $\langle \rangle$ | W    | et    |                                              | $\geq$ |       | <     |       | Ory    | ado |       |      |       |
| т.<br>Кол. | G    | olongan | I    |                   |      | Pa    | <u>0                                    </u> |        |       |       |       | 9/16   |     | 1     |      | 1/15  |
| н.<br>. т. |      |         |      |                   | 3    | ¢1    |                                              |        | 6/    | 30    |       | 97 10  |     |       |      | 17 13 |
| ••         |      |         |      |                   |      |       |                                              | Dew    | ateri | ng 1m | onth_ |        |     |       |      |       |

Plot to plot irrigation method will be taken at steep slope fields at every several plots. In case of flat area, separated canals for irrigation and drainage will be equipped in order to make a plain farming practice.

#### (3) Cropping Period and Irrigation Area

The dry season paddy cultivation is proposed to start two and half months after the harvest of the wet season paddy and the period to release water from canal for operation and maintenance is also proposed one month during dewatering period of the dry season paddy cultivation.

The following table shows the most applicable case on the basis of the study.

| Season's  | Commencement     | Irrigation | Max.Diversion |
|-----------|------------------|------------|---------------|
| crop      | date of puddling | area       | requirement   |
| Wet paddy | Jan. 1           | 4,200 ha   | 1.36/s/ha     |
| Dry paddy | Jul. 16          | 4,200      | 1.53          |

Taking into consideration resorting a weir without storage effect, fluctuation of average ten days discharge, the planning total household of transmigrants, distribution area for paddy cultivation per household, surplus water to downstream etc., the most appropriate cropping areas in the both seasons are obtained as the above table.

#### (4) Ten Day Intake Discharge

The ten days intake discharge for paddy cultivation of 4,200 ha in wet and dry seasons are estimated as below.

# Table V-48 TEN DAY INTAKE DISCHARGE Vet paddy, Jan. 1 A=4,200 ha Dry paddy, Jul.16 A=4,200 ha

| • | Wet paddy, Jan. | 1 | • |  |
|---|-----------------|---|---|--|
| • | Dry paddy, Jul. |   | 1 |  |

