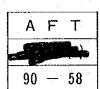
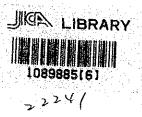
REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT

FEASIBILITY STUDY

ON

AIR SELAGAN IRRIGATION PROJECT IN BENGKULU PROVINCE


VOLUME II


APPENDIX

- I METEOROLOGY AND HYDROLOGY
- II GEOLOGY AND SOIL MECHANICS
- III SOIL AND LAND SUITABILITY
- W AGRICULTURE AND AGRO-ECONOMY
- V IRRIGATION AND DRAINAGE
- VI IMPLEMENTATION SCHEDULE AND COST ESTIMATE
- WI PROJECT ORGANIZATION AND MANAGEMENT
- Y PROJECT EVALUATION

NOVEMBER 1990

JAPAN INTERNATIONAL COOPERATION AGENCY
TOKYO, JAPAN

REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT

FEASIBILITY STUDY

ON

AIR SELAGAN IRRIGATION PROJECT IN BENGKULU PROVINCE

VOLUME II

APPENDIX

- I METEOROLOGY AND HYDROLOGY
- II GEOLOGY AND SOIL MECHANICS
- III SOIL AND LAND SUITABILITY
- N AGRICULTURE AND AGRO-ECONOMY
- V IRRIGATION AND DRAINAGE
- VI IMPLEMENTATION SCHEDULE AND COST ESTIMATE
- VII PROJECT ORGANIZATION AND MANAGEMENT
- VII PROJECT EVALUATION

NOVEMBER 1990

JAPAN INTERNATIONAL COOPERATION AGENCY
TOKYO, JAPAN

APPENDIX I METEOROLOGY AND HYDROLOGY

1.	METE	OROLOGY	PAGE I- 1
	1.1	General	I- 1
	1.2	Meteorological Condition	I- 1
2.	HYDR	OLOGY	I- 3
	2.1	Selagan River	1- 3
		2.1.1 Record of River Water Level	I- 3
		2.1.2 Record of Discharge	I- 3
		2.1.3 Monthly Discharge	I- 4
		2.1.4 Comparison between the Selagan River and Other Rivers	I- 4
		2.1.5 Flood	I- 4
		2.1.6 Sedimentation	1- 5
	2.2	Run-off Analysis	I- 6
		2.2.1 Low Water Discharge Analysis	
		2.2.2 Flood Run-off Analysis	I- 9
	2.3	Water Quality	I-23
		Tidal Movement	
		2.4.1 Record of Water Level	1-23
		2.4.2 Back Water by the Tide	I-24

. '	LIST OF TABLES	
No.	TITLE	PAGE
I-1	MONTHLY MEAN RAINFALL RECORDS	1-25
1-2	MONTHLY CLIMATOLOGICAL RECORDS AT PONDOK PANJANG .	I-26
I-3	MONTHLY DISCHARGES AT PROPOSED WEIR SITE	1-27
I-4	SUSPENDED SOIL IN THE SELAGAN RIVER AT TERAS TERUNJAM	I-28
I-5	10-DAYS DISCHARGE AT PROPOSED WEIR SITE	1-29
I-6	DAILY MAXIMUM RAINFALL RECORDS	1-30
1-7	WATER QUALITY TEST FOR DRINKING	I-31
I-8	WATER QUALITY TEST FOR IRRIGATION	I-32
1-9	WATER QUALITY TEST AND SALINITY TEST	I-33
:	LIST OF FIGURES	
No.	<u>TITLE</u>	PAGE
I-1	LOCATION MAP OF HYDRO-METEOROLOGICAL STATIONS	I-34
I-2	AVAILABLE CLIMATOLOGICAL AND HYDROLOGICAL DATA	1-35
I-3	MONTHLY MEAN RAINFALL RECORDS	I-36
I-4	COMPARISON OF MONTHLY MEAN RIVER DISCHARGE	I-37
1-5	CORRELATION BETWEEN MONTHLY MEAN DISCHARGE AT AIR SELAGAN AND AIR MANJUTO	I-38
1-6	PROCEDURE OF HYDROLOGICAL ANALYSIS	I-39
1-7	SCHEMATIC DIAGRAM OF TANK MODEL	I-40
1-8	RESULT OF CALCULATION BY TANK MODEL METHOD	. I-41

n de la companya de la co La companya de la company APPENDIX II GEOLOGY AND SOIL MECHANICS

	CONTENTS	
1.	GENERAL	PAGE II- 1
2.	그러지 하는 경찰 하시고 취원 중에 하기를 하할 것이 가지 하지 않는 것이 되는 것이 되는 것이 되었다. 그는 사람들은 사람들이 되었다.	
	2.1 Location and Quantity of Investigation	11- 3
	2.2 Methods of Investigation	II- 3
	2.3 Test Results	II- 3
3.		11-23
	3.1 Regional Geology	11-23
	3.2 Geological Features in the Proposed Project Area	11-24
	3.3 Seismic Design for Structures and Foundation	II-31
4.		
	4.1 Geological Structure	II-36
	4.2 Bearing Capacity for the Weir	II-36
	4.3 Permeability of the Foundation	11-36
÷	4.4 Shear Strength	II-36
5.	CANAL EMBANKMENT	11-42
	5.1 Canal Embankment on Soft Soil Foundation	II-42
	5.2 Canal Embankment on Hilly Area	II-43

LIST OF TABLES

NO.	TITLE	PAGE
11- 1	NUMBER OF SOIL & GEOLOGICAL INVESTIGATION IN 1989	11- 4
11- 2	RESULTS OF CONE-PENETRATION TEST	II-19
11- 3	SOIL TEST RESULT IN TEST PIT	11-22
	LIST OF FIGURES	
NO.	TITLE	PAGE
II- 1	LOCATION OF GEOLOGICAL SURVEY	11- 2
II- 2	LOCATION OF DUTCH CONE TEST	11- 5
II- 3	SIMPLIFIED GEOLOGIC COLUMN	
II- 4	PLASTICITY CHART OF SOIL	II- 8
II- 5	CONE INDEX BY CONE PENETRATION TESTS	II- 9
11- 6	SOIL PROPERTY CHART	II-12
II- 7	GRAIN SIZE DISTRIBUTION	11-17
11- 8	RESULTS OF COMPACTION TEST	11-18
II- 9	GEOLOGICAL MAP	II-28
II-10	GEOLOGICAL CROSS SECTION ON PROPOSED WEIR AXIS	11-29
II-11	GEOLOGICAL LONGITUDINAL SECTION ON PROPOSED WEIR AXIS	11-30
11-12	EARTHQUAKE EPICENTERS AND SEISMIC ZONE IN SUMATRA .	11-33
11-13	MAP OF SEISMIC ZONE FOR DESIGN OF RESIST AGAINST EARTHQUAKE STRUCTURES	11-34
II-14	CVT EARTHQUAKE ACCELERATION MAP	
II-15	BOREHOLE LOG	II-37

APPENDIX III SOIL AND LAND SUITABILITY

	CONTENTS	
1.		Page III- 1
	1.1 General	III- 1
e e e e e e e e e e e e e e e e e e e	1.2 Survey Area	III- 1
2.	REVIEW OF DATA-BASE	III- 3
	2.1 Literature	III- 3
¥ 11.7	2.2 Topographic Maps	III- 3
1 - 1 14	2.3 Aerial Photograph	III- 4
3.	SOIL SURVEY METHODOLOGY	III- 5
	3.1 General	III- 5
	3.2 Methodology	III- 5
	3.3 Map Production	III- 6
4.	SOILS OF THE AIR SELAGAN PROJECT AREA	III- 7
Particle	4.1 Background	III- _. 7
t de la company	4.2 Soil Classification	III- 8
1.55.7	4.3 Regosols	111- 8
	4.4 Histosols	III- 9
	4.5 Ferralsols	III-10
	4.6 Fluvisols	III-11
5.	PRESENT LAND USE	III-13
	5.1 Wetland rice	111-13
	5.2 Upland rice	III-13
	5.3 Rubber	111-13
	5.4 Gardens	
	5.5 Natural forest	III-14
	5,6 Scrubland	III-14

	5.7	Cleared and half burnt forest	111-14
6.		SUITABILITY	
	6.1	Land Suitability Classification	
3	6.2	General Framework	经工业的 医二二二氯 医氯化二
*	6.3	Land Suitability of Paddy	III-16
# 	· .	6.3.1 Fluvisols	trace of the second second
		6.3.2 Ferralsols	III-17
		6.3.3 Regosols	III-17
		6.3.4 Histosols	111-17
		6.3.5 Summary	
	6.4	Land Suitability for Palawija	III-18
		6.4.1 Fluvisols	
		6.4.2 Ferralsols	
		6.4.3 Regosols	111-19
		6.4.4 Histosols	
	•	6.4.5 Summary	
	6.5	Land Suitability for Non-irrigated Tree Crops	
		6.5.1 Oil Palm	
		6.5.2 Rubber	
		6 5 3 Robusta Coffee	

	LIST OF TABLES	
<u>NO.</u>	TITLE	Page
III-1	INDONESIAN SOIL CLASSIFICATION SYSTEM CORRELATED WITH FAO/UNESCO AND USDA SOIL TAXONOMY SYSTEM	111-23
III-2	FAO/UNESCO LAND SUITABILITY CLASSIFICATIONS	111-24
III-3	DEFINITION OF LAND SUITABILITY SUBSCRIPTS	III-25
	LIST OF FIGURES	
NO.	TITLE	Page
III-1	DEVELOPMENT OF THE PEAT SWAMP	111-26
III-2	SOIL MAP	111-27
	PRESENT LAND USE MAP	
III-4	LAND SUITABILITY MAP (PADDY RICE)	111-29
III-5	LAND SUITABILITY MAP (PALAWIJA)	111-30
III-6	LAND SUITABILITY MAP (TREE CROPS)	III-31

APPENDIX IV AGRICULTURE AND AGRO-ECONOMY

		그의 생물에 되는 생각이 되면 생각하다면 하는 것 같은 생각이 없었다. 얼마나	PAGE
1.	GENE	RAL BACKGROUND	IV- 1
-	1.1	National Socio-Economy	IV- 1
		1.1.1 Land and Population	IV- 1
-		1.1.2 National Economy	IV- 2
	÷	1.1.3 Agriculture	IV- 3
	1.2	Regional Socio-Economy	IV- 4
		1.2.1 Location	IV- 4
		1.2.2 Population	IV- 5
		1.2.3 Regional Economy	IV- 6
		1.2.4 Agriculture	IV- 6
		1.2.5 Future Demand and Supply for Rice	IV- 7
	1.3	Agricultural Sector in the Fifth Five Year Development Plan	IV- 8
	1.4	Transmigration Programme	IA- 8
2.	PRESE	ENT CONDITIONS IN THE PROJECT AREA	IV-12
	2.1	Population and Labor Force	IV-12
	2.2	Climate	IV-13
	2.3	Present Land Use	IV-13
	2.4	Social Infrastructure	IV-14
		2.4.1 Electricity Supply	IV-14
		2.4.2 Water Supply	IV-14
		2.4.3 Education	IV-15
		2.4.4 Medical Facilities	IV-15
		2.4.5 Mail Facilities	IV-15

		Service of the service of		
	2.5	Land Te	nure	IV-15
	2.6	Croppin	g Pattern and Farming Practices	IV-16
		2.6.1	Cropping Pattern	IV-16
		2.6.2	Farming Practices	IV-17
	2.7	Agricul	tural Production	IV-19
		2.7.1	Crop Yield and Production	IV-19
		2.7.2	Livestock Production	IV-20
		2.7.3	Tree Crop Production	IV-21
	2.8	Marketi	ng and Prices	1V-21
		2.8.1	Marketing	IV-21
		2.8.2	Present Situation of Demand for Principal Food Crops	IV-22
to the transfer says		2.8.3	Prices of Farm Inputs and Outputs	IV-23
	2.9	Process	ing and Storage Facilities	IV-23
	2.10	Profita	bility of Crops and Farmers' Economy	IV-24
		2.10.1	Profitability of Crops-Present Situation	IV-24
		2.10.2	Farm Budgets	IV-24
	2.11	Agricul	tural Support Services	IV-25
		2.11.1	Agricultural Research	IV-25
		2.11.2	Extension Services	IV-26
		2.11.3	Seed Multiplication	IV-27
		2.11.4	Agricultural Credit Availability	IV-29
		2.11.5	Agricultural Cooperative	IV-30
		2.11.6	Availability and Distribution of Agricultural Inputs	IV-31
		2.11.7	Land Reclamation	IV-32
	2.12	Related	Project	IV-33
		2.12.1	Existing Transmigration Scheme	IV-33
			- ix -	

		2.12.2 Plantation Scheme	IV-34
3.	AGRIC	CULTURAL DEVELOPMENT PLAN	IV-36
	3.1	Objectives and Basic Concepts for Agricultural Development Project	IV-36
		3.1.1 General	IV-36 IV-36 IV-37
	3.2	Proposed Land Use	IV-38
	3.3	Proposed Crops	IV-39
	3.4	Proposed Cropping Pattern	IV-39
1		3.4.1 Basic Principle	IV-39 IV-40
		Alternative Cropping Pattern	IV-40 IV-44
	3.5	Proposed Farming Practices and Farm Inputs	IV-44
		3.5.1 Proposed Farming Practices	IV-44 IV-46
	3.6	Anticipated Crop Yields and Product	IV-46
	3.7	Processing and Storage	IV-48
	3.8	Marketing of Agricultural Products	IV-49
	3.9	Proposed Transmigration Programme	IV-51
		3.9.1 Standard Transmigration Models 3.9.2 Number of Transmigrants	IV-55 IV-56 IV-56
	3.10	Crop and Farm Budget	IV-56
		3.10.1 Crop Budgets	
	3.11	Agricultural Support Services	IV-58
	3.12	Pilot Farm	IV-60

	LIST OF TABLES	1
<u>NO .</u>	Boronia (1966) est para l'est d'income de l'est de l'est Boronia (1966) est de l'est d	PAGE
IV-1	HARVESTED AREA AND PRODUCTION OF MAJOR FOOD CROPS	IV-62
IV-2	PRODUCTION, HARVESTED AREA AND UNIT YIELD OF RICE	IV-63
IV-3	FUTURE DEMAND AND SUPPLY OF RICE IN BENGKULU PROVINCE	IV-64
IV-4	RICE IMPORT BY DOLOG BENGKULU	IV-65
IV-5	PRODUCTION, HARVESTED AREA AND UNIT YIELD OF PALAWIJA IN BENGKULU PROVINCE	IV-66
IV-6	PRODUCTION, HARVESTED AREA AND UNIT YIELD OF PADDY IN BENGKULU PROVINCE	IV-69
IV-7	PALAWIJA PRODUCTION PER CAPITA IN BENGKULU, 1984-88	IV-70
IV-8	MAIN EXPORTS OF BENGKULU PROVINCE, 1986-1989	IV-71
IA-8	TRANSMIGRATION PROGRAMME, BENGKULU PROVINCE	IV-72
1V-10	NUMBER OF TRANSMIGRANTS IN BENGKULU PROVINCE	IV-72
IV-11	TRANSMIGRATION SETTLEMENT IN KABUPATEN BENGKULU UTARA, REPELITA I-IV	IV-73
IV-12	PLANNED TRANSMIGRATION PROGRAMME FOR KABUPATEN BENGKULU UTARAIN REPELITA V, 1989 ~ 1994	IV-74
IV-13	KECAMATAN MUKO-MUKO POPULATION	IV-75
IV-14	POPULATION IN KECAMATAN MUKO-MUKO BY AGE GROUP	IV-76
IV-15	VILLAGES LOCATED WITHIN THE PROJECT AREA	IV-76
IV-16	UNIT YIELD OF MAJOR FOOD CROPS IN KABUPATEN MUKO-MUKO UTARA (1987)	IV-77
IV-17	LIVESTOCK POPULATION IN THE STUDY AREA BY WKPP	IV-78
IV-18	DISTRIBUTION OF CATTLE IN BENGKULU PROVINCE THROUGH IFAD	IV-79
IV-19	CURRENT FARM GATE PRICES OF FARM INPUTS AND OUTPUTS	IV-80
IV-20	CROP BUDGET OF MAJOR CROPS UNDER PRESENT CONDITION .	IV-81
	- xi -	
		•

