

Fig. 2-8(1) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Atmospheric Stability

III - 103

3. Data Analysis of Chemical Components Contained in Particulate Matter

Another analytical study was done on the chemical components in particulate matter collected on filter papers by Low-volume and Andersen samplers. In case of the data analysis above where concentrations of chemical components are found less than the detection confidence level, 1/2 of such detection limit values are used in calculation.

3.1 Average Concentration of Chemical Components

Table 3-1 shows the average concentration of chemical components in each short term field survey. In this table, the figures marked "*" are those in which the number of nondetectable data is 50% or more. The data on Ag, Ba, Cs, La, Lu, Ni, and W are mostly less than the detection confidence level. Table 3-2 shows the names of top 10 chemical components which rank in high average concentration. The concentration of soil particle (Si, Ca, Al), sea-salt particle (Na, Cl), secondary particle (SO₄²⁻ and NH₄⁺) and carbon are found relatively high.

Table 3-1(1) Average Concentrations of Chemical Components in Particulate Matter-

.

(unit;ng/#³)	3 seasons	Geometric mean	2.5% 	3.945+ 161.889 161.889 2166.465 2781.190 2781.190	1250.322 532.623	522.212 119.722*	428.701	1121.127 873.972 4106.012		
(unit;	Average of	Average	26.0 26.0 26.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	3.967± 345.667 2221.333 3116.667	1314.000 610.000	262.000 262.000	559.333	1212.667 977.333 4525.000		
	survey	Geometric mean	200 200 200 200 200 200 200 200	188-534 188-534 2272-735	1003.551 314.961	419.823 100.001	240.206	878.735 429.667 2751.701	8	
:	Third :	Average	989,988,989,989,989,989,989,989,989,989	200-000 200-000 2740-000 2740-000	1016.000	442.000 100.000	310.000	882.00 7284.00 7884.00	e are over 50% try	
	Survey	Geometric mean	28.000 28.0000 28.000000 28.000000 28.0000 28.0000 28.0	3.50 88.538 2081.648 2081.648 2081.648	1700.241 535.544	109-111 231-312	533.877	1566.855 1307.234 5110.184	en trace date / On spectrometr	spectrophotometry Ion chromatography
	Second :	Average		3.500 101.000 2206.000 2370.000	1758.000 562.000	574.000 190.000	744.000	1740.000 1308.000 5842.000	 is marked when Flame photometry Atomic absorption 	chromotogeus
Coarse)	survey	Geometric mean	1417.086 1417.086 27.1612 27.1612 20.1	4.085= 364.684 2218.145 3945.622	1145.553	630.540 100.000	614.384	962.053 1188.521 1282.522	Note: #	
Andersen Sampler (Fine+Coarse)	First :	Average		4.100 624.000 2250.000 4240.000	1168.000 908.000	570.000 100.000≈	624.000	1016.000 1194.000 5082.000		
Sample		nents	⋦⋖⋦ ଷ ℙ ⋳ ౸⋳⋳⋳⋦≝≈⋥⋽ <u></u> ⋽⋬ ĕ ≋≅⋭⋎⋎⋎⋭⋢⋿⋗⋑⋬	3205	Na* K*	Ga ² * Mg ² *	Ē	ខន្លន		
Andersen	Mathod	neurou analysis	Instrument activation analysis	X-ray fluore- scence	с, ц	AAS	SP	I C		
g/æ ³)	3 seasons	Geometric mean	៹ ^ឝ ៳ਗ਼ਜ਼ਗ਼ ਖ਼ੑਞਲ਼ਜ਼ੵੑਸ਼ਲ਼ਲ਼ਖ਼ਖ਼ਲ਼ਲ਼ਲ਼ਫ਼ਫ਼ਲ਼ਲ਼ਖ਼ੑੑਫ਼ਲ਼ਲ਼ਲ਼ੑੑਫ਼ਲ਼ਲ਼ਖ਼ੑੑਲ਼ਗ਼ਫ਼ਲ਼ਖ਼ੑੑੑਲ਼ਲ਼ ਫ਼ੑਫ਼ਲ਼ਜ਼ੵੑਸ਼ਲ਼ਲ਼ਖ਼ਫ਼ਲ਼ਲ਼ਫ਼ਫ਼ਲ਼ਲ਼ੑਫ਼ਲ਼ਲ਼ਖ਼ਫ਼ਲ਼ਲ਼ਫ਼ੑੑਲ਼ਲ਼ਲ਼ਫ਼ਲ਼ਲ਼ਫ਼ੑਲ਼ਲ਼	1.084 139.286 1104.078 3472.580	1305.024 708.313	269.121 73.428*	£9.718≠	624.961 640.453 750.554	14144.613 9468.120 4600.461	
(unit;ng/m³)	Average of	Average	8.6.0 8.6.00 8.6.00 8.6.00 8.6.00 8.6.00 8.6.00 8.6.00 8.6.00 8.6.00	328.333 328.333 328.000 3280.000 3280.000	1358.667 800.667	395.333 82.667*	140.667=	846.000 794.000 5003.303	15380.000 10200.000 5186.667	
	survey	Geometric mean	ੑੵੵਫ਼ੵਸ਼ਗ਼ਫ਼ੑਸ਼ੑੑੑਫ਼ੑਫ਼ੑੑਫ਼ੑਫ਼ੑੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑਫ਼ੑ	0.822 138.961 778.579 2672.505	1109.829 441.523	224.463 59.568*	67.846*	811.537 298.473 3805.674	9801.129 7121.914 2579.948	25
	Thirds	Average	0.0.5 8.30.0	1.100+ 345.000 842.000 2880.000	1142.000 476.000	308.000 64.000#	86.00 ≄	946.000 3380.000 3360.000	10320.000 7580.000 2780.000	is marked when trace date are over 50%
	survey	Georgetric mean	9.0.25% 2.2	0.871+ 39.404 963.152 2652.205	1365.362 682.021	134.183 74.206=	135.871	355.148 961.180 4206.121	13245.635 8566.070 4647.324	in trace date
	Second s	Average	6.0.20 	1.100+ 101.000 1080.000 2750.000	1416.000 716.000	176.000 84.000#	200.000	822.000 980.000 9820.000	13540.000 8840.000 4700.000	s narked whe
	survey	Geometric Dean	0.334 17.572 17.572 17.572 17.572 17.572 17.572 17.572 11.252 11.	1.783 344.544 1794.742 5907.875	1477.559	647.146 89.600	107.565	823.724 945.199 8254.551	21798.293 13913.012 7817.617	Note; * is ED : Frame
npler	First s	Average	282,000 283,000 283	2.000 528.000 1882.000 6120.000	1518.000 1210.000	702.000 100.000	136.000	<i>s</i> 70.000 1014.000 6520.000	22230.000 14150.000 8080.000	
ne San		nents	⋦⋍⋦ ॺ ₽⋴⋴⋴⋴⋴⋴⋴⋴∊⋍∊⋴⋴∊∊∊∊∊∊∊∊⋴⋴⋴⋴⋴⋴⋴⋴⋴⋴⋴⋴⋴⋴⋴⋴⋴	აწაუგ	ма+ К•	Ga ² • Mg ² •	NH.	ວຂຶ້ສ	TotalC Elem-C Orga-C	
Low-volume Sampler		analysis	Instrument activation analysis	X-ray fluore- scence	FР	AAS	SР	1 C	Carbon analysis	

FP : Flame photometry AMS : Atomic absorption spectrometry SP : Spectrophotometry IC : Ion chromotography

III - 105

Table 3-1(2) Average Concentrations of Chemical Components in Particulate Matter

	Method C of r analysis	Tistication and set and set of the set of t	X-ray fluore- Pb scence Si Si	FР K•	AAS M	SP	0	
	Compo- nents Average				Ga ² Mg ² · 50	NH. 574	200 200 200 200 200 200 200 200 200 200	
First survey		80.0%140.0140.0404040404040404040404040404040	2.000+ 388.000 1234.000 1234.000 180.000+ 173	380.000 367 728.000 718	50.000* 50 50.000* 50	574.000 563	113 220.000 3625 3700.000 3625	Note PP SP
	Geometric Average Bean	౸ఴౣ౺౼ౙఀౙ౸ౘ౸౸౸౸ౙఀ౸ఴఀ౸౸ౙఀఀఀఀఀఴఀఴఀఀౢౚ౸౸౸ౢఀౚఀ౸ౘ ౢఴౢఀౙౢఴౢౙౙౙౙ౾ౚౚఄఀౢఴౢౚ౿౿౽౿ఴౢఀౙఴౣఀౢౚ౸౸౸ౢౚౚ౸ౘ ౢఴఀఴౢఀఴౢౙఴౙఴౢఀౙ౾ౚౚఄౢౢఴౢౚ౿౿౽౿ఴౢఴౢ౾ౚౚౢ౾ఴఀౢౚౢౚఀ ౸౸ఀ౻ౢౚఀౘ౸౸ౚఀ౸ఴౚౣౙౢౚ౸౸౸౸ఴఀౢఀౢఴఀౚఀ౺౸ౚఀౚఀౚౚఀౚఀౚ	2.000* 223.485 1212.282 178.280* 178.280* 150.	367.236 338. 718.661 414.	50.000 50. 50.000 50.	583.516 694.	113.847 180.000 200.215 188.000 3625.336 4160.000	* is Flame Atomic Specture
Second survey	age Geometric mean	౸౸ఀ౻ౢ౽౸౸౸ఀ౸ౢౚఀ౸౸ౙఀ౸౸ౙఀఀ౸ౢౘఀఀఀఀఀౢ౼౸ఀఀఀ౸౸ౘఀఀఀఀ౸౸౾ఀఀ౺౸ౙ ౙ౾ఄౙఴౢౢఴఴౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢ	1.500 59.000 1002.000 150.000 150.000	338.000 414.000 336.	50.000± 50.	694.000 438	.000 142.154 .000 186.068 .000 3608.637	 is marked when trace date are over 50% Flame photometry Atomic absorption spectrometry Spectrophotometry
	4. 1	୦୦୫୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦	1.500* 35.577* 352.417 150.000* 150.000* 20	383.670 35 388.167 25	50.000+ 7 50.000+ 5	438.535 25		e date are trometry
Third survey	Average Ge	౸ૡ૽ૼૡ૱ૡૹૺ૱ૹ૿૱ૡ૱ૡૹ૿૱ૹ૿૱ઌૼૡૡૼ૾૾૱૾૾૱૱ૡૹૺ ૹૢૢૢૺૹૹૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	20.000+ 200.000+ 200.000+	320.000 258.000	76.000# 50.000#	280.000	128.000 142.000 2012.000	over 50% .
	Geometric A	៹ស៊ីលុកកុពី១.ឪភូនេសន៍លន័លនិត០និត្សស្ទីអាកុ០០០០.កីក០នី ខ្លួនខ្លួនខ្លួនខ្លួនខ្លួនខ្លួនខ្លួនខ្លួន	2.000+ 113.959 1060.578 200.000+	324.879 212.964	64.600 4 50.000 4	168.257	115.053 141.487 1844.911	
Average of 3	Average G	౸ౙౚౚ౮ౢౢౢౢౢౢౢౢఴౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢ	1.833* 217.667 1102.000 176.667*	376.000 456.567	58.667# 50.000#	509.333	157.333 183.333 3290.667	
3 seasons	Georetric Bean	9.09.00.00.00.00.00.00.00.00.00.00.00.00	1.817* 96.766 1069.845 174.874*	351.332 336.331 338.331	54.457 * 50.000*	346.552	123.025 174.896 2880.957	
	Method of analysis	Instrument activation analysis analysis	X-ray fluore- scence	લ	AAS	ЗЪ	U M	
	Compo- nents	⋦ ⋍ ⋦ॺ₽₢⋧⋳⋳⋧⋼⋥⋇⋶⋧⋍⋞⋎%%⋭⋳⋍⋗⋺৶	<u> ৪</u> ৬%	Na⁺ K•	Ca ²⁺ Mg ²⁺	. " B	58 8 2	
First	Average	៹ ^Ŋ Ⴣ෪Ⴡ෪ඁඁ෪෪෫ඁ෫෧෫෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪෪	2.100± 236.000 1016.000 4060.000	788.000 180.000	620.000 50.000#	50.00	852.000 974.000 1382.000	
survey	Gecmetric mean	50.00 50	2.031± 137.118 974.625 3754.766	772.232 173.470	577.188 50.000	50.00+	806.287 971.560 1235.928	Note; * is FP : Flam AAS : Atom
Second survey	Average	8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	22204.000 22204.000	1380.000 148.000	524.000 140.000	50.000	1580.000 1120.000 1682.000	 is marked when Flame photometry Atomic absorption Spectrophotometry
survey	Geometric Bean	౸ఴౢౢఀౚ౺౺ౘ౼౷౸౺౸౸ఴఄ౺ఄ౸ఴౢఀౚౚౙఀౙౙఀ౺౸౸౸౸౸౸ఴఴౚ ౢౢ౽ఄఄ౾ఴౢఴఴౢఴఴఀౢౢౢౢౢఴఴౢౢఀౚఴౢౢఀఴౚౢౢౙౢఴౢౢౢౢౢౙౢౚౢఴఴఴఴౢఴౢఴౢౢౢఴౢౢౢౢౢఴౢౚౢౢౢఴౢఴౢఴౢఴ	2.000 22.4550 1086.457 2042.156	1329.233 130.615	484.725 113.123	50.000	1493.644 1119.309 1412.273	marked when trace date are over photometry coshotometry cophotometry
Third s	Average	-0% 41% 42% 42% 42% 42% 42% 42% 42% 42% 42% 42	2.30 100.000 2540.000	886.000 102.000	38.00 50.00	50.00	754.000 2000 2000 2000 2000 2000 2000 2000	are over 50%
SULVEY	Geometric mean	៹ ⁸⁸ -1-467-98 48885-99-9-95889-98 48885-99-9-95889-98 48885-99-9-99-99-99-99-99-99-99-99-99-99-99-	2.287# 47.330# 1118.754 208.331		36.68 50.00	50,000	249.164 277.173 287.151	12
Average of 3 sea		9.9.1.1.1.9.99.9.8.9.9.9.9.9.9.9.9.9.9.9	2.13 2.0000 2.00000 2.0000 2.0000 2.00000 2.00000 2.00000 2.00000 2.00000000	538.000 143.333	50.333 80.00#	50.00	1055.233 794.000 1325.333	· ·
3 seasons	Geometric mean	989-94-489-989-989-989-989-989-989-989-9	2.123 59.107 1058.107 2583.322	635-121 025-613	458.104 65.632	50.00	966.284 678.925 1156.491	

·III - 106

Table 3-2 Top Ten Average Concentrations of Chemical Components

	r	n sample	nderser	A	1		•	CD01
1	Tota	rse 2.1μm)	(> 2	.1µn)	Fine (< 2	voluge ampler		SEQ)
4626	S04	2940	Si	3291	\$04	15380	С	1)
3117	SI	1960	Cl	1102	S	5033	S0	2)
2347	CI	1621	Ca	637	K	3920	Si	3)
2221	S	1335	\$0₄	509	NH4 * ·	1719	Cl	4)
1708	Ca	1119	S	467	K٠	1421	Na	5)
1457	Na	1055	C1 -	460	Zn	1412	Ca .	6)
1314	Na⁺	1042	Na	415	Na	1359	Na*	7)
1213	C1 -	951	Al	387	CI	1294	Fe	8)
1201	Fe	938	Na *	376	Na•	1268	S	9)
1120	К	913	Fe	288	Fe	975	К	10)

Note) Larbon is measured by low volume sampler, but not measured by andersen sampler.

3.2 Spatial Distribution of Chemical Components

Fig. 3-1 shows the spatial distribution of the concentration of representative chemical components. These components are considered to be marker elements of the main emission sources. The marker elements are as follows: All results are shown in the APPENDIX.

Sc, Al, Ti	Soil
Na, Cl, Na ⁺	Sea-salt particle
Pb, Br	Gasoline automobile
v	Petroleum combustion
Mn, Cr, Fe	Steel mill
Zn, K	Wastes incineration and Glass industry
Ca, Si	Road dust
SO4 ²⁻ , NO3 ⁻	Secondary particle
Organic C	Diesel automobile

The spatial distribution of these components classified by main emission sources are as follows:

(1) Soil

The highest concentration of Sc, Al and Ti are measured at MS5 compared with other monitoring stations as the location of MS5 is surrounded by fields. The concentration of those at MS1 and MS4 also are relatively high, which may be due to the dust blown up from roads.

(2) Sea-salt particle

The concentration of Cl, Na and Na⁺ are relatively high at MS2, MS3 and MS4 located near Chao Phraya river, but their concentrations are low at MS1 and MS5 located in inland sites.

(3) Gasoline automobile

The concentration of Br is relatively high at MS1 and MS4 located near roads. It seems due to the influence of the exhaust gas from gasoline automobiles. But, the concentration of Pb at those monitoring stations are low contrary to our expectation in spite of Pb as well as Br being contained in the exhaust gas of gasoline automobiles. We cannot figure out the cause of the phenomenon. At MS5, the concentration of Pb is found to be extremely low.

(4) Petroleum combustion

V (Vanadium) is the marker element of petroleum combustion. The concentration of V is relatively high at MS2 and highest at MS3. The amount of V in fine particles is found always higher than that of coarse particles.

(5) Steel mill

The concentrations of Mn, Cr and Fe at MS3 are extremely higher than the concentration of those at other monitoring stations. This seems due to the influence of the electric arc furnace plant located near MS3.

(6) Wastes incineration and Glass industry

Zn and K are marker elements of incineration of the wastes and Glass industry. The concentration of Zn at MS3 is extremely high, but the concentrations of K maintains almost the same level in all monitoring stations.

(7) Road dust

Ca and Si arc originated from road dust picked up by car transportation or from soil blown up by wind. The little differences of the concentration of those elements between the monitoring stations are found.

(8) Secondary particle

Generally, SO_4^{2-} and NO_3^{-} have their origin in secondary particles, and the regional difference of the concentration of SO_4^{2-} and NO_3^{-} are found not so clear because the reaction speed of " $SO_2 \rightarrow SO_4^{2-}$ " and " $NO \rightarrow NO_3^{-}$ " is slow. Therefore, the regional difference of NO_3^{-} is found not clearly in this study. But significant differences of SO_4^{2-} concentration between the stations were found. This is probably due to the reason that SO_4^{2-} also originates from sea-salt.

(9) Diesel automobile

The concentration of organic carbon is relatively high at MS1, MS3 and MS4. Diesel car and vessels are thought contributing to concentration at these monitoring stations.

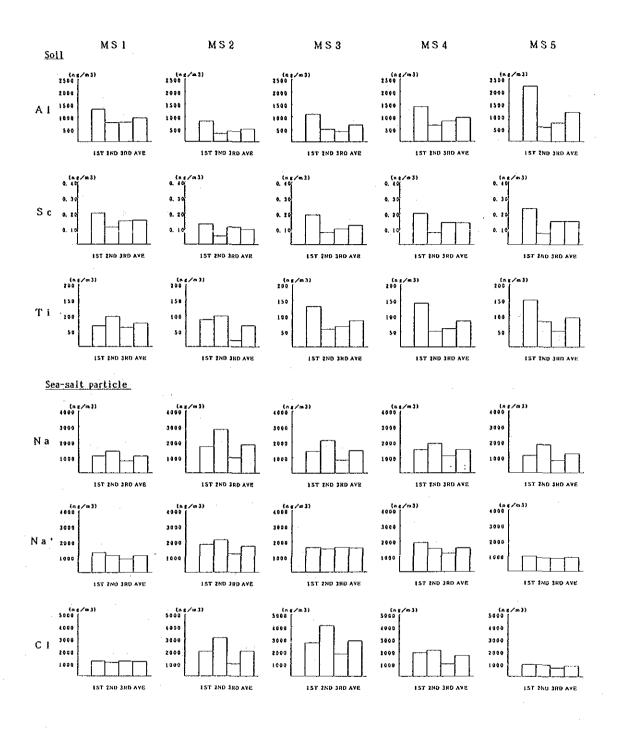


Fig. 3-1(1) Spatial Distribution of Chemical Components (Low-Volume Sampler)

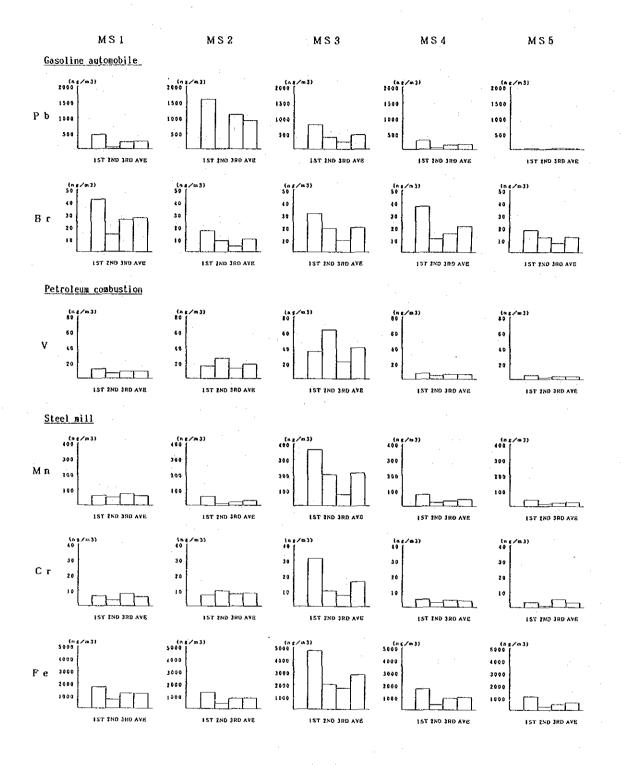


Fig. 3-1(2) Spatial Distribution of Chemical Components (Low-Volume Sampler)

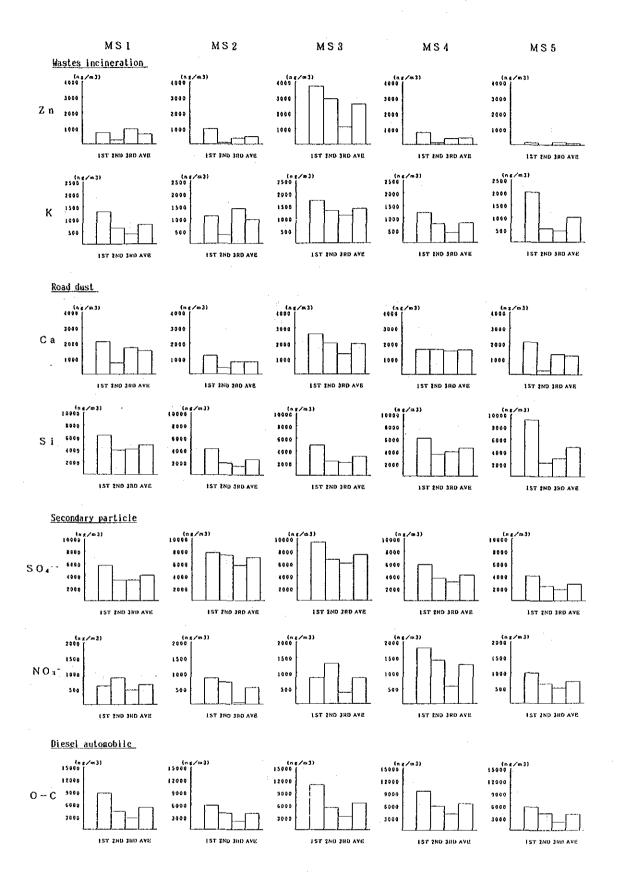


Fig. 3-1(3) Spatial Distribution of Chemical Components (Low-Volume Sampler)

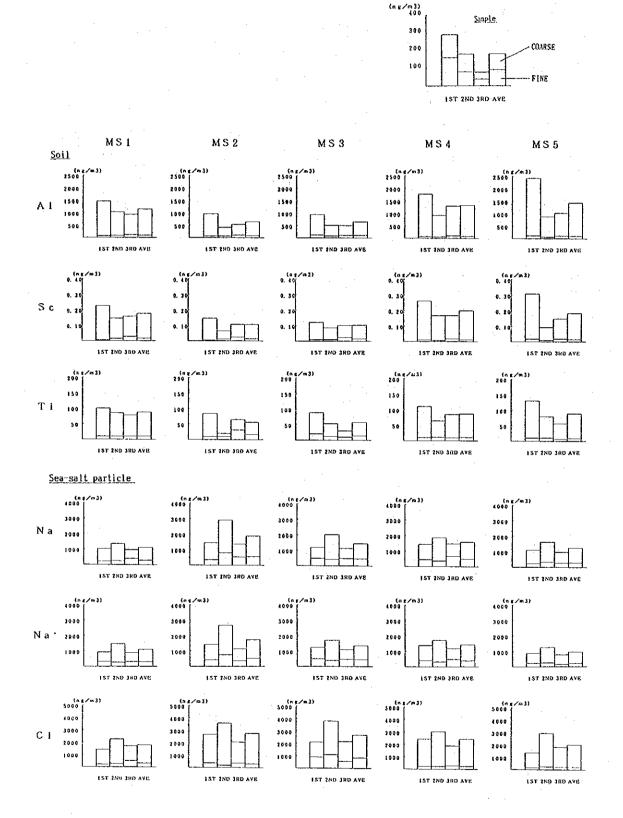


Fig. 3-1(4) Spatial Distribution of Chemical Components (Andersen Sampler)

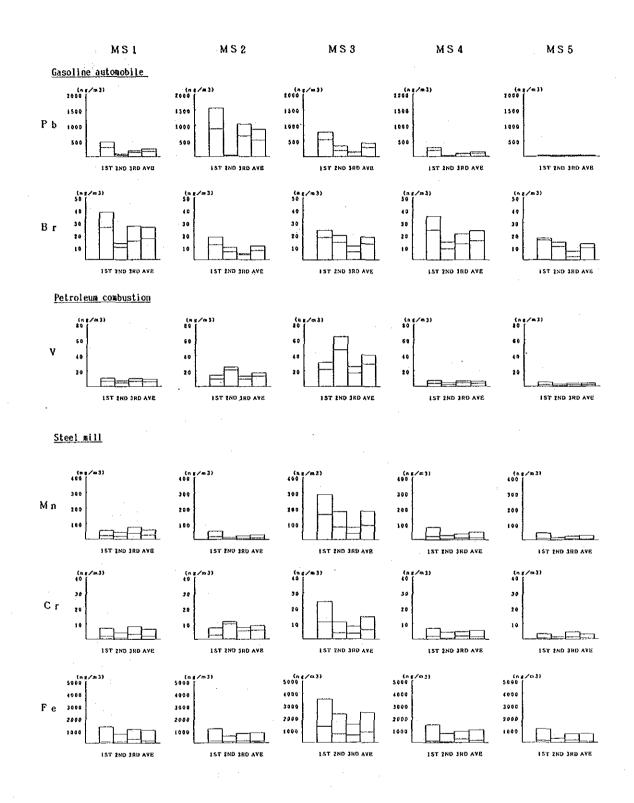
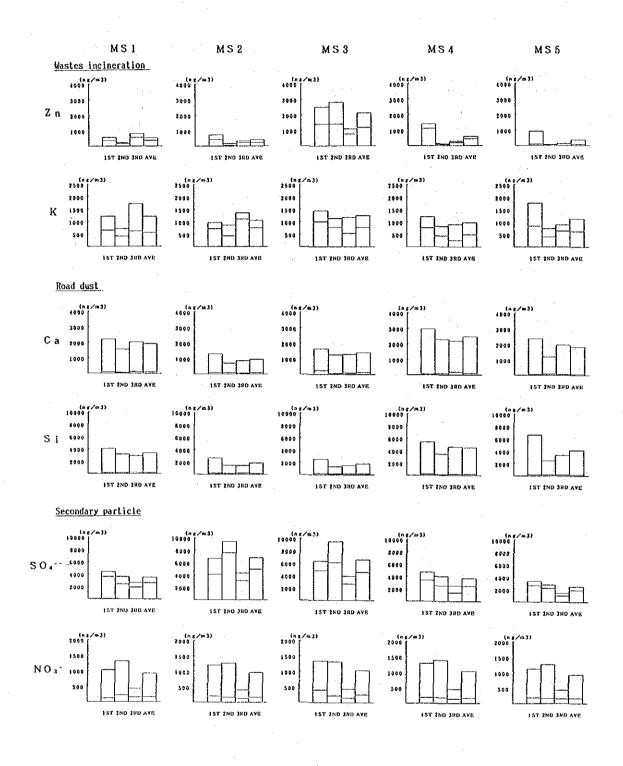



Fig. 3-1(5) Spatial Distribution of Chemical Components (Andersen Sampler)

Fig. 3-1(6) Spatial Distribution of Chemical Components (Andersen Sampler)

3.3 Comparison of the Concentrations of Chemical Components between Monitoring Stations

This section discusses the comparison of the concentration of chemical components between MS5 having the lowest concentration of TSP and other monitoring stations.

Fig. 3-2 shows the results of the comparisons, and the X and Y axes are shown logarithmically because the chemical component concentrations vary in the broad range of $10^{-2} \sim 10^4$ ng/m³. These concentrations positioned above the 45° diagonal line, correspond to concentrations higher than those of MS5. The data smaller than the detection confidence level are excluded because of unreliable figures. The element concentration analyzed by fluorescence X-ray method has the symbol (*) attached to elemental ones.

Observed points through this comparative study are:

(1) MS1

The difference of concentration of each chemical component between MS1 and MS5 is relatively large, above all with respect to Pb, Zn, Sb, V, Mn. This trend is probably due to the effects of petroleum combustion, automobiles, steel mills, wastes incineration and the glass industry.

(2) MS2 and MS3

Since MS2 and MS3 locate in an industrial area, the concentrations of chemical components, are high except for the marker components of soil and secondary particles. It is thought that the high concentration of V is due to burning of petroleum, those of high Mn, Cr and Fe to steel mills, Na, Cl and Cl⁻ to sea-salt particles, and Zn and Sb to wastes incineration and glass industry, respectively.

(3) MS4

The concentrations of Pb, Zn, V, Sb and Cl^- are relatively high. But the concentrations of other components showed the same levels as those at MS5.

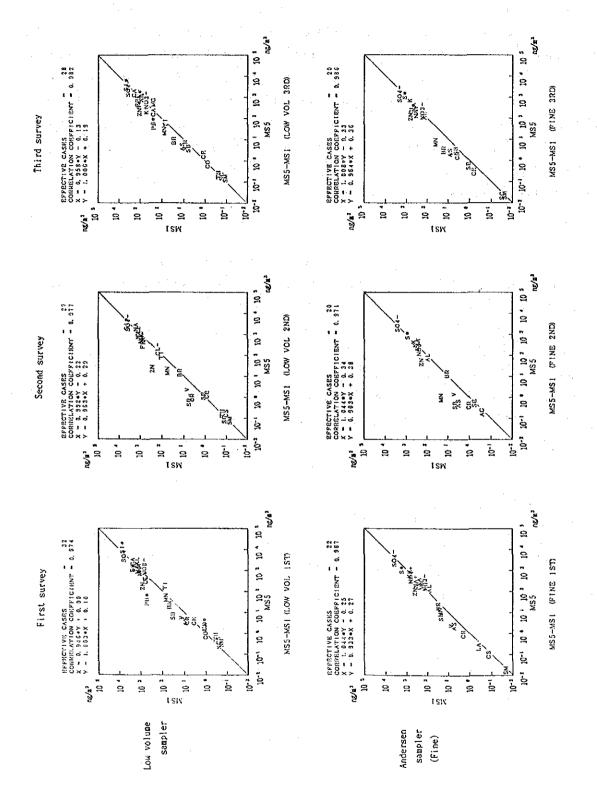
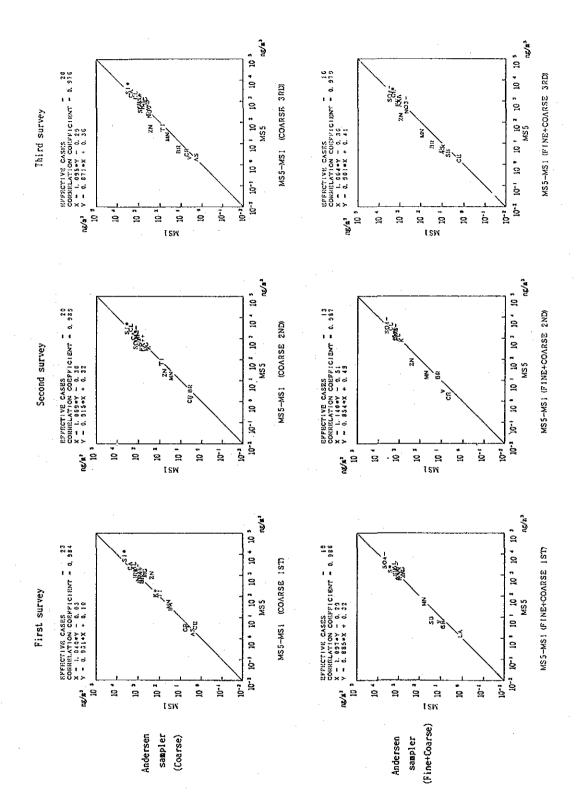
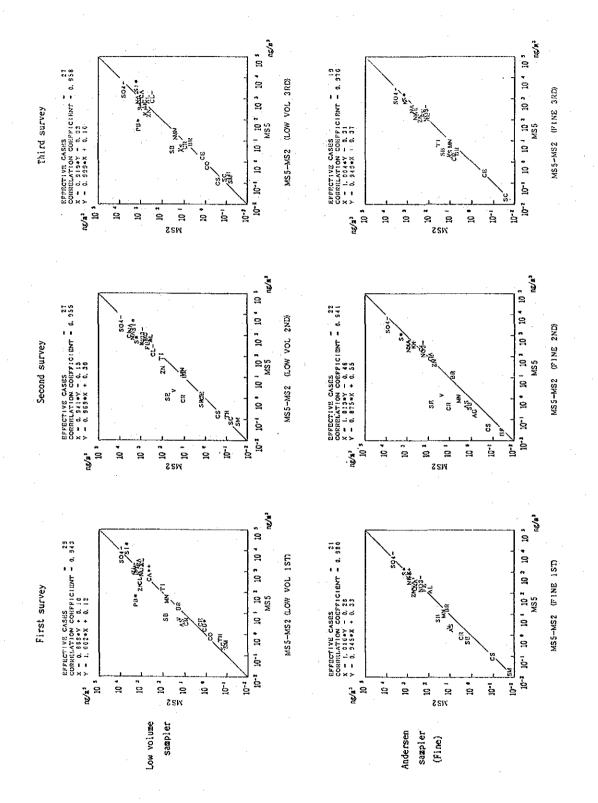
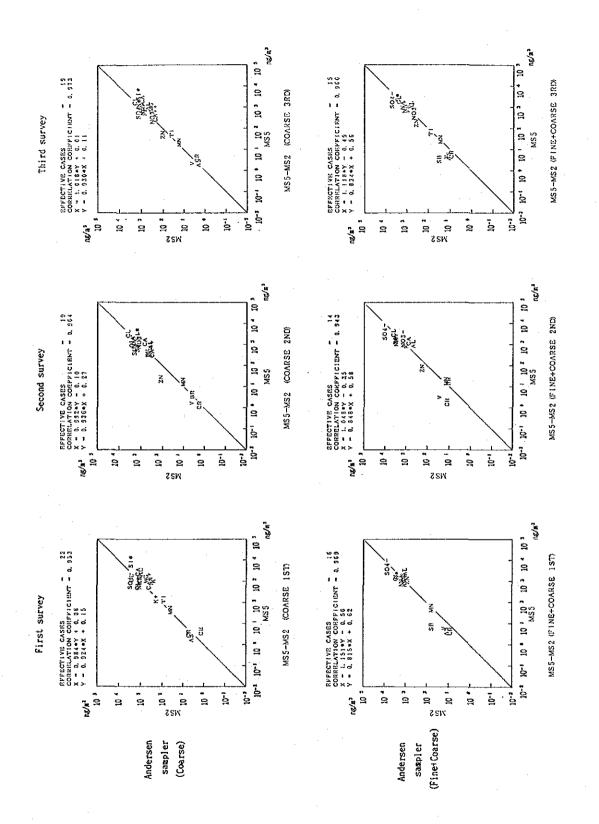