16 A=4,200 ha

|                                                                                                                                         | Period | Unit Water<br>Reg.                                                                                               | River<br>Dis. | Irrigation<br>Vater                                                                                              | Domestic<br>Water Supply                                                                                        | Intake<br>Discharge | Surplus<br>Discharg |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
|                                                                                                                                         |        | 1/s/ha                                                                                                           | m3/s          | m3/s                                                                                                             | m3/s                                                                                                            | m3/s                | m3/s                |
| n de la composition<br>A de la composition de | Jan 1  | 0.55                                                                                                             | 51.67         | 2.31                                                                                                             | 0.02                                                                                                            | 2.33                |                     |
|                                                                                                                                         | 2      | 0.65                                                                                                             | 34.31         | 2.73                                                                                                             |                                                                                                                 | 2.75                |                     |
| en antes<br>Sterra                                                                                                                      | 3      | 0.70                                                                                                             | 34.59         | 2.94                                                                                                             | 0.02                                                                                                            | 2.96                |                     |
|                                                                                                                                         | Feb.1  | 0.48                                                                                                             | 35.31         | 2.02                                                                                                             | 0.02                                                                                                            | 2.04                | 33.27               |
|                                                                                                                                         | 2      | 1.10                                                                                                             | 22.44         | 4.62                                                                                                             | 0.02                                                                                                            | 4.64                | 17.80               |
|                                                                                                                                         | 3      | 1.36                                                                                                             | 25.62         | 5.71                                                                                                             | 0.02                                                                                                            | 5.73                | 19.89               |
|                                                                                                                                         | Mar 1  | 0.73                                                                                                             | 39.68         | 3.07                                                                                                             | 0.02                                                                                                            | 3.09                | 36.59               |
| · . · · · ·                                                                                                                             | 2      | 0.65                                                                                                             | 44.21         | 2.73                                                                                                             | 0.02                                                                                                            | 2.75                | 41.46               |
|                                                                                                                                         | 3      | 0.91                                                                                                             | 40.79         | 3.82                                                                                                             | 0.02                                                                                                            | 3.84                | 36.95               |
|                                                                                                                                         | Apr 1  | 0.93                                                                                                             | 28.06         | 3.91                                                                                                             | 0.02                                                                                                            | 3.93                | 24.13               |
| e kan di sa                                                                                                                             | 2      | 0.70                                                                                                             | 23.48         | 2.94                                                                                                             | 0.02                                                                                                            | 2.96                |                     |
|                                                                                                                                         | 3      | 0.79                                                                                                             | 37.14         | 3.32                                                                                                             | 0.02                                                                                                            | 3.34                | 33.80               |
|                                                                                                                                         | May 1  |                                                                                                                  | 25.53         |                                                                                                                  | 0.02                                                                                                            | 2.29                |                     |
|                                                                                                                                         | 2      | 0.26                                                                                                             | 21.56         | 1.09                                                                                                             | 0.02                                                                                                            | 1.11                | 20.45               |
| i di si di s                                                                                                                            | 3      |                                                                                                                  | 18.85         |                                                                                                                  |                                                                                                                 | 1.99                |                     |
|                                                                                                                                         | Jun 1  | 0.52                                                                                                             |               |                                                                                                                  |                                                                                                                 | 2.20                |                     |
| ana san                                                                                                                                 | 2      |                                                                                                                  | 17.24         |                                                                                                                  | 0.02                                                                                                            | 1.11                | 16.13               |
|                                                                                                                                         | 3      |                                                                                                                  | 11.45         |                                                                                                                  |                                                                                                                 | 0.02                | 11.43               |
|                                                                                                                                         | Jul 1  |                                                                                                                  | 16.61         |                                                                                                                  |                                                                                                                 | 0.02                |                     |
| na na sina si sa                                                                                                                        | 2      | 1.07                                                                                                             | 16.47         |                                                                                                                  |                                                                                                                 | 4.51                | 11.96               |
| an tha an th                                                                                                                            | 3      | 1.17                                                                                                             | 19.48         |                                                                                                                  | 0.02                                                                                                            | 4.93                | 14.55               |
|                                                                                                                                         | Aug 1  | 1.23                                                                                                             | 16.66         |                                                                                                                  |                                                                                                                 | 5.19                |                     |
|                                                                                                                                         | 2      | and the second | 9.21          |                                                                                                                  | 0.02                                                                                                            | 3.93                |                     |
|                                                                                                                                         | 3      |                                                                                                                  | 12.83         |                                                                                                                  |                                                                                                                 | 6.45                |                     |
|                                                                                                                                         | Sep.1  |                                                                                                                  | 27.69         |                                                                                                                  |                                                                                                                 | 4.98                |                     |
| na an ghatht.<br>Thair a na                                                                                                             | 2      |                                                                                                                  | 26.48         | 5                                                                                                                |                                                                                                                 | 3.46                |                     |
|                                                                                                                                         | 3      |                                                                                                                  | 36.82         |                                                                                                                  | the second se | 0.02                |                     |
|                                                                                                                                         | 0ct 1  | 1.22                                                                                                             | 27.23         | 1 C C C C C C C C C C C C C C C C C C C                                                                          |                                                                                                                 | 5.14                |                     |
|                                                                                                                                         | 2      | 0.99                                                                                                             | 31.21         | 2 T                                                                                                              |                                                                                                                 | 4.18                |                     |
| age and the second                                                                                                                      |        | 0.57                                                                                                             | 30.57         |                                                                                                                  |                                                                                                                 | 2.41                |                     |
|                                                                                                                                         | Nov 1  | 0.73                                                                                                             | 32.37         |                                                                                                                  |                                                                                                                 | 3.09                | 1                   |
|                                                                                                                                         | 2      | 0.89                                                                                                             | 24.25         |                                                                                                                  |                                                                                                                 | 3.76                |                     |
|                                                                                                                                         | 3      | 0.27                                                                                                             | 36.08         |                                                                                                                  |                                                                                                                 | 1.15                |                     |
| an the second                         | Dec.1  |                                                                                                                  | 30.81         |                                                                                                                  |                                                                                                                 | 0.36                |                     |
| ray di tanin<br>Manazarta                                                                                                               | 2      | 0.20                                                                                                             | 37.75         |                                                                                                                  |                                                                                                                 | 0.86                |                     |
|                                                                                                                                         | 3      |                                                                                                                  | 39.83         | and the second |                                                                                                                 | 1.28                |                     |

Note : The river dischage of 1/5 years probability is used.

#### (5) Diversion Requirement of Development Stage

During the development stage, the irrigation, efficiency will be planned as 0.50 because new reclaimed paddy fields will need more irrigation water.

21. S. S. S.

Therefore the diversion discharge will increase during development stage for paddy fields. These increasement of diversion discharge will be conveyed using canal free board as much as possible.

The relation of the diversion discharge and canal capacity will be studied in next stage.