IV-21	FARM BUDGET OF EXISTING FARMERS UNDER PRESENT CONDITION	. IV-82
IV-22	FARMER'S GROUP IN KECAMATAN MUKO-MUKO UTARA	. IV-83
IV-23	EXTENSION SERVICES IN KABUPATEN BENGKULU UTARA	. IV-84
IV-24	BPP, WKPP AND PPL IN KECAMATAN MUKO-MUKO UTARA (BPP UDJUNG PADANG)	. IV-85
IV-25	BPP, WKPP AND PPL IN KECAMATAN MUKO-MUKO UTARA (BPP SIDO MULYO)	
IV-26	PRESENT SITUATION OF KUD IN BENGKULU PROVINCE AND KABUPATEN BENGKULU UTARA	
IV-27	PRESENT CONDITION OF KUD IN KECAMATAN MUKO-MUKO UTARA	. IV-88
IV-28	ESTIMATION COST OF LAND CLEARING AND LAND LEVELING	. IV-89
IV-29	PROPOSED LAND USE	. IV-90
IV-30	LABOUR BALANCE FOR ALTERNATIVE CROPPING PATTERN (ALTERNATIVE 1)	. IV-91
IV-31		
IV-32		
IV-33	LABOUR BALANCE FOR ALTERNATIVE CROPPING PATTERN (ALTERNATIVE 4,5 AND 6)	
IV-34	POTENTIAL MAXIMUM YIELD AND HARVESTING SEASON	. IV-95
IV-35	FARM INPUT REQUIREMENT OF MAJOR CROPS	. IV-96
IV-36	PROPOSED FARM INPUT REQUIREMENT OF OIL PALM	. IV-97
IV-37	LABOUR BALANCE IN TYPICAL FARMER (WITH-PROJECT CONDITION)	
IV-38		. IV-99
IV-39	POPULATION PROJECTION FOR THREE PROVINCES	IV-100
IV-40	CONSUMPTION OF RICE FOR THREE PROVINCES	IV-100
IV-41	RICE PRODUCTION IN THREE PROVINCES	IV-100
IV-42	FACILITIES AND SUPPORT PROVIDE TO TRANSMIGRANTS	
IV-43	GOVERNMENT SUBSIDY FOR TRANSMIGRANTS	IV-102
TV 41	TRRIGATED RICE SETTLEMENT DEVELOPED PROGRAMME	IV-103

٠.			
			•
	IV-45	TREE CROP DEVELOPMENT PROGRAMMES	IV-104
	IV-46	CROP BUDGET OF MAJOR CROPS UNDER WITH PROJECT CONDITION	IV-105
	IV-47	FARM BUDGET UNDER WITH PROJECT CONDITION	IV-107
		LIST OF FIGURES	
1.7	<u>NO.</u> IV-1	TITLE GENERAL MARKETING FLOW OF RICE	PAGE IV-108
in in	IV-2	PRESENT CROPPING PATTERN	IV-109
	IV-3	ALTERNATIVE CROPPING PATTERN (ALTERNATIVE 1 TO 6).	IV-110
	IV-4	ALTERNATIVE CROPPING PATTERN (CASE 1-1 TO 3-2)	IV-111
	IV-5	PROPOSED CROPPING PATTERN	IV-112

IRRIGATION AND DRAINAGE APPENDIX V

. i	CONTENTS	
٠	CONTENTS FORMAL AND LANGUAGE SERVICES FORMAL AND LANGUAGE SERVICES SERVICES FORMAL AND LANGUAGE SERVICES SER	PAGE
1.	FORMULATION OF BASIC DEVELOPMENT PLAN	
	1.1 General	
	1.2 Present Condition of Development Area	er and the
	1.3 Basic Concept for Development	1
	1.3.1 Objective for Development	V- 2
	Developed	V- 3 V- 4
2.	STUDY OF DEVELOPMENT PLAN	
	2.1 Study of Each Plan	
	2.1.1 Location of Weir	V- 7 V- 9
	2.1.3 Height of Weir and Elevation of Benefited Area	V- 9
	2.1.5 Land Suitability	A-TO
	2.1.7 Results from the Study	V-20
	2.2 Alternative Plan	V-33
	2.2.1 The Planning of Free Intake without Diversion Dam in Selagan River (Alt1)	
	most downstream of Selagan River(Alt2) 2.2.3 The Planning of Construction of Pump	V-39
	Station(Alt3)	V-42 V-47
	2.3 Study on Canal Factors for Muko-Muko Left Bank Area	1 00
3.	IRRIGATION WATER REQUIREMENT	V-58
	3.1 Ten Day River Discharge	V-58
	3.2 Cropping Pattern and Crop Coefficient	1.00
	3.3 Irrigation Water Requirement	1000

	3.4 Diversion Requirement	V-80
4.	IRRIGATION AND DRAINAGE PLAN	V-83
	4.1 Intake Facilities	V-83
	4.1.1 General	V-83
事 人工产品	Size of Facility	
$(x_i, x_i) = (x_i, x_i)$	4.2 Irrigation System	/-113
	4.3 Basic Plan of Irrigation System	/-116
	4.4 Basic Plan of Drainage System	7-137
	4.5 Related Structures of Main & Secondary System	/-142
	4.6 Tertiary Canal and On-farm Facilities	7-144
5.	OTHER WORKS	
	5.1 Study on Small-scale Hydro-power Generation	7-147
	5.1.1 Outline	7-147 7-149
	in a section of the s	

LIST OF TABLES

NO.	TITLE	PAGE
V- 1	DEVELOPMENT AREA OF EACH PLAN	V- 6
V- 2	COMPARISON OF WEIR SITE	V- 8
V- 3	RIVER DISCHARGE ESTIMATED	V- 9
V- 4	COMPARISON OF TOTAL HEAD LOSS	V-10
V- 5	WEIR ELEVATION REQUIRED	V-10
V- 6	IRRIGABLE AREA BY 5 METER CONTOUR	V-12
V- 7	LAND SUITABILITY	V-13
V- 8	COMPARISON OF HOUSEHOLD	V-20
V- 9	COMPARISON OF STRUCTURAL PLAN	V-23
V-10	COMPARISON OF APPROXIMATE COST ESTIMATE	V-24
V-11.1 11.2 11.3	ANNUAL DISBURSEMENT SCHEDULE OF FINANCIAL CONSTRUCTION COST (1/3)	V-25
V-12.1 12.2 12.3	COMPARISON OF ECONOMIC EVALUATION (1/3)	V-28
V-13	APPROXIMATE DIMENSION OF FREE INTAKE PLAN	V-36
V-14	DISCHARGE CALCULATION AT KP. LUBUK SAHUNG	V-38
V-15	APPROXIMATE DIMENSION OF THE MOST DOWNSTREAM WEIR PLAN	V-40
V-16	COMPARISON OF APPROXIMATE CONSTRUCTION COST IN EACH LOCATION OF INTAKE	V-41
V-17	APPROXIMATE CONSTRUCTION COST OF PUMP PLAN	V-44
V-18	COMPARISON OF WEIR & PUMP COST	V-46
V-19	APPROXIMATE DIMENSION OF SMALL DAMS	V-47
V-20	APPROXIMATE CONSTRUCTION COST	V-49
V-21	IRRIGATION PLAN OF MUKO-MUKO PROJECT	

· · · · · · · · · · · · · · · · · · ·	V-22	MONTHLY RIVER AND INTAKE DISCHARGE FOR MUKO-MUKO PROJECT	V-51
	V-23	PRESENT CANAL SCALE OF S.S. BARU	V-53
	V-24	PRESENT CAPACITY OF S.S. BARU	V-54
	V-25	REVISED PLAN OF GROSS IRRIGABLE AREA	V-55
	V-26	PLANNING TEN-DAYS DISCHARGE	V-60
1	V-27	CROP COEFFICIENT	V-61
*****	V-28	TEN-DAY EVAPOTRANSPIRATION	V-62
1940 + 3 1140 + 3	V-29	TEN-DAY METEOROLOGICAL DATA	V-63
	V-30.1	CONSUMPTIVE WATER USE OF CROP BY MODIFIED	
	V-30.2	PENMAN METHOD (1/2)	V-64 V-65
	V-31	PLANNING 10 DAY EFFECTIVE RAINFALL	V-68
	V-32	PUDDLING WATER REQUIREMENT	V-69
· · · · · · · · · · · · · · · · · · ·	V-33	COMPARISON OF UNIT WATER REQUIREMENT	V-71
	V-34	PUDDLING PERIOD, CROP COEFFICIENT AND WATER LAYER	V-73
94. - 13	V-35.1 V-35.2 V-35.3	COMPARISON OF WATER REQUIREMENT(1/3)	V - 75
		UNIT WATER REQUIREMENT (PADDY) (1/2)	
	V-37	UNIT WATER REQUIREMENT FOR EACH BLOCK	V-79
	V-38	COMPARISON OF REMAINING RIVER DISCHARGE	v-80
· · · · · · · · · · · · · · · · · · ·	V-39	RIVER DISCHARGE & DIVERSION REQUIREMENT	V-81
	V-40	MAXIMUM IRRIGABLE AREA (CASE STUDY)	V-82
	V-41	COMPARISON OF PROPOSED SITES FOR WEIR	V-85
	V-42	COMPARISON OF WEIR SITE PLAN	V-87
	V-43.1 V-43.2 V-43.3	HYDRAULIC CALCULATION OF SELAGAN RIVER DURING FLOOD (1/3), PRESENT CONDITION	V-91
	V-44	OVERFLOW DEPTH AND DISCHARGE FOR WEIR	V-96
		-xvii-	

·		
V-45	HYDRAULIC CALCULATION OF DOWNSTREAM SECTION	V-100
V-46	HYDRAULIC CALCULATION OF ENERGY DISSIPATOR	V-102
V-47	GRAIN SIZE ANALYSIS OF SELAGAN RIVER BED LOAD	V-111
V-48	TEN DAY INTAKE DISCHARGE	V-115
V-49.1 49.2	CANAL NAME, COVERING AREA & DESIGN CAPACITY	V-124
V-50	AHYDRAULIC CALCULATION OF UNLINED CANAL	V-126
V- 51	DIMENSION OF EARTH CANAL	V-129
V-52.2 V-52.3 V-52.4 V-52.5 V-52.6	CALCULATION OF CANAL LENGTH(1/7)	V-131 V-132 V-133 V-134
V-53	YEARLY MAXIMUM THREE DAY CONSECUTIVE RAINFALL	V-138
V-54	LIST OF DRAINAGE CANAL	V-140
V-55	STRUCTURE LIST	V-143
V-56	AVERAGE 10 DAYS RIVER DISCHARGE (SELAGAN RIVER)	V-148
V-57	COMPARISON OF APPROXIMATE CONSTRUCTION COST FOR HYDRO-POWER GENERATION	
V-58	ECONOMIC COMPARISON FOR HYDRO-POWER GENERATION & DIESEL ELECTRIC POWER	V-152
* .		

	LIST OF FIGURES	٠
<u>No.</u>	nase (vekare) karakasasa ka title delangi kata ka	PAGE
V- 1	ACREAGE OF IRRIGABLE AREA AT EACH ELEVATION IN THE STUDY AREA	V-12
V- 2.1	BASIC DEVELOPMENT PLAN (PLAN-1)	V-30
V- 2.2	" (PLAN-2)	V-31
V- 2.3	" (PLAN-3)	V-32
V-, 3	LOCATION OF ALTERNATIVE INTAKE	V=33
V- 4	LOCATION OF INTAKE SITES IN LONGITUDINAL SECTION	V-34
V- 5	Q-H CURVE AT KP. LUBUK SAHUNG	V-37
V- 6	PRESENT TERTIARY SCHEME OF S.S. BARU	V-52
V- 7	RELATION BETWEEN S.S. BARU AND TRANSFER CANAL	V-56
V- 8	REVISED IRRIGATION SYSTEM FOR S.S. BARU	V-57
V- 9	CROP COEFFICIENT OF HIGH YIELDING VARAETY (HYV)	V-61
V-10	MODEL OF PADDY CULTIVATION	V-70
V-11	COMPARISON OF CROPPING PATTERN	V-72
/-12	PROPOSED WEIR SITES	V-84
V-13	PROFILE OF FLOOD WATER SURFACE	V-89
V-14	Q-H CURVE AT WEIR SITE	.V-96
V-15	Q-H CURVE AT DOWNSTREAM SECTION	V-100
V-16	PROFILE OF WEIR BODY	V-104
V-17	PROFILE OF SUB-DIKE	V-108
V-18	GRAIN SIZE ANALYSIS AT TERAS TERUNJAM	V-112
V-19	PLAN OF MAIN CANAL ROUTE	V-119
V-20	HYDRAULIC PROFILE OF MAIN CANAL	V-127
V-21	STANDARD SECTION OF EARTH CANAL	V-128
V-22	STANDARD SECTION OF DRAINAGE CANAL	V-141
V-23	DISTRIBUTION DIAGRAM FOR MAIN AND SECONDARY SYSTEM	V-146

APPENDIX VI IMPLEMENTATION SCHEDULE AND COST ESTIMATE

1.		EMENTATION SCHEDULE	
	1.1	General	VI- 1
	1.2	Basic Assumption	.VI- 7
	1.3	Implementation Schedule	and the second of
	4. 1	1.3.1 Preparatory Works	
		1.3.2 Diversion Weir	1979
	* *	1.3.3 Main & Secondary System	VI-11
		1.3.4 Tertiary System	VI-11
	*1	1.3.5 Proposed Tentative Resettlement Schedule	VI-11
	1.4	Construction Machinery	VI-12
2.	COST	ESTIMATE	VI-14
	2.1	Construction Cost	VI-14
		2.1.1 Conditions	VI-14
		2.1.2 Estimate of Construction Cost	VI-15
		2.1.3 Annual Disbursement Schedule	VI-15
	2.2	Annual Operation and Maintenance Costs	VI-16
	2.3	Replacement Costs	VI-16

	LIST OF TABLES	
NO	TITLE	PAGE
NO.		PAGE
VI- 1	WORK DIVISION & QUANTITY	VI- 2
VI- 2	PROPOSED TENTATIVE RESETTLEMENT SCHEDULE	
VI- 3	SUMMARY OF PROJECT COST	VI-17
VI- 4	BREAKDOWN OF DIRECT CONSTRUCTION COST FOR PREPARATORY EXPENSE	VI-18
VI- 5	BREAKDOWN OF DIRECT CONSTRUCTION COST FOR DIVISION I (Head Works and Link Canal)	VI-19
VI- 6	BREAKDOWN OF DIRECT CONSTRUCTION COST FOR DIVISION II (Right Bank)	VI-20
VI- 7	BREAKDOWN OF DIRECT CONSTRUCTION COST FOR DIVISION III (Left Bank)	VI-21
VI- 8	BREAKDOWN OF DIRECT CONSTRUCTION COST FOR DIVISION IV (Right Bank)	VI-22
VI- 9	BREAKDOWN OF DIRECT CONSTRUCTION COST FOR DIVISION V (Left Bank)	VI-23
VI-10	BASIC MATERIAL PRICE & LABOURS COST	VI-24
VI-11	UNIT PRICE LIST OF MAJOR WORKS	VI-25
VI-12	REPLACEMENT COST AND USEFUL LIFE	VI-26
VI-13	ANNUAL DISBURSEMENT SCHEDULE OF FINANCIAL CONSTRUCTION COST	VI-27
	LIST OF FIGURES	
		T3.4.25 E3
<u>NO.</u> VI- 1	CONSTRUCTION DIVISION	PAGE VI- 5
VI- 2	PROJECT IMPLEMENTATION SCHEDULE	VI- 6

