4.3 Liability Insurance for the Container Terminal

4.3.1 Concept

Generally speaking, container insurance is a type of blanket insurance consisting of the three undermentioned insurance policies:

- (1) Container Itself Insurance
- "All Risks" insurance in respect of or loss of damage to container itself and handling equipment owned or operated by the member.
 - (2) Container Owner's Third Party Liability Insurance
 Insurance against liability to third parties.
 - (3) Container Operator's Cargo Indemnity Insurance Insurance in respect of liability for loss of or damage to cargo.

This insurance indemnifies the insured party such as container owners or container operators.

However, in a vast container terminal, it is possible for the terminal owners or operators to damage a third party's personnel and property due to accident such as mishandling of cargo handling machines, collapse of stacked containers, etc.

As this kind of damage can easily be very costly, it is necessary for the terminal owners or operators to arrange for third-party liability insurance to protect themselves from liability.

This insurance should indemnify the insured (container terminal operators) against legal liability for damage in terms of bodily injury or to property of any third party due to accidents arising from structural and management defect of the facilities or from faults during execution of their business such as manufacturing, sales, service, etc., carried out outside/inside of the premises.

4.3.2 Container Terminal Owner's Third Party Liability Insurance

Container terminal owners or operators (hereinafter called "the Insured") are indemnified by an insurance company (hereinafter called "the Insurer") by making a contract for a general liability insurance policy with special conditions for premises owners & tenants liability.

(A) General Condition of General Liability Insurance

Article 1. Liability of the Insurer

The Insurer, subject to the terms, conditions and exclusions hereinafter contained, indemnifies the Insured against losses arising out of assuming legal liability for damage because of bodily injury (including death resulting therefrom) sustained by any third party or loss, damage or destruction of any third party's property (hereinafter referred to as "loss"), due to an accident as specified in the Special Conditions (hereinafter referred to as "the accident").

Control of the Control of the Control

Article 2. Indemnification and Limit of Liability of the Insurer

The indemnification by the Insurer is made only for damages which the Insured is legally obligated to pay to the injured party after deducting the sum for which the Insured may be subrogated by the compensation, and for expense(s) specified in Article 11.

The Insurer indemnifies the Insured, within a limit of liability provided for in the policy, only for such portion of the amount of loss as exceeds the deductible specified in the policy for any one accident save the expense(s), as referred to in paragraphs 2 and 3 of Article 11.

Article 3. Period of Insurance

The period of insurance commences at 4 o'clock in the afternoon of the first day (unless otherwise stated in the policy) and terminates at 4 o'clock in the afternoon of the last day of the period of insurance.

The Insurer shall not indemnify the Insured for any loss arising out of the accident that may occur before payment of the premium.

Article 4. Exclusions - Part 1

The Insurance afforded under this policy does not apply to any loss arising out of the Insured' assuming directly or indirectly:

- (1) liability due to willful misconduct of the Insured and/or the person who effects the insurance,
- (2) liability arising out of war (whether declared or not), insurrection, civil commotion, riot or labour disturbances,
- (3) liability arising out of earthquake, volcanic eruption, flood, tidal wave or any other natural phenomena of like kind, or

(4) liability towards any member of the family with whom the Insured resides.

Article 5. Exclusions - Part 2

The insurance afforded under this policy does not apply unless otherwise specially agreed, to any loss arising out of the Insured's assuming directly or indirectly:

- (1) liability for bodily injury (including death resulting therefrom) sustained by any of the employees of the Insured while being in the course of employment,
- (2) liability towards any person having the lawful right to the property owned by, used by or in the care, custody and control of the Insured, because of loss, damage or destruction of such property,
- (3) liability aggravated by any agreement or contract on liability concluded between the Insured and other person, or
- (4) liability imposed in connection with drainage or ventilation (including smoke).

Article 11. Expenses

The Insurer reimburses the Insured the expense(s) which the person who effects the insurance or the Insured incurred:

- (1) necessarily and effectively for taking procedure of action as referred to in item 3 of paragraph 1 of Article 9 (the Insured must take all necessary procedure for preserving or exercising the right of recourse against the third person or any other action necessary to prevent or mitigate further loss):
- (2) for taking such emergency action as first-aid medical treatment, escort to a hospital and any other expense(s) paid with written consent of the Insurer, out of the expenses incurred necessarily and effectively by the Insured in taking action of preventing or mitigating loss upon occurrence of the accident, in the event it has been decided afterwards that the Insured is free from any liability for such an occurrence.
- 2. The Insurer reimburses the Insured the expense(s) incurred by the Insured with the written consent of the Insurer in connection with litigation concerning the liability of the Insured, provided, however, that in cases where the amount of loss except the expenses mentioned in this article exceeds the Limit of Liability of the Insurer, the Insurer

reimburses the Insured the expense(s) in such a proportion as the Limit of Liability of the Insurer bears to such amount of loss.

- 3. The Insurer reimburses the Insured the expense(s) incurred by the Insured in making cooperation required by the Insurer.
- (B) Special Condition for Premises Owners & Tenants Liability

Article 1.

The "accident" as termed in Article 1 of General Conditions of General Liability Insurance means in these Special Conditions any such accident as may occur while the insured owns, is using or taking care of the premises as mentioned in the section of Descriptions of Premises below (including any and all movables located in the premises) for the purpose of carrying out the business as described in section entitled Business below.

Article 2.

The Insurer is not bound to indemnify the insured for any such loss as may be incurred in assuming, directly or indirectly, liability for damages caused by:

- (1) destruction, damage or soiling to the property from such steam, water or other substance as may leak out of or overflow from the plumbing, air conditioning system, humidity control system, fireplugs, spinklers or other industrial or domestic appliances; (But the Insurer indemnifies the Insured under the contract of special insurance)
- (2) destruction, damage, or soiling to the property from such raindrops, snowflakes, etc., as may come in by, between or through roofs, gutters, doors, windows, ventilating funnels, etc.;
- (3) work done in building a new building, repairing or remodeling or pulling down a house within the premises;
- (4) ownership, use and/or taking care of aircraft without the premises (not including those to be worked principally by manpower) or animals,
- (5) intentional or grossly negligent violation of law or ordinance by the Insured.

Article 3.

The Company is not bound, unless otherwise specially agreed, to indemnify the insured for any such loss as may be incurred in assuming,

directly or indirectly, liability for:

- (1) damages caused by commodities, food and drink that have already ceased to be in the insured's possession or other property that has already ceased to be in the insured's possession and in now located outside the premises;
- (2) damages resulting from business completed or given up after the completion or giving up thereof (in case delivery of objects of the business is required, after the delivery thereof);
- (3) damages caused by ownership, use, or taking care of vehicles outside the premises (not including automobiles and other vehicles that can move principally by manpower)
 - a. Descriptions of Premises (stated by the Insured)
 - (1) Name
 - (2) Location
 - (3) Structure & Size
 - (4) Owner, tenant or caretaker
 - b. Description of Business (stated by the Insured)

4.4 The process of Modernizing the Trading System

During the study and the interview with the cargo consignee, the Clearing & Forwarding agent (C & F agent) and the Customs officers, the study team found out the following:

- a) The consignees and the C & F agent say that it ordinarily takes about one month to complete the Customs clearance though the Customs officers say it is about 2 or 3 days.
- b) The main reasons insisted by the Customs officers for delay of the clearance are the improper handling of the cargo in the port area and frequent presentation of incorrect and imperfect documents by the importers or the C & F agents.
- c) However, the importers and C & F agents accepted the above-mentioned fact but lay blame for this on the lack of guidance from the Customs officers as to the correct procedures to follow, a situation they claim is made worse by the over-zealous and often pedantic attitude of Customs officers in appraising goods and assessing value for duty purposes.
- d) Under the current regulation, the importers and the C & F agent must fill up so many items in seven copies of the Bill of Entry by manual.
- e) Many importers and exporters representing several organization lack the knowledge concerning the procedure of the trading system. These importers, exporters and C & F agents fail to complete necessary details in the documents. Thus, the incomplete documents cause a serious delay in the trading process.
- f) At the same time, the Customs Department and the Port Authorities give wrong information about procedures to the personnel of various organizations in the trading system.
- g) In the course of clearing both import and export cargoes, companies do encounter serious delays and inevitable cost due to complex customs procedures. Rules and regulations are not flexible to speed up the procedure. For instance, if the importers, exporters or C & F agents fill in a trivial form incorrectly, they have to correct it before proceeding to the next step.

From the above, the Study Team considers that the present trading system needs to be developed and simplified in order to facilitate a rapid growth in international trade.

(1) The Recommended System

The Study Team suggests that the modernized system of trade documentation and information flow in other developed countries could be adopted appropriately in order to process essential document and paper work efficiently. The process of modernizing the trading system in Bangladesh could be divided into 3 phases.

Phase 1:

- a) The Customs Department should organize training course to their personnel concerning the Customs procedures. This will enable them to advise the importers, exporters and C&F agents correctly.
- b) The educational institutes in cooperation with Customs Department, Port Authority, commercial banks, C&F agent Association have to organize training courses to importers, exporters, and C&F agents to acquaint them of the system of trading and procedures.
- c) The institute should be established in order to facilitate the trading procedure.

Phase 2:

- a) Form a working group of personnel from various organization in the trading system to study and analyze the whole process and to simplify the procedures.
- b) The Customs Department and the Port Authorities should utilize the computer in order to process procedures effectively and efficiently.

Phase 3:

- a) Establish an integrated system among organizations in the trading system.
- b) Train all the personnel in the trading system to utilize this system effectively.

(2) Benefits of the New System

- a) A cut down of paperwork, formalities and similar procedural obstacles will be eliminated.
 - b) Reduction of administrative work and better utilization of personnel in the trading system.

- c) The new system will be compatible with modernized system in the developed countries and will speed up the international trade.
- (3) Possible Problems in Developing the New System

The problems that may be envisaged in developing the new system in Bangladesh are as follows.

- a) Lack of sincere cooperation among various organizations.

 The work of each organization is not a synchronized system. It is the duty of the government to ensure that this project is implemented and conscientiously monitored.
- b) Lack of qualified personnel To modernize and simplify the present system, they need qualified personnel in relative fields to work as a team in order to achieve a befitting result.
 - c) Resistance to Change The personnel in each organization in the trading system may resist to change, since such employee fears the risk of losing his or her job, etc.
- (4) Key Success in Developing the New System

There are number of basic requirements before any systematic trade simplification work is likely to succeed. The followings points are required:

a) Political Will

The key to succeed is political will. The modernized system that simplify trading procedure needs to be a component of government policy. It can be linked to a policy of export, import, port facilities, and so on. Inertia and resistance to this policy must be overcome.

b) Resource

It has rarely been possible to modernize a system movement without qualified and competent staff. This project should be funded by government, trade association and so on, including the cooperation from both public and private sectors with respect to decision—making.

c) Short-cut Method way to use a short-cut method by studying a modernized system in foreign country and adopt it when appropriate to speed up the whole process of simplification of international trade procedures.

(5) Suggestion for Further Research

The second second second second second

The result of study indicates the needs of an in-depth study in the following area:

- a) Detailed study of each piece of information in a document whether it is mandatory or not.
- b) The purpose of each piece of information in each document should be identified.
- c) The time need to complete each step of trading system e.g. clearance time, cargo handling time and so on.

CHAPTER 5 ECONOMIC ANALYSIS

5.1 Purpose and Methodology of the Economic Analysis

The purpose of this chapter is to appraise the economic feasibility of the Short-term Plan for the Container Terminal at Dhaka Port explained in Chapter 2.

The economic evaluation of a project should show whether the project is justifiable from the economic point of view by assessing its contribution to the national economy.

Thus, the basic purpose of this chapter is to investigate the economic benefits as well as the economic costs that will arise from the project, and to evaluate whether the net benefits exceed those which could be derived from other investment opportunities in Bangladesh (the opportunity cost of Capital).

The economic internal rate of return (EIRR) based on cost-benefit analysis is used to appraise the feasibility of the project. In estimating the costs and benefits of the Short-term Plan of Container Terminal at Dhaka Port, "economic pricing" is applied. "Economic pricing" here means the appraisal of costs and benefits in terms of international prices (border prices). Fig 5-1 shows the process of the economic analysis in this study.

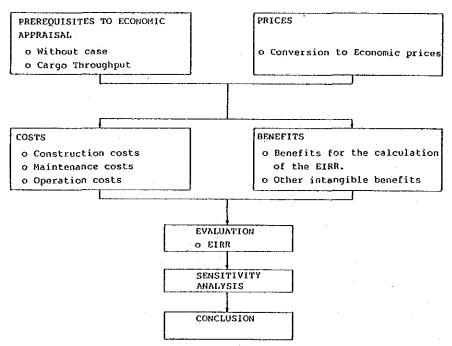


Fig. 5.1 Process of Economic Analysis

5.2 Prerequisites of the Economic Analysis

5.2.1 "With" Case

In an economic analysis, benefits are mainly brought about by improvements in productivity. In this study it is possible to improve productivity by construction of a container terminal at Dhaka Port and by building new container ships that will be operated between Chittagong and Dhaka and between Mongla and Dhaka. Therefore, we assume that all improvement in productivity is the result of the "With" case.

5.2.2 "Without" Case

A cost-benefit analysis is conducted on the difference between the "With" and "Without" investment cases. In other words, benefits and costs arising from the proposed investment are compared, and it is determined whether or not the net benefits generated by the project exceed the opportunity cost of capital in Bangladesh. Therefore, determining the "Without" case is one of the key points of the economic appraisal. In this study, the following conditions are adopted as the "Without" Case after various possibilities are discussed:

- 1) No investment is made for this project.
- 2) The container cargo between Dhaka and the seaports in Bangladesh will be transported by rail and road.
- 3) The capacity of Kamalapur ICD for railway dos not exceed the Fourth Five Year Plan.

5.2.3 Base Year

The "base year" here means the starting year of the economic evaluation and, therefore, 1991 is set as the base year for this study.

5.2.4 Project Life

The economic service lives of the gantry cranes, the wharves and the buildings are 15 years, 30 years and 50 years, respectively, while that handling equipment such as the straddle carriers is 5 years.

The property and the second section of the

Therefore, the economic cost/benefit evaluation is carried out starting in 1991 and ending in 2025 (the 35th year from the engineering service starting year, 1991).

5.2.5 Foreign Currency Exchange Rate

The exchange rate used in this study is as follows: The exchange rate used in this study is as follows:

US \$1 = TK 34.06 = \$140.50(as of September 1990)

5.2.6 Cargo Throughput

(1) "With Case"

The cargo volume under the With Case at the container terminal at Dhaka Port during the planning period is forecast in Chapter 8 in Part 1 and Chapter 1 in Part 2.

(2) "Without Case"

All container cargo will be transported by land transportation between Dhaka and Bangladesh's seaports.

Therefore, there is no-container cargo at Dhaka Port.

The cargo throughput under the Without Case in shown in Table 5-1.

				Imp	ort		Export
	i !		IWT	Railway	Ro	ad	Total
Case	Port	Year		<u> </u>	Trailer	Truck	
			(1000 TEU)	(1000 TEU)	(1000 TEU)	(1000tons)	(1000 TEU)
	Chittagong	1995	28	17	0	320	-
		2000	46	35	21	258	1 - 1 4
With case	Mongla	1995	7	0	0	0	-
	l : .	2000	11	00	0	0	<u> </u>
	Total	1995	34	17	0	320	76
	}	2000	57	35	21	258	134
	Chittagong	1995	0	17	0	633	
	1	2000	0	35	43	532	-
Without	Mongla	1995	0	0	0	73	_
case		2000	0	0	0	122	
	Total	1995	0	17	0	706	71
	[]	3000	0	35	43	633	129

Table 5.1 Container Cargo through under the Without Case

5.3 Economic Pricing

5.3.1 Methodology

The purpose of the economic analysis is to examine the value of a project, that is to see if it represents an efficient allocation of resources. The values of goods quoted at a given market price do not always represent the true value of those goods to the nation. Thus, planners often use "economic pricing" to examine the costs of labour, capital, and imported goods, as well as the benefits of development, to evaluate a project from the economic viewpoint.

All the costs and benefits examined usually have been calculated based on domestic market prices. Thus, in this report, for tradable goods, the domestic market prices are changed to border prices by subtracting customs duty, development surcharge tax, sales tax, import permission fee and advanced income tax from the domestic market prices. For non-tradable goods and labour costs, the market prices are changed to border prices using various conversion factors. (Refer to Appendix 2.5.1.) In general, these border prices are intended to represent the international market value, or world prices, of these goods and services.

Table 5.2 shows the concept of economic pricing.

Table 5.2 The Concept of Economic Pricing

Border price	Conversion facter
	Conversion facter consumption(CFC)
	(Ratio of the shadow wage rate) x (CFC)
	(Domestic market price) - (Taxes & Duty)
Non-tradable goods	Standard conversion facter(SCF)

5.3.2 Standard Conversion Factor (SCF)

Import duties and export subsidies create a price differential between the domestic market and the international market.

The standard conversion factor makes up for this price difference. The standard conversion factor is obtained by the following formula.

In this report, the average SCF from 1982 to 1988 is adopted for the analysis.

The Standard Conversion Factor is calculated as 0.898. (Please refer to Appendix 2.5.2.)

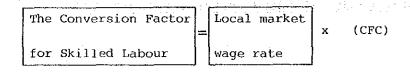
5.3.3 Conversion Factor for Consumption (CFC)

This factor is used for converting the prices of consumer goods from market prices to international prices.

In particular, this is required to convert labour costs from market prices to international prices.

The Conversion Factor for Consumption is usually calculated in the same manner as the Standard Conversion Factor, replacing total imports and total exports by imports and exports of consumer goods.

However, due to the lack of required data, the Conversion Factor for Consumption cannot be directly calculated in this report. Thus, it is assumed to be 0.915, which is based on 1984.


 $\langle \Phi_{ij} \rangle = \langle \Phi_{ij} \rangle = \langle \Phi_{ij} \rangle + \langle \Phi$

the first accident providing properties and the Secretary and Co.

5.3.4 Conversion Factor for Labour

(1) Skilled Labour

For skilled labour, assuming that the market mechanism is functioning properly, actual market wages are used. But as the data are in domestic prices, they are converted to international prices by multiplying by the conversion factor for consumption.

 $= 1.0 \times 0.915$

= 0.915

(2) Unskilled Labour

For unskilled labour, the economic costs are calculated based on a simplified measure of the opportunity cost. As the wages paid to unskilled

laborers by a project are usually above the opportunity cost, these market wages should not be used for the calculation of the economic value of the unskilled labour.

In this report, the marginal productivity of an unskilled laborer is assumed to be equal to the per capita GDP of the agriculture, livestock and fisheries sector (hereafter referred to as the agricultural sector).

The conversion factor for unskilled labour is calculated using the formula given below:

In this report, the data of calculation of the above conversion factor is from 1984, The most recent year for which data on working days of agricultural workers in Bangladesh are available.

The conversion factor for unskilled labour is calculated as 0.713. (Please refer to Appendix 2.5.3.)

5.4 Benefit

5.4.1 Benefit Items

As benefits brought about by the Short-term Plan of the container terminal at Dhaka Port, the following items are identified;

- 1 Savings on transportation costs of container cargo between Dhaka and Bangladesh's seaports.
- 2 Reduction in damage, accidents and pilferage.
- 3 Maintaining the transportation of container cargo during devastating floods.
- 4 Increase in employment opportunities.
- 5 Increase in income due to port-related industrialization.
- 6 Other intangible benefits.

It is difficult to evaluate some of the above-mentioned benefits (item 2 - item 6) in strictly monetary terms.

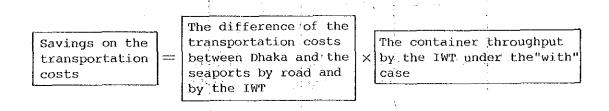
In this report the first benefit (item 1) which can be evaluated monetarily is considered as a countable benefit.

5.4.2 Savings on Transportation Costs of Container Cargo between Dhaka and Bangladesh's Seaports

(1) General

The volume of container cargo for transportation between Dhaka and Bangladesh's seaports is increasing year by year.

At present, almost all container cargo are carried out loading to / stripping from container boxes at seaports area. However, a very small percentage of container cargo volume are coming to and from Dhaka area by railway. Then, these almost container cargo is transported by truck.


In future, transportation of these loads will shift from trucks to container semi-trailers after the construction of bridges on the main roads between Dhaka and Bangladesh's seaports.

The major benefit of this project stems from the difference in transportation costs by road and by inland waterway between Dhaka and the seaports.

For rail transportation, the container throughput under the " without case" consists of the same number of containers as under the " with case"

because it is assumed that the capacity of the Kamalapur ICD for railway will not exceed the capacity under the Forth Five Year Plan during the planning period of the Short-term plan.

The formula used to calculation this benefit is as follows:

The transportation cost of each transportation mode is constructed from the operation cost of the transportation such as the operation cost of the vessel, the truck, etc., and the terminal cost of each transportation mode such as the container terminal for IWT at Dhaka, the ICD for semi-trailer at Dhaka, etc..

The transportation cost of load transportation, which consists of trucks and semi-trailers includes other costs, including the road maintenance changes and the cost of improving roads for container semi-trailer.

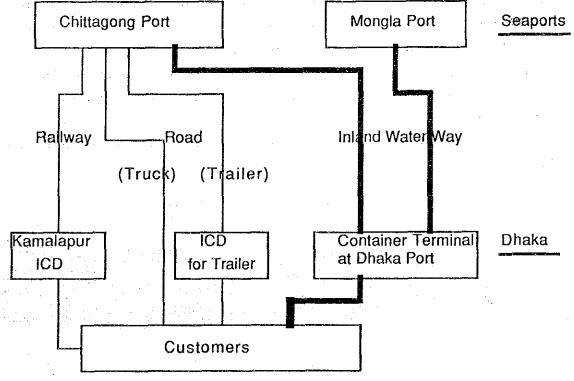


Fig. 5.2 With Case

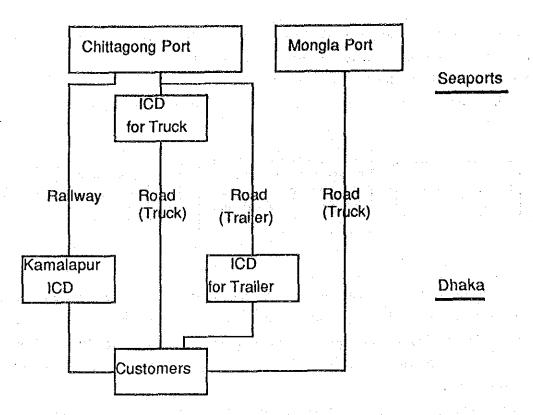


Fig. 5.3 Without Case

(2) Operation cost by Transportation Mode

The operation costs of container transportation between Dhaka and Bangladesh's seaports by road and IWT at economic prices are estimated based on the calculation of these operation costs at financial prices in Chapter 9 of Part 1 and Chapter 1 of Part 2.

The operation costs of the transportation mode consist of the fuel cost, depreciation cost, repair and maintenance cost, insurance, and personnel cost.

The results of the estimation are shown in Table 5.3. (Refer to appendix 2.5.4, 2.5.5 and 2.5.6)

Table 5.3 Operation Cost by Economic Price

Control of the second of the second

100					٠.	1	1	្រប់បារ	t:1000 TK)
Year		With	case			With	out case		Benefit
	TUI	Truck	Trailer	Total	IVT	Truck	Trailer	Total	
1995	46.784	220.012	0	266.796	Û	196 656	0	496.656	229.861
1996	46,784	212.857	18.316	277.957	0	511.475	37.833	549.308	271.351
1997	46.784	211.919	38.402	297,105	0	516.777	79.257	596.035	298,930
1998	58.494	205.996	62,240	326,730	0	511.864	128,355	640.219	313.488
1999	58,994	194,702	89.910	343.606	0	495.911	185 266	681.177	337.571
2000	58.698	177.727	121.460	357.886	0	468.264	250.066	718,331	360.445

(3) Terminal Cost by Transportation Mode

The terminal costs of container transportation between Dhaka and Bangladesh's seaports by road and IWT at economic prices are estimated based on the calculation of those terminal costs at financial prices in the same chapter as mentioned in (2).

The terminal costs of each mode consists of the depreciation cost, maintenance cost, repair cost, operation cost and personnel cost.