4.3 Basic Plan of Irrigation System

(1) Alignment and system of main canal

The objective area for the study lies on both the sides of the Selagan river, then both-sides intake method can be considered. Actually, however, the upstream part from Kp. Pondok Kopi has mountainous topography with steep land slope and under these topographical conditions, it is difficult to assure the economical cost, smooth construction, efficient and effective operation and maintenance, and so on for the canal system.

From the above view point of topographical condition, oneside intake method on the right of the river is accepted for the weir and the main canal is divided into two (2) about 6.0 km in the downstream of the intake, and then the main canal to the left side crosses the Selagan river by a syphon and conveys water to the left side area.

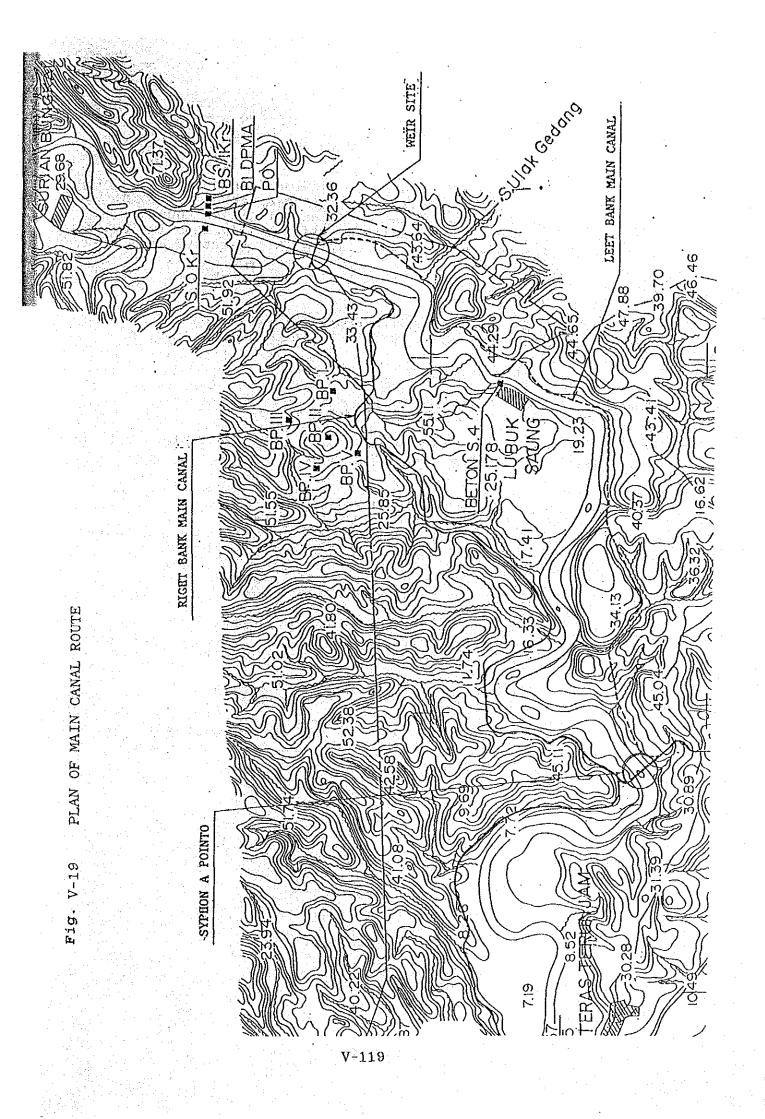
All the canals pass through the governmental land such as forests, transmigration area, etc., but there is a concession area for P.T. Tolan Tiga on the left side in the downstream part of the weir and it will be necessary to keep the land of about 300m width from the river bank as the land for the inspection road to the weir.

A part of the existing canal system of the Muko-Muko Irrigation Project, which is located in the objective area, is included in the canal system for the Air Selagan Project.

As a result of the leveling survey between the bench mark (SCN.7) for the Air Selagan Project and BB6 of the Muko-Muko irrigation canal, the difference of 0.50m between two (2) systems is found. It simply means that the elevation of the Muko-Muko irrigation system is higher by 0.50m on the map and the attention on this matter should be paid to the study on the canal system.

#### (2) Study on intake method

The following points could be mentioned on the comparison between the both-sides intake method and the one-side intake method.