Fig. 3-2(1) Concentration of Chemical Components in MSS and MS1

III - 116



III - 118

III - 119

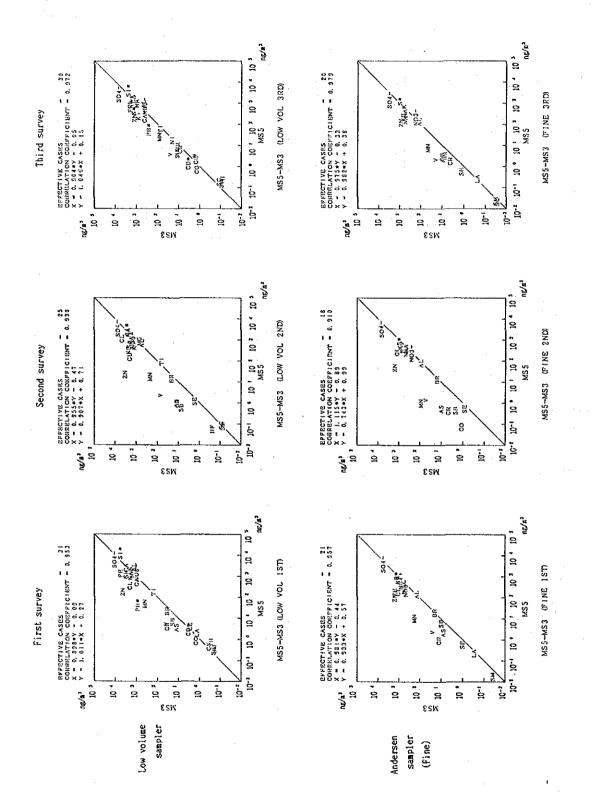


Fig. 3-2(5) Concentration of Chemical Components in MS5 and MS3

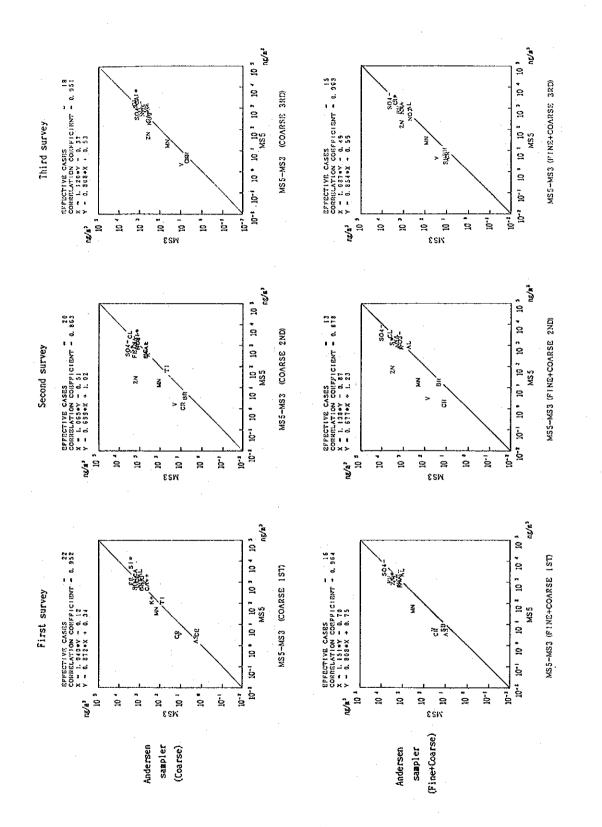


Fig. 3-2(6) Concentration of Chemical Components in MS5 and MS3

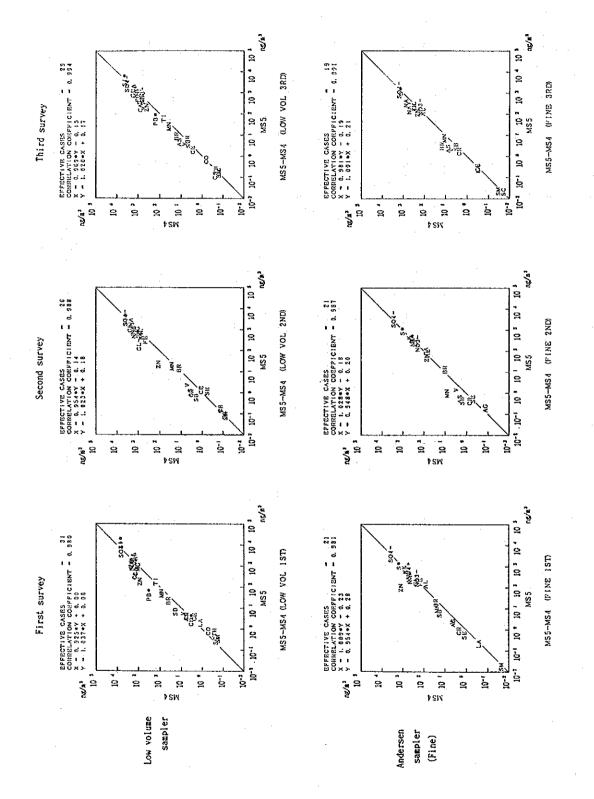
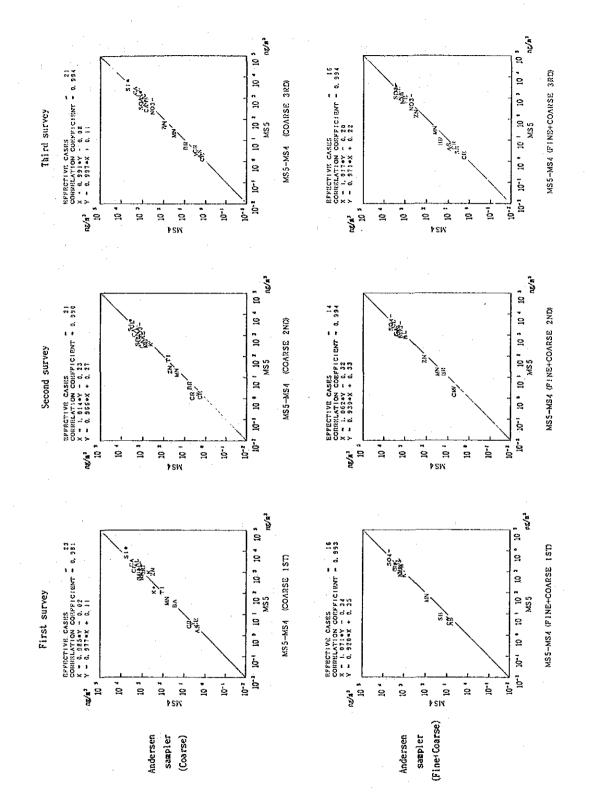



Fig. 3-2(7) Concentration of Chemical Components in MS5 and MS4

III - 122

3.4 Resemblance among the Monitoring Stations by Cluster Analysis Based on Correlation Coefficients of Chemical Components Concentration

The cluster analysis is sometimes instrumental for us to elucidate the regional resemblance among monitoring stations. Taken as a measure to represent the degree of regional resemblance in this study is the correlation coefficient calculated with respect to concentration of chemical components contained in total suspended particulate collected by Low-volume sampler and Andersen samplers among monitoring stations. As for TSP collected by Andersen sampler, the sample was divided into two parts, coarse and fine particle fractions and cluster analysis was done. The group averaging method were used as the solution methods for cluster analysis in this study. In order to avoid the effect by absolute value of each chemical component influencing the correlation coefficients, the data were normalized according to the equation (3-1). For the data which have values less than the detection minimum, a half value of such detection limit was assigned to them. Also, the chemical components having the value less than the detection minimum by more than 50% were excluded from the calculation.

$$Z_{\alpha i} = \frac{X_{\alpha i} - \overline{X}_{\alpha}}{S_{\alpha}}$$
(3-1)

where

 $Z_{\alpha i}$; normalized concentration value of component α at point i

 $X_{\alpha i}$; absolute value of component α at point i

 \overline{X}_{α} ; means of 5 points with respect to component α

 S_{α} ; standard deviation of 5 points with respect to component α

The correlation coefficient of chemical components concentration among regions and the results of cluster analysis are shown in Table 3-3 and Fig. 3-3 respectively. While admitting some difference coming from seasonal changes and types of dust meters, one can notice the following three clusterings to represent the regional difference.

(1) the region adjoining industrial areas represented by MS2 and MS3 stations

(2) the region apart from industrial areas represented by MS4 and MS5 stations

(3) the region neighboring the urban area represented by MS1 position

Table 3-3 Correlation Coefficient of Chemical Components Concentration among Monitoring Stations

ist survey

lst survey

	IS1	MS2	MS3	MS4	MS5	
MS1) ONEB STATION	/					
MS2) POWER PLANT	-0.33	\backslash				
MS3) MIN. DEP. DFFICE -0.23 0.08	-0.23	0.08				
MS4) S.P.PR0.0FFICE -0.24 -0.16 -0.26	-0.24	-0.16	-0.26	\square		
MS5) H.S. I. ESTATE	0.07	-0.62	0.07 -0.62 -0.51 -0.21	-0.21	Ζ	<u> </u>
2nd survey						

		NS 1	MS2	X 53	MS4	MS5
ŝ	MSI) ONEB STATION	Z				
NS2)	MS2) POWER PLANT	-0.56				
(ESI)	MS3) MIN. DEP. OFFICE	-0.38 -0.24	-0.24	\langle		
VS4)	MS4) S.P. PRO. OFFICE	0.03	0.03 -0.45 -0.23	-0.23	/	
NS5)	MSS) H.S I. ESTATE	0.45	-0.11	0.45 -0.11 -0.69 -0.03	-0.03	\mathbb{Z}

3rd survey					
	NS1	NS2	MS2 MS3	WS4	MS5
MSI) DNEB STATION	Δ				
MS2) POWER PLANT	-0.59				
MS3) MIN. DEP. OFFICE	-0.11 0.17	0.17			
MS4) S.P.PRO.OFFICE	-0.06	-0.06 -0.51 -0.58	-0.58	Λ	
MS5) H.& I. ESTATE	-0.06	-0.37	-0.06 -0.37 -0.67 0.35	0.35	/
All seasons					
	۲ ۲۷۶	459	553	NCA	ビンス

All seasons					
	NS I	HS2	WS3	MS4	MS5
MSI) ONES STATION	/				
POWER PLANT	-0.49	/			
MS3) MIN. DEP. OFFICE	-0.28	0.00	/		
MS4) S.P.PRO.OFFICE	-0.03	-0.03 -0.37 -0.39	-0.39	/	
MS5) H.& I. ESTATE	0.03	-0.41	0.08 -0.41 -0.52 -0.01	-0.01	/

	I SH	MS2	MS3	MS4	MS5
MSI) QNE8 STATION			-		
MS2) POWER PLANT	-0.20				
MS3) MIN. DEP. OFFICE	-0.65 -0.31	-0.31	\langle		
MS4) S.P.PRO.OFFICE	0.06	0.06 -0.26 -0.24	-0.24		
MSS) H.& I. ESTATE	-0:13	-0.13 -0.43 0.03 -0.30	0.03	-0.30	\mathbb{Z}
2nd survey					

i							
	NS5					\mathbb{Z}	
•	MS4				/	0.51	
	KS X				-0.38	-0.41	
	NS2		\langle	-0.54	-0.21 -0.21 -0.38	-0.23 -0.16 -0.41	
	I SM	/	-0.48	-0.02 -0.54	-0.21	-0.23	
2nd survey		MSI) ONEB STATION	MS2) POWER PLANT	MS3) MIN.DEP.OFFICE	MS4) S.P.PRO.OFFICE	MSS) H.& I. ESTATE	
2nd		(1 SM)	(S2)	MS3)	MS4)	NS5)	

3rd

		NS1	HS2	8SM	XS4	8SF.
(1SN	MS1) ONEB STATION	Ľ				
MS2)	MS2) POWER PLANT	ې 8.9	V			
MS3)	MS3) MIN.DEP.OFFICE	-0.14 -0.25	-0.25	\langle		
AS4)	MS4) S.P.PRO.OFFICE	ଷ ୧	-0.29 -0.37 -0.29	-0.23		
(SSI)	MS5) H.& I. ESIATE	0.10	0.10 -0.36 -0.38 -0.33	8 8 9	-0 8	\mathbb{Z}
ALL	All seasons	ľ				

2 X23 X24 X25			21	31 -0.28	-0.09 -0.29 -0.23 -0.03
MS1 MS2	Ζ	-0.35	-0.32 -0.37	-0.11 -0.31 -0.28	0-00-0-
	#SI) ONEB STATION	MS2) POWER PLANT	MS3) MIN. DEP. OFFICE	MS4) S.P.PRO.OFFICE	MS5) H.S. I. ESTATE

	%S5					7	
	MS4 WS					0.05	
				7	2	53 0.	
	2 MS3		-	8	12 -0.	65 -0.	
	1 MS2	7	4	27 0.03	-0.05 -0.12 -0.54	014 -0.65 -0.53	
	15%	4	-0.41	E -0.27			
		NOLTH	LANT	05510	OFFIC.	ESTATE	
lst survey		NE8 ST	OWER P	I.N. DEP	.P.PRO		
ist s		MS1) DNES STATION	MS2) POWER PLANT	MS3) MIN. DEP. OFFICE	MS4) S.P.PRO. OFFICE	MS5) H.& I.	

255					/		MS5					/		MSS					ſ
2				/	0.05		NS4		<u>`</u>		/	0.30		XS4	 			/_	
2			\mathcal{V}	-0.54	-0.53		NS3				-0.64	-0.62		HS3	 		/	-0.67	
22		$\overline{/}$	0.03	-0.12	-0,65	1	YS2		V	0.8	-0.43	-0.47	÷.	725 7			0.13	-0.20	
ē	7	-0.41	-0.21	-0.05	0_I4		is:	Z	-0.74	-0.40	0.23	0.52		NS1	Ľ	F0.8	F-0.13	-0.13	
	NOITATE SEATION	POWER PLANT	MIN. DEP. OFFICE	S.P.PRO.OFFICE	H.& I. ESTATE	survey		ONEB STATION	POWER PLANT	MIN.DEP.OFFICE	S. P. PRO. OFFICE	H.& I. ESTATE	survey		ONEB STATION	POWER PLANT	AS3) MIN. DEP. OFFICE	S.P.PRO.OFFICE	
	MS 1)	NS2)	HS3)	MS4)	MS5)	2nd		(1S);	(25)	MS3)	(S4)	MS5)	3rd		11 SH	NS2)	NS3)	(JSK)	

ord survey	vey					
		NS I	XS2	MS3	%S4 MS5	XS5
S1) ONE	MS1) ONEB STATION	/				
S2) P0W	MS2) POWER PLANT	-0.64	$\overline{/}$			
S3) MIN	MS3) MIN.DEP.OFFICE	-0.13 0.13	0.13	/		
S4) S.P	MS4) S.P.PRO.OFFICE	-0.13 -0.20 -0.67	-0-20	-0.67	/	
S5) H.&	MS5) H.& I. ESTATE	-0.18 -0.36 -0.55	-0.36	-0.53	0.26	/
All seasons	sons					
			1	-		

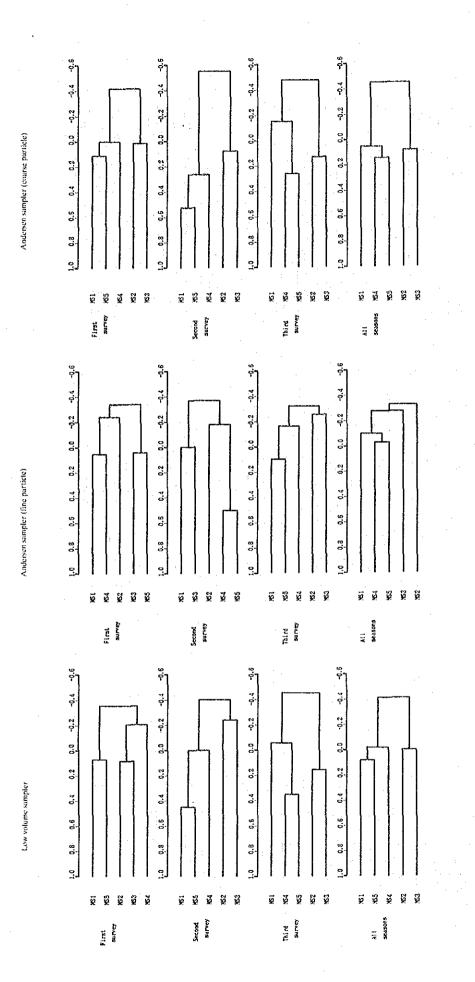


Fig. 3-3 Hierarchical Structure of Monitoring Station by the Cluster Analysis

3.5 The Relationships between Chemical Components

The relationships between chemical components were analyzed in this section. As it is difficult to analyze the relationship of all combinations of chemical components because of the number of combinations involved, the analytical study was limited to seven emission sources and the pairs of chemical components of each emission source are selected as shown in Table 3-4.

Soil	Sea-salt	Secondary particle	Petroleum combustion	Steel mill	Automobile	Others
AI-Sc AI-Ti AI-Si AI-Fc Sc-Ti Sc-Si Sc-Fc Si-Ti Si-Fc Fc-Ti AI-Ca Si-Ca Sc-Ca Ti-Ca	ClNa Cl ⁻ -Na SO ₄ ²⁻ -Cl SO ₄ ²⁻ -Na BrCl BrNa BrSO ₄ ²⁻ BrCl	NH4 ⁺ -SO4 ²⁻ NH4 ⁺ -NO3 ⁻ Na-NO3 ⁻ SO4 ²⁻ -NO3 ⁻	$S-SO_4^{2-}$ $V-SO_4^{2-}$ $V-S$ $V-clemental carbon (V-E-C) V-organic carbon(V-O-C)$	Cr-Mn Fe-Mn Fe-Cr Ca-Mn Ca-Cr	Pb-Br Pb-E-C Pb-O-C Br-E-C Br-O-C Br-SO ₄ ²⁻ Br-NO ₃ ⁻ Br-K E-C-SO ₄ ²⁻ O-C-SO ₄ ²⁻	E-C-Zn O-C-Zn E-C-K O-C-K Pb-As Zn-K Zn-K Zn-As Pb-Sb Zn-Sb

Table 3-4 Pair of Components for the Relationship Among Chemical Components

The result of regression analysis among various chemical components concentration is summarized in Table 3-5, in which data are treated in two ways, one excluding those less than the detection limit and the other applying a half value of the detection limit value for such data smaller than the detection limit. The correlation coefficients diagram among chemical components concentration is exemplified in Fig. 3-4 and the rest is filed in Data Sheets.

Reviewing those analytical data, one can notice a significant correlation coefficient ($r \ge 0.8$) between two components listed below.

• Low-volume sampler case

Al-Sc, Al-Si, Sc-Si, S-SO42, Br-E-C, Br-O-C, Cr-Mn, Fe-Mn, Fe-Cr, Pb-Sb

Andersen sampler case (with respect to TSP)

Al-Sc, Al-Ti, Al-Si, Sc-Ti, Sc-Si, Si-Ca, Sc-Ca, Cl-Na, Cl^- -Na, NH_4^+ -SO $_4^{2-}$, Cr-Mn, Fe-Mn, Fe-Cr, Pb-Sb

- Andersen sampler case (fine particles only)
 Al-Sc, NH₄⁺-SO₄²⁻, Fe-Mn, Ca-Mn, Pb-Sb
- Andersen sampler case (coarse particles only)
 Al-Sc, Al-Ti, Al-Si, Sc-Ti, Sc-Si, Si-Ti, Si-Ca, Sc-Ca, Cl-Na, Cl⁻-Na, V-S, Cr-Mn, Fe-Mn, Fc-Cr, Pb-Sb

Above all, noteworthy is a significant correlation ($r \ge 0.9$) among those chemical component combinations of coarse particles in the Andersen sampler. The chemistry of such components is thought identical to those of soil and thus components like Al, Sc, Ti, Si or coarse particles have

their origin in soil of the ground.

The combination of Cl-Na or Cl^--Na of coarse particles are found the same in a significant correlationship and it is thought most likely that they exist in NaCl form as sea salt and in the coarse particle range.

Another high correlation tound in combinations of Cr-Mn, Fe-Mn, Fe-Cr of coarse particles may be traced back to steel plant dust or it is thought contributory to the coarser size range of trapped dust.

The combination of Pb and Sb also shows a significant correlation and is thought attributable to the glass industry as an element source.

As for fine particle size, a significant correlation seen in $NH_4^+ - SO_4^{--}$ suggests the existence of $(NH_4)_2SO_4$ salt as a secondary particle. But the NH_4NO_3 salt is less likely to exist since the regression coefficient is found to be 0.152. The reason to support this conclusion is that the NO_3^- ion generally exists as a nitric acid fume and reacts with NaCl of sea salt to form the NaNO₃ coarse particle. But in a cold climate, the nitric acid particle formed by heterogenous nucleus reaction neutralizes the NH_4^+ ion to form NH_4NO_3 fine particles¹¹. Accordingly, it is thought that in the warm climate of Thailand, the correlation coefficient of NH_4^+ and NO_3^- remains small (r=0.152) and that of Na and NO_3^- remain comparatively larger (r=0.680) in the coarse particle size range.

Ш	-	129

٢		я,	កម្មស្មិតម្មស្មិតម្មស្មិត	លីសីសីលីសីសីសី	សិសិសិសិស	សងរស	សតេសតេសតេស	សិសិសិសិសិ	ស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស៊ីស
value for trace		s.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	55555555555555555555555555555555555555	0.5%1 0.5%3 0.5%3 0.2%3 0.2%3 0.215	0.157 0.157 0.167 0.140	00000000000000000000000000000000000000	0.892 0.947 0.658 0.658 0.468	0.555 0.557 0.557 0.552 0.5550 0.5550 0.5550 0.15555 0.15555 0.15555 0.15555 0.15555 0.15555 0.15555 0.1555
	Value	q	0.0 88.5 89.5 89.5 89.5 89.5 89.5 89.5 89.5	711.91 1484.41 1884.41 1884.41 1884.41 1884.43 1851.43 1553.28 3891.07 521.88	1423.70 3842.46 3865.27 3865.27 4645.38	3619. 16 714. 45 220. 35 651. 83	17.21 9170.30 9170.30 4781.57 4781.57 1718.31 1719.31 5331.07 5331.47 5531.68 1677.38 2533.68 2533.68	-13.05 28.19 29.15 29.15 29.15 20.15 21.05	
	Adopted nati	ß	9. 77±10-1 9. 77±10-1 9. 550 9. 550 9. 550 9. 550 9. 140 9. 140 140 140 140 140 140 140 140 140 140	0.0.0.9 0.0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2882828 888788 8887888	0.000 88.00 88.00 88.00 88.00	0.403 2.874 2.874 1.130 1.91.073 191.073 191.073 162.046 16.036 1	11.640 0.079 0.079 0.005 0.005	
-	1	a	ដងសូមិនសូមិនសូមិនដែល	ងសម្ភងក្មស្ត	សិសិសិសិសិ	r-133	44488884888	ភាពភាជា	<u> </u>
le sampler	3	-	22222222222222222222222222222222222222	50000000000000000000000000000000000000	0.286	0.212	0.0.00000000000000000000000000000000000	00000 8.989 8.888 1.8888 1.8888 1.8888 1.8888 1.8888 1.8888 1.8888 1.8888 1.8888 1.8	0.555 0.410 0.410 0.459 0.458 0.563 0.563 0.563 0.563 0.563
3	t for trace	Ą	୦.୫.୫.୫. ୫.୪.୫.୫.୫.୫.୫.୫.୮.୮୦୦ ୫.୪.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫.୫	711.91 1484.41 1581.65 550.33 550.33 1551.43 1551.43 1551.43 1551.43 1551.43 1551.43 1551.43	285.27 885.27 885.27 885.27 885.27 885.38	888558 88788 88788	17.85 3555.75 3555.75 4778.87 4778.87 4778.87 3591.03 3591.07 5591.55 5591.65 5591.750	-13.49 -28.19 0.15 -4.26	-722,55 574,41 891,64 891,64 81,04 81,01 81,04 81,01 81,04 81,01 81,04 81,01 81,04 81,0100,0000000000
ical Except	EXCet	а	9. 77*10 ⁻⁵ 9. 77*10 ⁻⁵ 9. 74*10 ⁻⁵ 9. 0.044 9. 108 907. 1085 907. 1085 9	0.412 0.303 0.303 0.216 0.303	22.28 23.28 2.28 2	3.149 0.282 0.082	0.000 101.073 100.073	11.640 0.073 0.073 0.118 0.118 0.118	0.000.000 0.000.000 0.000.000 0.000.000
	Uleates[XX	AAAAXXXXXXXAXXX "	ល ខ្លះ 2 ខ្លះ 2 ខេន្តនេះ ខេន្តនេះ ខេន្តនេះ ខេន្ត ខេត ខេត្ ខេត្ ខេត្		NH4 • 504 ^z - NH4 • 1003 ⁻ NH4 = 1003 - S04 ^z - 1003 -	Pb B Pb B Pb B Pb B Pc S Pc S Pc S	ກ ສອງ ສອງ ເຊິ່ງ ເຊິ່ງ	6090 0100 88888 88888 8888 8888 8888 8888
-	ย 5	i	1105	1162-692	สปราการใ กราวราช	particle Secondary	ari lozzi af irlozotus	l9912 ∐i∎	olliers

Table 3-5(1) Results of Regression Analysis between Chemical Components

ល្អប្មស្មាល ដេដេដ លីលីសីសី លី២លីសី សិកិតតិសិក សិសិរថិសិសិលីល Adopted half value for trace data đ 0.514 888.88 888.88 0.745 0.782 0.673 (Andersen sampler , Fine+Coarse) ្តូនទទួនទទួនទទួនទទួនទទួន ខ្លួនទទួនទទួនទទួនទទួន ខ្លួនទទួនទទួនទទួនទទួន ទទួនទទួនទទួន ងគខ 5226 8458 នក្ខន្មន្លន 1158.1 513.1 523.1 523.5 2757 2757 2003 1.628.88 م ผลื่อวิธีอ 8.51 8.52 8.51 0.001 8888 90009 90009 8823388688 in regression line. Y = a X + b, a : regression coefficient b : intercept r : correlation coefficient n : number of data ဝဝဝဝ႙ဒ္ဒလဲရှိ w ក្មាភិភាពក្ ក្មសិតក្ម ក្ដីស្ដីភ្ន ដដាកាត សីសិកសិកសិក d 0.523 0.541 0.544 0.581 0.581 0.581 0.581 0.581 0.581 0.581 0.785 0.785 0.679 256423338969.0.0.0 25642338969.0.0.0 25642338969 0.955 0.457 0.457 558 9.0.0 88888 88888 0.881 0.882 0.856 0.856 0.856 0.856 0.856 data ы trace 50.25 20.25 ងនុទ្ធ១៩១ នទេនទេន 8=e88488a4222e3 288888846 សតុខ 39P5 o, 8883 8883 8883 85.23.23.23.38 8898 Except for 3.825 20.857 20.857 0.0000 8233800 823800 82800 1.21±10-1 21±10-1 21557-505 -2.0300 -2.03000 -2.03000 -2.03000 -2.03000 -2.0300 -2.0300 -2.0300 -2.0 Note) ð S = 50,2+ V = 50,2+ V = 5 Pb = Br Br = S0, 2 Br = N03, NH, • SO, • NH, • NO, NA = NO, SO, • • NO, 255233 ***** \$£2223 Chemical components X Y particle Secondary eni losel Stidozofine Retroleum Rotiendari 19912 11 ia ຮາວທານ 3162-692 Hos

Table 3-5(2) Results of Regression Analysis between Chemical Components

			· .					
data	a	លីសីសីសីសីសីសីសីសីសីសីសី	លកកកកកកក	សកត	ងដសដ	លីសីសីស	កតកកកក	ដដដដ
trace	ч	0.233 0.022 0.0200 0.0200 0.0200 0.0200 0.02000 0.02000 0.02000 0.02000 0.0200000000	00000000000000000000000000000000000000	0.485 0.741 0.036	0.267	0.103 0.116 0.242 0.173	0.983	0.617 0.482 0.582 0.585 0.585 0.151
) If value for	٩	24.25 8.25 8.25 8.25 8.25 8.25 8.25 8.25 8	2201.13 2302.13 2302.28 2302.12 2307.05 2307.05 117.30	-36.23 2134.71 1038.02	948.58 157.78 141.92.90	11.94 2207.05 152.75 152.85	-4-73 15.86 0.61 0.61	3.38 3.19 2.07 2.07
sampler . Fine) Adopted half	63	2.33+10-4 0.055 0.055 0.055 0.055 2284.135 2284.135 2284.135 0.051 0.055 0.055 0.055 1.810	0.000 0.000 0.000 0.000 3.617	3.019 108.300 0.841	4-588 0.050 0.018 0.013	0.003 30.689 2.447 6.058	8.00 0.118 0.508 0.508 0.508	0.000
and a second	a	04040000040004	胡크려려려려되그	ភដដ	ដដងដ	10 15 14	2141 90 90	01420 101
Andersen data	ų	0.287 0.174 0.48 0.48 0.701 0.657 0.715 0.715 0.715	0.000000000000000000000000000000000000	0.485 0.741 0.036	00000 88888 888888 888888	-0.146 0.242 0.242	0.000	0.388 0.588 0.582 0.151
t for trace	م	-0.006 -0.44 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.66 -0.76 -0.66 -0.76	2001112 200112 2000000	-36.23 2134.71 1033.02	543.58 169.98 190.90	15.38 2807.06 152.75 584.52	9.42 9.43 9.43 9.43 9.43 9.43 9.43 9.43 9.43	5855.11 33.19 32.19 7.10 7.10 7.10
Except	q	2.55+10-4 0.082 0.082 1048.301 15424.074 15424.074 1.768 1.768 1.768	9.90 9.90 9.90 9.90 9.90 9.90 9.90 9.90	3.019 108.303 0.841	0.010 0138800 0138800	2.004 9.004 9.309 9.3000 9.3000 9.3000 9.3000 9.3000 9.3000 9.3000 9.3000 9.3000 9.3000 9.3000 9.3000 9.30000 9.30000 9.30000000000	8.00 10 10 10 10 10 10 10 10 10 10 10 10 1	0.000 2000 2000 2000 2000 2000 2000 200
Ohearical	corponents X Y	AAAAyyyyyssaayyu """"""""""""""""""""""""""""""""""	0.02%***********************************	S = 50, ²⁻ V = 50, ²⁻ V = 5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Po = Br Br = SO. ² - Br = NO. ¹ Br = K	25522 **** ****	Pb = As Zn = K Zn = K Pb = As Zn = Sb Zn = Sb
Ğ	<u>о</u>	1102	1162-692	noijzudano Busionionioni	Secondary Secondary	enifozofi elidoaulus	19912 111 8	ราวกัปป

					n Alan	an Ang ang ang ang ang ang ang ang ang ang a			:
	data	Ħ	សមគមមាន ដែលមួយ ដែ	ភភភភភភភភ	ងកង	ដាងងា	ងងងង	ងតងងង	អងមងដ
	trace	. r		99999888858	0.780	0000 889 889	-0.000 -0.001 0.371	0.320 0.954 0.954 0.975 0.102	0.651 0.150 0.342 0.342 0.0564
(lf value for	۾ ۾	ੑੑ੶ੑੑਖ਼ਲ਼ਲ਼ ਲ਼ੑਫ਼ਸ਼ਲ਼ਗ਼ੑੑੑਫ਼ਗ਼ੵੑਗ਼ੑਲ਼ੑੑਲ਼ ਲ਼ਫ਼ਸ਼ਗ਼ਗ਼ੑਗ਼ੵੑਗ਼ੑੑੵੑਫ਼ਗ਼ੵੑਗ਼ੵੑਗ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵੑਫ਼ੵ	88855 88855 88855 8885 8885 8885 8885	-370.10 631.37 736.36	සියි. සියි.සි.සි. සි.පි.සි.සි.	5.85 1396.63 820.00 227.96	2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	50-1-13 1-13 1-13 1-13 1-13 1-13 1-13 1-1
sampler, Coarse	Adopted half	r5	1.2410- 0.051 0.051 0.051 0.051 0.010 0.010 0.010 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.051 0.052 0.051 0.052	0.0.0.0.0.2% 889.00.0.2% 889.00.00.00.00.00.00.00.00.00.00.00.00.00	1.524 146.252 79.566	0.000 0.888 0.1888	-1.82±10-4 -10.521 -6.179 26.780	10.1423.14 100.0 100.0 100.0 100.0 100.0	0.001
in the second seco		ជ	កដាក់ក្មដាក់ដាក់ដាក់ដាក់ដ	សីសីសីសី ដដែ	ដងផ	០០ដីដី	កដដដ	ងករដង	លពីរបីន ដ្
Andersen	ಡೆದ	L	0.938 0.9380 0.93800 0.9380 0.9380 0.93800 0.93800 0.93800 0.93800 0.938000 0.938000 0.93800000000000000000000000000000000000	00000000000000000000000000000000000000	0.760 0.700 0.870	0.55 0.65 0.65 0.65 0.65 0.65 0.65 0.65	5000 1000 1000 1000 1000 1000 1000 1000	0.354	0.000
3	of for trace	Q	~488584.5588.888888888888888888888888888	888.15 882.15 88	370.10 631.37 736.36	1 8.8 88.8 1 88.8	8.70 891.35 891.35 891.35	-7.11 20.57 2.82 2.82 2.82 2.82 2.82 2.82 2.82 2.8	507.68 1.55 1.55 3.21
	Except	es.	1.24*10* 2.043 2.043 2.111 2.15.815 1.224 1.224 1.224 2.043 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.0104 0.005 0.005 0.005 1.5.824 1.5.834	0.288 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.584 0.584 0.564 0.564 0.566	1.524 146.252 79.566	1 800	-0.004 -45.911 -28.561 42.704	10.857 0.064 0.005 0.004 4.62*10 ⁻⁴	0.000
	Chemical	X Y X	AAAA%%%%%%4%%% #########################	ល្អ ក្រស់ស្តុំង្គង្គង្គ ភូមិល្អ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំស្ត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំត្រ ភូមិលំសំតាំ ភូមិលំងំសំងំ ភូមិលំសំតាំ ភូមិលំសំតាំ ភូមិលំង ភូមិលំង ភេមិលំ ភេមិលំ ភិមិលំ ភេមិលំ ភេមិលំ ភេមិលំ ភេមិល ភេមិល ភ្មិ ភេមិល ភ្មិល ភំមិល ភេមិល ភេមិលំ ភេមិល ភេមិលំ ភេមិល ភំមិល ភេមិល ភំមិល ភំមិល ភំមិល ភេមិល ភំមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ភេមិល ក ភេមិល ភេមិល កំពាំ ភេមិល ភេមិល ភេមិល ភេមិល ភេមិ ភេមិល ភេមិ ភេមិល ភេមិល ភេមិល ភេមិ ភេមិល ភេមិល ភេទ ភេមិល ភេមិ ភេមិ ភេមិ ភេមិ ភេមិ ភេមិ ភេមិ ភេច ភេមិ ភេច ភេមិ ភេច ភេមិ ភេទ ភេមិ ភេទ ភេមិ ភេមិ ភេ ភេមិ ភេមិ ភេ ភេមិ ភេមិ ភេ ភេ ភេមិ ភេ ភេ ភេមិ ភេ ភេមិ ភេ ភេច ភេមិ ភេមិ ភេ ភេ ភេមិ ភេ ភេមិ ភេមិ ភេ ភេ ភេមិ ភេ ភេមិ ភេ ភេ ភេ ភេ ភេមិ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេច ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ ភេ	S = 50, ² - V = 50, ² - V = S	NA+ S0. ² - NA+ N0 ² - S0. ² - N0 ³ - S0. ² - N0 ³ -	Pb = Br Br = S0¢r- Br = N0s- Br = K	28828 ***** ****	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	ő	8	Lio2	i jjez-692	nusionisu noliteudano	Secondary	Soliosolus Sildosolus	∎]]] [€6]	Others

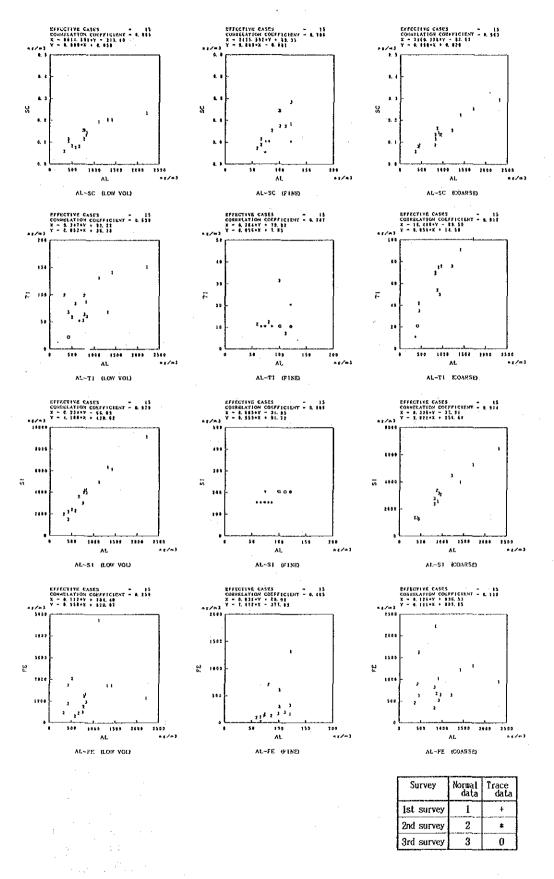


Fig. 3-4(1) An Example of Scatter Grams of Chemical Components for Variation of Seasons

III - 131

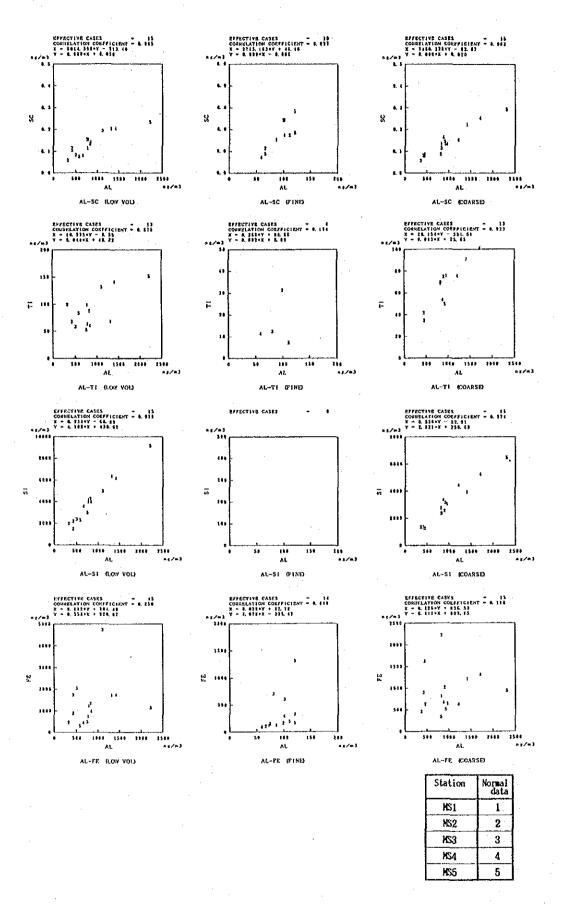


Fig. 3-4(2) An Example of Scatter Grams of Chemical Components for Variation of Stations

III - 132

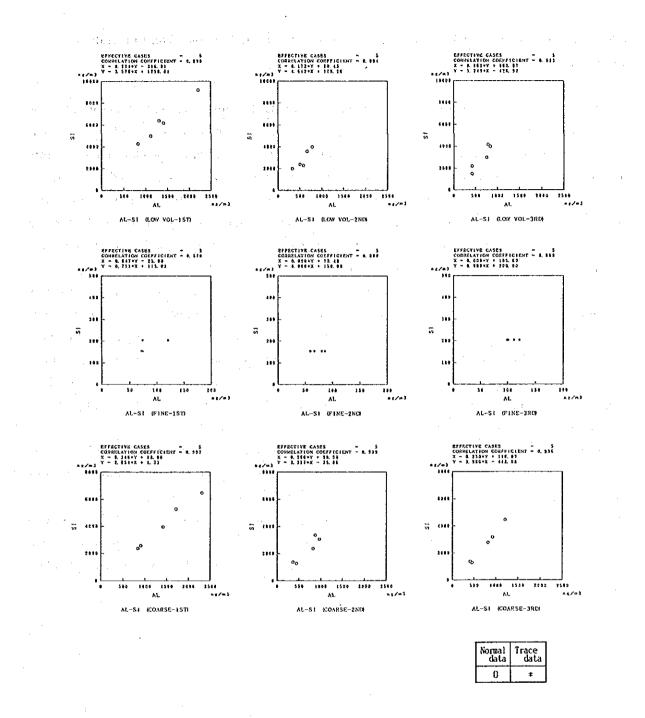


Fig. 3-4(3) An Example of Scatter Grams of Chemical Components for Comparison with Seasons

3.6 Resemblance among the Chemical Components by Cluster Analysis Based on Correlation Coefficients of Chemical Components Concentration

In order to check the similarity among chemical components, cluster analysis was done on their data obtained with respect to dust samples trapped by Low-volume sampler as well as Andersen sampler. As a measure to quantify the degree of similarity among variables, correlation coefficients among such chemical components concentration were calculated while setting the linkage distance approximated by the group average method. Data smaller than the detection limit value were thought to be equal to 1/2 of that detection limit. As for those chemical components in which more than 50 pct of the data drop below the detection minimum, they were excluded from analytical study. The result of cluster analysis is shown in Fig. 3-5.

