APPENDICES

An attachment to the Table 1 and 2

ABBREVIATIONS USED IN THE TABLE

Mineralogy

Petrology

Ag-tet:silver bearing tetrahedrite apy:arsenopyrite bn:bornite cc:chalcocite cov:coveline cp:chalcopyrite Cu-oxi:copper oxide minerals gn:galena ht:hematite mol:molybdenite mt:magnetite po:pyrrohotite py:pyrite sche:scheelite

and:andesite
apl:aplite
gr:granite
ker:keratophyre
ls:limestone
peg:pegmatite
phy:phyllite
sch:schist
int:intrusion
volc:volcanic

General

na:not available Mt:milliontonnes Kt:kilotonnes EMA:Empresa Minera de Aysen aprox:approximately

bar:barite
cal:calcite
chl:chlorite or chloritization
qz:quartz
ser:sericite or sericitization
arg:argilization
limo:limonite

sp:sphalerite
wol:wolframite

Area No.1 Longuinay area

Table 1 List of the Mineral Prospects and Mines in the Survey Area(1)

Title	holder	рон						•	×	по				O U		0 Li			011		о Н							11.			
Exploration &	Production	Geological.	geochemical	survey and	IP(28.2km)+		holes.1334m)	by MMAJ		Geological.	geochemical	survey(MMAJ)		ditto		ditto			ditto		ditto			No work, but	trenching and	shallow shaft	were tried to	skarn deposit	in vicinity.	Preliminary	geochemical work as well
Altera-	tion	02-ser	(inner	zone)	and	chl~epi	(outer:	zone)		sil+	arg		,	ditto		ditto			sil+	chl	- Sil+	Ser		sil+	chl						
Country rockAltera-Exploration	•	Tonalite							·	Quartz	diorite	÷	-	Shale and	sandstone	Sandstone	and shale		Shale and	sandstone	Gneiss			Quartz-	diorite			- - - -	:		-
*	Zn Mo	ninated	le)	 	1700		le	le)	730	00	·	"<0.012"				0.01			 		100			- 12						•••••	
e grade	Cu Pb	k-disser	age vali	0.12	0.43		Veinlet sample	(average value	0.14	- 10		"express "				1		-			•			- L0-01	· . ·				· .		
Ore	Au Ag (Stockwork-disseminated	ore(average value	<u>.</u>	at max: 0.		Veinle	(avera	at max 0	0	ppb	:=!: :=:	<u> </u>			<40 0.40.02	þpb				- 2.0> 04>	qdd		38 9.	8/t			· 			
Size of	deposit	1km×0.5km								250×300m	; extention	of alteration	zone	500×300m		400×300m		-	800×1000m		100m×300m:	extention of	alteration zone	Each veins are	to 5cm wide	extending 5-10m	along strike	Width of mine-	ralized zone is	2 km	
strike	díp								·							· ·						_ 		N30E				•			
Features of		Disseminated	+	Stockwork	+	veinlet	(Porphry Cu-	Mo deposit)	<u> </u>	Stockwork-	Disseminated			Disseminated		Veinlet and	disseminated	along beds	Disseminated		ditto	• .		Veinlets						••••	•
Ore mineral	Gangue min.	cp.py.mol.	(mt.po.sp)						-	mt.cp.po.ht	25			ođ		py(po+cp)			py.po(cp)		ЪУ			po.py.cp.	free Au?	25					
Ore	metals	Cu.Mo								Fe.Cu				ואן ס		а Ц			U (II)		цт С										
		38° 42' 36"	110 19, 19"		<u> </u>					_	71°22′10″			38° 35' 26"	71°21'23"	38°35'29"			38° 40' 16"	71°25′29″	38°35′32″	71° 26' 41"		38° 32′	71°19′	•	•				
Prospect	and Mine	Galletué	mineralized	20DE					·	Rio Qinquen 38°34'05"				Estero El	Saltilo	Estero Cajin38°35'29"	Chico		n del		La Fusta		-	Río Pacunto			• .				. *
No.		-1				<u>.</u>				1-2				<u>-1</u>		1-4			15		-1-6			1-7			<u> </u>				·

*: expressed as g/t for Au and Ag .and as % for others #: not defined as the exploration title or the mining title

- 2 -

Table 1 List of the Mineral Prospects and Mines in the Survey Area(2)

Area No.1 Longuimay area(continued)

. . .

					~~				
Title	holder#	оп				ou			
Exploration &	Production	Geological.	Geochemical	work(preli-	minary)	ditto		· · .	
Altera-	tion	ođ				sil+	ser	-	
Country rock	Au Ag Cu Pb Zn Md tion Production holder#	9 Shale and	sandstone			5 Tonalite			
*	Zn	1				1			
grade	Pb	-				1			
0re ~	Au Ag Cu		ppb		. 	< + 0<0.2	ppb		
Size of	deposit	Very small	· · · · ·			N20E 4 veins are	recognized		
strike.	dip	NSOW	vein 75N			NZOE	80W		
Features of	deposit dip	Vein N50W	single vein			Vein			
Ore mineral Features of strike	metals Gangue min.	cp.mt	20			ру	σz		
Ore	metals	ы С				e H	-		
lat ^s Ore	lon "	38° 32' 04"	71°21′41″			38° 32' 32"	77°21'14"	12	
No. Prospect	and Mine	1-8 Cordillera 38°32'04"	Longuimay 71°21'41"			1-9 Estero	Huemules	" express <0.01%	
No.		1				[<u>-</u>		- -	

Area No. 3 Futaleufu-Alto Palena area

*: expressed as g/t for Au and Ag , and as % for others #: not defined as the exploration title or the mining title

.

3 ---

Table 1 List of the Mineral Prospects and Mines in the Survey Area(3)

Area No.4 Alto Cisnes-El Toqui area

No.	Prospect	lats	Ore	Ore mineral	Features o	of strike	Size of	Ore grade *	Country rockAltera-Exploration	Altera-EX	ploration &	Title
	and Mine	lon	metals	Gangue min.	deposit	dip	deposit	Zn	Ho Ho	tion P	Production	holder¥
1-	Cerro	45°02'00"Cu-Pb-Zn	Cu-Pb-Zn	sp.cp.gn.py	Manto	E-W	Composed of 5	818	Lava, trachy-	A.	Room and	Sociedad
	Estatuas	71°58'05"-(Ag)	- (Ag) -	gangue:na		dip:na	ore bodys:-		- tic tuff and	na	Fillar 1	Contrac-
							1:2×35m		metasediment	<u>1</u> 23	Exploration	tual Mine-
							2:Upper:2x40m		(Ibañez Fm.)		ац:	ra Toqui
			:				Lower: 3.7x50m					
						<u></u>	:Upper:3x70m			<u>-</u>		
							Lower:7.4x70m			:		
						<u> </u>	4:Upper:4x18m					
		•• •					Middle:7.8x40m	<u> </u>				
						·····-	Lower:4x38m					
				<u>-</u>			5:Upper:1.5x?m					
					·		Middle:7x200m					
							Lower:2x250m					
							Ore reserves: -					
							Proven: 1.5Mt					<u> </u>
•							Probable+poss-	· · · · · · · · · · · · · · · · · · ·		· · ·		
						-	ible:3.6Mt					
							Grade:na					
							Further 5 Mt					
							as potential					
L	Río		Ko-Cu	mol.cp	Vein	N60-70E/0	N60-70E/0.3m ^{* d} (max.)	not available	Granitic			
4-2	Correntoso	72° 16′	(qn)+	gangue:na		90-70NW2	90-70NW20m in strike	0.12 to 4% as U ₃ O ₈	rock partly	na	Дâ	ца
					·				with apl.			
									+peg.		×	
4-13	d Lago	45° 41' 51" Pb-Cu-Zn	Pb-Cu-ZD	py.gn.cp.	Vein	N-S/80E 2	veins recog-		Andesite	Ser+Arg		
	Atravesado	72° 15′ 41″		Cu-oxì		and	nized:30cm and	. 1	- lava+dacitic		ងក	ра
	•	· · · · · · · · · · · · · · · · · · ·		gangue: na	. •	E-W/75E	5cm wide.	E A A Q A	intrusion in	. :	· · · · · · · · · · · · · · · · · · ·	_
							Strike length:	rock chip samples of	f gr.			
							na	altered rock	(Ibañez Fm.)			
					:			· · ·	-		·	
	-									:		
	expressed as g/t for Au and Ag	g/t for Au	and Ag	.and as % for other	r others		-					
ы. ,,	not defined a	is the expli	oration	not defined as the exploration title or the mining	mining titl	le						
				-								•

4 -

.

Table 1 List of the Mineral Prospects and Mines in the Survey Area(4)

Area No.4 Alto Cisnes-El Toqui

	·															······																
holder	Carmen	Reyes	Sociedad	Contruc-	tural	Minera	Toquí				:						•							ditto					,			
rockaitera-exploration tion Production			Exploration:	na	The mine	started pro-	duction with	the Mina	Ketterfeld in	early1983.	On the June.	1984.produc-	tion achieved	to:	38.000t of Zn	conc.@54ZIn	5.000t of Ph	conc.@60ZPb	2,500t of Cu	conc.@25%Cu		-		exploration;	ца	production:	start:1959	In the summer	of 1983, under	the control	of the Mina	100 H
tion	ца	· ·	пa	Tri						÷												. •		ser.	•							
country	Dioritic	rock	Altered tuff	+volc.rocks	of Ibanez Fm																			Andesite of	Ibañez Fm.	and Int.of	diorite.			· · · · · · · · · · · · · · · · · · ·		
Au Ag Cu Pb Zn Mc		63 μa [1.1 40.45.3] - (2 samples)	- 183 0.7 4.5 12 -	Averaged grade with	cre grade of Cerro	Estatuas combined																		4 1501.89 2 4 -	(Mean value)							
deposit 1	1-3m in wd.	120m in strike	Extention of	deposit:na	Ore reserves:	proven: 1.5 Mt	probable+poss-	ible:3.6 Mt	potential; 5Mt	(The El Toqui	composes of	several ore-	bodies, such as	San Antonio.	Zuñiga, Estatuas	Antolin and	Concordia)		The above	figures show	the sum of ore	reserves of	some deposits.	1-4m in wd.	29m in strike	Ore reserves:	proven: 30,000t	probable+poss-	ible:60.000t	potential: 12Mt	ore grades:na	
dip	N35-45E	405	N-S	dip:na			-																	N20-35E	80W							-
deposit			Manto	and	vein	characteris-	tic features	of the each	type are not	known.							- -					 		vein	with some	parallel	veins					-
Gangue min.	cp.sp.gn.py	0 2 2	Mantos:sp.	cp.gn.py	Veins:gn,sp.	_	na																	cp.sp.gn	<u>2</u> 5							-
metals	Zn	su-Az	Cu-Pb	Zn-(Ag)	-																		-	Cu-Pb-Zn	-(Au-Ag)			•				
		71°55'52" Au-Ag	45.01	71°54′													• .							45° 05' 00"Cu-Pb-Zn	71°35'00"							
and Mine	Santa Teresa44°45'	(El Condor on7) Katterfeld 1)	Mina el	Toqui																·				Mina	Katter Feld	(Nirehuao)						
04	4-3	~ ×	4-4																					4-5		<u> </u>						

 π : expressed as g/t for Au and Ag, and as X for others #; not defined as the exploration title or the mining title

- 5 -

Table 1 List of the Mineral Prospects and Mines in the Survey Area(5) Area No.4 Alto Cisnes-El Toqui area(continued)

.

dip deposit. Au Ag Cu Pb Zn WG tion Production 355 25cm in strike n 0.0 m a	No.	Prospect	lat ^s	Ore	Ore mineral	Features of	strike	Size of		Ore g	grade *	Country rockAltera-Exploration	ockAlte	era-Exp	loration &	Title
Vein Non- and State Mage Non- bit <		and Mine	lon "			dep	dip	deposit		-	<u> </u>	Ņ	tior	Ъ Б	oduction	holder
Campamento 77°55' Calibriania (Construction) 352 25cm in strike [construction] [construction] [construction] 10 Cisnes 44°55' Cu Cu-coii Disseminated na na na na na Cisnes 44°55' Fb Exa Vein N50W na na Sediamiary sil na Cisnes 44°55' Fb Exa Vein N50W na na Sediamiary sil na Campo 44°57' 70 Cu Cu-coii Dissemiaria 90 na Sediamiary sil na Campo 72°04' Pa Eano 90 na na Sediamiary sil na Grande 12°04' Po na Vein na na Sediamiary sil na Grande 12°04' Na Nein' na na Sediamiary sil na Grande 12°04' Na Nein' na na Sediamiary sil na Grande 12°04' Na Nein' na Grantia na Sediamiary sil na Grande 12°04' Na Vein' na na Sedia	- 1 1	Veta	44° 34'		cp.mol		1.24	0.15-0.25m wide	<u> </u>		ла, па	.d Granite-	8d		па	ца
Original Image		Campamento	71°25′		qz.ht			25cm in strike		t t		o granodior	ite			
Gises Constrained na		or Estancia										4				
Estancia 44° 25' hr Cu Cu-cki Disseminated na na Andesite na sedimetary sil na na sedimetary sil na <		Cisnes							•	<u> </u>	ples)		• 			
Cisnes $71^{\circ}23^{\circ}$ hit No No Rin Vein N50% na Sedimentary sil na Grande $72^{\circ}04^{\circ}$ $2m$ Vein 90 na Sedimentary sil na Grande $72^{\circ}04^{\circ}$ $2masuesina$ 90 na rock(upper py Rio Cisnes $44^{\circ}37^{\circ}30^{\circ}$ Mo na Vein? na na Sedimentary sil na Rio Cisnes $44^{\circ}37^{\circ}30^{\circ}$ Mo na Vein? na na Sedimentary sil na Rio Cisnes $44^{\circ}35^{\circ}04^{\circ}$ Mo na Vein? na na Granite na na Rio Cisnes $44^{\circ}35^{\circ}04^{\circ}$ Mo na N55-708 -150m in strike 201 0.1 351/371/4010.2 Diorite na na Rio Cisnes $11^{\circ}35'03^{\circ}$ ma Sedimentary na na Granite na na Ristroso $11^{\circ}35'03^{\circ} 04^{\circ} 03^{\circ}$	4-7	Estancia	44°25'	Cu		Disseminated	na	ह्य		ព	61	Andesite	ра		na	ца
Campo 44°56' Pb gangue:na Vein N50W na Da Vein N50W na Campo fock(upper py in nock(upper py in na red red <thred< th=""> <thred< td="" th<=""><td></td><td>Cisnes</td><td>71°23'</td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>-</td></thred<></thred<>		Cisnes	71°23'						 			•				-
Grande72°04'Zangue:na90909090Rio Cisnes44°37'30'MonaVein?naJuressic orAnce Rio71°37'30'MonaVein?nanaEncre Rio71°37'30'Momol.py.cp.VeinN55-70ā1-15cm wide2010.135/13714010.2DioritenanaEncre Rio71°37'00'apyGraniteCranitenanananananaEncre Sols810 Cisnes44°36'Momol.py.cp.VeinN55-70ā1-15cm wide2010.135/13714010.2DioritenanaEncre Rio71°37'70°apyandand2010.135/13714010.2DioritenanaEncre Sols71°37'apyandand2010.135/13714010.2DioritenanaEncre Sols71°37'apyandand2010.135/13714010.2DioritenanaFuerto44°45'Feht.cpDisseminatedna2010.135/1324/1261nanaFuerto44°45'Feht.cpDisseminatedna45nananaFuerto44°47'Cupy.cp.htLense-StapednaMax. 2n²c2010.171°28'nanaAncovo de44°47'Cupy.cp.htLense-StapednaMax. 2n	4-8		44° 56'	ЪЪ	u2	Vein	NSOW	na		я	et .	Sediment			na .	D.B
Ric Cisnes 44°37'30' Mo na Vein? na na na ceous) entre Rio 71°37'30' Mo na Vein? na na na ceous) Fedregoso y Estero Solis Rio Cisnes 44°35'04' Mo mol.py.cp. Vein N55-70ā 1-15cm wide 201 0.1 351/1371 4010.2 Diorite na na Estero Solis Rio Cisnes 44°36'04' Mo mol.py.cp. Vein N55-70ā 1-15cm wide 201 0.1 351/1371 4010.2 Diorite na na Estero Solis Fedregoso y Pedregoso y Tree Nui- Estero Bui- Tree Nui- Tree Nui- Estero Bui- Tree Nui- Tree Nui- Tre		Grande	72°04′		gangue:na		06					rock (uppe:				
Rio Cisnes $44^{\circ}37'30'$ Mo na na na ceous) entre Rio 71'37'30' Mo na Vein? na na ceous) Pedregoso y 71'37'30' Mo mol.py.cp. Vein? na na na Fedregoso y 17'37'30' Mo mol.py.cp. Vein N55-70R 1-15cm wide 201 0.1 351/1371 4010.2 Diorite na na Rio Cisnes 44'36' Kao 60-7053 30m in strike 201 0.1 351/1371 4010.2 Diorite na na Fedregoso y apy apy and N70W 60-7053 34/12/4/261 fraignen na na Fedregoso y 1'9'3' 7 201 0.9333 34/132/4/261 fraignen na Fedregoso y 1'9'3' Rax.grades fraignen na 201 0.9333 34/132/4/261 fraignen na Freero bui- 1'9'3'7 Yet												Jurassic	or			
Rio Cisnes 44°37'30' Mo na Vein? na na cecus) na na entre Rio 71°37'30' Mo moliny.cp. Vein N55-70ë 1-15cm wide 201 0.1 351137 4010.2 Diorite na na Rio Cisnes 44°35'04' Mo moliny.cp. Vein N55-70ë 1-15cm wide 201 0.1 351137 4010.2 Diorite na na Rio Cisnes 44°35'04'' Mo moliny.cp. Vein N55-70ë 1-15cm wide 201 0.1 351137 4010.2 Diorite na na Rio Cisnes 44°35' Mo molin strike 201 0.1 357137 4010.2 Diorite na na Featresos y and 80-7058 30m in strike 201 0.1 357137 4010.2 Diorite na na Featresos y Yo N70W N70W N70W N70% N70% N70% <td></td> <td>ta-</td> <td></td> <td></td> <td></td>													ta-			
Ric Cisnes $44^{\circ}37'30'$ MonaVein?Nein?naGranitenanaentre Rio $71^{\circ}37'30'$ Momol.py.cp.VeinN55-7081-15cm wide 201 0.135113714010.2DioritenanaRio Cisnes $44^{\circ}35'04'$ Momol.py.cp.VeinN55-7081-15cm wide 201 0.135113714010.2DioritenanaRio Cisnes $44^{\circ}35'04'$ Momol.py.cp.VeinN70830m in strike 201 0.135113714010.2DioritenanaPentre Suos $71^{\circ}35'03'$ apzand $60^{\circ}7055$ 30m in strike 201 0.1 3511371 4010.2 DioritenanaPentresoso $71^{\circ}35'03'$ apz $N700'$									-			ceous)			-	
entre Rio 71°37'30' Fedregoso y Estero Solis Rio Cisnes 44°36'04' No mol.py.cp. Vein N55-70E 1-15cm wide 201 0.1 3511371 4010.2 Diorite na na entre Rio 71°35'03' apy Fedregoso y Pedregoso y Rio Cisnes 44°36'04' No mol.py.cp. Vein N55-70E 1-15cm wide 201 0.1 3511371 4010.2 Diorite na na entre Rio 71°35'03' apy Estero Bui apy tre ht.cp Disseminated na na 201 0.4 3511371 4010.2 Diorite na na re view view view view view view view vie	4-9		44° 37' 30"	Мо	ра	Vein?	ра	na		F	5	Granite			ца	52
Pedregoso yRedregoso ySetres 6013Nomol.py.cp.VeinN55-70F1-15cm wide2010.135113714010.2DioritenanaRio Cisnes 44° 35' 03"apyapy60-705g30m in strike2010.135113714010.2Dioritenanaentre Rio71° 35' 03"apy60-705g30m in strike2010.735113714010.2DioritenanaPedregoso yapyand 870 and 870 870 870 870 870 870 Pedregoso yre 10^{2} 30" 10^{2} 30" 10^{2} 30" 10^{2} 3381 3413241261 10^{2} 10^{2} Fuerto 44^{2} 45'Feht.cpDisseminatedna 201 0.33381 3413241261 10^{2} 10^{2} Fuerto 44^{2} 47'Cupy.cp.htLense-shapedna 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} Arroyo de 44^{2} 47'Cupy.cp.htLense-shapedna 10^{2} $10^$		entre Río	71°37′30″													
Estero Solis Way No		Pedregoso y		_			<u></u>					, <u> </u>	•	•	••••••	
Rio Cisnes $44^{\circ}36'$ %0 % mol.py.cp.VeinN55-70% $1-15cm$ wide 201 0.1 3511371 4010.2 Dioritenamaentre Rio $71^{\circ}35'$ $30'$ $30'$ $60-70SE$ $30m$ in strike 501 0.1 3511371 4010.2 Diorite na ma Pedresoso y and $60-70SE$ $30m$ in strike 501 0.1 3511371 4010.2 Diorite na ma Pedresoso y $71^{\circ}35'$ and $x70w$ $x70w$ $x70w$ $x70w$ $x70w$ $x70w$ $x70w$ Estero Bui- $44^{\circ}45'$ Feht.cpDisseminated na na 201 0.33381 3413241261 $Traignén$ na Fuerto $44^{\circ}45'$ Feht.cpDisseminated na na 201 0.33381 3413241261 $Traignén$ na Cisnes $71^{\circ}37'$ Fe:20.6%Max.grades from 18(Petrology: na na Cisnes $71^{\circ}58'$ Cu $py.cp.ht$ Lense-Shaped na $Max. 2m^2$ <201 0.1 72 29 $(140c2$ $Lava(Divsa si1$ na Ios Canelos $71^{\circ}58'$ $71^{\circ}58'$ 10.1 72 29 $(140c2$ $Lava(Divsa si1$ na Medio)(Cisnes $71^{\circ}58'$ 0.17 72 29 $(140c2$ $Lava(Divsa si1$ na Medio) 0.57001 381 0.57001 381 0.57001 31		Estero Soli	o,													
entre Rio 71°35′03″ apy $60-70SE 30m$ in strike Fedregoso y Fedregoso y qz $and k_{5S} and N70W N70W na 10^{10}52 Fedregoso y 10^{10}52 Fe ht.cp Disseminated na na 201^{10} 0.9338] 34f324f26f Traignén na na Cisnes 71°37′ Fe ht.cp Disseminated na na 201^{10} 0.9338] 34f324f26f Traignén na na Cisnes 71°37′ Fe ht.cp Disseminated na Max. 2m^2 201^{10} 0.9338] 34f324f26f Traignén na na la cisnes 71°57′ Fe ht.cp Disseminated na Max. 2m^2 201^{10} 0.9338] 34f324f26f Traignén na na la cisnes 71°57′ Fe ht.cp Disseminated na Max. 2m^2 201^{10} 0.9338] 34f324f26f Traignén na na la cisnes 71°57′ Fe ht.cp Disseminated na Nax. 2m^2 201^{10} 0.9338] 34f324f26f Traignén na na ha na la cisnes 71°57′ fe ht.cp Disseminated na Max. 2m^2 201^{10} 0.9338 34f324f26f Traignén na ha na ha na la cisnes from 18 (Petrology: Petrology: Netrology (Pisse-Shaped na Max. 2m^2 200^{10} 0.175 29^{10} (Horo Fm) 10^{10} (Petrology: Hedio) 0.5700f 38f fe dero Fm)$	Ĩ - ,		44° 36' 04"	Ко	mol.py.cp.	Vein	N55-70E	1-15cm wide		-	1				na	EL .
Fedregoso y q_z and N70Wand 455and 455N70Wand 455Estero Bui- tre $44^{\circ}45'$ Feht.cpDisseminated ht.cpna a_{45} nanaPuerto $44^{\circ}45'$ Feht.cpDisseminated ht.cpna a_{201} 0.93381 3413241264 Traignén Fm.naPuerto $44^{\circ}45'$ Feht.cpDisseminated ht.cpna a_{201} 0.93381 3413241264 FmnaPuerto $44^{\circ}47'$ Cupy.cp.htLense-shaped hax. $2m^2$ a_{201} 0.93381 3413241264 Traignén Fm.naArroyo de $44^{\circ}47'$ Cupy.cp.htLense-shaped hax. $2m^2$ a_{201} 0.17622 Lava(Divsa-sil has)naArroyo de $44^{\circ}47'$ Cupy.cp.htLense-shaped naMax. $2m^2$ $c201$ 0.17622 Lava(Divsa-sil nanaArroyo de $44^{\circ}47'$ Cupy.cp.htLense-shaped naMax. $2m^2$ $c201$ 0.17622 Lava(Divsa-sil nanaArroyo de 0.57001 381 0.57001 381 0.57001 381 a_{20} a_{20}		entre Río	7.1°35'03″		apy	-	60-70SE	30m in strike								
Estero Bui- Estero Bui- tre Puerto $44^{\circ}45'$ Fe ht.cp Disseminated na na $20100.9338134f1264$ Traignên na na Cisnes 71°37' Arroyo de $44^{\circ}47'$ Cu py.cp.ht Lense-shaped na Max. $2m^{2}$ <2010.17929 <140<2 Lava(Divsa- sil na los Canelos 71°58' Medio) Medio)	•	Pedregoso y			25		and		<u></u>							÷
tre 45 45 45 Puerto 44°45' Fe ht.cp Disseminated na 201 0.33381 34/1324/1261 Traignén na na Puerto 44°45' Fe ht.cp Disseminated na na 201 0.33381 34/1324/1261 Traignén na na Cisnes 71°37' Fe by.cp.ht Lense-shaped na Max. 2m² 201 0.1 75 29 710'03Y: Arroyo de 44°47' Cu py.cp.ht Lense-shaped na Max. 2m² 201 0.1 75 29 710'03Y: na Ios Canelos 71°58' 10°57 10°1 75 29 710'03Y: na Medio) 0.57001 381 0.57001 381 dero Fm) na		Estero Bui-					N70W	· · · · · · · · · · · · · · · · · · ·								
Puerto $44^{\circ}45'$ Feht.cpDisseminatedna $20^{\circ}10.93381$ $34^{\circ}15241261$ TraignénnanaCisnes $71^{\circ}37'$ Fe:20.6XFm.Fm.Fm.Fm.Fm.Arroyo de $44^{\circ}47'$ Cupy.cp.htLense-shapednaMax. $2m^2$ <2010.1 75 29 $<140(c2)$ Lava(Divsa- si1nalos Canelos $71^{\circ}58'$ $71^{\circ}58'$ to<		tre					455									
Cisnes 71°37' Fe:20.6% Fm. Arroyo de 44°47' Cu py.cp.ht Lense-shaped na Arroyo de 44°47' Cu py.cp.ht Lense-shaped na max. 2m² <20† 0.1	4 -1		44°45'	эŦ	ht.cp		ពង	រាន		93381	3413241				Da Da	5U
Arroyo de 44°47' Cu py.cp.ht Lense-shaped na Max. 2m ² (201 0.1 75 29 (140(22 Lava(Divsa- sil na los Canelos 71°58' to	-	Cisnes	71°37'		· · · · · · · · · · · · · · · · · · ·					Fe:20	. 5%	Fm.				
Arroyo de $44^{\circ}47$ Cu py.cp.ht Lense-shaped na Max. $2m^2$ <201 0.1 79 29 <140<2 Lava(Divsa- sil na los Canelos 71°58' to to to to to to to to Tm) dero Fm) Medio) Hedio)									Max	(.grade				<u>.</u>	•••••• •	•
Arroyo de $[44^{\circ}47'$ Cu py.cp.ht Lense-shaped na Max. $2m^2$ <201 0.1 75 29 <140<2 Lava(Divsa- sil na los Canelos 71°58' to Hero Fm) (Cisnes Medio)									Sa	Imples	•	na)				
nelos 71°58' to	4-1		44° 47'	Cu		Lense-shaped	na	2m ²		÷÷	29			[]	na	n a
0.21004		los Canelos								to	to.	dero Fm)			•	
		(Cisnes								.57001	381					
	_	Medio)			<u> </u>											
	-				-				-							

t: expressed as ppm
X: not defined as the exploration title or the mining title

6 ----

46° 28' 56" Cu py cognized) 72° 38' 31" qz.chi wein N45E/ 72° 38' 31" qz.chi subvert- 72° 38' 31" mol.cp.gn subvert- 72° 12' 55" (-W-U) mol.cp.gn veinlet na 72° 33' 40" Cu cp.py veins N10-30 72° 32' 48" qz.cal 70-90W
--

z: not defined as mining title or exploration title

- 7 -

Table 1 List of the Mineral Prospects and Mines in the Survey Area(7) Area No.5 Ibañez-Murta area(continued)

holder¥ Title EMA ditto 33.000tPb one 10.472spent US\$0.6^k 9.432t@4.8%Pb lave obtained SZZn and 150 .000m adits Country rockAltera-Exploration annual@4ZPb. development: 0.1^Mt@more ore reserve rere develed in nine production apx.8.000t production: Production ration(JP) than 4% Cu or exploin total adit and Roechmann 10 drills 360m in 05,000t in 1980 total) evels. -1980: g/tAg. 1968: tion 50 na Da grey phy. is dislocated by faults. Contact with with 1,000m thickness Marble. 12 na Ls(Pz) Я wd^m Agt Cu Pb Zn 4.0 8.3 1571 2721 4.60 ı 1979) t: expressed as ppm 2.0 0.12 2.0525.30 0.13 305112.9 9101 615148.6 5351 1.6526.41 4801 601 81<201 2201 9101 4.422301 27 Outcrop(after MMAJ. Ag Cu Pb Zn ñ crude ore grade ? Ore grade * 761 1021 101 201 61<151 wd.and length na na na 4.5 0 120 5.0.5 18 0. -.3198 na na .5175 .5198 . G 81 Ψ ۱ 20.000t@1.5-2% apx,500-3000m³ Ore reserves low grade ore 3,000t@1.5-2% probable:4.5K possible:20Kt proven:8,000t na for thick-022Cu 20-30NW ness.200m in Ore reserves each ore body in volume of Size of deposit :variable possible: strike. Features of strike deposit dip /M04N N30E/ 15N *: expressed as g/t for Au and Ag, and as Z for the others. ower:Zn>Pb recognized upper:Pb>Zn irregular zoning is Manto massive Vertical sp.gn+minor Ag-tet.cp.py gn.sp+minor Ore mineral metals Gangue min. 46°31'37" Pb-24 °--72°29'55"-(Az-Cu) py.cp zangue:na apy cal,qz 46°32'50" Pb-Zn Ore 12°24'55" lat ^s lon ^w -10 Mina Silva (continued) Prospect and Mine 5-8 Mina Las Mina El Pelado Chivas ب 1 1 5-14 5 .°ч

- 8 --

#: not defined as the exploration title or the mining title

<u>Table 1 List of the Mineral Prospects and Mines in the Survey Area(8)</u> Area No.5 Ibañez-Murta area(continued)

No. Prospect	lat ^s Ore	Ore mineral	Features of	strike	Size of	Ore grade *	Country	Jtera-E	rockAltera-Exploration &	Title	·. _
and Mine	lon " metals	ls Gangue min.	deposit	dip	deposit Au	u Ag Cu Pb Zn	Mo	tion P	Production	holder	
5-20 Veta Anita	46°27'53" Cu-(Pb)	Pb) py.apy.cp	vein	N20W	0.6m in wd	- 13	- Sodium	an E	Exploration	ditto	-
(a)(Rio	72° 12' 47"	po.gn		- MSOS			Trachyete	<u></u>	adit(duration	-	
		-1					(ibañez Fm.)		+ amount:na)		_
5-20 Rio	46°29'32" Au-Cu	u free gold	vein	na	lm in wd. 20	· · · · · · · · · · · · · · · · · · ·	- Qz kerato-	ца	na	ditto	
(b) Avellancs I		ζĹ			 		phyer	· .			
							(Ibáňez Fm.)				
5-21 Mina Casca	46° 21' 20" Cu-Pb-Zn		vein	N40E		រាឧ		sil	adit of apx.	ditto	
0 Cascara	72° 0.1' 14"	qz		dip:na	200m in strike		(Ibáñez Fm.)		70m		
5-22 San Jose de		-Znveinl:cp.py	vein	na	3 veins rec-	na	Tuffs of	na	пa	Jose	
Ibañez	71°58′11″	cal			cognized:		Ibañez Fm.			Domingo	
		vein2:gn.cp.			vein1:0.3m wd.					Parra	
		py.sp			vein2:0.1-0.6m					(Puerto	
		qz.cal			in wd, 2m in					Ibañez)	
-		vein3:cp.py		- <u></u>	strike	· 	· · · · · · · · · · · · · · · · · · ·	·			_
		ц 8			vein3;vesicular						_
		gangue:na			shaped						
-23 Mina Long	46° 20' 48" Pb-Zn	Zn sp.gn	Manto	NOCH	0.1-0.7m thick	na	Andesîte	Ъц	Workings on	EMA	
	71°59′16″	cal		15SW	25-30m in		lava(Ibañez	77	2 horizons of		
-					strike, 10m in		Fm.)	<u>.</u>	30m in total		
		· . 		· .	depth				Otherwise.		
-		;			Ore reserves:			.	various short		
					proven: 1,000t			8	adits.		
5-24 Prospecto	46° 05' 18" Cu	py.cp.po.	Disseninated		Extention:	រាន		qz-ser	na	па	
Cerro	72°10′18″	mt.ht			Sector north:		nodiorite in				
Castillo					1,100x250m		volcanic se-		-		
	:	·····			Sector south:		quence of				
					800×150m		Ibañez Fm.				
5-25 Mina Fenix		n sp.gn.cov.	vein	to	0.2-1.85m in wd.	1.276.2	- Tufaceous	limo	e II	D a	
-	72°08'08" - (Cu)) py	2 lense-	N15W/90	300m in strike		sedimentary				
		qz.cal	shaped ore		proven(minable)		rock+andes-				
·			pockets		:2.952t05 5%2n	· · ·	itic lava.				
			recognized		probable:6.600t		Qz veins in				
	:				@ 3%Pb+5%Zn		sediments.				