- a) The both-sides intake method can be adopted because the the river line at the proposed weir site is straight.
- b) The alignment of the main canal in the upstream part, if planned, is obliged to run through the mountainous land with steep slope on both the sides of the river.
- c) As to the canal length between the weir site and the proposed place of a syphon, the alignment on the right side is estimated at 4.6km, and that on the left side at 5.4km and is longer by about 800m.
- d) The places for drainage culvert works crossing the main canal are counted at 25 places on the right side alignment and those at 17 places on the left side alignment.
- e) The most upstream part of the irrigable area is located at the right side of the river.
- f) The left side canal route has two (2) parts of the land with steep slope near the river bank and the construction and the operation and maintenance of the canal will be more difficult than those of the right side canal route.
- g) The length of the syphon crossing the Selagan river is estimated at about 460m.
- h) The place proposed for the syphon has a sand bank in the center of the river and the syphon can be constructed by the method of half closure of the river.
- i) The construction costs for each intake method are roughly estimated as follows:

| . · · | (a,b) | ge lang | 1.334 | :<br> | Un | it: | Milli | on R | <b>p</b> |
|-------|-------|---------|-------|-------|----|-----|-------|------|----------|
|-------|-------|---------|-------|-------|----|-----|-------|------|----------|

|                                   |                             | Both sides  |               |          | One side intake |                                                                                                                                             |        |            |                                                                                                                                                                                                                                                                                                                                                       |               |
|-----------------------------------|-----------------------------|-------------|---------------|----------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Item                              | Unit                        | н. <b>Ц</b> | intake        |          |                 | Left                                                                                                                                        |        |            | Right                                                                                                                                                                                                                                                                                                                                                 |               |
|                                   | a<br>Alan araa<br>Alan araa | Q'ty        | Unit<br>Price | Amount   |                 | Unit<br>Price                                                                                                                               | Amount |            | Unit<br>Price                                                                                                                                                                                                                                                                                                                                         | Amount        |
| Right main<br>canal               | km                          | 4.6         | 300           | 1,380    |                 |                                                                                                                                             |        | 4.6        | 325                                                                                                                                                                                                                                                                                                                                                   | 1,495         |
| Left main<br>canal                | km                          | 5.4         | 300           | 1,620    | 5.4             | 350                                                                                                                                         | 1,890  |            | 에 다음 가야<br>동 같은 것은<br>같이 다 다                                                                                                                                                                                                                                                                                                                          |               |
| Syphon<br>Syphon                  | ID<br>DD                    | 100         |               | 205<br>- | -<br>460        | _<br>2.52                                                                                                                                   | 1,159  | 100<br>460 | 2.84<br>2.52                                                                                                                                                                                                                                                                                                                                          | 2.84<br>1,159 |
| Right side<br>drainage<br>culvert | nos                         | 25          | 9.2           | 230      |                 | - 2000 - 200<br>                                                                                                                            |        | 25         | 9.2                                                                                                                                                                                                                                                                                                                                                   | 230           |
| Left side<br>drainage<br>culvert  | nos                         | 17          | 9.2           | 156      | 17              | 9.2                                                                                                                                         | 156    |            |                                                                                                                                                                                                                                                                                                                                                       |               |
| Total                             | · · · ·                     | i y         |               | 3,591    |                 |                                                                                                                                             | 3,205  |            |                                                                                                                                                                                                                                                                                                                                                       | 3,168         |
| Ratio                             |                             |             |               | 113      |                 | raanse van de servieren.<br>De servieren de serv | 101    |            | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | 100           |

The one-side intake method is more economical than the bothsides intake method and the right side canal route is the most appropriate. From comprehensive view points, the one-side intake method

From comprehensive view points, the one-side intake method and the right side main canal route are adopted taking into considerations the planning irrigation area, the topographic difficulty near the river bank on the left side, etc.



#### (3) Type of Canal

The earth canal with trapezoid section is generally adopted for the type of the irrigation canal from a economical point of view and with reference to the existing irrigation canal of the Muko-Muko Project and the soil condition mainly consisting of tuffaceous clay and volcanic ash clay in the objective area.

#### (4) Water Depth of Canal

As to the planning water depth, the following modified formula of Haring Huizen of PROSIDA in Indonesia is adopted.

$$h = 0.887 \times Q^{0.277}$$

where, h is water depth (m)

Q is planning discharge (m<sup>3</sup>/sec)

The above coefficients were decided upon the Table A.2.1 to A.2.3 in the Irrigation Design Standard, KP-03.