The result of the estimation of terminal costs is shown in Table 5.4. (Refer to Appendix 2.5.7)

 Year
 With case
 Without case
 Benefit

 1995
 206,736
 0
 94,522
 301,258
 0
 0
 166,044
 166,044
 -135,214

 1996
 209,974
 81,514
 84,202
 375,690
 0
 168,028
 151,084
 319,113
 -56,577

 1997
 208,760
 93,755
 77,161
 379,676
 0
 193,264
 136,452
 329,716
 -49,360

 1998
 207,549
 104,488
 70,138
 382,175
 0
 215,369
 121,875
 337,244
 -44,931

 1999
 206,341
 115,702
 63,131
 385,174
 0
 238,439
 107,354
 345,793
 -39,380

 2000
 205,136
 126,898
 56,140
 388,171
 0
 238,439
 107,354
 345,793
 -39,380

Table 5.4 Terminal Cost at Economic Cost

(4) Other costs

Other costs of each mode consists of the road transportation cost for the delivery and the receiving of container cargoes and road costs which include the project costs of the Comilla-Daudkand Highway and the maintenance cost of the Dhaka-Chittagong Highway. These costs are estimated in the same way as (2) and (3).

The results of the calculation are shown in Table 5.5.

	the state of the s		Annual Control of the	<u> </u>				(Uni	<u>t:1000 TK)</u>
Year		With	case			With	out case		Benefit
	IWT	Trailer	Truck	Total	IWT	Trailer	Truck	Total	
1995	45.147	0	50.559	95,706	0	0	103.609	103.609	7.904
1996	52.845	5.861	51.068	109.774	0	12,086	104.652	116.738	6.964
1997	58,424	12.374	51.134	121.933	. 0	25.501	104.789	130,290	8.357
1998	64,055	20.258	50.499	134.812	0	41.726	103.486	145,212	10.400_
1999	69.697	29,667	49,056	148 420	00	61.071	100.528	161.599	13,179
2000	75,319	40.808	46.642	162.769	0	83,957	95.582	179,539	16,770

Table 5.5 Other Cost

(5) Benefits of This Project

The benefits of this project are calculated by summing up the results of the estimation from (1) to (4).

The benefits of this project are shown in Table 5.6.

Table 5.6 Calculation the Benefit

				11 - 12		e e i	 25 (25) 	1. P. C.	(Unit	:1000 TK)
1	····	T	With	case			With	out case		Benefit
	Year	INT	Trailer	Truck	fotal	[WÎ	Trailer	Truck	Total	
	1995	298,666	0	365,093	663,759	0	0	766.310	766,310	102.550
	1996	309,603	105.692	348.126	763.121	0	217.918	767,211	985,159	221.738
	1997	313.968	144.530	340,215	798.713	0	298,023	758.018	1,056,041	257.327
	1998	330.099	186,986	326,633	843.717	0	385.449	737.225	1.122,675	278.958
	1999	335,032	235,279	306.888	877.199	0	484,775	703.794	1.188,569	311.370
	2000	339,153	289,167	280.509	908.829	0	595,472	656.736	1,252,208	343.379

5.5 Costs

Construction, maintenance and operation costs as included in repair and administration costs are considered in this section.

5.5.1 Construction Costs

Construction costs, estimated at domestic market prices, are shown in Chapter 3 of Part 2. These costs are divided into such categories as tradable goods, non-tradable goods, skilled labour, unskilled labour and others.

The cost of tradable goods at financial prices are changed to economic prices by subtracting customs duty, development surcharge, sales tax, import permission fee and advanced income tax from the financial price.

The cost of non-tradable goods and others at financial prices are changed to economic prices by multiplying by the standard conversion factor.

The cost of skilled labour and unskilled labour at financial prices are changed to economic prices by multiplying by the conversion factor for skilled labour and the conversion factor for unskilled labour, respectively.

The table 5.7 shows construction cost at economic prices.

Table 5.7 Summary of Investment for IWT Container Terminal at Dhaka (Economic Price)

Year	Rectam.	- Wharf	M. yard	A. road	Bullding		Eug (ee	Contl	H.equip.	Land	Total
1991	0	0	U	. 0	0	<u> </u>	30,729	0	0	0	30,729
1992	72,400	44.891	0	9	0	0	15.389	21.248	0	33.675	188,303
1991	10.083	45.417	34.812	30.560	8.984	0	10,965	19.583	0	0	155,592 891,877
1995		74,597	34,813	13,607	47,374	227,525	10,782	28,657	394,524	9	831.811
1996				i			 -				
1997		<u> </u>	i		i	ļ	ļi		i		
1998							i				
1999							 		151,237		154,237
2000				 			-		1341-31		134,237
2001						ļ	 				Ö
2002				·		· · · · · · · · · · · · · · · · · · ·					ŏ
2003						ļ					· · · · · · · · · · · · · · · · · · ·
2004		,	94.812	41,167			13,469	13.930	151,237		320,616
2005							1		1		0
2006						4.1					0
2007											0
2008									· · ·		. 0
2009					L				394.524		394,524
2010				L							0
3011						l			ļi		Ó
3015		·	L	I _			L	l.,	11		0
2013			<u> </u>			1	<u> </u>	i	l		0
2014			94,812	44.167	<u> </u>		13,469	13,930	154,237		320.616
2015			I			<u> </u>			ļļ		0
2016				ļ	<u> </u>	ļ	ļ				0
2017		L			ļ		ļ	ļ <u></u>	 		0
2018 2019	i	<u> </u>			l	ļ			151 007		154.237
2019			·	<u> </u>		·	ļ		154,237		15137
2021			i	<u> </u>	<u> </u>				 		0
2022			<u> </u>		<u> </u>		 		 		
2023				i			 				l ő
2024		161.375	94.812	41.167	·		29,400	30,406	394,524		757.684
2025		10 (. 3/3	34.012	44.10/		 -	1 23.400	30.400	334.324		0
Note	Reclam: R U.Yard: Nar A.Road: Acc Eng.fee:En	shalling Y ess Road	ard						,		

5.5.2 Maintenance and Operation Costs

The main items of the operation costs of the container terminal are personnel, fue! and administration expenses.

The details of these items mentioned in chapter 6.

The maintenance costs are assumed to consist of maintenance expenses for handling equipment and other depreciated assets.

These expenses are assumed to be a percentage of original procurement, the former is 4 percent and the latter is 1 percent.

Table 5.8 shows the maintenance and operation cost of the container terminal at economic prices.

Table 5.8 Maintenance and Operation Cost for IWT Container
Terminal at Economic Price

	ong the second contract of the	:1000 TK)
Item		Economic operation cost
Maintenance expenses	Handling equipments	15,781
	Others	8,383
	Total	24,164
Fuel expense		3,945
Personnel expenses	Officer(skilled) 120persons	5,819
	Staff(unskilled) 190persons	4,877
	Total	10,696
Administration expense		3,209
rotal		42,014

5.6 Evaluation

5.6.1 Calculation of the EIRR

The economic profitability of the project is evaluated in terms of the economic internal rate of return. The internal rate of return is a discount ratio satisfying the following equation:

Section of the second sections

$$\sum_{i=0}^{n} \frac{Bi - Ci}{(1+r)^{i}} = 0$$

Where, Bi: Benefit at i-th year

Ci: Cost at i-th year

r: Rate of discount

n: Period of Economic Calculation

From the result of the calculation, the EIRR of this project is found to be approximately 14.7 percent.

(Please refer to Appendix 2.5.8)

5.6.2 Sensitivity Tests

Sensitivity tests are made for 2 cases:

(a) Construction, Maintenance and Operation cost increase by 10%. (Case - 1)

The second of th

(b) Cargo volume decreases by 10% (Case - 2)

The calculated EIRR is 13.0 percent for (a) and 12.6 percent for (b). (Please refer to Appendices 2.5.9 and 2.5.10.)

5.6.3 Results

The opportunity cost of capital in developing countries ranges up to 8\$ or more, as shown in Table 5.9 .

It is a generally accepted criterion that a project with an EIRR of more than 10% is economically feasible. For this project, the EIRR of all cases exceeds 10%, hence, the project is considered justifiable.

Table 5.9 Opportunity Cost of Capital

Nation	Sector	IRR (%)
India	Manufacturing	10 - 12
Pakistan	Agricul ture	10
	Manufacturing	10
Nepal	Transport	8
Egypt	Manufacturing	8
Sudan	Agriculture	8
Gambia	Transport	10
Solomon Is.	Forestry	8
Indonesia	Power	6
Jordan	Water Supply	8

Source: O.D.M., U.K., 1975

CHAPTER 6 FINANCIAL ANALYSIS

6.1 Purpose of the Analysis

The purpose of the financial analysis is to appraise the financial feasibility of the short-term development plan for the new container terminal. This analysis focuses on the viability of the project and the financial soundness of the terminal management body during the project life.

Control of the second

6.2 General Prerequisites of the Financial Analysis

6.2.1 Scope of the Analysis

For the estimate of the financial soundness, the finances of not the entire BIWTA but the division of the BIWTA managing and operating the container terminal are analyzed in this study. Thus we cannot analyze the financial soundness appropriately, due to the large overall deficit of the BIWTA.

6.2.2 Project Life

Taking account of the conditions of the long-term loans and the service lives of the port facilities, the project life for the financial analysis is determined as 35 years including 4 years of detailed design and construction of the terminal.

6.2.3 Base Year

For the estimation, all costs, expenditures and revenues analyzed quantitatively here are indicated in prices as of 1 September 1990, when the price survey was conducted. Neither inflation of prices nor the increases of nominal wages are considered during the project life.

6.2.4 Cargo Handling Volume

Based on the cargo volume forecast, the modal split analysis and estimated cargo handling capacity, the annual cargo handling volume is determined as shown in Table 6.2.1.

6.2.5 Port Charges and Revenues

Revenues from port activities are calculated based on the new tariff shown in Fig. 6.2.1 and the cargo handling volume/number of calling vessels presented in Table 6.2.1.

The structure of the new tariff is based on the existing tariff on container transport at Chittagong and Mongla Ports presented in Fig. 6.4.3 of Part I. This existing system is familiar with almost all users, and thus, aid the transport through this terminal. The tariff systems at Singapore and Colombo Ports shown in Appendix 6.2.1 and 6.2.2 were also considered for determination of the new tariff. And the structure should include incentives for efficient cargo operations and transport.

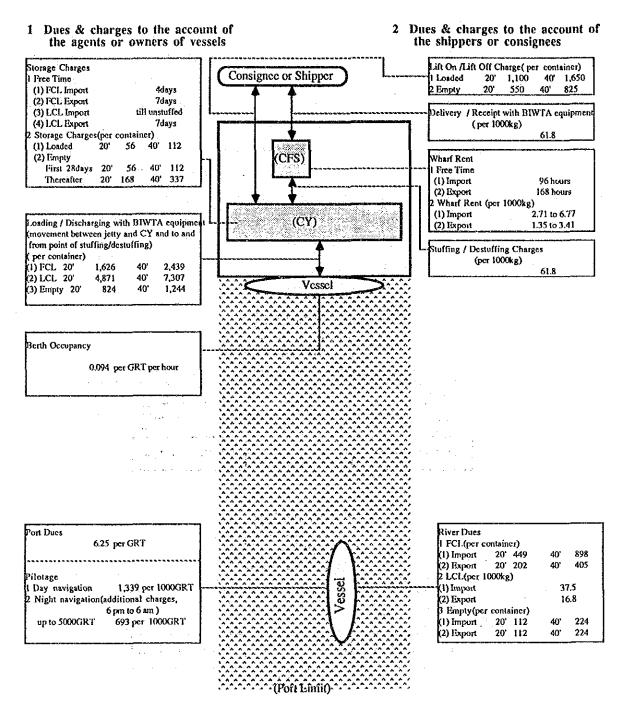

We determined the level of rates for the new tariff by taking account of the feasibility of the project as well as rates at Chittagong and Mongla Ports. Revenues from port activities should cover all costs of construction as well as management and operations of the port facilities. The competitive power for trucks and railways should also be considered when setting rates. Total freight and charges for waterway container transport through this terminal which is calculated based on the proposed level of rates are lower than those for trucks and railways as shown in Appendix 6.2.3.

Table 6-2-1 Annual Container Handling Volume

							-		-					
ITERS		1985	1996	1997	1998	1959	2000	2001	2002	2003	2004	2002	:	2025
(TEU)														
IMPORT EXPORT TOTAL		34,400 88,800	40.300 80.800	44.500 89,000	48,800 48,800 97,600	53,100 53,100 106,200	57,000 57,000 114,000	57,000 57,900 114,000	57,000 57,000 114,000	57,000 57,000 114,000	57,000 57,000 114,000	57,000 57,000 114,000	57,000 57,000 114,000	57,000 57,000 114,000
SHARE OF LOADED CONTAINERS	IMPORT EXPORT	0.8621	0.8621 0.4626	0.8621	0.8521	0.3947	0.3769	0.8621	0.8621	0.8621	0.8621	0.8821	0.8621	0.8621
SHARE OF 20' CONTAINERS		0.6939	0.6812	0.6717	0.8584	0.6445	0.8328	0.6211	0.5097	0.5985	0.5878	0.5768	0.5768	0.5768
(BOX)										.:				
T.PORT	LOADED(201) LOADED(401) EMPTY(201) EMPTY(401)	15,756 6,950 2,520 1,112	17,948 8,399 2,871 1,343	18,400 9,482 3,103 1,517	20,553 10,759 3,288 1,721	21,786 12,008 3,482 1,920	22,733 13,203 3,636 2,112	22,134 13,503 3,541 2,180	21,550 13,785 3,447 2,207	20,985 14,077 3,357 2,252	20,444 3,270 2,285	19,916 14,612 3,126 2,337	19.918 14.612 2.138	19,916 14,612 3,188 2,337
EXPORT	LOADED(20') LOADED(40') EMPTY(20') EMPTY(40')	8,959 3,952 4,110	9,830	3,843 4,811 12,660 5,188	9.891 5.178 13.949 7.302	6,7,5,6 8,7,5,4,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	9,939 5,772 16,431	9.269 5.654 16.406 10.008	8,871 5,551 16,325 10,451	8,140 5,461 18,202 10,869	7.687 5.381 16.047 11.262	7,240 5,312 15,881 11,637	7,240 15,861 11,637	7.240 5.312 15.861 11.637
T073L	LOADED(20°) LOADED(40°) EMPTY(20°)	24,715 10,902 11,837 5,222	27.575 12,905 14,057 8,579	29.243 14.293 15.763	30,445 15,937 17,237 9,023	31.731 17.503 18.784 10.350	32,672 18,975 20,067 11,655	31,403 19,157 19,947 12,188	30,221 19,345 19,772 12,657	29,125 19,538 19,538 13,121	28,110 19,729 19,317 13,558	27,155 19,924 19,047 13,975	27,155 19,924 19,047 13,975	27,155 19,924 19,047 13,975
NUMBER OF CALLING VESSELS		391	458	508	535	603	648	648	648	848	848	648	648	648

Table 6.2.2 Annual Revenues from Port Activities

	ANNUAL REVENUES FROM PORT ACTIVITIES (UNIT:1000Tk.)	VENUES FR	ON PORT AC	TIVITIES	(UNIT:10)	00Tk.)						(UNIT:1000Tk.)	000Tk.)
KIND OF REVENUES	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	7 I	2025
PORT CHARGES ON VESSELS(*)	7,190	8,361	9,242	10,130	11,020	11,810	11,810	11,810	11,810	11,810	11,810	3.361 9,242 10,130 11,020 11,810 11,810 11,810 11,810 11,810 11,810 11,810 11,810 11,810	11,810
LOADING/UNLOADING CHARGES	115,940	133,152	145,604	157,731	169,883	180,392	178,868	177,466	176,179	174,999	173,903	115,940 133,152 145,604 157,731 169,883 180,392 178,868 177,466 176,179 174,999 173,903 173,903 173,903	173,903
STORAGE CHARGES	18,834	22,175	24,786	27,439	30,112	32,519	32,741	32,938	33,113	33,268	33,406	18,834 22,175 24,786 27,439 30,112 32,519 32,741 32,938 33,113 33,268 33,406 33,406 33,406	33,406
DELIVERY/RECEIVING CHARGES	39,050	44,522	39,050 44,522 48,321 52,079 55,795 58,981 58,253	52,079	55,795	58,981	58, 253	57,806	57,031	57,606 57,031 56,519 56.061	56.061	56,061	56,061 56,061
STUFFING/UNSTUFFING CHARGES	33.688	38,460	41,790	45,100	48,372	51,187	50,605	50.088	49,631	49,224	48,861	38,480 41,790 45,100 48,372 51,187 50,605 50,088 49,531 49,224 48,861 48,861 48,881	48,861
OTHERS	20,032	23,194	25,536	27,892	30,245	32,322	20,032 23,194 25,536 27,892 30,245 32,322 32,240 32,168 32,103 32,046 31,995 31,995	32,168	32,103	32,046	31,995	31,995	31,995
TOTAL	234,733	269,865	295.279	320,372	345,427	367.211	364,517	362.077	359,867	357,868	356,037	234,733 269.865 295,279 320,372 345,427 367,211 364,517 362,077 359,867 357,868 356,037 356,037	356,037

(UNIT: TK.)

Fig. 6.2.1 Main Dues & Charges of Container Transportation in Dhaka Inland Container Terminal

Usually, the companies responsible for cargo transport must pay port charges and dues. In container transport, shipping companies are usually responsible for cargo transport after it has been received from the shippers or before it has been delivered to the consignees at CY or CFS in ports. On the other hand, under conventional transport system, shipping companies are responsible only for cargo transport after it has been loaded to or before it has been discharged from vessels. The border of responsibility between shipping companies and shippers/consignees is located at the wharves. Payment systems for both forms of cargo transport are shown in Fig. 6.2.2. Saving costs and time for collecting port charges and dues should also be considered.

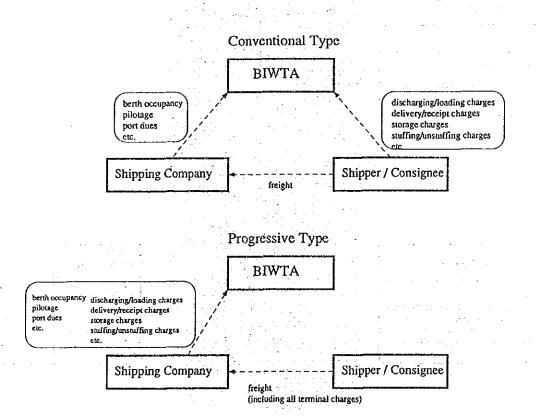


Fig. 6.2.2 Payment System for Port Charges and Dues

6.2.6 Fund Raising

The funds necessary for the implementation of the project are assumed to be raised as follows:

(1) Foreign currency

source: loans from abroad (re-lending loans from the government)

and the state of t

interest rate: 11.5% per annum. (re-lending rate from the government)

repayment: 30 years, including a grace period of 5 years

(2) Local currency

source: loans from the government

interest rate: 11.5% per annum.

repayment: 30, years including a grace period of 5 years

Any cash shortage should be covered by short-term loans with an interest rate of 12% per annum., in local currency.

6.2.7 Costs of Investments

The initial investment of the short-term project are estimated in Chapter 3. The facilities and the equipment will be renewed based on their service lives. The service lives of each facility and equipment are shown in Chapter 9 of Part I.

The funds for re-investment are assumed to be raised from the reserves of the division of the BIWTA managing and operating the container terminal.

6.2.8 Maintenance, Repair and Fuel Costs

The annual maintenance and repair costs for the port facilities are calculated as follows;

(1) depreciable assets excluding cargo handling equipment
1% of the original construction cost

(2) cargo handling equipment

4% of the original procurement cost

The annual fuel costs are calculated as 1% of the original procurement cost of cargo handling equipment.

6.2.9 Personnel and Administration Costs

The annual personnel costs are estimated based on the required number of workers proposed in Chapter 4.2.1 and the existing scales of pay.

The annual administration costs are calculated as 30% of the total annual personnel costs.

6.2.10 Depreciation Costs

The annual depreciation costs of the port facilities and equipment are calculated by the straight line method based on their service lives. Residual values after deprecation are estimated as 10% of the original construction or procurement cost. The port facilities and equipment after depreciation are assumed to be sold at the residual values.

6.2.11 Repayment of Loans and Interest on Loans

The repayment of long- and short-term loans and the interest on these loans are calculated based on the fund-raising plan presented in 6.2.6.

6.2.12 Taxes

All private and public enterprises in the black after payment of all expenditures must pay corporate tax. However, in this study, it is assumed that the BIWTA will not pay the tax because all of its finances, including not only the management and operations of the container terminal but also the other functions, are assumed to be in the red.

Taxes and duties on imported or manufactured goods, such as customs duty, sales tax, development surcharge tax, excise duty, etc., have already been included in the project costs.

6.3 Methodology of the Financial Analysis

6.3.1 Viability of the Project

The viability of the project is analyzed using the Discount Cash Flow Method and appraised by the FIRR. The FIRR is a discount rate that makes the costs and the revenues during the project life equal, and it is calculated using the following formula:

$$\sum_{i=1}^{n} \frac{Bi - Ci}{(1+r)^{i-1}} = 0$$

n: project life

Bi: revenues in the i-th year

Ci: Costs in the i-th year

r : discount rate

Here, the revenues and the costs are the difference between those under the "with" case and the "without" case. In this study, the "without" case is set as explained in Chapter 5. The revenues and the costs in this analysis cover the following items:

Revenues: operating revenues

Costs: investments(initial investments and re-investments)

maintenance, repair and fuel costs personnel and administration costs

When the calculated FIRR exceeds the weighted average interest rate of the total funds for the investments of the project, the project is regarded as financially feasible.

6.3.2 Financial Soundness of the Organization Managing and Operating the Container Terminal

The financial soundness of the organization managing and operating the terminal is appraised based on its projected financial statements (Profit and Loss Statement, Cash Flow Statement and Balance Sheet). The appraisal

is made from the viewpoints of profitability, loan repayment capacity and operational efficiency, using the following ratios:

(1) Profitability...

Rate of Return on Net Fixed Assets;

This indicator shows the profitability of the investments, which are presented as net total fixed assets. It is necessary to keep the rate above the average interest rate of the funds for the investments.

(2) Loan Repayment Capacity

Debt Service Coverage Ratio:

Net Operating Income before Depreciation

Repayment of and Interest on Long-term Loans

This indicator shows whether the operating income can cover the repayment of and the interest on long-term loans, and must be more than 1.

(3) Operational Efficiency

Operating Ratio:

Working Ratio:

The operating ratio shows the operational efficiency of the organization as an enterprise, and the working ratio shows the efficiency of the routine operations of the port.

When the calculated operating ratios are less than 70-75%, and the working ratios are less than 50-60%, the operations of the terminal are efficient.

6.4 Evaluation

6.4.1 Viability of the Project

The FIRR of this project is 12.7% exceeding the weighted average interest rate of funds during the project life (11.5%), as shown in Table 6.4.1.