9 —

Table 1 List of the Mineral Prospects and Mines in the Survey Area(9) Area No.5 Ibañez-Murta area(continued)

and Mine	lon "										
			Gangue min.	deposit	dib	deposit	Au Ag Cu Pb Zn Md	•	tion Produ	Production	holderž
da		Pb-Zn	gn.sp+(cp.	vein	N10W/	0.15-0.4m in wd	na	Andesite		adit:6m	na
-	2°07′40″	i -	py.bn)		06	200m in strike		lava(Ibañez	2 sh	afts:	
(Veta Ramón	 - - -	·	25					Еп.)	3-410	in depth	
			- 1							:	
÷~	6° 08' 53"	Pb-Cu		vein	រាឧ	8 veins rec-	na	Ibañez Fm.	na Na	na J	ഹ
<u>[~</u>	2°08′08″		oxides			ognized				<u>u</u>	Carmen Cea
	10,000		25		1011		-	1			Carvajal Git viv
	0 07 4/		sp.gn.ch.	TIAA					ourr-zh		
~	2-03,38		cov.py qz,cal		M 0 8				 : 	<u>4 0</u>	renix de Coyhaique
57		Cu-Pb	sp.gn.cp.	vein	N78W to	1.	- 85 0.527.8 7.5 -	Volcanic	na	na	ditto
	2°01′42″		cov, py		N60E	5m in strike	chip samples from	breccia etc.		workings	
as?)			qz.cal		vertical	Detailes:	old workings	(Ibañez Fm.)	are	present.	
						veta Patagonia:				· · ·	
	•	<u> </u>				N80W/90 1, 3m"4 -	······································				
						veta Algria:					
						N70E/90 0.8m"°		-			
						veta Nire:					
			<u>:</u>			N60E/90 2-3cm"	· · · · · · · · · · · · · · · · · · ·	·			
			• • • • •			veta Caiquenes:					
			1								
Alteracion 4	6° 15' 54"	713	na	пa	na	na	na	Basaltic	limo+	eu	na
Pico Rojo 7	1° 47′ 39″			alteration				stock int-	sil	.	÷
		· · ·		only				ruded into			
								Ibafiez Fm.			
Dvando4	6° 22' 25"	Pb-Zn	cp(other		na	50-100m thick	ца	Sequence of	na adit	ts of 25m	да
<u></u>	1° 45' 23"	-Ag~(Cu)	minerais	(with diss.		3.000m in		lutite+calc.			
			are not	cp)	•	strike		lutîte		•	
_	 	 	described)					(Ibañez Fm.)			.
Alteracion 4	6° 23′ 20″	na	Da	ла	80	БД	Βũ	Acidic rock.	sil+	11a	ца
	1° 53' 55"			alteration				-	1100		•
200	÷ •			only				gradually td			
				• .				intermediate			
	Cisternas Cisternas (veta Ramón Cisternas Media Luna 44 Anselmo Anselm		а 46° 08' 53° Pb-Cu 3) 46° 08' 53° Pb-Cu 72° 09' 47° Cu-Pb 72° 09' 47° Cu-Pb 72° 03' 38° -Zn 72° 01' 42° -Zn 72° 01' 42° -Zn-(Ag) 71° 45' 23° -Ag-(Cu) n 46° 23' 55° Pb-Zn 71° 53' 55° na	n 12°07'40" py.bn) 12°07'40" py.bn) 12°08" Pb-Cu Pb and Cu 72°08" 08" Cu-Pb sp.gn.cp. 46°09'47" Cu-Pb sp.gn.cp. 72°03'38" -Zn Q2.cal 46°10'36" Cu-Pb sp.gn.cp. 72°01'42"-Zn-(Ag) cov.py 72°01'42"-Zn-(Ag) cov.py 71°47'39" na na 71°47'39" na na 71°53'55" na na na 71°53'55" na na na	n 72°07'40" 59°49" 12°07'40" 59°49" 72°07'40" 59°47" 72°08'08" 53° Pb-Cu Pb and Cu 72°09'47" Cu-Pb 59.8n.cp. 72°03'38" -Zn 22.cal 46°10'36" Cu-Pb 59.8n.cp. 72°01'42"-Zn-(Ag) 22.cal 46°15'54" na na 71°47'39" 1a na a 71°47'25" ha na na 71°45'25" Pb-Zn cp(other a 46°23'20" na na na 71°53'55" na na na	<pre>a 46° 03' 53" Pb-Cu Pb and Cu vein na 72° 07' 40" 90" 53" Pb-Cu Pb and Cu vein na 72° 03' 38" -Zn 0x; py 80% 46° 03' 47" Cu-Pb 59, En.cp. vein N40% 72° 03' 38" -Zn cov, py 80% 46° 10' 36" Cu-Pb 59, En.cp. vein N78W 72° 01' 42" -Zn (Ag) cov, py vertic 72° 01' 42" -Zn (Ag) cov, py vertic 46° 15' 54" na na na na 71° 47' 39" na na na na na 71° 47' 39" na na na na na 71° 47' 39" na na na na na na 71° 45' 25" Pb-Zn cp(other Manto na 71° 45' 55" na na na na alteration 71° 45' 55" na na na na alteration 71° 45' 55" na na na na alteration 71° 53' 55" na na na na na na 71° 53' 55" na na na na na na na 71° 53' 55" na na na na na na na na 71° 53' 55" na na na na na na na na na 71° 53' 55" na na 71° 53' 55" na na</pre>	n 46° 08° 55° Pb-Cu Pb and Cu vein 90 200m in x 46° 08° 55° Pb-Cu Pb and Cu vein na 8 veins i 72° 08′ 68° 03° 55° Pb-Cu Pb and Cu vein na 8 veins i 72° 08′ 68° 03° 55° Pb-Cu Pb and Cu vein N40W 0.2-1.5m 72° 03′ 38° -Zn cov.py 000 20m in st 000 20m in st 72° 03′ 38° -Zn cov.py 80W 15m in st 000 0.2-1.5m 72° 03′ 38° -Zn cov.py 80W 15m in st 000.2-1.5m 72° 01′ 42° -Zn cov.py NOE 00 10.200m in 71° 01′ 42° -Zn cov.py NOE 000.200 000 mist 71° 01′ 42° Stort vein NOE 000 veia 0000 mist 70° 01′ 42° Stort vein NOE 001 0000 mist 71° 45′ 25° Pb-Zn cov.py only 001 0000 mist 71° 45′ 25° Pb-Zn c	n 72°07'40" PY.BN 90 200m in strike na n 72°05'60" PD-Cu Pb and Cu Vein na 8 veins rec- na a 46°08'55 PD-Cu Pb and Cu Vein na 8 veins rec- na a 46°08'57 PD-Cu Pb and Cu Vein N40W 0.2-1.5m in wd. - 0.1 0. 12°03'38 -2n cov.py 00W 0.2-1.5m in wd. - 8 veins rec- na 46°08'47" Cu-Pb sp.an.cp. Vein N6W 0.1 0.1 0.1 0.1 0.1 0.1 0.537.8 1. 12°01'42" Cu-Pb sp.an.cp. Vein N60E 5m in strike Ausb Ausb 1. 0.1 0.1 0.1 0.37.8 1. 1. 0.1 0.1 0.1 0.1 0.1 0.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 <td>$n_{1}^{2} 07/40^{\circ}$ $r_{0} m_{1}^{2} m_{1}^{2} m_{1}^{2} m_{2}^{2} m_{1}^{2} m_{2}^{2}$</td> <td><pre>m 22 07 40</pre></td> <td>a 12° OV 00 00 Frank Birby V. Frank Frank M. Strike A. A frank M. Strike A. A frank M. Strike A. A frank M. Strike A. Strike A. A frank M. Strike A. Strike A. A frank M. Strike A. A frank M. Strike A. A frank M</td>	$n_{1}^{2} 07/40^{\circ}$ $r_{0} m_{1}^{2} m_{1}^{2} m_{1}^{2} m_{2}^{2} m_{1}^{2} m_{2}^{2} $	<pre>m 22 07 40</pre>	a 12° OV 00 00 Frank Birby V. Frank Frank M. Strike A. A frank M. Strike A. A frank M. Strike A. A frank M. Strike A. Strike A. A frank M. Strike A. Strike A. A frank M. Strike A. A frank M. Strike A. A frank M

Table 1 List of the Mineral Prospects and Mines in the Survey Area(10)

ea No.5 Ibañez-Murta area(con

2	rrospect	191	Ure	Ure mineral	reatures or	SLLIKE	10 2710	alo		hour trinned		Country rockAltera-Exploration of	37117
	and Mine	lon "	metals	Gangue min.	deposit	dip	deposit	Au Ag Cu I	Pb Zn Mc		tion	Production	holder#
5-32	Alteration									rock with		 - -	
	Zanjin						•			continental			
	Francisco								•	deposit			
	(continued)				•		·			(Ibañez Fm.)			
5-33	Islas	46°23'17"	Pb	na	ខួព	na	2G	na na na	60 na n	na Ibañez Fm.	an .	na	na
	Levicanes	71° 45′ 56″				<u> </u>						· · · ·	
5-34	Vista Alegre	Alegre46°29'21"	Pb-Zn	gn.sp.cp.py	vein	NIOE	0.2m in wd.	na na 860	133 220	2 Acidic to	na	production	EKA
\sim	(Veta	72°05′30″	-C- 1	cal qz		70%	40m in strike	expressed as	as ppm	intermediate		suspended in	
	Hernosa)		•					(lsample)		volc. rock		1960.	
										(Ibañez Fm.)		l adit of	
							•					40m and 3	
						,				1.		caves	
5	Arroyo	46° 32' 24"	Cu-(2n)) vein1:cp.py	vein	N27E/90	1.5/1.2m in vq	na na 8 12	na na na	a Gneis(Pz)	na	trace of	ъа
	Escondido	72°20′35″		cc, bn	(2veins rec-	N67E/90	10m in strike	na na 10.5 r	па па па	-0		explossives	
				vein2:sp.cp	ognized			Assays of	2 samples			at a small	
				ру								scale	
36	5-36 Mina Rosillo	Rosilld46°32′11″	Zn-(Pb)) sp.gn.py.cp	Subhorizon-	na Lia	1.5-2.5m thick	Pyrite zone		44	sil	production:	EMA
		72°23'55"		gangue:na	tal Manto			na 110.090.02	-म	na of marble	+ trace	traceJanDec. 1979	
· · ·					and disse-		Ore reserves	Zinc zone		+phyllite	of cp-	4.984t015.82	
					minated ore.	:		400 10	0.5 37 na	10	py diss	Zn ore	
	•				Manto shows						in the	Jan. 1980	
					zonation:-						western	101t@6,14ZZD	
					Zinc(+gn)						part	ore	
	:				zone(outer) +byrite zone							······	
5-37	Veta del	46°32'53"	Pb	gn S		na	2.5-3m in wd.	eu		Marble	ца	113 L	ditto
	Puerto	72° 25' 23"		gangue:na			· · ·			:			
5-38	de	46°36'28"	Cu	cp.Cu-oxides	vein	NIJW	0.3m in wd.	ра		In contact	an.	113	ра
	Jose Muñoz	72° 29′ 12″				06	20m in strike			of granitic			
	Leiva				•					rock+meta-			
										morphic rock			

- 11 -

Table 1 List of the Mineral Prospects and Mines in the Survey Area(11) Area No.5 Ibañez-Murta area(continued)

			1	TOTOTINE ATA										
	and Mine	lon "	metals		deposit	dip	deposit	Au Ag	Cu Pb	Zn Mc		tion	Production	holder¥
5-39	01ga.01guita46°32'12'	346° 32' 12"	Pb-Zn	ds•u2	vein	N35E/90	Olga Sur:0.1m.		ខួប		Marble with	пa	Only Olguita	EKA
	Sur y Roma	72°28′17″		gangue:na	:	(Roma)	Roma: In in wd.				intc.calc.		was mined at	
		aprox.					100m in strike	-	••		sch.lieing		a small scale	
1		· .	÷								above phy.		with 100t of	
					:	_					Schistosity.		production	
											NE/90.extend	-7.0	· · ·	
-											to SE of El			
											Pelado			
2-40		46° 32' 23"	Pb-Zn	gn.sp.cp	Manto?	Dа	100-150m thick0.76	0.76	2250.935.456.04	- 70.0	Brecciated	Da	Continuous	na
	Bajo	72°29′50″	-Cu- (Ag		dislocated		1000m in length				calcareous		exploration	
			-Au)		by faults						rock		works were	
			_	· .									conducted	
				•									but suspended	
								-	 				in 1960.	
								1			-			÷
5-41	Prospecto el Toro	46°32′13″	Cu-(Pb -Zn)	po.py.cp	lenticular vein	N30W	Distribution area:300x25m		- 23 1.0 3.6 - exploration trench	3.6 -	Lense of crystalline	рд	exploration:	EMA
	(Cerro el			gangue: na			Width and	cuoted fromFlores(1964)ls.with	omflores	(1964)	ls.with		fr total).	
	Toro)						continuity in				intercalated		production:	
											phyllite.		Па	
					•		According to		· .					
							Flores(1964):							
				· · ·	·		Strike length				-			
							is abcut 1.000m							÷
						_	with combining							
						:	El Toro & Las				•			
	•						Piritas							
	-						Tobar(1964):		i					
						-	the deposit is							
							stockwork	· ·	_					
5-42			Cn	po.py.cp	Iense	2MOEN	20-25m in wd.	0.5	1	1	Limestone	ខា	No activity	ditto
	las Piritas	72°31'25"		(sp.gn)		15SW	100m in strike				with intc.			
				gangue:na							of phy.			

- 12 -

.

Area No.5 Ibañez-Murta area(continued)

			T				ar *						ſ									i													
Title bolderű	KINDTOT	EHA		ditto		-		ditto		:			na	•			EMA				ditto			na			50 13						EHA		
rockAltera-Exploration &	E FOUNCEION	An adit of sm	•	2 short adits				production:	0es @ 32Cu	were mined	on the scale	10m×2m	Very small	prospecting	adit only	adit	Small trenchs	and pits			Trenching			na			na						Open pit:	41x2x6m	Adit:25m
Altera-	L L UI	ра		. 1.2	:			па					па				na				па			na			na						Пâ		
Country	· .	Metamorphic sect	LOCA	Green sch.	(Basement	metamorphic	rock)	ditto		: :			Schistose	rock	:		Basement	metamorphic	rock		ditto			Ls. and phy.			Sl.and phy.	with seg-	regated qz+	intercalated	green phy-	:	Mica sch.		
grade *	EU 44	। । । रा		1		2		na					Da				na				па		-	na i			па						1		
0re	2	<0.2 - 2.04		1.4 - 1.12																				-							-		- 1200 -	·····	-
Size of	nepos r	lm in wd.		2m in max.wd.	25m in strike		· ·	100m in strike		•			0.6-lm thick				2m in max wd	50m in strike			10m in max.wd	20-30m in	strike(maxl)Um	0.2m in wd.	N	3.5m in depth	-2m in wd.	(max.10m)	30m max in	strike			0.2-0.3m in wd.	20m in strike	5-6m in depth
ω .		N10W		N5W	06	 -		NSOE					na 1				NE	dip:na			N-S	dip:na		N35W	subvert.	-	na							85E	
Features of	depust r	Vein Yein		Lenticular	vein			Small lense					Manto				Lense				Lense swarn			Veinlets			Lense swarn					-	Vein		
Ore mineral	uangue min	po.cp	gangue: na	po.(cp)	gangue:na			po.cp	gangue: na				sp.cp	gangue:na			po.cp.sp	gangue:na			po.cp	gangue:na		py.cp.Cu-	oxides	qz	py.po	gangue:na					цŞ	gangue:na	
Ore motolr	легало	ទី		Cu-(Au)			-	C ⁿ		-			2n-Cu	•			Cu-Zn	•			Cu			Сu			FeS						Pb-Ag		
lat ^s	TOL	46°32'45"	0+ 70 7/	46°34′19″	72° 32' 43"			46° 34' 45"	72° 33' 49"				1546° 35' 24"	72° 34' 22"			4-6°35'31"	72°33′45″		•	45.35'56"	72° 33' 17"		1a46°39′29″	72°35'27"		46°33′33″	72°37′34″				- *		72° 39′ 22*	
Prospect	and nine	Farellon		Veta el	Llano			Las Mulas					Pertenencias46°35'24"	Costanera			El Flores				Veta Pampa		- 1	Isla Malvina46°39'29*			Cerro	Colorado	(a part of	Prospecto	Morro	Colorado)	Veta el	Plomo	· ·
No		5-43		5-44	•,			5-45		·	·	<u> </u>	5-46		······································		5-47				2-48			5-49	•		5-50						5-51		

- 13 -

Table 1 List of the Mineral Prospects and Mines in the Survey Area(13) Area No.5 Ibañea-Murta area(continued)

and Mine	1on ¥	metals	Gangue min.	deposít	dib	deposit	Au Ag Cu Pb Zn	n No	tion	vouncij i occanicalezziou a tion Production	holder
Mina Lago Negro	46° 33′ 5″ 72° 38′ 54″	ca		10 N O	NE 50-80N	2-20m in wd. 50-100m in strike		Mica sch+ green phy.	63 63	Production: 10.000t @ 3.152Cu	EMA
			:			a a				(duration not known)	
				7		@0.35% Cu					
Campo	46° 38'	Cri	po.cp.py	Veinlets	N3DE		0.4-0.7 %Cu		D.C.	Trenches and	20
Clemente	72°31'		Cu-oxides		subvert.	100m in strike	4.7-6.6 %Cu	<u> </u>		small pits	
Alarcon			26		in gen-		<u> </u>				
	- - -	-	-		eral		(assays of three veins	eins) rock)			
Veta Torres		Сu	py.Cu-oxides	Vein	N30W		ца ца	Phy.	рд Г	ла	na
-	12° 40'		gangue:na	· .	84N	7m in strike 5m in denth				-	·
Foliv	Campo Felix 46° 26' 48"	13	CO DV DO	Veinlets	L CQ	: e		17 - Internalator		Come chafte	au
	?					1				distribute.	1
		·						schistose			
								rock			
Río Engaño	46° 28' 7"	Ю	mo1	ditto	irreg.	1km in strike	61	Peg	па	Ba	D 2
:	72° 43' 52"		gangue:na		sub-hor.	wd.:na		related with	11		
		•						Patagónia			
								batholith	 		
Veta Cascad	Cascada46° 29' 45"	Ю	mol, py, cp	Vein	N25E	0.2-1m in wd.	- 119 -	In contact	D.	Collapsed old	112
Hurta.	72° 45' 23"		25		45SE	60m in strike		zone of phy		workings	
•			:			(visible part)	· · · · · · · · · · · · · · · · · · ·	and grano-		are present.	
					4			diorite			
Sector	43° 30′ 16″	Cu C	po.py.cp	Vein	÷	0.6m in max wd.	1.12 -	Granite	ца	na	D3
Alvarado	72° 45'		clay		75NE	very short in					÷
						strike length			- 		
Isla Rivera	Rivera 46°32'37"	сп	py.po.cp	Lenticular	N30E	3-7m in wd.	- 0.39 -	In contact	Nearly	y na	na
•	72° 42' 38"		Cu-oxides	vein	sub-vert	200m in strike	2 samples	zone of phy	none		-
•••					· · ·	(visible part)		and granite			
					1.			· · · · · · · · · · · · · · · · · · ·			

- 14 -

•

Table 1 List of the Mineral Prospects and Mines in the Survey Area(14) Area No.5 Ibañea-Murta area(continued)

deposit
Vein-shaped Nout
sub-verd 15m in s (visible
Vein-shaped N40-70W 3m
manto 45-55S 200m in strike
20m in depth
Lenticular N35W
cipal) (/E)conjoins
with principal
veins and forms
bonanza poss-
Vein NGAF A A
806
Vein N45W 0.1m
85E [incl.veinlets
1000m in
Vein N2OE 2mx90m
80NW
Diss.and/or N80E 3mx10m
veinlet 20SE

- 15 -

Area No.5 Ibañes-Murta area(continued)

No.	Prospect	lat ^s	Ore	Ore mineral	Features of strike	strike	Size of		Ore	Ore grade *		Country roch	Altera	Country rockAltera-Exploration &	Title
	and Mine	lon "	metals	metals Gangue min.	deposit	dip	deposit	Αu	Ag Ci	Ag Cu Pb Zn	л Ио		tion	Production	holderž
5-66	5-66 Co.Blanco	46° 32'	cn	រាង	Skarn	N55W	0.3mx5m	па	0.1	0.47 2012201	01 na	Ls.lense in	Ла	Бд	ца
		72°35′	÷			25NE						sch.			
5-6.	5-67 El Lucho	46° 35' 42"	cn	ាន	ditto	N60E	3mx 30m	na	0	0.3014118771		na Ls.included	na	Da	ра С
	-	72°26'46"				BONW						in intrusion			
5-65	5-68 Veta Cuchara46°24'27"	846°24'27"	C ^{II}	ср	ditto	NIDE	0.2m×10m	na	-	1.28 201 5	501 na	na Accidic	an .	e t	ра
		7.2 11' 27"		ζЪ		80SE				• .		pyroclastics			
5-65	5-69 Veta San	46° 30' 40"	Pb-Zn	gr.sp	ditto	MOIN	0.3mx30m	Da 1	8.60.	18.40.151.521.79 na	en Pr	ditto	na	ца	ДA
	Jose	72°08′27″	_	bar		80SW	6 parallel	·							•
		· .	•				veinlets					•			
5-7(5-70 Veta Seco	46°27'34"	CL	na	dítto	N80W	1mx 15m	na	91	1651 9017001	0f na	ditto	лa	212	na
		72°23'40"	1			60NE									
5-7	5-71 Los Leonos	46°25'11" ditto	ditto	na	ditto	N80W	0.8mx10m	na	- 1	7210.120.26	26 na	ditto	na	na	Da
	Nol	72°19′16″				-60SW									
5-7	5-72 Los Leonos 46°24'38" ditto	46°24'38"	ditto	u S	ditto	N65E	ងព	па	- 1	7812.38 5	501 na	ditto	na	ца	ра
	No2	72° 19' 54"		ďΣ		80SE			-	.		•	·		

Area No.6 Rio Los Leones

°N0	No. Prospect	lat ^s Ore	Ore	Ore mineral	Features o	t strike	Size of		Ore grade *	ade ÷	J	Jountry rec	MALTER.	Country rockAltera-Exploration & Title	Title
	and Mine	lon *	metals	metals Gangue min. deposit dip	deposit	dip	deposit	Au Ai	Au Ag Cu Pb Zn Md	Pb Zn	Ě		tion	tion Production	holderž
5	5-1 Veta Punta 46°48'23"	46°48'23"	Сц	ъл	Skarn	NISW	0.2mx5m	na -	84012	151890	na 1 2 3	na - 840121518901 na Accidic	bα	еп	ជា
	Baja	72°48′47″				60NE				: 	<u>. 1-4</u>	pyroclastics	-01-		
54	5-2 Veta Juan	46 45, 16"	с С	na	Vein	N25W	0.5mx10m	na -	3.124	051 16	na t	na - 3.124051 161 na Bk.sch.	na	113	ра
		72° 49' 44"				70SW						· • • •			
e.	5-3 Veta Raul	46° 49' 26" Cu	Cu C	រាន	ditto	NSE	0.1mx10m na - 2.1525010.93 na	na -	2.152	5010.9	En en	ditto	na	na .	na
	•	72° 50' 08″			•	06								•	
].														4	

با ب ģ

t: expressed as ppm
: below detection limit
: not defined as the exploration title or the mining title

:

- 16 -

Table 1 List of the Mineral Prospects and Mines in the Survey Area(16)

Area No.7 Chile Chico-Chacabuco area

		101	metals	Gangue min.	deposit	dip	deposit	AU AE C	Cu Pb Zn	Кo	tion	DD Produ	tion Production	holder
1	Paulina		- (Zn	gn.sp.cp.	Manto	N20E	0.3m thick		05	1	ics		t of 8m	EXA
		72°11′28″	-Ag)	bar, cal		25N	100m in strike (visible part)			and chert	ert			
7-2	Laguna Verde	Verde46° 32' 35"	Cu-Pb	py.cp.gn.sp	Vein	-M/MOEN	0.2-4m in wd.		5.7	- Qz ker.		arg+silA prospecting	ospecting	na
		71057		qz.bar		N-S/65E		veijn2 15	1 1 1	- alteration	ation	pit(6	pit(6m deep)	
						л. с.		Grades c	Grades of Au and Ag	Ag Zone en-	en-	was c	digged in	
								are not a	available.	velop	velops the	1950.		
	. •					· ·				fracture	ure			
										swarm.				
7-3	Mina La Poza	Poza46° 36' 09"	Pb-Zn	gn, sp	Manto	N65E	1.5-3.0m thick	na 370 n	na na na	naMantos occur		na 2 ad	2 adits of	EHA
		72° 11′ 28″	- (Ag)	bar		25S	300m in strike			in pyro-		70 ar	70 and 30m	
-						(lower	Ore reserves:			clastics	ics of		<u> </u>	
					*	part)	probable:126Kt	•••		Ibañez Fm	Fm,	proc	production:	
							possible: 84Kt			Cherts of	s of	198	1980:130t@	-
	·						•			0.5-2m	0.5-2m thick	4 92	4.9%Pb+2.0%	
										intercalate	alate	2n		
	•						•			into d	nto deposit	1861	981(Feb.):	
										-		2451	245t@5.3%Pb	
												+	.2%Zn	
5 1	Valle Del Ric	Rid46°38'15"	Mo-Cu	py,mol.cp	Vein		0.05-0.1m in wd	- 522.06	. 06 -	1.6 Stock of		na	па	ра
- ·	Aviles	72° 15' 47"		28		60S	7m in strike (visible)	- 436.20	- 20 -	3. granod	granodiorite		 	
7-5 1	Mina	46°51'00″Cu-Pb-Zn	Cu-Pb-Zn	cp.gn.sp.py	Veins	N80W	Q.3m av.in wd.	-	11.33.3710.2	Z - Sch.+phy.		na Opera	Operation was	EMA
<u>`</u>	Escondida Y	72° 53' 00"	-	qz,cal.chl	(parallel	S06-09		-	(1 sample)			suspe	suspended in	
-	Veta Nueva			-	veins)		75m in depth			- 22	<u></u>	1981	1981/Feb.	
							(exploited)			1				
		<u>.</u>					Ore reserves:							
							Escondida	,	-					
							Probable:7.3Kt@							
							12%Cu							
_							Possible:5.4Kt0							
							17200							

- 17 -

Table 1 List of the Mineral Prospects and Mines in the Survey Area(17) Area No.7 Chile Chico-Chacabuco area(continued)

.

																			·	·			·							
Title holder#				ра			.	ца				EHA											• • •				да			
rockAltera-Exploration & tion Production				na				80		·		Adits of 117m	in total														Adit of 15m		-	
Altera- tion				ла				ра				па	•														па			
Country				In contact	of Jurassic	rock and	gr.on fault	Acidic to	intermediate	rock(Ibáñez	Fm)	Phyllite					:			-			-				Phyllite			
Au Ag Cu Pb Zn Mo				na				2 T		-		- 2502.19 28 7.9 -	samples of selected	rich ore													ЪЗ			
Size of deposit	Nueva	Possible:40Kt@	4ZCu+1ZPb	0.25m in wd.				na				0.9m in max.wd	325m in strike	(max.)	25m in depth	2 ore bodies	are recognized	Ore reserves:	Sector 1:	Proven. 2.488t	Possible.4.050t	Sector 2:	Proven. 5.700t	Possible.2.040t	Ore grades are	not available.	0.5m in max.wd.	100m in strike		
strike dip				N45-55W	dip:na			na	•			N60-80W	dip:SW			•.											NN-MNN	°06		
Features of deposit				Vein				na	gangue:na (mineralized	floats kown)		Vein-shaped	manto ?		-						<u> </u>					-	Vein?		and as % for the others	mining title
Ore mineral Gangue min.				cp, py	gangue: na			Cu-oxides	gangue:na			gn.sp.cp	zb														cp.gn.py.sp	gangue:na		title or the
Ore metals				5				Ca	(oxided)			Pb-Zn	-(Cu-Ag)													-	Cu-Pb	-(Zn)	and Ag.	oration.
lat ^s lon ^w		- - -		46° 39' 56"	72°22′08″			46° 42' 30"	72°21′ (72° 42' -											- 			46.53	72° 39'	g/t for Au	s the explo
Prospect and Mine	Mina Escondida y	Veta Nueva	(cntinued)	Arroyo El	Saino			Arroyo	Mallin	Chico	:	Mina San	Sebastian		·												Los Maquis		expressed as g/t for Au and Ag.	not defined as the exploration title or the mining title
No	7-5			7-6				7-7				7-8															2-9		* *	й. ж

.

.

- 18 -

Table 1 List of the Mineral Prospects and Mines in the Survey Area(18) Area No.7 Chile Chico-Chacabuco area(continued)

•

and Mine	lon metals	ls Gangue min.	teatures of deposit	dip	deposit	Au Ag Cu	Pb Zn Mo	C	tion	tockartere-rapion at tion Production	holder¥
7-10 El Maiten	46° 54' 49" Pb	:	Vein	N25W	0.2m in wd.	211	-	Phy. and	ងជ	ра	ра
(Darío	72°45′47″	gangue:na		06	lOm(visible).			grey schis-			
Mårquez)					300m(infered)			tose rock			
		╁		10010	ANTICHT						
/-11 Prospecto	46, 34, 22 WO			N-5/ /UE	U.DICH IN WG.	20	-	Porphyritid	ра	, na	an
Arroyo	72°18'39"	20	stockwork		(spacing:5-20m)			qz monzonite	-		
Hernandez			. <u> </u>		Only small			intrusion			
					indications of			into volc.of			
					Molin qz-py.			Ibañez Fm.		i	
				-	veins.			· .			- ,
7-12 Prospecto	46°38' Cu-W-MG	I-Md cp.wol.sche	Vein	NNW/NNE	0.2-0.3m in wd	27	4 1	Granodiorite	ра	na	ра
Arroyo	72°06′24″	gangue:na	Vein occurs	dip:na		verbal in	an a				
Pedregoso			in horizon-		-						
		-	tal cleav-								
			ages.								
_	-		Cp occurs								
			in druse				· · · · ·				•
		,	with trace	- - -						-	
			of wol.+sche							 	
7-13 Veta de Oro	46°37'	Cu-Au cp.py.ht.mt	Vein	N70E	lm in wd.	n U		Andesite	ра	ца	na
	72° 15′ 14″	Mn minerals		90-855	25m in strike			(Ibañez Fm)			
	• • •	qz.cal			(visible)	the gold grade was	ade was	• .			
						under 120ppb	- م-				
7-14 Veta Leniz	46° 35' 24" Pb-(2n	(Zn) gn.sp	Vein	N07N	0.2-1.2m in we		411.75 -	Qz ker	μa	na	ងព
	72°9′55″	25		vert.	700m in strike			(Ibañez Fm.)	 		
7-15 Prospecto	46°31'17" FeS-Pb		Disseminated	1	Area of altered	- 0-3 29	245 360 -	Qz porphyry		ъа	កឧ
Sur lago	71°56'37"	gangue:na			rock is aprox.	Expressed	as ppm	+porphrytic			
General			·		3kmx 1km			and+and.lava			
Carrera					Distribution of			(Ibañez Fm.)			
		-			ore minerals i	ils					
•. •					not described.						