#### (5) Maximum and Minimum Velocities

From the consistency test results and soil classification, the maximum velocity is taken as 0.7 m/sec as follows:

V max = Vb x A x B x C = 0.8 x 1.1 x 0.8 x 1.0 = 0.70 m/s

where V max is maximum allowable velocity in m/s

V b is basic velocity in m/s

A is correction factor for void ratio of

- canal surface
- B is correction factor for water depth

C is correction factor for curvature

As to the minimum velocity, it is taken as 0.30 m/s.

#### (6) Side Slope

### Minimum side slopes for various soils

| Soil Material                                                                                                    | Group<br>Symbol                     | Side Slope Range<br>1 : m |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|
| Rock<br>Stiff peat<br>Stiff clay, loam, loesses<br>Sandy clay, cohesive<br>Sandy soil<br>Silty sand<br>Soft peat | PT<br>CL,CH,MH<br>SC,SM<br>SM<br>PT |                           |

te de la secola

Minimum side slopes for canals in well compacted fill

| Water depth + freeboard<br>D (m)                                                     | Minimum side slope |
|--------------------------------------------------------------------------------------|--------------------|
| $     \begin{array}{r}         D \leq 1.0 \\         1.0 < D < 2.0     \end{array} $ | 1:1<br>1:1.5       |
| $D \leq 2.0$                                                                         | 1 : 2              |

#### (7) Free board

### Minimum freeboard for unlined canals

| Q in m <sup>3</sup> /s | Freeboard in mm |
|------------------------|-----------------|
| < 0.5                  | 0.40            |
| 0.5 - 1.5              | 0.50            |
| 1.5 - 5.0              | 0.60            |
| 5.0 - 10.0             | 0.75            |
| 0.0 - 15.0             | 0.85            |
| > 15.0                 | 1.00            |

#### (8) Coefficient of roughness

|     | Design discharge<br>in m <sup>3</sup> /s |                 | k                |
|-----|------------------------------------------|-----------------|------------------|
| · . | Q > 10<br>5 < Q < 10<br>1 < Q < 5        |                 | 45<br>42.5<br>40 |
|     | $Q \leq 1$ and tertiary                  | v service canal | 35               |
|     |                                          |                 |                  |

## (9) Ratio of width and water depth (b/h)

| <u></u>                           |                                                                                                                |                                                                                                                  | <u> </u>                   |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------|
| Discharge<br>in m <sup>3</sup> /s | Side slope<br>1:m                                                                                              | Ratio b/h<br>n                                                                                                   |                            |
| 0.15 - 0.30                       | 1.0                                                                                                            | 1.0                                                                                                              | 35                         |
| 0.30 - 0.50                       | -                                                                                                              | 1.2 - 1.2                                                                                                        | 35                         |
| 0.50 - 0.75                       |                                                                                                                | 1.2 - 1.3                                                                                                        | 35                         |
| 0.75 - 1.00                       |                                                                                                                | 1.3 - 1.5                                                                                                        | 35                         |
|                                   | en de la serie |                                                                                                                  | in a statistication of the |
| 1.00 - 1.50                       | 1.0                                                                                                            | 1.5 - 1.8                                                                                                        | 40                         |
| 1.50 - 3.00                       | 1.5                                                                                                            | 1.8 - 2.3                                                                                                        | 40                         |
| 3.00 - 4.50                       | 1.5                                                                                                            | 2.3 - 2.7                                                                                                        |                            |
| 4.5 - 5.00                        | 1.5                                                                                                            | 2.7 - 2.9                                                                                                        | 40                         |
| 5.00 - 6.00                       | 1.5                                                                                                            | 2.9 - 3.1                                                                                                        | 42.5                       |
| 6.00 - 7.50                       |                                                                                                                | 3.1 - 3.5                                                                                                        | 42.5                       |
| 7.50 - 9.00                       | 1.5                                                                                                            | 3.5 - 3.7                                                                                                        | 42.5                       |
| 9.00 - 10.00                      | 1.5                                                                                                            | 3.7 - 3.9                                                                                                        | 42.5                       |
| 10 00 11 00                       | 9 Δ                                                                                                            | 3.9 - 4.2                                                                                                        | 45                         |
| 10.00 - 11.00                     | 2.0                                                                                                            | and the second |                            |
| 11.00 - 15.00                     | 2.0                                                                                                            | 4.2 - 4.9                                                                                                        | 45                         |
| 15.00 - 25.00                     | 2.0                                                                                                            | 4.9 - 6.5                                                                                                        | 45                         |
| 25.00 - 40.00                     | 2.0                                                                                                            | 6.5 - 9.0                                                                                                        | 45                         |