As for clustering analysis of all seasonal data by Low volume sampler, the chemical components are found classifiable into five groups. The first group of Al, Si, Th, Sm and Sc has a high value of similarity of 0.9 and with their origin in soil. The second of Sb and Pb is supposedly related to glass and nonferrous industries. The third of T-C, E-C, O-C neighboring with the Br, S group with a similarity of 0.8 to cover chemical components coming from Diesel and gasoline cars. The fourth of Ni and V having their origin in fuel oil combustion. And the fifth of Mn, Zn, Fe and Cr cluster having similarity of 0.8–0.9 originated in the industrial park with steel mills in it.

Thus the clustering analysis of chemical components found in dust sample trapped by Lowvolume sampler gave the information on dust origins, namely ground soil, glass and nonferrous industries, automobiles, combustion fuel oil and steel plants. This information coupled with cluster analysis done on dust in two particle size ranges, fine and coarse, made it clear that the cluster of Na, Na⁺, Cl and Cl⁻ having similarity of over 0.9 indicates the existence of sea salt in a coarser range whereas that of NH_4^+ and SO_4^{--} found in fine particles shows the existence of secondary particles. First survey

Second survey

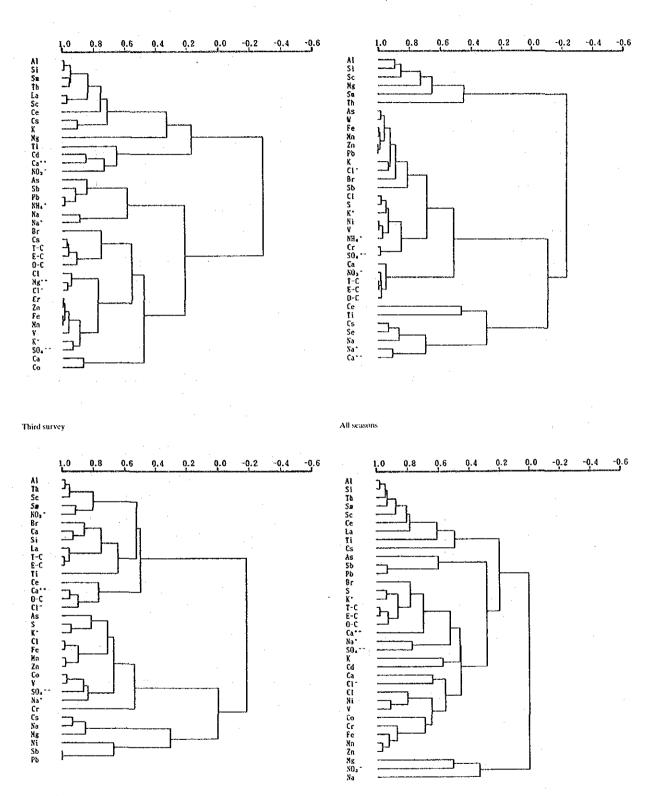


Fig. 3-5(1) Hierarchical Structure of Chemical Components by Cluster Analysis (Low Volume Sampler)

First survey

Second survey

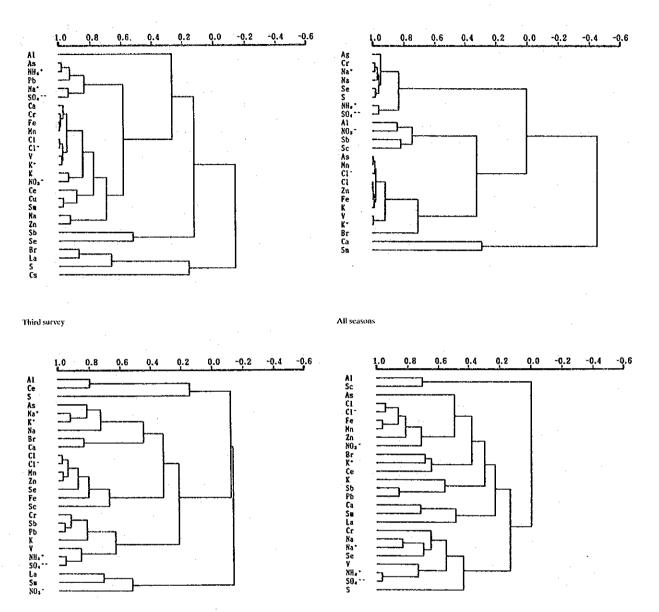


Fig. 3-5(2) Hierarchical Structure of Chemical Components by Cluster Analysis (Andersen Sampler, Fine Particle) First survey

Second survey

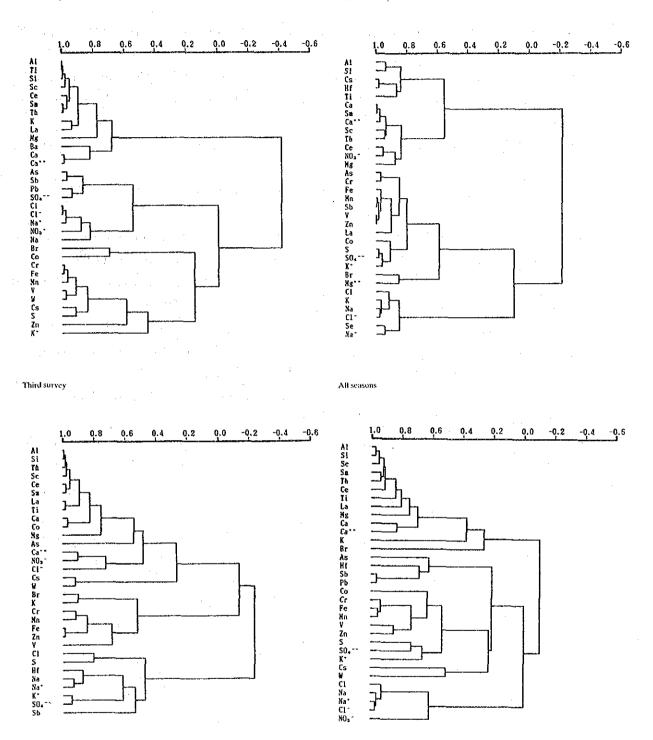


Fig. 3-5(3) Hierarchical Structure of Chemical Components by Cluster Analysis (Andersen Sampler, Coarse Particle)

REFERENCES

- 1) F. Pasquill; The Estimation of the Dispersion of Windborne Material. *Met. Mag.*, **90**, 33-49. (1961)
- 2) G.I. Taylor; Diffusion by Continuous Movements, Proc. London Math. Soc., (1921)
- 3) S. Yamamoto and O. Yokoyama; Estimation of Smoke Diffusion Width, J. of Japan Soc. of Air Pollution, 9, (1974) (in Japnese)
- 4) R.R. Draxler; Determination of Atmospheric Diffusion Parameters. Atmos. Environ., 10, 99-105. (1976)
- 5) F. Pasquill; Atmospheric Dispersion Modeling, J. Air poll. Control Assoc., 29, 2, 117-119. (1979)
- 6) S.B. Carpenter, T.L. Montgomery. J.M. Leavitt, W.C. Colbauth and F.W Thomas; Principal Plume Dispersion Models: TVA power plants. J. Air poll. Control. (1971)
- 7) D.B. Turner; Workbook of Atmospheric Dispersion Estimate, Office of Air Programs Publ. No. AP-26, U.S.E.P.A. Research Triangle Park, N.C. (1976)
- 8) D.B. Turner; A Diffusion Model for an Urban Area, J. App. Met., 3, 83-91. (1964)
- 9) R.I. Larsen; A New Mathematical Model of Air Pollutant Concentration Averaging Time and Frequency, J. Air Pollut. Control Assoc., 19, 24-39. (1969)
- 10) E.T. Whity, et al; Formation of Atmospheric Aerosal, EPA Research Grant No. R 803851011 Feb. (1976)
- 11) R. Kadowaki; Behavior and Formation Mechanism of Secondary Particulate in Ambient Air of Urban Area, J. of Env. Pollution Control, 18, 553-338. (1982) (in Japanese)

PART IV ANALYTICAL STUDY ON CURRENT EMISSION VOLUME OF ATMOSPHERIC POLLUTANTS (SO₂ and NO_x)

1. Sources investigated

Among a number of jobs leading to a successful development of the environmental control management plan, of utmost importance is not only the estimation of pollutant emission volumes but the accuracy with which such emission volumes from sources in the specified district are monitored. The management plan requires a total simulation map to cover the whole specified area or pollutant sources within the area. Such environmental pollution maps developed were initially checked at several points such that the calculated values come in a good agreement with observed ones. Once insignificant differences confirmed, the proposed diffusion model, diffusion factors as well as emission volumes from sources were assumed practically applicable and were used to project the probable points where the pollutant concentrations are likely to reach the maximum or to such levels to exceed the national control standards. When highly polluted points are made known, say, in topoghraphic maps developed, the next step is to evaluate the degree of contribution by each source to the situation and thereby to prepare the reduction plan against each pollution source. Same stepwise approaches were thought effective against sources expected in future as well.

This investigation covered the present and future SO_2 and NO_x emissions from all stationary sources, vehicles, ships and ferryboats in Samut Prakarn District. This part, however, discussed the analytical study result only about the present status (as of 1988) and left same analytical study for the future sources in the part VI.

2. SO₂ and NO_x emission volume from factories

2.1 Summary of survey

The estimation of SO_2 and NO_x emission volume from factories is mainly dependent on the survey by questionnaire. Small plants, however, not quite suitable for such data survey method were treated such that fuel consumption and emission volume are proportional to the number of employees and they can be calculated by multiplying the unit fuel consumption per person by the number of workforce. The items listed in the questionnaire are supposed to cover all informations required for calculation of atmospheric pollutant concentrations but there were quite a few questionnaire retreieved partially filled, which required additional make-up efforts through hearing and those described in the succeeding chapter. As for NO_x emission, measurement data were not available from the factories and so they were calculated by knowing such factors as fuel consumption and type, equipment, production amount, etc, based on a method applied in Japan.

2.2 Questionnaire survey

As stated above, variables to influence the pollutants from each stationary source is the amount and type of fuels used and thus upon consultation with ONEB the JICA contractor sent questionnaire to 577 factories of 2,456 in total which have smoke stacks in Samut Prakarn area. The list of

factories who reported back the information is shown in Table 2-1 and counts 208 in total. The plants listed in Table 2-2, with facility number zero (0) are those without any smoke stack and counts 11 in total.

Name of county	Registered in master list	Questionnaire mail	Questionnaire return
1 Muang	974	185	- 63
2 Bang Plee	286	94	28
3 Phra Pradaeng	1196	298	117
TOTAL	2456	577	208

 Table 2-1 The number of factories from which questionnaire were retrieved

About a few of selected plants, the joint survey team of ONEB and Japanese staff visited them and confirmed the specifications and status data and for those in which some discrepancy be found followup actions were taken to make data consistency. The number of factories and facilities by county listed in Table 2-3 shows 59% of facilities in Phra Pradaeng. Table 2-4 summarizes the facilities by equipment type and shows 58% of facilities having the boiler in them.

The fuel type and consumption by facility type are shown in Table 2-5. It shows the type of fuel in use in Samut Prakarn area is mainly of fossil one, above all, fuel oil but others are also used such as firewood and rice chaff in boiler and drier furnace. Table 2-6 shows the type and consumption of fuel by business type, from which one can notice South Bangkok Power Plant being the largest consumer.

Table 2-2 (1) List of factory

	THAL TEXT	THAT TRI	N & H MA	INTON GL	HITACHT (NATIONAL	THON BUR	THE TRAI	TEPHSATA	LUND THI	ASTAN CH	SIAM ALT	KLONG SU	PHATHANA	RHANNON DEPENDING	RATA SHO	THAT ACR	NICCO FI	SAHA PAI	STAY DAT	STANDARD	THAJ-YAN	MANG TH	I LIAL VIN	CHILA M	SRISIAM	KLONG BA	BANGKOK	SLAM YAN	DANCKOK	KLID FII	THAT AR	THAL ST	THANAKU			STAY ST	GENERAL	ERAMAN 7	KAO INDI	Salpan'	THAL CHI	CHAO PH	THAT UN TALTAN
N S S S S S S S S S S S S S S S S S S S	8	1	8		1	73		12	-	10	2-4	ŝ	ω	- 0				12	<u>ب</u>	. 14	1	9 1			28	51	ສ	នា	28	88	363	8	-	~10	~	a u	2 U) 	00 00	on p	21	12	13	15
094	L									·																						i	I											
Fuel Coasu.	Q.	215	\$	8			12000	2	8	200	320	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<u> </u>	8434	2004		×	8	2	1202	52	88	22	144	38	311	ജ		727	<u>}</u>	1	316	407	Still Still	<u>्</u> र्म	38	860	181	8	8	102	0	6	1433
Faci.		40		~			 				~~~	×~>	2	~~·	4					5					- - - -	,	-	4	~	-0	4	2	с. П	4	.76	2	, c.	8		~~~		0		202
1950 1950	- I - I -		8 1	E F	ſ		-	∞ 		38	35	113	115	5	614	28	12	12	100	ž	8	8	3i	30	200	81	1]	9 9	48		<u>} </u>	8	5512	88	38		T T	3	Ē	8		83	
<u></u>	7333		12400		βĘ	≩88 88	8740 8740	8				88	0881	119500	2200			88	1600	3180	2400	808	2220			16000	1404	184000		7005	300 780 780 780 780 780 780 780 780 780 7	800	10807	DUST 1	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		20212	40000	8 8 8	14400	15306			82 17 200
Registered Number	12(0-1/13	4(3)-1/16	43-1/29	20-1/23 50-5/721	Q(1)_1/12	13(2) -1/13		51-1/18		1001 - 11 100	5(3)-1/12	15(2)-1/14	22(4)-1/22	22(1)-1/20	14	50 01 1/16	ж	22(2)-14/15	ŝ	74(5)-3/13	7(2)-2/22	220-221	8/1-88	61/1-10/51	52(2)-1/19	\sim	\sim	44-1/15	<u>87,1-87,01</u>	1/1/1/1/13	64 (2) - 2/21	22(2)-9/21	22 (2) - 12/13	300-1/27	52 (S) - 2/18		38(2)-1/22	5(3)-1/13	46-1/15	22(2)-10/17	40 UU - L/ (2)	22(2)-13/15	52(1)-1/13	4/(2)-1/26 60-1/26
Name of Factory	I ADAYS (THAILAND) CD., LTD.		BAYER THAI CO., LTD.	-1-	VON BIAT DICE MILL	PAIROL (TANG SANG HAB)				I THAT CIETALE HURS UN.	NEXTERIAL PLOUDIC W. J. LUN.	SRITHAL PASUSUK FEED	SOONTHRON PRINTING CO., I	LUCKYTEX (THAI) 00. LI	1 HITTON UCASU (INHALLANU) W. LIV.	I PANA FRAM INDUCTS	STAY RUNS RUENG WEAVING		VAROPAKORN	- 11) SAMUTPRAKARN INDUSTRY CO., LTD.	EAVING	S RAMA LAUNDRY CO., LID.	-16-	HAMAKIJ THAL RUBBER FACTORY	E	88. 0.		THAI NYLON 00. LTU.	1-	<u>1 Y.K.K. ZIPPER (THAILAND) CD.</u>	SUNG HENG LEE LTD., PART	PEONY BLANKET INDUSTRIAL CO.	FRIENUSAIP WAY SIAKIA W.		DUCE DC DUCE THAT! AND	╀		HARVER-LAMBERT (THAILAND) CO., LTD.	K. SINTHAI MEAVING & DYEING LTD. PART	JARTAN CRARVEN LARTICAL CLOSED		NCUAN CHUN HUAD CO.	4 I SLAM UNION SAHAMITH UU., LTU. 5 I KOKI PRODUCT OU., LTD.
		Ju	r	χq	ŋ₽		2	3	J.	<u>n</u> ka L	2	<u></u>	<u>ମ</u>	8	38	36	323	8	2	ম	S.	8	3	\$K 	388	8	Ş	4	4	2 1 2	¥19	8	ঞ্চ	n Î	38	312	5	18	3	នាទ	36	6	8	28
382	L																				<u>. </u>																_~~							

Mass of Factory Basis tareat Mass of Factory Mass of Factory <						
Number (a) (a)<	ų	Registered	S.	្វ័	N S	Fuel
E NUGERIN CO. LTD. 220: -6/3 4000 1001 2 WEIT TERTILE O., LTD. 46: 3/15 1005 201		Number	(g	ovee	litz	1273
NAME TEATLE OL. LTD. 22(0)-24/15 (2000) 201 12 (2001) 12	INDUSTRY CO., L	22(2)-6/23	40000	1001	2	88
Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>		3	800	1205	2	380
WILLING MOLETING	10.	Ş	80	8	80	10498
Hurric Line N. M. L. L. N. M. M. L. L. N. M. M.	<u>anuracruring</u> cu.,	7	1325	8	~	ន
Miller Res M. L. Li, L. Lin, Lin, Lin, Lin, Lin, Lin, Lin, Lin,	AN GUILDING	1	88	2	4	2710
M. G., U.D. M. G., U.D. <thm. g.,="" th="" u.d.<=""> <thm. g.,="" th="" u.d.<=""></thm.></thm.>		15	B B B B B B B B B B B B B B B B B B B		~~~~	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	THAT ON LTD	12	2020		vu	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		35			20	<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I KUTTING FACTORY CO.	15				
0.0.170 $9.0.4224$ 3.00 31.0 32.000	<u>an co. co.</u>		88			e
CO., LTD. Z.O., LTZ S1200 49 75 1 Off Ver Lind. 2.0., LTZ 82000 331 2 1 <td< td=""><td>[BOI</td><td>$\left \right\rangle$</td><td></td><td>) (*</td><td></td><td></td></td<>	[BOI	$\left \right\rangle$) (*		
Gu. GO, LID. ZLZ SSO 75 1 TUE INDUSTRY C. LID. ZOLZ SSO 5 1 REGE G. LID. ZOLZ SSO 55 1 REGE G. LID. ZO SO 20 522 500 55 1 REGE G. LID. ZO ZO ZO SO 20 522 500 55 1 RIME RET G. LD. ZO ZO ZO 20 252 500 20 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2	Car D		1200	Q	} -	245
Tive Indistrict $(10, -1.2)$ $(20, -5.2)$ (200) (201) $(20$	ľ	CG-1-CF	Sec.	۲Y.	1	315
Rice O. Lin S(0 5/24) 4300 61 1 Ritic O. Lin 22(4)-1/24 5400 371 2 Ritic O. Lin 22/25 64000 371 2 No N. Co. Lin 22/25 64000 371 2 No Lin 22/25 64000 331 1 No Lin 22/25 64000 331 1 New FOU Lin 22/25 84000 331 1 New FOU Lin 32/25 2000 331 1 New FOU 10 1 900 1/21 300 31 1 New FOU 10 1/22 300 1	JE INDUSTRY CO			2	•••	618
Refic (00, LTD). (10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12	RICE CO. LTD.		680 1	e S) 	g
NIC NET CO., LTD. 25-318 2400 339 1 N. CO., LTD. 42-225 6400 232 4 C. CO., LTD. 22(1)-34/19 4100 120 2 LINUSTRY CO., LTD. 25(1)-34/19 4100 150 2 LINUSTRY CO., LTD. 9(1)-24/15 200 10 1 N. RICE MILL 01, LTD. 20(1)-24/15 200 10 1 N. RICE MILL 01, LTD. 20(1)-24/15 200 24 1 N. RICE MILL 01, LTD. 20(1)-1/27 200 24 1 N. RICE MILL 01, LTD. 20(1)-1/27 200 24 1 RICE MILL 01, LTD. 30(1)-1/27 200 24 1 RICE 00, LTD. 30(1)-1/28 200 148 2 RICE 00, LTD. 30(1)-1/18 200 28 1 RICE 00, LTD. 30(1)-1/18 200 28 1 RICE 00, LTD. 30(1)-1/18 200 28 1 RICE 00, LTD. 30(1)-29 200 148 2 RICE 00, LTD. 30(1)-29 200 148 2 RICE 00, LTD. 30(1)-29 200 148 2 RICE 00, LTD. 30(1)-20 200 20 148 2	ABRIC CO.	\sim	6075 2709	3	6	41
IN CO., LUD. 42-2/5 64000 252/2 64000 252/2 64000 252/2 64000 252/2 64000 252/2 64000 252/2 64000 252/2 2 <th2< th=""> <th2< th=""> 2 <t< td=""><td>FISHING NET CO.,</td><td></td><td>24000</td><td>83</td><td></td><td>120</td></t<></th2<></th2<>	FISHING NET CO.,		24000	83		120
Constant of ThatLavo LTD. 33-3/23 2300 1300 750 2 C 00., LTD. 200, -4/19 41600 750 2 RINDERFORMUL 900, -9/19 41600 750 2 NAID STREP 00., LTD. 200, -1/13 2000 104 1 NAUL STREP 00., LTD. 800 103 1 1 1 NAUL STREP 00., LTD. 800 27.5 2000 104 1 NAUL STREP 00., LTD. 800 27.5 2000 106 1 NAUL STREP 00., LTD. 900 17.5 2000 100 2 INN STREP 00., LTD. 900 17.5 2000 100 2 1 NATE 111.00. 00., LTD. 900 17.2 2000 2 1 NATE 00., LTD. 900 17.2 2000 20 1 1 NATE 00., LTD. 900 17.2	R	42-2/25	64000	38		1470
C 00. Um. 20. J.m. 20. 4/19 41500 750 2 1 10015774 00. Lm. 55.200 8000 750 2 1 10015774 00. Lm. 55.200 8000 143 1 10015774 54.001 170 50 1 10 10015774 54.0015774 55.2010 1100 50 1 10 10015774 55.2010 1100 50 1 10 10015774 55.2010 1100 50 1 10 10015774 55.2010 1100 50 1 10 10015774 55.2010 1201 1201 1201 1201 1201 1201 1201	OF THAILAND	37	2000	1302	2	408 408
INDUSTRY CO., LTD. 55-2/20 82882 143 1 NRUE FOLD 9(1)-24/15 3200 30 1 NRUE FOLD 7(1) 1/13 3200 30 1 NEU FOLD 4(4)-1/13 3200 30 1 1 NEU FOLD 4(4)-1/13 3200 30 1 1 NEU FOLD 4(4)-1/13 3200 3 1 1 NEU FOLD 4(4)-1/13 3200 3 1 1 ENT ECONILL 00.100 1/12 3200 3 1 1 ENT ECONULD 00.100 1/12 3200 3 1 1 ENT ECONULD 00.100 1/12 3200 3 1 1 1 1<	<u>с</u> п.	7	41600	130	2	1200
N RICE MILL 9(1)-24/15 300 10 1 00., 1.10. 1.12. 300-1.12. <t< td=""><td>таγ</td><td>2</td><td>8883</td><td>143</td><td>1</td><td>1990</td></t<>	таγ	2	8883	143	1	1990
Quality From Characterization The Ly2n Soft		1 9(1)-24/15	3200	10	1	828
NRED FOOD LTD., PART 4(4)-1/13 2200 23 1 INNUEFACTURING 00, LTD., 4(0)-1/25 2200 23 3 REN RUCETN LATTORY 6(0)-1/25 2200 21 1 RETAL MORES 6(1)-1/25 2200 21 1 1 RETAL MORES 6(1)-1/25 2200 21 1	IXIN $\infty., LTD.$	70-1/21	2028	ន	1	2
Industriet Reconstruction 47(3)-1/22 2000 24 1 Industriet Factoriet 00,-1/24 4500 156 3 Industriet Factoriet 00,-1/27 500 21 1 Internation 00,-1/27 4500 156 3 Entration 00,-1/27 4500 1 1 Entration 00,-1/27 500 1 1 Entration 00,-1/27 500 1 1 Entration 00,-1/27 500 1 1 Intropert introstev 15(0,-1/27 500 2 1 Anther alter and 15(0,-1/27 500 2 1 1 Anther alter and 100,-1/27 500 2 1 2 2 Anther alter and 100,-1/27 500 2	NED FOOD LTD., PART	4(4)-1/13	3200	8	1	180
Industrict Factories 60-2/25 22,00 156 3 ERT RICE MILL 9(1)-1/27 3200 1 1 ERT MORESS (w. C., LTD., 4400 9(1)-1/27 3200 1 1 Restal MORESS (w. C., LTD., 4000 9(1)-1/27 8200 1 1 1 Restal MORESS (w. C., LTD., 9(1)-1/27 900 1 1 1 1 1 Restal MORESS (w. C., LTD., 900 9(1)-1/27 8200 1 1 1 1 Restal MORESS (w. C., LTD., 100 9(1)-1/27 8200 1	MANTFACTURING CO.,	47(3)-1/22	388	5	-	
Effet Ritc. 9(1)-11/15 3300 2 1 UTRY PROSESTING 0.1 10.1 400 1 2 UTRY PROSESTING 0.1 10.1 450 100 2 1 STATE MONSESTING 0.1 10.1 2 400 100 2 1 STATE MONSESTING 0.1 0.1 2 400 100 2 1 STATEM MONSET 800 10.1 10.1 20.1 400 2 1 STATING RIL 00.1 100 2 1 2 1 1 STATING RIL 00.1 100 100 102 1 2 1 1 ANDIL 00.1 100 2 200 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 2	G INDUSTRY	60-2/25	22400		() ()	443
Litter PRAUESTING Current Processing Current		<u> 9(1)-1//15</u>	388 SSS			
MERLA MANS. M(B) - 2/2 M(D) -	8	40)-1/24	003¥F		C-)	
AllL U MUL U <thu< td=""><td>KANEE METAL MORKS</td><td>64(9)-2728</td><td>8 8 8 8</td><td></td><td></td><td>25</td></thu<>	KANEE METAL MORKS	64(9)-2728	8 8 8 8			25
MALLIN KILL MILL 15.00-1/18 2000 21 1 0.1.1.0. 1.10. 15.00-1/21 91233 618 4 MARCHAE INUCERNY 77(2)-1/22 752,24 1166 1 MARCHAE INUCERNY 77(2)-5/24 1156 1 MARCHAE INUCERNY 77(2)-5/24 1156 1 MARCHAE INUCERNY 77(2)-5/24 1155 1 MARCHAE INUCERNY 77(2)-5/24 1155 1 MARCHAE INUCERNY 77(2)-5/24 1155 1 MARCHAE INUCERNY 77(2)-5/24 1157 0 MARCHAE INUCERNY 755-6/19 15700 217 3 MARCHAE INUCERNY 555-6/19 15700 217 3 MARCHAE INU	- <u>-</u>	3(1)-1/2/				3,
W mill W mill<		<u>87/-//2-</u>	NR.			2007
Alteriation T(2)		1017-770	01010	αů	~	
ASTING & INJECTION 77(2)-5/24 15200 426 3 CERENT 20. LTD. 28(1)-7/22 8200 426 3 PRODUCT 20. LTD. 77(2)-5/21 15200 426 1 PRODUCT 20. LTD. 77(2)-5/21 15200 426 1 PRODUCT 20. LTD. 77(2)-1/20 105500 426 1 PROPER 20. LTD. 22(2)-1/20 5202 77 1 PROPER 20. LTD. 22(2)-1/14 2203 20 1 PROPER 20. LTD. 22(2)-1/14 2203 20 1 PROPER 20. LTD. 22(2)-1/16 2203 20 1 PROPER 20. LTD. 22(2)-1/18 2203 20 1 PROPER 20. LTD. 20(1)-1/14 2203 20 2 PROPER 20. PROPER	aimpagr	1/0/-1/02	30.2	38	- 2	3¢
CEPTERT CO., LTD. SS(1)-7/22 SXXXX ESS 0 PRODUCT CO., LTD. TTCD-5/27 34564 2009 0 BAR Closed Dispection S10-1/23 34564 2009 0 BAR Closed Dispection S10-1/23 34564 2009 0 BAR Closed Dispection S20-1/44 2000 227 1 PRPER Co., LTD. S202-1/14 2000 227 1 PRPER Co., LTD. S202-1/14 2000 217 3 Intustrity Co., LTD. S202-2/16 2400 200 1 Intustrity Co., LTD. S202-2/16 2400 200 1 Intustrity	DICASTING &	77(2)-5/24	1000	38	-1 67.	322
PRODUCT 0. 170 5/21 24654 2005 0 BM Closed in See 1988) 59-2/22 147120 491 4 EBETALE 01L PRODUCT 80.1-1/20 105600 256 2 EBETALE 01L PRODUCT 80.1-1/20 105600 256 1 PAPER 00. 100 38220-1/14 28000 217 3 PAPER 00. 100 33220-1/14 28000 217 3 PAPER 00. 13720-1/14 28000 217 3 INUMERY 00. 100 13720-1/14 28000 217 3 INUMERY 00. 100 13720-1/14 28000 217 3 INUMERY 00. 100 13720-1/14 28000 207 3 INUMERY 00. 100 2714 28000 207 3 INUMERY 00. 100 2714 28000 307 4 </td <td>BER CEMENT O</td> <td>38(1)-7/22</td> <td></td> <td></td> <td></td> <td>0</td>	BER CEMENT O	38(1)-7/22				0
BAR (closed in \$\$= 1333) \$\$= 273 [7737] 491 4 EBETALE 01L PRODUCT 8(1)-1/20 1(5500) 256 2 EBETALE 01L PRODUCT 8(1)-1/20 1(5500) 256 2 FLE 0. LTD. 32(2)-1/20 32233 772 1 REALIAND 0. LTD. 32(2)-1/14 32203 772 1 RIMLIAND 0. LTD. 33(2)-1/14 32203 772 1 RIMLIAND 0. LTD. 33(2)-1/14 32203 772 1 RIMLIAND 0. LTD. 33(2)-1/14 32203 772 3 RIMLIAND 0. LTD. 359-6/19 19700 217 3 RIMLIAND 0. LTD. 359-4/23 3600 14 4 RML 1014. 24/03 300 14 4 RML 34(3) 37123 62 1 4 RML 34(3) 37123 62 2 1 RMD	PRODUCT CO., 1	17(2)-5/21	34664	+		
Referate oil, Product 8(1)-1/20 1(550) 255 2 I.E. O., L.I. 22(2)-1/20 55523 772 1 ThatLand 0., LIT 22(2)-1/14 82523 772 1 ThatLand 0., LIT 32(2)-1/14 82593 772 1 ThatLand 0., LIT 32(2)-1/14 82593 772 1 Industrix 0., LIT 32(2)-1/14 82593 772 1 Industrix 0., LIT 355-6/19 19700 217 3 Industrix 0., LIT 35-6/19 19700 217 3 Industrix 0., LIT 35-6/19 19700 217 3 Internation 0., LIT 35-6/19 19700 217 3 Internation 0., LIT 35-6/19 19700 217 3 Internation 0., LIT 35-0/15 2400 169 2 Asso 0., LIT 35-0/25 3000 159 2 </td <td>, BAR (closed in Sep.]</td> <td></td> <td>147200</td> <td>-</td> <td>1 4</td> <td>88</td>	, BAR (closed in Sep.]		147200	-	1 4	88
LE CO., LTD. Z.CO1/20 SSS23 T/2 1 PAREN C., LTD. SZCO1/14 SSS03 T/2 1 PAREN C., LTD. SZCO1/14 SSS03 T/2 1 INBULTEY C., LTD. SZCO1/14 SSS03 T/2 1 INBULTEY C., LTD. SS-6/13 15700 217 3 INBURTEY C., LTD. SS-6/13 15700 217 3 ILIGH CLTD. SS-6/15 22000 217 3 1 ILIGH CLTD. SS-6/15 372400 201 1 1 ILIGH CLTD. SS-6/15 372400 201 2 1 2 2 1 2 2 1	VECETABLE OIL PROD	8(1)-1/20	105500		دی -	5760
Papers Co., LTD. SSCP-L/14 SSSON SSS-L 1 THALTAND C., LTD. 135-L/14 SSSON 255-L/14 SSSON 255-L/14 SSSON 257-L/14 3 THAURTY C., LTD. 135-L/14 SSSON 257-L/14 3 4 INUGREY C., LTD. 135-L/14 SSSON 257-L/14 255-L/14 255-L/15 2400 21-L/14	<u> </u>	22(2)-1/20	33 28			ŝ
(IdentLawn) W., LIII. 1322-1714 84500 372 4 Industrier W., LIII. 1325-679 19700 217 3 ILE W. I. I. W. W. LIII. 59-473 9500 143 2 ILE M. THAILAND CD., LID. 22(2)-2714 85553 852 1 LICH CHUCE STEEL 25(2)-2716 22400 350 4 LICH CHUCE STEEL 25(2)-2716 22400 159 2 ILE MOUSTRY 52(2)-2715 35772 153 2 A W. LID. 33(3)-2715 35772 153 2 A W. LID. 33(3)-2715 8577 153 2 PAPER CD., LID. 33(9)-3755 8577 153 2 PAPER CD., LID. 33(9)-3755 8577 153 2 PAPER CD., LID. 33(9)-3755 8577 153 2 PAPER CD., LID. 35(1)-1718 2400 8 PAPER CD., LID. 50(1)-1718 2400 8 PAPER CD. 50(1)-	r PAPER CO. LTD.	<u>8(2)-1/14</u>	888		• - • •	2130
Multinity W. Lun. 32-9/19 19/00 21:1 3 10005107 W. Lun. 32-9/19 19/00 21:1 3 116 00. LUn. 22:03-9/13 800 14 1.10005789 00. LUn. 47:00-174 22400 300 4 1.10005789 52:0 20:0 20:0 159 2 1.0005789 52:0 20:0 20:0 2 1.0005789 52:0 20:0 20:0 2 1.0005789 52:0 20:0 20:0 2 1.0005789 52:0 2 1.000578 52:0 2 1.0005789 52:0	(ITALLANU) U.	13(2)-1/14	222	-	4	71124
MUMMA STEEL MIKK W., LIN, 22(2)-2/13 9500 143 2 (11. Child Lind) C., LTD, 47(1)-1/14 22(2) 201 1 Light Thalland C., LTD, 47(1)-1/14 22(2) 201 1 Light Child Steel, 55-6/21 37123 62 1 (NUUSTRY 52(2)-2/16 2400 159 2 MRD C., LTD, 34(3)-2/15 36777 166 2 A C., LTD, 34(3)-2/15 36777 166 2 PRER C., LTD, 38(0)-2/25 1000 201 2 PRER C., LTD, 6(1)-1/18 2400 81 1	IKY W., LIU.	81/9-32	15/00	-1		1023
Lite W	JARD STEEL HOKK CO.,	20-8-62	888		~	35
I.B., LITRILLENU, W., L.U., 4/(1)-1/14 2240 30 4 LIGAT GAUGE STEEL 25, 5/27 27123 52 1 I.NOUSTRY 52 (2)-2/16 2400 159 2 ARD 00, LTD, 34 (3)-3/15 3877 169 2 ARD 00, LTD, 96 3/15 8000 91 2 PAPER 00, LTD, 38 (0)-1/15 8000 89 4	: W. UN.	22(2)-2/14		_		919
Lucial Lanue Stett. 52 (2) - 21 - 31 - 23 - 24 - 1 - 1 - 1 - 1 - 24 - 24 - 1 - 1 - 1 - 24 - 24	(THAILANU) CU.	4(())-1/14	872	1	-	3
L RUUSINI 103 200 103 200 103 201 201 201 201 201 201 201 201 201 201	LILAT LAUGE SU	17/0-02	2112	4	c	38
Main Main <th< td=""><td></td><td>01/2-(2)/2</td><td></td><td>38</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>มิริ</td></th<>		01/2-(2)/2		38	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	มิริ
Pares 00. LTD. 3800-1/15 8000 289 4 6(1)-1/18 2400 8 1		2/2-/0-th		-		1000
6(1)-1/18 1 2400	PAPER CO.	3(2)-1/15	80008	1	3 - 1	12251
		6(1)-1/18	0076	<u>}</u>		8