#: not defined as the exploration title or the mining title

19 — ----

Table 1 List of the Mineral Prospects and Mines in the Survey Area(19)

Area No.7 Chile Chico-Chacabuco area(continued)

No.	No. Prospect	lat ^s	Ore	Ore mineral	Features of	strike	Size of		Ore g.	Ore grade *	<u>ठ</u>	ountry rock	Altera-	Country rockAltera-Exploration &	Title
	and Mine	lon "	metals	metals Gangue min.	deposit dip	dip	deposit	Au A	g Cu	Au Ag Cu Pb Zn Mo	Яd		tion	tion Production	holderž
7-16	-16 Veta Guadal 46°51'25" Pb-Zn	46°51'25"	Pb-2n	па	Veinlet	NZOW	0.7m×10m	na n	a 2101	75011.1	6 naB	na 210175011.16 naBlack schist	20	пa	na
		72°41'22"				ASOE									
1-1	7-17 Mallin	46°41'34" Cu	Cμ	Da	ditto	NZ5W	0.35mx2m	na ni	a 0-32	na 0.3266510.17 na	7 na	ditto	13	ett	ра
	Grande	72° 24' 28"				4 ONE		. 							
7-18	7-18 La Prima	46°36'22" Pb-Zn	Pb-Zn	ងព	Diss.and/or		2mx 10m	na 9	.5 ла	9.5 na 0.469.5		na Accidic	na	na	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		72° 10′ 06″			veinlet	ASOC					<u>a</u>	pyroclastic			
	,									 	aı	and jasper			
1-12	7-19 Veta Victor 46°51'58"	46°51'58"	Pb	na	na	N40E	0.5m×10m		11	na 24 1140.401104 naQuart-	1) naQi	uart-	na	138	pa
		72°30'05"				50SE				 	ă	porphry			 i
 *	: expressed as g/t for Au and Ag, and as % for the o	g/t for Au	and Ag	, and as % fc	or the others										

t: expressed as ppm
%; not defined as the exploration title or the mining title

- 20 - Table 2 Summary of the Survey Results on the Mineral Prospects and Mines(1)

															 															:		
Title	holder	na					:					I.									na		ца		па							
rockAltera-Exploration &	Production	Approximately	300t of ores	are estimated	to have been	mined out.	Involving a	crosscut of	11m.	•					····						оп		η πο		A trench of	8m length.	No indication	of minerali-	zation			••••
dAltera-	tion	chl								•	,				 		chl				דוא		Wk.sil		sil		<i>.</i>					
Country roci	Hd	<1 Andesite	100	-	5		6	5	2		τı.	1 1		<u>م.</u>	 J Granite		21 Andesitic	tuff.		2	- lSerpentinit	:1% Cr:2%	38 Andesite	33	2 ditto	لمر	74					
by results*	Cu Pb Zn	456 <20 54	2.70.3% 80 86	0.90 12 <20 61		138 <20 74	9 675 6 75	3 665 7 22	20 9% 5 62	. 50.12 4 19	3 11 2 11 95	6.82.3% 7 250	4.91.12 5 25	3.50.8% 7 30	.90.2% 60 120		0 52 100 64		1 18 <20 33	1 201 <20 16	<0.5<1-2 <5 -32	Pd:<2 Co:-69 Ni	2 6 4 67	र 7 6 13	2 157 7 36	2 142 6 19	1 6 10 28	1 135 12 11				
ASSAY	Au Ag	ore <20 0.2	4.0 2.	40 0.9	<20 <0.1	<20 <0.1	500 12:9	120 0.3	2.31 4.2	<20 0.5	9.5148.3	1.51 6.8		1 11 3	9 1 09		200 12Z 0	e 20 <0.	<20 <0.	<20 0.	<2 <0.5	Pt:<5 Pc	1. 20 0.2	ce 20 0.	20 0.2	20 0.2	<20 <0.	ce 20 <0.			le	
Size of	deposit	4x8x3m as or	zone				-					• • •			 30cm wide	5m in strike	50cm wide	1m in strike			not known		1m in max.wd.	30m in strike	System E-W:	2 veins;	5-20cm wide	10m in strike	System NW-SE:	l vein only:	80cm max.wide	En in cruito
strike	dip	N60E	MN07	(orien-	tation	of ore	zone)							-	N70W	NO Z	NOON	85N			na		NISW	70E	E-W	50-55S		N20W	45SW			
Features of	deposit	Stockwork					•••				•				Gossaneous	vein	Vein	-	· · ·		Orthomagma-	tic	Vein		Vein	2 systems	of vein rec-	ognized.				
Ore mineral	Gangue min.	Au.cp	ht(spc)		-										cp.py	limo	cp, py	mt.qz			no study		ру	<u>q</u> z	ht(spc) cp.	цg	limo,qz			-		
Ore	metals	Au?				•••	5				1. 1.				5		2				Au.Pt.	Ni.Co?	Pe Fe		Fe(Pb-	Cu)						
lat °	lon "	37° 50' 23"	71°27′23″												37°51′16″	71°27'10"	37° 51' 32"	37°29'41"					43° 11' 29"	71°56′29″	43° 10' 52"	71°53′15″						
Prospect	and Mine	Mina	Araucaria	-						•••					Estero	Curacatou	Estero	Curacatou [Punta Comau		Puerto	Reyes	García 1	:					.:	
No		1 1													q		<u>.</u>				2-1		3-a		3b	·						

*: expressed as ppb for Au and ppm for the others other than specified. 1: ppm
#: not defined as the exploration title or the mining title

- 21 -

Table 2 Summary of the Survey Results on the Mineral Prospects and Mines(2)

2	rrospecc and Mine		ute: metals	Gangue min-	denosit	din	deposit	Au Ar Cu Ph Zn Mo		tion	reconstruction Production	bolder
3-0	Carcia I	2	Fe. Cu		E	flat	10mx10m square	20 0.81.12 13 27	Andesîte	sil	A small pit	uotari,
			+(Pb)		(Replacement(N15E	(N15E	shaped with	(one sample only)			of 3mx2.5m	
				ht(spc).qz.	deposit)	ni WSči	0.6m thickness				х2н	
				ch1		general)						
3-d	Arroyo	43°35′55″	₽d.	gn.sp.cp	Skarn	N85W	80cm wide	< 30 < 0 1 40 2 86 < 1	Limestone	ou	OU N	807 .
	Pedregoso]	71°51'20"	·	-	(lenticular)	855	8m in strike	0 1 8 24		•		
	-							20 4.0 76 0.92 1				
3-6	Arroyo	43°36′18″	а ц	ру	Vein	ELW	10cm wide	<20 0.2 92 235 581 1	Slate			
	Pedregoso I	71°51′35″	-	cal.qz		75S	3m in strike					
3-5	Estero la	43021441			ditto	E04N		<20 <0 1 4 13 14 1	Granite	sil		
	Cascada	72°04'04"		ht.limo		80N						
3-8	Lago Espolón48°12'13"	048° 12' 13"	Cu.Pb	Cu-oxi.cp.	Diss.in the			<20 0.4 5 24 22 <1	Volcanics	sil	ê	12
<u> </u>		71° 59' 04"		цs	gossan			<20 0.1 4 9 44 < 1	metamor-	limo		
				qz.limo				0.2 7 19 35 <1	phosed by	bio		
								1.00.62 7 40 <1	int. of gr			
								100 0.3 552 109 83 1	· · ·			
••••				-				120 1.80.22 349 212 31				•
								<20 0.6 542 773 279 2				•
								60 0.6 312 85 72 <1	-			
											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Cerro	45.02.24	Zn.Cu	cp.gn.mt	Manto	E-W	3.2m wide	200 3800.724.52 402 4	Green tuff	ChI	Drillings	S.C.H
,	Estatuas	71° 59' 48*		cal.chl	(strata-	NOL	(observed in		(Coyhaique	epi	(total amount	Toqui
					(punoq)		an outcrop)	(one sample only)	Fm)		:na)	·
		 					1.7km in strike		·	i 	 - - -	
4-3	Santa Teresa44°46'19"	\$44° 46' 19"	Au, Cu,	cp.gn.sp.Au	Vein	NEOW	2-5m wide	40 2.7 290.521.12 60	60uarzporphry		ditto	ditto
~	(El Condor)	71°53'41"	Pb	zb		65E	in strike	654 1711.				
·							240m in depth	420 9.6 560.420.72 <1				
		· · · · · · · · · · · · · · · · · · ·				-		14 3 8				
								400 1.2 260.240.52 1	 	-		
· · ·						•.		121 215 5505.521.02 1				
								0.2 7			· .	
			• .					20 0 1 4 30 40 4	Accav)	110.000	results continueine to no	Dext nage

٠

- 22 -

t: ppm #: not defined as the exploration title or the mining title Table 2 Summary of the Survey Results on the Mineral Prospects and Mines

ම

Title holder¥ ditto ditto ditto ditto <u>na</u> "Old vein"is "New vein"is Exploration "old vein"+ being mined under drilling explora-A small pit Production: central categorized "new vein". Country rockAltera-Exploration 1.200t/day Production 3.3119.11.82 4500.23 13 Propylitic prop in Veins are into two. suspended of 8mx3mx ditto has been tion. 1.5m sil+arg n marzone. ginal cone. g tion (Ibañez Fm) Aplite in andesite Coquina. granite Dacitic breccia ditto nar l 34.12 28210 ę Ŷ 2125 88 5 830.240.648.02 2016.1 420 6806 97 389 3.6 256 240 4.7 440 1807.62 20 660 743 94 304 Zn (one sample only) (one sample only) Assay results* 770.322 (one sample only 10 160 1550 325 42 Ag Cu Pb 151 224 12 1.62 660 8.6 4800.52 40 õ 60 20 181 150 2280 17 ۍ ۳ 'n *: expressed as ppb for Au (as ppm for 1 marked) and ppm for the others other than specified. <u>с</u> 1115.9 120 2.2 0 N 0 **7** 0 20 0.2 <0.1 5.21 80 Au 60 231 <20 <20 Only 3 veinlets<20 with mol of lcm<20 100m in strike 100m in strike 80m in depth 1.5-3m wide etween veins. sionary in apl (Category;na) wide each are More than 10 80m in depth veins exist. Trace of mol Stockworks 5Mt of ore recognized. Size of deposit 1.5m wide diss.occareseves. levelop Ore Ore mineral Features of strike metals Gangue min. deposit dip 1:0E N60E 90 NOGN NJOW N20W 90 60 S-N 90 Single veins stockwork Veinlet ditto gn.po.py.cp Manto cal.act.gan(strata~ Vein and bound) sp.gn.po.py cp py.cp.Au. +(gn.sp) qz.cal ditto mol.py 22 hed Pb.Zn. Pb.Zn ditto Au.Cu 읓 5 45°00'38″ Veta 45°01'18" 45 02' 42" Veta 45°01'18" Mina El Anto-71°59'54" 44°36'15" Zuñiga71°57'50' 1.32'27' з 7,1°56'59' lat lon Estero Buitre Santa Teresa Type Manto) 15n Katterfeld Pedregoso y El Condor) continued. 4-10Rio Cisnes and Mine Prospect entre Río Mina el Togui (Vein) Toqui No 4-5 4-4 ei T

*: expressed as ppb lor Au (as ppm lor 1 marked) and ppm lor the other #: not defined as the exploration title or the mining title

- 23 -

Table 2 Summary of the Survey Results on the Mineral Prospects and Mines (4)

holder Title ВÜ <u>п</u>2 с 13 ца na 50 A drift of 9m. Country rockAltera-Exploration Production crosscut? A short о П Chl sil Sil tion 700.12 <1 andesite 40 18 <1 Mica schist 4Granodiorite Limestone Altered ditto Granite P 4298 64.47 25350 154.6 114.0 11242 390.421.723.22 0,2,5 500 80 4 5.5 106 <20 143 ŝ <200.12 30.117 <200.22 2л Assay results* 000 Au Ag Cu Pb 140 ×20 20 13110.03.52 <20 <20 40 <20 <20 < 20 180 20 20 < 2 Q 80 0.80.52 220 4 <u>~20</u> <20 30 <20 <20 80 2.61.52 20 0.30.12 0.60.22 49 232 1.60.32 707.72 20.32 20 0.5 770 1.50.42 40 5.20.12 1.20.42 264.32 80 4.10 4% 1.00.12 20 0.2 103 1.0 450 <20 0.539.4 264.97 0.5 973 40 4.80.22 1.10.17 20 30 22 0 - 09 20 20 0.4m wide(plus 20 280 40 40 40 20 120 20 80 80 360 Ś 60 100m in strike At least 5m in Max.0.3m wide 0.3m wide sil. 2m in strike 5m in strike Max. Im thick cock with cp Single vein diss.on each Max 15m in Size of deposit 0.3m wide im wide strike. strike (Ilew Features of strike NISE N85E 50N dip N-S 55E 80N S-7 15E Disseminated (lenticular (lenticular deposít ditto shaped) Skarn shaped) Vein Vein dito Ore mineral Gangue min. cp.mol.gn. po.cp qz(trace amount) cp.po cal py.po.cp chl.act po,cp gar,hed cp.po ht.chl 52 Cu. Ho metals g 3 ទី ទី 5 а 10 0 46° 05' 00" 72° 13' 18" 46°20'08″ 72°48'13″ Felix Barria46°26'23" I 72°39'07" lat ^s lon w 5-5 Río Resbalón46°25'32° Felix Barria46°27'03° 1 (72°39'06" 12°37′46″ 46°29'31' Mina Cerro Castillo Veta Perez and Mine Prospect Cerro El Coco No. 5 12 513 5-6

*: expressed as ppb for Au and ppm for the others other than specified. 1: as ppm

X: not defined as the exploration title or the mining title

- 24 -

Table 2 Summary of the Survey Results on the Mineral Prospects and Mines (5)

holderä Title ditto 1360.620.722.12 62 Assay results continuing to next page. EMA information) as suspended informations explorations lrillings in rom a miner Country rockAltera-Exploration Production 600t/day@ Production Details:na 2.93% Cu :(7861) Operation (verbeal (verbeal in 1986. About 10 1973 arg sil tion Greenschist <1 mica schist Limestone phyllite and and 606 1 66 331 420 720 42 520.220.52 60 87 ŝ 610.521.321.82 3200.12 100 982 8 40 40.10.623.82 26% 6960 92 1175 92 21 4740.922.02 3462 121 974 67 22.9 1991.024.12 450.370.471.92 1441.142.64 154 230.420.72.32 342 654 1321 92 Ag Cu Pb Zn Assay results* 50 3 ~ 666.1X 1000. 000 140.221 323 8340.421.426 300.120.422 140 100 -2 7 460.371.62 9.1 6700.221 300.220 92 1350.623.62 830.32 <20 202 <20 7.5 194 870 240.42 1.50.32 433.67 181 82 2.30.22 4 70 47 1.31.72 2 210.1 *: expressed as ppb for Au (ppm for 1 marked) and ppm for the others other than specified. 000 0.2 100 <u>20</u> 1km in strike<20 40.1 40 202 Αu 6 40 \$0 \$0 \$0 4 4 70m in strike<20 20 <20 <20 00 20 <20. 07 201 0.2-0.4m wide<20 < 20 40 604 20 60 8 60 20 20 202 60m in strike lip of the vein depth:unknown >200m? depth estimated 10m 15m in depth has not been Extention to х5тх2т аррх. 1-15m wide Max.one is deposit Size of 1m wide Small ore bodiesare scattered in size. Vein 3: Vein 2: Vein 1: tested: zone of Imst in many Stratiform Variable strike ing NE crops) (trend-N60W outdip 80S Features of occuring in the contact deposit Vein and phy Ore mineral metals Gangue min. py qz.chl cp.sp.mt. sp.gn.py (+cp) cal Pb.Zn n C Ore 46' 31' 36" 72' 38' 05" lat ^s lcn ^w 72' 33' 05" 46'34'31' Las Chivas and Mine Prospect Mina El Pelado No. 5-8 с Г

- 25 -

X: not defined as the exploration title or the mining title

Table 2 Summary of the Survey Results on the Mineral Prospects and Mines (6)

nolderä <1 Assay results continueing to next page. Title Country rockAltera-Exploration & are estimated to have mined Record (1988) 1.5Kt/montl and 3-4% Pb intersection. 2 holes(300m) Explorations Appx.0.6Mt in 1989. No @12-14Z Zn significant out so far. Production Production: cent td closed in Drilling: ore.but Nov. 1988. Mine was (adja-I ałways) tion not Ē Limestone Мо 9 G 5 4 28d0.27 1220.22 142 142 ŝ 80 9.60.110.52 102 1281.243.94 174 1040 42 122 242 302 <200.22 4 1 <20 320 5 508 83 2008.02 320 120.82 239 780.641.023.92 740.24 870 422 20 29.1 4500.32 132 166 1004.52 17 <20 423 322 Ag | Cu | Pb | Zn 20 Assay results* Z <20 38 96 18.20. 2 <20 20 55d3.5z 40 19.4 220 700 40 230 5 C 2 020 <20 30 <u>2</u>0 < 20 < 20 < 20 3.6 320 202 20 500 2 800 0 0 395 æ 1.90.13 0 0 с С 0 ю С 230 т О 0 0 <20 0.2 40 15.5 40 7 9 33 20 0.3 <0,1 0 0 6 out are unknown<20 0. (20 0. 20 <0. 20 ЧI 20 04 20 20 20 20 20 20 07 20 20 30 0 80 20 202 9 (20 20 0mx30m in size<20 2 840 Numbers of ore Max.ore body: estimated appx. thickness is odies mined Size of deposit uknown). : expressed as ppb for Au and ppm for the others other than specified. Ore mineral Features of strike Gangue min. deposit dip in limestone Stratiform metals Gangue min. sp.gn.py cal Pb.Zn Ore 46° 32' 58" 72° 24' 25" lat ^s lon ^w Mina Silva continued) Prospect and Mine Mina El Pelado †: ppm 5-10 No. 5-19 6°-5 2

- 26 -

#: not defined as exploration title or mining title

Table 2 Summary of the Survey Results on the Mineral Prospects and Mines (7)

314										•										. (-		<u> </u>	1]
holder¥				LAC							na Ti						na				រាខ			• .					EMA						
tion Production				Trenching							Short drifts	in 2 levels	(20-30m span)				Drifts in	2 levels(35m	span)		A pit of	15m length	2.5m depth	2m wide in	síze and	A drift of	25m along	vein.	Exploration:	Drilling:	9 holes(717.	87m)were con-	ducted in	1987.	title
tion				arg	-19		:		: .		sil	arg	~		,. 		sil				s11								arg	~					mining
Aul Ar Cu Pb Zn Md	2 4 27 401.12	530 966 1	71 5.0	<20 0.5 12 120 422 27 Rhyolitic	<20 0.2 7 30 25 1 tuff(Ibañez	<20 0.3 68 60 63 <1 Fm.)	<20 1.0 246 150 77 <1	40 8200 62 142 121 <1	<20 0.2 8 150 27 1	60 1324.820.82 800 <1	0.30.2% <20 35 1	1.5 340 100 4 <	<20 0.3 66 20 578 2(Ibañez Fm.)		780 130.62 800 65 3	<20 1.0 1650.13 508 47	260 7.00.4% 500 80 1 Silicified	<20 1.2 15 360 100 <1 volcanics			200 33.2 4300.428.2% 21 Andesite	60 94 2607.329.32 11	20 1.5 10 2000.12 7	1.6	200 51.6 4200.5% 13% 36	-41 59 4102.72 102 6			1.5 27 600	28.90.17	80 50.00.23 450 232] Phyllite	8.2 50 360	<20 0.2 12 <20 54 2	20 125 257 720 48% 1	as the exploration title or the
deposit				de	involving	6 veinlets of	8-14cm wide	in the vicinity	· · ·		lm wide	120-150m in		less	than 100Kt) 7		1.5m wide 2	400m in depth <	(estimated less	than 100Kt)	0.2-0.3m wide 2		·	L					- 11	about 20 bodies<20	<pre>4.0x18</pre>	m 6 x	Averagely 15 <	W4X4X	s. #: not defined
dip			•	NI3W	705		•		• •	1	N25-30E	. 50-55W					N-S	60			NIOW	80NW							Variable	-					e others
deposit				Vein							ditto	-					Veinlets	and	disseninated		Vein								Stratiform	occuring in	the contact	zone of lmst	and phy		marked) and ppm for the o
metals Gangue min.				cp.gn.py	26						cp.Cu-oxi	gn.sp	25				gn.sp.Cu-oxi	cp.py	άz		Cu-oxi.sp.	gn.py	qz cal						sp.gn.py	cal					
metals		•		Cu.Pb							Cu.Au?	Pb Zn					Pb.Zn.	ся Ся			Pb.Zn								ditto					age.	(DDm fo
lon				46°27' 13"	72° 14' 24"				· · ·		Cascara46°20'29"	72°05′31″		-		· · ·	46° 07' 52"	72° 04′ 56″			e46°24'39"	71°56'25"							d46°32′34″	72°24'05″				the next page.	ppb for Au(ppm for)
and Mine	Mina Silva	(continued)		Rio	(a) Avellanosi	(Veta Anita)			•••		Mina						Mina Fenix				Vista Alegre46°24'39"	(Veta	Hermosa)						Mina Rosilld46°32'34				• •	Continue to	*: expressed as
	10	to		5-20	(a)						5-21						5-25				5-34								5-36						ة •

- 27 -

Table 2 Summary of the Survey Results on the Mineral Prospects and Mines (8)

holder≚ Title EMA g Б na Da LAC ца Country rockAltera-Exploration Production: Production Trenching drift 30t/day g g limo arg g chl epi Sil tion tuff(Ibañez Fm.) 12pyroclastics Aplite and **Jblack** schist Rhyolitic 50 595.820.22 <1 Chert and Gandesitic 40 5.72.33 250 276 <1 Andesite 20 43.49.72 40 160 3 Granitic 4 Schist LOCK 30 43 <1 문 621 160 9.2 4630.72 80 190.12 813 260 38.78.52 260 187 540.722.12 294.72 394 600.27 820 422 <20 24.9 990 680 352 20 15.70.120.220.12 958.720.42 332.620.22 864.520.12 Au | Ag | Cu | Pb | Zn <20 4.00.42 340 592 Assay results* (one sample only) (one sample only) (one sample only) 4 3119 03 22 600 ð **6**.0 4 162 430 <20 <20 20 50 <20 <20 <20 <u>(</u>20 <20</pre> 8.13% Zn(2 ore Further 37Kt@ Possible:16Kt Proven; 35Kt@ western area Ore reserves: bodies) was obtained in including 3 Single vein veinlets of 0.12m wide 0.2m thick Size of deposit 0.2m wide. 16-22% Zn 12-13% Zn 0.3m wide 2m wide, In 1989 In 1987 цâ ра *: expressed as pph for Au and ppm for the others other than specified. 80SE Features of strike N63W 75N NION NI7E NISW 35E 78¥ dip па 50 Cu-oxi.cp. Disseminated py hed.epi.gan shaped vein Stratiform Lenticular deposit Vein Veinlet ditto Ore Ore mineral metals Gangue min. Au?.py cp.bn qz qz.epi cp, py; ga sp Au? qz Cu-oxi 20 넕 Au7 Au? Pb.Zn ő 5 5 46°31'04" 72°09'30" 46° 45' 28" 72° 52' 26" 46° 35′ 18″ 5-54 Veta Torres146°24'15' 72°39'25" Veta Torres146°24'00" 72°39'53 46°45′08″ 72°11′12″ * Sector Bajo 72°52'08" lat Sector Alto Río Leones Río Leones 5-36 Mina Rosill (continued) Prospect and Mine Veta San Paulina Jose 5-69 No. ъ Г 6-a 6- D 1

X: not defined as the exploration title or the mining title t: ppm

28 -

Table 2 Summary of the Survey Results on the Mineral Prospects and Mines (9)

D'lalaine Co..Ltd. *:expressed as ppb for Au(ppm for 1 marked)and ppm for the others other than specified. #: not defined as the exploration title or the mining title holder (U.S.A.) Title БЧ EKA Coleur EMA Country rockAltera-Exploration & Explorations No drilling A drift(2m) small pit 2.5-2.8%Cu 1.2-1.5XZB Drifts in 3 levels Production: Production Drillings Closed in July.1987 40t/day@ In 1985 only. arg sil g sil chl tion Mica schist sandy tuff 77 Black shal and Granite Dacite <u>_</u> Я. 9 170 312 2 300m in strike<20 | 1.1 76g 420 318 ň 180 251 8 300 289 2106.82 152 152 838.021.222.02 260.2% 386 20 20 132 200 172 <20 1.1.0 679 520 716 3050.421.02 5000.12 260 50.12 853 1623.32 <20 134 140 1324.42 340 200 24% 520 424 221.520.92 201.021.82 ZD 24 490 273 30.12 471 Assay results* Ag Cu Pb 250 540 20 <20 20 100 o 20 ò 26G -80 182 0 6, 102 4 0.4 <20 0 9 20 0 360 5.5 0.3 0 <20 |17.9 3 <20 0.5 20 0.7 <20 0.3 0 0 40 <20. < 20 Αu < 20 1 <20 <20 <20 360 20 20 20. 20 Im in max.wide<20 0.02-2.3m wide<20 20 50 20° 0.03-0.25m wide At least 700m Single vein Size of deposit 4 parallel veins with in strike lm wide Features of strike 20-30E N-S to 80N N70W N35E N60E 60S dip E-W 80S deposit Vein strata-Vein (punoq) Vein Manto py qz.cal.chl Ore Ore mineral metals Gangue min. qz.limo.ht sp.gn.cp. cp py qz Au? цŝ Pb.Zn. Cu Ρb õ Au? Mina 46°52'21" Escondida y 72°40'14" 46°35'25" 72°09'56" Valle Del 46°38'00" Rio Avilles 72°17'19" Prospect lat ^s and Mine lon ^w Laguna Verde46°33'18" 1105719" Veta Nueva 7-3 La Poza No. ŝ ? 1

- 29 -

Table 2 Summary of the Survey Results on the Mineral Prospects and Mines (10)

2	No. Prospect	lat ^s	Ore	Ore mineral	Features of strike	strike	Size of	Assay results*	Country rockAlt	Country rockAltera-Exploration &	Title
	and Mine	lon "	metals	metals Gangue min.	deposit	dip	deposit	Au Ag Cu Pb Zn Md		tion Production	holderä
1-	7-a Co.Bayo	46° 33' 00"	Au?	Au?	Vein	N7-50W	N7-50W Several veins	40 0.3 12 30 37 2	Quartz- a	arg no	
···		71°50'54"		qz.limo		80%	with 0.2-0.5m	20 0.5 5 30 13 12	porphry s	sil	
							wide	60 1.8 4 50 59 19			
	-						Area of altera- 20	20 4.3 2 20 24 2			
-							tion:0.5x2.5km	20 0.9 2 <20 10 1			
					-			1.11 48 4 90 11 5			•
								80 3.7 2 30 14 6			
								80 5.5 1 <20 17 2			
<u> -</u>	7-b El Colegio	46°33'21"	Au?	Au?	Altered zone	11 - N	The zone	<20 0.5 1 30 16 1	Dacite		
	Alteration	71°53′28″		qz,limo	associated	(altered	extends to				
	Zone				with gossan.	zone)	area of 0.5x	(one sample only)			
					stockworks		2кт				
	-				of limo+qz.					-	
80 80	/-c Veta Don	46° 34' 19"	Au	Au py	Vein	E-W	1.5m wide	2.91 380.32 650 395 50	dítto	arg no	na
	Juan	72° 15' 12"		qz.ht.cal		06		260 2.4 48 210 144 2	-		
								3.51 900.220.12 733 4			
. <u> </u>								80 15.6 262 300 999 4			· · ·
								60 1.4 21 50 141 4		-	
+	*: expressed as ppb for Au and ppm for the others other than specified	ppb for Au	and pr	om for the oth	iers other th	lan speci	fied.				

.

t: ppm
%: pot defined as the exploration title or the mining title

- 30 -

Area		Locations				A	ssay Re	sults				
	N N N	Ŧ	s Sample	No	Au (g/t)	Ag (g/t)	d) nD	(mad) dq	(mdd) uZ	Mo (ppm)	As (ppm)	S (&)
Nol Longuimay	1	Mina Araucar	EM E	9	<20	•	456	<20	54	<1	7	0.05
			FM 107	~	40	2.7	2	80	86	 ں	22	•
				œ	40.4	•	٦.	<20	61	F-	17	•
			FM 109		<20	<0.1	36	<20	50	5	б	0.05
					<20		138	<20	74	<1 ×		•
					500		~	ú	7.5	m	10	
					120		10		22	<u>,</u>		4
	<u>.</u>				2.34ppm	4.2	9.6	ۍ ۱	62	7	17	•
-		· ·			0	•	.14	4	ο Γ	1 ~	s V	
		· .			•			[[95	m	23	J.
			YM 107	<u>مجد -</u>	5 O.D		. 2.8	7	250	11	23	4
					0		1.148	<u>ا</u> ما ا	25	 F-		1.45
	<u>.</u>		VM 109		1.08ppm		0.82%	7	30	ŝ	20	1.44
	Q 1 1	Estero	SM 106	9	60	1.9	0.16%	60.	120		740	1.33
	- تلغ	Cracatou I	·.									
	1	Estero	F		200	11.7	1	100	64	21	<5	4
		Cracatou 1	0		20.	<0.1	122	<20	40	1 2	-	<u></u>
			2		<20	<0.1		<20	33	,-	10	ŝ
		-	SM 10	4	<20	0.1	201	<20	16	7	<5 <5	0.68
	1		SM 105		<20	<0.1	m	<20	50	<1 <1	10	ŝ
			5		<20	<0.1 <	42	с. С	10	-1~	21	0
					60	0.1	80	24	17	9	σ	୍
•			FM 102		<20	<0.1	5 5 7	100	54		~	0.05
					< 20	a C	088	C F	C 7	38	σ	٢

Table 3 The Results of Ore Assayings (2)

Nd Prospecs and Sample No Au Pt Pd Ag Cu Co Ni Pb Zn Mo Cr Fe Mn samples Mines ppb ppb ppd ppm ppm ppm ppm z ppm 2-i Funta Comau TM 201 <2 <5 <1 53 1105 <5 18 <1 850 3.42 175 Rock float TM 203 <2 <5 <2 <0.5 2 53 1105 <5 18 <1 850 3.42 175 Rock float TM 203 <2 <5 <2< <0.5 2 53 1 2000 3.53 500 ditto			Locations						Assa.	Y Res	ults		1					Occurences of
Mines ppb ppb ppb ppb ppb ppm ppm ppm ppm ppm	L	И	D.	ample N	Au	14 bt	рđ	Åξ	Сũ	co Co	ΪN	- q.đ.	71	No	ч	ЧĢ	цЦ	samples
Punte Comau TM 201 <2 <2 <2 <2 <2 <1 <2 <2 <2 <2 <1 <2 <1 <2 <2 <2 <2 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2			Mines		đđ	d ppb	bbd	mdd	ndd T	ррщ	ndd	ррд	ē	шdd	Edd	2	Edd	
 <2 <2 <0.5 2 69 1440 <5 32 1 2000 3.53 500 < < < < <li< li=""> </li<>	Ë	2-1	Punta Comau	TH 201	\$	\$	<2	<0.5	5	53 -	1105	\$	181	~	850	3.42	175	Rock float
				TM 203	\$	<5 <	ć2	<0.5	2	69	1440	<5	32	-	2000	3.53	500	ditto

Area		Locations			A	Assay Res	Results				
	No	No Mines/Prospects	Sample No	(qdd) ny	(mdd) by	Cu (ppm)	(mdd) ad	(udd) uZ	(mdd) oM	(mdď) sv	S (\$)
No 3 Futaleufu-3-a	8 1 1	Puerto Reyes	YM 302	20	0.2	9	4	67	38	10	8.63
Alto Palena			YM 303	20	0.2	~	Ð	-1 0	33	m f	2.75
	3-b	Garcia I	YM 304	20	0.2	157	7	36	2	12	0,05
			YM 305		0.2	142	9	6 E	ы	80	0.42
			YM 306	<20	<0.1	9	01	28	5	31.	0.11
			YM 307		<0.1	135	12	112		8 8 8	0.05
	3-0	Garcia I	YM 308	20	8,0	1.06%	13	27	о	15	1.02
	3-d	Arroyo	SM 302	< 2.0.	<0.1	40	5	86	1.>	σ	0.25
		Fedregoso I	SM 303	<20	۲.0	ò	24	52	 F***	20	1.62
			SM 304	20	4.0	7.6	I	0.92%	f		1,80
	3-e	Arroyo	SM 301 <	<20 5	0.2	92	235	581	r	37	2.18
	_	Pedregoso I					 				:
	3-f	Estero La	OM 301	<20	<0.1	4	13	14		6	0.05
		Cascada						. :			
	3-g	Lago Espolón	PM 301	<20	0.4	۰ س	24	22	~L >	12	
			PM 302	<20 <	0	4	σ	44		9	0.01
	· .		PM 304	<20	0.2	7	61	35	v	ω	0.01
			PM 305	100	0.1	0.64%	2	40		7	0.01
			PM 306	100	0.3	552	109	03	F	12	0.05

·

- 32 -

.

