

Fig. 1-19 The Result of Cluster Analysis (Dendrogram of Monitoring Stations for Various Atmospheric Pollutants)

(2) Principal component analysis

The method is usefully applied for analysis of components having numerous variables X_1 , X_2 , ..., X_p (number of variables=p) and to convert into a minimum number of representative components called principal components which are mutually independent. Each principal component is expressed by a linear equation of weighted variables as shown by the equation (1-7).

$$Z_{1} = \ell_{11}X_{1} + \ell_{12}X_{2} + \dots + \ell_{1P}X_{P} = \sum_{i=1}^{P} \ell_{1i}X_{i}$$

$$Z_{2} = \ell_{21}X_{1} + \ell_{22}X_{2} + \dots + \ell_{2P}X_{P} = \sum_{i=1}^{P} \ell_{2i}X_{i}$$

$$Z_{k} = \ell_{k1}X_{1} + \ell_{k2}X_{2} + \dots + \ell_{kP}X_{P} = \sum_{i=1}^{P} \ell_{ki}X_{i}$$

$$Z_{m} = \ell_{m1}X_{1} + \ell_{m2}X_{2} + \dots + \ell_{mP}X_{P} = \sum_{i=1}^{P} \ell_{mi}X_{i}$$
(1-7)

where;

$$\ell_{k1}^2 + \ell_{k2}^2 + \dots + \ell_{kP}^2 = \sum_{i=1}^{P} \ell_{ki}^2 = 1 \ (k=1, 2, \dots, m)$$
 (1-8)

The constant ℓ_{ki} is determined such that it satisfies the following conditions:

- ① The first principal component Z_1 has the constant ℓ_{1i} (to be multiplied by X_i) which gives the maximum variance under the condition of equation (1-8) being upheld. (i=1, 2, ..., P)
- ② The constant of second principal component Z_2 , (ℓ_{2i}) (i=1, 2, ..., P), satisfies the equation (1-8) and gives the maximum variance under the condition that Z_2 and Z_1 are mutually independent.
- ③ Likewise, the constant of Kth principal component (ℓ_{ki} , i=1, 2, ..., P) satisfies equation (1-8) and gives the maximum variance under the condition that $Z_1, Z_2, ..., Z_{k-1}$ are mutually independent.

Thus the principal component Z_k can be expressed mathematically by matrix of correlation coefficients or by variance-covariance of original variables but derivation steps are omitted here.

In this study, the variables mentioned above are atmospheric pollutant concentration monitored at each stations and the principal component analysis was done by using correlation matrix (as shown in Table 1-13) of pollutant concentrations among stations. The result is shown in Table 1-14 in which the eigen vector (constant ℓ_{ki}) and eigen values are listed. The eigen values show the variance of Z_k and is termed as "contribution to total variance". Here P=5. The contribution ($\lambda_1/5$) of first principal component reads 0.663 for SO₂, 0.525 for NO₂, 0.594 for NO_x and 0.933 for SPM respectively, which means that the first principal component (Z_1) remains information of variables by as much as 66.3 pct. 52.5 pct, 59.4 pct, and 93.3 pct. The contribution of second principal component (Z_2) was calculated to be 0.280, 0.317, 0.304, 0.057 for SO₂, NO₂, NO_x, SPM respectively. The sum of the first and second contribution being called "cumulative contribution" becomes thus 0.943 (SO₂), 0.842 (NO₂), 0.898 (NO_x), and 0.990 (SPM).

The loading factor $r(Z_k, X_i)$ shown in Table 1-14 represents the correlation coefficient between the principal component Z_k and variable X_i and a relationship $r(Z_k, X_i) = \sqrt{\lambda_k \cdot \ell_{ki}}$ is unheld.

Table 1-14 The Result of Principal Component Analysis done on Correlation Coefficients among Stations with respect to Atmospheric Pollutants

•								
(SO ₂)								
Monitoring stations		Loading				Eigen	vector	
	1	2	3	4	1	2	3	4
(MS1) ONEB STATION	0.942	-0.301	0.088	0.119	0.517	-0.255	0.175	0.717
(MS2) POWER PLANT	-0.709	0.620	0.336	0.023	-0.389	0.524	0.665	0.141
(MS3) MIN.DEP.OFFICE	0.640	0.766	-0.030	0.048	0.351	0.647	-0.059	0.288
(MS4) S.P.PRO,OFFICE	0.912	-0.230	0.331	-0.081	0.501	-0.194	0.656	-0.487
(MS5) H. & I. ESTATE	-0.828	-0.535	0.155	0.063	-0.455	-0.452	0.306	0.382
Eigen values	3.316	1.402	0.255	0.027				
4346			•					
(NO ₂)								
Monitoring stations			factor				vector	
	1	2	3	4	1	2	3	4
(MS1) ONEB STATION	-0.587	0.263	0.764	0.042	-0.363	0.209	0.875	0.241
(MS2) POWER PLANT	0.485	0.868	0.076	-0.074	0.299	0.690	0.087	-0.426
(MS3) MIN, DEP, OFFICE	0.889	0.437	<u>-0.055</u>	0.128	0.549	0.347	-0.063	0.739
(MS4) S.P.PRO.OFFICE	0.917	-0.204	0.333	-0.076	0.566	-0.162	0.382	-0.439
(MS5) II. & I. ESTATE	0.643	-0.726	0.241	0.025	0.397	-0.577	0.277	0.147
Eigen values	2.625	1.583	0.762	0.030				
(3)(0, 3)								
(NOx)		1 3		·		P		
Monitoring stations	1	Loading	factor	4		Eigen 2	vector 3	
(MS1) ONEB STATION	0.891	-0.340	3 0.290	-0.083	0 517	-0.276	0.501	<u>4</u> -0.197
(MS2) POWER PLANT	-0.880	-0.340		-0.083	-0.517			
(MS3) MIN.DEP.OFFICE			0.466	0.211		-0.067 0.781	0.806	-0.067
	0.096	0.963	0.138		0.056	0.479	0.239	0.504
(MS4) S.P.PRD.OFFICE (MS5) H. & I. ESTATE		0.590 -0.349	0.066	-0.251 0.245	0.444 0.522	-0.283	0.113	-0.599
Eigen Values	0.899 2.970	1.520	0.099	0.245	U.UZZ	-0.203	0.110	0,586
Eigen values	2.910)	1.520	0.554	V.110				
(SPM)								
		Loading	factor	····		Eigen	vector	
Monitoring stations	1	2	3	4	1	2	3	4
(MS1) ONEB STATION	0.971	-0.235	-0.003	0.043	0.450	-0.442	-0.015	0.604
(MS2) POWER PLANT	0.963	0.265	0.028	-0.031	0.446	0.498	0.129	-0.438
(MS3) MIN.DEP.OFFICE	0.953	0.300	0.031	0.034	0.441	0.564	0.141	0.480
(MS4) S.P.PRO.OFFICE	0.960	-0.249	0.124	-0.027	0.445	-0.467	0.566	-0.378
(MS5) H. & I. ESTATE	0.981	-0.076	-0.176	-0.019	0.454	-0.142	-0.802	-0.264
Augo, no a se politice	V V V V I				U + 1 V T			J
Eigen values	4.663	0.284	0.048	0.005				

Fig. 1-20 shows the loading factor of the first and second principal components of pollutants observed at each station. From the graph, one can understand that all stations are plotted in a close proximity for SPM but in case of other pollutants, stations are dispersed (except MS1 and MS4 (for SO₂), MS4 and MS5 (for NO₂), MS1 and MS5 (for NO₃)) and have little regional relationship among them. The principal component analysis discussed so far conforms to whatever is found by cluster analysis.

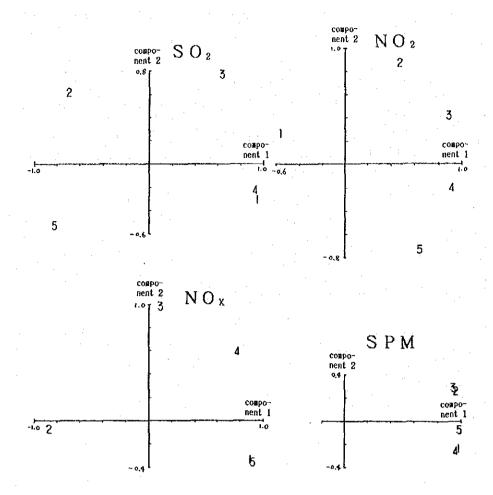


Fig. 1-20 The Result of Principal Component Analysis done on Correlation Coefficients among Stations with respect to Atmospheric Pollutants

1.2.3 Resemblance among Atmospheric Pollutants

The correlation coefficient among atmospheric pollutants were calculated by using monthly average concentrations of SO₂, NO₂, NO₃ and SPM to clarify their relationship. The calculation result is shown in Table 1-15 and made it possible for reporter to screen such combinations that have the coefficient larger than 0.8. They are as shown below.

MS1; SO_2 -SPM, NO_2 -NO_x MS3; NO_2 -NO_x, NO_2 -SPM, NO_x -SPM MS4; SO_2 -NO₂, SO_2 -NO_x, SO_2 -SPM, NO_2 -NO_x, NO_2 -SPM, NO_x -SPM

As for MS4, the coefficient was found larger than 0.8 for all combinations of pollutant, which may suggest that they are of a single source origin. On the other hand, if the coefficient is found small, each station monitors pollutants that have multiple sources.

Table 1-15 Correlation Coefficient among Atmospheric Pollutant Concentrations

	SOz	NOz	NOx	SPM
80;			·	
NO ₂	0.57			
NOx	0.60	0.82		
SPM	0.81	0.17	0.23	

(382) PQ	WER PLAN	ĭT		
	S 0 2	NO ₂	NOx	SPM
S O 2				
NO ₂	0.40			
NOx	0.53	0.76		
SPM	0.64	0.79	0.60	

(XS3) MI	N.DEP.OR	FICE		
	S 0 2	N _O 2	NOx	SPM
S O 2				
NO.	-0.25			
NOx	-0.35	0.88		
SPM	0.18	0.86	0.84	

(MS4) S.	P.PRO.OF	3217°		:
	S 0 2	ΝO₂	NOx	SPM
S 0 2				
NO2	0.83			į
NOx	0.85	0.98		
SPM	0.86	0.92	0.91	

(MS5) H.& I.ESTATE					
	S O 2	NΟz	NOx	SPM	
SOz			!		
NOz	-0.37				
NOx	-0.07	0.72			
SPM	-0.46	0.77	0.28		

1.2.4 Cumulative Frequency Distribution

As the result of analyses done in U.S.A. on environmental concentration measurement data of various pollutants, R.I. Larsen (1969)⁹⁾ discovered that the characteristics of the concentration of atmospheric pollutants agree to a log normal distribution and that such distribution is upheld with respect to the various averaging time. Thus he proposed the following mathematical model to express such characteristics.

$$f(c) = \frac{1}{\sqrt{2\pi \, \text{Sg}}} \exp\left\{-\frac{(\ln C - \ln mg)^2}{2\text{Sg}^2}\right\}$$
 (1-9)

where;

f(c): Occurrence probability at concentration C

mg: Geometrical mean

$$mg = exp\left(\frac{\sum_{i=1}^{n} lnCi}{n}\right)$$

Sg: Geometrical standard deviation

$$Sg = exp \sqrt{\sum_{i=1}^{n} (lnCi - lnmg)^{2} \over n}$$

In Fig. 1-21 plotted are the cumulative occurrence frequency distribution of hourly values and daily average values of SO₂, NO₂, NO₃ and SPM environmental concentration at each monitoring station on log normal probability chart (P-C curve diagram). This cumulative frequency was obtained by consolidating occurrence frequency of concentration, in the ascending order of concentration. Distribution of hourly concentrations are found to be nearly a straight line, which substantiates log normal distribution. The similar trend is also observed in daily average concentrations. The distribution maintains a straight line, which supports log normal distribution.

The gradient of the line expresses Sg, the standard deviations of concentration, and Sg becomes larger for smaller gradient of the line. And the concentration at cumulative frequency of 50 percents is equal to the arithmetic mean mg. Assuming the log-normal profile, the value of Sg is calculable from the curve by the following equation:

$$Sg = exp \left\{ \frac{ln(Ca/Cb)}{Za-Zb} \right\}$$
 (1-10)

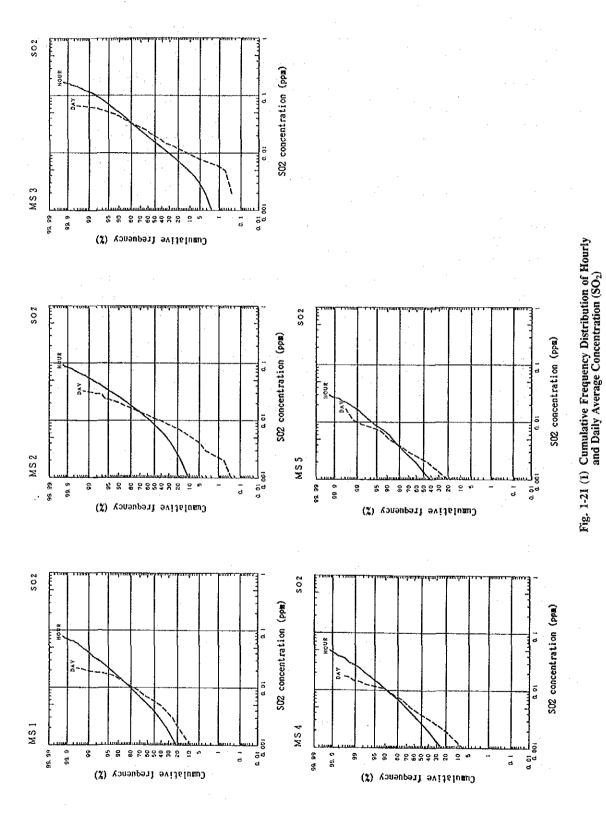
where, the symbols are as follows;

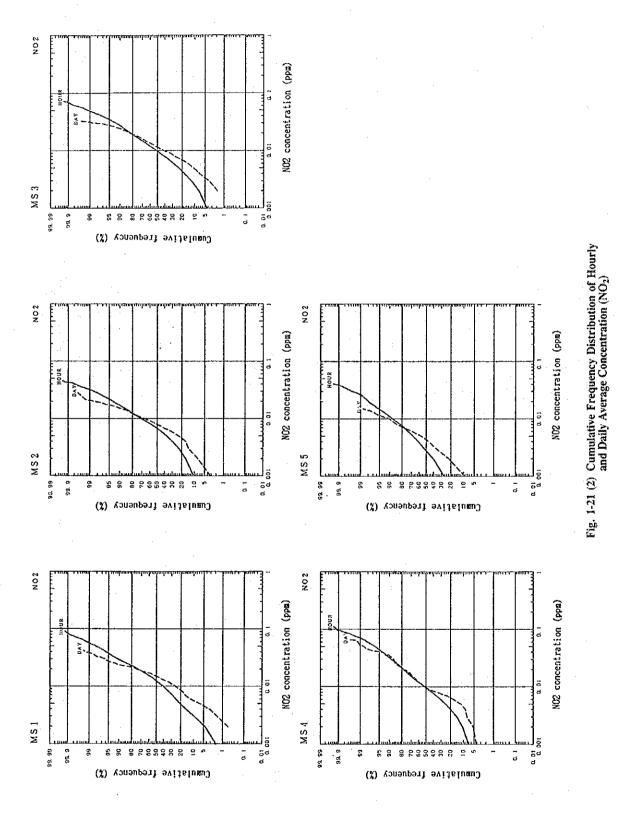
Ca, Cb: Concentration level at cumulative frequency a and b, respectively.

