The salient features of the conveyance sewer are shown in Table 5.5. The sewer alignment is shown in Fig. 5.6, and its longitudinal profile is shown in Fig. 5.7.

5.3 Treatment Plant

The aerated lagoon treatment plant will be constructed at Pluit Pond. The pond will be used for a multipurpose of flood control and wastewater treatment. The treatment plant will treat wastewater of the integrated area of the Project Area and JSSP Area by 2000. Design influent wastewater to the treatment plant is determined at 441,000 m³/d for the target year 2000 and 529,000 m³/d for the year 2010. This design wastewater discharge includes wastewater of the JSSP Area of 124,800 m³/d for 2000 and 136,000 m³/d for 2010 respectively. Design water quality of influent and effluent wastewater is 200 mg/l and 30 mg/l as BOD respectively. Design water quality of influent and effluent of wastewater is 200 mg/l and 30 mg/l as BOD respectively.

The proposed treatment plant includes inflow pump station, aerated lagoon, facultative pond, disinfection facilities and drying bed. Among them, disinfection facilities will not be installed until 2000.

(1) Inflow Pump Station

A pump station of 454 m³/min. capacity will be installed by the year 2000. Additional pumps with a total capacity of 98 m³/min. will further be provided by 2010. The design pump head is 20m. The salient features of the pump station are shown in Table 5.6. Layout of the pump station is shown in Fig.5.8(1)-5.8(4).

(2) Aerated Lagoon and Facultative Pond

The wastewater will be treated initially by aerated lagoon with a storage capacity of 1,075,000m3 and a surface area of 21.5 ha, and finally with facultative pond. For aeration, 24 units of aerator will be installed by 2000, which would be increased to 59 units by 2010.

The aerated lagoon is designed in such a manner that the existing flood control function of the Pluit Pond remain unaffected. Design water level and other structure level of the aerated lagoon are as follows.

(Unit: P.P.m)

High water level	:	0.90
Normal water level	:	-1.00
Aerated lagoon operation level	:	-1.00
Low water level	:	-1.90
Crown elevation of aerated lagoon embankment	:	+1.50
Elevation of acrated lagoon weir	:	-1.90

The construction of aerated lagoon includes embankment of 1,600m in length and dredging of 340,000m³.

The effluent of aerated lagoon will finally be treated by the facultative pond with a storage capacity of 2,096,000m³ having a surface area of 52.4 ha.

The salient features of the aerated lagoon are shown in Table 5.6. Layout of the aerated lagoon is shown in Fig. 5.9. Flow-diagram of the treatment plant is shown in Fig. 5.10. Design water level of the treatment plant and pump station is shown in Fig. 5.11.

Table 5.1 Numbers of House Connection by Sub-Zone

	Total	25,200	12,600	4,500	009'6	41,100	11,600	23,400	128,000
2010	Others	7,000	3,000	400	1,700	11,100	2,200	009	. 26,000
	Domestic	18,200	009'6	4,100	7,900	30,000	9,400	22,800	102,000
	Total	21,000	11,200	3,400	8,800	37,800	10,200	22,600	115,000
2000	Others	4,500	2,000	300	1,300	8,700	1,600	009	19,000
	Domestic	16,500	9,200	3,100	7,500	29,100	8,600	22,000	000'96
Sub	Zone	¥.	Ø	O	Q	禸	ŢĿ	ტ	Total

Table 5.2 Tertiary and Secondary Sewers in Sewerage Area

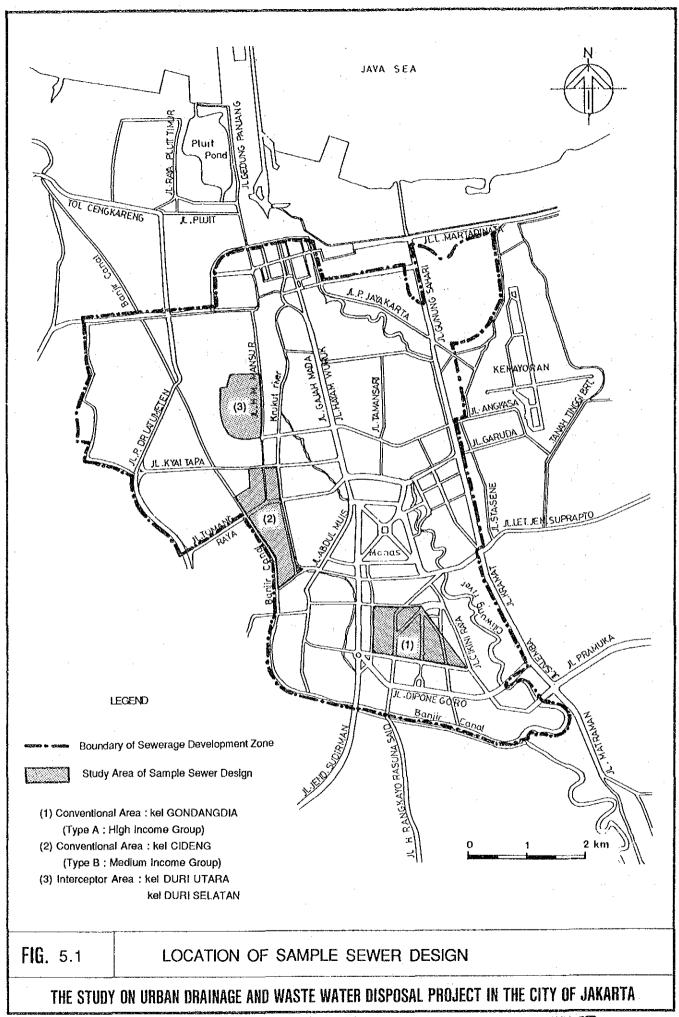
	Area (ha)	Earth		Sewer Lin	Sewer Line Length	Upper: (m)	(m) (m/ha)	Nos. of Manhole
	()	Depth (m)	ø 150 mm	ø 200 mm	ø 250 mm	ø 300 mm	Total	Lower:(Unit/ha)
		H<20m	3 605	4315	C	C	7.920	901
Conventional			(35.4)	(42.4)	(0.0)	(0.0)	(77.8)	(1.1)
Area		2.0 < H < 4.0 m	0	955	1,715	755	3,425	48
(Type = A)	101.8		(0.0)	(6.4)	(16.8)	(7.4)	(33.6)	(0.5)
Kel. Gondang Dia)			3,605	5,270	1,715	755	11,345	157
		Total	(35.4)	(51.8)	(16.8)	(7.4)	(111.4)	(1.5)
			0.050	2 075	¥	C	12 980	010
A S. C.		III 0:7 / 11	5,7,7	5 6 6	3 6	9 6	(120.4)	2 6
Arca			(100.0)	(27.2)	(0.3)	(0.0)	(130.4)	(7.7)
(Type B)	99.5	2.0 < H < 4.0 m	0	1,220	1,700	1,225	4,145	70
Kwl. Cideng			(0.0)	(12.3)	(17.1)	(12.3)	(41.7)	(0.7)
			9,950	4,195	1,755	1,225	17,125	289
		Total	(100.0)	(42.2)	(17.6)	(12.3)	(172.1)	(2.9)
Tutercentor		H < 2.0 m	•	•	1 970	840	2.810	44
Area	73.4				(26.8)	(11.4)	(38.2)	(0.6)
Kel. Duri Utara		2.0 < H < 4.0 m	,	ı	80	1,325	1,405	22
Kel. Duri Selatan					(1.1)	(18.1)	(19.2)	(0.3)
				,	2,050	2,165	4,215	99
		Total			(27.9)	(29.5)	(57.4)	(6.0)

Table 5.3 Proposed Collection Sewer by Sub-Zone

)	unit: m)
	Sub-zone	¥	В	C	Ω	ш	Ţ,	Ð	Total
	Sewer Size							New York	
	(mm)								.
	150	31,400	12,400	19,900	20,500	61,200	14,900	43,800	204,100
	200	27,200	5,200	8,400	8,700	25,800	6,300	18,500	100,100
	250	15,000	5,700	3,900	7,100	35,400	6,300	10,200	83,600
	300	10,800	5,200	2,800	6,200	33,500	5,700	8,000	72,200
	Secondary/Tertiary	84,400	28,500	35,000	42,500	155,900	33,200	80,500	450,000
	350	2,105	275	1,390	735	875	315		5,695
	400	1,385	710	450	1,120	2,915	550	1,490	9,070
	450	086	1,200		635	5,930	805	800	10,350
	500	1,360	360		460	3,320	490	1,370	7,360
	009	2,430	1,060	-13	485	4,020	2,445	920	11,360
	700	2,535	1,080		1,245	1,605	860	1,620	8,945
<u>.</u>	800	1,085	250	069	1,470	2,630	360	069	7,175
	Main	12,330	4,935	2,530	6,150	21,295	5,825	6,890	59,955
	006	1,995	35	1,285	1,150	2,545	85	1,420	8,515
	1000				20	2,015		955	2,990
	1100					1,525			1,525
	1200		.,			120		1,090	1,210
	1350					2,780		150	2,930
	1500					120			120
	Trunk	1,995	35	1,285	1,170	9,105	85	3,615	17,290
	Force Main	500					ı	240	740
		(i c	0	6	6	1		
	Total	99,225	33,470	38,815	49,820	186,300	39,110	91,245	537,985

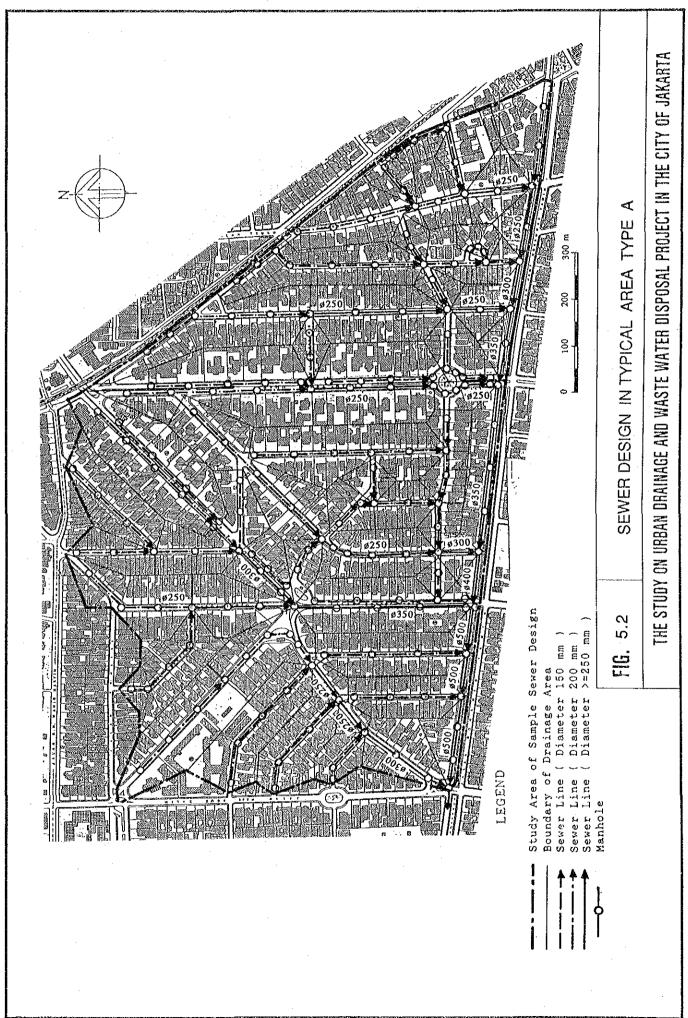
Table 5.4 Lift Pump Station at Kel. Jelambar Baru

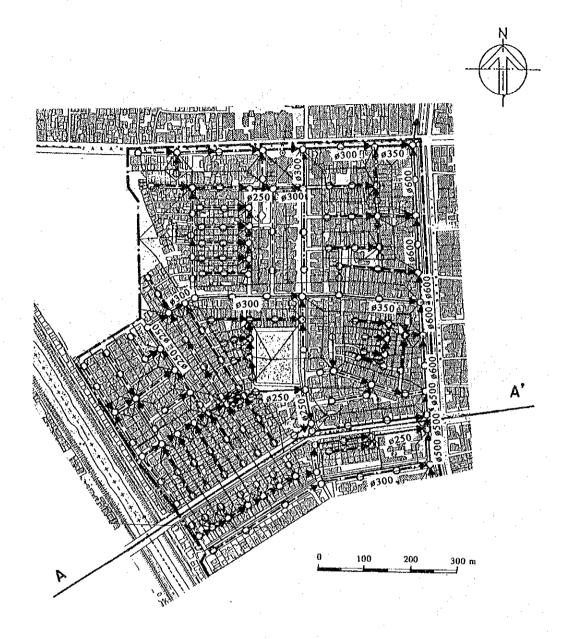
Year Design Discharge	2000 1.051 m3/sec	2010 1.188 m3/sec
	36 m3/min x (1 unit + 1 unit standby 18 m3/min x 2 units	_
	With hydraulic head of 17	m


Table 5.5 Proposed Conveyance Sewer

		Location				Design
Line			Diameter	Length	Slope	Wastewater
No.	Origin	End	(w w)	(m)	1/1000	(m3/s)
S1	Jl. Madiun	Hotel Indonesia	1,900	1,385	1.2	3.494
\$2	Hotel Indonesia	Jl. Kebon Sirih	2,100	1,110	1.2	4.077
S3	Jl. Kebon Sirih	Jl. Medan Merdeka Utara	2,200	1,460	1.2	4.721
S4	Jl. Medan Merdeka Utara	Jl. Sukarjo Wiryopranoto	2,300	1,300	1.2	5.357
S5	Jl. Sukarjo Wiryopranoto	•	2,400	1,110	1.2	6.299
S6	JI. Raya Mangga Besar	:	2,600	1,320		7.333
87	Ji. Jembatan Bambu Ji	Jl. Kunir	2,700	260	1.1	8.350
S8	Ji. Kunir	Jl. Pejagalan	2,700	099	1.1	8.549
68	Jl. Pejagalan	Treatment Plant	2,900	1,435	1.0	9.695
			Total	10,340	•	-

Note: Design wastewater is nourly maximum includung groundwater infiltration.


Table 5.6 Treatment Plant at Pluit Pond


	Year	2000	2010
(1)	Design Wastewater	441,000 m3/d	529,000 m3/d
	(including desludge from	(190 m3/d)	(411 m3/d)
	on site facilities)		•
	Wastewater Quality in BOD		
	Influent	200 mg/l	200 mg/l
ļ	Effluent	30 mg/l	30 mg/l
(2)	Inflow Pump Station		
	Space	2 Station	2 Station
	•	21m x 37m	21m x 37m
	Inflow pump		
		ø 900 x 98 m3/min x 20m(H)	ø 900 x 98 m3/min x 20m(H)
		3 units + 1 unit standby	4 units + 2 units standby
		ø 600 x 40 m3/min x 20m(H)	ø 600 x 40 m3/min x 20m(H)
ļ		4 units	4 units
(3)	Aerated Lagoon	Arca; 21.5 ha, Capa	acity; 1,075,000 m3
	Excavation	340,000 m3	
	Embankment	1,	600 m
\	Operational water level	P.P	r, -1.00 m
	Bottom elevation	•	6.00 m
	Crown elevation of embankment		. +1.50 m
	Elevation of weir		1.90 m
	Aerator	24 units x 75 kw	59 units x 75 kw
1	Retention time	1 day	2 days
		for aerated lagoon and 1.4	
		days for Faculltative pond	
(4)	Facultative pond		acity; 2,096,000 m3
İ	Operational water level	P.P.	-1.00 m
	Effective water depth		4 m
}	Retention time	5 days	4 days
		for maturation pond	
(5)	Disinfection Building		660 m2
(6)	Chlorine Injection		4 units + 1 unit standby
1	·		0~3.8 1 / min / unit
(7)	Drying Bed	2,000 m2	6,000 m2

11-46

A.D 1991

LEGEND

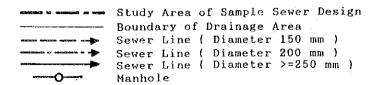


FIG. 5.3(1)

SEWER DESIGN IN TYPICAL AREA TYPE B (1)