Table 3 The Results of Ore Assayings (3)

1.80 0,89 4.76 0.05 0.07 0.01 0,01 0,01 7.329 4.83 0.07 12.34 5,08 8.78 1.36 0.05 26.62 12.91 0.42 18.14 0.41 12.42 .4 S (%) As (ppm) œ 466 250 Ś œ 66 ŝ 5 Q ы с 33 42 ∞ ⊷ ŝ 2 7 ŝ 145 Zn (ppm) Mo (ppm) 4 ო 2 ~ с т 8.03% 0.15% 7.56% 6.86% 2.16% 14.48 9.298 30.1% 0.65% 0.4.18 0.45% 1.03% 1.06% 11.8% 39.68 256 279 89 89 40 389 3.7 212 12 Ag (ppm)| Cu (ppm)| Pb (ppm)| 1.56% 0.64% 5.41% 6.22% 0.16% 5.45% 5.39% 0.51% 4.50% 0.49% 0.36% 0.33% 3.85% 30 20 160 773 ဂ္ဂ် 450 349 տ Ծ 180 680 Assay Results 0.23% 1.428 0.34% 0.17% 0.73% 0.65% 1.75% 820 9.98% 20 26. 550 2 542 3.12 440 4.20 480 20 50 ю ,--15.9 0.6 0.6 9.0 14.3 ທີ່ ທີ 6.1 19.1 8.6 1.2 0.2 Г. 0 0.4 2.7 4 83 224 521 66 380 215 171 No Mines/Prospects Sample No Au (ppb) -g Lago Espolón PM 307 120 11.6ppm 14.5ppm 5.20ppm 22.7ppm 1.10ppm 64.8ppm 3.26ppm 400 <20 <20 60 420 <20 240 120 660 60 0 200 04 160 90 FM 408 FM 410 PM 307 PM 308 PM 309 428 408 YM 418. FM 423 FN 430 FM: 433. FM 435 **YM 413** YM 415 YM 416 YM 420 112 FM 431 YM 41.7 FM 407 YM 4.11 427 FM 401 ЪŇ X Σ X Cerro Estatuas Toqui (Manto) El Toqui (Vein) Santa Teresa (continued) Katterfeld Locations ы Ш 4-5 4-3 4-1 4-4 No 3 Futaleufu-3-g Cisnes-El Toqui Alto Palena (continued) No 4 Alto Area

- 33 -

Table 3 The Results of Ore Assayings (4)

No 4 Alto Cisnes-El Toqui					Cover Toper	NESALCO				
Toqui	No Mines/Prospects	Sample No	(dqq) uA	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	(mqq) oM	As (ppm)	S (\$)
Cisnes-El Toqui	Katterfeld	FM 413	80	•	00	150	88	54	105	5,34
	(continued)	FM 414	120		228	0.10%	34	ς	188	1,18
(continued)		FM 421	20	0.2	19	40	29	12	92 92	0.13
4-10	C Rio Cisnes	YM 401	<20.		· L	70	34	0.14%	<5	۱
- - -	entre Río	YM 406	<20	•	Ś	60			ŝ	0.02
	Pedregoso Y	YM 407	<20	<0.1 <	4	50	2,	254	<5 <5	0.01
The set	Estero Buitre							•	· .	
No 5 Ibañez- (5-2)	Cerro El Coco	ιΩ.	20.	8 0	•	220		4	- 4	5.94
Murta	-	5	280	1.6	.28	<20	27	12	87	0.37
		-	12.6ppm	20.	3.50%	<20 -	80	Ç	17	
	-	5	0	5	1.49%	<20	143	5	<5 <5	11.93
		FM 516	20	е 0	0.12%	<20	45	\$	ŝ	0.70
5-3	Veta Perez	ភ	40	•	0.448	1.70%	21	-1 -	<5.	3.44
		SM 515	<20	0.5	39.4	10	0.138	Ş	9	0.745
5-5	Río Resbalón		20	1.5	•	140.	18	1	10	32.38
 ,	•		20		0.20%	<20	ហ	r	< 5 < 5	1.36
			<20	1.2	•	40	37	2	11	1.50
	About 1km NE o	1 05 WX 1	<20	0.1	24	<20	7	۲,	4	0.05
	the prospect	TXM 502	<20	<0.1	21	<20	43	-	<5	0.05
	Upriver of the	XM 503	<20	0.2	45	102	87	1>	01	11.0
	Río resbalón	YM 504	<20	0	17	<20		-	20	2.63
	(Tres Arroyos)		. ·.							

- 34 --

Table 3 The Results of Ore Assayings (5)

0.92 0.84 0.52 1.91 1.91 3.71 3.71 0.064 0.74 0.74 27.24 27.24 7.42 7.42 7.65 85 .05 85 7 94 0.31 8.85 22.16 2.40 9.72 0.16 0.11 8. OJ S % As (ppm) 135 383 383 33 252 302 69 182 127 76 63 217 88 89 11 82 527 49 ŝ 0.27% 3.52% 3.52% 0.62% (mdd) oM 298 <u>.</u> 55 7 5 2 5 $\overline{}$ Zn (ppm) 0.24% 0.13% 0.48% 87 982 135 0.13% 922 135 709 0.12% 85 117 905. (mdd) qd 180 40 40 40 40 40 40 100 80 80 80 80 80 <20</pre><20</pre><20</pre><20</pre><20</pre><20</pre><20</pre><20</pre></pr <20 <20 <20 <20 100 420 420 40 140 Assay Results 25.44 55.44 0.35% 0.415 0.35% 0.415 0.35% 0.415% 0.308% 0.415% 0.11% 4.90% 0.32% 4.32% (mqq) uJ 0.40% 0.10% 7.62% 2.00% 0.15% 103 0.12% 450 \$11.0 1.82% 973 23.0% 770 Ag (ppm) 0 - 5 - 7 - 0 5.2 30.5 1.1 1.1 1.1 37 80 1.5 24 4.7 43 66 83 23 70 26 26 49 <u>م</u> Au (ppb) 440 20 360 <20 <20 40 <20 <20 20 40 80 Sample No YM 548 YM 550 YM 552 SM 501 SM 502 SM 502 SM 502 SM 502 FM 502 TM 521 TM 501 TM 501 TM 501 TM 503 TM 503 TM 544 YM 546 YM 546 508 509 YM 554 YM 556 No Mines/Prospects Felix Barria Felix Brria Mina Cerro Las Chivas Locations Castillo 5-8 տ Դ Տ 5-7 No 5 Ibañez-(continued) Area Murta

- 35 -

Table 3 The Results of Ore Assayings (6)

Ie No Au (ppb) Ag (ppm) Cu (ppm) Pb (ppm) Zn (ppm) Mo (ppm) As (p 557 < 20 1.3 1.70% 50 132 1 14 555 40 61 0.55% 3.79% 26.3% <1 10 555 40 61 0.55% 1.00 199 1.00% 100 223 22 233 551 < 20 0.2 21 0.42% 2.62% 810 0.2 561 < 20 30 0.11% 0.42% 2.62% 810 0.2 564 < 20 30 0.11% 870 2.62% 810 0.25% 565 1000 696 0.42% 1.3% 2.62% 810 0.25% 567 < 20 31.3% 11.3% 11.3% 2.62% 810 0.75% 571 < 20 0.42% 2.62% <t< th=""><th>Area</th><th></th><th>Locations</th><th></th><th></th><th>A</th><th>ssay Resi</th><th>sults</th><th></th><th></th><th></th><th></th></t<>	Area		Locations			A	ssay Resi	sults				
Ibañez- 5-8 Las Chivas YM 557 <20 1.3 1.70% 50 132 1 141 Inued (continued) TM 555 40 0.1 0.55% 3.79% 26.3% 1 0.71 Inued TM 555 40 10 0.56% 1.25% 10 223 24 TM 555 40 10 101% 4.13% 11.3% 1 0.11 TM 555 40 0.7 20 101% 4.13% 11.3% 1 0.11 5-9 Mina El Pelado YM 565 100 696 0.25% 0.40% 1 0.20% 5-9 Mina El Pelado YM 565 100 696 0.25% 0.40% 1 20 22 23 24 750 5-9 Mina El Pelado YM 565 100 696 0.25% 0.40% 1.94% 20 11 0.25% 0.14% 26 26 750 YM 565 100 696 0.25% 0.40% 0.73% 2.0% 27 27		ŝ	4	ample N	qdd)	udd) b		mqq) d	த	udd) o	1) s	S (\$)
Inved) TM 554 40 61 0.558 3.798 26.38 <1 107 TM 555 40 61 0.548 1255 108 19 408 TM 557 40 61 0.548 1255 100 223 40 61 TM 559 20 9 0.018 0.228 11.38 1 21 223 5-9 Mina El Pelado YM 565 20 30 0.118 0.428 2.628 810 0.32 7 2 100 696 0.238 11.38 1 0.11 0.11 7 2 100 696 0.238 1.368 1 0.15 7 2 134 0.465 0.238 1.348 3 0.15 7 2 2 0.334 0.338 1.348 1 26 26 0.15 7 2 2 0.344 1.148 0.438 2.068 1 2 0.15 7 2 2 2 2 <t< td=""><td>No 5 Ibañez-</td><td>5-8</td><td>Las Chivas</td><td>ŝ</td><td><20</td><td>1.3</td><td>.70</td><td>203</td><td></td><td>-</td><td>141</td><td>2.40</td></t<>	No 5 Ibañez-	5-8	Las Chivas	ŝ	<20	1.3	.70	203		-	141	2.40
TM 555 40 61 0.54\$ 1.25\$ 1.83\$ 19 408 TM 557 40 23 0.20\$ 100 223 2 234 TM 557 40 10 0.113 0.425 233 1 0.11 F-9 Mina El Felado YM 561 <20	Murta		(continued)	55	40	<u>о</u>	. 55	.79	6.3	<1		16.67
TM 557 40 2.3 0.20% 100 223 2 24 TM 558 100 199 1.01% 4.13% 11.3% 1 0.11 TM 559 20 0.2 70 7 5 9 11.3% 1 0.11 F99 TM 559 20 30 0.11% 0.42% 2.65% 810 0.33 F99 TM 556 420 75 194 874 2.65% 100 0.33 TM 570 20 69 0.32% 11.60% 194% 2 66 26 760 TM 570 20 9.1 670 0.23% 1.60% 14.2% 2 0.15 TM 570 20 9.1 670 0.21% 1.72% 4 7 0.34 TM 571 20 23 1.6% 1.42% 2.6% 11 0.35 TM 574 20 9.4 0.25% 1.3% 1.42% 2 0.14% TM 574 20 23 0.35% 1.28% 1.28%	(continued)			տ տ	40		5	ហ	83	ი ი ი	408	3.17
TM 558 100 199 1.01% 4.13% 11.3% 1 0.11 TM 559 20 0.2 21 20 53 4 7 Mina El Pelado YM 561 <20				ហ ហ	40	٠	.20	0	3	7		4.01
TM 559 20 0.2 21 20 53 4 7 YM 561 < 20 30 0.118 0.428 2.628 810 0.32 YM 565 YM 565 < 20 7.5 194 870 666 266 760 YM 565 < 20 7.5 194 870 666 266 760 YM 567 < 20 45 0.258 0.408 11 6.25 870 YM 567 < 20 474 0.938 2.018 2.0 760 YM 570 < 20 9.1 670 0.238 1.608 14.28 3 0.13 YM 571 < 20 9.1 670 0.238 1.728 4 750 YM 581 < 20 9.1 670 0.258 1.728 4 750 YM 581 < 20 9.144 1.144 2.608 15.84 1.112 1.148 YM 581 < 20 0.33 0.468 0.728 <				ហ ហ	100		0	13	1.3			14.198
Mina El Pelado YM 561 <20				ភ្	20	٠		50		4	- 2	0.11%
564 <20		5-9	Mina El Pelad	56	<20		Ę.	.42	62	****	.32	3.30
565 100 696 0.92% 11.3% 5.90% 11 0.25 577 <20	-	- _D		S	<20	٠		5			Q	0.64
567 <20				ഗ	100	თ	.92	ŝ	. 90		. 25	20.89
570 <20		a da kaya G		ഗ	<20		.25	4.	.94	5	14	١,
571 40 46 0.32% 1.60% 14.2% 3 0.15 574 240 9.1 670 0.21% 1.72% 4 750 574 240 834 0.35% 1.38% 6.32% 28 0.35 575 40 144 0.35% 1.38% 6.32% 28 0.35 577 20 23 0.40% 0.76% 15.8% 3 0.34 578 60 144 1.14% 0.35% 15.8% 3 0.34 578 60 135 0.40% 0.70% 2.28% 11 139 581 60 135 0.44% 0.76% 1.34% 3 4.58% 1 139 581 60 135 0.56% 1.93% 7 0.21 139 581 100 346 0.71% 1.93% 7 0.21 581 100 346% 0.71% 0.36% 1.12 1840 581 100 1.86% 0.71% 0.36%		•		ហ	<20		-	.93	0.		5	2.11
572 20 9.1 670 0.21% 1.72% 4 750 574 240 834 1.14% 0.35% 1.38% 6.32% 28 0.35 575 40 144 1.14% 2.60% 15.8% 3 0.34 577 <20				ſ	40		-32	0	. 2	m	.15	26.59
574 240 834 0.358 1.388 6.328 28 0.35 575 40 144 1.148 2.608 15.88 3 0.34 577 <20				57	20	و . ۲.	5	.21	72	4	ŝ	8.94
576 40 144 1.148 2.608 15.88 3 0.34 577 <20				5	-1	834	.35	ω	. 32		.35	0
577 <20				57	40	144	.14	: 60	8	'n	.34	13.54
578 <20		- a		57		23	40	. 70	28		ŝ	2.07
580 <20				5	<20		.16	4	.46	Ś	σ	2.09
581 60 135 0.568 3.588 10.28 5 0.44 584 20 342 554 12.88 1.938 7 0.21 585 100 346 2.068 12.88 1.938 7 0.21 587 60 33 1.368 0.668 0.368 112 188 589 100 136 0.648 0.718 2.098 62 511 591 20 9.6 0.118 0.458 10.108 <1				8 50	<20		.24	.86		-	-	33.66
584 20 342 654 12.88 1.938 7 0.21 585 100 346 2.068 1.858 4.588 8 0.36 587 60 33 1.368 0.668 0.368 112 788 589 100 136 0.648 0.718 2.098 62 511 591 20 9.6 0.118 0.458 10.108 <1				ထ က	60		.56	.58	5	μ	44	13.98
585 100 346 2.06% 1.85% 4.58% 8 0.36 587 60 33 1.36% 0.66% 0.36% 112 188 589 100 136 0.64% 0.71% 2.09% 62 511 591 20 9.6 0.11% 0.45% 10.10% <1				58	20	- 1	າກ	80	. 93 03	-	:21	e.
587 60 33 1.36% 0.66% 0.36% 112 78 589 100 136 0.64% 0.71% 2.09% 62 51 591 20 9.6 0.11% 0.45% 10.10% <1		÷		ເດ ເກ	100	5	.06	ŝ	58	Ø	.36	6.11
589 100 136 0.64% 0.71% 2.09% 62 51 591 20 9.6 0.11% 0.45% 10.10% <1	-		-	20	60		ø	66	36		ίαΟ I	8 17
591 20 9.6 0.11% 0.45% 10.10% <1 84	-			00 00	100		. 64	11	.09		511	14.40
			-	165 WX	20	9.6	0.118	0.45%	10.10%	1	840	4.99

- 36 -

Table 3 The Results of Ore Assayings (7)

Area	Locations			V	ssay Resi	sults				
	u u e	s Sample No	(qdd) ny	Ag (ppm)	Cu (ppm)	(mqq) dq	(mdd) uZ	(udd) oW	As (ppm)	S (&)
No 5 Ibañez-	5-9 Mina El Pelado	YM 59	40	78	58	1 A.	3.88%			
Murta	(continued)	տ հ	20	128	1.248		16.5%	 ,		
(continued)		5	20	122	0.17%	13.9%	.4			
		YM 598	20	106	•	11.6%	23 . 6%			
	5-10 Mina Silva	53	40	۱.	220	700	0	r-	323	цю,
	to to	ŝ	20	0.5	68	<20		24	5	0
	5-19	50	<20	74	0 178	870		~	452	0
		ហ	20		17.	<20	2	- 1	12	0
		с С	40	0.2	Ņ	<20	387	<u>،</u> ۳۰	30	0.05
		TM 539	20		Ю	<20	Ś	2	36	<u> </u>
		54	20		2	<20	83	ო	22	9
-		54	<20		2	<20	40	. t	ب م	<u>.</u>
		5	<20	0.2		<20	2	~	÷.	<u>.</u>
		54	20	•	, 17	20	4	1 >	is S	ω.
		5	20	8.0	0	40	08			9
		ъ 4	<20	29.1	450	0.30%			0.19%	Υ.
		ຊີ	40	15.5	83	200	8.048		8.40	2
		54	40	7.9	v	100	4.43%	2	m	Ξ,
		<u>п</u> 4	40	132	550	3.50%	32.1%		230	18.50
		TM 550	80	230	800	•	0.12%	-	0.69%	
		о 0	<20	<0.1	т С	20	00	~	14	0.05
		50	<20	0	29	<20	35	<1.	127	٥,
		μ,	<20	0.2		<20	45	- <mark></mark>	61	0.01
			1			1		1		

- 37

Table 3 The Results of Ore Assayings (8)

Area		Locations			A	ssay Res	ults				
	Å	No Mines/Prospects	Sample No	(qdd) nY	Ag (ppm)	Cu (ppm)	Pb (ppm)	(mqq) nS	(mdd) oM	As (ppm)	S (&)
No 5 Ibañez-	15-10	5-10 Mina Silva	YM 518	<20	0.2		<20	37	<1.	12	0.05
Murta	ţ	(continued)	YM 519	<20	0.5	395	20	თ	<1 <	0.16%	0.11
(continued)	5-19		YM 520	40	32	0.12%	0.83%	239	1>	0.47%	0.16
	. .		YM 521	<20	0.1	36	320	68 68		80	1.1.0
			YM 524	<20	<0.1	10	50	56	~	IJ	0.11
		-	YM 525	<20	6.	0.14%	08	14		0.11%	0.11
	-		YM 526	840	1.2	ę	280	0.16%	1 >	0.45%	0.05
			YM 527	<20	2.4	27	40	1.148	1>	ស្ត	0.05
			YM 528	40	530	966	13.888	30.8%	2	57.0	18.87
	 · ·		YM 530	<20	0.5	14	110	0.23%	< 1	68	0.11
			YM 532	<20	0	7	80	0.11%	Ç	32	0.01
	5-20	Río Avellanos I	OM 5.1.1	<20	0.5	12	120	422	27	229	10.16
	(a)		OM 512	<20	0.2	~	30	25	f	48	0.49
			OM 513	<20	0.3	68	60.	63	~	71	0.05
			OM 514	<20	0-1	246	150	77	12	0.23%	0.11
			OM 515 MO	07	820	0.58%	14.48	121	5	0.86%	11.06
	<u></u>		OM 516	<20	0.2	æ	150	2.7	.	17	0.05
			OM 517	60	132	4.748	0.75%	800	1 ~ 1	0.70%	6 13
	5-21	Mina Cascara	PM 502	×20	0.3	0.16%	<20	35	1	20	0.20
-	•		PM 503	140	1.5	340	100	4	<1	0.15%	18.45
	<u></u>		PM 504	<20	0.2	66	20	578	2	28	9
	1		PM 505	40	1.2	4	20	2	£	52	0.05
	,		PM 506	7.80	ŝ		800	65	'n	ò	2
	:		PM 507	<20	1.0	165	0 13%	508	27	о С	9,0

- 38 -

Table 3 The Results of Ore Assayings (9)

12.24 7.08 5.25 65 21.34 43.29 24.42 20.71 0.01 8.39 7.05 0.11 26.94 0.32 0.27 1.03 0.38 27.65 7.79 0.05 S (%) 0.1 2. 76% 0. 648% 1. 0. 638% 1. 0. 29% 1. 03% 1.26% As (ppm) 0.20% 353 100 160 118 0 253 373 63 86 141 1 4 g ð 27 (mqq) oM 30. ന 7 <u>~</u> Ù Ç 2 7 9.25% 0.11% Zn (ppm) 8.16% 0.22% 100 13.0% 41.7% 35.3% 984 10.08 22:8% 435 80 32.9% 592 47.58 54 813 276 160 43 621 187 5 Pb (ppm) 0.45% 2.67% 0.44% 7.32% 200 0.10% 600 3.60 680 860 450 360 3.40 8.20 250 40 00G 60 <20 < 720 30 600 260 20 Assay Results Cu (ppm) 3.15% 0.40% 0.10% 2.26% 9.65% 0.36% 8.50% 50 257 066 2 420 410 260 12 <u></u>б റ് 20 430 0 <u>س</u> Au (ppb) Ag (ppm) 125 0. 0 1.6 51.6 28.9 50.2 8.2 0.2 24.9 19.0 1.2 ი. -43.4 ო ო 33.2 ----5.7 38.7 0.1 60 . ഗ ₹ 6 4.25ppm 44pp 200 160 20 40 200 420 420 420 <20 <20 <20 40 20 260 <20 260 <20 40 20 20 <20 <20 Sample No PM 509 PM 509 TM 511 TM 511 TM 512 TM 513 TM 513 TM 513 TM 524 TM 523 TM 523 TM 523 TM 533 TM 533 OM 518 FM 505 FM 501 FM 502 50.6 50.8 ΡM δ No Mines/Prospects (Veta Hermosa) 5-69 Veta San Jose Veta Torres] Veta Torres I Estero Norte 5-36 Mina Rosillo Veta Alegre Locations 5-25 Mina Fenix 5-54 5~34 0 1 1 No 5 Ibañez-(continued) Area Murta

- 39 -

Table 3 The Results of Ore Assayings (10)

Area	Locations			æ	ssay	Results				
	No Mines/Prospect	s Sample No	(qđđ) nY	Ag (ppm)	Cu (ppm)	Pb (ppm)	(mđd) uZ	(mdd) oM	As (ppm)	S (&)
No 6 Los Leones	6-9	PM 601	160	9.2	463	0.66%	80	4	10	0.11
	Sector Bajo							· · · · · · · · · · · · · · · · · · ·		i
	6-b Rio Leones	PM 602	20	15.7	0.12%	0.23%	0.11%	,	14	0.32
	Sector Alto									
No 7 Chile	7-1 Paulina	•	<20	50		5.80%	0.248	1		2.69
Chico-Chacabucd	· · · · · · · · · · · · · · · · · · ·	SM 707	<20	12	54	0.68%	2.148	w		1.00
	· ·		<20	51		2.60%	0.18%	12	88	1.09
		12	<20	2		•		~ ~		•
		SM 714	<20	162		4.7.1%	394	13	40	
		SM 719	<20	430	86	4.51%	0.148	17		4.26
	7-7 Laguna Verde	۱.	<20	•		<20	13	- 1	9	•
			<20	0.5		σ		-	29	•
			360	υ, υ		\sim	386	4	335	
			20	: 1.5	305	0.38%	1.048		*	•
			<20	0.4	m	50	21	7	42	•
		FM 762	20	0.3		30	LC C	•	5 4	0.05
•			<20	0.5	Q	540	50	ň	32	3
		76	20	0.7	32	500		4	15	۰.
		76	<20	с . 0		50	62	- -	000	0
		5	<20	0.4	24	250	260	m	19	୍ଦ
		EM 770	20		9	100		ς.	37	0
	7-3 La Poza	2	20	0.2	9	180	1 00	17	5	ł •
		FM 717	<20	6.0	σ	170	312	21	169	
		71	<20 .	2.0	60	000	ထ	4	Q	0.11

- 40

.

Table 3 The Results of Ore Assayings (11)

26.58 25.54 20.03 9.98 0.05 3.99 0.26 0.21 6.69.9 0.11 0.26 7.15 1.31 0.25 0.11 0.22 0.47 0.05 0.11 0.11 S (%) As (ppm) ŝ 54 124 17 65 68 616 69 9 106 134 57 ທ ທ 9 6 2 ŝ ດ ເມ (mdd) ტ ს ო 2 <u>б</u> t V $\overline{\nabla}$ g $\overline{}$ 5 Mo (mdd) uZ 4.38% 0 948 1.79% 3.32% 2.02% 14.6% 318 716 471 172 424 5 ы С 9 r m 24 2 4 Ag (ppm) Cu (ppm) Pb (ppm) 1.50% 0.97% 0.128 0.10% 1.20% 16.3% 12.68 14 58 520 200 420 520 20 20 30 20 20 30 06 06 620 30 Assay Results 24.0% 8.02\$ 12.5% 6.82% 140 260 20 768 .. 22 m 679 2 ŝ 48 3.7 4.9 0.9 80 0 17,9 23 0.9 1.0 0 0 ° ° ° ° ъ ч 0 . 134 182 200 105 210 ი მ 1.08ppm 80 80 Au (dqq) uA <20 <20 <20 340 < 20 < 20 80 80 80 2020 < 20 <20 <20 360 40 <20 No Mines/Prospects Sample No FM 741 FM 741 FM 744 FM 744 FM 745 FM 745 FM 750 FM 750 FM 719 FM 720 FM 722 FM 722 FM 723 SM 721 SM 721 YM 701 YM 702 YM 702 YM 702 753 FM 754 Щ Alteration zone Mina Escondida Valle Del Río y Veta Nueva (continued) El Colegio Locations Cerro Bayo Avilles La Poza 7-1 י ר ר 7-0 7-4 No 7 Chile Chico-Chacabucq Area

- 41 -

Table 3 The Results of Ore Assayings (12)

	_										· ·				
	S (\$)	0.26	0.11	3.99	0.01	0,05	6.96		0.21	0.22	0.37	0.05	0.32	7.52	2.46
	As (ppm).	285	124	484	238	ĥ	100		0	40	16	48	24	ເ ເ ເ	82
	(udd) oy	50	7	4	4	4	m	···	1 >	-	- - -	ব		31	
	[(mdd) uZ	395	144	733	. 666	141	463	 .!	4	15	255	9	401	27	17
Results	(mqq) dq	650	210	0.10%	300	50	420		40	06.	250	40	0.60%	20	20
Assay Res	Cu (ppm)	0.28%	48	0.20%	262	21	6.20%		589	4 4	ń	4	65	9	167
4	Ag (ppm)	1 38	2.4	06 1	15.6	1.4	49		0.3	0.5	2.6	0.8 0	ເ ກ	0.7	0.7
-	(qdd) ny	7.92ppm	260	3.54ppm	80	60	80		<20	20	20	20	160	<20	<20
	Sample No	EM 727	FM 728	FM 730	FM 732	FM 733	EM 701		FM 702	TOT MO	OM 702	OM 703	OM 704	OM 705.	OM 706
Locations	No Mines/Prospects	7-c Veta Don Juan	-				Estero Lo	Carera	Río Furioso	Rio Aviles or	Pedregoso				
	о Х	7-0					1		1	1	-				
Area		No 7 Chile	Chico-Chacabucd	(continued)											

- 42 -

Table 4 Results of Microscopy of Thin Sections (1)

Fart 1: Flutonic rocks

rart	rait I: Fiutonic rocks	107 27	A	-				į	ĺ	Ì
Area	Location	Sample	e Rock name	Texture			Mine	Minerals		
	¥	_		· · · · · · · · · · · · · · · · · · ·	ЗЪ	1d	ог	q	E B	ď X
l oN		FT 105	i Granodiorite	Subhedral	0	0	4	0	⊲	
No2		TT 204	I Granite	Foliated	0	0	⊲	⊲		⊲
				(Cataclasis tex.)						·
		TT 205	5 Granite	ditto	0	0	0	\triangleleft	 	
		PT 204	Monzogranite	Subhedral	0	0	0	0	4	
No3		PT 301	Monzogranite	Subhedral	⊲	0	0	0	4	
No4	4-3	YT 410) Granite	Subhedral	0	0	0	0		
		¥T 414	Rhyolite porphyry	Porphyritic	0	0	4	٩		
	4-10	YT 403	8 Aplite	Sacaroidal	0		Ö	4	5. 1	_
	Río	TT 406	5 Diorite	Euhedral,	0	0			0	
	Cisnes	-		granular						
:		TT 404	Monzogranite	Subhedral	0	0	0	4	\triangleleft	
		TT 409) ditto	ditto	Ö	0	0	⊲		
No5	- 5-7	TT 508	3 Granodiorite	Cataclastic,	0	0	0	⊲	⊲	
				subhedral, in-						
				equigranular			.		 i	
	5-10 to	TT 531	I Graphic granite	Subhedral	0	0	0	\bigtriangledown	Q	1
	5-19	YT 511	1 Porphyric	Euhedral,		0		⊲	⊲	
		-	diorite	equigranular						
		. OT 502	Monzogranite	Subhedral, in-	⊲	0	0	0	tr	
				equigranular						
		OT 506	5 Granodiorite	ditto	0	0	⊲	0	0	
*	Torations of	n Bir Der	870 770000+0 BTB	denoted as the n	anotana a	\$ 	4 4	+	+	

: Locations of mines and prospects are denoted as the numbers in the text.

Abbreviations: qz; quartz, pl; plagioclase, or; orthoclase, bi; biotite, am;amphibole, px; pyroxene, ol; olivine, gl; glass, lm; limonite, cl; chlorite, se; sericite, ka; kaolinite, to; tourmaline, ta; talc, ak; ankerite, sd; siderite, ms; muscovite, ep; epidote, gr; garnet Abundance of minerals: ((); common, Δ ; scarce, tr; trace

43 ---

\sim	
ලි	
-	
ion (
F	
\mathbf{n}	i
~	
·rt	
Section	
Τ.	
U	
11	
VI	
	į
-	
Thin	
er li	
64	
• •	
44	
2	
Microscopy of	
× 1	
ž	
00	
27	i
U,	
U	
-	
Microscop	l
O.	
- T. I	
ы	
υ	
2	
Σ.	
-	
44	
\mathbf{O}	
ч	
0	
s	
s	
s	
lts	
lts	
lts	
sults	
4 Results	
sults	

Fart 1: Plutonic rocks (continued)

Area	Location	Sample	ple b	Rock name	Iexture			MIDe	MINETALS		
	*	;				gz	p 1	оц	μ	am	хd
No6		ΡŢ	601	PT 601 Microdiorite	Porphyritic	0	0	∇	4		⊲
L		ЪТ	PT 602	Monzogranite	Subhedral	0	0	0	0		
L		ŧ-i م	PT 603	Monzogranite	Subhedral,	0	Ó	0	0	4	
		•			equigranular						
No7	7–3	н ц	FT 709	Porphyric	Euhedral, in-	\bigtriangledown	0				
		-		diorite	equigranular						
<u>ı .</u>	7-4	ŝ	ST 727	Monzogranite	Subhedral,	0	0	0	4	⊲	1.
					granular						
I		Б	701	OT 701 Gabroide rock	Euhedral,		0		 	0	:
					granular						1

Abundance of minerals: (); abundant, (); common, Δ ; scarce, tr; trace

px; pyroxene, ol; olivine, gl; glass, lm; limonite, cl; chlorite, se; sericite, ka; kaolinite, to; tourmaline, Abbreviations: lit; lithic fragments, gz; quartz, pl; plagioclase, or; orthoclase, bi; biotite, am;amphibole, ta; talc, ak; ankerite, sd; siderite, ms; muscovite, ep; epidote, gr; garnet ----

Table 4 Results of Microscopy of Thin Sections (3)

6 \triangleleft ы Ш е Groundmass х д Ó \triangleleft 44 1d 0 0 0 0 0 ц Б Ø 5 \triangleleft Xd O *: Locations of mines and prospects are denoted as the numbers in the text. e B Phenocryst \triangleleft 1 gz bi L d 0 0 0 0 0 Ο \triangleleft Fluidal, porphy-Porphyritic, Recrystalline intergranular intergranular Olivine-pyroxene Porphyritic, Porphyritic Texture Porphyritic ritic ditto Rock name Dacite to Dolerite YT 510 Andesite Andesite **Dolerite** andesite basalt Basalt YT 522 Part 2 Volcanic rocks Ared Location Sample FT 518 FT 712 TT 401 TT 532 TT 525 5-10 to Cisnes 5-19 5-36 Río 9-19 2-19 6-6 No5 No4 No.7

Abundance of minerals: ((); abundant, (); common, (); scarce, tr; trace

gl; glass, lm; limonite, cl; chlorite, se; sericite, ka; kaolinite, to; tourmaline, ta; talc, ak; ankerite, sd; siderite, Abbreviations: qz; quartz, pl; plagioclase, or; orthoclase, bi; biotite, am;amphibole, px; pyroxene, ol; olivine,

ms; muscovite, ep; epidote, gr; garnet

Table 4 Results of Microscopy of Thin Sections (4)

Part 3 Pyroclastic rocks

	Areq Location	Sample	KOCK name	Texture				Frag	Fragment				Matrix
	ĸ				114	zb	p1	or	Ъi	am	xd	ođ	gl
No5	5-5	YT 501	Vitreous tuff		4	0	0	4				\triangleleft	Ø
		YT 502	ditto (igninbrite)		0	0	0	Þ				⊲	O
	5-21	PT 506	Vitreous tuff		0	Ó	4					0	0
No7	7-3	FT 707	Crystalline ash	fine grained	∇	0	0					\triangleleft	Ö
			tuff	:									
		FT 708	Andesitic lapilli		0	⊲	⊲					0	Ó
• •• •			tuff										
		FT 711	Vitreous tuff		4	⊲	⊲					0	0
		FT 737	Tuffaceous		∇	0	0					· .	
			arenite or	•			•••••						
		- - - -	crystalline tuff				•						
		0T 702	Vitreous tuff		Ą	0	0		⊲			⊲	0

Abundance of minerals: ((); abundant, (); common, (); scarce, tr; trace

- 46 --

px; pyroxene, ol; olivine, gl; glass, lm; limonite, cl; chlorite, se; sericite, ka; kaolinite, to; tourmaline, Abbreviations: lit; lithic fragments, qz; quartz, pl; plagioclase, or; orthoclase, bi; biotite, am; amphibole, ta; talc, ak; ankerite, sd; siderite, ms; muscovite, ep; epidote, gr; garnet Table 4 Results of Microscopy of Thin Sections (5)

Part 4 Metamorphic rocks

NO2 TT 203 Honriels Grandblastic I<	Area	Location	Sample	Rock name	Texture							Minerals	als						·
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		*			t	42	۲ď	or	гq	su	E	ļ	}			ļ	<u> </u>		ц
FT 302 Q2-mica schist Granolepido- \bigcirc $ $	No 2			Hornfels	Granoblastic							 _				0			
PT 303GneissblasticblasticblasticPT 303GneissMosaic to grano- lepidoblastic \bigcirc <	No3				Granolepido-	0	O	⊲	0									.	
FT 303GneissMosaic to grano- lepidoblastic \odot \bigcirc $<$ $<$ $<$					blastic												•		
FT 305MetaandesitePerphyroblastic \odot \Box				Gneiss	to.	0		 	0	4									
PT 305MetaandesitePorphyroblasticOOOOOOFT 306MetasandstoneGranolepido \textcircled{O} OO \bigtriangleup \bigtriangleup \bigtriangleup \bigtriangleup 4-1FT 424SkarnGranoblastic \square \square \square \square \square \square 4-3FT 426RecrystalizedFine granoblast \bigcirc \bigcirc \bigcirc \square \square \square 4-3FT 426RecrystalizedFine granoblast \bigcirc \bigcirc \square \square \square \square 4-3FT 426RecrystalizedFine granoblast \bigcirc \bigcirc \square \square \square \square 5-2FT 512HornfelsGranolepidoblast \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 5-2FT 517Mica schistGranolepidoblast \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 5-5YT 503Q2-mica schistGranolepidoblast \bigcirc <t< td=""><td></td><td></td><td></td><td></td><td>lepidoblastic</td><td></td><td></td><td>· _ · · · ·</td><td></td><td></td><td></td><td></td><td></td><td><u>_</u></td><td></td><td></td><td></td><td></td><td></td></t<>					lepidoblastic			· _ · · · ·						<u>_</u>					
PT 306MetasandstoneGranolepido blastic \odot \bigcirc			٤H	Metaandesite	Porphyroblastic	0	Ô		 		0	0							
4-1 $FT 424$ SkarnCranoblastic $ -$ <td></td> <td></td> <td></td> <td>Metasandstone</td> <td>Granolepido-</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>4</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td>				Metasandstone	Granolepido-	0	0	0	0		4							ļ	
4-1FT 424SkarnGranoblastic $ -$ <					blastic	-				•.						_	 		
4-3FT 426RecrystalizedFine granoblas- ignimbrite0000005-2FT 512HornfelsGranolepidoblast00000005-2FT 517Mica schistGranolepidoblast000000005-5YT 503Q2-mica schistGitto+granoblast0000000005-8TT 552Mica schistGitto+granoblast0000000005-8TT 552Mica schistGittoGitto0000000007<56	70V	4-1	T 42	Skarn	Granoblastic				-				 					0	
5-2FT 512HornfelsGranolepidoblast \bigcirc <		4-3		Recrystalized	Fine granoblas-	0	0		 					0					
5-2FT 512HornfelsGranolepidoblast \bigcirc <				ignimbrite	tic	:					-		•		* 				
FT 517Mica schistGranolepidoblast \bigcirc	No 5	5-2	Ł	Hornfels	Granolepidoblast		0	⊲	 .		0	0			⊲				
FT 517Mica schistGranolepidoblast \bigcirc				:	brecciated					<u> </u>		<u>.</u>	<u> </u>						
YT 503Qz-mica schistditto+granoblast \bigcirc \bigcirc \bigcirc \bigcirc TT 552Mica schistGranolepidoblast \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc YT 559Mica schistditto \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc YT 560Qz-mica schistditto \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc YT 586dittoditto \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc			i		Granolepidoblast		⊲	0	0	'					. <u></u>				
TT 552Mica schistGranolepidoblast \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc YT 559Mica schistditto \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc YT 560Q2-mica schistditto \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc YT 586dittoditto \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc		5-5			ditto+granoblast		0	⊲	:			 ©	-	0					
YT 559Mica schistditto \bigcirc \bigcirc \triangle \bigcirc \bigcirc \bigcirc \bigcirc YT 560Q2-mica schistditto \bigcirc <td< td=""><td></td><td>5-8</td><td>1</td><td>Mica</td><td>Granolepidoblast</td><td></td><td></td><td>·</td><td></td><td>0</td><td></td><td>0</td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td></td></td<>		5-8	1	Mica	Granolepidoblast			·		0		0	-	1					
YT 560 Q2-mica schist ditto © O O YT 586 ditto ditto © △ △			പ		ditto	0			4		4								
YT 586 ditto ditto © ○ △				o ا	ditto	0			 	Ô		0	-			l			
		5-6		ditto	ditto	0				0			· · · · ·						

2 2 1 : Locations of mines and prospects are denoted as the numbers in

.