Table 6.4.1 FIRR Calculation

FIRR=

0.127

							(UNIT:1,00	<u>(00%.)</u>
	1		COSTS		REVENUES-		T VALUE IN	
YEAR	REVENUES _	INVESTMENT	EXPENSES	TOTAL	COSTS	REVENUES	COSTS	DURFERENCES
1991		30,730		30,730	-30,730	0	30,730	-30,730
1992]	231,123		231,123	-231,123	0	205,025	-205,025
1993		185,679		185,679	-185,679	0	146,114	-146,114
1994		1,132,193		1,132,193	-1,132,193	0	790,337	-790,337
1995	246,620		55,770	55,770	190,850	152,716	34,535	118,181
1996	278,679		55,770	55,770	222,909	153,082	30,635	
1997	304,613	0	55,770	55,770	248,843	148,433	27,176	121,257
1998	330,647		55,770	55,770	274,877	142,926	24,107	118,819
1999	356,595	299,433	55,770	355,203	1,392	136,737	136,203	534
2000	379,704		55,770	55,770	323,934	129,158	18,970	110,187
2001	376,918	• •	55,770	55,770	321,148	113,733	16,828	96,904
2002	374,394	0	55,770	55,770	318,624	100,215	14,928	85,287
2003	372,109		55,770	55,770	316,339	88,356	13,242	75,114
2004	370,041	499,404	55,770	555,174	-185,133	77,944	116,939	-38,995
2005	368,149		55,770	55,770	312,379	68,789	10,421	58,368
2006	368,149		55,770	55,770	312,379	61,021	9,244	51,777
2007	368,149) 0	55,770	55,770	312,379	54,131	8,200	45,931
2008	368,149]	55,770	55,770	312,379	48,019	7,274	40,744
2009	368,149	628,624	55,770	684,394	-316,245	42,596	79,187	-36,591
2010	368,149		55 ,7 70	55,770	312,379	37,787	5,724	32,062
2011	368,149	·	55,770	55,770	312,379	33,520	5,078	28,442
2012] 368,149	0	55,770	55,770	312,379	29,735	4,504	25,230
2013	368,149	<u> </u>	55,770	55,770	312,379	26,377	3,996	22,381
2014	368,149	499,404	55,770	555,174	-187,025	23,399	35,286	-11,887
2015	368,149	ļ	55,770	55,770	312,379	20,757	3,144	17,612
2016	368,149		55,770	55,770	312,379	18,413	2,789	15,623
2017	368,149	0	55,770	55,770	312,379	16,334	2,474	13,859
2018	368,149		55.770	55.770	312,379	14,489	2,195	12,294
2019	368,149	299,433	55,770	355,203	12,946	12,853	12,401	452
2020	368,149		55,770	55,770	312,379	11,402	1,727	9,675
2021	368,149		55,770	55,770	312,379	10,114	1,532	8,582
2022	368,149	1	55,770	55,770	312,379	8,972	1,359	7,613
2023	368,149		55,770	55,770	312,379	7,959	1,206	6,753
2024	368,149	1,065,449	55,770	1,121,219	-753,070	7,060	21,503	-14,443
2025	368,149	1,332,861	55,770	-1,277,091	1,645,240	6,263	-21,727	27,990
TOTAL	11,121,449	3,538,611	1,728,870	5,267,481	5,853,968	1,803,289	1,303,289	<u> </u>

6.4.2 Financial Soundness of the Organization (Table 6.4.2)

(1) Profitability

The rate of return on net fixed assets is less than the average interest rate of the funds in 1995 and 1997, but after 1998 the rate of return exceeds the average interest rate.

the property of the contract o

(2) Loan Repayment Capacity

The debt service coverage ratios exceed 1 throughout the project life. There will be no problem with the repayment of the long-term loans using the annual operating revenues. But it is necessary to take out short-term loans to cover the cash outflow from 1993 to 2014.

(3) Operational Efficiency

医异戊毒子 制设备

Both the operating ratios and the working ratios constantly keep favorable levels.

and the second of the second o

																																(Uni	t : 100)OTk.)
PEGFEL AND LOSS STATEMENT	<u> </u>	1992	1993	1994	1995	1995	1997	199\$	1999	2000	2001	2002	2003	2004	2005	2808	2001	3008	2001	2010	201 t	t012	2013	2014	2015	2016	2017	2013	5019	3879	3033	3633	2023 20	2023
OPERATINS REVERUES	0	Q	0	a	249. \$25	278.579	101.611	139.647	351.595	375, 161	338.412	314, 384	372, 169	310.541	368, [88	361.148	368. 148	358, 149	366, 143	162. 141	358, 149	358. 148	368, 149	181.14	388, 141	318, 149	388, 149	351.149	368, [19	368.145	368.149	388, 148 3	868.149 38B.1	49 368,749
OPERATIVE EXPENSES PERSONNEL EXPENSES PORTIVES FATTON MAINTENNEL XPERATE & FUEL OPERATOR OPERATIVE EXPENSES	9 0 0 0	0 0 0	0 0 0	6 0 0	\$3,320 3,895 38,454 103,530 158,200	3, 596 38, 454 163, 530 158, 360	3,956 34,454 103,530 159,200	159.300	159.300	13.328 3.995 38.458 103.538 159,100	153.300	13.320 3.216 38.456 183.539 158.305	13, 328 3, 898 38, 454 183, 530 159, 306	13,320 3,988 38,458 183,538 159,300		13.320 3.395 34.454 163.530 159.300	13.320 3.338 33,454 503.530 159,100	13,320 3,898 38,454 163,530 159,300	13.320 3.898 38.454 163.530 158.300	13.320 3.936 38.454 103.530 158.300	13.320 3.896 38.454 103.530 158.300	13,320 3,898 24,454 161,536 158,400	13.320 3.996 34.454 103.530 159.500	13.320 2.986 38.454 103.510 150.300	13,328 3,996 38,454 103,538 150,308	13.379 3,998 18.454 103.538 158,300	13.328 3.535 38.454 103.530 158.100	13.320 3.096 38.454 103.538 159.300	13.320 3.896 36.454 103.530 158.300	13,320 3,436 36,454 103,530 158,300	159.350	3, 496 34, 454 103, 530 1 158, 300 1	13.320 13.3 3.118 3.9 38.454 38.4 183.536 103.5 159.300 158.3	36 3.988 54 38,454 30 103,536 60 158,300
ann-driencing encore	a	G	8	ŧ	\$1, 329	111, 379	145. 313	171, 117	197.295	220,401	217, 613	213.044	212, 109	810, 141	258, \$49	201.141	206. 645	204. 248	208, 115	203, 849	208.843	208, 849	201.119	201, 219	208, 849	241, 815	203.849	201.319	208.449	201, \$49				
LEIVE AUS-CLESVIINE BEAENDEZ Dimesz Taresez un demoers	0 0 0	1. 548 8 1. 545	162 B 162	-3, 16\$ 0 -3, 168	2. \$12	5,514	6.042	-11,128 4,713 -4,507	3, 687 7, 137 3, 450	-24,513 1,556 -16,919	-19,401 7,538 -11,466	-12.526 1.288 -5.098	-3, 818 1, 442 3, 163	7,412 7,401 15,213	-32,291 7,383 -24,834	-24,381 1,383 -17,586	-18,252 1,363 -8,889	-4.708 2.383 2.683	10,312 7,343 17,675	-39.459 1,363 -32.088	-29, 225 7, 363 -21, 862	-17.204 7.383 -9.849	-1.593 7.363 5.778	18,398 7,383 25,758	-12, 200 T, 363 -6, 846	8.193 7.363 65.558	32.033 7,353 39,398	7.363 66.681	91.098 7.363 98.461	92.898 T.383 102:259	7, 363	7, 363	124.573 201.0 1,363 1.3 131.930 208.4	6) 1,363
HON-OPEPATENG EYPENSES ENTEREST ON EONS-TERM LORKS ENTESEST ON SMORT-PERM LORKS TOTAL NOR-OPERATENG EXPENSES	0 0	3, 534 0 3, 534	30, 113 0 30, 113	51, 468 2, 904 54, 210	181.669 3,393 181.461	161, 661 15, 173 156, 841	181, 451 14, 238 185, 566	181, 527 19, 193 191, 728	188.379 2,375 183.697	22.478	170.997 17.786 188.788	163. 731 11,537 115. 281	156, 484 3, 373 152, 636	149. 197 149. 197	141.830 28.805 171.534	[31,664 22,88] 151,545	127.357 14.318 142.284	120.136 4.300 124.438	112.063 D 112.883	105, 597 38, 171 141, 788	99.330 26.710 123.120	\$1.083 15.772 106.838	83,796 1,280 85,257	76,530 0 76,530	69,241 11,183 80,454	61.118 D 61.186	54, 738 6 54, 739	47, 463 0 41, 463	49. 19 8 0 46. 196	32. 929 0 32. 929	25.663 0 25.683	0	11.278 5.21 0 5.21	Q 6
AEL JACOBE BELDSE LAN		-1. ###	-28.331	-57.538	-118,011	-68, 641	-68,834	-21, 680	11,041	2. 751	\$6.961	31, 128	59.118	78.751	12.318	31.765	57. 885	81.073	113.411	24, 895	11,858	82.170	128.362	154.473	123, 541	102, 402	193.515	228, 273 n	287, 123	212.178	323,514	213,597 4	0 - 18 - 18 - 18	18 115.867 C C
off income neals and	0	-1,333	-25,335	.63.639	-176,211	-33.811	0 -58. 634	-21.350	53.563	D 2.355	16.451	34,729	51.134	16,151	12.111	13,795	51,865	Q1.Q12	113,661	34.115	41.244	62, 170	129.362	158.078	183.541	182,408	193.515	226, 213	257.113	214, 125	323,516	373,587 4	29.517 492.E	18 446, 867
PINISENT	9	0	0	b	Đ	8	. 6	0	9	6	e	Đ	9	D	0	0	٠	6.	6	0		6		9 158,678		162, 408	0 193, 515	221.273	8 267, 113	278 125	0 323 578	373 547 <i>(</i>	8 129 <u>.513 492.</u> 0	0 0 88 446, 357
CASE FLOW STREETS		-1. ***	-79, 331	-57,531	-115.211	-91.40	10.834	-: (, 320	17.217	2, 751	16-551	34, 728	55, 135	18,751	12,374	31. 105	52, 865	87,013	113.651	31.925	61.868	92,170	129.352	138.018	123, 521	162,400	192, 113	12011	17/11/1/	4.0				
	1991	1992	1953	1994	1595	1955	1997	1998	1999	\$000	2001	2082	2003	1992	2285	1008	7005	2001	2009	2010	2011	2012	2013_	2014	2815	7516	2011	2018	2019	2620			2023 20	
CASH BESTANENS		13, 71\$	6,515	-26.379	-63.021	-137, 935	-129, 436	-92.663	-10.600	-281.215	-141.735	-100, 881	-36, 861	65. 101	-289.140	-281.012	-135, 433	-39, 163	65, 936	-124.124	-213.565	-113, 3#5	-13,277	152,303	-101,731	68, 273	265.912	496.031	759. 146	790, 156	1, 108.556 1.	. 464, 847 1,8	17].169 2.312.0	30 2.922.128
CAIM SEFLOY TES OPERATING SECOPE OSPECIATION CAPITAL	3	9	Ð Q	9	\$1,370 103,530	119. J79 103. 530	145, 393 169, 500	171,347 103.538	197, 295 103, 539	220, 191 103, 530		215. 894 103. 538	212.481 103.530	216.741 193.530	208,119 103,530	261.849 101.510	201.111 103.530	298, 849 103, 530	208,449 103,530	201.449 183.530	233,849 103,530	204, 149	20#. #13 103. 510	208, 849 163, 530	261. 441 103. 531	280, 219 183, 530	208.845 103.530	206. E49 109. 530	20#,849 103,530	240. 849 103, 520 0			98,849 268.8 103,330 103.5	49 208.849 30 103.530
SAATT LONG-TERM LOARS OTHER CORECAT LIARICETHES OTHER FIRED LIARICITIES THITTEST OR ORTOSIT, ETC. CASH TOTAL CASH LACLOW	0 6 6	0 278.131 0 6 1.446	742 6	0 -3,14# 0	0 11.854 0 -5.871	8	0 0 0 0 -9, 11ft	0 0 0 -4,507	9 9 9 0 3, 159 28, 513	6	-11. #67	9 - 0 - 5.098 0 313.527	0 6 0 3.103 B 326,103	5 0 15, 213 48, 845 378, 424	D B -24, 934 G 281, 645	0 8 9 -17.518 0 25(.781	0 0 0 -8,819 0 352,405	2.653 2.653 9	9 0 17.575 62,852 342,817	9 9 0 -32,916 8 209,203	0 0 0 -21,052 0 250,517	9 0 0 -9.043 0 302.538	0 0 0 5, 770 0 318, 149	0 0 0 0 25,753 49,940 348,073	-4, #11 -4, #11 -107, 531.	0 0 0 15.55# 0 127.735	0 0 0 39.395 0 351,735	0 0 68.237 0 116.268	0 0 94, 461 29, 143 440, 133	0 .	. 0	0 0 183.144 2 0 485,523 5	0 0 0 3 33.938 248.4 6 106.5 544.317 787.3	15 6
cesh batelok .		721, 1#3	182.705 1		130, 134	211.930	239, 403	-		307.015	337.217						,,,,,,,,,		•								_		112 431	٥	ā		9 1.065,4	43 6
ARVESTPERT PAYPERT FOR LORG-TERM COARS THITEPEST OR LORG-TERM LORGS OFFET CURRERY ASSETS OTHER FIXED ASSETS	30,730 0 0 0	231, 123 0 3, 524 328	105.879 E 30,113 -173	ŋ	0 0 181.658 47.541	6 0 171.663 4.530	1.229 191.668 5.495	10, 474	299, 433 17, 921 180, 323 6, 781	67, 189 178, 266 548	63.183 110.897 (53	17. 1## (49, 73) #50	63, 148 158, 464 1, 315	489, 404 63, 189 149, 137 1, 878	\$3,199 141,139 -8,428	63, 189 134, 564 - 1, 467	-63,109 127,397 1,742	63.588 120,139 2,319	#28, #28 #3, 119 #12, #53 3, #62	63, 133 105, 597 -8, 85¢	83,188 18,330 2,017	13.128 11.053 2.404	\$3, 189 83, 196 3, 123	199, 404 63, 189 16, 520 3, 898	87. 181 61. 261 -6. 121	43.149 41,396 4,040	63, 189 54, 730 4, 769	63. 189 11, 463 5, 496	299, 431 53, 189 40, 198 8, 315	63. 199 32. 929 760	12.196 25.653 1.626	13.295	52.719 45.2 11.270 5.2 9.759 ;1.2	92 0 97 g
EAT BENDENT INTEREST ON SNOT-TERM COARS FOTAL CASH OUTFLOW	0 0 0 10.110	0 0 0 236, 118	0 0 0 215.615 1	0 2.504 .183.174	0 9,793 239 645			0 10. 153 701. 388	0 D 3.375 \$07, #13	72.470 264,471	0 0 17, 190 252, 221	0 11,537 239,388	0 0 3,373 224,341	9 0 0 713, 648	0 8 29.505 226.313	0 22.#81 222.791	0 0 14,148 207,223	0 4.108 189.03\$	0 0 0 107, 629	0 38, 171 195, 662	8 28, 195 199, 356	0 15.772 172,428	6 E 1.468 (51.56)	0 0 0 1 443.120	0 8 11, 121 137, 522	0 0 12\$, 26\$	0 0 0 122, E17	\$ 0 0 116.150	409.133	9 9 9 95.878	95. (83	\$ 8 . 9 Q 4	73,718 1.127.2	0 0 0 0 33 -16.678
CASH TREESE COTFLOW CASH ERCESE	13,718				137.935		35, 713 92, 663	61, 213 -35, 645 0		12.544 -181.101	58.958 - [84.231	74,271 -10,461 6		-331, 217 -289, 110 0	\$1.121 -201.012	72,518 -135,423	\$5.265 -39.16\$		-414,782 -325,826	85, 281 -243, 545	100.161	130, 101 -13, 211 0		-255,041 -101,738 6	110.811 68.213 88.231	191.459 216, 142 216, 142	229.014 656.031 436.031	263, 116 759, 148 758, 144	31.650 190,196 198,196	1.108.55#	1.461.847 1	1,871.450 2,3	670.569 -419.0 342.030 1,922.1 342.039 1,922.1	28 2.412.693
CHEST-TERN LDIES	13.710	0. 373	2E. 39E	85.024	137. 535	129.43E	92.663	38.690	284.215	181.731	184. 821	21, 41		289, 140	248.912	135, 433	19, 161	Ŷ	328. 828	243.545	163, 385	13.717	Ċ_	101. 738		6	0		00_				0	<u>t</u>
BALLARE SHEET		1882	1883	1114	1985_	1596	1997	1198	1998	2000 _	2081	2012	2853	- 2994	2805	2568	2981	2088	2001	2010	2011	2012	2013	2014	7015	2016	7017	2018	2019	9970	2021	\$025	2023 20	7025
CHEFFEE ASSETS CASH & DEPOSEE COME COMPERT ASSETS TRACE COMMET ASSETS	13.711	6. 515 329 6. 144	0 158 158	B -834 -634	16, \$50 14, \$50	53.540 53.548	59.035 59.035	G 85. 228 65. 228	0 72.069 12.809	12.557 72.557	9 73. 610 72. 810	73, 858 73, 859	65. 181 75. 174 140, 276	77, 951 77, 051	\$1.747 \$1,843	75. 118 16. 119	71, #52 71, #52	85.938 14.162 180.088	77, 165 77, 165	87, 251 87, 211	0 \$9, 257 59, 257	71.881 71.461	153, 203 14, 781 228, 007	0 78, 782 78, 782	63.272 77,663 148,834	286, 842 76, 141 343, 843	496.031 61,569 577,580	158, 146 67, 007 846, 153	13, 322	94.001	101.702	110.259	342.030 1.322.1 120.017 131.1 462.047 2.653.4	\$11 121.233
TIMED ASSETS OFFICEABLE ASSETS ACCOMMINATION OF DEPARCEMATION ACT REPARCEMANE ASSETS AOM-DIFACCHANIE ASSETS TOWN FIRMS ASSETS	23, 671	101, 150	218.513 I	. 330, 511	103.520	267,050 1,123,123	19.591 1.070.253	915, 163 1	317.331 1.612.772	971, 181 973, 192	175.882 248.812	112, 112	651.682 248.342	1.014.535 248.842	111.004	891, 474 745, 842	103, 900 248, 862	860.414 243.862	1.062.845 248.842	959, 115 268, 862	855, 584	152.954 248,842	648,524 248,842	3.065.081 2.070,684 994,457 218.847 1.243.289	2, 114, 135 880, 927 248, 842	2, 271, 665 187, 348 248, 812	3,085,661 2,381,195 693,868 248,842 412,108	3.065,051 2.484.725 580,338 248,822 828,178	3.334,551 2.588.256 746,296 243.642 995,138	842,765 248,847	2. (83.316 2 539. 235 248, 842	435, 705 248, 642	334.551 4.283.4 902.378 3.165.6 332.175 1.183.5 248.847 248.1 581.317 1.436.5	148 1.084,818 142 248,842
CURFERT ETABLETIES SOFT-TEPR TOARS OTHER CUPERT ETABLETIES TOTAL CURRERT ETABLETIES	ę 0 9	0 0 D	28, 181 0 28, 399	11.024	137. 935	129, 438 11, 124	92.853 11.154	30.680 11.154	204.215 \$1.154	181.731	104.681 11.15¢	10.461		11, 156	204.812 11,154 215,186	11.154	39, 188 11, 154 50, 322	0 11.154 11.154	328, 326 11, 154 339, 980	243,545 11:154 254,498	143, 385 11, 154 154, 539	13, 277 11, 154 24, 431	11, 15¢ 11, 15¢	191,732 11,151 112,882	11.15¢ 11.15¢	11. (54 11. (54	11, 154 11, 154	t 1, 154 11, 151	11, 154 11, 154		8 11. 156 11. 156		0 11,154 11,1 11,154 11,1	
FIKEO LIABBLETIES LOUK-TERM LBABS OIMER FIMED LIABBLITIES TORAL FIKEO LBABILITIES	11, 111	279.585 279.585	452,504 1 452,508 1	.578.825	1, 570, 025 1, 570, 825	1.514.825 1.514.825	1,577,598 1 1,573,598 1	,567,122 .567,122	1.549.27 1 1.549.271	. 486. 832 1 . 486. 832 1	, 422, 843 , 422, 843	1, 359, 654 1, 359, 854	1, 288, 485 1, 288, 485	3.223.278 1.223.276	1. 170.017	1. (61.141 1. 181.191	1.047.759	\$\$0,520 \$\$0.529	917,331 911,331	851, 142 854, 142	780.953 790.953	727, 784 727, 784	584, 575 664, 575	501, 386 491, 384	518.187 538.187	475, 668 4 15, 808	411,239 411,839	348. 638 348. 638	285, 441 285, 441		151.058 151.058	97, 100 97, 100	44.331 st	901 -901 901 -901
CRPETAL CRPTTAL RESCRIVES LOTAL	g 0	-1, 116 -1, 111	-31.219 -31.219	0 -88,757 -88,757	0 -20€, 769 -20€, 169	0 -293.210 -293.216	-153,244 -253,244	0 -318, 123 -328, 123	0 -361.076 -361.076	-358,325 -358,325	9 -341, 344 -341, 344	-106.835 -106.635	6 -248,813 -248,839	-113, 143 -113, 143	- 160.764 - 180.764	- 121, 858 - 121, 858 - 121, 858	-69,393 -69,393	17, 449 17, 440	131,341 131,361	144.321 166.328	224.192 228,192	9 920, 363 920, 363	449,728 469,726	0 601, 663 503, 768	131, 357 131, 352	893,768 883,760	0 1.881.215 1.527.275	1, 315, 548 1, 315, 548	1,582,661 1,587,651	1, 660, 839 1, 660, 839	2.184.415 2 2.181.415 2	2.558.012 2. 2.558.012 2.	0 987,529 3,479.5 937,529 3,479,5	8 577 3.925.411 577 3.926.441
FIRFREFAL TABLEATORS	1.991	1.592	1. 393			1,396					2,001	2, 802	2,003			2.000		2.041	2.063	2.010	2.811	7.812	7.613	2.014	2,815	2, 016	7, 917	2.011	2.013	2.029	2.921			624 2.625
westing paring() rejekting paring() unit of bliven on his fixee assets(one stryies confeace paring())at()		-4-5-5			231 661 61	291 511	141 521		181 451 151 1.5		151 421 191	152 432 213 1, 4,	131	431	431				151 421 161 1. t			431		1\$1 431 171 2.7	153 431 181 2.4		151 431 271 2.6	151 431 251 7.8	431	431		I 431		151 151 431 431 151 161 6. ?

6.5 Sensitivity Analysis

Sensitivity analysis is made for the following three cases.

Case I: The revenues decrease by 10%.

Case II: The project costs increase by 10%.

Case III: The revenues decrease by 10% and the project costs increase by 10%.

The FIRR of each case is as shown in Table 6.5.1. The ratio of each case is less than the weighted average interest rate of funds during the project life.

Table 6.5.1 FIRR Sensitivity Analysis

	Base Case	Case I	Case II	Case III
FIRR	12.7	10.7	10.9	9.0
Average Interest Rate		11.5		

6.6 Conclusion

Judging from the above analysis, this project is financially feasible in the base case. However, it is recommended that the interest rate on the long-term loans from the government be kept less than 11.5% in order to ensure the competitive position of inland waterway container transport.

	·	
·		

APPENDIX

PART I MASTER PLAN

Table A-2-1-(1) Meteorological Condition at Dhaka Station

Wind Speed(Knots)

٠.	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1961	2.9	3,1	5,6	5,1	7.6	6.4	8.0	7.5	6.0	3,4	2.9	3.6
1962	4.6	4.1	5.0	8.4	5.3	5.8	6.4	5.2	7.6	2.3	2.6	3.7
1963	2.6	3.7	4.1	4.8	.5.2	5.6	5.9	4.4	4.7	6.1	2.8	3.4
1964	3.2	3,4	5.3	8,3	4.8	5.3	4.5	5.6	6.0	5.0	4.1	3,6
1965	3.6	4.0	5.4	6.7	6.3	5.2	5.8	5.7	4.6	3.3	3.7	3,8
1966				8.5	5.8	9.1	5.3	4.5	3.8	6.3	3.0	2.8
1967	3,3	3.2	3.9	6.5	6.6	.5.2	4.9	5.0	4.5	2.0	3.4	2.6
1968	.3.1	3.0	4.4	5.4	4.8	4.1	4.6	4.5	3.7	2.9	3.2	3.0
1969	3.4	2.9	4.8	5.1	4.1	.4.5	5.0	4.4	5.6	3.0	2.4	2.9
1970	3.3	3.1	5.0	5.8	6.4	.4.7	4.4	4.5	3.6	3.6	3.5	3.0
1971	3.3	3.4	- .	-	3.0	4.8	4.9	4.3	3.8	3.8	.2.5	<u>-</u>
1972	3.0	3.3	5.5	6.0	6.0	4.4	7.2	4.8	3.4	4.5	3.1	3.1
1973	2.8	3.1	3,6	4.8	4.5	3,3	-	4.0	3.8	2.2	6.5	3.0
1974		~		-	-	-		-	_		_	-
1975	2.8	3.5	4.2	6.5	5.1	3.8	3.8	4.7	3.7	3.4	2.8	2.6
1976	2.8	3.8	5.5	5.8	5.0	5.1	5.4	5.0	4.5	2.9	2.9	2.0
1977	2.9	.3.8	4.6	7.5.	5,6	5.6	4.4	5.6	5.4	4.2	3.8	2.2
1978	3.4	4.3	5.5	4.7	5.0	5.2	4.1	5.5	3.0	4.0	3.1	3.7
1979	3.2	3.0	5.0	4.3	4.8	4.5	3.9	5.5	3,2	3.7	5.2	3.4
1980	2.7	2.9	5.2	7.4	4.5	4.0	4.5	3.6	4.2	5.9	2.0	2.6
Ave.	3.2	3.4	4.9	.6.2	5.3	5.1	5.2	5.0	4.5	3.8	3.3	3.0

Table A-2-1-(2) Meteorological Condition at Dhaka Station

Maximum Temperature(°C)

	Jan.	Feb.	Mar.	λpr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.