APPENDIX VII ORGANIZATION AND MANAGEMENT

1.	ORGA	ANIZATION FOR PROJECT EXECUTION	PAGE VII-1
2.	OPEI	RATION AND MAINTENANCE OF THE PROJECT	. VII-2
	2.1	Organization and Staffing	. VII-2
	2.2	Management Plan for Operation and Management	. VII-3
		2.2.1 Planning of Irrigation Schedule	VII-3
		2.2.2 Control of Irrigation Water Delivery	. VII-3
		2.2.3 Operation Rule	. VII-5
		2.2.4 Repair and Maintenance	. VII-6
		2.2.5 Assistance and Administrative Work	. VII-6
	2.3	0&M Facilities and Equipment	. VII-7
3.	WATE	R USERS GROUP	. VII-9

LIST OF TABLES	
NO.	PAGE
VII-1 PERSONNEL REQUIREMENT OF O&M OFFICE	
VII-2 NUMBER OF STAFF NECESSARY FOR 0&M	
VII-3 O&M EQUIPMENT	VII-14
LIST OF FIGURES	
NO.	PAGE
VII-1 PROPOSED ORGANIZATION OF PROJECT EXECUTING OFFICE	VII-15
VII-2 PROPOSED ORGANIZATION OF O&M OFFICE	
VII-3 PROPOSED ORGANIZATION OF WATER USERS' ASSOCIATION	VII-17

APPENDIX VIII PROJECT EVALUATION

1.	GENERAL	PAGE VIII-1
2.	ECONOMIC EVALUATION	VIII-2
	2.1 Basic Assumptions	VIII-2
	2.2 Economic Prices	VIII-2
	2.3 Economic Project Costs	
	2.4 Economic Benefits	VIII-4
	2.5 Economic Evaluation	VIII-5
	2.5.1 EIRR, B/C and B-C	VIII-5
2	2.5.2 Sensitivity Analysis	VIII-5
	2.6 The Assessment on the Establishment of Small-Scale Hydro-Power Generation	VIII-6
	2.6.1 Economic Cost	VIII-6
	2.6.2 Benefit	VIII-7
٠	2.6.3 Economic Analysis	VIII-7
3.	FINANCIAL EVALUATION	8-IIIV
	3.1 Basic Assumptions	8-IIIV
	3.2 Repayment Capability of Project	8-111A
	3.3 Capacity to pay of farmers	AIII-8
4.	INDIRECT BENEFITS AND SOCIO-ECONOMIC IMPACTS	VIII-10
5.	ENVIRONMENTAL IMPACT ASSESSMENT	VIII-35

	LIST OF TABLE	
<u>. No .</u>	TITLE	PAGE
VIII-1	ECONOMIC PRICE STRUCTURE (1/7)	VIII-12
VIII-2	ECONOMIC PRICE STRUCTURE (2/7)	VIII-13
VIII-3	ECONOMIC PRICE STRUCTURE (3/7)	VIII-14
V111-4	ECONOMIC PRICE STRUCTURE (4/7)	VIII-15
VIII-5	ECONOMIC PRICE STRUCTURE (5/7)	VIII-16
VIII-6	ECONOMIC PRICE STRUCTURE (6/7)	VIII-17
V111-7	ECONOMIC PRICE STRUCTURE (7/7)	VIII-18
VIII-8	FINANCIAL AND ECONOMIC PRICE OF FARM INPUTS AND OUTPUTS	VIII-19
VIII-9	ECONOMIC CONVERSION FACTORS	VIII-20
VIII-10	ECONOMIC CONSTRUCTION COST	VIII-21
VIII-11	ANNUAL DISBURSEMENT SCHEDULE OF ECONOMIC CONSTRUCTION COST	V111-22
VIII-12	0 & M AND REPLACEMENT COSTS	VIII-23
VIII-13	GOVERNMENT SUBSIDY FOR TRANSMIGRANTS	VIII-24
	DISBURSEMENT SCHEDULE OF ECONOMIC TRANSMIGRANT COSTS	VIII-25
	ECONOMIC NET PRODUCTION VALUE OF MAJOR CROPS UNDER WITHOUT PROJECT CONDITION	VIII-26
VIII-16	ECONOMIC NET PRODUCTION VALUE OF MAJOR CROPS UNDER WITH PROJECT CONDITION	VIII-27
VIII-17	ECONOMIC NET PRODUCTION VALUE OF OIL PALM UNDER WITH PROJECT CONDITION	VIII-28
VIII-18	ECONOMIC PROJECT BENEFIT	VIII-29
VIII-19	BENEFIT FOR SMALLSCALE HYDRO-POWER GENERATOR	VIII-30
VIII-20	PROJECT COSTS AND BENEFITS FLOWS	VIII-31
VIII-21	PRICE CONTINGENCY	VIII-32
VIII-22	CASH FLOW STATEMENT WITH IRRIGATION SERVICE	VIII-33

VIII-23	CASH FLOW STATEMENT WITHOUT IRRIGATION SERVICE FEEVIII	-34
VIII-24	MATRIX OF IMPACT ANALYSIS VIII	-38
VIII-25	THE IMPACT PREDICTION OF THE ENVIRONMENT MANAGEMENT PLANNING (RKL) AND THE ENVIRONMENT MONITORING PLANNING (RPL) 1/6 - 6/6 VIII	-39

医原性 医皮肤皮肤 医毛囊 医异丙酰胺

5.在海门,在新的自身。约6.15 金元,是海峡

的复数电路 医克勒氏性皮肤 计通识数 的复数

a contact to the above the light

SUMMARY

The tentative feature formulated fot the Air Selagan Irrigation Project is summerized below.

```
: Both banks of Selagan river
Survey Area
                            about 22,400 ha
                          : 14.800 ha
Project Area
Gross Farm Area
                           8.000 ha
                            4,700 ha
Gross Irrigable Area
Net Irrigable Area
    Wet Season
                           4,200 ha
    Dry Season
                           4,200 ha
Gross Plantation Area
                             2,500 ha
Net Plantation Area
                             2,200 ha
                               800 ha
Palawija Area
Yield and Production
                             5.0 tons (Wet & dry season paddy)
    Yield
                             42,000 tons (Paddy)
   Production
                             46,200 tons (Oil palm)
                              5,596 tons (Peanuts, soybean, maize)
Benefisheries
    Paddy
                             2,800 households
                             1,100 households
    Oil palm
Transmigrants & Local People
    Existing(paddy)
                               750 households
    Planned (Paddy)
                             340 households
    Proposed new(paddy) : 1,010 households
                               700 households
    Local (paddy)
    Proposed new(oil palm):
                              550 households
    Proposed new(PELAMBAH, oil palm): 550 households
Land Distribution Per Household:
    Transmigrants for paddy
                               0.25 ha
      Home yard
      Net paddy field(LU.I+LU.II): 1.50 ha
                               0.25 ha
      Palawija(LU.II)
                               2.00 ha
      Total
    Transmigrants for plantation
      Home yard
                               0.25 ha
                               0.25 ha
      Palawija
      Net Oil palm field
                               2.00 ha
                               2.50 ha
      Total
   Local people for paddy
      Net paddy field
                              1.50 ha
                             Selagan river
Water Sources
                             Selagan weir
Diversion Facility
                             2.3 km upstream of Kp. Lubuk Sahung
Location of Weir
Catchment Area
                             375 km2
River Bed Elevation
                             EL22.20 m
                                3.80 m
Weir Height
                             EL26.00 m
Weir Crest Elevation
                               74.00 m
Length of Fixed Weir
```

```
Maximum Diversion Water Requirement :
    Wet season paddy
                      : 1.36 1/s/ha
                        : 1.53 1/s/ha
    Dry season paddy
    Domestic water
                           100 l/person/day, 3,000 kk
                           6.45 \text{ m}3/s
Design Intake Discharge
Design Intake Water Level:
                           WS.25.90 m
Intake Method
                           One side intake (right bank)
                           1,000 m3/s (1/100 years probability)
Flood Discharge
                           HWL.30.05 (1/100)
Flood Water Surface
                           HWL.30.85 (1/1000)
Highest Paddy Field
    Right bank
                           GH23.60 m
    Left bank
                           GH20.00 m
Length of Main Canal
    Link Canal
                           4.6 km
    Right bank main canal: 10.5 km
    Left bank main canal
                         : 14.0 km
Length of Secondary Canal
                        : 13.0 km
   Rigth bank
                     : 5.1 km (to Mukomuko kiri)
    Transfer canal
   Left bank
                        : 21.6 km
Length of Drainage Canal
   Right bank for paddy: 40.1 km
         for plantation: 26.9 km
   Left bank
                        : 32.7 km
Related Structure
   Mini Hydro-electric Power Supply
      Maximum generated output: 290 KW
      Effective head : 3.50 m
Maximu discharge : 10.72 m3/s
      Power supply
                          : 100 W/household
      Maximum benefisheries
                             : 8,980 households
```

APPENDIX I METEOROLOGY AND HYDROLOGY

CHAPTER 1 METEOROLOGY

1.1 General

The objective area is located around of 2 30' of south latitude and faces the Indian Sea. It belongs to the equator climate zone with much rainfall climatologically and on account of this location, the yearly rainfall of the area is over 3,000 mm on an average. Almost all winds blow from the Sea to the inland, meet the Barisan range, become wet ascending current of air and give much rainfall to the mountaneous area.

There are five (5) rainfall stations and one meteorological station in and around the survey area. The location of the stations are shown in Fig. I-1 and the condition of the data observation in Fig. I-2.

1.2 Meteorological Condition

(1) Rainfall

The average yearly rainfall varies station by station ranging 2,500 mm to 3,800 mm in the area. The maximum daily rainfall was recorded to be 200.7 mm at Pondok Panjang in March 1988.

(2) Evaporation

The annual evaporation is about 1,830 mm and the daily evaporation on the monthly average ranges 4 mm/day to 6 mm/day.

(3) Wind velocity

The average annual wind velocity is 29.3 km/day and the daily wind velocity on the monthly average varies from 25.3 km/day to 35.2 km/day.

(4) Air temperature

The average annual air temperature is 31°C and the average monthly ones range 30°C to 32°C.

(5) Relative humidity

The average annual relative humidity shows the high value of 93% and the average monthly ones vary from 91% to 95%.

(6) Sunshine ratio

The average annual sunshine ratio is 41% and the average monthly ones range 34% to 53%.

(7) Solar Radiation

The average annual solar radiation is 332 cal/cm 2 /day and the average monthly solar radiations are 365 cal/cm 2 /day in February at the maximum and 315 cal/cm 2 /day in November at the minimum.

CHAPTER 2 HYDROLOGY

2.1 Selagan River

2.1.1 Record of River Water Level

The water levels are recorded at five (5) places shown below. The collected data up to present covers the following periods including a few periods without records.

Table EXISTING WATER LEVEL OBSERVATION STATION

River	Station	Period
Air Selagan	Teras Terunjam Ujung Padang	1981-1989 1980-1989
Air Manjuto	Lalang Luas	1980-1987
я	L.B. Pinang	1981-1986
Air Dikit	Sari Bulan	1980-1986

Ujung Padang on the Air Selagan is located near the estuary and influenced by tidal water level.

2.1.2 Record of Discharge

The discharge observation at four (4) stations except Ujung Padang influenced by tidal water level has been carried out and the rating curve at each station was made using the above discharge observation data.

Teras Terunjam at the Air Selagan $Q = 40.582 \times (H + 0.139)^2$ 1980 - 1983 $Q = 46.708 \times (H + 0.269)^2$ 1984 - 1986

Note: The data during 1983-1984 show a tendency to increase, thus two rating curves were prepared as shown in the above.

Lalang Luas at the Air Manjuto $Q = 28.155 \times (H + 0.178)^2$

Lubuk Pinang at the Air Manjuto $Q = 29.141 \times (H + 0.266)^2$

Sari Bulan at the Air Dikit $Q = 43.834 \times (H + 0.390)^2$

2.1.3 Monthly Discharge

Monthly discharge at the proposed weir site (Catchment area: $375~\rm km^2$) on the Selagan river were estimated using the discharge data at the Teras Terunjam on the Selagan river as shown in Table I-3.

2.1.4 Comparison between The Selagan River and Other Rivers

Catchment area and maximum elevation of the Selagan River at Teras 'Terunjam and other river's are shown in the following table.

CATCHMENT AREA AND ELEVATION

Name of River	Place	Catchment Area	Maximum Elevation
Air Selagan	Teras Terunjam	$453.3~\mathrm{Km}^2$	1931 m
Air Manjuto	Lubuk Pinang	566.9	2543
11	Lalang Luas	385.0	2543
Air Dikit	Sari Bulan	970.0	2935

Comparison of monthly mean specific discharge between the Selagan River at Teras Terunjam and the Manjuto River at Lalang Luas is shown in Fig. I-3.

Using the above mentioned specific discharges correlation efficient was calculated by statistical method. (See in Fig. 1-4).

Judging from the correlation efficient (= 0.87), that it can be said the relationship of run-off discharge between both river is comparatively similar.

2.1.5 Flood

Observed flood discharge of the Selagan river at Teras Terunjam and probable discharge at weir site are as follows:

OBSERVED FLOOD DISCHARGE

Year	15 Mar.	Water Level	Discharge	Specific Discharge		
		(m)	(m^3/s)	$(m^3/s/km^2)$		
1984	15 Mar.	2.42	338	0.75		
	18 Mar.	3.14	543	1.20		
1985	28 Sep.	3.04	511	1.13		
	2 Nov.	3.19	559	1.23		
1986	1 Jan.	2.66	401	0.88		
Market Kara	14 Mar.	2.96	487	1.07		
1987	14 Apr	3.48	656	1.45		
	25 May	3.72	743	1.64		

(Catchment area: 453.3 km²)

PROBABLE FLOOD DISCHARGE

Probable Year	Flood Discharge	Specific	Discharge
1,000	1,316 m ³ /sec	3.52	m ³ /sec
100	1,000	2.67	e e e e e e e e e e e e e e e e e e e
50	913	2.43	
20	806	2.15	1 1
10	731	1.95	
5	656	1.75	
2	556	1.48	

(Catchment area: 375 km²)

2.1.6 Sedimentation

Amount of sedimentation is estimated 33,000 $\mathrm{m}^3/\mathrm{year}$ at the proposed weir site.

Study material is collected at Teras Terunjam in the Selagan River.

According to the collected data (see in Table I-4), amount of suspended soil is roughly estimated 33 mg/l.

Since the study material is not enough, here shows a method of calculating the amount of sedimentation out of the amount of suspended soil as an example.

Average discharge at weir site

Amount of suspended soil

Density of sedimentation

39.57 m³/s

33 mg/l

1.5 ton/m³

q.s = $33 \times 10^{-9} \times 39.57 \times 10^{3} \times 86400 \times 365/1.5$ = $27,453 \text{ m}^3/\text{year}$

The amount of sedimentation (Q) with the condition that the amount of run-off of suspended soil is assumed 20% of the total amount;

 $Q = 1.2 \times q.s = 33,000 \text{ m}^3/\text{year}$

But, it may be required to continue the study by the collection of enough study material.

2.2 Run-off Analysis

2.2.1 Low Water Discharge Analysis

Run-off at the weir site to be proposed for long period is estimated based on the procedure shown in Fig. I-6.

(1) Rainfall Data

A rainfall station is situated at Jalinjing in the catchment area located upstream from the weir site to be planned on the Air Selagan. However, the rainfall data are not available because they have not been observed for long time, and are not reliable.

The rainfall data at the following five rainfall stations which are located in and around the study area can be obtained.

- 1) Pondok Kopi
- 2) Lalang Luas
- 3) Ujung Padang
- 4) Desa Penarik
- 5) Pondok Panjang

The rainfall station located at Desa Penarik in the Selagan basin is covered with bush. Thus the data may be unreliable. The rainfall data at Ujung Padang may be reliable. They, however, may not be suitable for estimating run-off from the mountainous areas because the station is located near the coast. The rainfall data at the remaining Pondok Kopi, Lalang Luas and Ujung Padang may be reliable. Therefore, they are used for low water discharge analysis after studying the correlation between rainfall and river discharge.