Abundance of minerals: 🔘 ; Abundant, 🔿 ; common, Δ ; scarce

gl; glass, lm; limonite, ca; calcite, cl;chlorite, se;sericite, to; tourmaline, ta; talc, ak;ankerite, sd; siderite, Abbreviations:qz; quartz, pl; plagioclase, or; orthoclase, bi; biotite, am; amphibolite, px; pyroxene, ol; olivine, ms; muscovite ep; epidote, ka; kaolinite, gr; garnet

47 -

Table 4 Results of Microscopy of Thin Sections (6)

Part 4 Metamorphic rocks (continued)

Area	Area Location	Sample	Rock name	Texture						ĒM	Minerals	STE			н 1 - с.			
	*			:	22	рl	or	bi m	ms am	С С Е	ca L	d e p	ka	to	ta	01	Xđ	gг
	5-10 to	TT 533	Contact metamor-	Granoblastic	Ø	0			 		0		4					
	5*19		phic rock									;						
	5-a	FT 508	Metasandstone	ditto	0	0	⊲			2	0							
	ц Р Р	FT 519 Skarn	Skarn	ditto				 									0	0
		OT 509	OT 509 Amphibolite	Nematoblastic		0			0									
No7	No7 7-5	YT 701	YT 701 Schistose rock	Granolepidoblast 🔘	0	 :	- 	© 	6	0	○							
				+brecciated														
						.												

*: Locations of mines and prospects are denoted as the numbers in text

Abundance of minerals: (); Abundant, (); common, Δ ; scarce

- 48

gl; glass, lm; limonite, ca; calcite, cl;chlorite, se;sericite, to; tourmaline, ta; talc, ak;ankerite, sd; siderite, Abbreviations:qz; quartz, pl; plagioclase, or; orthoclase, bi; biotite, am; amphibolite, px; pyroxene, ol; olivine, ms; muscovite, ep; epidote, ka; kaolinite, gr; garnet

Part	ъ	Carcareous Metamor	amorphic rock		İ	Ì	-		;				
Area	Location	Sample	Rock name	Texture	lit	25	ľď	сэ	1m-	ak Xe	sđ	Observation	
	*						•		ъ Ъ				
No5	5-9	YT 563	Marble	Granoblastic		\triangleleft		0				Suture texture in	
	-								 			contact boundary	
			-									of calcite	
		YT 566	ditto	ditto				0					
No7	7-3	FT 710	Recrystalized	ditto	 			0				Contains pyro-	
			marl									clastícs	
		FT 713	marl-lutite	Granoblastics-	· · · ·	0	Ó	Ô	0	Ó	\triangleleft	Alternative tex-	
•	i -		•	fragmental				*	 . '			tures of calcareous	
					•	 			•••			materiels and	
·.		-										detritus	
;		FT 714	Recrystalized	Granoblast, fine O		4	\triangleleft	0	0		4		
			calcareous marl	grained				 		 			÷.,
					ĺ	l							

Table 4 Results of Microscopy of Thin Sections (7)

 \star : Locations of mines and prospects are denoted as the numbers in text

Abundance of minerals: ③ ; Abundant, ○ ; common, △ ; scarce

px; pyroxene, ol; olivine, gl; glass, lm; limonite, ca; calcite, cl;chlorite, se;sericite, to; tourmaline, ta; talc, Abbreviations: lit; lithic fragments, qz; quartz, pl; plagioclase, or; orthoclase, bi; biotite, am; amphibolite, ak;ankerite, sd; siderite, ms; muscovite ep; epidote, ka; kaolinite, gr; garnet

49 ---

Table 4 Results of Microscopy of Thin Sections (8)

Part 6 Veins and breccias

Laminated Granular,	00	يد ديا		-		_	
Laminated Granular,		r t		<u> </u>			
Granular,	6						
)		0		 		Quartz breccia occurs with detr-
brecclated	<u> </u>						itus of metamorphic rocks
ditto	0						ditto
Brecciated	.0					0	Brecciated rhyolitic tuff
Granular	0	tr					
Brecciated	0		. ⊲ . –			\bigtriangledown	Clasts:plagioclase-orthoclase
*: Torations of mines and							ecciated \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

: Locations of mines and prospects are denoted as the numbers in text

Abundance of minerals: $ilde{O}$; Abundant, $ilde{O}$; common, riangle ; scarce, tr; trace

50 -

-

px; pyroxene, ol; olivine, gl; glass, lm; limonite, ca; calcite, cl;chlorite, se;sericite, to; tourmaline, ta; talc, Abbreviations: lit; lithic fragments, qz; quartz, pl; plagioclase, or; orthoclase, bi; biotite, am; amphibolite, ak;ankerite, sd; siderite, ms; muscovite ep; epidote, ka; kaolinite, gr; garnet

No 1	[]			<u> </u>						nera	15 D	eter	mine	d			•		
No 3:c:Garcia_I Yes10	Area	Location	Sample	Au.	Ag	Ag-s	CD	CC	CΥ	<u>s</u> n	àng	SP	. py		apy	ht	mţ	Π	mo
Breattolds samples taken on the road travecsing the pategonian batholit Straid travecsing the straid straid travecsing the straid travecsing the straid straid travecsing the straid s		1-a;nina Araucaria					<u> </u>				· · ·		<u> </u>	<u> </u>		0	$ \mathcal{Q} $		
Liken on the road traversing the Patagonian batholitit SP2303 SP2303 C <thc< th=""> C <thc< <="" td=""><td>10 1</td><td></td><td></td><td></td><td></td><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[</td><td></td><td></td><td></td><td> </td></thc<></thc<>	10 1						·								[
traversing the Patagonian batholith SP3302 SP3302 tr C																· · · · ·	O		
SP-309 Lt A A SP-300 A O A SP-300 A O A SP-300 SP-300 O A SP-301 O O A SP-302 O O A SP-303 SP-302 O O SP-304 SP-302 O O A SP-304 SP-304 O O O A SP-310 SP-304 O O O A A SP-310 Ps-404 A O <td> </td> <td></td> <td>O</td> <td></td> <td>Δ</td> <td></td>																O		Δ	
SPE300 A O A <td></td> <td>Patagonian batholith</td> <td></td> <td>Δ</td> <td>0</td> <td>Δ</td> <td></td>		Patagonian batholith														Δ	0	Δ	
SP300 SP300 SP300 SP300 SP300 SP300 SP300 SP300 SP300 SP310 SP311 SP311 SP311 SP311 SP311 R0 4-1:Gerro Estaus FP312 O O O A 4-3:Santa Teresa FP312 O O O A A 4-3:Santa Teresa FP342 U O O A A 4-3:Santa Teresa FP342 U O O A A Vein deposit FP640 A A A C O O A 4-0:Id vein FP640 A A A C O O A A 4-0:Id vein FP640 A A A O O O A A O O A A O O A A O O A A O O A A O O A A A A A A A A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Δ</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													Δ						
SP2306							Δ	· · · · ·					<u> </u>	· · ·					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1 - E. B. B.				i				·		· · · · ·							I
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																·		Δ	
No 4-1;Gerra Betauss SP5317 O O O A A 4-3;Santa Teress 4-4;Hino BI Toqui Vein deposit PFs400 PFs400 O O O A A 4-4;Hino BI Toqui Vein deposit PFs400 A O O O A A 4-5;Katterfeid Old vein PFs400 A A O O A A 4-5;Katterfeid PFs400 A A Ir Q A A A 4-5;Katterfeid PFs400 A A Ir Q A A Ir A Q A A Ir A Q A A Ir Ir A Q A Ir Ir A Q A Ir													5				$ \mathbf{r} $		
No 4 -1; Gerra Setaus SP542 O <tho< th=""> O O O<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td>$\overline{\mathbf{\Omega}}$</td><td>·</td><td> </td></tho<>													<u> </u>				$\overline{\mathbf{\Omega}}$	·	
No 4-1;Gerro Sstauss PF9427 O O O O 4-3;Stauta Teresa PF9407 O O O O O O 4-4;Hina & Toqui PF9407 O				·														~~~~	
4-4:Hina El Toqui Vein deposit Presão Presão O A A Hanto deposit Presão Presão A A C A 4-5:Katterfeld A A A C A 4-5:Katterfeld Presão A A C A 4-10:Rio Clauses Presão A A O O A 80 5-3:Veita Perez Sresit O O A O O A 5-5:Rio Resbalon Yesso O O O O O O O 5-6:Felix Barria Sresit O <td>No 4</td> <td>4-1:Cerro Estavas</td> <td></td> <td></td> <td></td> <td></td> <td>O</td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>·</td> <td>Ó</td> <td></td> <td></td> <td></td> <td> </td>	No 4	4-1:Cerro Estavas					O			0		0		·	Ó				
4-4:Hina El Toqui Vein deposit Presão Presão O A A Hanto deposit Presão Presão A A C A 4-5:Katterfeld A A A C A 4-5:Katterfeld Presão A A C A 4-10:Rio Clauses Presão A A O O A 80 5-3:Veita Perez Sresit O O A O O A 5-5:Rio Resbalon Yesso O O O O O O O 5-6:Felix Barria Sresit O <td></td> <td></td> <td>FPs429</td> <td></td> <td>tr</td> <td></td> <td>Ó</td> <td></td> <td></td> <td>Õ</td> <td></td> <td></td> <td>O</td> <td></td> <td></td> <td>· · · · ·</td> <td></td> <td>· · · · · · ·</td> <td></td>			FPs429		tr		Ó			Õ			O			· · · · ·		· · · · · · ·	
Heato deposit PPs400 (PPs400 A C <thc< th=""> C <thc< th=""> C<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>• •</td><td></td><td></td><td></td><td></td><td></td></thc<></thc<>														• •					
Hanto deposit PP9402 A A A C <thc< th=""> <thc< th=""> C</thc<></thc<>		Vein deposit				Δ	\odot					•O	Δ	Δ			· .		
4-5;Katterfeld PPs404 A Ir										0		Q	Δ						
4-5:Kalterfeld PPs4/3 tr A A A A No 9.3:Yeta Perez PPs6/3 A A A A A No 9.3:Yeta Perez PPs5/3 A <td< td=""><td>1</td><td>Manto deposit</td><td></td><td></td><td>Δ</td><td>Ļ.</td><td></td><td></td><td></td><td></td><td> </td><td><u> </u></td><td></td><td></td><td> </td><td></td><td> </td><td></td><td><u>├</u>l</td></td<>	1	Manto deposit			Δ	Ļ.						<u> </u>							<u>├</u> l
Old vein PPs(1) A Q A A Q A <		1 Filletterfald	rrs404		ļ		Δ			tr		0	\overline{Q}	$ \Delta $					┟───┤
New Yein PFs415 A O O A 4-10:Rio Cisnes YFs502 A O O A O A 5-5;Rio Resbeion YFs502 A O O A O A O A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A	:		BBel.19	_{+ -}												[· ·	 		(- 1
A-10:Rio Cisnés YFe402 O A No 5-5:Rio Resbelon YFe501 O A 5-5:Rio Resbelon YFe502 A O A YFe503 O A O A S-6:Felix Barria I SFe516 O A O A S-6:Felix Barria I SFe517 C A O C A S-6:Felix Barria I FFe502 O A O O C A S-6:Felix Barria I FFe502 O A O O O O S-6:Felix Barria I FFe502 O A O O O O S-5:Rina Las Chives FFe502 O A O <							$\overline{\Lambda}$	4		<u> </u>	4		0			6			┝───┤
No 9.5-3:Yeia Perez SPs518					<u> </u>		<u></u>			·						X			
5-5;Rio Resbaion YP:502 A O A YP:503 O no opaque mineral determined 5-6;Pelix Barria I SP:516 O O O Felix Barria I SP:511 C O O O 5-6;Pelix Barria I SP:511 C O O O O 5-6;Pelix Barria I PF:522 O O O O O O 5-7;Cerro Castillo PF:532 O O A O O O 5-9;Hina El Pelado YP:553 O O O O O O O 5-10 to 5-19; YP:553 A O O A O	No 9												0	<u> </u>	0	<u> </u>			<u> </u>
YP5503 O O O O 5-6; Felix Barria I SP510 O A A O Felix Barria I SP511 C O A A O Felix Barria I SP510 O A A O O S-7; Cerro Castilio TP5503 O A O O O 5-7; Cerro Castilio TP5503 O A O O O O 5-8; Wina El Pelado YP553 O A O O O O O 5-9; Mina El Pelado YP553 O O A O <	[]		YPs501				[Ō.		- <u> </u>	Δ			
TP550no opaque mineral determinedS-6; Felix Barria ISPs511C \bigcirc							Δ						Ō						
5-6; Felix Barria I SP531 tr \bigcirc \land \bigcirc	1°						0				·								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1							no c	paqu	ie mi	nera		tern						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5-6:Felix Barria l					Q		·				Δ	0			·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1	· <u></u>			tr		0					Δ	\Box					L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	·						<u>Q</u>							<u> </u>					
5-8; Hina Las ChivasYPs 535 \bigcirc \bigcirc \land \bigcirc \bigcirc \bigcirc \land \bigcirc \bigcirc \bigcirc \land \bigcirc \bigcirc \bigcirc \land \bigcirc <	1 1	5-1; Cerro Castillo					Ň					- <u>-</u>			,	\Box	\odot		┝
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5 P.Mina Lac Chiver												6	-				j
5-9; Hina El Pelado YPs562YPs562 YPs590 \bigcirc		J-0, IIIId Las Chivas													$-\Delta$				⊢ —1
YPs582 Wina Silva Q Q \odot Δ 5-10 to 5-19; Mina Silva TPs534 TPs534 Δ \odot \Box Δ \Box 5-20(a):Rio TPs555 tr \odot \bigcirc Δ \bigcirc <td> </td> <td>5-9:Mina El Pelado</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\overline{\Lambda}$</td> <td></td> <td></td> <td></td> <td></td> <td>Ó</td> <td></td> <td></td> <td></td> <td></td>		5-9:Mina El Pelado		<u> </u>						$\overline{\Lambda}$					Ó				
$7^{P}s590$ Δ \odot \odot Δ \odot Δ \odot Δ \Box Δ Δ \Box Δ \Box Δ Δ \Box Δ Δ \Box Δ	1 1							0		0		0			<u> </u>				
Hina SilvaTPS534 TPs548 \triangle \triangle \triangle \triangle \bigcirc 5-20(a);Rio Aveilanos I 5-36;Hina RosilioOPs512 TPS512 \bigcirc <td></td>																			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1	5-10 to 5-19;				Δ	0			0	Δ	0	Δ		· ·				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Mina Silva											·			Δ	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1		TPs548				Δ			Δ	Δ	0	-				-		
Ávellanos 1 OPS519 O			TPs555	L	tr		Ø			<u>0</u>		<u>:0</u>	0		0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1		00 540			· .													1
5-36: Hina RosilloTPs518 TPs520 TPs520 TPs520 0 0 0 0 78519 TPs520 TPs520 0 0 0 0 0 78512 TPs520 TPs520 0 0 0 0 0 $5-54$: Veta Torres 1FPs503 PPs510 TPs510 0 0 0 0 No7-1; Paulina SPs713 T-2; Laguna VerdeSPs713 FPs758 FPs765 FPs765 0 0 No7-2; Laguna Verde FPs758 FPs718 FPs734 FPs734 FPs736 0 0 0 7-3; La Poza FPs736FPs765 FPs736 FPs736 0 0 0 7-4; Valle Del Rio Aviles T-5; Kina Escondida Alteration zone FPs734 0 0 0 7-b; El Colegio Alteration zone FPs738 0 </td <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td> <td>\underline{O}</td> <td></td> <td></td> <td>8</td> <td></td> <td>6</td> <td>\ominus</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td>				·			\underline{O}			8		6	\ominus		0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	{			<u> </u>				·	ļ	μ.		ų.	1X		6				
TPs521 0 0 0 5-54; Veta Torres 1 FPs503 0 0 0 0Ps510 0 0 0 0 0 No 7 7-1; Paulina SPs706 0 0 0 0 7-2; Laguna Verde FPs758 0 0 0 0 0 7-3; La Poza FPs716 0 0 0 0 0 FPs718 0 0 0 0 0 0 7-3; La Poza FPs718 0 0 0 0 FPs734 0 0 0 0 0 0 7-4; Valle Del Rio SPs723 0 0 0 0 0 7-5; Mina Escondida YPs701 0 0 0 0 0 0 7-b; El Colegio Alteration zone FPs738 0 0 0 0 0 7-c; Veta Don Juan FPs729 0 0 0 0 0 0		J-JU, HINA ROSIIIO	TPe510									6	$\vdash \forall$			 			├──┤
TPs521 0 0 0 5-54; Veta Torres 1 FPs503 0 0 0 0Ps510 0 0 0 0 0 No 7 7-1; Paulina SPs706 0 0 0 0 7-2; Laguna Verde FPs758 0 0 0 0 0 7-3; La Poza FPs716 0 0 0 0 0 FPs718 0 0 0 0 0 0 7-3; La Poza FPs718 0 0 0 0 FPs734 0 0 0 0 0 0 7-4; Valle Del Rio SPs723 0 0 0 0 0 7-5; Mina Escondida YPs701 0 0 0 0 0 0 7-b; El Colegio Alteration zone FPs738 0 0 0 0 0 7-c; Veta Don Juan FPs729 0 0 0 0 0 0	۱ I						d	·				ă	$\overline{\mathbf{O}}$		붠	i			{i}
TPs524 A O A 5-54; Vetā Torres I FPs503 O A A OPs510 O O O A A No 7 7-1; Paulina SPs706 O O A O 7-2; Laguna Verde FPs758 A O A O A 7-3; La Poza FPs716 O A O A O A FPs718 O A O O O O A O FPs718 O A O O O O O O FPs721 O A O A O O O O FPs734 A O A O O O O O 7-4; Valle Del Rio SPs723 O A O				i	··							· .							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			TPs524				Δ			· · ·		0	Δ		<u> </u>				
No 71; Paulina SPs706 O	l l	5-54;Veta Torres 1	FPs503				\odot			_			Δ						
SPs713 O A 7-2;Laguna Verde FPs758 A A O 7-3;La Poza FPs716 O A O 7-3;La Poza FPs716 O A O FPs718 O A O A O FPs734 A O A O A FPs738 O A O A O 7-4;Valle Del Rio SPs723 O O O O O 7-5;Hina Escondida YPs702 O O O O O O O O O O O O O O O O O O O					·				·				0	·		0			
$7-2$; Laguna VerdeFPs758 Δ Δ O $7-3$; La PozaFPs716 O Δ \odot $7-3$; La PozaFPs716 O Δ \odot $7-3$; La PozaFPs716 O Δ \odot $7-3$; La PozaFPs718 O Δ \odot $7-3$; La PozaFPs718 O Δ \odot $7-3$; La PozaFPs718 O Δ \odot $7-3$; La PozaFPs734 Δ \odot Δ $7-3$; La PozaFPs734 Δ \odot \odot $7-4$; Valle Del RioSPs723 \odot \odot \odot $7-4$; Valle Del RioSPs723 \odot \odot \odot $7-5$; Hina EscondidaYPs701 \odot \odot \odot $7-5$; El ColegioFPs754 Δ \Box $7-c$; Veta Don JuanFPs729 \bigcirc \triangle $7-c$; Veta Don JuanFPs731 \bigcirc \bigcirc	No 7	7-1;Paulina							L				la dia dia dia dia dia dia dia dia dia di				i		
$7-3$; La Poza $FPs765$ \bigcirc \bigcirc \bigtriangleup $7-3$; La Poza $FPs716$ \bigcirc \bigcirc \bigcirc \bigcirc $FPs718$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $FPs718$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $FPs718$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $FPs737$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $FPs7375$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $7-4$; Valle Del Rio $SPs723$ \bigcirc \bigcirc \bigcirc \bigcirc $7-5$; Mina BscondidaYPs701 \bigcirc \bigcirc \bigcirc \bigcirc $7-5$; El Colegio $FPs754$ \bigcirc \bigcirc \bigcirc \bigcirc $7-c$; Veta Don Juan $FPs729$ \bigcirc \bigcirc \bigcirc \bigcirc $7-c$; Veta Don Juan $FPs731$ \bigcirc \bigcirc \bigcirc \bigcirc		7.0.7	<u>SPs713</u>	h								Δ					L		<u> </u>
7-3; La Poza $PPs716$ O Δ \bigcirc $Pps718$ \bigcirc \bigcirc \triangle \bigcirc $Pps718$ \bigcirc \bigcirc \triangle \bigcirc $Pps718$ \bigcirc \bigcirc \triangle \bigcirc $Pps721$ \bigcirc \bigcirc \triangle \bigcirc $Pps734$ \triangle \bigcirc \bigcirc \bigcirc $Pps734$ \bigcirc \bigcirc \bigcirc \bigcirc $Pps736$ \bigcirc \bigcirc \bigcirc \bigcirc $Pps738$ \bigcirc \bigcirc \bigcirc \bigcirc $Pps738$ \bigcirc \bigcirc \bigcirc \bigcirc $Pps738$ \bigcirc \bigcirc \bigcirc \bigcirc $Pps701$ \bigcirc \bigcirc \bigcirc \bigcirc $Pps702$ \bigcirc \bigcirc \bigcirc \bigcirc $Pps702$ \bigcirc \bigcirc \bigcirc $Pps754$ \bigcirc \bigcirc \bigcirc $Pps729$ \bigcirc \bigcirc \bigcirc $Pps731$ \bigcirc \bigcirc \bigcirc		/-Z;Laguna Verde							·				\Box				i		
FPs718 \triangle \bigcirc FPs721 \bigcirc \bigcirc \triangle FPs734 \triangle \bigcirc \bigcirc FPs735 \bigcirc \bigcirc \bigcirc FPs736 \bigcirc \bigcirc \bigcirc 7-4; Valle Del RioSPs723 \bigcirc \bigcirc 7-5; Mina BscondidaYPs701 \bigcirc \bigcirc 7-b; El ColegioYPs702 \bigcirc \bigcirc 7-c; Veta Don JuanFPs734 \bigcirc \bigcirc 7SPs729 \bigcirc \bigcirc 7S \bigcirc <td></td> <td>7 9.1 a Boza</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>· · · · ·</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td> </td> <td>4</td> <td> </td> <td><u> </u></td> <td>┢━━━┫</td>		7 9.1 a Boza					-		· · · · ·		<u> </u>					4		<u> </u>	┢━━━┫
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		i-j;La ruza											7						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										0			_ <u></u> _						├{
FPs736 \bigcirc \triangle \triangle 7-4; Valie Del Rio AvilesSPs723 \bigcirc \bigcirc \triangle 7-5; Hina EscondidaYPs701 \bigcirc \bigcirc \bigcirc 7-b; El Colegio Alteration zoneFPs754 \bigcirc \bigcirc 7-c; Veta Don JuanFPs729 \bigcirc \bigcirc \bigcirc 7-c; Veta Don JuanFPs73 \bigcirc \bigcirc \bigcirc		De la companya de la					Δ			ŏ	Δ								
FPs736 \bigcirc \triangle \triangle 7-4; Valie Del Rio AvilesSPs723 \bigcirc \bigcirc \triangle 7-5; Hina EscondidaYPs701 \bigcirc \bigcirc \bigcirc 7-b; El Colegio Alteration zoneFPs754 \bigcirc \bigcirc 7-c; Veta Don JuanFPs729 \bigcirc \bigcirc \bigcirc 7-c; Veta Don JuanFPs73 \bigcirc \bigcirc \bigcirc	1 · 1		FPs735						_	Ó			····			\circ			<u> </u>
7-4; Valle Del Rio Aviles SPs723 O O O 7-5; Hina Escondida YPs701 O O O O 7-b; El Colegio Alteration zone FPs754 O O O O 7-c; Veta Don Juan FPs73 O O O O O			FPs736							0	Δ	Δ							
7-5;Hina Escondida YPs701 O O O YPs702 O O O 7-b;El Colegio Alteration zone FPs754 A 7-c;Veta Don Juan FPs729 O A Ps731 A O	[7			[]			1
YPs702 O O 7-b; El Colegio Alteration zone FPs754 Alteration zone FPs729 O 7-c; Veta Don Juan FPs729 O Ps731 O O		Aviles														L			
7-b;El Colegio Alteration zone FPs754 7-c;Veta Don Juan FPs729 O Ps731 O O	1 [7-5;Mina Escondida						0		<u>Q</u>		Q		ļ		Ľ]]
Alteration zoneFPs754 Δ 7-c:Veta Don JuanFPs729 O Δ Ps731 Δ O			YPs702				0			0		Ø	i			<u> </u>			
$7-c; Yeta Don Juan \qquad FPs729 \qquad O \qquad A \qquad O	1		80 754			[]			l		- ÷ .		~	. :	.		3. 3.		1
$\mathbb{P}Ps73$		Alteration zone	<u> FPS/54</u>					<u> </u>				<u>-</u>	Δ						l
		I-C;YETA DON JUAN				<u> </u>													<u> </u>
Abbreviations:Au;free gold, Ag;free silver, Ag-s;silver bearing sulfosalts, cp;chalcopyrite	ل	hbrowistions Autions	risisi	$\frac{1}{\sigma \cdot f_r}$	00 9	i l vo		σ_e•	e i l u	l	oari	ng e	$\frac{4}{11}$	ealt	ليشتع			ny ni	<u> </u>

٠

Table 5 Results of Ore Hicroscopy on the Polished Sections

Abbreviations:Au;free gold. Ag;free silver, Ag-s;silver bearing sulfosalts, cp;chalcopyrite, cc;chalcocite, cv;coveline, gn;galena, ang;anglesite, sp;sphalerite, py;pyrite, po;pyrrohotite, apy;arsenopyrite, ht;hematite, mt;magnetite, il;ilmenite, mo;molybdenite @;abundant, O;common, A;scarce, tr;trace Table 6 Results of X-Ray Diffraction Analysis (1)

Tria Tri 112 C <th< th=""><th></th><th>Sample</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Minerals</th><th></th><th>derermined</th><th>3ec.</th><th></th><th></th><th></th><th></th><th>Ì</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		Sample							Minerals		derermined	3ec.					Ì							
Itia YX 113 \bigcirc $ $				X-f			ka	-	I mont	epi				ank			goe				÷	ang		
Trease YX 107 0 D	Araucaria		0		\triangleleft	0		а ал			-					¢.								
Pyrss TX 301 O <th< td=""><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td><u> </u></td></th<>			0			0										0				_				<u> </u>
I (X) 306 (X) (X)<	Rey		0		: 	0										4								
R I (m 311 (m) <	Garcia I		0			4				0		•				 		·						ſ
W 311 (O) O D D	rd		0	-		4				0								4		 				l
Pedrescel System Sys			0			4										0		-						
Teress FX 424 O <t< td=""><td></td><td>SX</td><td><u> </u></td><td></td><td> ⊲</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td> </td><td></td><td></td><td></td><td></td><td>[</td></t<>		SX	<u> </u>		 ⊲	4						<u> </u>						4						[
Teresa $[X, 423]$ \bigcirc <td>Es C</td> <td>ЕX</td> <td>-</td> <td></td> <td> </td> <td></td> <td></td> <td> </td> <td></td> <td>Ē</td> <td>0</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td> </td> <td></td> <td> </td> <td> _</td> <td>I</td>	Es C	ЕX	-		 					Ē	0	 							-				_	I
IX 433(a)(b) <t< td=""><td>Santa Teresa</td><td>F</td><td></td><td></td><td>0</td><td>[</td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td>r</td></t<>	Santa Teresa	F			0	[4									r
IX 431 (5) (2) (3) <			-		0		\triangleleft					0		0					· ·					·
Rt 356 \bigcirc $`$ $`$ $`$ $`$ <t< td=""><td></td><td>43</td><td><u>.</u></td><td></td><td>4</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>`</td><td>$\frac{O}{1}$</td><td></td><td></td><td></td><td></td><td></td></t<>		43	<u>.</u>		4		0											`	$\frac{O}{1}$					
WX 409(a)(b)(b)(b)(c) <t< td=""><td></td><td></td><td><u> </u></td><td></td><td>ò</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td>⊲</td><td>0</td><td></td><td></td><td></td></t<>			<u> </u>		ò													4		⊲	0			
YX 412 \bigcirc \sim $>$ $>$ $>$ $>$ $>$ $>$ $>$ <t< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td> </td><td></td><td></td><td></td><td></td><td></td></t<>			<u> </u>				4											<u> </u>						
YX 418 \bigcirc			<u>!</u> —		<		0		4		0	[4										1
WX 419 ○ </td <td></td> <td></td> <td>-</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>T</td>			-	<u> </u>								ļ.						4						T
qui (vein) FX 403 0			©		+										-	⊲								<u> </u>
(Manto) FX 405 © <	Toqui	ΕX	0			0			-		0													T-
rfeld FX 416 © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		FΧ			0	_					_							÷					-	T
TX 417 O <td>5</td> <td>4</td> <td>Ø</td> <td></td> <td>0</td> <td></td> <td></td> <td>-</td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td>T</td>	5	4	Ø		0			-	:					-				0						T
FX 418 \bigcirc \sim <t< td=""><td></td><td>: :</td><td>0</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></t<>		: :	0		0													0						<u> </u>
FX 419 \bigcirc </td <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>—</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>			0		0		0				0				—				0					
FX 420 \bigcirc $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ $>$ <th< td=""><td>•</td><td></td><td>0</td><td></td><td>-</td><td></td><td>_</td><td>) ()</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> · .</td><td></td><td>e</td><td></td><td></td><td></td><td></td></th<>	•		0		-		_) ()										 · .		e				
FX 422 O <td>• •</td> <td></td> <td>Ø</td> <td></td> <td></td> <td></td> <td></td> <td>) 0</td> <td></td> <td> 1 : :</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>• : • • •</td> <td></td> <td></td> <td></td> <td>·····</td>	• •		Ø) 0		 1 : :						0				• : • • •				·····
YX 404 © O △ O ○ </td <td></td> <td></td> <td>Ø</td> <td></td> <td>0</td> <td></td>			Ø		0																			
Perez SX 513 © O ? Sz 514 O Sz 514 O Prospect YX 501 © © 0 ? O ? Prospect YX 501 © 0 0 To the matrix pl: plagioclase. K-fe: K-feldspar. mus: muscovite. bi: biotite. chl: chlorite. Ka: kaolinite. di; dickite mont: montmorillonite. epi: epidote. amp: amphibole. cal: calcite. sid: siderite. smt: smithonite. ank: ankerite. jar: ht: hematite. goe: goethite. py: pyrite. cp: chalcopyrite. po: pyrrohotite. sp: sphalerite. gn: galena. tc: talc les: ©: strong. O: medium. ∆: weak. ?: uncertain	4-10						0			·											 			r—
Sk 514 O prospect YX 506 © © ? O ? O ? O ? O ? O ? O ? O ? O O ? O	Veta Perez		<u>ا</u> نا																					г <u>-</u> -
esbalón YX 506 \bigcirc	-									Ĭ									-					
prospectYX 501 \odot Δ </td <td>Río Resbalón</td> <td>XX 506</td> <td></td> <td></td> <td></td> <td>0</td> <td>ç.</td> <td></td> <td></td> <td><u></u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · ·</td> <td></td> <td></td> <td></td> <td></td> <td>Г</td>	Río Resbalón	XX 506				0	ç.			<u></u>									· · · ·					Г
. qz: quartz, pl: plagioclase. K-fe: K-feldspar, mus: muscovite, bi: biotite. chl: chlorite, ka; kaolinite. di; dickite mont; montumorilionite, epi: epidote, amp; amphibole, cal: calcite, sid; siderite, smt; smithonite, ank; ankerite, jar: ht; hematite. goe: goethite, py: pyrite. cp: chalcopyrite, po; pyrrohotite, sp; sphalerite, gn; galena, tc: talc ies: ©: strong, O; medium, ∆; weak. ?: uncertain			┣								 			}		 		<u>.</u>	-					[
mont; montmorilionite. epi; epidote, amp; amphibole, cal; calcite, sid; siderite, smt; smithonite, ank; ankerite, jar; ht; hematite. goe; goethite, py; pyrite, cp; chalcopyrite, po; pyrrohotite, sp; sphalerite, gn; galena, tc; talc ies: ©; strong, O; medium, ∆; weak, ?; uncertain		tz. pl: pla	giocla	ise. K	-fe: K-	felds	par.		nuscov	ite.	bi: bi	iotite	ch)	EP]	orite	, Ka	kao	init	÷	dici	1			1
ы мемение. Бое, воените, ру, руппе, су, чиатооруппе, ро, рупольне, зу, зриателие, ди, валема, но. es: ©: strong. O; medium, ∆; weak, ?; uncertain		the root on the	e. epi	epio	dote, a	a :qmf	dinqm:	ole.	28]: 0 1	alcit(e, S10	1: S10	derit(5. SH		thon	te.	: Yuk:	anker	tte.		arosi	en en	
	ensities: ©: s	trong O:	mediun			с.	DCert	copyr. ain	- - -			י ר ר		Tondo	ייר ביי דר בי		11 7 7 7 7 7		3.	2				
)))	-		-	, i					••					. *	•		-					
	-																							

•

- 52 -

•

Table 6 Results of X-Ray Diffraction Analysis (2)

. . .