1961	26.1	25.4	33.2	:34.5	31.8	30.6	31.0	30.8	30.7	30.4	27.9	24.6
1962	25,1	29.0	34.8	35.3	32.5	31.2	31.7	30,8	31.7	30.4	28.5	25.7
1963	25.5	30.6	33.5	33.7	31.8	31.2	31.1	31.2	31.9	30.3	28.3	26.1
1964	24.3	28.7	33.9	32.9	32.6	31.6	30.3	31.2	31.3	30.3	28.1	26.2
1965	25.3	27.5	32.5	34.2	33.3	30.9	30.6	30.3	31.0	31.1	29.3	25.5
1966	-	- .	- ,	36.5	35.4	31.1	30.8	30.9	30.6	29.9	29.0	25.2
1967	25.3	29.2	29.2	33.3	33.2	32.4	31.5	31.1	30.4	30.8	28.4	26.5
1968	25.0	27.5	33.0	33.7	-33.8	30.3	30.7	31.2	32.3	30.6	28.8	25.7
1969	25.2	29.2	32.4	34.1	34.0	31.5	31.1	30.3	31.7	31.0	29.2	26.2
1970	24.8	28.8	32.4	34.1	34.4	31.9	31.1	31.0	31.3	29.8	27.9	25.6
1971	24.8	27.4			31.3	30.3	30.3	29.5	30.7	30.5	27.5	-
1972	25.9	26.0	32.7	33.2	33.9	32.0	31.7	30.4	32.3	31.7	29.7	26.5
1973	26.6	29.8	30.7	34.8	31.2	31.4		31.3	31.0	.30.6	. 2.7 . 4	24.5
1974	-			-	-	_	~		-		-	- '':
1975	25.2	28.3	33.2	34.8	32.7	32.1	29.8	31.1	30.5	30.7	27.4	25.3
1976	25.9	28.0	31.5	34.8	32.4	30.9	30.8	30.4	31.6	31.3	25.0	26.0
1977	25.0	27.7	33,3	31.4	31.0	30.3	31.2	31.5	32.2	30.1	28.7	25.7
1978	24.4	27.3	31.9	33.0	31.4	31.2	31.2	31.7	31.3	31.9	30.1	27.1
1979	26.8	27.3	33.0	34.9	35.8	32.4	31.5	31.6	31,5	31.4	30.3	25.3
1980	24.7	28.0	32.0	35.7	31.9	31.6	31.0	31.4	31.5	30.5	29,5	26.6
												
Ave,	25.3	28.1	32.5	3.4.2	32.9	31.3	31.0	30.9	.31.3	30.7	27.9	25.8

Table A-2-1-(3) Meteorological Condition at Dhaka Station

Minimum Temperature (°C)

	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1961	13.2	13.5	22.1	23.8	25.3	26.0	26.4	26.2	25.7	23.8	16.3	11.3
1962	9.6	14.3	18.2	23.7	24.0	25,9	26,7	26.1	25.8	23.1	16.7	12.4
1963	10.6	15.2	18.8	22.0	24.1	25.9	26.5	26.6	26.2	23.5	17.7	13.6
1964	11.0	15.2	21.2	23.7	24.6	25.7	25.9	26.4	26.1	24.8	19.6	13.9
1965	11.8	14.3	18.0	23.4	25.7	25.7	26.0	25.4	25.8	23.2	18.0	14.3
1966	- .	-	- .	24.4	25.7	25.9	26.2	26.8	25,6	22,6	19.4	13.8
1967	12.9	15.8	19.4	22.0	25.0	26.0	26.4	26.2	25.5	22.8	15.9	13.4
1968	12.1	13.6	19.7	23.3	24.0	25.1	26.4	26.2	26.5	23,8	18.8	13.8
1969	11.8	14.4	20.6	23.6	25.5	26.0	26,5	25.5	26.3	23.3	18.3	13.9
1970	12.0	15.4	20.6	24.4	25.6	26.2	26.3	26.2	26,2	23.9	18.7	12.9
1971	12.9	.14.5	- '	- .	23.7	25.7	25.6	24.6	25.3	24.2	17.3	-
1972	12.0	12.9	20.1	22.8	25.9	25.8	26.3	25.5	25.9	23.5	18.3	13.4
1973	12.4	1.6.5	19.3	24.7	23.6	25.7		25.9	25.5	24.1	19.1	14.1
1974	-	-	-	-	-	-	-	-	-	-	_	-
1975	12.3	15.6	19.9	23.9	24.7	26.0	25.7	25.9	25.3	24.4	18.0	12.4
1976	12.4	16.5	21.3	24.1	23.9	25.1	25.9	25.4	25.8	23.3	20.1	12.2
1977	.11.7	15.0	22.2	22.2	23.1	25.2	26.3	26.7	26.1	22.8	20.2	19.3
1978	10.6	14.2	18.3	22.2	23.9	25.7	25.9	26.6	25.8	24.5	19.3	12.6
1979	12.4	14.1	19.8	24.0	26.3	26,5	26.6	26.5	26.1	23.9	20.9	14.3
1980	12.0	15.3	20.8	25.1	22.9	26.4	26.1	26.5	26.3	23.4	17.8	16.1
												
Ave.	11.9	14.8	20.0	23.5	24.6	25.8	26.2	26.1	25.9	23.6	18.4	13.4

Table A-2-1-(4) Meteorological Condition at Dhaka Station

Relative Humidity (%)

	Jan.	Feb.	Mar.	Apr.	May.		Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1061	70	66	70	70	80	88	86		86	84	76	-76
1961	. 70	. 66										
1962	. 70	66	49	68	79	87	85	86	85	78	. 74	74
1963	. 67	: 56	55	67	80	86	. 86	85	85	83	77	74
1964	69	. 66	63	76	79	. 86	. 88	85	. 85	86	77	72
1965	69	63	- 56	69	78	88	86		. 86	80	. 77	. 79
1966	_			66	.72	. 86	. 85	87	86	82	75	- 76
1967	. 71	. 65	70	. 63	79	. 84	85	85	. 87	. 77	- 69	71
1968	68	60	. 56	69	. 76	. 88	86	. 85	82	.80	74	. 73
1969	66	. 60	. 65	72	74	. 86	. 86	88	82	. 78	73	72
1970	70	62	62	72	75	86	87	86	85	85	. 74	71
1971	71	59		· - .	. 76	. 84	85	87	81	78	71	. ·
1972	. 69	63	60	. 73	. 77	83	. 86	87	81	. 77	71	68
1973	6.4	. , 62	62	. 74	85	87	.—	85	87	83	. 82	78
1974	_		~ .	-	_		-	-	~	<u>.</u>		· <u>·</u> ·
1975	69	63	. 57	71	79	. 84	89	85	87	85	. 77	70
1976	66	67	64	66	80	87	. 87	. 87	83	79	74	71
1977	66	. 66	68	81	83	88	87	84	-85	79	78	7.3
1978	. 67	61	53	73	84	. 88	.86	83	86	80	72	68
1979	80	75	70	75	80	89	90	90	91	- 88	. 85	87
1980	69	66	64	. 69	81	85	86	. 85	85	81	70	69
Ave.	69	64	61	71	79	86	86	86	85	81	75	73

Table A-2-1-(5) Monthly Total Rainfall at Dhaka Station

						•					Unit:m	m
	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul .	Aug.	Sep.	Oct.	Nov.	Dec.
1961	1	12	20	205	219	856	296	288	221	52	0	0
1962	0	15	6	116	205	191	355	273	395	180	0	0
1963	0	0	51	98	219	621	404	186	201	182	. 7	. 3
1964	9	42	18	275	236	354	629	155	269	283	41	0
1965	o	: 28	22	55	305	442	304	480	300	50	[131	, 0
1966		· <u> </u>		34	127	270	291	306	496	261	14	. 15
1967	23	13	168	185	216	241	363	504	266	74	1	o
1968	0	5	121	27	194	590	480	207	128	69	74	. 0
1969	0	1	65	86	95	249	186	540	201	103	2	0
1970	16	8	23	45	192	276	496	280	200	427	32	0
1971	3	28	~	-	344	339	550	540	259	118	95	→
1972	. 0	11,	12	248	340	353	249	. 380	110	105	0	0
1973	0	21	32	131	621	414	-	238	348	128	64	86
1974	<u> </u>		-:	-	-	; -		-				: -
1975	1	29	- 13	98	317	235	559	307	329	232	25	0
1976	0	7	117	34	459	627	346	361	165	114	. 8	0
1977	· 0	66	7.71	255	381	252	306	92	131	273	10	24
1978	. 0	20	18	194	454	529	320	426	192	. 98	0	0
1979	. 3	. 13	. 6	17	114	258	267	525	382	146	. 55	51
1980	3	32	54	147	414	323	380	269	296	300	0	0
Ave.	3	20	48	125	287	391	377	335	257	168	29	10

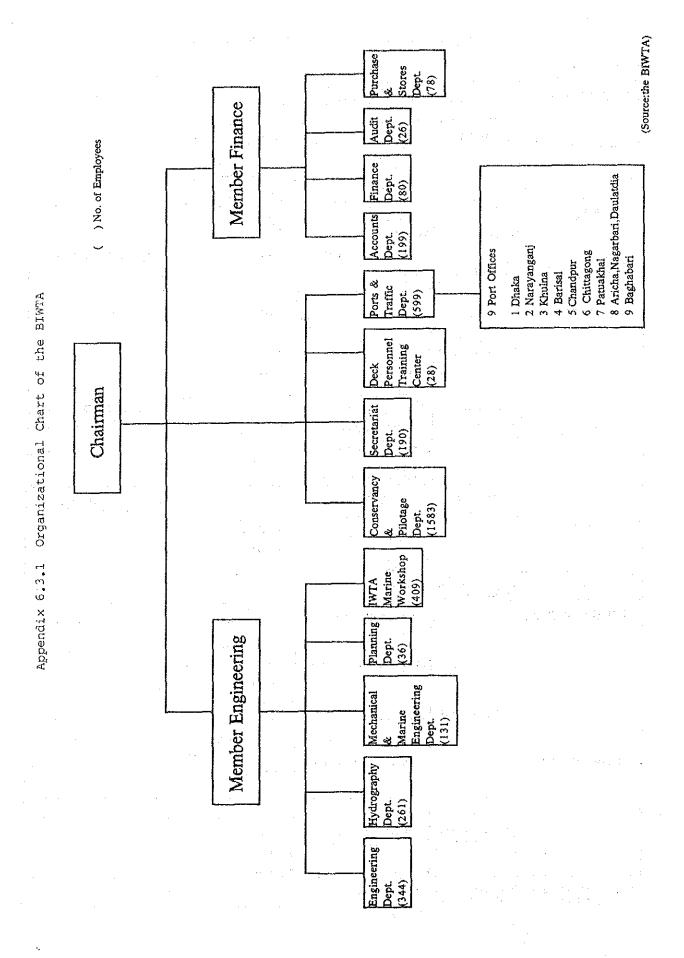
Table A-2-2-(1) Water level of Buriganga River at Dhaka (Mill Bark) Station, (m/P.W.D)

															Y		·····											··	7
			AV3	4.307	4.106	2.649	3.015	3.529	4,458	3,820	2,973	3,385	3,997	3,624			AV3	4,523	4.438	4.400	4.667	5,693	5,847	4.523	4.782	5,717	5,135	4.973	Source: BWDB
		L.W.L	AV2	3,943	3,418	2,227	2,710	3,043	3,901	3,510	2.174	2,802	3.747	3.148		L.W.L	AV2	200*9	4.504	4,773	4.975	5,358	5,274	4.810	4.479	5,771	6.504	5.146	Source
			AV1	3,516	3,076	1.800	2,800	2.771	3.690	3,152	1.718	2.241	3.810	2,857	Ω		LVA	5,474	4.485	4.589	5.105	5.092	4.908	4.852	4,509	5.680	7,327	5.202	
(No.1)	เมา		AV3	4,381	4.237	3.022	3.272	3,704	4.519	3,985	3,364	3.574	4.091	3.815	Sep		AV3	4.568	4.482	4.465	4.722	5.718	5.892	4.573	4.848	5.745	5.210	5.022	
		H.W.L	AV2	4.019	3.563	2.667	3.012	3.300	4.062	3.664	2.644	3.115	3,899	3,395		H.W.L	AVZ	5.041	4.564	4.811	5.020	5,393	5,305	4.859	4.544	5.793	6.560	5,189	
			AVI	3,702	3.322	2,199	3,106	3.017	3.878	3.517	2.239	2.595	3,997	3.157			AV1	5.496	4.555	4.653	5.140	5.136	4.927	4.892	4.579	5.717	7,383	5.248	
			AV3	2.841	2,886	2.077	2.258	2.580	3_034	2,040	1.988	1.846	3,115	2.467			AV3	5,419	5,003	4.555	5.048	4.815	4.680	4.651	4,337	6,380	5,898	5.079	
		L.W.L	AV2	2,736	1.836	1.932	1.735	2,459	2,484	1.820	1.888	1.793	2.329	2.101		L.W.L	AV2	5,142	5,034	4.673	5.212	4.937	5,331	4.764	4.523	6.076	5.279	5.097	
			AVI	2.448	1.507	1,349	1.714	2.038	1.885	2.090	1.736	1.640	1.781	1,819			AVI	5,168	4.837	5.040	5.306	5.084	5.846	5.274	4.770	5.648	5.294	5.230	
	May		AV3	3.086	3,242	2.531	2,628	2,915	3.271	2.527	2,524	2.285	3,333	2.834	Aug		AV3	5.448	5,050	4.619	5.085	4.878	4.710	4.712	4.431	6.433	5.976	5.134	
		H.W.L	AV2	3,037	2,333	2.492	2,191	2.821	2,917	2,345	2,307	2.293	2,795	2,553		H.W.L	AV2	5,168	5,037	4.746	5.255	4.993	5,380	4.812	4.620	6.116	5,316	5,144	7
		:	AV1	2.832	2.146	1.894	2.322	2,434	2,416	2.699	2.240	2,019	2,297	2,330			AV1	5.197	4.880	5,090	5.349	5.145	5.871	5.323	4.818	5.715	5,333	5,272	
	-		AV3	1,905	1.465	1.259	1,653	1,626	1.476	1.531	1.625	1.628	1.512	1.568			AV3	5.022	4.680	4-411	4.847	4.545	5,435	4.865	4.491	4.825	5,354	4.848	
		1.W.I	AV2	1.870	1.125	1.207	1.581	1.414	1.529	1.339	1.357	1.563	1.595	1.458		ו.א.ו	AV2	4.436	4.412	3.926	4.531	4.467	4.998	4.557	3.945	4.720	5.508	4.550	
			AV1	1.747	0.954	0,972	1.246	1.264	1.315	1.214	0.949	1.177	1.375	1.221			AVL	4.377	4 481	3.391	4.071	4.027	4,424	4.231	3.766	4.210	4,387	4.137	1
ć	Apr		AV3	2,257	2,109	1.955	2.119	2.260	1,999	2,340	2,249	2.174	1.917	2,138	Jul		AV3	5.061	4.741	4.479	4.890	4.610	5.467	4.914	4,595	4.885	5.392	4.904	
		H.W.L	AV2	2,321	1.722	1.893	2.149	2.078	2.211	2,213	1.946	2,196	2,261	2,099		H.W.L	AV2	4.480	4.476	4.058	4.577	4.540	5,063	4.604	4.089	4,795	5.546	4.623	
			AV1	2,403	1.751	1.599	1.950	1.842	2.012	1.985	1.634	1.737	2.017	1.893		,	AV1	4.452	4.534	3.574	4.217	4.137	4.498	4.340	3.884	4.327	4.505	4.247	
	1			1977	1978	1979	1981	1983	1984	1985	1986	1987	1988	Ave		i .		1977	1978	1979	1981	1983	1984	1985	1986	1987.	1988	Ave	
-																													_

															r												1	
,		-	AV3	1,352	1.083	1,155	1.170	1,360	1.232	1,157	1.094	1.428	1,204	1.224			AV3	0.909	0.767	N.	0,986	1,016	1,304	0.886	0.926	1,157	1.039	1,021
	-	L.W.L	AV2	1,652	1.274	1,353	1.540	1.385	1.327	1,495	1,297	1.360	1.534	1,422	-	I.W.I	AV2	0.713	0.825	N.	0.798	1,034	1.048	0.876	0.879	1.141	0.956	0.919
			AV1	1.597	1.630	1.622	1.469	1.759	1.348	1.569	1.679	1.662	1,343	1,608			AV1	0,911	0.680	ĄN	0.724	0.961	0.856	0.760	0.750	1.090	0.926	0.850
(No.2)	Dec		AV3	1.859	1,586	1.762	1.706	1,997	1.879	1.815	1.627	2.036	1.845	1.811	May		AV3	1.671	1.697	MM	1.747	1.690	2.025	1,630	1.594	1.675	1.737	1.718
		H.W.L	AV2	2,187	1.876	1.893	2.087	1.902	1.868	2.170	1.870	1.829	2,112	1.979		H.W.L	AV2	1.472	1.561	NA	1.550	1.793	1,830	1.505	1.591	1.753	1.576	1,626
•			AV1	2,062	2.042	2,233	1.940	2,336	1.942	2.088	2,203	2.206	2,308	2,136			AVL	1.622	1.344	NA	1.434	1.709	1.795	1.423	1.427	1.734	1.655	1.571
•			AV3	1.937	1.722	1.737.	1.700	2.191,	1.677	1.799	1.992	1.988	1.975	1.872			AV3	0.861	0.672	e N	0.824	0.734	0.750	0.673	0.708	1.061	0.913	0.802
ŧ		L.W.L	AV2	2,304	1.967	1.724	2,020	2,574	1.896	2,356	2,586	2.277	2,004	2.171		L.W.L	AVZ	0.780	0.721	MA	0,693	0.910	0.780	0.692	0.862	1.000	0.881	0.813
			AVI	2.480	2.166	2,048	2,005	3,276	2,564	2,742	3.081	2.807	2,469	2,600			AVL	0.930	0.727	Z A	0,729	1,065	0.892	908-0	968.0	0.932	0,952	0,881
*	Nov		AV3	2,338	2.151	2,327	2.213	2.670	2.232	2,281	2,331	2.451	2,579	2,357	Fev		AV3	1.554	1.400	Z Æ	1.518	1.399	1.525	1.469	1.436	1.628	1.628	1.506
		н.м.г	AV2	2,702	2.469	2,146	2.530	2.856	2,365	2.871	2.938	2.583	2,503	2,596		H.W.L	AV2	1.503	1.410	a Z	1.475	1.668	1.510	1.339	1,489	1.647	1.519	1.507
			AV1	2,693	2.577	2.816	2.366	3.575	2.779	2,992	3.417	3.148	2.747	2.911			AV1	1,582	1,299	1.532	1.508	1.784	1.640	1.519	1,461	1.583	1.767	1.568
• ,	-		AV3	3,152	2,656	3.289	2.491	4.046	3,350	3.732	3,789	3,469	3,428	3.340		,	AV3	0.887	0.863	0.874	0.858	1.175	0.854	0.784	0.853	276.0	0.783	168-0
		T.W.I	. AV2	4.011	3.467	4.176	3.042	4.618	4.053	4.131	4.499	4.290	3.940	4.059		L.W.L	AV2	1.046	1.001	668.0	0.971	1,133	0.913	0.955	0.911	1.068	606.0	0.981
: 			AVI	4.142	4.188	4.048	3.979	5,307	4.954	4.365	4.585	5,285	4.247	4.510			AVI	1.152	1.055	1.015	0,955	1.218	066.0	0.993	1.099	1.228	1,090	1.080
	Oct		AV3	3.310	2.883	3.440	2.801	4.135	3.573	3.855	3.885	3.628	3.625	3.514	Jan		AV3	1,513	1.492	1.489	1,561	1.787	1.546	1.520	1,425	1.570	1,495	1.540
: :(*		H.W.L	AV2	4.100	3.670	4.246	3.592	4.671	4.155	4.286	4,558	4.358	4,105	4.174		H.W.L	AV2	1.667	1,599	1,519	1,564	1.809	1,575	1.612	1.499	1.620	1,489	1.595
	.50.5		AVI	4.187	4.285	4.182	4.036	5.351	5.032	4.420	4.682	5,330	4.308	4,581			AVI	1.649	1.640	1.608	1.534	1.882	1,660	1.592	1.646	1,873	1.654	1.674
31 1 M E				1977	1978	1979	1981	1983	1984	1985	1986	1987	1988	Ave		1	·	1977	1978	1979	1981	1983	1984	1985	1986	1987	1988	Ave

and the second of the second o

Appendix 3.1 Questionaires of O/D Survey (Export)


PORM B(FOR EXPORT CARGO)

DATE OF INVESTIGATION	i 	NAME OF INVESTIGATOR	1 1	
	NAME OF FIRM			
OBJECT OF INVESTIGATION	CAPITAL		CATEGORY OF BUSINESS	
nearest of thatsticktion	1	LESS THAN	1 MAXER (SHIPPER)	4 OTHERS
	2	10	2 FORVARDER/CONSOLIDATOR	
	3	OVER	3 SHIPPING COMPANY/AGENT CUSTOMS CODE NO.	
KIND OF CARGO	<u> </u>		CUSTOMS CODE NO. OF CARGO	
VOLUNE OF CARGO	WEIGHT: mt/lt	MEASURE: ft/=	PACKAGE	
		KIND OF CONTAINER	SIZE OF CONTAINER	TYPE OF CONTAINER LOAD
	1 CONTAINER	1 DRY	1 20 FEET	1 FCL
		2 REEFER	2 40 PEET	, 7 LCL
TYPE OF PACKING		3 OTHERS	3 OTHERS	
		1 PALLET	5 DRUK	
†	2 NON-CONTAINER	2 BAG	6 BULK	
		3 CARTON/CASE	7 OTHERS	
		4 BALE		
	AREA (AHNEX-1)	FACILITY		TIME REQUIRED (CONNENCEMENT TO COMPLETION
VANNING (ONLY CONTAINER)		I HAXER'S FACTORY	4 PORT AUTHORETY'S	OF VARKING)
(ONL! CONTRINER)		2 SHIPPER'S VAREHOUSE	VAREHOUSE	HOU
		3 FORWARDER/	5 OTHERS	
	1001414404	CONSOLIDATOR'S VAREHOUSE		
	AREA (ANNEX-1)	PACILITY		TIME REQUIRED (DECLARATION TO PERMISSION
CUSTONS CLEARANCE			4 PORT AUTHORITY'S VAREHOUSE	
		2 SHIPPER'S VAREHOUSE	5 OTHERS	DA
		3 PORVARDER/ CONSOLIDATOR'S VAREHOUSE		
DELIVERY	TIME REQUIRED (REC AT YANNING OR CLE	ELVING TO DELIVERY ARANCE DEPOT)		DA
ORIGIN(ANNEX-J)		COUNTRY OF DESTINATION (ANNE	(1-2)	
			RODE	TIME REQUIRED
		ORIGIN TO DHAKA	1 TRUCK 4 OTHERS	
			S BYTPAYA	DA
	1 THROUGH DHAKA		3 YESSEL	i
			300%	TIME REQUIRED
THE END TO THE COOP	1	PHAKA TO CHITTAGONG/NONGLA	I TRUCK 4 OTHERS	
INLAND TRANSPORT	1		2 RAILVAY	DA'
			B VESSEL	
			300k	TIME REQUIRED
	2 KOT THROUGH	ORIGIN TO CHITTAGONG	I TRUCK	
	AXARD	/KONGLA	Z RAILWAY	DA
F - 4			B VESSEL	
HANDLING AT CHITTAGONG	L	CONTAINER YARDS	DAY	

Appendix 3.2 Questionaires of O/D Survey (Import)

PORM A(FOR IMPORT CARGO)