THE STUDY ON URBAN DRAINAGE AND WASTE WATER DISPOSAL PROJECT IN THE CITY OF JAKARTA

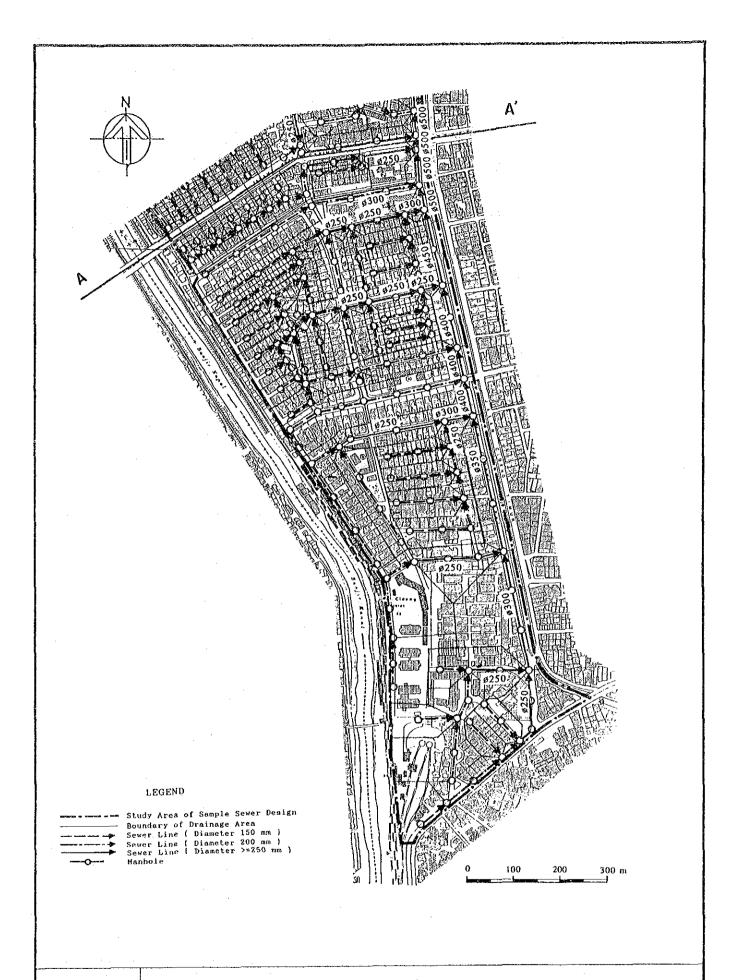
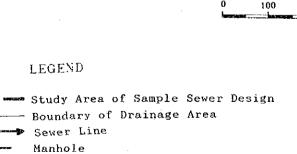
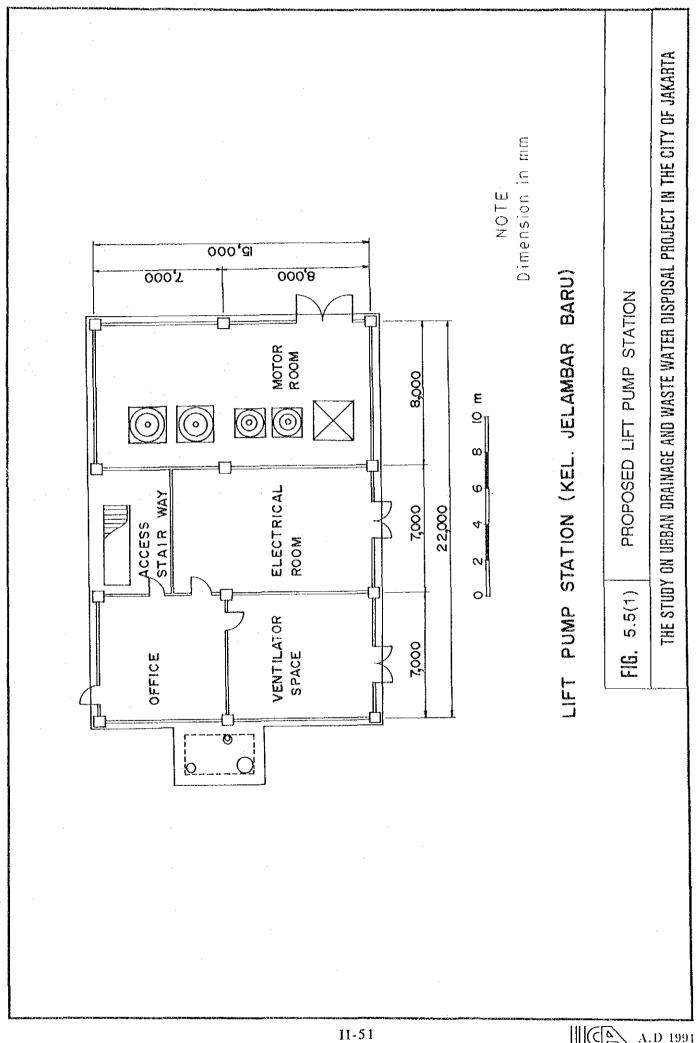
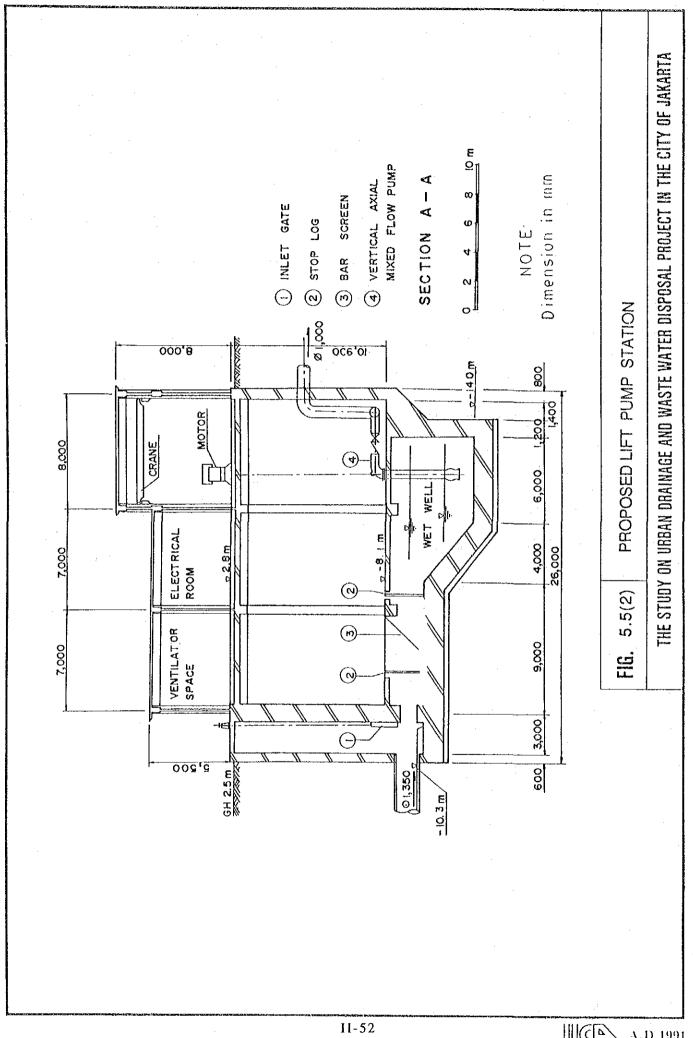
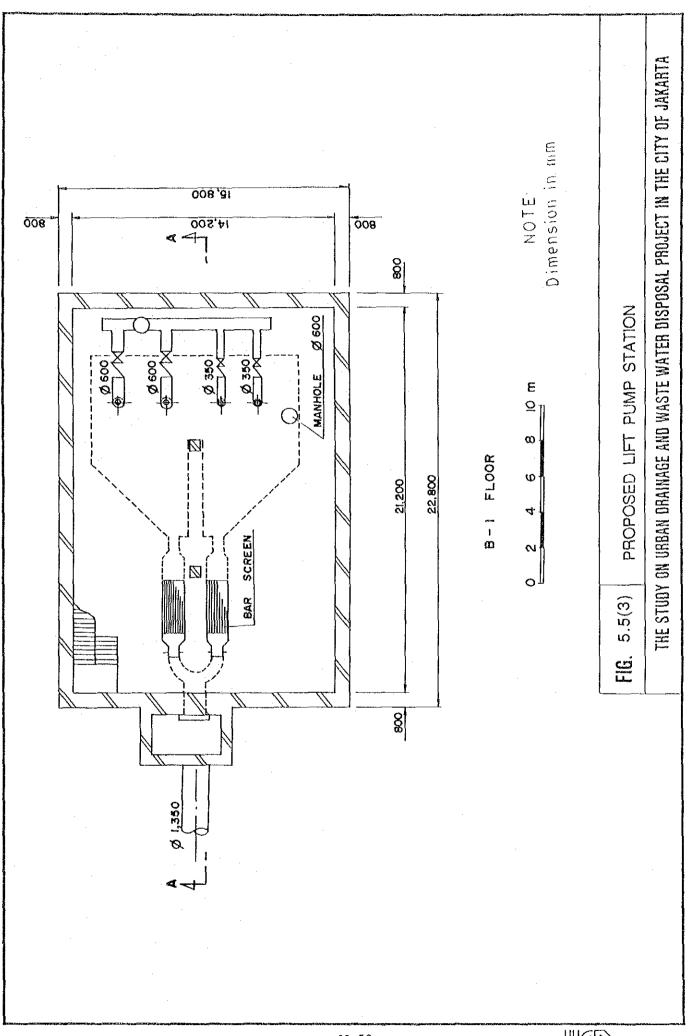


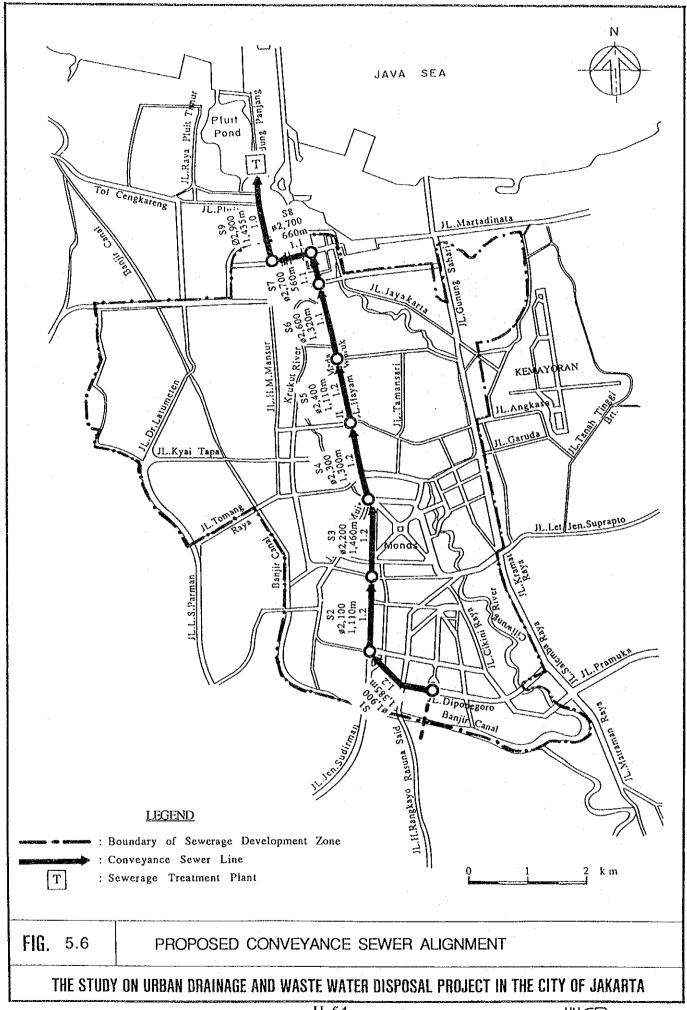
FIG. 5.3(2)

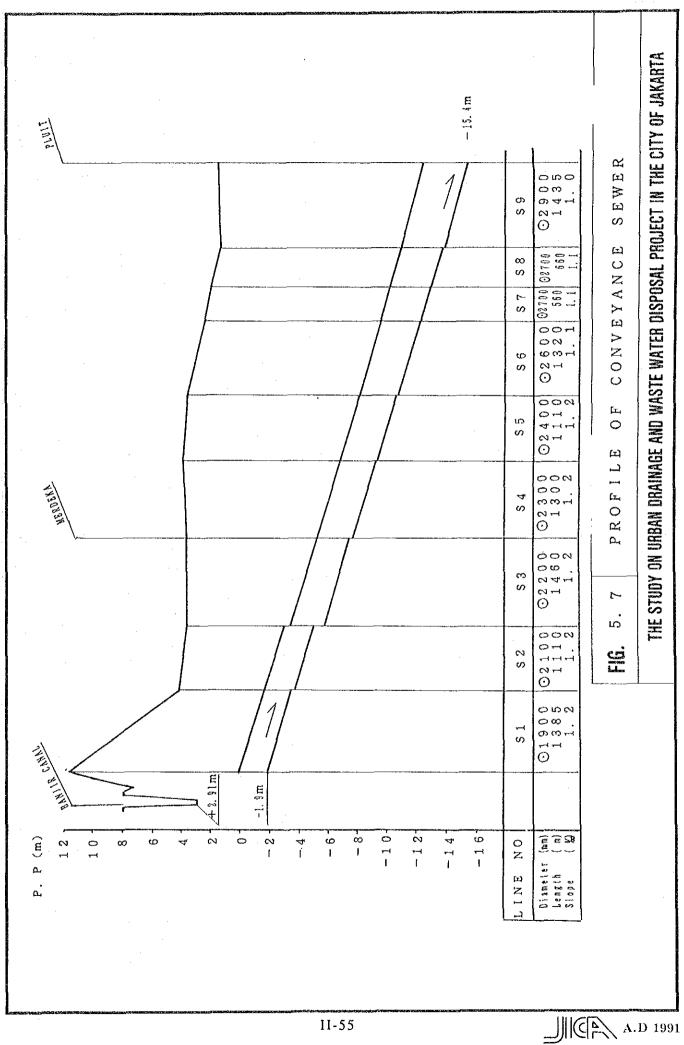
SEWER DESIGN IN TYPICAL AREA TYPE B (2)

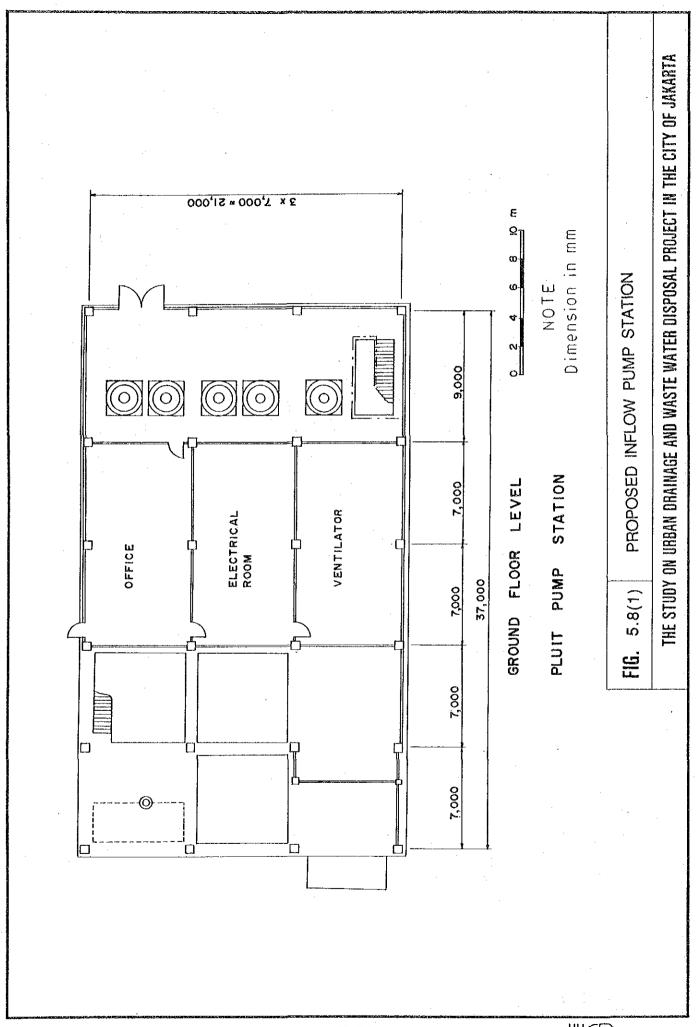
THE STUDY ON URBAN DRAINAGE AND WASTE WATER DISPOSAL PROJECT IN THE CITY OF JAKARTA

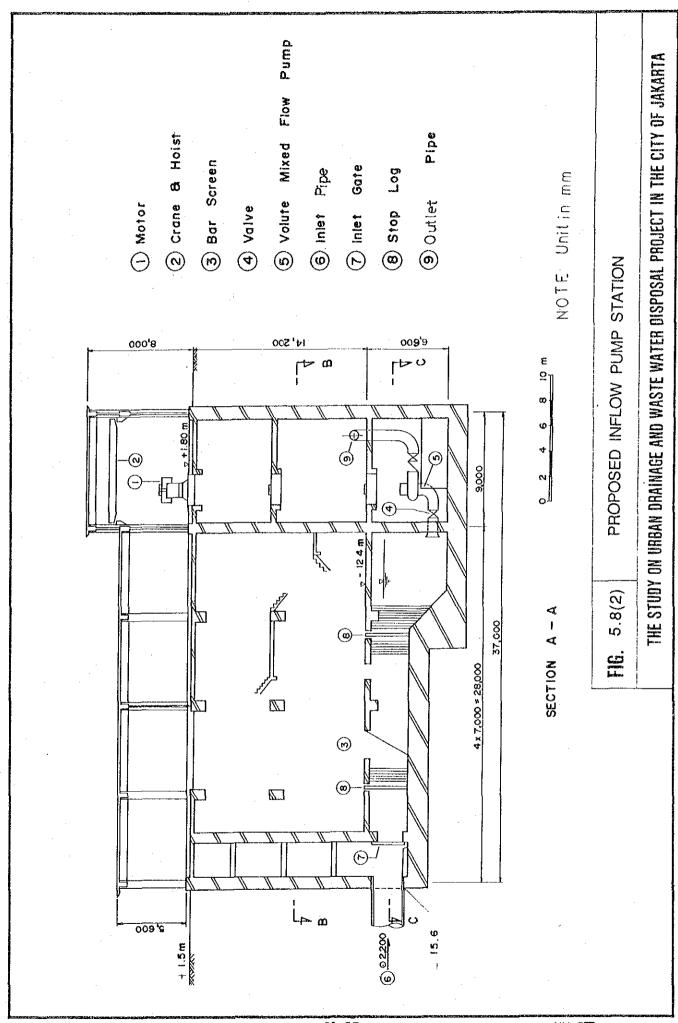




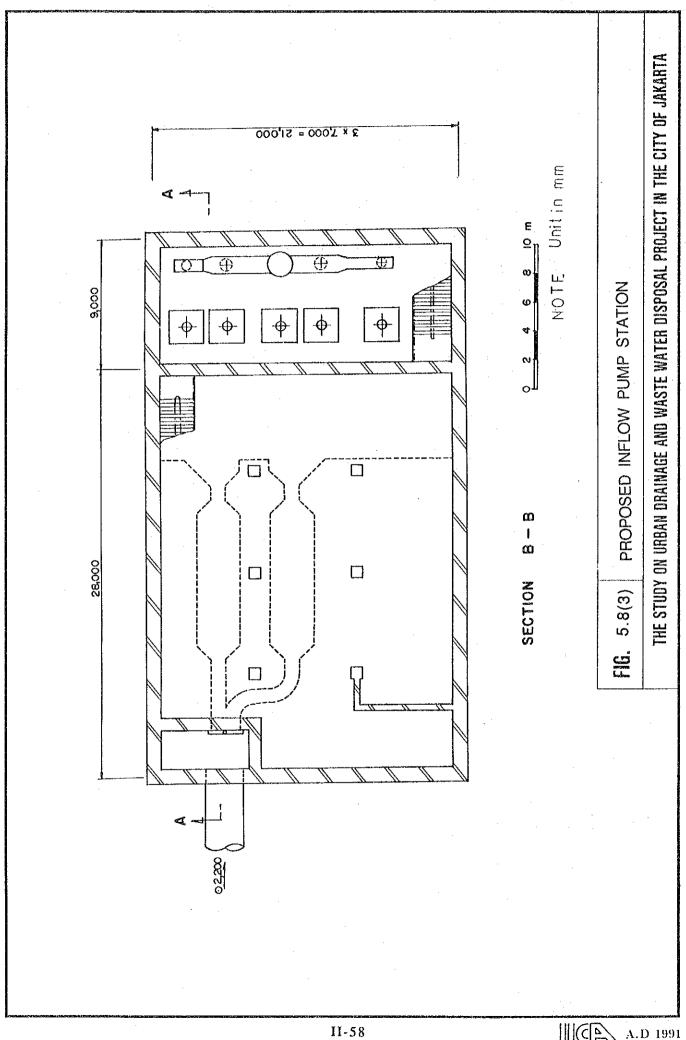

FIG. 5.4

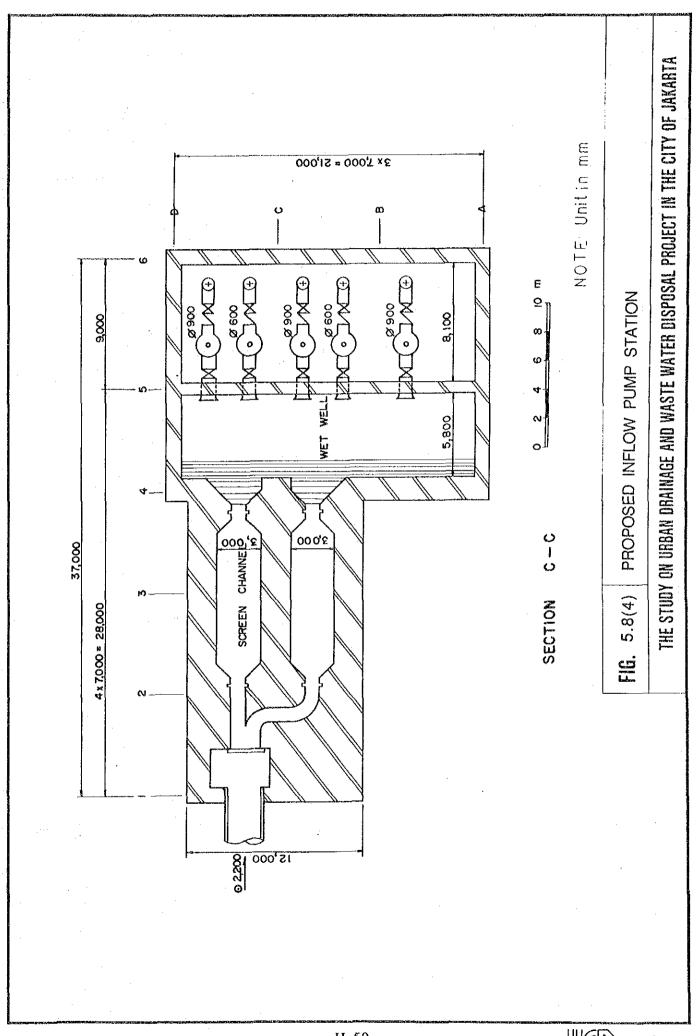

SEWER DESIGN IN TYPICAL AREA TYPE (C)