	Fuel Consu.	1440	1748	5501 5501	8/2 8/8/	37	8 <u>1</u> 8	120	48	320	144	21	12	5	41	4 8	29	38	88	1994760	120	99	88	2 2 2	43800	2 <u>8</u>	24	<u>R</u> ig	5779	\$ <u></u>		¥8	0 %	1000	·
	Nu. Faci	~~~~	~~		27	- -	,-(0	10		-01	; ; ; ;	-0		~~) 			70	~		<u>م</u> ر د	- 	ŝ	-(~	~,			No	2 2 2	~0	את	2	0	2	
	in in in its series of the ser	218	8	×8	ঙ্গম্ব	25-	88	ŝ	જરા	128	2	ଞ୍ଚଛ	8	3 <mark>6</mark>	8	ଟ୍ଟର	Ωç	B83	55 E	1113	85	313	ଞ୍ଚ	<u>8</u>	8	78	381 2	38 7	83	5 <u>5</u> 8	3 5 C	35	8 <u>8</u>	38	
	5 9		16000			8		88	888 888	33	220	38	8	8	6400	<u>s</u> s	88		8400 2010 2010	1000	886		88 1 1		212000	38 88	40000	17200	0006	<u>868</u> 8		1983	3200	382	
. •	Gegistered Number	82	5 12 12	34(3)-2/15	2(1)-1/75	13(2) -5/20	22(2)-1/77	20-15/17	22(2)-7/16	22(4)-1/15	13(2)-5/28	202-21/13	46-2/13	22(2)-40/15	200-1/21	13(2)-2/12	5	64(5)-2/13	2(5) -2/12 3/5 -1/07	177-764 88	7(U)-1/18	23-2/14	8(1)-1/13	<u>32(8)-2/16</u> 53(8)-2/16	55-2/15	48(3)-2/19	27(1)-3/19	2(0)-34/15	59-8/15	74(2)-3/15	78(1)-2/15	78(1)-4/15	22(1)-3/15	59-1/17	
Table 2-2 (2) List of factory	6	1 69 1 THAI INDUSTRIES PROMOTION CO., L.T. 1 70 1 SIAN BROTHER CO., LTD.	71 LUCKYTEX (TEATLAND) LTD.MILL#1 72 ADDATENC AND DWEING CO. 15D	11	74 UNRECH TEAL STEEL CO., LTD.		71 I CHARGEN APPEN HATTANA HEAVING 78 I LIAN CHAI HEAVING		80 YONG LEE HEAVING LTD. PART 81 THAI DETPRCENT CO. LTD		., LTD.	85 ADVICE SANG TEXTILE LTD., PART		8 I RUAN PHATEANA TEXTILE CO. LTD.			9 3 WATTANA INDUSTRIES FACTORY LTD., PART	8	96 BANGKOK DRYING & SILO (00., LTD. 47 NANAPAN GAMEDODICE (00. 1 TD.	- E		101 YEAUITT INDUSTRY LTD. PART	102 S. TAAISERI INNUSTRY CO., LTD.	TT CONTRACTOR	105 THAT-ASAHI GLASS CO., LTD.	107 STAN FINE CHEMICAL CO., LTD.	108 SONGCHAI SPINNING CO., LTD.	110 METRO SPINING CO., LTD.	111 BANGKOK STEEL INDUSTRY CO., LTD.	112 BANGKOK ELECTRIC WIRE AND CABLE	114 THAT BICYCLE INDUSTRY (D. LTD.	THAT	116 SRISUKSAMAD SPINNING CO. LID.	INDIA STEEL W., LTD.	
able 2	Fuel Cocsu (H/Y)	3316 1749	817 27	88		1814	<u>7</u> 8	8	<u>8</u> 4	1881	144	216	321	2479	835 835	8	10	, Б	520 185	534	336	1084	240	14	5870 1850		00	324	22/14	2056	22	147	- SK	<u>8</u> 29	230 230
Table 2	Num, Fuel Faci Cocsu lity (L4/Y)	4 316 2 1749	4 817 9 37	209		7 1814	- en	5 300 300 300 300 300 300 300 300 300 30	2 2	14 1997	2 144	2 216	321	2 2479	83 83 1	3 182	2 104	6	2 520 1 186	2 534	2 5 335	<u>4</u> 7084	3 240	3 144	4 5870 9 1850	2000 2000 2000	4 3430	1 324	3 2374	4 2056	1 72	1 147 5 505	2 32 33 32 32	3 150	4 1165
Table 2	283 	40	- - - 	100 1 200				300 2 300	192 1 250 192 1 144	555 14 1997		100 2 216	42 3 200 1	<u>58</u> 2 24	538 253 253	45 3 182	76 2 104	5 1 59	1100 2 520 10 1 185	511 2 534	37 2 162 43 6 336	+	AG1 3 240	+		73 1	415 4	180 1	131 3 2	E00 4	1 01	40	20 20 20 20 20 20 20 20 20 20 20 20 20 2	544 3	4.44
Table 2	Raci Fr Faci Fr Lity C.	561 4 20 2	- - - 	2000 100 1 209				11200 300 2 300	72X0 250 2 2X3 5 5640 192 1 144	35388 555 14 1397		<u>800 10 2 216</u>	42 3 200 1	<u>58</u> 2 24	1400 536 1 559	<u>500 45 3 182</u>	10540 100 2 104	800 5 1 5 5	38200 1100 2 520 5670 10 1 185	÷.		+		2000 201 3 144		73 1	4-	180 1	3	E00 4		40	20 20 20 20 20 20 20 20 20 20 20 20 20 2	iπ,	4.44
Table 2	area Num. Num. Fu (m) Empi Faci Co (m) ovee lity (k	51-3/13 107200 651 4 8(1)-2/22 10400 80 2	5(3)-1/14 52800 250 4 71/5 3/16 1463 40 5	<u>52(1)-1/17 2000 100 1 1</u>	<u>13(2)-2/26 32(0)</u> 34(1)-2/23 1600	<u>60-1/13 500 257 7 1</u>	<u>7((1)-6/15 11000 820 5 2</u> (3)-3/13 8000 111 3	22 20 - 5/18 11200	22(2)-4/21 72(0) 51-4/15 5640	64(1)-1/12 35588	22 (4) - 3/14 11200	20.9/2	44-1/21 56660 42 3 3	<u>15(2)-3/15 8000 35 2 24</u>	6(1)-1/15	52(1)-2/15	20-4/13	600-1/20	20 -9/14 20 -1/75	7(1)-1/19 8000	20(2)-1/21 4800	800	14 2800 16 55600	88	24400	9120 73 1	44000 415 4 1 1300 415 4 1	180 1	19344 131 3 3 2	1770 E00 4	2400 70 1	100 J	4800 93 2 2	87380 544 3	4.44
Table 2	Num. Num. Fu Empl Faci Co ovee lity (A	1 SIAN TYZE CO., LTD. 1 TAAI CASTRE OIL INDUSTRY CO., LTD. 1 8(1)-2/22 1 104201 801 2 1	5(3)-1/14 52800 250 4 71/5 3/16 1463 40 5	UNION CONCERCIAL DEVELOPMENT 52(1)-1/17 2000 100 1	1600	<u>60-1/13 500 257 7 1</u>	1 [SUZU MOTORS (THAILAND) 20. LUU 77(1)-6/15 1 [1000] 201 5 1 MARBOON BLEAGTING & DYEING FACTORY 22 (3)-3/13 2000 1 111 3 1	ALPHATEXE INDUSTRY CO., LTD. 22/20-5/18 11200	PERAPRADARIC HEAVING CO., LTD. 22 (2) -4/21 72(2) NONYANG TIPE CO. 1.TD. 51-4/15 5640	METAL BOX (THAILAND) CD., LTD. 64 (1)-1/12 35588	SARONTIAL (1979) CO., LTD. 22(4)-3/14 11200	I CHAIYARPORN HEAVING LTD., PART 22 (2) -9/23	PRCIFIC PLASTICS (THAILARD) 44-1/21 56660 42 3 3	LATATIANS UNSTRUCTION W. LIV. 200-1/10 2000 38 2 20	PEACE CANNING (1958) 00., LTD. 6(1)-1/15	52(1)-2/15	CHER SEIN REANS TEXTILE 22(2)-4/13	SIN LEE FUAD	20 -9/14 20 -1/75	NIMITRI INTERNATIONAL CO. LTD. 7(1)-1/19 8000	T.S. FOOD CENESARTE DD 17D 2000 1002 1102 1120 113000 113000 113000 113000 113000 113000 113000 113000 113000 113000 113000 113000 113000 113000	THAI PLASTIC AND CHEMICAL CO., LTD. 44-1/14 80000	MIANG TEAI STEEL O., LTD. 59-1/14 23300	1241 110 120 12 10 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12	THE BANGKOK IRON AND STEEL HORKS 1 59-2723 54400	9120 73 1	THAI CAUROS CO., LTD. 2.1.000 415 4	SAHAROU MERVING, FACTORY 22.00-11/26 2400 180 1	THAT EDIBLE OIL CO., LTD. , 8(1) -4/15 19344 131 3 2	I SURSAMAD VERETRELE OIL CLOSEED 8(U)-1/18 1400 50 1	PATTANAKIT INDUSTRY LTD., PART	TIENG NGUAN HUAD HEAVING CO., LTD. 22(2)-2/19	SURSAMAD ACRUCULTURAL PRODUCT 1 2 (2) - 2/24 1 15UU 301 3 7 that herr pettrana cd 1, 170 153 (7) - 1/14 4200 92 2	TOYOTA NOTOR THAILLAND CO., LID. TT(1)-1/18 87350 544 3	14200 85 4 11200 100 4

Name of county	Number of factories	Number of facilities
I Muang	63	145
2 Bang Plee	28	47
3 Phra Pradaeng	117	278
TOTAL	208	470

Table 2-3 Number of factories and facilities by county

Table 2-4 Number of facilities by equipment

Code	Name of facility type	Number of faci- lities
101	Boiler (for electric power)	5
103	(other)	267
502	Metal fusion furnace (for aluminum smelting)	6
503	" " (for other smelting)	2 16
601	Netal rolling furnace (steel/continuous)	16
602	" " (steel/batch)	42533512652181
603	" " (aluminum/continuous)	1 2
607	Metal heat treatment furnace (steel/continuous)	5
608	" " (steel/batch)	3
611	// // (other/continuous)	3
612	// // (other/batch)	5
613	Metal forging furnace (steel/continuous)	ļ <u>1</u>
702	Oil heating furnace (updraft)	2
703	// // (other)	6
915	Glass melting furnace (tank furnace)	5
918	Other melting furnace	2
1001	Reaction furnace (for inorganic chemicals)	1
1004	Direct heating furnace (for foodstuffs)	8
1105	Detergent drying furnace	
1106	Other drying furnace	67
1201	Electric furnace (arc furnace for iron manufacture)	8
1202	" " (three-phase resistance for iron)	1
1205	" " (three-phase resistance for iron)	1
1209	<pre>" " (low frequency induction furnace)</pre>	1
1302	Waste incinerator (for domestic urban wastes/batch)	2
1303	" " (for industrial wastes/continuous)	1
1304	" " (for industrial wastes/batch)] 3
1416	Fusion furnace (crucible furnace for lead)	2
1419	<pre>// // (crucible furnace for zinc)</pre>	1 1 2 1 3 2 1 3 3
1421	" " (other for zinc)	3
1423	Drying furnace (for lead)	3
1802	Activated carbon manufacturing reactor (other)	Ĩ
2501	Fusion furnace (for manufac.of lead storage battery)	10
2603	Reactor (for manufacture of lead pigment)	$1 \\ 3$
1	Diesel generator] 3
8	Other	18
	TOTAL	470

Table 2-5 Fuel type and consumption by facility type

Ficity (MH) 20 320 320 320 320 2827 451534 451534 (30) ige Ege 43560 £ 0(1) 51600 8 fuel consumption (number of facilities) Domes. Indus. E Wastes Wastes r (ton) (ton) 83 調 g ۳e 180 34500 0 ther Raw (ton) 588880°C 11/1/04 ଞ୍ଚ Nonfer Raw ro.Ore Coke (ton) (ton) 888 ଞ୍ଚିତ୍ର 0000 30(2) Sulfi-de Ore (ton) ដ្ដទ 217(1) 84 (7) | 11306 | 345610 (65) | (8) Iron (ton) 334610 53 88 11 330 (2) 1650 00) 255(4) 28 LNG LPG (ton) 769 (2) 20) 2 (8 (3) 86 (ton) 1285201 1285200 ଞ୍ଚୁର ଅନୁ Other solid (ton) 888 ж К Paddy & Husk (ton) 1048 C 681 8 Lumber 2001 (19) (ton) (14) (14) 2(0) 807 800 800 (ton) ଞ୍ଚିତ୍ର ie S Other Liquid (*kl*) පුල жe kero-sene (kel) යිම ଞ୍ଚି Light 011 838 808 808 808 808 12 25 12 iä⊝ 480 151716 (224) 2261(5) 23(2) 1685 1885 1885 86588 205(8) 560972 (309) Heavy 0i1 (kt):
 0613
 Meral forming f. (steel/cont.)
 128(1)

 0702
 011 heating furnace (updraft)
 844(2)

 0703
 011
 #
 #

 0703
 011
 #
 #
 844(2)

 0703
 011
 #
 #
 #
 844(2)

 0703
 011
 #
 #
 #
 844(2)

 0703
 011
 #
 #
 #
 844(2)

 0703
 01
 #
 #
 #
 844(2)

 0703
 015
 Glass melting furnace (tank)
 3010
 (steel/batch) 2810(4) 82760 32760 (1)076 (c) Se 9 " " " (low frequ.) 2 Meste inciner. (domest./batch) 3 ** " " (indust./batch) 4 * " (indust./batch) 5 Fusion furnace (crucible/sine) 2 1 * " (crucible/sine) 2 3 Drying furnace (for lead) 3 | Drving furnace (for lead) 2 | Activated carbon manu. reactor 1 | Fusion f. (lead shor, battery) 3 | Reactor (lead pigment) 1 | Diecel generator other/smelt.) 0601 | Metal rolling f. (steel/cont.) (alumi/smelt.) (other/batch) Electric furnace (arc furnace) (three-phase) (three-phase) Boiler (for electric power) Name of facility type TOTAL generator 0502 Metal fusion f. (other) ۲ ۲ * ž * \$ Ł 1010 1201 0103 1202 1205 0612 Sode

Table 2-6 Consumption of fuel by business catogory

														fuel	consumpt	ion (nusbe	r of fac	ilities)	
Coda	Name of business category	Heavy (41)	Lieh} 011 (ki)	Kero- sene (ki)	Other 1 (quid (ka)	Coal (ton)	lusber (ton)	Paddy a Husk (ton)	Other solid (tor)	LNG (ton)	LPG (ton)	Iron (ton)	Sulfl- de Ora (ton)	Nonfer ro.Ore (ton)	Raw Coke (ton)	Otber Rан (ton)	Pomes. Hastes (ton)	lndus. Kastes (ton)	Elect- ricity USAD
1~21	Food industry	52233(76)	18(5)	613(4)		900(1)	4851(5)	8817(6)	1 8100(1) 1		56(6)			1	i			66(1)	;
22~33	Textile industry	34777 (95)	25(1)			1405(1)	2719(5)		480(1)		608(7)								0(1)
34~37	Wood industry	- 134C D	1			1	14400(2)	1048(1)					:						100
38~41	Pulp and Paper	23991(7)		1		4730(1)			.					1					1
42~53	Chemical Industry	23613(53)	76102		35(1)	ł	31 (4)		1 1		267(4)		217(1)	1			18(1)	92 (3)	
54~58	Ceranic industry	50100(4)	1400(1)		· .	1			1		2350(2)								1
- 59	Iron and Steel	22127(30)	51(1)			1					1.1.1.1	345610(8)			1800(2)	177780/61			42331619
60	Non-ferrous metal	2178(7)				: 1					70(4)			930 (3)					9278(3)
61~83	Netal and Nachine	7381 (34)	282313	152(4)	71(4)	. 1			1		7955 (42)			:		7800(3)			1293919
84~99	Other assuractory	324438(2)			_	1			; 1	1285200(5)	1	1							1
	TOTAL	560972	5078	765	106	7035	22001	3865	· 8590 j	1285200	11306	345610	217	930	1900	185580	13	158	451534
[IUIAL	(309)	(33)	(8)	(5)	ധി	(16)	(T)	യ	(5)	(65)	ങ	(D)	(3)	(2)	(8)	(D)	(4)	യ

2.3 Calculation of SO₂ and NO_x emission volume and exhaust gas volume based on the questionnaire survey data

2.3.1 Exhaust gas volume

The volume of exhaust gas from each plant was reported in the questionnaire. But for those not reported by questionnaire they were calculated by using the equation (2-1). If the calculated value is found exceeding 30 m/s in term of the stack exit velocity, it was thought erroneous. Taken as corrective actions are reexamination of reported data such as fuel consumption, stack geometry through additional hearing of the factory involved. The emission volume was calculated based on confirmed data. The residual oxygen content and wet exhaust gas factor are shown in Table 2-7 and Table 2-8 respectively. They are average figures in use in Japan.

The exhaust gas volume by each factory and each facility type is shown in Table 2-9 where the pattern (1) deals with consolidated data about each facility and the pattern (2), about the stack. Also included are SO_2 , NO_x emission volume data calculated by the formula which will be mentioned later.

Table 2-7Residual O2 in flue gas by facility type(mean value in Japan)

0, (J) ი 1 ب 1- ت 60 000 <u>ہ</u>ہ 14 60° r--9 ω~-ŝ 01 61 ---Rossting furnace (for copper, lead, zinc) Blast furnace (for copper, lead, zinc) Husion furnace (for copper lead, zinc) Prying furnace (for copper, lead, zinc) Aggregate drying furnace Coment row malerial drying furnace Bride raw mulerial drying furnace Gast drying furnace Other drying furnace 0901~0905 Coment calcination furnace 0906~0907 Brick calcination furnace 0909 Line calcination furnace 0912~0913 Pottery calcination furnace 0916~0917 Glass melting furnace Name of facility type 0601~0606 Metal rolling furnace 0607~0612 Metal Neat treatmont furnace 0613~0618 Metal forging furnace Boiler (for electric power) Boiler (for heating) Boiler (other) 0301~0305 Roasting furnace 0306~0308 Sintering furnace 0312~0314 Pellet calcination furnace 1001~1002 Reaction furnace 1003~1004 Direct heating furnace 0501~0506 Metal fusion furnace 0701~0703 0il heating furnace Combustion furnace [301~1304 Haste incinerator average [201~12]2 Electric furnace Gas generator Gas heater 0401~0402 Blast furnace 0403~0404 Converter Coke furnace 1401~1403 1407~1403 1413~1421 1422~1424 0821 1022223 102223 10223 10223 10233 10033 10033 10033 10033 100 Code 0102 0102 0102 1020 1082

[Source] Ministry of International Trade and Industry (MITI). "Manual of Mabient SOx and NOx Prediction Method in Comprehensive Environmental Assessment", 357p, 1PCAJ (in Japanese), (1385).

Table 2-8 Fuel properties by fuel type (mean value in Japan)

SEQ)														
		EGORY				TIME ZONE START-END		KANE		(X)	(KCAL/)	(/H)	NORMAL (/H)	(/Y)
1)	1 1 1	12(7)	103	65	4428	21:00-15:00	1-12	11 A HEAVY OI	u z.	160 0.9612	10461	111	96	425
2) 3)	1 2 1 1 2 2	42 42	103		1675	0:00-24:00		13 C HEAVY OF 35 LPG		500 0.9529		-1 -1	240	402
4) 5)	1 2 3		103 103		8040 1675					002=-1.0000		-1 -1	19	150
6) 7)	1 6 1	4(3)			3000			11 A HEAVY OF 11 A HEAVY OF	IL 1.	280 0.946	10000	-1	52 105	156 756
8)	1 7 1		1304		1680			14 LIGHT OIL	۱.	200 0.8660	10950.	38	25	47
9)	1 8 1	59	601	84	7200	0:00-24:00	1-12	54 INDUSTRI.W		000 -1.0000 500 0.9325		90 -1	50 5	92
103		59	1201		7200			14 LIGHT OIL	1. 0.	800 0.8660	0 10950*	-1 -1	7 12445	51 89604
145	*********				* 3 6 6		1-13	61 ELECTRICIT		000+-1.0000		-1	8320	59904
11)	1 9 1	6U	1504	8404	1200	0:00-24:00	1-12	43 NONFERROUS 61 ELECTRICIT		000 -1.000		-1 -1	125	900 5160
12) 13)	1 12 1 1 12 2	22(3) 22(3)	103	76	4800	8:20- 0:20	1-12	13 C HEAVY OI 13 C HEAVY OI	IL 2.	500 0.9529 500 0.9529	10340	-1 -1	1250 1250	6000 6000
14)	1 12 3	22(3)	103 103			0:20- 8:20	1	13 C HEAVY OI		300 0.9529		-1	0	0
152	$ \begin{array}{ccccccccccccccccccccccccccccccccc$					5 A. A.		14 LIGHT DIL 11 A HEAVY DI		280 0.9462		-1	13 69	· 25
17)	1 15 1				100			13 C HEAVY OF		500 0.9529		-1	84	737
18)	1 15 2	64(1) 64(1)			8760 8760	0:00-24:00		13 C HEAVY 01	IL 2.	500 0.952	10340	-1 -1	84 88	737 767
50)	1 15 4	64(1)	612	88	8760	0:00-24:00	1-12	61 ELECTRICIT	tv o.	000#-1.0000). 86Q×	-1	450	3942
21) 22)	1 15 5	64(1) 64(1)			8760 8760			61 ELECTRICIT 61 ELECTRICIT		000+-1.0000		-1 -1	450 120	3942 1051
233	1 16 1	70	1106	77	2400	8:00-17:00	1-12	35 LPG	0.	002+-1.0000	12145=	-1	8	20
24)	1 17 1							13 C HEAVY OI		950 0.9400		590	300	2200
25) 26)			103 1304		0 1500		1-12 1-12	13 C HEAVY OI 54 INDUSTRI.	IL 1. WASTE 0.	950 0.9400) 10295) 4000*	-1 -1	44	0 66
27) 28)	1 18 1 1 18 2				4800 800			11 A HEAVY OI 35 LPG		000 0.9408 002±-1.0000		75 -1	70 70	336 56
29) 30)					6240 4368		1-12 1-12	11 A HEAVY DI 11 A HEAVY DI		160 0.961 160 0.961		100 100	63 63	390 273
31)	1 20 1	22(1)	103	76	6912			13 C HEAVY OF		500 0.9529		-1	1128	7800
32) 33)					0	0:00-24:00	1-12	13 C HEAVY 01 13 C HEAVY 01		500 0.9529 500 0.9529		-1 -1	0	0
343	1 20 4	22(1)	103	74	0	0:00-24:00	1-12	13 C HEAVY OF	IL 2.	500 0.9529	10340	-1	ō	Ó
35) 36)					6912	0:00-24:00 0:00-24:00	1-12	35 LPG 35 LPG		0021.0000 0021.0000		-1 -1	38 10	264
37)	1 20 7				6912	0:00-24:00	1-12	35 LPG	0.	002*~1.0000	12145.	-1	29	198
38) 39)	1 21 1				1048 3930		1-12	15 KEROSENE 15 KEROSEHE		033* 0.7951 033* 0.7951		-1 -1	6 6	6 24
402		77(2)	502	88	3000	8:00-21:00	1-12	14 LIGHT OIL	0.	600 0.8450 002*-1.0000	10950*	-1	. 7	20 52
42>		77(2)						11 A HEAVY OI		160 0.9612		500	· 18 480	1728
43)	1 23 1	52(2)	103	-1	0			23 LUMBER		100 -1.0000	3500	-1	0	0
44)		22(2)	103	88	2080	8:00-17:00	1-12	13 C HEAVY 01	1L 2.	920 0.9510	10513	-1	17	35
45)	1 25 1	22(2)	103	83	2400	8:00-16:00	1-12	.11 A HEAVY OF	IL 2.	000 0.9408	10430	- 1	11	26
46)	1 27 1	60	603	83	3840	8:00-24:00	1-12	35 LPG	0.	002*-1.0000	12145*	-1	1	2
47)		74(5)	103	70		0:00-24:00	1-12	11 A HEAVY OF	IL 1.	280 0.9462		- 44	38	315
48) 49)	1 29 3	74(5)	103	84	5760 5760	0:00-24:00	1-12	11 A REAVY OF	rL 1.	280 0.9462 280 0.9462	10000	44 44	38 38	315 315
50) 51)	1 29 4	74(5)	1423	70	84Q0 84Q0	0:00-24:00	1-12	35 LPG	0.	002*-1.0000 002*-1.0000	12145*	-1 -1	13 13	107
52)	1 30 1		103		4160			11 A REAVY OF		980+ 0.9300		-1	13	52
53)		22(2)	103	87	7200	0:00-24:00	1-12	23 LUMBER	٥.	1001.0000	3820	-1	120	865
54)	1 33 1	98	103	88	5110	10:00-24:00	1-12	11 A HEAVY OI	1L Z.	000 0.9405	10430	114	86	438
55)	1 34 1							11 A REAVY DI		160 0.961		-1	53	144
56) 57)		13(2) 13(2)			1480 1470	7:00-17:00 7:00-17:00	1-12	11 A HEAVY OF 11 A HEAVY OF	11. 2. IL 2.	920 0.9500 920 0.9500	10518 10518	280 280	220 220	350
58) 59)	1 36 2				2400	7:30-16:00 7:30-16:00	1-12 1-12	11 A HEAVY OF 11 A HEAVY OF	IL 1. IL 1.	280 0.9462 280 0.9462		-1 -1	75 75	180 180
60)		38(2)	103	83	8760	1		21 GENERAL CO		000 -1.0000	6399*	-1	540	4730
61)	1 40 1	52(1)	103	80	2360	8:00-17:00	1-12	13 C HEAVY O	11. 2.	500 0.9525	10340	30	25	59
62)	1 41 1							13 C HEAVY OF		660 0.9764		-1	125	684
63) 54)	1 41 3	44	103 103	-1	5460	0:00-24:00	1-8	13 C HEAVY OI 13 C HEAVY OI	IL 2.	660 0.9764 660 0.9764	10400	-1 -1	125	684 684
65)	1414	44	103	8808	3300	0:00-24:00	8-12	13 C REAVY OI	IL 2.	660 0.9768		-1	738	2436

.

	A.P.			
P121	Ur	LACTELLI	(PATTERN 1)	1 e -

ì

SEQ)	UN	TOR	1.1	BUSINE SS CAT Egory	LITY	TING	ROAK	OPERATING TIME ZONE START-END	TING		FU N A M E	EL AND Sulfur (%)	RAV HATE GRAVITY	RIAL TO CALORY (KCAL/)	BE USED- Rating (/H)	NORMAL (/H)	ANNUAL (7Y)	
66) 67)	1		1 2	26 26	103 103		4640 0	7:00-23:00 7:00-23:00			A HEAVY OIL A HEAVY OIL			10000	60 +1	50 0	232 0	
68)	1	44	1	48(9)	103	71	800	8:00-16:00	8-12	11	A HEAVY OIL	2.160	0.9612	10461	15	12	10	
69) 70)	1		1 2	74 (5) 74 (5)			7200	0:00-24:00			C HEAVY OIL C HEAVY OIL		0.9529	10340 10340	-1	36	258 D	
71)	1	45	3	74 (5)	2501	-1	7200 7200	0:00-24:00	1-12	19	OTHER LIQUID	1.236	0.8866	10600	-1 -1	2	16 16	•
73)	1	45	5	74 (5) 74 (5)	2501	-1	7200	0:00-24:00	1-12	19	OTHER LIQUID	1.236	0.8866	10600	-1	2	16	
75) 76)	1	45	7 8	74(5)	2501	-1	7200	0:00-24:00	1-12	19	Des frances a second a	1.236	0.8866	12145= 10600 10950=	-1 -1 -1	8 3 3	56 23 11	
77)	1		. 1	64 (2)	103		3600	0:00-24:00			A HEAVY OIL		0.9408	10430	-1	15	54	
78) 79) 80)	1 1	46	234	64(2)		81	3800 4500 56	0:00-24:00 6:30-21:30 8:30-17:00	1-12	35	A HEAVY OIL LPG LPG	0.002*	0.9408 ~1.0000 -1.0000	10430 11158 11158	-1 -1 -1	19	68 18 0	
81)	-	46		22(2)	103		1320					÷.	0.9462	10000	-1	120	158	
82)	1		2		103		1320	7:00-16:00	1 A A		A HEAVY OIL	14 C _	0.9462	10000	-1	120	158	
83) 84)	1	49	1	22(2)	103	65	2482	5:30-22:00	1-12	11	A HEAVY OIL A HEAVY OIL	1.280	0.9462	10000	-1	88 29	218	
85) 86)	1		3	9(2) 9(2)	103		2482 8472	5:30-22:00	· ·		A HEAVY OIL	2.000	0.9462	10000	-1 34	48 25	118	
87) 88)	1	51	23	9(2)	1106	80	8472 8472	0:00-24:00	1-12	11	A HEAVY OIL	2.000	0.9408	10430	-1	35	292	
89)	i				1106		8472	0:00-24:00	1-12	11	A HEAVY OIL	2.000	0.9408	10430	-1	35	292	
90) 91)	1		1 2	42 42	103 703		4480 750	8:00-24:00 8:30-14:00			C HEAVY OIL Light oil	2.500	0.9529 0.8660	10340 10950*	50 -1	30 4	134 3	
92) 93)	1 1	53 53	1		103 103		4752 832	7:00-23:00) 1-12) 1-12		A HEAVY OIL A HEAVY OIL	2.160	0.9612 0.9612	10461 10461	-1 -1	69 46	328 38	
94)	1	54	1	74(2)	103	-1	7200	0:00-24:00	1-12	14	LIGHT OIL	0.560.	0.8300	10950+	-1	145	1043	
95) 96)	1		1 2			8303 8402	8400 8400	0:00-24:00			C HEAVY OIL C HEAVY OIL	3.500 3.500	0.9900	10336 10336	-1 -1	571 571	4800 4800	
97) 98)	1		. 1		103		0 6000	7:00- 3:00			A HEAVY OIL A HEAVY OIL	1.280	0.9462	10000	-1 -1	0 200	0 1200	
993	1	56	3	\$(3)		-1	1240	8:00-17:00	1-12	35	LPG LIGHT DIL	0.002		12145#	-1	0	0 1	
101)	1	56	Š	5(3)	8	65 65	7200	7:00- 3:00 7:00- 3:00	1-12	35		0.002.	-1.0000		-1 -1	ô	0	
103)	i		7			65	7200	7:00- 3:00	1-12		LPG		-1.0000	12145	-1	ŏ	ŏ	
104)	1		8			65		7:00- 3:00		35	LPG	0.002*	-1.0000	12145*	-1	0	· 0	
105)	1		<u>1</u>		103		1960	8:00-16:00			A HEAVY OIL		0.9612		63	50	98	
107)	1		2		103 103		1800 1800	8:00-20:00 8:00-20:00			A HEAVY OIL A HEAVY OIL	2.000	0.9408	10430	-1	25 25	45 45	
108)	1	61	1	15(2)	103	86	3600	0:00-24:00			PADDY & HUSK	0.000+	-1.0000	2600	-1	750	2700	
109)	-	63	1		103		96				LIGHT OIL	0.460	0.8300	10950*	-1	94	9	
110)	1	64	1 2	47(2)	103	74	7200	0:00-24:00	1-12	-11	C HEAVY OIL	2.160	0.9764 0.9809	10400 10461	217 42	180 31	1296 203	
112) 113)	1		 1		103 1416		0 270	0:00-24:00	1.1		C HEAVY OIL		0.9764	10400	-1	0	0	
		65	2		1416		270	0:00-24:00		35	NONFERROUS ORE LPG Nonferrous ore	0.002+	-1.0000	0* 12145±	-1 -1	56	15	
•••	-			•••			270				LPG		-1.0000	0* 12145*	-1 -1	56 3	15 1	
115) 116)	1	66 66	1 2	22(2) 22(2)	103 103		3600 3600	0:00-24:00			A HEAVY OIL A HEAVY OIL	2.800	0.9383 0.9383	10394 10394	337 524	250 300	900 1080	
117) 118)		67 57	1 2				3600 3600	0:00-24:00	1-12 1-12	11 11	A HEAVY OIL A HEAVY OIL	3.000	0.9850 0.9850	10000	54 54	50 50	180 180	
119) 120)	1	68 68	1 2		103 103			0:00-24:00	1-12	13	C HEAVY OIL	3.000	0.9561	10296 10296	-1	251 302	1810 2172	
121) 122)	1		3	22(3)	103 103	69	7200	0:00-24:00	1-12	13	C HEAVY DIL C HEAVY DIL	3.000	0.9561	10296	-1	-302	2172	
123) 124)	1	68	5	22(3)	103	69	7200	0:00~24:00	1-12	13	C HEAVY OIL C HEAVY OIL	3.000	0.9561	10296	-1 -1	302 302	2172 2172	
125)	1	68 68	7	55(3)	103	69	0	0:00-24:00	1-12	13	C HEAVY OIL C HEAVY OIL	3.000	0.9561		-1 -1 -1	0 0 0	0	
127)		69	1	46	103	60 .	1000	9:00-13:00	1-12	11	A HEAVY OIL	3.000	0.9850		78	65	0 65	
128)	•	69 70	2 1		1302 915			14:00-16:00			INDUSTRI .WASTE	0.127*	-1.0000	4000*	-1	0	0	
130)	1	70	2	55	915		8400		1-12	13	C HEAVY OIL	3.300	0.9900 0.9900 0.9200	9900 9900	-1 -1	333	2800 3500	
132)		70			1106			0:00-24:00				0.002*	-1.0000	10950× 12145*	-1 -1	167 83	1400	
133)	1	71	. 1	64(1)	1106	60	4800	6:00-22:00) 1-12		ELECTRICITY OTHER RAW		-1.0000	860+ €0	-1	. Z	9 0	
134)	1	71		64(1)	1106	60	4800	6:00-22:00	1-12	61	ELECTRICITY OTHER RAW	0.000*	-1.0000	860+ Q#	-1 -1	20	9	
135) 136)		72 72		71 71				8:00-16:00 8:00-16:00				0.002=	-1.0000 -1.0000	11158 11158	-1 -1	141 141	282 282	