No. 5 ditto Upriver of balón(Tres 5-7 Co. Cas 5-8 Mina Ch			┝																							
<u>ь — — — — — — — — — — — — — — — — — — — </u>			220	pl K-fe	fe mus	is bi	chl	ka	(p	ha mont		epi amp	mp cal	L sid	d smt	ank	jar	≡t.	ht g	goe p	py cp	D DO	s p	gn	ang	·
Upriver balón(1 5-8 Mir	ditto		0	0							c .									 						
Upriver balób(1 5-7 Co. 5-8 Min	· .	YX 503	0	0			0			<u> </u>			0										_			
balón(T 5-7 Co. 5-8 Min	of Rio Res-		0		0														-					-		
5-7 Co. 5-8 Mir	balón(Tres Arroyos) [YX 505	i—	Ô		0	4													7	4					
5-8 Min	Castillo	TX 509	0	0	0						с. 	-		 			 .		0							
	la Chivas	TX 553				-							0							<u> </u>						
-		TX 556	ļ	0	0		0					-	0	-												
		X 540	<u> </u>	0	4	-	0						¢	-			<u>.</u>		-	ļ						
		XX 541	÷	0		-	0			-		-						<u> </u>								
		YX 542	ļ-	0	0		0			-		_														
		YX 545	0	0	4		0				_		_									_			_	
		YX 547		0	0		0		. :										-							
		XX 549		0			0		-																	
		YX 551	I	0	4		0		-	<u> </u>									с.							:
		YX 553	i							_										0						~~-
	 	YX 555	0				4																			
5-9 Mina	na el Pelado	YX 568	0								-	۵.	0				-			0			¢.	\$		_
		XX 569	4										0													
		YX 575										'					4		_	0				-		-
			0				0				-		¢.	0		¢•							0	Õ		
			0										0			<				-	с.		\$			_
		XX 594	0										0								0		¢.	4		
		YX 596	0		0							 C-•					-	_	_							
		YX 599	0			-							0			0			-		_		с·			-
5-10 to	61-5 0	TX 539					0												⊲	_						
Mina Silva	silva	TX 542	0				0	c.									_				_					
		XX 513		0 ©	0		0												_				4		_	
										-	_	0	0	_		c~•		0		_	-		_			tc: ?
		YX 516											0	_												

ha: halloysite. mont; montmoriljonite. epi; epidote, amp; amphibole, cal; calcite, sid; siderite, smt; smithonite, ank mt; magnetite. ht; hematite. goe; goethite, py; pyrite. cp; chalcopyrite. po; pyrrohotite. sp; sphalerite. gn; galena <u>Peak Intensities:</u> ©; strong. ○; medium. △; weak. ?; uncertain

- 53 -

Table 6 Results of X-Ray Diffraction Analysis (3)

No Statute NS 31 (continuet) Statute NS 31 (S 33) Cold	Area	ra Location	Sample	-			•					Minerals		determined	rmint	pa			.									
5 4 than SLIva XX 573 1				Ζb		K-fe	12			· .		a mon							jar						sp	gn		thers
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mina					:							0	0								-					
Time Time D<		(continued)													¢ •		0	0		-								
5-34 Vista Alere YX 513 O										—							4	0		-					0			
5-34 Vista Aleere M 13 M															0			0							0			
TX 516 \bigcirc <		-34 Vista		0			0		4		-				0			• :				\triangleleft					87	`⊅:∆
5-36 Mina Rosillo TX 311 © O O A P A O O A P A P A P A P A P A P A P A P A P A P A P A P A A P A A P A A P A A P A <td></td> <td></td> <td></td> <td>0</td> <td>⊲</td> <td>0</td> <td>Ó</td> <td></td> <td>_</td> <td></td> <td><</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				0	⊲	0	Ó													_		<						
TX 511 TX 511 O </td <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>⊲</td> <td></td> <td>0</td> <td></td> <td></td> <td><u>.</u></td> <td></td> <td></td> <td>⊲</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>c</u>.,</td> <td><u>~·</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				0	0	0	⊲		0			<u>.</u>			⊲						<u>c</u> .,	<u>~·</u>						
5-36 Mina Rosillo IX 522 O <td></td> <td></td> <td>TX 517</td> <td>0</td> <td></td> <td>0</td> <td>⊲</td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\triangleleft</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td>			TX 517	0		0	⊲		4										\triangleleft			0			4			
The second of		Mina Rosi	TX 522				0			\triangleleft			ŀ			-									⊲			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			TX 528		0		0			_	—								-		—							
Total and series YX 535 YX 545 YX			YX 534	_	<u>د</u> .		0		Ś			—			0			4		-								
Yeta Torres I FX 504 O			YX 535				·																					Fe:O
5-54 Veta Torres I FX 504 © △ © △ ○ <td></td> <td></td> <td>YX 536</td> <td>}</td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>¢.</td> <td></td>			YX 536	}			0		0					¢.														
7-b Felix Barria i FX 509 C <thc< th=""> C</thc<>		Veta		22.27	Ö		⊲		0		· · ·		-		¢.													
Felix Barria I SX 503 C		Felix	F 1	0	0									0							:	∇						
$ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 $		Felix Barria I		⊲																	7		¢.				ц	∆:1
SX 715 O <td></td> <td>1-1</td> <td>SX 708</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Þ</td> <td></td> <td></td>		1-1	SX 708				4									0										Þ		
a Verde FX 704 O <t< td=""><td></td><td></td><td>SX 715</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td></t<>			SX 715							_																0	0	
a Verde FX 704 © C ? <th?< th=""> <th< td=""><td></td><td></td><td>SX 716</td><td></td><td>Ó</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></th?<>			SX 716		Ó											0		0										
FX 759 © O O O O O O O FX 760 © O <		Laguna		0							\cap																-	
FX 760 O O O O O O 2a FX 715 O O O O O O O ael Rio SX 725 O O O O O O O O O secondida XX 701 O<			EX 759	_		0	⊲			0		¢.			¢.				_									
FX 763 © O △ ○ <td></td> <td></td> <td>EX 760</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>4</td> <td></td>			EX 760			0				4																		
za FX 715 O </td <td></td> <td></td> <td></td> <td>_</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ò</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>				_	0	0				4									Ò			4				_		
2a FX 715 © O </td <td></td> <td></td> <td>FX 766</td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td>_</td> <td></td>			FX 766	0		0				4				_														
del Río SX 725 © O <t< td=""><td></td><td>La</td><td></td><td>0</td><td>0</td><td>:</td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td>-</td><td>4</td><td>0</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>1</td><td></td><td>8</td><td>0</td></t<>		La		0	0	:						 		-	4	0		0						•	1		8	0
sSX 728 \bigcirc <td></td> <td>Valle del</td> <td>SX 725.</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>⊲</td> <td>-</td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Valle del	SX 725.		0	0				-					⊲	-												
Escondida YX 701 \bigcirc Δ Δ Δ Δ Δ Δ Δ YX 702 \bigcirc Δ		Aviles	SX 728					 													7	4						
YX 702 [③ ○		Mina		0	⊲	\triangleleft	\triangleleft		i	4					¢.													
qz; quartz, pl; plagioclase. K-fel: K-feldspar, mus; muscovite, bi; biotite, chlorite, ka; kaolinite, di;				0											٩					\triangleleft	4							
	Abbr	120	. pl: pla	18100	lase		fel:	7	sldsp			musco	vite	م	••	otite	сh Сh	-	lori		ka; k	aoli	uite.		dick	ite.		,
	E	magazorito ht. hometito		(+ ··· + ·· / + / +						i	ee jeeten en eester							1	•	;			i			\$		

mt; magnetite, ht: hematite, goe; goethite, py; pyrite, po; pyrrohotite, cp; chalcopyrite, sp; sphalerite, gn; galena, gyp; gypsum, fe; amorphous Peak Intensities: ©; strong, O; medium, Δ ; weak, ?; uncertain iron oxides. vm; vermiculite

54 ----

Table 6 Results of X-Ray Diffraction Analysis (4)

ang others ------Abbreviations: q2: quartz, pl; plagioclase, K-fel; K-feldspar, mus; muscovite, bi; biotite, chl; chlorite, ka; kaolinite, di; dickite, ц Бо po sp 6 chi ka di ha mont epi amp cal sid smq ank jan mt ht god py \triangleleft O <u>م</u> . Minerals determined c. c o.l. 0 44 O \triangleleft 0 mus bi 0 40000 44 ٥İ٩ 00 qz pl K-fe r 0 0 0 0 0000000000 0 0 FX 725 0 FX 726 0 00 00000000 FX 738 (FX 739 (FX 740 (FX 743 (FX 743 (FX 743 (FX 749 (FX 749 (FX 751 (FX 755 FX 756 YX 703 Sample Alteration Zone 7-c Veta Don Juan (continued) Location '-b El Colegio 7-5 Escondida 7-a Co. Bayo Area

ha; halloysite, mont: montmorillonite, epi: epidote, amp; amphibole, cal; calcite, sid; siderite, smt; smithonite, ank; ankerite, jar; jarosite. mt; magnetite, ht: hematite. goe: goethite. py: pyrite, po; pyrrohotite. cp; chalcopyrite, sp; sphalerite, gn; galena

Peak Intensities: ©: strong. O: medium. riangle: weak, ?: uncertain

- 55 -

Table	7

Results of Whole Rock Analysis (1)

Sample No FR102 Obesits Obesits FR201 FR201 FR201 FR201 FR201 SR302 SR302 SR302 SR304														
Stor 62.840 74.990 73.120 74.590 73.550 63.330 73.540 70.070 77.030 74.990 65.990 Tio 0.540 0.090 0.330 0.155 0.210 0.330 0.740 0.240 0.440 0.150 1.590 Al_20 17.450 14.230 15.150 15.120 13.840 14.160 17.600 14.130 14.840 13.590 0.577 1.651 Peo 2.430 0.650 1.610 1.280 0.550 1.540 3.320 1.393 1.310 0.570 0.770 7.030 0.300 0.130 Yago 2.400 0.160 1.270 0.340 0.360 0.330 1.240 0.480 1.010 0.200 0.330 0.130 0.400 0.200 0.300 0.120 Mago 2.400 0.160 1.270 0.340 0.200 0.330 1.240 0.480 1.010 1.020 0.290 0.400 0.400 0.400							•	· .				•		
110.0.5400.5000.3800.1500.5100.5100.5100.5300.7400.4400.1600.1500.1500.590A1.0017.46018.27015.12015.12015.12015.20015.601.6001.6101.413014.8013.500.5771.601Pe01.2820.6651.6101.2800.5501.5603.3201.3900.4951.5440.3370.5704.480Ma00.6600.6030.6010.2070.3400.3600.3300.1300.4000.6000.6300.0300.130Ma04.2103.3204.2003.4204.5803.4403.1004.6103.2403.9074.0203.7003.006Fro1.6805.6802.6301.5004.3304.9203.2904.0402.8704.0203.7003.00MayO4.2103.3204.2003.6300.6300.2020.4000.2000.6900.0100.600Pro1.6805.6802.6301.5501.5034.3304.9203.2004.0402.8704.0203.7003.00BaO0.7000.2300.7070.6800.3300.2000.60510.5510.5510.5510.5510.5510.5510.55Co0.5000.5100.55010.5310.5510.5510.5510.5510.5510.5510.5510.5510.551	Sample No	FR103	OR503	0R507	PR201	PB301	PR601	PR602	SR301	SR302	SR303	SR304	SR305	
Alio17.46018.27015.12015.12015.12015.12016.14017.60017.60014.13014.64018.50015.54015.54015.57116.517Feo2.3200.6601.6101.2800.5501.5403.2801.3900.4400.6500.5704.460Meo0.0800.0300.4000.0200.0300.0300.1300.4400.6400.0200.0300.130Mgo2.4001.1202.9702.4201.5801.6403.7904.2103.2004.2603.5904.6103.2403.9704.2203.7003.080Na1O1.6905.6802.6301.5004.3304.2003.2904.0402.6704.1004.1002.000Poth0.1000.0100.0600.0300.2000.0400.0500.0300.0900.0000.0900.0900.010Bao0.7000.2000.5700.5900.2000.3400.4000.6000.0200.090	Si0 ₂	62.840	74. 390	70.090	73. 120	74. 590	73. 550	63. 330	73. 540	70. 070	77. 030	74. 990	59.060	
Fey01.8200.1681.1410.1370.6500.4691.8000.4951.5840.3370.5771.691Fe02.4300.6501.5101.2200.5501.5403.2201.3901.3100.5704.480Ma00.8800.3000.1601.2700.3400.3800.3300.1300.4000.6800.0300.130Mg02.4001.1202.9702.4201.5801.6403.7902.1603.0207.101.3605.150Nay04.2103.9204.2604.5901.5004.3104.6103.2403.9704.0203.0703.080Fy01.6905.6802.6301.5004.3304.9203.0200.0400.3800.0200.0900.0100.0200.090Ba00.0700.2300.0700.9800.1100.2100.1600.3300.2301.6300.2301.630Cr019.51910.24810.1719.34710.15910.55010.55010.3559.93410.14379.4179.819Cr019.61910.24810.1719.34710.19110.54110.55010.5559.93410.14379.1479.417A1.5501.5333.6282.5902.59719.55416.5522.54722.46812.667A3.5632.607736.26336.7322.907719.4442.387516.9522.4	Ti0,	0, 540	0.090	0, 380	0. 150	0.210	0.310	0.740	0. 240	0.440	0, 160	0.150	0, 590	
Fe02.4300.6501.6101.2800.5501.5403.3201.3901.3100.5700.5704.480Nn00.0800.0300.0300.0400.0300.0400.0600.0300.2000.2000.2000.2000.3003.600NarO4.2103.2004.2604.5803.4403.1004.6103.2403.9704.0203.7003.600Fro0.1000.0100.6600.0300.0200.0200.0300.0200.0300.0200.0200.0200.300Bac0.0700.2300.2700.5600.5700.3300.2000.0200.0300.0400.0500.0600.0000.000Cot10.5200.2300.2700.5603.4223.4083.13112.8433.1555.99.3410.14799.41798.891Cot10.5500.5610.3550.0350.0350.9340.1430.14399.41798.891Cot19.6190.33026.513.4293.4093.62525.0710.455	A120	17. 480	14. 230	15, 150	15. 120	13.840	14.160	17.600	14. 130	14. 840	13. 590	13.270	16. 600	
Nn0 0.080 0.030 0.040 0.020 0.300 0.130 0.040 0.060 0.030 0.030 0.130 Mg0 2.400 0.160 1.270 0.340 0.360 0.380 1.240 0.480 1.010 0.200 0.230 0.310 Ca0 5.430 1.120 2.970 2.420 1.580 1.640 3.790 2.160 3.020 0.710 1.360 5.150 Nav0 4.210 3.320 4.260 4.580 3.440 3.100 4.610 3.240 4.040 2.710 4.10 4.100	Fe ₂ 0	1. 829	0.168	1, 141	0. 137	0.659	0. 469	1.800	0. 495	1. 584	0. 337	0.577	1. 691	
Mg02. 4000. 1601. 2700. 3400. 3600. 3801. 2400. 4801. 0100. 2000. 2803. 190Ca05. 4301. 1202. 9702. 4201. 5801. 6403. 7902. 1603. 0200. 7101. 3606. 150Na704. 2103. 3204. 2604. 5803. 4403. 1004. 6103. 2403. 9704. 0203. 7003. 880Kr01. 6905. 6802. 6301. 5004. 3304. 9203. 2904. 4402. 8704. 3104. 1402. 140Pr040. 1000.0100.0660.0300.0200.0400.2000.3300.5000.5000.5000.500Ba00.0700.2300.0700.5000.5700.3900.2000.3400.4400.6100.3800.2301.620Cotal99. 61300.348100.17193.47100.109100.551100.55100.35599.34101.43799.41798.81Q16. 50330.30726. 51334. 22934. 68031.81112. 86433. 15926.06935.12334. 19313.556C0.0006.1010.0421.6380.6720.85110.4445740.0001.4480.2800.600Ortal9. 81335.6935.69328.07736.02638.73229.07719.44423.87716.96225.47224.46812.641a3.56<	Fe0	2, 430	0.650	1.610	1. 280	0. 550	1. 540	3. 320	1. 390	1. 310	0.570	0. 570	4. 480	
Ca0 5. 430 1. 120 2. 970 2. 420 1. 580 1. 640 3. 790 2. 160 3. 020 0. 710 1. 360 6. 150 Na ₂ 0 4. 210 3. 320 4. 260 4. 580 3. 440 3. 100 4. 610 3. 240 3. 970 4. 020 3. 700 3. 080 K ₂ 0 1. 690 5. 680 2. 630 1. 500 4. 330 4. 920 3. 290 4. 040 2. 870 4. 310 4. 140 2. 140 P ₂ 0 ₄ 0. 100 0.016 0. 660 0. 300 0. 020 0. 040 0. 200 0. 030 0. 600 0. 030 0. 020 0. 040 0. 610 0. 610 0. 020 0. 600 0. 610 0. 020 0. 610 0. 610 0. 610 0. 570 0. 390 0. 200 0. 305 99. 34 101. 47 99. 417 98. 81 C 0.000 0.610 0. 627 1. 638 0.672 0.851 0.044 0.574 0.000 1. 480 1. 5.56	MnO	0.080	0. 030	0.040	0, 020	0. 030	0.030	0. 130	0.040	0, 060	0.030	0.030	0. 120	
Naro 4. 210 3. 320 4. 260 4. 580 3. 440 3. 100 4. 610 3. 240 3. 970 4. 020 3. 700 3. 080 Kro 1. 690 5. 680 2. 630 1. 500 4. 330 4. 920 3. 290 4. 040 2. 870 4. 310 4. 140 2. 140 Pr0s 0. 100 0.010 0.060 0.030 0.020 0.040 0.200 0.030 0.060 0.010 0.020 0.040 Ba0 0.070 0.230 0.070 0.980 0.110 0.210 0.160 0.130 0.090 0.990 0.100 0.080 Loi 0.520 0.270 0.500 0.577 0.390 0.200 0.340 0.440 0.610 0.380 0.280 1.583 Total 99. 613 10.038 10.271 19.544 2.8.173 18.132 18.56 2.5.90 2.0.077 19.444 2.8.173 18.132 34.183 13.55 C 0.000	Ng0	2.400	0. 160	1. 270	0. 340	0.360	0. 380	1.240	0. 480	1.010	0, 200	0.280	3, 190	:
Ky01.6905.6802.6301.5004.3304.9203.2904.0402.8704.3104.1402.140Py0x0.1000.0100.0600.0300.0220.0400.2000.0330.0600.0100.0200.090Ba00.0700.2390.0700.0800.1100.2100.1600.1300.0900.0900.1000.0200.090Loi0.5200.2700.5000.5700.3900.2000.3400.4400.6100.3800.2301.620Total99.619100.381100.17199.347100.109100.549100.555100.35599.934101.43799.41798.891Q16.50330.30726.51334.22934.08031.83112.88433.15928.06935.12334.19313.556C0.0000.6100.0421.6380.6720.29126.1638.98227.40033.57339.9631.29226.047an23.8155.49914.34111.8077.7067.87517.50310.51814.2033.4566.61525.155ne0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000wo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000or9.88833.56915.738.85	CaO	5.430	1. 120	2.970	2. 420	1. 580	1.640	3.790	2, 160	3, 020	0.710	1.360	6.150	
Pr0s0.1000.0100.0600.0300.0200.0400.2000.0300.0600.0100.0100.0200.090Ba00.0700.2300.0700.0800.1100.2100.1600.1300.0900.0900.1000.080Loi0.5200.2700.5000.5700.3900.2000.3400.4400.6100.3800.2301.623Total99.619100.33100.17199.347100.109100.549100.550100.35599.934101.43799.41788.81Q16.50330.30726.51334.22934.08031.83112.88433.15928.06935.12334.19313.556C0.0000.6100.0421.6380.6720.8510.0440.5740.0001.0480.2800.000or9.88833.56915.5438.86525.59029.07719.44423.87716.96225.47224.46812.647ab35.60328.07736.02638.73229.09126.21638.98627.40033.57339.9631.29226.047an23.8155.49014.31111.8077.7067.87517.50310.51814.2033.4566.61525.155ne0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000inn0.0000.0000.0000.000	Na ₂ 0	4, 210	3. 320	4. 260	4. 580	3. 440	3.100	4.610	3, 240	3. 970	4. 020	3. 700	3. 080	
Ba00.0700.2300.0700.0800.1100.2100.1600.1300.0900.0900.1900.080Loi0.5200.2700.5000.5700.3900.2000.3400.4400.6100.3800.2300.230Total99.619100.348100.17199.47100.109100.549100.550100.35599.93401.43799.41798.891Q16.50330.30726.51334.22934.08031.83112.88433.15928.06935.12334.19313.556C0.0000.6100.0421.6380.6720.8510.0440.5740.0001.0480.2800.000or9.98833.56915.5438.86525.59029.07719.44423.87716.96225.47224.46812.647ab35.60328.07736.32638.73229.09126.21638.96627.40033.57333.99631.29026.017an23.8155.49014.34111.8077.7067.87517.50310.51814.2033.4566.61525.155ne0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000di-mo1.0330.9620.0600.0000.0000.0000.0000.0000.0000.0000.0000.0000.000di-ma0.5250.6090.2550	K ₂ O	1.690	5.680	2. 630	1. 500	4. 330	4. 920	3. 290	4, 040	2. 870	4. 310	4. 140	2. 140	•
Loi0. 5200. 2700. 5000. 5700. 3900. 2000. 3400. 4400. 6100. 3800. 2301. 620Total99. 613100. 384100. 17199. 347100. 10100. 549100. 550100. 35599. 34110. 43799. 41798. 891Q16. 50330. 30726. 51334. 22934. 08031. 83112. 88433. 15928. 06935. 12334. 19313. 556C0.0000.6100.0421. 6380.6720. 8510.0440.5740.0001.0480.2800.000or9.88833. 56915. 5438. 86525. 59029. 07719. 44423. 87716. 96225. 47224. 46812. 647ab35. 60328. 07736. 02638. 73229. 09126. 21638. 98627. 40033. 57333. 99631. 29026. 047an23. 8155. 49014. 34111. 8077. 7067. 87517. 50310. 51814. 2033. 4566. 61525. 155ne0.000 <td>P205</td> <td>0.100</td> <td>0.010</td> <td>0.060</td> <td>0, 030</td> <td>0, 020</td> <td>0.040</td> <td>0. 200</td> <td>0. 030</td> <td>0.060</td> <td>0. 010</td> <td>0. 020</td> <td>0. 090</td> <td></td>	P205	0.100	0.010	0.060	0, 030	0, 020	0.040	0. 200	0. 030	0.060	0. 010	0. 020	0. 090	
Total 99. 619 100. 348 100. 171 99. 347 100. 109 100. 549 100. 550 100. 355 99. 934 101. 437 99. 417 98. 891 Q 16. 503 30. 307 26. 513 34. 229 34. 080 31. 831 12. 884 33. 159 28. 069 35. 123 34. 193 13. 556 C 0.000 0.610 0.042 1. 638 0.672 0. 851 0.044 0.574 0.000 1.048 0.280 0.000 or 9.988 33. 569 15. 543 8. 865 25. 590 29. 071 19. 444 23. 877 16. 962 25. 472 24. 468 12. 647 ab 35. 603 28. 077 36. 026 38. 732 29. 091 26. 216 38. 986 27. 400 33. 573 33. 996 31. 290 26. 047 an 23. 815 5. 490 14. 341 11. 807 7.706 7. 875 17. 503 10. 518 14.203 3.456 6.615 25. 155 ne	Ba0	0. 070	0. 230	0. 070	0, 080	0, 110	0.210	0.160	0.130	0. 090	0. 090	0, 100	0. 080	
Q 16.503 30.307 26.513 34.229 34.080 31.831 12.884 33.159 28.069 35.123 34.193 13.556 C 0.000 0.610 0.042 1.633 0.672 0.851 0.044 0.574 0.000 1.048 0.280 0.000 or 9.988 33.569 15.543 8.865 25.590 29.077 19.444 23.877 16.962 25.472 24.468 12.647 ab 35.603 28.077 36.026 38.732 29.091 26.216 38.986 27.400 33.573 33.966 31.290 26.047 an 23.815 5.490 14.341 11.807 7.706 7.875 17.503 10.518 14.203 3.456 6.615 25.155 ne 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <t< td=""><td>Loi</td><td>0. 520</td><td>0. 270</td><td>0.500</td><td>0.570</td><td>0. 390</td><td>0. 200</td><td>0.340</td><td>0. 440</td><td>0. 610</td><td>0, 380</td><td>0, 230</td><td>1. 620</td><td>÷.</td></t<>	Loi	0. 520	0. 270	0.500	0.570	0. 390	0. 200	0.340	0. 440	0. 610	0, 380	0, 230	1. 620	÷.
C 0.000 0.610 0.042 1.638 0.672 0.851 0.044 0.574 0.000 1.048 0.280 0.000 or 9.988 33.569 15.543 8.865 25.590 29.077 19.444 23.877 16.962 25.472 24.468 12.647 ab 35.603 28.077 36.026 38.732 29.091 26.216 38.986 27.400 33.573 33.996 31.290 26.047 an 23.815 5.490 14.341 11.807 7.706 7.875 17.503 10.518 14.203 3.456 6.615 25.155 ne 0.000 0.	Total	99. 619	100.348	100. 171	99. 347	100, 109	100. 549	100.550	100. 355	99. 934	101. 437	99. 417	98. 891	
or9.98833.56915.5438.86525.59029.07719.44423.87716.96225.47224.46812.647ab35.60328.07736.02638.73229.09126.21638.98627.40033.57333.99631.29026.047an23.8155.49014.34111.8077.7067.87517.50310.51814.2033.4566.61525.155ne0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000vo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000vo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000vo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000vo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000di-en0.6950.000 </td <td>Q</td> <td>16. 503</td> <td>30. 307</td> <td>26. 513</td> <td>34. 229</td> <td>34. 080</td> <td>31. 831</td> <td>12.884</td> <td>33. 159</td> <td>28. 069</td> <td>35. 123</td> <td>34, 193</td> <td>13. 556</td> <td></td>	Q	16. 503	30. 307	26. 513	34. 229	34. 080	31. 831	12.884	33. 159	28. 069	35. 123	34, 193	13. 556	
ab35.60328.07736.02638.73229.09126.21638.98627.40033.57333.99631.29026.047an23.8155.49014.34111.8077.7067.87517.50310.51814.2033.4566.61525.155ne0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000vo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000di-en0.6950.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000di-en0.6950.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000di-fs0.2570.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000hy-fs1.9510.9621.4612.0260.1751.9853.6291.8210.4590.5600.3795.247ol-fd0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000ol-ff0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000ol-ff0.0000.0000.0000.0000.0000	С	0.000	0.610	0. 042	1. 638	0.672	0.851	0.044	0. 574	0. 000	1.048	0. 280	0.000	
an23.8155.49014.34111.8077.7067.87517.50310.51814.2033.4566.61525.155ne0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000vo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000di-wo1.0300.0000.0	or	9. 988	33, 569	15. 543	8. 865	25. 590	29. 077	19.444	23. 877	16. 962	25. 472	24. 468	12.647	
ne0.0000.0	ab	35. 603	28. 077	36. 026	38. 732	29. 091	26. 216	38. 986	27.400	33. 573	33. 996	31, 290	26. 047	
wo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000di-wo1.0300.000 <td>. an</td> <td>23. 815</td> <td>5. 490</td> <td>14. 341</td> <td>11. 807</td> <td>7.706</td> <td>7.875</td> <td>17.503</td> <td>10. 518</td> <td>14.203</td> <td>3. 456</td> <td>6. 615</td> <td>25, 155</td> <td></td>	. an	23. 815	5. 490	14. 341	11. 807	7.706	7.875	17.503	10. 518	14.203	3. 456	6. 615	25, 155	
di-no1.0300.000	ne	0.000	0. 000	0. 000	0.000	0, 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
di-en0. 6950. 000	¥Ö	0.000	0.000	0. 000	0. 000	0.000	0.000	0.000	0.000	0. 000	0. 000	0.000	0.000	
di-fs0.2570.0000.0000.0000.0000.0000.0000.0000.0000.0230.0000.0000.0000.831hy-en5.2800.3983.1620.8460.8960.9463.0871.1952.3930.4980.6976.855hy-fs1.9510.9621.4612.0260.1751.9853.6291.8210.4590.5600.3795.247ol-fo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000ol-fa0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000nt2.6510.2431.6530.1990.9550.6792.6090.7182.2960.4880.8362.451hm0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000i11.0260.1710.7220.2850.3990.5891.4660.4560.8360.3040.2851.121ap0.2370.0240.1420.0710.0470.0950.4740.0710.1420.0240.0470.213	di-no	1. 030	0. 000	0. 000	0.000	0.000	0.000	0.000	0.000	0. 161	0.000	0.000	1. 989	ŀ
hy-en5.2800.3983.1620.8460.8960.9463.0871.1952.3930.4980.6976.855hy-fs1.9510.9621.4612.0260.1751.9853.6291.8210.4590.5600.3795.247o1-fo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000o1-fa0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000nt2.6510.2431.6530.1990.9550.6792.6090.7182.2960.4880.8362.451hm0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000i11.0260.1710.7220.2850.3990.5891.4660.4560.8360.3040.2851.121ap0.2370.0240.1420.0710.0470.0950.4740.0710.1420.0240.0470.213	di-en	0. 695	0. 000	0.000	0.000	0.000	0.000	0.000	0. 000	0. 122	0.000	0.000	1.086	
hy-fs1. 9510. 9621. 4612. 0260. 1751. 9853. 6291. 8210. 4590. 5600. 3795. 247o1-fo0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000o1-fa0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.000nt2.6510.2431.6530.1990.9550.6792.6090.7182.2960.4880.8362.451hm0.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.00011.0260.1710.7220.2850.3990.5851.4660.4560.8360.3040.2851.121ap0.2370.0240.1420.0710.0470.0950.4740.0710.1420.0240.0470.213	di-fs	0. 257	0.000	0.000	0. 000	0.000	0.000	0.000	0. 000	0. 023	0.000	0.000	0. 831	
o1-fo 0.000 <th< td=""><td>by-en</td><td>5. 280</td><td>0.398</td><td>3. 162</td><td>0. 846</td><td>0.896</td><td>0.946</td><td>3.087</td><td>1, 195</td><td>2. 393</td><td>0. 498</td><td>0, 697</td><td>6.855</td><td></td></th<>	by-en	5. 280	0.398	3. 162	0. 846	0.896	0.946	3.087	1, 195	2. 393	0. 498	0, 697	6.855	
o1-fa 0.000 <th< td=""><td>hy-fs</td><td>1. 951</td><td>0.962</td><td>1. 461</td><td>2. 026</td><td>0.175</td><td>1, 985</td><td>3. 629</td><td>1. 821</td><td>0. 459</td><td>0, 560</td><td>0. 379</td><td>5. 247</td><td></td></th<>	hy-fs	1. 951	0.962	1. 461	2. 026	0.175	1, 985	3. 629	1. 821	0. 459	0, 560	0. 379	5. 247	
nt 2.651 0.243 1.653 0.199 0.955 0.679 2.609 0.718 2.296 0.488 0.836 2.451 hm 0.000 0.001 </td <td>ol~fo</td> <td>0.000</td> <td>0.000</td> <td>0. 000</td> <td>0. 000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0. 000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td></td>	ol~fo	0.000	0.000	0. 000	0. 000	0.000	0.000	0.000	0. 000	0.000	0.000	0.000	0.000	
hm 0.000 0.	ol-fa	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0. 000	0. 060	0.000	0,000	0.000	
i1 1.026 0.171 0.722 0.285 0.399 0.589 1.406 0.456 0.836 0.304 0.285 1.121 ap 0.237 0.024 0.142 0.071 0.047 0.095 0.474 0.071 0.142 0.024 0.047 0.213	۵t	2. 651	0. 243	1. 653	0, 199	0. 955	0.679	2.609	0. 718	2. 296	0. 488	0. 836	2. 451	
ap 0. 237 0. 024 0. 142 0. 071 0. 047 0. 095 0. 474 0. 071 0. 142 0. 024 0. 047 0. 213	hø	0.000	0.000	0. 000	0.000	0.000	0.000	0. 000	0.000	0. 000	0.000	0.000	0.000	
	il	1. 026	0, 171	0. 722	0. 285	0. 399	0. 589	1 405	0. 456	0. 836	0. 304	0. 285	1. 121	
Total 99.020 99.850 99.580 98.700 99.610 100.130 100.040 99.780 99.210 100.970 99.080 97.200	ap	0. 237	0.024	0. 142	0. 071	0.047	0.095	0.474	0. 071	0. 142	0. 024	0.047	0. 213	
	Total	99. 020	99. 850	99. 580	98. 700	99. 610	100. 130	100. 040	99. 780	99. 210	100. 970	99. 080	97. 200	