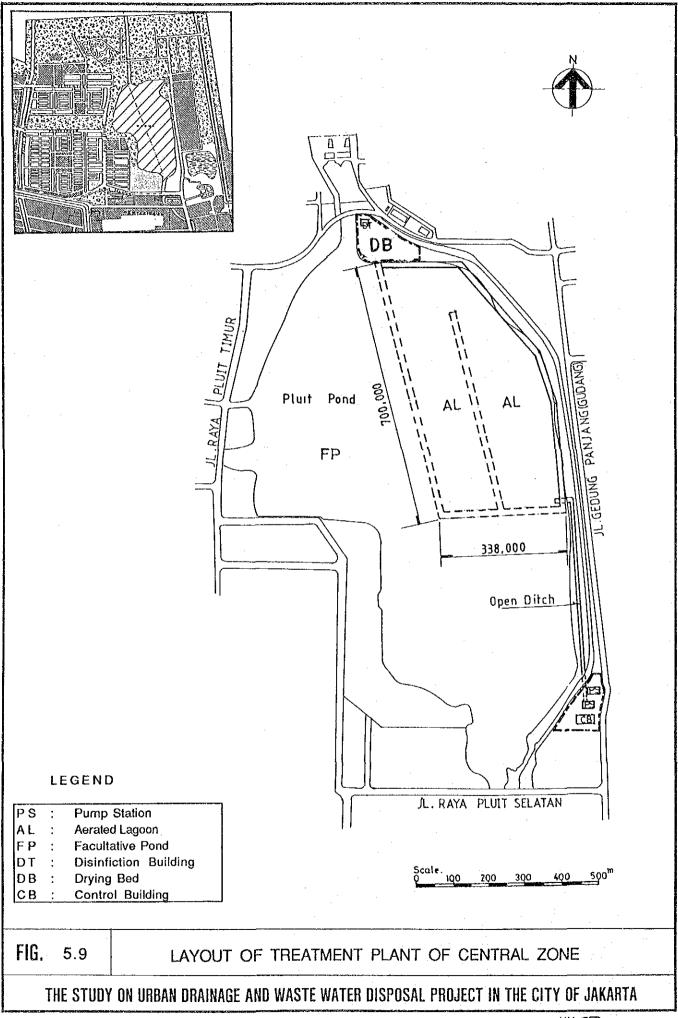

THE STUDY ON URBAN DRAINAGE AND WASTE WATER DISPOSAL PROJECT IN THE CITY OF JAKARTA

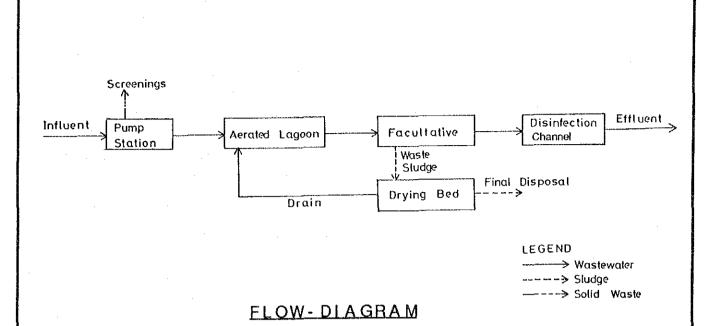












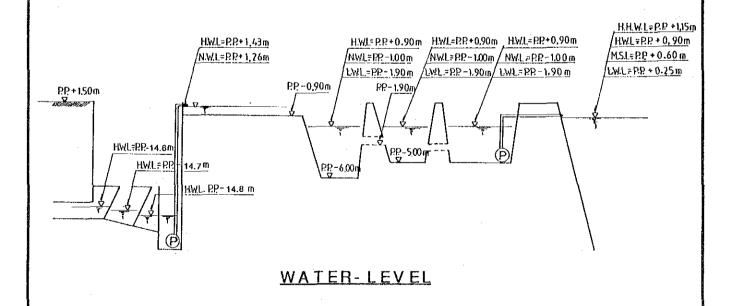
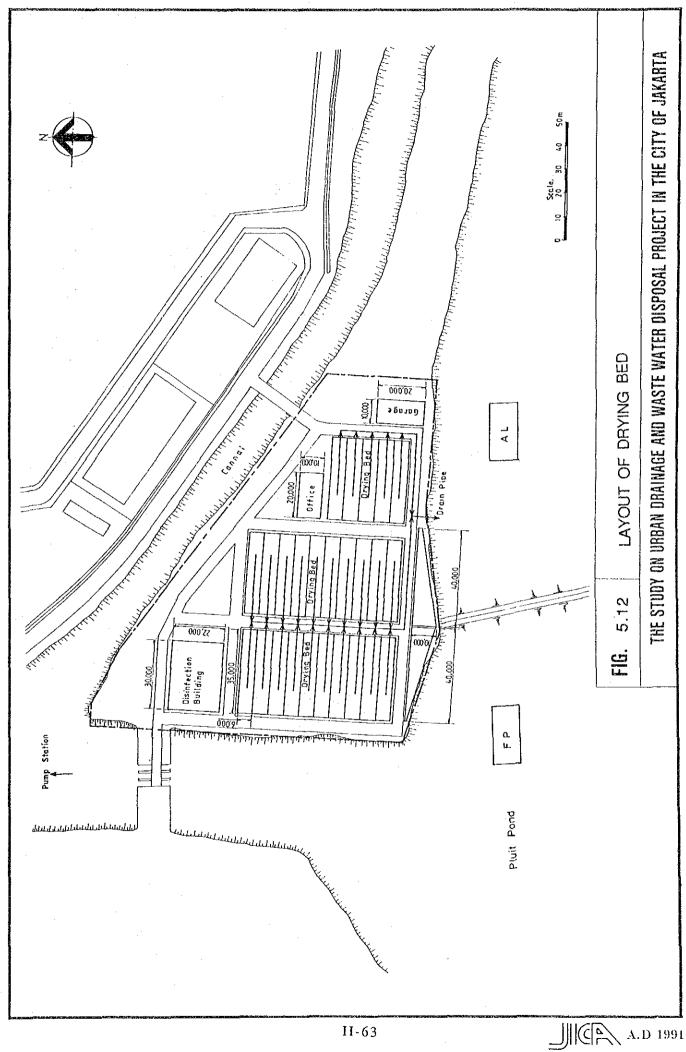
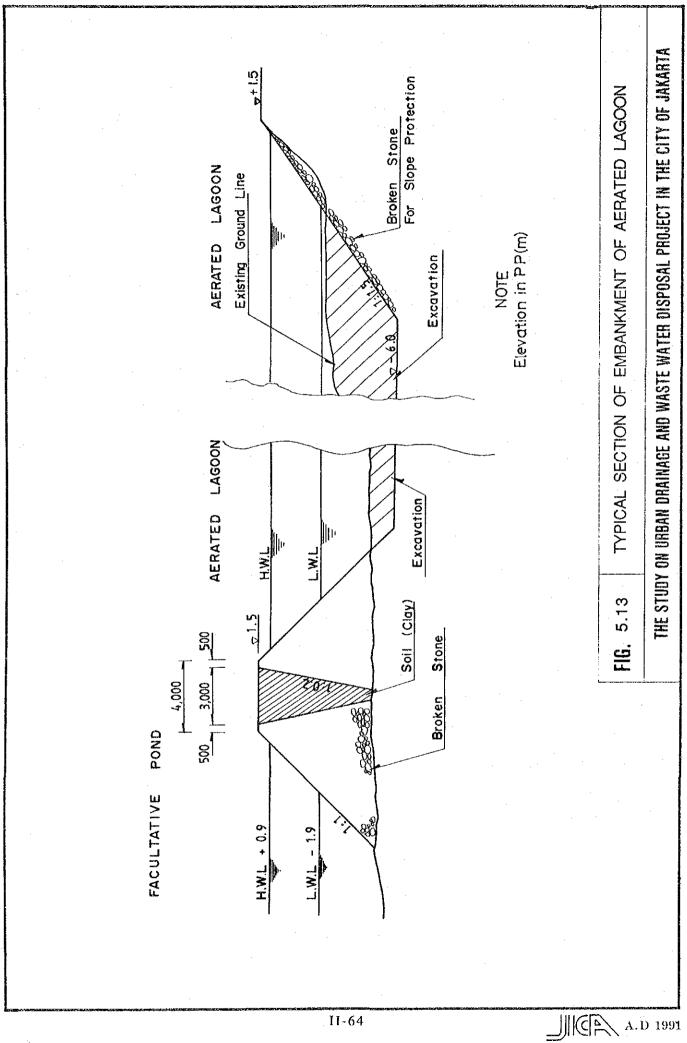




FIG. 5.10 FLOW-DIAGRAM AND WATER-LEVEL OF PLUIT TREATMENT PLANT
THE STUDY ON URBAN DRAINAGE AND WASTE WATER DISPOSAL PROJECT IN THE CITY OF JAKARTA

Chapter 6 PROJECT AND COST ESTIMATE

6.1 Construction Plan

6.1.1 Geology and Topography

The Project Area is in the Jakarta plain, and its geological condition is primarily deltaic. Most of the area is covered by either alluvium or young rocks. The alluvium soils spread mostly along the rivers while the young volcanic rocks cover the rest of the Project Area.

The ground surface in the northern part is almost flat with a low elevation, that declines toward north with a slope in the range of $0.2 \,\mathrm{m} \sim 0.3 \,\mathrm{m}$ per thousand meter. The level of groundwater table is high, especially in the northern coastal area. While in the southern part of the Project Area, the ground slope is rather steeper with a surface slope of one (1) to two (2) meters per thousand meters.

In the Project Area, geological survey at Pluit Pond and along Krukut River and Abdul Mus Rd. were conducted by local consultants in the year 1986 and 1987 respectively.

At the estuary of Pluit Pond, the soil condition of the topsoil between ground surface of P.P. + 1.50 m and at level of P.P. - 5.50 m is sandy silt with N-value of zero (0). The subsoil strata between P.P. - 5.50 m and P.P. - 16.5 m is predominantly clay with some gravels and silty clay having an average N-value of five (5). At depths deeper than P.P. - 16.5 m, the strata is of very hard silty clay with N-value of more than 50. This layer is considered as the bearing stratum for structures.

The geologic conditions along the proposed conveyance sewer are as follows.

The uppermost layer of 0.5 to 1.5 meters thickness has a variety of soils; organic humus, silty sand, clayey silt, sandy silt and sandy clay. The soil consistency varies from very soft to soft.

- The thickness of subsoil layer at the southern part of the Project Area ranges from nine (9) to 13 meters. However, it increases to more than 30 meters between Kh. Hasyin Asyhari Rd. and the southern edge of the Pluit Pond.
- The subsoil strata consists of silty clay, silty sand, organic clay, sandy clay, sandy silt and tuffaceous silt. Consistency of subsoil is soft with N-value of seven (7) in an average.
- Bearing strata at the southern part consists of tuff, tuffaceous silt and tuffaceous sand. N-value varies from 60 to more than 100.

Location of soil survey conducted in 1986 and 1987 and geological profile are shown in Figs. 6.1 and 6.2.

6.1.2 Construction Method

(1) Sewer Pipe Installation

Open trench method is adopted for installation of secondary & tertiary, main and trunk sewers in principle. All the secondary & tertiary sewers of 460 km is installed by open trench method. The portions of main and trunk sewers with a total length of 2,650 m those cross rivers, main roads and railways at 47 locations will be constructed by micro tunnelling method. The remaining 74.6 km of main and trunk sewers be constructed by open trench method. At two (2) locations of crossing Bangir Canal and Credang River of Pangeran Tubagus Angke Rd., pipe beam bridges with length of 50 m and 30 m respectively are applied. Conveyance sewers of 10.34 km in length with diameter ranging from 1,900 mm to 2,900 mm are constructed by shield tunnelling method.

(2) Treatment Plant

Proposed treatment plant of aerated lagoon is constructed at Pluit Pond. The baffle and partition wall embankments of aerated lagoon and facultative pond, inside the Pluit Pond, will be constructed with broken stones and clay core. The underwater excavation works of aerated lagoon will be conducted after the completion of embankments.

6.1.3 Required Major Construction Equipment

Major construction works of sewerage development is installation of sewer pipes which require earth works. Closed face type mechanical shield tunnelling machine is required for conveyance sewer construction. While for the secondary & tertiary, main and trunk sewers, heavy equipment such as backhoe, vibro hammer, and truck crane are required for trench digging, setting and removing of sheet piles and pipe installation.

Dragline with boat or dredges will also be required for dredging of aerated lagoon.

6.1.4 Construction Schedule

(1) Workable Days

Annual workable days is estimated to be 240 days based on the following considerations:

Sunday per annum : 12 months x 4 days = 48 days

National holiday per annum: about 20 days

Rainy day per annum : 57 days (more than 10 mm/day

rainfall)

Total work suspension

days per annum : 125 days

(2) Work Time

Sewer installation works by open trench method along main roads be conducted during night time only. Trench is covered by steel deck in day-time for traffic use. Construction of conveyance sewers by shield tunnelling method is conducted all day with three (3) shifts, each of eight (8) working hours in order to ensure a continued work pace.

Construction works of pump station and treatment plant is conducted for eight (8) hours during day time only.

6.2 Project Cost Estimate

6.2.1 Basis of Cost Estimate

Based on facility plans, the project costs are estimated under the following conditions.

- (1) It is assumed that all construction works will be contracted to general contractors by international tender.
- (2) All base costs are expressed under the economic conditions that prevailed in August, 1990.
- (3) Overhead is assumed at 20% of the total cost of equipment and civil works and incorporated in the direct construction cost.
- (4) Engineering service and administration costs are assumed respectively at 7% and 1.5% of the total direct construction cost.
- (5) Physical contingency allowance at 10% of the direct construction cost is assumed.

6.2.2 Estimated Project Cost

The total project cost, consisting of direct construction cost, land acquisition cost, administration cost, engineering cost and physical contingency, amounts to Rp. 445.3 billion at 1990 price. Its breakdown is shwon in Table $6.1 \sim 6.16$.

6.2.3 Estimated Operation and Maintenance Cost

The annual operation and maintenance cost for the Project Area in 2000, consisting of sewer maintenance, O&M of lift pump station and treatment plant, is estimated at Rp. 3.6 billion at 1990 price. The annual O&M cost for the Central Sewerage Zone covering JSSP Area is estimated to be Rp. 7.0 billion at the year 2010. The cost breakdown is shown in Table 6.17 and Table 6.18.

Table 6.1 Project Cost of Sewerage Development

(Uni	Unit: billion Rp.)
A. Direct Costruction Cost	375.3
(1) Collection Sewer Line	334.8
(2) Lift pump Station	4.1
(3) Treatment Plant	36.4
B. Land Acquisition cost	9.0
C. Administration Cost	5.6
D. Engineering Cost	26.3
E. Physical Contingency	37.5
Total	445.3

Table 6.2 Breakdown of Direct Construction Cost

(Unit : billion Rp.)	Plant Total	84.1	71.6	62.1	117.0	334.8	4:1		22.5	13.9	36.4 36.4	36.4 375.3
F	S	14.0	10.6	16.6		41.2	4.1			:		45.3
	H	6.1	5.8	0.3		12.2						12.2
	E	29.7	22.7	31.7	62.4	146.5		-		<u>.</u>		146.5
Sub-2000	Ω	7.6	6.6	5.0	14.3	36.8						3 4 8
0.	C	6.0	2.9	3.9	15.5	28.3						283
	B	5.3	4.9	0.1	11,4	23.2						23.2
	A	15.4	13.3	2.4	13.4	46.6				a		46.6
	Itme	A. Sewer Secondary/Tertiary	(ф150 ~ ф350) Main	(\$350 ~ \$800) Trunk	(4900 ~ 41500) Conveyance	(\$1900 ~ \$2900) Sub-Total	B. Lift Pump Station	C. Treatment Plant	Pump Station	Aerated lagoon/others	Sub-Total	Total

Table 6.3 Construction Cost of Secondary/Tertiary Sewer

			Conventional Area	Area		Interceptor Area	rea	Construction
Sub-Zone	Area		Unit Cost	Construction	Area	Unit Cost	Construction	Cost
	(ha)		(million	Cost	(ha)	(million	Cost	(million Rp.)
			Rp./ha)	(million Rp.)		Rp./ha)	(million Rp.)	
¥	(Type A)	377	20.0	7,540				
	(Type B)	181	29.1	5,267	196	13.5	2,646	15,453
В	(Type B)	124	29.1	3,608	124	13.5	1.674	5,282
U	(Type B)	199	29.1	5,791	13	13.5	175	5,966
Q	(Type B)	205	29.1	5,966	126	13.5	1,701	7,667
E	(Type B)	612	29.1	17,809	881	13.5	11,894	29,703
Ц	(Type B)	149	29.1	4,336	132	13.5	1,782	6,118
Ð	(Type B)	438	29.1	12,746	06	13.5	1,215	13,961
Total		2.285		63,063	1.562		21.087	84 150

Table 6.4 Construction Cost of Main / Trunk Sewer

					(unit:	million Kp.)
Sub-Zone	Main	Main (ø 350~800 mm	(m	Trunk	Trunk (ø 900~1,500 mm	mm)
-	Sewer	Manholc	Total	Sewer	Manhole	Total
	12,750	521	13,271	4,452	8.3	4,535
	6,179	174	6,353	76	5	81
	2,816	88	2,904	3,851	67	3,918
	9,620	291	9,911	4,872	78	4,950
	21,967	796	22,763	31,313	432	31,745
	5,515	284	5,799	255	9	261
	10,318	308	10,626	16,377	202	16,579
Total	69,165	2,462	71,627	61,196	873	62,069

Table 6.5 Construction Cost of Conveyance Sewer

Line No.	Diameter	Length	Unit Cost	Construction Cost
,,,	(mm)	(m)	(million Rp./m)	(billion Rp.)
S1	1,900	1,385	6.7	13.4
\$2	2,100	1,110	10.3	11.4
\$3	2,200	1,460	10.6	15.5
84	2,300	1,300	11.0	14.3
SS	2,400	1,110	11.4	12.7
. 9S	2,600	1,320	11.8	15.6
S7	2,700	260	12.3	6.9
88	2,700	099	12.3	8.1
89	2,900	1,435	13.3	19.1
Totai		10.340		117.0

Table 6.6 Construction Cost of Lift Pump Station

			Unit Cost	Construction Cost
	Item	Quantity	(million Rp./m3) (million Rp.)	(million Rp.)
	Civil and Architect			
	Temporary Work	6,750 m3	0.13	877
	Concrete Work	1,780 m3	0.35	623
2.	Mechamical and Electrical			
	Equipment	1 18	i	2,600
ω.	3. Total			4,100

(Unit: million Rp.) Civil/Architect Mechanical/Electrical Unit Cost Quantity Unit Cost Const. Total Item Quantity Const. Cost Cost 1. Pumping St. (per 1 station) Temporary Work 17,280 m3 13,000 2,246 2,030 5,800 m3 35,000 Concrete Work/others 483 m2 30,000 145 Building 6,817 Mechanical/Electrical Work 1 ls Sub Total 4,421 6,817 22,476 $(4,421 + 6,817) \times 2$ Total of 2 Pump Stations 2. Split Manhole Temporary Work 1,716 m3 130,000 223 300,000 Concrete Work 520 156 Sub Total 379 379 3. Aerated Lagoon 340,000 m3 8,800 2,992 Excavation 4,740 120,000 m3 39,500 Broken Stone 18,000 m3 9,100 162 Backfill 194 13,640 m2 14,200 Slope Protection 147 3,528 Aerator (75 kw) 24 set 8,088 3,528 11,616 Sub Total 4. Other Facilities Drying Bed 2,000 m2 12,000 24 3,000 m2 300,000 900 Control House 924 924 Sub Total 5. Others 150,000 m2 2,000 300 Site Preparation 500 500 m 1,000,000 Open Channel 2,000,000 90 m 180 Force Main Sub Total 980 980 19,213 17,162 Total 36,375