### (10) Width of inspection road (B) and opposite embankment (B')

| Minimum embankment width                   |                                   |                                 |  |  |  |  |
|--------------------------------------------|-----------------------------------|---------------------------------|--|--|--|--|
|                                            | <u>,</u> В'                       | В                               |  |  |  |  |
| Design dişcharge I<br>in m <sup>9</sup> /s | Without<br>nspection road<br>in m | With<br>Inspection road<br>in m |  |  |  |  |
| $Q \leq 1$<br>$1 < Q \leq 5$<br>5 < Q      | 2.00<br>2.00<br>3.00              | $3.50 \\ 5.00 \\ 5.00$          |  |  |  |  |
|                                            |                                   |                                 |  |  |  |  |

| RIGHT | CANAL NAKE<br>BANK                                                                                              | DIVERSION<br>STRUCTURE        | COVERING<br>GROSS                                                                                               | AREA<br>Net     | DIVERSION<br>REQUIREMENT                                                                                         | DOMESTIC<br>WATER | DESIGN<br>CAPACITY               |
|-------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| NAIN  | LINK CANAL                                                                                                      |                               | ĥa                                                                                                              | ha              | m3/s                                                                                                             | m3/s              | m3/s                             |
| · · · | en trasferar                                                                                                    | BS0-BS1                       | 4,700                                                                                                           | 4,200           | 6.43                                                                                                             | 0.02              | 6.4                              |
|       |                                                                                                                 | BS1-BS2                       | 4,690                                                                                                           | 4,191           | 6.41                                                                                                             | 0.02              | 6.43                             |
|       | in the second | BS2-BS3                       | 4,633                                                                                                           | 4,140           | 6.33                                                                                                             | 0.02              | 6.35                             |
|       |                                                                                                                 | BS3-BS4                       | 4,623                                                                                                           | 4,131           | 6.32                                                                                                             | 0.02              | 6.34                             |
| HAIN  | RIGHT BANK                                                                                                      | ΝΆΤΝ ΓΆΝΛΓ.                   | a de la composición d |                 | and the second second second                                                                                     |                   |                                  |
| · ·   |                                                                                                                 | BS4-BR1<br>BR1-BR2<br>BR2-BR3 | 1,913                                                                                                           | 1,722           | 3.15                                                                                                             | 0.01              | 3.16                             |
|       |                                                                                                                 | BR1-BR2                       | 1,874                                                                                                           | 1,687           | 3.09                                                                                                             | 0.01              | 3.10                             |
|       | · · ·                                                                                                           | BR2-BR3                       | 1,806                                                                                                           | 1,626           | 2.98                                                                                                             | 0.01              | 2.99                             |
|       |                                                                                                                 | BR3-BR4                       | 1,764                                                                                                           | 1,588           | 2,98<br>2,91<br>2,88                                                                                             | 0.01              | 2.92                             |
|       |                                                                                                                 | BR4-BR5                       | 1,747                                                                                                           | 1,573           | 2.38                                                                                                             | 0.01              | 2.89                             |
|       |                                                                                                                 | 882-886                       | 1 712                                                                                                           | 1 541           | 2.82                                                                                                             | 0.01              | 2.83                             |
|       |                                                                                                                 |                               | 1,706                                                                                                           | 1,536           | 2.81                                                                                                             | 0.01              |                                  |
|       |                                                                                                                 | BR7-BR8                       | 1,680                                                                                                           | 1,513           | 2.77                                                                                                             | 0.01              | 2.78                             |
|       | · · ·                                                                                                           | BR8-BR9                       | 1,657                                                                                                           | 1,492           | 2.73                                                                                                             | 0.01              | 2.74                             |
|       |                                                                                                                 | BR9-BR10                      | 1,634                                                                                                           | 1,471           | 2.69                                                                                                             |                   | 2.70                             |
|       |                                                                                                                 |                               | 1,619                                                                                                           | 1,457           | 2.67                                                                                                             | 0.01              | 2.68                             |
| SEC.  | S.S.PONDOR                                                                                                      |                               |                                                                                                                 |                 | 0.95                                                                                                             |                   |                                  |
|       |                                                                                                                 | BR11-BP1                      | 576                                                                                                             | 518             |                                                                                                                  |                   | 0.96                             |
|       |                                                                                                                 | BP1-BP2                       | 531                                                                                                             | 477             | 0.87                                                                                                             |                   | 0.88                             |
|       |                                                                                                                 | BP2-BP3                       | 480                                                                                                             | 431             | 0.79                                                                                                             |                   | 0.80                             |
