

APPENDIX D

POLLUTION LOAD GENERATION

1. Water Consumption

1.1 General

Piped water service for the Study Area is provided by Jakarta Water Supply Company (PDAM). The Study Area is covered by 27 water service districts of PDAM, as shown in Fig. D.1. The existing piped water service area is also shown in Fig. D.1.

However, the existing piped water service is small. Major portion of the requirement in the Study Area is met by individual groundwater wells. The total piped water supply of the Study Area in October, 1989 was as follows.

Water Use	Nos.of Connection	Water Supply
Domestic	153,303	174,465 m ³ /day
Commercial & Institutional	25,284	111,993
Industrial	568	8,072

While, no data on the existing individual groundwater supply is available.

Therefore, the existing water consumption was estimated by a questionnaire survey.

1.2 Domestic Water Consumption

1.2.3 Existing Water Consumption

The JICA Team carried out a sampling survey on the existing domestic water consumption for 2,515 households, with various water source of piped water, individual well and public toilet (MCK).

The water consumption varies according to household income level and also according to the type of water source. The average unit water consumption by income class was estimated to be 192 lcd (liter per capita per day) for high class, 129 lcd for middle class and 105 lcd for low class. The Average unit water consumption of whole classes was 131 lcd.

The estimated average unit water consumption by class and by water source is shown in Table D.1.

Based on the above sampling survey data, the existing unit water consumptions of the Study Area are determined as follows.

High Class	:	190	lcd	
Middle Class	:	130	lcd	
Low Class	:	100	lcd	
			1 A	

1.2.2 Future Water Consumption

A water supply master plan, targeting the year 2005 was prepared for this Study Area by JICA in March, 1985. The master plan will serve piped water to 10,496,000 people or 87% of the total population of this Study Area. The service area will be extended to 454 Km^2 or 70% of this Study Area. (See Fig. D.1).

In the water supply master plan, the unit domestic water consumption was assumed to be 60 lcd - 250 lcd, varying according to income level. The unit water consumption by income group was estimated as shown below for the people served by piped water.

Income Group	Unit Water Consumption (lcd)
,	
I & II	60
III & IV	150
V	250

In the water supply master plan, the people's income level was classified into five (5) groups, based on monthly income per working person at 1980 price as shown below.

	Monthly	/ Income	per	Working	Person
--	---------	----------	-----	---------	--------

				(Unit : Rj	p. 1980
Group	I	0	-	25,000	
Group	II -	25,000	·	50,000	
Group	III	50,000	- .	75,000	
Group	IV	75,000	-	100,000	
Group	\mathbf{V} is the second s	100,000	-		

price)

The above income level classification can be converted into the income level classification of per capita monthly income by using the following conversion factors.

Nos. of working person of one family : 1.5 persons <1 One family size : 8 persons <1 Price deflator (1989/1980) : 2.079

Note: <1; Figures used in the water supply master plan.

converted income level classification is shown below.

The

Per Capita Monthly Income

. ·			(Unit : Rp.	1989 prices)
Group	I & II	. 0 -	19,490	
Group	III & IV	19,490 -	38,980	
Group	\mathbf{V} , \mathbf{v} , \mathbf{v}	38,980 -		

On the other hand, the income distribution of high class, middle class and low class determined by this Study are shown in Fig. D.2.

The converted income level of group I & II, group III & IV and group V in the water supply master plan agrees with the income level of low class, middle class and high class estimated in this Study respectively (See Fig. D.2).

Based on the above discussions, the future unit domestic water consumption of the Study Area in the year 2010 is assumed as follows.

High Class = 250 lcd Middle Class = 150 lcd Low Class = 100 lcd < 1

Note <1: The future unit water consumption of low class is assumed to be the same as the existing one although the future unit water consumption of group I & II in the water supply master plan is less than the existing one for low class of this Study.

The existing and future domestic water consumption of each Kelurahan can be obtained by multiplying the above per capita water consumption by its total population.

1.3 Commercial and Institutional Water Consumption

1.3.1 Existing Water Consumption

Commercial and institutional water consumption of an area can be estimated by multiplying its domestic water consumption by a certain ratio. This ratio varies mainly, depending on land use pattern of the area.

Average ratio between the commercial and institutional piped water consumption, and domestic piped water consumption of cach service district of PDAM during the period of June to October, 1989 are shown in Table D.2. While, average ratio between the commercial and institutional land area and residential land area of each service district of PDAM are shown in Table D.3. There is a high correlation between both ratios as shown in Fig. D.3.

Based on the above analysis, the existing commercial and institutional water consumption by Kelurahan is estimated by the following formula.

Existing Commercial & Institutional Water Consumption by Kelurahan = Existing Domestic Water Consumption by Kelurahan x Existing Commercial & Institutional Water Consumption Ratio by Kelurahan.

where,

Existing Commercial & Institutional Ratio :

 $Y(\%) = 0.757 \cdot X(\%) + 2.0$

X(%) = Existing Commercial & Institutional Land Area / Existing Domestic Land Area x 100

1.3.2 Future Water Consumption

The future commercial & Institutional water consumption by Kelurahan is estimated in the same manner as the existing one. The calculation formula is as follows.

Future Commercial & Institutional Water Consumption by Kelurahan = Future Domestic Water Consumption by Kelurahan x Future Commercial & Institutional Water Consumption Ratio by Kelurahan.

where,

Future Commercial & Institutional Ratio :

 $Y(\%) = 0.757 \cdot X(\%) + 2.0$

X(%) = Future Commercial & Institutional Land Area/ Future Domestic Land Area x 100

1.4 Industrial Water Consumption

1.4.1 Existing Water Consumption

Data on the existing industrial water consumption, its water source and industrial product amount were obtained through a sampling questionnaire survey from 51 factories covering various kinds of industry.

The product amount, water consumption and unit water consumption (water consumption per product amount) by type of industry are shown in Table D.4. The water consumption by water source is also shown in this table.

The total product amount and water consumption of the 51 factories are 49,488.2 million Rp/year (1989 price) and 339.46 m^3/day , respectively. The unit water consumption of the 51 factories ranges

from 0.002 m³/day/million Rp/year for manufacture of textile to 0.027 m³/day/million Rp/year for manufacture of non-metallic mineral products, iron & steel and machinery and equipment with an average of 0.007 m³/day/million Rp/year. Their water sources are groundwater of 51.4%, piped water of 18.3% and river water & others of 30.3%.

Based on the above survey results, the existing industrial unit water consumption of the Study Area is determined as follows.

	Industrial Classification	Unit Water Consumption
1.	Food, Beverages & Tobacco	0.010 m ³ /d/million Rp/yr.
2.	Textiles	0.002
3.	Wood & Wood Products	0.003
4.	Paper & Paper Products	0.003
5.	Industrial Chemicals	0.010
6.	Non-metallic Mineral Products	0.027
7.	Iron & Steel Basic Industries	0.027
8.	Fabricated Mineral Products,	0.027
	Machinery & Equipment	
9.	Other Industries	0.010

1.4.2 Future Water Consumption

The future industrial unit water consumption is assumed to be the same as the existing one.

The existing and future industrial water consumption of each Kelurahan can be obtained by multiplying the above unit water consumption by its total industrial product amount.

2. Unit Pollution Load Generation

2.1 General

The major wastewater source in the Study Area are of domestic, commercial and institutional, and industrial in origin.

Domestic wastewater covers toilet wastewater, and gray water from kitchen, bathing and laundry. In the Study Area, 74 % of the toilet wastes is treated by septic tank/leaching system, while the remaining 26% is discharged to the public waterways with no treatment. The gray water is also discharged with no treatment.

Only a few large commercial enterprises, institutions and industrial factories are provided with treatment plants to treat both toilet wastes and gray water.

2.2 Domestic Wastes

2.2.1 Sampling Observation of Pollution Load

The JICA Study Team conducted sampling observations of domestic pollution load in December, 1989 as there is no existing available data.

The observations were made for the following types of pollution loads.

- Pollution load of gray water from middle/high income class residence.
- Pollution load of gray water from low income class residence.
- Pollution load of toilet waste from residence.
- (1) Pollution Load of Gray Water from Middle/High Income Class Residence.

Pollution load of domestic gray water including bathing, loundry and kitchen wastewater was observed in the three (3) housing estates : Tanah Abang, Klender and Pluit at one (1) site each. Monthly income of the households in these housing estates ranges from Rp. 40,000 to Rp. 125,000 with an average

of Rp. 73,000 which falls between middle and high income classes (See Fig. D.2).

The location of the observed housing estates is shown in Fig. D.4.

The observation conditions are as follows.

Sampling Method : Consecutive sampling, at every 3 hour interval, for 24 hours Observed Wastewater Quality : pH, BOD, COD, SS Parameter

The average observed wastewater quality and unit pollution load in terms of BOD are 182 mg/l and 23.2 gcd respectively. For details, see Table D.5.

(2) Pollution Load of Gray Water from Low Income Class Residence.

> Pollution load of bathing and laundry wastewater from Public toilet was observed in three (3) Kampungs of Kel. Karet, Kel. Guntur and. Kel. Kebon Kacang. Pollution load of kitchen wastewater from residence in the same three (3) Kampungs was also observed.

The location of the observed Kampungs is shown in Fig. D.4.

The observation conditions are as follows.

Sampling Method : Consecutive sampling, at every 3 hour interval, for 24 hours. Observed Wastewater Quality : pH, BOD, COD, SS

Parameter

The average observed wastewater quality as BOD is 134 mg/l for laundry, 84 mg/l for bathing and 440 mg/l for kitchen

with an average of 185 mg/l for total gray water. The average observed unit pollution load (BOD) of total gray water is 14.9 gcd. For details, see Table D.6.

(3) Pollution Load of Toilet Waste

Pollution load of toilet waste was observed in two (2) public toilets located at Jl. Tanah Tinggi Timur and Jl. Tanah Tinggi Barat along Sentiong River, the locations of which are shown in Fig. D.4.

The Observation conditions are as follows.

Sampling Method : Continuous collection of wastewater until the collected volume be about 80 1

Observed Water Quality Parameter : BOD, COD, SS

The average observed results are 3.6 lcd for unit wastewater discharge, BOD 2,930 mg/l for wastewater quality and BOD 10.5 gcd for unit pollution load (ref. Table D.7 for details).

Regarding the above results on unit wastewater discharge and unit pollution load, the later could be considered to be representative even for domestic pollution load while the former is not. This is because, the quantity of toilet water use is very limited in case of public toilets in comparison to domestic toilets. Hence, as the representative value for unit wastewater discharge, the data observed at Klender housing estate of 23 lcd is adopted for this Study.

To summarize, the adopted values for this Study are as follows :

Unit wastewater discharge : 23 lcd

Unit pollution load /(as BOD) : 10.5 gcd

The corresponding wastewater quality of toilct waste is about 457 mg/l as BOD.

2.2.2 Unit Pollution Load

The existing and future 2010 year unit pollution load of gray water and toilet waste are estimated as shown below, based on the sampling observation results and water consumption estimates in the previous Section.

	•		(Unit : BOD, gcd)
		Existing Futu	10
Gray	water		
	High Income Class	30.4	41.3
	Middle Income Class	19.5	23.1
. ·	Low Income Class	14.2	14.2
	Waste	10.5	10.5

In the above estimation, the future wastewater quality of gray water and toilet waste is assumed to be the same as that of the existing one. For details, see Table D.8.

The Average existing and future 2010 year unit pollution load of domestic waste covering gray water and toilet waste are estimated at BOD 27.9 gcd and BOD 33.4 gcd, respectively. In this estimation, the share of population by income class was assumed as follows.

Existing Future

ς,

High Class	4 %	15 %
Middle Class	49 %	49 %
Low Class	47 %	36 %

For details, see Table D.8.

2.3 Commercial and Institutional Wastes

The JICA Study Team conducted sampling observations for the wastewater quality of commercial wastes in the areas of Kota and

Pasar Baru in December, 1989. The observation result are shown in Table D.9

The existing wastewater quality of commercial waste is established to be BOD of 238 mg/l, based on the sampling observation results.

The existing wastewater quality of institutional waste is assumed to be the same as that of the domestic waste of middle income class (BOD 231 mg/l).

The weighted average wastewater quality of commercial and institutional wastes is established at BOD of 235 mg/l, based on the ratios of both existing water consumptions: 55% for commercial and 45% for institutional.

The future wastewater quality of both commercial and institutional wastes are assumed to be the same as the existing one.

2.4 Industrial Wastes

The existing wastewater quality records of industrial waste are available in DKI, Jakarta. The average COD of each industrial classification is shown in Table D.10.

These average COD values are converted into BOD value by using the correlation between COD and BOD which was established for each industrial classification based on sampling data of COD and BOD. The converted average BOD of each industrial classification is also shown in Table D.10.

The existing unit pollution load of industrial waste (daily BOD load per annual industrial product amount) is estimated based on the existing unit industrial wastewater discharge (=water consumption) and wastewater quality (BOD) as shown in Table D.11.

The unit pollution load by industrial classification is in the range of 0.38 (g/d/million Rp./year) as BOD for Textile and 18.0 (g/d/million Rp/year) as BOD for food, beverages and tobacco.

The future unit pollution load is assumed to be equivalent to the existing one.

3. Generated Pollution Load

3.1 Domestic Pollution Load

Existing and future domestic wastewater discharge and pollution load of each Kelurahan are obtained by multiplying the respective unit wastewater discharge equivalent to unit water consumption and unit pollution load estimated in Section 1.2 and 2.2 by the total population estimated in Appendix A.

Total domestic wastewater discharge and pollution load of the Study Area are estimated as shown below.

	Existing	Future
Wastewater discharge $(10^3 \text{ m}^3/\text{d})$	1,038	1,883
Pollution load (BOD. ton/d)	245	424

The break-down by Wilayah and by Kelurahan are shown in Table D.12, Table D.13 and Table D.14.

3.2 Commercial and Institutional Pollution Load

Existing and future commercial & institutional wastewater discharge and pollution load generation of each Kelurahan are obtained by multiplying the domestic wastewater discharge estimated in the above Section 3.1 by the commercial & institutional water consumption ratio estimated in Section 1.3.

Total commercial and institutional wastewater discharge and pollution load of the Study Area are estimated as shown below.

	Existing	Future
Wastewater discharge $(10^3 \text{ m}^3/\text{d})$	173	449
Pollution load (BOD. ton/d)	40	104

Its break-down by Wilayah and by Kelurahan are Shown in Table D.12, Table D.13 and Table D.14.

3.3 Industrial Pollution Load

- (1) Existing and future industrial wastewater discharge and pollution load by industrial classification are obtained by multiplying the unit wastewater discharge equivalent to unit water consumption estimated in Section 1.4 and unit pollution load estimated in Section 2.4 by the total industrial product amount.
- (2) The total industrial product amount of the Study Area in 1987 is estimated at Rp. 6.282 billion at 1989 price. Its break-down in each industrial classification is shown in Table D.15.

Total industrial product amount of the Project Area in 2010 is estimated at Rp. 16,182 billion on the assumption that it will increase at the same growth rate of GDP. This amount of Rp.16,182 billion is broken down into each industrial classification in proportion to the future industrial product amount of each industrial classification which is projected individually at the respective growth rate in the past. The break-down is shown in Table D.15.

(3) Existing and future total industrial wastewater discharge and pollution load of the Study Area are estimated as shown below.

	Existing	Future
Wastewater discharge (m ³ /d/ha)	105	257
Pollution load (BOD, ton/d)	49	119

Those are broken down into each Kelurahan in proportion to the respective existing and future industrial land areas.

Existing and future industrial wastewater discharge and pollution load by Wilayah are shown in Table D.12. Its breakdown by Kelurahan is shown in Table D.13 and Table D.14.

3.4 Total Pollution Load

Existing and future wastewater discharge and pollution load of the total wastes in the Study Area are estimated as shown below.

	Existing	Future
Wastewater discharge $(10^3 \text{ m}^3/\text{d})$	1,316	2,588
Pollution load (BOD. ton/d)	334	647

The average daily wastewater discharge and pollution load of unit area in the Study Area are given below.

		ala ana a t		Existing	Future
Specific	Wastewater	discharge	$(m^3/d/ha)$	20.2	39.7
Specific	Pollution lo	ad (BOD	.kg/d/ha)	5.1	9.9

The existing and future specific wastewater discharge and pollution load by Wilayah and by Kelurahan are shown in Table D.12, Table D.13 and Table D.14. Their regional distributions by Kelurahan are shown in Fig. D.5 - Fig. D.8.

Income Class/ Water Source	Nos. of Sample	Unit Water Consumption	(lcd)
High Class			
Piped Water	179	212	
Well	255	178	
Total/Average	434	192	
Middle Class			
Piped Water	393	143	
Well	683	123	
Public Toilet (MCK)	51	103	
Total/Average	1,127	129	
Low Class			
Piped Water	161	. 112	
Well	545	108	•
Public Toilet (MCK)	299	96	
Total/Average	1,055	105	
Whole Class			
Total/Average	2,515	131	

Table D.1Existing Unit Domestic Water Consumption
(Results of Sampling Survey)

Note : Combined source of piped water and well is classified into the catagory of piped water.

Sorce : JICA

.

	·						(Unit : %)
No.	Service District	Jun	Jul	Aug	Sep	Oct	Ave
1	Gambir I, II	93.2	89.7	95.9	95.8	89.5	92.8
2	Senen	35.4	31,4	31.3	30.1	29.1	31.5
3	Kemayoran	20.9	15.6	15.2	15.2	15.9	16.6
4	Sawahbesar	67.8	66.8	67.8	64.2	65.4	66.4
5	Menteng	49.9	48.6	48.8	52.4	57.1	51.4
6	Cempaka Putih	8.4	8.5	7.6	9.6	9.0	8.6
7	Tanah Abang	23.7	23.7	23.6	22.5	22.7	23.2
8	Penjaringan I, II	13.5	14.0	14.0	14.7	14.1	14.1
9	Tg. Priok I, 11	12.3	12.7	12.3	12.9	12.6	12.6
10	Koja II	21.3	17.5	14.5	15.4	12.9	16.3
11	Cilincing	-	10.4	11.2	10.7	6.8	9.8
12	Ceng/Gp/Kbj I, II	14.8		13.3	13.1	13.5	13.7
13	Tamansari	51.3	50.2	50.9	54.8	63.7	54.2
14	Tambora	24.6		33.3	23.3	23.3	26.1
15	Tebet	9,4	6.3	7.4	11.2	11.1	9.1
16	Setiabudi	12.0	15.6	14.5	5.7	6.2	10.8
17	Kebayoran Lama	6.1	7.2	8.4	7.9	7.9	7.5
18	Kebayoran Baru	33.9	34.2	32.6	33.8	29.7	32.8
19	Matraman/Kramat Jati	61.6	54.4	61.6	33.9	64.7	55.2
20	P. Gadung/Cakung	34.8	36.0	32.6	31.0	28.4	32.6
21	Jatinegara I, II	19.4	17.1		17.0	16.5	17.5

Table D.2Commercial & Institutional Water Consumption Ratio
to Domestic Water Consumption

Note : Figures in parenthesis are excluded from average calculation Data Sources : Piped water supply records of PDAM (June - Oct. 1989)

No. Of			Land Use Pa	ttern (ha)		
Service	Residential	Commercial	Industrial	Others	Total	Ratio (%)
District		& Institutional		•		
	(1)	(2)				(2)/(1)
1	376	319	0	85	780	84.8
2	344	69	8	. 1	422	20.1
3	544	64	3	210	821	11.8
4	323	257	19	23	622	79.6
5	506	44	8	95	653	8.7
6	526	89	80	12	707	16.9
7	522	306	21	81	930	58.6
8	1,498	477	361	144	2480	31.8
9	1,730	246	226	310	2512	14.2
10	841	85	90	27	1043	10.1
11	227	10	2	8	247	4.4
12	1,430	318	105	30	1883	22.2
13	305	173	10	29	517	56.7
14	383	57	37	12	489	14.9
15	729	206	11	7	953	28.3
16	1,278	310	56	139	1783	24.3
17	1,874	649	125	105	2753	34.6
18	821	97	6	33	957	11.8
19	1,065.70	128.43	45.40	170.73	1,410.26	12.1
20	1,622.74	889.26	33.50	95.45	2,640.95	54.8
21	795.13	193.15	0.95	74.29	1,063.52	24.3

Table D.3 Land Use Area Ratio

Source : JICA

Results of Sampling Questionnaire Survey Table D.4

		Industrial		Water Consumption by Source (m3/day)	in by Source		Unit Water Consumption
	Industrial Classification	Product Amount				River Water	River Water (m3/day/million Rp./year)
		(million Rp/year)	Total	Groundwater Piped	Piped water	& Others	
-	Food. Beverages and Tobacco	7,792.7	78.00	41.50	34.50	2.00	0.010
7	Textile	28,400.0	61.00	57.57	3.43	. 1	0.002
ю	Wood & Wood Products	300.0	0.75	0.75	1	ł	0.003
4	Paper & Paper Products	314.0	0.80	0.80	. 1	1	0.003
S	Industrial Chemicals	6,044.7	60.00	60.00		1	0.010
v	Non-metallic Mineral Products					-	
5	Iron & Steel basic industries						
∞	Fabricated Mineral Products,	4,200.0	115.25	1	15.25	100.00	0.270
	Machinery and Equipment						
σ	Other Industries	2,476.8	23.66	13.66	9.0	1.0	0.010
	Total	49,488.2	339.46	174.28	62.2	103.0	0.007
			(100.0)	(51.4)	(18.3)	(30.3)	

Source : JICA

	Tanah Abang	Pluit	Klender	Total/Average
Observation Date Population	Dec. 3-4, 1989 26	Dec.2-3, 1989 9	Dec. 3-4, 1989 13	48
Water Consumption(m ³ /d)	3,256	1 849	1,587	6,692
Unit Wastewater Discharge (lcd) <1	(125) 102	(205) 182	(122) 99	(151) 128
Wastewater Quality (BOD mg/l)	327	104	176	182
Unit Pollution Load (BOD, gcd)	33.4	18.9	17.4	23.2
	1 A A			

Table D.5 Observed Gray Water in Housing Estate

⊲ : 1)

1) Figure in parenthesis is unit water consumption.

Figure outside parenthesis is unit wastewater discharge excluding 23 lcd of toilet waste.

Source : JICA

2)

Water	Observation	Observation	Wastewater Quality	Unit Wastewater	Unit Pollution Load
	Site	Date	(BOD mg.l)	Discharge (lcd)	(BOD gcd)
Laundry	Kebon Kacang	Dec. 2-3, 1989	65<1		
	Karet	Dec. 3-4, 1989	246		
	Guntur	Dec. 3-4, 1989	90		· .
	Average		134	20	2.7
			· · · · ·	· · · · · · · · · · · · · · · · · · ·	
Bathing	Kebon Kacang	Dec. 2-3, 1989	65<1		
	Karet	Dec. 3-4, 1989	98		
	Guntur	Dec. 3-4, 1989	90		
· .	Average		84	40	3.4
Kitchen	Kebon Kacang	Dec. 2-3, 1989	520		
	Karet	Dec. 3-4, 1989	114		
	Guntur	Dec. 3-4, 1989	685		
	Average		440	20	8.8
Total			185	80	14.9
	 			4	

Table D.6 Observed Gray Water in Kampung

⊲ : Wastewater quality of a mixture of laundry and bathing

Source : JICA

Observation Site	Jl. Tanah T	'inggi Timur	Jl. Tanah 'l	Finggi Barat	Average
Obsevation Item		·····			
	(1)	(2)	(3)	(4)	ļ
Date	July 16, '90	July 16, '90	July 16, '90	July 16, '90	-
No. of Users of Toilet	24	23	22	21	-
Discharged Wastewater Volume(1)	76	82	. 77	85	21
Wastewater Discharge (lcd)	3.2	3.6	3.5	4.0	3.6
Wastewater Quality (BOD, mg/l)	1,630	2,200	3,600	4,300	2,930
Unit Pollution Load (BOD, gcd)	5.2	7.9	12.6	17.9	10.5

Table D.7 Observed Toilet Waste

Source : JICA

Table D.8 Estimated Unit Pollution Load of Domestic Waste

Average 22.6 33.4 147 224 124 182 24.7 14.2 Low Class 8 247 185 LL Future 10.5 Middle 33.6 Class 23.1 150 224 127 182 33 457 41.3 51.8 High Class 250 207 182 227 Average 17.4 27.9 118 236 95 183 14.2 24.7 Low Class 185 <u>1</u>0 247 E Existing Middle 30.0 10.5 19.5 Class 130 107 182 33 457 231 40.9 30.4 High Class 167 182 190 215 Unit Wastewater Discharge (lcd) Unit Wastewater Discharge (lcd) Unit Wastewater Discharge (lcd) Wastewater Quality (BOD, mg/l) Wastewater Quality (BOD, mg/l) Wastewater Quality (BOD, mg/l) Unit Pollution Load (BOD, gcd) Unit Pollution Load (BOD, gcd) Unit Pollution Load (BOD, gcd) Toilet Waste Gray Water Total

Note : Average is obtained by assuming the following population share by class

	<u>Existing</u>	Future
High Class	4%	15%
Middle Class	49%	48%
Low Class	47%	36%

Obesevation	Observation Time		Wastewater Quality		
Site	Date	Timç	(BOD, mg/l)		
Kota	Dec.2-3, 1989	12:00	268		
		18.00	403		
		24:00	450		
		6:00	112		
Pasar Baru	Dec. 2-3, 1989	12:00	130		
		18:00	247		
		24:00	112		
		6:00	179		
			· · · · · · · · · · · · · · · · · · ·		
Average			238		

Table D.9 Observed Water Quality of Commercial Waste

Source : JICA

Industrial Classification	Average wastewater Quality Records (COD, mg/l)	Nos. of Data	Estimated BOD (mg/l)	COD-BOD Correlation
Food, Beverage & Tobacco	3,070	13	1,800	Y = 0.506x + 280
Textile	420	11	190	Y = 0.449x + 1
Wood & Wood Products	200	8	140	Y = 0.550x + 25
Paper & Paper Products	1,930	. 7	960	Y = 0.776x - 535
Industrial Chemicals	1,500	25	760	Y = 0.580x - 110
Non-metallic Mineral Products Iron & Steel Basic Industries Fabricated Mineral Products, Machinery & Equipment	370	13	280	Y = 0.834x - 30
Other Industries	160	6	110	Y = 0.550x + 25

Table	D.10	Water	Quality	of	Industrial	Waste

Source : "Gerakan Sungai Cilwung Bersih Proyek Kali Bersih DKI, Jakarta" 22. Aug. 1989 Diselenggarakan oleh Pusat Penelitian Sumber Daya Manusia dan Lingkungan Universitas Indonesia, Jakarta

·			
	Unit Wastewater	Wastewater	Unit Pollution
Industrial Classification	Discharge	Quality	Load
	(m3/d/million Rp./yr.)	(BOD. mg/l)	(g/d/million Rp./yr.)
Food. Beverages and Tobacco	0.010	1800	18.00
Textile	0.002	190	0.38
Wood & Wood Products	0.003	140	0.42
Paper & Paper Products	0.003	960	2.88
Industrial Chemicals	0.010	760	7.60
Non-metallic Mineral Products	0.027	280	7.56
Iron & Steel Basic industries	0.027	280	7.56
Fabricated Mineral Products,	0.027	280	7,56
Machinery and Equipment			
Other Industries	0.010	110	1.10

12 Existing and Future Wastewater Discharge and Pollution Load by Wilayah

Table D.12

			7	Wastewater Discharge (m3/d)	arge (m3/	()			Specific
	Waste			Comercial &					Wastewater
	Wilayah	Domestic		Institutional		Industrial		Total	Discharge (m3/d/ha)
	JAKARTA PUSAT	179,432	(18.0)	45,741	(19.9)	4,722	(2.1)	229,895	46.6
	UTARA	143,506	(68.6)	20,622	(6.6)	45,188	(21.6)	209,316	15.0
Existing	BARAT	210,790	(79.2)	35,770	(13.4)	19,424	(7.3)	265,984	20.6
	SELATAN	247,350	(85.1)	35,146	(12.1)	8,015	(2.8)	290,511	19.9
	TIMUR	256,947	(80.2)	35,372	(11.0)	28,088	(8.8)	320,407	17.1
	TOTAL	1,038,025	(78.9)	172,651	(13.1)	105,437	(0.8)	1,316,113	20.2
	JAKARTA PUSAT	253,756	(67.0)	121,227	(32.0)	3,906	(0.1)	378,889	76.8
	UTARA	266,233	(57.6)	60,298	(13.1)	135,485	(29.3)	462,016	33.1
Future	BARAT	398,882	(2,6.6)	86,312	(16.6)	35,718	(6.9)	520,912	40.4
	SELATAN	468,354	(84.0)	87,205	(15.6)	2,328	(0.4)	557,887	38.2
	TIMUR	495,461	(74.1)	93,891	(14.0)	79,194	(11.8)	668,546	35.6
	TOTAL	1,882,686	(72.7)	448,933	(17.3)	256,631	(6.6)	2,588,250	39.7

			9	Pollution Load (kg/d)	ç/d)				Specific
	Waste			Comercial &					Pollution
	Wilayah	Domestic		Institutional		Industrial		Total	Load (ko/d/ha)
	JAKARTA PUSAT	42,431	(6.9)	10,568	(1.6.1)	2,192	(4.0)	55,191	1
	UTARA	34,159	(57.0)	4,763	(8.0)	20,970	(35.0)	59,892	
Existing	BARAT	49,827	(74.3)	8,264	(12.3)	9,017	(13.4)	67,108	5.2
	SELATAN	58,361	(83.1)	8,120	(11.6)	3,721	(2.3)	70,202	
	TIMUR	60,486	(14.0)	8,173	(0.0)	13,037	(16.0)	81,696	
	TOTAL	245,264	(13.4)	39,888	(12.0)	48,937	(14.6)	334,089	
	JAKARTA PUSAT	57,216	(65.7)	28,004	(32.2)	1,806	(2.1)	87,026	17.6
	UTARA	60,604	(44.2)	13,929	(10.1)	62,615	(45.7)	137,148	9.8
Future	BARAT	89,917	(1.1)	19,937	(15.8)	16,505	(13.1)	126,359	9.8
	SELATAN	105,354	(83.2)	20,144	(15.9)	1,075	(0.0)	126,573	
	TIMUR	111,121	(65.6)	21,687	(12.8)	36,599	(21.6)	169,407	9.6
	TOTAL	424,212	(65.7)	103,701	(16.0)	118,600	(18.3)	646,513	9.6

Table	n	13(1)	Exi
Lauic	υ.	1.3111	— EXD

.