					LIST	T OF F	ACILITY (P	ATTERN	1)							
SEQ)	016 1	OK TET	33 (AI	L111	1186	NUUR	OPERATING TIME ZONE START-END	TING		N A N E	FUEL AND Sulfur (%)	RAW MAT Gravity	CALORY	BE USED- RATING (/H)	NORMAL (/H)	ANNUAL (/Y)
137)				2501		6048					0,002		11900	-1	3	15
138)		73 2 73 3	72	2501	÷ .	6048	0:00-24:00		15	KEROSENE	0.033	-1.0000	11056	-1 -1	27	· 163 61
140)	1	73 4	72	2501 1423 103	84	4032 6336 2304	7:00-24:00 0:00-24:00 8:00-17:00	1-12	35	LPG	0.002	0.9900	11900	-1	10 10	61 64
142)			72	103			8:00-17:00					0.9200		11 60	11 60	26 127
143) 144) 145)	1		77(1)	1106	79	4048 4048 4048	6:00-20:00 6:00-20:00 6:00-20:00	1-12	14	LIGNY OIL	1.200	0.8660 0.8660 0.8660	10950*	-1 -1 -1	14 14 14	56 56 56
146)		3 1	2(1)	103		8760	010-24:00	1-12	11	A HEAVY OIL	1.280	0.9462	10000	38	28	245
1473		4 1	42	103		3000				A HEAVY OIL		0.9408		140	138	414
148) 149) 150) 151) 152) 153)	2 2 2 2 2		77(1) 77(1) 77(1) 77(1) 77(1) 77(1)	1106 1106 1106 1106	77 77 77 77 77	4224	8:00-24:00 8:00-24:00 8:00-16:00 8:00-16:00	1-12 1-12 1-12 1-12	35 35 35 35	1 <i>PG</i> 1PG 1PG	0.002 0.002 0.002	-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 0.9750	11158 11158 11158	-1 -1 -1 -1 -1 -1	27 27 18 70 82	112 112 112 37 149 216
154)	2	6 1	9(1)	103	85	960	8:00-16:00	1-12	25	PADDY & HUSK	0.0004	-1.0000	3440	-1	542	520
155) 156)		7 <u>1</u> 7 2	22(4)	103 103		0 1600	8:00-17:00 8:00-17:00	11- 4 11- 4	11 11	A REAVY OIL A REAVY OIL		0.9408		-1 31	26 0	0 41
157)		8 1	26	103	-1					A HEAVY OIL		0.9462		- 65	50	120
158) 159)		9 1 9 2	42	103 103		2440	7:00~ 8:00	1-12	11	A REAVY DIL A HEAVY DIL		0.9462		-1	0	0
160)	2	9 3 9 4	42 42	103	84 87	2840 2840	7:00-15:00 7:00-15:00	1-12 1-12	11 11	A HEAVY OIL A HEAVY OIL	1.280	D.9462 0.9462 0.9462	10000	-1 -1 -1	93 186 278	245 490 735
162) 163)				103 103		3400	7:30-22:45	1-12	11	A HEAVY OIL A HEAVY OIL		0.9462		-1 -1	57 57	204 204
164) 165)	2	11 2	22(1)	103 103	75	4200 4200	7:00-21:00	1-12	13	C HEAVY OIL C REAVY OIL	2.500	0.9529 0.9529	10340	-1 -1	143 143	600 600
166) 167)			55	915		7854 2400	0:00-24:00			· .		-1.0000		221	208	1650
168)			70	103		2080	8:00-16:00			PADDY & HUSK		0.9200	3440	-1	1000	2400
169)			4(4)	103		1500		•		A HEAVY OIL		0.9358		15 -1	11 120	23 150
170)	2	16 1	47(3)	103	-1	1500	9:00-14:05					0.8596		1	1	1
171) 172) 173)	s s	17 2	60	103 502 8		7200 4320 4500	0:00-24:00 0:00-24:00 8:00-23:00) 1-12	13	C HEAVY OIL C HEAVY OIL LPG	3.500	0.9950	9900	27 54 -1	25 42 15	183 181 66
1743	2	18 1	9(1)	1	-1	960				LIGHT OIL	0.560	0.8413		-1	13	12
1751			4(1)			0 7680	0:00-24:00 0:00-24:00	1-12	11 11	A HEAVY DIL A BEAVY DIL		0.9358 0.9358		-1 -1	0 70	0 538
177)	2	20 1	64 (9)	503	87	870	10:30-13:30	1-12	12	B HEAVY OIL	1.500	0.9750	10000	-1	22	20
1783	-			103	85	1080	7:30-16:30	1-12	25	PADDY & HUSK	0.000	-1.0000	3440	-1	250	270
179)							8:00-11:00				1.500	0.9200	10950=	-1	3	2
1803	2	23 1 23 2	15(1)	103	82	1600	8:00-16:00) 1-12	13	GENERAL COAL C HEAVY OIL	2.500	-1.0000	9900	167 100	125 75	900 120
182) 183) 184)	2 (23 4	15(1) 15(1) 15(1)	1106	82	0 1600 1600		1~12	13	C HEAVY OIL A HEAVY OIL A HEAVY OIL	2.000	0.9529 0.9408 0.9408	10000	-1 -1 -1	0 78 76	0 125
	2		78(1)			4368	6:00-22:00					-1.0000		-1 -1	233	125 1018
186)	e e		78(1)			4368	6:00-22:00		14 35	LIGHT OIL LPG	0.560	0.8300	* 10950* 11158	-1 -1	102 233	445 1018
187)	2	24 3	78(1)	1106	77	4368	6:00-22:00	1-12	35	LIGHT OIL LPG	0.560-0	0.8300	+ 10950+ 11158	-1 -1	102	445 1018
1883) 2 	24 4	78(1)	8	77	4368	9:00-55:00	. 1-12		LIGHT OIL Light oil			10950* 10950*	-1 -1	102 16	445 70
189)		25 1	77(2)				8:00-16:00				0.002	-1.0000	11158	-1	72	173
190) 191) 192)		26 2		1106	81	810	8:00-13:00	1-12	- 35	A HEAVY OIL LPG Electricity	0.002	0.9850 -1.0000 -1.0000	11158	-1 -1 -1	25 5 0	180 4 0
193)			59				0:00-24:00			OTHER RAW ELECTRICITY		-1.0000		13461 8297	11538 7111	57600 35500
194)		1 5					0:00-24:00		46 61	OTHER RAW ELECTRICITY	0.000	-1.0000	≎0 ≉068	13461 8297	11538 7111	\$7600 35500
195) 196)	-	1 3			7202	0 4864			61	OTHER RAW ELECTRICITY	0.000	-1.0000	860=	-1 -1	0	0
1967		2 1			6803 7706					C HEAVY OIL		0.9900		673 600	576 400	2880 2880
198)	3	2 Z	8(1)	103	7706	7200	0:00-24:00	1-12	13	C HEAVY OIL		0.9529		400	400	2880
199)			22(2)							C HEAVY OIL		0.9529		315	113	951
200)	3	4 1	38(2)	103	8801	8520	0:00-24:00	1-12	13	C HEAVY OIL	2.660	0.9765	10400	271	250	2130