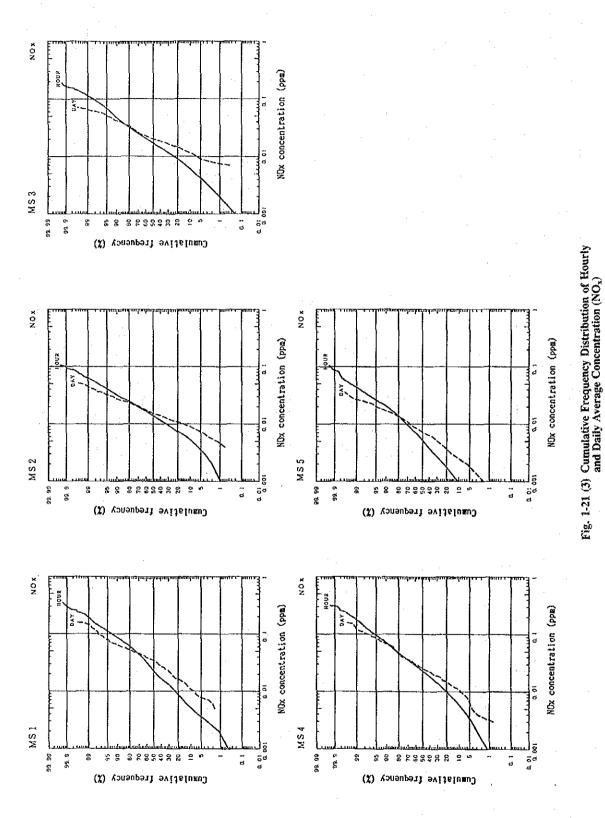
Za, Zb: Standard deviation of concentration at cumulative frequency a and b, respectively.

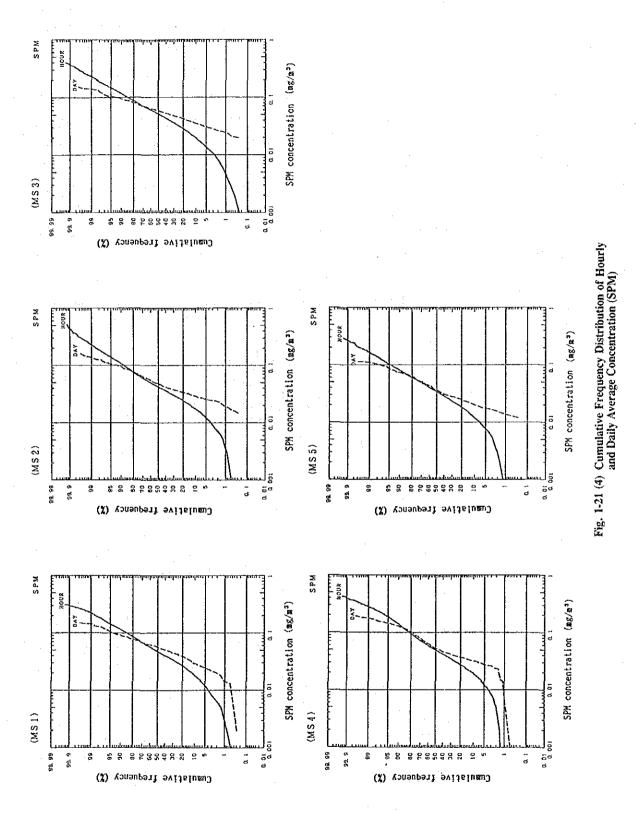
This cumulative occurrence distribution is also applicable for estimation of the maximum concentration while upper X% excluded or for estimation of probability of exceeding the specified concentration.

Ninety eight per cent cumulative of the daily average value (the value where the upper 2% of high concentration is excluded from effective measurement days), daily average value, maximum value of hourly data (percentile value) and geometrical standard deviation of hourly concentration are shown in Table 1-16.


Table 1-16 Statistical Values of Atmospheric Pollutants Concentration


(SO ₂)				
Monitoring Stations	Geometical standard deviation	98% cumulative of daily average (ppb)	Maximum value of daily average (ppb)	Maximum value of hourly data (ppb)
(MS1) ONEB STATION	2.77	19	23	109
(MS2) POWER PLANT	2.84	30	34	112
(MS3) MIN, DEP. OFFICE	2.52	60	71	199
(MS4) S.P.PRO.OFFICE	2.49	14	20	79
(MS5) H.& I. ESTATE	2,20	8	21	48


(NO ₂)				
Monitoring Stations	Geometical standard deviation	98% cumulative of daily average (ppb)	Maximum value of daily average (ppb)	Maximum value of hourly data (ppb)
(MS1) ONEB STATION	2.33	.33	49	138
(MS2) POWER PLANT	2.45	20	32	69
(MS3) MIN. DEP. OFFICE	2.40	30	41	81
(MS4) S.P.PRO.OFFICE	2,73	46	69	150
(MS5) H.& I. ESTATE	2.55	14	16	48


(NOx)				
Monitoring Stations	Geometical standard deviation	98% cumulative of daily average (ppb)	Maximum value of daily average (ppb)	Maximum value of hourly data (ppb)
(MS1) ONEB STATION	2.82	112	176	497
(MS2) POWER PLANT	2.07	40	56	132
(MS3) MIN.DEP.OFFICE	2.21	62	75	251
(MS4) S.P.PRO.OFFICE	2.64	105	180	343
(MS5) H.& I. ESTATE	2.70	25	36	127

(SPM)		·		
Monitoring Stations	Geometical standard	98% cumulative of daily	Maximum value of daily	Maximum value of
nom toring stations	deviation	average (μg/m)	average (μg/m)	hourly data (μg/m²)
(MS1) ONEB STATION	2.19	130	156	477
(MS2) POWER PLANT	2.15	125	169	870
(MS3) MIN.DEP.OFFICE	2.09	132	157	702
(MS4) S.P.PRO.OFFICE	2.42	162	201	605
(MS5) H.& I. ESTATE	2.29	103	119	661

1.2.5 Comparison of Measured Concentrations with Ambient Air Standards

The measured pollutant concentrations (SO₂, NO₂, particulate matters) were studied in light of Thai standards and were simultaneously subject to a comparative study with those of other industrialized countries. Table 1-17 and Table 1-18 show the control standards on Thailand and those in other countries respectively. The standards are mostly defined in term of weight concentration (µg/m³) but were converted into volume concentrations as for both SO₂ and NO₂ just to ease the comparison with Japanese standards. Japanese standards are defined in term of ppm and thus such conversion was done by using the average atmospheric temperature. The comparative study among standards on particulate matter of listed countries was, however, difficult because measurement of particulate size is dependent on the type of instrument and detection procedure. (For example, both Japanese and US standards address SPM concentration in less than 10 micron size while Thailand and other countries maintain standards set for TSP concentration in 0-30 micron size range that High volume sampler detects. Accordingly, Japanese control standards, as a rule of thumb, looks stringent when the absolute value of standards is watched.

Table 1-17 Ambient Air Pollution Control Standards in Thailand

Pollutant		Standard of air pollution		
	1	(ng/n³)	(pp⊞)	
20	Daily average	0.30	0.117	
SO ₂	Yearly geometric average	0.10	0.039	
NO ₂	Hourly data	0.32	0.173	
TSP	Daily average	0.33		
	Yearly geometric average	0.10		

Table 1-19 shows pollutant concentrations, SO₂, NO₂, and SPM measured at Samut Prakarn province, the former two of which are found to comply with Thai standards at all monitoring stations. As for SPM, there is no standards stipulated in the country.

When those measurements being compared with standards of other countries, the SO₂ yearly mean of MS3 (0.024 ppm) is found exceeding the yearly means of daily averages of both countries, England and France (0.014~0.021 ppm) and also desirable (0.01 ppm) as well as acceptable (0.021 ppm) levels of Canada. When the maximum daily average is compared, the measurement of MS3 (0.071 ppm) is found larger than English and French guidelines (0.035~0.052 ppm), the desirable level (0.052 ppm) of Canada, the acceptable level (0.060 ppm) of Australia and Japanese standards (0.040 ppm). The hourly maximum of MS3 (0.199 ppm) is also exceeding the acceptable level (0.170 ppm) of Australia and the desirable level (0.157 ppm) of Canada.

Table 1-18 Ambient Air Quality Standards of Major Countries

Country	SO ₂	NO ₂	Particulate matter
England	Permissible limits (µg/m³)		SMOKE* environment standard
France	Yearly average (of daily average values) 1F SMOKE<34 0.042 ppm 1F SMOKE≥34 0.028 ppm		Permissible limits Yearly average (of daily average values) 68 μg/m³
·	Winter average (of daily average values (rum October to March) IF SMOKE≤51 0.063 ppm IF SMOKE≥51 0.045 ppm		Winter average (of daily average values from October to March) Yearly peak (98% value of daily average concentration) 213 μg/m ³
	Yeardy peak (of daily average values) IF SMOKE<128 0.122 ppm IF SMOKE≥128 0.087 ppm		Guideline value Yearly average (of daily average values) 34~51 $\mu g/m^3$ 24-hour value 85~128 $\mu g/m^3$
	Guideline value Yeartly average (of daily average values) 0.014~0.021 ppm 24-hour value 0.035~0.052 ppm		*SMOKE: A portion in particle diameter of less than 15 µm of soot and dust exhausted by fossil
West :	30-min value 0,350 ppm	30-min value 0.098 ppm	fuel combustion. 30-min value 300 $\mu g/m^3$
Germany	24-hour average value 0.105 ppm	24-hour average value 0.049 ppm	24-hour average value 200 µg/m ³ Yearly average value 100 µg/m ³
Italy	Yearly average value of daily average concentrations 0.028 ppm 98% value of daily average concentration	Arithmetic mean of one-hour average concentrations 0.070 ppm (The value should not be maintained longer than one	Yearly arithmetic mean of daily average concentrations [50 µg/m ³] 95% value of daily average concentration during a 300 s. (a. 3)
Nether-	during a year 0.087 ppm 50% value of 24-hour average concentration	hour per day.) 50% value of 24-hour average concentration	year 300 µg/m ³ 50% value of 24-hour average concentration
lands	0.026 ppm 95% value of 24-hour average concentration	95% value of 24-hour average concentration	30 μg/m ³ 95% value of 24-hour average concentration
	0.070 ppm 98% value of 24-hour average concentration 0.087 ppm	0.049 ppm 95% value of one-hour average concentration 0.054 ppm	75 μg/m ³ 98% value of 24-hour average concentration 90 μg/m ³
	24-hour average value 0.175 ppm One hour average value 0.290 ppm	98% value of 24-hour average concentration 0.059 ppm	24-hour average value 150 μg/m ³
		98% value of one-hour average concentration 0.066 ppm 24-hour average value 0.073 ppm	·
		One hour average value 0.146 ppm 4-hour average value* 0.046 ppm	
		The mark * is for the protection of fauna and flora, and the other is for the protection of human health.	
South Africa	0.02 ppm (Shall not exceed 0.04 ppm) Averaging time is unknown.		Dependention chemical and physical property of substance and threshold value Example Asbstos 0.02 fibers/cc (max. 0.04). Nuisance dust 0.1 mg/m ³ (max. 0.2)
Taiwam	(Non-industrial) (Industrial) district (district) Yearly average value of one-bour values: 0.05 ppm or less, 0.075 ppm or less	(Non-industrial) (Industrial) district (district) Daily average value of one-hour values: 0.05 ppm or less, 0.1 ppm or less	(Non-industrial) (Industrial) Diameter of particle: 10 µm or less Monthly average value:
	Daily average value of one-hour values: 0.1 ppm or less, 0.15 ppm or less One-hour value: 0.3 ppm or less. 0.5 ppm or less	Daily average value which exceeds this standard shall be less than 10% of yearly data.	210 µg/Nm³ or less, 240 µg/Nm³ or less Yearly average value: 140 µg/Nm³ or less, 160 µg/Nm³ or less
			Including a portion in with a particle diameter of 10 μ m or more Monthly average value: 260 μ g/Nm ³ or less, 290 μ g/Nm ³ or less
			Yearly average value: 170 μg/Nm³ or less, 190 μg/Nm³ or less
:			Monthly average value which exceeds this standard must be less than two times per year.
Korea	Yearly average value: 0.05 ppm or less Daily average value: 0.1 ppm or less (Shall not exceed three times per year.)	Yearly average value: 0.05 ppm or less One-hour average value: 0.15 ppm or less (Shall not exceed three times per year.)	Yearly average value: $150 \mu \text{g/m}^3$ Daily average value: $300 \mu \text{g/m}^3$ (Shall not exceed three times per year.)
Australia	(Victoria) Acceptable level Detrimental level One-hour value 0.17 ppm 0.34 ppm 24-hour value 0.06 ppm 0.11 ppm	(Victoria) Acceptable level Detrimental level One-hour value 0.15 ppm 0.25 ppm 24-hour value 0.06 ppm 0.15 ppm	
U.S.A.	(Primary) Yearly arithmetic average: 0.03 ppm	Yearly average 0.053 ppm	SPM environmenta standard
	24-hour average 0.14 ppm (Secondary) 3-hour average 0.5 ppm		Yearly average (arithmetic average): 50 µg/m ³ 24-hour average; 150 µg/m ³
Canada	(1) Desirable level a) Yearly arithemetic average value 0~0.010 ppm b) 24-hour average concentration 0~0.052 ppm c) One-hour average concentration 0~0.157 ppm (2) Acceptable level	(1) Desirable level a) Yearly arithemetic average value 0-0.029 ppm (2) Acceptable level a) Yearly arithemetic average value	(1) Desirable level a) Yearly geometrical average $(0-60~\mu g/m^3$ (2) Acceptable level a) Yearly geometrical average $(60-70~\mu g/m^3$ b) Average concentration for 24 hours or more
	a) Yearly arithemetic average value 0.010~0.021 ppm b) 24-hour average concentration 0.052~0.105 ppm	b) Average concentration for 24 hours or more 0-4.098 ppm c) Average concentration for one hour or more	(3) Tolerable level Average concentration for 24 hours or more [20~400 µg/m³]
	c) One-hour average concentration 0.157~0.315 ppm (3) Tolerable level Average concentration measured continuously for 24 hours or more 0.105~0.280 ppm	0~0.195 ppm (3) Tolerable level Average concentration measured continuously for one hour or more 0.195~0.488 ppm	·
Japan	Daily average value of one-hour value: 0.04 ppm or less One-hour value: 0.1 ppm or less (98% value)	Daily average value of one-hour value shall be within the zone of 0.04 ppm to 0.06 ppm or less.	Daily average of one-hour values shall be $100~\mu g/m^3$ or less. One-hour value $200~\mu g/m^3$ or less (98% value) Particulate matter with a diameter of $10~\mu m$ or less (SPM)

Table 1-19 Measurements of Ambient Air Pollutants

Item Code (unit)	Sta tion	Effective monitoring days (days)	Monitoring hours (hrs)	Yearly Average	Yearly Geometric Average	Maximum values of hourly data	Maximum values of daily av- erage data	Values of 98% cumula tive daily average
SO ₂ (ppb)	MS 1 MS 2 MS 3 MS 4 MS 5	362 354 352 360 296	8684 8515 8502 8562 7225	7 12 24 5 3	4 8 16 3	109 112 199 79 48	2 3 3 4 7 1 2 0 2 1	19 30 60 14
NO₂ (ppb)	MS 2 MS 3 MS 4 MS 5	354 316 276 289 315	8560 7763 6805 7097 7640	16 9 13 15	12 6 10 10	138 69 81 150 48	49 32 41 69 16	33 20 30 46
NOx (ppb)	MS 1 MS 2 MS 3 MS 4 MS 5	354 316 270 289 315	8558 7763 6674 7092 7639	38 18 24 34	2 3 1 4 1 8 2 2 6	497 132 251 343 127	176 56 75 180 36	1 1 2 4 0 6 2 1 0 5 2 5
SPM (µg/m²)	MS 1 MS 2 MS 3 MS 4 MS 5	3 4 8 3 4 4 3 5 5 3 5 0 3 4 3	8399 8419 8579 8504 8322	60 56 63 68 43	46 42 50 49 32	477 870 702 605 661	156 169 157 201 119	130 125 132 162 103

Note) An effective monitoring day has 20 monitoring hours or over

The daily averages of NO₂ measured at MS1 and MS4 are 0.049 ppm and 0.069 ppm respectively, both of which are found not smaller than West Germany standards of 0.049 ppm. Especially the value of MS4 is exceeding control standards of such countries as Taiwan (0.050 ppm), Australia (0.060 ppm), and Japan (0.060 ppm). The hourly maximum of NO₂ measured at MS4 (0.150 ppm) is comparable to Korean standards and the acceptable level of Australia (0.150 ppm).