(2) Arrangements for Water Level Data

The water level data are obtainable at the following five stations; Teras Terunjam and Ujung Padang in the Air Selagan, Lalang Luas and LB. Pinang in the Air Manjuto, and Sari Bulan in the Air Dikit.

In the above, Ujung Padang station is located at the river mouth of the Air Selagan which is affected by sea level fluctuation, and the remaining four stations are located in the middle reaches of the Air Selagan. From the viewpoints of the basin form, and run-off characteristics, they are comparatively similar each other. However, the water level data at all the stations have been observed insufficiently. Consequently, the water level data at Teras Terunjam where is located 8 km downstream from the weir site to be proposed are employed for low water discharge analysis, and the water level data at other stations are used for comparative study of specific discharge.

(3) Establishment of Rating Curve

Discharge measurement have been carried out four stations excepting Ujung Padang station which is affected by sea level. The rating curves were made by applying the least square method using the above discharge data.

Teras Terunjam at the Air Selagan $Q = 40.582 \times (H + 0.139)^2$ 1980 - 1983 $Q = 46.708 \times (H + 0.269)^2$ 1984 - 1986

Note: The data during 1983-1984 show a tendency to increase, thus two rating curves were prepared as shown in the above.

Lalang Luas at the Air Manjuto $Q = 28.155 \times (H + 0.178)^2$

Lubuk Pinang at the Air Manjuto $Q = 29.141 \times (H + 0.266)^2$

Sari Bulan at the Air Dikit $Q = 43.834 \times (H + 0.390)^2$

(4) Calculation of River Discharge

The discharge table is made by the use of the water level which were actually observed and the above rating curves.

(5) Low Discharge Analysis

After studying the correlation between rainfall and discharge, the tank model method was applied for low discharge analysis. In the analysis, the following data were used.

Rainfall data - at Pondok Kopi
(In case the data are insufficient because of no observation, the data at Lalang Luas are used.)

Discharge data - at Teras Terunjam C.A. = 453,3 km²

The discharge was observed during the period from 1981 to 1987. The low discharge was analyzed by using the data of 1981 and 1982 after studying correlation between the discharge and rainfall and no observation of the data.

(6) Determination for Tank Model Factors

For the purpose of long-term low discharge analysis, a fourstep tank is applied. Rainfall is put into the first upper tank, and evapotranspiration is deducted from it. In the case when evapotranspiration is short in the first tank, it is deducted from the second, third and fourth tank. Based on the above conditions, the tank model factors are obtained by trial as shown in Fig. I-7.

(7) Review of Tank Model

In order to review whether or not the decided tank model factors are reliable, several trials are made (see Fig. I-8).

The ration of calculated discharge to observed discharge is obtained below.

Year	Calculated Discharge (Average Discharge)	Observed Discharge (Average Discharge)
1981	47.6 m ³ /sec	46.5 m ³ /sec *
1982	44.4	49.1
Average	46.0	47.8

- * Data for December is not included because of no observation.
- ** Data for August is not included because of no observation.

Error
$$\frac{46.0-47.8}{47.8} = -0.038$$

(The error is about 4%. In the case of low discharge analysis, however, it can be neglected.)

(8) Run-off at Weir Site

River discharge at the proposed weir site with catchment area of 375 Km^2 is obtained using the tank model formulated in (6) and daily rainfall data at Pondok Kopi (1981 - 1988).

(a) Yearly discharge

Yearly discharges are obtained as follows;

1981	1,248	Х	10^{6}
1982	1,079	X	10^6
1983	1,494		
1984	1,082	X	106
1985	995		
1986	1,092	X	10^{6}
1987	1,363	Х	10^{6}
1988	1,639	X	10^6

Average 1,249 x 10^6 m³

Yearly total volume of run-off fluctuates from 995 x 10^6 to 1,639 x 10^6m^3 and the average is estimated at $1.249 \times 106 \text{m}^3$.

(b) Monthly Discharge

Monthly average discharge at the proposed weir site are obtained as in Table I-3 and drought discharges occur in May to August.

Ten Days Discharge (c)

Ten days discharges are obtained as in Table I-5.

2.2.2 Flood Run-off Analysis

The following methods are named to estimate flood discharge:

Rational Methods 1)

- Melchior (catchment are > 100 km^2) Rational formula
- Haspers

ii) Unit Hydrograph

Storage Function Method 11i)

The daily rainfall data are available at five stations in around the study area. The detailed analysis by the foregoing methods are discussed below.

(a) Probable Rainfall

The maximum daily rainfall at the stations are shown in Table I-6.

Iwai's method and Gumbel-Chow's method are applied to obtain the probable rainfall. The calculation results are shown in the following tables.

The probable rainfall varies widely due to the rainfall data having short period observation. To be on the safe side, however, the probable rainfall at Pondok Panjang indicating large values which are obtained by the application of Iwai's method are adopted.

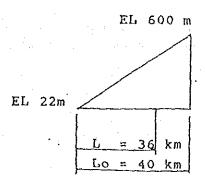
Probable Daily Rainfall

Iwai's Method

Return Period	Pondok Kopi	Jalinjing Lg.Luas	Ujung Padang	Penarik	Pondok Panjang
1/1,000	309.7	187.4 222.0	282.9	253.8	349.9
1/200	267.3	165.9 193.3	251.0	224.3	289.6
1/100	248.9	156.0 181.4	236.7	210.9	265.8
1/50	230.2	145.5 169.6	221.8	196.9	243.1
1/20	204.8	130.5 154.1	200.9	177.3	214.8
1/10	184.6	117.8 142.4	183.8	161.0	194.4
1/5	162.8	103.1 130.2	164.6	142.6	174,4
1/2	128.0	77.3 112.2	132.4	111.3	147.1

Gumbel Chow Method

Return Period	Pondok Kopi	Jalinjing	Lg.Luas	Ujung Padang	Penarik	Pondok Panjang
1/1,000	268.2	212.4	205.4	297.2	275.6	288.4
1/200	233.5	178.4	182.5	256.0	234.5	254.0
1/100	218.5	163.7	172.6	238.2	216.7	239.2
1/50	203.5	149.0	162.7	220.4	198.9	224.3
1/20	183.4	129.4	149.5	196.5	175.1	204.4
1/10	167.9	114.1	139.2	178.2	156.7	189.1
1/5	151.8	98.3	128.5	159.0	137.6	173.1
1/2	127.4	74.4	112.4	130.0	108.6	148.9


(b) Flood Discharge calculated by Melchior Method

The peak discharge which is calculated with every return period by applying Melchior method is as follows:

and the contract of the second

$$A = 375 \text{ km}^2$$
, $L = 36 \text{ km}$, $H = 578 \text{ m}$, $I = 0.016$
 $\alpha = 0.60$

 $F = (\pi / 4) \times L_1 \times L_2$

catchment area A where,

: watercourse length L

 $(L_0 \times 0.90)$

: Difference between the highest elevation of H

basin and the elevation of the proposed weir

site

: river bed gradient Ι

: run-off coefficient : area of ellipse = $/4 \times 36 \times 18 = 509 \text{ km}^2$ F

: large axis length : small axis length 36 km 18 km

Тс Peak Discharge Return Period Rainfall $1,300 \text{ m}^3/\text{s}$ 1,000 349.9 mm 8.4 hour 100 265.8 8.9 957 9.0 848 50 243.1 9.3 749 20 214.8 194.4 9.6 656 10 9.8 589 5 174.4 10.0 496 2 147.1

Tc: Time of concentration

Flood Discharge calculated by Rational Formula

The peak discharge is calculated by the use of the following formula:

$$q = 0.2778 * f * rt$$

 $Q = q * A$

where, Q : peak flood discharge (m³/sec)

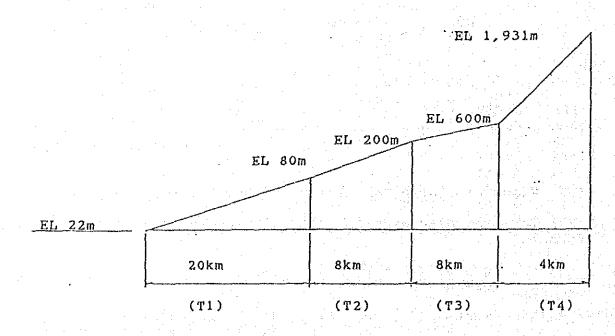
q : Specific peak flood discharge ($m^3/\text{sic/km}^2$) A : Catchment area (km^2)

f: Run-off coefficient 0.6
rt: Mean rainfall intensity within
 the arrival time of flood (mm/hr)

The mean rainfall intensity within the arrival time of flood is obtained by the following equation:

$$rt = \frac{r24}{24} \left[\frac{24}{T} \right]^n$$

where, r24: Maximum daily rainfall (mm) n: 1/3 - 2/3 usually n = 2/3


Velocity of flood (W) and the arrival time of flood (T) are calculated by Rziha's formula expressed as follows:

$$W = 72 \times \frac{H}{L}$$

$$T = \frac{L}{W}$$

where, H : Altitude difference (m)
L : River length (km)

The schematic diagram of longitudinal section in the basin is expressed as in the following:

$$W_{1} = 72 \left(\frac{0.058}{20}\right)^{0.6} = 2.16 \quad T_{1} = \frac{L}{W} = \frac{20.0}{2.16} = 9.3 \text{ hr}$$

$$W_{2} = 72 \left(\frac{0.12}{8}\right)^{0.6} = 5.79 \quad T_{2} = \frac{L}{W} = \frac{8}{5.79} = 1.4 \text{ hr}$$

$$W_{3} = 72 \left(\frac{0.48}{8}\right)^{0.6} = 11.93 \quad T_{3} = \frac{L}{W} = \frac{8}{11.93} = 0.7 \text{ hr}$$

$$W_{4} = 72 \left(\frac{1.33}{4}\right)^{0.6} = 37.19 \quad T_{1} = \frac{L}{W} = \frac{4}{37.19} = 0.1 \text{ hr}$$

$$T = T_{1} + T_{2} + T_{3} + T_{4} = 11.5 \text{ hr}$$

The peak discharge which is calculated with every return period by applying the formal is as follows:

Return Period	Rainfall	rt	Peak Discharge
1,000	349.9	21.1 mm/	hour 1,319 m ³ /s
100	265.8	16.0	1,000
50	243.1	14.6	913
20	214.8	12.9	806
10	194.4	11.7	731
5	174.4	10.5	656
2	147.1	8.9	556

(d) Flood Discharge calculated by Hasper's Method

The peak discharge is calculated by using the following formula:

q : Specific discharge $(m^3/\text{sec/km}^2)$ f : Catchment area (km^2)

Run-off coefficient (α), time of concentration (t), and reduction coefficient (β) are obtained by the following equations:

$$\alpha = \frac{1 + 0.012f^{0.7}}{1 + 0.075f^{0.7}} = \frac{1 + 0.012 \times 375^{0.7}}{1 + 0.075 \times 375^{0.7}} = 0.31$$

$$\mathcal{E} = 0.1 \text{ L}^{0.8} \text{ x i}^{-0.3} = 0.1 \text{ x } 36^{0.8} \text{ x } 0.016^{-0.3} = 6.1 \text{ hr}$$

$$\frac{1}{\beta} = 1 + \frac{t + 3.7 \times 1.0^{-0.4t}}{t^2 + 15} \times \frac{f^{3/4}}{12}$$

$$= 1 + \frac{6.1 \times 3.7 \times 1.0^{-0.4 \times 6.1}}{6.1^{2} + 15} \times \frac{375^{3/4}}{12} = 1.832$$

$$\beta = 0.55$$

$$q = \frac{r}{3.6t}$$

$$\mathbf{r} = \frac{\mathbf{tR}}{\mathbf{t} + \mathbf{1}}$$

$$R = R + SNUt$$

$$S = \frac{Rn - R}{U}$$

where, r : rainfall intensity within the

arrival time of flood

R : Daily rainfall with return period T

R : Mean maximum daily rainfall

S: Standard deviation

Ut : Standard variable for return period

Rn: Maximum daily rainfall in the past n years during which the data have

been observed

U : Standard variable with return period for Rn

$$S = \frac{200.7 - 153.4}{185}$$

The peak discharge is calculated with every return period by applying the formula as follows:

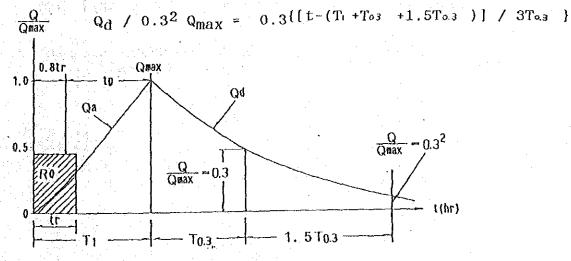
Return	Peri	od		U	R	r		q	Peak Discharge
	,			2374	mm	mm		m ³ /sec/km ²	m ³ /sec
1	,000	-91		5.92	305	262		11.93	763
	100	17 .		3.43	241	107	100	9.43	603
	50	Segrit		2.75	224	192		8.74	559
	20	100		1.89	202	174		7.92	506
	10	Grand St.		1.27	186	160		7.29	466
	. 5			0.64	170	146		6.65	425
	2		-	-0.22	148	127		5.78	370

(e) Unit Hydrograph Method

The unit hydrograph is presented by the following equation:

$$Q_{\text{max}} = 1/36 * A * R_0 / (0.3 T_1 + T_{0.3})$$

Ascending curve :
$$Q_a / Q_{max} = (t / T_1)^{2.4}$$


Recession curve :

in case of
$$Q_d$$
 / $Q_{max} \ge 0.3$: Q_d / $Q_{max} = 0.3\{(t-T_1)/T_{0.3}\}$

in case of 0.3 \geq Qd / Qmax \geq 0.32 :

$$Q_d / 0.3Q_{max} = 0.3\{[t-(T_1+T_{0.3})] / 1.5 T_{0.3}\}$$

in case of $0.3^2 \ge Q_d / Q_{max}$

Explanation on Unit Hydrograph

where.

: Maximum discharge in the unit hydrograph (m3/s)

 Q_a , Q_d :

 R_0

Discharge on ascending curve (Q_a) or recession curve (Q_d) (m³/s) Catchment area (km²)

Effective rainfall

Time from starting of run off to T_1

the maximum discharge (hour)

Time from the maximum discharge to To.3

the discharge of 0.3 times the maximum

discharge (hour)

Unit time (hour) $t_{\mathbf{r}}$

Nakayasu assumed the unit hydrograph as mentioned above and $T_{0.3}$ can be presented by specificity of catchment area. T_1 He also assumed a time lag (t_g) (taken 0.8 t_r) from a peak rainfall in a unit time (t_r) to the maximum discharge can be presented using the maximum flow length (L km) as mentioned below.

in case of L \leq 15 km : t_g = 0.21 * L^{0.7} in case of L < 15 km : t_g = 0.4 + 0.058 * L

 T_1 and $T_{0.3}$ can be expressed applying the time lag mentioned above as follows :

in case of river with earlier run off after quick withdraw $: T_{0.3} = 1.5 t_g$ rain a)

r (reply the burge of b

in case of river with later run off after rain and slow b) $T_{0.3} = 3.0 t_g$

in case of river with condition between a) and b) c) above : $T_{0.3} = 2.0 t_g$ or $T_{0.3} = t_g + 0.8 t_r$

Then, the unit hydrograph can be drawn applying $t_r = (0.5 - 1.0) t_g$.

The unit hydrograph using the catchment area of $A=375~\mathrm{km}^2$ at the proposed weir site becomes as follows.