SEQ)	CO FAC FAC					OPERATING	OPERA		N A N	 E		RAW NATE GRAVITY			HORMAL	
	TY Y TY					START-END P				c	(1)	GANDIT	(KCAL/)	(/H)	(/8)	(/ Y)
				÷.,							- A.					
201) 202)	3 5 1 3 5 2	13(2)	103			0:00-24:00			A HEAVY			0.9408	10430 10430	3270	0005 0	20904 0
203)	3 5 3	13(2)	103	64	: 0	0:00-24:00	1-12	11	A HEAVY	DIL	2.000	0.9408	10430	-1	0	0
204)	3 5 4	13(2)	1802	7502	8040	0:00-24:00	1-12	15	KEROSEN	E	0.0331	0.7951	11000	72	36	289
205)	3 6 1	59	601	6812	2352	8:00-17:00	1-12		C HEAVY IRON	011		0.9764	10400	200	175	412 2800
206)	3 6 2	59	601	6812	2352	8:00-17:00	1-12	13	C REAVY	OIL	2.660	0.9764	10400	220	190	447
2075	3 6 3	59	601	6812	2352	8100-17:00	1-12	- 41	IRON C REAVY	011		-1.0000	03 10400	-1	1275	3000 784
									IRON			-1.0000	0+	-1	2210	5200
208)	371	59			2400	7:30-16:00	1~12		C HEAVY		2.660	0,9764	10400	-1	220	528
2093	3 7 2	59	601	8707	2400	7:30-16:00	1-12	13	C HEAVY	01L	2.660	0.9764	10400	-1	110	264
210)	3 8 1	55(5)	103	8801	8448	0:00-24:00	1-12	13	C HEAVY	01L	3.500	0.9900	10495.	372	73	616
211)	3 9 1	47(1)			7896	0:00-24:00	1-12		SULFIDE			-1.0000	1500+	-1	28	217
212) 213)	3 9 2		103 103		7896 1440	0:00-24:00	1-12 1-12		A HEAVY A HEAVY		1.280	0.9462	10000 10000	. 21 21	17	132
214)	3 9 4	47(1)	1105	68	6000	0:00-24:00	1-12	14	LIGHT O	11	0.600	0.8450	10950*	83	75	450
215)	3 10 1	- 59	601	7801	2368	8:00-17:00	1-12	13	C HEAVY	01L	2.160	0.9612	10461	338	230	545
216)	3 11 1	52(2)	103		4800	8:00-24:00			A HEAVY		1.280	0.9462	10000	-1	38	180
217)	3 11 2	52(2)	103	87	4800	8:00-24:00	1-12	11	A HEAVY	011	1.280	0.9662	10000	-1	45	216
218) 219)	3 12 1 3 12 2				8400 2160	0:00-24:00 7:15-19:15	1-12		PADDY & A HEAVY			-1.0000	3500+	208	125	1048
	*											0.9462	10000	110	62	134
220) 221)	3 13 1 3 13 2	9(6) 9(6)	103		0000 0000	0:00-24100			C HEAVY C HEAVY			0.9306	10495	250 250	190 190	1140 1140
222)	3 14 1	38(2)	103	6412	2020	0:00-24:00	1-12		C HEAVY		2.500	0.9529	10340	558		
223)	3 14 2	38(2)	103	72	7920	0:00-24:00	1-12	13	CHEAVY	01L	2,500	0.9529	10340	558	516 516	4087
224) 225)	3 14 3 3 14 4		103		7920	0:00-24:00	1-12 1-12	13	C HEAVY C HEAVY	011	2.500	0.9529	10340	558 -1	516 0	40.87
226)	3 15 1	6(1)	103	-1	1800	8:00-14:00	1-12		LUMBER		0 100	-1.0000	3500=	-1	-	
		3(1)	105	-1	1000	0.00-14100	1-12		A HEAVY	OIL		0.9612	10461	10	133	240 3
227)	3 16 1	51	103		4200	0:00-24:00	1-12	13	C HEAVY	OIL	3.500	0.9950	9900	233	225	945
228) 229)	3 16 2 3 16 3		103 103		4200 2112	0:00-24:00	1-12 1-12	13	C HEAVY	011	3.500	0.9950	9900	233 311	225	945 634
230)	3 16 4		103		2112	0:00-24:00	1-12		C HEAVY			0.9950	9900	389	375	792
231)	3 17 1	8(1)			900	0:00-24:00	1-12	13	C HEAVY	OIL	3.500	0.9900	9900	300	215	194
232)	3 17 2	8(1)	103	85	7200	0:00-24:00	1-12	13	C HEAVY	011	3.500	0.9900	8900	300	216	1555
233)			103		3200	9:00-55:00	1-12		A HEAVY			0.9462	10000	103	62	197
234) 235)	3 18 2	5(3)	103		7200 3200	0:00-24:00 6:00-22:00	1-12 1-12	11	A HEAVY A HEAVY	01L	1.280	0.9462	10000	105 85	43 51	456 164
236)	3 18 4	5(3)	103	89	0	0:00-24:00	1-12	11	A HEAVY	ŌĨĹ	1.230		10000	-1	õ	Ö
237) 238)	3 19 1	74 (5)				0:00-24:00	1-12		LPG			-1.0000	11805	8	5	31
	3 19 2					0:00-24:00			ELECTRI		0.000*	-1.0000	860=	15	7	26
239)	3 20 1	52(1)	103	73	7200	0:00-24:00	1-12	13	C HEAVY	OIL	2.500	0.9529	10340	-1	29	508
240)	3 21 1	13(2)	103	84	60	8:00-17:00	1-12	14	LIGHT O	IL.	0.400	0.8450	10950*	-1	7	1
241)	3 22 1	34(1)	8	-1	2496	8:00-17:00	1-12	61	ELECTRI	C 1 T Y	0.000	-1.0000	860×	· -1	٥	1
242)	3 23 1		611		7200	0:00-24:00	1-12	11	A HEAVY	OIL	2.000	0.9408	10430	100	80	576
243) 244)	3 23 2 3 23 3		611		7200 7200	0:00-24:00 0:00-24:00	1-12 1-12	11	A HEAVY A HEAVY	01L	2.000	0.9408	10430	100	80	576
245)	3 Z3 4	60	612	83	4800	0:00-24:00	1-12	61	ELECTRI	C1TY -	0.000	-1.0000	860+	-1	80 429	576 2059
246) 247)	3 23 6		612 1421		4800 540	0:00-24:00 8:00-15:00	1-12 1-12		ELECTRI A HEAVY			-1.0000	860* 10430	-1	429 80	2059
248}	3 23 7	60	1421	84	540	8:00-15:00	1-12	11	A HEAVY	01L		0.9408	10430	100	80	43
2493 2503	3 24 1 3 24 2	77(1)			2096 2096	7:00-16:00 7:00-16:00		13	C HEAVY	01L		0.9900	9900	75	63	131
251)	3 24 3	77(1)	1106	62	2096	7:00-18:00	1-12	35	LPG LPG			-1.0000	11158	41 41	37 37	77 77
252) 253)	3 24 4		1106	72 72	2096 2096	7:00-16:00 7:00-16:00	1-12		LPG LPG		0.002+	-1.0000	11158 11158	41	37 37	77
254)	3 25 1					8:00-24:00										
255)	3 25 Z	22(3)	103	64	960	8:00-24:00	- 1-12	11	A HEAVY A HEAVY	011	1.280	0.9462	10000	-1 -1	10	10 15
256)	3 25 3	55(3)	103	-1	2880,	8:00-24:00	1-12	53	LUNBER		0.100=	-1.0000	3820	-1	250	720
257) 258)	3 26 1	22(2)			0 000a	0:00-24:00 0:00-24:00	1-12	11	A HEAVY	011		0.9300.		-1	0	0
										011		0.9529	10340	63	50	300
259) 260)	3 27 1 3 27 2		103 103		1500 300	8:00-16:00				01L		-1.0000	3820 10461	480 -1	400 80	600 24
261)	3 28 1	51	103	64	Z400	7:00-17:00			A HEAVY			0.9850	10000			
262)														-1	60	144
263)	3 29 2	64(1)	1106	72	6336	0:00-24:00	1-12	35	LPG LPG		0.002+	-1.0000	11158 11158	-1 -1	33 33	208 208
264) 265)	3 29 4	64(1)	1106 1106		6336 6336	0:00-24:00	1-12 1-12		LPG LPG			-1.0000	11158 11158	-1 -1	33 33	208 208
266) 267)		64(1)	1106	72	6336	0:00-24:00 0:00-24:00	1-12	35	L PG L PG		0.002+	-1.0000	11158	-1	33	208
268)	3 29 7	64 (1)	1106	72	6336	0:00-24:00	1-12	35	LFG		0.002=	-1.0000	11158 11158	-1 -1	33 33	208 208
269) 270)	3 29 9	64(1)		72	6336 6336	0:00-24:00	1-12 1-12		LPG ELECTRI	C I T Y		-1.0000	11158 860+	-1 -1	33	208
271) 272)	3 29 10		1106	72	6336		1-12 1-12	61	ELECTRI ELECTRI	CI f Y	0.000=	-1.0000	860*	-1	0	0
~~~,	, 11		* * * * 0		0000		1-15	01			0.000	-1.0000	860=	-1	0	¢

	274)	3 29 3 29 3 29 3 29					41 21	AKI-ENU	TING PERIOD						(#)		(KÇAL/)		(78)	CM
	277) 278)	3 30		64(1)	1106 7	2 63	36 Q:	00-24:00 00-24:00 00-24:00	1-12	61	ÊĻI	ECTRI	CITY	·	0,000*	-1.0000 -1.0000 -1.0000	860* 860* 860*	-1 -1 -1	0 0 0	0 0 0
					103 - 103 -			00-17:00 00-17:00								0.9462 0.9462		90 -1	60 Q	144
					103 - 103 -			00-10:00 00-10:00									10495= 10495=	-1 -1	32 32	18 18
	280) 281)	3 32 3 32	1 2		103 B 103 B			00-21:00 00-21:00								0.9358	10495+ 10495+	-1 -1	40 40	108 108
	282) 283) 284)		1 2 3		703 71 1 71 1302 71	B	12 1:	00-24:00 00- 1:30 00-16:00	1-12	14	1.1	GHT C	IL	TE	1.200	0.9408		50 1 -1	38 1 37	319 2 18
	285) 286) 287) 287) 288)	3 34	1 2 3 4	2(1) 2(1)	103 7 103 7 1106 7 1106 7	7 52 3 14	00 8: 40 8:	30- 7:30 30- 7:30 30-24:00 30-24:00	1-12 8-12	11 11	A A	KEAVY Keavy	01L 01L		3.000 3.000	0.9850 0.9850 0.9850 0.9850	10000	60 90 110 160	56 84 103 155	291 437 149 223
		3 35			103 8 103 8			00- 2:00 00- 2:00		25 23	PĂ LŲ	DDY I Mber	RUSK		0.000. 0.100:	~1.0000 ~1.0000 ~1.0000 ~1.0000		-1 -1 -1 -1	0 833 542	0 0 4498 2927
		3 36		- A	103 8			00-16:00 00-15:00								0.9509	10495+	-1	140	369 287
	293) 2943 2953	3 38 3 38	1 2	52(1) 52(1)	103 6 103 6 103 6	5 24 5	00 8: 0 8:	00-16:00 90-16:00 00-16:00	1-12	14 14		GHT ( GHT (	)IL 816		0.460	0.8596 0.8596	10950+ 10950+ 10950+	400 400 400	80 0 0	192 0
	296) 297)		12	22(2) 22(2)	103 7. 103 8			00-16:00								0.9612		30 38	19 32	39 65
	298)	3 40	1	52(1)	103 7	8 25	60 8:	00-16:30	1-12	13	C	REAVI	01L		2.500	0.9529	10340	-1	56	144
	3003	·	1		103 7			00-13:00 00-24:00					TOIL			-1.0000	3820 10400	-1 45	20	590 53
	301)	3 42	2 	55(5)	103 7	1 65	00 0:	00-24:00	1-12	11		HEAVI	1 01L		2.660	0.9764	10400	45	40 70	260
	303)	3 44	1	7(1)	103 7	6 9	36 7:	00-10:00	1-12	11	A	HEAV1	01L		5.000	0.9408	10430	120	100	94
	304) 305)	3 44			103 8 103 8			00-19:00 00-17:00							1	0.9408		125 56	125 51	162
•	308) 307)	3 45	2		103 - 103 7	•		00-17:00								0.9408		-1	0	0
	308) 309) 310) 311) 312)	3 46 3 46 3 46 3 46	2 3 4 5	22(2) 22(2) 22(2) 22(2)	103 7	907 18 907 9 907 9 907 9	50 8: 30 8: 30 8: 30 8:	00-21:00 00-21:00 00-17:00 00-17:00 00-17:00	) 1-12 ) 1-12 ) 1-12 ) 1-12	13 35 35 35	С ЦР ЦР	HEAVY G G G	01L		0.005* 0.005* 5.200	-1.0000 -1.0000		-1 -1 -1 -1 -1 -1	65 65 21 21 21 21	120 120 20 20 20
	313) 314) 315) 316)	3 47 3 47		44 44 44 44	103 8 103 8 103 - 103 -	586 1	40 0: 0 0:	00-24:00 00-24:00 00-24:00 00-24:00	) 1-12 ) 1-12	13 13	c	HEAVY HEAVY	01L		2.660	0.9764 0.9764 0.9764 0.9764	10400 10400	450 450 450	410 410 0 0	3542 3542 0 0
	318)	3 48 3 48 3 48	Ş	59 59 59	601 7 601 7 601 8	1	0 8:	00-17:00 00-17:00 00-17:00	1-12	. 11	- <b>A</b> - I	HEAVY	DIL		2.160	0.9612 0.9612 0.9612	10461	160 -1 -1	100 0 0	240 0 0
	320) 321)		2	64 64	103 7 103 7		60 0: 60 0:	00-24:00 00-24:00	1-12	11 11	A A	HEAVY	01L 01L			0.9462 0.9462		250 250	210 210	832 332
	322) 323) 324)	3 50	1 2 3	52(1) 52(1) 52(1)		4 Z4	00 8:	00-16:00 00-16:00 00-16:00	1-12	13	¢	HEAVY HEAVY HEAVY	OIL		2.500	0.9529 0.9529 0.9529	10340	40 40 -1	. 30 . 0	72 72 0
		3 51 3 51		59 59	1201 7			00-24:00 00-24:00		61 12 45 41 61	6 RA IR EL	ECTRI HEAVY V COX ON ECTRI	01L E CITY		0.000* 1.950 0.570* 0.000	-1.0000 -1.0000 0.9370 -1.0000 -1.0000 -1.0000	0* 860= 9900 7000* 0* 860=	-1 -1 167 -1 -1 -1	7800 12760 83 156 7800 12760	65006 73500 478 900 45000 73500
	327) 328)		3 4	59 59	601 6 601 8			00-24:00 00-26:00		45 12	RA B	HEAVY HEAVY HEAVY	OIL		0.570*	0.9370 -1.0000 0.9370 0.9370	9900 7000= 9900 9900	167 -1 700 700	83 156 585 585	478 900 2808 2106
	329) 330)	3 52 3 52			103 7 103 8			0-24:00							1.280	0.9462		-1 400	0 257	0 1850
	331)	3 53	1	46	103 7	Z 16		00-16:00									10950=	-1	5	8
	332) 333) 334) 335)	3 54	1 2 3 4	13(2) 13(2) 13(2) 13(2)	103 7	1 28 1 28	80 0:0 80 0:0	00-24:00 00-24:00 00-24:00 00-24:00	1-12	13 13	¢ i	HEAVY HEAVY	0IL 0IL		3.500	0.9900 0.9900 0.9900 0.9900 0.9900	9900 9900 9900 9900	400 400 400	300 300 300 300	864 864 864 864
	336)	3 55	1	48(2)				0-17:00								0.9300		-1	0	0
	337) 338)	3 56 3 57	1		103 8 103 7			00-21:00								0.9612		-1 29	77 29	324 188

SEQ)	CO FAC FAC	BUSINE	FACI	STAR	OPE.	OPERATING	OPERA		FI	UEL AND F	AW HATE	RIAL TO	BE USED-		
	זי ייז	SS CAT Egory	TYPE	YEN	KOUR (H)	TIME ZONE START-END	TING PERIOD		NAHE	SULFUR ( (X)		CALORY (KCAL/)	RATING	NORHAL (74)	ARNUAL ( /Y)
340)	3 57 2 3 57 3	8(1) 8(1)	103 103	77 83					A HEAVY OIL Other solid	1.280 0.100+-	0.9462	10000 3440	-1 1458	1250	8100
341)	3 58 1	8(1)	103		•				C HEAVY OIL			10495*	-1		C
342) 343) 344) 345)	3 59 1 3 59 2 3 59 3 3 59 4	22(2) 22(2) 22(2) 22(2)		84 82	8448	0:00-24:00 0:00-24:00	1-12 1-12	13 13	C HEAVY OIL C HEAVY OIL C HEAVY OIL C HEAVY OIL	2,500 2,500 2,500 2,500	0.9529 0.9529	10340 10340 10340 10340	-1 -1 -1 -1	0 250 50 50	2112 422 422
346)	3 60 1	22(2)	103	78	2700	8:00-17:00	1-12	11	A HEAVY OIL	2,160	0.9600	10481	-1	27	72
347)	3 61 1	22(2)	103	88	2400	7:30-15:00	1-12	23	LUMBER	0.100+-	1.0000	3500*	-1	175	420
348) 349) 350)	3 62 1 3 62 2 3 62 3	2(2)	1004 1004 1004	80	4500 4500 4500	8:00-23:00 8:00-23:00 8:00-23:00	1-12	15	KEROSENE	0.0331	0.7951*	11100* 11100* 11100*	27 27 27	24 24 24	108 108 108
351) 352)	3 63 1 3 63 2	53(7) 53(7)			2320 0	8:00-16:00 8:00-16:00		19 35	OTHER LIQUID LPG		0.8569		-1	-15 0	35
353) 354) 355}	3 64 1 3 64 2 3 64 3	77(1) 77(1) 77(1)	103 103 103	74	2750 2750 2750	7:30-20:00	1-12	11	A HEAVY OIL A HEAVY OIL A HEAVY OIL	1.290		10542 10542 10542	-1 -1 -1	18 18 18	50 50 50
356)	3 65 1	52(1)	103	85	2400	7:00-17:00	1-12	11	A HEAVY OIL		0.9358		-1	35	84
357)	3 66 1	22(4)	103	8401	4080	5:00-17:00	1-12	26	OTHER SOLID	0.000 -	1.0000	3440	-1	200	480
358) 359) 360) 361)	3 67 1 3 67 2 3 67 3 3 67 4	50(4) 50(4) 50(4) 50(4)	703 8	86 86	0	7:30-16:30 7:30-16:30	1-12 1-12	13 13	C HEÁVY OIL C HEAVY OIL C HEAVY OIL Industri.Waste	2.500		10340 10340 10340 4000+	98 -1 -1 -1	86 0 0 0	210
362)	3 68 1	22(2)	103		7200				A HEAVY OIL		0.9358		50	38	270
363) 364) 365)	3 68 2 3 69 1 3 69 2	22(2) 22(1) 22(1)		80	7200		1-12	13	A HEAVY DIL		0.9529		50 ~1	38 100	270
366) 367)	3 69 2 3 70 1 3 70 2	26	103 103	83	7200 4800 2400	8:00-24:00 0:00- 8:00	1-12	11	C HEAVY OIL A HEAVY OIL A HEAVY OIL		0.9612	10340 10461 10461	-1 -1 -1	100 83 83	400
358) 369)	3 71 1 3 71 2	22(2)	103 103	76		0:00-24:00	1-12	13		· .	0.9529	5 · ·	-1 -1	208 208	200 874 874
370)	3.72 1	22(3)	103		4800	7:00-24:00	1		1. A.	2.500		10340	17	14	68
371) 372)	3 73 1 3 73 2	34 (3) 34 (3)			7200 7200	0:00-24:00 0:00-24:00				0.100-	1.0000	3820 3820	-1 -1	750 1250	5400 9000
373) 374)	3 74 1 3 74 2	59 59	602 602		2208 2208	8:00-15:00 8:00-16:00	1-12 1-12	13 13	C HEAVY OIL C HEAVY OIL		0.9529		94 94	63 63	139 139
375) 376) 377) 378)	3 75 1 3 75 2 3 75 3 3 75 4	2(1) 2(1)	1106 1106 1106 1106	80 84	2400 2400 2400 2400	0:00-24:00 0:00-24:00 0:00-24:00 0:00-24:00 0:00-24:00	1-12 1-12	11 11	A REAVY OIL A REAVY OIL A REAVY OIL A REAVY OIL	2.000	0.9408 0.9408 0.9408 0.9408	10430 10430	600 600 600 600	500 500 500 500	1200 1200 1200 1200
379) 380)	3 76 1	13(2) 13(2)	103 103	82	1095	8:00-11:00	1-12	11	A HEAVY OIL A HEAVY OIL	1.280	0.9462	10000	45 -1	34	37
381)		22(2)	103	74		1.1			A REAVY OIL		0.9612		17	13	109
382) 383)	5 78 1 3 78 2				6000 3000	8:00- 4:00 8:00-17:00	1-12 1-12	11 11	A HEAVY OIL A HEAVY OIL		0.9612		35 30	35 30	210
384) 385)	3 79 1 3 79 2	22(2) 22(2)	103 103		\$400	8:00- 2:00	1-12	11	A HEAVY DIL A HEAVY DIL	2.000	0.9408	10430	-1	133	720
386)	3 80 1	22(2)	103	83	7200	0:00-24:00	1-12	23	LUMBER	0.000 -	1.0000	3820	~1	16	114
387)	3 81 1	47(1)	103	78	4800	8:00-24:00	1~12	14	LIGHT OIL	0.460	0.8596	10950*	-1	5	- 24
388) 389)	3 82 1 3 82 2	22(4) 22(4)	103 103		3600 3600				A HEAVY OIL A HEAVY OIL	2.160 2.160	0.9612	10461 10461	300 300	200 150	720 540
390)	3 83 1	13(2)	103	85	3000	7:00-17:00	1-12	11	A HEAVY OIL	2.760	0.9358	10495=	- <b>i</b>	48	144
391)	···	22(2)			· · · .			,	A HEAVY OIL		0.9612		-1	.44	120
392) 393)	3 85 1 3 85 2	22(2) 22(2)	103 103		2700 0	8:00-17:00 8:00-17:00	1-12 1-12	11 11	A HEAVY OIL A HEAVY OIL		0.9462		-1 -1	27 G	72
394)	3 86 1		103	84	1800	8:00-14:00	1-12	11	A HEAVY OIL	2.000	0.9408	10430	-1	40	72
395) 396)	5 87 1 3 87 2	26	103						C HEAVY OIL C HEAVY OIL	2.920	0.9509 0.9509	10495× 10495×	-1 -1	39 45	296 345
397)	3 89 1	22(2)	103	85	3000	8:00-18;00	1-12	11	A HEAVY OIL	2.160	0.9612	10461	-1	14	41
398)									C HEAVY OIL		0.9764		200	190	441
399) 400)		13(2)				7:00-15:00			A HEAVY OIL		0.9462		65	50	80
	3 94 1		1104		480		10+ Q	14	LIGH) VIL	V.660	0.8413	107208	-1	: <b>7</b>	2

IV - 14

.

. •

		UN TOR	- ILI	SS CA1	F 1.11	Y TINC	i HÖUR	TINE ZONE	TING	N A H E	SULFUR (%)	GRAVITY	CALORY (KCAL/)	RATING ( /H)	NORMAL ( /H)	ARNUAL (7Y)
4(	043	3 95	22	64(5)	141	9 72	7200	0:00-24:00	1-12	13 C HEAVY DIL	2.500	0.9529	10340	-1	33	240
40	D5) D6) D7)	3 96 3 96 3 96	2	2(5)	110 110 110	5 78	270	8:00-17:00	8-11	11 A HEAVY DIL 11 A HEAVY DIL 11 A HEAVY DIL 11 A HEAVY DIL	1.280 1.280 1.280	0.9462 0.9462 0.9462	10000	139 139 240	139 139 260	37 37 211
4	08) 09) 10) 11)		23	2(5)	) 100 ) 100 ) 100 ) 100	483 484	3590 3590 3590 3590	0:00-24:00	7-11	13 C HEAVY DIL 13 C HEAVY DIL 13 C HEAVY DIL 13 C HEAVY DIL 13 C HEAVY DIL	2,500	0.9529 0.9529 0.9529 0.9529	10340 10340	-1 -1 -1 -1	გ გ კ	22 22 22 22
4. 4.	12) 13) 14) 15) 16)	3 98 3 98 3 98	2	88 88	10 10 10	i 7111 1 7401 1 7508	8400 8400 8400 8400 8400 8400	0:00-24:00 0:00-24:00 0:00-24:00 0:00-24:00 0:00-24:00	1-12 1-12 1-12	34 LNG 34 LNG 34 LNG	0.000 0.000 0.000 0.000	-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 0.9000	13286 13286 13286 13286	-1 -1 -1 -1 -1 -1	24500 24500 45500 45500 45500 54000	205800 205800 382200 382200 109200 324000
4	18)	3 99 3 99 3 99	2	7(1)	10 10 10			6:00-24:00	1-12	13 C HEAVY OIL 13 C HEAVY DIL 13 C HEAVY DIL	2.920	0.9900 0.9900 0.9900	10513	-1 -1 -1	50 50 50	240 240 240
	20) 21)			24	10	3 80		9:00-15:00	1-12	11 A REAVY OIL 61 ELECTRICITY	5.000	0.9408	10430	134	100	110
	22>	3 101		1997 - M		680 3-1	7920			11 A REAVY OIL		•-1.0000 • 0.9300	860* 10495*	-1 -1	50	396
4	23) 24) 25)	3 102 3 102 3 102	1	8(1)	10	383 380 883	720 720 720	8:00-16:00 8:00-16:00 8:00-16:00	1-12	11 A NEAVY DIL 23 Lumber 11 A Heavy dil	0.100	0.9358	3820	-1 -1 -1	313 125 13	225 90
4	26)	3 103	1	52(2)	10	3 82	1400	9:00-16:30	1-12	11 & REAVY OIL	1.280	0.9850	10000	21	14	20
4	27) 28) 29)	3 104 3 104 3 104	2	53(B)	<b>91</b>	8 87		8:00-12:00 0:00-24:00 0:00-24:00	1-12	23 LUMBER	0.100	-1.0000 -1.0000 -1.0000	3820 3820 3820	-1 -1 -1	8 2 2	9 11 11
	30) 31)	3 105 3 105				5 71	8760 8760			11 & REAVY OIL 11 & REAVY OIL		0.9462		2063	1667 3333	14600 29200
43	32)	3 106		64 (8)	o so	3 8712	2400	8:00-17:00	1-12	11 A HEAVY OIL	2.760	0.9558	10495.	-1	1	3
4	33)			48(3)	) 10	3-1	1055	8:00-17:00	1-12	11 A HEAVY OIL	2.160	0.9612	10461	. 76	61	64
	34)						2920			14 LIGHT OIL	1.200	0.8660	10950*	· -1	9	25
	35) 36)	3 109	2	55(1						13 C REAVY DIL 13 C REAVY DIL	3.500	0.9950 0.9950		-1 -1	167 125	600 450
	37)	3 110	1	55(5		3 73	<b>0</b>			13 C HEAVY OIL		0.9529		1	• 0	
	38) 39)	3 110		55(5)			1440 8744	0:00-24:00	1-12 1-12	13 C HEAVY OIL 21 General Coal	2.500	0.9529	10340 4409	-1 -1	75 208	108 1405
٤.	40)	3 111	1	59	120	1 71	7200			61 ELECTRICITY 41 IRON		-1.0000	+068 ·	-1 -1	10000	72000 123850
	÷.,	3 111			-	1 74	1296			61 ELECTRICITY 41 IRON	0.000	-1.0000	860×	-1 -1	5000 8600	6480 11150
•	42) 	3 111		59	. 60	1 77	6000	0:00-24:00	1-12	13 C HEAVY OIL 13 C HEAVY OIL 13 C HEAVY OIL	3.500	0.9529 0.9900 0.9900	10340 9900 10495*	-1 -1 -1	236 236 236	1417 1417 1417
4.	43}	3 111	. 4	59	10	3 85	7200	0:00-24:00	1-12	13 C HEAVY OIL 13 C HEAVY OIL	2.500	0.9529	10340 9900	-1 -1	38 38	333 333
4.	44)	3 111	5	59		8 85	7200	0:00-24:00	1-12	13 C HEAVY OIL 13 C HEAVY OIL 13 C HEAVY OIL 13 C HEAVY OIL 13 C HEAVY OIL	2.500	0.9900 0.9529 0.9900 0.9900	10340 9900	-1 -1 -1 -1	38 38 38 38	333 333 333 333
	45) 46)			74(2) 74(2)		2 73 8 83	2568 7200	0:00-24:00 0:00-24:00	1-12 1-12	11 & HEAVY OIL 46 OTHER RAW 61 ELECTRICITY	0.000	0.9300 -1.0000 -1.0000	■ 10495= 0= 860=	-1 -1 -1	166 1083 550	426 7800 3960
4.	48)	3 113	2		60 60	7.63	2120 2120	8:00-17:00 8:00-17:00	1-12 1-12	11 A HEAVY OIL 11 A HEAVY OIL		0.9612		-1 -1	160 150	339 319
4	50)	3 113	- 4	77(2)	60	7 63	2120 2120	8:00-17:00	1-12	11 A HEAVY OIL 11 A HEAVY OIL	2.160 2.160	0.9612	10461 10461	-1 -1	40 40	85 85
		3 113		77(2)		778 878	2120	8:00-17:00		11 A HEAVY OIL 61 ELECTRICITY 11 A HEAVY OIL	0.000	0.9612 -1.0000 0.9612	840=	-1 -1 -1	50 0 40	127 0 84
4	53) 54)	3 113 3 113 3 113	7	77(2)		8 78 3 78 3 78	2120 2120	8:00-17:00 8:00-17:00	1-12 1-12	11 A HEAVY OIL 11 A HEAVY OIL 11 A HEAVY OIL 11 A HEAVY OIL	2.160 2.160	0.9612 0.9612 0.9612	10461 10461	-1 -1 -1	60 40 40	127 85 85
4	57)	3 114 3 114	2	78(1)	60	387	1896	6:00~14:00	1-12	13 C HEAVY OIL 13 C HEAVY OIL	2.500	0.9529 0.9529	10340	-1 -1	19 19	36 36
4	58) 57) 60)	3 114	. 4 5	78(1) 78(1) 78(1)	110	5 87	1896	6:00-14:00 8:00-16:00 8:00-16:00	1-12		0.002	0.9529 -1.0000 -1.0000	11158	-1 -1 -1	13 11 11	24 21 21
4.	61) 62) 63) 64)	3 119 3 119 3 119	23	78(1) 78(1) 78(1) 78(1)	110	678 688	4160 4160	6:55-23:00 6:55-23:00 6:55-23:00 6:55-23:00	1-12 1-12	35 LPG 35 LPG	0.002	-1.0000 -1.0000 -1.0000	11158 11158	-1 -1 -1 -1	14 14 14 14	56 56 56 56
4	65)	3 117		59	120	5 85		· · · ·		46 OTHER RAW	0.000	-1.0000	Ű≢	-1	4400	34500
	66) 67)	3 117 3 117	3			2 70				61 ELECTRICITY 13 C HEAVY OIL 13 C HEAVY OIL	2.860	-1.0000 0.9764 0.9764		7000 500 600	5500 450 500	43560 1782 750
4.	68)	3 118		59	120	2 76	6480	0:00-24:00	1-12	46 OTHER RAW 61 ELECTRICITY		-1.0000	0= 860=	-1 -1	4333 4533	28080 29372
		3 118 3 118		59 59		1 72 1 72				13 C HEAVY OIL 13 C HEAVY OIL	2.460	0.9300		-1	500 500	540 540
								•						· · ·		

.

	CO FAC FAC UN TOR ILI TY Y TY	HOUR	PRODUC.	ENITT RATING (RM3/H)	ED GAS NORMAL (NH3/K)	ANNUAL Sox (NM3/Y)	ANNUAL NOX (RH3/Y)	SHA NO PE	HEI	DIA	ACK   TEM (*C)	NX	МΥ	DX (N)	
1)	1 1 1	4428	-1	-1	1526+	6177	927	18	15	0.5	215	22	23	120	, <b>9</b>
2) ⁻		1675	-1	~1	3816=	6704	860	. 1 B		<u>م</u>	200	26	10	460	
3)		8040	-1	-1	272+	2	194	2 8	12	0.4	200	26	10	460	3
4) 5)	1 2 3	8040 1675	-1	-1	369= 78+	2	264	38	12	0.4	200	26 26	10	460	3
				•	100	ų	12	4 B	12	0.0	200	- <b>60</b>	10	460	3
6) 7)	1 6 1	3000	-1 -1	~1 -1	827+ 1670+	1323	320	1 B	12	0.3	200	26		600	
		1200	-4	-1	10/04	6404	1553	28	12	0.3	200	26	11	600	•
8)	2 7 1	1680	-1	-1	1078+	342	55	1 8	26	0.7	150	28	11	20	1
9)		7200	-1	-1	216*	1177	188	18		1.5	100	21	14	40	
10)	1 8 2	7200	72000	-1	42000+	0	12503	18			100	21	14	40	
11)	1 9 1	7200	8600	-1	5017=	0	1493			9.9	_1	22		4.00	
					· · · · ·		1473	18	2	¥.Y	-1	22	23	650	1
12) 13)	1 12 1	4800 4800	-1 -1	-1 -1	19875+ 19875+	100054	12831	18		0.8		27	9	220	1
14)	1 12 3	0	-i	-1	1701.50	100035	12831	2 B 3 B		0.8		27 27		220	
15)	1 : 13 1						-				-			-10	1
1.57 .		2000	-1	-1	196*	89	33	1 A	20	0.3	-1	55	21	540	8
16)	1.14 1	1450	-1	-1	1097*	848	205	1 B	25	0.4	-1	22	12	240	Í S
17)	1 15 8 1	8760	-1	-1	2671=	12290									
18)		8760	-1	-1	2671=	12290	2452 2452	1 B 2 B		1.6	80 80	34 34		500	
19)	1 15 .3	8760	-1	-1	1996*	.: 11	915	3 B	12	0.6	80	34	8	500	2
20) 21)	1 15 4	8760 8760	-1 -1	-1	0*	. 0	0	4 B.		0.8	-1	34	8	500	2
22)		8760	-1	-i	0.	.ŭ	. 0	5 B 6 B		0.6	-1 -1	34	8	500 500	2
23)	1 16 1	2400	- •	- •		_				1					
237		2600	-1	-1	363=	0	42	1 B	. 5	9.9	-1	28	19	120	1
24)		7200	-1	-1	4770=	28228	4621	1 A		0.9		23		240	
25) 26)	1 17. 2	1500	-1	-1	0 387*	0	0	1 A 2 A			250	23	21	240	8
		1000	•		561+	v		ZA	Ş	0.6	-1.	23	21	160	7
27) 28)		4800	-1	-1	1113:	4426	716	1 B		0.5	-1	24		500	
207	1 18 2	800	-1	-1	3175=	1	116	28	5	9.9	~1	24	21	500	3
29)		6240	-1	-1	1005=	5668	851	1 B	18	0.5	-1	22	32	280	8
30)	1 19 2	4368	-1	-1	1002*	3968	596	2 A	16	0.6	~1	25	12	280	8
31)		6912	· -1	-1	17935∓	130071	16680	18	15	1.0	250	30	8	380	٦
32)	1 20 2	0	-1	-1	· 0	0	0	1 B		1.0		30		380	
33) 34)	1 20 3	. 0	: -1 -1	-1	0	0	0	28		1.0		30	. 8	380	3
35)		6912	-1	1	739.	0	0 483	2 B 3 B		1.0	250	30	8	380 380	3
39)	1 20 6	6912	-1	-1	194 .	1	121	4 B		0.5	-1	30		380	
37)	1 20 7	6912	-1	-1	1315+	3	411	58		0.4	-1	30		380	
38)	1 21 1	1048	-1	-1	87*	1	5	1 .	7	0.3	-1	24	21	480	,
39)			-1	-1	87*	4	21	2 A	7	0.3	-1	24	21	480	2
40) 41)	1 21 3	3000 3000	-1 -1	-1	211* 816=	71	34 108	3 A 4 A	7	0.3	-1 -1	24 24		480	
,		3660	•		010-	•	100	- <b>1</b>	. 1	0.4	-1	24	<b>4</b> t	480	~
42)	1 55 1	3966	-1	-1	7632*	25114	3771	18	20	0.5	-1	22	13	860	6
43)	1 23 1	0	-1	-1	. 0	0	0	1 .	18	0.4	-1	25	20	260	2
5															
443	1 24 1	2080	-1	-1	270=	680	76	1 A	17	0.3	115	22	13	80	9
45)	1 25 1	2400	-1	-1	175=	342	. 55	18	6	0.5	-1	23	13	500	5
463	1 27 1	3840	-1	-1	17.	~									
	* ** *		-1	-1	52*	0	3	1 8	5	0.3	-1	34	. 8	\$00	2
47)		\$760	-1	-1	604 ×	2671	647	18		0.4		28	8	\$00	8
48) 49)		5760 5760	-1 -1	-1 -1	604 = 604 =	2671 2671	647	2 B		0.4		85 90	8	\$00	8
50)		8400	-1	-1	197*	25/1	372	38 48	15	0.4	270	28 28	8 8	500 500	8
51)	1 29 5	8400	-1	-1	197•	-1	372	48		Q.8	÷ī	28	8	500	8
523	1 30 1	4160	-1	-1	207=	670	110	18	9	0.3	·- 1	22	14	140	,
			-	-											'
\$3)	1 32 1	7200	-1	-1	749=	605	214	1 A	12	0.5	` <b>→1</b>	23	12	20	1
\$43		5110	-1	-1	1347 *	5769	933	1 A	12	0.3	-1	23	23	\$40	7
553												·			
151	1 34 1	2700	-1	-1	843*	2093	314	18	20	0.5	-1	22	14	880	4
56)		1480	-1	-1	3498=	6796	759	1 A			210	21		400	
57)	1 35 2	1470	-1	-1	3498*	6796	759	2 A	15	0.7	210	21		600	
58)		2400	· -1	-1	1193=	1526	370	18	12	0.8	'-1	22	13	120	7
593	1,36 Z	2400	-1	- 1	1193=	1526	370	28		0.8		22		120	
60)	1 39 1	8760	-1	-1	6310*	99330	13417	18	15	0.5	-1	23	21	580	
										+	1				
61)	1 40 1	2340	-1	-1	398 *	984	126	1 A	14	0.4	-1	55	21	180	9
623	1 41 1	5460	-1	- 1	1988=	12435	1507	1 3	21	0.5	-1	26	. 11	440	់រ
63)	1 41 2	5480	-1	-1	1988*	12435	1507	2 B	21	0.7	-1	50	11	640	1
64) 65)		5460 3300	-1 -1	-1	1988	12435 44288	1507 5369	3 B 4 B		0.7	-1 -1	26		640	
							3304	• 5	<i>c</i> 1	0.0	-1	26	**	640	1
	-1 42 1	4640	-1	-1	795+	1967	476	18		0.3		22		200	
66)	1 23 -		-1	-1	0	0	0	28	- 25	0.3	80	22	16	200	4
66) 67) 68)	1 42 2	v													

						LIST OF	FACILITY	, CPATTERI	K 2)							
SEQ)	TY	FAC TOR Y	FAC ILI TY	0PE. HOUR (H)	ARRUAL PRODUC, (TOW/Y)	EMIT RATING (NM3/H)	TED GAS HORMAL (NM3/H)	ANNUAL SOX (NH3/Y)	ANNUAL NOX (RH3/Y)	SHA	HE1 DIA (M) (M)	TEM		ΗY		ÐY
69) 70) 71) 72) 73) 74) 75) 76)		45 45 45 45 45 45	234567	7200 7200 7200 7200 7200 7200 3300	-1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1	572* 0 26* 26* 26* 167* 39* 49*	4302 0 123 123 123 123 1 176 80	552 0 48 48 48 155 69 22	1 B 2 B 3 B 5 B 6 B 7 B 6	11 0.4 8 0.4 8 0.2 12 0.3 8 0.3 12 0.3 5 0.2 6 0.2	-1 -1 -1 -1 -1	24 24 24 24 24 24 24	12 12 12 12 12 12 12	420 420 420 420 420 420 420 420	880 880 880 880 880 880
77) 78) 79) 80)	1 1 1	46 46 46 46	1	3600 3600 4500	-1	-1 -1 -1 -1	239* 302* 109* 363*	711 896 0 0	115 145 32 0	1 B 2 B 3 8 4 8	15 0.9 15 0.4 5 9.9 10 0.4	170 170 -1	26 26 26	9 9 9	480 480 480 480	280 280 280
81) 82)	1		5	1320 1320	-1 -1	-1 -1	1908. 1908:	1340 1340	324 324	18 28	15 0.5 15 0.5					
83) 84) 85)	1 1 1		1	2482 2482 2482	-1 -1 -1	-1 -1 -1	1399± 461± 763±	1848 602 1000	448 146 242	1 B 2 B 3 B	20 0.3 20 0.3 20 0.3	-1	23	14		620
86) 87) 88) 89)	1.	51 51 51 51	2 3	8472 8472 8472 8472	-1 -1 -1 -1	-1 -1 -1 -1	398+ 1299+ 631+ 1299+	3846 1936	456 692 348 692	1 B 2 B 2 B 2 B	$\begin{array}{c} 15 & 0.6 \\ 10 & 0.5 \\ 10 & 0.5 \\ 10 & 0.5 \\ 10 & 0.5 \end{array}$	~1 -1	38 38 38 38	6	480 480 480 480	720 720
90) 91)	1	52 52	1	4480	-1 -1	-1 -1	4775	2235	287	1 B	25 0.3 15 0.2	-1	22	14	60	320
925	1	53	1	4752	-1	-1	1097:	4767	716	2 B 1 B	21 0.7	~1	21	23	920	720
93) 94)	1	53 54		832 7200	-1 -1	-1 -1	731• 2182=	552 3394	83 1370	2 B 1 B	21 0.7 9 0.3					
95) 96)		55 55		8400 8400	-1 -1	-1 -1	9079* 9079*	116424 116424	10660 10660	1 B 2 B	30 0.6 30 0.6					
97) 98) 99) 100)	1	56 56 56	3	0 6000 1240 1240	-1 -1 -1 -1	-1 -1 -1 -1	0 3180* 0* 26*	10174	0 2464 0 0	1 B 2 B 3 B 4 B	6 0.6 6 0.6 6 0.6 6 0.3	175 · -1		19 19	480 480 480 640	920 920
101) 102) 103) 104)	1 1 1	56 56	56.7	7200 7200 7200 7200	-1 -1	-1 -1 -1 -1	0= 0= 0= 0=	00000	0 0 0	5 B 6 B 7 B 7 B	4 0.3 4 0.3 5 0.3 5 0.3	-1 -1 -1	21 21	19 19 19	540 640 840 640	980 980 960
105)	1	58	1	1960	-1	-1	795=	1424	214	1 B	15 0.5	-1	22	23	160	940
106) 107)		59 59		1800 1800	-1 -1	-1	398+ 398+	593 593	96	1 B 2 Ə	21 0.6 21 0.6					
108>	1	61	1	3600		-1	4680*		454	1 A	18 0.5					
109)		63	1	96	-1	-1	1414+	35	12	1 8	15 0.5	-1	22	13	840	720
110) 111) 112)	1			7200 6480 0	-1	-1	2862= 493= 0		2856 443 0	18 28 38	10 0.5 6 0.3 15 0.8	-1	23	21	600 600 600	940
113) 114)		65 65	1 2	270		-1 -1	272* 272*			18 19	11 0.2 11 0.2					
115) 116)		66 66	2	3600 3600		-1 -1	3975* 4770*		1905 2286	19 28	10 0.4 14 0.6				400 400	
117) 118)				3600 3600		-1 -1	795× 795×		385 385	18 29	21 0.4 21 0.4					
119) 120) 121) 122) 123) 124) 125) 126)	1 1	68 68 68 68 68 68 68 68	2	7200 7200 7200 7200 7200 0 0 0	-1 -1 -1 -1 -1 -1	-1 -1 -1 -1 -1 -1	3991* 4802* 4802* 4802* 4802* 0 0 0	43610 43610 43610	4640 4640 4640 4640	1 A 2 A 2 A 3 A 3 A 4 A	15 1.2 20 1.5 20 1.5 20 1.5 20 1.5 20 1.5 20 1.5 20 1.5 15 1.3	-1 -1 -1 -1 -1	25 25 25 25 25 25 25 25 25	9 9 9 9 9 9 9	720 720 720 720 720 720 720 720	760 760 760 760 760 760
127) 128)		69 69		1000 192			1034= 0=	1345 0	139 0	18 28	10 0.4 15 0.4	-1 -1			520 520	
129) 130) 131) 132)	. 1 1 -	70 70 70 70 70	3	8400 8400 8400 8400	-1	-1 -1	9266* 11603* 3518* 3765*	84892 13524	34280 42850 2039 1453	1 A 2 A 3 B 4 8	18 0.6 18 0.6 6 1.7 9 1.0	1 1	25	15		760 900
133) 134)	1	71 71 71	1	4800	-1	-1 -1	0* 0*	0	0	* 8 1 8 2 8	12 0.3 16 0.5	-1	22	24	520 440 440	440
135)	1		• 1	2000	-1	-1 -1 -1	2741± 2741≠	4	- 496 496	2 D 1 B 2 8	13 0.6 15 0.6	-1	21	21		720
137) 138) 139) 140) 141)	1 1 1 1 1	73 73 73 73 73 73	1 2 3 4 5	6048 6048 4632 6336 2304	-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	63= 721= 156= 151= 165=	0 16 14 1 218	41 545 102 218 37	1 C Z B 3 B 4 C 5 C	10 0.5 10 0.2 10 0.2 10 0.2 10 0.2	90 70 70 60 -1	21 21 21 21 21 21	21 21 21 21 21 21	560 560 580 580 480	680 680 660 660 480
142)	1	73 74		2112		- L - 1	903+	1063 407	180 84	6 A 1 B	15 0.3 8 0.4	-1	21	21	560	560
												-				

. .

											÷.,								
SEQ)	CD UN Ty		FAC ILI TY	HOUR	ARKUAL PRODUC. (TON/Y)	RATING	ED GAS NORMAL (NM3/N)		ANNUAL NOX (NM3/Y)	51	A HEI	DIA	TEN			DX			
144)	1	74	2	4046	-1 -1	-1	491.	407	84	26	. 8	0.4	-1			50Ó	840		
145)	2			8760	-1	-1 -1	491*	407	84 503	38				21		500			
147)	2			3000	-1	-1	2194.	5453	862	1 /			270	45 30		280 500			
148)	2	È- 5		4224	-1	-1	1225+	2	214	10		0.5		42		520			
149)	5	5	- 2	4224	-1	-1	1225+	2	214	28	10	0.5	1	42	18	850	720		
150) 151)	5	5		4224 2112	-1 -1	-1	1225*	2	214 71	3 H 4 B		0.5		42 42		880 880			
152>	2	5	5	5775	-1	-1	31751	2	284	5 8		0.5		12		800			
153)	2	5 	6 	2640	-1	-1	1304 •	3685	457	68	5 10	Q.5	-1	42	18	800	800		
154)	2			960	- 1	-1	3382*	٥	116	1 4		1-1		43	24	640	620		
155)	2	7		0 1600	-1 -1	-1 -1	0 413=	0 540	0 87	1 E 2 9		0.4		34 34		600 600			
157)	2	8	1	2400	-1	-1	795+	1017	246	1 8	12	0.5	-1	42	18	900	160		
15B)	2	9	1		-1	-1	0	ó	0	18	18	0.5	-1	44	18	520	120		
159) 160)	2	9		2640	-1 -1	-1	1479* 2957*	2077	503 1006	2 8		0.5		44		520			
161)	ź	9		2640	-1	-1	4420#	6231		3 B 4 B		0.5		44 44		440			
162)	2	10		3600	-1	-1	906*	1730	419	1 B		0.2		~ <					
163)	2	10		3600		-1	906*	1730	419	2 8		0.4		36 36		920 920	420		
164)	2	11	1	4200	-1	-1	2274+	10005	1283	1 4	25	8.0	[:] -1	38	19	660			
165)	-,-	11		4200	-1	-1	2274=	10005	1283	2 \$		0.8		38					
166)		12		7854	-1	-1	7076*	23	13089	18		0,5		35	25	80	20		
167)		13		2400	-1	-1	6240+	0	534	1 4		0.6		45	15		920		
168) 169)		14		2080	-1	-1	165=	222	33	18		0.5		42		660		•	
170)		16		1500 1300	-1 -1	-1 -1	1908= 13=	3184	366	18		0.4		29		320			
							-		1	1 8			175	30	24		40		
171)		17		7200	-1 -1	-1 -1	398× 1336×	4461 4412	391 602 -	1 B 2 A		0.4		41 41		540 540			
173)	2	17	3	4500	·~î	-1	408*	1	116	3 B		9.9		41		\$40			
174)		18		960	-1	-1	304=	47	221	18	5	9.9	-1	49	18	460	320		
175)	2	19	1		-1	-1	0	0	0	1 B			250			460			
176)		19		7680	-1	-1	1113+	9727		28			250			460			÷.,
1773		20		570	-1	-1	700×	205	59	1 4		0.5	-1			260	20		
178)	. <b>-</b> -			1080	-1	~1	1540*	<b>0</b>	60	1 A		0.9	-1	55		500			
179)		22		720	-1	~1	70*	19	- 40	1 0		0.1		45		220			
180) 181)	2	23 23		7200	-1 -1	-1 -1	1461 1193*	25200 2001	1516 246	1 A 2 B			200 200			500 500			
182)	· 2	23	3			-1	ò	· • • • •	õ	38		0.8		42		300			
183) 184)		23 23		1600 1600	-1 -1	-1	2894= 2894=	1646	284 284	4 B 4 B		9.9		42 42		500 500			
<i>e</i>	• •																		
185) 186)	2	24 24		4348 4348		-1	14150+ 14150=	1462	2579	18	5	9.9	-1			280 280			
187)	5	24	ં 3	4368	~1	-1	14150=	1462	2579	1 8	5	9.9	-1.	43	18	280	\$00		
188)	2	24	4	4368	-1	-1	337*	509	96	2 C	2	0.2	-1	43	18	280	500		
159)	2	25	1	2400	-1	-1	3266*	2	330	18	5	9.9	1	37	20	860	60		
. 190)		50		7200		-1	795*	3723	599	1 4			-1			.40	40		
191) 192)		26 26		810 7200	-1	-1 -1	227=	ŏ	8 0	2 A 3 B		9.9	-1 -1	34 34		40	40		
193)	3			4864	23567	-1	21000	٥	4092	1 4	21	00	40	17	22	880	920		
194)	3	1	2	4864	23567	- 1	21000	0	4092	1 A	21	9.9	40	17	22	880	920		
195) 196)	3	1	3	0 4864			0 10685*	0 63867	6736	1 A 2 A			40 -1	17		880 880			
197)	3						6360=	48025			÷	÷ .	250	20		140			
198)	3	S	2	7200	-1	-1 -1	6360*	48026	6159	1 A 1 A	31	1.4	250	20		140			
199)	3		1	8448	-1	-1	1797*	15859	2034	18	20	ò.5	180	18	22	500	480		
200)	3			8550	-1	-1	3975+	38729	4695	18	20	0.0	1	17	23	140	600		
201) 202)	3	5	1 2	8040 0		-1	41340* 0	275331 0	44519 0	1 4			250			380 380			
2031	3	5	3	. o	-1	-1	. 0	٥	0	2 4	24	1.4	250 250	. 14	22	380	420		
2043	3	<u></u>		8040	-1	-1	663=	53	15	4 /	25	1.4	240	14		420	540		
205)	3	\$		2352			3246*	7490	988	18			250	18		20			
208) 207)			3	2352			3525• 6029*	8127 13890	1072 1832	28			250 250	18 18	17 17	20 20	360 360		
208)	3					-1	4081=	9599	1266	1 8			-1	16					
209)	3		5	2400			2041+	4800		ž e			-1	16					
210)	3			8448	-1	- 1	1161*	14941	1389	16	5 15	0.6	180	18	22	640	820		
211)			1	7896	-1	-1	0•	0	0	. 1 E	3 5	9.9	-1	19	22	520	840		

٩

					LIST OF	FACILITY	CPATTER	H 2)							
	SEQ)	CD FAC FAC UN TOR ILL TY Y TY	HDUR	ANNUAL PRODUC. (TON/Y)	RATING	(ED GAS Normal (HM3/R)	SOX	NDX	SKA		TEM	HX	MY	DX (H)	or
		3 9 3	7896 1440	-1 -1	-3	270* 270* 2633*	1119 203 1597	271 49	2 B 3 A	13 0.2 21 0.1 16 0.4	30 50	19 19	22	520	840
	214) 215)			-1 -1	-1	62671	7921		4 A 1 8	16 0.4					
	216) 217)		4800	-1 -1	-1 -1	604± 716=	1528 1831		1 B 2 B	15 0.5	-1 -1	21 21	23 23	20 20	700
		3 12 1 3 12 2	2160	-1 -1	-1 -1	1820* 2300*	0 1136		1 B 2 A	12 0.4					
	220) 221)	3 13 2	6000	-1 -1	-1 -1	3021+ 3021+	13352 13352		1 A 2 A	15 0.5 15 0.5					