With respect to particulate matter concentration, the measurement was done this time only for the portion less than 10 micron in size and thus obtained data were compared with figures available in US and Japanese standards. The concentrations observed in all stations except MS5 are found exceeding US yearly average of 50 μ g/m³. Same is true for daily average maximum as compared with US figure 150 μ g/m³. The daily average maximum in Thailand of course surpasses the Japanese standards (100 μ g/m³) at all stations. In the United States the measurement of SPM is dependent on the use of Dichotomos sampler as shwon in Table II-4-17, which may present some difficulty of directly comparing the value measured by β -ray dust sampler with American standards. (In Japan, the fraction less than 10 μ is completely screened off while U.S. practice counts 50% of such fraction.)

1.3 Analysis of TSP Concentration by Low-Volume Sampler

Concentrations of TSP were measured by using two units of Low-volume sampler which has a quartz-fiber filter and a polyfluorocarbon filter. This monitoring job continued while replacing the filters once every half month for the period of January 17, 1988 through January 16, 1989.

1.3.1 Comparison of the TSP Concentrations Measured by Using Polyfluorocarbon Filter and Quartz-Fiber Filter

Fig. 1-22 shows the scattergrams of TSP concentration measured by using polyfluorocarbon filter and quartz-fiber filter. In this figure, the plotted data are those of half month average concentration. The values of TSP trapped by polyfluorocarbon filter and by quartz-fiber filter was showed a good agreement because the correlation between TSP concentrations taken by using both filters was found highly significant at all monitoring stations and the regression coefficient "a" was nearly 1.0.

Also shown in this figure is the concentration of TSP shown by Flow I calculated by using the air aspiration volume estimated from the reading value of both rotameter and pressure gage installed in Low-volume sampler. The concentration of TSP shown by Flow II is calculated by the air sampling volume known from the count values of integrated flow meter. The value of correlation coefficients between them were found larger in Flow II case than in Flow I case. So the reporter took the TSP concentration calculated by using Flow II.

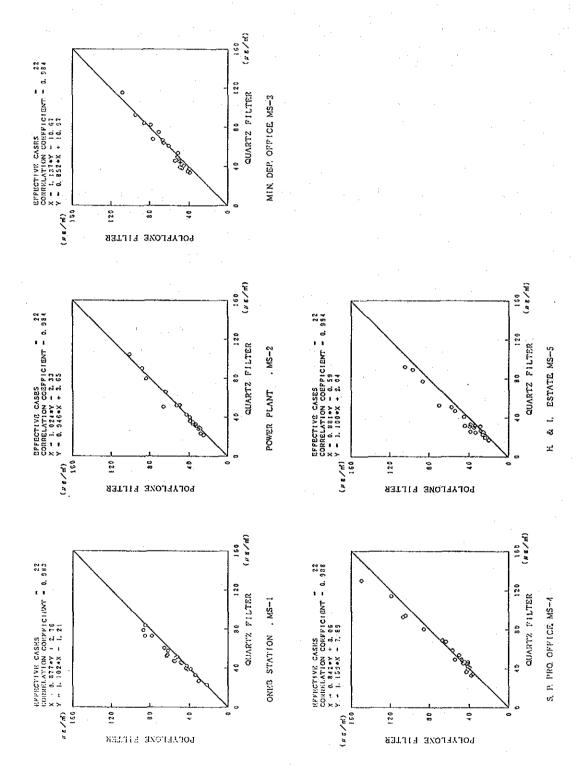


Fig. 1-22 (1) Comparison of TSP Concentrations measured by Low-Volume Samplers mounting Polyfluorocarbon Filter and Quartz-Fiber Filter (FLOW I)

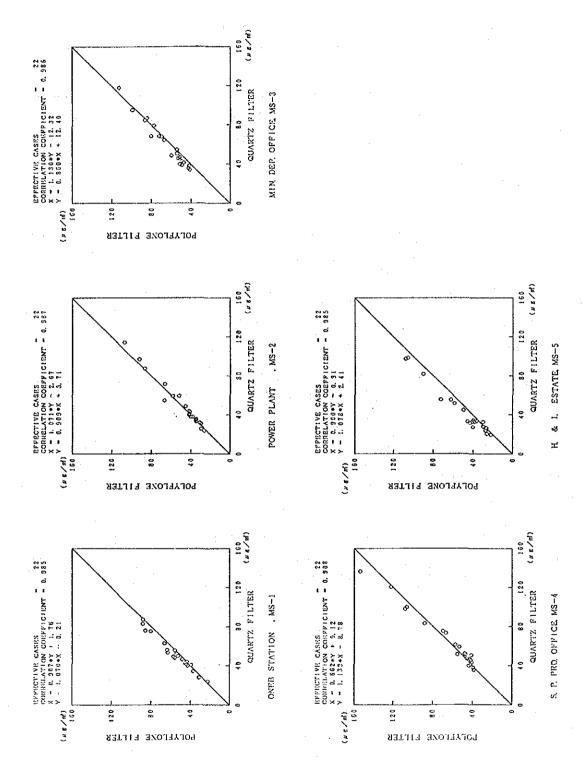


Fig. 1-22 (2) Comparison of TSP Concentrations measured by Low-Volume Samplers mounting Polyfluorocarbon Filter and Quartz-Fiber Filter (FLOW 11)

1.3.2 Monthly Average Concentration of TPM

Fig. 1-23 and Table 1-20 show the TSP monthly averages measured by Low volume sampler and monthly means of SPM concentration measured by β -ray dust sampler. TSP and SPM values here are calculated by using 15 day concentration averages and hourly concentration averages respectively.

The graph shows higher values in the dry season than in wet season at all monitoring stations and they peak around November-December period. When values are compared among stations, MS5 showed slightly lower figures probably due to a limited number of pollutants sources in its vicinity. On the other hand, MS4 marked a considerably high concentration of $100 \mu g/m^3$ during Nov.-Dec. period which may be caused by the wind (dominantly in NE direction) coming from Route 3115 with daily traffic volume of 35,000 automobiles during the period. As for MS1, observation of concentration exceeding $100 \mu g/m^3$ was scarce without the wind coming from Route 3 having the traffic volume of 77,000 vehicles per day that locates about 90 m apart to WNW direction of MS1.

Table 1-20 Monthly Average Concentrations of TSP measured by Low-Volume Sampler

(unit $\mu g/\pi l$) [measured by Roter Meter and Pressure Meter (FLOWEL)]

	игчеу		Monit	oring St	ation	
L	utvey	MS 1	_HS 2	HS 3	_MS 4	AS 5
JAN.	Quartz	57.9	52.1	82.6	67.5	50.6
L	Polyflone	61.5	53.0	78.7	63.1	57.5
FEB.	Quartz	48.8	44.5	68.3	58.3	33.6
L	Polyflone	50.6	44.4	65.8	55.4	44.4
MAR.	Quartz	36.0	37.7	53.9	42.8	32.1
	Polyflone	37.2	39.2	59.3	42.0	35.0
APR.	Quartz	42.3	36.5	45.4	48,4	31.9
	Polyflone	42.3	39.3	49.9	46.4	34.3
MAY.		34.6	26.8	43.6	44.5	22.5
	Polyflone	35.3	29.1	47.1	41.1	24.7
JUN.	Quartz	50.0	31.0	37.0	35.0	21.9
L	Polyflone	59.4	_31.7	44.5	40.1	24.4
JUL.	Quartz	42.7	30.7	36.2	43.2	28.3
L	Polyflone	47.5	30.5	39.6	42.3	27.1
AUG.	Quartz	39.8	29.9	47.9	41.9	24.0
	Polyflone	_43.0	32.5	49.1	41.0	31.9
SEP.	Quartz	_39.7	33.7	48.5	53,8	28.4
L	Polyflone	40.8	34.4	50.7	51.2	39.2
OCT.	Quartz	67.5	45.0	52.4	63.3	32.3
L	Polyflone	72.2	51.5	61.5	68.1	38.9
NOV.	Quartz	78.4	97.2	99.0	122.6	84.3
	Polyflone	84.9	93.7	96.0	134.9	94.6
DEC.	Quartz	67.2	73.4	80.6	93.7	72.1
L	Polyflone	75.1	74.3	81.5	105.3	83.9

(unit #g/nf) [measured by Roter Meter and Dry Gas Meter (FLOW#2)]

			Moni t	oring St	ation	-
L3	urvey	HŞ 1	MS 2	MS 3	MS 4	MS 5
JAN.	Quartz	62.8	59.4	86.9	73.6	55.5
L	Polyflone	66.1	58.2	84.3	66.9	62.1
FEB.	Quartz	53.0	50.3	72.0	63.6	42.3
L	Polyflone	54.4	46.7	72.2	58.5	48.5
MAR.	Quartz	38.1	42.7	57.4	47.4	35.4
L	Polyflone	_40.6	42.4	65.0	45.2	38.1
APR.	Quartz	43.9	39.7	46.0	52.6	33.6
L	Polyflone	43.6	41.5	52.6	47.8	36.3
MAY.	Quartz	35.7	29.1	44.1	48.3	23.6
	Polyflone	_35.9	30.4	49.0	41.5	25.9
JUN.	Quartz	51.5	33.4	37.4	38.0	23.6
	Polyflone	60.4	32.8	45.9	40.9	25.3
JUL.	Quartz	43.8	_33.3	36.5	45.1	29.5
	Polyflone	48.8	31.7	41.3	43.1	27.9
AUG.	Quartz	41.2	32.3	48.5	43.9	25.3
L	Polyflone	43.7	34.0	51.5	42.3	32.9
SEP.	Quartz	41.2	37.8	49.0	56.3	32.6
	Polyflone	41.6	37.3	52.7	52.6	44.2
OCT.	Quartz	69.9	48.7	52.9	66.0	33.8
	Polyflone	74.2	52.9	64.1	70.0	40.0
NOV.	Quartz	81.6	105.1	100.4	129.1	89.3
	Polyflone	86.8	98.5	98.4	139.0	98.1
DEC.	Quartz	70.4	1.08	82.4	99.0	78.4
	Polyflone	76.8	77.1	85.0	106,5	89.7

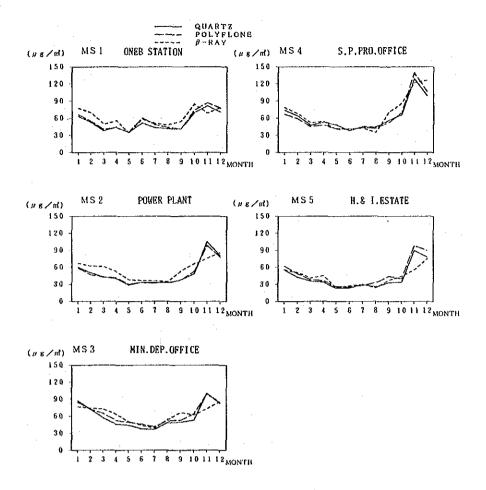


Fig. 1-23 Time Series Variations of TSP Concentrations by Low-Volume Sampler and SPM Concentrations by β -Ray Dust Analyser

1.3.3 Comparison of the Concentration of TSP measured by Low-Volume Sampler and the SPM Concentration Measured by β -Ray Dust Analyzer

The scattergrams of SPM measurements by β -ray dust analyser and TSP measurements by Low volume sampler were shown in Fig. 1-24. The graphs combined with regression coefficient 0.815–0.938 and slope of regressional equations 0.80–1.35 show a poor correlation between TSP and SPM concentrations allowing the effect coming from site specific condition of station and filter type. It may be due to the difference of effective measurement range of dust size between two instruments, i.e.,

 $0.1-30 \mu m$ for Low volume sampler and $0.1-10 \mu m$ for β -ray dust analyser.

The SPM value exceeding TSP one was occasionally observed but the cause is unknown. It may be probably due to measurement procedures or other factors.

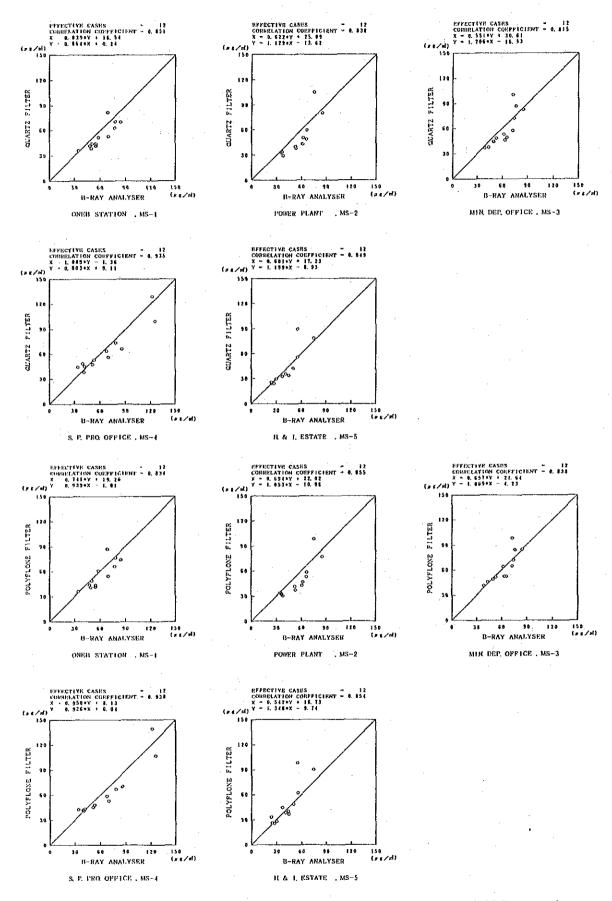


Fig. 1-24 Comparison of TSP Concentration measured by Low-Volume Sampler and SPM Concentration Measured by β -Ray Dust Analyser

1.3.4 Resemblance among the Monitoring Stations by Cluster Analysis and Principal Component Analysis based on Correlation Coefficients among Ambient Pollutant Concentrations

As previously discussed, both cluster and principal component analysis were done on TSP concentrations trying to clarify the regional resemblance among monitoring stations.