•

(1) Existing and Future Wastewater Discharge by Kelurahan

	astevater	Discharge	(LIISEIN)	ς : π37u β		tewater	Masicwaler	bischarge	(ruture :	•J/a)		ecific stewatu
(el. No.		Commer. 4				charge		Commer, 4				scharge
	Domestic	Institu.	. Indust.	total		/d/ha)	Dagestic	Institu.	Indust.	Total		3/d/ha)
. 1101	3304	66	0	3370	(27)	4658	1380	0	6038		48
1102	5794	742	0	6536	(91.)	7643	2081	 	9724		135
1103	3587	2218	0	5885	(52)	5070	5731	8	10801	-	96
1104	3890	752	0	4642	è	35)	6138	1847	0	10985		82
1105	2615	2246	0	4851	ć	62)	3570	6325	0	9995	÷	128
1106	670	1001	D	1671	(6)	3647	5449	0	9096		35
TOTAL	19860	7025	Ó	25885	(34)	30826	25813	. û	56639		73
1201	6830	619	102	7551	(59)	8945	4852		13797		107
1202	5059	427	0	5486	ć	108)	8564	922	0	7486	-	147
1203	4425	89	0	4514	Ċ	82)	5786	1576	0	7362	-	134
1204	3097	11564	. 0	14661	(78)	4787	17875	0	22662	-	120
1205	3540	2004	543	8187	Ċ	31)	4501	2374	1815	8690		44
TOTAL	23051	14703	645	38399	ċ	62)	30583	27599	1815	59997		96
1301	4115	2574	102	6791		43)	8085	9342		17427		111
1302	3561	227	0	3788	ì	69)	4397	920	0	5317		97
1303	4134	83	0	4217	è	37)	5106	580	0	5686		50
1304	4265	85	0	1350	è	- 41.5	5345	833	. 0	5178	-	59
1305	3858	17	0	3935	Ċ	43)	4911	557	0	5468		60)
1306	4990	1233	0	6223	ć	59)	6212	1871	0	8083		77
1307	5673	113	0	5786	è	δ 3)	7079	1390	. 0	6469		92
1308	3023	536	0	3559	è	35)	3756	776	276	4808		47
TOTAL	33519	4928	102	38649	ċ	47)	44891	16269	276	61436		15
1401	1525	710	0	2235		28)	1976	1178	0	3154	<u>.</u>	39
1402	2667	788	0 0	3455	è	17)	3475	1385	0	4860		108
1403	2175	1025	0	3201	è	35)	3082	1453	ů	4535		50)
1404	4589	573	204	5350	è	75)	5924	1877	- 0	7801		110
1405	4581	595	0	5176	ć	73)	5938	3223	0	9161		129
1406	4462	164	68	4994	ç	79 3	5503	1110		6613		105
TOTAL	19979	4181	272	24411	Ċ	58)	25898	10226	0	36124		86)
1581	5368	107	0	5475	Ċ	88)	6712	501		7333		118
1582	5059	312	58	5139	č	46)	6621	422	276	7319		62)
1501	2648	53	58	2769	Ċ	103 3	-3317	503	0	3820		141)
1504	2597	52	0	.2649	ć	88)	3263	340	ů	3603		120
1505	3342	862	917	5121	ì	41)	4553	1562	. 79	6194		50)
1506	5984	2325	306	8615	ċ	71)	8338	2914	0	11252		92
1000	4341	596	1358	6295	è	28)	6749	1102	987	8918	-	40
TOTAL	20339	4307	2717	36383	č	51)	39583	7514	1342	48439		69
1601	4249	782		5031	$\overline{\mathbf{c}}$	61)	6183	4336	79	10598		128
1602	1406	50	0	1456	-	10)	3461	1058	0	4519		31
1603	2279	780	. 34	3093	(36)	3768	5169	0	8937		109
1804	6107	587	0	6694		27)	9736	923	0	10659		44
1605	4706	542	238	5586		57)	7044	962	276	8262		85
TOTAL	18747	2841	272	21860		33)	30102	12148	355	42995		66
1701	Į	544	.34	4249		<u>эл</u> / ЭЛ)	5353	3520	0	8873		122
1702	4532	. 91	238	4861		68.)	6438	1022	- U	7460		105
1793	8189	161	0	8353		65)	11586	1473	0	13059		104
1704	4879 -	1899	J06	7084	Ċ	79)	7044	3912	0	10956		122
1705	6995	2897	68	9960		65.)	10466	4551	0	15017	-	98
1705	5238	2037	68	5607		35)	7995	2430	0	10425		56
1707	1333	1881	0 0	3214		12)	2901	4450	118	7469		29
TOTAL	34837	1111	714	43328		47.1	51783	21358	116	73259		79
ilayah	179432	45741	4722	220895		47)	253756	121227	3906	378689		

Table D.13(2) Existing and Future Wastewater Discharge by Kelurahan

	Vastevator	Discharge	(Existin	K : ∎J/d)			Wastewater	Dischärge	(Future	: #3/d }	Specific
						stevator					Vastevat
Kel. No.	0	oaner. &	:		Dts	scharge		Conter. &			Discharg
· · · · · · · · · · · · · · · · · · ·	Domestic	Institu.	Indust.	Total	(8)	1/d/ha)	Domestic	Institu.	Indust.	Total	(∎3/d/ha
2201	127	9	2478	2914	(3)	3227	907	4854	8988	(, 9
2202	808	121	5805	8734	(7)	6404	767	7656	14827	(15
2203	7835	1500	2512	11847	(37)	11493	4429	2565	18487	(57
2204	9871	4225	4685	18782	÷C,	48)	14308	6977	8268	29573	(75
2205	4337	1484	Q	5821	(8)	9231	4214	276	13721	(18
2206	7654	153	170	1977	(52)	9548	1998	0	11546	(75
2207	5713	341	0	6054	Ċ	23)	11871	895	0	12766	(49
2208	3672	231	4889	8792	(15)	6784	2666	8709	16159	(2B
TOTAL :	40317	8065	20539	68921	(15)	72866	22853	20348	126067	(28
2001	5274	1764	1901	8939	(13)	10487	1875	6946	19309	(28
2302	3583	72	0	3655	(13)	7268	1063	3157	11488	- 1 - L - L - L
2303	4327	67	2410	6824	<	29)	8010	3351	5801	17162	
2304	7195	144	0	7339	ć	42)	10797	5228	. 0	16025	
2305	4144	83	577	4604	ć	9)	10629	3324	15155	29108	
2306	5679	871	2784	9334	Ċ	20)	9855	1595	4894	18144	
2307	6291	126	0	5417	Ċ.	59)	8796	1162	0	9958	
TOTAL	36493	3147	7672	47312	è	19)	\$5542	17599	35953	119194	
2401	5178	888		5056	\overline{c}	42)	7664	434	3118	11216	
2402	7826	272	0	8098	è	51)	11267	1931	5110	13198	· · · ·
2403	4135	249	0 0	4384	è	24)	6801	898	947	8646	
2404	1385	63	0	1116	è	5)	4188	694	941 0		
Z405	6317	334	0	6651	è	20)	1100	929	0	4882 12114	
2406	7847	2317	3056	13220	ì	59)	12058	323	2289		
2407	2477	109	170	2756	è	5)				17726	
2408	4647	94J	4923	10513	ć	23)	7234	932	5920	14086	
2408	2453	159	94545	2812	ċ	4)	9644 6538	1353 615	789	11786	
TOTAL	42265	5534	8149	55948	č	19)		11165	6946 30000	14099	
2501	6661	355	68	7084	(29)	76579		20009	107753	
2502	2598	185	272	3036	ć	4)	10932	637	6354	17923	-
2503	ſ						7579	1114	12787	21480	
	7274	2269	1086	10629	(67)	10672	2780	1263	14715	
2504	3419	868	4278	8585	(27)	7247	2527	5920	15694	
2605	802	16	272	1090	(1)	3096	692	8288	12076	
2506	2139	151	2652	5142	(9)	5817	517	12432	18766	())
2507	1538	31	0	1569	(1)	5803	414	2131	8348	
TOTAL	24431	3876	8828	37135	(9)	51146	8681	49175	109002	(27
tlayah	143506	20522	45188	209316	¢	15)	266233	60298	135485	462016	())
3101	3152	83	3463	6688	(11.)	7845	359	9038	17043	{ 29
3102	1340	17	3403	1417	ć	5)	2272	200	3038 868	3348	
3103	4606	316	1052	5974	č	8)	9007	842	3789	13638	•
3104	1017	432	0	2249	è	1)	5634	1340	3769	6974	
3105	3623	165	2512	5300	(13)	2034 7780				
3100	4383	88	1290		(2361	3789	13930	
				5761		11.)	9150	1527	1539	12216	
3107	6933	578	340	7851	(11)	12721	1716	2358	16805	
J108		290	883	3915	(15)	4930	1885	2171	8990	
3189		450	1562	4324	(9)	6408	1248	3355	11009	1 A A
3110	3190	279	2207	5676	•	12)	6885	632	4578	12095	
3111	5871	1163	611	7645	(15)	10147	2031	987	13165	
TOTAL	33979	3901	13920	57800	(10)	82583	14140	32482	129205	(22

Table D.13(3) Existing and Future Wastewater Discharge by Kelurahan

	Vastewater	Discharge	(Existin/	(; 0 3/d)			Mastewater	Discharge	(Future :	sJ/d)		ific
el. No.	1	Connor .				ilewater		·				evate
el. No.	1	Commer. &		a		scharge		Cosser. &				harge
	Dosestic	Institu.	Indust.	lotal		1/d/ha)	Domestic	Institu.	Indust.	Total		d/ha)
3201	4383	817	. 0	5200	(43)	6157	1148	0	7305		60)
3202	6420	1149	0	7569	(8841	1651	434	10926		76
1203	8598	807	0	9105	(35)	12416	1459	278	14151		5Z
3204	7161	2811	0	9972		53)	10145	3982	0	14127		75
3205	4939	1074	0	6013	(59) af)	6493	. 1412	0	7905		91
3206	7999	160	0	8159	(55) 12)	10415	1270	0	11685		93
3207	3267	654	272	4193	(43)	4439	1092	0	5531		57
3208	7681	900	2207	10788	(46)	10559	1201	197	11957		51
3209	5659	881	0	6540	() /	31)	7930	1234	0	9154		43
3210	7084	1599	917	9600	(67)	9679	2217	395	12291		85
3211 Total	3085 66278	527 11379	170 1566	3182	(14)	5212	937	671	6820		28)
3301	2972	2309		81221 5281	- <u>(</u>		92266	17603	1973	111862		59
3302	2106	1428	0		-	55) 59)	4207	3269	0	7476		78
3302	3145	1428 618	0 . 0	3534 3763	(69) 102)	2859	1939	0 0	4798		94
3304	1715	197					4133	1585		5718		155
3305	3934			1912	(50)	2246	830	0	3076		81
3305	3559	766	170	4700	<u>(</u>	147)	5105	3108	0	8213	-	257
3308		191	272		(73) 11)	4745	1702	0	6447		117
3308	1269 3452	1538 2429	0	4807	(71) 100 X	4432	2086	0	6518 2001		96
IOTAL	24152	9476	272	5881		100)	4826	3255	0	7881		134
3401	4626	1806	136	33900 6568	(84)	32353	17774	0	50127		115
3402	770	848		1686	-		6115	1445	434	7994		102
3402	2014		68 0	2386	(J2) 85)	1209	1218	Q D	2427		46)
3404	3926			4327	Ċ	94)	2650	489	· 0	3139		112
3405	4759	23 (95	170	5024	۲ ۲	54 J 63)	5111 6164	917 1310	197	6028 7671		131) 96)
3405	4401	442	68	4911	ć	89)	5614	962	191	6576	-	120
3407	3826	11	68	3971	ć	121)	1921	788	0	5709		178
3408	5533	111	201	5848	ć	94)	7193	1451	0	8544		139
3409	3754	385	306	4445	è	64)	5010	660	о 0	5670		81)
3410	4207	84	58	4359	ć	135)	5257	371	u D	5628		176)
3413	2017	298	68	3313	ć	1 1 1 1			0		-	
TOTAL	40763	4749	1326	46838	Ċ	82)	3829 53073	594 10205	0 631	4423 63909		130) 112)
3501	3924	340	1320		(6)	18412	6102	0	21514		36 3
3502	6670	1157	204	8331	ć	13.)	22169	4907	237	27613		45)
3503	4869	809	136	5904	(15)	14404	2659	395	17458		45)
3504	3403	363	10	3766	(13)	14698	2033	-0 132	16643		32)
3505	2122	499	0	2621	č	. 9)	8276	1947	0	10223		36)
3506	2521	279	0	2800			13236	1783	0	15019		30
3507	2283	213	0	2525		· • · · · · · · · · · · · · · · · · · ·	13230	1/03	0	14101		29
3508	5352	568	0	5920		19)	13780	1490	0	15270		49
3509	3674	456	0	4130		26)	7466	1458	0	8934		56
3510	2176	604	0	2780		19)	5880	1631	0	7511		52
3511	2626	558	0	3184		2U.)	5782	[44]	0	8223		51
TOTAL	19620	, 6265	340	16225		11)	138587	26590	632	165809		39
Vilayah	210790	35770	19424	265984	(21)	196882	86312	35718	520912	(40)

.

·

Table D.13(4) Existing and Future Wastewater Discharge by Kelurahan

	Västevaler	Discharge	(Existing	: m3/d)	Spr	ecific	Wastewater	Discharge	(future :	a3/d)	Specific
					Wa:	stevater					Vastevater
Xel. No.		Commer. 4			Dis	scharge		Counce. &			Olscharge
	Domestic	Institu.	Indust.	Total	(2.)/d/haj	Dumestic	Institu.	indust.	Total	(a3/d/ha)
4101	8430	2467	136	11033	(13)	13856	4056	158	18070	(70)
4102	4997	1111	136	6214	t	36.)	8406	2092	. 79	10577	(61)
4103	4005	99Z	- 58	5065	(36)	6737	1669	79	8485	(51)
4104	5909	1345	0.	7255	•	56)	9089	2109	79	11277	(87)
4105	6065	1595	0	7660	()	71.)	8443	2299	118	10850	(101)
4105	4470	719	0	5189	(102)	5940	955	0	8895	(135)
4107	-5147	619	34	5800	(61)	7211	1235	118	8565	(90)
TOTAL	39023	8849	374	48246	Ċ	51)	59682	14416	631	74729	(605)
4201	1372	1163	0	2535	(34)	2385	2022	0	4407	(50)
4202	4200	844	· 0	5044	(78)	5967	1324	0	7291	(112)
1203	5228	907	238	6371	(68)	7349	2287	0	9638	(103)
4204	1849	230	713	2792	C	31)	3238	1168	0	4405	(49)
4205	6067	719	340	7125	(40)	\$285	1640	Ď	10925	(61)
4206	1573	342	407	2322	(11.)	4054	1664	. 0	5718	(27)
4207	4074	390	0	4464	ſ	57)	6027	2187	·U	8214	(105)
4208	6596	807	· 0	7403	(82)	9299	1360	· D	10659	(118)
TOTAL	30957	5402	1698	38057	(43)	47604	13652	0	61256	(69)
1301	2759	378	34	3181	(32)	1344	2352	0	6696	(6B)
4302	3037	187	. 0	3224	(41)	4689	1318	Û	5925	(76)
4303	6109	715	0	5824	(42)	9326	1082	0	10408	(64)
4304	2547	232	0	2779	C	26)	4290	514	0	4804	((5)
4305	2834	236	136	3206	(10)	7155	600	Û	1755	(21)
1306	2750	593	34	3377	(27)	4731	1344	0	6075	(49)
4307	3561	974	0	4535	(18)	7488	2049	· 0	9537	(37)
4308	4970	340	D	5310	C	26)	8326	969	0	9295	(45)
4309	1630	836	0	2465	. (35)	2822	1447	0	4269	(60)
4310	2604	52	0	2658	(28)	4276	157	0	4433	(47)
4311	1438	138	· 340	1916	(35 }	2110	\$72	0	3412	(63)
TOTAL	34249	4681	514	39474	(25)	59807	12802	0	72609	(46)
4401	4232	725	0	4957	((7)	8508	1469	79	10056	(35)
4402	4025	584	C	4589	(14-):	6898	966	D	7864	(23)
4403	2607	197	0	2804	(5)	5990	465	0	6455	(12)
4404	3355	282	. 0	3637	(24)	4923	572	. 0	5495	(38)
4405	3687	264	0	3951	(7)	7427	907	Û	8334	(14)
4406	2786	427	340	3553	(10)	5237	1220	592	7049	(20)
4407	2743	85	102	2900	(6)	5581	234	9	5615	
4408	4459	148	0	4607	(17)	6646	220	0	6865	(26)
4409	3251	297	Û	3546		6)	5988	1033	0	8621	(13)
4410	2668	82	. 0	2750	• (4)	6353	227	0	6580	(10)
4411	2556	111	G	2557	C	10)	4126	300	0	4726	(17)
4412	6159	343	. 0	6502		23)	10311	112	. O	11083	
TOTAL	42528	3525	442	46495		10)	79288	8385	671	88344	(18)
4501	4464	626	0	5090		33)	6587	3234	0	9821	
4502	1417	28	0	1445	(21)	2602	146	0	2748	
4503	939	79	0	1018		1)	2910	765	Q	3675	
4501	2334	248	0	2582	(20)	4559	475	0	5034	
\$505	2718	474	0	3192		26)	4898	855	0	5753	
4505	1013	20	0	1033	(8)	2829	668	0	3497	(28)
4507	2562	280	204	J052	(35)	1236	543	0	4779	(55)
4508	1719	151	9	1870	(15)	3669	349	0	4018	(32)
4509	6638	133	0	6771	(50)	9718	936	0	10654	(* 78)
4510	4562	333	0	4895	(27)	7619	570	0	8189	(45)
TOTAL	28166	2378	204	30948	(21)	49627	8541	Ð	58168	(46)

	vaslevater	Discharge	(Existing	s : ∎3/d)			Wastewater	Discharge	(Feture :	∎3/d)	Specific
		·				Lewater					Vastevati
Kel. No.		Cammer, 4				charge		Commer. 4			Discharge
	Domestic	Institu.	• • • · · · • · · · · ·	Total		/d/ha)	Domestic	Institu.		Total	(m3/d/ha)
1601	6149	1459	577	8185	(25)	14441	3425	671	18537	
4602	6103	604	1052	7759	(27)	13420	1990	355	15765	
4603	4869	820	138	5825	(10)	10335	1940	0	12275	
4504	6295	122	34	7052	(39)	11305	1352	0	12857	
4605	6336	610	1290		ւ	12)	23026	2093	0	25119	
4605	. 3415	68	0	3483	(12)	10136	1337	0	11773	
4607	2356	47	0	2403	(11)	7218	1009	0	8227	• • •
4608	3115	62	9	3177	(. 19)	7541	1023	0	8564	
4609	3264	902	9	4168	(20)	8357	2546	0	10903	
4610	4191	676	. 0	4867	(11)	15283	2934	. 0	18217	
4611	5510	1323	0	6833	(27)	12033	3072	0	15105	
TOTAL	51604	7293	3089	61986	_ <u>(</u>	13)	133395	22721	1026	157142	
4701	2919	522	340	3781	(22)	5566	1449	0	7115	
4702	3103	. 172	102	3377	(14)	6789	616	0	7405	
4703 4704	7776 J008	· 1119 339	849	9744	(16)	13351	2302	0	15653	
4705			0	3347	(8)	6493	716	0	7209	
TOTAL	3817 20623	865 3018	373 1664	5056 25305	(14)	6652	1805	0 0	8257	
TOTAL	50023	3010		\$3303	<u>`</u>	14)	36951	<u> </u>	. U	45639	(25)
∀ilayah	247350	35146	8015	290511	,	20)	468354	87205	2328	557887	(38)
	211330			290311	· · · · ·	20)	466334	67205	2320	131001	(10)
510)	3262	235	0	3407	(44)	5353	1223	0	6576	(84)
5102	3180	142	0	3322	ć	51)	5039	1047	0	6086	
5103	4692	94	0	4786	č	31) 84)	6792	630	0	7422	-
5104	5370		ů	5716	ì	55)	8368	1091	Û	9457	-
5105	5974	1100	0	7077	ì	105)	8575	1719	ů Q	10294	
5106	5279	1182	÷	6461	è	58)	8218	1818	0	10036	
TOTAL	27757	3122	-	30879	è	54)	12313	7528	0	49871	
5201	7163	1633	34	8830	$-\dot{\overline{c}}$	20)	[134]	2942	947	15230	
5202	4968	821	0	5789	ć	28)	9584	1733	0	11317	
5203	6941	974	51	7986	, (44)	11657	2169	513	14339	
5204	6233	1452	204	7889	ć	51)	10342	2343	0	[2685	
5205	3484	557	340	4381	C	23)	7701	1342	592	9635	
5206	3201	487	509	4197	ć	34)	5996	2843	1304	10143	
5207	7540	2202	0	9742	(36)	13913	4513	0	18426	
TOTAL	39530	8126	1138	48794	(31)	70534	17885	3356	91775	(58)
5301	3985	860	0	4845	(101)	5831	1435		7266	(152)
5302	2224	986	0	3210	(48)	3918	2821	D	6739	(100)
5303	6952	1601	15	8568	(68)	10867	2566	0	13433	(107)
5304	6693	1467	0	8160	C	19)	11218	2472	Û	13690	
5305	. 4849	986	17	5852	(67)	7576	2938	0	10512	
5306	7792	304	0		(28)	13967	891	0	t4858	
5307	5461	2094	0	7575	(66)	8453	1233	0	11686	
5308	6423	760	2041	9224	(18)	16807	1803	513	19123	(38)
5309	3132	357	15	1544	(24)	14384	1835	275	16415	
5310	4757	95	41	4893	((11)	13571	1569	0	15140	
5311	4885	96	0	4983	(36)	8645	898	0	9543	(69
5312	3917	161	0	4078	Ċ	1)	14890	1242	0	16135	
5313	3385	1068	0	4453	(27 3	6494	2050	0	8544	•
5314	6297	125	0		(65)	9885	1155	0 '	11040	
5315	3944	19	31	4054		20)	1307.	\$210	0	8517	
TOTAL.	78716	11022	2220	91958		28)	153736	28116	789	182641	

.

Table D.13(5) Existing and Future Wastewater Discharge by Kelurahan

.