Main Sewer Construction Cost by Sub-zone, by Diameter and by Earth Covering Depth Table 6.8 (1)

Earth Covering	À	Length (m)		Unit Cost	Con	Construction Co (million Rp.)	Cost
	Ą	В	Ü	(million Rp./m)	¥	В	Ú
	520 1,325 260	275 0 0	505 645 240	E .	107 400 427	57 0 0	104 195 394
	615 950 270	450 260 0	20 430 0	0.224 0.323 1.680	138 307 454	101	139
	25 500 455	625 275 300	000	0.253 0.354 1.729	1777	158 97 519	000
	585 710 65	155 105 100	000	0.278 0.382 1.774	163 271 115	43 40 177	000
	\$25 550 1,355	1060	000	0.363 0.473 1.903	191 260 2,579	2,017	000
	1,300 1,235 0	65 645 370	000	0.851 1.993 2.794	1,106 2,461 0	1,285 1,034	000
	590 495	250 0	069	0.898 2.045 2.869	1,207 1,420	511	1,980
	200			0.349	175		
1 1	12,830	4,935	2,530		12,750	6,179	2,816

Table 6.8 (2) Main Sewer Construction Cost by Sub-zone, by Diameter and by Earth Covering Depth

	Ö	00	342 185	43 1,003	0 160 1,685	241 780 0	221 957 2,459	838 0 1,314	10,318
n Cost n Rp.)	[14	50 21	116	285	109	639 1,913 244	306 997 0	736	5,515
Construction (million	'n	30 220	45 745 689	2,092	64 756 1,969	662 4,681 434	3,199	2,975 3,371 0	21,967
	Q	222	39 118 974	189	523	66	2,083	3,299 0	9,620
Unit Cost	(million Rp./m)	0.206	0.224 0.323 1.680	0.253 0.354 1.729	0.278 0.382 1.774	0.473 1.903 2.712	0.851 1.993 2.794	2.045 2.869 4.692	
	Ü	00	320 1,060 110	170 50 580	0 420 950	510 410 0	260 480 880	410	6,890
Length (m)	ĮL,	245 70	190 360 0	805	205 285 0	1,350 1,005 90	360 500 0	360	5,825
Leng	Щ	145 730	2,305	5,910 20	230 1,980 1,110	1,400 2,460 160	1,605	1,455	21,295
	Q	735	175 365 580	535 100	0 165 295	140 345 0	1,045 200	320 1,150 0	6,150
Earth Covering	Depth (m)	0-2 2-4	0-2 2-4 4-6	0-2 2-4 4-6	0-2 2-4 4-6	4-4 4-6 8-8	4-4-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	4-6 6-8 8<	Total
Diameter	(mm)	350	400	450	500	009	700	800	TC

Trunk Sewer Construction Cost by Sub-zone, by Diameter and by Earth Covering Depth Table 6.9 (1)

ŭ	3,851		3,851
В	76		76
Ą	3,973		4,452
(million Rp./m)	2.165		1
Ü	1285		1,285
В	35		35
Ą	1,835		1,995
Depth (m)	4-6 6-8		Total
(mm)	006		To
	Depth (m) A B C Rp./m) A	Depth A B C (million A B C (2.165) A B 6 (4-6 1,835 35 0 1285 2.997 479 0	Depth A B C (million A B C (Rp./m) A B 6 (1,835 3.973 76 1.885 160 0 1285 2.997 479 0

Trunk Sewer Construction Cost by Sub-zone, by Diameter and by Earth Covering Depth Table 6.9 (2)

	Ð	671	2,008	0	1,001	0	0	5,748	O	0	836	0	816		16,377
n Cost n Rp.)	ţı.		255	0	00	0	0	0	0	0.0	00	0			255
Construction (million	щ	650	3,048	0	5,144	3,304	2,620	633	488	3,946	1,700	471		**************************************	31,313
	Q	0	3,483	0	100	0	0	0	0	00	00	0			4,872
Unit Cost	(million Rp./m)	1	4.838	2.283	3.127	3,255	5.138	5.273	1.478	2.769	5.574	3.922			_
	Ů	310	670 440	0	320	0	0	1,090	0	00	150	0		(240 m)	3,615
Length (m)	ĬΤί	0	× 0	0	00	0	0	0	0	00	00	0	<u> </u>		85
Len	щ	300	1,615	0	1,645	1,015	510	120	330	1,425	305	120			9,105
	Q	0 0	720	0	20	0	0	0	0	00	0	0			1,170
Earth Covering	Depth (m)	4-6	× • × • ×	4-6	%-% %-%	8-9	∨	%	2-4	4-6		8-9	0-2		tal
Diameter	(mm)	006		1000		1100		1200	1350	,	Cid-11 to 12	1500	1000	(bressured)	Total

Table 6.10 (1) Manhole Construction Cost by Sub-zone, by Diameter and by Earth Covering Depth

Sewer	Earth		-		Unit Cost	Cons	ruction	Cost
Diameter	Covering	Nos.	of Mar	nhole	(million		illion R	
(mm)	Depth	Α	В	C	Rp./unit)	Α	В	С
350	0-2	7	3	6	1.11	7.8	3.3	6.7
	2-4	17		8	2.22	37.7	0.0	17.8
	4-6	3		3	2.77	8.3	0.0	8.3
400	0-2	8	7	1	1.11	8.9	7.8	1.1
	2-4	14	3	5	2.22	31.1	6.7	11.1
								:
450	0-2	1	8		1.11	1.1	8.9	0.0
	2-4	7	3		2.22	15.5	6.7	0.0
	4-6	6	4		2.77	16.6	11.1	0.0
	. *					:		
500	0-2	7	2 2		1.11	7.8	2.2	0.0
1	2-4	9	2		2.22	20.0	4.4	0.0
	4-6	1	1		2.77	2.8	2.8	0.0
	٠.			• [
600	0-2	7	0		1.11	7.8	0.0	0.0
	2-4	7	0		2.22	15.5	0.0	0.0
	4-6	17	13		2.77	47.1	36.0	0.0
	·				·			
700	2-4	15	1		4.10	61.5	4.1	0.0
	4-6	16	7		5.10	81.6	35.7	0.0
	6-8	l	4		6.10	0.0	24.4	0.0
			:					_
[800]	4-6	7	4	0	5.10	35.7	20.4	0.0
	6-8	5	0	7	6.10	30.5	0.0	42.7
					0.4.0.5			
Manhole w	vith Pump	1			84.00	84.0		' i
		3		0.0		501.0	157.4.4	0.7. (
Sub-	Total	155	62	30		521.3	174.4	87.6
200	4 -	ا ر			E 10		ارس	
900	1	15	1	0	5.10	76.5	5.1	0.0
	6-8	1		11	6.10	6.1	0.0	67.1
C. h	Total	16	1	11		82.6	5.1	67.1
Sub-	Total							07.1
To	otal	171	63	41		603.9	179,5	154.7

Table 6.10 (2) Manhole Construction Cost by Sub-zone, by Diameter and by Earth Covering Depth

						FET 5. 20	·	<u> </u>		
Sewer	Earth					Unit Cost		Construc		
Diameter	Covering	· .		Manho		(million			lion Rp.)	
(mm)	Depth	D	E	F	<u>G</u>	Rp./unit)		E	F 3.3	G 0.0
350	0-2	0	2 9	3		1.11	0.0		$\frac{3.3}{2.2}$	0.0
	2-4	10	i	1		2.22		Ī		Ī
400	0-2	2 5	. 2	- 2	4	1.11	2.2	2.2	2.2	4.4
1	2-4		. 32	4	13	2.22		71.0	8.9	28.9
	4-6	8	5	0	2	2.77	22.2	13.9	0.0	5.5
450	0-2	.0	0	2	2	1,11	0.0	0.0	2.2	2.2
	2-4	7	74	. 9	1	2.22	15.5	164.3	20.0	2.2
1	4-6	1	1	·	7	2.77	2.8	2.8	0.0	19.4
500	0-2	0	3	3	0	1.11	0.0	3.3	3.3	0.0
300	2-4	2	26	4	5	2.22		•	8.9	11.1
	4-6	4	15		10		11.1	41.6	0.0	27.7
600			1	, ,			l			
600	2-4	2 4	17	18	7	2.22	4.4	37.7	40.0	15.5
	4-6	4	32	. 12	O	2.77	11.1	88.6	33.2	16.6 0.0
	6-8		2	1		3.35	0.0	6.7	3.4	
700	2-4	0	0	4	3	4.10			16.4	12.3
	4-6	13	20	7	6	5.10				30.6
	6-8	2	0		10	6.10	12.2	0.0	0.0	61.0
800	4-6	4	. 19	4	5	5.10	20.4	96.9	20.4	25.5
	6-8	14	14		0	6.10	85.4	85.4	0.0	0.0
	% <	0			5	8.90	0.0	0.0	0.0	44.5
Manhole w	ith Pump	•		1		84.00	0.0	0.0	84.0	0.0
<u></u>	Total	78	273	75	86		291.3	796.3	284.1	307.5
300	TOTAL		213		00		271.5	170.3	204.1	
900	4-6	0	2		2	5.10	0.0	10.2	0.0	10.2
	6-8	4	10	1	5	6.10	24.4	61.0	6.1	30.5
	8<	5	4	. [3	8.90	44.5	35.6	0.0	26.7
1000	6-8	0	. 10	- 1	3	6.10		61.0	0.0	18.3
1000	0-6 8<	1	3	Į	. 5	8.90		26.7	0.0	44.5
		1								
1100	6-8		7		:	6.10	0.0	42.7	0.0	0.0
	8<		4	.]		8.90	0.0	35.6	0.0	0.0
1200	8<		2	Ì	7	8.90	0.0	17.8	0.0	62.3
1350	2-4		3	j		4.70	0.0	14.1	0.0	0.0
	4-6		9	ĺ	*	5.70	0.0	51.3	0.0	0.0
	6-8		4			6.80		27.2	0.0	0.0
	8<		3	-	1	9.40	0.0	28.2	0.0	9.4
1500	6-8		3			6.80	0.0	20.4	0.0	0.0
<u> </u>	Total	10	64	1	26	-	77.8	431.8	6.1	201.9
	otal	88	337	76	112		369.1	1,228.1	290.2	509.4
	7141	001	321	7.01	116	i	202,1	1,220.1	270.2	207.7

Unit Construction Cost of Collection Sewer by Diameter and Earth Covering Depth Table 6.11

METHOD : OPENTRENCH
DEPTH : 150 - 10.00 m
MATERIAL: REINFORCED CONCRETE (R.C)

Unit: Kp./m	B	м 1500 mm	1,215.4	1,714.7	3,038.1	3,922.1	5,876.1	7 505 3
	ž5	8900 mm Ø 1000 mm Ø 1100 mm Ø 1200 mm Ø 1350 mm	6766	1,478.4	2.768.7	3,643.5	5.574.4	50016
	SS SS	Ø 1200 mm	817.7	1,257.8	2,514.4	3.374.4	5.273.4	33125
	Ŋ.	Ø 1100 mm	724.4	1,176.9	2,402.1	3,254.7	5,137.8	L
	8	Ø 1000 mm	594.9	1,084.1	2,282.8	3,127.1	4,990.6	L
	ည္မ		\$20.1	993.8	2,164.8	2,996.9	4,837.8	A 077 2
	 	Ø 800 mm	438.5	898.0	2,045.1	2,869.2	4,691.8	5 124 4
	æ	mm 007 00	403.3	850.8	1,992.5	2,794.4	4,601.0	5 (181.5
	Q	Ø 500 mm Ø 600 mm Ø 700 mm Ø 800 mm	362.5	472.6	1,903.4	2,712.4	4,502.4	8 060 7
	Ŋ.	Ø 500 mm	7.772	382.1	1,774.1	2,570.5	4,336.6	4 760 7
	ä	Ø 450 mm	252.7	354.3	1,729.3	2,519.6	4.274.6	4 696.6
	ñ	Ø 400 mm	224.2	323.0	1,679.9	2,463.6	4,206.8	4.626.6
	æ	Ø 350 mm	205.7	301.9	1,642.9	2,420.7	4,153.4	4.571.1
	PVC	Ø 300 mm	204.7	296.0	1,598.3	2,367.3	4,078.4	4 492 0
	PVC	э 250 мш	158.3	247.0	1,534.1	2,297.3	3,997.9	44113
	bvc	в 150 mm в 200 mm	131.6	218.4	1,491.3	2,250.9	3,943.2	5 556 7
	PVC	р 150 mm	104.4	188.0	1,445.4	2,196.8	3,876.6	4 285 8
			15 M	3 M	5 M	7 M	. W 6	M 01
		DESCRIPTION	EARTH COVERING DEPTH	EARTH COVERING DEPTH	EARTH COVERING DEPTH	EARTH COVERING DEPTH	HIABO DRIXBADO DENTA	6 FARTH COVERING DEPTH
		Š.		7	ť.	4	5	9

Table 6.12 (1) Breakdown of Collection Sewer Unit Cost

009	1.5	0.774	2.474	1.152	3.9584	1.25	1.08	0.48	2.88	2.2		21.5	39.8	2.9	6.1	6.0	93.4	185.6	7.1	362.5
500	1.5	0.642	2.342	1.008	3.2788	1.00	0.86	0.42	2.42	2		17.8	31.8	2.3	5.4	5.1	85.0	125.1	5.4	277.7
450	1.5	0.584	2.284	0.936	2.9692	0.88	0.76	0.39	2.21	1.9		16.1	28.1	2.0	5.0	4.6	80.7	111.1	5.0	252.7
400	1.5	0.52	2.22	0.864	2.664	0.77	0.67	0.36	2.00	1.8		14.5	24.6	1.8	4.6	4.2	76.5	93.7	4.	224.2
350	1.5	0.466	2.166	0.792	2.3826	0.67	0.59	0.33	1.79	1.7		12.9	21.4	1.6	4.2	3.8	72.2	85.5	0.4	205.7
300	1.5	0.318	2.018	0.72	2.018	0.54	0.46	0.3	1.56	1.6		11.0	17.2	1.2	3,00	3.3	68.0	96.3	4.0	204.7
250	1.5	0.265	1.965	0.648	1.7685	0.45	0.40	0.27	1.37	1.5		9.6	14.5	 	3.4	2.9	63.7	0.09	3.1	158.3
200	1.5	0.212	1.912	0.612	1.6252	0.40	0.36	0.255	1.27	1.45		8.8	12.8	1.0	3.3	2.7	61.6	39.0	2.6	131.6
150	1.5	0.16	1.86	0.504	1.302	0.30	0.29	0.21	1.02	1.3		7.1	9.6	0.8	2.7	2.1	55.2	24.9	2.0	104.4
Diameter (mm)	(r			· (°							Rp./m) Unit Cost	5.433	31.914	2.66	12.774	2.1	42.475	1 ls	1 18	
Dian	(1) Quantity Earth Covering Depth (m)	Outside of Diameter (m) Width of Excavation (m)	Excavation Depth (m)	Volume of Pavement (m ³)	Excavation Backhoe (m ³)	Backfill (granular m ³)	Backfill (original m ³)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)	(2) Construction Cost (1000 Rp./m)	Excavation Backhoe			Backfill (selected soil)	Residual Soil	Pavement	Pipe/Laying	Dewatering/Others	Total

Table 6.12 (2) Breakdown of Collection Sewer Unit Cost

,											·												
1500	1.5	1.81	3.51	1.872	9.126	2.91	3.56	0.78	5.56	3.2	7.02		•	49.6	93.0	5.6	10.0	11.7	135.9	58.5	823.5	23.8	1215.4
1350	2.1	1.65	3.35	1.8	8.375	2.74	3.09	0.75	5.29	3.1	6.7			45.5	87.3	8.2	9.6		131.7	55.8	626.1	19.5	994.9
1200	1.5	2.45	3.15	1.728	7.56	2.55	2.56	0.72	2.00	'n	6.3			41.1	81.3	8.0	2.2	10.5	127.4	52.5	472.9	16.0	817.7
1100	1.5	1.35	3.05	1.584	6.71	2.20	2.27	99.0	4.44	2.8	6.1		!	36.5	70.7	0.9	4.	9.3	118.9	50.8	410.0	14.2	724.4
1000	1.5	1.22	2.92	1.512	6.132	2.02	1.97	0.63	4.17	2.7	1		:	33.3	04.0	5.2	2.0	8.7	114.7	0.0	348.7	11.7	594.9
006	1.5	1.1	2.8	1.368	5.32	1.71	1.67	0.57	3.65	2.5	1			28.9	0.4.0	4.0	, 3 	7.7	106.2	0.0	300.9	10.2	520.1
800	1.5	0.98	2.68	1.296	4.824	1.55	1.44	0.54						26.2									438.5
700	1.5	0.88	2.58	1.224	4.386	1.40	1.25	0.51	3.13	2.3			(23.8	o. 4		0.0	9.9	7.76	0.0	212.8	7.9	403.3
Diameter (mm)	(m)	(E)		(m ³)	(m ³)	3)		m ³)				000 Rp./m)	Unit Cost	5.433	417.10	7.00	1) 12.7/4	2.1	42.475	8.334	1 is	l ls	
	(1) Quantity Earth Covering Depth (m)	Outside of Diameter (m) Width of Excavation (m)	Excavation Depth (m)	Volume of Pavement (m ³)	Excavation Backhoe (m ³)	Backfill (granular m ³)	Backfill (original m3)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)	Retaining Wall (m ²)	(2) Construction Cost (1000 Rp./m)	;	Excavation Backhoe	Backilli (granular)	Backfilli (Originai)	Backilli (Selected Sol	Residual Soil	Pavement	Retaining Wall	Pipe/Laying	Dewatering/Others	Total

Table 6.12 (3) Breakdown of Collection Sewer Unit Cost

909	3	1.8	3.974	1.296	7.1532	1.46	3.85	0.54	3.30	2.4	7.948		38.9	46.7	10.3	6.9	6.9	101.9	66.2	185.6	9.3	472.6
500	3	1.6	3.842	1.152	6.1472	1.18	3,33	0.48	2.82	2.2	7.684		33.4	37.8	8.9	6.1	5.9	93.4	64.0	125.1	7.5	382.1
450	3 3 584	1.5	3.784	1.08	5.676	1.06	3.09	0.45	2.59	2.1	7.568		30.8	33.8	8.2	5.7	5.4	89.2	63.1	111.1	6.9	354.3
400	6,43	4.4	3.72	1.008	5.208	0.94	2.84	0.42	2.36	7	7.44		28.3	29.9	7.6	5.4	5.0	85.0	62.0	93.7	6.3	323.0
350	3	1.3	3.666	0.936	4.7658	0.83	2.61	0.39	2.15	1.9	7.332		25.9	26.3	7.0	5.0	4.5	80.7	61.1	85.5	5.9	301.9
300		1.2	3.518	0.864	4.2216	99:0	2.34	0.36	1.89	1.8	7.036		22.9	21.1	6.2	4.6	4.0	76.5	58.6	96.3	5.8	296.0
250	3	1.1	3.465	0.792	3.8115	0.57	2.12	0.33	1.69	1.7	6.93		20.7	18.1	5.6	4.2	3.5	72.2	57.8	60.0	8.8	247.0
200	3	1.05	3.412	0.756	3.5826	0.50	2.01	0.315	1.57	1.65	6.824		19.5	16.0	5.3	4.0	3.3	70.1	56.9	39.0	4. 6.	218.4
150	3 9 1 9	0.0	3.36	0.648	3.024	0.39	1.71	0.27	1.31	1.5	6.72		16.4	12.6	9.4	3.4	2.8	63.7	56.0	24.9	3.7	188.0
Diameter (mm)	th (m)	(II)	n)	t (m ³)	(m ³)	n3)	(3)	il m ³)				(1000 Rp./m) Unit Cost	•	(L)	2.66	12.774	2.1	42.475	8.334	l Is	I Is	
	(1) Quantity Earth Covering Depth (m) Outside of Diameter (m)	Width of Excavation (m)	Excavation Depth (r	Volume of Pavement (m ³)	Excavation Backhoe (m ³)	Backfill (granular m ³)	Backfill (original m ³)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)	Retaining Wall (m ²)	(2) Construction Cost (1000 Rp./m)	Excavation Backhoe	Backfill (granular)	_	$\overline{}$	Residual Soil	Pavement	Retaining Wall	Pipe/Laying	Dewatering/Others	Total