(1) Cluster analysis

Data base applied for cluster analysis are correlation coefficients among monitoring stations with respect to TSP concentrations trapped by Low volume samplers. The samplers used two types of filter, namely one made of quartz and the other of polyfluorocarbon and thus cluster analysis was done about two groups of measurement by applying the group average method.

Table 1-21 lists regional correlation coefficients with respect to TSP concentration and Fig. 1-25 shows the result of cluster analysis, briefly insignificant difference between two types of filter and significant regional resemblance among TSP monitoring stations given by similarity over 0.7. The result thus agrees to the observation previously obtained about SPM.

Table 1-21 Correlation Coefficients among Stations with respect to TSP Concentrations

	(Quartz FLO¼‡2)				(P	olyflone	e FLOw≇2
	MS1 MS2 MS3 MS4 MS5		MS1	MS2	MS3	MS4	MS5
MS1 ONEB STATION MS2 POWER PLANT MS3 MIN.DEP.OFFICE MS4 S.P.PRO.OFFICE MS5 H.&I.ESTATE	0.838 0.667 0.727 0.792 0.838 0.894 0.943 0.954 0.667 0.894 0.851 0.897 0.727 0.943 0.851 0.892 0.792 0.954 0.897 0.892	MS1 ONEB STATION MS2 POWER PLANT MS3 MIN.DEP.OFFICE MS4 S.P.PRO.OFFICE MS5 H.8I.ESTATE	0.800 0.654 0.745 0.715	0.924 0.941	0.654 0.924 0.808 0.905	0.808	0.715 0.932 0.905 0.887

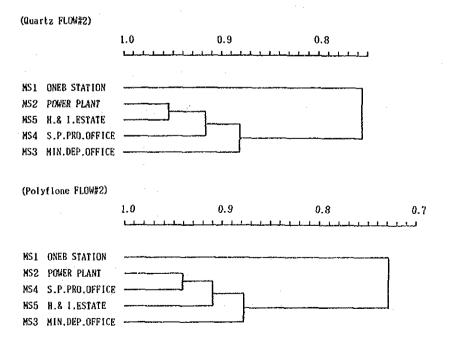


Fig. 1-25 The Result of Cluster Analysis (Dendrogram among Monitoring Stations with respect to TSP Concentration)

(2) Principal component analysis

TSP concentrations observed by monitoring stations were thought as variable and correlation coefficients listed in Table 1-21 were applied for principal component analysis, the result of which is shown in Table 1-22.

The contribution of first principal component is calculated to be 0.879 for quartz filter case and 0.867 for polyfluorocarbon filter case. In other words, the first principal component retains 87.9 pct or 86.7 pct of information. Fig. 1-26 shows plots of contribution by the first and second principal components with respect to TSP concentrations observed by stations. The figure shows a significant regional resemblance among stations as indicated by proximity of plots and conforms to our findings by cluster analysis.

Table 1-22 Result of Principal Component Analysis done on Correlation Coefficients among Stations with respect to TPS Concentration

(Quartz FLOW#2)		_						
Monitoring stations		Loading	factor			Eigen	vector	
Monitoring stations	1	2	3	4	1	2	3	4
(MS1) ONEB STATION	0.854	0.511	0.060	0.063	0.408	0.850	0.156	0.231
(MS2) POWER PLANT	0.989	0.002	-0.059	-0.017	0.472	0.003	-0.154	-0.063
(MS3) MIN. DEP. OFFICE	0.922	-0.281	0.235	0.124	0.440	-0.467	0.610	0.455
(MS4) S.P.PRO.OFFICE	0.944	-0.135	-0.286	0.069	0.451	-0.225	-0.744	0.254
(MS5) H. & I. ESTATE	0.970	-0.054	0.063	-0.224	0.463	-0.089	0.164	-0.819
Eigen values	4.393	0.362	0.148	0.075				

(Polyflone FLOW#2)						·		
Monitoring stations		Loading	factor			Eigen	vector	
MOINT COITING STATIONS	1	2 _	3	4	1	2	3	4
(MS1) ONEB STATION	0.834	0.539	0.114	0.013	0.401	0.863	0.274	0.047
(MS2) POWER PLANT	0.989	-0.038	-0.021	-0.087	0.475	-0.060	-0.050	-0.306
(MS3) MIN.DEP.OFFICE	0.925	-0.269	0.241	-0.103	0.444	-0.430	0.578	-0.364
(MS4) S.P.PRO,OFFICE	0.944	-0.010	-0.320	-0.064	0.453	-0.015	-0,767	-0.225
(MS5) H. & I. ESTATE	0.957	-0.161	0.004	0.241	0.459	-0.258	0.011	0.849
Eigen values	4.337	0.390	0.174	0.081				

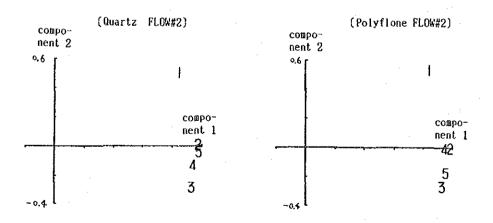


Fig. 1-26 Principal Component Analysis done on Correlation Coefficients among Stations with respect to TSP Concentration

1.4 Analysis of Polluting Meteorology

1.4.1 Concentration of Air Pollutants by Wind Direction and by Wind Velocity Level

Among meteorological conditions influencing the environmental concentration at a given location, wind direction and wind velocity are the most decisive factors. Concentration of air pollutants by wind direction and by wind velocity level are shown in Table 1-23. Fig. 1-27 shows plots of the average concentration of SO₂, NO₂, NO₃ and SPM at each monitoring station by wind direction and by wind velocity level. The ordinate is concentration, and the abscissa shows wind direction. With respect to each wind direction, concentration is shown for each wind velocity level, divided into 5 classes. Since wind velocity was not measured at MS3 and MS4, the data at the nearby station 2 were used.

As for SO₂, concentration is found low at MS1 when there is little wind, but high concentrations appeared under winds of SW-N direction. While MS2 locates at high concentration spot, next to MS3, high concentration appeared there when it is windless or when wind of W-N direction blows softly. While MS3 is the place having the highest SO₂ concentration, high concentrations appear under winds of NNE to E to S direction.

Concerning to NO₂ and NO_x, high concentration values are seen at both MS1 and MS4, the high concentration appear under the calm condition. This is thought due to the presence of trunk highways in the vicinity.

As for SPM, high concentrations appeared at the time of calmness or of soft wind. This is a trend seen at every station.

Table 1-23 (1) Concentration by Wind Direction and by Wind Velocity Level (SO₂)