*** Basic paratmeters for unit hydrograph ***

```
** Catchment area A= 375.0 (KM<sup>2</sup>)

** Maximum flow length L= 40.0 (KM)

** Time lag TG= 2.70 (HR)

** Unit time TO= 1.35 (HR)

** TK = 3.0 * TG = 8.10 (HR)

** TP = TG + 0.8 * TO = 3.78 (HR)

** TO3 = TP + TK = 11.88 (HR)

** T32 = TP+TK+1.5*TK = 24.03 (HR)

** QP = 1.0/(0.3*TP+TK) = 0.108 (MM/HR)
```

**** Results of calculation ****

	and the second of the second o		
Time	Unit -Q	Time	Unit -Q
(HR)	(MM/HR)	(HR)	(MM/HR)
			2.46
1.0	0.004	28.0	0.007
2.0	0.024	29.0	0.007
3.0	0.063	30.0	0.006
4.0	0.110	31.0	0.006
5.0	0.092	32.0	0.005
6.0	0.079	33.0	0.005
7.0	0.068	34.0	0.005
8.0	0.059	35.0	0.004
9.0	0.051	36.0	0.004
10.0	0.044	37.0	0.004
11.0	0.038	38.0	0.003
12.0	0.033	39.0	0.003
13.0	0.030	40.0	0.003
14.0	0.026	41.0	0.003
15.0	0.024	42.0	0.003
16.0	0.022	43.0	0.002
17.0	0.020	44.0	0.002
18.0	0.018	45.0	0.002
19.0	0.016	46.0	0.002
20.0	0.015	47.0	0.002
21.0	0.013	48.0	0.002
22.0	0.012	49.0	0.002
23.0	0.011	50.0	0.001
24.0	0.010	51.0	0.001
25.0	0.009	52.0	0.001
26.0	0.008	53.0	0.001
27.0	0.008	54.0	0.001
1111		55.0	0.001

The flood discharge applying the probable rainfall to the above unit hydrograph are calculated as follows.

EXSAMPLE OF CALCULATION FOR FLOOD DISCHARGE (In case of probable rainfall of 1/10)

* AREA=375 km² *

*** Type of Rainfall...W=1/10 R=266.0 MM/3DAYS ***

				14 J + 1 4 -	500	化压力 人名		My Dec	4.	•
XIAR	IFFECTIVE DIS	0.0 176.0	352.0	Q-AXIS *	Ta(.a	880.0	61.0	38.0	л-AXIS * 19.0	· .
5.8	1.36 7.600									
6.8	3.48 8.900 3.66 17.350					i .	1	the street		
6 l	3.90 39.115		: .				Î.	*** 11 · · ·		
6. F	4.14 79.613 4.44 115.069	1 .			4. This is	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A 5		
8.9	1.00 118.231		* 4				1	1 -		
9.9	5.28 179.969 5.94 211.069			100			i	i.	100	
11.5	6.96 242.48] 8.70 275.525	1	•				1			
22.5	13.80 312.831									
11.3	10.34 430.125	1	-	•			1			
12.8 10.7	7.68 654.414 6.42 124.831] [. ,	•		i			
2.3	5.58 877.250	i				•	1			
1.1	5.04 860.000 4.62 828.238	i				•	1			
7.1	4.26 190.388 4.02 751.638	1			•	•	1			
6.3	3.78 712.456	į			•		1			
6.0 6.7	3.60 614.631 3.42 639.344	4			•					
	607.788 579.969	1	4			1.5	1			
	511.900	1		•	4.15		!	1.00		. 1. 17
	502.4)3 445.581	\$1.					i.			
	391.056	1					1			
	354.315 317.256	i	•			. 1	1			
	286.094 756.044	1					j .			
	233.356		ı		•		1			
	212.431 193.925	;			12		i			
	177.125 182/319	1			to the first of		1		•	
	150.694	· ·)			
	138.325 128.813	1	. ,	9		100				£. v
	118.413	1				2	1			
	110.456 101.275	i :					i			
	95-175 69-338						j			
	85.031						•	100		
	77.369 32.514						i			
	65.713					100	1		- *	
	67.815 59.650						i			
	56.138	• •					3			
	\$3.200 48.050	i :					1			
	45.211. 42.713	1 .		•			1			
	€Ð.269	1:		* *			1	-		
	38.163 35.925	1			1000		1			
	33,219 28,888	1 *					1	•		
	26.838	į.		· ·			1			
	25.025 23.256	19					•	•		
	21.113 19.481	. 1 6	1			30 T	j	$x_{i} \in \mathbb{R}^{n} \setminus \mathbb{R}^{n}$		
	16.613	5.4					1 .	*.	•	
	11.088						ĺ			
	11.806 10.850	14				1		•		
	9.969	. 1*			*.*		1			
	9.488	1.			* .		f			
	8 . 625 8 . 201	į	1.0			200	1			
	7.856	į		1.	1.0		1			
	7.300	j I					1			
	7.500	į					<u>.</u>			
	7.500 1.600	. ! . \$					1			*1
	7.500	!					100			٠
	7.600 7.500	i J					1		100	
	7.600	1			•	4	1	100		
	7.500 7.500			* * *		tion shift	•			
	7.500 7.500	1		*			i			
1.	7.600			Transfer Fil			1			
	7.500 7.500	1					1		42 1	
	7.600	•					4			

Rainfall	Peak Discharge
349.9 mm	1,152 m ³
265.8	860
243.1	803
214.8	710
194.4	644
174.4	578
147.1	488
	349.9 mm 265.8 243.1 214.8 194.4 174.4

Peaks Over Threshold (POT) Method

When flood records are of shorter periods or do not cover long period, POT method can be used if at least records of two (2) continuous years are available. From the records the peak exceeding an arbitrarily set threshold value qη identified.

threshold is set in such a way that on average between

(2) and five (5) peaks exceed the threshold value qo.

This results in M peak values with an average value q_{D} total recording period of N years.

The mean annual flood is computed as published by DPMA, 1983:

MAF =
$$q_0$$
 + (q_p - q_0)(0.58 + I_n)

where, MAF: Mean annual flood in m³/s

Threshold discharge in m³/s

Average peak discharge in m³/s

M / NM Number of peak values

Number of years

The mean annual flood of the Air Selagan River at Terunjam of which catchment area is 453.3 km^2 is computed.

The computation is made with the following conditions:

- The continuous water level records from 1983 to 1986 used.
- The river discharge observations were carried out when the river discharges were less than 100 m³/s. Therefore, the river discharge more than 100 m3/s are obtained from the rating curve drawn by relations between river discharges and water levels during the river discharges were less than 100 m³/s.

From an initial scan of the record the threshold of 260 m3/s seemed likely to give a suitable number of floods for the POT Nine independent floods were abstracted as listed below

YEAR	FLOOD (m ³ /s)
1983	271
1984	338
	311
	271
1985	559
	551
	327
1986	487
	401
1.0	338
	266

Floods in the incomplete year at the end of the record were ignored.

In the notation given above;

Threshold, $q_0 = 260 \text{ m}^3/\text{s}$ Number of years of data, N = 4Number of floods over the threshold, M = 11

Therefore, $q_p = 375 \text{ m}^3/\text{s}$ = 2.75 floods/year, and MAF = 443 m $^3/\text{s}$

Thus, using the POT method the mean annual flood for Air Selagan at Teras Terunjam is estimated to be 443 m³/s.

The flood discharges of the Selagan River at Teras Terunjam and the proposed weir site are calculated by the following formula using MAF and GF (Growth Factor).

Q = GF x MAF consequences of the property of the state of

where, Q : Flood discharge

MAF: Mean Annual Flood

GF: Growth factors derived from the study on flood data in Java and Sumatra by IOH/DPMA shown in

the following table:

Table of Growth Factors GF (T, AREA)

Return	Reduced			Catchn	ent are	ea .	
Period	Variation			(k	m ²)		
T	ÿ or	180 less	300	600	900	1,200	1,500 or more
5	1.50	1.28	1.27	1.24	1.22	1.19	1.17
10 20	$2.25 \\ 2.97$	1.56 1.88	1.54	$1.48 \\ 1.75$	1.44	$1.41 \\ 1.64$	1.37 1.59
50 100	3.90 4.60	2.35	$\begin{array}{c} 2.30 \\ 2.72 \end{array}$	$2.18 \\ 2.57$	$2.10 \\ 2.47$	$\frac{2.03}{2.37}$	$\begin{array}{c} 1.95 \\ 2.27 \end{array}$
200 500 1,000	5.30 6.21 6.91	3.27 4.01 4.68	$3.20 \\ 3.92 \\ 4.58$	$3.01 \\ 3.70 \\ 4.32$	2.89 3.56 4.16	$2.78 \\ 3.41 \\ 4.01$	2.66 3.27 3.85

The flood discharges are as follows:

Return Period GF	MAF (m ³ /s)	Flood Discharge	(m ³ /s)
	(m°/s)	Teras Terunjam (A=453.3 km²)	Weir Site (A=375 km ²)
1,000 3,11	443	1,378	1,140
100 2.65	443	1,174	971
50 2.24	443	992	821
20 1.80	443	797	659
10 1.51	443	669	553
5 1.26	443	558	462

(g) Design Flood Discharge

The peak discharge with every return period which are calculated by the method mentioned above are summarized in the following table:

ESTIMATED FLOOD DISCHARGE

Return Peak Dis. Spec. Dis. Peak Dis. Spec. Dis. 1,000 1,300 3.47 1,319 3.52 100 957 2.55 1,000 2.67 50 848 2.26 913 2.43 20 749 2.00 806 2.15 10 656 1.75 731 1.95 5 589 1.57 656 1.75	ויים בנווסו א שם הווסמ	Rational	nal Formula	Hasper's Method	Method	Unit Hydro	Unit Hydrograph Method	POT Method	- Po
m ³ /sec m ³ /s/km ² m ³ /sec 1,300 3.47 1,319 957 2.55 1,000 848 2.26 913 749 2.00 806 656 1.75 656	Dis. Spec. Dis.	Peak Dis.	Spec. Dis.	Peak Dis.	Spec. Dis.	Peak Dis.	Peak Dis. Spec. Dis. Peak Dis. Spec. Dis.	Peak Dis. Spec. Dis.	pec. Dis.
1,300 957 2.55 1,000 848 2.26 913 749 2.00 806 656 1.57 656		m³/sec	m ³ /s/km ²	m ³ /sec	m ³ /sec m ³	m ³ /s/km ² m	m^3/sec $m^3/\text{s/km}^2$ m^3/sec	km ² m ³ /sec	m3/s/km2
957 2.55 1,000 248 2.26 913 749 2.00 806 256 1.75 531 589 656 1.57	:" 	1,319	3.52				3.07	1,140	3.04
2.26 2.00 806 1.75 1.57 656	2.55	1,000	2.67	603	1.61	860	2.29	971	2.59
2.00 1.75 1.31 1.57	348 2.26	913	2.43	បានថា	1.49	803	2.14	821	2.19
1,75	749 2.00	808	2.15	506	7.35	710	1.89	629	1.76
1.57 656	356 1.75	731	1.95	466	1.24	644	1.72	553	1.47
	1.57	656	1.75	425	1.13	578	1,54	462	1.23
1.32	1.32	556	1.48	370	66.0	488	1,30		71

For safety's sake, the flood discharge at the proposed weir site on the Air Selagan which is calculated by Rational formula is adopted because of insufficient rainfall data.

2.3 Water Quality

In order to check the water quality of the Selagan River, water samplings were carried out and the laboratory test on the samples were made (See Table I-7, I-8, I-9).

The suitability for irrigation and drinking was assessed based on WHO standard for drinking water and Scofield's standard for irrigation as shown in the following table.

STANDARD FOR DRINKING WATER AND IRRIGATION WATER

Item		For City Water WHO Standard	For Irrigation
PH Electric Conductivity K Ca ppi Mg ppi C1 ppi SO ₄ ppi	m m m	7.0 - 8.5 75 50 200 200	6.0 - 7.5 ⁽¹⁾ 25 4 m.e/l 4 m.e/l
Na x 100 Na + Ca + Mg + K KMnO ₄ ppi B ppi		10	20 % 0.33 - 1

(1): Standard of Ministry of Agriculture, Forestry and Fisheries of Japan

A study of chemical properties of water shows that the water can be used for irrigation. For drinking, the water is proposed to be filtered to remove evaporated residue, and boiled thoroughly to destroy all micro-organism which may exist in the water, judging from the amount of KMnO₄ demand.

2.4 Tidal Movement

2.4.1 Record of Water Level

Ujung Padang on the Selagan River is located near the estuary and influenced by tidal water level. Daily maximum water level and minimum water level at Ujung Padang are shown in Fig. I-9.

The average water level is (-) 3.57m. The maximum water level is (-) 2.45m and minimum is (-) 4.48m.

2.4.2 Back Water by the Tide

The Selagan River is influenced by the tide of the Sea in the upstream of about 13Km.

The shematic diagram of longitudinal section in the Selagan River is expressed as in the following:

Longitudinal Section in The Selagan River

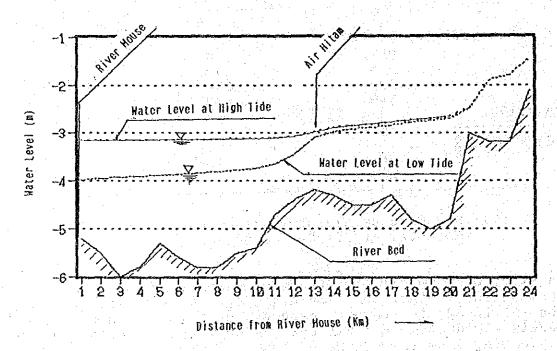


Table I-1 MONTHLY MEAN RAINFALL RECORDS

			R.				·	 	 	
	Total	3,097.4	3,674.6	3, 486, 1	3, 742.7	2, 451.2	2,839.9			
	DEC.	276.7	380.5	236.5	360.9	227.9	253.9			
ilo	NOV.	432.1	390.7	372.0	401.3	378.3	340.8	1		
	00 T	382.0	368.1	395. 9	397. 7	329. 5	337.6			
	SEP.	350.6	388.0	364.5	354.1	314.3	303.0			
	AUG.	159.4	265. 1	221.0	185.7	72.1	153.7			
	JUL.	196.9	208.7	196.2	225.4	174.4	197.6		:	
	JUN.	175.2	163.7	198.2	185.1	127.2	126.4	1		
	НAУ	194.6	185.6	232.6	254,8	124.0	163.7			
	APR.	166.3	291.9	290.6	297.5	146.1	191.9			
	MAR.	240.1	401.1	370.2	439.0	221.4	270.9			
	FEB.	269.3	218.1	224.3	267.7	157.8	199. 7		1 · · · ·	
	JAN.	304.2	112.1	384.1	373.5	178.2	296.4			
	uo]1818	Jalining	Pondok Panjang	Lalang Luas	Pondok Kopi	Ds Penarik	Ujung Padang			

Table I-2 MONTHLY CLIMATOLOGICAL RECORDS AT PONDOK PANJANG

(1) Honthly Average of Evaporation at Pondok Panjang

										Unit	mm	
	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Evaporation	5.6	4.8	5.5	4.9	4.9	4.3	4.2	4.0	5.5	5.2	5.4	6.0

(2) Honthly Average of Wind Velocity at Pondok Panjang

	e for the				Ý. E.					Unit	km/da	y
											Nov.	
Wind Velocity	27.9	28.8	30.2	27.9	25.3	25.4	25.6	30.9	35.2	32.3	30.5	31.1

(3) Monthly Average of Temperature at Pondok Panjang

Unit

		iv. J					E 45% A			Unit	. C	<u> </u>
	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Temperature	31.2	31.6	31.6	31.8	32.0	31.9	31.8	31.8	31.1	30.9	31.0	31.2

(4) Monthly Average of Relative Humidity at Pondok Panjang

and the second of the second o

	Jan.	Feb.	Har.	Apr.	Hay.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	
Relative Humidity	92.0	91.0	92.0	91.0	91.0	93.0	95.0	93.0	93.0	94.0	94.0	93.0	

(5) Honthly Average of Sunshine Duration at Pondok Panjang

•										Unit	%	
	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Sunshine Duration	40.0	42.0	36.0	41.0	45.0	48.0	53.0	44.0	35.0	34.0	37.0	42.0