Table D.13(6) Existing and Future Wastewater Discharge by Kelurahan

	Vastevaler	Discharge	(Existing	: #3/d)	Spe	cific	Vastewater	Discharge	(Future	: n3/d)	Spe	elfi	c
					Was	tevater					¥a s	stewa	te
(el. No.	{	Conser. &			Dis	charge		Commer. &	•		Dis	char.	gę
	Domestic	institu.	Indust.	Total	(1)3	/d/ha}	Somestic -	Institu.	Indust.	Total	(11)	1/8/h	6)
5401	5904	1932	70	7906	(44)	10142	3456	39	13637	(76)
5402	4186	799	125	5410	(21)	9881	1769	0	11650	(46)
5403	5658	577	. 70	6303	(35)	8083	1633	0	9716	C	54)
5404	4195	203	122	4520	(30)	6759	2066	0	8825	(58)
5405	4572	254	1279	6105	C	27)	8655	1590	0	10245	(45)
5406	5875	118	0	5993	(5)	15481	2571	237	18289	(14)
5407	3793	139	68	4000	(15)	6183	328	0	6511	(26)
5408	1650	17	204	2131	C	13)	3200	158	0	3358	(20)
5409	4012	84	0	4096	(22)	7565	704	0	8269	(45)
5410	3493	200	51	3744	(18)	5624	-378	0	6002	(30)
5411	1675	57	102	1834	(9)	3281	209	0	3490	(18)
5412	1332	188	0	1520	(8)	2784	905	. 0	3689	(20)
TOTAL	46843	4628	2091	53562	(15)	87638	15767	276	103681	C	30	• •
5501	2887	491	0	3378	(<u> </u>	4754	637	0	5591	(15)
5502	3149	102	95	3348	(13)-	5472	422	395	6289	(24)
5503	2619	52	282	2953	(11)	4090	1114	0	5204	(25)
5504	806	365	0	.1171	(3)	2599	1176	5628	9403	(26)
5505	1023	179	. 0	1202	(4)	2397	559	0	2956	(9)
5506	804	38	0	840	(3)	1915	184	0	2099	C .	• 6)
5507	958	107	Û	1075	(4)	2345	251	Ð	2598	(9)
5508	400Z	822	0	4824	C	25)	6052	2934	3157	12143	(84)
5509	4525	806	5003	10334	(25)	- 7971	1508	8314	15793	(37)
5510	3096	100	I	3197	(13)	5071	707	0	5778	(24)
5511	2078	42	0	2120	(u)	3658	207	· 0	1865	(20)
5512	1985	89	0	2074	(7)	3571	368	0	3939	(14)
5513	3818	380	452	4650	(15)	6294	664	1973	8931	(28)
5514	2041	41	0	2082	(6)	3665	143	0	3809	(- 11)
5515	1124	159	Q	[283	Ç	6)	2177	301	.0	2478	(11)
.5516	951	209	Q	1160	(3)	3034	686	Ø	3720	(9)
5517	3951	177	0	4128	(9)	6868	810	1184	8862	(20)
5518	833	228	0	1061	(3)	2682	2198	0	4880	(12)
TOTAL	40650	4385	5833	50878	(9)	74616	15069	18651	108336	<u>(</u>	19)
5601	1859	708	6111	8,678	(21)	4518	642	12590	17750	(43)
5882	4789	945	4414	10148	(15)	14762	2019	16970	33751	(51)
5603	4289	80 4	0	5093	(11)	11187	1338	5131	. 17656	(39)
5604	3335	750	6281	10367	(17.)	7556	1235	15905	24696	(·	40)
5605	1486	341	0	1827	(4)	4338	629	3276	8243	C .	19)
5606	4647	414	0	5061	(1)	13988	3276	316	17580	(26)
5607	3035	127	Û	3162	(3)	10245	387	1934	12556	(.	13)
TOTAL	23441	4089	16806	44036	(10)	66594	9526	56122	132242	(31)
filayah	256947	35372	28088	320407	(17)	495461	9389 L	79194	668546	(.	38)

Table D.14(1)	Existing	and	Future	Pollution	Load	Generation	by	Kelurahan	
	· .								-

	Pollutio	n Load (Existing		Specific Pollution	Pollutio	n Load (Future	: Kg/d)	Specific Pollutio
Kel. No.		Conmer. &			Load		Conmer. &		•	Load
	Domestic	Institu.	Indust.		(Kg/d/ha)	Domestic	Institu.	Indust.	Total	(Kg/d/h
1101	778	15	0	791	(6.3)	1043	319	0	1362	(10.8
1102	1361	171	. 0	1532		1710	481	. 0	2191	(30.4
1103	843	512	• 0	1355		1135	1324	0	2459	(22.0
1104	922	174	- 0		(8.2)	1389	1120	0	2509	(18.7
1105	615	519		1134		821	1461	0	2282	
	1 ·	231	0	390	· •	826	1259	0	2085	
1106	159		0	6298		6924	5964	0	12868	
TOTAL	4676	1622	·			2034	1121	0	3155	*****
1201	1627	143	47	1817		1479	213	0	1692	•
1202	1196	99	0	1295						
1203	1046	21	0	1067		1304	364	0	1668	
1204	733	2671	0	3404		1079	4128	0	5208	
1205	868	463	252	1581		1023	548	839	2410	
TOTAL	5468	3397	299	9164	(14.7)	6919	6375	839	14133	·
1301	979	595	47	1621		1836	2158	0	3994	-
1302	848	52	•0	900	(18.4)	998	213	- 0	1211	(22.0
1303	983	19	0	1002	(8.8)	1159	134	0	1293	(11.4
1304	1012	20	0	1032	(9.8)	1209	192	0	1401	(13.3
1305	815	18	0	933	(10.3)	1110	129	0	1239	(13.6
1306	1183	285	0	1468	(14.0)	1405	432	0	1837	(17.5
1307	1345	26	0	1371	(14.9)	1601	321	0	1922	(20.9
1308	717	124	0	841		849	179	128	1156	(11.2
TOTAL	7982	1139	47	9168		10167	3758	128	14053	(17.1
1401	363	1153	0	527		449	272	0	721	·······
	635	182	0	817		790	320	0	1110	
1402			0	755		701	336	0	1037	
1403	518	237				1347	434	0	1781	
1404	1087	133	95	1315			745	ů O	2095	
1405	1090	137	0	1227		1350				
1406	1061	107	32	1200		1251	258	0	1507	-
TOTAL	4754	960	127	5841		5888	2363	0	8251	
1501	1287	25	0	1312	(21.2)	1548	137	0	1685	
1502	-1214	· 72	32	1318	(11.1)	1521	97	128	1746	
1503	636	12	32	680	(25.2)	762	116	, D	878	
1504	623	12	0	635	(21.2)	749	79	0	828	•
1505	802	199	425	1426		1045	361	36	1443	
1595	- 1387 -	537	142	- 2065	(16.9)	· 1840	673	• 0 •	2513	(- 20.6
1507	1005	138	630	1774	(8.0)	1490	273	458	2219	(10.0
TOTAL	6955	\$95	1261	9211	(13.0)	8958	1736	620	11312	(18.0
1601	998	181	0	1177		1381	1002	35	2419	(29.1
1602	330	12	0	342		773	244	0	1017	(7.0
1603	534	180	16	730		841	1194	0	2035	(24.8
1604	1430	136	0	1556		2175	213	. 0	2388	
1604	1102	148	110	1360		1574	222	128	1924	
TOTAL	4392	657	126	5175		6744	2875	164	9783	
			16	1011		1207	813	0	2020	
1701	869	126		1203		1452	236	- 0	1688	
1702	1072	21	110			2613	340	0	2953	
1703	1937	- 38	0	1975						
1704	1144	439	142	1725		1574	904	0	2478	
1705	. 1641	869	32	2342		2338	1051	0	3389	
1706	1228	70	32	1330		1787	561	0	2348	
1707	313	435	0	748		647	1028	55	1730	
TOTAL	8204	1798	332	10334	(11.1)	11618	4933	55	16606	(17.9
Wilayah	42431	10568	2192	55191	(11.2)	57216	28004	1806	87026	(17.6

Table D.14(2) Existing and Future Pollution Load Generation by Kelurahan

·	Pollutio	n Load (Existing	: Xg/d)	S	ecific	Pollutio	n Load (Future	: Kg/d)	Specific
						llution				•	Pollution
Kel. No.		Commer. &	+		Lo	ad	:	Conner. &			Load
	Domestic	Institu.	Indust.	Total	C	Kg/d/ha)	Domestic	Institu.	lndust.	Total	(Kg/d/ha)
2201	103	2	1150	1255	Ċ	1.2)	752	210	2243	3205	(3.0)
2202	195	28	2694	2917	Ċ	2.9)	1491	177	3538	5206	(5.2)
2203	1836	347	1168	3349	C	10.4)	2567	1023	1186	4776	(14.8)
2204	2313	976	2174	5463	ć	13.8)	3195	1612	3830	8638	(21.9)
2205	1017	343	. 0	1360	(1.8)	2062	973	128	3163	(4.1)
2206	1819	35	79	1933		12.6 >	2166	462	0	2628	(17.2)
2207	1352	79	0	1431	ć	5.5)	2676	207	0	2883	(11.0)
2208	874	53	2269	3196		5.5)	1538	616	3101	5255	(9.1)
TOTAL	9509	1863	9532	20904		4.6)	16448	5280	14026	35754	(7.9)
2301	1265	407	882	2554		3.6)	2409	433	3210	6052	
2302	855	17	0	872		3.1)	1854	246	1459	3359	
2303	1031	20	1119	2170		9.2)	1823	774	2681	5278	· · · · · ·
2304	1715	33	0	1748		10.1)	2457	1208 .	0	3665	
2305	989	19	268	1276		2.3)	2424	768	. 7004	10196	100 B 100 B
2306	1353	201	1292	2855		6.2)	2218	368	2252	4848	
2307	1499	- 29	0	1528			2002	268	. 0	2270	
TOTAL	8717	726	3561	13004		5.2)	14987	4065	18618	35868	
2401	1250	205	0	1455		10.0)	1776	100	1441	3317	· · · · · · · · · · · · · · · · · · ·
2402	1873	63	0	1936		12.3)	2578	446		3024	
2403	999	58	. 0	1057		5.8)	1576	207	438	2221	
2404	332	15	0	347		1.3)	958	160	0	1118	
2405	1512	77	0	1589		4.8)	2560	215	0 0	2775	
2405	1878	535	1418	3831		17.0)	2759	781	1058	4598	
2407	575	25	79	679		1.3)	1597	215	2736	4548	
2408	1081	218	2284	3583		7.9)	2131	313	385	2809	
2409	593	83	0	676		1.1)	1515	142	3210	4867	
TOTAL	10093	1278	3781	15153		5.2)	17450	2579	9248	29277	· · · .
2501	1593	82	32	1707		6.9)	2495	147	2936	5579	
2502	626	38	126	790		1.0)	1754	257	5909	7920	
2502	1729	524	504	2757		17.3)	2422	642	584	3648	
2505	813	205	1985	3003		9.5)	1645	584	2736	4965	
2505	193	4	126	323		0.4)	717	160	3830	4707	
2505	516	35	1323	1874		3.3)	1344	119	5745	7208	
2500	370	17	1953	377		0.4)	1341	96	985	1	
TOTAL	5840	895	4096	10831		2.7)	11719	2005	22725	36449	
	5040	050	4030	10031	<u>`</u>	2 /					<u> </u>
Wilayah	34159	4763	20970	59892	7	4.3)	60604	13929	62615	137148	(9.8)
HIIAJAN	34138	9703	20310	03035	<u>`</u>	4.5 /	00004	12329	02015	137140	(3.0 /
· 3101	760	15	1607	2382	,	4.0)	1755	83	4177	6015	(10.1)
3101	326_		1007	2302		1.2)	532	46	401	979	•
3102		73	468	1682		2.2)	2114	195	1751	4060 j	
	- 1121		400	544		0.9)	1321	310	* 0	1631	
3104	444	100 38	1166	2073		4.2)	1786	545	1751	4082	
3105	869	38 20	599			4.2) 3.1)	2099	353	711	3163	
3105	1052		158	1671		3.1) 2.7)	1	396	1094	4409	
3107	1662	134					2919	· 436			
3108	650 549	67	410	1127		4.3) 2.7)	. 1115		1003	2554	
3109	548	104	725	1377			1449	288	1550	3267	
3110	757	• 64	1024	1845		4.0)	1557	146	2116	3819	
3111	1408	269	284	1961		3.8)	2329	469	456	3254	
TOTAL	9597	902	6461	16960	<u> </u>	3.0)	18976	3267	15010	37253	(6.5)

D - 34

•

.

.

Table D.14(3) Existing and Future Pollution Load Generation by Kelurahan

.

	Pollutio	n Load (Existing	: Kg/d)		ecific llution	Pollutio	n Load (Future :	Kg/d)	Specific Pollution
		0		÷				Commer. &			Load
Kel. No.		Conmer. &	· • • •			ad Razazsis	Domestic	Institu.	Indust.	Total	(Kg/d/ha
	Domestic	Institu.	Indust.	Total		Kg/d/ha)	1373	265	0	1638	
3201	1026	189		1215		10.0)	1972	381	201	2554	
3202	1503	265	0	1758		12.3)		337	128	. 3210	-
3203	1997	186	0 ~ 0	2183		8.1)	2745	920	120	3163	
3204	1662	649		2311		12.3)			0	1797	
3205	1171	248	0	1419		16.3)	2259	326	0	2651	•
3206	1896	37	0	1933		15.3)	2358	. 293	0		
3207	- 774	151	128	1051		10.8)	1005	252		1257	
3208	1822	208	1024	3054		13.1)	2391	277	91	2759	
3209	1342	204	. 0	1546		7.3)	1796	285	0	2081	
3210	1659	369	425	2453		17.0)	2158	512	182	2852	
3211	722	122	79	923		3.5)	1162	216	310	1688	
TOTAL	15574	2628	1654	19856		10.5)	20674	4084	912	25650	
3301	700	533	O	1233		12.8)	944	755	0	1699	
3392	497	330	. 0	827		16.2)	642	448	· 0	1090	
3303	741	143	0	884		23.9)	928	366	0	1294	
3304	404	46	0	450	(11.8)	505	192	0	697	
3305	927	177	Û	1104	(34.5)	1146	718	0	1864	
3306	839	44	126	1009	(18.3)	1065	393	0	1458	(26.5
3307	770	355	0	1125	(16.5)	996	482	0	1478	(21.7
3388	814	561	0	1375	(23.3)	1038	752	Q	1790	(30.3
TOTAL	5692	2189	126	8007	(18.4)	7264	4106	0	11370	(26 1
3401	1096	. 417	63	1576	(20.2)	1380	334	201	1915	(24.6
3402	182	196	32	410	(7.7)	273	281	0	554	(10.5
3403	477	. 86	0	563	(20.1)	598	113	0	711	(25.4
3404	930	53	79	1062	(23.1)	1154	212	Q	1366	(29.7
3405	1138	22	79	1239	(15.5)	1408	303	91	1802	(22.5
3406	1053	102	32	1187	(21.8)	1282	222	0	1504	(27.3
3407	907	18	32	957	C	29.9)	· 1111	182	0	1293	(40.4
3408	1310	26	95	1431	(23.1)	1624	335	0	1959	(31.6
3409	889	89	142	1120	(16.0)	1130	152	Q	1282	(18.3
3410	1006	19	32	1057	(33.0)	1200	86	0	1286	(40.2
3411	698	69	32	799	(23.5)	865	137	0	1002	(29.5
TOTAL	9686	1097	618	11401	C	20.0)	12025	2357	292	14674	(25.7
3501	924	79	0	1003	(1.5)	4130	1410	0	5540	(8.1
3502	1571	337	95	2003	C	3.2)	5053	1134	109	6296	(10.2
3503	1148	208	83	1419	C	3.7)	3239	614	182	4035	(10.5
3504	793	84	0	877	C	1.7)	3303	403	0	3706	(7.1
3505	501	. 115	0	616	C	2.2)	1862	450	0	2312	(8.1
3505	595	64	0	659	(1.4)	2979	412	0	3391	(7.0
3507	539	56	0	595	(1.2)	2923	327	0	3250	(6.6
3508	1223	131	0	1354		4.3)	3001	344.	0	3345	(10.7
3509	850	105	0	965		6.0)	1665	339	0	2004	(12.5
3510	510	140	. 0	650		4.5)	1311	377	0	1688	(11.6
3511	614	129	0	743		4.6)	1512	333	0	1845	
TOTAL	9278	1448	158	10884		2.6)	30978	6143	291	37412	
filayah	49827	8264	9017	67108	(5.2)	89917	19937	16505	126359	(9.8

.

Table D.14(4) Existing and Future Pollution Load Generation by Kelurahan

	Pollutio	n Load (Existing	: Kg/d)	Specific Pollution	Pollutio	n Load (Future	: Kg/d)	Specific Pollutio
Kel. No.		Conner. &			Load		Conmer. &			
ACI, AU,				D - 4 - 1				1		Load
	Domestic	Institu.	Indust.	· ··· ··· ·	(Kg/d/ha)	Domestic	Institu.			(Kg/d/h
4101	1966	570	63	2599		3076	837	73	4086	
4102	1165	257	63	1485		1865	483	36	2384	
4103	\$34	229	32	1195		1495	386	36	1917	1
4104	1378	311	0	1689		2018	487	36	2541	
4105	1453	368	0	1821		1935	. 531	55	2521	
4106	1071	186	0	1237		1362	221	0	1583	
4107	1234	143	15	1393	-	1654	286	55	1995	(21.0
TOTAL	9201	2044	174	11419		13405	3331	291	17027	(17.9
4201	326	269	0	595	(8.0)	543	. 467	0	1010	(13.6
4202	988	195	0	1183	(18.2)	1336	306	0	1642	(25.3
4203	1245	210	110	1565	(16.6)	1673	528	0	2201	(23.4
4204	437	53	331	821	(9.1)	731	270	0	1001	(11.1
4205	1444	166	158	1758	(9.9)	2113	378	0	2492	(13.9
4205	372	79	189	640	(3.0)	916	384	. 0	1300	(6.0
4207	958	90	0	1048	(13.4)	1349	505	0	1854	(23.8
4208	1551	186	0	1737	(19.3)	2081	314	0	2395	(25.5
TOTAL	7321	1248	788	9357	(10.6)	10742	3153	0	13695	(15.7
4301	- 654	87	16	757	(1.7)	876	543	0	1519	(15.5
4302	719	43	D	762	(9.8)	1041	304	0	1345	(17.2
4303	1440	165	0	1605	(9.9)	2096	250	0	2346	(14.5
4304	603	54	0	657	(6.2)	969	119	Ð	1088	(10.3
4305	669	55	83	787	(2.4)	1608	139	0	1747	(5.3
4306	650	137	16	803	(8.5)	1066	310	0	1378	(11.1
4307	837	225	D	1062	(4.1)	1676	473	0	2149	(8.3
4308	1168	79	0	1247	(6.0)	1852	224	0	2086	(10.1
4309	385	193	0	578	(8.1)	636	334	0	970	
4310	615	12	0	627		964	36	. 0	1000	
4311	337	32	158	527		545	. 225	0	. 770	
TOTAL	8077	1082	253	9412	(5.9)	13439	2957	0	16396	
4401	994	167	0	1161	(4.0)	1903	339	36	2278	
4402	949	130	0	1079	(3.2)	1550	223	0	1773	
4403	615	46	0	661		1347	107	Ð	1454	
4404	796	65	. 0	861		1114	132	0	1246	
4405	876	61	0	937		1683	210	0	1893	
4406	662	99	158	919		1187	282	274	1743	-
4407	653	z ′ 0	47	720		1269	54	0	1323	
4408	1052	34	0	1086		1493	51	. 0	1544	
4409	776	69	0	845		1593	239	. 0	1832	
4410	635	19	0	654		1445	52	0	1497	
4411	604	26	Ŭ	630		995	69	. 0	1457	
4412	1446	. 79	0	1525		2306	178	0	2484	
TOTAL	10058	815	205	11078		17885	1936	310		
4501	10050	145	0	1230		1541			20131	
4502	329	6	0	335 (747	0	2288	
4502	329 217	18	0	235 (576 643	34	0	610	
4504	217 541	57	0				. 177	0	820	
4504	631	109	U D	598 (740 (1009	110	0	1119	
1				740 (1084	198	0	1282	
4506	235	5	0	240 (626	154	0	- 780	÷
4507	595	66	95	758		938	125	0	1063	
4508	399	35	0	434 (811	81	0	892	
4509	1568	31	0	1599 (2190	216	0	2406	
4510	1079	77	0	1158		1717	132	. 0	1849	
TOTAL	6679	549	95	7323 (5.7)	. 11135	1974	· 0	13109	(10.3

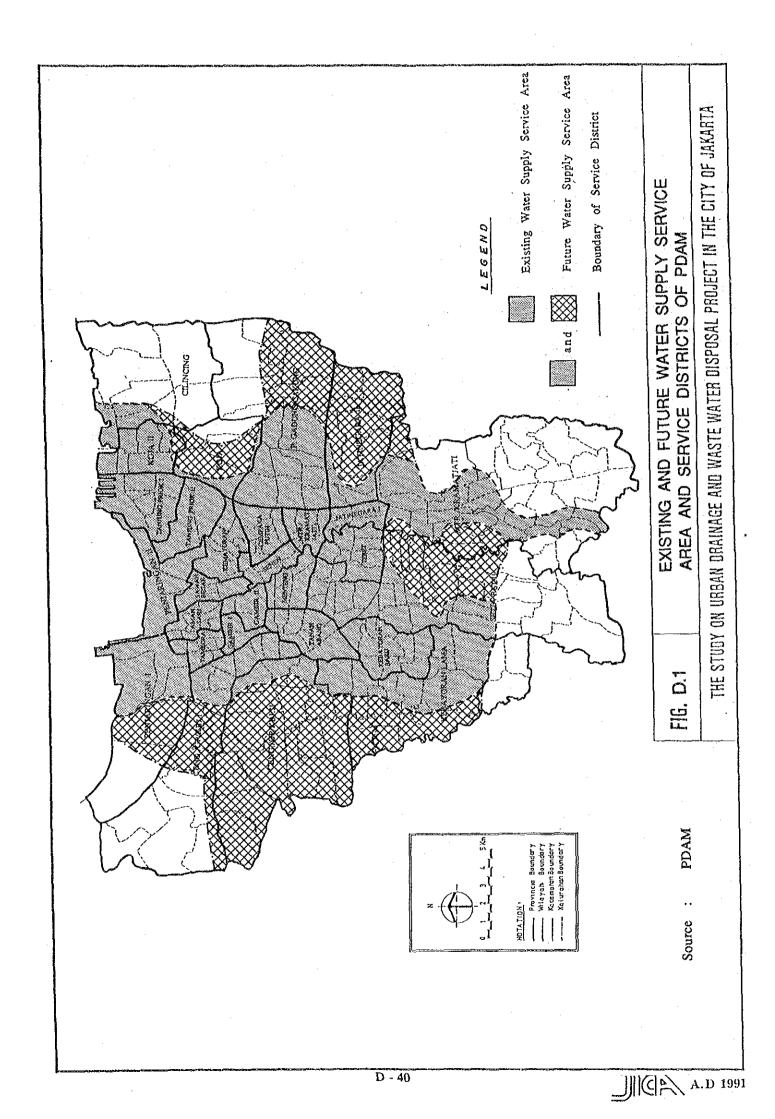
		· · ·							
Table D.1	4(5)	Existing	and	Future	Pollution	Load	Generation	by	Kelurahan
•									

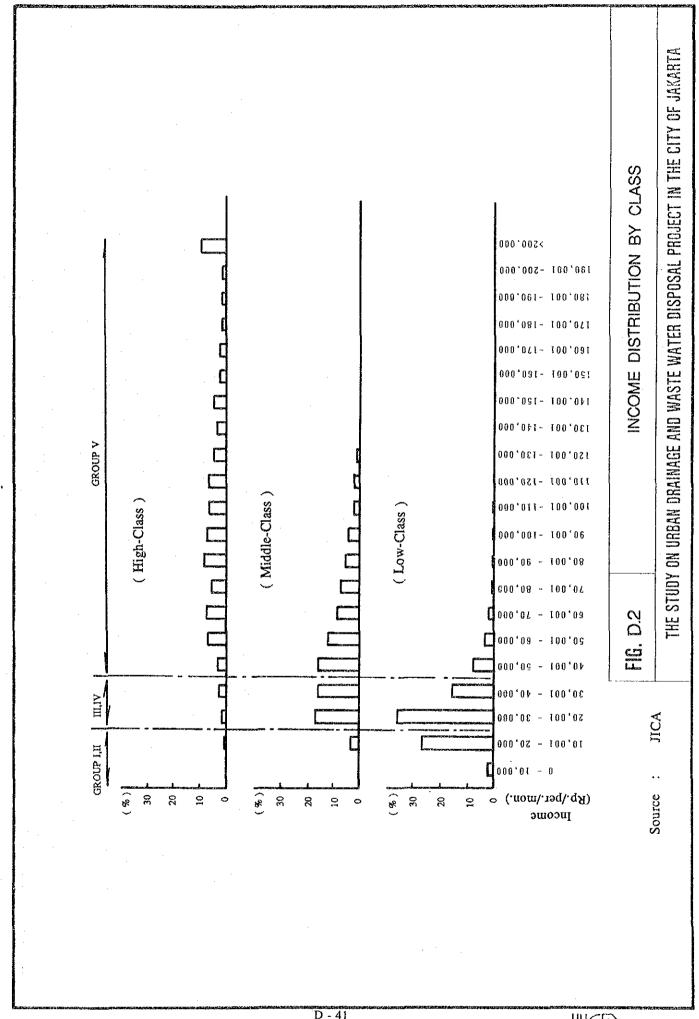
	Pollutio	n Load (Existing :	Kg/d)	Specific Pollution	Pollutio	on Load (Future	: Kg/d)		ecific Llution
		_				1	0			Lot	
Kel. No.		Commer. &			Load		Conmer. &	T J			
	Dosestic	Institu.	Indust.	Total	(Kg/d/ha)	Domestic	Institu.	Indust.	Total		(g/d/ha
4601	1464	337	268	2069	•	3289	791	310	4390	-	13.2
4602	1453	140	488	2081		3057	460	164	3681		12.9
4603	1151	189	63	1403		2328	448	0	2776		14.3
4604	1500	. 167	16	1683	(9.4)	2574	312	0	2885	(16.1
4605	1496	141	599	2236	(3.3)	5185	483	0	5668	(8.3
4636	807	15	C	823	(2.8)	2352	308	0	2661	(8.9
4607	553	11	0	564	(2.7)	1611	233	0	· 1844	(8.7
4608	736	14	.0	750	(4.4)	1699	236	0	1935	(11.3
4609	765	208	0	974	(4.6)	1865	588	0	2453	(11.7
4610	983	156	. 0	1139		3413	678	0	4091	(9.0
		306	Ū.	1619		2740	710	0	3450		13.4
4611	1313		1434	15341		30113	5248	474	35835		10.9
TOTAL	12222	1885				1255		0	1590		9.1
4701	678	121	158	958		1	•				6.9
4702	722	40	47	809		1504	142	0	1646		
4703	1812	256	394	2464		2961	532	0	3493		5.8
4704	701	, 78	0	779	(1.8)	1439	165	0	1604		3.8
4705	889	200	173	1262	(3.5)	1476	371	0	1847		5.1
TOTAL	4803	697	772	6272	(3.4)	8635	1545		10180	(5.6
Wilayah	58361	8120	3721	70202	(4.8)	105354	20144	1075	126573	(8.7
5101	768	54	0	822	(10.4)	1201	283	0	1484	(18.8
5101	750	33	. 0	783		1131	242	0	1373		21.0
-	ł		0	1130		1527	146	0	1673		29.3
5103	1108	22		1353		1881	252	0 0	2133		20.4
5104	1258	85	0			1928	397	0	2325		34.4
5105	1411	255	. 0	1666		1		0	2268		20.2
5106	1245	273	0	1518		1848	420				23.2
TOTAL	6550	722	. 0	7272		9516	1740	0	11258	· · · ·	
5201	1663	377	16	2058		2512	680	438	3630		8.3
5202	1169	190	0	1359		2146	400	0	2546		12.1
5203	1634	225	24	1883	(10.5)	2612	501	237	3350		18.6
5204	1467	335	95	1897	(12.3)	2316	541	0	2857	(18.6
5205	809	129	158	1095	(5.7)	1705	-310	274	2289	(11.9
5208	754	112	236	1102	(8.9)	1344	657	603	2604	C	21.1
5207	1774	509	0	2283	(8.3)	3117	1043	0	4160	(15.2
TOTAL	9270	1877	529	11676	(7.4)	15752	4132	1552	21436	(13.6
5301	936	199	0	1135	(23.7)	1304	331	0	1635	(34.2
5302	522	228	. 0	750		877	652	Q	1529	(22.7
	}	370	7	2010		2430	593	0	3023		24.0
5303	1633		, D	1912		2508	571	0	3079		18.4
5304	1573	339				1694	678	0	2372		27.1
5305	1139	228	8	1375				Û	3357		11.5
5306	1843	70	D	1913		3151	206				
5307	1297	484	0	1781		1907	747	0	2654		23.0
5308	1491	176	947	2614		3710	416	237	4363		8.7
5309	1858	78	35	1769		3157	424	128	3709		12.0
5310	1105	22	19	1146		2990	362	0	3352		7.4
5311	1134	23	0	1157	(8.4)	1904	207	0	2111	(15.3
5312	909	37	0	946	(1.7)	3280	287	0	3567	(6.2
5313	800	247	. 0	1047	(6.4)	1464	474	0	1938	(11.9
5314	1462	29	0	1491	(15.2)	2178	267	0	2445	(24.9
						1					
5315	915	18	14	947	(4.6)	1609	280	Ð	1889	· ·	9.2