	730 A	0.0 0.0	7.0 18.7	33 ZZ 11.4 8.2	5.8 8.5	2 1 JU 4.5 2.0 3.9	0.0 0.0 0.0	51 72		20.0	0.0 0.0	50 7.0 S.	73 54 BD	23 10 24 4.4 4.9 2.3	14 2 10 5.1 2.5 2.0	0.0 0.0 0.0	183 118 175 6.6 6.5 4.7									
	NS NS	0.0	22 20 21 21 22 23	313 6.8 5.1	117 2.7.5 5.6	2.6 2.2	0.0 0.0	AB1 157 6.0 6.7		改	0.0 0.0	3.5	101 102	85 85	101 B	2.5 0.0	372 ZIG									
	5 254	0.0 0.0	1,1 8.9	176 313 4.6 6.5	87. 82.	1187 200 2.1 2.4	T. 7.1	1546 80T		S SSW	0.0	72 AS 2.3 3.1	2.2 2.2 2.7	322 2.0 2.0 2.1	2.6 2.0	0.0 53	815 1231 2.2 2.1			•						
	55.	0.0 0.0	20 12 5.9 5.3	105 141 5.2 5.0	222	3.9 2.7	0.0	500 1107 4.5 3.2		33	0.0 0.0	25 2.6 3.1	22.1.2 7.2.25	8.0. 8.0. 8.0.	8 5 6.8 4.5	0.0 0.0	220 ST3								٠.	
	133	0.0 0.0	34 Z7 0.8 7.3	5.0 5.1	30 32	3 3	0.0 0.0	174 172 5.6 5.3	i.	333	0.0 0.0	3.0 3.5	3.1 3.2	23 2.7	15 23.1	2.0 0.0	82.5 32.5 32.5									: .
	C NC ENF	0.0 0.0	1. 125 OC 7. 5.2 6.5	5.3 4.2	133 GB 14.6 4.2	4.6 4.5	0.0 0.0	5.0 312		ang an	0.0 0.0	152 128 4.0 3.5	22.1.2 2.2.2 2.5.2 2.5.2	160 97 2.0 2.1	151 1.4 88	1.5 1.5 1.5	770 540 2.3 2.8									
8	K NEW	0.0 0.0	7.3 E.7	323 236	277 102	0.49 118 0.6.2 3.7	0.0 0.0	6.4 5.5	H	N REE	0.0 0.0	4.2 3.9	2.7 2.5 2.5	71 172 1.6 1.5	12 121 1.2 1.3	0.0 0.8	303 619 2.7 2.2									
S.P. 1700, OFF	9/ 9/	(hour) 35 (rpb) 9.9	(hour) 0.0 (spb) 0.0	(hour) (pre) 0.0	(hour) 0.0 (pid)	(hour) 0 (pob) 0.0	(hour) 0 (nob) 0.0	8.6. €.	E I. ESTATE	3/3	(hour) 230 (prb) 4.7	(hour) (ppb) 0.0	(hour) (hob)	(hour) (hyb) 0.0	(hour) 0.0 (hyb) 0.0	(hour) 0 (prè) 0.0	210									
PSS) S	/_	0 -0.4 (0.5-0.9 (0 6.1-0.1 0	2.0-2.9 ()	3.0-4.9 () (s	5.0- G	TOTAL	985) !!.	/ 2	0-0.4 G	0.5.0.3 (A	() 6.1-0.1 ()	2.0-2.9 (h	3.0-4.9 (h	4.0.5 (9.0	TOTAL	-								٠
											L			<u> </u>				İ								
																		i 1			-					
	True	5.0	112	1.5	0.0	5.5		7.0	· ·	מנדא.	8 8	55.0 16.0	5.1	2450	2.5 3.5		3400 12.1		TUTAL	8.3 8.5	82	15.0	21.5	8.33	88	
	2	0.0	3.0 6.9	8.6	133 222) 15.2 0.8	8 5 5	16.13	233		Š	000	22.5	85.	215 2450 19.1 10.2	83	-01	21.0		XX	20.	ã <u>∵</u>	E 5	83	3 0	-3	<u>ş</u> .
		0.0 0.0	19.0 3.0 6.0	31 50 15.6 9.2	26.13 223 22.1 15.2 0.8	72 105 30.0 18.5	2 10 33.0 16.1	133 Z30 Z3.8 15.3		W RSV	0.0 0.0	22.0 2.0 2.15	85.51 7.52 7.52	13 215 2450 14.3 19.1 10.2	00 21 20 21	0.0	85 456 17.7 21.0		NO N	0.0	M.5 13.1	35.173 1.15	12 130 8.7 11.6	7.6 12.9 12.9	0.0	25.00
	WH WI NO	0.0 0.0 0.0	3 1 112 19.7 19.0 3.0 6.9	38 38 50 12.4 15.6 9.2	77 56 133 2233 16.3 22.1 15.2 0.8	20 42 105 19.8 30.0 18.5	0, 2 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	15.6 23.8 15.3		NO W NO	0.0 0.0 0.0	14 22 24 23.9 23.0 21.5	21.02 E 22.02 7.02 F.01 0.12	2 t3 215 2450 15.0 14.3 19.1 10.2	1 12 00 14.0 6.8 11.3	0.0 0.0 0.0	42 85 405 23.3 17.7 21.0		NO N. NO	0.0 0.0	M 22 24 11.4 M.5 13.1	25 35 173 17.5 17.9 17.6	2 12 130 8.5 8.7 11.6	11.0 7.6 12.9	0.0 0.0 6.0	42 01 461
	WAY AND ASSESS OF	0.0 0.0 0.0 0.0	3 3 1 1 112 13.0 19.7 19.0 3.0 6.9	44 38 30 50 9.3 12.4 15.6 9.2	70 JT 56 133 223 11.7 16.3 22.1 15.2 0.8	40 20 42 105 10.1 19.8 33.0 18.5	0.0 0.0 0.0 0.0	102 30 133 230 10.7 15.6 23.8 15.3		NO M ROT A	0.0 0.0 0.0 0.0	M M ZZ ZM	21.4 24.0 19.12	5 2 13 215 2470 10.2 15.0 14.3 19.1 10.2	4.5 14.0 6.8 11.3	0.0 0.0 0.0 0.0	55 42 85 405 21.0 21.3 17.7 21.0		NO W. NO A	0.0 0.0 0.0	14 14 22 24 17.3 11.4 14.5 13.1	32 25 36 173 14.3 17.5 11.9 11.6	5 2 12 130 11.2 5.5 6.7 11.6	2 1 11 GH 12.5 11.0 7.6 12.9	0.0 0.0 0.0	53 42 01 461
	WAY NO WAY O WAY	0.0 0.0 0.0 0.0 0.0	20,0 13,0 19,7 19,0 3,0 6,9	00. 44 39 30 50 13.0 9.3 12.4 15.6 9.2	100 73 37 56 133 2231 13.2 11.7 16.3 22.1 15.2 0.6	6.6 10.1 19.8 30.0 18.5	2.5 0.0 0.0 25 30 2.5 0.0 0.0 39.0 16.1	338 105 30 133 239 15.3 15.3		NOT THE TOTAL PLANT	0.0 0.0 0.0 0.0	33 14 14 22 24 30.5 35.2 25.9 22.0 21.5	75 34 25 38 183 19.8 21.4 24.0 19.7 28.7	51 5 2 13 215 2150 15.4 15.2 15.0 14.3 19.1 10.2	15 2 1 12 05 5.5 4.5 14.0 6.8 11.3	0.0 0.0 0.0 0.0	150 55 42 85 425 17.0 21.0 23.3 17.7 21.0		NOT THE POST OF THE	0.0 0.0 0.0 0.0	13 14 14 22 24 17.5 17.3 11.4 14.5 13.1	76 72 25 36 173 11.0 14.8 17.5 11.9 11.6	53 5 2 12 100 11.9 11.2 6.5 8.7 11.6	5.3 12.5 11.0 7.6 12.9	0.0 0.0 0.0 0.0	157 53 42 01 461
	AND THE TOTAL PLANT OF THE PARTY AND THE PAR	0.0 0.0 0.0 0.0 0.0 0.0	14.5 20.0 13.0 19.7 19.0 3.0 6.9	70 00. 44 39 30 50 15.1 13.0 9.3 12.4 15.6 9.2	149 190 79 37 56 133 223 17.1 13.2 11.7 16.3 22.1 15.2 0.8	10.0 6.6 10.1 19.8 33.0 18.5	5.6 2.5 0.0 0.0 39.0 16.1	331 338 (65 90 (33 23) 14,2 12,2 10,7 15,6 23,8 15,3		SSN MA MET A MEST ME	0.0 0.0 0.0 0.0 0.0 0.0	22 13 14 14 22 24 15.1 30.5 35.2 25.9 25.0 21.5	318 75 34 25 38 183 14.8 19.8 21.4 24.0 19.7 28.7	114 51 5 2 13 215 2150 5.2 15.4 10.2 15.0 14.3 19.1 10.2	23 15 2 1 12 05 6.6 5.5 4.5 14.0 6.8 11.3	0.1 0.0 0.0 0.0 0.0	477 150 55 42 85 426 13.1 17.0 21.0 27.3 17.7 21.0		NOT THE MOST A . MOST AS	0.0 0.0 0.0 0.0 0.0	22 13 14 14 22 24 8.9 17.5 17.3 11.4 14.5 13.1	310 76 32 25 35 173 10.8 11.0 14.8 17.5 11.9 11.6	115 53 5 2 12 100 8.5 11.9 11.2 6.5 8.7 11.6	25 15 2 1 11 GH 11.2 5.3 12.5 11.0 7.6 12.9	0.0 0.0 0.0 0.0 0.0 0.0	नीय दिन इस इस निर्माण
	WAY NO WAY O WAY	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.8 M.5 20.0 13.0 19.7 19.0 3.0 6.9	111 70 00: 44 30 30 50 12.5 15.1 13.0 9.3 12.4 15.6 9.2	100 140 100 70 37 56 130 2029 13.9 17.1 13.2 11.7 16.3 22.1 15.2 0.6	156 101 03 40 30 42 105 9.1 10.0 6.6 10.1 19.8 30.0 18.5	2.2 5.5 2.5 0.0 0.0 30.0 16.1	11.6 14.2 12.2 10.7 15.6 23.8 15.3		NOT THE TOTAL PLANT	0.0 0.0 0.0 0.0 0.0 0.0	10 22 13 M 14 22 24 24.2 15.1 30.5 35.2 25.9 22.0 21.5	315 318 75 34 25 38 183 12.6 14.8 13.8 21.4 24.0 19.7 28.7	200 114 51 5 2 13 215 2400 0.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	200 23 15 2 1 12 05 5.9 6.6 5.5 4.5 14.0 6.8 11.3	3.9 9.9 9.0 0.0 0.0 0.0 0.0 0.0 0.0	600 477 150 55 42 85 405 9.5 13.1 17.0 21.0 23.3 17.7 21.0		AND THE POST IN THE MESS ASS	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 22 13 14 14 22 24 18.1 9.9 17.5 17.3 11.4 14.5 13.1	316 310 76 32 25 36 173 13.3 10.8 11.0 14.8 17.5 11.9 11.6	201 115 53 5 2 12 100 14.2 0.5 11.9 11.2 0.5 0.7 11.0	200 22 15 2 1 11 CH	11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	505 ATU 157 53 AZ 01 AG
	NAT SEN SEN NEW B NEW PAR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.5 9.8 14.5 20.0 13.0 13.7 19.0 3.0 6.0	71 111 70 30 44 38 30 50 6,1 12.5 15.1 13.0 9.3 12.4 15.6 9.2	332 105 149 140 73 37 55 133 223 7.5 13.9 17.1 13.2 11.7 16.3 22.1 15.2 0.6	649 156 101 63 40 20 42 105 4.5 9.1 10.0 6.6 10.1 19.8 20.0 18.5	61 11 9 2 0 0 2 10 2.2 2.2 5.5 2.5 0.0 0.0 30.0 16.1	5.0 11.0 14.2 12.2 10.7 15.6 23.8 15.3		SSN AND ARCH AT MIST MIS MISS S	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13 10 22 13 14 14 22 24 16.2 24.2 15.1 30.6 35.2 23.9 22.0 21.5	179 316 36 36 34 25 38 163 12.7 12.6 14.8 19.0 21.4 24.0 19.7 20.7	455 220 114 51 5 2 13 215 2420 6.4 6.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	1105 200 23 15 2 1 12 05 8.7 5.9 6.6 5.5 4.5 14.0 6.8 11.3	9.2 9.9 9.9 6.0 0.0 6.9 0.0 1.0	1949 600 477 156 55 42 85 406 9.1 9.5 13.1 17.0 21.0 22.3 17.7 21.0		NOT THE PART IN . PLOT INS. ASS. S.	0.0 0.0 0.0 0.0 0.0 0.0 0.0	14 19 22 13 14 14 22 24 18.1 18.1 18.1 9.9 17.5 17.3 11.4 14.5 13.1	181 316 310 76 32 25 35 173 27.0 13.3 10.8 11.0 14.8 17.5 11.9 11.6	465 221 115 53 5 2 12 100 35.2 14.2 0.5 11.9 11.2 0.5 0.7 11.6	1176 200 22 15 2 1 11 CH 37.5 14.3 11.2 5.3 12.5 11.0 7.6 12.9	31.1 11.5 0.0 0.0 0.0 0.0 0.0 6.0	1948 635 470 157 53 42 01 461
	SSE S SSW SW NSW & KAN NA HAY	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.7 22 6 4.5 20,0 13,0 19.7 19.0 3.0 6.9	137 71 111 70 81 44 38 39 50 6.5 6.1 12.5 15.1 13.0 9.3 12.4 15.6 9.2	277 382 165 149 140 79 31 56 133 2225 5.4 7.5 13.9 17.1 13.2 11.7 16.3 22.1 15.2 8.8	513 649 156 101 03 49 20 42 105 2.7 4.5 9.1 10.0 6.6 10.1 19.8 33.0 18.5	30 61 11 9 2 0 0 2 10 1,1 2,2 2,2 5,6 2,5 0,0 0,0 30,0 16,1	3.6 5.0 11.6 14.2 12.2 10.7 15.6 23.8 15.3		SSN AN ASSN A MSN AS ASS	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	13 13 18 22 13 14 14 22 24 12,7 16.2 24.2 15.1 30.6 35.2 25.9 22.0 21.5	142 179 315 316 75 34 25 38 103 11.7 12.1 12.6 14.8 19.8 21.4 24.0 19.7 20.7	330 435 230 114 51 5 2 13 215 220 11.2 6.4 6.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	655 1165 259 23 15 2 1 12 05 14.2 8.7 5.9 6.5 5.5 4.5 14.0 6.8 11.3	39 BG 7 0 0 0 0 0 1	1107 1949 609 677 158 55 42 85 405 13.1 9.1 9.5 13.1 17.8 21.0 22.3 17.7 21.0		THE PART OF THE PA	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25 13 14 19 22 13 14 14 22 24 2 23.1 13.1 18.1 9.9 17.5 17.3 11.4 14.5 13.1	34.9 Z7.0 13.3 19.8 11.6 14.8 17.5 11.9 11.6	300 405 201 115 53 5 2 12 100 36.5 35.2 14.2 0.5 11.9 11.2 6.5 8.7 11.6	34.2 37.5 14.3 11.2 5.3 12.5 11.0 7.6 12.9	0 30 50 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1194 1948 635 478 157 53 42 01 461
	SE SSE S SSV SV NGV V NGV V NGV NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.0 4.7 6.5 9.8 14.5 20.0 13.0 13.7 13.0 3.0 6.0	120 137 171 111 70 36 44 39 30 50 5.4 6.5 6.1 12.5 15.1 13.0 9.3 12.4 15.6 9.2	125 277 382 105 140 110 73 37 56 133 2823 4.7 5.4 7.5 13.9 17.1 13.2 11.7 16.3 22.1 15.2 0.8	157 673 649 156 101 63 49 20 42 165 3.5 2.7 4.5 9.1 10.0 6.6 10.1 19.8 30.0 18.5	35 30 61 11 9 2 0 0 2 10 1,2 1,1 2,2 2,2 5,6 2,5 0,0 0,0 30,0 16,1	474 1164 1225 452 331 338 465 99 133 259 4.3 3.6 5.0 11.6 14.2 12.2 10.7 15.6 23.8 15.3		ASSI AND ARCH AT MIST MISS MISS S 355 35	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	20 13 13 16 22 13 14 14 22 24 13.6 12.2 16.2 24.2 15.1 30.6 35.2 25.9 22.0 21.5	107 142 179 315 316 75 34 25 38 100 11 731 130 120 1721 111 17.01	231 233 435 230 114 51 5 2 13 215 2450 7.2 11.2 6.4 6.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	110 CC5 1105 200 23 15 2 1 12 CC 7.8 14.2 8.7 5.9 G.5 5.5 4.5 14.0 G.8 11.3	0,0 17.9 9.2 9.9 9.0 0.0 0.0 0.0 0.0 1.0	540 1107 1949 600 477 150 55 42 85 40 8.6 13.1 9.1 9.5 13.1 17.6 21.0 27.3 17.7 21.0		NOT THE POST OF TH	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20 13 14 19 22 13 14 14 22 24 22.2 23.1 19.1 18.1 18.1 5.9 17.5 17.3 11.4 14.5 19.1	100 142 181 316 310 76 32 25 35 173 25,3 34,3 27,0 13,3 10,8 11,0 14,8 17,5 11,9 11,6	222 333 465 231 115 53 5 2 12 133 24.6 35.5 35.2 14.2 0.5 11.9 11.2 0.5 0.7 11.6	112 051 1178 201 22 15 2 1 11 04 16.7 34.2 34.2 37.5 14.3 11.2 5.3 12.5 11.0 7.6 12.9	0.0 43.0 31.1 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	उस्त गांव छिन्न छठ नाव हात हुत नह ।
	SSE S SSW SW NSW & KAN NA HAY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.5 11.0 4.7 6.5 9.8 14.5 20.0 13.0 13.7 19.0 3.0 6.0	135 129 137 171 111 70 81 44 39 39 50 4.4 5.4 6.5 6.1 12.5 15.1 13.0 9.3 12.4 15.6 9.2	4.2 4.7 5.4 7.6 13.9 77.4 13.2 11.7 16.3 22.1 15.2 0.8	49 157 673 649 156 101 63 49 30 42 105 105 2,7 3,5 2,7 4,5 9,1 10.0 0.6 10.1 19.8 30.0 10.5	0 25 30 61 11 9 2 0 0 2 10 0 2 10 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10	201 434 1164 1225 452 231 238 165 59 133 229 4.0 4.3 3.6 5.0 11.6 14.2 12.2 10.7 15.6 25.8 15.3		ASSI AND AREST AS MISSE ASS S 355	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	24 28 13 13 10 22 13 14 14 22 24 13.0 13.6 13.5 12.2 16.1 30.6 30.2 20.0 20.5	111 107 142 179 315 318 76 34 25 38 103 13.0 10.7 11.7 12.7 12.6 14.8 19.0 21.4 24.0 19.7 20.7	33 231 330 405 230 114 51 5 2 13 215 2150 11.0 7.2 11.2 6.4 6.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	3 110 CCC 1105 200 23 15 2 1 12 CC	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	171 540 1107 1949 033 477 158 55 42 85 425 12.6 8.6 13.1 9.1 9.5 13.1 17.6 21.0 23.3 17.7 21.0		THE PART OF THE PA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 13 14 19 22 13 14 14 22 24 22.2 23.1 19.1 18.1 18.1 5.9 17.5 17.3 11.4 14.5 19.1	28.6 26.2 38.2 31. 316 310 76 32 25 35 173 28.6 26.3 34.9 27.0 13.3 10.8 11.0 14.8 17.5 11.5 11.5	222 333 465 231 115 53 5 2 12 133 24.6 35.5 35.2 14.2 0.5 11.9 11.2 0.5 0.7 11.6	112 051 1178 201 22 15 2 1 11 04 16.7 34.2 34.2 37.5 14.3 11.2 5.3 12.5 11.0 7.6 12.9	0.0 43.0 31.1 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	170 560 1194 1948 635 478 151 53 42 01 461