	222) 223) 224) 225)	3 14 2	7920 7920 7920 7920 0		-1 -1 -1 -1	6204* 8204* 8204* 0	68154 68154 68154 0	8740 8740	1 A 2 A 3 A 1 A	20 0.8 20 0.8 20 0.8	5 210 5 210	18 18	23 23	260 260 280 260	380 320
	Z26)	3 15 1		-1	-1	989=	212	61	1 B	15 0.3	5 -1	14	22	780	600
		3 16 2 3 16 3	4200 4200 2112 2112	~ 1	-1 -1	3578* 3578* 4770* 5963*	23037 23037 15455 19307	2020	1 B 2 B 3 B 4 B	15 0.4 15 0.4 15 0.4 15 0.4	5 200 5 200	19 19	23	60 60	
			900 7200			3434* 3434*	4705 37716			21 0.9 20 0.9					
• .	234) 235)	3 18 2	3200 7200 3200 0	-1	-1 -1	986* 1002* 811* 0	1670 3866 1390 0	936 337	18 28 38 48	15 0.5 18 0.5 15 0.5 19 0.5	3 210 5 210	19 19	22 22	940 940	180 180
	237) 238)	3 19 2				105# 0*	0		1 A 1 A	11 0.0 11 0.0					
	239)		7200		-1	461=	3485	447	1 B	21 0.9	5 150	21	55	320	560
	240) 241)					105*			1 B 1 B	10 0.3 5 9.4					
	242)	3 23 1	7200	-1	-1	1619=	7587	1542	1 A	12 0.4	5 -1	20	23	420	280
	2443	3 23 3	7200 7200 4800	- 2	-1		7587	2542		12 0.0	5 - 1	20	- 23	420	280
	246) 247)	3 23 5 3 23 6	4800 540 540	-1 -1	-1 -1	0= 5936=	0 566 566	0	4 B	14 0.4 5 9.9 5 9.9	5 -1 9 -1	- 20	23 23	420	280 280
	249) 250) 251) 252) 253)	3 24 2 3 24 3	2096 2096 2096 2096 2096	-1 -1 -1	-1	1002* 1678* 1678* 1678* 1678*	3177 1 1 1 1	147 147 147	1 A 2 A 3 A 4 A 5 A	7 0.4 11 0.7 11 0.4 11 1.5 11 0.7	-1 -1 -1	19 19	22 22 22		840 840 840
	254) 255) 256)	.3 25 2	960 960 2880	-1 -1 -1		159* 239* 1560*	85 218 504		18 28 33	18 0.5 18 1.0 15 0.8	-1	20	23	560	560
	257) 258)	3 26 1 3 26 2	6000	-1 -1	-1 -1	0 795×	0 5003	0 642	18 28	25 0 8 25 0 8					
	259) 260)	3 27 1 3 27 2	300			2496* 1272*	420 349	148 52	1 Å 2 Å	₹5 0.5 75 0.5					
	261)	3 28 1	2400	-1	-1	954*	2979	308	18	10 0.4		14		400	
·	262) 263) 264) 265) 265) 265) 267) 268)	3 29 2 3 29 3 3 29 4 3 29 5 3 29 6	6336 6336 6336 6336 6336 6336	-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	1497= 1497= 1497= 1497= 1697= 1697= 1697=	2 2 2 2 2 2 2 2 2 2	397	48 59 68	16 0.5 18 0.7 18 0.7 18 0.7 18 0.7 18 0.7	40 45 45 45	19 19 19 19 19	22 22 22 22 22	860 860 860 860	240 240 240 240 240 240
	269) 270)	3 29 8 3 29 9	6336 6336 6336	-1 -1	-1 -1	1497*	3	397 0	78 88 98	18 0.7 18 0.7 18 0.7	45 -1	19 19	22 22	860 860 880	240 260
· .	271) 272) 273) 274) 275)	3 29 11	6336 6336	-1 -1 -1	-1 -1 -1	0 = 0 = 0 = 0 =	0 0 0 0	0	10 8 11 8 12 8 13 8 14 8	19 0.7 18 0.7 18 0.7 18 0.7 18 0.7	-1 -1 -1	19	22 22 22	980 880 880 880 880	240 260 260
	276) 277)	3 30 1 3 30 2		-1 -1	-1 -1	954* Q	1721 0	296 0	1 Å 2 Å	24 1.0 15 1.0				460 460	
	278) 279)	3 31 1 3 31 2	560 560	-i -1	-1 -1	509= 509=	325 325	38 38	1 B 2 B	8 0.3 8 0.3	-1 -1	14 14		740 740	
	280) 281)		2700	-1 -1	-1 -1	636= 636=	1953 1953	230 230	1 A 2 B	18 0.8 12 1.1					
	282) 283) 284)	3 33 2	8400 12 490	-1 -1 -1	-1 -1 -1	604 × 23 × 325 ×	4202 15	708 38 16	18 28 38	15 0.5 6 0.6 13 0.5	-1	- 18	18	880	660
			410	-1	- 1	22.74	•	10			-1	10	10	490	

•

•

J.	L15T	OF	FACILITY	(PATTERN	2)

	SEQ)	CO FAC FAC UN TOR 1L TY Y TY	C OPE. HOUR (N)	ANNUAL PRODUC. (TON/Y)	RATING (NH3/H)	IED GAS NORHAL (NM37H)	ANNUAL SOX (RH3/Y)	ANNUAL NDX : (NM3/Y)	SHA NO PE	<b>HE</b> I	DIA	ACK DA Tem (*c)	та Их	ЯΥ	DX (N)	DY
	287) 288)		3 3440 4 3440		-1 -1	3821= 5751=	3082 4613	354 531	28 28			~1 -1			420 420	
	289) 290)		1 0 2 5400	-1 -1	-1 -1	0 8580=	0 3149	0 1603	1 A 2 A				20 20		320 320	
	291)	3 36	3900	1	-1	2226*	11059	1232	1 B	15	0.7	175	14	22	780	880
	292)	3 37	-	-1	1	1749=	4786	614	1 B	25	0.8	-1	20	22	500	680
	293) 294) 295)	3 38 2	1 2400 2 .0 5 .0	-1 -1 -1	-1 -1 -1	1204 • 0 0	531 0 0	261 0 0	1 B 2 B 3 B	12	0.3 0.3 0.3	-1 -1 -1	19	22	860 860 860	40
	296) 297)		1 2080 2 2080	-1 -1	-1 -1	302. 509.	567 945	85 142	1 B 2 B		0.5 0.5				620 620	
	298)	3 40 5		-i	-1	890+	2401	308	1 A	15	D.6	-1	21	22	140	600
	299)		1140	-1	-1	125*	16	6	1 A	10	0.3	-1	14	22	80	660
	300) 301)		1 6500 2 6500	-1	-1 -1	636× 636×	4727 4727	573 573	1 B 2 B		0.3 0.3				300 300	
	302)		2655	-1	-1	1113*	2450	396	1 A.	8	0.3	-1	20	22	220	820
	303) 304)		936 2 3520	-1 -1	-1 -1	1590* 1988*	1238 5795	200 937	1 B 2 B		0.5	-1 -1	19 19		540 540	
	305) 306)		3168 0	-1 -1	-1 -1	811* 0	2134	345 0	1 B 2 B	14 14	0.5	-1 -1	19 19		840 840	
•	307) 308)		1860	-1	-1 -1	1034= 1034=	2001 2001	257 257	1 B 2 B	15	0.5	150 150	17		180 180	
	309) 310)	3 46 1	930	-i -1	-1 -1	953× 953×	0	42	-3:8 4 8	15	0.5	100	17	18	180 180 180	680
	311) 312)	3 46 5	930 930	-1 -1	-1 -1	953* 953*	0	42	58 68	15	0.3	100		18	180 180	680
	313) 314)		1 8640 2 8640	-1 -1	-1 -1	6519×	64396 64396	7506 7806	1 A 2 A	25	0.7	225			800 800	
	315) 316)	3 47 3 3 47 4	5 O	-1 -1	-1 -1	0	0	0	3849	12	0.7	225	15	22	800 800 800	480
	317) 318) 319)	3 48 1	2400	-1 -1 -1	-1 -1 -1	1855* 0 0	3488 0 0	570 0 0	18 28 38	10	0.4	-1 -1 -1	18	17 17 17		940 940 940
	320) 321)		3960 3960	-1 -1	-1 -1	3339= 3339=	7054	1709		12	0.6	180	19	24	480 480	40
	322) 323) 324)	3 50	- 1 2400 2 2400 3 0	-1	-2 -1 -1	477* 477* 0	1201 1201 0		1828	10	1.3	-1 -1	16	19	200 200	840
	325)	3 51	1 5760	30000	-1	21294*	9705	. 0 5209	38 1 A		-	- T-	16 15		200 300	
	326) 327) 328)	3 51	2 \$740 3 4800 4 3600 -	-1	-1 -1 -1	21294* 10852* 10852*	9705 35914 26936	5209 6151 4613	1 A 2 S 3 B	28	1.0	300	15 15 15	21	300 260 260	480
	329) 330)		1 0 2 7200		-1 -1	0 4086*	0 15684	0 3799	18 25			155 215	16 16		360 360	
	3312	3 53	-		-1	75+	28	11	18	10	0.2	150	19	23	560	140
	332) 333)	3 54	1 2880 2 2880	-1	-1 -1	4770= 4770=	20956 20956	1838 1838	18 25	18	0.9	175	15		40	40 40
	334) 335)	3 54 3	3 2880 4 4320	-1	-1 -1	4770= 4770=	20956 20956	1838 1838	38 48	18	0.9	200 .	15 15	52	40	40 40
	336)	3 55	1 0	-1	-1	° 0	Q	o	1 Å	10	0.5	-1	20	55	720	60
	337)	2 29	1 4200	-1	-1	1224#	4709	707	1 A	50	0.3	-1	15	20	140	680
	338) 339)	3 57 .	1 4480	-1	-1 -1	461+ 0	1596	386 0	18 26	6	0.0	-1 -1	19		560 560	
	340) 341)	*******	3 480 - 1 0		-1 -1	13125× 0	5670	1802 0	38 14			-1 -1		53	560 500	740
	342)		1 0	-	-1	0	0	0	18	10	0.5	230	14	22	420	
	343) 344)	3 59	2 8448 3 8448	-1	-1 -1	3975= 795+	35219 7037	4516 880	2 9 3 8	10 10	0.7	170	14 14	22	420 420	500
	345) 346)	···	6 8648 		-1	795.	7037	880	48	10	0.6	270	14	22	420	500
	348)	3 60	- `	-	-1 -1	429* 1092*	1045 294	157 95	1,8 1 A			-1 -1			240	
	348)	3 62	 1 4500	-1	-1	243=	20	106	18			-1 -1 :			00 660	
	349) 350)	3 62 3 62	2 4500 3 4500 -	-1 -1	-1 -1	243= 243•	20	105 105	18 18	5	9.9 9.9	-1	15	20	660	120
	352)	3 63	-	-1	-1 -1	182-	21 0	71 0	18	5	0.5 9.9	100 A.			140 140	
	353) 354) 355)	3 64 3	1 2750 2 2750 3 2750	-1	-1	286= 286= 284=	414	105 105	18 29	12	0.3	-1	20 20	21	980 980	720
			3 2750 - L 2400		-1 -1	286* 557*	1354	105 180	38 18		0.3		20	21	980	720
				•	-			100		**	···	-1	**	~~	600	700

	SEQ)	UN	TOR	ILI	HOUR	PRODUC.	EN177 RATING (NM3/H)	ED GAS NORHAL (NM3/H)	ANNUAL SOX (NH37Y)	ROX	SHA NO PE	HEI	DIA	тен	HX	нт	ФX	DY (M)
	357)		66		4080	-1	-1	5100*	o	107	1.8	18	0.5	-1	19	53	120	160
	358) 359)		67 67	1 2	2440		-1 -1	1367+ 0	3502 0	468	18 26		1.2		14 14			300 300
	360) 361)	3	67	3	0 90	-1 -1	-1	ů 0*	ő	0	38 48	20	0.8	1	14	25	940	300 300
	362)	3	68		7200	-1	-1	604 =	4882	\$76	1 #	14	0.5	-1	14	19	740	260
	363)		68		7200	-1	-1	404*	4882	\$76	2 B			-1				260
	364) 365)		69		7200 7200	-1 -1	-1 -1	1590 1590	12007 12007	1540	1 B 1 B		0.9		17			
	366) 367)		70 70		4800 2400	-1 -1	-1 -1	1320+ 1320+	5813 2907	873 436	1 A 2 A		0.5	-1 -1	14 14			520 520
	368) 369)		71 71		4200 4200	-1 -1	-1 -1	3307= 3307=	14575 14575	1869 1869	1 B 2 B		0.6		13 13			60 60
	370)				4800	-1	-1	223+	1134	145	1 A		0.8		18			160
	371)		73	1	7200	-1	-1	4680=	3780	1334	1 A		1.0					540
	372) 373)		73		7200	-1 -1	-1 -1	7800. 1169.	6300 2318	2223 383	2 A 1 B		0.8		18			540 880
	374)	3	74	2	2508	-1	-1	1169.	2318	383	28	23	0.4	-1	15			
	375) 376) 377)	3	75 75 75	2	2400 2400 2400	-1 -1 -1	-1 -1	18550* 18550* 18556*	15805 - 15805 15805	2844 2844 2844	1 B 3 B	5	9.9	40		23	500	840 840 840
· · ·	378)	3	75		2400	-1	-1	18550=	15805	2844	1 B 1 B		9.9		16			840
	379) 380)		76	1 2	1095 0	-1 -1	-1 -1	541* 0	314	76 0	1 A 2 B		0.5 0.5		13 13			640 640
	381)		77		8448	-1	-1	207+	1584	538	18	9	0.5	-1	14	50	60	160
	3B2) 383)	3	78 78	ì	6000 3000		+1 -1	557 477 •	3052 1308	458 196	1 A 2 A		0.3		14 14			80 80
	384)	3	79	1	5400	-1	-1	2115+	9483	1533	1 B	18	0.6	-1	15	20	60	580
	385)	<u> </u>	79	2 	0 7200	-1 -1	-1 -1	0 100=	0 0	0 28	2 B 1 B		0.5		15 16			580
	387)				4800	-1	-1	75*	66	33	18		0.2	-1	16			840
	388)		82		3600	-1	-1	3180.	10464	1571	1 B	15	0.5			23	480	140
	389)		82		3600	-1	-1	2385*	7848	1178	2 B		0.5					140
	390)		83 84		3000 2700		-1	763* 700*	2603	307 262	1 B 1 8				14 15			800 440
	392)	3	85	 t	2700	-1	- 1	429*	610	148	1 A	-15	0.5	-1	14	22	320	700
	393)	-	85	2 		-1	-1	0	• 948	0	2 .		0.5		14			700
	394) 395)		84		1800 7680	-1	-1 -1	636× 620×	5753	153 641	1 A		0.8		20 14			620
	396)	3	87	2	7680	-1	-1	716#	6706	747	2 A	12	0.6	90	14	22	480	620
	397) 398)		89  90		3000		-1	223= 3021=	596 8018	89 972	1 A 1 8		0-4	1	13 14			
	3993		91		2320	_	-1	7954	678		18				19			720
	4003		93	ī			-1	74 •	8	2	1 A	2	0.2	-1	15	20	320	440
	401) 402)		94 94				-1 -1	4638= 4638=	790 790	143 143	1 C 2 C				16 16			
	403)	3	93		7200	-1	-1	473=	2001	279	18				15			
	404) 405)		95 96	•	7200		-1	2449× 5157×	4002 314		28 18				15 16			
	406) 407)	3	96 96	ź	270	-1	~1	5157= 9646+	314	85	18	5	9.9	-1	16 16	19	480	960
	408)	3	97	1	3590	-1	-1	67* 67*	367	47	18	5	9.9	45	17	27	<b>500</b>	240
	409) 410) 411)	3	97 97 97	3	3590 3590 3590	-1		67× 67×	367	47	18 18 18	\$	9.9		17 17 17	27	600	240
	412)	3	98	 1	8400	-1	~1	<b>5</b> 50193*	0	310364	1 A	76	3.4	140	17	19	840	740
	413) 414)	3	98	3	8400	-1	-1	550193* 1021788*	. 0	310364	2 A 3 A	84	.5.0	135		19	880	786
	415) 416)		98 98	5	8400 8400	-1 -1		1021788* 828564*		574391 1050318	4 A 5 A	110	5.0	135 150	17	19	920	
	417) 418)	- 3	99 97	1	4800 4800			795= 795=	4857	542	18 28	- 30	0.5	-1	19 19	15	940	600
	419)	3	99	3	4800	-1	-1	795*			38				19			
	420) 421)		100		1098 1098			1590 <i>*</i> 0*			1 A 2 B				16 16			
	422)	3	101	1	7920	-1	-1	795.	5104	839	18	10	0.4	-1	16	18	900	960

.

					· .												
SEQ	60	640	\$40	195			ED GAS	ARRUAL	ANNUAL			57	ACK I	DATA-	·		
						RATING	NORMAL	SOX	NOX	SHA							
		Ŷ	ŤŸ			(NH37H)	(14374)		(NH3/Y)							(N)	(8)
		•															
423)		102			-1		4977.	4068	480	18		0.5	-1	17		340	
424)		102		720	-1		760.	- 63	22	2 A		0.5		17		340	
425)	3	102	- 3	720	~1	-1	289.	163	- 19	38	. 12	0.2	-1	17	17	340	940
426)		101		1400	-1	~1	223+	177	43	18			-1			500	
\$207				1400	1		41.34	111	43	10	13	0.3	-1	16	17	200	040
427)	3	104		1200	-1	-1	50+	6	2	1 A	12	1.0	:	17	1.0	180	290
428)		104		7200	-1		22+	š	3	2 Å		1.0		17		180	
429)		104		7200	-1	-1	22+	8	3	3 Å		1.0		17		180	
					-	-				2 11		•••	•	• •		100	100
430)	3	105	. 1	8760	-1	-1	46384*	123778	172563	1 A	50	3.4	300	18	18	. 60	880
431)	3	105	- 2	8760	-1	-1	92741=	247556	345125	2 A			300			140	
	-																
432)	3	106	1	2400	-1	-1	32*	55	. 9	1 8	15	0.4	-1	17	18	550	340
433)		107		1055	-1	-1	970+	930	140	1 B	10	0.5	-1	17	18	340	740
							1										
434)		108		2920	-1	-1	135=	182	34	18	8	0.3	-1	16	18	700	380
				*		· .											
435) 436)		109		3600	-1	-1	2655+	14626	1283	1 B		0.5		16		360	
4301	2	109		3600	-1	-1	1986⊧	10970	962	2 B	15	0.4	-1	16	20	360	120
437)	-	110	1	:0	-1	1	0	0	0	1 B	<u> </u>					~ ·	
438)		110		1440	-1		1193+		231	2 A		0.5	-1	16		900	
439)		110		6744	-1	-1	2430.	29505	2740	3 Å		1.0		16 16		900	
	-			•	-	-	21300	21505	2140			1.0	-1	10		700	200
440)	3	111	1	7200	66800	-1	40133*	. 0	11947	1 A	30	1.5	-1	17	23	480	20
441)	3	111	. 2	1296	6200	-1	20093.	ŏ	1077	1 .		1.5		17		480	žõ
442>	3	111	3	6000	-1	-1	13133+	92368	10052	2 A		1.2		17		440	60
443)	3	111	. 4	7200	-1	-1	1813*	21707	2171	3 A	50	0.6	-1	17		360	
444)	3	111	5	7200	1	-1	2538+	21707	2171	4 A	30	0.9	-1	17	Z2	420	900
	•												:		· .		
445)		112		256B	-1	-1	5279=	5491		1 B		0.5	-1	17	18	200	40
446)		112		7200	-1	-1	0*	0	0	. 2 8	5	9.9	-1-	17	18	240	40
											·						
447) 448)		113		2120	-1	-1	3238*	4927	930	. 1 B		0.8		- 21		100	
449)		113		2120	-1	-1	3035* 809*	4636	875	2 B 3 B		0.8		21		100	
450)		113		2120	-1	-1	809*	1235	233 233	- 3 B - 4 B		0.6		21		100	
451)		113		2120	-1		1214*	1235	348	S B		0.6	-1	21		100	
		113		2120	-1		809+	1221	230	6 B		0.6	-1	21 21	21 21	- 60	560
453)		113		2120	-1		1336=	1846	277	7 8		0.4	-1	51		100	
454)		113		2120	-1	-î	870+	1235	185	8 8		0.4	-1	21		100	
455)		113		2120	-1		890*	1235	185	9 B		0.4	-1	21	21		600
	-																
456)		114		1896	-1	-1	384 e	600	97	1 8	11	0.2	+1	19	23	500	260
457)		114		1896	-1	-1	384 *	600	97	2 B		0.2	-1	19		500	
458)		114		1896	-1	-1	207*	400	51	3 B	- 11	0.4	-1	19.	23	300	260
459)	3	114	4	1896	-1	-1	499=	0	40	48	5	9.9	-1	19	23	500	260
440)	3	114	5	1896	-1	-1	499:	0	40	48		9.9	-1	19	23	500	260
	-				-	•		•					-				
4613	- 3	115	1	4160	-1	-1	272=	1	. 99	18	5	0.3	-1	20	21	960	440
462)		115		4160	-1		635×	1	107	2 B		0.6		20		960	
463)		115		4160	-1		635*	1	107	38		0.6	80	20		960	
484)	3	5 115	4	4160	-1	-1	635=	1	107	4 B	15	0.6	80	20	21	960	440
465)		117		7920			6364*	0	2084	1 4		1.5	-1	19		440	
466)		117		3960			8348*	32398	5058	28		0.8	-1	19		300	
467)	3	5 117	. 3	1500	-1	-1	9275*	13435	2129	38	20	0.6	-1	19	21	360	740
1200					76740		3768.	-	(17-		-						
468) 469)		118 118		6480 1080			22886* 4638*	0	6132	1 A		1.0	-1	16		160	60
4703		118		1080			4038*	8648 8648	1245 1245	28 28		0.6	-1 -1	16 16		180 180	
		, 110		1000	-1	-1	-010+	0040	1543	. 4 8	د.»	0+0	-1	10	24	190	140

# 2.3.2 Calculation of SO₂ emission volume

The emission volume of  $SO_2$  from each factory was calculated by the equation (2-2) shown below. The sulphur content of the heavy fuel oil and kerosene, if not specified by retrieved questionnaire, was thought equal to that of sample fuels in use in Thailand analyzed which is shown in Table 2-10. Likewise, the sulphur content of other fuel as well as its specific gravity was thought similar to the Japanese average shown in Table 2-8.

Solid fuel $Qs = A$	Annual fuel consump. $\times$ S	Surphur content $ imes$ 0.007	)
(Nm ³ /yr)	(kg/yr)	(%)	
Liquid fuel $Qs = A$	Annual fuel consump. $\times$ S	.G. $\times$ Surphur content $\times$ 0.007	(2-2)
(Nm³/yr)	(liter/yr)	(%)	

Gaseous fuel Qs = Annual fuel consump. × Surphur content × 0.01 $(Nm^3/yr)$  $(Nm^3/yr)$ 

 Table 2-10 Surphur content of heavy fuel oil and diesel oil in use in Thailand

Fuel type	Surphur content (%)
Heavy fuel oil No. 1, 2 *(A)	1.98 (value of No.1 class)
Heavy fuel oil No. 3, 4 *(B)	2.58 (value of No.4 class)
Heavy fuel oil No. 5, 6 *(C)	2.46 (Mean of No.5 (3.04%) and No.6 (1.88%))
Diesel oil	0.56 (mean of Shell (0.65%) and ESSO (0.46%))

Note : The *(A) to (C) is the symbol used in questionnaire.

The yearly SO₂ emission volume by each factory and by each facility was shown in Table 2-9, and that by county was shown in Table 2-11, which indicates characteristically that the emission volume of SO₂ from Phra Pradaeng area have much volume. The source distribution figure of SO₂ emission volume from stationary sources with the recovered questionnaire is shown in Fig. 2-1. And that by facility type in Table 2-12 indicates that the emission volume from boiler being significant. That by business category in Table 2-13 indicates that textile industry comes first and next is South Bangkok Thermal Plant. SO₂ emission volume by stack height in Table 2-14 indicates that the emission volume from the stacks in the range of the height from 10 to 40 m and those over 110 m being significant. When the top 20 largest of them are reviewed in Table 2-15, they mostly center around Phra Pradaeng area that has many factories.

Name of county	Number of factories	Number of facilities	SO ₂ entission volume (ton/year)	NO _x emission volume (ton/year)
1 Muang	63	145	3992.28	523.84
2 Bang Pice	28	47	314.66	76.94
3 Phra Pradaeng	117	278	9341.63	7507.25
TOTAL	208	470	13648.57	8108.03

Table 2-11 Emission volume by county

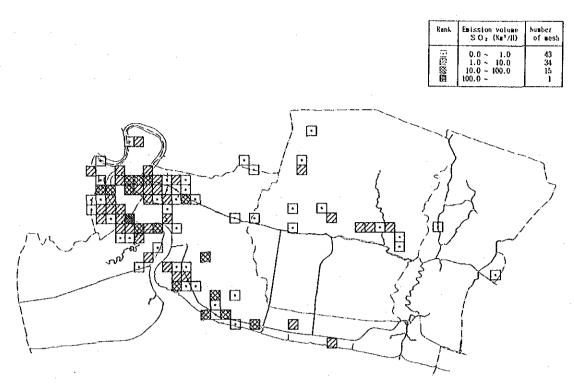
Table 2-12 Emission volume by facility type

.

			·····	
<b>[</b>		Number	SO₂	NOx
Code	Name of facility type	of	emission	emission
) 	· · · · ·	faci-	voluze	volume
		lities	(ton/year)	(ton/year)
101	Boiler (for electric power)	5	2624.40	5798.93
103	<ul><li>// (other)</li></ul>	267	7787.58	730.20
502	Metal fusion f. (alumi/smelt.)	6	109.36	15.49
503	" (other/smelt.)	Ž	0.74	0.14
601	Metal rolling f. (steel/cont.)	16	836.78	77.80
602	" " (steel/batch)	4	144.77	16.33
603	" " (alumi/cont.)	2	0.03	1.88
607	Metal heat tre.f.(steel/cont.)		39.66	5.38
608	" " (steel/hatch)	5 3 3	6.92	0.87
611	" " (other/cont.)	: 3	65.03	9.50
612	" " (other/batch)	5	0.00	0.00
613	Metal forging f. (steel/cont.)	1	5.72	0.57
702	Oil heating furnace (updraft)	2	40.21	3.61
703	" " (other)	6	22.09	3.66
915	Glass melting furnace (tank)	5	1497.61	1248.38
918	Other melting furnace	2	0.04	0.01
1001	Reaction furnace (chemicals)	. 1	0.00	0.00
1004	Direct heating furnace (food)	8	4.38	1.04
1105	Detergent drying furnace	1	4.56	1.06
1106	Other drying furnace	67	270.38	65.39
1201	Electric furnace (arc furnace)	8	55.45	90.62
1202	" " (three-phase)	1	0.00	12.59
1205	// // (three-phase)	1	0.00	4.28
1209	" " (low frequ.)	1	0.00	3.07
1302	Waste inciner. (domest./batch)	. 2	0.01	0.03
1303	" " (indust./cont.)	- 1	0.00	0.00
1304	" " (indust./batch)	3 2 1	0.99	0.11
1416	Fusion furnace (crucible/lead)	2	0.00	0.01
1419	" " (crucible/zinc)		11.43	1.13
1421	" " (other/zinc)	3	3.24	0.40
1423	Drying furnace (for lead)	3	0.01	1.97
1802	Activated carbon manu, reactor		0.15	0.03
2501	Fusion f. (lead stor. battery)	10	1.88	2.39
2603	Reactor (lead pigment)	1	0.00	
	Diesel generator	- 3 - 18	0.23	0.61 10.52
8	Other	18	114.92	10.02
	TOTAL	470	13648.57	8108.03

Table 2-13 Emission volume by business category

NOx emission volume (ton/year)	20.83 20.83 20.85 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20.93 20	8108.03
S O _z emission volume (ton/year)	267.36 58.93 58.93 58.93 58.93 58.93 59.94 55.93 50.73 50.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.73 55.75 55.73 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75 55.75	13648.57
Number of faci- lities	-oull%80000%2%o-u-lonwert-longuatelenee	470
Number of facto- ries	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	208
Name of business category	Agricultural products Meat products Meat products Dairy industry Vegetable or fruits products Fish products made from flour Grain, seed or root processing Flavoring Confined livestock feeding Textile industry Clothing materials processing Rope, net or bag-net Shees Mood industry Clothing materials for cessing Rope, net or bag-net Shees Hulp and paper industry Chemical industry Pulp and paper industry Chemical industry Plastic materials & synthetics Plastic materials & synthetics Plastic materials & synthetics Plastic materials & synthetics Plastic products Plastic products Rubber Plastic products Soap, cosmetic Chemical products fiass products findustry Methines (not use electricity) Machines (use electric parts) Machines (electric parts) Machines	TOTAL
Code	%58837757588888888888899999999999999999988888888	


NOx emission volume (ton/year) 5800.85 250.49 8.46 107.98 1255.55 78.73 134.82 210.54 15.26 8108.03 245.35 SO2 emission volume (ton/year) 2774.97 1151.50 1536.28 1161.04 93.62 311.49 2640.88 32.05 1643.91 13648.57 2302.84 Number Number of of facto- faci-ries lities 102 107 ပ 470 111 ഗ  $\infty$ 28 32 14 .---49 40 ഹ প্ন က 208 60 က -4 d. Π 61~83 | Metal and Machine Name of business category 42~53 Chemical industry Non-ferrous metal 84~99 | Other manufactory 22~33 Textile industry 54~58 Ceramic industry Iron and Steel 38~41 | Pulp and Paper 1~21 Rood industry 34~37 | Wood industry TOTAL Code ់ ស្រួ 8

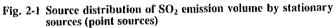

Actual stack height (m)	Number of stacks	SO2 emission volume (ton/year)	NOx emission volume (ton/year)
0~9	56	424.57	77.48
10 ~ 19	214	3646.49	524.09
20 ~ 29	75	3751.89	424,60
30 ~ 39	16	2140.27	219.82
40 ~ 49	0	0.0	0.0
$50 \sim 59$	1	353.65	354.37
60 ~ 69	0	0.0	0.0
70 ~ 79	2	0.0	1274.71
80 ~ 89	1	0.0	1183.66
90 ~ 99	1	707.30	708.74
100 ~109	0	0.0	0.0
110 ~119	2	2624.40	3340.56
TOTAL	368	13648.57	8108.03

Table 2-14 Emission volume by stack height

<b>Table 2-15</b>	The top 20 largest of emission vo	lume for each
	factory (in order of SO ₂ emission	volume)

SEQ)	Cou- nty Code	Fac- tory No.	Name of factory	Num. of faci lity	SOz emission volume (ton/year)	NOx emission volume (ton/year)
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12)	3 3 1 1 3 1 3 1 3 1 3 1	98 105 55 68 14 12 70 111 20 47 39	SOUTH BANGKOK THERMAL PLANT THAI-ASAHI GLASS AJINOMOTO (THAILAND) THAI DEVELOPMENT PAPER THAI TRICOT THAI UNION PAPER THAI TEXTILE PRINTING UNION GLASS BANGKOK STEEL INDUSTRY LUCKYTEX (THAI) THAI PLASTIC AND CHEMICAL YIP YIN TUM	5222532454212	$\begin{array}{c} 2624.40\\ 1060.95\\ 786.81\\ 665.28\\ 602.23\\ 584.17\\ 571.74\\ 475.26\\ 387.95\\ 371.65\\ 367.97\\ 283.80 \end{array}$	$5798.93 \\1063.11 \\91.45 \\43.78 \\46.06 \\53.84 \\52.70 \\165.56 \\56.31 \\36.34 \\32.06 \\27.55 \\$
13) 14) 15) 16) 17) 18) 19) 20)		2 54 51 41 16 1 75 59	THANAKORN VEGETABLE OIL THAI CHUROS THE BANGKOK IRON AND STEEL ASIA FIBER SIAM TYRE THAI STEEL BAR UNITED GRAIN CENTURIES TEXTILE	2 4 4 3 4 3	274.43 239.50 235.03 233.13 230.96 182.48 180.63 140.84	25.29 15.10 43.50 20.31 14.56 30.64 23.36 12.89





# 2.3.3 Calculation of NO_x emission volume

The  $NO_x$  emission volume of each facility except electric furnace and incinerator of non-and industrial wastes was calculated by the equation (2-3).

$NO_x$ emission vol. =	Annual fuel consump. >	< Thermal value
(kg/yr)	(liter/yr)	(kcal/liter)
	kg/yr	kcal/kg
	Nm ³ /yr	kcal/Nm ³

× Emission factor ×  $10^{-8}$  ..... (2-3) (kg/10⁸ kcal)

Where

 $No_x$  emission factor per carolific value is shown in Table 2-16. The table was prepared by referring to following sources.

- Ministry of International Trade and Industry, "Manual of Ambient SO_x and NO_x Prediction Method in Comprehensive Environmental Assessment" (1982)
- (2) Japan Environment Agency, "Report of Atmospheric Emission Survey by Exhausted Gas Factories" (1981)

When these two sources disagree in the value of emission factor by facility type and by fuel type, the whichever larger was selected (Please note star * marked ones).

As for  $NO_x$  emission volume for electric furnace and incinerator of wastes, the value was estimated by following formula (2-4) (2-5) respectively.

(1) Electric furnace

NO_x emission vol. = Annual production × NO_x emission factor ...... (2-4) (kg/yr) (ton/yr) (kg/t-product)

where

 $NO_x$  emission factor per ton of product is 0.3566 (from the source (2))

(2) Incinerator for industrial wastes

NO _x emission vol.	= Annual production ×	NO _x emission factor	•••••	(2-5)
(kg/yr)	(ton/yr)	(kg/t-waste)		

where

 $NO_x$  emission factor per ton of waste is 1.859 (non-industrial waste)

1.226 (industrial waste)

The values. were also taken from the source (2)

The NO_x emission volumes by factory and by facility type was shown in Table 2-9, and NO_x emission volumes by county was shown in Table 2-11, those by facility in Table 2-12, those by business type in Table 2-13, those by stack height in Table 2-14 and those in increasing order in Table 2-17. The source distribution figure of NO_x emission volume from stationary sources with the recovered questionnaire is shown in Fig. 2-2.

Rank	Emission volume NOx (Nm³/H)	Number of mesh
	0.0 ~ 1.0 1.0 ~ 10.0 10.0 ~ 100.0 100.0 ~	74 19 1

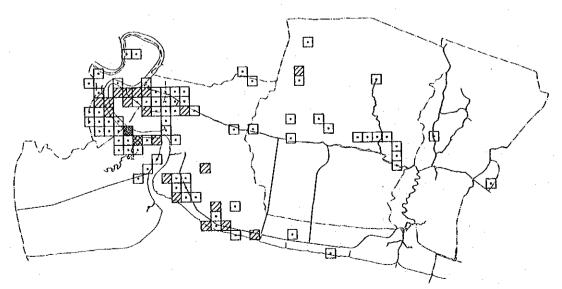



Fig. 2-2 Source distribution of NO_x emission volume by stationary sources (point sources)

Table 2-16 NO_x emission factor per carolific value

															_,_			<b>.</b>		_																		<b>-</b>		,	<u> </u>					1		
	Rework						10 IO		Kinten 11				27 - L - L - L - L - L - L - L - L - L -	Note 37					ļ					(2 37 ov	000	0 H 0		16 3)			Nota 4)			N 000										30				
	factor (cal)	(Conros)	898	N SIX	28 83 X	R R	2/2/ M	5 3 5 5	13,202		32 40%	S0.88	61 X	1 10 10	12.2	29 - L	X XX	28	88	*2 5	in the second se	8	40.41%	46.46%	****	Å8 R	¥00.9¥	12.63%	3488	20.15	223	10.60%	2.5%	N IN X	1	-11.61 <u>×</u>	*5 C	5 in	$\square$	-1	17. U	84 83	<b>C</b> 1	N 2/ X	- F - 3		. "Hanual	e) (1922)
20	vox emission fact (ke/10"kcal)	o rer 0	**** ****	- 30 Q	10.02		19 19 19 19			.	8.8	69°.3%		11	2 Q Q	14	24.2	144	2 2		1	18,49%	3.6	31.25	18.8	26.52			4.61%	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20.03×	50	5.53	× 31	*8.C	5.62	99 19 19		0.90	3.8	28	8.83 8.63	110, 18%	- 26.02	28		stry (1171). "Ham	d in Jannere). (in Jannere)
	of fuel		lieny 01	- Items 011-1-	Light 0il	kerosone -			Durth I had	Other solid	L b c l	lion was		IN WAR					linuu 011				Harry Oil	Henvy 0il	- Light 01-+	υĒ	î	Linther	Neavy 011	Light Oil	Light Off		Licht 01	je	 	Heavy Oil		γc	Kerosche	ا بعم	20.00	L P G	5	10 And			Trade and Industry	aux and mux rrediction (reliced a) Arconomic 200m (RCA) (
	K		11 2	12	<u> </u>	1	2 e	38	Ť	٦ 38		11-13	-	2		2	2 N	, e		17	12		12		-	87	2	8	112.03	1		512	5	) 38 				389	15		<u>7</u> 9	288	Σ.		588		functional -	
	Nome of facility type		Boiler (for electric power)		<i>l</i>				<u>.</u>			Mathal Gration ( (aliani / serie)		(ollocr/seel t.)	Netal rolling f. (steel/cont.) }		<pre>* * (stoet/batch) {</pre>	and the second s	E	a (atract there is a construction of the state of the sta	x (other/cont.)	Petal forrine f. (storl/cont.)	011 heating fermoon (updraft)	i.	r r (other)		Glass weiting furnace (tank)	Other welling furnace		Direct heating furnace (food)	Deterent drying furnace		Other drying furnace		fusion furned		۰. ۲	Bruise furners (for fead)	Activated carbon wante, reactor		Fusion f. (lead stor. bathery)		Diese?, generator		Uther .			or regulate and and musi- Professional Argenterments
			1010	-							-	8		g	ī		2020	NSN 1				100			gg		0915	8160		<u>8</u>	1105	į	901			6IV	12		8		ន៍		100	-	3			

Sources Japan Env. Agency. "Munort of aucospheric emittion survey by exhibited gass from factorics", 620, (in Japanese), (1381).

Table 2-17 The top 20 largest of emission volume for each factory (in order of  $NO_x$  emission volume)

	ners a sur vedility datas metter avail 60 a danata ataba taning binang ata a ang ang ang ang ang ang ak Dataih Santas ang Ab
N Ox emission volume (ton/year)	27 80 80 80 80 80 80 80 80 80 80 80 80 80
S O z emission volume (ton/year)	2624.40 1060.95 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25 765.25
Num. of faci lity	0040000004400000440
Name of factory	SOUTH BANGKOK THERMAL PLANT THAL-ASAHL GLASS UNION GLASS AJINOMOTO (THALLAND) BANGKOK STEEL INDUSTRY THAI UNION PAPER THAI UNION PAPER THAI DEVELOPMENT PAPER THAI STEEL BAR YIP YIN TUM MICRO FIBER INDUSTRY SIAM STEEL SYNDICATE THAINAKORN VEGETABLE OIL UNITED GRAIN ASIA FIBER
Fac- tory No.	8655232855558525585555555555555555555555
Cou- nty Code	
SEQ)	ଌୢୄଢ଼ୢଌୢୣ୷ୄୢୢୄୢୢୄୄୄଢ଼ୄଌୄ୷ୢୄଌୄଢ଼ୢୄୡୄଢ଼୷ୠ୶ଢ଼୶

# 2.3.4 Exhaust gas Temperature

In order to calculate the effective height of the stack, the temperature of exhaust gas from each source has to be determined. Thus the temperature data reported in the questionnaire was referenced. But for those facilities missing them, the mean of reported data was employed. Table 2-18 summarizes the temperature data of various facilities.

		Number of	Ope	rating	facil	ities
Code	Name of facility type	all faci- lities	all	Tem, bla- nk	Tem. wri- tten	Ave.of temp. (°C)
101 103	Boiler (for electric power) " (other)	5 267	5 228	0 149	5 79	140 189
502~ 503		8	8	6	2	80
$601 \sim 603$	Metal rolling furnace	22	20	12	Ĩ	223
607~ 612		16	16	16	Ō	-
613	Metal forging furnace	1	1	1	0	
702~ 703	Oil heating furnace	- 8	7	5	2	320
915	Glass melting furnace (tank)	8 5 2	5	- 3	2	300
918	Other melting furnace	2	2	2	0	· ·
1001	Reaction furnace (chemicals)	1.	-1	- 1. <b>1</b>	0	· —
1004	Direct heating furnace (food)	8	8	4	4	45
1105	Detergent drying furnace	1	l	0		350
1106	Other drying furnace	67	66	45	- 21	17
1201~1209	Electric furnace	11	10	5	5	84
1302~1304	Waste incinerator	6	6	5		150
1416~1421	Fusion furnace	6	6	6	0	
1423	Drying furnace (for lead)	. 3	3	2	ļ	60
1802	Activated carbon manu. reactor		1	0	L L	240
2501	Fusion f. (lead stor. battery)	10	10	7	3	90
2603	Reactor (lead pigment)	-1	1	3	0	
	Diesel generator	3 18	3	17	0	
8	Other	10	1 f	. 11	U	
	TOTAL	470	425	290	135	164

#### Table 2-18 Temperature data by facility type

# 2.4 Emission volume of SO₂ and NO_X from factories without the questionnaire

# 2.4.1 Procedure of estimation for emission volume

However, there are 2,456 factories registered in Samut Prakarn prefecture, the questionnaire have been recovered only for 208 factories. Emission volume from factories without the questionnaire were estimated as a area source of  $2 \text{ km} \times 2 \text{ km}$ , based on fuel consumption per employee for each category of industry, which were calculated from the master list of exhaust gas data and data of factories with the recovered questionnaire.

There are three methods for estimation of emission volume from factories without the questionnaire. These methods are based on the following indices.

- (1) Fuel consumption per employee
- (2) Fuel consumption per area of factory
- (3) Fuel consumption per production amount

We reviewed these methods and adopted the first one finally, because there were no data about area of factory in the master list and production amount were not on the equal basis. To be concrete, fuel consumption per employee by business category were calculated from annual fuel consumption volume (heavy oil equivalent) and number of employee in each factory with the recovered questionnaire. Moreover, the figures of fuel consumption per employee (the unit consumption figures) were widely dispersed, we didn't adopt average value but medium value.

We estimated fuel consumption volume of each mesh for factories without the questionnaire as follows;

(Unit consumption figure)×(Number of employee in the master list)

Emission volume of SO₂ and NO_x of each mesh were calculated as follows;

(Fuel consumption volume of each mesh)×(Emission factor)

Procedure of estimation for emission volume in factories without the questionnaire are shown in Fig. 2-3.

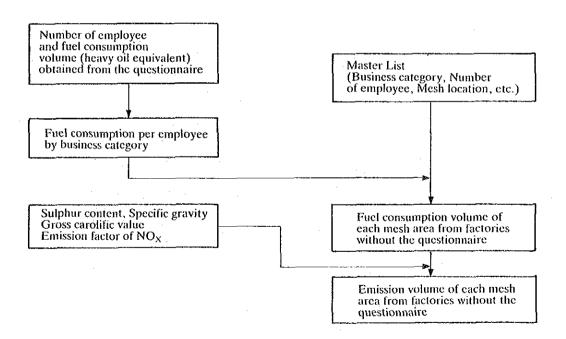



Fig. 2-3 Procedure of estimation for SO₂ and NO_x emission volume from factories without the questionnaire

# 2.4.2 Selection of factories to be investigated

Master List is rearranged to each category of industry in each district, the result is shown in Table 2-19. Table 2-20 shows relationship among the Table 2-19, questionnaire to have been sent (ONEB selected 577 factories) and questionnaire to have been recovered (208 factories). These

results are rearranged to major categories of industry in each district, finally and shown in Table 2-21. Thus, number of factories, whose questionnaire were not recovered, is 369 (recovered ratio is 36%) and calculation result of pollutant emission volume should be uncertain, unless some estimation method was introduced. However, all the questionnaires for factories with exhaust gas source and whose employee are over 500 persons are confirmed to be recovered, resurvey for factories with less than 500 employees should be necessary.

Therefore, ONEB extracted the factories with less than 500 employees from the Master List again and reconfirmed whether pollutant emission facilities are existing or not, by telephone calling or visiting to the factories. These results are shown in Table 2-22 and Table 2-23.

As a result, the followings are clarified;

- (1) Among the factories without recovered questionnaire (369 factories), 167 factories were confirmed to have pollutant emission facilities.
- (2) Among the factories without recovered questionnaire (369 factories), 130 factories were found that it is uncertain whether they had pollutant emission facilities.
- ③ Among the factories with questionnaire not to have been sent, 275 factories were discovered to have pollutant emission facilities.