٠

D - 37

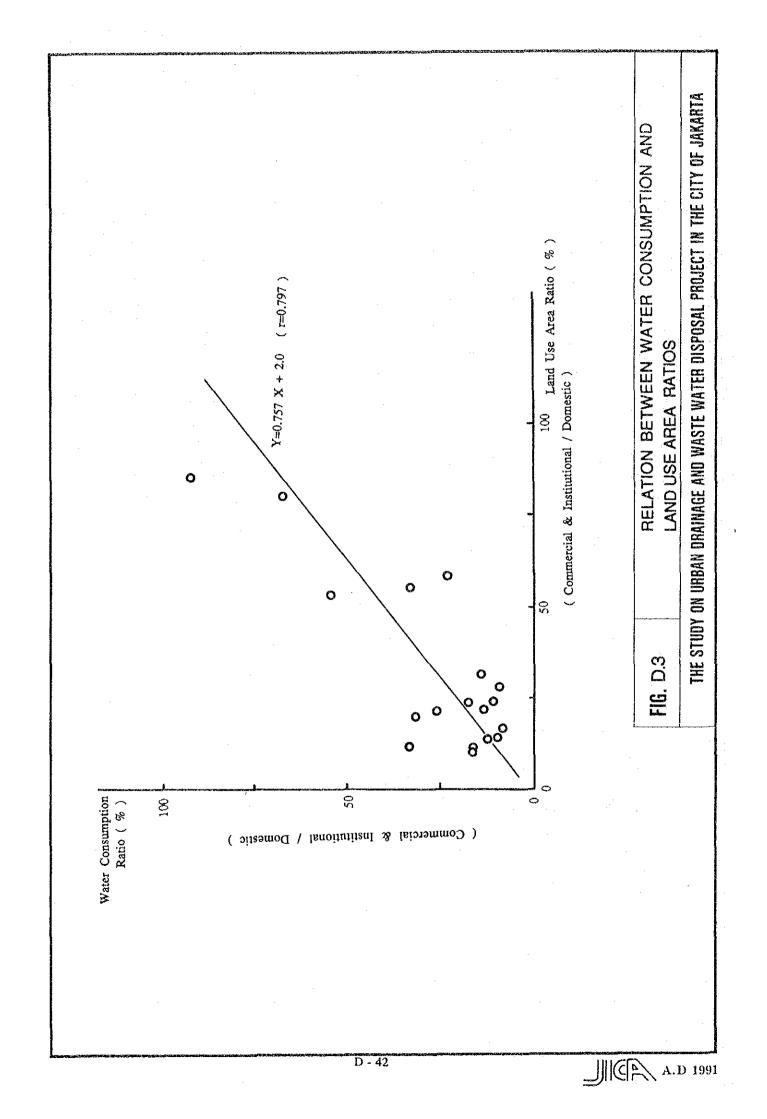
Table D.14(6) Existing and Future Pollution Load Generation by Kelurahan

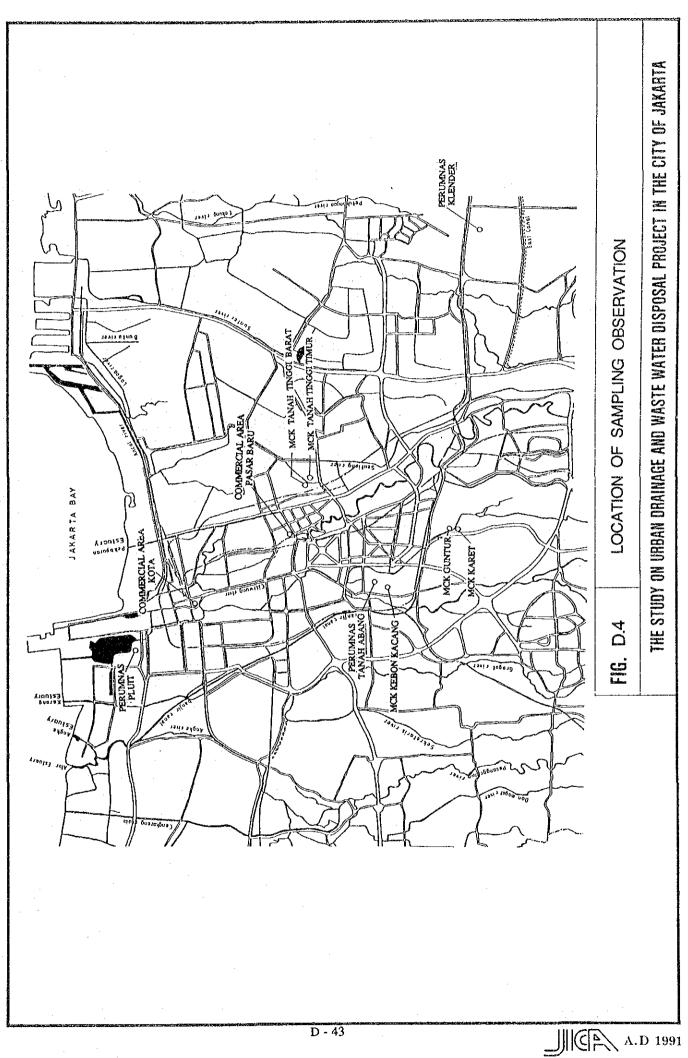

	Pollutio	n Load (Existing	: Kg/d)	S	ecific	Pollution	n Load (Future	: Kg/d)	Sp	ecific
	ĺ				Рс	llution			÷	•	Po	lutio
Kel. No.		Commer. &			Lo	ad	:	Commer. &			Lo	nd
-	Dogestic	Institu.	Indúst.	Total	(Kg/d/ha)	Domestic	Institu.	Indust.	ĩotal	C	(g/d/h
5401	1392	446	33	1871	(10.5)	2275	798	18	3091	(17.3
5402	1048	185	58	1291	(5.1)	2192	409	. 0	2601	(10.3
5403	1333	133	33	1499	(8.3)	1813	377	O	2190	C	12.2
5404	891	47	57	1095	(7.2)	1518	477	0	1995	(13.2
5405	1077	59	593	1729	Ċ	7.5)	1941	. 367	0	2308	(10.1
5406	1372	27	0	1399		1.1)	3436	594	109	4139	C	3.2
5407	889	32	, 32	953	(3.7)	1378	76	0	1454	(5.7
5408	434	18	95	547		3.3)	713	36	0	749	(4.5
5409	946	19	Ð	965		5.2)	1699	163	÷ 0	1862	(10.1
5410	819	46	24	889		4.4)	1253	87	0	1340		6.6
5411	391	13	47	451		2.3)	732	48	0	780		3.9
5412	311	43	. 0	354		1.9)	621	209	0	; 830		4.4
TOTAL	11003	1068	972	13043		3.7)	19571	3641	127	23339		6.7
5501	694	113	0	807		2.2)	1092	193	0	1285		3.5
5502	743	24	44	811		3.1)	1230	97	182	1509	- 1	5.7
5503	618	12	131	761		3.6)	919	257	0	1176		5,6
5504	193	84	0	277		0.8)	597	272	2601	3470		
5505	247	41	0	288	-	0.9)	551	129	. 0	680		2.1
5506	192	. 11	0	200		0.5)	440	43	0	483		1.5
			0	255		0.9)	533	58	0 0	591		2.0
5507	230		0	1135			1360	678	1459	3497		18.3
5508	945	190				6.0) 			2918			12.0
. 5509	1068	186	2322	3576		8.5)	1792	348	2910	5058		
5510	731	23	1	755		3.2)	1140	163		1303		5.5
5511	490	10	• 0	500			822	48	0	870		4.6
5512	467		0	488		1.7)	800	85	0	885		3.1
5513	899	88	210	1197		3.8)	- 1410	153	912	2475		7.8
5514	486	9	0	495		1.5)	834	33	0	867		
5515	267	37	0	304		1.4)	495	70	0	565		2.6
5516	227	48	. 0	275		0.7)	690	158	0	848		2.1
5517	942	41	. 0	983		2.2)	1561	187	547	2295		5.1
5518	199	53		252		0.6)	610	508	. 0	1118		2.7
TOTAL	9638	1013	2708	13359		2:4)	16876	3480	8619	28975		5.2
5601	449	164	2835	3449		8.4)	1047	148	5818	7013		17.1
5602	1152	218	2048	3418		5.2)	3408	466	7843	11717		17.8
5603	1020	186	0	1206		2.7)	2538	. 309	2371			11.8
5604	799	173	2914	3886		8.3)	1732	285	7350	9367	-	15.1
5605	356	79	0	435		1.0)	995	145	1514			6.0
5606	1106	96	0	1202		1.8)	3173	757	146	4076		
5607	728	29	0	757		0.8)	2350	89	894	3333		3.4
TOTAL	5610	945	7798	14353	(3.4)	15243	2199 -	25936	43378	(10.2
Wilayah	60486	8173	13037	81696	(4.4)	111121	21687	36599	169407	(9.0
DKI TOTAL	245264	39888	48937	334089	(5.1)	424212	103701	118600	646513	(9.9

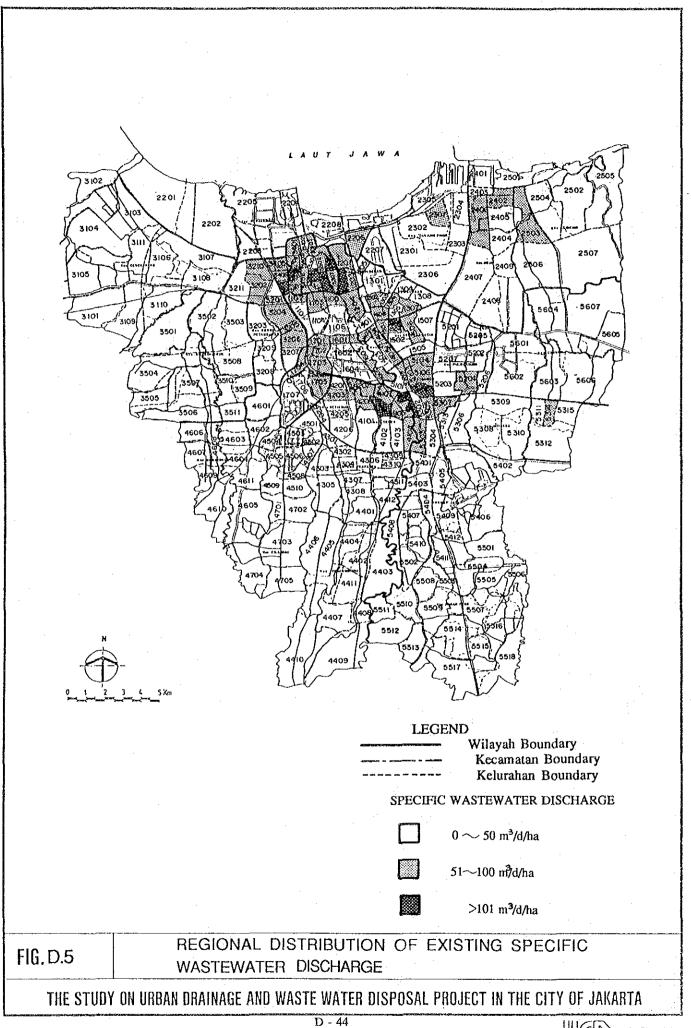

D - 38

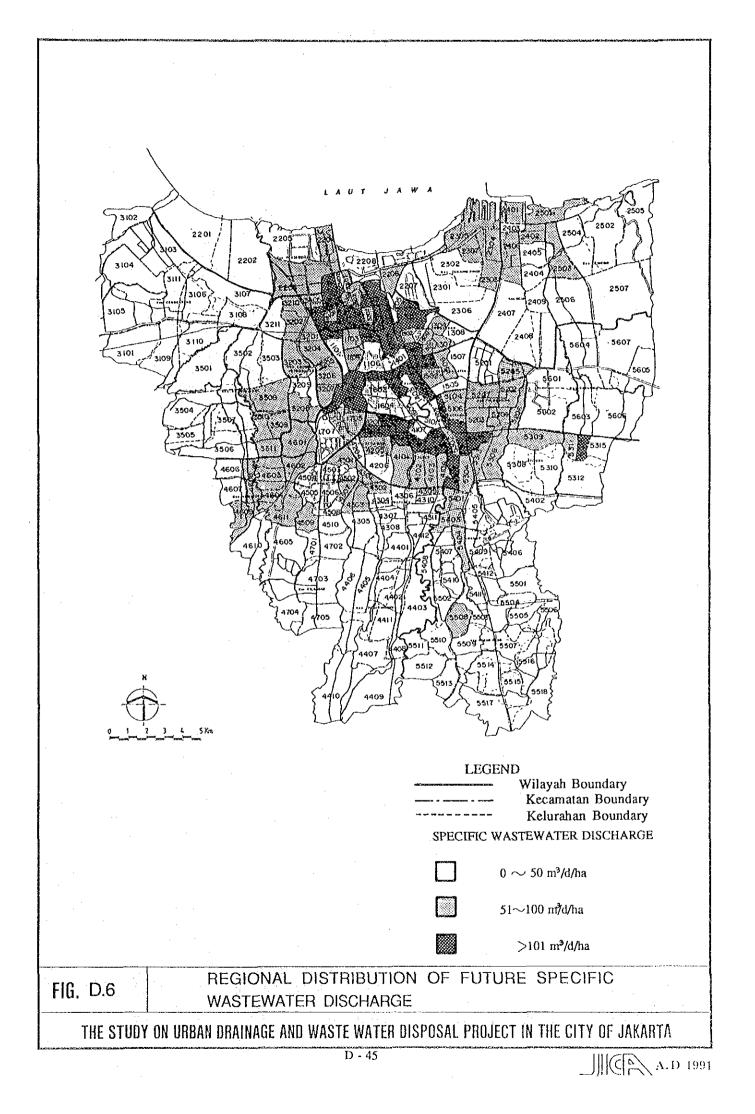
		(1989 price)
	Industrial Produ	ct (billion Rp./yr.)
Industrial Classification	Existing	Future
	(1987)	(2010)
Food. Beverages and Tobacco	831	1,857
Textile	670	2,062
Wood & Wood Products	58	193
Paper & Paper Products	346	1,076
Industrial Chemicals	1,319	3,607
Non-metallic Mineral Products	332	1,069
Iron & Steel basic industries	202	306
Fabricated Mineral Products,	2,454	5,695
Machinery and Equipment		
Other Industries	71	317
Total	6,282	16,182

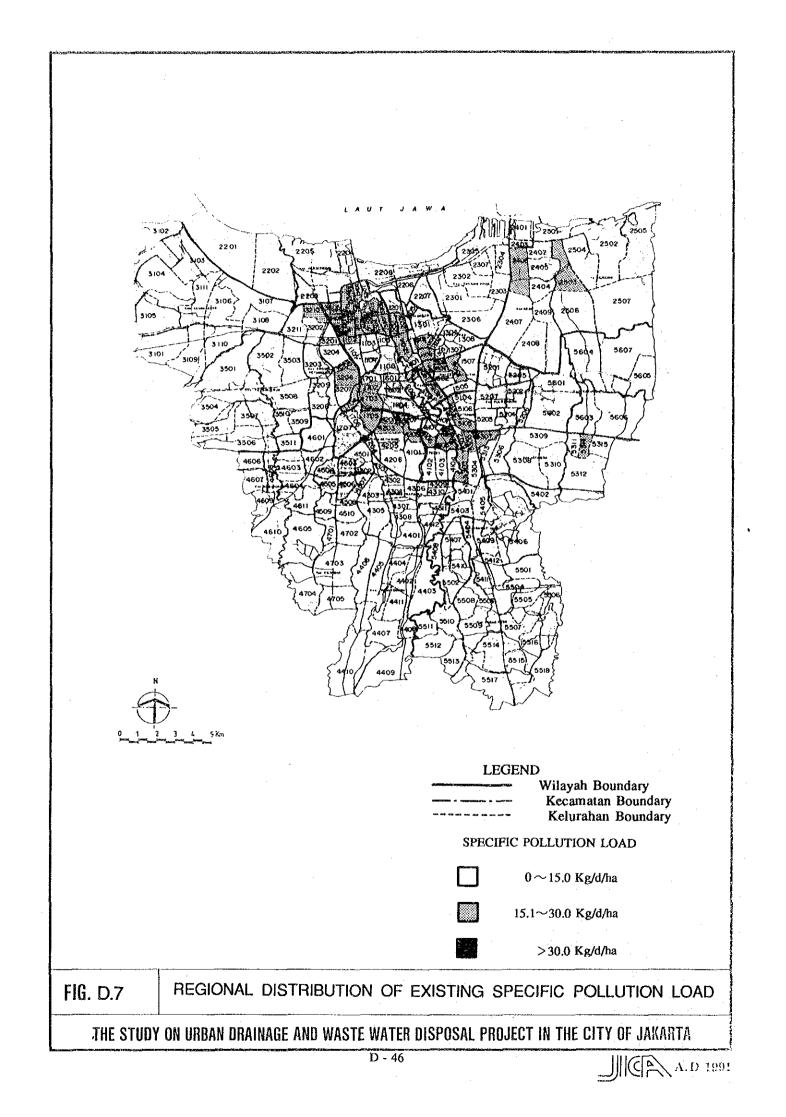
Table D.15 Existing and Future Industrial Product Amount

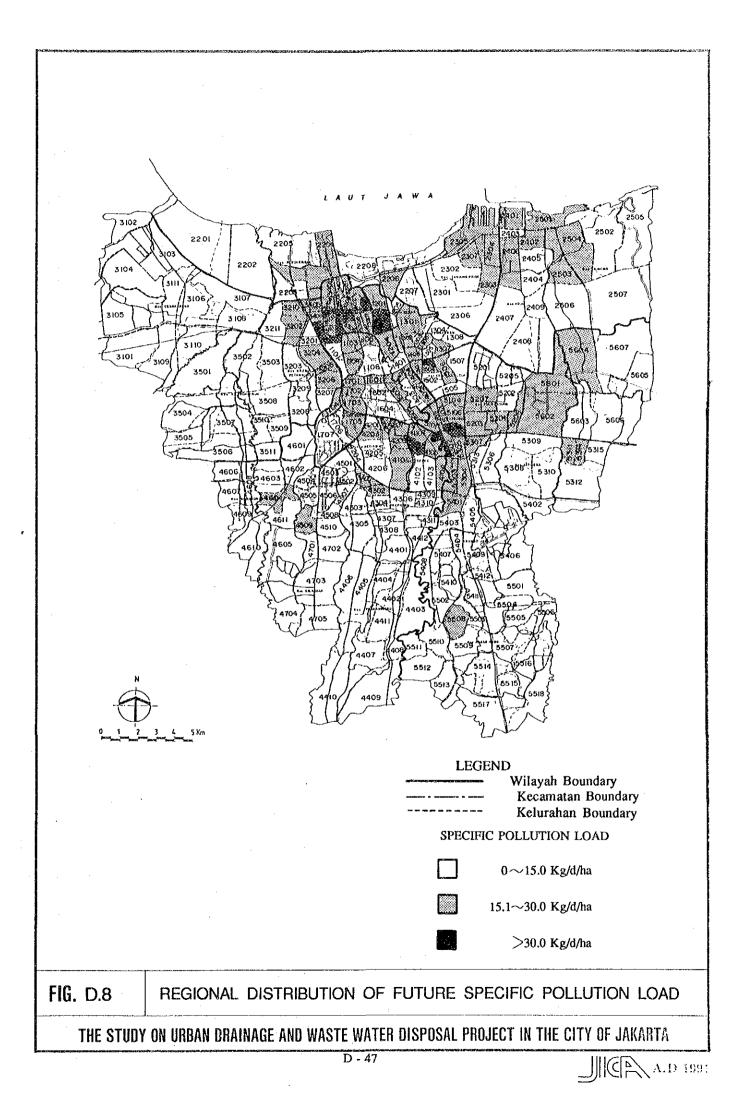

Source of Existing Industrial Product : Jakarta in Figures 1988






D - 41


_____A.D 1991



.

•

APPENDIX E

EXISTING URBAN DRAINAGE PROJECTS AND FACILITIES

APPENDIX E EXISTING URBAN DRAINAGE SYSTEM

1. General

The first major project in the recent history of flood control and urban drainage for the Study Area is the Banjir Canal (West Banjir Canal) completed in 1920. It is a flood canal of 16.5 km long (Manggarai-Muara) to divert the floods of the western part of Jakarta and has the capacity to cope with a 100-years flood.

In February, 1965, the Government established the Command Project of Flood Control (KOPRO BANJIR) under the responsibility of the Ministry of Public Works and Electric Power which was succeeded by the Jakarta Flood Control Project (J.F.C.P.) under the responsibility of the Directorate General of Water Resources Development, Ministry of Public Works in May 1972. Several major flood control and urban drainage projects were completed since 1965. Those are:

- Cengkareng flood-way (7 km) completed in 1983
- Cakung drain (10 km) completed in 1983
- 14 pumps stations with a total capacity of $114 \text{ m}^3/\text{s}$

A number of flood control and urban drainage projects are still on going, under construction or detailed design by the Jakarta Flood Control Project. The largest project among the on-going ones is the East Banjir Canal of 23.7 km long to divert the floods of the eastern part of Jakarta. It is planned to meet a 100-years flood.

2. Objective Channels for the Study

2.1 Demarcation of Flood Control and Urban Drainage Systems

Flood problems in urban areas are mitigated by urban drainage and urban flood control. Urban drainage comprises the evacuation of run-off from direct or local rainfall in an urban area into the nearest receiving water system (river, sea or lake). Typically, drainage pump stations are part of the urban drainage system. Urban flood control concerns the receiving water system except sea, including infrastructures necessary to prevent the receiving water system from spilling over into the urban area.

Urban drainage and urban flood control are respectively under the jurisdictions of the Directorate General of Human Settlement (DGCK) and the Directorate General of Water Resources Development (DGWRD) with respect to the administration aspects at the central government level.

According to the Ministerial Decree No. 239 of May, 1987 and the Agreement between DGCK and DGWRD of December 1987, the demarcation of urban drainage and urban flood control activities, and the respective responsibilities are defined as follows.

- (1) The urban drainage network comprises all water courses, natural or man-made, which have their origin in the urban area, down to the point where they leave the urban area.
- (2) The natural or man-made water courses which are not covered by the above category belongs to urban flood control.
- (3) With respect to development, and operation and maintenance,
 - Urban drainage are under the responsibility of Local Government (TK.I or TK.II) with guidance of Central Government (DGCK).

Urban flood control are under the responsibility of Central Government (DGWRD). Operation and maintenance could be handed over to Local Government (TK.I), with guidance of Central Government (DGWRD).

- (4) Responsibilities concerning on-going projects will remain the same as long as the main function of the system is not classified.
- (5) If there are urban drainage works under DGWRD, those works should be put under a separate part-project (Bagian Proyek) which is under the guidance of DGCK.

The water courses in the Study Area are classified into flood control river and urban drainage channel based on the above stipulations as shown in Fig. E.1.

2.2 Objective Channels for the Study

This Study will cover all the major urban drainage channels but will exclude the minor drainage channels. The flood control rivers will be excluded. Hence, flood damages due to the spill-over from the flood control rivers will not be taken into account in this Study.

The objective urban drainage channel networks consist of the main channels, tributaries and distributaries of 158 in total. The main channels of long drain length are divided into several sections in establishing the above channel networks. The objective urban drainage channels are shown in Fig. E.2.

Among them, a considerable number of channel sections are on-going, under detailed design or under construction by the Jakarta Flood Control Project Office (JFCP). The channel sections of on-going drainage improvements by JFCP are affixed by marks a,b,c,..... (Group I) and those sections where the design discharge has been proposed by JFCP (however, no structural plan has yet been proposed) are affixed by marks (A), (B), (C)..... (Group II). While, those sections where no drainage improvement plan has been proposed are affixed by marks (1), (2), (3),..... (Group III).

The channel sections by Group are listed in Table E.1, Table E.2 and Table E.3.

In this Study, urban drainage master plan will be prepared in accordance with the following policies.

(1) The design discharge proposed by JFCP for the channel sections of Group II will be followed. However, structural plan will be newly proposed.

- (2) Urban drainage plan for the channel sections of Group III will be newly proposed.
- (3) The urban drainage plans of the channel sections of Group I will be incorporated into the master plan of this Study.

3. Existing Urban Drainage Facilities and Related Structures

3.1 Pump Station and Weir

(1) Pump Station

In the Study Area, 14 pump stations are provided to drain local storm rainfall in the low-lying areas. Its total capacity is $114.15 \text{ m}^3/\text{s}$. The oldest pump station is the Pluit Pump Station with a capacity of $13.75 \text{ m}^3/\text{s}$ constructed in 1967, while the latest one is the Cideng Pump Station of 40 m³/s constructed in 1989.

The main features of the above existing pump stations are shown in Table E.4. Their locations are shown in Fig. E.3. Further, six (6) pump stations are on-going by the Jakarta Flood Control Office. They will drain the area of Lower Angke, Kemayoran Airport, Ancol, Sunter West, Sunter East II and Sunter East III. Its total capacity is $57.7 \text{ m}^3/\text{s}$.

The main features of the above on-going pump stations are also shown in Table E.4. Their locations are also shown in Fig. E.3.

(2) Weir

Thirty-three (33) gated weirs exist in the Study Area. They function mostly for flood control and urban drainage. Water supply, irrigation and flushing purposes are included in some gates.

Their main features and locations are shown in Table E.5 and Fig. E.4 respectively.

Further, six (6) gated weirs are on-going by JFCP in the East Banjir, Sunter River and Cakung River. Their functions are flood control and salinity intrusion prevention.

Their main features and locations are also shown in Table E.5 and Fig. E.4 respectively.

3.2 Bridge

Flood flows of the rivers and channels in the Study Area are obstructed at many sections by accumulated sediment deposits, bridges, encroached buildings, etc. Bridges with insufficient clearance are the largest obstacles in many rivers and channels of the Study Area.

The JICA Study Team carried out an inventory survey of all the existing bridges of 314 along the major urban drainage channels. The location of the surveyed bridges are shown in Fig. E.5.

The main features of the above existing bridges are shown in Table E.6. For details, refer to Data Book.

Their bridge lengths are in the range of 1.2 m and 59.0 m with an average of 13.6 m. The bridge clearances (height between river bed and bridge beam) range from 0.8 m to 10.5 m with an average of 2.4 m.

4. Existing Flow Capacity of Urban Drainage Channels

4.1 Channel Sections

The existing flow capacity of the 138 channel sections of Group II and Group III was estimated by using the following Uniform Flow Formula.

$$Q = \frac{1}{n} R^{2/3} I^{1/2} A$$

where,

n = Manning's roughness coefficient (0.025)

R = Hydraulic radius

I = Channel gradient

A = Bankful flow area

The flow capacity ranges from 2 m^3/s to 212 m^3/s with an average of 43 m^3/s . The estimated flow capacities of the respective channel sections Group II and Group III are shown in Table E.7 and Table E.8.

4.2 Bridge Crossings

The channel sections of Group II and Group III have bridge crossings at 313 locations. Some of these existing bridges interfere with free flood discharge either due to their narrow channel cross-sections or other structural obstructions.

The existing flow capacity of the channel sections at bridge crossings for Group II and Group III was also estimated by using the above Uniform Flow Formula.

The estimated flow capacities are shown in Table E.9.