	HAM HAM HEAR S SSW SW HORN IN HOW HAW HAW	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35 25 11.0 4.7 6.5 8.8 14.5 20.0 13.0 13.7 13.0 3.0 6.9	135 135 135 137 171 111 70 86 44 38 38 50 42 44 5.4 5.6 5.2 5.1 12.5 15.1 13.0 9.3 12.4 15.6 9.2	135 115 125 277 322 105 149 110 75 37 55 135 223 223 3.1 3.2 4.7 5.4 7.5 13.9 17.1 13.2 11.7 16.3 22.1 15.2 0.8	77 49 157 673 649 155 101 63 40 20 42 165 27 2.7 2.7 2.5 2.7 4.5 9.1 10.0 6.6 10.1 19.8 33.0 18.5	25 0.0 12 1.1 2.2 2.2 5.6 2.5 0.0 0.0 30.0 16.1	34 4.0 4.3 3.6 5.0 11.6 14.2 12.2 10.7 15.6 23.8 15.3		ASN AN ARCH A MSN MS MSS S 355 35 353 3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	34 24 20 13 13 10 22 13 14 14 22 24 16.6 13.6 13.6 13.8 23.9 23.5 23.5	0.0 11.0 107 142 179 015 316 75 34 25 39 130 0.0 0.0 13.0 0.0 17.21 7.21 7.21 21.4 28.0 19.7 23.7	25 32 231 330 445 230 114 51 5 2 13 255 240 4.4 11.0 7.2 11.2 6.4 6.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	3 3 110 655 1105 250 23 15 2 1 12 05 7.3 7.7 7.8 14.2 8.7 5.9 6.5 5.5 4.5 14.0 6.8 11.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77 171 549 1197 1949 625 477 159 55 42 85 425 977 21.0		NO. W. WAY N . PLY BS ASS S 355 35 353 3	0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0,	30. 27. 20. 13. 14. 19. 22. 13. 14. 14. 22. 23. 30.4. 29.3 22.2 23.1 19.1 19.1 19.1 5.9 17.5 17.3 11.4 14.5 13.1	113 114 105 142 131 316 310 76 22 25 173 175 25 25 25 175 175 175 175 175 175 175 175 175 17	30 34 222 330 465 231 115 53 5 2 12 130 13.0 20.7 24.6 36.5 35.2 14.2 0.5 11.9 11.2 0.5 0.7 11.0	112 051 1178 201 22 15 2 1 11 04 16.7 34.2 34.2 37.5 14.3 11.2 5.3 12.5 11.0 7.6 12.9	0.0 0.0 0.0 43.0 31.1 11.5 0.0 0.0 0.0 0.0 0.0 0.0	100 170 550 1193 1948 635 470 157 53 42 01 461
	EXE SE SSE S SSW SW WGN W KAN KA KAN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	43 35 25 11.0 4.7 6.5 9.8 14.5 20.0 13.0 13.7 13.0 3.0 6.0	152 135 135 135 137 131 111 70 85 44 38 39 50 48 8 42 4.2 4.4 5.4 6.5 6.1 12.5 15.1 13.0 9.3 12.4 15.6 9.2	155 150 115 152 277 552 160 140 100 75 57 55 153 2520 4.2 3.1 4.2 4.7 5.4 7.5 13.9 17.1 13.2 11.7 16.3 22.1 15.2 0.8	243 72 49 157 673 649 155 101 63 49 29 42 165 22 2.7 2.7 2.7 3.5 2.7 4.5 9.1 10.0 6.6 10.1 10.8 33.0 18.5	74 6 0 25 20 61 11 9 2 0 0 0 2 10 11 11 12 2 2 10 0 10 10 10 10 10 10 10 10 10 10 10 1	33 3.4 4.0 4.3 3.6 5.0 11.6 14.2 12.2 10.7 15.6 23.8 15.3		NSN 766 25 35 353 755 765 765 5 355 35 353	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	67 34 24 25 13 13 13 22 13 14 14 22 24 16.5 16.6 13.6 13.5 12.2 16.2 24.2 15.1 30.5 35.2 25.9 25.0 21.5	031 02 03 34 05 318 318 318 32 33 19 11 23 23 20 10 11 27 23 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12	20 28 30 20 20 405 200 114 51 5 2 13 205 2400 2.0 4.4 11.0 7.2 11.2 8.4 8.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	20 7.3 7.7 7.8 14.2 636 1165 250 23 15 2 1 12 00	0 0 0 0 0 30 BG 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	315 177 171 540 1107 1049 633 47 150 55 42 85 42 85 42 85 42 85 42 85 13.1 9.1 9.5 13.1 17.0 21.0 23.3 17.7 21.0		NO NY 1967 N N 1967 NS 1855 S 355 35 353	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30. 27. 20. 13. 14. 19. 22. 13. 14. 14. 22. 23. 30.4. 29.3 22.2 23.1 19.1 19.1 19.1 5.9 17.5 17.3 11.4 14.5 13.1	113 114 105 142 131 316 310 76 22 25 173 175 25 25 25 175 25 25 25 25 25 25 25 25 25 25 25 25 25	70 30 34 222 350 465 21 115 53 5 2 12 150 123 13:0 20 27 24.5 35.2 14.2 0.5 11.9 11.2 0.5 0.7 11.5	21 3 3 112 001 178 201 22 15 2 1 11 00 139 21.7 20.7 36.7 36.2 37.5 16.3 11.2 5.3 12.5 11.0 7.6 12.5	0.0 0.0 0.0 43.0 31.1 11.5 0.0 0.0 0.0 0.0 0.0 0.0	10 10 20 12 130 100 000 000 100 100 100 100 100 100
	MARI EKI KISA WAN WE SES SES 382 38 383 38 383 38	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 17 9 7 5 7 22 6 2 1 3 3 1 1 112 5.4 4.3 3.5 2.5 11.0 4.7 6.5 9.8 14.5 25.0 13.0 13.7 13.0 3.0 6.0	145 152 135 135 135 137 171 111 70 86 44 39 39 50 48 8 48 4.2 4.4 5.4 6.5 6.1 12.5 15.1 13.0 9.3 12.4 15.6 9.2	227 155 120 115 125 277 322 105 149 149 73 37 55 133 223 4.2 4.2 4.2 4.7 5.4 7.5 13.9 17.1 13.2 11.7 16.3 22.1 15.2 0.8	205 243 72 49 157 673 659 158 101 63 40 20 42 105 2.6 2.2 2.7 2.7 3.5 2.7 4.5 9.1 10.0 6.6 10.1 10.8 20.0 18.5	24 74 6 0 25 30 61 11 5 2 0 0 0 2 10 15 1.3 2.5 0.0 0.0 30,0 16.1	604 601 043 201 444 1104 1225 452 331 338 165 39 133 230 44.0 4.3 3.6 5.6 11.6 14.2 12.2 10.7 15.6 22.8 15.3		ASS AN AND A PLYN ANS ANSS S 305 35 353 3 363 34	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77 127 07 34 24 30 13 13 18 12 13 14 14 22 24 15 12 13 14 14 22 24 15 12 13 15 12 15 35 35 35 35 35 35 35 35 35	23 162 112 111 117 142 119 315 310 16 34 25 38 18 9.2 7.7 9.0 13.0 10.7 11.1 12.7 12.6 14.8 18.8 21.4 24.0 19.1 27.2	137 69 25 33 231 333 455 250 114 54 5 2 13 215 2450 3.5 2.9 4.4 11.0 7.2 11.2 6.4 6.0 9.2 15.4 10.2 15.0 14.3 19.1 19.2	23 2.0 7.3 7.1 7.8 14.2 8.7 5.9 6.5 5.5 4.5 14.0 6.9 14.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	515 315 117 171 540 1107 1049 000 477 159 55 42 65 42 17 7 7 1.0 7.9 6 20.1 17.6 8.6 13.1 9.1 9.5 43.1 17.6 21.0 27.3 17.7 21.0		760 7W 1967 N 1967 NS 1855 S 355 35 353 3 303 34	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30. 27. 20. 13. 14. 19. 22. 13. 14. 14. 22. 23. 30.4. 29.3 22.2 23.1 19.1 19.1 19.1 5.9 17.5 17.3 11.4 14.5 13.1	113 114 105 142 131 316 310 76 22 25 173 175 25 25 25 175 25 25 25 25 25 25 25 25 25 25 25 25 25	135 70 30 34 222 330 465 201 115 53 5 2 12 130 131 125 3.2 12 130 131 125 3.2 13.2 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	30 21 3 3 112 051 1176 205 22 15 17 07 152 153 153 15 15 15 15 15 15 15 15 15 15 15 15 15	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	500 310 130 171 550 1194 1948 555 478 151 53 42 91 461
	ERE E ESE SE SSE S SSV SV NSV V V NSV NV NV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	7 13 17 9 7 5 7 22 6 2 1 3 3 1 1 112 9.6 5.4 4.3 3.6 2.9 11.0 4.7 6.5 9.8 14.5 20.0 13.0 19.7 19.0 3.0 6.9	107 145 152 155 155 155 157 171 111 70 60 44 39 39 50 5,1 4.8 4.8 4.8 4.2 4.4 5.4 5.4 6.5 6.1 12.5 15.1 13.0 9.3 12.4 15.6 9.5	253 277 155 155 155 155 77 352 165 149 149 75 37 56 153 2523 6.9 4.6 4.2 3.1 4.2 4.7 5.4 1.5 13.9 17.1 13.2 11.7 16.3 22.1 15.2 0.8	94 205 243 72 49 157 673 649 156 101 63 49 20 42 105 5.2 2.8 2.2 2.7 2.7 3.5 2.7 4.5 9.1 10.0 0.6 10.1 19.8 30.0 18.5	4.0 1.5 1.3 2.5 0.0 1.2 1.1 2.2 2.2 5.5 2.5 0.0 0.0 30.0 15.1	452 614 601 343 251 474 1164 1225 452 331 338 165 39 133 239 651 4.0 3.3 3.4 4.0 4.3 3.6 5.0 11.6 14.2 12.2 10.7 15.6 25.8 15.3		ASN AN AKON A MSN AS ASS S 355 35 353 3 303	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	177 177 177 179 179 179 179 179 179 179	COT 50. 65 16 70 10 50. 671 701 701 101 511 520 525 525 COT 102 703 101 511 520 525 752	194 137 69 28 33 231 239 45 250 114 51 5 2 13 215 215 215 71.1 3.5 2.9 4.4 11.0 7.2 11.2 8.4 8.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	25 2.3 2.0 7.3 7.1 7.8 14.2 8.7 5.9 6.5 5.5 4.5 14.0 6.8 11.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	726 515 315 177 171 549 1107 1949 000 477 128 55 42 85 42 97 7.5 9 8.2 9.7 12.6 8.6 13.1 9.1 9.5 16.1 17.6 21.0 27.3 17.7 21.0		7601 7N 1967 N 1967 NS 1855 S 355 35 353 3 3N3 3N 3NN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30. 27. 20. 13. 14. 19. 22. 13. 14. 14. 22. 23. 30.4. 29.3 22.2 23.1 19.1 19.1 19.1 5.9 17.5 17.3 11.4 14.5 13.1	113 114 105 142 131 316 310 76 22 25 173 175 25 25 25 175 25 25 25 25 25 25 25 25 25 25 25 25 25	135 70 30 34 222 330 465 201 115 53 5 2 12 130 131 125 3.2 12 130 131 125 3.2 13.2 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	104 30 21 3 9 112 001 1770 201 22 15 2 1 11 04 5.2 3.2 3.2 13.2 10.7 16.7 30.2 37.5 14.3 11.2 5.3 12.5 11.0 7.6 12.9	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	194 10 24 83 181 होंगे 550 863 1831 653 होंगे 65 होंगे 65 होंगे 65
8	NAM . NAM . N. N. N. N. N. N. S.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 13 17 9 7 5 7 22 6 2 1 3 3 1 1 112 9.6 5.4 4.3 3.6 2.9 11.0 4.7 6.5 9.8 14.5 20.0 13.0 19.7 19.0 3.0 6.9	107 145 152 155 155 155 157 171 111 70 60 44 39 39 50 5,1 4.8 4.8 4.8 4.2 4.4 5.4 5.4 6.5 6.1 12.5 15.1 13.0 9.3 12.4 15.6 9.5	11.0 6.9 4.6 4.2 3.1 4.2 4.7 5.4 5.4 7.6 13.9 11.1 13.2 11.7 16.3 22.1 15.2 0.8	103 54 205 243 72 49 157 643 169 155 101 63 40 20 42 105 9.1 5,2 2.6 2.2 2.7 2.7 2.5 2.7 4.5 9.1 10.0 6.6 10.1 19.8 30.0 18.5	0.0 1.2% 74 6 0 25 20 61 11 9 2 0 0 2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	330 422 614 601 343 247 443 145 1255 422 331 328 165 930 133 230 9.8 65.1 470 3.3 3.4 4.0 4.3 3.6 5.5 11.6 14.2 12.2 13.7 15.6 22.8 15.3	150	ASN AN ARCH A MIST ANS ARS S 355 35 353 3 303 3N 3MS H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	177 177 177 179 179 179 179 179 179 179	32 25 25 25 25 26 37 31 31 30 42 37 30 30 30 30 53 30 52 30 20 20 20 20 20 20 20 20 20 20 20 20 20	202 104 107 60 20 30 201 300 405 200 114 54 5 2 10 215 240 17.6 7.1 3.5 2.0 4.4 11.0 7.2 11.2 6.4 6.0 5.2 15.4 10.2 15.0 14.3 19.1 10.2	45 120 48 17 3 3 140 625 1135 220 23 15 2 1 12 05 12.0 2.0 2.3 2.3 2.0 7.3 7.7 7.8 14.2 8.7 5.9 6.6 5.5 4.5 14.0 6.8 11.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	712 726 515 315 177 171 549 1197 1949 523 477 159 55 42 55 42 50 42 50 70 7 7 7 9 52 0.7 125 56 15.1 5.1 5.5 60.1 17.6 21.0 27.3 17.7 21.0	30144	7601 764 17637 A 1 19637 ASS 1855 S 1855 35 363 3 303 361 366 87 88	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	EG 155 155 05 04 27 20 15 14 15 22 15 14 14 22 25 16. 15 17.5 11.4 14.5 15.1 16.1 25.0 17.5 17.5 11.4 14.5 15.1	300 200 301 101 101 102 101 301 301 301 101 101 102 302 301 101 102 102 301 301 101 102 102 302 303 303 303 303 303 303 303 303 3	222 103 135 70 30 34 222 333 465 321 115 53 5 2 12 133 H-6 11.2 13.1 12.3 13.0 20.7 24.6 36.5 35.2 14.2 0.5 11.9 11.2 0.5 0.7 11.6	35 164 38 21 3 3 112 051 1178 251 25 15 2 1 11 04 10.0 5.2 15.2 1 11 04 10.0 5.2 15.2 13.5 11.0 7.6 12.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	130 CG 500 310 130 110 110 110 110 110 110 110 1
SOLIVE CENT CIVIL CONTROL CONT	NAM . NAM . N. N. N. N. N. N. S.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13 17 9 7 5 7 22 6 2 1 3 3 1 1 112 5.4 4.3 3.5 2.5 11.0 4.7 6.5 9.8 14.5 25.0 13.0 13.7 13.0 3.0 6.0	0.0 06 107 145 128 135 135 132 137 171 111 70 06 44 38 38 50 0.0 7.9 5.1 4.8 4.8 4.8 4.2 4.4 5.4 6.5 6.1 12.5 15.1 13.0 9.3 12.4 15.6 9.2	253 277 155 155 155 155 77 352 165 149 149 75 37 56 153 2523 6.9 4.6 4.2 3.1 4.2 4.7 5.4 1.5 13.9 17.1 13.2 11.7 16.3 22.1 15.2 0.8	0 102 94 205 243 72 49 151 613 69 155 101 03 40 20 42 105 00 9,1 5,2 2,8 2,2 2,7 2,7 2,7 2,5 2,7 4,5 9,1 10,0 6,6 10,1 10,8 30,0 18,5	4.0 1.5 1.3 2.5 0.0 1.2 1.1 2.2 2.2 5.5 2.5 0.0 0.0 30.0 15.1	452 614 601 343 251 474 1184 1225 452 331 338 165 39 133 239 651 4.0 3.3 3.4 4.0 4.3 3.6 5.0 11.6 14.2 12.2 10.7 15.6 25.8 15.3	רמעז ומענו וינאור	ASN AN ARCH A MSN AS MSS S 355 35 353 3 303 30 304 3045	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77 127 07 34 24 30 13 13 18 12 13 14 14 22 24 15 12 13 14 14 22 24 15 12 13 15 12 15 35 35 35 35 35 35 35 35 35	COT 50. 65 16 70 10 50. 671 701 701 101 511 520 525 525 COT 102 703 101 511 520 525 752	194 137 69 28 33 231 239 45 250 114 51 5 2 13 215 215 215 71.1 3.5 2.9 4.4 11.0 7.2 11.2 8.4 8.0 9.2 15.4 10.2 15.0 14.3 19.1 10.2	25 2.3 2.0 7.3 7.1 7.8 14.2 8.7 5.9 6.5 5.5 4.5 14.0 6.8 11.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	726 515 315 177 171 549 1107 1949 000 477 128 55 42 85 42 97 7.5 9 8.2 9.7 12.6 8.6 13.1 9.1 9.5 16.1 17.6 21.0 27.3 17.7 21.0	MIN LOP, CITFLICE	7601 7N 1967 N 1967 NS 1855 S 355 35 353 3 3N3 3N 3NN	35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30. 27. 20. 13. 14. 19. 22. 13. 14. 14. 22. 23. 30.4. 29.3 22.2 23.1 19.1 19.1 19.1 5.9 17.5 17.3 11.4 14.5 13.1	0.00 20 20 20 30 10 10 10 10 10 10 10 10 10 10 10 10 10	135 70 30 34 222 330 465 201 115 53 5 2 12 130 131 125 3.2 12 130 131 125 3.2 13.2 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	104 30 21 3 9 112 001 1770 201 22 15 2 1 11 04 5.2 3.2 3.2 13.2 10.7 16.7 30.2 37.5 14.3 11.2 5.3 12.5 11.0 7.6 12.9	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	गाँच ड्रह्म 1194 1948 छड नाथ १५१ ६५ १० १०