1. A. A.

Table 7

Results of Whole Rock Analysis (2)

Sample No	SB306	SR307	SR308	SR309	SR310	SR311	SE312	SR726	TB201	TR205	TR400	TR403
Si02	67. 750	48.050	49. 300	69. 460	62. 870	66. 520	62. 470	65. 630	40. 120	69, 320	44. 530	72. 920
Ti0 ₂	0. 460	0.740	0.140	0.470	0.560	0.300	0.560	0.550	0.005	0.310	2, 800	0.300
A1=03	14, 620	18, 860	23. 210	16.360	16, 550	16.070	16, 600	15. 920	1. 790	15.570	17.290	14.100
Fe ₂ O ₃	1. 377	3. 673	1, 333	0.878	2,437	1. 912	2. 479	1. 976	2. 431	0, 714	7. 279	0. 830
Fe0	2. 450	5, 900	2. 670	2.170	3. 440	1.510	2, 970	1. 920	4. 750	2.390	4. 500	1, 080
Mn0	0, 060	0, 180	0. 110	0. 050	0. 070	0. 090	0, 110	0, 080	0.040	0, 100	0. 180	0. 050
NgO	1, 740	6. 510	6. 210	0, 760	-2, 230	1.550	2, 410	1. 860	35. 860	1. 130	4. 930	0, 630
Ca0	4, 370	10. 420	13. 460	3, 610	4. 410	3. 260	5. 350	4, 110	1, 380	3. 480	7. 480	2. 030
Na ₂ 0	3, 270	1, 960	1. 470	3. 360	2. 810	4. 200	3, 590	3. 770	0. 080	4. 310	3, 500	4.210
K ₂ 0	2, 100	0.450	0. 100	1.120	1.040	3. 520	1. 990	3. 630	0. 020	1. 380	1.040	2. 900
P205	0. 080	0. 100	0. 020	0. 130	0. 090	· 0. 120	0. 100	0. 170	0. 005	0. 080	0. 380	0. 07(
BaO	0.070	0. 050	0. 050	0.070	0. 070	0. 120	0. 070	0. 100	0, 280	0. 070	0.060	0, 100
Loi	0, 590	1.010	0. 770	1. 300	2. 650	0. 560	0. 540	0. 670	11. 050	0. 490	3. 800	0.220
Total	98. 937	97.903	98. 843	99. 738	99. 227	99, 732	99. 239	100. 386	97.811	99. 344	97, 769	99. 44 <u>0</u>
Q	28, 204	2. 146	2. 831	35. 970	28, 443	19, 455	18, 551	18. 961	0. 000	28. 492	0.000	31. 852
C	0.000	0. 000	0. 000	3. 370	3. 002	0, 000	0, 000	0.000	0.000	0.854	0. 000	0.514
or	12.411	2. 660	0. 591	6. 619	6. 146	20. 803	11, 761	21. 453	D. 118	8.156	6. 146	17. 139
ab	27. 654	16. 575	12. 431	28, 415	23. 764	35, 519	30, 360	31, 882	0, 677	36. 44 9.	29. 599	35. 603
80	19. 018	41. 338	56. 439	17.063	21. 289	14. 607	23, 310	15. 802	4, 466	16. 741	28. 402	9. 61
De	0.000	0. 000	0.000	.0.000	0.000	0. 000	0.000	0. 000	0, 000	0.000	0.000	0, 000
¥O	0.000	0.000	0. 000	0.000	0.000	0, 000	0. 000	0. 000	0. 000	0.000	0.000	0. 000
di-vo	0.892	4. 047	4. 252	0. 000	0.000	0. 327	1. 076	1. 454	0. 979	0.000	2. 604	0. 000
di-en	0. 522	2. 640	3, 099	0. 000	0.000	0. 242	0. 693	1. 059	0. 800	0.000	2. 251	0. ODT
di-fs	0. 327	1. 126	0, 757	0.000	0.000	0. 054	0. 310	0. 259	0. 061	0. 000	0. 000	0. 000
by-en	3. 809	13. 566	12. 360	1. 892	5. 551	3, 617	5. 306	3. 571	27, 302	2. 813	7, 514	1. 568
by-fs	2. 386	5. 786	3, 018	2. 576	3, 509	0, 812	2.375	0. 875	2. 074	3. 473	0.000	0. 895
ol-fo	0,000	i 0. 000	0.000	0.000	0.000	0. 000	. 0. 000	0.000	42. 869	0.000	1. 758	0. 000
ol-fa	0, 000	0. 000	0.000	0.000	0.000	0. 000	0. 000	0.000	3. 588	0.000	0.000	0. 000
۵t	1. 996	5. 323	1. 932	1. 273	3. 532	2. 771	3, 593	2. 864	3. 523	1. 035	6, 974	1. 203
ha .	0. 000	° 0. 000	0.000	0.000	0, 000	0, 000	0. 000	0, 000	0. 000	0.000	2. 466	0. 000
il	0. 874	1. 406	0. 266	0. 893	1.064	0. 570	1.064	1. 045	0. 009	0. 589	5. 319	0. 570
ap	0. 189	0. 237	0.047	0. 308	0. 213	0. 284	0. 237	0. 402	0. 012	0. 189	0.900	0. 166
Total	98.270	96.840	98, 020	98. 360	96, 500	99. 050	98. 620	99, 600	86. 480	98. 770	93. 930	99. 100

- 57 -

Table 7 Results of Whole Rock Analysis (3)

	· · · · ·			· · · ·		an shi e	· . ·		, Etsa a			. 1	di yat	
	Sample No	TR405	TB408	TR508	TR531	TR532	TR533	YR405	YE414	YE501	YR502	YR523	YR601]
	Si02	55. 250	70. 350	63. 030	70. 550	49, 670	53, 930	76, 330	71, 850	62.000	62.280	57.600	69, 870	
	T102	1. 160	0, 380	0. 620	0. 250	1. 360	1.080	0.170	0. 300	0. 660	0. 770	1. 370	0, 670	ľ
i	A1203	16. 160	15. 050	16. 270	14: 320	15. 920	17.110	12. 910	14.260	14. 920	15. 980	15. 120	13, 680	
	Fe ₂ 0 ₃	4. 289	0. 824	1.977	0. 654	2.104	2.000	0, 456	1. 101	4. 032	4. 223	3, 143	1. 170	
	Fe0	4. 770	1.400	2. 540	2. 210	7. 420	1, 890.	0, 220	0. 980	3. 840	2.400	6, 350	3. 950	
)in0	0.180	0, 030	0. 060	0, 030	0.280	0.160	0. 005	0.060	0.140	0.080	0, 140	0. 060	
	NgO	3. 470	1.010	2. 270	0. 380	4. 450	1. 220	0. 120	0. 520	2.000	1. 460	2.050	1, 430	
	Ca0	6. 810	2,640	3. 530	1. 790	4. 190	6. 940	0. 790	1.940	5. 140	2. 690	4. 510	i 0, 210	ľ
	Na ₂ 0	3. 680	4, 810	4. 800	3, 860	4. 340	3. 040	3, 750	4, 520	3. 590	5. 260	3. 650	1. 380	-
Ì	K₂0	1. 010	2. 240	2. 250	4. 080	3. 540	3. 860	3, 930	2. 890	1.000	1. 300	2. 580	2, 830	
	P205	0. 210	0. 090	0. 150	0. 050	0. 280	0. 270	0.050	0, 050	0. 130	0. 160	0. 290	0. 120	
	Ba0	0. 060	0. 070	0.070	0. 120	0.170	1.350	0. 070	0, 100	0. 050	0.060	0. 110	0. 090	
	Loi	1.050	0. 470	0. 930	0. 970	4.460	8, 820	0. 630	0.550	0. 830	2. 450	1.180	3, 180	
	Total	98. 099	99. 364	98. 497	99. 264	98. 184	101. 670	99, 431	99, 121	98. 332	99. 113	98. 093	98. 640	
	Q	10. 859	26. 311	15, 101	26. 800	0.000	7. 789	37. 761	29. 496	23. 012	19. 241	12.089	46. 364	ľ.
	° °C	0. 000	0. 131	- 0, 000	0. 421	0.000	0.000	1. 172	0, 292	0.000	1. 414	0.000	8. 250	
	or	5, 969	13. 238	13. 298	24. 113	20. 922	22. 813	23. 226	17.080	5. 910	7.683	15. 248	16. 725	
	ab	31. 121	40.677	40. 593	32. 643	31.606	25. 709	31. 713	38. 225	30. 360	44. 483	30. 867	11. 670	
	an	24. 600	12.511	16. 213	8. 554	13. 511	21.645	3, 595	9, 298	21. 650	12. 306	17.259	0. 266	
	ne	0.000	0. 000	0, 000	0.000	2. 761	0.000	0. 000	0.000	0.000	0.000	0.000	0. 000	
	NO	0. 000	0, 000	0. 000	0. 000	0.000	0. 797	0, 000	0.000	: 0. 000	0. 000	0. 000	0. 000	
Ì	di-¥0	3. 263	0. 000	0, 135	0. 000	2. 279	3. 807	0, 000	0.000	1. 253	0.000	1. 350	0. 000	
	di~en	2, 136	0.000	0, 091	0. 000	1.160	3. 037	0. 000	0.000	0. 751	0. 000	0.568	0.000	
	di-fs	0. 899	0. 000	0. 034	0.000	1.064	0. 333	0.000	0.000	0. 436	0. 000	0. 786	0, 000	
	hy-en	6. 502	2. 514	5. 560	0. 946	0.000	0.000	0. 299	1. 295	4. 228	3. 635	4. 535	3, 560	1
	hy-fs	2. 737	1. 318	2, 085	3, 161	0.000	0.000	0. 000	0. 507	2. 455	0. 000	6. 275	5. 291	
	ol-fo	0. 000	0. 000	0. 000	0, 000	6.951	0. 000	- 0. 000	0.000	0. 000	0.000	0.000	0. 000	1
	ol-fa	0. 000	0. 000	0.000	0. 000	7.026	0.000	0.000	0.000	0.000	0.000	0.000	0, 000	:
	<u>n</u> t	6, 216	1. 194	2. 866	0, 948	3, 049	2.898	0. 233	1. 596	5. 844	5. 764	4. 555	1, 696	
	ba	0.000	0. 000	0.000	0. 000	0.000	0.000	0. 295	0.000	0, 000	0.246	0.000	0. 000	
	'i1	2. 204	0. 722	1. 178	0. 475	2. 584	2. 052	0. 323	0.570	1. 254	1. 463	2.603	1. 273	
	ap	0. 497	0. 213	0. 355	0, 118	0, 663	0. 639	0, 118	0, 118	0, 308	0. 379	0. 687	0. 284	
	Total	97.000	98. 820	97. 480	98, 160	93. 560	91. 520	98. 720	98. 470	97. 450	96. 590	96. 820	95. 360	

- 58 -

.

Table 8Assays on Stream Sediment Geochemistry (1)

No.1 Area

.

	No.1 Area			·····			· · · · · · · · · · · · · · · · · · ·	
	Sample	Au	Ag	Cu	Pb	Zn	No	As
	No	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	FS101	<20	<0.1	19	4	75	1	<5
	FS102	<20	0.1	. 30	5	72	<1	<5
	FS103	<20	<0.1	29	6	71	<1	<5
	FS104	<20	0.1	16	<u>9</u>	61	<1	<5
	FS105	<20	0.1	29	9	87	<1	<5
	FS106	<20	0.1	27	3	- 90	<1	<5
	FS107	<20	0.1	42	· 8 ·	73	<1	<5
	FS108	<20	0.1	29	3 .	79	<1	<5
i	FS109	<20	0.1	20	4	72	<1	· <5
	FS110	<20	<0.1	13	3	57	- <1	<5
	FS111	<20	0.2	20	15	73	<1	. <5
	FS112	· · <20 · .	0.1	13	3	35	<1	<5
	FS113	<20	0.1	20	6	56	<1	<5
	FS114	<20	0.1	15	9	55	<1	<5
	FS115	<20	<0.1	11	5	51	<1	<5
	FS116	<20 st	0.1	26	7	68	<1	<5
	FS117	<20	<0.1	16	3	49	<1	<5
	FS118	<20	0.1	17	3	66	<1	<5
	SS101	<20	<0.1	14	1	52	<1	[×] <5
۰.	SS102	<20	<0.1	12	1	80	<1	<5
	SS103	<20	0.1	19	13	68	<1	<5
	SS104	<20	0.1	14	3 .	78	<1	<5
ĺ	SS105	<20	<0.1	16	3	43	<1	<5
	SS106	<20	0.2	19	1	107	<1	<5
	SS107	<20	<0.1	_11	2	32	<1	<5
	SS108	<20	0.1	21	2	66	<1	<5
	SS109	<20	0.1	21	4	66	<1	<5
	SS110	<20	0.2	16	3	62	<1	<5
	SS111	<20	0.1	26	3	60	· <1	<5
	SS112	<20	0.1	17	2	87	<1	<5
	SS113	<20	<0.1	18	3	53	<1	<5
	SS114	<20	<0.1	20	3	90	<1	<5
	SS115	<20	<0.1	19	3	67	<1	<5
	SS116	45	<0.1	24	5	60	<1	7
	SS117	<20	<0.1	19	- 7	64	<1	<5

Table 8

Assays on Stream Sediment Geochemistry (2)

No.1 Area							· · · ·
Sample	Au	Ag	Cu	Pb	Zn	No	As
No	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
SS118	<20	<0.1	23	6	65	<1	<5
YS101	<20	<0.1	9	1	33	<1	<5
YS102	<20 -	<0.1	6	1	24	<1	<5
YS103	<20	<0.1	12	1	47	<1	<5
YS104	<20	<0.1	6	1	26	<1	<5
YS105	<20	<0.1	6	1	22	<1	<5
YS106	<20	<0.1	13	2	33 🗄	<1	.: <5
YS107	<20	<0.1	19	4	60	<1	s = :<5
YS108	<20	0.1	20	1	93 -	<1	<5
YS109	<20	<0.1	20	4	80	. <1	<5
YS110	<20	0.1	17	1	72	<1	<5
YS111	<20	0.1	6	1	23	<1	<5
YS112	<20	<0.1	20	4	43	<1	<5
YS113	<20	0.1	15	7	44	<1	<5
YS114	<20	0.1	23	4	52	<1	-5
YS115	<20	<0.1	15	3	39	<1	<5
YS116	<20	0.1	13	2	50	<1	<5
YS117	<20	<0.1	19	4	70 -	<1	<5
YS118	<20	<0.1	17	1	67	<1	<5

Table	8	Assays	on	Stream	Sediment	Geocl	nemi	stry	(3)
					÷.,		-		

No. 2 Area

	Sample	Au	Ag	Cu	Pb	Zn	No	Ás	Pd	Pt	Co	Fe	Mn	Ni	Cr
	No	(ppb)		the second second second second second second second second second second second second second second second s				(ppm)			····			(ppm)	(ppm
	0S201	·<2	<0.5	5	<5	-28	<1	9	<2	<5	- 9	1.86	260	82	295
}	0\$202	4	<0.5	5	<5	36	<1	5	<2	<5	8	2.07	270	632	60
ļ	0S203	4	<0.5	29.	<5	88	<1	16	<2	<5	16	4.50	735	42	170
	0S204	<2	<0.5	18	<5	42	×1 -	41	2	<5	-40	4.82	445	942	1000
	0S205	4	<0.5	18	5	70	<1	41	<2	<5:	13	3.48	650	46	192
	0S206	8100	0.5	20	<5	.46	<1	6	< 2 · ·	<5	12	2.80	375	40	215
Ì	0S207	6	<0.5	12	<5	54	<1	5	<2	<5	12	3.90	295	10	112
	PS201	600	<0.5	5	<5	50	<1	4	<2	<5	- 7	2.41	270	. 4	200
	PS202	<2	<0.5	4 ⊖	<5	.40	<1	4	<2	<5	7	2.25	295	6	184
Ì	PS203	4	<0.5	4	<5	58	.<1	9	<2	<5	11	4.09	345	5	130
	PS204	<2	<0.5	6	<5	56	K1 -	4	<2⊴	<5	11	3. 23	405	5	176
	PS205	<2	<0.5	5	÷<5	58	<1	4	<2:-	<5	11	3.21	440	5	160
	PS206	<2	<0.5	10	<5	54	<1	3 .	<2	<5	12	4.36	380	21	176
l	PS207	<2	<0.5	4	<5	14	<1°.	2	<2	<5	8	1.15	130	38	114
	PS208	<2	<0.5	23	<5	46	<1	9	<2	<5	12	3.37	335	22	152
	TS201	2	<0.5	65	<5 -	-22	<1	12	2	<5	21	2.20	325	151	445
	TS202	2	<0.5	18	<5	42	<1 -	27	4.	<5	35	4.58	490	775	1650
	TS203	<2	<0.5	3	<5	48	<1	7	.<2.	<5	15	3. 93	390	139	400
	TS204	<2	<0.5	7	<5	48	<1	14	<2	<5	20	3.27	470	327	760
	TS205	<2	<0.5	<1	<5	44	<1	25	<2	<5	7	2.03	350	8	200
ĺ	TS206	<2	<0.5	_` ≺1	<5	46	<1.	27	<2 ⁻¹	<5	.7	2. 02	370	6	260
	TS207	6	<0.5	<1∙	<5	46	<1	29	<2	<5	7	2.15	280	6	210
	TS208	4	<0.5	1'`	<5	46	<1	20	<2	<5	7	2.20	285	· 9	200
}	TS209	<2	<0.5	<1	<5	64	<1	2	<2	<5	4	1.82	235	3	150
	TS210	<2	<0.5	<1	< 5	48	<1	2	< 2	<5	5	1.65	255	5	205
	TS211	<2	<0.5	1	<5	52	<1 : .	2	<2	<5	: 5	1.74	190	6	230
	TS212	4	<0.5	. 4	< 5	48	<1	27	<2	<5	8	2.42	270	8	200
	TS213	<2	<0.5	< 1	<5	48	<1	- 3	<2	<5	7	2.39	425	4	158
1	TS214	<2	<0.5	2	<5	48	<1	3	<2	<5	9	4.24	470	6	182
							•		•		• •	(
	ŝ	21 s													
				e di											
		T `	1.1												
				17					1						

. •

Table 8 Assays on Stream Sediment Geochemistry (4)

· · ·

lo.3 Area (1)						
Sample	Au	Ag	Cu	Pb	Zn	No	As
No	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
FS301	<20	0.1	18	8	45	1	<5
FS302	<20	<0.1	13	10	52	×	<5
FS303	<20	0.1	··· 8	5	4	<1	<5
FS304	<20	<0.1	16	6	41	1	<5
FS305	<20	< <0.1	8	2	29	<1	<5
FS306	<20	<0.1	11	3	35	<1	<5
FS307	<20	<0.1	4	3	26	2	<5
FS308	<20	<0.1	. 2	3	29	<1	<5
FS309	<20	<0.1	8	8	91	1	.14
FS310	<20	0.1	8	7	90	<1	14
FS311	<20	0.1	29	28	132	1	<5
FS312	<20	0.4	44	144	465	2	10
FS313	<20	<0.1	11	- 8	55	1	7
FS314	<20	<0.1	19	3	32	<1	K 5
FS315	<20	<0.1	42	4	30	<1	5
FS316	<20	<0.1	53	4	32	<1	5
FS317	<20	0.1	17	3	38	<1	5
FS318	<20	0. 1	1	3	17	1	5
0S301	<20	<0.1	. 1.	2	17	1	<5
0S302	<20	<0.1	4		14	<1	<5
0S303	<20	<0.1	5	- 8	37	1	<5
0S304	<20	<0.1	7	-9	40	1	:<5
0S305	<20	<0.1	4	-4	48	1	<5
0S306	<20	<0.1	28	22	121	<1	<5
0S307	<20	<0.1	16	7	50	<1	<5
OS308	<20	<0.1	19	4	34	<1	<5
0\$309	<20	<0.1	9:	- 3	18	<1	<5
0S310	<20	<0.1	21	-4	29	· <1 ·	·<5
0S311	<20	<0.1	17	4	35	<1	<5
0S312	<20	<0.1	41	5	- 29	<1	<5
0S313	<20	<0.1	17	5	25	<1	<5
0S314	<20	<0.1	19	3	36	1	<5
0S315	<20	<0.1	32	8	57	<1	<5
0S316	<20	<0.1	69	6	51	<1	.<5
PS301	<20	<0.1	23	20	82	<1	<5

Table 8 Assays on Stream Sediment Geochemistry (5)

No. 3 Area (2)

Sample	1						
	Au	Λg	Cu	Pb	Zn	No	۸s
No	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PS302	<20	<0.1	23	8	63	- 1	<5
PS303	<20	0.1	31	7	60	1	. <5
PS304	<20	<0.1	- 25	-4	56	- 1 ·	<5
PS305	<20	<0.1	15	3	41	1	. <5
PS306	<20	<0.1	27	-3-	44	<1	<5
PS307	<20	<0.1	28	2	26	<1	· <5
PS308	<20	<0.1	ି 1	2	15	<1	<5
PS309	<20	<0.1	24	1	26	<1	<5
PS310	<20	<0.1	24	3	. 37 -	<1	<5
PS311	<20	<0.1	41	5	47	<1	-6
PS312	<20	<0.1	23	· .5 · .	30	_1	<5
PS313	<20	0.3	31	44	93	<1	<5
PS314	<20	<0.1	22	3	32	<1	<5
PS315	<20	<0.1	35	5	44	<1	<5
PS316	<20	<0.1	18	7.	37	<1	<5
SS301	<20	0.1	43	13 -	- 89	<1	8
SS302	<20	0.1	26	44	124	1	<5
SS303	<20	0.1	28	17	92	<1	10
SS304	<20	<0.1	42	7	62	<1	<5
SS305	<20	<0.1	-31	9 -	69	<1	<5
SS306	<20	<0.1	35	· 10 ·	67	<1	<5
SS307	<20	<0.1	25	9	57	<1	<5
SS308	<20	<0.1	38	9	63	<1	<5
SS309	<20	<0.1	30	10	66	1	<5
SS310	<20	<0.1	10	6	50	<1	1
SS311	<20	<0.1	33	9	64	<1	<5
SS312	<20	<0.1	16	-8	64	1	<5
SS313	<20	<0.1	- 10	1	28	<1	<5
SS314	<20	<0.1	28	10	71	<1	<5
SS315	<20	<0.1	- 24	17	100	<1	<5
SS316	<20	<0.1	45	:7	63	2	<5
SS317	<20	<0.1	20	4	44	1	<5
SS318	<20	0.1	57	21	48	, 1	<5
TS301	<20	<0.1	18	31	99	3	<5
TS302	<20	<0.1	3	2	20	1	<5

Table 8Assays on Stream Sediment Geochemistry (6)

No.3 Area (3)

No.3 Area (3)			•			
Sample	Λu	٨g	Cu	Pb	Zn	No :	As
No	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
TS303	<20	<0.1	6	4	26 :	2	<5
TS304	<20	<0.1	7	4	26	<1	≤ <5.
TS305	<20	<0.1	. 15	6	32	2	<5
TS306	<20	<0.1	21	- 4	13	1	<5
TS307	<20 ·	<0.1	14	. 4.	12	1	<5
TS308	<20	<0.1	25	4	13	1	⇒< 5
TS309	<20	<0.1	20	9.	41	1	- 9
TS310	<20	<0.1	25	2	18	1	<5
TS311	<20	<0.1	17	3	23	1	<5
TS312	<20	<0.1	27	15	97	<1	<5
TS313	<20	<0.1	6	6	30	<1	<5
TS314	<20	<0.1	9	5	25	1	<5
TS315	<20	<0.1	8	7	37	1	°≺5
TS316	<20	<0.1	9	4	46	1	<5
TS317	<20	<0.1	12	9	53	<1	<5
TS318	<20	<0.1	25	19	106	<1	<5
YS301	<20	<0.1	32	15	52	° - ≺1	- 5
YS302	·<20 ·	<0.1	: 9	. 8.1	51	<1	<5
YS303	<20	3.1	11	18	. 54	<1	<5
YS304	<20	<0.1	8	'8	49	<1	<5
YS305	<20	<0.1	9	9	46	<1	
YS306	<20	<0.1	12	13	60	<1	<5
YS307	<20	<0.1	11	12	59	1	::≦≲5
YS308	<20	<0.1	- 8	9:	47	1	<5 .
YS309	<20 °.	<0.1	9	7	- 39	<1	<5
YS310	<20	<0.1	8	.8 -	45	<1	<5
YS311	<20	<0.1	12	6	38	<1	<5
YS312	<20	<0.1	- 7	5	39	<1	· <5 ·
YS313	<20	<0.1	10	7	44	· <1.	<5
YS314	<20	<0.1	19	12	90-	1 -	25
YS315	<20	<0.1	15	7	59	<1	<5
YS316	<20	<0.1	5	5	27	<1	<5
YS317	<20	<0.1	-11	14	81	1	11
YS318	<20	<0.1	5	4	46	· <1 ·	_ <5
YS319	<20	<0.1	9	4 ·	34	<1	20
YS320	<20	<0.1	10	5	37	1	24

.

Table 8

Assays on Stream Sediment Geochemistry (7)

o.4 Area ((1)			· .			· . · .
Sample	Au	Ag	Cu	Pb	Zn	Mo	As
No	(ppb)	(mqq)	(ppm)	(ppm)	(ppm)	(madd)	(mad)
0S401	<20	0.1	2	2	25	<1	<5
0S402	<20	0.1	3	5	25	<1	<5
0S403	<20	0.1	4	7	29	· <1	<5
0S404	<20	0.1	6	9	37	<1	<5
PS401	<20	0.1	2	3	31	<1	<5
PS402	<20	0.1	2	2	27 🗸	<1	<5
PS403	<20	0.1	3	2	27	. <1	<5
PS404	<20	0.1	14	5	32 .	1	<5
SS401	<20	1 0. 1	2	2	25	<1	<5
SS402	<20	0.1	3	1	27	<1	<5
SS403	<20	<0.1	1	1	19	<1	<5
SS404	<20	0.1	5	4	46	<1	<5
SS405	<20	0.1	2	2	21	<1	<5
SS406	<20	<0.1	1	1	20	<1	<5
SS407	<20	0.1	1	2	23	<1	<5
SS408	<20	<0.1	2	2	20	<1	<5
SS407	<20-	<0.1	4	4	29	<1	<5
SS410	<20	<0.1	2	3	29	<1	<5
SS411	<20	<0.1	4	3	29	<1	<5
SS412	<20	<0.1	- 6	2	29	<1	<5
SS413	<20	<0.1	-11	8	53	<1	<5
SS414	<20	<0.1	6	6	54	<1	<5
SS415	40	0.1	. 7 -	14	61	<1	<5
SS416	<20	<0.1	2	4	45	<1	<5
TS401	<20	0.1	15	5	68	<1	<5
TS402	<20	0.1	4	3	35	<1	<5
TS403	<20	0.1	13	6	42	<1	<5
TS404	<20	0.1	18	4	40	<1	<5
TS405	<20	0.1	3 -	4	31	<1	<5
TS406	<20	0.1	3	3	31	<1	<5
TS407	<20	0.1	- 5	3	33	<1	<5
TS408	<20	0.1	7	9	34	<1	<5
TS409	<20	<0.1	2	2	32	<1	<5
TS410	<20	0.1	4	4	34	1	<5
TS411	<20	0.1	6	6	33	<1	<5

Table	8
	-

8 Assays on Stream Sediment Geochemistry (8)

Sample	Au	Ag	Cu	pb	Zn	No	As
No	(ppb)	(ppm)	(ppm)	(pp)	(ppm)	(ppm)	(pp
TS412	<20	0.1	6	6	32	<1	<
TS413	<20	0.1	1	3	25	· · (1	<
TS414	<20	<0.1	1	2	25	<1	<
TS415	<20	0.1	1	2	24	<1 .	. <
TS416	<20	0.1	2	3	31		K
TS417	<20	0.1	6	2	50	2	</td
TS418	<20	<0.1	2	. 1	24	<1	<
YS401	<20	0.1	6	10	52	<1	<
YS402	<20	0.1	34	22	115	<1	3
YS403	<20	0.1	9	7	53	1	<
YS404	<20	<0.1	5	6	47	1	<u>`</u> <

- 66 -

Table 8 Assays on Stream Sediment Geochemistry (9)

No. 5 Area (1)

1.

.