Table 6.12 (4) Breakdown of Collection Sewer Unit Cost

Diameter	ter (mm)	700	800	006	1000	1100	1200	1350	1500
(1) Quantity	1								
Earth Covering Depth (m)		'n	en .	ന	m	m	33	m	m
Outer of Diameter (m)		0.88	0.98	1.1	1.22	1.35	1.45	1.65	1.81
Width of Excavation (m)		2	2.1	2.2	2.4	2.5	2.6	2.8	2.9
Excavation Depth (m)	•	4.08	4.18	4.3	4.42	4.55	4.65	4.85	5.01
Sheet Pile (m)		6.12	6.27	6.45	6.63	6.825	6.975	7.275	7.515
Volume of Pavement (m ³)		1.44	1.512	1.584	1.728	1.8	1.872	2.016	2.088
Excavation (Backhoe m ³)		8.16	8.778	9.46	10.608	11.375	12.09	13.58	14.529
Backfill (granular m ³)		1.75	1.93	2.13	2.48	2.69	2.90	3.32	3.55
Backfill (original m ³)	•	4.37	4.70	5.09	5.68	6.13	6.54	7.40	8.03
Backfill (selected soil m ³)		9.0	0.63	99.0	0.72	0.75	0.78	0.84	0.87
Residual Soil (m ³)	•	3.79	4.08	4.37	4.93	5.24	5.55	6.18	6.50
Pavement (m ²)	· · ·	2.6	2.7	2.8	m	3.1	3.2	3.4	3.5
Sheet Pile (m)		12.24	12.54	12.9	13.26	13.65	13.95	14.55	15.03
Sheet Pile (kg)		587.52	601.92	619.2	636.48	655.2	9 699	698.4	721.44
Bracing (kg)		146.88	150.48	154.8	159.12	163.8	167.4	174.6	180.36
(2) Construction Cost (1000 Rp./m)	tp./m) Unit Cost		-						
Excavation Backhoe	5.433	44.3	47.7	51.4	57.6	61.8	65.7	73.8	78.9
	31.914	55.9	61.7	68.0	79.1	86.0	92.5	106.0	113.2
_:	2.66	11.6	12.5	13.5	15.1	16.3	17.4	19.7	21.3
ت	12.774	7.7	8.0	4.8	9.5	9.6	10.0	10.7	
Residual Soil	2.1	8.0	8.6	9.5	10.3	11.0	11.7	13.0	13.7
Pavement	42.475	110.4	114.7	118.9	127.4	131.7	135.9	144.4	148.7
Sheet Pile	15	183.6	188.1	193.5	198.9	204.8	209.3	218.3	225.5
Sheet Pile	0.25	146.9	150.5	154.8	159.1	163.8	167.4	174.6	180.4
Bracing	0.36	52.9	54.2	55.7	57.3	59.0	60.3	62.9	64.9
Pipe/Laying	1 Is	212.8	234.4	300.9	348.7	410.0	472.9	626.1	823.5
Dewatering/Others	l Is	16.7	17.6	19.5	21.3	23.1	24.9	29.0	33.6
Total		850.8	0.868	993.8	1084.1	1176.9	1267.8	1478.4	1714.7

Table 6.12 (5) Breakdown of Collection Sewer Unit Cost

600	ν.	0.774	6.1	5.974	8.961	1.368	1.8506	9.5	1.57	7.84	0.57	3.51	2.5	44.805	2150.64	227.00		34.4	51.6	50.1	20.9	7.3	7.4	106.2	672.1	537.7	193.6	185.6	36.7	1903.4
500	S	0.642	1.7	5.842	8.763	1.224	1.4314	8.5	1.28	6.92	0.51	3.01	2.3	43.815	2103.12	323.10		26.6	46.2	40.8	18.4	6.5	6.3	7.76	657.2	525.8	189.3	125.1	34.2	1774.1
450	δ.	0.584	1.6	5.784	8.676	1.152	1.2544	∞	1.15	6.48	0.48	2.78	2.2	43.38	2082.24	320.30		23.3	43.5	36.6	17.2	6.1	5.8	93.4	650.7	520.6	187.4	111.1	33.5	1729.3
400	5	0.52	1.5	5.72	8.58	1.08	1.08	7.5	1.02	6.03	0.45	2.55	2.1	42.9	2059.2	0.44.0		20.1	40.7	32.5	16.0	5.7	4.0	89.2	643.5	514.8	185.3	93.7	32.9	1679.9
350	5	0.456	1.4	5.666	8.499	1.008	0.9324	7	06.0	5.60	0.42	2.33	7	42.495	2039.76	302.74		17.3	38.0	28.8	14.9	5.4	4.0	85.0	637.4	509.9	183.6	85.5	32.2	1642.9
300	5	0.318	1.3	5.518	8.277	0.936	0.6734	6.5	0.72	5.12	0.39	2.05	1.9	41.385	1986.48	470.07		12.5	35.3	23.1	13.6	5.0	4.3	80.7	620.8	496.6	178.8	96.3	31.3	1598.3
250	5	0.265	1.2	5.465	8.1975	0.864	0.558	9	0.62	4.71	0.36	1.85	1.8	40.9875	1967.4	441.03		10.4	32.6	19.9	12.5	4.6	3.9	76.5	614.8	491.9	177.1	0.09	30.1	1534.1
200	5	0.212	1.15	5.412	8.118	0.828	0.4738	5.75	0.55	4.50	0.345	1.73	1.75	40.59	1948.32	407.00		00 00	31.2	17.7	12.0	4.4	3.6	74.3	6.809	487.1	175.3	39.0	29.0	1491.3
150	5	0.16		5.36	8.04	0.72	0.36	5	0.44	3.90	0.3	1.46	1.6	40.2	1929.6	4.794		6.7	27.2	14.0	10.4	9.8 8.0	3.1	68.0	603.0	482.4	173.7	24.9	28.3	1445.4
Diameter (mm)	(u					3)					~ ~						Rp./m) Unit Cost	18.6	5.433	31.914	2.66	12.774	2.1	42.475	15	0.25	0.36	l Is	1 is	
Diar	(1) Quantity Earth Covering Depth (m)	Outside of Diameter (m)	Width of Excavation (m)	Excavation Depth (m)	Sheetpile Length (m)	Volume of Pavement (m ³)	Excavation Crum (m ³)	Excavation Backhoe (m ³)	Backfill (granular m ³)	Backfill (original m ³)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)		\-	ł	(2) Construction Cost (1000 Rp./m)	Excavation Crum	Excavation Backhoe	Backfill (granular)	Backfill (original)	Backfill (selected soil)	Residual Soil	Pavement	Sheetpile Driving		Bracing	Pipe/Laying	Dewatering/Others	Total

Table 6.12 (6) Breakdown of Collection Sewer Unit Cost

				—–																											
1500		Ω <u>;</u>	1.81	2.9	7.01	10.515	2.088	5.829	14.5	3.55	13.83	0.87	6.50	3.5	52.575	2523.6	630.9		108.4	78.8	113.2	36.8		13.7	148.7	788.6	630.9	227.1	823.5	57.4	3038.1
1350	١	ς ;	1.65	2.8	6.85	10.275	2.016	5.18	14	3.32	13.00	0.84	6.18	3.4	51.375	2466	616.5		96.3	76.1	106.0	34.6	10.7	13.0	144.4	770.6	616.5	221.9	626.1	52.4	2768.7
1200		^	1.45	2.6	6.65	9.975	1.872	4.29	13	2.90	11.74	0.78	5.55	3.2	49.875	2394	598.5		79.8	70.6	92.5	31.2	10.0	11.7	135.9	748.1	598.5	215.5	472.9	47.7	2514.4
1100	١	Λ <u>;</u>	1.35	2.5	6.55	9.825	1.8	3.875	12.5	2.69	11.13	0.75	5.24	3.1	49.125	2358	589.5		72.1	6.79	86.0	29.6	9.6	11.0	131.7	736.9	589.5	212.2	410.0	45.6	2402.1
1000	ì	Λ ;	1.22	2.4	6.42	9.63	1.728	3.408	12	2.48	10.48	0.72	4.93	ന	48.15	2311.2	577.8		63.4	65.2	79.1	27.9	9.5	10.3	127.4	722.3	577.8	208.0	348.7	43.5	2282.8
006	ı	'n,		2.2	6.3	9.45	1.584	2.86	11	2.13	9.49	99.0	4.37	2.8	47.25	2268	567		53.2	59.8	0.89	25.2	8.4	9.5	118.9	708.8	567.0	204.1	300.9	41.4	2164.8
800	, l	n 6	0.98	2.1	6.18	9.27	1.512	2.478	10.5	1.93	8.90	0.63	4.08	2.7	46.35	2224.8	556.2		46.1	57.0	61.7	23.7	8.0	8.6	114.7	695.3	556.2	200.2	234.4	39.2	2045.1
700	1,	n 6	2.88	7	6.08	9.12	1.44	2.16	10	1.75	8.37	9.0	3.79	2.6	45.6	2188.8	547.2		40.2	54.3	55.9	22.3	7.7	8.0	110.4	684.0	547.2	197.0	212.8	38.8	1992.5
Diameter (mm)		e (ii					[3)		3)			(3)						0 Rp./m) Unit Cost	18.6	5.433	31.914	2.66	12.774	2.1	42.475	15	0.25	0.36	l Is	1 ls	
Dia	(1) Quantity	Earth Covering Depth (m)	Outer Diameter (m)	Width of Excavation (m)	Excavation Depth (m)	Sheetpile Length (m)	Volume of Pavement (m ³)	Excavation (Crum m ³)	Excavation (Backhoe m ³)	Backfill (granular m ³)	Backfill (original m ³)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)	Sheetpile Length (m)	Sheetpile (kg)	Bracing (kg)	(2) Construction Cost (1000 Rp./m) Unit Cost	Excavation Crum	Excavation Backhoe	Backfill (granular)	Backfill (original)	Backfill (selected soil)	Residual Soil	Pavement	Sheetpile Driving	Sheetpile (kg)	Bracing	Pipe/Laying	Dewatering/Others	Total

Table 6.12 (7) Breakdown of Collection Sewer Unit Cost

7 0.318 0.466 1.3 1.4 7.518 7.666 11.277 11.499 0.936 1.008 3.2734 3.7324 6.5 0.90 7.72 8.40 0.39 0.42 2.05 2.33 1.9 2 56.385 57.495 3383.1 3449.7 845.385 57.495 3383.1 3449.7 56.385 57.495 3383.1 3449.7 845.385 57.495 386.445 862.4 863.6 8	Diameter (mm)	150	200	250	300	350	400	450	200	009
2 0.265 0.318 0.466 1.2 1.3 7.666 1.1975 11.277 11.499 8 11.1975 11.277 11.499 8 2.958 3.2734 3.7324 9 0.864 0.936 0.90 10.62 0.72 0.90 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.87 2.05 2.24 2 35.0 60.9 69.4 32.6 35.3 38.0 11.89 2.05 2.24 2 32.6 60.9 69.4 3.9 4.3 4.3 4.9 4.6 5.0 5.4 <td>7</td> <td></td> <td>7</td> <td>7</td> <td>!~</td> <td>7</td> <td>7</td> <td>7</td> <td>!~</td> <td></td>	7		7	7	! ~	7	7	7	! ~	
5 1.2 1.3 1.4 5 7.465 7.518 7.666 8 7.465 7.518 7.666 9 0.864 0.936 1.008 11.1975 11.277 11.499 10.864 0.936 1.008 10.864 0.936 1.008 10.62 0.72 0.90 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.33 11.85 2.05 2.38 11.89 20.5 22.4 2 32.6 38.33 32.6 35.3 38.0 18.9 20.5 22.4 4.6 5.0 5.4 2 4.3 4.9 32.6 35.3 38.0 32.6 35.3 38.0 32.6 36.3 38.0 32.6 36.3 38.0 32.6 36.3 38.0 32.6 36.4 310.5 302.3 304.5 310.5 44.0 45.1 46.1 44.0 45.1 46.1 44.0 45.1 46.1 44.0 <t< td=""><td>0 9</td><td></td><td>-</td><td>0.265</td><td></td><td>0.466</td><td>0.52</td><td>0.584</td><td>0.642</td><td>0.774</td></t<>	0 9		-	0.265		0.466	0.52	0.584	0.642	0.774
2 7.465 7.518 7.666 8 7.465 7.518 7.666 11.1975 11.277 11.499 0.864 0.936 1.008 0.864 0.936 1.008 1.085 3.2734 3.7324 0.62 0.72 0.90 7.11 7.72 8.40 0.36 0.39 0.42 1.85 2.05 2.33 1.85 2.05 2.33 1.85 2.05 2.33 1.85 3.83.1 3449.7 2 3359.25 3383.1 3449.7 32.6 383.1 3449.7 38.0 4.6 5.0 5.4 4.9 4.6 5.0 5.4 4.9 4.6 5.0 5.4 4.9 4.6 5.0 5.4 4.9 4.6 5.0 5.4 4.9 4.6 5.0 5.4 4.9 4.6 5.0 5.4 4.9 5.0 5.0 5.4 <td< td=""><td></td><td></td><td>1.15</td><td>1.2</td><td>1.3</td><td>1.4</td><td>1.5</td><td>1.6</td><td>1.7</td><td>1.9</td></td<>			1.15	1.2	1.3	1.4	1.5	1.6	1.7	1.9
8 11.1975 11.277 11.499 0.864 0.936 1.008 0.864 0.936 1.008 2.958 3.2734 3.7324 6 6.5 0.72 0.90 7.11 7.72 8.40 0.36 0.39 0.42 1.85 2.05 2.33 1.85 2.05 2.33 1.85 2.05 2.33 1.85 2.05 2.33 1.85 2.05 2.33 1.85 2.05 2.33 1.89 2.05 2.33 2.05 2.34 2.05 2.34 2.07 2.34 2.07 2.34 2.07 2.34 2.07 2.34 2.08 2.4 2.09 2.34 2.09 2.09 2.00 2.00 2.00 2.00 2.00 2.00	_	<u></u>	412		.51	7.666	7.72	7.784	7.842	7.974
8 0.864 0.936 1.008 2.958 3.2734 3.7324 6 6.5 0.72 0.90 7.11 7.72 8.40 0.36 0.39 0.42 1.85 2.05 2.33 1.85 2.05 2.33 1.85 2.05 2.33 2.95 3383.1 3449.7 8359.25 3383.1 3449.7 8359.25 32.6 50.9 69.4 55.0 60.9 69.4 4.6 5.0 5.4 5.0 5.4 4.9 60.9 85.0 839.8 845.8 862.4 839.8 845.8 862.4 839.8 845.8 862.4 840.0 96.3 85.5 60.0 96.3 2420.7 2			.118	,	.27	11.499	11.58	11.676	11.763	11.961
8 2.958 3.2734 3.7324 6 6.5 0.90 7.11 7.72 8.40 0.36 0.39 0.42 1.85 2.05 2.33 1.8 1.9 2 2 3359.25 3383.1 3449.7 3359.25 3383.1 3449.7 3359.25 3383.1 3449.7 4 335.3 38.0 5 45.775 862.425 4 5.0 60.9 69.4 5 45.6 5.0 5.4 4 4.6 5.0 5.4 4 5.0 5.4 4.9 5 885.0 862.4 862.4 8 839.8 845.8 862.4 8 839.8 845.8 862.4 8 304.5 86.5 46.1 6 60.0 96.3 88.5 6 60.0 96.3 85.5 6 60.0 96.3 85.5 6 60.0 9			0.828	0.864	.93	1.008	1.08	1.152	1.224	1.368
5.75 6 6.5 7 0.55 0.62 0.72 0.90 6.80 7.11 7.72 8.40 0.345 0.36 0.39 0.42 1.73 1.85 2.05 2.33 1.73 1.8 1.9 2 1.73 1.8 1.9 2 1.73 1.8 1.9 2 1.73 1.8 1.9 2 1.73 1.8 1.9 2 25.9 25.9875 383.1 3449.7 33.6 33.3 383.1 3449.7 31.2 32.6 383.3 38.0 31.2 32.6 35.3 38.0 31.2 32.6 35.3 38.0 31.2 32.6 35.3 38.0 31.2 32.6 35.3 38.0 31.3 3.9 4.3 4.9 4.4 4.6 5.0 5.4 32.4 4.9 4.9 33.0 3.0 3.0 33.0 <td></td> <td></td> <td>2.7738</td> <td>2.958</td> <td>3.2734</td> <td>3.7324</td> <td>4.08</td> <td>4.4544</td> <td>4.8314</td> <td>5.6506</td>			2.7738	2.958	3.2734	3.7324	4.08	4.4544	4.8314	5.6506
0.55 0.62 0.72 0.90 6.80 7.11 7.72 8.40 0.345 0.39 0.42 1.73 1.85 2.05 2.33 1.75 1.8 1.9 2 55.59 55.9875 56.385 57.495 33.85 835.25 3383.1 3449.7 33.85 839.8125 845.775 862.425 31.2 32.6 35.3 38.0 17.7 19.9 23.1 28.8 18.1 18.9 20.5 22.4 4.4 4.6 5.0 5.4 3.6 3.9 4.3 4.9 74.3 839.8 845.8 862.4 833.9 839.8 845.8 862.4 833.9 839.8 845.8 862.4 830.0 60.0 96.3 85.5 43.2 44.0 45.1 46.1 260.9 2297.3 2367.3 2420.7 2	ς.		5.75	9	6.5	7	7.5	∞	8.5	9.5
6.80 7.11 7.72 8.40 0.345 0.35 0.35 0.35 0.39 0.42 1.75 1.85 2.05 2.33 1.75 1.8 1.9 2 2.05 3383.1 3449.7 3359.25 3383.1 3449.7 3359.25 3383.1 3449.7 33.85 839.8125 845.775 862.4 85.0 60.9 69.4 35.0 22.4 4.6 5.0 5.0 5.4 4.9 4.6 5.0 5.4 3.39.8 845.8 862.4 883.9 839.8 845.8 862.4 853.9 839.8 845.8 862.4 350.2 300.2 302.3 304.5 310.5 330.2 300.2 300.2 3367.3 2420.7 250.9 2297.3 2367.3 2420.7 250.9	0.44		0.55	0.62	0.72	06.0	1.02	1.15	1.28	1.57
0.345 0.36 0.39 0.42 1.73 1.85 2.05 2.33 1.75 1.8 1.9 2 55.59 55.9875 56.385 57.495 335.4 3359.25 3383.1 3449.7 33.85 839.8125 845.775 862.425 31.2 32.6 35.3 38.0 17.7 19.9 23.1 28.8 18.1 18.9 20.5 22.4 4.4 4.6 5.0 5.4 4.3 4.3 4.9 74.3 845.8 862.4 833.9 839.8 845.8 862.4 833.9 839.8 845.8 862.4 833.9 60.0 96.3 85.5 43.2 44.0 45.1 46.1 250.9 2297.3 2367.3 2420.7 250.9 23.7 2367.3 2420.7	5.90		6.80		7.72	8.40	9.03	9.68	10.32	11.64
1.73 1.85 2.05 2.33 1.75 1.8 1.9 2 55.59 55.9875 56.385 57.495 33.54 3359.25 3383.1 3449.7 33.85 839.8125 845.775 862.425 31.2 32.6 35.3 38.0 17.7 19.9 23.1 28.8 18.1 18.9 20.5 22.4 4.4 4.6 5.0 5.4 3.6 3.9 4.3 4.9 74.3 839.8 845.8 862.4 833.9 839.8 845.8 862.4 833.9 60.0 96.3 310.5 250.9 2297.3 2367.3 2420.7 250.9 2297.3 2367.3 2420.7	0.3		0.345	0.36	0.39	0.42	0.45	0.48	0.51	0.57
1.75 1.8 1.9 2 55.59 55.9875 56.385 57.495 335.4 3359.25 3383.1 3449.7 33.85 3359.25 3849.7 33.85 38.0 449.7 51.6 55.0 60.9 69.4 31.2 32.6 35.3 38.0 18.1 18.9 20.5 22.4 4.4 4.6 5.0 5.4 3.6 3.9 84.3 85.0 833.9 839.8 845.8 862.4 833.9 839.8 845.8 862.4 39.0 60.0 96.3 310.5 43.2 44.0 45.1 46.1 250.9 237.3 2367.3 2420.7	1.46		7	1.85	2.05	2.33	2.55	2.78	3.01	3.51
55.59 55.9875 56.385 57.495 335.4 3359.25 3383.1 3449.7 33.85 839.8125 845.775 862.425 51.6 55.0 60.9 69.4 31.2 32.6 35.3 38.0 17.7 19.9 23.1 28.8 18.1 18.9 20.5 22.4 4.4 4.6 5.0 5.4 3.6 3.9 4.3 4.9 74.3 3.9 845.8 862.4 833.9 839.8 845.8 862.4 833.9 839.8 845.8 862.4 300.2 302.3 304.5 310.5 39.0 60.0 96.3 85.5 43.2 44.0 45.1 46.1 250.9 2297.3 2367.3 2420.7	1.6		1.75	1.8	1.9	7	2.1	2.2	2.3	2.5
335.4 3359.25 3383.1 3449.7 33.85 839.8125 845.775 862.425 51.6 55.0 60.9 69.4 31.2 32.6 35.3 38.0 17.7 19.9 23.1 28.8 18.1 18.9 20.5 22.4 4.4 4.6 5.0 5.4 3.6 3.9 4.3 4.9 74.3 839.8 845.8 862.4 833.9 839.8 845.8 862.4 39.0 60.0 96.3 85.5 43.2 44.0 45.1 46.1 250.9 2297.3 2367.3 2420.7	55.2		55.59	8	56.385	57.495	57.9	58.38		59.805
33.85 839.8125 845.775 862.425 51.6 55.0 60.9 69.4 31.2 32.6 35.3 38.0 17.7 19.9 23.1 28.8 18.1 18.9 20.5 22.4 4.4 4.6 5.0 5.4 3.6 3.9 4.3 4.9 74.3 862.4 862.4 833.9 839.8 845.8 862.4 833.9 839.8 845.8 862.4 39.0 60.0 96.3 85.5 43.2 44.0 45.1 46.1 250.9 2297.3 2367.3 2420.7	312		(,,	6	3383.1	3449.7	3474	3502.8	3528.9	3588.3
55.0 60.9 69.4 32.6 35.3 38.0 19.9 23.1 28.8 18.9 20.5 22.4 4.6 5.0 5.4 3.9 4.3 4.9 76.5 80.7 85.0 839.8 845.8 862.4 839.8 845.8 862.4 839.8 845.8 862.4 845.9 862.4 845.0 46.1 2297.3 2367.3 2420.7		\sim	33.85	.812	45.77	862.425	868.5	875.7		897.075
55.0 60.9 69.4 32.6 35.3 38.0 19.9 23.1 28.8 18.9 20.5 22.4 4.6 5.0 5.4 3.9 4.3 4.9 76.5 80.7 85.0 839.8 845.8 862.4 839.8 845.8 862.4 839.8 845.8 862.4 845.9 862.4 302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1										
55.0 60.9 69.4 32.6 35.3 38.0 19.9 23.1 28.8 18.9 20.5 22.4 4.6 5.0 5.4 3.9 84.3 85.0 839.8 845.8 862.4 839.8 845.8 862.4 839.8 845.8 862.4 845.9 862.4 845.0 862.4			;	1	,	,				
32.6 35.3 38.0 19.9 23.1 28.8 18.9 20.5 22.4 4.6 5.0 5.0 5.4 4.9 76.5 80.7 85.0 839.8 845.8 862.4 839.8 845.8 862.4 839.8 845.8 862.4 850.0 96.3 85.5 60.0 96.3 85.5 44.0 45.1 46.1 2297.3 2367.3 2420.7 22	43.9		51.6	55.0	6.09	69.4	75.9	82.9	O.	105.1
19.9 23.1 28.8 18.9 20.5 22.4 4.6 5.0 5.4 3.9 4.3 4.9 76.5 80.7 85.0 839.8 845.8 862.4 839.8 845.8 862.4 302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1	27.2		31.2	32.6	35.3	38.0	40.7	43.5	S	51.6
18.9 20.5 22.4 4.6 5.0 5.4 3.9 4.3 4.9 76.5 80.7 85.0 839.8 845.8 862.4 839.8 845.8 862.4 302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1	14.0		17.7	19.9	23.1	28.8	32.5	36.6	40.8	50.1
4.6 5.0 5.4 3.9 4.3 4.9 76.5 80.7 85.0 839.8 845.8 862.4 839.8 845.8 862.4 302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1	15.7		18.1	18.9	20.5	22.4	24.0	25.7	_	₽-1
3.9 4.3 4.9 76.5 80.7 85.0 839.8 845.8 862.4 839.8 845.8 862.4 302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1	3.8		4.4	4.6	5.0	5.4	5.7	6.1	6.5	7.3
76.5 80.7 85.0 839.8 845.8 862.4 839.8 845.8 862.4 302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1	3.1		3.6	3.9	4.3	4.9	5.4	5.8	6.3	7.4
839.8 845.8 862.4 839.8 845.8 862.4 302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1			74.3	76.5	80.7	85.0	89.2	93.4	97.7	106.2
839.8 845.8 862.4 302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1		~	333.9	839.8	845.8	862.4	868.5	75	882.2	897.1
302.3 304.5 310.5 60.0 96.3 85.5 44.0 45.1 46.1 2297.3 2367.3 2420.7			833.9	839.8	845.8	862.4	868.5	875.7	882.2	897.1
60.0 96.3 85.5 44.0 45.1 46.1 2297.3 2367.3 2420.7	298.1		300.2	302.3	304.5	310.5	312.7	1.5	317.6	322.9
2297.3 2367.3 2420.7 2	24.9		39.0	0.09	96.3	85.5	93.7	111.1	125.1	185.6
2297.3 2367.3 2420.7	42.2	- 1	43.2		45.1	46.1	46.8	47.7	48.6	51.1
	2196.8	C.	2250.9	2297.3	2367.3	2420.7	2463.6	2519.6	2570.5	2712.4