DATE OF INVESTIGATION		NAME OF INVESTIGATOR		
	NAME OF FIRM			
	CAPITAL		CATEGORY OF BUSINESS	
OBJECT OF INVESTIGATION	1	LESS THAN	1 CONSIGNEE	4 OTHERS
	2	то	2 PORWARDER/CONSOLIDATOR	
<u> </u>	3	OVER	3 SHIPPING COMPANY/AGENT	
KIND OF CARGO			CUSTOKS CODE NO. OF CARGO	1
VOLUME OF CARGO	VEIGHT: mt/lt	MEASURE: 11/8	PACKAGE	•
		KIND OF CONTAINER	SIZE OF CONTAINER	TYPE OF CONTAINER LOAD
	1 CONTAINER	1 DRY	1 20 PEET	l FCL
	2 1	2 REEPER	2 40 FEET	2 LCL
TYPE OF PACKING		3 OTHERS	3 OTHERS	<u> </u>
		I PALLET	5 DRUM	.!
	2 NON-CONTAINER	2 BAG	6 BULK	i 1
		3 CARTON/CASE	7 OTHERS	i !
		4 BALE		!
	AREA (ANNEX-))	PACILITY		TIME REQUIRED COMMENCEMENT TO COMPLETE
DEYANNING (OHLY CONTAINER)		I MAKER'S PACTORY	4 PORT AUTHORITY'S	j OF DEVANNING) I
(OUT) CONTAINEN!		Z SHIPPER'S VAREHOUSE	VAREHOUSE	KOL
-		3 FORVARDER/	5 OTHERS	
	AREA (ANNEX-1)	CONSOLIDATOR'S WAREHOUSE PACILITY		
	nord (dinex)		T PORT AUTHORITY'S	TIME REQUIRED (DECLARATION TO PERMISSIO
CUSTORS CLEARANCE	Ţ	2 SHIPPER'S VAREHOUSE	VAREHOUSE	!
			5 OTHERS	04
		CONSOLIDATOR'S VAREHOUSE	-	1 <u></u>
DELIVERY	TIME REQUIRED(REC AT DEVANNING OR C	EIVING TO DELIVERY	·	DA
DESTINATION (ANNEX-1)	!	COUNTRY OF ORIGIN(ANNEX-2)		<u> </u>
				1
			ЗДОК	TIME REQUIRED
		CHITTAGONG/KONGLA TO DEAXA	I TRUCK 4 OTHERS	ĺ
	-		2 RAILVAY	DA
	I THROUGH DHAKA		3 AEZZEr	
	į.		здок	TIME REQUIRED
			I TRUCK 4 OTHERS	
IHLAND TRAKSPORT	_	COLLYNILSED OF YXYBD	Z RAILWAY	D.A
			3 YESSEL	
			300k	DERIUPER ERIT
	2 NOT THROUGH	CHITTAGONG/MONGLA TO	1 TRUCK	1
	DHAKA	DESTINATION	2 RAILVAY	DA
			3 YESSEL	
ANDLING AT CHITTAGONG	DWELLING TIME AT		- 100000	:

Appendix 6.3.2 Revenues and Expenditure of the BIWTA (unit:Lac Taka)

(Kevenues)																
	1872	1873	1974	1875	1976	1977	1.878 1979	1978 1980	1980 1981	1977 1978 1978 1980 1981 1982 1983 1984 1845 1985 1985 1987 1988 1987	1882	1983	1984	18#5 19#6	1985	1987
Great from the government	75.18	31,34	64.15	100.15	142,00	133, 15	133, 15 191	158, 15	133, 15	00.15 142.00 133.15 133.15 133.15 213.15 283.15 280.15 459.00 556.00 690.00 1.065.00 221 151 221 191 171 131 151 181 181 181 281 311 355	263, 15 187	280, 15	450.00	556.00	690.00 311	690.00 1.065.00 311 352
90.700	81.81	225.93	266.38 811	363.42	783.42	472.33 78I	558,40 817	777.38 831	885,36	363.42 783.42 472.33 558.40 777.38 885.96 1.208.32 1.238.19 1.474.04 1.893.71 1.448.27 1.553.87 1.965.50 73.8 851. 851. 851. 851. 851. 851. 851. 85	1.236.19	1,474.04	1,883,71	1.448.27	1,533.87	1.965.50
40010100	46.02	53.84	74.00	123.43	211.58	141, 43	141, 43 164, 11	230.31	261.98	287.98 255,15 408.57 397.73 648.73 530.26	408.57	397.73	648.73	530.28	654, 05	841.59
canal revenue	4.33	4.03	8. 44	10.41	14,37	17,31	28, 35	44,94	28, 52	46.23	49.41	53, 38	32,78	41.72	40.98	227.48
Conservancy & Pilonepa	22.46	24.82	22.86	43.00	141.84	17.25	97. 33	42.21	56.62		70,39 104,69	152.08	306.12	200.57	190.78	49.24
Dredger cevenue		50.84	11.11	117, 15	301.53	263,39	249,72	405, 47	430,54	731.98	598, 53	102.80	712.79	380, 62	521, 49	752.43
Cther income	9.00	82.54	53, 37	69.43	84.10	32.95	78.89	54, 45	- t	102.36 105.57 73.99 168.05 293.29 296.10 126.57 94.68	73.89	168.05	293, 29	286.10	126.57	34.68
Totel	156.99	158.99 257.27	336, 53	483,57	463, 57 925, 42	805, 48	505, 48 691, 55	935, 53	1,019,11	935.53 1,019,11 1.422.47 1,489.34 1,754.18 2.443.71 2,005.27 2.223.87 3.030.50	1, 499, 34	1, 754, 19	2. 443. 71	2,005.27	2, 223, 84	3. 030. 50

(Expenditure)																
	1872	1873 1874 1974 1975		1975	1876	1977	1978	1979 1980	1881 1881	1861	1982	1983	1984	1985 1985 1985 1986	1985	1987
Salsries & Benefits	67.17	67.17 106.32	141,62	158.15	174,67	205.41	243,44	.319, 51	335, 42	314.81	398.34	442.27	708.58	978, 65	1.003,56	1, 137, 40
Contingencies	1.57	2, 43	4.78	7. 49	10.12	12.35	13, 68	12, 81	21.74	19.89	23. 22	29, 43	35.31	2.28	4, 42	2.65
Fuel & Lubricants	6.10	10.97	27.09	55.93	95.91	120.90	110,14	148.23	276.52	308, 98	341.23	434.51	402,49	326.28	305.63	367, 30
Repelle W Melntenence	24.74	44,48	81.75	95. 03	113,33	120,93	168, 43	194.04	146.42	259.22	259, 32	320, 44	431,55	248.82	313.73	363, 21
Maintanance Oredging	35.00	45.27	34, 43	98.18	80.96	12.33	70,43	95.74	70.01	150,00	150,00	150,28	150.00	150.00	284,00	344.00
Depreciation					210.56		33, 34	233, 62	204.08	243, 53	254, 13	338.83	359,86	448.77	442.67	431.98
Othere	26.01	43, 23	45, 75	48, 69	231.58	89.27	84.83	49.83	\$2, 99	227.95	182.20	167, 17	163.51	372.78	354, 32	376.59
Tote	160, 59	160.59 253.70 335,40		464.33	817.13	801.18	105.27	105.27 1.053.58 1.147.16 1.524.18 1.605.44 1.883.93 2.251.70 2.525.66 2.108.33 3.083.13	1, 147, 16	1, 524, 18	1. 608. 44	1.883.93	2, 251, 79	2, 525, 68	2, 108, 33	3.083.13
Surplus (Deficit)	-3.60	-3.60 3.57 -4.87	-4.87	-0.78	8.29	1, 29	-13,72	-13.72 -118.05	-128.05	-128.05 -101.71 -107.10 -128.74 182.01 -52 <u>0</u> .39 -484.48	-107.10	-128.74	182,01	-520.39	-484.48	-52.63

(Source : the BIWTA Income and Expenditure Statement)

Board & Public Relations (17) Traffic (355) Planning Cell (19) () No. of employees Security (313) Administration (289) Chairman Marine (54) Member Operation Harbour & Conservancy (461) Mechanical & Electrical (218) Member Engineering & Development Civil & Hydraulic (110) Finance & Accounts (91) Member Finance Audit (15) --138-

Appendix 6.4.1 Organizational Chart of the Mongla Port Authority

(Source:the MPA)

Appendix 6.5.1 Gang Formations of Cargo Handling at ICD

and store CFS with the cargo	
remove export cargo for stuffing	
unload export cargo from shippers'	
trucks and directly stuff to	
containers	
unload export cargo from shippers'	
trucks and store CFS with the cargo	
) line of the control of the CRC	
deliver import cargo from CFS to consignees	
remove import cargo to auction shed	

Appendix 6.5.2 Main Charges of ICD (Unit:Taka)

Description	Rates	Notes
·	600 / loaded 20'	from wagons to cy, and vice versa
	900 / loaded 40'	from trucks to cy, and vice versa
Lift off/Lift on Charges	•	no additional charges for night,
	300 / empty 20°	Fridays and Public Holidays
,	450 / empty 40'	cargo operations
Stuffing & Unstuffing Charges	56.2 / metric ton	
CL Cargo Handling Charges	56.2 / 1000 kg.	receive or deliver cargo at CFS
Hoioting Charges on cargo	56.2 / 1000 kg.	receive or deliver cargo by the ICD's
	US\$ 1.5 / 20'	up to 28 days
	1	up to 28 days
Storage Rent for Containers		-, 10,-
	US\$ 4.5 / 28°	over 28 days
	US\$ 9.0 / 40'	over 28 days
	1 23 / 1000 kg of export	up to 7 days after the free period
	3.10 / 1000 kg. of export	
	4,92 / 1000 kg. of export	
Rent on Cargo	3.10 / 1000 kg. of export	
	2.46-24.60/ 1000 kg. of import	up to 7 days after the free period
· · · · · · · · · · · · · · · · · · ·	6.15-61.50/ 1000 kg. of import	
	9.85-98.50/ 1000 kg. of import	
and the second s	6.15-61.50/ 1000 kg. of import	_ · · · · · · · · · · · · · · · · · · ·

(Source: the GPA)

Appendix 10.1.3

(1) Maximum Dimensions of Self-Propelling Vessel Navigable to the Dhaka-Narayangan; Area

It is important item in this study to confirm maximum size of vessels that can navigate the waterways in between Chittagong and Dhaka, and also Mongla and Dhaka.

Because, vessel having larger principal dimensions navigable in the subject water ways may carry more number of container, that is a transportation cost per TEU can be reduced.

In this study, the container vessels are designed so as to apply these data for design of container terminal, especially for design of layout and section figure of the wharf including strength, water depth at the wharf and cargo handling equipment on the wharf. Moreover the container terminal should be designed at the initial stage so that the terminal equipment can conform to vessel which may be operated in the future.

Information on maximum size of vessel that can navigate to the Dhaka are has been obtained from the persons concerned in BIWTA, BIWTC and private shipping companies as per attached Table 10.1.3(1).

The maximum dimension of vessel are thought to be as per 3) in Table 10.1.3(1) based on the information of above data and existing vessels dimensions.

Consequently, open type domestic service vessel is designed in following dimension with some margin considering the practice of the navigators.

Length	overall	68.00 m (223' - 0")
Length	p.p.	63.00 m (206' - 8")
Breadth	mld.	13.00 m (421 - 8")
Depth	mld.	8.00 m (26' - 0")
Draft	mld. (designed)	3.40 m (11' - 2")
Draft	mld. (scantling at sea)	3.80 m (12' - 6")

(2) Building Schedule of Container Vessel

If first container vessel for domestic service is designed and built in Japan, it takes about 16 months to delivery of the vessel at shipyard after commencement of planning design as per attached Table 10.1.3(2), this table is prepared as one example.

Max. Dimensions of Self Propelling Vessels to the Dhaka/Narayangang Area Table Appendix 10.1.3 (1)

We said more time to study in necessary M.S. Qulan of Heart by Master Plan of DHV Consultant in the wet season in Fest 11'-6" 11'-2" 10-12 16 Draft 12 127 12 2 2 12 Breath 40-45 45 45 50 43 43 43 40-45 42 64 Length O.A. Length 10 230-240 200 200 230-250 330-250 230-250 230 1) Information of the subject obtained by interview with following persons in 1990 Secretary, Coaster Owner Association of Bangladesh BIWTA BIWTA BIWTA BIWTA BIWTA BIWTA BIWTA BIWTA BIWTA Naval Architact Chief Maine Construction BIWTA Chittagong Superiror Chittagong N'ganj High Speed Group Hydrography Dept. Coast Marine Chief Marine Construction Position Dty. D. Cartagraphy Dept (CGP) (GGP) (PdT) Survey Naval Architect Naval Avchitect Naval Arditact Chief Engineer Master Filot Sr.Dty.D. G.Manager Sr Dty.D. Chairman Sr.Dty.D Dty.D. Dyt.D Ω X Mr. Tawfig i. Rhamen Mr. Azaın Hassam Khan Mr.M.Alam Chawdhury Mr. Sarwar N.A. Khan Mr.Tawfig A.Rhaman Mr.Akm Nural Alan Mr. Faqbque Ahmed Mr. Amiruz Zaiman Mr. M. A. Chowdhury Mr.Abul Mokarrom Name of Person Mr.Nur Mahammed Dr.Zaful Islam Mr.A.M.Talkdar Mr.A.B.Siddig Mr. A. I. Siddig Mr.K.Z.Siddig Mr.M.A.Hassan Mr.T. Hossain 27. Feb. 1. Mar. 1. Mar. 2. Feb. 5. Feb. 7. Feb. 7. Feb. 15. Feb. 17. Feb. 18. Feb. 9. Feb. 25. Feb. Date

230-70-	230-	230-70-	sels considered by the consultant 70-	the vessels considered by the consultant 70-	230 - 250' 70-76m	12,	1 3.66m	 v
230-70-	230-	230-70-	sels considered by the consultant 70-	the vessels considered by the consultant 70-	dimensions of the vessels considered by the consultant 70-	40-45	12.1	-13,6
			sels considered by the consultant	the vessels considered by the consultant	dimensions of the vessels considered by the consultant	230-250	70-76m	
			sels considered by the consultant	the vessels considered by the consultant	dimensions of the vessels considered by the consultant			
	by the cons	considered by the cons	ne vessels considered by the cons	the	dimensions of the	ultant		

12.

40

195'-10"

2081-6"

2) Principal dimensions of M/V RAHU d M/V SANGU owned by BIWTC

Table 10.1.3(2) Building Schedule for Container Vessel

		F		<u> </u>			·						1			۳
Month	-3	-2	-1	1.	2	3	4	5	6	7 .	8	9	10	11	12	13
Dlanning				1												
Planning				:												
Design	,				ļļ										. [- 1
_		:					ľ									
Basic				i	·				-	`				٠ ;		
Design			. `			1										
			1	:												
Function										Į į				;		.
Design			-:											·		
	1		,													
Production		l ·		1												İ
Design								ندادي								
,																
Material	1		÷ .								1					
Procurement				:												
FIOCULEMENT	1														i i	
7)	1															
Fabrication								412						:		
] `		:	l]		}						
Pre-outfitting											-		\			
	ļ		}											 		
Machinery etc.																
Procurement																
						1]				<u>}</u>]			
Fitting			Ì													
on Berth			1	}		.]	
	:		1													
Fitting											ľ					·
on Board) ப	}				-									
on board		ent							-							
Tooking		Hp.					1								1	
Testing		10 ·					d O						1 . d		ന പ	
& Traial	1		1	49] :	i Ç						ğ	: :	<u>-</u>	
		Letter		Contact) .	Production						Erection		Laundhing	
		: G		ont			ў Й						U 시	1 .	ัช เช่า	
	1	ı–Ì i		Ü.		'	Д. П					•	l Buil	 a :	j Z	,
	1		<u> </u>						-		-			والمراجع والمراجع	-j	_
			1:	1			* -						Be	rth I		
	1		1		1				1		1	<u> </u>	1			
Month	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11	12	13
_,~~.	نـــــــــــــــــــــــــــــــــــ					<u> </u>					ل		<u> </u>			

Table A-12-1(1) H.W.L OF STATION 179 DEMRA

DATE	W.L(m/P.W.D)	DATE	W.L(m/P.W.D)
10/9/1966	6.114	3/9/1980	5.940
1/8/1968	6.081	5/8/1981	5,605
4/9/1969	5.782	18/8/1982	5,000
10/8/1972	5.410	26/9/1983	5 . 773
17/8/1973	5.809	8/8/1984	5,950
10/8/1974	6.578	7/8/1985	5.540
11/8/1975	5.563	6/8/1986	5,020
24/8/1977	5,680	26/8/1987	6.360
16/8/1978	5,320	14/9/1988	6.675
8/8/1979	5.481	26/7/1989	5.120

Table A-12-1-(2) H.W.L and L.W.L STATION 42 MILL BARAK

Н	.W.L	L.W.I	•
DATE	W.L(P.W.B)	DATE	W.L(P.W.B)
2/9/1977	5,639	19/3/1977	0.518
22/8/1978	5,258	8/2/1979	0,503
8/8/1979	5.283	3/3/1980	0.363
9/8/1981	5.455	5/2/1982	0.480
24/9/1983	5,765	26/2/1984	0.425
26/9/1984	6,040	16/5/1985	0.650
7/8/1985	5.410	2/2/1986	0,390
9/8/1986	5,000	11/3/1987	0.590
22/8/1987	6.640	3/1/1988	0.710
4/9/1988	7.580	1/2/1989	0.570

Table A-12-1-(3) Daily tide level a statistics/pwd (No.1)

		Station:	42 Dha	ka (Mill	Brak)	River:	20 Buri	.ganga	Year:	1988-89		
		bear ton,	48. 01.0	(112-1				, ,				
		Apr			May			Jun			Jul	
Date	HWL	LWL	RNGE	HWL	LWL	RNGE	HMP	F/4r	RNGE	HWL	LWL	RNGE
				0.150	1 500	570	3.960	3.750	.210	4.230	4,110	.120
1	1.900	1.260	.640	2.150	1.580 1.660	.570 .560	4.040	3.730	.190	4.230	4.140	090
2	2.010	1,260	.750	2,220		.590	4.080	3.930	.150	4.250	4,140	110
3	2.070	1,310	.760	2.340	1,750	.590	4.100	3,960	.140	4,270	4,170	100
4	2.080	1,340	.740	2,400	1.810	.530	4.040	3.910	.130	4.340	4.200	.140
5	2,130	1.430	.700		1.830		3.960	3.820		4.450	4.300	.150
6	2,210	1.500	.710	2.300	1.810	.490 .470	3,930	3.760		4.570	4.430	140
7	2.150	1.520	.630	2,250	1.780		3.940	3.620		4.740	4.600	140
8	2,020	1.470	.550	2,210	1.790	.420 .430	4.010	3,780		4.910	4.810	100
9	1.870	1.380	.490	2,270	1,840			3,720		5.060	4.970	.090
10	1.730	1.280	.450	2.470	1,960	•510	3,910	3,720	•130	3,000	4,510	.030
11	1.780	1.250	•530	2.590	2,050	.550	3.880	3.660	.220	5.180	5,120	.060
12	1,860	1,220	.640	2.620	2.130	.490	3.880	3.700	.180	5,320	5.260	.060
13	1.930	1.290	.640	2,680	2,130	•550	3.930	3,750	.180	5.410	5,380	,030
14	2,180	1.460	.720	2,570	2.070	•500	3.960	3.760	.200	5,530	5,470	.060
15	2,500	1.830	.670	2.680	2.160	.520	3.910	3,760	.150	5.590	5.580	.010
16	2,660	1.870	.790	2.720	2.240	. 480	3.900	3,760	.140	5.640	5,620	.020
17	2,590	1.810	.780	2.840	2.360	.480	3.970	3.810	.160	5.680	5,650	.030
18	2,420	1,690	.730	3.000	2.590	.410	3.880	3.790	.090	5,730	5.710	.020
19	2,360	1.750	.610	3,110	2,760	.350	3.840	3,750	.090	5.730	5,680	.050
20	2.330	1.780	•550	3.140	2.810	.330	3.840	3.730	.110	5.650	5,610	.040
							•					
21	2.210	1,780	.440	3,200	2.950	.250	3,870	3.760		5.560	5.530	•030
22	2,080	1.750	.330	3.210	3.050	.160	3.960	3,840		5.490	5,440	050
23	1.900	1,660	.240	3,120	2,920	.100	3.990	3.880		5,440	5,410	030
24	1.790	1.520	.270	3.080	2.890	.190	4.050	3,930	.120	5,380	5,330	.050
25	1.730	1.400	.330	3.080	2.880	.200	4.060	3.990	.070	5.320	5,290	•030
26	1.750	1,340	410	3.170	2.910	.260	4.140	4.050	•090	5.330	5.300	•030
27	1,750	1,340	.410	3,230	3,000	.230	4.160	4.110	.050	5.330	5,290	.040
28	1,950	1,430	.520	3.350	3.110	.240	4,220	4.160	.060	5,320	5.290	.030
29	1.950	1.460	•520	3.500	3,320	.180	4.230	4.140	.090	5.350	5.300	.050
30	2.050	1.470	.580	3,780	3,550	.230	4.230	4.110	.120	5.380	5.350	•030
31		****		3.940	3.690	.250	***			5,410	5,360	•050
					መኤ ር	aily av	orageg					
3.173	2 017	1 275	.642	2 207	1.781	.516	3.997	3.810	.187	4.505	4.387	.118
AV1	2.017	1,375		2.297				3.747	.152	5.546	5,508	.038
AV2	2.261	1.595	•666 405	2,795	2.329	.466	3.899 4.091	3.747		5,392	5.354	.038
AV3	1,918	1.512	.405	3,333	3,115	.217	4.031	3.997	.034	3.332	2,334	*030
				М	onthly	Means &	Extreme	es .				
Max	2,660	1.870	.790	3.940	3,690	•590	4.230	4,160	• 320	5.730	5,710	,150
Mean	2.065	1.494	.571	2,825	2,431	. 394	3.996	3.851	,144	5,155	5.092	.064
Min	1.730	1.220	.240	2.150	1.580	.160	3.840	3,620	•050	4.230	4.110	.010
										. :		
							Extreme		Caranagas por		•	
		***	L. mt ==	Date			Mean	Min.	Date			
		_	h Tide	4/ 9/1			3,301	1.200	31/ 3/19			
			Tide	4/ 8/1			2.930	.570	1/ 2/19			
		Ran	ge	8/ 3/1	989	•950	.371	.010	15/ 7/19	200 .		