Table 1-23 (2) Concentration by Wind Direction and by Wind Velocity Level (NO₂)

mo de de de la composition della composition del		- 1		-		1	1	1	1,	- 1	1	Įŝ	13	1	3		[8/			1	!		1.	1	1		-				:	Ι.	- 1	
§/	ŝ	¥ .		š	- 1	ន័				- 1					2		Timar.		\$/ \$/	हे	~	ž	발	8	ш	33	ĸ	X	ς,	B	33	3	3	2	ğ	THE T
0 -0.4 (hour) (spb)	19.0	0.0 0.0	0.0	0.0	0.0	00	°6	°8	08	0.0	0.0	0.0	0.0	000	08	000	19,0		0 -0.4 (hour) (1990)	8,23	99	000	000	0.0	000	000	0.0	000	08	9	08	000	0.0	60	0.0	2.2 E.2
0.5-0.9 (hour) (ppb)	0.0 24.4	8 7 4 21.9	25. 23.7.	16.9 16.9	.5 5.5	12,3	5.0	5 6	ខាទ	5.0	200	- 0.4	31.7	្តិន		0.	6.7		0.5-0.9 (hour) (spb)	°;	8 X	超5	222	823	ខ្លួន	80.	Ε.S.	23.3	10.3	31.02	15.0.2	2.6 23	70 12 13.4 22.6	55 23 25 25 25	25.0	85
1.0·1.9 (hour) (mb)	0.0 0.0	7 19.4	5.5 5.3	10G 144 151 19:4 18.3 17.0	E.5.	134 . 125 15.5 14.6	E.5.	12.6 12.1 12.6 12.1	និសិ	E 23	84.	2 S.	20	88.5	8.4	តូដូ ទំពី	18.3		1.0-1.9 (hour) (hy)	28	31.0	ឆ្លង់	₹25	35.0	5.3	14.2	12.6	2 <u>1.5</u>	B2.0	6.0	22 0.01 10.02	2. 2.	21.2 21.9	25 27 24.	5 %	25
2.0-2.9 (hour) (rpb)	0.0 25.5	5 20.1	23.53 C. 53	85.83 85.83	21 21 21 21	E.C.	<u>25</u>	E 2	28	និន្ទ័	3.2 5.2	≅g	නි පිර	គ្គ	8.5	ន្ទ	25711 10.8	1	2.0-2.9 (hour) (ryb)	000	55	25.25	25€	85	18.2	27:1:	35	272	8.5	87.	82	នេះ	7.5 10	20 22 23 23 24 25	5.5	55.55
3.0 4.9 (hour) (reb)	0.0 25.13	87.	855	272 6.0	22.5	숨뜮	됐음	82	82	8.5	82	22	± 2	83	8 6 0	85	27.0		3.0-4.9 (lour) (nob)	08	82	E 53	85	85	22.0	80	53	82	83	53.0	9.0	0.27	-0.	1 63	E E	15 m
5.0 (hour) (rpb)	0.0 0.0	0 5.0	5.0 3.3	77	0 E	ိဒ္ပ	3	25.	85	= 2.31	13.1	20.23	08	08	202	25	5.9		5.0 (hour) (prb)	08			00	02	65	00	98	83	1	-5	000	68	000	000	8	. 22
TOTAL	19.0 25	302 440 25.0 18.7	007 14.0	E 5	12.3	12.7	10.2	3.5	1203	21.8	22.0	88	E 8.5	88	88	88	13.5 15.6		TOTAL	8,8	8.4	25.5	28	25 25 25 25 25 25 25 25 25 25 25 25 25 2	85	짇길	850	85	55.9	22	88	요	18.3 21.9	20 E	3.2	82
(162) rojeti iyant	ILANT			:					ŀ] .	-	(NSS) II, &	1. ESTATE	H															
3/	3	× ×	量	8	-	ä	용	88	5	Ŕ	ह	2	3	3	≥	2	TUTAL.		3	3	*	鼍	麗	岩	ພ	ឆ	×	ä	'n	蒸	æ	3	-	-	- AN	E S
0 -0.4 (hour) (ppb)	85	0.0	000	00	000	000	000	8	0.0	23	°8	000	ిక్రి	98	°8	25	87.		0 -0.4 (hour) (syb)	928	8	0.0	0.0	000	000	25	000	000	0.0	000	0.0	000	03	000	000	86
0.5-0.9 (hour) (reto)	0.0 72 115	22.		119 00 02 10.4 10.4	86	22.0	១ដូ	5.2	22.6	문물	2.2	5.5	12.0	22	, <u>z</u>	ងដ	577		0.5-0.9 (hour) (mb)	000	87	E 0.	8.7	88	55	25	83	គជិ	5.5	85	85	85	83	3.5	85	33.3 13.3 13.3 13.3
1.0-1.9 (hour) (spb)	0.0 262	23.1 22.2 12.7	11.01	147	25.5	ੁਣ ਦੂ	65	5.5	2,2	82	ឆ្ល	55	82.23	83.53	8.5	5,5	2371 10.6		1.0-1.9 (hour) (spb)	000	2.	88	55.0	8-	55.5	55	62	E Z	23	3.2	85	₽.5 2.9	. E.S.	57.5 5.5 1.21	200.21	7.5 S.9
2.0.2.9 (hour) (pob)	0 0.0 8 7.7	82 25	200	86.	85	88	5.3	38	€3	223	Σ.≎	ಹಜ್ಜಿ	25.	2.0	22.5	Eg	. 1.50 0.1		2,0-2,9 (bour) (pytb)	65	82	폭음	22.5	±3	ज दु	42	85	F 7	82	52	87	13,2	8.2	25.	22.	25.2
3.0.4.9 (hour) (ppb)	0.0 33.4	30 4 2.9	3.2	5.1.5		6.0	85	88	85.	83	ผลิ	i	~0	18.0	225	85	200		3.0-4.3 (hour) (hyb)	8	3,2	82	<u>17.</u>	2.5	zz	8 6	E 53	ي ت ت ت	≅ 2	18.5	25.5	2.5	85	9.7	5,7 7,7	7.2 2.0
5.0- (hour) (prb)	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.5	0,0	86	용음	6.7	0.0	000	08	08	0.0	5.0	6.3		5.0- (hour) (ppb)	000	68	25.	84	20.	- B.	000	000	00	90	85	25.	00	- 9	0.0	0.0	99 179
TOTAL	28 500 14.7 16.1	53 1. 9.4	8.2	0.9		105 157 9.1 9.4	7.7	គ្គីខ្ល	85	55	25	55.5	₹.5 25.63	3.0 3.0	3.5	\$ 5	£		TOTAL.	88	13.2	5.5	82	3.5g	FE E	22 S	85	3.4	913	121	2,7	E C	5.83	151 170 9.1 10.3		214 7505 3.5 4.9
OCC) NIN DEP. OFFICE	T. OFFICE										-						Ì																			1
\S	ă	35 ×	¥ ₩	嵩	ω	B	×	×	ſ	ä	3	9	3*	₫.	₹.	3	TUTAL																			
0 -0.4 (hour) (ppb)	25.0 0.0	0.0	000	0.0	000	000	8	08	°S	0.0	25	000	000	0 g	၀င္ပ	0.0	80																			
0.5-0.9 (hour) (pyb)	0.0 51.4	61 14 21.1	18.8	38	Ø 0.	88	5 2	22.03	35	55	25 25	=	=3	8.4	BE	20	25.53																			
1.0-1.9 (hour) (ppb)	J	0.0 203 215	2 8 2 8	55	16.2	85	85.5	8 2	<u> </u>	28.6	88	£ 55	55	~ š	ន្ត្រី	E 22	310H																			
2.0-2.9 (hour) (seb)	0.0 27.2	51 150	150 124 16.7 12.1	23.	52 Z1 11.7 10.8	κ3 	5.2	8º3	52	83	E 23	នដ	20.2	=	92	Z Z	12.3																			
3.0-4.9 (bour) (ppb)	0.0 24.5		97 38 8.3 10.2	E 83	13.0	5.53	899	85	8.5	8.2	8.7	=2	-8	03	=5	85	9.6																			
5.0- (hour) (psb)	0.0	0.0 0.0	000	000	000	28	25	8.3	ક્ષ્ટુ	20.	08	28	8	08	08	0.	83																			
TOTAL	8	Ė						İ		ł	l			l	l	t	T																			

Table 1-23 (3) Concentration by Wind Direction and by Wind Velocity Level (NO_x)