No.5 Area (1)						:
Sample	Au	Ag	Cu	Pb	Zn	Mo	As
No	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
0S501	<20	<0.1	5	4	56	<1	<5
0S502	<20	0.1	47	6	52	1	16
0\$503	<20	0.1	25	7	33	- <1	5 ≺5
0\$504	<20	0.1	22	17	66	1	24
0\$505	<20	0.2	35	13	100	1	<5
0\$506	<20	<0.1	4	7	35	<1	<5
0S507	<20	<0.1	8	3	24	<1	<5
0 \$508	<20	<0.1	5	2	39	· <1	. <5
OS509	<20	<0.1	3	4	58	<1	<5
OS510	<20	<0.1	12	7	39	<1	<5
0S511	<20	<0.1	12	- 7	26	<1	11
0\$512	<20	<0.1	8	7	43	<1	<5
0S513	<20	<0.1	7	11	61	<1	11
0S514	<20	<0.1	9	- 8	49	<1	6
08515	<20	<0.1	.5	4	32	<1	9
0S516	<20:1	<0.1	11	10	40	<1	<5
0S517	<20	0.1	7	8	62	. <1	<5
0S518	<20	0.1	8	14	66	<1	· 10 .
0\$519	<20	0.1	16	32	149	1	14
0\$520	<20	<0.1	6	13	46	<1	- 5
0\$521	<20	0.1	9	15	75	<1	18
0\$522	<20	0.1	11	15	65	<1	9
08523	<20	0.1	24	18	63	. 2	10
0S524	<20	0.1	12	13	53	<1	: · .9
0S525	<20	0.2	10	47	85	<1	13
0S526	<20	0.1	7	11	55	<1	5
0S527	<20	0.1	11	24	96	<1	19
0S528	<20	<0.1	8	13	46	<1	8
0S529	<20	0.1	7	16	38	<1	12
0S530	<20	0.1	6	46	70	<1	19
0S531	<20	0.1	7	31	63	<1	18
PS508	<20	0.1	5	13	88	<1	<5
PS509	<20	0.1	41	15	83	<1	<5
SS501	<20	<0.1	23	5	65	<1	19
SS502	<20	<0.1	10	5	40	<1	<5

Table 8 Assays on Stream Sediment Geochemistry (10)

No 5 Area (2)

No.5 Area (2)					· · · · ·	
Sample	Au	Ag	Cu	pb	Zn	No	As
No	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
SS503	<20	0.1	35	8	44	<1	17
TS501	<20	<0.1	16	3	68	1	_:<5
TS502	<20	0.1	24	4	57	<1	11
TS503	<20	<0.1	19	3	55	<1	6
TS504	<20	0.1	18	5.	62	<1	<5
TS505	<20	0.1	21	5	84	· <1	<5
TS506	<20	0.1	37	9	68	<1	5
TS507	<20	0.1	65	13	105	· <1	13
TS508	<20	0.1	19	- 11 -	66	<1	- 7
TS509	<20	0.1	. 7	2	38	· <1	<5
TS510	<20	0.2	7	10	74	<1	5
TS511	<20	3.3	5	8 -	61	<1	<5
TS512	<20	0.1	8	15	65	4	5
TS513	<20	0.1	22	7	43	<1	5
TS514	<20	0.2	82	23	125	4	27
TS515	<20	0.1	47	12	111	<1	15
TS516	<20	0.1	31	19	174	<1	22
TS517	<20	0.2	27	36	218	<1	13
YS501	<20 ::	0.1	22	6	63	<1	5
YS502	<20	0.1	11	18	55	· <1 ·	13
YS503	<20	<0.1	22	5	45	· <1	<5
YS504	<20	0.3	26	13	68	1	22
YS505	<20	0.1	24	7	37	<1	21
YS506	<20	0.1	39	12	82	<1	9
YS507	<20	0.1	16	10	55	. <1	. 8
YS508	<20	0.1	9	4.	39	≤ <1	<5
YS509	<20	0.1	32	11	79	1	10
	••••••••••••••••••••••••••••••••••••••					<u> </u>	

Table 8 Assays on Stream Sediment Geochemistry (11)

No.6 Area	····						مر. مریک میں میں میں میں میں میں میں میں میں میں
Sample	Au	Ag	Cu	pb	Zn	Mo	As
No	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PS601	<20	0.1	12	62	135	<1	39
PS602	<20	0.1	. 8	14	55	<1	15
PS603	<20	0.3	11	61	55	2	140
PS604	- <20∷	0.1	7	18	42	<1	9
PS605	<20	<0.1	10	8	56	<1	- 7
PS606	<20	0.1	6	15	28	<1	11
PS607	<20	0.2	9	71	107	2	94
YS601	<20	<0.1	44	4	38	<1	- 11
YS602	<20	<0.1	28	5	72	<1	<5
YS603	<20	<0.1	31	5	31	<1	11
YS604	<20	<0.1	33	4	34	<1	.<5
YS605	<20	<0.1	33	5	39	<1	<5
YS606	<20	0.1	27	32	87	<1	27
YS607	<20	<0.1	34	: 6	33	<1	7
YS608	<20	<0.1	20	4	41	<1	<5

r' 1

- 69 -

Table	8 :: '	Assays	on Stream	Sediment	Geochemistry	(12)

11	17	Area	141
NO	· 7	Area	111
110.		111.00	\1\

No(ppb)(ppm)(ppm)(ppm)(ppm)(ppm)(ppm)FS701 $\langle 20$ $\langle 0.1$ 61172 $\langle 1$ 5FS702 $\langle 20$ 0.6 121655 $\langle 1$ 4FS703 $\langle 20$ $\langle 0.1$ 41436 $\langle 1$ 24FS704 $\langle 20$ $\langle 0.1$ 5937 $\langle 1$ 18PS705 $\langle 20$ 0.1 4864 $\langle 1$ 12FS706 $\langle 20$ 0.1 21767 $\langle 1$ 5FS707 $\langle 20$ 0.1 2316117 $\langle 1$ 14FS708 $\langle 20$ $\langle 0.1$ 71237 $\langle 1$ $\langle 5$ FS709 $\langle 20$ $\langle 0.1$ 71760 $\langle 1$ 7FS710 $\langle 20$ $\langle 0.1$ 72076 $\langle 1$ 5FS710 $\langle 20$ $\langle 0.1$ 72076 $\langle 1$ 11OS701 $\langle 20$ $\langle 0.1$ 32550 $\langle 1$ 11OS702 $\langle 20$ 2.515956 $\langle 1$ 6OS703 $\langle 20$ 0.1 25973 $\langle 1$ 15OS706 $\langle 20$ 0.1 24873 $\langle 1$ 15OS708 $\langle 20$ 0.1 121170 $\langle 1$ 7OS706 $\langle 20$ $\langle 0.1$ 121465 $\langle 1$ 6OS710 $\langle 20$ $\langle 0.1$ <td< th=""><th>A DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER</th><th>1)</th><th>a</th><th></th><th></th><th>0</th><th></th><th>·</th></td<>	A DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNER	1)	a			0		·
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample	Au	Ag	Cu	Pb	Zn	No	As
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1				1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FS708	<20					_<1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FS709	<20			12			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FS710	<20	<0.1	7	17	60	<1	·· :7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FS711	<20	0.1	7	20	76	<1	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FS712	<20°	<0.1	3	25	50	. <1	. 11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0S701	<20	<0.1	4	12	83	<1 -	<5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0\$702	<20	2.5	15	9	56	<1	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0S703	<20	0.1	25	91	73	· (1	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0\$704	<20	0.1	35	16	120	<1	16
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0S705	<20	0.2	13	11	40	<1	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0S706	<20	<0.1	24	8	73	<1	13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0\$707	<20	<0.1	14	12	67	<1	<5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0\$708	<20	0.1	21	8	119	<1	<5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0S709	<20	<0.1	12	11	70	<1	54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0\$710	<20	<0.1	13	13	78	<1	- 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0S711	<20	<0.1	12	14	65	<1	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0\$712	<20	2.7	17	7	65	<1	<5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0\$713	<20	0.6	49	74	205	<1	33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0\$714	<20	0.1	10	27	78	<1	19
SS703 <20 <0.1 22 3 38 <1 <5 SS704 <20	SS701	<20	<0.1	-5	1	17	<1	<5
SS703 <20 <0.1 22 3 38 <1 <5 SS704 <20	SS702	<20	<0.1	19	2	38	<1	<5
SS704 <20 <0.1 14 3 30 <1 <5 SS705 <20	SS703	<20	<0.1	22		-38	<1	
SS705 <20 <0.1 28 5 35 <1 13 SS706 <20			<0.1	14	3	30	<1	
SS706 <20 <0.1 4 2 15 <1 <5 SS707 <20								
SS707 <20 <0.1 19 6 41 <1 5								
	1							
SS708 <20 0.1 25 23 127 <1 23	SS708	<20	0.1	25	23	127	1	23
SS709 <20 0.1 34 36 145 <1 30								1

•

i sa

. .

Table 8 Assays on Stream Sediment Geochemistry (13)

. •		•				-		
	No.7 Area (D			<u>, 3</u>
	Sample	Au	Ag	Cu	Pb	Zn	No	As
•	No No	(ppb)	(ppm)	(ppm)		(ppm)	(ppm)	(ppm)
	SS710	<20	<0.1	2	19	41	<1	11
	SS711	<20	0.1	20	23	106	<1	26
•	SS712	<20	<0.1	13	· 11	54	[™] <1	9
ļ	SS713	<20	0.2	2	9	35	. <1	62
	SS714	<20	0.1	13	: 11	57	1 1	10
	SS715	<20	0.1	20	9	66	- <1	5
	SS716	<20	<0.1	4	12	53	<1	<5
	SS717	<20	0.1	24	11	111	<1	ं<5
	SS718	<20	<0.1	16	7	65	<1	<5
	SS719	<20	0.1	5	36	91	1	-17
	SS720	<20	0.1	9	41	105	<1	- 23
	SS721	<20	0.2	12	21	96	· · · < 1	8
	SS722	<20	0.1	9	48	152	<1	14
	SS723	<20	0.1	11	15	70	3	11
	SS724	<20	0.1	8	15	60	<1	6
	TS701	<20 ≦	0.2	17	60	231	1	130
	TS702	<20	0.1	17	15	88	<1	9
	TS703	<20	<0.1	3	- 9	41	1	6
	TS704	<20	0.1	3	15	47	· <1	12
	TS705	<20	0.1	29	54	111	: <1	14
	TS706	<20	<0.1	2	9	37	<1	- 5
	TS707	<20	0.1	12	24	61	: <1	10
	TS708	<20	<0.1	1	14	54	- <1	8
	TS709	<20	<0.1	1	11	40	<1	<5
	TS710	<20	<0.1	2	· 8	45	- <1	11

- 71 -

Table 9

Assays on Pan Concentrate Geochemistry (1)

No.1 Area (1)

NO. 1 Afea Sample	Au	Ag	Pb	Weight
No	(µg)	(µg)	(mg)	(g)
FP101	<0.2	2.0	0.08	9.9
FP102	<0.1	1.5	0.04	5.5
FP103	0.1	1.0	0.10	6.4
FP104	1.0	7.0	0.18	14.2
FP105	<0.1	1.0	0.11	5.6
FP106	<0.4	2.0	0.04	18.9
FP107	<0.1	1.5	0. 03	3.4
FP108	<0.5	5.0	<0.03	34.0
FP109	<0.4	4.0	0.32	18.5
FP110	<0.4	2.0	0.04	21.3
FP111	1.2	10.0	0.36	16.3
FP112	<0.2	1.0	0.02	14.2
FP113	<0.1	4.5	0.06	6.9
FP114	<0.2	3.0	0.17	8.5
FP115	7.8	6, 0	0.06	12.7
FP116	<0.2	3.0	0.21	15.0
FP117	<0.4	2.0	0.04	21. 3
FP118	<0.1	5.0	0.05	43.6
SP101	<0.2	3.0	0. 03	12.4
SP102	<0.2	1.0	0. 01	8.5
SP103	0.4	2.0	0.02	21. 0
SP104	<0.4	4.0	0.06	19.9
SP105	<0.2	2.0	0. 01	. 8. 6
SP106	<0.5	5.0	0.05	35.8
SP107	<0.1	0.5	0.01	5.9
SP108	<0.1	1.0	0. 01	5.4
SP109	<0.2	1.0	0.04	8.7
SP110	<0.2	4.0	0. 01	12.7
SP111	<0.1	1.5	0. 02	6.5
SP112	<0.2	2.0	<0.01	9.0
SP113	<0.1	1,5	0.02	5.9
SP114	<0.4	4.0	0.06	20.8
SP115	<0.2	2.0	0. 03	7.9
SP116	1.1	2. 0	0. 09	5.1
SP117	<0.1	2.5	0. 01	5. 1

No.1 Area	(2)	· · · ·		
Sample	Au	Ag	Pb	Weight
No	(µg)	(µg)	(mg)	(g)
SP118	<0.1	1.5	0.11	6.4
YP102	<0.2	1.0	0. 02	9.8
YP103	<0.2	1.0	0.02	9.8
YP104	<0.2	2.0	0.06	16.5
YP105	<0.1	0.5	0.02	4.2
YP106	<0.4	2.0	0.02	18.3
YP107	<0.1	1.0	0.01	7.3
YP108	<0.2	2.0	0.01	9.7
YP109	<0.2	1.0	0.01	9.4
YP110	<0.2	1.0	<0.01	10.9
YP111	< 0. 2	<1.0	0.01	9.2
YP112	0.2	1.0	0.02	10.0
YP113	<0.1	1.0	0.02	4.2
YP114	<0.1	0.5	0.02	7.1
YP115	<0.2	<1.0	0. 01	8.4
YP116	<0.5	2.5	0. 08	32.5
YP117	<0.1	0.5	0.02	4.7
YP118	<0.2	<1.0	0.02	10.6

1

Table 9Assays on Pan Concentrate Geochemistry (2)

		1990 - A.				
No.2 Area	······			······		· · · · · · · · · · · · · · · · · · ·
Sample	Au	Лg	Pb	Pd	Pt	Cr
No	(ppb)	(ppm)	(ppm)	(ppb)	(ppb)	(ppm)
0P201	8000	<0.4	<1	<60	<150	4200
0P202	6200	<0.4	<1	<24	<60	1300
0P203	>10000	<0.4	10	<60	. <150	500
0P204	300	<0.4	<1	<12	<30	6000
0P205	>10000	<0.4	<1	<2	<5	1080
0P206	>10000	2.0	<1	<2	<5	880
0P207	. 90	<0.4	<1	<6	<15	240
PP201	50	<0.4	6	<4	< 10	168
PP202	<2	<0.4	<1	<2	<5	168
PP203	1200	<0.4	·· <1	<2	<5	112
PP204	<4	<0.4	<1 -	<4	· <10	96
PP205	320	<0.4	· <1	<4	<10	160
PP206	34	<0.4	<1	<2	<5	340
PP207	<4	<0.4	<1	<4	<10	240
PP208	<2	<0.4	<1	<2	<5	480
TP201	<4	<0.4	<1	<4	. <10	860
TP202	3600	<0.4	<1	6	<10·	9800
TP203	<4	<0.4	<1	<4	<10	2600
TP204	<4	1.6	<1	6	<10	4200
TP205	<4	<0.4	4	<4	<10	82
TP206	10	<0.4	2	<4	<10	100
TP207	550	<0.4	2	<4	<10	148
TP208	<12	<0.4	10	<12	<30	148
TP209	6.	<0.4	10	<6	<15	48
TP210	<6	<0.4	<1	<6	<15	60
TP211	<12	<0.4	4	<12	<30	100
TP212	320	<0.4	<1	<4	<10	220
TP213	80	<0.4	<1	<4	<10	280
TP214	<2	<0.4	<1	<2	<5	100

- 73 -

.

Table 9 Assays on Pan Concentrate Geochemistry (3)

No.3 Area (1)

•

	Υ.						1. A.			
No.3 Area	(1)					No. 3 Area	(2)			
Sample	Au	Ag	Pb	Weight	ĺ	Sample	Au	Ag	Pb	Weight
No	(µg)	(µg)	(mg)	(g)	•. ^{•••}	No	(µg)	(µg)	(mg)	(g)
FP301	<0.1	2.5	0.05	7.2	1	PP302	<0.1	1.5	0.12	4.1
FP302	23.0	10.0	0.35	32.5		PP303	<0.5	10.0	0.15	33.5
FP303	<0.2	3.0	0.10	11.3	1 X 1 X	PP304	<0.1	2.0	0.01	8.2
FP304	<0.2	3.0	0.04	14.3		PP305	<0.2	4.0	0.02	15.8
FP305	<0.2	2.0	<0.01	11.8		PP306	<0.2	2.0	0.02	8.9
FP306	4.0	5.0	<0.05	51.2		PP307	0.2	3.0	<0.01	15.0
FP307	<0.5	2.5	0.03	20.3		PP308	<0.2	1.0	0.05	11.0
FP308	<0.5	2.5	0.05	21.6		PP309	48.0	30.0	<0.05	52.9
FP309	<0.5	2.5	0.15	25.9	ľ	PP310	4.0	5.0	0.03	24.9
FP310	<0.2	2.0	0.08	16.6		PP311	0.8	5.0	0.30	15.9
FP311	<0.2	6, 0	0.92	14.0	· .	PP312	14.0	10.0	0. 15	38.2
FP312	<0.2	6.0	1.68	7.5		PP313	0. 9	8.5	1.40	3.4
FP313	3.0	5.0	0.18	27.5		PP314	<0.2	3.0	0.03	9.7
FP314	<0.2	2.0	<0.01	9.0		PP315	0.3	9.0	0.04	7.3
FP315	1.1	3.0	0.03	5.2		PP316	14.0	6.0	0.25	15.8
FP316	0.5	10.0	0.05	22.8	÷ .	SP301	<0.1	2.5	0.36	4.9
FP317	<0.5	5.0	0. 03	27.3	÷.,	SP303	<0.1	2.0	0.26	3.9
FP318	<0.1	0.5	0.03	5.1		SP304	<0.1	1.0	0.07	4.1
OP301	<0.2	3, 0	0.06	12.3		SP305	<0.2	2.0	0.19	10.6
0P302	<0.2	21. 0	0.02	7.5		SP306	<0.2	3.0	0.24	19.7
0P303	<0.4	4.0	1.00	19.7		SP307	<0.1	1.0	0.08	3.7
OP304	<0.2	2.0	0.05	6.8		SP308	<0.2	3. 0	0.20	9.1
0P305	0.1	0.5	0.50	4.6		SP309	<0.1	1.5	0.11	3.6
OP306	3.1	2.0	0 11	3.8		SP310	<0.1	1.0	0.04	4.9
0P307	<0.1	1.5	0.07	5.1	•	SP311	2.1	2.5	0.11	4.5
0P308	18.0	15.0	0.30	5.5		SP312	28.0	40.0	0. 25	40.5
OP309	<0.2	2.0	0.02	8.8	2 1	SP313	2.5	2.5	0. 03	32.6
OP310	19.0	15.0	0.15	36.5	• :	SP314	· <0. 1	2. 0	0.07	4.0
0P311	· 3. 0	5. 0 · .	0.13	32.4		SP315	<0.1	1.5	0.31	4.7
0P312	4.0	~7.5	0. 33	21. 8	•	SP316	<0.2	9.0	0.12	14.9
OP313	<0. 2	2.0	0.60	8.5		SP317	8.9	1.0	0.03	5.3
0P314	54.0	25.0	0.02	3.0		SP318	2.7	8, 5	0.36	4.7
0P315	<0.1	1.0	0.03	2.3		TP301	<0.1	3.0	0.14	4.9
0P316	1.5	1.5	0.05	3.6		TP302	<0.1	1:5	0. 30	13.4
PP301	<0.1	1.0	0.14	4.0		TP303	<0.2	2.0	0.01	15.3

Table 9 Assays on Pan Concentrate Geochemistry (4)

No. 3 Area (3) No. 4 Area (1)

No.3 Area	(3)					No.4 Area	(1)			
Sample	Au	Ag	Pb	Weight		Sample	Au	Ag	Pb	Weight
No	(µg)	(µg)	(mg)	(g)		No	(µg)	(µg)	(mg)	(g)
TP304	3.2	4.0	0.06	17.8		0P401	<0.2	<1.0	0.04	14.2
TP305	<0.4	6.0	0.44	10.7		0P402	<0.4	2.0	0.06	19.1
TP306	<0.2	7.0	0.16	6.0		0P403	<0.4	<2.0	0.06	20.4
TP307	1.2	4.0	0.08	5.5		0P404	<0.1	<0.5	0.02	3.3
TP308	2.3	2.5	0.05	3.9		PP401	<0.1	1.0	0.06	6.6
TP309	0.2	6.0	0.25	7.3		PP402	<0.2	1.0	0.04	8.1
- TP310	<0.4	4.0	<0.02	21.3		PP403	<0.2	1.0	0.07	15.1
TP311	27.0	15.0	0.10	45.0		PP404	0.4	10.0	0. 28	28.9
TP312	<0.1	∂0.5 .	0.05	3.3		SP401	<0.2	2. 0	0.05	14.6
TP313	<0.2	2.0	0.13	9.5	ана) 1	SP402	<0.2	2.0	<0. 01	13.1
TP314	<0.2	1.0	0.05	7.0		SP403	<0.2	1,0	0.04	11.0
TP315	<0.1	1.5	0.08	6.1		SP404	<0.4	4.0	0.12	30.6
TP316	<0.2	2. 0 [±]	0.05	13.0		SP405	<0.1	0.5	0. 06	5.2
TP317	<0.1	1.0	0.04	3.9		SP406	<0.2	<1.0	0. 02	7.6
TP318	. 34. 0	26.0	0.52	17.7	:	SP407	<0.2	<1.0	0.01	12.8
YP301	<0.1	1.0	0.15	3.9		SP408	<0.2	<1.0	0. 03	11.6
YP302	<0.1	1.0	0.06	4.7		SP409	<0.2	<1.0	0. 03	15.4
YP303	0.5	1.0	0.10	7.4		SP410	0.1	3.0	13.60	5.0
YP304	1.1	1.5	0.05	4.8		SP411	<0.1	<0.5	0.06	6.9
YP305	<0.2	2.0	0.12	13.9		SP412	2.2	1.0	0.05	12.4
YP306	<0.5	2.5	0.28	32.5		SP413	<0.2	2.0	0. 10	11.0
YP307	° <0. 5 ∈	<2.5	0.25	24.7		SP414	<0.2	3.0	0.07	7.5
YP308	<0.4	2.0	0.16	15.5	1	SP415	197.0	135.0	3. 55	63.9
YP309	<0.2	1.0	0.05	8.3	!	SP416	0.4	2.0	0.72	11.2
YP310	~ 7.7	3, 0	0.06	4.1		TP401	<0.2	<1.0	0.03	8,6
YP311	<0.2	2.0	0.07	7.5		TP402	<0.4	<2.0	0. 08	16.7
YP312	<0.1	1.0	0.03	2.7		TP403	<0.2	4.0	0.22	14.3
YP313	8.6	5.0	0.07	9.7		TP404	<0.2	1.0	0.07	8.6
YP314	<0.1	1.0	0.18	3.8		TP405	<0.4	2.0	0.10	26.5
YP315	<0.1	0.5	0.04	4.2		TP406	<0.1	<0.5	0. 01	4.4
YP316	<0.2	3.0	0.07	13.7		TP407	<0.1	0.5	0.03	5.1
YP317	<0.2	1.0	0. 11	7.3		TP408	<0.2	1.0	0.05	7.5
YP318	· <0. 2	3.0	0.11	11.7	- 19	TP409	<0.1	0.5	0.04	6.6
YP319	<0.1	<1.5	0. 02	3.4		TP410	<0.1	1.0	0. 08	6.0
YP320	<0.2	2.0	0.06	16.1		TP411	<0.1	<0.5	0.03	3.5

Table 9 As

Assays on Pan Concentrate Geochemistry (5)

No.4 Area (2)

Sample	Au	Ag	Pb	Weight
No	(µg)	(µg)	(mg)	(g)
TP412	<0.1	1.0	0.07	6.4
TP413	91.0	21.0	0.14	9.6
TP414	<0.1	<0.5	0.01	4.3
TP415	0.4	13.0	0.04	6.9
TP416	<0.2	2.0	0. 22	8.5
TP417	<0.1	1.5	0.03	5.1
TP418	1.0	1.0	<0.01	7.8
YP401	<0.1	0.5	0.02	2.0
YP402	<0.1	1.0	0.12	6.4
YP403	<0.1	0.5	0. 03	5.6
YP404	33.0	7.5	0.11	6. 7

	i se li p		No.5 Area	(1)	•••	· · · ·		
	Weight		Sample	Au	Ag	Pb	Weight	1
)	(g)		No	(µg)	(µg)	(mg)	(g)	ļ
1	6.4		0P501	<0.4	4.0	0.06	16.0	
1	9.6	!	0P502	<0.1	1.5	0.05	4.9	ļ
ŀ	4.3		0P503	<0. 2	60.0	1.60	13.1	l
1 .	6.9		OP504	<0.2	8.0	1.40	11.8	Į
2:	8.5		0P505	<0.2	24.0	2.10	11.7	l
};	5.1		OP506	· <0. 1	2.0	0.18	4.6	ļ
	7.8		0P507	0.4	4.0	0.08	20.6	
2	2.0		OP508	<0.5	5.0	0.70	35.9	
21	6.4		0P509	<0.2	2.0	0.12	13.7	
) ·	5.6	: ;	0P510	<0.5	5.0	0.13	-24. 9	
	6.7		0P511	1.4	5.0	0.69	7.9	
			0P512	<0.1	0.5	0.16	2.5	
		:	0P513	<0.1	0.5	0.06	2.4	
1	1.2	·	0P514	<0.1	0.5	0.04	1.6	
			OP515	1.2	<2.0	0.10	18.9	
	4		OP516	<0.2	4.0	0.46	10.0	1
			0P517	<0. 1	1.5	0.16	3.6	ŀ
	, ·		OP518	<0.1	3.0	0.65	3.1	
	. 17		0P519	0.2	11.0	1.00	4.3	
	• 1,1		0P520	<0.1	3.0	0.85	5.4	
	- 		0P521	<0.2	3.0	0.63	9.7	
			0P522	0.4	6.0	0.59	8.0	
	. *		0P523	<0.1	4.5	0.60	3.4	ŀ
	· .		0P524	<0.1	1.0	0.26	2.2	
			OP525	<0.1	5.0	0.90	3.4	!
			0P526	<0.1	1.0	0.15	4.0	ŀ
			0P527	2:6	8.0	4.80	13.8	ĺ
			0P528	<0.1	1.0	0.31	3. 2	
	1		OP529	<0.1	1.5	0.39	4.2	1
			OP530	0.6	27.0	6.00	14.6	
			0P531	0.3	4.5	1.75	3.7	
	4 . L 		PP508	25.0	14.0	0.20	12.0	1
	· · · · ·		PP509	<0.2	3.0	0.16	9.7	
•	· · · · ·		SP501	<0.2	2.0	0. 08	14.7	
	1		SP502	<0.2	2.0	0.13	12.8	
			the second second second second second second second second second second second second second second second se					

Table 9 Assays on Pan Concentrate Geochemistry (6)

	•							
No	.5 Area	(2)			<u></u>		No. 6 Area	(1)
	Sample	Au	Ag	Pb	Weight		Sample	
	No	(µg)	(#g)	(mg)	(g)		No	<u> </u>
	SP503	206.0	39.0	0.91	13.3		PP601	5
ĺ	TP501	<0.1	1.5	0.02	5.1		PP602	<0
ŀ	TP502	<0.1	0.5	0.06	3.7		PP603	5
Í.	TP503	<0.1	0.5	0.04	6.0		PP604	<0
	TP504	<0.1	1.0	0. 05	4.4		PP605	<0
	TP505	<0.1	1.5	0.06	4.9		PP606	<0.
	TP506	0.8	. 7.0	0.32	11.3		PP607	5.
1.	TP507	<0.1	2.5	0.16	2.1		YP601	14
	TP508	<0.2	5.0	0.99	.11.0		YP602	<0.
	TP509	< 0.1	0.5	0.02	4.9		YP603	<0.
	TP510	<0.1	2.0	0.09	2.5		YP604	2
ļ	TP511	<0.2	30.0	29.80	7.2		YP605	<0.
	TP512	<0.1	5.0	5.70	4.3		YP606	(∴ <0.
	TP513	6.0	7.0	0.15	5.5		YP607	56.
ŀ	TP516	<0.1	2.5	0.28	4.4		YP608	[™] <0.
	TP517	<0.1	2.5	0.25	4.6	•	·	
	YP501	<0.4	2.0	<0.02	16.4			
÷.	YP502	<0:2	<1.0	0.05	11.7	÷ .		
1	YP503	<0.5	2.5	0.13	28.5	. ¹		
	YP504		9.0	. 0. 65	11.8			
	YP505	<0.4	6.0	1.44	17.5		•	1.
Ì.	YP506	<0.4	6.0	0.76	21. 3			11.11
	YP507	e 21. 0	10.0	0: 80	31. 4			
	YP508	0.4	4.0	0.22	18.4			
	YP509	1.0	2.5	0.23	35.4	-	· · · ·	

No. 6 Area	(D)			1
Sample	Au	Ag	Pb	Weight
No	(µg)	(µg)	(mg)	(g)
PP601	5.5	5.0	<0.03	16.9
PP602	<0.4	2.0	0.14	10.2
PP603	5.5	2.5	0.08	23.8
PP604	<0.2	1.0	0.01	8.1
PP605	<0.2	13.0	0. 05	6.4
PP606	<0.4	2.0	0.02	21.0
PP607	5.6	2.0	0.06	10.9
YP601	14.0	7.5	0. 23	26.1
YP602	<0.1	0.5	0.02	4.8
YP603	<0.1	0.5	0.10	5.2
YP604	2.8	· 8. 0	0.22	12.1
YP605	<0.1	<0.5	0.03	4.1
YP606	<0.4	<2.0	0.06	16.1
YP607	56.0	33.0	0.27	20.5
YP608	<0.5	<2.5	0.25	24.3
	· · · ·			

ż

- 77 -

Table 9Assays on Pan Concentrate Geochemistry (7)

No. 7 Area (1)

Sample	Au	Ag	Pb	Weight
No	(#g)	(µg)	(mg)	(g)
FP701	<0.4	<2.0	0.16	17.1
FP702	<0.1	<5.0	0.70	47.5
FP703	1.0	10.0	2.48	12. 0
FP704	<0.5	15.0	3.40	19.4
FP705	<0.4	4.0	2.08	14.4
FP706	<1.0	5.0	1.60	59.3
FP707	<0.5	13.0	0.78	23.8
FP708	<1.0	10.0	0.80	45.9
FP709	<0.5	7.5	1.20	27.3
FP710	<0.2	3.0	0.61	6, 6
FP711	.: 0.6	2.0	0.24	7.4
FP712	<0.2	4.0	0.61	6.3
0P701	<0.5	7.5	0.65	27.5
0P702	<2.0	10. 0	1.50	96.7
0P703	<2.0	<10.0	1.20	77.9
0P704	<0.5	2.5	0. 73	29. 4
0P705	<0.1	15.0	1.90	42.2
0P706	<1.0	255. 0	48.60	31. 4
0P707	<0.5	7.5	1.73	16.3
0P708	0.4	42.0	4.48	4.8
0P709	0.8	14.0	0.86	6.8
0P710	3. 9	7.5	0.75	2.2
0P711	0.8	52.0	5.14	17.0
0P712	<0.2	5.0	0.28	8.9
0P713	0.1	4.5	0.65	3.4
0P714	1.4	15.0	3. 74	5.9
SP701	<0.2	4.0	0.40	8.9
SP702	<0.4	<2.0	0.72	18.0
SP703	<0.5	<2.5	0.98	22.5
SP704	<0.2	9.0	1.57	9. 8
SP705	<0.1	<0.5	0.14	5.6
SP706	14.0	40.0	2.47	28. 0
SP707	<0.2	10.0	0.90	12.0
SP708	<0.5	2.0	0.34	37.0
SP709	<0.2	1.0	0. 25	8.6

No. 7 Area		4	Pb	Woight
Sample	Au	Ag	-	Weight
No	(µg)	(µg)	(mg)	(g)
SP710	<0.2	2.0	0.16	9.6
SP711	<0.2	1.0	0.11	11.3
SP712	0.8	3.5	0. 29	4.0
SP713	0.3	3.0	0. 14	3.3
SP714	0.6	3.5	0, 45	5.9
SP715	1.4	9.0	0.88	13.2
SP716	<0.1	1.0	0. 20	4.0
SP717	<0.2	40.0	0.47	15.0
SP718	: <0. 2	2.0	0.32	12.4
SP719	0.3	6.0	0.43	2.5
SP720	0.3	5.0	1.00	3.5
SP721	1.2	24.0	8.20	8.6
SP722	<2.0	6.0	3.10	8.6
SP723	<0.1	4.0	0.43	4.5
SP724	2.0	4.0	1.30	9.8
TP701	<0.4	12.0	1.52	17.0
TP702	<0.5	7.5	0.28	34.0
TP703	<0.2	<1.0	0.23	12.0
TP704	⁻ <0. 2	6.0	0.98	12.8
TP705	<0.1	14.0	15.30	5.5
TP706	<0.5	<2.5	0.35	20.4
TP707	<0.2	9.0	5.32	12.5
TP708	<0.2	1.0	0. 29	11.6
TP709	[×] 1.0	<5.0	0.45	30.4
TP710	<1.0	<0.5	0.05	3.3