Daily tide level & statistics meter/pwd (No.2)

		Station:	42 Dha	aka (Mil	l Brak)	River:	20 Burio	ganga	Year:	1988-89		
		Aug			Sep			Oct.			voll	
Date	HWL.	LWL	RNGE	HWL	IMT	RNGE	INVL	L/AL	RNGE	HWL	LWL	RNGE
	:											
1	5.420	5,380	.040	7.340	7.450	.190	4.630	4,550	080	3,010	2,920	•090
2	5,490	5,420	.070	7,510	7.430	.080	4.540	4,480	.060	2.830	2.760	.070
3	5,530	5.490	.040	7.570	7.540	.030	4.460	4.370	.060	2,710	2,630	.060
4	5.450	5.420	.030	7.580	7.550	.030	4.310	4.280	.030	2.660	2.540	.120
5	5,410	5.360	.050	7.510	7.490	.020	4.250	4,220	•030	2.650	2.440	.210
6	5,320	5,270	.050	7.460	7.410	.050	4.230	4.200	.030	2.360	2.330	.300
7	5.240	5.190	.050	7,360	7.300	.060	4,220	4.140	•080	2,690	2,300	.390
8	5.160	5,150	.010	7.240	7.200	.040	4.170	4.110	.060	2.710	2.280	•430
9	5.160	5.130	•030	7.160	7.130	•030	4,160	4.070	.090	2.790	2.250	.540
10	5,150	5.130	•020	7.100	7.070	•030	4,140	4.050	.090	2.790	2.240	•550
11	5,160	5,130	•030	7,030	6,980	.050	4,140	4.030	.110	2,710	2,180	•530
12	5.160	5.130	•030	6,940	6.900	.040	4.170	4.070	.100	2,660	2,110	•550
13	5,180	5.150	•030	6.850	6.800	.050	4.200	4.100	,100	2,620	2.070	•550
14	5,210	5,180	.030	6.760	6.740	.020	4.190	4.080	.110	2,560	2.020	. 540
15	5,270	5,230	.040	6.670	6.610	.060	4.130	4.020	.110	2,400	1.960	.440
16	5.330	5.290	.040	6,560	6.510	.050	4.000	3.930	.070	2.340	1.890	.450
17	5.380	5,330	.050	6.450	6.390	.060	3,900	3,810	•090	2,280	1,890	•390
18	5.450	5.410	.040	6.290	6.220	.070	3.820	3.720	.100	2,300	1.890	.410
19	5.490	5.450	.040	6.110	6.020	.090	4,450	3,730	•720	2,540	1.950	•590
20	5.530	5.490	.040	5,940	5.870	.070	4,050	3.910	.140	2.630	2,080	.540
21	5,550	5.520	•030	5,760	5,700	.060	3,850	3.750	.100	2,480	2,050	.430
22	5.560	5.550	.010	5.630	5.580	.050	3.780	3,660	.120	2,620	1.990	.630
23	5,590	5,580	.010	5,500	5.440	.060	3,620	3.550	.070	2.590	1.950	.640
24	5.620	5.590	.030	5.380	5.290	.090	3,620	3.530	.090	2.560	1.920	.640
25	5.670	5.640	.030	5,250	5.150	.100	3,750	3,490	.260	2.530	1,920	.610
26	5,760	5.710	.050	5.140	5,040	.100	3,760	3,460	.300	2,400	1.810	.590
-27	5.840	5,820	.020	5.030	4.940	.090	3.750	3.440	.310	2.330	1.730	.600
28	6.020	5.850	.170	4.920	4.840	.080	3,660	3.400	.260	2,370	1.750	.620
29	6.380	6.190	.190	4.800	4.740	.060	3,520	3.250	.270	2.560	1.830	.730
30	6.720	6.540	.180	4.690	4.630	.060	3.370	3.150	,220	3,350	2,800	.550
31	7.030	6.890	.140		·		3,200	3.030	.170			
					The D	aily av	erages					
AV1	5.333	5,294	.039	7.383	7.327	.056	4.308	4.247	.061	2.747	2.469	.278
AV2	5.316	5,279	.037	6.560	6.504	•056	4.105	3.940	.165	2.503	2.004	.499
AV3	5.976	5,898	.089	5.210	5,135	•075	3,625	3,428	.197	2.579	1.975	.604
							Extreme					
Max	7,030	6.890	.190	7.580	7.550	.190	4.630	4.550	.720	3.350	2.920	.730
Mean	5.556	5.504	.052	6.384	6,322	.062	4.000	3.857	.143	2,610	2,149	.460
Min	5.150	5,130	.010	4.690	4.630	.020	3,200	3.030	•030	2,280	1,730	.070

Annual means & Extremes Date Max. Mean Min. Date High Tide 4/ 9/1988 7.580 3.301 1,200 31/ 3/1989 Low Tide 4/ 8/1988 7,550 2.930 •570 1/ 2/1989 .371 Range 8/ 3/1989 .950 .010 15/ 7/1988

Daily tide level a statistics meter/pwd (No.3)

		Station:	42 Dha	ka (Mill	Brak)	River:	20 Burio	ganga	Year:	1988-89		
		Dee			Jan	-		Feb			Mar	
Daho	teat	Dec	DNCD	HWL	LWL	RNGE	HWL.	LWL	RNGE	HWL	LWL	RNGE
Date	18VL	TMP.	RNGE	1114379	TAIP.	1/11/015	11113	Divid	IMOL		22	
-1	2,590	2,250	.340	1.490	1.110	.380	1.320	.570	.750	1.290	,940	•350
2	2,280	2.010	.270	1.430	1.080	.350	1.460	.730	.730	1,280	.910	.370
3	2.160	1.830	.330	1,570	1.050	÷520	1.570	770	.800	1.460	.800	.660
4	2.160	1.750	.410	1.570	1,000	.570	1.700	.910	.790	1,460	.760	.700
5 , 5	2.220	1.750	.470	1.580	1.000	.580	1.730	1,000	,730	1.540	.820	.720
6	2.280	1.780	500	1.640	1.110	.530	1.870	1,000	.870	1.670	.830	.840
7	2.340	1.790	.550	1.700	1.110	.590	1.990	1.150	.840	1.790	.940	850
8	2.370	1.810	.560	1.790	1.120	.670	2.040	1.120	920	1,950	1.000	,950
9	2.340	1.760	.580	1.870	1.170	.700	2.040	1,150	.890	2.040	1.120	.920
10	2.340	1.700	.640	1.900	1.150	.750	1.950	1,120	.830	2.070	1.140	. 930
10	2.010		• • • •						* .			
-11	2.370	1.700	.670	1.890	1,120	.770	1.790	1.120	. 670	2.040	1.250	.790
12	2.370	1.700	.670	1.780	1,090	.690	1.630	1.040	. 590	1.840	1.180	. 660
13	2.340	1.690	.650	1.580	1:030	•550	1.410	•920	.190	1,720	1.060	•660
14	2,280	1.660	.620	1.410	1,000	.410	1.280	.750	. 530	1.490	. 890`	.600
15	2.180	1.610	.570	1.320	.970	.350	1,410	.760	. 650	1.290	•830	.460
. 16	2.040	1.540	.500	1.220	.820	.400	1.370	.730	.640	1.430	.730	.700
: 17	1.890	1.430	.460	1.310	.820	.490	1.460	.820	.640	1,400	.930	.470
18	1.890	1.380	.510	1.460	.720	.740	1.520	.880	.640	1.320	.760	•560
19	1.890	1.340	550	1,430	,800	•630	1,660	.910	.750	1.570	1.050	•520
20	1,870	1.290	.580	1.490	.720	:770	1.660	.880	.780	1.660	•880	.780
										• • _ • _ •		
21	1.900	1.310	.590	1,520	. 850	•670	1.670	•850	.820	1.790	.990	.800
22	1.950	1.290	.660	1.490	.770	.720	1.720	.910	.810	1.900	1.090	.810
23	1.950	1.250	. 700	1,570	. 790	.780	1.750	.960	. 790	2.020	1.200	.800
24	1,930	1.220	.710	1,630	860	,770	1.610	•930	.680	2.080	1.250	.830
25	1,930	1.220	.710	1,630	.860	•770	1,600	.860	.740	2.050	1,250	.800
26	1.930	1.190	.740	1,580	.800	.780	1.610	.940	.670	1.950	1.220	.730
27	1.930	1.220	.710	1.550	.750	.800	1.540	.910	•630	1.830	1.140	.690
28	1.790	1.150	.640	1.310	.740	.570	1,520	.940	.580	1.600	1.020	.580
29	1,690	1.150	.540	1.460	.760	.700				1.370	.820	.550
30	1.670	1.120	•550	1.370	.730	.640			-	1.290	.670	.620
31	1.630	1.120	•510	1.340	.700	.640		—		1.200	.760	.440
					Etho D							
2123	2.200	1 0/2	.465	1 654	1.090	aily avo	erages 1,767	952	. 815	1.655	.926	.729
AV1 AV2	2.308	1.843 1.534	•405	1.654 1.489	.909	-	1,519	.881	.638	1.576	956	.620
					.783			-	.715.	1.735	1,039	.695
·VA3	1.845	1.204	.642	1.495	, 703	.713	1.628	.913	• 13.J.	1.733	1,039	•093
				M	ont.h1v	Means &	Extremes	S -	á			
Max	2,590	2,250	.740	1.900	1,170	.800	2.040	1.150	.920	2,080	1.250	.950
Mean	2.081	1.516	564	1.545	.923	.622	1.639	.915	,723	1.658	,976	.682
Min	1.630	1,120	.270	1.220	700	350	1.280	.570	490	1,200	.670	.350
						•						
					Annual	means &	Extremes	3				
				4 .1					~ .			

	Date	Max.	Mean	Min.	Date
High Tide	4/ 9/1988	7,580	3.301	1.200	31/ 3/1989
Low Tide	4/ 8/1988	7,550	2.930	•570	1/ 2/1989
Range	8/ 3/1989	.950	.371	.010	15/ 7/1988

Appendix 12.5.1 OUTLINE SPECIFICATION FOR CARGO HANDLING EQUIPMENT

1. General

All machinery to be designed and manufactured in accordance with Japanese Industrial Standard (JIS) and the maker's standard.

Dimensions and performance of all machinery mentioned below show their approximate values. Each value will be changed and or modified depending on the makers.

The types of containers handled by these machinery are 1A, 1AA (40 ft length), 1C, 1CC (20 ft length) of ISO design.

2. Gantry Crane (G_•C_•)

The gantry crane is used for loading or unloading the containers in between the container feeder vessel and the apron in the terminal.

The gantry crane has a handling capacity of about 20 containers per hour working on a domestic service container feeder vessel, as stated in Chapter 1.10.1.3.

The outreach and lifting distance of the gantry crane are designed so that the container can be handled on the vessel mentioned in Chapter 1.10.1.3 (6) which is conceived as a vessel that can navigate to the Dhaka terminal in the future.

The outline plan is shown in Fig. A-12.5.1.

(1) Design condition and criteria

Wind velocity In operation 16m/sec
Stowed condition 50m/sec

Ambient temperature max. 40°C

(2) Particulars

Type of crane Semi-rope trolly, hinged boom type gantry crane

Rated load (under the spreader) 30.5t

Type of spreader 20ft/40ft telescopic speeder

Dimensions etc.

Span of rail 10m

Outreach from riverside rail 16m

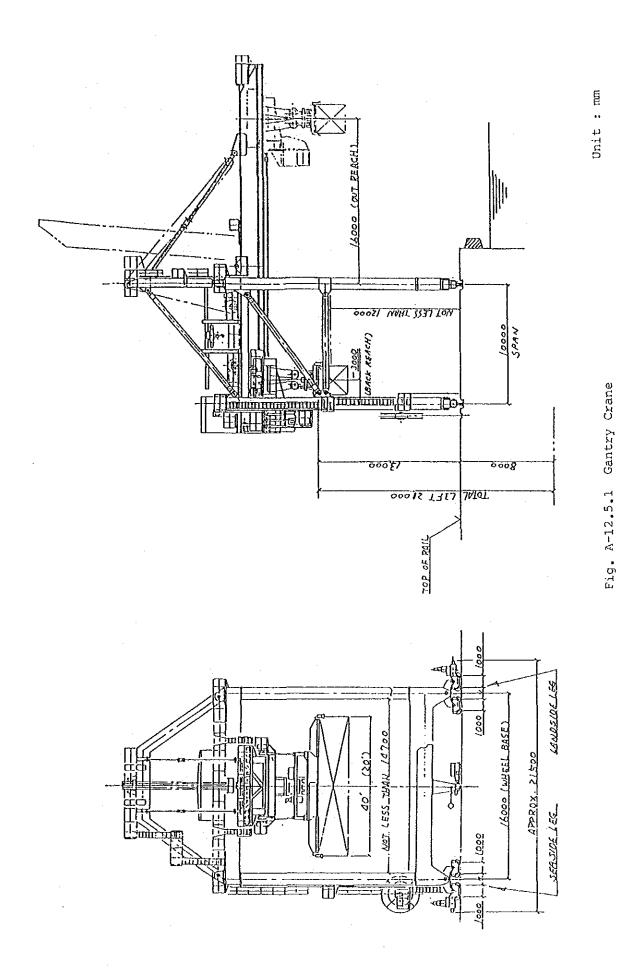
Backreach from landside rail minus 3m (Approach 3m)

Traversing distance 23m

Lift 21m 13m Above rail 8m Below rail 16m Wheel base (center of bogic fulcrums) Buffer to buffer 21.5m 250m Overall length of gantry travel 4 wheels/corner Number of gantry wheels (16 wheels in total) Max. wheel load, approx. 38t/wheel Sea side Operating condition Land side 26t/wheel Stowed condition Sea side 42t/wheel Land side 45t/wheel Rated speeds Main hoist With rated load 20m/min 20m/min Spreader only Trolly traverse 47m/min 26m/min Gantry travel Boom hoist (excluding latching time) 7m/min Electrical control: A.C. Thyrister primary voltage system

Trolley:

Power source :


Power supply system

Festoon system

Gantry :

Cable reel system

A.C. 400V, 50Hz, 3ø

-149-

3. Straddle Carrier (S.C.)

The straddle carrier is used for transporting containers in the terminal and also for stacking them up to 3 tiers, as well as passing them onto 2-tier container stocks. For the purpose the following two types, A and B, are available;

Type: $\frac{A}{2}$ $\frac{B}{3}$ Stacking height in tier: $\frac{B}{3}$ $\frac{B}{3}$ Passing height with load in tier: $\frac{B}{3}$ $\frac{B}{3}$ Passing height without load in tier: $\frac{B}{3}$ $\frac{B}{3}$ Overall length: approx. $\frac{B}{3}$ $\frac{B}{3}$ $\frac{B}{3}$ Number of wheels: $\frac{A}{3}$ $\frac{B}{3}$ $\frac{B}{3}$

For the project, a type A straddle carrier is proposed, because of its maneuverability on berths with short length and the savings on civil work such as pavement due to the reduced wheel load.

A is lower compared with B

The particulars of the type A straddle carrier are shown below and the outline plan in Fig. A-12.5.2.

Particulars

Wheel load:

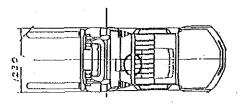
30.5t Rated load (under the spreader) Type of spreader 20ft/40t telescopic spreader Dimensions, approx. 12.2m Overall length at 40ft 5.2mOverall width 11.3m Overall height 9.0m Max. lifting height (upper face of container) Turning radius, outside 40ft spreader 10.5m 8 wheels of rubber tire Travelling speed (same speed for forward d reverse) Loaded 0 - 24km/h0 - 24km/hEmpty Spreader lifting a lowering speed Lifting . Lowering Loaded 0.20m/sec-0.35m/sec0.22 m/sec0.30m/sec Empty Engine: One set of Diesel, rated output about 230PS

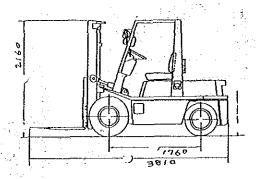
Fig. A-12.5.2 Straddle Carrier

4. Top lifters of 4.5t

The top lifters are used for transporting empty containers and also stacking them up to 3 tiers. The outline plan is shown in Fig. A-12.5.3.

Particulars


Type of top-lifter	Counter - balance ty	pe
Type of lifter	20ft/40ft telescopic	side lift frame
Rated load by 2 stacks cont	tainer	6t
by 3 stacks cont	tainer	4.5t
Dimensions approx.		
Overall length		6.07m
Overall width at 40ft		12.21m
Overall height at normal		5.34m
at max. lift'	ıp	9.78m
Wheels 6 wheels of ru	ubber tire (4 at front	, 2 at rear)
Wheel base		3.65m
Turning radius, outside sprea	ader, Min. 20'/40'	5.10/8.10m
Lifting height under the lift	ter	2.30-8.80m
Side shift (for rightward & l	leftward, each)	0.20m
Traveling speed (same for for	rward & reverse)	0 - 30km/n
Lifting speed with load		0.20m/sec
Gradeability		1/5
Engine One set o	of Diesel, rated outpu	t about 140ps


Fig. A-12.5.3 Top lifter of 4.5t

Unit : mm

5. Fork Lift of 3 t (FL-3)

Rated load		3t
Overall length		3.81m
Overall width		1.23m
Overall height at normal		2.16m
at max. lift up		4.43m
Wheel base		1.76m
	min.	2.42m
Lifting height	nax.	3.00m
Traveling speed (same speed forward d reverse) n	max.	18km/n
Lifting speed with load		0.48m/sec
Lowering speed with load		0.50m/sec
Gradeability		1/5
Engine One set of Gasoline, rated out put a	about	50ps

Unit : mm

Fig. A-12.5.4 Forklift of 3t

6. Tractors d Trailers (T d T)

The tractors and trailers are used for carrying container in the terminal. The tractor and the trailer are detachable. When the trailer is not coupled with the tractor, it is parked by lowering the landing gear located at the front. Each tractor and trailer is capable of carrying one 40ft container of 30.5t or two 20ft containers provided the total weight of two 20ft containers is less than 30t. The tractor's steering wheel is on the right hand side. An outline of the tractor and trailer is shown in Fig. A-12.5.5, 12.5.6.

Particulars

(1) Tractor approx. dimensions		
Wheel base		3,950mm
Overall length		6.870mm
Overall width		2,475mm
Overall height	• •	3,275mm
Cab to rear axle center		3,390mm
Front fitting radius	**	2,575mm
Lower fitting radius		1,860mm
Coupler height		1,410mm
Turning radius	min.	7,300mm
Traveling speed (tractor only)	max.	80km/n
Engine One set of Diesel, rated out	put: about	270ps

Max. pay load	30.5t
Overall length	12,610mm
Overall width	2,480mm
Overall height with container of 8'-6" height	3,981mm
Floor height	1,390mm
Wheel base (King pin to center of rear wheels)	9,070mm
Front fitting radius	1,400mm
Réar fitting radius	2,100mm

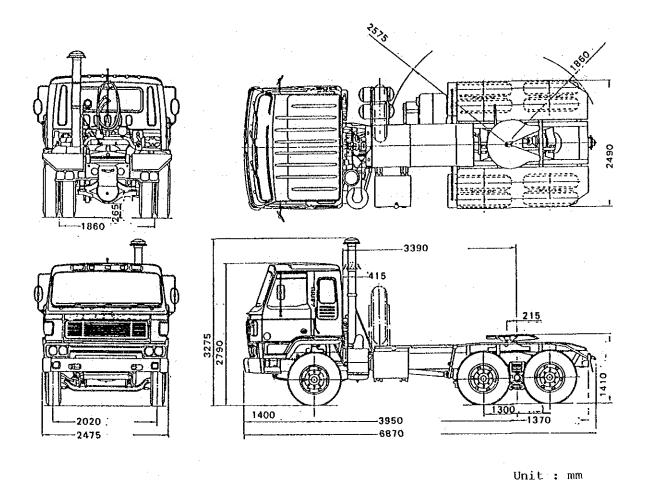


Fig. A-12.5.5 Tractor

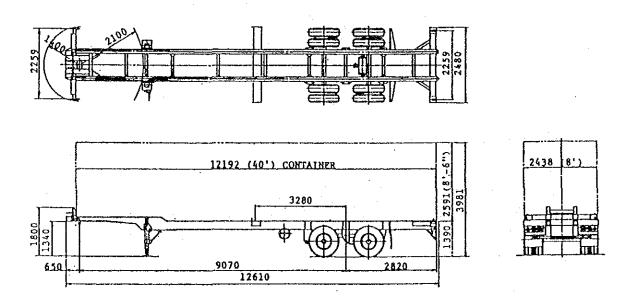


Fig. A-12.5.6 Trailer

Unit : mm

MARKET

Table.

MARKET PRICE OF EQUIPMENT

		Quantity		Insurance			
t em	Name	on	FOB	and	CIF	Customs	Tariff
- 1		Board	Price	Transp' n	price	Duties	
-				cost			
		Taka	Taka	Taka	Taka	(%)	Taka
1)	(2)	(3)	(4)	(5)	(0)	(7)	(8)
							ļ.,
			<u> </u>				
]		1		1

Miscella	aneous	Loading	Tax	Miscellane	ous	Sub
Bank	Port	Unloading	for	Charge	· I	Total
Stamp	Charge	Charge	Loading		Lift	(11)+(12)
Duties		(8)+(8)+	Unloading		Charge	+(13)+(14)
(6) +0. 00135		(9)+(10)	%*(11)	Taka/case	Taka/T	
(9)	(10)	(11)	(12)	(13)	(14)	(15)
					1	
		 				
			·	 	1	
			 	 	 	
				 	 	
			<u> </u>	 		
		 				
		↓	<u> </u>	 	<u> </u>	}
			ļ		<u> </u>	<u> </u>
!			i		1	

Overhead	Mark	et Price of	Equipment			
Charge	Local C	urrency	Foreign	Market		
10% + (15)	Tax	Tax Other		Price		
	(8) + (12) (9)+(10)			(17)+(18)		
		(13)+(14)		+(19)		
]	+(18)	(8)	ļ		
(16)	(17)	(18)	(19)	(50)		
				-		
<u> </u>						
			ĺ .			
			<u> </u>			
		:				
		2				
			1	1		

PARTICULARS OF B. I. W. T. A DREDGERS

ON "1S	NAME	ildyt	YILVE	SHIPYARD		CIP) SNOT SNOW (III)	ONSCO		F1.0AT'IN
	VESSILS		CONSTRUCTION		Length (m)	Greath Depth (m) (m)	Dep th	Draft (m)	OUPTII (m)
-	KIIANAK	BLLICOTT	1962	u. s. ^	28.00	3 00 00	2, 50	08.1	1.10
N	ひさしエムー1	BISAVISRXING	0761	1. IJ. C	24.00	2, 00	2.50	1. 80	1.10
ຄ	1 1-V.L.(3)(I	BEAVISEKING	1261	D :11 1	24.00	2.00	2.50	1. 80	1.10
,	0 -135	HOLL: YSSIIL	1975	OUDIMATIES	25. 80	8,00	2, 50	2.10	1.25
ıs	0 -138	1101.1.: YSSIB.	1975	OUDSWATER	25. 80	8.00	2, 50	2, 10	1, 25
B	0 -137	1101.1.1 YSS131.	1975	DUDISWATIER	25. 80	8. 00	2.50	2, 10	1.25
7	0 -138	HOLL: YSSEE	1975	OUDDISWATTER	25. 80	3.00	2.50	2, 10	1.25
æ	D -139	HOLL: YSSEL	1975	OUDISWATER	25. 80	8. OO	2, 50	2, 10	1.25

		, .				· .	,	
AUX-FING IN	365	200	290	365	398	365	365	385
MAIN INGIN	850	1165	1165	0011	1.200	1200	0021	1,200
SPUD POLIE	15. 50	18.00	18, 00	14, 50	14, 50	18, 00	18.00	18.00
DIAMITTER DISCHARGE	400	450	450	450	450	450	450	0Gv
SUCTION	450	200	500	ದಿದ್ದಾ	200	500	၁၀၀	000
MAX I MUM OR IEDG I NG	32, 00	35.00	30, 00	30.00	30.00	35.00	35, 00	35, 00
MUM S WIDB(m)	10, 00	10.00	10.00	10, 00	10.00	10, 00	10, 00	10,00
MINIMUM DRIEDGING WI	1	-	1	20.00	20, 00	20.00	20, 00	50, 00
MAX 1MUM DREIGENG LNG	11.00	14,00	14.00	9.00	0.00	13.00	13.00	13.00
MINIMUM	2. 20	3.00	2, 20	2, 20	2. 20	3.00	3.00	3, 00

PARTICULARS OF ANCILLARY CRAFT OF B. I. W. I. A.