Thus, 572 factories without recovered questionnaire should be subject to estimate emission volume. Other discovered items as a result of resurvey and concept of estimation are shown in Table 2-24.

		·					
Name of	6		Cou	nty		Kase of business	C
business category	de	1	2	3	Tot,	calegory	d
	234567	1 2 3 1 12	3	27	30 1 7 8	Ceranic Industry	CA CH CH CH CH
Foot	- 8 9	2		15 25 19	19 17	fron Steel	5
industry	10	8	43 2	10	28	Non-ferro,	Ģ
	11 12 13 14 15 20 21	3 4 19 9 11	2 2 4 2	3 21 5 10 1	3 7 42 16 25 3 1		66666666
Textile Industry	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	66 4 7 1 1 3 19 135 12 9	6 ] 3 2 7 1 1 3 2 2	157 8 15 10 4 11 1 2 3 5	229 13 22 14 9 37 13 2 2 18 15	Ketal and Nachine	88666677777788
Wood industry	28885	44 17 10 17	17 2 4 4	40 10 8 16	101 29 22 37	Other	80880
Pulp and Paper	33 33 43 41	4 2 8 14	1	4 10 5 14	8 13 13 29	sanulac- tory	
Chemical industry	434444485383	13 1 2 8 6 6 11 6 14 31	3 1 2 6 2 4 2 6	927888237233	875 m 288	TOTAL	

Table 2-	-19	Number	of	factories	by	business	category	by	master list

County

Table 2-20 Number of factories by business category by each data

list	é ŝ	€ –	=	5	~	~~~	2 I	ດຕ	***	•	-	88	· · ·
mas tor	liew	യതന ന	ফ	8	154	m	- 80	0 2 2	-	<b>ෆ</b>	-	571	
# م	al l data	అచట⊸ట	12	8	<u> </u>	55°82	27\$8	38 ⁸ &~	~~go-	400 <u>0</u> 006	გოდ	2456	
	පළ	និតានានាន	\$	8	8888888	388857	2625	않ਙ쪽귀의	888888	888888	858		
Name of	calegory	Ceramic industry	iron Stoel	Non farro.		Netal and Machine				wanufac kory tory		TOTA	
L		L	<u>.</u>										
list	5 E	r თთთი	SUDO	n CV	-102 103	8 0	₹		n		4-4	, - c	
kestor	mo i l	თ ადია	2≌8	3œ-	°7 8	9	<b>e</b>	1	8 ~8	90 (N	1-m-	4 4	പയളന
ų.	a i l da ta	8-1-1-00	254	°8'	٥٣-٤٣ <u>8</u> -	828-	zo£	2002	5885	ಹಿದವಳು	87	°88	372~288
	38	004001	- 00 0	າຊ=	2867298	នទេននេ	នគនន	នេងខ្លួន	****	8864	52	氧枪卷	8668338
Name of	ours measo category			industry			Textile industry		Head industry	Pulp and Paper		Territori 1	indus try

Table 2-21 Number of factories by each data for each major business category

all data         aail           1         2         3         Tot.           257         26         134         282         154           257         26         134         282         154           28         55         217         500         72           28         27         74         139         100           28         27         74         139         100           28         27         74         139         100           28         27         74         139         100           17         28         146         277         56         21           13         3         57         73         54         32           13         3         57         73         54         32           14         4         17         35         34         43           303         106         434         343         43         43           374         286         136         265         577         56			a yd	laster	list	by master list for each county	ch coui	nty
category         1         2         3         Tot.         Tot.           Food industry         83         65         134         282         154           Food industry         83         65         134         282         154           Pulp and Paper         257         26         217         500         72           Pulp and Paper         28         27         74         139         100           Pulp and Paper         28         27         74         139         100           Pulp and Paper         28         27         74         139         100           Chemical industry         101         12         24         21         56         21           Iron and Steel         13         3         57         73         54           Non-ferrous metal         13         3         57         73         54           Metal and Machine         303         106         43         343         34           Metal and Machine         303         106         43         343         34           Of AL         365         107         257         37         557         37         557 <t< td=""><td>ode</td><td>Name of Dusiness</td><td></td><td>alle</td><td>lata</td><td></td><td>mail</td><td>re-</td></t<>	ode	Name of Dusiness		alle	lata		mail	re-
Food industry         83         65         134         282         11         500         12           Textile industry         257         26         217         500         1         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10		calegory		8	es es	Tot.	Tot.	Tot.
Textile industry         257         26         217         500         *           Wood industry         237         26         217         500         *           Wood industry         38         27         74         183         10           Cheucal Paper         28         27         74         183         10           Cheucal Paper         28         27         73         75         75         75           Cheucal Industry         17         12         27         26         73         75           Iron and Steel         13         3         57         73         73         75         73         75         73         75         73         75         76         76         73         75         73         75         73         75         73         75         73         75         73         75         73         75         73         73         73         73         73         73         73         73         75         73         73         73         73         73         73         73         73         73         73         73         73         74         73         73	~21	Food industry	8	53	134	282	154	49
Wood industry         28         71         14         139         10           Pulp and Paper         28         2         33         63         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         53         5	88~ ~	Textile industry	-257	8	217	200	22	8
Pulp and Paper         28         2         33         63           Chemical industry         101         25         146         273         3           Ceramic industry         171         12         27         55         35         57         35           Icon and Steel         13         3         57         73         35         35         73         35           Iron and Steel         13         3         57         73         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         35         36	~31	Į	88	22	74	189	100	3
Chemical industry         101         26         146         273           Ceramic industry         17         12         27         56           Iron and Steel         13         3         57         73           Mon-ferrous metal         14         4         17         25           Mon-ferrous metal         14         4         17         25           Metal and Machine         303         106         434         35           Otheral and Machine         305         155         57         137           Otheral and Machine         305         155         57         137           Otheral and Machine         307         25         157         57	3~41	and	83	2	R	ន	10	4
Ceramic industry         17         12         27         56           Iron and Steel         13         3         57         73           Non-ferrous metal         14         4         17         35           Montferrous metal         14         4         17         35           Other manufactory         55         156         57         137           Other manufactory         55         15         57         137           TOTAL         974         285         156         557         575	~23 ~	Chemical industry	101	8	146	273	81	40
Iron and Steel         13         57         73           Non-ferrous metal         14         4         17         35           Metal and Machine         305         106         424         345           Other manufactory         955         155         57         137           TOTAL         974         286         156         2456         5	~58	Ceramic industry	11	12	12	33	12	4
Non-ferrous         metal         14         17         35           Metal         and Machine         308         106         434         848           Other         manufactory         65         15         57         137           TOTAL         974         286         1196         2456         5	53	Iron and Steel	13	en	57	73	3	II
Metal and Machine 303 106 434 848 0ther manufactory 65 15 57 137 TOTAL 374 286 1196 2456 5	ദ്ദ	Non-ferrous metal	Ы	4	11	R	ន	5
Other wanufactory         65         15         57         137           TOTAL         974         286         1196         2456         57	2 2 2		308	901		848	9 9	8
974 286 1196 2456	₹ 80 80	Other manufactory	8	15	5	137	с С	3
		TOTAL	974	286	1196		57	208

Table 2-22 Number of factories which may have facilities but no questionnaire for each county (employee less than 500)

			0	(question	enaire ¤	ailed bu	(questionnaire mailed but not return)	(mu)		Θ
	Name of country	(1)	<u>8</u> 2	ខេត្ត	<del>(</del> 72	(5) cannot	(6) facil.	(T) facil.		Bailed
		ciosed	faci- lity	answer	infor- mation	con- tact		excist fuel known	total	facil. excist
1	Muang	9	29	4	2	40	40 19	2.0	20 125	69
~	Rang Bo	1	1			2.3	3		28	3
2	Bang Plee		6		2	12	¢0 -	5	34	*
ŝ	Phra Produeng	91	٧	2	. 4	28	43	44	141	134
ო	Phra Samut Jedee	2	ł	2	1	4	19	6	41	27
	TOTAL	25	47	с <b>л</b>	14	107	25	75	363	275

		(questionnaire mailed but not return)								,0
Name o	of business category	(1) closed	(2) no faci- lity	(3) not answer	(4) no infor- mation	(5) cannot con- tact	(6) facil. oxcist fuol unknown	(7) facit. excist fuel known	total	(ques, not Mailed facil, excist
1~21	Food industry	13	13	1	1	31	22	14	95	29
22~33	Textile industry				2		6	5	13	73
34~37	Hood industry	4	30		2	42	17	2	97	1
38~41	Pulp and Paper	1			2	1	1	1	6	3
42~-53	Chemical industry	2	2	1	2	7	16	12	42	.47
54~58	Ceranic industry	1	2	· 1	1	4	4	5	18	3
59	Iron and Steel	2		4		13	7	2.1	47	14
60	Non ferrous metal		********	2	2	7	.9	8	28	t
61~83	Netal and Nachine	2			2	2	.8	-7	21	9,6
84~99	Other manufactory						2		2	8
	TOTAL	25	47	9	14	107	92	75	369	275

 Table 2-23 Number of factories which may have facilities but no questionnaire for each major business category (employee less than 500)

Table 2-24 Methods for the estimation of emission volume

Mailed but not recovered Q.	(1) closed (2) no-facility	Not subjected to estimate			
	<ul><li>(3) no-answer</li><li>(4) no-information</li><li>(5) cannot contact</li></ul>	Fuel consumption (Heavy Oil base) was estimated based on number of employce			
	(6) facility exist and fuel type known but consumption unknown	Fuel consumption (Heavy Oil base) was estimated by using fuel consumption rate. After that these were converted to reported fuel type.			
	(7) facility exist and fuel type and consumption known	Adopted reported data (fuel type and consumption)			
not mailed but f	acility exist	Fuel consumption (Heavy Oil base) was estimated based on number of employee			

### 2.4.3 To set up the fuel consumption rate by business category

As the indices of factory scale, it is used generally number of employee, area of factory, production amount and etc. To estimate the emission volume from factories without the questionnaire, we adopted the number of employee because that there were no data about area of factory in the master list and production amount were not on the equal basis.

Meanwhile, it became clear based on the returned questionnaire data that various kind of fuels was used in each factory. So, to calculate the fuel consumption per employee, it was multiplied various kind of fuel's consumption by the conversion coefficient (equivalent to heavy oil).

We adopted the conversion coefficients which is used generally in Japan and shown in Table 2-25. According to this table,  $1 \text{ k}\ell$  kerosene is equivalent to 0.9 k $\ell$  heavy oil, and 1 ton lumber (gross carolific value 3500 kcal/kg) is equivalent to 0.35 k $\ell$  heavy oil.

Based on the fuel consumption volume converted into heavy oil which was calculated from questionnaire data and the number of employee, we calculated the fuel consumption rate (per number of employee) by business category. But because of widely dispersive data, we didn't adopted average value but medium value. Fuel consumption rate per employee is shown in Table 2-26. Reviewing the result, the figures largely differ from ones available in Japan. This may be due to the small number of sample data. Thus the comsumption data shown in Table 2-27 are applied in place of those in Table 2-26 as consolidated figures.

Fuel type	Conversion coefficient			
Heavy Oil	1.0 ((1()			
Light Oil	0.95 ((1))			
Kerosene	0.9 (7/7)			
General coal	0.7 ( <i>l</i> /kg)			
Coke	0.8 (f/kg)			
Lumber	0.35 (C/kg) Carolific Value=3,500 kcal/kg			
LNG	1.3 ( <i>C</i> /kg)			
LPG	1.2 ((/kg)			
Other fuel	Convert into Heavy Oil (Carolific Value=10,000 kcal/c)			
Material, Waste Electricity	Exclude from conversion			

Table 2-25 The conversion coefficients equivalent to Heavy Oil

 Table 2-26
 Fuel consumption rate (heavy oil equivalent) per number of employee by business category

Code	Name of business	Number of facto-	Generator of fuel consumption per number of employee ( unit : 0.01k1/year/person )			
	category		Kedian	Each value		
1~21	Food industry	45	438	13333,8200,7033,5639,3510,2833,2505, 2441,2270,2185,1329,1638,1002,995,973 383,833,600,385,854,550,500,433,400,383 357,352,353,357,354,776,252,218,206 203,180,140,106,106,100,67,80,54,25,1		
22~33	Textile industry	56	137	3000,2540,2469,2003,1850,1500,1148,1016 810,781,735,577,433,491,462,411,358,330 270,240,240,220,216,183,182,180,160,150 123,120,116,111,107,104,103,101,100,99 82,81,77,77,69,67,58,55,47,45,44,31,30 30,28,21,17,4		
34~31	Wood industry	2	1065	1834,296		
38~41	Pulp and Paper	4	2058	2759, 2637, 1479, 722		
42~53	Chemical industry	31	- 210	1840, 1828, 764, 656, 561, 552, 502, 492, 464 458, 404, 366, 360, 351, 300, 250, 249, 240 210, 209, 195, 194, 189, 180, 163, 144, 115 92, 80, 75, 70, 57, 36, 35, 33, 11, 4		
54~58	Ceramic industry	2	2387	3388,1385		
59	Fron and Steel	11	587	1963, 1246, 1042, 879, 748, 587, 556, 535, 486 300, 28		
60	Non-ferrous metal	4	128	706,226,29,11		
61~83	Metal and Machine	27	72	1633, 509, 407, 404, 370, 350, 339, 334, 231, 214 105, 59, 76, 72, 63, 49, 44, 44, 33, 30, 23, 26, 26 24, 18, 18, 6		
84~99	Other manufactory	1	292	292		

Name of business category	Generator of fuel consumption per number of employee (0,01 kg/year/person)
Food industry	438
Textile industry Wood industry	155
Pulp and Paper Chemical industry Ceramic industry	250
lron and Steel Non-fe <u>rrous metal</u>	556
Metal and Machine	72
Other manufactory	292

#### Table 2-27 Fuel consumption rate per number of employee used for estimation of fuel consumption

# 2.4.4 Estimation for the fuel consumption volume of each mesh area

We estimated the fuel consumption volume of each mesh area for factories registered in the master list and not reported by questionnaire but had emitting facility.

#### 2.4.5 To set up the emission factor

To calculate the emission volume from factories without the questionnaire, we used as general rule the general value which was used in Japan as a data of sulphuric content, specific gravity, gross calorific value and emission factor of  $NO_X$ . However, we adopted the analytic result of fuel used in Thailand as the sulphur content of heavy oil and light oil.

### 2.4.6 Estimation for emission volume of SO₂ and NO_X

By multiplying the fuel consumption of each mesh area by emission factor, we presumed the emission volume of  $SO_2$  and  $NO_x$  for each mesh area from factories without the questionnaire. Emission volume of  $SO_2$  and  $NO_x$  is shown in Table 2-28, Table 2-29, respectively. The source distribution figure of  $SO_2$  and  $NO_x$  emission volume from stationary sources without the questionnaire is shown in Fig. 2-4 and Fig. 2-5.

[	N	S O 2	emission	volume (t	on/year)
Code	Name of business category	Muang	Bang Plee	Phra Pradaeng	TOTAL
1~21	Food industry	358.0	152.2	282.0	792.2
22~33	Textile industry	169.7	49.7	250.1	469.5
34~37	Wood industry	25.9	8.5	21.2	55.6
$38 \sim 41$	Pulp and Paper	3.1	19.5	2.4	25.0
$42 \sim 53$	Chemical industry	193.1	113.7	191.3	498.1
$54 \sim 58$	Ceramic industry	48.4	4.5	622.9	675.8
59	Iron and Steel	171.4	164.9	991.3	1327.6
60	Non-ferrous metal	91.9	3.4	201.1	296.4
61~83	Metal and Machine	100.5	79.2	324.7	504.4
84~99	Other manufactory	8.8	20.9	6.8	36.5
	TOTAL	1170.8	616.5	2893.8	4681.1

 
 Table 2-28 SO₂ emission volume from factories without the questionnaire by business category in each county

IV - 36

[	Nous of Lustress	NOx	emission	volume (t	on/year)
Code	Name of business category	Nuang	Bang Plee	Plira Pradaeng	TOTAL
1~21	Food industry	33.9	14.4	27.0	75.3
22~33	Textile industry	16.3	4.6	23.4	44.3_
34~37	Wood industry	2.4	0.8	3.1	6.3
38~41	Pulp and Paper	0.3	1.8	0.4	2.5
42~53	Chemical industry	18.3	10.6	17.4	46.3
54~58	Ceramic industry	5.1	0.5	343.9	349.5
59	Iron and Steel	14.3	15.4	77.2	106.9
60	Non-ferrous metal	8.4	0.3	17.4	26.1
61~83	Metal and Machine	10.0	7.4_	34.3	51.7
84~99	Other manufactory	0.8	2.0	0.6	3.4
	TOTAL	109.8	57.8	544.7	712.3

Table 2-29  $NO_X$  emission volume from factories without the questionnaire by business category in each county

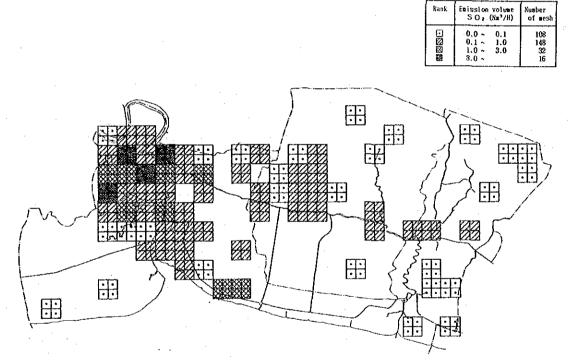



Fig. 2-4 Source distribution of SO₂ emission volume by stationary sources (area sources)

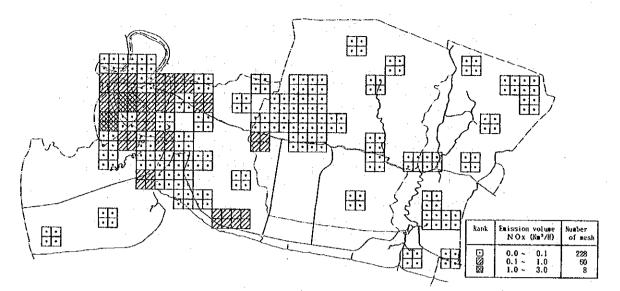



Fig. 2-5 Source distribution of NO_X emission volume by stationary sources (area sources)

# 2-5 Total emission volume of SO₂ and NO_X from stationary sources (point sources and area sources)

Total emission volume of  $SO_2$  and  $NO_X$  from stationary sources located in Samut Prakarn prefecture was calculated by summing up those from factories with the recovered questionnaire (point sources) and without the questionnaire (area sources). The result is shown in Table 2-30 and the source distribution figure of  $SO_2$  and  $NO_X$  emission volume from stationary sources is shown in Fig. 2-6 and Fig. 2-7.

From these table and figures it results in that emission volume of  $SO_2$  from factories located in Samut Prakarn prefecture is 18,329.7 T/Y and those of NO_X is 8,820.5 T/Y, and emission volume of SO₂ and NO_X from Pra-Pradaeng in which many factories were located was conspicuous. And the number of factories with the recovered questionnaire was not so many (recovered rate; 27%), but emission volume of SO₂ and NO_X from these factories were 13,648.6 T/Y (74% of total SO_X) and 8,108 T/Y (92% of total NO_X) respectively.

As a result, it was clear that emission volume from large and middle class emission sources were ocupied considerably large part of them from stationary sources.

Source	Number of factories	SO2 emission volume (ton/year)	NOx emission volume (ton/year)
Questionnaire return	208	13649	8108
(point source)	(27%)	(74%)	(92%)
Questionnaire	572	4681	712
nothing (area source)	(73%)	(26%)	(8%)
TOTAL	780	18330	8820
TOTAL	(100%)	(100%)	(100%)

Table 2-30 Emission volume of SO2 and NOX from factories located in Samut Prakarn prefecture

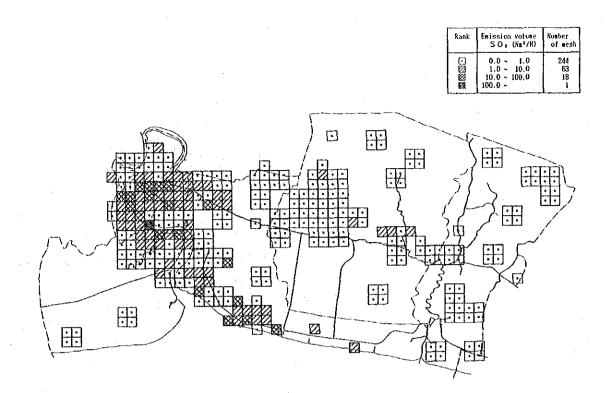



Fig. 2-6 Source distribution of SO₂ emission volume by stationary sources (total)

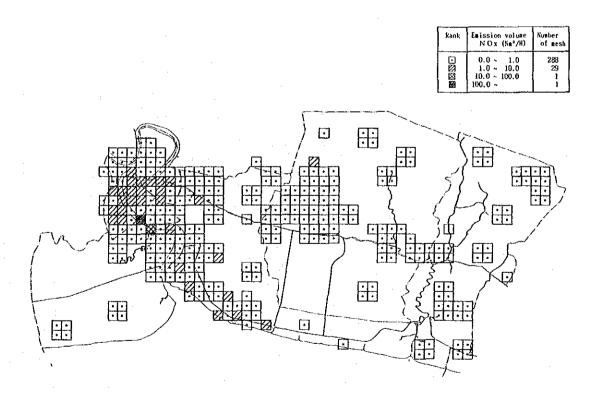



Fig. 2-7 Source distribution of  $NO_X$  emission volume by stationary sources (total)

### 3. Estimation of SO₂ and NO₈ emission volume from roadways

# 3.1 Outline of the study

The SO₂ and NO_x emission factors separately set for varying types of vehicle and motorway were combined with actual traffic volumes investigated in this report, which then led to the estimation of emission volume of SO₂ as well as NO_x by daytime period and by type of motorways in Samut Prakarn district. In evaluation of exhaust emission volume, the trunk motorways as many as 31 and 243 km long in total were thought as line sources and other minor roadways as negligible sources. The NO_x emission factors of the car were not obtainable in Thailand and thus those of non regulated cars specified by Ministry of Construction, Japan were applied. As for SO₂ emission, the sulphur content of sample fuel was analyzed and the result obtained was referenced.

The following shows the work flow chosen for evaluation of emission volume exhausted from automobiles.

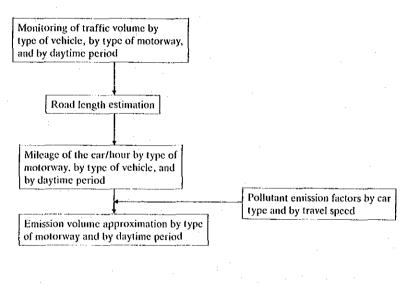



Fig. 3-1 Flow chart for estimation of SO₂ and NO_x emission volume from road way

#### 3.2 Investigation of the traffic volume and drive speed

The traffic volume of Samut Prakarn district was monitored at nine points shown in Fig. 3-2 for 24 hours period. The types of vehicle subject to above survey are shown in Fig. 3-3 and consist of four groups (1) Diesel light vehicle (small truck equivalent), (2) Diesel heavy vehicle (regular size truck, passenger bus, special vehicle), (3) Gasoline car (regular car) and (4) Others (LPG driven car as well as motorcycle equivalent).

The traffic volume survey took place on January 13, 1988 at 4 points (during the first field survey period) and on July 13, 1988 at 5 points (during the third survey period). At MS-1 point, the additional survey was done for both periods in order to estimate the seasonal fluctuation.

The result of this effort is graphed in Fig. 3-4 which indicates the seasonal change of traffic volume is not significant. The traffic volume recorded during the survey periods is summarized in Table 3-1 and actual data at each survey point by type of vehicle and by daytime period in Table 3-2.

The Table 3-3 shows the drive speed of vehicles recorded during same survey period.

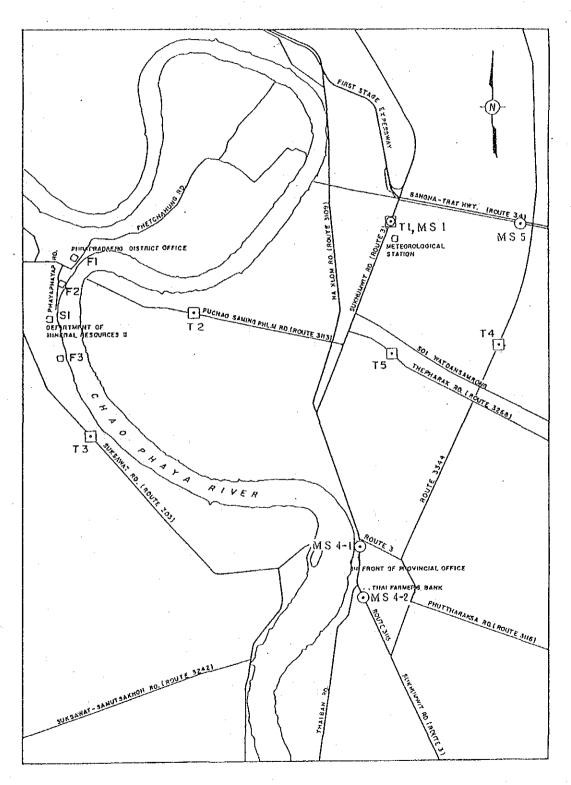
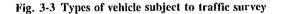
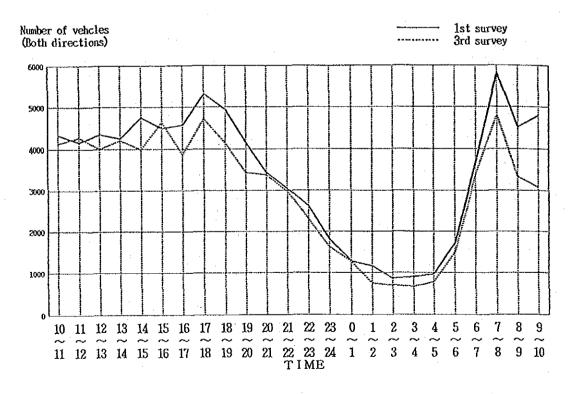
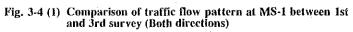






Fig. 3-2 Traffic survey points

GASOLINE	LPG	GASOLINE	DIESEL LIG	T VEHICLES	. pr	ESCL HEAVY VEHICI	ES .
HOTOR-CYCLE	TANI	PASSENGER CARS	PECK UP TRUCK	AEDIUN OUS	HEAVY BUS	6 WIEELS TRUCK	LO HHEELS TRUCK
SPO Lalonground	id id 						







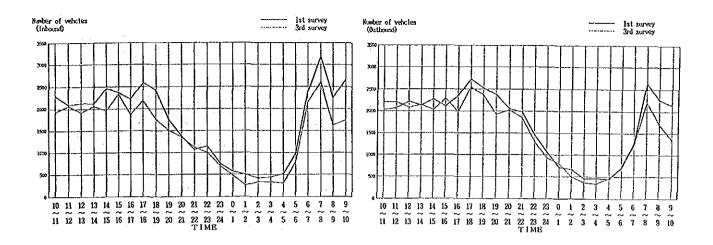



Fig. 3-4 (2) Comparison of traffic flow pattern at MS-1 between 1st and 3rd survey

ion Diess LV 1 17,44 (21.3 4-1 10,33 (29.5 4-2 4,99	HV 87 13,9 3) (17.0 58 6,5	1ine 01 24,653 0) (30.1)	3 25,881	Total 81,922 (100%)	speed (km/h) 47
(21.3 4-1 10,3 (29.	3) (17.) 58 6,5	0) (30.1)			47
(29,		93 6 59		L	
4-2 4.0				34,849 (100%)	45
4-2 4,9				17,054 (100%)	56
5 9,6 (30,4				31,867 (100%)	65
i 15,2 (21.				71,949 (100%)	47
2 9,1 (28.				32,137 (100%)	30
				55,719 (100%)	34
				34,660 (100%)	40
				24,267 (100%)	30
	(23. 4 10.1 (29.4 5 7.7 (31.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

#### Table 3-1 Summary of traffic survey

## Table 3-2 (1) Results of the traffic survey

Station3Sl	0a1		/1/13-14	Û	rection.	
	Diesel			Gaso-		
list	LV	. 88	LY+89	lice	Others	Total
10:00~11:00	879	1.077	1.958	1.190	1.182	4.328
11:00-12:00	974	1,070	2.044	1.091	1.041	4.155
12:00~13:00	1.029	. 940	1.969	1.190	1.191	4.350
13:00~14:00	1.138	765	1.903	1.165	1.176	4.245
14:00~15:00	1.150	953	2.123	1.310	1.311	4.744
15:00~16:00	1.141	952	2.103	1.295	1.095	4,493
16:00~17:00	1.053	717	1.770	1, (93	1,310	4.573
17:00~18:00	924	592	1.516	2.195	1.508	5.319
18:00~19:00	906	581	1.587	1.708	1.540	4,935
19:00-20:00	843	623	1.472	1.324	1.353	4.149
20:00-21:00	721	124	1.145	1.124	1.156	3.425
21:00-22:00	645	318	964	919	1,107	3.050
22:00~23:00	525	229	754	826	1.031	2,611
23:00~24:00	351	159	520	467	823	1.816
0:001:00	264	\$8	352	318	609	1,239
1:00~ 2:00	243	. 111	354	233	568	1.175
2:00~ 3:00	238	101	339	153	385	817
3:00~ 4:00	255	144	399	130	378	907
4:00~5:00	255	223	484	120	369	973
5:00~ 6:00	433	533	971	259	483	1.712
\$:00~7:00	620	780	1.400	1.052	1.215	3.\$67
7:00~ 8:00	331	667	1.493	2,353	1.851	5.812
8:00~ 9:00	391	572	1.453	1.583	1.459	4.510
9:00~10:00	1.157	1,135	2.292	1,039	1.415	4.795
Total	17.487	13,901	31,358	24, \$53	25,831	81.522
Notes :	LY . Lig	hł Vehic	ia X	V = Zeav	y Venicl	e i

Station554-	· · · · · · · · · · · · · · · · · · ·	Diesel		Gaso-		
tinè	1.5		LY÷EV	line	Olhers	Tota
10:00~11:00	6S0	317	997	399	601	1,99
11:00~12:00	612	350	\$62	403	552	2.01
12:00-13:00	523	366	889	4{3	635	1.958
13:00~14:00	591	336	927	358	5\$0	1.87
14:00~15:00	428	656	1.084	405	611	2.18
15:00~16:00	440	644	1.084	421	670	2,17
16:00~17:00	417	633	1.100	477	697	2,27
17:00~18:00	589	382	1.071	<b>483</b>	367	2, 42
18:00~19:00	605	374	580	434	742	2.15
19:00~20:00	511	210	781	310	561	1,75
20:00~21:00	447	250	697	288	532	1.51
21:00~22:00	315	179	495	220	352	1.07
22:00~23:00	195	65	261	133	314	71
23:00~24:00	149	55	204	69	273	55
0:00~1:00	172	30	202	58	221	- 18
1:00~ 2:00	165	18	184	63	144	39
2:00~3:00	187	19	206	13	143	35
3:00~ 4:00	214	15	230	15	123	35
4:00 5:00	234	- 37	271	52	169	47
5:00- 5:00	323	181	510	62	241	81
6:00~7:00	428	333	751	133	238	1.13
7:00~ 8:00	780	304	1,084	<b>4</b> 45	715	2,24
8:00~9:00	618	372	990	455	662	2,10
9:00~10:00	626	355	981	374	440	1.79
Total	10.358	5.593	16.951	5,527	11.371	34,84

Station,	Qa t	e1983	/1/13-14	Di	rection.	Both		
Tine	Diesel			Gaso-	Others	Total		
	LŸ	- XV	LY÷XY	tine	others	10111		
10:00-11:00	630	722	1.352	633	142	2.132		
11:00~12:00	725	898	1,622	517	126	2.325		
12:00~13:00	553	721	1.284	550	. 93	1.927		
13:00~14:00	542	749	1.291	575	93	1.960		
14:00-15:00	643	610	1,253	576	99	1,923		
15:00~16:00	652	755	1.409	638	132	2.178		
16:00~17:00	825	690	1.315	\$54	139	2,108		
17:00-18:00	585	614	1,229	.840	202	2.271		
18:00~19:00	561	(17	978	530	139	1,697		
19:00~20:00	514	419	933	392	100	1.425		
20:00~21:00	425	412	837	291	81	1,205		
21:00~22:00	288	288	575	233	71	\$35		
22:00~23:00	245	289	534	227	52	823		
23:00~24:00	203	252	470	140	52	\$52		
0:00~1:00	149	244	393	92	40	525		
1:00~2:00	138	197	335	65	35	437		
2:00~3:00	107	183	255	45	17	357		
3:00~ 4:00	102	201	303	53	10	355		
4:00~ 5:00	109	257	375	43	20	633		
5:00~ 5:00	148	334	482	53	28	353		
ô:00~7:00	232	446	723	173	63	981		
1:00~ 8:00	312	437	803	364	205	1.373		
8:00~9:00	(40	(38	873	428	115	1.421		
9:00~10:00	638	531	1,1\$9	579	137	1.585		
ĵota <b>l</b>	9.692	11,153	20,850	8, 314	2,203	31.857		
Notes : LV + Light Vehicle - NV + Reavy Vehicle								

Station854-	2 Date	1533	/1/13-14	01	rection.	<del>3</del> 015
	Diesel			Gaso-	Others	
Ti=e	LY	84	LV ÷ SV	lice	Uthers	lsioi
10:00~11:00	350	113	4\$3	191	503	1,157
11:00~12:00	315	71	337	574	402	1.363
12:00~13:00	282	83	370	181	139	590
13:00~14:00	279	94	373	155	391	922
14:00-15:00	319	102	421	1\$2	413	1.601
15:00~15:00	253	\$9	378	155	392	925
16 : 00~17 : 00	322	82	404	157	423	\$50
17:00~18:00	324	87	411	165	555	1.132
18:00~19:00	330	95	425	185	504	1.036
19:00~20:00	208	79	287	129	-122	837
20:00~21:00	208	30	283	95	371	760
21:00~22:00	105	46	152	75	267	493
22:00-23:00	73	24	102	43	262	412
23:00~24:00	54	23	77	27	101	205
0:00~1:00	69	9	78	18	115	312
1:00~2:00	<b>3</b> 3	2	53	18	75	- 151
2:00~3:00	47	3	ડગ	6	48	10-
3:00~4:00	\$5	;	59	5	35	130
4:00~ 5:00	99	15	114	3	13	157
5:00~ 6:00	115	46	151	19	121	301
5:00-7:00	155	101	255	65	257	578
7:00~8:00	235	91	333	153	111	1,018
8:00~ S:00	305	100	405	185	1:0	1,632
9:00~10:00	322	81	403	160	132	1.025
Total	4.985	1,532	5.517	2,955	7,531	17.054

•

Notes : EV + Light Vehicle 3V - Heavy Vehicle

, .

## Table 3-2 (2) Results of the traffic survey

StationIl	Dat	a1938	/7/13-14	01	rection.	Bath
	Olesel			Gaso-		
Tice	L٧	۸V	L¥ + XY	line	012373	Totel
10:00~11:00	952	\$33	1.950	1.007	1.170	4.127
11:00~12:00	850	1.051	1,501	1,101	1.271	4,273
12:00~13:00	\$83	952	1.935	26S	1.102	3,999
13:00~14:00	1.058	893	1,951	1.037	1.155	4,203
14:00~15:00	898	875	1.773	1.119	1.103	3,995
15:00~16:00	1.209	977	2.186	1.233	1.214	4,533
16:00~17:00	897	625	1,513	1,320	1,023	3,856
17:00~18:00	831	398	1,423	1.755	1.534	4.718
13:00~19:00	811	591	1.402	1.414	1,322	4,133
19:00~20:00	737	607	1.344	925	1.157	3.425
20:00~21:00	635	407	1.042	1.050	1.270	3,372
21:00~22:00	551	314	853	930	1.114	2,972
22:01~23:00	- 131	231	712	643	\$55	2.316
23:00~24:00	295	152	448	446	137	1,531
0:00~1:00	242	91	333	345	603	1.231
l:CO~ 2:00	205	82	287	203	259	759
?:00~ 3:00	180	<b>\$</b> 6	285	\$2	345	703
3:00~ 1:00	ារ	106	233	35	75	458
4:00~ 5:00	235	.175	410	59	259	773
5:00~ 5:00	353	£93	845	195		
5:00~7:00	395	715	1.231	1,258	833	
1:00~ 8:00	710	509	1.219	1.901	1.697	<b>{.817</b>
3:00~ 9:00	672	415	1.023		1,002	3, 329
9:00~10:00	753	781	1.544	822	716	3.032
[ota1	15.2S4	12,727	23,011	21.323	22.510	71,949

Notes : LV . Light Vehicle HV - Heavy Yehicle

Station12	001		/7/13-14		rection.	Both
tize	Diesal			Gaso.	Others	Total
11-6	٤V	EV .	$LV \div SY$	liae	011.014	10141
10:00~11:00	625	636	1,261	344	5 <b>{</b> ?	2.147
11:00~12:00	452	654	1,116	303	: 554	1.983
12:00~13:00	561	583	1.14	292	493	1.929
13:00~14:00	532	554	1.055	325	517	1.929
14:0015:00	535	607	1.192	332	: 417	1.571
15:00~16:00	665	898	1.363	343	607	2,313
16:00-17:00	6?2	545	1,168	373	201	2,102
17:0018:00	600	383	\$68	260	535	1,833
18:00~19:00	510	330	840	374	421	1,635
19:00~20:00	376	235	611	205	854	1.660
20:00~21:00	395	170	565	140	538	1,243
21:00~22:00	158	126	324	138	273	135
22:00-23:00	122	135	257	167	289	713
23:00~24:00	83	92	175	123	293	591
0:00~1:00	50	28	78	147	150	375
1:00~ 2:00	37	44	81	54	72	207
2:00~ 3:00	28	21	52	37	73	152
3:00~ 1:00	$\overline{n}$	57	128	15	5	185
4:00~ 5:00	119	\$2	211	15	51	217
5:00~ 5:00	183	160	348	50	105	483
5:00~7:00	523	415	914	144	355	1.443
7:00~8:00	586	353	949	<b>\$</b> 55	934	2.333
8:00~ 9:00	603	370	973	417	513	1.958
9:00~10:00	582	541	1.123	257	:::\$	1.836
Total	9,129	7.848	16,977	5.307	9.353	32.137
Notes : LY + Light Vehicle NY + Heavy Vehicle						

Station13	Da é	. 1093	/7/\3-14	Di	rection.	
313110413	02.4	Diasel		Geso-		
îi=z	- L¥ - 1		LV ÷ 87	line	Others	ĩot≟l
10:00~11:00		1.010	1,565		934	3.513
11:00~12:00		545	1.630			3.091
12:00~13:00	870	1.070	1.940			3.558
12:00~13:00	850	874	1.734		910	3.315
14:00~15:00	300	564	1.562			
14:00~15:00	998	915	1.913			3,724
15:00~18:00	853	631	1.559			3,403
	842	491	1.333			3.591
17:00-18:00	635	41	1.127			2.873
18:00~19:00			1.118			2.534
19:00~20:00	671	447	832	520		2.125
20:00~21:00	497	335				1.957
21:00~22:00	131	314				1.563
22:00~23:00	323					1.051
23 : 60 - 24 : 60	171	190	351	202		1.001
0:00~1:00	125	140	265	<u> </u>		
1:00~2:00	\$5				<u></u>	
2:00~ 3:00	97	120	217	· · · · · · ·		
3:00~ 4:00					<u> </u>	551
4:01~ 5:00		2?3	378			
5:07~ 5:00		405	617			
5:00~1:00	401	510	911	592	· · · · · · · · · · · · · · · · · · ·	2.030
7:00~ 8:00	559	337				
8:00~9:00	543	479	1,124	111	853	2,799
9:00~10:00	795	867	1.662	629	509	2,900
lsto]	13.185	12.280	25,455	12, 939	17.414	55,713

Notes : LV - Light Vehicle 2V - Heavy Vehicle

Date...1583/7/13-14 Station...74 Direction....Zoth Cara-Others Total Diesel | 27 | LV÷27 1i=e . 1 V tine 677 374 2.193 10:00~11:00 724 413 1.137 11:00~12:00 647 317 1.024 500 272 1.796 12:00~13:00 633 607 351 2.123 477 1.165 13:00~14:00 650 337 1,037 617 395 2,049 711 -ian 1.152 655 14:00~15:00 437 2.245 15 : 00 - 16 : 00 452 1.211 759 753 418 2.357 15:00~17:00 317 781 1.093 \$25 453 2.477 17:00~18:00 814 191 1.005 1.217 679 2,501 18:00~19:00 658 148 805 851 529 2.155 19:00-20:00 454 191 \$45 552 368 1,565 20:00-21:00 359 121 480 332 282 1.141 21:00~22:00 222 107 329 329 248 906 22:00~23:00 160 69 229 203 182 519 23:00-24:00 94 45 139 124 119 392 0:00~1:00 1:00~2:00 50 210 28 78 İ 83 19 61 39 103 45 32 180 2:00-3:00 ŧ\$ | 37 83 43 20 145 3:60~ 4:60 (3 38 87 35 27 150 4:00~5:00 48 :2 90 33 39 162 5:00~5:60 91 211 120 103 127 441 6:00~7:00 236 222 518 631 359 1.559 817 2.795 7:09-8:09 572 147 719 1.250 8:00~9:00 - 555 159 847 453 2,015 715 583 439 1,122 312 2.044 610 9:00~10:00 10.178 5.007 15.183 12.135 7.342 34.650 lotal Notes : EV . Light Vehicle EV . Neavy Vehicle

.