5. Available Cross-sectional Survey Data of Urban Drainage Channel

Cross-sectional survey data are available for a considerable part of the objective channels of the Study in the Jakarta Flood Control Project Office and DKI. Such channels are :

Name of River and Channel	Approx. Distance (km)
Jembatan Dua	1.3
Pluit	. 1.1
Pakin	0.9
Jelangkeng	2.3
Besar	1.1
Angke	1.6
Duri	4.9

Name of River and Channel	Approx. Distance (km)
Cibubur	0.9
Jembatan Lima	0.6
Cideng (downstream)	3.4
Krukut	3.4
Ciliwung	8.8
Ciliwung Sahari	6.3
Ancol	4.0
West Pademangan	3.1
East Pademangan	5.0
Sentiong (downstream)	3.1
Sentiong (upstream)	4.1
East Baru	2.5
Grogol	7.8
Sal Pal Putih	0.8
Mampang	2.9
Cideng (upstream)	6.3
K. Bata	3.4
Sunter	16.7
Sunter Cipinang	4.4
Cakung drain	10.0
Cakung river	8.1
Buaran	6.3

The JICA Study Team conducted a supplementary cross-sectional survey for the selected urban drainage channels where no data was available during the period of beginning of November 1989 to middle of December 1989. The surveyed channels, and their survey distance are shown below.

Name of River and Channel Approx. Distance (km) 2.0 1. Ancol Drain 2. Kali Mati 1.4 3.2 3. Rawamangun Drain 3.0 4. a. Kayu Putih Barat Drain 2.9 b. Kayu Putih Timur Drain c. Kayu Putih - Jl. Pemuda Drain 1.3 2.55. Karang Drain

total	approx.	82.0
Petukangan canal		3.2
Lagoa canal and Tiram		3.0
Krukut		2.7
Gresik - Surabaya	·	3.8
Kali Sepak		6.4
Kali Sckretaris		10.7
Tubagus Angke Drain		2.0
Kali Baru Barat		11.3
Kali Bata Barat		4.7
Kali Baru Timur		11.2
Utan Kayu Drain		6.7

Location of these urban drainage channels with available cross-sectional surveys is shown in Fig. E.5.

	·	· · · · ·	
River	River	Basin	River
No.	Name	Area	Length
		<u>(km2)</u>	<u>(km)</u>
a	Sepak	5.1	3.0
b	Secretaris	13.1	2.0
C	Grogol	-	4.0
d	Grogol	15.1	10.1
e	Grogol-Secretaris	15.6	1.0
f	Grogol-Secretaris	20.0	1.9
g	Lower Angke	35.2	2.0
h	Lower Angke	40.5	2.5
i	Grogol	7.3	5.9
j	Grogol	7.4	6.8
k	Gresik	-	-
1	Cideng	-	1.8
m	Cideng	-	1.5
n .	Sianter	-	0.5
0	Duri	2.1	5.6
р	Krukut	3.5	3.5
q	Jelakang	-	0.8
r	Ciliwung	-	8.5
s	Ciliwung	-	2.5
t	Ciliwung	-	1.2
u	Ciliwung	-	2.0
v	Ciliwung Kota	0.7	1.4
w	Taman Sari	1.2	2.0
x	Ciliwung Kota	-	0.3
у	Beton	2.0	2.3
z	Ciliwung Kota	4.2	0.6
aa	Ciliwung Kota	5.8	1.0
ab	Pakin	6.5	0.5
ac	Opak	18.8	0.5
ad	Pademagan Barat	8.7	1.3
ae	Pademagan Barat	8.7	1.9
af	Pademangan Timur	8.7	3.2
ag	Cipinang	3.0	2.2
ah	Cipinang	1.6	1.5
ai	Sunter	4.6	2.4
aj	Sunter	11.9	1.4
ak	Sunter		4.0
al	Sunter	17.1	2.4
am	Sunter	-	0.6
an	Sunter	32.0	3.1
an	Sunter	47.7	1.5
ap	Sunter	53.7	2.6
ap aq	Buarang	8.3	5.0
ay ar	Cakung	11.9	6.1
as	Petukangan		-
	Cakung	34.3	-
at	Cakung	50.1	3.9
au		9.2	5.9 6.4
a v	Marunda Cakung	71.5	5.9
a w	Cakung	/1.5	3,9
ax	Cakung		-

Table E.1 Channel Section of Group I

Note: Basin Area: whole basin area upstream at objective channel section River Length: length of objective channel section

Sources : JFCP, JICA

River	River	Basin	River
No.	Name	Area	Length
		<u>(km2)</u>	<u>(km)</u>
Á	Kali Calmatania		8.4
	Kali Sekretaris	- -	
B	Jatipulo Tomang	5.8	3.8
C	Angke		1.3
D	Gresik Surabaya	1.7	4.3
E	Cideng	0.7	1.4
F	Krukut	1.0	2.0
G	Cideng	-	1.4
H	Cideng	-	3.3
I	Jelangkeng	-	0.5
J	Cibubur	0.1	1.2
K	Angke	1.1	1.5
L	Angke	1.2	0.2
М	Jelangkeng	-	0.7
N	Jembatan Dua	0.2	0.6
0	Bandengan	0.9	1.5
Р	Pluit	2.0	1.5
Q	Cideng	-	1.8
R	Ciliwung	-	4.3
S	Muara Karang	14.7	4.0
Т	Sentiong	17.5	1,5
U	K. Item	-	2.5
v	Sentiong		1.7
Ŵ	Sunter C	_	3.9
x	Sentiong	-	2.0

Table E.2Channel Section of Group II

Note : Basin Area : whole basin area upstream at objective channel section River length : length of objective channel section Source : JFCP, JICA

River	River	Basin	River
No.	Name	Area	Length
		(km2)	(km)
1 - 1	Kamal	16.4	7.4
1-2	Tanjungan	7.8	3.2
2-1	Kali Gede/Bor	5.6	4.8
2-2	Saluran Cengkareng	3.3	4.5
2-3	Padongkelan	5.2	1.1
-3	Semanan	0.7	1.2
4	Krco	7.8	4.8
5	Ulujami	8.4	8.7
6	Sepak	17.8	10.9
7	Kembangan	2.4	2.0
8	Pesanggrahan bawah	0.4	1.0
9	Kedaung	0.3	0.6
10	Kedaung	2.1	2.2
11	Mookervart	0.4	1.5
12	Mookervart	2.7	2.9
13	Kedoya	1.6	2.0
14	Cilawe	2.2	2.3
15	Ciragil	6.4	3.1
16	Krukut	2.1	1.6
17	Mampang	2.7	3.4
18	Mampang	2.5	1.4
19	Mampang	25.5	10.5
20	Cideng Atas	5.1	3.8
21	Warung	0.8	1.1
22	Cideng	8.1	5.8
23	K.Baru Barat/PS. Minggu	2.4	19.6
24	Ciliwung	0.7	1.7
25	Rawa Bilai	1.2	2.5
26	K.Bata Timur	5.2	3.1
27	K.Bata	7.0	3.8
28	K.Bata	0.3	1.0
29	Bali Matraman	7.8	5.3
30	Goseng	2.8	1.2
31	Cijantung	4.3	2.7
32	Ciliwung	7.5	3.6
33	K.Baru Timur	1.5	12.7
34	Sentiong	1.4	4.0
35	Kali Baru Timur	7.9	18.9
36	Cipinang	1.9	1.2
37	Cipinang	1.3	2.0
38	Cipinang	4.5	3.5
39	Cipinang	2.2	5.5 1.7
40	Sunter	1.5	3.0

	nannel	Section	of	Group	ш	
--	--------	---------	----	-------	---	--

River	River	Basin	River
No.	Name	Area	Length
· .		(km2)	(km)
41	Sunter	6.4	3.4
42	Sunter	9.9	7.2
43	Sunter	5.3	3.6
44	Salemba (1)	10.9	22.6
44	Salemba (2)	13.0	25.2
45	Kali Baru Senen	1.2	1.9
46	Mati	1.0	1.4
47	Lagoa	4.4	2.8
48	Koja	1.2	1.1
49	Kebon Bawang	1.8	2.0
50	Lagoa Timur	3.3	2.6
51	Lagoa	1.2	1.6
52	Lagoa Timur	4.9	3.3
53	Bambu	0.3	1.2
54	Lagoa Tenggiri	7.8	5.3
55	Utan Kayu	8.2	6.0
56	Rawa Badak	1.4	1.5
57	Utan Kayu	9.8	6.9
58	Cipinang	0.7	1.5
59	Rawamangun	1.6	3.2
60	Kayu Putih Utara	1.9	1.8
61	Pulo Nangka	1.5	2.8
62	Kayu Putih Selatan	2.0	3.5
63	Pulo Mas Barat	1.1	4.1
64	Pulo Gadung	5.5	4.5
65	Rawa Gatel	0.3	0.5
66	Pulo Gadung	6.5	6.1
67	Sukapura	0.3	0.8
68	Tugu Batu	7.3	6.8
69	Rawa Gatel	1.2	0.9
70	Kelapa Gading	2.1	2.0
71	Kelapa Nias	3.6	3.0
72	Tugu Batu	12.2	8.7
73	Rawa Badak	2.2	1.4
74	Rawa Badak	2.0	1.2
75	Pelumpang	5.7	2.2
76	Cakung Lama	11.7	7.9
77	Pandang	0.2	0.6
78	Cakung	3.8	5.2
79	Jati Bening	4.0	6.6
80	Jati Bening	0.9	1.1
81	Sal. Bekasi tengah	3.5	5.8

Basin Area : whole basin area upstream at objective channel section Note : River length : length of objective channel section

Source : JICA Name of Existing and On-Going Pumping Station Table E.4

٠

Existing Pumping Station
River/Drainage to be installed
Pluit pond
- do -
Angke river
Banjir Canal
K. Cideng
K. Cideng
Pesanggarahan
Sekretaris River
West Banjir Canal
K. Sunter
West Banjir Canal
Ciliwung
Cideng
Sub Total
Angke
To be named
Sunter
Lagoa
Sunter
Sunter
Sub Total
TOTAL

"D" means DKI.

Source : JFCP, DKI

"K" means J.F.C.P. Management of these station will be transferred to DKI in the future.

Note ; (*1)

Table E.5

Existing and On-Going Gated Weirs

Existing Gated Weirs

	Name of	Name of River/		
No.	Station	Channel to be	Pupose of	Remarks (*1)
		installed	Control for	
1	Cengkareng	Cengakreng	Flood	Managed by K
2	Maggarai 1	Ciliwung	Drainage	Managed by D
3	Karet	anjir Canal	Flood	Managed by D
3'	Karet II	- do -	Flushing	Managed by D
4	Katulampa	Pond	Drainage	Managed by K
5	Pondok Pinang	Pasanggarahan	- do -	Managed by K
6	Sunter Hulu	Sunter	- do -	Managed by K
7	Polor	Angke	Irrigation/	Managed by K
		U U	Drainage	
8	Koneng	Pasanggarahan	- do -	Managed by K
9	Sewan	Mookervart	- do -	Managed by K
10	Tarum Barat to	Tarum Barat	Water Supply/	Managed by K
	Saluran	Canal	Irrigation	Managed by K
11	Pulo Gadung	Sunter	Flood	Managed by K
12	Sunter	- do -	- do -	Managed by K
13	Cakung	Cakung	- do -	Managed by K
14	Pasar Ikan	-	Drainage	Managed by D
15	Saringan Sampah	Angke	- do -	Managed by K
	Teluk Gong	- do -		
16	Syphon Pluit	Pluit Pond	Flood	Managed by K
17	Bendungan Jago	Jiung	- do -	Managed by K
18	Manggarai II	Ciliwung	Flood/Flushing	Managed by D
18	00	Surabaya Canal	Flushing	Managed by D
19	Tarum Barat II	Tarum Barat Canal	B	Managed by D
20	Capitol (Istiqlal)	Ciliwung	- do -	Managed by D
21	Tangi	- do -	- do -	Managed by D
22	Kali Duri	Duri	Flood	Managed by K
23	Kampung Gusti	Angke	Drainage	Managed by D
24	Jembatan Dua	Grogol	- do -	Managed by D
25	Jembatan Merah	Gunung Sahari	- do -	Managed by K
26	Pekapuran	- do -	Flood	Managed by K
27	Cideng	Cideng	- do -	Managed by K
28	Kyai Tapa	Ciliwung	- do -	Managed by K
29	Siantar	Duri	Flood	Managed by K
30	Syphon Cideng	Cideng	~ do ~	Managed by K
31	Syphon Teluk Gong	Angke	- do -	Managed by K
32	Saringan Sampah	8	Drainage	Managed by D
	Gunung Sahari	Gunung Sahari	Flood	Managed by K
33	Kali Item	Item	- do -	Managed by K
On-goin	g Gated Weirs			
	······			
34	Salinity Barries I	Sunter	Salinity	Managed by K
	•		Barries	
35	Salinity Barries II	Cakung	- do -	Managed by K
36	Salinity Barrics III	East Banjir	- do -	Managed by K
	-	Canal		09
37	Doversion Structure	- do -	Flood	Managed by K
38	Weir I	- do -	- do -	Managed by K
39	Weir II	- do -	- do -	Managed by K

"K" mean J.F.C.P Management of thesee stations will be transferred to DKI in the future. "D" means DKI Note ; (*1) "K" mean

Source : JFCP, DKI

Bridge No.	River Name	Bridge Length	Bridge Width	Bridge Thickness	Bridge Height	Nos. of Span	Bridg Type
-		<u>(m)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m)</u>		
1	KAMAL	13.7	7.0	0.6	2.8	1	E
2	KEMBANGAN	37.2	6.3	1.2	5.6	1	E
3	KEMBANGAN	11.4	8.4	0.4	3.2	1	E
4	SEPAK	18.1	9.3	0.6	4.4	1	E
5	SEPAK	17.9	9.0	0.8	4.5	1	E
6	SIPAK	18.3	8.9	0.8	4.7	1	Е
7	KREO	17.8	11.6	0.6	3.0	1	Е
8	KREO	17.0	14.0	0.6	3.5	1	E
9	KREO	17.0	8.0	0.6	3.5	1	В
10	KREO	17.0	8.0	0.5	3.5	1	В
11	KREO	10.6	6.9	0.7	3.0	1	В
12	DAANMOGOOT	13.7	10.5	0.6	0.8	1	E
13	DAANMOGOOT	12.4	8.0	0.7	2.9	.1	Ε
14	DAANMOGOOT	13.7	14.0	0.6	2.5	1	Е
15	DAANMOGOOT	12.6	8.0	0.4	2.9	1	Е
16	SEKRETARIS	14.5	6.3	0.5	3.5	1	Othe
17	SEKRETARIS	6.0	9.0	1.1	1.3	1	E
18	SEKRETARIS	16.9	7.7	1.3	2.1	1	Ĕ
19 19	SEKRETARIS	4.2	5.1	0.3	1.8	1	Othe
20	SEKRETARIS	7.2	6.3	0.4	1.7	i	B
20		7.1	8.2	0.4	2.3	-1	B
	SEKRETARIS				2.3		
22	SEKRETARIS	7.0	8.2	0.4		1	B
23	SEKRETARIS	7.0	8.0	0.4	2.6	1	B
24	SEKRETARIS	7.3	8.1	0.5	1.8	1	B
25	SEKRETARIS	7.0	7.8	0.3	2.5	1	В
26	SEKRETARIS	7.0	7.8	0.3	2.6	1	В
27	SEKRETARIS	5.0	5.0	0.6	2.1	1	в
28	SEKRETARIS	7.9	4.0	0.1	1.4	1	В
29	SEKRETARIS	8.8	4.0	0.2	1.9	1	В
30	SEKRETARIS	6.1	9.3	1.0	2.1	1	Ε
31	SEKRETARIS	3.5	3.7	0.3	1.5	1	В
32	SEKRETARIS	3.0	3.7	0.6	1.5	1	В
33	SEKRETARIS	10.7	9.0	1.3	2.4	1	Е
34	SEKRETARIS	12.7	18.0	1.5	5.8	1	Е
35	MUARA KARANG	48.5	25.0	1.8	1.7	3	Ā
36	MUARA KARANG	49.5	25.0	1.8	1.2	3	A
37	MUARA KARANG	29.2	13.1	1.5	1.2	2	B
38	CILAWE	5.2	8.0	0.5	2.3	1	E
39			8.0	0.5	2.0	1	E
	CILAWE	8.6					E
40	CILAWE	8.9	8.0	0.5	2.0	1	E
41	CILAWE	9.0	8.0	0.5	2.0	1	E
42	CILAWE	8.3	8.0	0.5	3.0	1 r	E
43	PLUIT	37.9	11.6	1.6	1.0	5	В
44	PLUIT	59.0	8.0	1.3	3.6	3	В
45	ANGKE	9.9	12.0	1.5	1.2	1	В
46	ANGKE	14.0	7.9	1.0	2.8	1	С
47	CIDENG	14.2	27.6	0.6	3.2	1	Other
48	CIDENG	19.3	9.8	0.4	3.2	5	Other
49	CIDENG	27.7	10.1	1.0	1.6	3	С
50	CIDENG	21.9	22.6	0.6	2.5	2	Other
51	CIDENG	8.6	7.6	0.3	1.8	1	Other
52	CIDENG	17.6	22.6	0.9	2.5	3	В
53	CIDENG	13.9	6.0	0.9	2.2	1	B
54	CIDENG	16.5	38.8	0.6	3.1	1	Ē
55	CIDENG	12.3	9.5	1.5	3.2	1	E
56	CIDENG	33.0	15.0	1.0	3.2 1.0	4	
50 57			15.0	1.0	2.4		B
	CIDENG	24.8				2	E
58 50	CIDENG	16.8	15.0	1.0	1.0	4	E
59 60	CEDENG	18.0	15.0	1.4	1.0	3	Other
60	CIDENG	14.7	15.0	1.5	3.0	5	E

Table E.6(2)Main Features of Existing Bridge

Bridge No,	River	Bridge	Bridge	Bridge Thickness	Bridge	Nos. of	Bridge
NO,	Name	Length	Width		Height	Span	Туре
61	CIDENG	<u>(m)</u> 31.8	<u>(m)</u>	(m) 1.4	<u>(m)</u> 2.2	4	E
			10.0		2.2		E
62	CIDENG	15.1	7.4	1.5		1	
63	CIDENG	17.2	9.1	1.2	3.0	1	B
64	CIDENG	16.2	26.4	0.4	3.5	1	B
65	CILIWUNG	12.4	10.0	0.9	2.9	1	Е
66	CILIWUNG	31.8	21.0	1.4	1.7	1	Other
67	CILIWUNG GAJAHMADA	17.0	22.0	1.1	2.3	2	Other
68	CILIWUNG GAJAHMADA	12.7	11.1	1.2	2.1	. 1	В
69	CILIWUNG GAJAHMADA	12.5	14.6	1.4	2.4	1	E
70	KRUKUT	14.2	18.8	0.9	2.9	1	С
71	KRUKUT	32.0	18.8	0.8	7.2	1	С
72	CIRAGIL	10.0	8.0	0.9	2.4	1	Ε
73	CIRAGIL	11.0	5.3	0.7	2.0	1	E
74	CIRAGIL	9.9	6.0	0.8	2.1	1 .	Е
75	CIRAGIL	10.1	6.3	0.7	2.2	1	Е
76	CIRAGIL	10.0	6.0	0.6	2.1	1	E
77	MAMPANG	7.5	18.0	1.2	4.0	1	Other
78	MAMPANG	10.3	6.3	0.6	2.0	1	E
79	MAMPANG	7.7	5.5	0.5	1.5	1	E
80	MAMPANG	9.3	5.5	0.8	2.9	1	E
81	MAMPANG	9.1	18.0	1.2	2.9	1	E
82	MAMPANG	7.5	7.5	0.5	2.2	1	B
83	MAMPANG	4.0	12.6	0.5	2.2	1	D Other
83 84		18.1					
85	CIDENG	20.5	16.0	1.4	4.1	2	E
	CIDENG		5.6	1.2	3.5	1	E
86	CIDENG	15.0	4.0	0.2	2.0	1	Other
87	CIDENG ATAS	4.5	3.9	0.7	2.1	1	Other
88	CIDENG ATAS	4.4	3.5	0.2	1.4	1	Other
89	KALIBARU BARAT/PS.MINGGU	5.5	16.0	0.5	2.2	1	Other
90	KALIBARU BARAT/PS.MINGGU	10.3	4.0	0.7	2.0	1	в
91	KALIBARU BARAT/PS.MINGGU	7.6	4.0	0.6	2.0	- 1	В
92	KALIBARU BARAT/PS.MINGGU	8.2	4.3	0.6	1.7	1	В
93	KALIBARU BARAT/PS.MINGGU	7.4	6.0	0.3	1.2	1	В
94	KALIBARU BARAT/PS.MINGGU	7.0	6.0	0.5	1.8	1	Other
95	KALIBARU BARAT/PS.MINGGU	3.0	4.0	0.5	2.9	1	Other
96	KALIBARU BARAT/PS.MINGGU	3.3	4.0	0.5 ·	3.0	1	Other
97	KALIBARU BARAT/PS.MINGGU	5.9	9.0	0.6	3.5	1	Other
98	KALIBARU BARAT/PS.MINGGU	4.2	7.0	1.0	2.4	1	В
9 9	KALIBARU BARAT/PS.MINGGU	10.8	8.6	1.0	2.2	1 1	E
100	KALIBARU BARAT/PS.MINGGU	4.5	3.9	0.4	1.7	1	B
101	KALIBARU BARAT/PS.MINGGU	3.9	8.0	0.8	2.4	· 1	B
102	KALIBARU BARAT/PS.MINGGU	8.7	6.0	0.8	3.1	-1	B
102	KALIBARU BARAT/PS.MINGGU	7.2	7.0	0.9	2.1	1	B
105	KALIBARU BARAT/PS.MINGGU	7.1	5.8	0.9	2.1	1	В
104	KALIBARU BARAT/PS.MEROGU	6.7					В
105		7.3	4.1	0.6	1.9	1	
	KALIBARU BARAT/PS.MINGGU		6.6	0.8	3.4	••• 1	A
107	KALIBARU BARAT/PS.MINGGU	9.8	4.3	0.6	3.7	1	B.
108	KALIBARU BARAT/PS.MINGGU	8.0	7.5	0.6	1.5	1	В
109	KALIBARU BARAT/PS.MINGGU	9.0	7.2	0.8	1.5	1	B
110	KALIBARU BARAT/PS.MINGGU	7.9	8.0	0.4	2.0	1	E
111	KALIBARU BARAT/PS.MINGGU	9.4	22.0	0.5	2.2	1	В
112	KALIBARU BARAT/PS.MINGGU	8.9	6.0	0.5	1.7	1	E
113	KALIBATA TIMUR	5.4	8.0	0.3	1,9	1	E
114	KALIBATA TIMUR	11.4	12.5	0.8	1.7	1	Ε
115	KALIBATA TIMUR	10.4	6.3	0.6	1.5	1	E
116	KALIBATA TIMUR	10.6	6.1	0.6	1.8	· 1	E
117	KALIBATA TIMUR	10.6	6.0	0.5	1.8	1	E
118	KALIBATA TIMUR	9.9	6.3	0.5	2.2	1	Ē
119	KALIBATA TIMUR	8.7	6.3	0.7	2.2	1	E
120	KALIBATA TIMUR	9.2	6.3	0.6	1.8	1	Ĕ

•

Bridge No.	River Name	Bridge Length (m)	Bridge Width (m)	Bridge Thickness (m)	Bridge Height (m)	Nos. of Span	Bri Ty
121	KALIBATA TIMUR	8.9	6.0	0.5	1.8	1	1
122	KALIBATA TIMUR	8.5	5.9	0.4	1.8	1]
123	KALIBATA TIMUR	7.1	6.0	0.5	1.7	1]
124	CUANTUNG	11.5	8.0	0.5	5.1	1	
125	COSENG	11.0	8.0	0.7	2.5	1	-
126	SALEMBA	22.9	8.5	0.6	1.1	1	
127	SALEMBA	21.4	17.5	0.6	2.9	2	
128	SALEMBA	22.4	19.8	1.1	1.2	1	•
129	SALEMBA	4.8	15.0	0.5	2.0	1	
130	SALEMBA	21.6	14.1	1.0	1.3	1	
131	SALEMBA	23.1	12.4	0.5	1.2	3]
132	SALEMBA	16.4	32.9	0.9	3.2	1	Ot
133	SALEMBA	13.0	10.0	0.7	2.3	1	
134	SALEMBA	12.3	10.0	0.7	2.7	1]
135	SALEMBA	12.0	6.0	0.5	1.3	1	
136	SALEMBA	12.0	8.0	0.5	1.3	1]
137	SALEMBA	13.9	13.0	0.5	1.3	1	
138	SALEMBA	12.5	30.0	0.7	2.7	1	Ot
139	SALEMBA	6.0 10.2	49.5 8.2	0.8 1.3	1.5 0.8	1 1	10]
140 141	SALEMBA	10.2	8.2 6.6	0.6	2.6	1]
141	SALEMBA	8,8	8,8	0.7	3.5	1	
142	SALEMBA SALEMBA	11.7	o.o 9.0	0.6	2.7	1	1
145	SALEMBA	13.1	22.8	0.7	2.2	1]
144	KALIBARU TIMUR	10.0	9.6	0.5	3.0	1	1
146	KALIBARU TIMUR	6.5	7.6	0.6	2.2	1	J
147	KALIBARU TIMUR	7.7	9.6	0.4	2.5	1	1
148	KALIBARU TIMUR	6.8	6.1	0.5	4.0	1	3
149	KALIBARU TIMUR	7.0	5.9	0.3	2.5	1]
150	KALIBARU TIMUR	15.9	7.4	1.0	2.4	1	j
151	KALIBARU TIMUR	8.3	7.8	0.4	2.2	1	.]
152	KALIBARU TIMUR	10.1	9.6	0.5	2.5	1	l
153	KALIBARU TIMUR	11.5	7.1	0.7	2.1	1	I
154	KALIBARU TIMUR	4.7	4.4	0.5	4.2	1	J
155	KALIBARU TIMUR	11.9	6.1	0.7	1.7	1]
156	KALIBARU TIMUR	9.3	7.2	0.6	2.8	1	3
157	KALIBARU TIMUR	10.1	9.7	0.7	2.2	1]
158	KALIBARU TIMUR	6.5	8.1	0.6	2.5	1	ł
159	KALIBARU	6.0	15.0	0.5	1.5	1	1
160	KALIBARU TIMUR	3.7	6.0	0.5	1.5	1	1
161	KALIBARU TIMUR	4.0	14.0	0.4	1.5	1	J
162	CIPINANG	15.9	9.7	1.2	4.4	1]
163	CIPINANG	16.2	9.8 8 0	1.2	4.4	1]
164	CIPINANG	15.6	8.0	0.5 0.4	2.6 4.4	1]]
165	CIPINANG	15.9 3.0	4.0 4.1	0.4	4.4 2.6	1 1	Ot
166	CIPINANG	5.5	4.1 6.0	0.2	2.0 1.8	1	- 01 - 01
167 168	CIPINANG	9.9	6.0 7.0	0.9	1.8	1	01
168	RAWAKERBAU RAWAKERBAU	6.5	7.0	0.9	1.1	1	01
170	RAWAKERBAU	6.5	3,6	0.8	2.2	1	01
170	UTANKAYU	23.2	4.3	0.6	2.5	4	01
172	UTANKATU	10.4	5.2	0.5	3.2	1	01
172	UTANKAYU	10.4	9.3	1.1	1.2	1	
174	UTANKAYU	9.6	9.7	0.3	1.4	1	Ot
175	UTANKAYU	8.1	6.5	0.3	2.0	1	Ot
176	UTANKAYU	10.2	5.2	0.3	1.9	1	01
177	LAGOA	3.5	5.2	0.3	1.5	2	
178	LAGOA	11.6	5.4	0.4	1.5	4	j
179	ITEM	20.4	12.0	0.5	1.5	3	ĩ
-		13.2	5.0	0.2	2.0	3	