(6) Monthly Average of Solar Radiation at Pondok Panjang

Unit Cal/on/day

	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Solar							**	1				
Radiation	336	368	329	345	333	329	320	326	330	333	315	325

Table I-3 MONTHLY DISCHARGES AT PROPOSED WEIR SITE

٠ ر		·					····				
	. Hean	39.58	34.20	47.38	34.22	31.55	34.82	43.22	51.84		39.57
	DEC.	46.01	57.65	61.04	58.82	22.30	41.92	50.47	57.92		50.77
	NOV.	38.95	60.88	44.09	49.07	43,49	21.94	37.58	119.56		51.94
	OCT.	60.68	19.27	62.14	26.40	40.85	58.10	43.91	46.83		44.77
	SEP.	62.12	16.59	46.73	45.12	38.14	32.23	41.29	51.96		41.77
	AUG.	12.51	19.84	55.61	19.74	8.57	24.96	20, 50	32.43		24.27
	JUL.	25.34	12,58	27.78	19.28	19, 41	21,71	28.71	30.35		23.15
	JUN.	21.91	24.25	38.85	12.86	22.42	22.72	23.12	10.40		22.07
	MAY.	43.85	19.18	26.92	27.82	21.83	32.47	23.11	35.97		28.89
	APR.	40.14	34.09	47.02	36.70	20.37	37.23	75.33	52.60		42.94
	HAR.	56.58	31.00	49.01	42.43	45.41	59.82	71.03	69.28		53.07
	FEB.	36.26	60.55	56.63	23.59	49.05	22.87	30.10	41.81		40.11
	JAN.	30.21	57.11	53.17	48.34	48.42	37.55	62.36	73.23		51.30
	YEAR	1981	82	83	84	85	98	87	88		Неап

Table I-4 SUSPENDED SOIL IN THE SELAGAN RIVER AT TERAS TERUNJAM

Year	Date	Water Level	Suspended Soll	Run-off Discharge	Total Sedimentation
1983	24-Feb.	0.75m	70 mg/l	30.65 m ³ /s	185 ton/day
11	9-Dec.	1.25	41	35.90	127
11	71	1.21	40	34.50	119
1984	22-Mar	1.33	37	49.15	157
11	11	1.34	36	50.96	159
11	19	1.33	29	49.15	123
11	23-Sep.	0.65	22	26.46	50
17	9-Nov.	1.32	29	48.64	122
18	10-Nov.	1.28	21	43.86	80
11		1.24	17	42.79	63
Averag	e	1.18	33	41.71	115

Table I-5 10-DAYS DISCHARGE AT PROPOSED WEIR SITE

Unit:m3/s

<u> </u>	<u> 1 481 - 1 28 </u>						J. U.A	'= 213 K	IIIG VII	11.3837.\$
		1981	1982	1983	1984	1985	1986	1987	1988	Hean
Jan.	1-10	61,21	104.77	32.46	51.33	67.30	72.22	84.46	56.20	66.24
	11-20	19.85	40.74	51.24	55.87	39, 94	27.05	48.79	68.48	43.99
10 E	21-31	11,46	28.66	73.76	38.77	38.95	15.58	54.60	93.02	44.35
Feb.	1-10	35.60	72.49	81.12	25.87	77.58	23.64	33.57	55.71	50.70
	11-20	28.10	47.18	38.96	11.89	49.05	16.66	25.53	40.39	32.22
	21-28	47.27	62.34	48.13	34.07	13.38	29.66	31.47	27.96	36.78
Mar	1-10	60.20	28.86	38.46	57.37	38.21	39.46	105.21	37.81	50.70
	11-20	62.27	38.68	62.86	31.94	49.44	79.64	79.49	47.58	56.49
1	21-31	48.12	25.95	46.00	38.39	48.28	60.30	32.25	117.61	52.11
Apr.	1-10	58.26	30.37	44.91	38.02	14.71	22.33	69.61	47.85	40.76
	11-20	34.02	15.28	34.06	22.30	21.41	26.51	77.18	42.03	34.10
	21-30	28.13	56.62	62.09	49.79	24.99	62.86	79.21	67,91	53.95
May.	1-10	29.67	13.76	25.86	48.06	7.91	62.89	29.34	52.28	33. 72
	11-20	66.46	13.38	29.07	17.59	30.52	12.95	10.54	47.22	28.47
	21-31	36.20	29,37	25.91	18.72	26.59	22.56	28.87	10.91	24.89
Jun.	1-10	45.70	357.13	23,29	12.20	7.59	28.28	20.34	13, 18	23.21
- D,	11-20	13.64	23.71	50.76	18.20	44.27	21.99	28.32	5.76	25.83
	21-30	6.38	13.89	42.51	8.19	15.41	17.89	20.70	12.25	17.15
Jul.	1-10	24.31	15.13	24.75	5.74	27.83	7.58	38.44	31.12	21.86
(2 july 62	11-20	19.78	14.90	21.81	25.97	20.64	18.96	28.08	23.26	21.67
	21-31	31.33	8.14	35, 95	25.51	10.63	37.05	20.44	36.08	25.64
Aug.	1-10	10.23	29.09	91.30	37.00	5.22	24.11	19.83	33.91	31. 34
	11-20	7.54	22.21	26.09	9.19	7.19	9.10	18.24	39.07	17. 33
	21-31	19.09	9.27	49.98	13.65	12.86	40.17	23.16	25.04	24.15
Sep.	1-10	104.01	5.02	65.23	25.76	38.24	40.03	6.74	20.06	38.14
	11-20	46.96	19.69	52.73	61.51	22.74	14.55	35.23	38.41	36.48
	21-30	35.41	25.08	22.24	48.09	53.45	42.11	81.91	97.40	50.71
Oct.	1-10	33.94	34.89	61.60	18.16	53.64	57.52	39.72	32.50	41.50
	11-20	74.86	15.93	76.22	12.95	24.40	79.72	40.25	44.00	46.04
	21-31	72,04	8.12	49.82	46.11	44.17	38,98	51.04	62.42	46.59
Nov.	1-10	35.45	100.13	52.61	38.88	48.65	28.39	63.60	67.67	54.42
	11-20	35.97	37.29	26.47	55.51	24.05	16.63	19.54	110.59	40.76
	21-30	45.42	45.14	53.20	52.80	57.77	20.80	29.60	180.43	60.65
Dec.	1-10	33.52	30.88	46.87	36.43	24.54	23.63	84.83	64,46	43. 15
	11-20	33.52	70.60	38.22	54.12	12.90		: 9	86.52	52.87
	21-31	68.71	70.23	94.67	83.44	28.81	45.98	28.44	25.97	55.78

Table I-6 DAILY MAXIMUM RAINFALL RECORDS

	Pondok	Kopi	Jalinjing	Lg.I	uas	Uj Pa	ung dang	Pen	arik	Pon Pan	H
Year	НВ	НО	нв но	НВ	НО	HB	НО	НВ	но	нв	но
1980					* 94.7	* 159.2	* 161.1	* 121.1	* 78.5		
1981	40.6	* 65.1	•	* 83.4	96.6	125.0	125.1	160.6	* 128.4		
1982	* 151.1	* 155.1	* 76.2	* 125.2	146.6	* 95.3	* 127.1	102.4		* 125.6	* 125.7
1983	104.4	* 124.3	* * 44.6 67.3	* 123.0		* 164.3	* 102.6	60.9	* 69.1	129.3	128.8
1984	150.9	* 150.9	* 74.8	109.4	* 104.0			80.9	90.0	128.9	* 129.2
1985	* 156.4	* 142.8	120.5	99.1	* 74.6	* 93.5		94.3	* 55.2	157.6	* 85.0
1986	130.2		35.2	138.7	* 58.2	135.2		160.6		146.0	* 146.3
1987	132.8		* 112.7	* 114.9		87.8				* 185.0	
1988	140.5		* 65.3			* 189.3				200.7	

H.B Rainfall Gauge

H.O Automatic Rainfall Gauge

The data with no observation period are found.

Table 1-7 WATER QUALITY TEST FOR DRINKING

Y 00734	IDITO			TES	ТР	OINT	·		
ITEM	UNIT	1	2	3	4	5	6	7	8
Electric	Umho/cm	370.0	55.0	35.0	75.0	55.0	50.0	55.0	45.0
Conductivity									
PH		7.9	7.7	7.0	7.2	7.1	7.1	6.7	7.0
Ca	mg/l	36.0	4.2	2.4	5.6	5.0	4.0	4.0	3.6
Mg	•	7.7	1.8	1.2	2.2	1.7	1.3	1.5	1.2
Na	11	1.6	0.89	0.66	0.97	0.53	1.5	1.1	0.85
K	Ħ	1.3	0.57	0.53	0.38	0.74	0.78	0.54	0.52
Fe	**	0.06	0.06	0.02	0.03	0.23	0.04	0.19	0.12
Mn	11	0.05	0.07	0.03	0.08	0.06	0.07	0.05	0.09
2n	et	0.01	0.01	0.02	0.48	0.02	0.02	0.35	0.02
F	tt	0.05	0.10	0.05	0.10	0.10	0.05	0.05	0.05
C1	11	28.0	2.4	1.7	2.8	2.4	2.0	2.4	1.7
S04	11	3.5	1.0	0.6	1.2	10.0	0.9	1.1	0.8
NH4	11,	0.05	0.07	0.04	0.03	0.09	0.15	0.07	0.08
NO3	11	0.12	0.15	0.10	0.08	0.22	0.34	0.20	0.25
нсоз	11	100.0	20.0	12.0	25.0	20.0	20.0	18.0	15.0
KMnO4	tr	5.0	8.2	8.7	6.0	20.0	17.0	9.0	12.0

Test Point	1 Air Selagan	: Muko-Muko
*	2 "	: Pondok-Kopi
	3 "	: Teras Terunjam
	4	: Lubuk Sahung
The second second	5 "	: SP III
	6	: SP IV
	7 Air Ledeng	: Muko-Muko
	8 Air Selagan	: Pondok Batu

Observed Period: Oct. - 1989

Table I-8 WATER QUALITY TEST FOR IRRIGATION

									
T GNDM	UNIT		· .	T E	S T P	OINT			
ITEM	ONTI	1	2	3	4	5	6	7	8
Electric Conductivity	Umho/cm	45.0	45.0	45.0	280.0	34.0	52.0	43.0	38.0
PH		7.1	7.1	7.0	6.9	7.2	7.0	7.0	7.1
Ca	mg/l	$4.\overline{2}$	$3.\overline{4}$	4.4	7.8	4.2	6.4	4.2	3.8
В		0.02	0.02	0.02	0.04	0.03	0.02	0.04	0.03
Mg	11	1.5	1.5	0.97	3.5	0.97	1.3	1.3	0.85
Na	H	0.90	0.77	0.76	30.00	0.51	0.43	0.84	0.71
K	11	0.44	0.41	0.41	2.40	0.49	0.68	0.71	0.73
Mn	· tt	80.0	0.04	0.02	0.05	0.03	0.07	0.05	0.08
C1		2.5	2.2	2.2	50.0	1.8	2.8	2.5	1.8
S04	Ħ	0.7	0.8	0.7	8.2	0.5	0.9	0.8	0.7
НСО		18.0	15.0	16.0	30.0	16.0	23.0	19.0	15.0

Test Point	1	Air Selagan	Surian Bungkal
	2		Teras Terunjam
-	3		Lubuk Sahung
	4	11	River Mouse
	5		Pondok Kopi
	6	11	SP III
	7.	**	SP IV
	8	Air Betung :	Teras Terunjam

Observed Period Oct. 1989 - Nov. 1989

Table I-9 WATER QUALITY TEST AND SALINITY TEST

-	NO =	ITEM	UNIT		SAMPLE N	o
-				1	2	3
I	1	SALINITY	0/00	0	0	0
1	2	ELECTRICAL CONDUCTIVITY	mh0/cm	53	32	3.5
1	3	CHLORIDE	mg/l	4.6	2.8	2.8

...Note:

-Sample No.1 Confluence of Air Hitam and Air Selagan at High Tide

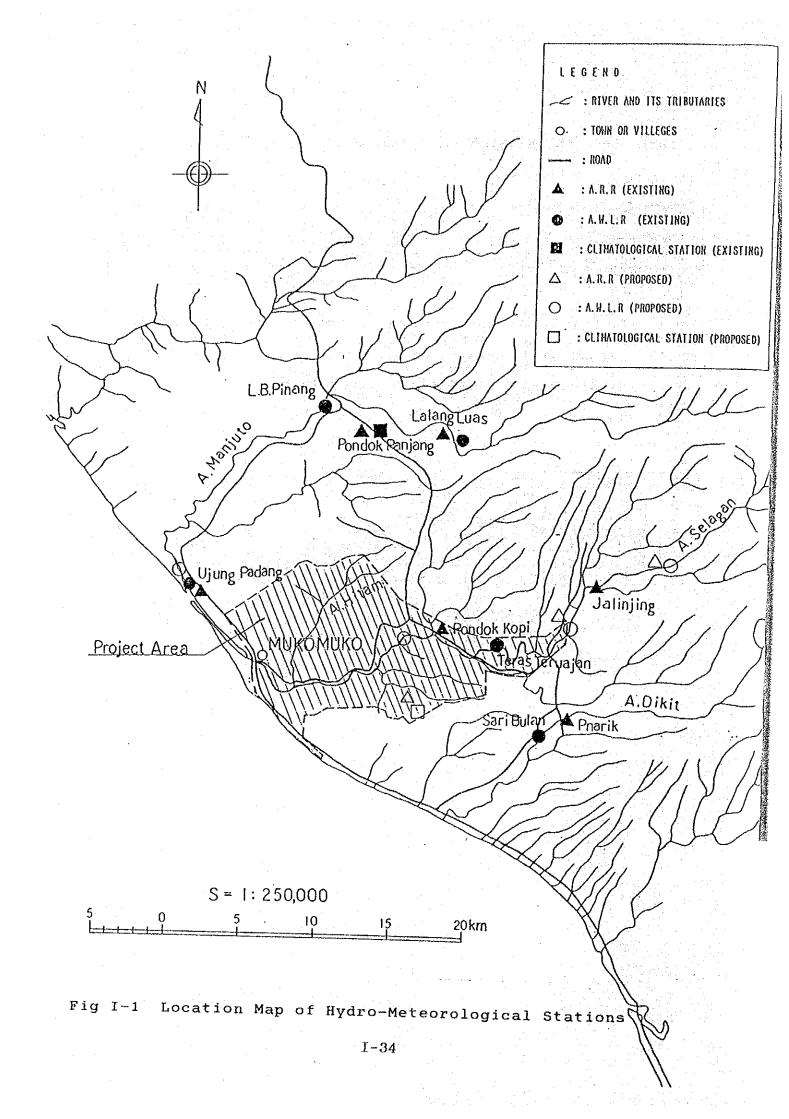
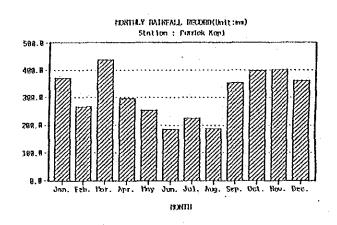
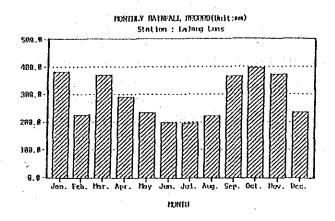
-Sample No.2 Confluence of Air Hitam and Air Selagan at Low Tide

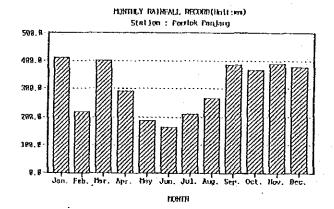
Air Selagan around SP.III -Sample No.3

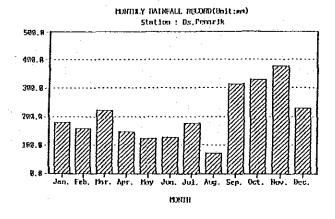
NO	ITEM	UNIT	SA	MPLE No	
			1	2	3
1	COD(Chemical Oxygen Demand)	mg/l	5.18	2.3	0
2	S,S(Suspended Solid 0.45 m)	mg/l	4	3	3
3_	ZN (Zine)	mg/l	N.I	0.01	0.01
4	CU (Copper)	mg/l	N.I	N.I	N.I
5	A.S (Arsentic)	mg/l	N.I	N.I	N.I

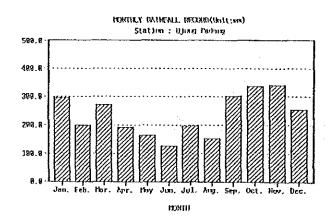
Note:

- -N.I no identified when laboratory test is done due to a content of Cu and As too small to identify
- -Sample No.1 Upstream of the Weir -Sample No.2,3 Downstream of the Weir


Fig I-2 Available Climatological and Hydrological Data


33 14 1- 1-	CTATTON		ž už		S 8 0	ERVE	9 P E	8 I O D				7,00m0Q
	01M 11VR	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	nomal no
	Dandol-Koni								A. 10. 17. 18.1			
	רטוווט שטאוו		21									
	lallin i no							<i>5</i>			2.	
	J 2 1 19 1 19 2											
	101000				1 1 1 2,4							
Dainfail Data	Larany Luas											
naliliali vata	Hitting Dayland											
: .	Ujung radany							3				
:	Donarit											
	r 51141 1 N											
	Dondol Daniana											
	rolluon ralijaliy	! .	: : : :		1. 1.4 2.4 2.4 1.4							
Climatological	Dondok Daniang											
Data	rylluon ralijaliy											
	Air Manjuto											
	Lalang Luas										-	
	Air Manjuto			· .								
Water Love	L.B. Pinang											
מסרכי רפיכי	Air Selagan		1									
	Teras Teruajan						ı] 	; ;			
-	Air Selagan											
	Ujung Padang											•
:	Air Dikit					2						
	Sari Bulan											
			!			! ! !						