Table 6.12 (8) Breakdown of Collection Sewer Unit Cost

																<u>·</u>															
1500		7	1.81	2.9	9.01	13.515	2.088	11.629	14.5	3.55	19.63	0.87	6.50	3.5	67.575	4054.5	1013.625	· .	216.3	78.8	113.2	52.2	}~~\ 	13.7	148.7	1013.6	1013.6	364.9	823.5	72.6	3922.1
1350		_	1.65	2.8	8.85	13.275	2.016	10.78	4	3.32	18.60	0.84	6.18	3.4	66.375	3982.5	995.625	•	200.5	76.1	106.0	49.5	10.7	13.0	144.4	995.6	995.6	358.4	626.1	67.5	3643.5
1200	l	<u></u>	1.45	2.6	8.65	12.975	1.872	9.49	13	2.90	16.94	0.78	5.55	3.2	64.875	3892.5	973.125		176.5	70.6	92.5	45.1	10.0	11.7	135.9	973.1	973.1	350.3	472.9	62.7	3374.4
1100	t	_	1.35	2.5	8.55	12.825	1.8	8.875	12.5	5.69	16.13	0.75	5.24	3.1	64.125	3847.5	961.875		165.1	6.19	86.0	42.9	9.6	11.0	131.7	961.9	961.9	346.3	410.0	9.09	3254.7
1000	t		1.22	4.2	8.42	12.63	1.728	8.208	12	2.48	15.28	0.72	4.93	co	63.15	3789	947.25		152.7	65.2	79.1	40.6	9.5	10.3	127.4	947.3	947.3	341.0	348.7	58.3	3127.1
006	ţ		1.1	2.2	8.3	12.45	1.584	7.26	prod prod	2.13	13.89	99.0	4.37	2.8	62.25	3735	933.75		135.0	59.8	68.0	36.9	4.8	9.5	118.9	933.8	933.8	336.2	300.9	56.1	2996.9
800	1		0.98	2.1	8.18	12.27	1.512	8.678	10.5	1.93	13.10	0.63	4.08	2.7	61.35	3681	920.25		124.2	57.0	61.7	34.9	8.0	9.8	114.7	920.3	920.3	331.3	234.4	53.9	2869.2
700	•		0.88	2	8.08	12.12	1.44	6.16	10	1.75	12.37	9.0	3.79	2.6	9.09	3636	606		114.6	54.3	55.9	32.9	7.7	8.0	110.4	0.606	0.606	327.2	212.8	52.5	2794.4
teter (mm)	,	$\overline{}$,					•		Rp./m) Unit_Cost	18.6	5.433	31.914	2.66	12.774	2.1	42.475	15	0.25	0.36	1 ls	1 ls	
Diameter	(1) Quantity	Earth Covering Depth (m	Outer Diameter (m)	Width of Excavation (m)	Excavation Depth (m)	Sheetpile Length (m)	Volume of Pavement (m ³)	Excavation (Crum m ³)	Excavation (Backhoe m ³)	Backfill (granular m ³)	Backfill (original m ³)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)	Sheetpile Length (m)	Sheetpile (kg)	Bracing (kg)	(2) Construction Cost (1000 Rp./	Excavation Crum	Excavation Backhoe		(original	ت	Residual Soil		Sheetpile Driving	Sheetpile (kg)	Bracing	Pipe/Laying	Dewatering/Others	Total

Table 6.12 (9) Breakdown of Collection Sewer Unit Cost

009		6	0.774	1.9	9.974	15.0	1.368	9.4506	9.5	1.57	15.44	0.57	3.51	2.5	74.805	7854.525	1963.631		175.8	7-4	50.1	41.1	7.3	7.4	106.2	1122.1	1963.6	706.9	185.6	84.8	4502.4
500		0,	0.642	1.7	9.842	14.8	1.224	8.2314	8.5	1.28	13.72	0.51	3.01	2.3	73.815	7750.575	1937.643		153.1	vo	40.8	36.5	6.5	6.3	97.7	1107.2	1937.6	697.6	125.1	82.1	4336.6
450		o,	0.584	1.6	9.784	14.7	1.152	7.6544	00	1.15	12.88	0.48	2.78	2.2	73.38	7704.9	1926.225		142.4	43.5	36.6	34.2	6.1	5.8	93.4	1100.7	1926.2	693.4	111.1	81.0	4274.6
400		6	0.52	1.5	9.72	14.6	1.08	7.08	7.5	1.02	12.03	0.45	2.55	2.1	72.9	7654.5	1913.625		131.7	40.7	32.5	32.0	5.7	4.0	89.2	1093.5	1913.6	688.9	93.7	79.8	4206.8
350		0,	0.466	1.4	9.666	14.5	1.008	6.5324	7	06:0	11.20	0.42	2.33	7	72.495	7611.975	1902.993		121.5	38.0	28.8	29.8	5.4	4.9	85.0	1087.4	1903.0	685.1	85.5	79.1	4153.4
300		6	0.318	1.3	9.518	14.3	0.936	5.8734	6.5	0.72	10.32	0.39	2.05	1.9	71.385	7495.425	1873.856		109.2	35.3	23.1	27.5	5.0	4.3	80.7	1070.8	1873.9	674.6	96.3	77.8	4078.4
250		6	0.265	1.2	9.465	14.2	0.864	5.358	9	0.62	9.51	0.36	1.85	1.8	70.9875	3	1863.421		66.7	32.6	19.9	25.3	4.6	3.9	76.5	1064.8	1863.4	670.8	0.09	76.4	3997.9
200		6	0.212	1.15	9.412	14.1	0.828	5.0738	5.75	0.55	9.10	0.345	1.73	1.75	70.59	Ċν.	1852.987	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	94.4	31.2	17.7	24.2	4.4	3.6	74.3	1058.9	1853.0	667.1	39.0	75.5	3943.2
150		6	0.16	_	9:36	14.0	0.72	4.36	S	0.44	7.90	0.3	1.46	1.6	70.2	7371	1842.75		81.1	27.2	14.0	21.0	3.8	3.1	68.0	1053.0	1842.8	663.4	24.9	74.4	3876.6
Diameter (mm)			(m)			(s)	<u> </u>					<u> </u>						Rp./m) Unit Cost	18.6	5.433	31.914	2.66	12.774	2.1	42.475	15	0.25	0.36	l Is	1 ls	
Dian	(1) Quantity	Earth Covering Depth (m)	Outer Diameter of sewer	Width of Excavation (m)	Excavation Depth (m)	Sheetpile Length (m/pcs)	Volume of Pavement (m ³)	Excavation Crum (m ³)	Excavation Backhoe (m ³)	Backfill (granular m ³)	Backfill (original m ³)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)	Sheetpile Length (m)	Weight of Sheetpile (kg)	Bracing (kg)	(2) Construction Cost (1000 Rp./m)	Excavation Crum	Excavation Backhoe	Backfill (granular)	Backfill (original)	Backfill (selected soil)	Residual Soil	Pavement	Sheetpile Driving	Lease of Sheetpile	Bracing	Pipe/Laying	Dewatering/Others	Total

Table 6.12 (10) Breakdown of Collection Sewer Unit Cost

																		<u> </u>	-										
1500	o	1.81	2.9	11.01	16.5	2.088	17.429	14.5	3.55	25.43	0.87	6.50	3.5	82.575	8670.375 2167.593		324.2	78.8	113.2	9.79	7	13.7	148.7	1238.6	2167.8	780.3	823.5	108.9	5876.1
1350	o	1.65	2.8	10.85	16.3	2.016	16.38	14	3.32	24.20	0.84	6.18	3.4		8544.375 2136.093		304.7	76.1	106.0	64.4	10.7	13.0	144.4	1220.6	2136.1	769.0	626.1	103.3	5574.4
1200	σ	1 45	2.6	10.65	16.0	1.872	14.69	13	2.90	22.14	0.78	5.55	3.2	79.875	8386.875 2096.718		273.2	70.6	92.5	58.9	10.0	11.7	135.9	1198.1	2096.7	754.8	472.9	98.1	5273,4
1100	o	1.35	2.5	10.55	15.8	1.8	13.875	12.5	2.69	21.13	0.75	5.24	3.1	79.125	8308.125 2077.031		258.1	62.9	86.0	56.2	9.6	11.0	131.7	1186.9	2077.0	747.7	410.0	95.7	5137.8
1000	σ	1.22	2.4	10.42	15.6	1.728	13.008	12	2.48	20.08	0.72	4.93	'n	78.15	8205.75 2051.437		241.9	65.2	79.1	53.4	9.5	10.3	127.4	1172.3	2051.4	738.5	348.7	93.1	4990.6
006		,	2.2	10.3	15.5	1.584	11.66	Ï	2.13	18.29	0.66	4.37		M	~		216.9	59.8	68.0	48.6	8.4	9.5	118.9	1158.8	2027.8	730.0	300.9	90.5	4837.8
800	σ	0.98	તાં	10.18	15.3	1.512	10.878	10.5	1.93	17.30	0.63	4.08	2.7	76.35	8016.75 2004.187		202.3	57.0	61.7	46.0	8.0	8.6	114.7	1145.3	2004.2	721.5	234.4	88.0	4691.8
700	σ	0.88	2	10.08	15.1	1.44	10.16	10	1.75	16.37	9.0	3.79	2.6	75.6	7938 1984.5		189.0	54.3	55.9	43.5	7.7	8.0	110.4	1134.0	1984.5	714.4	212.8	86.5	4601.0
eter (mm)																Rp./m) Unit Cost	18.6	5.433	31.914	2.66	12.774	2.1	42.475	15	0.25	0.36	I Is	l Is	
1 1	(1) Quantity Farth Covering Denth (m)	Outer Diameter (m)	Width of Excavation (m)	Excavation Depth (m)	Sheetpile Length (m/pcs)	Volume of Pavement (m ³)	Excavation (Crum m ³)	Excavation (Backhoe m ³)	Backfill (granular m ³)	Backfill (original m ³)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)	Sheetpile Length (m)	Weight of Sheetpile (kg) Bracing (kg)	(2) Construction Cost (1000 Rp./m)	Excavation Crum	Excavation Backhoe	Backfill (granular)	Backfill (original)	Backfill (selected soil)	Residual Soil	Pavement	Sheetpile Driving	Lease of Sheetpile	Bracing	Pipe/Laying	Dewatering/Others	Total

Table 6.12 (11) Breakdown of Collection Sewer Unit Cost

500 600	10	0.642 0.774	1.7	10.842		1.224	9.9314 11.3506		1.28		0.51		2.3 2.5		8538.075 8642.025	777			184.7	46.2	40.8	41.0	6.5	6.3	7.76	<u>``</u>	2134.5	768.4	125.1	7 22
450	Ç	0.584	1.6	10.784	16.2	1.152	9.2544	∞	1.15	14.48	0.48	2.78	2.2	80.88	8492.4	4143.1			172.1	43.5	36.6	38.5	6.1	5.8	93.4	1213.2	2123.1	764.3	111.1	000
400	10	0.52	1.5	10.72	16.1	1.08	8.58	7.5	1.02	13.53	0.45	2.55	2.1	80.4	8442				159.6	40.7	32.5	36.0	5.7	5.4	89.2	1206.0	2110.5	759.8	93.7	8 O6
350	C	0.466	1.4	10.666	16.0	1.008	7.9324	7	06.0	12.60	0.42	2.33	.2	79.995	8399.475	022.00			147.5	38.0	28.8	33.5	5.4	4.9	85.0	1199.9	2099.9	756.0	85.5	89.7
300	Ç	0.318	1.3	10.518	15.8	0.936	7.1734	6.5	0.72	11.62	0.39	2.05	1.9	78.885	8282.925	40/0./21			133.4	35.3	23.1	30.9	5.0	4.3	80.7	1183.3	2070.7	745.5	96.3	88.2
250	10	0.265	1.2	10.465	15.7	0.864	6.558	9	0.62	10.71	0.36	1.85	8.7	78.4875	8241.187	યા			122.0	32.6	19.9	28.5	4.6	3.9	76.5	1177.3	2060.3	741.7	0.09	86.5
200	1.0	0.212	1.15	10.412	15.6	0.828	6.2238	5.75	0.55	10.25	0.345	1.73	1.75	78.09	8199.45	700.4407		•	115.8	31.2	17.7	27.3	4.4	3.6	74.3	1171.4	2049.9	738.0	39.0	85.4
150	10	0.16		10.36	15.5	0.72	5.36	32	0.44	8.90	0.3	1.46	1.6	7.77	8158.5	7.07			99.7	27.2	14.0	23.7	3.8	3.1	68.0	,	2039.6	734.3	24.9	84.1
Diameter (mm)																	Rp./m)	Unit Cost	18.6	5.433	31.914	2.66	12.774	2.1	42.475	15	0.25	0.36	l is]]s
Diam	(1) Quantity Farth Covering Denth (m)	Outer Diameter (m)	Width of Excavation (m)	Excavation Depth (m)	Sheetpile Length (m/pcs)	Volume of Pavement (m ³)	Excavation Crum (m ³)	Excavation Backhoe (m ³)	Backfill (granular m ³)	Backfill (original m3)		Residual Soil (m ³)	Pavement (m ²)		Sheetpile (kg) Bracing (kg)		(2) Construction Cost (1000 Rp./m)			Ö		Backfill (original)	Backfill (selected soil)	Residual Soil	Pavement	Sheetpile Driving		Bracing	Pipe/Laying	Dewatering/Others