|       |                                                                                                                 |                               | 470                                                                                                             | 424             | 0.78                                                                                                             |                   |                                  |
|       |                                                                                                                 | BP4-BP5                       | 417                                                                                                             |                 | 0.69                                                                                                             |                   | 0.70                             |
|       |                                                                                                                 | BP5-BP6                       | 353                                                                                                             |                 | 0.58                                                                                                             |                   | 0.59                             |
|       | :                                                                                                               | BP6-BP7                       |                                                                                                                 |                 | 0.54                                                                                                             | 0.01              |                                  |
|       |                                                                                                                 |                               | 273                                                                                                             |                 |                                                                                                                  |                   | 0.45                             |
|       |                                                                                                                 | BP8-BP9                       |                                                                                                                 |                 | 0.39                                                                                                             | 1                 | 0.39                             |
|       |                                                                                                                 | BP9-BP10                      | 179                                                                                                             |                 | 0.29                                                                                                             |                   | 0.29                             |
|       |                                                                                                                 | BP10-BP11                     | 84                                                                                                              | 75              | 0.14                                                                                                             | · *               | 0.14                             |
|       |                                                                                                                 | · · ·                         |                                                                                                                 |                 |                                                                                                                  |                   |                                  |
|       | ·                                                                                                               |                               |                                                                                                                 |                 |                                                                                                                  |                   | a da ser a da<br>Antonio de grad |
| SEC.  | S.S.HITAN                                                                                                       |                               |                                                                                                                 |                 |                                                                                                                  |                   |                                  |
|       |                                                                                                                 | BR11-BH1                      | 1,043                                                                                                           | 939             |                                                                                                                  | 0.01              |                                  |
|       |                                                                                                                 | BH1-BH2                       | 169                                                                                                             | 152             | 0.28                                                                                                             |                   | 0.28                             |
|       |                                                                                                                 | BH2-BH3                       | 103                                                                                                             | 92              | and the second |                   | 0.17                             |
|       |                                                                                                                 | BH3-BH4                       | 50                                                                                                              | 44              | 0.08                                                                                                             | 1.                | 0.08                             |
| SEC.  | TRANSFER CA                                                                                                     |                               | 1.25                                                                                                            | ار در<br>ادعانی |                                                                                                                  |                   |                                  |
|       |                                                                                                                 | BH1-BTR1                      | 842                                                                                                             | 758             | 1.39                                                                                                             |                   | 1.39                             |
|       |                                                                                                                 | BTR1-BTR2                     | 837                                                                                                             | 753             | 1.38                                                                                                             |                   | 1.38                             |
|       |                                                                                                                 | BTR2-BTR3                     | 597                                                                                                             | 537             |                                                                                                                  |                   | 0.98                             |
|       |                                                                                                                 | BTR3-BTR4                     | 525                                                                                                             | 473             | 0.86                                                                                                             |                   | 0.80                             |
|       | · · · ·                                                                                                         | BTR4-BB4                      | 456                                                                                                             | 410             | 0.75                                                                                                             |                   | 0.75                             |
| SEC . | TRANSFER CA                                                                                                     | NAL 2                         |                                                                                                                 |                 |                                                                                                                  |                   |                                  |
|       | +                                                                                                               | BTR2-BB6                      | 203                                                                                                             | 183             | 0.33                                                                                                             | · · · ·           | 0.33                             |