Fig I-3 Monthly Mean Rainfall Records

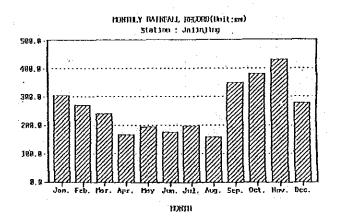
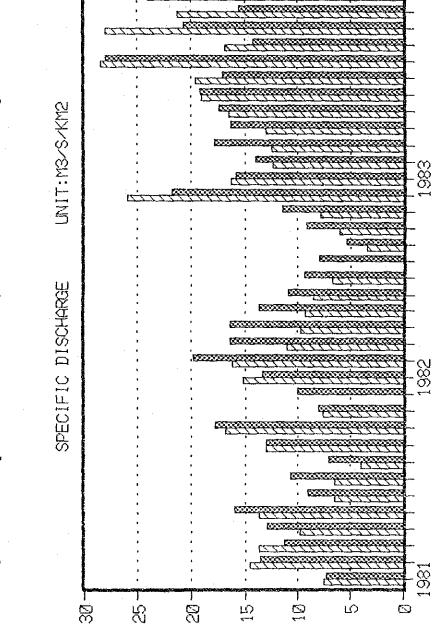



Fig I-4 Comparison of Monthly Mean River Discharge

🔼 A. SELAGAN (TERUNJAM) 👹 MANJUTO (LG. LUAS)

Fig I-5 Correlation between Monthly Mean Discharge at Air Selagan and Air Manjuto

29,000 t 26,000 t 24,20 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NOS OF DATA 34	34 B B B B B B B B B B B B B B B B B B B	10 c 10 c 10 c 10 c 10 c 10 c 10 c 10 c	A # 1.	963	
9 0 0 8 0 9 0 0 8 : :			7				
. 8 8 8 8 8							
19 64 04 04 04 04 04 04 04 04 04 04 04 04 04 04 04 0	· · · .			•	•		
11 00 LT		. ° ∌	•	•.		•	•
14.60 + 1 12.20 + 1			•	•	•	•	
о 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				•			
р б Ф 0 О 0							

26,40

Fig I-6 Procedure of Hydrological Analysis

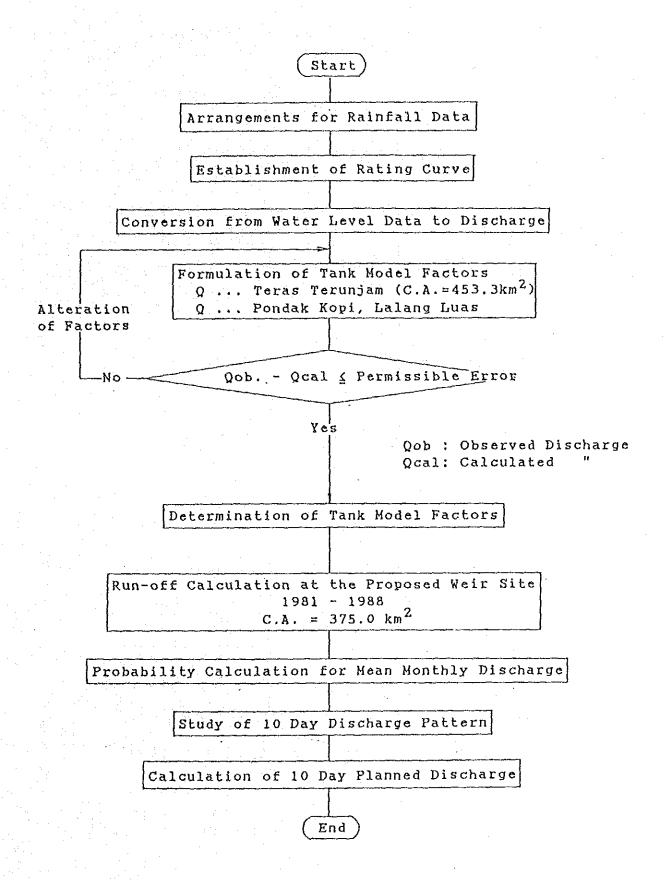


Fig I-7 Schematic Diagram of Tank Model

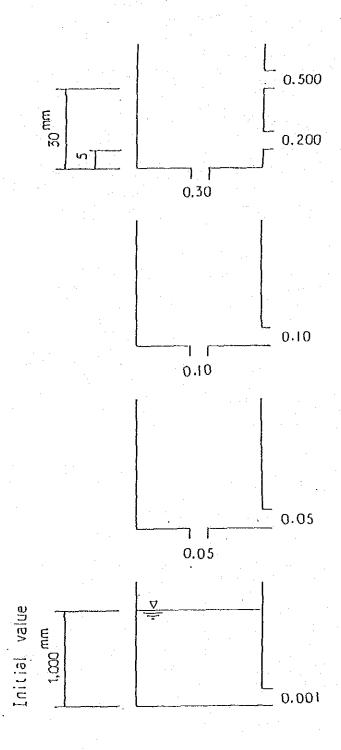
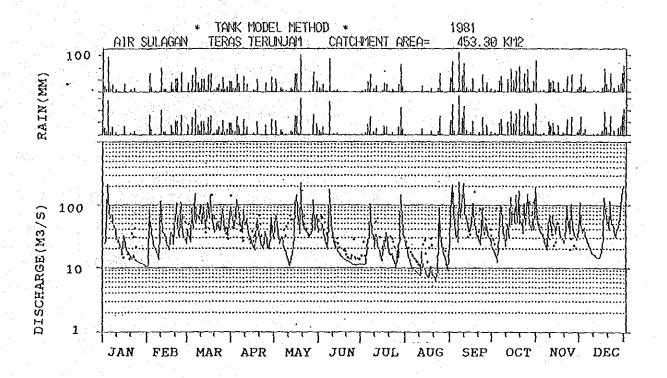
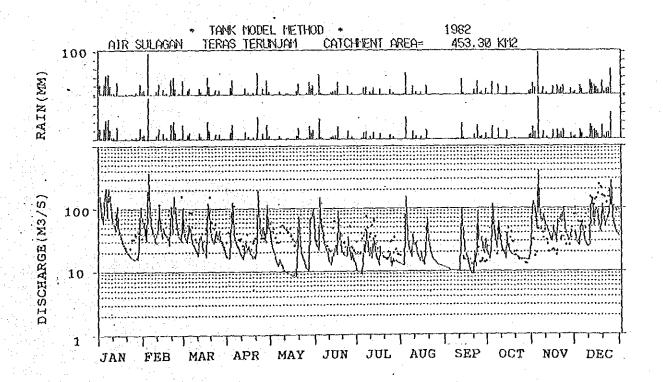




Fig I-8 Result of Calculation by Tank Model Method

NOTE: - CALCULATED DISCHARGE (M3/S)

* OBSERVED DISCHARGE (M3/S)

APPENDIX II GEOLOGY AND SOIL MECHANICS

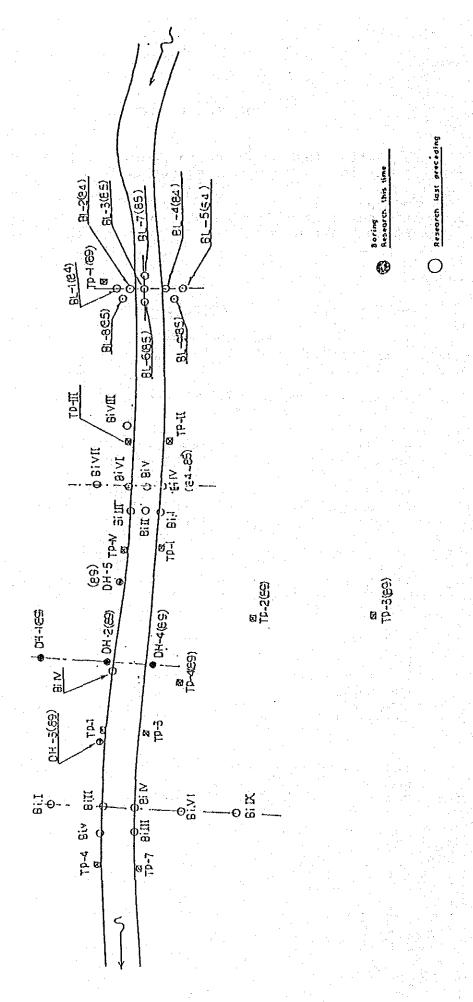
CHAPTER 1 GENERAL

The site investigation on geology and soil mechanics was carried out in the Project area for the study.

The purposes of the investigation are to investigate the proposed weir site foundation, soil properties along the main canal and embankment material and to estimate to the design.

The past investigation on the Project was carried out by Indonesian consultant.

In this report, their results are referred to.


Furthermore, with respect to geology of wide area, the data issued by Indonesian Geological Research and Development Center were referred to.

The summary of the results is as follows:

- (1) At the proposed weir site, weathered pumice-tuff crops out on either bank and tuffaceous sandstone exists at EL.20m on the river bed. This was caused by the fact that weathered tuff on the river bed was scored and was replaced by deposited gravel. Therefore, outcrop on either bank is weathered 0.50 1.00m deep. The terraces on both banks are covered with 2m of tuffaceous clay containing Quaternary Pleistocene andesite gravel, and Pleistocene reddish clay cover the surface.
- (2) Foundation ground for either main canal is stable for constructing canals and related structures because deposit mainly consists of tuffaceous clay.
- (3) The River deposit covers to the extent of 200 300m on either bank from the present channel, and is suitable for the foundation of the secondary canals. In the middle of the swamp area, however, these exist thick weak foundation. Especially in the low lying and flat area located between the Air Hitam and the Air Manjuto, the weak foundation is thick.

The embankment materials can not be found in the area passing through the secondary canals. Consequently, the materials will be conveyed from the terrace area.

LOCATION OF GEOLOGICAL SURVEY Scare 115000

CHAPTER 2 SOIL AND GEOLOGICAL INVESTIGATION

2.1 Location and Quantity of Investigation

The content of the investigation for this study is shown in Table II-1, the location in Fig. II-2.

The investigation listed on the Table II-2 except cone penetration test was carried out by Indonesian CV. SECOM, Survey-Civil Engineering-Consultants under the Contract of the JICA Feasibility Study Team.

2.2 Methods of Investigation

1) Test pitting and sampling

In the principle of depth 3 meters, four spots at weir site, and three spots along main canal routes were excavated.

Disturbed and undisturbed samples were taken out for laboratory tests.

2) In-site permeability test

Coefficient of permeability of Quaternary fine sand or silt are tested by Charging method and Recovery method in the test pits.

3) Dutch cone penetration test

Utilizing the capacity of 5 ton class machine, tests were carried out at 26 points of the downstream of weir site and link canal route.

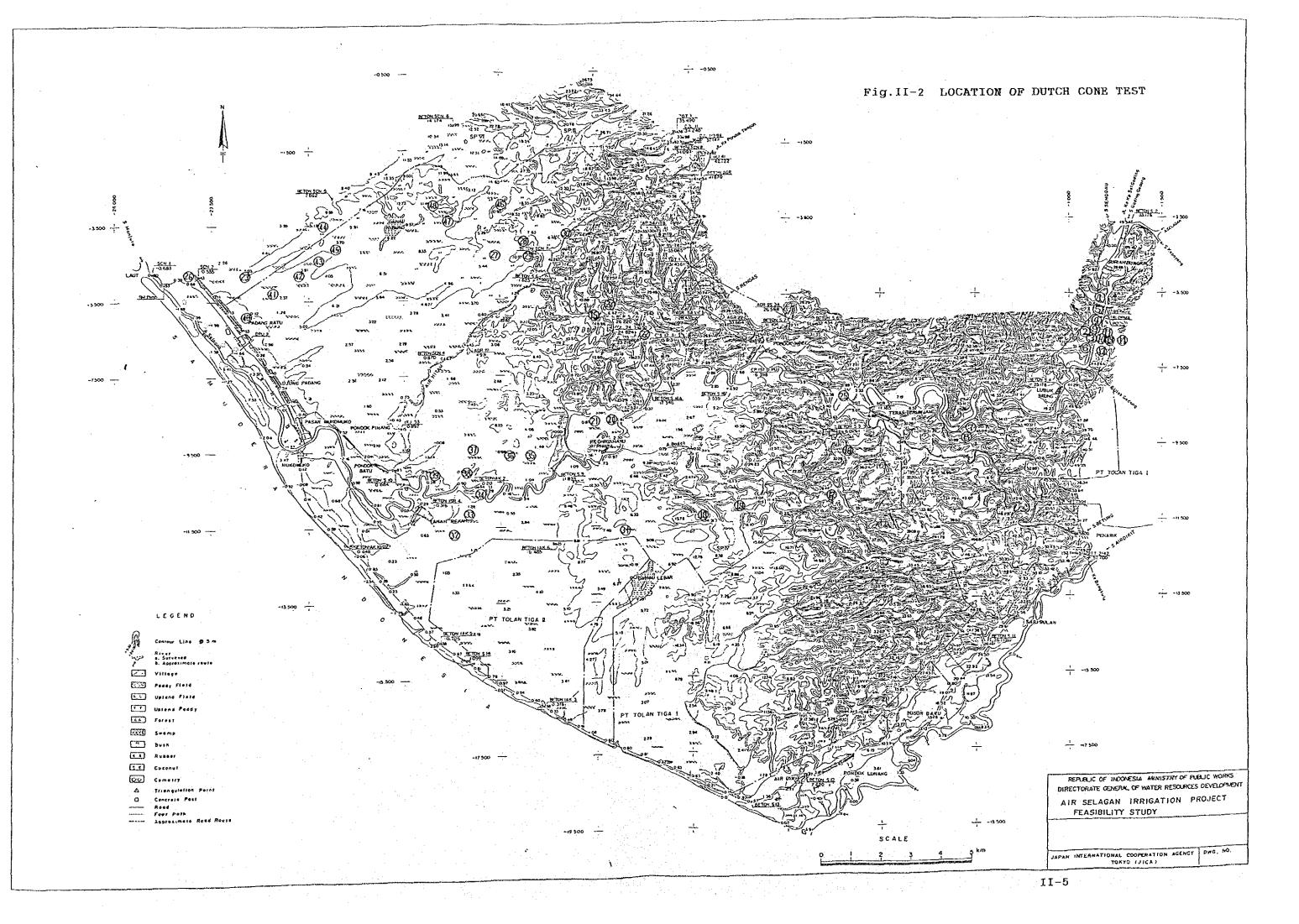
Tests were stopped at the depth of qc (cone bearing capacity) = 150kg.f/cm^2 , because of the capacity limit of machine.