Table 6.12 (12) Breakdown of Collection Sewer Unit Cost

1500		2;	1.81	2.9	12.01	18.0	2.088	20.329	14.5	3.55	28.33	0.87	6.50	3.5	90.075	9457.875 2364.468		378.1	78.8	113.2	75.3	11.1	13.7	148.7	1351.1	2364.5	851.2	823.5	116.6	6325.7
1350		2,	20.7	7. X	11.85	17.8	2.016	19.18	14	3.32	27.00	0.84	6.18	3.4		9331.875 2332.968		356.7	76.1	106.0	71.8	10.7	13.0	144.4	1333.1	2333.0	839.9	626.1	111.0	6021.9
1200		10	24.1 7 c	7.0	11.65	17.5	1.872	17.29	13	2.90	24.74	0.78	5.55	3.2	87.375	9174.375		321.6	70.6	92.5	65.8	10.0	11.7	135.9	1310.6	2293.6	825.7	472.9	105.7	5716.6
1100		10	1.55 7.5	5.7	11.55	17.3	7.8	16.375	12.5	2.69	23.63	0.75	5.24	3.1	86.625	9095.625 2273.906		304.6	67.9	86.0	62.9	9.6	11.0	131.7	1299.4	2273.9	818.6	410.0	103.4	5578.9
1000		100	77.1	4:7	11.42	17.1	1.728	15.408	12	2.48	22.48	0.72	4.93	m	85.65	8993.25 2248.312		286.6	65.2	79.1	59.8	9.2	10.3	127.4	1284.7	2248.3	809.4	348.7	100.9	5429.7
006	,	2 -		7.7	11.3	17.0	1.584	13.86		2.13	20.49	99.0	4.37	2.8	84.75	8898.75 2224.687		257.8	59.8	68.0	54.5	8.4	9.2	118.9	1271 3	2224.7	800.9	300.9	98.4	5272.6
800	,	0.0	67.0	7.7	11.18	16.8	1.512	12.978	10.5	1.93	19.40	0.63	4.08	2.7	83.85	8804.25 2201.062	·	241.4	57.0	61.7	51.6	8.0	8.6	114.7	1257.8	2201.1	792.4	234.4	95.8	5124.4
700	,	10	0.88 0.88	7	11.08	16.6	1.44	12.16	10	1.75	18.37	9.0	3.79	2.6	83.1	8725.5 2181.375		226.2	54.3	55.9	48.9	7.7	8.0	110.4	1246.5	2181.4	785.3	212.8	94.1	5031.5
Diameter (mm)		(m)	(EE)			cs)	13)		3)			(3)				(3)	0 Rp./m) Unit Cost	-	5.433	31.914	2.66	12.774	2.1	42.475	15	0.25	0.36	1 ls	1 1s	
Dia	(1) Quantity	Earth Covering Depth (m)	United Diameter of Sewer (m)	widen of excavation (m)	Excavation Depth (m)	Sheetpile Length (m/p	Volume of Pavement (m ³)	Excavation (Crum m ³)	Excavation (Backhoe m ³)	Backfill (granular m ³)	Backfill (original m ³)	Backfill (selected soil m ³)	Residual Soil (m ³)	Pavement (m ²)	Sheetpile Length (m)	Weight of Sheetpile (kg Bracing (kg)	(2) Construction Cost (1000 Rp./	Excavation Crum	Excavation Backhoe	Backfill (granular)	Backfill (original)	Backfill (selected soil)	Residual Soil	Pavement	Sheetpile Driving	Lease of Sheetpile	Bracing	Pipe/Laying	Dewatering/Others	Total

Table 6.13 (1) Unit Construction Cost of Manhole by Diameter and by Manhole Height

Manhole	Height	Unit Price (x1,000 Rp.)	Remarks
2.0 m		1,110	Type 1 Sewer Diameter: 150 - 600 mm
2.5 m		1,257	" Manhole Height : 2.0 - 7.5 m
3.0 m		1,378	u
3.5 m		2,220	Type 2 Manhole type is as shown in
4.0 m		2,339	" Drawing Book
4.5 m		2,483	n .
5.0 m		2,627	D D
5.5 m		2,770	п
6.0 m		2,914	И
6.5 m	1	3,058	м
7.0 m		3,202	ef
7.5 m		3,345	н

Table 6.13 (2) Unit Construction Cost of Manhole by Diameter and by Manhole Height

Manhole Height	700 m	800 m	900 m	1,000 m	1,100 m	1,200 m
4.0 m	4,085	4,099	4,121	4,143	4,198	4,465
6.0 m	5,080	5,100	5,122	5,145	5,199	5,458
8.0 m	6,105	6,126	6,148	6,170	6,224	6,483
10.0 m	8,798	8,824	8,852	8,880	8,949	9,291

Table 6.13 (3) Unit Construction Cost of Manhole by Diameter and by Manhole Height

Manhole	Height	Unit Price (x1,000 Rp.)	Remarks
3.0 m		4,027	Sewer Diameter : 1,350 - 1,500 mm
4.0 m		4,512	Manhole Height: 3.0 - 10.0 m
4.5 m		4,740	Į
6.0 m		5,505	İ
6.5 m		5,741	
8.0 m		6,530	· ·
8.5 m		6,767	
10.0 m		9,350	<u> </u>

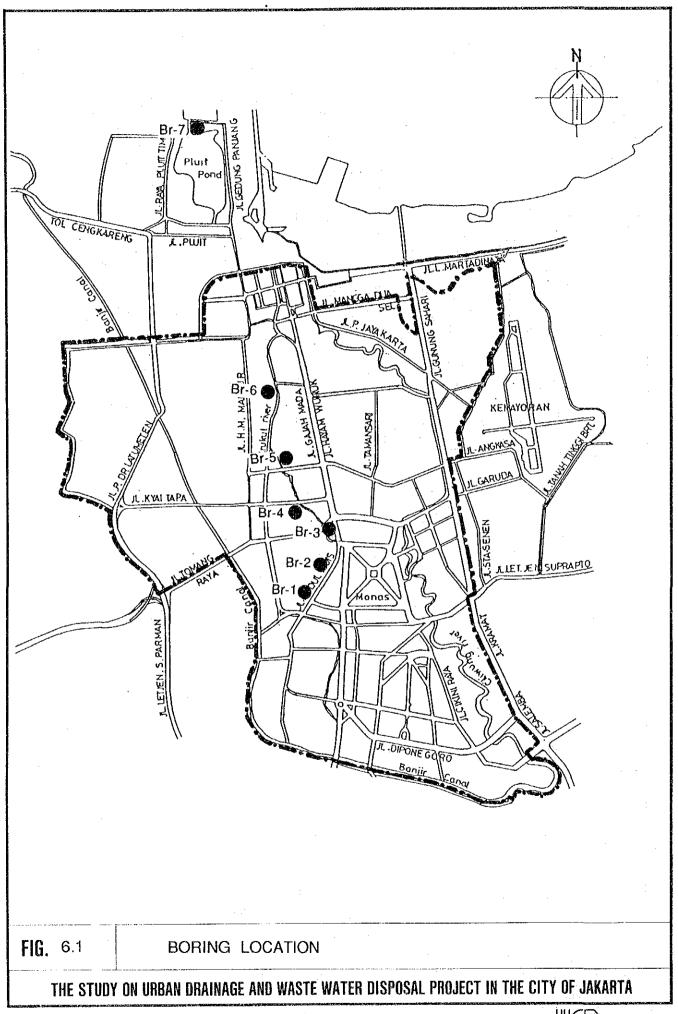
Table 6.14 Labour Wages

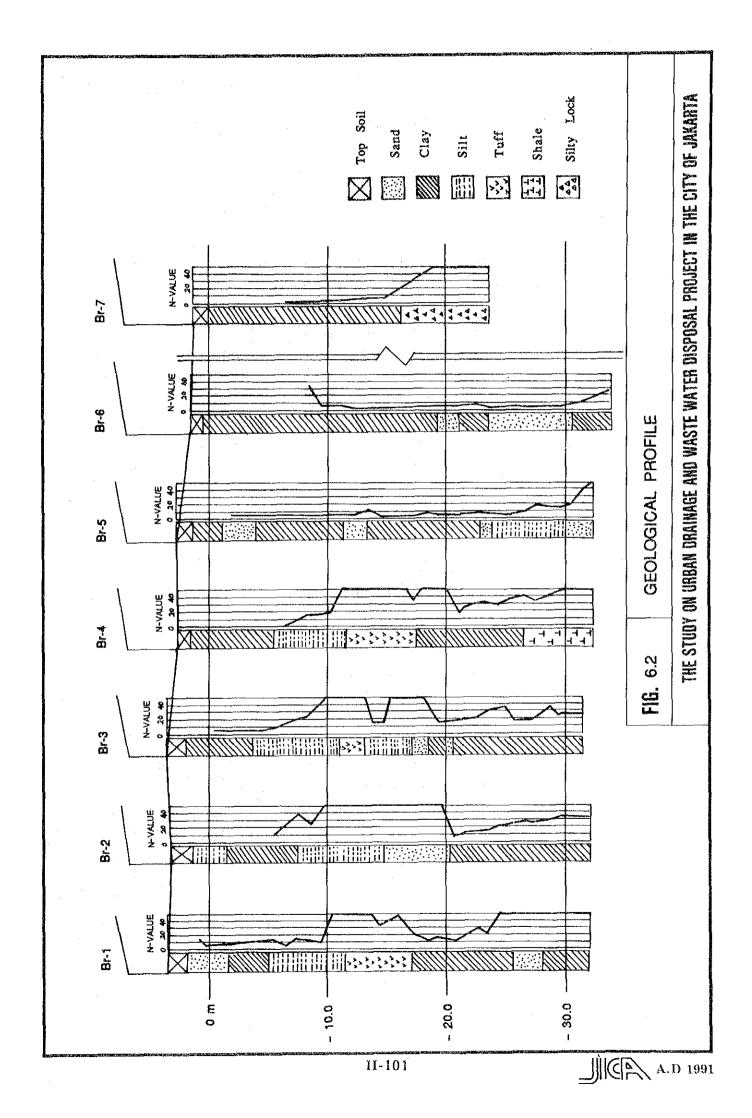
Item	Description	Unit	Unit Cost
No			(Rp.)
1	Common labor	Man-day	3,500
2	Semi skilled labor	Man-day	4,000
3	Skilled labor	Man-day	5,000
4	Mason	Man-day	5,000
5	Plasterer	Man-day	5,500
6	Concrete worker	Man-day	5,500
7	Steel worker	Man-day	5,500
8	Carpenter	Man-day	5,500
9	Foreman	Man-day	8,000
10	Welder	Man-day	6,000
11	Electrician	Man-day	6,000
12	Plumber	Man-day	6,000
13	Operator	Man-day	10,000
14	Assistent Operator	Man-day	6,500
15	Driver (dump truck)	Man-day	6,000
16	Mechanic	Man-day	7,000
17	Surveyor	Man-day	8,000

Table 6.15 Rental Cost of Equipment

Item	Description	Capacity	Unit Price
No			(Rp./day)
1	Concrete mixer	0.1 m 3	32,000
2	Concrete vibrator	dia. 40 m m	25,000
3	Water pump	dia. 75 m m	32,800
4	Excavator / backhoe	0.6 m 3	360,000
5	Bulldozer	11 ton	465,000
6	Bulldozer	15 ton	520,000
7	Crawler crane	16 ton	480,000
8	Dump truck	2 ton	122,000
9	Dump truck	8 ton	164,000
10	Vibro hammer	2.4 ton	710,000
11	Tamping rammer	80 k g	34,000
12	Compressor	3 m3/min.	425,000
13	Vibratory compactor	23 ton	320,000
14	Generator set	-	95,000

Table 6.16 Fuel and Materials Cost


Item No.	Description	Unit	Unit Cost (Rp.)
1	Gasoline	lit.	450
2	Diesel oil	lit.	245
3	Hydraulic oil	lit.	5,200
4	Lubricant oil	lit.	6,500
5	Grease	kg	7,750
5 6	Portland cement	bag	5,400
7	Sand for concrete	m 3	24,000
8	Sand for others	m 3	20,000
9	Sand gravels	m 3	21,000
10	Crushed stone for concrete	m 3	24,000
11	Broken stone	m 3	21,000
12	Brick	рс	80
13	Selected soil	m 3	2,750
14	Meranti Wood (class III) :		
	a. Plank	m 3	230,000
	b. Square	m 3	210,000
15	Plywood 4 x 8 t 9 mm	sheet	16,000
16	Plywlld 4 x 8 t 12 mm	sheet	21,000
17	Dolken wood dia. 80 mm	рс	1,000
18	Reinforced steel bar	ton	800,000
19	Steel materials :		
` .	a. Sheet pile type II (48 kg/m)	k g	1,250
	b. Sheet pile type III (60 kg/m)	k g	1,250
	c. Sheet pile type VL (105 kg/m)	k g	1,250
	d. H Shape steel	k g	1,250
20	Concrete wire	k g	1,500
21	Nails	k g	1,300
22	Polyvinyl Chloride (pvc) Pipes :		
	a. Diametre 150 mm	m	19,850
	b. Diametre 200 mm	m	31,350
	c. Diametre 250 mm	m	48,350
	d. Diametre 300 mm	m	78,750
23	Reinforced Concrete (RC) Pipes		
	(including rubber joint)		
	a. Diameter 350 mm	m	68,100
	b. Diameter 400 mm	m	75,100
	c. Diameter 450 mm	m	91,100
	d. Diameter 500 mm	m	100,850
	e. Diameter 600 mm	m	146,100
	f. Diameter 700 mm	m	170,000
	g. Diameter 800 mm	m	188,750
	h. Diameter 900 mm	m	247,900
	i. Diameter 1000 mm	m	292,000
	j. Diameter 1100 mm	m	343,300
	k. Diameter 1200 mm	m	399,500
	 Diameter 1350 mm 	m	521,250
	m. Diameter 1500 mm	m	686,200


Table 6.17 O&M Cost for Central Sewerage Zone

	(Unit : millio	on Rp./annum)
Year Item	2000	2010
1) F/S Area Sewer line Lift Pump Station Treatment Plant	164 114 3,311	164 126 6,612
Sub Total	3,589	6,902
2) JSSP Project Area Sewer line	2 4	76
Total	3,589	6,978

Table 6.18 Breakdown of O&M Cost for Central Sewerage Zone

	:	1	······································			Unit: million	Rp./annum)
			2,000			2,010	m . 1
	Year Item	Quantity	Unit Cost	Total	Quantity	Unit Cost	Total
Α.	F/S Area						
	(1) Sewer line						
	Secondary/tertiary	460,000 m	300 Rp./m	138	460,000 m	300 Rp./m	138
	Main pipe	59,955 m	300 Rp./m	18	59,955 m	300 Rp./m	18
	Trunk/force main	18,030 m	300 Rp./m	5	18,030 m	300 Rp./m	5
	Conveyance	10,340 m	300 Rp./m	3	10,340 m	300 Rp./m	3
	Sub total			164			164
	(2) Lift Pump Station						
	Electricity	792,000 k w h	100 Rp./kwh	79	905,000	100 Rp./kwh	91
	Repairing	1 ls	-	26	1 ls	-	26
	Personnel expenditure	1 ls	-	9	1 ls	-	9
	Sub total	-		114			126
	(3) Treatment Plant						
	Electricity	30.5x10 ⁶ kwh	100 Rp./kwh	3,050	56.0x10 ⁶ k w h	100 Rp./kwh	5,600
	Chemicals	1 ls	-	-	1 ls	-	614
	Repairing	1 ls	- (171	1 ls	-	288
	Personnel expenditure	1 ls	-	90	1 1s	-	110
	Sub total			3,311			6,612
	Total of A			3,589			6,902
В.	ISSP Area						
	Secondary/tertiary	-	-		126,000 m	300 Rp./m	38
	Main/trunk	-	-		59,000 m	300 Rp./m	18
	Pump Station	-	-		1 ls		20
	Sub total						76
	TOTAL			3,589			6,978

Chapter 7 IMPLEMENTATION PROGRAMME

7.1 Project Phasing

7.1.1 General

The proposed sewerage system is planned to not only serve 1,659,000 people in the Project Area but also receive the wastewater of 663,900 people in the JSSP area in 2000. It is because the capacity of the existing Setia Budi aerated Iagoon treatment plant is only 34,000m³/d and will be overloaded after 1993. Hence, the wastewater of the JSSP area will be introduced to Pluit Pond aerated Iagoon treatment plant soon after completion of the whole conveyance sewer.

The design wastewater discharge of the Project Area in the year 2000 is estimated at $316,200 \text{ m}^3/\text{d}$. While, that of the JSSP area in 2000 is estimated to be $124,800 \text{ m}^3/\text{d}$.

The proposed sewerage development project will be implemented in two (2) phases since it requires a large cost of Rp. 445.3 billion at 1990 price and a long construction period of eight (8) years. The first phase will be completed in 1996. The second phase will subsequently be implemented to complete in 2000.

The following two (2) alternative plans are considered for phasing the Project.

- (1) The whole distance of the conveyance sewer will be completed along with the collection sewers of some areas located along the conveyance sewer, in the first phase. This plan is in expectation of a high cost recovery of the conveyance sewer construction cost by potential connection to high rise buildings located along the route of conveyance sewer. Moreover, this plan is of advantage to early settlement of the overload of the Setia Budi treatment plant.
- (2) The proposed project will be developed from the lowermost area towards upstream in accordance with normal implementation

method. Sewerage system of the lower part area will be completed in the first phase.

Based on the above considerations, two (2) alternative plans for the first phase are compared in the following sections.

7.1.2 Alternative Plan A

The whole conveyance sewer of 10.3 km with a diameter ranging from 1,900 mm to 2,900 mm will be completed.

In the Project Area, 920 ha or 24% of the total area located along the conveyance sewer is covered by sewerage system. As a result, 350,100 person and 112 high rise buildings (building with more than four (4) floors) will receive sewerage service in 1997. Among the 112 high rise buildings, 62 are existing and the remaining 50 are expected to be built until 1997. The service area according to the first phase program is shown in Fig. 7.1.

The wastewater discharge of the first phase of this Alternative Plan A, that enter the sewer system from the Project Area is estimated to be 63,990 m³/d. This wastewater discharge is 20% of the design discharge (including groundwater infiltration) in the year 2000.

While in the JSSP Area, wastewater of 645,600 person and 64 high rise buildings will be collected by the JSSP sewerage system in 1997. Among the 64 high rise buildings, 55 are existing and the remaining 9 are future ones.

The collected wastewater discharge of 121,400 m³/d will be introduced to the Pluit Pond treatment plant through the completed conveyance sewer in 1997 when the first phase project will start operation.

Hence, the first phase system of this Alternative Plan A will serve 995,700 person and treat the wastewater of 185,390 m³/d in total in 1997. As a result, pollution load of 30,170 kg/d as BOD will be reduced.

Half of the total inflow pump capacity, whole aerated lagoon structures and 10 units of aerator will be installed in the first phase.

Total direct construction cost of the first phase plan is estimated at Rp. 204.5 billion with its break-down of collection system of Rp. 64.7 billion, conveyance sewer of Rp. 117.0 billion and treatment plant of Rp. 22.8 billion.

Construction cost per population served, wastewater discharge treated and the construction cost per unit pollution load reduction are respectively Rp. 205,000/person, Rp. 1.10 million m³/d and Rp. 6.8 million/kg·BOD/d.

Construction cost recovery by Alternative Plan A of first phase project by high rise buildings is estimated based on the following assumptions.