Table E.6(4)Main Features of Existing Bridge

Bridge No.	River Name	Bridge Length	Bridge Width	Bridge Thickness	Bridge Height	Nos.of Span	Bridg Type
		(m)	(m)	(m)	(m)	-	••
181	KEBONBAWANG	37.1	6.0	0.8	1.3	4	B
182	KEBONBAWANG	10.2	6.3	0.8	2.8	1	в
183	KEBONBAWANG	4.2	6.1	0.9	3.0	1	Е
184	KEBONBAWANG	5.1	3.9	0.6	2.0	1	Е
185	KEBONBAWANG	5.4	7.6	0.6	1.5	1	Е
186	KEBONBAWANG	5.1	8.2	0.6	1.5	1	E
187	KEBONBAWANG	5.6	7.0	0.5	1.5	. 1	Е
188	KEBONBAWANG	6.3	4.0	0.5	1.5	1.	Е
189	KEBONBAWANG	6.9	4.0	0.5	1.3	1	Е
190	KEBONBAWANG	5.7	4.0	0.5	1.3	1	Е
191	KEBONBAWANG	6.0	4.0	0.5	1.2	1	Е
192	KEBONBAWANG	6.0	4.0	0.5	1.2	1	Е
193	KEBONBAWANG	6.0	4.0	0.5	1.2	1	E
194	KEBONBAWANG	6.0	4.1	0.4	1.3	1	Е
195	RAWABADAK	4.5	12.0	0.7	1.5	1	В
196	RAWABADAK	4.5	6.0	0.8	1.5	1	в
197	ARTONUOM	35.0	12.0	1.0	1.8	2	Е
198	ARTONIJOM	25.0	8.0	0.8	1.4	3	Ē
199	PULOMAS UTARA	10.8	8.5	0.8	2.6	1	Е
200	PULOMAS UTARA	12.0	8.0	0.8	2.5	1	E
201	KAYU PUTIH SELATAN	4.3	12.5	0.3	1.5	1	Е
202	KAYU PUTIH SELATAN	3.4	3.2	0,3	1.5	1	Е
203	PULOMAS UTARA	10.6	8.3	0.8	2.5	1	Е
204	PULOMAS UTARA	15.8	8.5	0.8	2.1	1	Е
205	KELAPA NIAS	8.0	16.0	0.8	3.0	1	А
206	KELAPA NIAS	15.7	8.5	0.7	1.2	1	Е
207	KELAPA NIAS	7.0	22.5	0.6	2.0	1	Α
208	PULO GADUNG	6.5	12.0	0.8	2.1	1	А
209	PULO GADUNG	7.2	11.5	0.4	1.2	1 .	С
210	PULO GADUNG	6.0	8.5	0.6	1.2	1	Е
211	PULO GADUNG	4.5	8.5	0.6	1.1	1	E
212	PULO GADUNG	6.0	16.0	0.7	1.2	1	Е
213	KAYU PUTIH SELATAN	6.5	18.6	0.6	2.1	1	E
214	KAYU PUTIH SELATAN	9.8	11.5	0.6	1.4	1	Е
215	KAYU PUTIH SELATAN	9.6	8.2	0.9	1.5	1	Е
216	KAYU PUTIH SELATAN	12.7	7.6	0.8	2.9	. 1	Е
217	KAYU PUTIH UTARA	12.1	16.4	0.9	2.3	1	Е
218	KAYU PUTIH UTARA	13.7	7.6	0.9	2.3	1	Е
219	KAYU PUTIH UTARA	10.6	11.4	0.9	2.9	1	Е
221	KAYU PUTIH UTARA	6.5	18.6	0.6	2.1	1	Other
222	CAKUNG	17.0	53.7	0.6	1.8	1	Е
223	CAKUNG	16.2	7.5	0.5	1.0	1	в
224	CAKUNG	16.5	10.0	0.5	1.5	1	в
225	CAKUNG	13.4	9.1	0.7	1.7	. 1	В
226	CAKUNG LAMA	8.0	8.5	0,6	1.4	1	Е
227	CAKUNG LAMA	12.6	18.0	0.9	1.2	1	Е
228	MALANG	7.3	8.0	0.6	2.0	. 1	E
229	MALANG	6.3	7.5	0.5	1.1	. 1	Ē
230	MALANG	9.3	8.5	0.8	1.0	2	С
231	MALANG	1.2	5.0	0.4	2.5	1	С
232	MALANG	3.0	6.0	0.4	2.0	1	E
233	MALANG	1.8	3.5	0.4	2.5	1	С
234	MALANG	1.7	4.5	0.4	3.1	1	Ċ
235	MALANG	10.0	6.0	0.5	1.5	- 1	Ē
236	SUNTER	5.4	5.5	0.6	2.5	1	Other
237	SUNTER	10.3	5.5	0.6	3.2	1	E
238	PETUKANGAN	13.0	24.0	0.7	2.0	1	Ē
239	SUNTER	9.0	9.5	0.3	3.5	1	Other
241	SEKRETARIS	20.0	9.8	1.2	1.8	1	E
242	SEKRETARIS	30.0	8.2	1.1	3.5	1	Ē

٠

•

÷

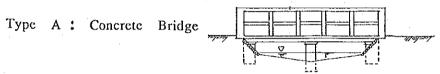
Bridge No.	River Name	Bridge Length	Bridge Width	Bridge Thickness	Bridge Height	Nos, of Span	Bridge Type
140.	Name	(m)	(m)	(m)	(m)	Span	Type
243	SEKRETARIS	30.0	8.1	1.1	3.5	1	Е
244	SEKRETARIS	21.3	32.0	1.0	2.2	2	Other
245	GROGOL	48.5	7.9	1,3	5.9	5	С
246	GROGOL	25.0	14.7	1.3	3.7	1	в
247	GROGOL	25.0	15.0	1.5	3.0	1	В
248	GROGOL	25.0	14.7	1.5	5.1	1	В
249	GROGOL	20.5	18.0	1.7	3.0	1	Other
250	GROGOL	13.5	9,4	1.2	2.7	2	C
251	GROGOL	12.7	11.5	1.6	3.3	1	В
252	GROCOL	10.0	6.2	1.3	2.2	î	B
253	GROGOL	11.0	6.2	1.3	2.2	1	B
255	GROOOL	12.5	5.1	1.3	2.1	1	Other
255	GROGOL	17.8	5.4	1.4	2.3	1	E
256	GROGOL	18.8	5.0	1.4	2.3	1	E
257	GROGOL	13.5	13.4	1.5	2.1	1	Ē
258	GROGOL	17.0	16.5	0.8	3.8	1	Ē
259	GROGOL	16.0	15.5	0.9	3.8	1	E
259	GROGOL	15.8	13.5	0.8	3.6	1	E
260 261	GROGOL	9.0	6.0	0.9	2.5	1	B
262	GROGOL	11.7	0.0 7.0	1.0	2.9	1	B
262	GROGOL	10.1	14.0	0.5	2.7	1	E
		10.1	6.0	0.9	1.9	1	B
264	GROGOL	18.6	9.0	1.0	3.3	2	B
265	GROGOL	9.4	9.0 6.1	0.7	3.6	2	B
266 267	GROOOL	9.4 12.0	8.9	1.4	3.3	1	E
	GROGOL	7.8	9.3	0.6	5.5	1	B
268	GROGOL	14.9		0.3	2.3	1	Б Е
269	KRUKUT	14.9	18.1		2.3	1	Dither
270	KRUKUT	12.7	22.5	0.6	2.3	1	
271	KRUKUT	12.8	24.7 30.0	0.7 0.7	2.1	1	Other Other
272	KRUKUT		50.0 60.0	0.7	2.3	1	Other
273	KRUKUT	10.1			2.4 3.1		
274	SUNTER	51.5	27.9	1.3	5.1 1.6	3	B B
275	SUNTER	9.6	5.0	0.5		1 3	B
276	SUNTER	40.2	8.7	1.2	1.2		
277	SUNTER	40.1	11.1	1.0	1.6	3	B
278	SUNTER	36.3	9.2	0.5	2.4	5	E
279	SUNTER	34.8	9.2	0.5	2.8	5	E
280	SUNTER	36.5	12.0	0.5	2.5	5	E
281	SUNTER	43.7	7.4	1.5	1.7	3	B
282	SUNTER	27.9	8.7	0.6	4.7	2	E
283	SUNTER	20.0	33.4	0.7	3.0	1	E
284	SUNTER	32.0	16.0	1.2	3.3	1	B
285	SUNTER	19.5	16.0	1.2	2.7	1	B
286	SUNTER	16.3	6.2	1.3	4.2	1	E
287	SUNTER	18.2	7.6	1.1	2.5	1	E
288	SUNTER	13.8	7.5	0.7	3.1	1	E
289	SUNTER	27.4	9.6	1.3	3.7	1	A
290	SUNTER	21.0	16.5	1.2	3.7	1	E
291	CIPINANG	21.0	15.6	1.1	3.5	1	Other
292	CIPINANG	21.5	8.1	1.2	3.2	1	E
293	CIPINANG	16.8	5.7	1.4	2.3	1	E
294	CIPINANG	15.4	5.2	0.6	2.2	1	E
295	CIPINANG	15.9	6.8	0.8	2.2	1	E
296	JELANGKENG	37.2	46.9	1.0	1.0	3	Α
297	JELANGKENG	31.8	10.0	1.4	2.3	4	Е
298	JELANGKENG	20.0	10.0	1.0	2.6	1	Other
299	EAST BARU CANAL	20.0	9.0	1.0	2.2	1	Е
300	JEMBATAN LIMA	5.2	10.0	0.3	0.8	1	В
301	JEMBATAN LIMA	5.2	9.0	0.3	0.8	1	В
302	DURI	26.0	8.0	0.8	1.0	1	Other

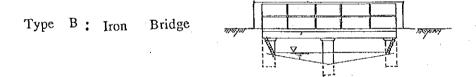
Table E.6(6)

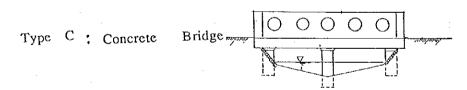
Main Features of Existing Bridge

Bridge	River	Bridge	Bridge	Bridge	Bridge	Nos. of	Bridge
No.	Name	Length	Width	Thickness	Height	Span	Type
		(m)	(m)	(m)	(m)	-	
303	DURI	22.1	8.0	0.8	10.5	2	Е
304	ANAK CILIWUNG	12.4	8.7	0.5	2.9	1	E
305	GAJAH MADA	9.4	25.0	0.9	1.9	1	Е
306	GAJAH MADA	8.0	7.0	0.9	1.3	1	В
307	GAJAH MADA	5.2	.7.5	1.0	0.9	1	Other
308	GAJAH MADA	7.5	7.6	1.0	0.9	1	В
309	GAJAH MADA	5.2	7.5	1.0	0.9	1	Other
310	SAHARI	13.4	36.6	1.1	1.4	1	Α
311	CILIWUNG	29.4	10.0	0.6	3.1	1	Other
312	CILIWUNG	33.0	9.9	1.0	2.3	3	Other
313	CILIWUNG	9.3	13.3	0.6	1.2	1 .	Other
314	CILIWUNG	21.3	31.6	0.8	2.4	4	В
315	SAHARI	20.3	12.2	0.7	2.7	5	Other

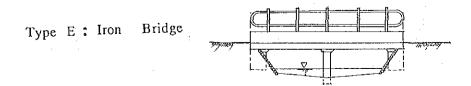
Note (1) Bridge Thickness


(2) Bridge Height


: Bridge Beam Height : Height form River Bed to Bridge Beam


: Shown below

(3) Bridge Type Source : JICA


Appendix-A

E - 20

Table E.7

River	River		River	Тор	Bottom	River	River
No.	Name		Gradient	Width	Width	Height	Capacity
	· .		-	(m)	<u>(m)</u>	<u>(m)</u>	(m 3/s)
Α	Kali Sekretaris	(1)	1 : 250	3.9	3.3	2.5	24
	- do -	(2)	1 : 900	3.1	2.8	1.3	4
	- do -	(3)	1 : 320	4.8	3.0	1.5	12
В	Jatipulo Tomang		1 : 1,700	4.0	3.0	1.5	5
	Kyai Tapa		1 : 5,000	7.5	6.4	2.6	14
С	Angke		1 : 4,000	15.0	10.5	4.0	61
D	Gresik Surabaya		1 : 1,500	9.0	8,8	2.7	35
E	Cideng		1 : 1,300	12.0	11.0	2.5	47
F	Krukut		1 : 1,700	15.0	11.2	3.9	94
G	Cideng		1 : 5,000	18.0	9.4	3.7	. 52
Н	Cideng		1 : 1,790	19.0	19.0	2.5	71
Ι	Jelangkeng		1 : 5,000	18.0	17.0	3.0	51
J	Cibubur		1 : 1,570	4.2	4.2	3.0	15
К	Angke		1 : 5,000	12.4	7.9	2.7	23
L	Angke		1 : 5,000	12.0	8.0	1.6	10
Μ	Jelangkeng		1 : 1,700	18.0	18.0	3.0	90
Ν	Jembatan Dua		1 : 5,000	10.0	7.0	2.5	17
0	Bandengan		1 : 190	8.0	6.0	2.0	16
Р	Pluit		1 : 1,880	7.5	6.5	2.6	22
Q	Cideng		1 : 1,700	20.8	18.5	1.2	24
R	Ciliwung		1 : 5,000	15.0	8.3	3.8	45
S	Muara Karang	•	1 : 5,000	31.4	26.6	2.8	82
Т	Sentiong		1 : 1,750	17.4	17.4	3.5	107
U	K. Item		1 : 5,000	10.9	7.8	1.8	12
v	Sentiong		1 : 5,000	17.0	16.0	3.0	48
W	Sunter C.		1 : 5,000	11.5	9.7	2.4	21
х	Sentiong		1 : 5,000	25,4	24.0	2.0	41

E - 21

River No.	River Name		Riv Grad		Top Width	Bottom Width	River Height	River Capacity
110.	Manie		Juan	ICIIC	(m)	(m)	(m)	(m3/s)
1-1	Kamal	(1)	1 :	1600	10.0	9.0	0.5	3
1 • 1	- do -	(2)	1 :	3000	14.0	12.0	1.0	9
	- do -	(3)	1:	3000	18.0	15.2	1.4	20
1 1		(5)	1 :	3000	5.0	2,4	1.3	4
1-2	Tanjungan	713						
2-1	Kali Gede/Bor	(1)	1 :	2000	4.0	2.2	0.9	2
	- do -	(2)	1 :	2000	4.0	0.8	1.6	3
2-2	Saluran Cengkareng	(1)	1 :	2000	4.0	1.6	1.2	3
	- do -	(2)	1 :	2000	6.0	2.4	1.8	7
2-3	Padongkelan		1 :	2000	5.0	3.6	0.7	2
3	Semanan		1 :	2000	4.0	2.8	1.5	4
4	Kreo		1 :	1920	13.0	4.5	2.7	30
5	Ulujami	(1)	1 :	830	4.5	4.2	3.1	22
	- do -	(2)	1 :	1040	6.0	5.4	2.9	27
	- do -	(3)	1 :	830	8.0	6.5	3.4	51
6	Sepak	(-)	1	850	11.6	6.5	2.7	49
7	Pesanggrahan bawah		1:	1110	2.1	1.9	1.1	2
8	Kedaung		1:	2080	8.0	6.0	1.4	9
9	Kedaung		1:	2080	12.0	10.0	3.0	.46
9 10	Kedaung		1:	2080	8.0	6.0	3.0 1.4	.40
	-							
11	Mookervart		1:	5000	30.0	21.0	4.5	147
12	Mookervart		1 :	5000	30.1	21.0	4.5	147
13	Kedoya		1 :	1250	12.4	7.9	2.7	47
14	Cilawe	(1)	1 :	2700	14.3	9.7	2.4	32
	- do -	(2)	1 :	200	4.5	3.6	1.5	16
15	Ciragil		1 :	420	6.2	4.5	3.3	46
16	Krukut		1 :	110	5.3	2.6	1.5	21
17	Mampang	(1)	1 :	380	7.7	6.4	2.7	53
	- do -	(2)	1 :	250	4.7	3.5	2.3	26
18	Mampang		1 :	280	4.7	3.0	2.3	23
19	Mampang	(1)	1 ;	610	9.3	8.7	3.7	88
	- do -	(2)	1 :	300	8.0	7.1	2.0	43
	- do -	(2) (3)	1:	540	10.6	9.5	2.6	43 66
	- do -			340 810	8,8	9.5 7.6	4.2	80
20		(4)	1 .:					
20	Cideng Atas	(1)	1	350	4.5	4.0	1.6	14
~ -	- do -	(2)	1 :	560	5.0	2.2	3.0	21
21	Warung		1 :	440	5.0	2.0	2.3	16
22	Cideng		1 :	580	12.0	8.0	3.0	78
23	K.Baru Barat/PS.Minggu		1 :	120	4.0	2.0	1.2	10
	- do -	(2)	1 :	150	4.0	2.0	1.3	10
	- do -	(3)	1 :	430	7.0	4.6	4.4	75
	- do -	(4)	1	660	7.9	7.9	3.1	55
	- do -	(5)	1 :	330	9.5	6.0	2.5	58
	- do -	(6)	1 :	270	8.0	5.0	2.7	58
24	Ciliwung	/	1	190	5.3	3.2	1,5	18
25	Rawa Bilai		1:	380	8.0	4.0	2.0	28
26	K. Bata Timur	(1)	1:	320	5.5	4.6	2.0	28 28
20								
94	- do -	(2)	1:	550	14.2	6.8	2.7	71
27	K. Bata		1 :	550	10.2	7.0	2.1	40
28	K. Bata		1 :	550	11.8	8.8	3.4	100
29	Bali Matraman		1 :	380	6.0	5.0	4.5	74
30	Goseng		1 :	480	12.4	6.0	3.2	84
31	Cijantang		1 :	200	8.6	2.1	2.3	40
32	Ciliwung		1:	180	8.0	4.0	2.8	67
33	K.Baru Timur	(1)	1 :	240	4.0	2.6	1.4	10
	- do -	(2)	1 :	330	4.0	2.5	1.5	9
	- do -	(3)	1 :	260	4.7	3.2	1.5	14
	- do -	(4)	1 :	400	14.5	10.9	1.9	63
	- do -	(5)	1.	400 950	14.3	14.0	1.9	36

••

Table E.8() Existing	Flow	Capacity	of	Group	Ш
------------	------------	------	----------	----	-------	---

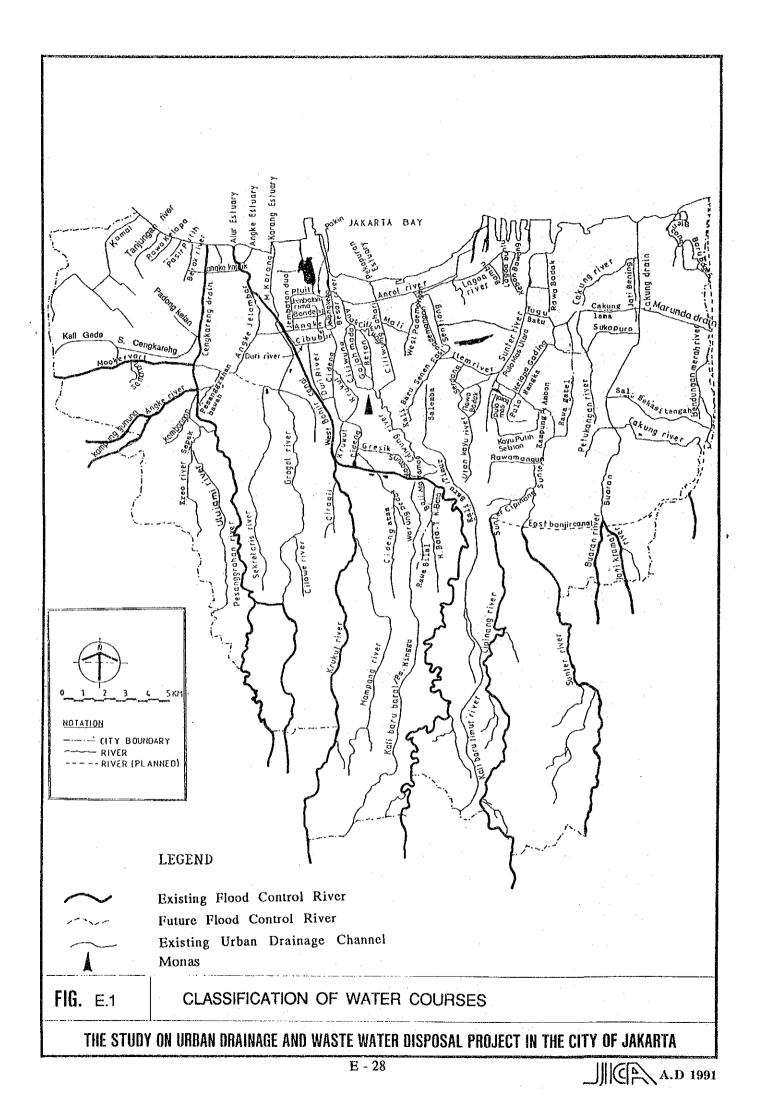
F	liver No.	River Name	rok z Anti-zi kon Manya Pada A	River Gradient	Top Width	Bottom Width	River Height	River Capacit
tan pa	24			1 6 7 0	<u>(m)</u>	(m)	(m)	(m3/s)
	34	Sentiong	(1)	1 : 530	2.6 8.8	2.4	0.9 2.9	3 41
	35	Kali Baru Timur	(1)	1 : 860 1 : 1530		5.6	4.0	41 79
	0.0	- do -	.(2)		12.5	8.8		
	36	Cipinang		1 : 240	4.0	3.0	2.3	21
	37	Cipinang		1 : 300	3.5	2.8	2.8	21 70
	38	Cipinang		1 : 250	9.7	7.2	2.4	
	39	Cipinang		1 : 240	5.6	5.0	2.5	41
	40	Sunter		1 : 240	10.3	10.0	3.2	132
	41	Sunter	(1)	1 : 200	11,4	11.4	3.8	212
	42	Sunter	(1)	1 : 320	10.0	8.0	3.2	101
		- do -	(2)	1 : 200	8.3	7.3	3.0	96
	43	Sunter		1 : 360	5.9	5.5	2.7	41
	44	Salemba	(1)	1 : 740	20.7	16.7	2.7	124
	40	- do -	(2)	1 : 1620	18.7	13.5	4.1	132
	45	Kali Baru Senen	· .	1 : 2380	9.0	8.5	2.0	-18
	46	Mati		1 : 1860	10.0	7.0	1.8	17
	47	Lagoa		1 : 5000	13.5	13.0	2.7	32
	48	Koja		1 : 5000	40.0	35.0	1.0	20
	49 50	Kebon Bawang		1 : 5000	6.0	5.3	2.3	9
	50	Lagoat Timur		1 : 5000	20.0	21.0	1.5	20
	51	Lagoa		1 : 5000	50.0	45.0	3.0	156
	52	Lagoat Timur		1 : 5000 1 : 3700	14.1	13.0	2.0	21
	53	Bambu			5.5 9.5	5.5	1.5 2.0	5
	54	Lagoat Tenggiri	(1)			8.5		13
	55	Utan Kayu	(1)	1 : 650 1 : 4000	10.6 13.0	9.3	3.6	94 48
	56	- do -	(2)		6.0	12.0 6.0	3.5 2.0	48
	56 57	Rawa Badak		1 : 1300 1 : 630	15.0	13.0	2.0 4.0	171
•	58	Utan Kayu		1 : 600	4.5	3.7	1.3	8
		Cipinang Rawamangun		1 : 1040	6.4	5.0	2.4	21
				1 : 1200	14.7	9.3	2.4	61
		Kayu Putih Utara Pulo Nangka		1 : 1870	11.9	9.7	2.0	26
	62	Kayu Putih Selatan		1 : 1170	6.5	6,5	2.7	20 27
		Pula Mas Barat		1 : 1170 1 : 1110	4.0	3.5	2.2	10
		Pulo Gadung		1 : 2250	7.2	7.2	5.5	56
		-			15.0	10.0	4.5	63
		Rawa Gate Pulo Gadung		1 : 5000 1 : 5000	15.0	10.0	4.5	63
	67	Sukapura		1 : 5000	7.0	5.5	4.5 5.5	32
		Tugu Batu		1 : 5000	15.0	10.0	4.5	63
		Rawa Gateł		1 : 5000	15.0	10.0	4.5	63
	70	Kelapa Gadiung		1 : 5000	15.0	10.0	4.5	63
	71	Kelapa Nias		1 : 5000	15.0	10.0	4.5	63
		Tugu Batu		1 : 5000	8.5	6.0	2.3	12
		Rawa Badak		1 : 5000	8.3	7.1	2.0	12
		Rawa Badak		1 : 5000	8.2	7.2	2.0	11
		Pelumpang		1 : 2000	5.6	5.0	1.8	9
•		Cakung Lama	(1)	1 : 1890	4.8	4.6	1.5	6
	10	- do -	(2)	1 : 5000	7.8	4.0 6.5	1.5	6
	77	Pandang	(~)	1 : 5000	11.0	0.5 7.5	1.5	10
		Cakung	-1 T	1 : 5000	5.5	4.4	1.5	4
		Jati Bening		1 : 5000	11.0	8.0	1.7	11
		Jati Bening		1 ; 5000	11.0	7.5	1.7	10
		Sal. Bekasi tengah		1 : 5000	12.5	9.5	2.8	27

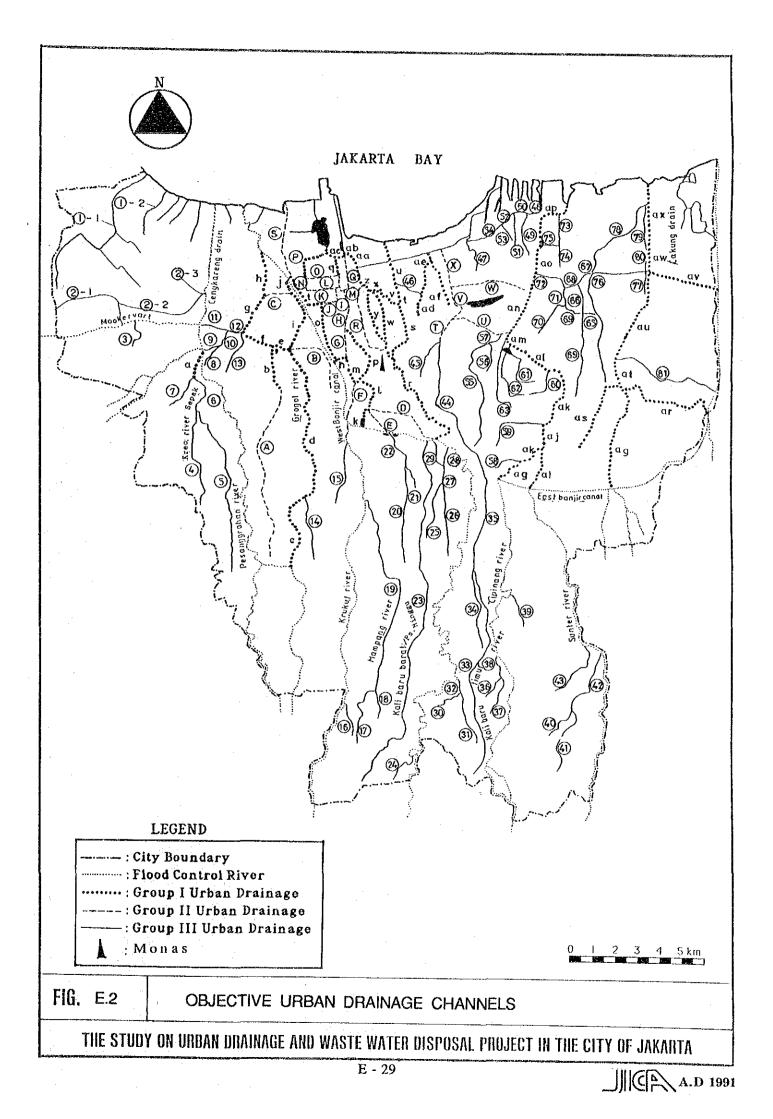
Table	E.9(1)	Existing	Flow	Capacity	at	Bridge	Site