4) Soil test

Soil test to the sample from test pits was carried out in CV. SECOM laboratory in Bandung.

2.3 Test Results

The test results are shown in Fig. II-2 to Fig. II-8 and Table II-2 and Table II-3.


Table II-1 NUMBER OF SOIL & GEOLOGICAL INVESTIGATION IN 1989

to the second second			44	1.7			
	Hole No.	Depth	GH	S.P.T	P.T	S. T	Remarks
	7.5.	(m)	EL(m)	(nos)	(nos)	(Sample)	
Boring	DH-1	20.00	29.216	19	20	1	Weir Site Right
	DH-2	20.00	27.176	19	19	1	n
	DH-3	20.00	26.70	19	19	1	
	DH-4	20.00	28.126	19	19	1	Weir Site Left
en de la companya de La companya de la co	DH-5	20.00	27.436	19	19		Weir Site Right
	*		Par Projectiv G			gun Automobile La <u>La Laciona</u>	
P	oints 5	100		95	96	5	
Test Pit	TP-1	3.00	· · · · · · · · · · · · · · · · · · ·	: 	<u>-</u>	1	Weir Site
	TP-2	3.00	<u>.</u>			. 1	
	TP-3	3.00	-	· . – ·	·· <u>-</u>	1	#
	TP-4	3.00	-	· -	_	1 .	u
	TP-1'	3.00	<u>-</u> .	· · <u> </u>	· :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Canal
	TP-2'	3.00		_	·	1	11
	TP-3'	3.00		_	- : - : :	1	
7	Pits	21.0				7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cone Penetr	ation	test			~ ~	48 Points	

Remarks: S.P.T : Standard Penatration Test

P.T : Permeability Test

S.T : Soil Test Sample

Fig. II-3 SIMPLIFIED GEOLOGIC COLUMN (1/2)

DATE: 30-9/1-10-189 LOCATION: Proposed werr NO.: TP 1 site at Air Selagan

TESTED BY: Sukino Top Soil. Clay, Sandy Silt DESCRIPTION Ds.Lubuk Sahung PROFILE

LOCATION: Proposed weir site at Air Selagan Ds.Surian Bungkol

DATE: 6-10/7-10-'89 TESTED BY: Sukino

REMARK	Undisturbed Somple, 2 to 2 som
DESCRIPTION OF THE PROPERTY OF	Sockish brown mixed plant site blockish brown mixed plant to the compart to the compart to the compart to the compart to the plant to the compart to the com
PROFILE	3 20 33

LOCATION: Proposed weir site at Air Selagan Ds.Surlan Bungkol

DATE: 2-10/3-10-'89

NO. : TP.2

LOCATION: Proposed weir

site at Air Selagan Ds. Lubuk Sahung

TESTED BY: Sukino

DATE: 4-10/5-10-189 TESTED BY: Sukino

	DESCRIPTION	REMARK
111111111111111111111111111111111111111	Top Soil Clay, Sondy Silv.	
	Stockers brown mined plant	
11(1)(1)	noors, soft	
 - -	· · · · · · · · · · · · · · · · · · ·	
	Breceious tuff complainty	
	Leother Last Carlows or order	
1,	to whittish brown sticky	
	rother compositi	5
		Series.
i i		1,60 3,40 M
\ -\		

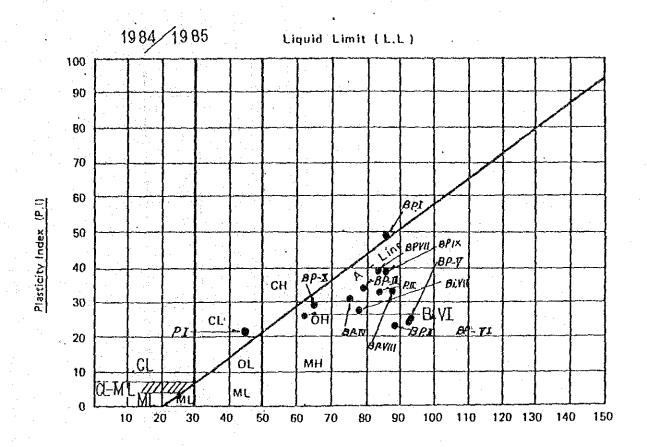
RUKLARK	ارد درومیة رەسیک	المراجع الم	(D) distances ed.
DESCRIPTION	Top Soil: clay, sondy silt blockish brewn, mined plant rum	Breccious toff, completely we weathered Causty to rightly we shares of and, yellowish orano.	Clay, sondy site, sticky mother compacts
37120	\$		

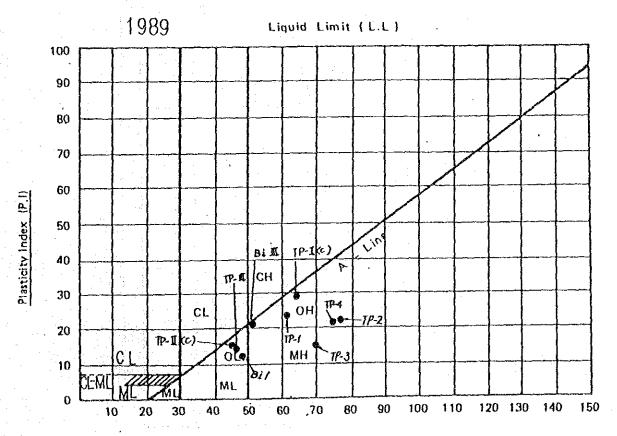
Fig.II-3 SIMPLIFIED GEOLOGIC COLUMN (2/2)

LOCATION: Proposed canal NO. : TP.1

	,		
'89 Sukino	Ketorangan		
site along Air Selagan DATE: 7-10-'89 at Teras Terunjam TESTED BY: Sukino	O skrips)	Tande pender, lempena lana pakisu collet kinisman, Campe alar lan- ful. tembelan, lunde. Tija Borden lapuk Sempurn	Lings (spirit Kient (Civilto),
site alos at Teras	Propil	3 6 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]. -

-'89 Sukino	Keterangan	3	2.50 = 5.50 ×.
LOCATION: Proposed canal NO. : TP.2 site along Air Selagan DATE: 10-10-'89 at SP IV TESTED BY: Sukino	Diskripsi	Torde position, lempedo, lander pacital tenderic libritana anyter, decon tented temberan, lemak. Tita sorderi lapede sengern, lingan lapete feren Cow - Hw), Langerny lander, paviran sedikit fraquen footean, paviran sedikit fraquen footean,	
LOCATION: P site alon at SP IV	Propil	83.00 83.00 84.11 84.11 85.11 86.10 86	


NO. : TP.3	DATE: 8-10-189	TESTED BY: Sukind
LOCATION: Proposed canal	site along Air Selagan	at SF II


Turdis inter 15-15

anon parinen, sedikit

Keterangan	I undictived	N To - 11 G B
Diskrips§	Tanale permine, limpung laum portran collect desiteran Composar, desc., franch, tambellum, lunch Tripa Brellie legale Sugaran Limpung lapale levet (Cla-Hw) Limpung lama pereiran dippin suculocies, padar.	
F 0 0 1	0000 1700 25	227

Fig. II-4 PLASTICITY CHART OF SOIL

LOCATION : Test pit 2 90 (mg/m) HO13 (TP-2) Wais 514 1 2-tuff Soil Name Sail iù T 1349() 4 ŧΩ 808 20% **70** ₹ 25 LOCATION : Weir site 2 q c (kg/cm) 5 10 2-164 9 MeM Jio2 Sec ηjα e(J ίς. L Ŋ 4

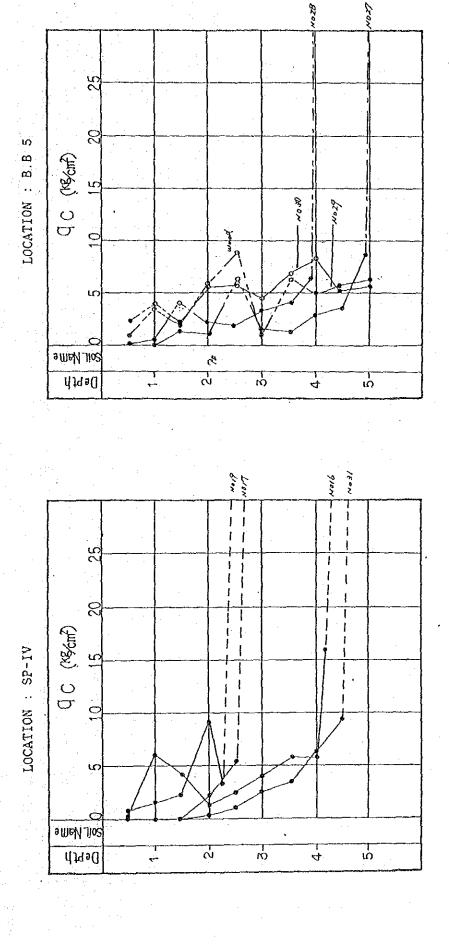
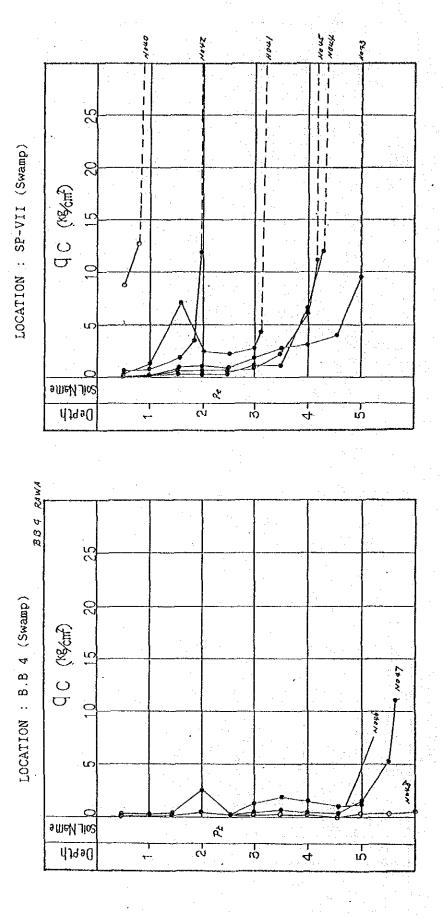



Fig.II-5 CONE INDEX BY CONE PENETRATION TESTS (3/3)

	•	1 1			*********					•		12) }									,	
		د ت <i>اری</i> ة				-/			*********	••••••						·		,							
			***************************************			-/-							t		-										
	N-VALUE RESTS-22-278-48 10 20 30	HESION				/					1	**********													
						-		- i i										 							
	tt/m:	0				<u> </u>								**********		1		; ,;							
Ħ	[]	്					*****		4.224									<u>-</u>							
Q.	AT TON	See a																							
PONTROLE WATER 64-4-450	CONSOLIDATION YIELD STRESS	COMPRESSION INDEX CA																					, 		
PORENO FATE LEVRI	I —————	8 v		-			-						-												
អ	cf/m²	%										······i···			: :										ļ
		75 4				ļ											ļ		····.	-4			, 		
E. 29 216	83.75 83.75	at falli		ļ		<u> </u>											ļ								
13	\$25347.22 5.4584GTH	STRAIN AT FAILURE	-	\\	<u> </u>	-	ļ																		
	• 0	х		à			ļ								7										ļ
	2.0.2	•			ļ				ļ		<u></u>														
- 40	WET DENSITY A. S. SPECIFIC GRAVITY G. 1.0 1.5 2.0	VOID RATIO		×		-																			
ď,	WET D	VOID		ļ		1					 					i i		ļ;							
POINT :	• 0	Ъ		и]		
4	j ,				<u> </u>	<u> </u>	<u> </u>																		
	LIMIT	DI STURK		0		-) *			-			
R.266	LIQUID LIMIT PLASTIC LIMIT	ATURAL M ONTEST 25 30										-14													
	21	100		125	-		-															ļ. —		-	
Wan side	GRAIN SIZE DISTRIBUTION %	60 80		100		 									·							ļ			
1/2		-			ļ	-										{							-		
LOCATION	GRAIN SIZE DIS	8																							
roci	}	+ , f				<u> </u>			<u> </u>					<u> </u>]	<u> </u>		}	<u> </u>	<u> </u>	L_	<u> </u>	-		. !
	PLE NO.		X		,71		 - -	.·a:	> 1 (<	15-213-	::a::	12	. 31	· 2 in:	. 7.	. 3		3			· × :				٠.
	PRART N	HAVA	ři V	<u> </u>	1 '		__	-13-	· · · · ·	٠,٠	7	, —		::Y::'.'	ئىتىن -	235. L	::: <u>}:</u>		<i>2</i> · · ·	· ; ; ; }·	11.	<u>۲۰:۰</u>		· β	i
10 m	NOTAVA								<u> </u>		, , , , , , , , , , , , , , , , , , ,									 -		<u>;</u>		REMARKS	

Fig. II-6 SOIL PROPERTY CHART (2/5)

	N-VALUE # 9 EGGE 0 42515754678444 # 9 EGGE 0 10 20 30 40 50 60	c ti/m²								Į.	1	ſ	1	1	i .	i i	ı	ł	I	l	l	1		ì	- 11
		ļ۷			1		1 /	1	1	Ī										ļ				,	
	N-VALUE AZSYETSKET	ક્	1				/																		
	N-VAI 125157-	1-4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									****										*******			
-		CORTES			<u>/</u>	.4)	ļ					ļ i	,			terrentan.									
-	٠.	0					-					 													
H	п/н		**************************************	., .,						********		1********	********			*********			*********	**********					
الما		វ ស្ព																							
26.2-79	VIELD STRESS	COMPRESSION INDEX	,.,				 					*********			*********		· i								
BOREHOLE WATER LEVEL		CCMPRE												.,,	**********										
1 1		0							1500- 64-						*********	*******								:	, in
1	d, til/on	c, 90			-1-4							•				•••••				·····					1
7.726	18.84GT1	FAILURE																						٠٠	
EL. 27	L L L L L L L L L L L L L L L L L L L	STRAIN AT FAILURE																						i	
	• 0	×					<u></u>																- 1		
1 11	2.0 2.5			0																,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				· ;	
. * O A - 2	24V(T) 6	ATIO .	******	•																			·····		
9	SPECIFIC (VOID RATIO		×		x																	**********		.
POINT: N	• 0																		-						•
2	% %	ر ٪																					: 		
	IMIT "	STURE .		×													. 								
-12	LIQUID CIMIT PLASTIC LIMIT	NTORAL MO SMTEMT			·······												a, 11-1-a-								
				15.												<u></u>		:							
12. 5.	STRIBUTION %	S	,																•	-1,774.174	;:- ;:				
x ex	OISTRIBU	10 09														.;									
LOCATION	GRAIN SIZE DISTRIBUTION 96 CLAY - NILT - SAND-STAN	2				,										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						*********			
- -	ON 3.1																				L				
-	7091		X			, o.	0.0	· » · 4	· > à	i			·;;;·>							; ; ; ; ;	···>·)		 -		
	K ERART	,	3	-, ,			- 00				,		41					<u> </u>		15:1	<u></u>	 	~~~ ~~~	S	
1 11	01,747	3.13.8	1827		ij		3 70 75			-w,-	18.00 000			·		•		·				 % %	~-	REMARKS	