SL NO	NAME	TYPE	YEAR OF BUILT	YARD	LENGIH	DIMEN BREATH	S10XS Depth	DRAFT	MAIN EN	GINE H. P
1	DREDGER TEXTER	TAG8 XEON	1974	COLDINAS SHIPYARD VIRGINIA, U.S. A	17.00	4, 69	3, 00	2, 30	G.M	22512
2	DOFLHIM	TAGB XEON	1971	1. II. C	11,00	5.00	2. 50	1.90	CAT333	235
3	FLIPPER	NORK BOAT	1971	L.H.C	-	-			i "	~
4	DORDURI	SOUNDING VESSEL	1976	NETHERLANDS	10.00	5. 00		1.50	G. M	150
5	KHANIKA-1	WORK SOAT	1975	BK, SCHEEPSWERF DAMEN, HOLLAND	11.00	5. 00	2, 50	1, 90	6. M	240
6	KHANIKA-11	_	1975			-	•	-	-	
7	KHANIKA-111	:	-		•	-		-	-	-
8	KHANUKA-IV	**	,		-	-	-	-	-	-
9	KHANUKA-V	-	-			"	-	-		-
10	AMENA	INSPECTION LAUNCH	1361	KHULNA SHIFYARD	75 -5.5	18' -4, 5"	7* -7. 5*	4' -7. 5	GLENIFHER ENGINE LTD	320
il	ASHA-1	TUG	1975	BK. SCHEEPSWEF DAMEN. HOLLAND	47. 58	14, 55	6. 97	5. 47'	DETROIT DESEL USA	460
12	ASHA-11	tug	1975		-		-		-	-
13	AGRAJAN	tre	1975	HIGH SPEED MAVIGA- TION CO., LTD	600	17' -0"	6' -6"	4' -6	VOLVOPENTA	540
14	NIR JHARONI	S. P. OIL BARGE	1975	NARAYANGANJI DOCKYARD	30. 501	7, 60M		2.001/	-	270
15	SAQ1	S. P. WATER BARGE	1978	KHULNA SHIPYARD	95' 0	21 -0		4' -6"	DEUTZ	240
16	OBD-I	FUEL BARGE	1976	K. S. Y	,,					
17	08D-11	FUEL BARGE		•	•					
18	OBD-111	7	-							
19	OBD-YI	-	-	-						
20	OBD-YII	-	-	-						
21	OBD-VIII	-		-						
22	FLOATING WORK SHOP	P0NT00N	1974	NARAYANGANJ	30.00M	7. 80\\		2, 00%		İ
23	HOUSE BOAT NO-1	HOUSE BOAT	1975	KHULNA SHIPYARD	16. 80\1	5, 501!	2, 00/4	1. 2041		
24	HOUSE BOAT NO-2	-	-	К. S. Y.			b-	-	<u> </u>	
25	HOUSE BOAT NO-3	•			-		-	•		
26	HOUSE BOAT NO-4	-	-			-	-	•	!	
27	HOUSE BOAT NO-5	-	-	-	i -	,,	n		ļ	
28	HOUSE BOAT NO-6	+					H .	•		
29	HOUSE BOAT NO-7	-		-			P	•		
30	HOUSE BOAT NO-8	•	-	-	*	-	-	•		
31	HOUSE BOAT NO-9	*					tı	•	1	
32	HOUSE BOAT NO-10	-	-	-	-	•	7			ļ

Item NO	Item	Unit	Unit Price	Remarks
1	Earthwork in Excavation Channel	Cu.m	19,50	II-5
2	Construction of Embankment	Cu.m	80,00	11-10
3	Earthwork for Excavation of			
-	Foundation of Structures	Cu.m	16,00	11-11
4	Dressing and Turfing	Sq.m	5,00	II-18-p
5	lst class brick work in Cement			
	Mortar 1:4	Cu.m	1251	111-2
6	Mass cement concrete(1:3:6) with		•	
	cement of best-quality coarse			
	sand 20mm down-graded picked jhama	;		
	chips	Cu.m	1560	IV-1-a-i
7	-ditto- 1:2:4	Cu m	1816	IV-1-a-ii
8	-ditto- 1:2:4			
	Bholagonj crushed stone chips-do-	Cu m	2132	IV-1-a-iii
9	RCC Work in foundation, raft, road,			
	column footing floor and open yard	Cu:m	1830	IV-2-a
10	-ditto- Bholgonj crushed stone chips	Cu.m	2147	IV-2-b
11	RCC Work(1:2:4) with cement of best			·.
	quality coarse sand FM-1.80 20mm			
	down-graded picked jhama chips in			
	column raft beam, lintel and ribes			
	Ground floor	.Cu .m	2947	IV-3-a-i
12	Jetty			
	RCC work having ultimate cube			45.2
	strength of 200Kg/cm ² at 28 days			
	concrete mixed(1:2:4) with fresh			
	cement, best-quality coarse screened			ž s
	Sylhet sand of minimum (FM-2.00) &		• .	
	20mm down graded Bholagan; crushed			
	stone chips	Cu .m	4177	IV-5-B
13	Casting of RRC pre-cast piles on		•	2
	concrete bed having minimum ultimate		n •	
	cube strength of 350Kg/cm ² at 28 days			
	with concrete mix not leaner than			

Item NO	Item	Unit	Unit Price	Remarks
	1:1:2 by volume with 20mm down graded			
	crushed Bholaganj stone chips Sylhet			
	sand of minimum (FM 2.00) and cement	Cu.m	3300	IA-6
14	Driving pre-cast RCC piles vertically			
	with drop hammer either land or water			
	including supply of all labour.			
	materials & equipment etc.			
	a)254mm*254mm(10"*10")	m	217	
	b)305mm*305mm(12"*12")	m	260	
	c)381mm*381mm(15"*15")	m	282	
	d)457mm*457mm(18"*18")	m	304	IV-7
15	Boring holes by bentonite slurry			
	circulation process either in land or			
	water and casting 60m , 508mm and 25" ,			
	20" dia, RCC, cast-in-situ piles havin	g		
	minimum ultimate cube strength of 300			
	Kg/cm2 at 28 days with concrete mix no	t		
	leaner than 1:1.5:3 by volume of best-			
	quality 20mm down-graded Bholagonj			
	shingles, Sylhet sand of minimum			
•	(FM-2.0) and cement			
	a)610mm(24")dia	m	1364	1V-8
	b)508mm(20")dia	m	1197	IA-8
16	Precast cement concrete slab(1:2:4)			
	with cement coarse sand and 20mm down			
	graded picked Jhama ships, mixing layi	ng		
	compacting and curing, etc., complete			
	including supplying all the materials			
	a)610mm*610mm*102mm	Each	76	
	b)305mm*306mm*51mm	Each	1150	1V-15
17	76mm (3")thick cement concrete (6:3:1)			
	in flooring with cement, best-quality			
	coarse sand and picked Jhama chips			
	including breaking chips, screening,	•		
	mixing, laying, compacting, curing			
	etc.	Sqm	116.00	IV-4

Item	NO Item	Unit	Unit Price	Remarks
18	Roofing		:	
	26 BWG galvanixed C.I sheet(Foreign		1.4	
	made)& fixed on M.S section or wooder	ı		
	urline with screws, limpet washer and	1		
	putty, etc., all materials (Excluding	¥ •		
	frame work	Sq.m	235 ,	VII-4-a
19	Water supply and Sanitary Works	**	•	
	Supplying and fitting fixing porcelai	n		
	combicloset"P" Type (superior quality	?		
	white) code NO.112/412 (BISF) with			
	abonite seat cover, rubber buffer, C. I	> •		
÷	or plastic hinges, plastic connection	1		
	pipe, etc., including making holes in	1		
	wall & floors for fitting foxing nuts	5		
	& bolts.	Each	4055.00	1x-14-a
20	Electrification	-		
	Supplying and installation of PVC			
	insulated PVC sheated NYY under groun	nd		
	cable (Eastern cable) including sand		· · · · · · · · · · · · · · · · · · ·	
	cushion and providing cable file/one			
	brick flat soling all along including			
	digging trench & re-filling the same	as	-	4
	per direction of Engineer -in-Charge		and the second of	
	(a) 2*1.5rm	· m	74.00	X-10-a
	(b) 2*2.5rm	m	79.00	X-10-b
	(c) 2*4.02rm	m .	94.00	X~10-c
	(d) 2*16 rm	. m	141.00	X-10-d
21	L.T Overhead line			
	Supply & installation of G.I pipe	٠.		
	pole 1st 6.10m length being 102mm dia	3	the second of	
	and 2nd 3.05m length being 76mm dia		e e e e e e e e e e e e e	
	with a base plate 406mm*406mm welded		war in the second	
	at bottom including supply of head		,	٠.
	cap, red oxide painting over 1.75m		, 4	
	embedded underground level completed		$\mathbb{E}_{\mathbf{v}_{i,j}}(x)$	•
	in all respects as per direction of			

Item NO	Item	Unit	Unit Price	Remarks
	Engineer-in-charge	Each	3250.00	X-1
22	Metal Works			
	M.S. work in Tee. Angle, Cleat, Plates			
	jist, etc., including fitting fixing			
	completed in all respect with supply			
	of all materials	m.ton	26113.00	XII-1
23	M.S. work in reinforcement for all	4		
	kinds of RCC work including forging			
	bending, binding of reinforcement			
	with different section placing them			
*.	in position including supply of M.S.	•		
	rod and G.I. wire, etc., complete	m.ton	19638.00	XII-2
24	Spud and Sheet Piling			
	Fabrication of 22-25 metre long			
	M.S. spud of octagonal section &			
	558mm to 685mm dia with 9mm to 13mm			
	thick M.S. sheet piles at site			
	including handling, placing, cutting			
	the sheet piles to required length.			
	3 round (440 volts) welding with best			
	quality electro-rods & electric		•	
	charges, etc., completed as per			
	direction of Engineer-in charge			
	(M.S. sheet piles will be supplied			
	by the Authority)	RM	596,00	XII-41-a
25	-ditto- hexagonal section	RM	479,00	XII-41-b
26	Fabrication and supply at site 22-25			
	metre long M.S spud of hexagonal			
	section & 610mm (24") dia with 9mm			
	(3"/8) thick M.S sheet including			
	cutting the sheets to required length			
	placing properly 440 volts welding			
	with best quality electro-rods to		:	
	sheet's thickness sectional joint			
	should not be in one or same line			
	which must differa minimum 1 metre		•	

Item NO	Item	Unit	Unit Price	Remarks
	from each other 2 coats of anti-			
	corrosive painting, supplying all			
	materials and electric charge, etc.	RM	4040.00	XII-42-a
27	Driving 558mm to 686mm (22"to27")			
	dia. spud to an approximate depth			
	of 13 metres by water circulation		-	
	method or any other means in water			
	including cleaning loose soil from			
	inside the spud after driving and			
	filling with local sand, compacting			
	with watering, casting 610mm mass			
	concrete(1:3:6) at top & with hire			
	charge of spud driving Machineries			
	& Equipments with all necessary			
	accessories including cost of fuel			
	& operation of machine-ries,			
	Mobilization & Demobilization of			
	Machineries & Equipment, etc.	RM	3500.00	XII-45
28	Supplying fitting fixing of steel		•	
	lining with 4.76mm thick M.S. plate			
	for 610mm and 508mm dia RCC cast in			
	situ piles including supply of all			
	labour materials, welding, rolling,			
	fabrication grinding, transportaion			
	etc. completed as per drawing,			
	specifi-cation and directions of			
	Engineer-in -Charge			
	(a)610mm dia	RM	2637.00	XII-46
	(b)508mm dia	RM	2204.00	XII-46
29	RIVER/BANK PROTECTION WORK			
	Supplying at site 1st class brick-			
	bats of not less than half brick size	Cu.m	520.00	XIII-18
30	Supplying at site 2nd class brick-			
	bats of not less than half brick size	Cu.m	380.00	XIII-19
31	Labour for dumping brickbats in	4		
	position as per direction	Cu.m	25,00	XIII-20
	-		•	

Item NO	Item	Unit	Unit	Price	Remarks
32	labour for dumping position brick				
	blocks of any size carefully at site				
	as per direction	Cu.m		23,00	XIII-21
38	Preparation & Transportaion of				
	complete boring equipment including				
	all accessories, G.I.pipes, pump,				
	engineer strainers, M.S. housing				
	pipes, etc.				
	complete at boring work site & re-				
	transportation of bouring equipments				
	including excess materials of deep				
	tube well if any after complete of				
	work including setting up stores &				
	accommodation of the field staff	$L_{\bullet}S$		16.00	XIV-B-a)-:
39	Execution of Deep tube well boring				
	by reverse circulation a water jet				
	method, the boring diameter should be $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) ^{2}$				
	between 253mm to 379mm dia				
	* Boring charge				
	a)O meter to 51 meter	m		263.00	XIV-B-A)-
	b)Above 51 meter to 102 meter boring	m		199.00	-ditto-
	c)Above 102 meter to 153 meter boring	m		158.00	-ditto-
40	Road and Fence Works				
	Single brick flat soling 76mm (3")thic	k			
	with 1st class or picked Jhama bricks				
	including filling the joints etc,				
	complete with sand ($F_{\bullet}M_{\bullet}O_{\bullet}50$) including	g			
·	supplying all the materials	Sq.m		74.00	XVI-3
41	Brick on edge pavement with 1st class				
	or picked Jhama brick (herring bone bo	nd)			
	including filling the joints with sand				
	including supplying all the materials	Sq.m		116.00	XVI-6
42	Road surfacing consisting of laying an	đ			
	consolidation by roller (8 to 10 tons)				
	Jhama Khoa 51.0mm down-graded to a				
	thickness between (76mm to 152mm) 3" t	0			

Item NO	Item	Unit	Unit Price	Remarks
	6" including supply of materials, etc.	,	1.1	
	completed as per directions	Cu.m.	983.00	XVI-13
43	Spreading and consolidation broken			
	brickes or stone materials (Rubbish)		*	
	etc., by roller(8 to 10 tons)	: •		
	excluding the cost of materials as	. ,	:	•
	per directions	Cu.m.	60,00	XVI-14
44	Supplying and soreading local sand as		•	
	sand cushion up to thickness of 76mm	Cu.m.	215,00	XVI-15
45	51mm thick compacted premixed	٠	•	
	bituminous carpetting with specified			
	graded stone chips @0.566 Cu.m. of			
	stone chips mixed with 1.80 Kg of			
	heated bitumin 0.02 Cu.m (per) of ston	e		
	chips spreaded uniformly over the 9.29			
	M2 (100sft) of surface rolled with 8 to	0		
	10 tons roller compacted fully in		•	
	proper grade and camber and spreading.			
	0.113 M3 (4cft) sand (F.M.O.80) per			
	4.29 Sqm completed as per directions of	f		
	the Engineer-in-charge	Sq.m	115.00	XVI-18
46	Providing tack coat @11.25 Kg(25lbs)	V	•	
	per (100sft)9.29 M2 including heating			
	bitumin to 176.67'c to 190.56' c(350'F			
	to 375'F) and spreading the complete			
	(cost of bituminous included)	$\operatorname{Sq}_{\bullet} m$	23.00	XVI-20(C)
47	Pre-mixed bituminous seal coat with			
	0.142 M3(5 cft)of per gravel mixed with	h	1 4	
	2.23Kg.(5 lbs)of bitumin 0.028 M3 per			
	(cft)of per-gravels and laid over 9.29			
	M2(100 sft) of road surface including			
	spreading with proper camber and grade			
	and bleading with dry sand @0.085 M2			
	(3 sft)(F.M.O.80)per 9.29 M2(100 sft)			-
	including cost of all materials rollin	g		
	with 8 to 10 tons power driver roller			

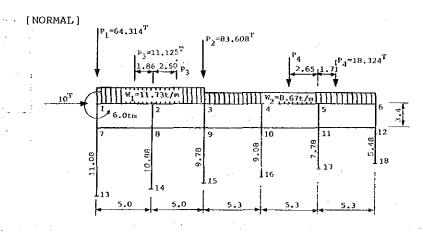
Item NO	Item	Unit	Unit	Price	Remarks
	etc., completed as per directions of				
	the Engineer-in-charge	Sq.m		44.00	XVI→22
48	FENCING WORK				
	1.83(6') high barbed wire fencing of				
	9 lines with 12 BWG 2 ply 4 pointed				
	barbed wire fixing with $152mm$ (6")dia,				
	sundary or gazari bullah post @1.83M				
	c/c embedded 0.914m into ground and 2 $^{\circ}$				
	diagonnall lines of the same barbed		-		
	wire in each bay of 1.83 M, fixing				
	with minimum 64mm long $G.I.$ nail etc,				
	completed including supply of all				
	materials	RM		295,60	XVI-B-2
49	Compacted water hound machadam base				
	course with graded materials of				
	crushed well-burnt picked Jhama 1st				
	class bricks and bats, having				
	compacted thick-ness 76mm to 152mm				
	(3" to 6")including local handling,				
	spreading uniformly to proper grade,		÷		
	camber and super elevator, hand				
	packing, rolling properly with 8 to				
	10 tons power-driven road roller and				
	watering profusely for proper con-				
	solidation, blending with blending	-			
	mater-ials etc. complete as per				
	direction of the Engineer in charge				
	with supply of all materials (pavement				
	will be made on compacted thickness).				
	Thickness of each layer should not be				
	more than 127mm loose. Reduction of				
	loose height by 30%-35% may be allowed				
	on maximum possible compaction	per M	i3 9	975	Chapt 17
50	76mm(3")thick(compacted) semi-grouting				
	with brick metal and hot bitumen,				
	laying and spreading materials				

Item	NO	Item	Unit	Unit E	Price	Remarks
		@114mm (loose)in two layers of 76mm &				
		38mm to proper camber, level, grade				
		and super elevation and spreading hot				
		bitumen @35 lbs.per 9.29m ² on the 2nd				
		layer and rolling hard to full				
		compaction with 8 to 10 tons power	÷			
		driver roller including heating	·			
		bitumen to $350{}^{1}\mathrm{F}$ to $375{}^{1}\mathrm{F}_{\bullet}$ temperature				
		to completion as per directions the				
		Engineer-in-charge	per M2	2 12	28,00	
51		CARRIAGE OF MATERIALS				
		Carriage of materials as follows				
		by truck within 10Km including				
		carriage by head load up to a distance				
		of 100 meters at each point of loading				
		and unloading including stacking				
		Keeping properly as per direction of				
		Engineer in-charge				
		(a) Bricks	1000	17	0.00	xvII-1-a
		(b) Cement.M.S.Rod, Joint, Channel				
		Angle, Cleat & Sheet, C.I.Sheet				
		& others	M.ton	8	00.00	XVII-1-b
		(c) Shingles, Stone chips, Khoa, Brick-	-			
		bats, Sand surki, Lime, Timber and				
		Wooden bullah, etc.	Cu.m	6	0.00	XVII-1-C
		(d) Furniture, Equipment, office				
		stationery and other goods by 5				
		ton truck	Truck	33	8,00	xvII-1-d
		(e) -ditto- by 3 ton truck	Truck	28	2,00	XVII-1-e
52		Extra rate for item NO.1 as followas		ė.		
		by truck for every additional distance				
		of 5Km or part thereof beyond the			٠.	
		initial distance of 10Km.				
		(a) Bricks	1000No	s 2	8.00	XVII-2-a
		(b) Cement, M.S. rod, Joint, Channel,				
		Angle, Cleat & Shet, CI. Sheet &				

Item NO		Item	Unit	Unit	Price	Remarks
		Others	M.ton		11,50	XVII-3-b
	(c)	Shingles, Stone chips, khoa,				
		Brick bats, Sand, Surki, Lime,				
		Timber & Wooden Bulah, etc.	Cu.m		9.00	XVII-2-c
	(d)	Furniture, Equipment, Office				
		Stationery and other goods				
		by 5 ton truck	Truck		56.00	XAII-5-9
	(e)	-ditto- by 3 ton truck	Truck		45.00	XVII~2~e
53	Car	riage of material as follows by				
	boa	t within 10Km including carriage				
	рй	head up to a distance of 100				
	met	ers at each point of loading and				
	unl	oading including stacking/Keeping				
	pro	pwely as per direction of Engineer				
	-in	-Charge				
	(a)	Bricks	1000		113.00	xvII-3-a
	(b)	Cement, M.S.rod, Joint, Channel				
		Angle, Sheet. C. I. sheet & Others	M.ton		56.00	XVII~3-b
	(c)	Shingle, Stone Chips, Khoa, Brick				
		bats, Sand, Surki, Lime, Timber				
		Wooden bullah, etc.	Cu.m		50,00	XVII-3-c

PART II SHORT-TERM PLAN

Appeadix 3.2 Analysis of Stresses in Structural members of Jetty


(1) Establishment of Design Loading Conditions

The design loading conditions that will generate the maximum stresses in the various structwal members of the open type jetty are established by a combination of crane and straddle carrier loads moving over the jetty parallel to it.

In normal situations, the maximum stresses will be produced in the structural members of the jetty when a gantry crane lifts a container load on shore with an empty straddle carrier positioned on the crane apron and a loaded straddle carrier on the apron area behind.

During earthquakes, the stresses will attain their maximum when the crane lifts a container load with its outreach becoming longest and with loaded straddle carriers positioned on the erane apron and the apron area behind.

The design loadings perpendicular to the jetty line based on the foregoing situations are illustrated in Fig.3.2.1.

[EARTHQUANE]

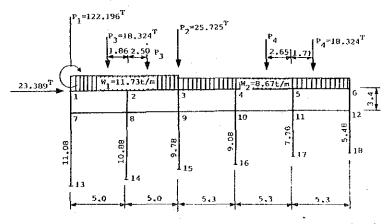
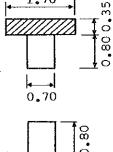



Fig. 3.2.1 Design Loadings Perpendicular to Jetty Line

(2) Maximum Stresses in Structural members

Assuming the open-type jetty structure illustrated in Fig.3.2.1 is a rigid frame, calculations were made of the stresses generated in the foundation piles and beams of the jetty by the design loads in normal situations and during earthquakes. The section characteristics of the structural members and the calculation results are as follows:

- 1) Section characteristics of structural members
 - (a) In-situ concrete piles (∅800)
 - Section area A=0.5027m²
 - Moment of inertia section I=0.020106m⁴
 - Section modulus Z=0.050265m³
 - Allowable bending conpressive strength σ ca=50Kg/cm²
 - Modulus of elasticity of concrete Ec=2.4X10⁵kg/cm²
- Characteristic value of pile $B = \sqrt{Kh \cdot D/4 \cdot E \cdot I} = 0.223$ (N=5, Kh=750t/m³)
 - (b) Upper Beam
 - Section area A=1.155m²
 - Moment of inertia of section I=0.13132m4
 - (c) Lower Beam
 - Section area A=0.56m2
 - Moment of inertia of section I=0.029867m4
 - Allowable bending conpressive strength of upper and lower beams $\sigma_{\rm Ca}=80{\rm kg/cm}^2$
 - Modulus of elasticity of upper and lower beam concrete $E=2.7 \times 10^5 \text{kg/cm}^2$

0.70

2) Calculation Results

Table 3.2.1 Presents the results of the stress in structural members

Table 3.2.1 Actual Stresses Penerated in Structural Members and Reinforcing bar Requirements

	(Stress	Amount		Actua	stress		Al	lowable	
Stru	Structural Reinfo			cing	(kg/d	cm^2)		stress(kg/cm ²)		
memb	er		bars A	S	σc	σs	τ	σca	σ _{sa}	τa
situation	lipper beam	2~1	Uepper	D22-6 D22-4	58	1,485	7.1	80	1,800	4.5
itu		5-6	Lower	D22-6	28	1,093		U	ı)	11
1 1	Lower	12-11	Upper	D19-6	29	1,095	0.8	11	j†	Ħ
normal	beam	11-12	Lower	D16-6	24	1,078	0.8	"	11	11
	Pile	18~12	Under	D29-18	30	367	1.1	50	1,800	4.5
rI n			ground							
	Upper	2-1	Upper	D22-6	67	1,596	8.0	120	2,700	6.75
kes	beam			D22-4				: [
gua		5~6	Lower	D22-6	32	896		н	1f	17
earthquakes	Lower	12-11	Upper	D19-6	58	2,008	1,7	U	11	11
1 1	beam								,,,,,,	
During		11-12	Lower	D16-6	46	1,874	1.7	(1		"
Dur	Pile	18-12	Under	D29-18	71	1,173	2,8	75	2,700	6,75
			ground					_ i		

Notes:1. The amount of pile head displacement is 1.8mm in normal situations and 4.5mm during earthquakes.

2. Numbers in the "Structural member" column correspond to node mumbers indicated in Fig.3.2.1.

APPENDIX-3.4.1 Land Reclamation

1) Scope on investigation and choice of method

It must be emphasised that site investigation for dredging should not be confined to investigation of soils. The scope of investigation will depend to a certain extent on the type of site and contract to be arranged but there are two good reasons for not taking a conservative approach.

First, many potential problems can only be revealed through investigation and the more detailed it is the more accurate the budget estimate for the work will be.

Secondly, from a client's point of view it is advantageous to build up a comprehensive dossier of site investigation which will almost inevitably prove useful at some later stage in the development of the site.

Site investigation is essential in each of the following aspects of planning a dredging operation.

- Effect of dredging

One of the most important, investigation items is the environmental effect of dredging. Apart from the disturbance to the ecological regime, a point which is too often overlooked is the siltation which will occur during and after the dredging.

Siltation during capital dredging operations can cause contractual problems.

- Choice of dredger

Correct choice of dredger is of fundamental importance in the planning and execution of a dredging contract. Although the final choice may lie with a dredging contractor it is essential to provide the contractor with sufficient information such as wind, flood or current data on the site to help him take appropriate decision.

- Choice of investigation method

It is important that the method of investigation chosen should be the most suitable for obtaining the desired information and knowledge on distribution of materials in a dredging area is more important than an exact analysis of each of the types of materials in the area.

2) Water conditions

- Objective of investigation

The level of water in a river is usually referred to a fixed point conveniently located on land.

The measurement of water level has two very important purposes; it provides method of checking whether a particular dredger or associated craft can operate in the water depths available on the site and also a method of referring the water depth at a point at any moment to the datum level of the site. It, therfore, influences the dredging operations and choice of dredger and is essential for the planning and supervision of the dredging contract.

- Method of investigation

Although Dhaka port is mentioned in the tide manual published by the BIWTA, it is advisable to install a tide gauge, with a view to defining a local datum as well as to referring the water depths to that datum.

There are simple poles, available for measuring tide level. The gauge or measuring device should be related to a permanent local level.

It is also important that the tide gauge should be near enough to the site of the dredging operations to ensure that the levels at the site and at the gauge are roughly the same at any moment.

Appreciable differences in level can be detected in some locations is only 2 to 3 km distance from each other.

3) Soil conditions

- Direct sampling

The most effective methods of investigation is those giving the most comprehensive results of boreholes, are those involving direct sampling.

Direct sampling means continuous retrieval of soil from the hole in an undisturbed or semi-disturbed state.

This allows a full classification of the soil to be made at regular intervals, changes of soil type to be accurately positioned and both in situ and laboratory tests to be carried out.