Table V-49.1 CANAL NAME , COVERING AREA & DESIGN CAPACITY

e ji Nue zati Natra

#### Table V-49.2 CANAL NAME , COVERING AREA & DESIGN CAPACITY

| in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | *****                  |                   |            |                          |                   |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-------------------------|------------------------|-------------------|------------|--------------------------|-------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEFT          |          | CANAL NAME              | DIVERSION<br>STRUCTURE | COVERING<br>GROSS |            | DIVERSION<br>REQUIREMENT | DONESTIC<br>WATER | DESIGN<br>CAPACITY |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | ······                 | ha                | ha         | m3/s                     | <br>m3/s          | m3/s               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HAIN          |          | LEFT BANK I             | ATN CANAL              | ()41              | 1101       | 1137 8                   | 10.57 \$          | lin s              |
| la sue de la composición de la |               |          |                         | BS4-BL1                | 2,710             | 2,409      | 4.41                     | 0.01              | 4.42               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BL1-BL2                | 2,700             | 2,400      |                          | 0.01              | 4.40               |
| 1.<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |          |                         | BL2-BL3                | 2,624             | 2,333      |                          | 0.01              | 4.28               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1           | Т., .    |                         | BL3-BL4                | 2,568             | 2,287      |                          | 0.01              | 4.20               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2        | · .                     | BL4-BL5                | 2,552             | 2,273      |                          | 0.01              | 4.17               |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |          |                         | BL5-BL6                | 2,540             | 2,262      | 4.14                     | 0.01              | 4.15               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BL6-BL7                |                   | 2,217      | 4.06                     | 0.01              | 4.07               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | e ser ser               | BL7-BL8                | 2,482             | 2,212      |                          | 0.01              | 4.08               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | · .      |                         | BL8-BL9                | 2,480             | 2,210      |                          | 0.01              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | 5 E 1.                  | BL9-BL10               | 1,796             | 1,601      | 2.93                     | 0.01              | 2.94               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ار الوحي      | ÷.,      |                         | BL10-BL11              |                   | 1,596      |                          | 0.01              | 2.9                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | · .                     | BL11-BL12              |                   | 1,572      |                          | 0.01              | 2.89               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BL12-BL13              | 1645              | 1,472      |                          | 0.01              | 2.70               |
| $(1,1,1,\dots,n) \in [n+1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112.04        | 1. typ   |                         | BL13-BL14              | 1590              | 1,422      |                          | 0.01              | 2.61               |
| a da ante da como de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·             | 1        |                         |                        | 1036              | 928        |                          | 0.01              |                    |
| taga di kacana di kacana.<br>Kacana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |          |                         | BL15-BL16              | 991               | 887        | 1.62                     | 0.01              | 1.63               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEC.          | 1        | S.S.BL9Ka               | DBID DBIO              |                   | 007        | 1.02                     | 0.01              | 1.0                |
| n<br>11. – Alatie II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J <u>U</u> U. |          | 0-0-00300               | BL9-BK1                | 684               | 609        | 1.11                     | 0.01              | 1.12               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BK1-BK2                |                   | 604        |                          | 0.01              | 1.12               |
| 의사 문화가 문                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |          |                         | BK2-BK3                | 521               | 465        |                          | 0.01              | 0.85               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | at i se su s            | BX3-BX4                | 415               | 370        |                          |                   | 0.68               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BK4-BK5                | 287               | 255        |                          |                   | 0.47               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.11          | • `      | al geodesia<br>Geologia | BK5-BK6                | 149               | 133        |                          |                   | 0.24               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OT/C          |          | C C D707-               | DAD-DAO                | 147               | 100        | 0.64                     |                   | 0.65               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEC.          |          | S.S.BK2Ka               | 020 0021               | 100               | 120        | 0.25                     |                   | 0.25               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | ÷.,                     | BK2-BBK1               | 155               | 139<br>136 |                          |                   |                    |
| al definition and a<br>That is the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ama           |          | 0.0.07.147              | BBK1-BBK2              | 152               | 100        | U.20                     |                   | 0.25               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEC .         |          | S.S.BL14Ka              | DE 4 A DE MA           | 101               | 113        | 0.01                     |                   | 0.01               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BL14-BLK1              | 494               | 443        |                          |                   | 0.81               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BLK1-BLK2              | 444               | 398        |                          |                   | 0.73               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          | ·                       | BLK2-BLK3              | 274               | 245        | 0.45                     |                   | 0.45               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · ·         |          |                         | BLK3-BLK4              | 214               | 191        | 0.35                     |                   | 0.35               |
| ng filosofi tari kanga<br>Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SEC.          | 1. L. L. | S.S. MUKONUI            |                        |                   |            | 4 50                     |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BL16-BH1               | 916               | 820        | 1.50                     |                   | 1.50               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BH1-BH2                | 847               | -758       | 1.39                     |                   | 1.39               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BM2-BM3                | 806               | 721        | 1.32                     |                   | 1.32               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BH3-BH4                | 527               | 472        | 0.86                     |                   | 0.86               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BN4-BN5                | 284               | 256        | 0.47                     |                   | 0.47               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             |          |                         | BH5-BH6                | 243               | 219        | 0.40                     |                   | 0.40               |
| · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |          |                         | BH6-BN7                | 92                | 83         | 0.15                     |                   | 0.15               |
| enet<br>Anno 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEC .         |          | S.S.TANAHRI             | <u>BRA</u>             |                   |            |                          |                   |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |                         | BH4-BT1                | 243               | 216        | 0.40                     |                   | 0.40               |
| 10 A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |          |                         | BT1-BT2                | 73                | 65         | 0.12                     |                   | 0.12               |