- The maximum affordable cost of a high rise building is equivalent to the construction cost of substitutional individual treatment facility.
- All high rise buildings which will be built in the future (59 buildings) bear the cost equivalent to substitutional individual facility.
- 70% of the existing high rise building which are equipped with only toilet waste treatment units (117 x 0.7 = 82 buildings) bear the cost under the same condition on that of future buildings.
- 25% of the existing high rise building which are not equipped with proper individual treatment system (117 x 0.25 = 29 buildings) bear 50% of the cost of that of substitutional facility.

The total construction cost recovery by high rise buildings by Alternative Plan A (first phase) is estimated at Rp. 22.0 billion at 1990 Price.

7.1.3 Alternative Plan B

The conveyance sewer will be extended over 6.4 km towards Pluit Pond from upstream. The downstream project area of 1,824 ha, which can be connected to this conveyance sewer or 47% of the total area, will be covered by sewerage system in the first phase. As a result, 910,700 person and 59 high rise buildings will be served in 1997. Among the 59 high rise buildings, the existing ones account for 33 and future ones 26. The

sewerage service area according to the first phase project of alternative Plan B is shown in Fig. 7.2.

Wastewater of 172,360 m³/d or 55% of the total design wastewater in the year 2000 will be collected and treated by the first phase project, resulting in reduction of BOD load of 27,590 kg/d.

In case of Alternative Plan B, no wastewater is introduced from the JSSP area before completion of the second phase in 2000.

In the first phase, half of the total pump capacity, whole aerated lagoon structures and 10 units of aerator will be constructed.

Total direct construction cost of the first phase Alternative Plan B is estimated to be Rp. 206.1 billion. It is broken down into collection system of Rp. 106.6 billion, conveyance sewer of Rp. 76.7 billion and treatment plant of 22.8 billion.

Construction cost per population served, wastewater discharge treated and the construction cost per unit pollution load reduction is estimated to be respectively, Rp. 226,000/person, Rp. 1.20 million/m³/d and Rp. 7.5 million/kg·BOD/d.

The total construction cost recovery by high rise buildings for this Alternative Plan B (first phase) is estimated to be Rp. 7.4 billion at 1990 price in the same manner as Alternative Plan A.

7.1.4 Comparative Evaluation

The above two (2) alternative plans are comparatively evaluated as follows. For details, refer to Table 7.1.

	Alternative A	Alternative B
Construction Cost (Rp. billion)	204.5	206.1
Served Area (ha)	2,758	1,824
Served Population	995,700	910,700
Treated Wastewater Discharge (m ³ /d)	185,390	172,360
BOD Load Reduction (kg/d)	30,170	27,590
Const. Cost per Served	205,000	226,000
Population (Rp./person)		
Const. Cost per Treated Wastewater	1.10	1.20
Discharge (Rp. million/m ³ /d)		
Construction Cost per Unit	6.8	7.5
BOD Load Reduction (Rp. million/kg/d)		
Recovery Cost of High Rise Building	22.0	7.4
(Rp. billion)		

As evident from the above table, Alternative Plan A is more economically efficient than Alternative Plan B.

Furthermore, Alternative Plan A has the following noticeable advantages.

(1) Pollution load reduction in the upper reaches contributed to river water quality improvement more than that in the lower reaches even when the amount of reduction remains the same.

Both alternative plans treat almost the same amount of wastewater. The sewage collection area of Alternative Plan A extends from the lowermost reaches of the Project Area to JSSP area, while that of Alternative Plan B is limited to the lower reaches of the Project Area.

Hence, contribution to river water quality improvement of Alternative Plan A is higher than that of Alternative Plan B.

(2) The whole conveyance sewer will be completed in 1996 in case of Alternative A, four (4) years earlier than in case of Alternative B. Hence, the overload of the existing Setia Budi aerated lagoon treatment plant will be settled earlier.

The following volume of wastewater in the JSSP area will be discharged into the Banjir Canal with no treatment before full completion of the conveyance sewer.

Alternative Plan A: discharge pollution load of 18,637 ton as BOD during 1994 - 1996

Alternative Plan B: discharge pollution load of 44,355 ton as BOD during 1994 - 2000

- (3) The first phase project of Alternative Plan A covers the most important institutional and commercial areas of Jakarta city.
- (4) Once the whole conveyance sewer is completed, collection system can be optionally developed areawise and timewise.

7.2 Implementation Programme

The proposed sewerage development project will be completed within nine (9) years from 1992 to 2000. The implementation programme of the project is prepared based on the phasing policy discussed in the previous Section 7.1 and conforms to Alternative Plan A, as follows.

The first phase project will be completed within five (5) years from 1992 to 1996. The detailed design will be completed in 1992. The construction works will be commenced in 1993 and be accomplished in 1996. The included major construction works are:

- whole conveyance sewer of 10.34 km
- sewerage collection system of 920 ha in Sub-zones A, B, C, D and E along the area of conveyance sewer
- connection pipe between JSSP area and conveyance sewer (0.5 km)
- half capacity of inflow pump station (218m³/min.)
- open ditch connecting inflow pump station and aerated lagoon
- aerated lagoon structure including embankment, excavation, etc.
- 10 units of aerator

The second phase project will be completed within five (5) years from 1996 to 2000. The detailed design will be accomplished in 1996. The construction works will be commenced in 1997 and be completed in 2000. The included major construction works are:

- sewerage collection system of 2,927 ha in Sub-zone A, B, C, D, E, F and G
- lift pump station (63.1 m³/min.)
- remaining capacity of inflow pump (256m³/min.)
- remaining aerators (14 units)
- dying bcd $(3,000m^2)$

The proposed implementation programme is shown in Table 7.2.

7.3 Disbursement Schedule

The proposed disbursement schedule of the project cost is shown in Table 7.3.

Table 7.1 Alternatives of Project Phasing

Alternative A : Sewerage Development by Conveyance Sewer Precedence

disch	11/.1	22.8	02.4	1 1 1			230 1,838 2,758
Cons	117.1	22.8	62.4	31.9	33,760	179,800	330
	25.9	ı	14.3	11.6	10,080	50,000	170
	24.6	ı	15.5	9.1	3,560	16,900	150
Cons	14.3	ı	11.4		5,410	45,000	9
	22.6	. 1	13.4	2.6	11,180	58,400	210
		Plant	sewer		(m3/d) System	(person)	
	Total	Freatment	Collection Conveyance Treatment	Collection	Discharge	Area (ha) in 1997	rea (ha)
		o. billion)	Construction Cost (Rp. billion)		Covered Population Wastewater	Population	overed

Construction cost per served population:

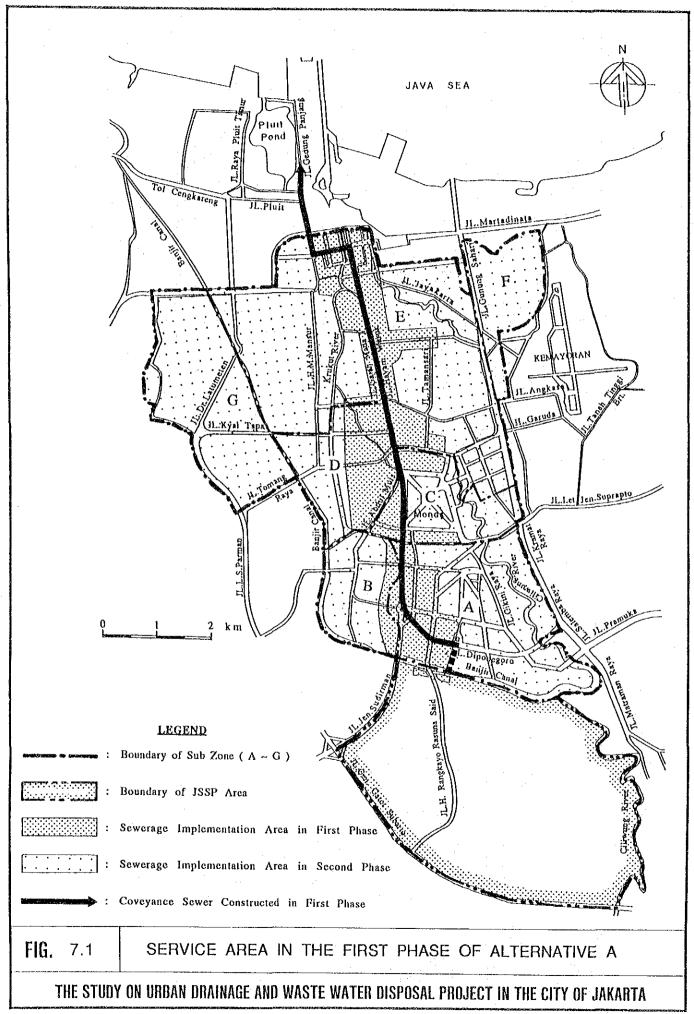
Rp.205,000/person

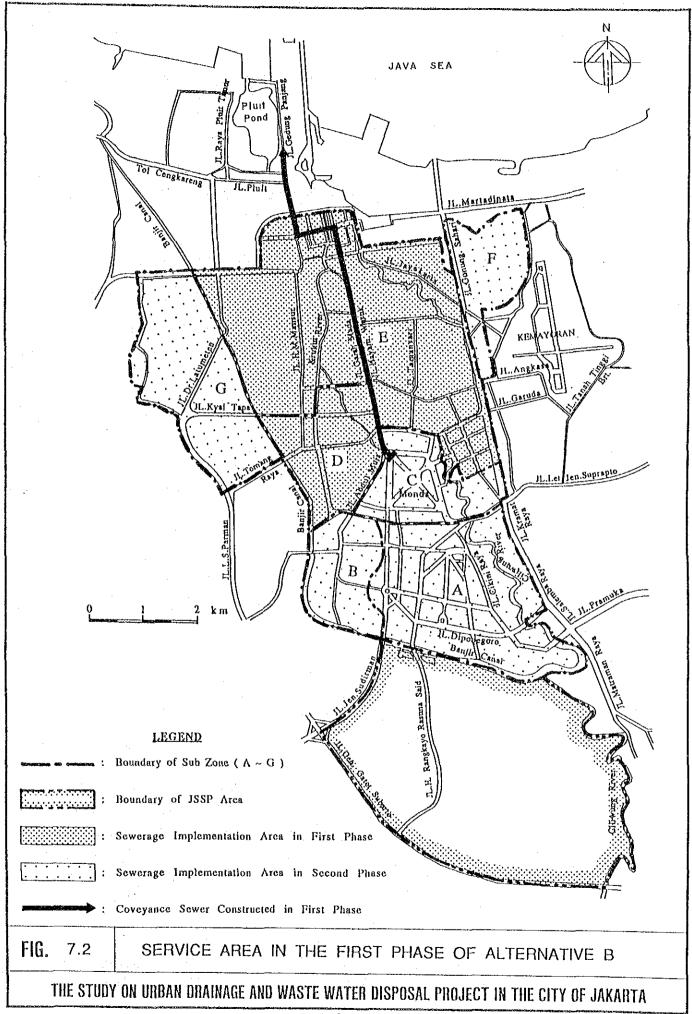
Construction cost per wastewater
discharge: Rp. 1.10 million

Alternative B : Sewerage Development from Downstream Most

	Covered	Population	Covered Population Wastewater		Construction Cost (Rp. billion)	(p. billion)		
····	Area (ha)	in 1997	Area (ha) in 1997 Discharge	Collection	Collection Conveyance Treatment Total	Treatment	Total	
		(person)	(m3/d) System	System	sewer	Plant		
Ą	-	-	-	ŀ	•	•	•	
ф	1	1	1	1	•	1	ı	Cons
ບ	1	1	1	ı	ı	•	ı	
Ω	331	97,300	19,630	22.5	14.3	1	36.8	
m	1,493	813,400	152,730	84.1	62.4	22.8	169.3	Cons
阡	1	ı	•	t	•	1	1	discl
Ö	ı	ı	ı	1	,	ţ	ı	
JSSP	_	•	ŀ		1	-	-	٠
Total	1,824	910,700	172,360	106.6	76.7	22.8	206.1	

Construction cost per served population: Rp.226,000/person


Construction cost per wastewater ischarge : Rp.1.20 million


Table 7.2 Implementation Programme of Sewerage Development

Year	1992	1993	1994	1995	1996	1997	1998	1999	2000
Construction			<u>.</u>						
(1) Collection System				•					
Sub-Zone A				, .	*****			*****	****
Sub-Zone B					* * *			*****	*****
Sub-Zone C				* * * *	* * *			*****	
Sub-Zone D				****			****		
Sub-Zone E			****	*****		*****	****	*****	
Sub-Zone F								***	****
Sub-Zone G								* * *	****
(2) Conveyance Sewer S1-S9		* * * * * *	**************	* * * * * * * * * * * * * * * * * * *	* * * * * *				A THE STREET AND A
(3) Treatment Plant		•							
Inflow Pump Aerated Lagoon		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *				* * * * * *	* * * * * *	* * * * * * *
Others					***				
(4) Detailed Design									
(5) Supervision		* *	* *	* *	- * * *	*	*	*	* *

Table 7.3 Disbursement Schedule

								צ	Unit: Ro.	billion)
Year	r 1992	1993	1994	1995	1996	1997	1998	1999	2000	Total
1. Direct Cost		29.2	49.1	8.99	55.3	19.0	30.3	65.0	9.09	375.3
(1) Collection System					-					
Collection Sewer			15.0	32.6	17.1	17.0	27.9	62.0	46.2	217.8
Lift Pump Station	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								4.1	4.1
(2) Conveyance Sewer		29.2	29.2	29.2	29.4					117.0
(3) Treatment Plant			4.9	5.0	8.8	2.0	2.4	3.0	10.3	36.4
(4) Connection Pipe										
2. Land Acquisition &	9.0		,		,					9.0
Compensation										
3. Administration Cost	0.6	9.0	9.0	9.0	0.0	9.0	0.6	0.7	0.7	5.6
4. Engineering Services	8.3	2.0	2.0	2.0	6.0	1.5	1.5	1.5	1.5	26.3
5. Physical Contingency		2.0	4	6.7	ν.	1.9	3.0	7	6.1	37.5
1										
6. Total	9.5	34.7	56.6	76.1	67.4	23.0	35.4	73.7	68.9	445.3

Chapter 8. ECONOMIC, SOCIAL AND ENVIRONMENTAL EVALUATION

8.1 Nos. of Beneficiaries

Beneficiaries of sewerage services were divided into 11 categories of houses, shops, factories, hotels, restaurants, hospitals, offices, schools, religious institutions, others and high rise buildings.

Shops, factories, hotels, restaurants, private hospitals, private offices and some of "others" and "high rise buildings" can be classified as commercial establishments, while public hospitals, government offices, schools, religious institutions and some of "others" and "high rise buildings" can be categorized as social institutions.

A high rise building is defined as a building having more than four (4) stories, the categorization of which became necessary as it would be a potential source of revenue for sewerage enterprise.

The total number of beneficiaries of sewerage across the entire categories in the Project Area works out to 203,818 for 1988 and 225,773 for 2000, of which houses account for respectively 95% and 91.5% in 1988 and 2000. Shops and offices occupy the second and third places respectively with the share of 2.0% and 1.0% for 1988, and 3.7% and 1.7% for 2000. High rise buildings account for 0.04% (89 buildings) for 1988, and 0.08% (264 buildings) for 2000.

The number of commercial establishments is expected to grow by 95.2% from 6,752 in 1988 to 13,180 in 2000. Likewise, the number of social institutions is expected to increase by 68.9% from 3,494 to 5,000 and that of houses by 12.4% from 193,572 in 1988 to 217,627 in 2000.

However by the year 2000 as the JSSP Area would also be integrated into the Project Area, the total number of beneficiaries of all categories would expand to 312,147 by the year 2000 and 338,605 by the year 2010. Out of these, houses account for 93% in 2000 and 91% in 2010, shops for 3.2% in 2000 and 4.1% in 2010, and offices for 1.3% in 2000 and 1.6% in 2010.

The number of properties in the Poject Area and in the JSSP Area on a Kelurahan basis is shown in Table 8.1.

8.2 Reduction of Pollution Load

8.2.1 Existing and Future Pollution Load without Project

(1) Existing Pollution Load

Existing pollution load as BOD in the Project Area is estimated to be 44,572 kg/d, and the breakdown is shown in Table 8.2.

The share of pollution load from resident is 71.3%, from commerce and institution is 24.8% and from industry is 3.9%. The total pollution load from resident is 31,762 kg·BOD/d, of which toilet waste accounts for 4,690 kg·BOD/day and gray water the remaining 27,072 kg·BOD/d.

(2) Future Pollution Load

Future pollution load discharge of the Project Area without project in the year 2000 is estimated to be 59,145 kg·BOD/d under the following assumptions.

- The ratio of sanitary disposal of toilet waste by households in septic tank/leaching systems remains the same as existing conditions with a 74%.
- Gray water, commercial and institutional wastewater and industrial wastewater are discharged to the public water bodies under the same conditions as existing.

Future pollution load as BOD, discharged from each pollution sources are as follows:

· · · · · · · · · · · · · · · · · · ·	<u> </u>	·	(Unit: k	g·BOD/d)
Domestic	Waste	Commercial &		
Toilet Waste	Gray Water	Institutional	Industry	Total
4,852	33,663	19,016	1,614	59,145

8.2.2 Reduction of Pollution Load by Sewerage Development

Reduction of pollution load by sewerage development is estimated assuming the following conditions.

- All domestic and commercial and institutional wastewater in conventional sewerage areas are collected, treated and discharged to the rivers and canals nearby treatment plant with a BOD of 30 mg/l.
- All gray water discharged by domestic, commercial and institutional sources in interceptor area is collected, treated and discharged with a BOD of 30 mg/l.
- All toilet wastewater in interceptor area is treated by on-site sanitation facilities.

Accordingly, it is estimated that the pollution load of 59,145 kg/d as BOD discharged from the Project Area will be treated to 9,486 kg/d by the proposed wastewater treatment plant at Pluit Pond with a net pollution load reduction of 49,659 kg/d. This implies that sewerage development would contribute toward a BOD removal efficiency of 84% in the year 2000. Furthermore, the pollution load of 24,960 kg/d as BOD discharged from JSSP Area in the year 2000 will be also treated to 3,750 kg/d with a reduction of 21,210 kg/d by the proposed Pluit Pond treatment plant. Consequently, the total pollution load reduction by the proposed sewerage system comes to 70,869 kg/d as BOD in the year 2000.

8.3 Reduction of Waterborne Disease

8.3.1 Disease Contraction Ratio

Based on field investigation, questionnaire survey and statistical data of disease contraction, waterborne disease contraction ratio in the project area and JSSP Area is determined to be 72.34 and 40.55 per 1000 person respectively. Moreover, the correlation between water color/smell of river/canal and disease contraction ratio for each area is represented by the following equations:

 $Y_1 = 32.9602 + 0.1907X_1 + 0.82926X_2$ (Project Area) $Y_2 = 27.3599 + 0.1907X_1 + 0.82926X_2$ (JSSP Area)

Where

X₁: Percentage of respondents who replied that water color of near-by rivers/canals was black (%)

X₂: Percentage of respondents who replied that water smell of near-by rivers/canals was strong (%)

Y: No. of those who contracted major water-borne diseases in the last three years (cases/1,000 population)

After the completion of sewerage development, disease contraction ratio of the project area and JSSP area will be reduced to 32.96 and 27.36 per 1000 person respectively.

8.3.2 Medical Costs

Medical costs consist of medication cost and economic losses resulting from unworkable days and death of patient, on the basis of each patient. Medical cost of waterborne disease per patient ranges from Rp. 60,000 for Cholera to Rp. 460,000 for Tuberculosis, with an average of Rp. 229,000 (Ref. Table J.20 of Appendix J, Supporting Report of Master Plan).

Reduction of medical costs is estimated from the difference in the total medical costs between the "without" and "with" project cases.