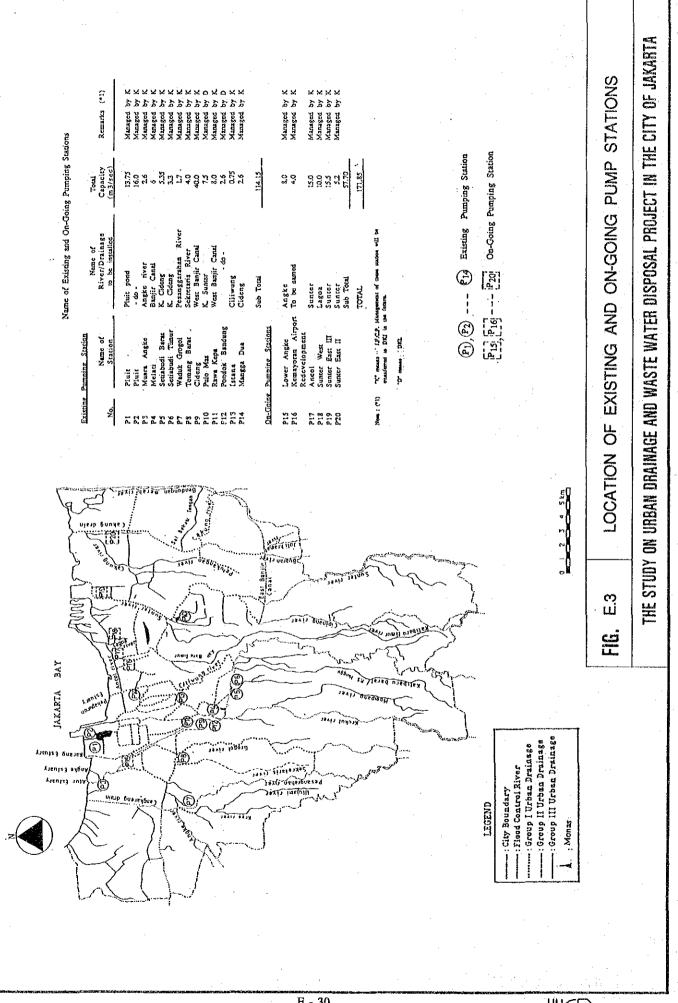
1 2 3 4 5			Gradient	Width (m)	Width (m)	Height (m)	Capacity (m3/s)
3 4 5	KAMAL		1 : 2,500	13.7	8.7	2.8	21
4 5	KEMBANGAN		1 : 1,110	37.2	10.3	5.6	15
5	KEMBANGAN	•	1 : 1,110	11.4	7.2	3.2	14
	SEPAK SEPAK		1 : 850 1 : 850	18.1 17.9	10,4 10.0	4.4 4.5	18 22
6	SEPAK		1 : 850	18.3	10.0	4.7	22
7	KREO	•	1 : 1,920	17.8	16.5	3.0	28
8	KREO		1 : 1,920	17.0	15.0	3.5	22
9	KREO		1 : 1,920	17.0	15.0	3.5	22
10	KREO		1 : 1,920	17.0	15.0	3.5	22
11 12	KREO DAANMOGOT		1 : 1,920 1 : 830	10.6 13.7	6.5 4.7	3.0 0.8	23 53
13	DAANMOGOT		1 : 1,040	13.7	4.7	2.9	26
14	DAANMOGOT		1 : 830	13.7	7.0	2.5	24
15	DAANMOGOT		1 : 830	12.6	4.0	2.9	20
16	SEKRETARIS		1 : 320	14.5	13.5	3.5	63
17	SEKRETARIS		1 : 320	6.0	4.7	1.3	53
18 19	SEKRETARIS SEKRETARIS		1 : 900 1 : 900	16.9 4.2	15.0 4.0	2.1 1.8	74 18
20	SEKRETARIS		1 : 900	4.2 7.2	4.0 6.8	1.8	42
21	SEKRETARIS		1 : 900	7.1	6.5	2.3	35
22	SEKRETARIS		1 : 900	7.0	6.4	2.1	37
23	SEKRETARIS		1 : 900	7.0	6.4	2.6	33
24	SEKRETARIS		1 : 900	7.3	6.5	1.8	21
25	SEKRETARIS		1 : 900 1 : 900	7.0	5.6	2.5 2.6	14 32
26 27	SEKRETARIS SEKRETARIS		1 : 900	7.0 5.0	5.6 3.2	2.0	27
28	SEKRETARIS		1 900	7.9	6.2	1.4	10
29	SEKRETARIS		1 : 900	8.8	4.7	. 1.9	10
30	SEKRETARIS		1 : 900	6.1	3.0	2.1	38
31	SEKRETARIS		1 : 250	3.5	3.0	1.5	27
32 33	SEKRETARIS SEKRETARIS		1 : 250 1 : 250	3.0 10.7	2.6 8.5	1.5 2.4	41 36
34	SEKRETARIS		1 : 250 1 : 250	12.7	10.9	5.8	23
35	MUARA KARANG		1 : 5,000	48.5	25.3	1.7	55
36	MUARA KARANG		1 : 5,000	49.5	43.0	1.2	67
37	MUARA KARANG		1 : 5,000	29.2	26.6	1.2	73
38 39	CILAWE		1 : 2,700 1 : 200	5.2 8.6	5.2 6.0	2.3 2.0	28 27
40	CILAWE CILAWE		1 : 200	8.9	8.0	2.0	30
41	CILAWE		1 : 200	9.0	7.4	2.0	28
42	CILAWE		1 : 200	8.3	8.3	3.0	28
43	PLUIT		1 : 1,880	37.9	33.0	1.0	73
44	PLUIT		1 : 1,880	59.0	43.5	3.6	27
45 46	ANGKE ANGKE		1 : 4,000 1 : 4,000	9.9 14.0	7.9 12.0	1.2 2.8	54 54
40 47	CIDENG		1 : 1,700	14.0	12.0	3.2	27
48	CIDENG		1 : 1,700	19.3	9.1	3.2	29
49	CIDENG		1 : 1,700	27.7	20.9	1.6	30
50	CIDENG		1 : 1,700	21.9	21.9	2.5	29
51	CIDENG		1 : 1,700	8.6	17.6	1.8	36
52 53	CIDENG CIDENG		1 : 1,700 1 : 1,700	17.6 13.9	15.0 12.2	2.5 2.2	28 30
55 54	CIDENG		1 : 1,700	16.5	9.4	3.1	18
55	CIDENG		1 : 1,700	12.3	8.5	3.2	54
56	CIDENG		1 : 1,700	33.0	20.0	1.0	89
57	CIDENG		1 : 1,700	24.8	20.6	2.4	33
58	CIDENG		1 : 1,700	16.8	15.6	1.0	60
59 60	CIDENG CIDENG		1 : 1,700 1 : 1,700	18.0 14.7	10.0 14.7	1.0 3.0	34 47

liver	River		ver	Тор	Bottom	River	River
No.	Name	Grae	lient	Width (m)	Width (m)	Height (m)	Capacity (m3/ <u>s)</u>
61	CIDENG	1	: 1,700	31.8	26.4	2.2	<u>(m 57 s)</u> 37
		1	: 1,700	15.1	15.0	2.7	41
62	CIDENG	-1	: 1,700	17.2	11.3	3.0	31
63	CIDENG		: 1,700	17.2	11.5	3.5	11
64	CIDENG		: 5,000	10.2	12.0	2.9	37
65	CILIWUNG	1			27.0	1.7	47
66	CILIWUNG	1	5,000	31.8	16.3	2.3	34
67	CILIWUNG GAJAH MADA	1	: 5,000	17.0	10.5	2.3	34
68	CILIWUNG GAJAH MADA	- 1	: 5,000	12.7 12.5	8.3	2.1	40
69	CILIWUNG GAJAH MADA	- 1	: 5,000		11.2	2.9	35
70 70	KRUKUT	1	: 1,700	14.2	27.5	7.2	10
71	KRUKUT	1	: 1,700	32.0			31
72	CIRAGIL	1	: 420	10.0	6.0	2.4	
73	CIRAGIL	1	: 420	11.0	5.8	2.0	32
74	CIRAGIL	1	: 420	9.9	5.3	2.1	40
75	CIRAGIL	1	: 420	10.1	5.9	2.2	39
76	CIRAGIL	-1	: 420	10.0	6.0	2.1	27
77	MAMPANG	1	: 810	7.5	7.5	4.0	28
78	MAMPANG	1	: 540	10.3	9.5	2.0	27
79	MAMPANG	-	: 540	7.7	7.1	1.5	30
80	MAMPANG	-	: 540	9.3	8.7	2.9	28
81	MAMPANG	-	: 300	9.1	5.1	2.2	28
82	MAMPANG	1	: 610	7.5	7.0	2.2	24
83	MAMPANG	1	: 250	4.0	3.0	2.1	15
84	CIDENG	1	: 580	18.1	3.0	4.1	31
85	CIDENG	1	: 580	20.5	10.5	3.5	42
86	CIDENG	1	: 580	15.0	11.0	2.0	31
87	CIDENG ATAS	1	: 560	4.5	3.0	2.1	28
88	CIDENG ATAS	1	: 560	4.4	4.0	1.4	14
89	KALIBARU BARAT/PS.MINGGU	1	: 270	5.5	4.1	2.2	32
90	KALIBARU BARAT/PS.MINGGU	1	: 270	10.3	10.3	2.0	27
91	KALIBARU BARAT/PS:MINGGU	1	: 270	7.6	6.4	2.0	24
92	KALIBARU BARAT/PS.MINGGU	1	: 270	8.2	6.5	1.7	26
93	KALIBARU BARAT/PS.MINGGU	1	: 270	7.4	6.0	1.2	20
94	KALIBARU BARAT/PS.MINGGU	1	: 270	7.0	5.8	1.8	22
95	KALIBARU BARAT/PS.MINGGU	1	: 270	3.0	3.0	2.9	11
96	KALIBARU BARAT/PS.MINGGU	1	: 270	3.3	3.3	3.0	11
97	KALIBARU BARAT/PS.MINGGU	1	: 330	5.9	6.6	3.5	14
98	KALIBARU BARAT/PS.MINGGU	1	; 330	4.2	3.5	2.4	24
<u>99</u>	KALIBARU BARAT/PS.MINGGU	1	: 330	10.8	6.6	2.2	36
100	KALIBARU BARAT/PS.MINGGU	-	: 330	4.5	3.4	1.7	16
101	KALIBARU BARAT/PS.MINGGU	1	: 330	3.9	3.0	2.4	19
102	KALIBARU BARAT/PS.MINGGU	1	: 330	8.7	8.2	3.1	23
103	KALIBARU BARAT/PS.MINGGU	1	: 330	7.2	7.2	2.1	33
104	KALIBARU BARAT/PS.MINGGU	1	: 330	7.1	7.1	2.3	24
105	KALIBARU BARAT/PS.MINGGU	1	: 330	6.7	6.7	1.9	26
106	KALIBARU BARAT/PS.MINGGU	1	660	7.3	7.3	3.4	19
107	KALIBARU BARAT/PS MINGGU	1	: 660	9.8	9.8	3.7	19
108	KALIBARU BARAT/PS.MINGGU	1	: 660	8.0	8.0	1.5	33
109	KALIBARU BARAT/PS.MINGGU	1	: 660	9.0	9.0	1.5	44
110	KALIBARU BARAT/PS.MINGGU	1		7.9	79	2.0	16
111	KALIBARU BARAT/PS.MINGGU	1	: 660	9.4	9.4	2.2	19
112	KALIBARU BARAT/PS.MINGGU	1		8.9	8.9	17	27
113	KALIBATA TIMUR	1		5.4	4.6	1.9	12
114	KALIBATA TIMUR	1	: 320	11.4	6.8	1.7	39
115	KALIBATA TIMUR	1	: 320	10.4	7.3	1.5	32
116	KALIBATA TIMUR	1	: 320	10,6	6.3	1.8	30
117	KALIBATA TIMUR		: 320	10.6	6.7	1.8	25
118	KALIBATA TIMUR	1		9.9	4.7	2.2	22
119	KALIBATA TIMUR	-	: 320	8.7	8.7	2.2	28
120	KALIBATA TIMUR	-		9.2	5.6	1.8	30
		_	E - 25				

•

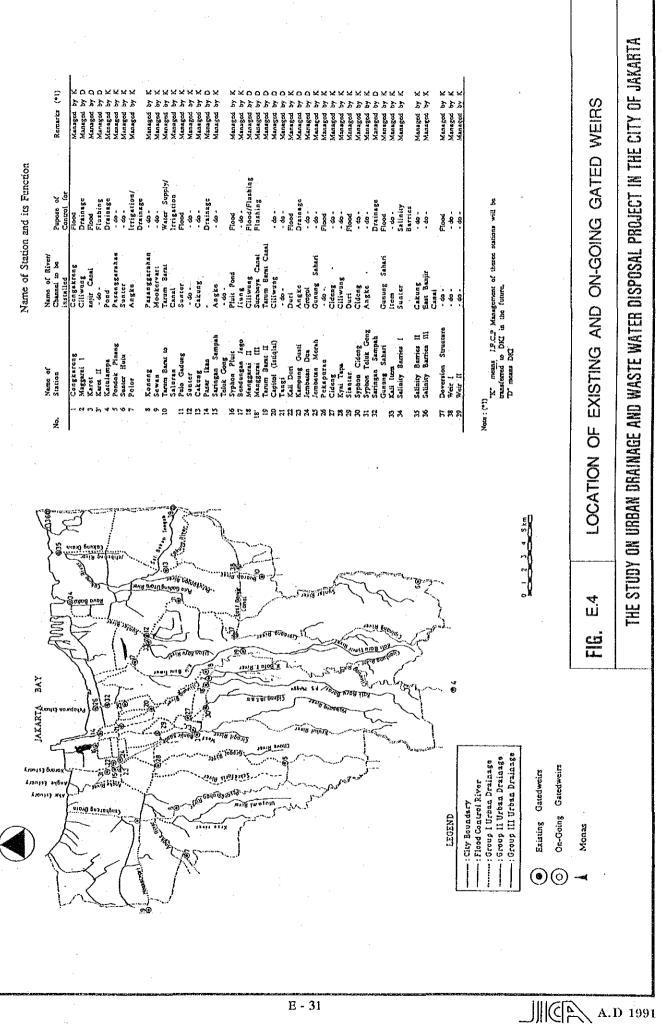

River No.	River Name	River Gradient	Top Width	Bottom Width (m)	River Height	River Capacity (m 3/s)
101		1 : 320	(m) 8.9	5,3	(m) 1.8	<u>(m 3/s)</u> 24
121	KALIBATA TIMUR					
122	KALIBATA TIMUR	1 : 320	8.5	4.7	1.8	22
123	KALIBATA TIMUR	1 : 320	7.1	4.3	1.7	25
124	CIJANTUNG	1 : 200	11.5	2.1	5.1	14
125	COSENG	1:480	11.0	6.0	2.5	28
126	SALEMBA	1 : 5,000	22.9	20.5	1.1	35
127	SALEMBA	1 : 1,750	21.4	17.0	2.9	19
128	SALEMBA	1 : 1,750	22.4	17.7	1.2	86
129	SALEMBA	1 : 1,620	4.8	4.0	2.0	22
130	SALEMBA	1 : 1,620	21.6	14.2	1.3	79
131	SALEMBA	1 : 1,620	23.1	20.2	1.2	79
132	SALEMBA	1 : 1,620	16.4	12.3	3.2	26
133	SALEMBA	1 : 1,620	13.0	11.7	2.3	13
134	SALEMBA	1 : 740	12.3	9.5	2.7	16
135	SALEMBA	1 : 740	12.0	10.0	1.3	31
136	SALEMBA	1 : 740	12.0	11.0	1.3	32
137	SALEMBA	1 : 740	13.9	11.0	1.3	35
137	SALEMBA	1 : 740	12.5	10.0	2.7	22
139	SALEMBA	1 : 740	6.0	5.0	1.5	38
140	SALEMBA	1 : 740	10.2	10.2	0.8	34
141	SALEMBA	1 : 740	10.2	10.2	2.6	20
142	SALEMBA	1 : 1,530	8.8	8.8	3.5	. 17
143	SALEMBA	1 : 1,530	11.7	3.6	2.7	31
144	SALEMBA	1 : 1,530	13.1	3.5	2.2	27
145	KALIBARU TIMUR	1 : 1,530	10.0	8.5	3.0	28
146	KALIBARU TIMUR	1 : 1,530	6.5	3.8	2.2	23
147	KALIBARU TIMUR	1 : 860	7.7	6.5	2.5	18
148	KALIBARU TIMUR	I : 1,530	6.8	6.0	4.0	13
149	KALIBARU TIMUR	1 : 860	7.0	7.0	2.5	22
150	KALIBARU TIMUR	1 : 860	15.9	8.4	2.4	14
151	KALIBARU TIMUR	1 : 860	8.3	4.8	2.2	33
152	KALIBARU TIMUR	1 : 860	10.1	5.4	2.5	18
153	KALIBARU TIMUR	1 : 860	11.5	8.1	2.1	28
154	KALIBARU TIMUR	1 : 860	4.7	4.7	4.2	11
155	KALIBARU TIMUR	1 : 860	11.9	11.9	1.7	33
155	KALIBARU TIMUR	1 : 860	9.3	3.7	2.8	24
		1 : 860	9.5	4.1	2.8	33
157	KALIBARU TIMUR					
158	KALIBARU TIMUR	1 : 530	6.5	5.5	2.5	28
159	KALIBARU	1 : 2,380	6.0	5.0	1.5	23
160	KALIBARU TIMUR	1 : 2,380	3.7	3.7	1.5	-34
161	KALIBARU TIMUR	1 : 2,380	4.0	4.0	1.5	26
162	CIPINANG	1 : 240	15.9	7.6	4.4	28
163	CIPINANG	1 : 240	16.2	4.3	4.4	29
164	CIPINANG	1 : 240	15.6	9.2	2.6	24
165	CIPINANG	1 : 300	15.9	4.9	4.4	12
166	CIPINANG	1 : 300	3.0	2.8	2.6	9
167	CIPINANG	1 : 240	5.5	5.0	1.8	29
168	RAWAKERBAU	1 : 1,300	9.9	8.6	1.1	44
169	RAWAKERBAU	1 : 1,300	6.5	5.2	1.8	24
170	RAWAKERBAU	1 : 1,300	6.5	5.1	2.2	25
171	UTAN KAYU	1:650	23.2	23.2	2.5	18
172	UTAN KAYU	1 : 650	10.4	9.3	3.2	13
173	UTAN KAYU	1 : 650	10.4	10.5	1.2	51
173	UTAN KAYU	1 : 650	9.6	9.2	1.4	21
		1 : 650	8.1	9.2 7.8	2.0	21
175	υταν κανυ					
176	UTAN KAYU	1 : 650	10.2	8.0	1.9	15
177	LAGOA	1 : 5,000	3.5	3.5	1.5	25
178	LAGOA	1 : 5,000	11.6	10.0	1.5	31
179	ITEM	1 : 5,000	20.4	10.5	1.5	25
180	ITEM	1 : 5,000	13.2	11.5	2.0	13

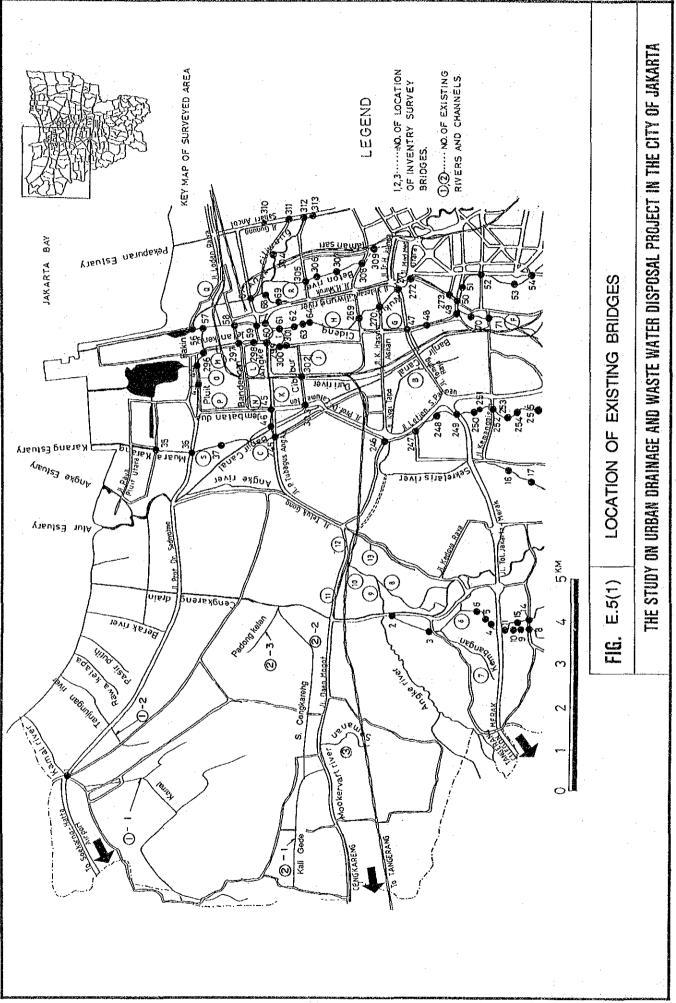

River	River	River	Тор	Bottom	River	River
No.	Name	Gradient	Width	Width	Height	Capacity
			<u>(m)</u>	<u>(m)</u>	<u>(m)</u>	(m 3/s)
181	KEBON BAWANG	1 : 5,000	37.1	27.0	1.3	43
182	KEBON BAWANG	1 : 5,000	10.2	7.6	2.8	27
183	KEBON BAWANG	1 : 5,000	4.2	4.2	3.0	10
184	KEBON BAWANG	1 : 5,000	5.1	5.1	2.0	8
185	KEBON BAWANG	1 : 5,000	5.4	5.4	1.5	6
186	KEBON BAWANG	1 : 5,000	5.1	5.1	1.5	6
187	KEBON BAWANG	1 : 5,000	5.6	5.6	1.5	6
188	KEBON BAWANG	1 : 5,000	6.3	6.3	1.5	7
189	KEBON BAWANG	1 : 5,000	6.9	5.9	1.3	6
190	KEBON BAWANG	1 : 5,000	5.7	5.7	1.3	5
191	KEBON BAWANG	1 : 5,000	6.0	6.0	1.2	5
192	KEBON BAWANG	1 : 5,000	6.0	6.0	1.2	5
193	KEBON BAWANG	1 : 5,000	6.0	6.0	1.2	5
194	KEBON BAWANG	1 : 5,000	6.0	6.0	1.3	5
195	RAWABADAK	1 : 5,000	4.5	4.5	1.5	- 5
196	RAWABADAK	1 : 5,000	4.5	4.5	1.5	5
197	ARTONIJON	1 :: 1,870	35.0	35.0	1.8	120
198	ARTONIJON	1 : 1,870	25.0	10.0	1.4	41
199	RAWAMANGUN	1 : 1,870	10.8	10.8	2.6	47
200	RAWAMANGUN	1 : 1,870	12.0	12.0	2.5	51
201	RAWAMANGUN	1 : 1,170	4.3	3.5	1.5	7
202	RAWAMANGUN	1 : 1,170	3.4	3.0	1.5	5
203	RAWAMANGUN	1 : 1,870	10.6	10.6	2.5	44
204	RAWAMANGUN	1 : 1,870	15.8	3.7	2.1	35
205	KELAPA NIAS	1 : 5,000	8.0	8.0	3.0	24
206	KELAPA NIAS	1 : 5,000	15.7	15.0	1.2	17
207	KELAPANIAS	1 : 5,000	7.0	6.5	2.0	12
208	PULOGADUNG	1 : 5,000	6.5	6.5	2.1	12
209	PULOGADUNG	1 : 2,250	7.2	7.2	1.2	9
210	PULOGADUNG	1 : 2,250	6.0	6.0	1.2	8
211	PULOGADUNG	1 : 2,250	4.5	4.5	1.1	5
212	PULOGADUNG	1 : 2,250	6.0	6.0	1.2	8
213	KAYUPUTIH SELATAN	1 : 1,170	6.5	6.5	2.1	23
214	KAYUPUTIH SELATAN	1 : 1,170	9,8	9.6	1.4	23
215	KAYUPUTIH SELATAN	1 : 1,170	9.6	9.3	1.5	28
216	KAYUPUTIH SELATAN	1 : 1,170	12.7	12.7	2.9	81
217	KAYUPUTIH UTARA	1 : 1,170	12.1	9.3	2.3	53
218	KAYUPUTIH UTARA	1 : 1,170	13.7	8.1	2.3	56
219	KAYUPUTIH UTARA	1 : 1,170	10.6	8.2	2.9	60
220	KAYUPUTIH UTARA	1 : 1,170	2.8	2.1	2.2	6
221	KAYUPUTIH UTARA	1 : 1,170	6.5	6.5	2.1	23
222	CAKUNG	1 : 5,000	17.0	14.6	1.8	28
223	CAKUNG	1 : 5,000	16.2	14.5	1.0	12
224	CAKUNG	1 ; 5,000	16.5	13.2	1.5	20
225	CAKUNG	1 : 5,000	13.4	10.0	1.7	20
226	CAKUNG LAMA	1 : 5,000	8.0	8.0	1.4	9
227	CAKUNG LAMA	1 : 5,000	12.6	12.6	1.2	15
228	MALANG	1 : 5,000	7.3	6.4	2.0	12
229	MALANG	1 : 5,000	6.3	9.5	1.1	5
230	MALANG	1 : 5,000	9.3	8.3	1.0	8
231	MALANG	1 : 5,000	1.2	1.2	2.5	1
232	MALANG	1 : 5,000	3.0	3.0	2.0	4
232	MALANG	1 : 5,000	1.8	1.8	2.5	2
233	MALANG	1 : 5,000	1.0	1.7	3.1	3
234	MALANG	1 : 5,000	10.0	8.0	1.5	11
235	SUNTER	1 : 360	5.4	5.4	2.5	35
230	SUNTER	1 : 200	10.3	10.0	3.2	145
238	PETUKANGAN	1 : 1,890	13.0	10.5	2.0	38
238	SUNTER	1 : 240	9.0	4.8	3.5	