- Jet probes

The jet probe is simply a hollow tube through which water is pumped. It can be constructed by lengths of gas pipes, with threated joints, and a simple submersible pump. The water jet emitting from the tip of the probe is usually sufficient to allow penetration through most granular and light cohesive soils. Since there is no recovery of samples the materials penetrated cannot be identified.

- Laboratory testing

It is necessary to carry out laboratory tests of samples obtained from the proposed dredging site, to confirm the validity of the visual classification carried out on site and also to dertermine the basic properties of the soils.

- Granular soils

The normal tests for granular soils are to determine the following properties:

bulk density
particle size distribution
angularity
moisture content
organic/lime content

- Cohesive soils

The normal tests for cohesive soils are to determine the following properties:

bulk density
particle size distribution
specific gravity (silt only)
moisture content
plastic and liquid limits
shear strength

Consolidation test may also be required if the soil is to be used as fill or is already in a fill area.

4) Construction Condition

As the project site is mostly located in the low land +1m high above

the Public Works Datum, it seems that there is no suitable borrow pit due to the low lying condition of the area around the project site.

Accordingly, filling materials will be obtained from the bed of Buriganga River located near the project site by cutter suction dredger.

It may be recommended to use the existing dredger belonging to BIWTA of the government of Bangladesh which is listed in APPENDIX-8.

- 5) Borrow pit for Dredging
 Location of borrow pits are shown in Figure 3.4.1.
- 6) Cutter Suction Dredger (Short Term Development Plan)

6-1) Condition

Total filling volume: $1,116,000m^3$

Planned area: Approx. 116,000m²

Container yard: 79,700m²

Access road: $36,000m^2$

Soil condition: N-value 2-8 Silty Sand

Dredging Depth: -8m below PWD

Length of discharge pipeline on river:150m

ditto

on ship: 30m

ditto

on land: 800m

Diameter of discharge pipe : 45cm

6-2) Capacity of Dredging Pump

With respect to the capacity of the dredging pump, it is necessary to make sure that it is enough to pump the soil to the required distance. If the pump capacity is insufficient, it is necessary to choose a bigger dredger or add a booster pump to the pumping system.

The normal output of the dredging pump by diesel engine should be in erased by 20% considering transportation of discharge soils and soil characteristics, as shown in the following formula:

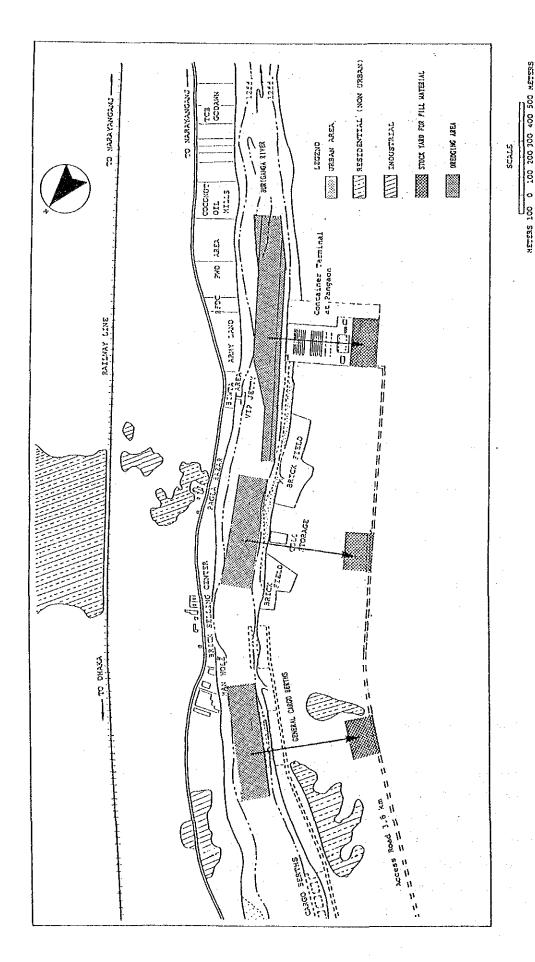


Fig. 3.4.1 LAND RECLAMATION PLAN AT PANGAON SITE

Nr = 0.8 Nd

where Nr : Motive power for discharge soils

Nd: Normal output of diesel engine

- Total Head

Ht = ht + hr

where Ht : Total head

ht : Actual head

hr : Head loss of discharge pipe

Resistance coefficient of discharge pipeline and length

p = 0.017*2.4

pipeline on ship

Lp = 30m

i = 0.017*1.3 pipeline on river Li = 150m

t = 0.017

pipeline on land

Lt = 800m

Ht = ht+t*v/2g*1/D(2.4LP+1.3Li+Lt)

= 16+0.017*3.5/(2*9.8)*1/0.45*(2.4*30+1.3*150+800)

= 16+25.2 = 41.2

Neccessary capacity of main pump.

N = r*(Ht*/4*D*Vr*60)/(4.5*v)

= 1.2*(41.2* /4/0.45*3.5*60)/(4.5*0.55)

= 667.2 H.P < 1,200 H.P

where r = 1.2 assumed ---- Specific gravity of mixture

Vr = 3.5m/sec ----- Water velocity inside discharge pipeline

y = 0.55 ----- Pump efficiency

D = 0.45m ----- Diameter of discharge pipeline

6-3) Required Number of Cutter Suction Dredger

The volume of dredged materials per hour by Cutter Suction Dredger is estimated as follows;

 $Q = q*d/1,000*E(m^3/h)$

where q: $250-240m^3/h$ dredged volume per 1,000 H_•P electrical

d:Nr = 0.8 Nd = 0.8*1,200

= 960 H.P in terms of electrical motor of dredger

E: Working efficiency at site --- 1.0 assumed

: Time ratio of actual work ---- 0.9 assumed

$$Q = 250*960/1,000*10*0.9$$

= $216m^3/h$

Concentration(X) is calculated as follow;

$$x = 216(m^3/h)/q*100$$

= 216(m³/h)/2,004(m³/h)*100 = 10.8%

where
$$q = \pi/4*0.45^2*3.5m/s*3,600$$

= 2,004(m³/h)

The number of working days is estimated as follows; $1.116.000c.m/(216m^3/h*17h/day) = 304 days$ 304 day/25 day/month = 12 months

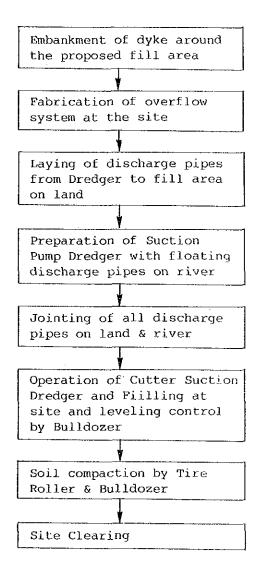
If the period of dredging work is estimated at 4 months excluding preparation works, the necessary number of Cutter Suction Dredger is as follows;

12 months/4 months = 3 units

6-4) Layout of discharge pipeline

The dredging area will be separated into 3 zones as shown in Figure 3.4.1

The discharge pipeline will be installed from the dredging site to the reclamation site and connecting points will be provided at every 100-meter interval along the river wall.


6-5) Construction Equipment

The capacity and number of the main equipment are as follows;

Equipment	Capacity	Necessary Numberr
- Cutter Suction Dredger	1200 hp	3 nos
Anchor Boat	D5t-lift 180 hp	3 nos
- Discharge pipes	dia 0.45m	950m * 3 lines
- Floaters		30 units * 3 lines
~ Rubber Joint		31 units * 3 lines

7) Construction Procedure

The Work Schedule is shown in Figure and The Work Procedure is as follows:

APPENDIX-3.4.2 Pier and Revetments

1) Construction Condition

As the pier and revetment an relatively else to each other, the construction procedure has to be given due care taking this condition into consideration.

The revetment is a L-shaped block of reinforced concrete cast in the Pangaon production yard.

Driving work of steel sheet pile, rubble discharging and trimming of rubble bed shall be finished before installation of L-shaped concrete blocks.

L-shaped concrete blocks will be transported from the block production yard to the planning site by platform trucks and installed in the proposed position by crane.

The connected space of every concrete block shall be protected by water stops to prevent from quicksand.

Cast-in-situ RC piles located at land side consisting a portion of the pier foundation shall be finished before rubble discharging work for the base of revetment in order to ensure smooth pile driving on the river.

2) Cast-in-situ Piles

A cast-in-situ pile is made by making a hole in the ground and filling it with concrete. The hole may be drilled, but more often is formed by driving a shell or casing into the ground. The casing may be driven open end, the soil entrapped in the casing being jetted out after the driving is completed.

3) Equipment for execution of Cast-in -Situ method

The foundation structure will be come trusted by a kind of Benoto's method in Japan and the main dimensions of the equipment to be used for this purpose are shown in Table 3.4.1 for reference.

4) Digging Bucket

Digging Bucket is a kind of grab type bucket designed to break and crush the soil by dropping impact and to discharge it from bottom of casing by grabbing.

Table 3.4.1 Dimensions of Benoto's Eyuispment for foundation pile

NAME NAME OF NAMUJACTUCER		KATO 20TH EARTH DRILL	MITSUBISHI BT-28 TYPE	HITACHI U106A EARTH DRILL WITH CASING DRIVER HITACHI INDUSTRIES,LTD	
		KATO INDUSTRIES, LTD	MITSUBISHI HEAVY INDUSTRIES		
MAIN	TOTAL WEIGHT	27.0 Т	20.0 Т	45.8 Т	
DINENSION	TOTAL LENGTH	7,9 м	10.0 M	8.0 M	
(WORKING)	TOTAL HEIGHT	14.5 M	9.8 M	17.6 M	
	TOTAL WIDTH	3.7 M	2.5 м	3.8 M	
CAPACITY	MAX' DIGGING DIAMETER	1.2 M	1.2 M	. 2,0 м	
!	MAX' DIGGING DEPTH	40.0 M (Dia'1.0M)	40.0 M (Dia 1.0M)	29.0 M	
	MAX' DIGGING SPRED		APPRO' 10 M/H	APPRO' 14 M/H	
UNDER-CARRIAGE	LOADED SYSTEM	CRAWLER	TRUCKCHASSIS	CRAWLER	
*	SPEED	1.7 км/н	56 KM/H		
TUBING SYSTEM	MAX' OSCILLATING TORQUE	40 TON-M	46 TON-H	38.7 TM	
t.	OSCILLATING ANGLE	17		10	
	EXTRACTION CAPACITY	42 TON	46 TON	43 TON	
	INDENTATION CAPACITY	56 TON	60 TON	32 TON	
WINTCH	TYPE	2 DRAMS	SINGLE DRAM	2 DRAMS	
	MAIN HOISTING CAPACITY	3.3 TON	2.5 TON	5.4 TON	
:	SUB HOISTING CAPACITY	3.3 TON	1.3	3 TON	
ENGINE	NAME OF COMPANY	ISUZU DIESEL ENGINE	MITSUBISHI DIESEL ENGINE	HITACHI B-40 TYPE DIESEI	
	MACHINE RATING PER	65.5 PS/1500 R.P.M	105 PS/1500 R.P.M	100 PS/1500 R.P.M	
	HOUR	76.5 PS/1800 R.P.H	160 PS/2100 R.P.M		
· · · · · · · · · · · · · · · · · · ·	BUCKET	GRAB BUCKET	GRAB BUCKET	GRAB BUCKET	
				;	

 $(-1)^{-1} = \frac{1}{2} \sum_{k=1}^{n} \frac{d^{k}}{dk} = \frac{$

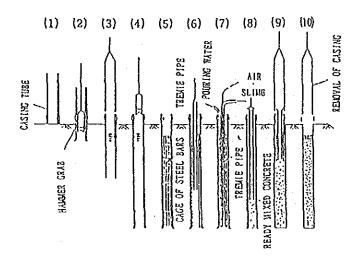
5) Casing and Tube

Casing can guarantee the accuracy of the hole's diameter and prevent collapse of the surrounding soil. It is also a useful guide equipment for digging vertical holes.

6) Construction Method

- As pile driving machine procured local by cannot oscillate the casing, it will be used only for soil digging.

On the other hand, the function of crane is to carry out only auxiliary works of inserting steel bars and casing.


- Digging

In digging work, care should be taken to insert the first casing and to strictly avoid even slight inclination in the case of long pile.

Vertical check of piles will be carried out by transit instrument during digging work.

The bucket type of excavation shall be chosen in advance on the basis of the soil conditions in accordance with soil profile.

CONSTRUCTION PROCEDURE OF Cast-in-Situ METHOD

- (1) Election of casing
- (2) Digging of hole
- (3) Jointing of additional casing
- (4) Digging of hole
- (5) Insert cage of steel bars to casing
- (6) Insert tremie pipe
- (7) Discharge slime
- (8) Casting by tremie concrete
- (9) Removal of casing
- (10) Casing extraction

- Steel bars

Erection of steel bars will be carried out by an auxiliary crane during erection of steel bars, the machine shall be shifted to an adjacent area.

In the case of long pile, as the weight of steel bars will increase significantly, the main steel bars shall have thick diameter especially to avoid buckling by arrangement of reinforcement.

- Tremie pipe

After erection of the cage of steel bars, tremie pipe will be inserted to the bottom of the hole.

The diameter of tremie pipes is usually 30cm.

Plunger will be used to avoid mixing water and concrete in the casting tremie concrete.

- Discharging slime

The volume of slime may increase in the case of long pipe pile as well as due to collapsing soil layer. In this case, air lift method using tremie pipe has good merit.

The air lift method consists in decreasing the specific granity of water in the tremie pipe by sending compressed air into the pipe, as a result, water will come up the pipe from the bottom of the hole due to different water pressures between outside and inside of tremie pipe, and slime remained at the bottom of the hole will be sucked and discharged together with water.

The slime will be removed perfectly in approximately 15 minutes in ordinary cases.

- Concrete

The method of concrete casting by bucket should be avoided as far as practicable due to its an efficiency.

Casting of concrete will start when the tip tremie pipe comes to the bottom of the hole and the tremie pipe will be raised by 20cm or so when it becomes full of fresh concrete.

Concrete casting should be made continuously with fresh concrete the wing inside the pipe. When concrete level raises the tremic pipe will be raised and taken off gradually. In any case, the tip of tremic pipe should

be inserted more than 1m under concrete.

The slump of underwater concrete supplying the tremie pipe should be 18cm or so. The tremie pipe should be moved up and down regularly at about every 50cm so as to avoid choked condition.

Moreover, addition of concrete is allowable up to about 10% of the designed concrete volume.

and the control of the state of the control of the

Contract to the second second

 $(\mathcal{H}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}})) = (\mathcal{A}_{\mathcal{A}}(\mathcal{H}_{\mathcal{A}})) = (\mathcal{A}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}})) = (\mathcal{A}_{\mathcal{A}}(\mathcal{A}_{\mathcal{A}}))$

- Treatment of pile head

As the pipe head made of a mixture of laitance, soil, bentonite and other materials, the pipe head concrete shall be removed up to a length of more than 50cm within 2 weeks after casting.

Demolition of pipe head may be difficult due to strong compressive strength of concrete in case of more than 2 weeks after concrete casting.

7) Construction planning

- Geotechnical investigation

When the condition of bearing strata varies remarkably, geotechnical investigation will be carried out in the site. It is recommended to carry out geotechnical investigation in more than 3 boreholes considering present condition judged from the existing data.

- Machine & Equipment plan

Table 3.4.2

Name of equipment	Quantity	Capacity	Remarks
Machine	1 no.		digging, casting concrete
Crawler crane	1 no.	20t boom 16m	steel bars, hoisting casing
		long	
Hopper barge	l unit		transportation of spoil
			materials
Tug boat	1 unit		
Compressor	1 no.	75 ps	for air lift
Underwater Pump	2 no.		for water supply, Dia 4"
			for cleaning, Dia 2"
Electric Welder	1 no.	11 KVA	for welding & fabrication
			of steel cage
Hammer Grab	2 nos.		with spare grab for many
			piles
Casing tube/			
Guide pipe	lor2 sets		with spare casing/pipe
Tremie pipe	2 sets		with spare pipe
Bucket for spoil			
materials	2 nos.	2cm	discharging hopper barge
Scaffolding	1 set		preparations of temporary road
			for concrete supply

- Manning plan

Table 3.4.3

Instruction &			
Supervision of	Inspector	3	persons
Works			
Digging	Operation of Maachine,	2.	(Chief, Sub)
	Operation of crane	2	(Chief, Sub)
Compressor	Mechanic	1	
Concrete/Digging	Labour	6	
Steel	Welder	1	
	Steel fixer	3	
Transportation of	Sailor	2	(Barge)
Spoil Materials	Sailor	1	(Tug boat)
	Captain	1	(Tug boat)

- Construction Procedure and Preparation

The machine will be lead on a steel pontoon of large size, and the latter will be fixed by spuds to present displacement during construction works.

- Construction Efficiency

The efficiency of digging work may vary with the characterisics of the soil and normal construction efficiency is indicated below:

Moving and installation of the machine 60 minutes
Hoisting of casing/guide tube 25 minutes
Hoisting of cage of steel bars 20 minutes

Digging 5 minutes/m - 20 minutes/m

Cohesive soil (silt, clay) 5 - 15 minutes/m

Sand 10(coase) - 20(fine)minutes/m

Sand gravel 20 - 25 minutes/m
Mudstone 30 - 50 minutes/m

Inserting tremie pipe 15 minutes/10m

Discharging slime 30 - 40 minutes

Cating concrete (including extraction 5 minutes/m

time of casing, tremie)

Transportation and casting of concrete may be made from a batch system installed on river and concrete will be received by bucket and poured into the inside casing through a pipe. This is called "pontoon and bucket system".

Production for Beam and Slab Concrete
 Selection of concrete mixture system and kind of machine

Concrete will be prepared by in-situ mixture method, in accordance with the present construction conditions

System Method Machine

Mixing method Batching/weighing Batcher plant

at site materials and

mixing concrete

at site

- Selection of Batcher Plant
- (a) Scale of mixing facilities Casting volume of concrete Number of days for casting Constrution conditions

Batcher plant

	Mixer		Necessary	
System	-	Number		Remarks
	Capacity		plant capacity	
Trolley or				Mixer, Water-pump
Semi-automatic	0.50m ³	2	41 KW	Measuring instru [†] t
system				skip and bin

The area of aggregate stock yard will be sufficient to store the maximum casting concrete volume of approximater 7 days.

Area for plant facilities

Capacity of Mixer Unit Area for plant facilities 0.5m^3 * 2 nos. 1100m^2 * 2

- Working hour and standard operation hour

The numbers of working hour, standard operation hour, and standard suspension days per year of mixing plant are as follows:

		Average	Number per	year
Machine Dimension				
	ope'g hour	ope'g hour	work'g day	susp'n day
Mixer	_	120	180	60

- Conveying, Casting of slab and beam concrete
- (a) Selection of conveying method, casting concrete and detarmination of machine.

Conveying means to move concrete from batcher plant to placing site.

Batch method and agitator truck or dump truck method is selected for the purpose.

Agitator Truck, Dump Truck

Equipment	Capacity	Output	Remarks
Agitator truck	3.0m ³	125 ps	
Dump truck	6t(2.5m ³)	125 ps	4 wheels

Necessary number of vibrator

Desingation	Casting cocrete per day				
	< 30m ³	30 - 50m ³	$50 - 100m^3$	> 100m ³	
Plain concrete	1 no	2 no	3 no	4 no	
Reinforced concrete	2 no	3 no	4 no	5 no	
Pavement concrete	1 no	1 no	1 no	oa S	

- Rubble discharging

Armour stone will be conveyed from river and discharged directly by ship with crane. Armour stone will be conveyed by stone carrier with selfpropeller and pontoon with tug boat.

- Trimming of stones

Trimming of stones, in this case, will be done entirely underwater because the design crest height is +2.00 m P.W.D. Divers will carry out trimming work underwater by use of diver boat and handling of stones will be made by crane.

H.W.L +6.40

M.L.W.L +3.00 Working on land after neap tide

on land

under water

L.W.L +0.40 Working underwater after high tide

- Diver boat

Diver boat and Worker

Diver boat Diver Foreman Helper of A.S

D 30 PS with 3t

winch, 1 ship 1 person 1 person 1 person

Working of Diver boat, Operation hour

Designation Working hour Operation hour Depth
Diver boat. 8 5 under 15m

- Transportation, Installation of L-shaped Concrete Blocks
Transportation, installation of concrete blocks and machine or
equipment required there for are determined as follows:

Crawler crane will be used to shift concrete blocks from the adjacent block production yard to the temporary stock yard, considering such factors as working schedule, distances and present construction conditions. Platform truck will be used to convey concrete blocks from the stock yard to the installation places.

- Installation of Concrete Blocks

Concrete blocks will be installed by divers and crawler crane.

APPENDIX-3.4.3 Container Marshalling Yard Pavement

a) Improving land for pavement use

Compaction is usually the cheapest method of improving site soil. It may be accomplished by excavation to some depth, then by careful backfilling in controlled thickness and compaction by the appropriate equipment such as tire roller.

Fills which will later support pavements should be placed in accordance with compaction control criteria. With compaction control, the fill is often of better quality than the underlying soil. The underlying soil will undergo settlements of varying magnitude depending on its characteristics and the depth of fill. Settlements will be non uniform of the fill depth varies and may be of long duration unless special steps are taken to speed up the process such as over fill or installation of drainage to speed consolidation.

Compaction of cohesionless soils at the Pangaon site can be accomplished using smooth wheel rollers, commonly equipped with a vibratory device, so that the compaction is a combination of confinement, pressure and vibration. After the site has been leveled and graded, the stacking yard within the premises will be paved.

b) Subbase course

Subbase course work will be performed in dry season in the last stage of the construction period.

Subbase borrow pits are available in the area adjacent to the project site Prepared by the dredged materials from the Buriganga River. Material transportation is planned to pass on the completed road embankment in temporary stages.

- Lower Subbase

The lower subbase material will be excavated in the borrow pits and hauled to the work site by 15 ton bulldozer, backhoe and 11 ton dump truck. The material will be spread by 3.7m mother grader and compacted by 15 ton tired roller and 10 ton macadam roller.

- Upper Subbase

The upper subbase material will be obtained from the same borrow pits as for the lower one and mixed with brick chips on site. Sand and brick chips will be spread and leveled by 3.7m motor grader and brick chips will be spread uniformly on the road surface by manpower and spike harrow. Brick chips and sand will be mixed by 1.6m wide road stabilizer and compacted by 15 ton tired roller and 10 ton macadam roller.

After clearing the upper subbase surface, prime coating will be carried out. Cut-back bitumen will be melted in a 6.000 litre kettle and sprayed by 4,000 litre distributor and 600 litre engine sprayer. Sand will be spread by manpower and rolled by 15 ton tired roller.

c) Base course

Following the subbase course work, the base course work will be carried out in dry season. The base course materials will be procured from Bholagong Stone Boulder and Shingle. The base course structure is planned to be crushed stone.

Boulders procured from the quarry site will be crushed by a portable crushing plant of 60 ton/hr capacity. The raw material will be taken by local labour and the stones will be gathered at the site using local boat and other equipment, loaded and hauled to the crushing plant by 15 ton bulldozer, backhoe and 11 ton dump truck. Loading and hauling from both plants will be made by 1.6, wheel loader and 8 ton dump truck. Crushed stone will be spread by 3.5m wide aggrergate spreader in the yard. Rolling compaction will be made by 15 ton tired roller and 10 ton macadam roller.

After the base course layer, the prime coating will be carried out by the same method as applied for the subbase course work.

d) Bituminous surfacing

Bituminous surfacing work will also be carried out in dry season. It is planned that simple bituminous surfacing method will be applied. Bitumen heated by 6,000 litre asphalt kettle will be transported by 4,000 litre asphalt distributor and sprayed on the base course surface. The cover aggregate will be transported by 1.6m³ wheel loader and 8 ton dump

truck from the crushing plant. Within 15 minutes after spraying asphaltic concrete, the sand will be spread by manpower and compacted by 15 tone tired roller and 15 tone tandem roller.

Container terminal pavements are normally exposed to much heavier loads than general cargo terminal pavements. The potential damage effects on pavements of heavy traffic of straddle carriers, fork-lift trucks and tractor-trailer units have recently been assessed. Fork-lift trucks which have very high front-wheel loads, were found to be much worse in this respect than the other yard systems, which carry about equal loads on all wheels.

Bituminous pavement of the container marshalling yard is normally preferred for the purpose and all ground slots should be clearly delineated by lines and numbered after completion of pavements.

. . .