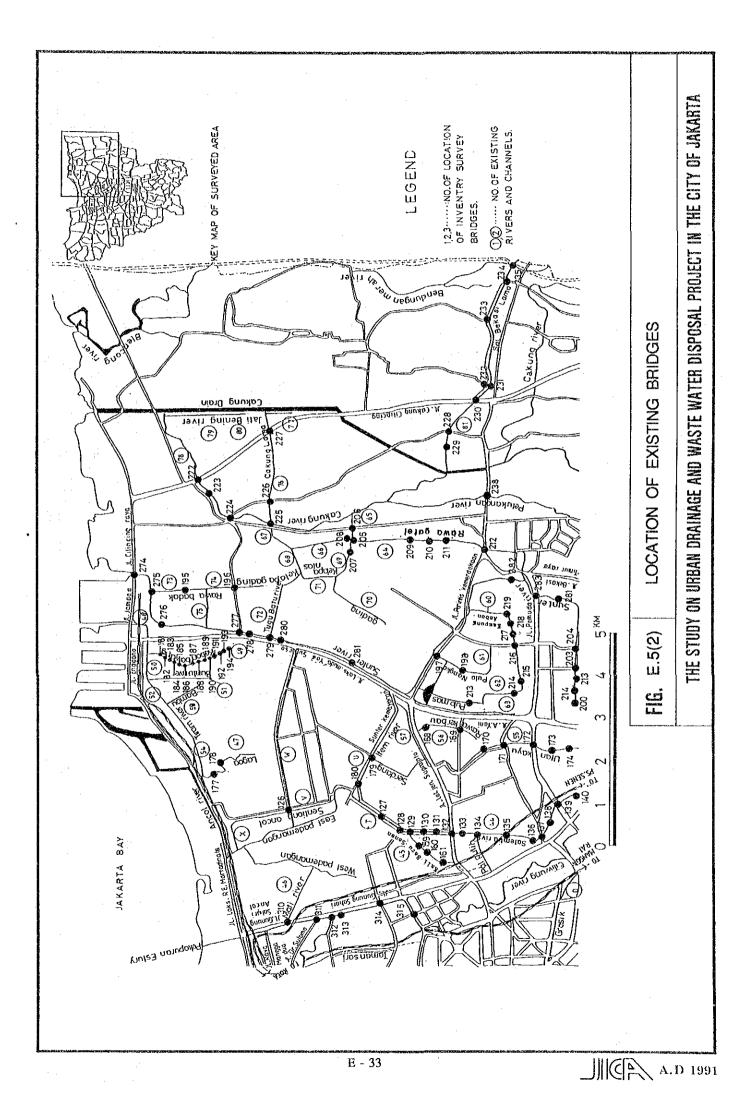

٩

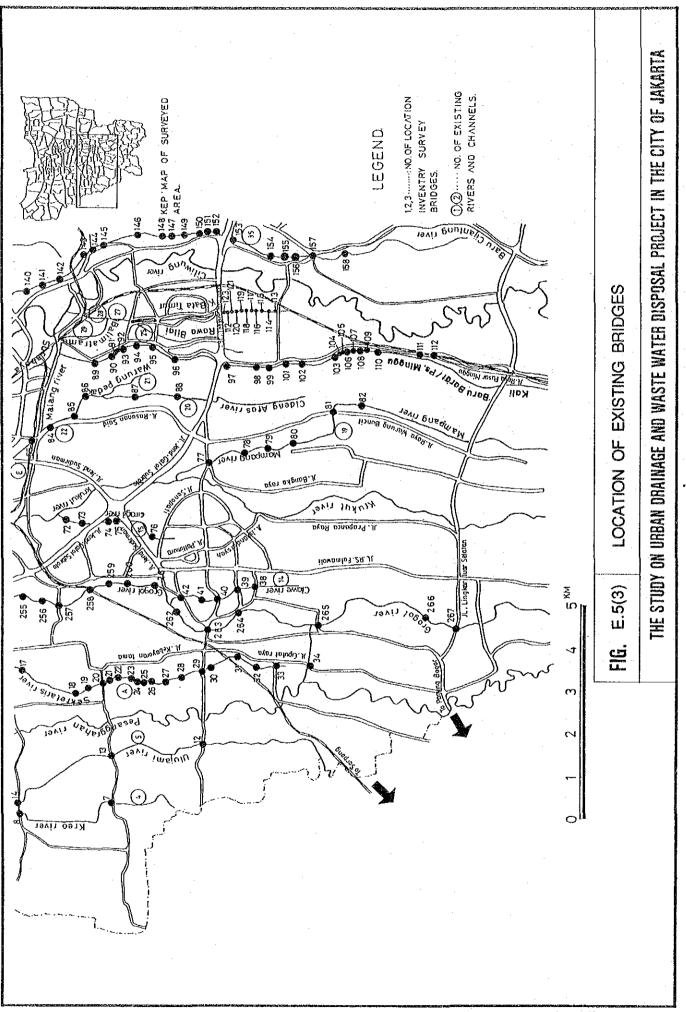
17

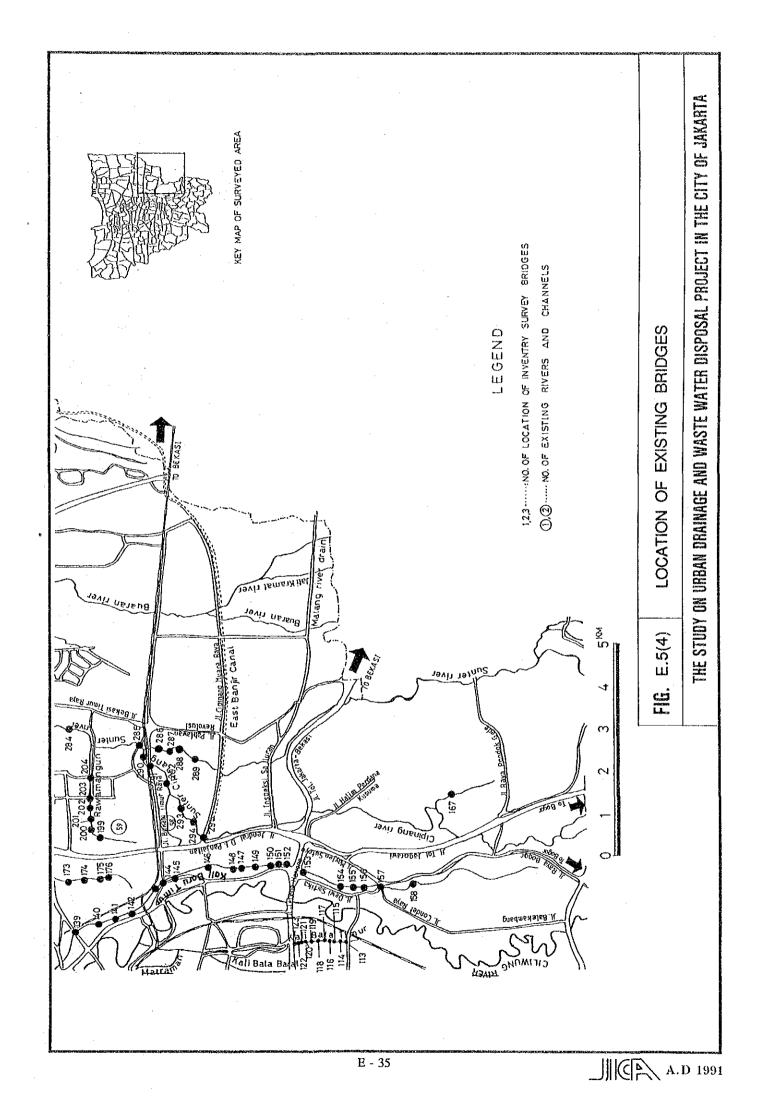
E - 27

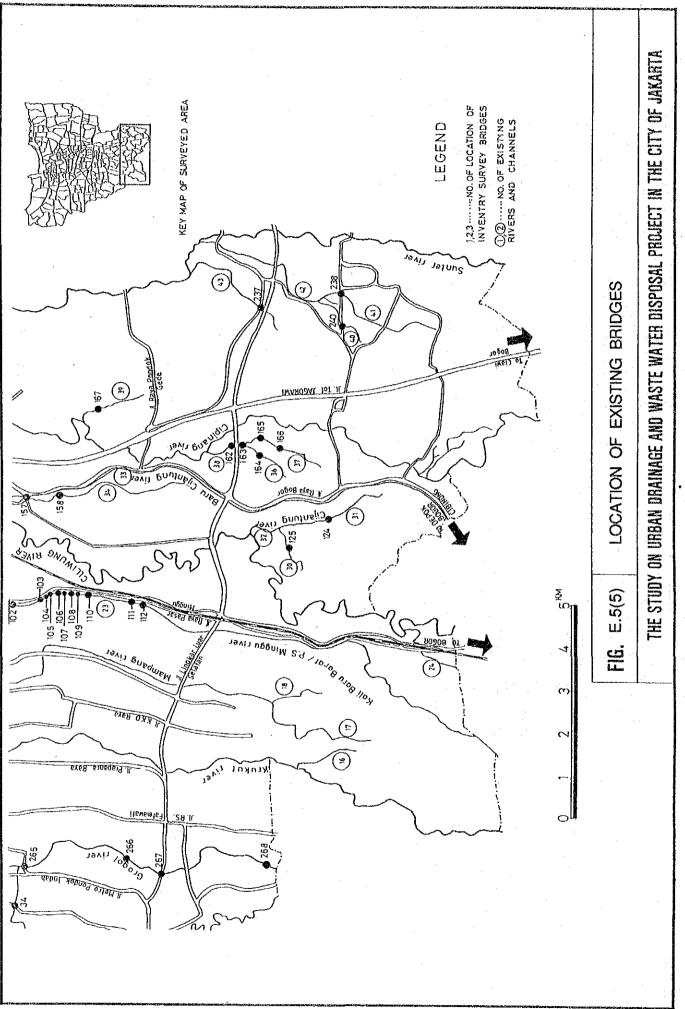


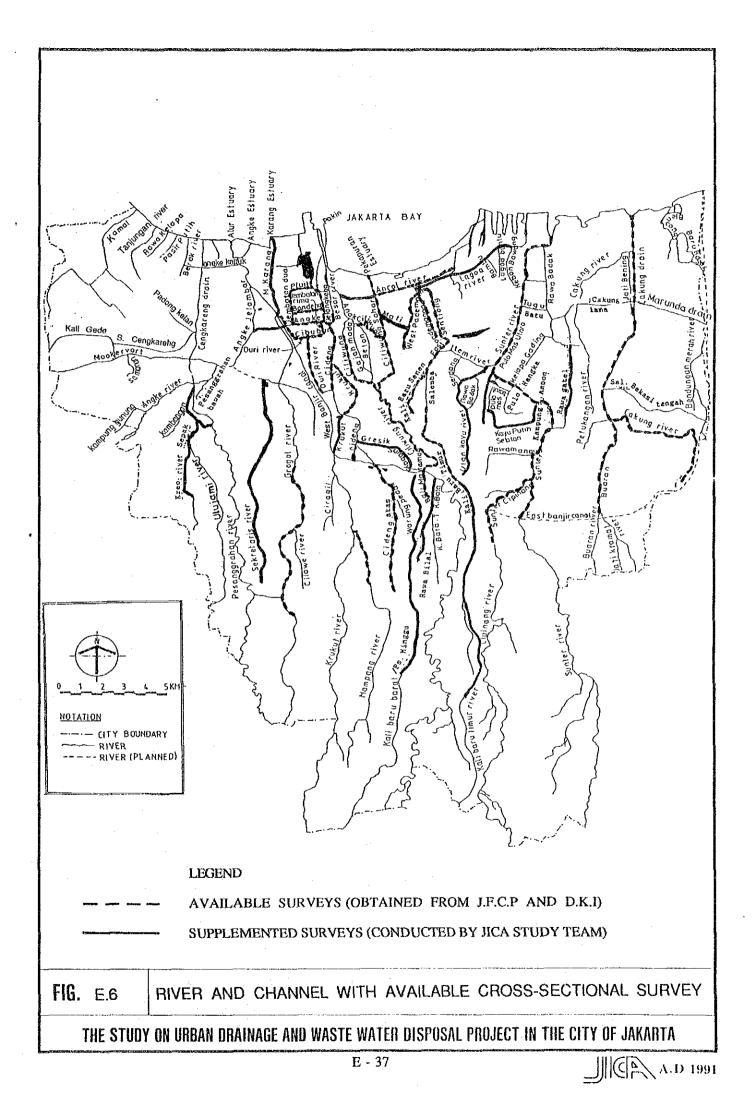



E - 30


A.D 1991


E - 31





∭€ A.D 1991

APPENDIX F

EXISTING SANITATION AND SEWERAGE PROJECTS AND FACILITIES

APPENDIX F EXISTING SANITATION AND SEWERAGE PROJECTS AND FACILITIES

1. Existing On-site Sanitation Facilities

1.1 Domestic On-site Sanitation Facilities

1.1.1. General

The existing domestic on-site sanitation facilities in the Study Area are used for the treatment of toilet waste only. The other domestic wastes from kitchen, bathing and laundry are directly discharged to the drains.

In this Study, the existing toilets are classified into three (3) types: (1) individual toilet with treatment, (2) individual toilet with no treatment, (3) public toilet. Individual toilet with treatment covers the one with septic tank (including both types with and without leaching system) or with leaching pit (including single and twin types). While, individual toilet with no treatment includes pit latrine and toilet discharging human waste directly into the neighbouring drain (Brandgang). Public toilet consists of a group of latrines attached with bathing and washing facilities and is provided with septic tank.

The JICA Study Team conducted a questionnaire survey for approximately 2,600 families to establish the existing conditions of the on-site sanitation facilities. Furthermore detailed survey was conducted to determine the existing distribution of public toilet in the Study Area.

1.1.2 Service Level

The existing population ratio in terms of service level of on-site sanitation facilities in each Kelurahan of the Study Area is provided in Table F.1. The corresponding summary of service level in each Kecamatan along with population density and people's income level is shown in Table F.2.

Population of 68% in the Study Area have individual toilets with treatment. Population of 16.6% use toilets with no treatment. Six (6) % of the population get the benefits of public toilet. The remaining 9.4% of the population are provided with no toilet facilities.

Fig.F.2 shows population percentage served by each type of on-site sanitation facilities in each Wilayah. Jakarta Timur (East Jakarta) has the highest service level with 79.3% of the population using toilets with treatment. Public toilet is most abundant in Jakarta Pusat (Central Jakarta) where 8.5% of the population is served with public toilet. In Jakarta Utara (North Jakarta), 17% of the population have no toilet facilities.

The service level of on-site sanitation facilities covering individual toilet with treatment and public toilet by Kecamatan is shown in Fig.F.3.

(1) The Kecamatans with a service level of less than 70% are the following 10 Kecamatans.

Jakarta Pusat: Kec. Senen, Kec. Cempaka Putih, (Central Jakarta) Kec. Menteng

Jakarta Utara: Kcc. Penjaringan, Kec. Koja, Kec. Cilincing (North Jakarta)

Jakarta Barat: Kec. Cengkareng, Kec. Taman Sari (West Jakarta)

Jakarta Selatan: Kec. Tebet, Kec.Mampang Prapatan (South Jakarta)

These Kecamatans are mostly located in the northern low-lying flat areas.

The population density of the above 10 Kecamatans ranges from 43.5 person/ha to 463.5 person/ha with an average of 192.2 ha. The Kecamatans with a high population density of more than 250 person/ha include Kec. Senen, Kec. Cempaka Putih, Kec. Tambora and Kec. Tebet.

The population share of high and middle income groups of the above 10 Kecamatans is in the range of 34.9%-57.4% with an average of 47.6%.

(2) The Kecamatans with a service level of 70%-80% are the following eight (8) Kecamatans.

JakartaPusat:Kec. Gambir, Kec. Sawah Besar, Kec.KemayoranJakartaUtara:Kec. Tanjung PriokJakartaBarat:Kec. Taman SariJakartaSelatan:Kec. Pasar MingguJakartaTimur:Kec. Kramat Jati, Kec. Cakung

The population density of the above eight (8) Kecamatans ranges from 37.2 person/ha to 348.0 person/ha with an average of 164.3 person/ha. The Kecamatans with a high population density of more than 250 person/ha are Kec. Kemayoran and Kec. Taman Sari.

The population share of high and middle income groups ranges from 38.6 % to 62.2 % with an average of 50.8%.

(3) The Kecamatans with a service level of more than 80% are the following 11 Kecamatans

Jakarta	Pusat	:	Kec. Tanah Abang
Jakarta	Barat	:	Kec. Grogol Petamburan, Kec. Kebon Jeruk
Jakarta	Selatan	:	Kec.Setia Budi, Kec.Kebayoran Baru, Kec. Keba-
		÷	yoran Lama, Kec. Cilandak
Jakarta	Timur	:	Kec. Matraman, Kec. Pulo Gadung, Kec. Jatine-
			gara, Kec. Pasar Rebo

These Kecamatans are mostly located in the fringes of the Study Area.

The population density of the above 11 Kecamatans ranges from 47.0 person/ha to 364.4 person/ha with an average of 164.9 person/ha. Only Kec. Matraman has a population density higher than 250 person/ha.

The population share of high and middle income groups of the above 11 Kecamatans range from 48.9% to 67.5% with an average of 57.1%.

1.1.3 Public Toilet

The JICA Study Team conducted a detailed survey of existing public toilet in the Study Area on a Kelurahan basis. Public toilet is a very practical means of providing basic sanitation facilities to low income Kampung communities with very high housing and population density, where individual facilities are physically impossible even with financial assistance.

The existing public toilets were constructed mainly by the following; Cleansing Department, Bappem, community organizations and recently by JSSP. The operation and maintenance of the public toilets are entrusted either to the Cleansing Department, local authority or local community.

All Kelurahans having public toilets along with their respective total number of public toilets, the population served, the average per capita service charge and the population density are given in Table F.3. The corresponding distribution of public toilets is illustrated in Fig. F.4.

Of the 256 Kelurahans in the Study Area 94 Kelurahan or 37% have public toilets. Most public toilets are concentrated in the high population centres of Central Jakarta and Tanjung Priok area, though there are some in the Western part of Jakarta as well. There are no public toilets in southern part of Jakarta and the fringes of the Study Area, with low population density.

Of the 94 Kelurahans with public toilet 77 or 82% have a population density greater than 200 person/ha. Furthermore, 58 Kelurahans or 62% have a population density greater than 300 person/ha.

The Kelurahans having very high distribution of public toilets (ref. Fig. F.4), with more than 20 numbers, are Utan Panjang and Tanah Tinggi of Jakarta Pusat, Koja Utara of Jakarta Utara and Kedaung Angke of Jakarta Barat.

1.2 On-site Sanitation Facilities of Commerce and Institution

Sampling questionnaire surveys were carried out by the JICA Study Team to obtain information on the existing status of on-site sanitation facilities for commerce and institutions in the Study Area. Commerce and institutions were classified into scvcn (7) categories : shops, factories, restaurants, hotels, hospitals, offices and schools. The number of samples was 200 for shops and factories, 150 for restaurants, 100 for hospitals, offices and schools, and 50 for hotels. Survey results are summarized in Table F.4(1) to F.4(5).

It was found out that 91.7% of shops use on-site sanitation facilities equipped with either septic tank/leaching pit or septic tank & soak away. 4.8% use no treatment facilities, and the remaining 3.5% utilize other types of package treatment facilities. The capacity of sanitation facilities varies according to the types of shops as shown in Table F.4(1). However, the average capacity per shop works out to 5.1 m³. Average water consumption per shop per day is 1.5 m^3 , of which 46.4% is used for toilet, 28.8% for cooking and the remaining 24.7% for other purposes. It was revealed that there is correlation between floor area and water consumption: a shop with the floor area of 500 m² consumes 2.25 m³ of water on average per day (ref. Table F.5).

In case of factories surveyed, 81.5% use on-site sanitation facilities of either septic tank/leaching pit or septic tank & soak away. 10.0% have no treatment facilities and the remaining 8.5% make use of other package treatment facilities. The capacity of sanitation facilities varies in accordance with the classification of factories as shown in Table F.4(2). However, the average capacity per factory works out to 13.5 m³. There is correlation between floor area and industrial water consumption : a factory with the floor area of 2,000 m² consumes 17.05 m³ of water on average per day (ref. Table F.5).

As for restaurants and hotels, 89.7% of restaurants and 79.1% of hotels use either septic tank/leaching pit or septic tank & soak away. 7.1% of restaurants and 4.2% of hotels use no treatment facilities and 3.2% of restaurants and 16.7% of hotels use other types of on-site facilities. It is to be noted that the share of "other types" is comparatively high for hotels. It

is because large hotels equip themselves with advanced package treatment facilities. The average capacity of a sanitation facility for a restaurant is 4.7 m^3 . In case of hotels there exists a wide range in capacity depending on the number of stars as shown in Table F.4(3). However, the average capacity per hotel works out to 23.3 m³. Average water consumption per day for a restaurant is 3.1 m³, and for a hotel it is 215.4 m³. 41.0% of water for restaurants is used for toilet, 28.5% for cooking and 30.5% for other purposes, while 58.7% of water for hotels is used for toilet, 22.8% for cooking and 18.5% for other purposes. There is a correlation between floor area and water consumption (ref. Table F.5) : a restaurant with floor area of 500 m² consumes 5.73 m³ of water on average per day, and a hotel with the same floor area consumes 107.48 m³ per day.

94.9% of hospitals provide themselves with on-site sanitation facilities equipped with either septic tank/leaching pit or septic tank & soak away. None discharged wastewater with no treatment. The balance of 5.1% utilize some advanced form of package treatment facilities. The capacity of sanitation facilities varies according to the classifications of hospitals as shown in Table F.4(4). However, the average capacity per hospital turns out to be 13.2 m³. A hospital consumes 48.5 m³ of water on average per day, of which 49.6% is used for toilet, 25.1% for cooking and 25.3% for other purposes. A correlation is discerned between floor area and water consumption (ref. Table F.5) : a hospital with floor area of 500 m² consumes 24.07 m³ of water on average per day.

Regarding offices and schools, 95.2% of offices and 98.1% of schools use either septic tank/leaching pit or septic tank & soak away. The latter figure is the highest among seven (7) categories of commerce and institutions. 2.9% of offices and 1.9% of schools have no treatment facilities. 1.9% of offices use other types of on-site package treatment facilities. The average capacity of a sanitation facility is 12.8 m³ for an office and 11.0 m³ for a school. On average 5.1 m³ of water is consumed per day by an office, of which 59.8% is used for cooking and the remainder (40.2%) is used for toilet. On the other hand on average 4.1 m³ of water is consumed per day by a school, out of which 53.4% finds its way to toilet, 22.4% to kitchen and the remaining 24.2% to other places. A correlation exists between floor area and water consumption : an office with a floor area of 500 m² consumes 3.59 m^3 of water on average per day and a school with the same floor area consumes 3.33 m^3 per day (ref. Table F.5).

The simple average of user ratio of on-site sanitation facilities equipped with either septic tank/leaching pit or septic tank & soak away works out to be 90.0% across the seven (7) categories of commerce and institutions. Those with no treatment facilities works out to 4.4%. While, the remaining 5.6% opt for other on-site package treatment facilities.

The capacity of sanitation facilities across the seven (7) categories is calculated at 11.9 m^3 on the simple average basis.

It was clarified that there exists a correlation between floor area and water consumption for each category of commerce and institutions. Specifically water consumption per floor area is higher for hotels, hospitals and factories in comparison to others as shown in Table F.5.

1.3 Purification Efficiency of Existing On-site Sanitation Facilities

1.3.1 Domestic On-site Sanitation Facilities

The existing sanitation facilities in the Study Area is essentially on-site. The natural soil based treatment systems of septic tanks/leaching pits are the sole ones used for the treatment and disposal of domestic toilet wastes only. The domestic gray water, originating from washing, bathing and cooking, is discharged to surface ditches/drains with no treatment. It is to be noted that in principle a septic tank is intended for the treatment and disposal of both the toilet waste and gray water, and leaching pit for toilet waste. No such distinction is so far applied and traditionally both septic tank and leaching pit received only the toilet waste, and hence there is no functional difference in their usage.

If the leaching/infiltration capacity of the soil is assumed to be sufficient, a condition still valid basically in the southern fringes of the Study Area with low population density and deep groundwater table, the treatment efficiency of toilet waste will be 100%.

Even in this case as the gray water is discharged with no treatment, the overall treatment efficiency with respect to BOD removal is only about 40%.

This is evident from the existing unit pollution load generation, illustrated in section 2.2.2. of Appendix-D, given below.

Unit pollution load generation of gray water : 17.4 g.BOD/person/day Unit pollution load generation of toilet waste : 10.5 g.BOD/person/day Hence, removal efficiency with complete toilet waste treatment

 $= \frac{10.5}{(17.4 + 10.5)} \times 100$ = 38%

. <u>.</u>

Accordingly, it could be concluded that in general, the treatment efficiency of the overall system is not 100%. The maximum efficiency of domestic on-site sanitation system will be about 40% only, as long as gray water is discharged with no treatment.

1.3.2 On-site Sanitation Facilities of Commerce and Institutions

JICA Study Team conducted a sampling survey of existing on-site sanitation facilities, i.e. the existing on-site wastewater treatment systems/package plants, in 18 number establishments of hotels, offices and commerce. These establishments of sampling survey are given in Table F.6.

Out of these 18 establishments, ten (10) treated their whole wastewater, both the wastewater from toilet and gray water from all other miscellaneous water use, in their individual treatment plants. While, the rest eight (8) establishments treated only their toilet waste and discharged the gray water untreated.

Table F.7 shows the separation of the 18 establishments according to the type of wastewater treated (wastewater of toilet and others and toilet waste only), the wastewater treatment method employed and the overall composition of the effluent sampled for water quality analysis.

It is to be noted that in case of No. 15 - No. 18, Hotel Menteng, Hotel Sofyan, Pertambangan and Pasar Pagi, the sampled effluent consisted of a mixture of septic tank effluent and other gray water.

The water quality parameters analyzed for the sampled effluent are COD_{cr} , BOD5, SS and FC (fecal coliform density). The results of water quality analysis are presented in Table F.8.

Based on this survey of on-site sanitation facilities/package treatment plants and the resultant effluent water quality analysis the following aspects are noted.

en la Meridia en la Adria de la Calendaria presenta en la compañía de la compañía de la compañía de la compañía

(1) Treatment System

in and in the state of the

1

Out of the ten (10) establishment that are designed to treat the whole wastewater, both toilet waste and others, eight (8) used extended aeration systems with only two (2), Indocement and Setiabudi II, using respectively rotating biological contactor (RBC) and septic tank with filter.

On the other hand the establishments that are designed to treat toilet wastewater only, which is not a recommended design practice for a commerce/institution, basically used scptic tanks only except Pasar Pagi which used septic tank with filter (ref. Table F.7).

(2) Treated Effluent Quality

Treated effluent quality is assessed according to the type of treatment system as follows :

(i) Treatment plants treating the whole wastewater.

The effluent quality measured in the treatment plant of Hilton hotel was considered to be not representative as the treatment plant was under maintenance during sampling.

The effluent quality of the remaining nine (9) treatment systems are summarized below.

Treatment	CCD	BOD	RC	SS
systçm	(mg/l)	(mg/l)	(MPN/100ml)	(mg/l)
Extended		10. ¹		
Aeration -Range	(96-1520)	(53-880)	(23X10 ³ -93X10 ⁶)	(10-180)
-Average	300	193	19X10 ⁶	54
RBC	122	78	93X10 ⁴	40
Septic Tank with	*.			a Angelaria
Filter	419	243	46x106	20

Though the average effluent BOD for treatment plants of extended aeration is high of 193 mg/l, it is primarily caused by the poor effluent quality of the two (2) plants, Glodok Plaza and Gajah Mada Plaza. If these two (2) data are disregarded the average water quality is comparatively better of 97 mg/l as BOD. Effluent of septic tank is of very poor quality with a BOD of 243 mg/l.

In all plants the fecal coliform density (FC) of the effluent is very high because disinfection is not generally practised, though the facility exist. This is understood to be due to high cost of chemicals for disinfection.

(ii) Effluent of Septic Tanks

All septic tanks, except one (1) Setiabudi-II, treated toilet waste only, though in four (4) cases the sampling was made possible only after the mixing of the effluent with untreated gray water.

Treatment	CCD	BOD	FC	SS
system	(mg/l)	(mg/l)	(MPN/100ml)	(mg/1)
Toilet Waste				
only - Range	(445-2140)	(249-1800)	$(23X10^3 - 23X10^7)$	(17-460)
- Average	1490	1070	95X10 ⁶	229
Toilet Waste and	gray		:	:
water - Range	(645-1040)	(486-940)	(23X10 ⁴ -23X10 ⁶)	(15-220)
- Average	884	691	10X10 ⁶	83