	ӈ	≌ ⇔	₽-	54	- Z to	ນາເ	, 014	96	† :	-	ର୍ଚ	. .	- O	yΣm	120	25	છ ૦	1								
	V TUTAL	0.0 32.8	5.53		258	33.6	E 22	888		v prem	22.22	ន្តខ្ម	2 2751 2 3.3	5.8			85.8									
	N.W. 7		22.7	12 E	8.3	57.0	000	86		102A	000	82	82.2	22.2	14.7	108	25.5 45.5									
	ž.	9.0	85	중	35.	, 8 4.4	0.0	F 7		2	66	នទួ	8.5	25	요금	무응	ES									
	N.Y	0.0	8.5	80.	38	28	000	55 53 75		7	00	8.6	k5 25	요즘	10.0	0.5	20.00						٠.			
	3	0.0	5.5	85	2.5.5	-0	000	\$ 8		-	ိုင္ပ	25	120	5 ∞	8.4	-2	82									
	\$	0,0	9.3	ន្ត	8.3	5.2	000	30]	3	- S	88	至3	5.5	==	00	5.5									
	ð,	0.0	22. 23.8	2 5 K	8.5	5.8. 5.0	0 8	8.2	-	ē.	08	8.3	85.	8:	3.5	36	£.2.								•	
	B	0.0	51.4	88	200	14.5	1-1-	52 to		Š	25	25	25. 25.	13.5	£ 98	82	18 4 18 4								:	
	~	0.0	5 S E	25.25	5.2	200	12 Z	35.7		v	000	5.7	5.3	383 4.6	5 B.S	00	55.5					. :			•	
	SSE	0.0	70.0 2.0	25.25	22.8	77.5 17.5	8.2	85		žš	60	ည္ကက္က	12.5	5.2	3.5	00	55									
	×	0.0	E.8.	157 27.0 3	22.23	19.4	000	85.23		₩.	08	8.8	5.0	13.53	6.5	08	83									
	EXE	0.0	#5.5 R	23.52	22.2	23.19	25			33	96	25	5.8.9	£ 0.	ες. Σ.α	00	222									
	ω ω	00					ı	0 156 8 31.6		E)	06.0					-0										
			3 70.0	5 37.5	37.3	25.7	000	25 th			i i	5 75	55.53	12.2	55.	20	317	l								
	8	0.0	2 AS.3	31.5	35.	80.8	000	22 gg		34	68	Z 61	22.53	5.4	25.5	F	A 50.									
	¥	0.0	112	184	120	₩	0.0	45.2		氢	000	22.25	216	7.0	9'F	82	25.52 27.52									
	₹	0.0	53 E	02.29 02.29	40.9	δ.	0.0	57.73		SE SE	00	£ 8.	50 % 3.7.0	Z 5.	3.5		10.5				٠					
ра	=	0.0	8.7 1.7	7. 1.1	Z.3.	27.	0.0	\$12 72.5	w	~	000	2.2	15.3	8.	13 6,5	08	22.72 72.72									
01470	₹	8.3 8.3	0.0	0.0	600	- S	0.0	25.23	ESTATE	훒	8g	00	0.5	000	000	00	85									
0CA) S.P.PRO, CRPT CE	3/	(hour) (opb)	(hour) (syds)	(hour) (prb)	(Joer)	(Jour)	(hour) (ppb)		1.8.1	9	(hour) (syb)	(Jeers) (Jeers)	(hour)	(hour) (nph)	(hour)	(Sone)										
<u>8</u>	/	0 -0,4 (.5.0.9 () (s	.0-1.9 ()	0.2-0.	60		TOTAL	(983)	/	0-0.4 ()	6	0 6.1-0.1 \$	2.0-2.9 (A	3,0-4.9 (7		TOTAL									
5	ا يو/	6	9.6	<u> </u>	2.0	3.0-4.	9		8	و/	٥	0.5-0.	宀	2.0	ρ. •	ρç	D:	1								
٠																										
	Z.	20.	01.0	575 0.9	85.2	0,7 7.0	715 12.7	77.1		II'AI.	E S	22.9	13.4	15.0	24.00 15.6	18.3	т34 11.5		CTAL	23.0 43.0	44.9	31.5	20.02	2165 15.7	123 15.3	(SE13)
	KW TITAL		4.0 35.7	40 1575 6.4 50.9	128 2500 11.1 45.9	00472 2010 11.0 20.11		233 7335 5.3 37.1		HAW TOTAL.	0.0 3.15 3.15	25.5 25.5 25.5 25.5	7.6 271 7.6 19.4			5.0 18.3			NOW TOTAL.	0.0 20.0					18.0 15.3	<u> </u>
	NA NEW TOTAL	8	3.0	호수	8.18	85	5.2 30.4	82		My HW TOTAL	000	82.5	38	E	35		15 S				- S3 - C3	25	₹ ‡	2,0		Ę
	NA NEW T	0.0	170.0 74.0	37 d3 132.1 35.4	52 128 101.5 BT.1	70. 50 70.6 51.0	50.5 30.4	134 233		NH KN	0.0 0.0	24.4 25.5	8.3 8.6 8.6	2 12 17 0 18.5 31.1	22 52 11.0 10.5	2.0	74 43 22.5 30.9		ž	00	31.6 59.3	37.0 51.1	6 Mi 25.5 41.2		18.0	8
	75	0.0 0.0 0.0	55.7 170.0 74.0	38 37 49 102.5 132.1 55.4	31 32 138 30,0 101.5 81.1	22 42 105 74.9 78.6 61.0	0.0 2 10	98 134 239 94.4 102.5 75.3		7.5	0.0 0.0 0.0	26.6 24.4 25.5	25 33 145 24.5 35.8 35.6	23.0 10.5 31.1	20, 21 1 2.05 20, 11.8 18.5	0.0 0.0 5.0	40 74 46H		MIN MM	0.0 0.0	10 10 10 18.7 31.6 59.3	30.3 37.0 51.1	25.0 25.5 41.2	0.072 1.01 0.0	0 0 0 0 18.0	8 8 8
	NA NO NO N	0.0 0.0 0.0	56.3 65.7 170.0 74.0	M 30 37 49 97,3 102,5 132,1 56.4	75 37 32 128 30,6 30,0 101.5 81.1	41 27 42 106 58,0 74,9 70,6 61.0	0,0 0,0 2 10	167 30 134 203 80,8 94,4 102,5 75,3		W NA W HA	0.0 0.0 0.0 0.0	21.1 26.5 24.4 25.5	25 25 33 145 23,4 24.5 35.8 35.6	5 2 12 177 19,2 23,0 18,5 31.1	11.9 20.0 11.8 16.5	0.0 0.0 0.0 5.0	45 40 74 434 22.0 24.9 22.5 30.9		NO. W. NOT A	0.0 0.0 0.0 0.0	6 11 10 16 16 .5 37.4 18.7 31.6 59.3	23.8 30.3 37.0 51.1	3 1 6 M1 11.7 25.0 25.5 41.2	4.0 0.0 11 56 4.0 0.0 15.1 27.0	0.0 0.0 18.0	23 23
	WOR W WAY NO WON	0.0 0.0 0.0 0.0	.5 100.0 10.3 05.7 170.0 74.0	92,5 97,3 102,5 132,1 55.4	101 75 37 32 138 133.1 33.6 33.0 101.5 61.1	67 41 20 42 106 00.4 59.0 74.9 78.6 61.0	25.0 0,0 0,0 2 10 25.0 0,0 0.0 50.5 30.4	35, 167 31 134 253 84,0 85,8 94,4 102.5 75,3		NA WA HA	0.0 0.0 0.0 0.0 0.0	25,0 21,1 26,6 24,4 25,5	73 25 25 73 1/5 17.0 23.4 24.5 25.8 25.6	54 5 2 12 17 13.2 19.2 23.0 10.5 31.1	15 1 1 2 20 10.1 10.00 10.15	0.0 0.0 0.0 0.0 5.0	15.5 25.0 M.9 25.5 36.9		MIN MM	0.0 0.0 0.0 0.0 0.0	5 11 10 16 16 20.5 37.4 18.7 31.6 59.3	21.3 33.8 30.3 37.0 51.1	11,4 11.7 25.0 25.5 41.2	5.5 4.0 0.0 11 26 5.5 4.0 0.0 10.1 27.0	0.0 0.0 0.0 18.0	2 2 2
	I SW WOW W NEW TAN HEND	0.0 0.0 0.0 0.0 0.0	5 34.5 100.0 15.3 55.7 170.0 74.0	03 04 44 38 37 45 00,0 92,5 97,3 102,5 132,1 56.4	148 181 79 37 52 138 55.7 55.1 55.6 55.0 101.5 81.1	100 67 41 20 42 100 71,5 00,4 58,0 74,9 70,6 51,0	40.0 25.0 0.0 0.0 25.00 A.0.0 20.5 20.4	327 335 167 38 134 233 00.5 04.0 83.8 94.4 102.5 75.3		WHE FOR MAIN AS MISH AS	0.0 0.0 0.0 0.0 0.0	71.5 25.0 21.1 26.5 24.4 25.5	231 73 25 25 73 145 15.3 17.0 25.4 24.5 25.8 25.6	104 54 5 2 12 177 10.2 13.2 19.2 23.0 10.5 31.1	11.7 10.7 11.8 20.0 11.8 18.5	7 0 0 0 0 0 0 1	438 152 45 40 74 484 12.1 15.5 22.0 24.9 22.5 30.9		WAY WAY IN HOST WE	0.0 0.0 0.0 0.0 0.0	20.6 20.5 37.4 18.7 31.6 56.3	222 A1 19 17 28 115 15.3 21.3 31.8 30.3 37.0 51.1	74 22 3 1 6 J41 10.3 11.2 25.5 41.2	9.4 6.5 4.0 0.0 10.1 Z7.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	330 53 53 53
	WOR W WAY NO WON	0.0 0.0 0.0 0.0 0.0 0.0	52.5 34.5 100.0 36.3 55.7 170.0 74.0	110 GB 04 A4 38 37 49 64.9 69.9 92.5 97.3 102.5 132.1 55.4	113 148 181 79 31 52 138 57.3 55.7 55.1 55.6 55.0 101.5 81.1	155 100 67 41 20 42 105 46.2 71.5 00.4 58.0 74.9 70.6 61.0	47.1 40.0 25.0 0.0 0.0 5.25.10 47.1 40.0 25.0 0.0 0.0 5.55.35.49	55,0 00.5 04.0 05.0 94.4 102.5 75.3		WHE ME WAS A MAN	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	24,2 17,5 25,0 24,1 26,6 24,4 25.5	20 21 13 25 25 19 145 15.1 15.3 17.0 23.4 24.5 25.8 35.6	772 104 54 5 2 12 177 12.17 10.2 13.2 13.0 13.5 31.1	200 ZZ 15 1 1 2 20 10.7 11.7 10.7 11.9 20.0 11.8 18.5	15.1 0.0 0.0 0.0 0.0 5.0	735 428 152 45 40 74 484 13.3 12.1 15.5 22.0 24.9 22.5 30.9		MOSE N LANS NA NOW	0 0.0 0.0 0.0 0.0 0.0 0.0	15 16 6 11 10 16 16 27.5 20.6 20.5 37.4 18.7 31.6 59.3	243 222 47 19 17 29 15 17.5 15.3 21.3 31.8 30.3 37.0 51.1	234 74 22 3 1 6 141 11.6 10.3 11.4 11.7 25.0 25.5 41.2	173 10 11 1 0 11 56 9.3 9.4 6.5 4.0 0.0 10.1 27.0	9.5 0.0 0.0 0.0 0.0 0.0 18.0	GG1 330 55 54 28 55 331
	S SSW SW WOW W MARK NA MARK	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	22, 5, 2, 1, 3, 3, 1, 1, 1, 22, 3, 3, 1, 1, 1, 1, 22, 3, 32, 5, 34, 5, 100, 0, 30, 3, 66, 7, 110, 0, 74, 0	100 110 03 04 44 30 37 45 27.1 64.9 00.0 92.5 97.3 102.5 132.1 55.4	ट्या ११६८ १५४ १६१ १६ ट्या १६८ १८४ १८४ १८४ १६४ १६४ १६४ १६४ १६४ १६४ १६४ १६४ १६४ १६	50.9 46.2 71.5 00.4 58.9 74.9 70.6 51.ft	50 11 9 2 0 0 2 10 15.3 47.1 40.0 25.0 0.0 0.0 5.0 20.4	1300 447 327 335 167 38 134 238 19.4 55.0 60.5 64.0 83.8 94.4 162.5 75.3		S SSW SW NSW W NAW NA HAM	0.0 0.0 0.0 0.0 0.0 0.0 0.0	12 17 21 10 14 12 17 22 16.4 24.2 17.5 25.5	173 255 231 73 25 25 73 145 14.4 15.1 15.3 17.0 23.4 24.5 25.8 35.6	473 272 104 54 5 2 12 177 12.5 12.7 10.2 13.2 19.2 23.0 10.5 31.1	1105 205 22 15 1 12 20 13.7 10.7 11.7 10.7 11.8 20.0 11.8 10.5	5.5 15.1 0.0 0.0 0.0 0.0 5.0	1900 756 428 152 45 40 74 414 13.6 13.3 12.7 15.5 72.0 24.9 22.5 38.9		WAY AND WALL IN LAND MY NOW	0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.0 27.5 20.6 20.5 37.4 18.7 31.6 59.3	133 243 222 47 19 17 28 145 18.4 17.5 15.3 21.3 31.8 30.3 37.0 51.1	401 224 74 32 3 1 6 141 16.4 11.6 10.3 11.4 11.7 25.0 25.5 41.2	1053 173 10 11 1 0 11 56 15.7 9.3 9.4 6.5 4.0 0.0 19.1 27.0	15.0 9.5 0.0 0.0 0.0 0.0 18.0	1006 001 330 35 34 25 53 331
	SSE S SSW SW WGW W WAY NA NAW	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	16.72.22. 6. 2. 1. 3. 3. 1. 1. 1. 16.7. 74.0 16.7 3. 30.7 170.0 74.0	23,8 71,1 64,9 69,0 92,5 97,3 102,5 132,1 55,4	272 324 105 149 181 79 31 52 138 15,7 20,6 57,3 65,7 83,1 50,6 50,0 101,5 81,1	000 CCS 153 100 GT 41 20 42 105 10.9 10.9 10.9 46.2 71.5 00.4 58.9 74.9 78.6 01.0	9.3 15,3 47,1 40,0 25,0 0,0 0,0 50,5 20,4	11G3 1200 447 327 335 167 98 134 229 13.1 19.4 35.0 00.5 01.0 00.8 91.4 102.5 75.3		WH FM MIN A MEN AS RSS S 35S	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13. 12 11 21 10 14 12 17 22 13.6 16.4 24,2 17.6 25.0 21,1 26.6 24.4 25.5	137 173 255 251 73 25 25 73 145 14.5 14.4 15.1 15.3 17.0 25.4 24.5 25.8 35.6	331 473 272 104 54 5 2 12 177 16.3 12.5 12.7 16.2 13.2 19.2 23.0 19.5 31.1	21.5 13.7 13.7 11.7 10.7 11.9 20.0 11.8 16.5	33 85 7 0 0 0 0 0 1 25.7 25.7 15.9 15.1 0.0 0.0 0.0 0.0 0.0 5.0	1104 1500 750 438 172 45 40 74 414 19.3 13.6 13.3 12.7 15.5 22.6 24.9 22.5 30.9		NOW ANY IN THE NAME OF THE NAM	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	24.0 23.0 27.5 20.6 20.5 37.4 18.7 31.6 59.3	120 130 243 222 41 19 17 20 145 23.9 18.4 17.5 15.3 21.9 31.8 30.3 37.0 51.1	270 401 224 74 22 3 1 G 141 19.5 16.4 11.6 10.3 11.4 11.7 25.0 25.5 41.2	505 1053 173 10 11 1 0 11 56 15.9 15.7 9.3 9.4 6.5 4.0 0.0 19.1 27.0	38 84 6 0 0 0 0 0 0 16.0 16.0 16.0 16.0 18.0	1004 1005 0C1 330 33 34 25 C3 331
	SE SSE S SSV SV VOV V WAY NA MAN TAN MAN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	18.0 18.7 28.3 52.5 34.5 100.0 36.3 56.7 170.0 74.0	120 134 103 110 03 04 44 38 37 49 24.2 20.0 27.1 64.9 60.0 92.5 97.3 102.5 132.1 55.4	130 272 374 165 149 161 75 37 32 158 151 151 151 151 151 151 151 151 151	155 000 035 155 100 61 41 20 42 100 10.0 10.9 10.9 46.2 71.5 00.4 58.0 74.9 78.6 61.0	25 91 00 11 9 2 0 0 2 10 5.7 9.3 15.3 47,1 40.0 25.0 0.0 0.0 0.0 5.5 30.4	420 11G3 1200 447 327 335 107 98 134 233 1G,7 13.1 19.4 55.0 00.5 94.0 83.8 94.4 102.5 75.3		NAH HAN WANN W WANN WAS ARE S SES SES	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19 13 12 17 21 10 14 12 17 22 15,0 13,6 16,4 24,2 17,5 25,0 21,1 26,6 24,4 25,5	118 137 113 256 231 13 25 25 13 145 145 145 145 151 151 151 151 151 151	214 331 473 272 104 54 5 2 12 177 13.3 16.3 16.3 12.5 12.1 10.2 13.2 19.2 23.0 19.5 31.1	21.5 13.7 13.7 11.7 10.7 11.9 20.0 11.8 16.5	0 30 35 7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	517 1164 1900 736 438 152 45 40 74 414 14,6 19,3 13,6 13,3 12,1 15,5 22,8 24,9 22,5 30,9		NOW AND WASH IN MISSE SEE SEE SEE SEE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 12 10 15 16 6 11 10 16 16 19 24.9 24.0 22.0 27.5 20.6 20.5 37.4 18.7 31.6 58.3	148 128 138 243 222 47 19 17 28 145 25.0 25.0 25.0 25.1 15.3 21.3 21.3 31.3 30.3 37.0 51.1	270 401 224 74 22 3 1 G 141 19.5 16.4 11.6 10.3 11.4 11.7 25.0 25.5 41.2	00 505 103 173 10 11 1 0 11 56 14.5 15.9 15.7 9.3 9.4 6.5 4.0 0.0 10.1 ZT.0	0.0 16.6 15.0 9.5 0.0 0.0 0.0 0.0 0.0 18.0	414 1004 1005 001 330 30 34 28 03 331
	SSE S SSW SW WGW W WAY NA NAW	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	21.1 18.0 18.7 22.3 52.5 34.5 100.0 36.3 66.7 170.0 74.0	125 120 134 160 110 63 94 44 39 37 49 00.6 24.2 20.8 27.1 54.9 60.0 26.5 97.3 162.5 132.1 56.4	22.1 19.9 15.7 20.6 51.3 05.7 05.1 00.6 00.0 191.5 61.1	40 155 000 005 155 100 67 41 20 72 100 6.0 10.0 10.0 10.0 10.0 10.0 10.0 1	0 25 91 00 11 9 2 0 0 2 10 0.0 5.7 9.3 15.3 47.1 40.0 25.0 0.0 0.0 50.5 30.4	20 40 11G 120 447 227 33 167 98 134 20 23,7 16,7 13,1 19,4 55,6 60,5 94,0 60,6 94,4 102,5 75,3		WHE FEE SE SES AS WENT IN MEAN IN SES	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	22, 19 13 12 11 21 10 14 12 17 22 22,5 15,0 13,6 16,4 24,2 17,5 25,0 21,1 26,6 24,4 25,5	164 178 137 276 221 13 25 25 32 145 155 165 165 185 25 32 32 32 32 32 32 32 32 32 32 32 32 32	22 214 331 473 272 104 54 5 2 12 177 15.0 15.0 15.3 16.3 12.5 12.7 16.2 15.2 15.2 25.0 16.5 31.1	7.3 105 046 1105 205 22 15 1 1 12 50 7.3 16.9 21.5 13.7 10.7 11.7 10.7 11.6 20.0 11.6 10.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	157 517 1101 1300 736 438 152 45 40 74 434 17.2 14.6 19.3 13.6 13.3 12.7 15.5 22.8 24.9 22.5 30.9		NO. N. NOT A FISH AS PSS S 355 35 353	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35.9 24.9 25.0 27.5 20.6 20.5 37.4 18.7 31.6 58.3	04 146 120 138 243 222 41 19 17 28 145 24.3 24.3 25.3 30.3 37.0 51.1	24 170 270 401 224 74 32 3 1 6 141 3.1 15.3 19.5 16.4 11.6 10.3 11.4 11.7 25.0 25.5 41.2	3 00 506 1033 173 18 11 1 0 11 56 2.7 14.5 15.9 15.7 9.3 9.4 6.5 4.0 0.0 19.1 27.0	0.0 0.0 38 84 6 0 0 0 0 0 0 0 18.0	131 414 1034 1385 651 330 35 34 28 53 331
	SE SSE S SSV SV VOV V WAY NA MAN TAN MAN	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	18.0 18.7 28.3 52.5 34.5 100.0 36.3 56.7 170.0 74.0	125 120 134 160 110 63 94 44 39 37 49 00.6 24.2 20.8 27.1 54.9 60.0 26.5 97.3 162.5 132.1 56.4	130 272 374 165 149 161 75 37 32 158 151 151 151 151 151 151 151 151 151	155 000 035 155 100 61 41 20 42 100 10.0 10.9 10.9 46.2 71.5 00.4 58.0 74.9 78.6 61.0	25 91 00 11 9 2 0 0 2 10 5.7 9.3 15.3 47,1 40.0 25.0 0.0 0.0 0.0 5.5 30.4	420 11G3 1200 447 327 335 107 98 134 233 1G,7 13.1 19.4 55.0 00.5 94.0 83.8 94.4 102.5 75.3		WHE HAN HANN IN HEAR ASS S SEE SEE 35 353 3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	22 22 19 13 12 17 21 10 14 12 17 22 20.3 22.5 15.0 15.6 15.4 25.5	102 104 178 137 173 255 211 73 25 25 13 145 165 165 145 145 145 155 170 23.4 24.5 25.8 25.6	25 25 24 331 473 772 194 54 5 2 12 177 8.0 15.0 15.0 13.3 16.3 12.5 12.7 10.2 13.2 19.2 23.0 19.5 31.1	13 3 100 646 1100 205 22 15 1 1 12 50 15.7 7.3 16.5 21.5 13.7 10.7 11.7 10.7 11.0 20.0 11.5 10.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	165 157 1101 1000 735 438 172 45 40 74 434 155 Tr.2 14.6 19.3 13.6 13.7 15.7 15.5 22.9 24.5 22.5 23.9		E ESE SE SE SE SS BS WEN WENT IN DAM NA NAM	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20, 20, 16, 12, 10, 15, 16, 6, 11, 10, 10, 10, 10, 35,7,35,38,9,34,0,25,0,27,5,20,5,20,5,37,4,18,7,31,6,59,3	73 W 149 130 138 243 222 A 1 19 17 20 1/5 25 1 25 1/5 21 3 20.3 25.0 25.9 18.4 17.5 15.3 21.3 21.3 20.3 20.3 27.0 51.1	20 24 170 270 401 224 74 22 3 1 6 141 15.4 18.1 15.3 19.5 16.4 11.6 10.3 11.4 11.7 25.0 25.5 41.2	15.0 22.7 14.5 15.5 15.7 9.3 9.4 6.5 4.0 0.0 19.1 27.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	131 414 1034 1385 651 330 35 34 28 53 331
	EXE SE SSE S SSV VVVV VVVV VVVV NAM NAM NAM	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	25.4 21.1 18.0 18.7 23.3 32.5 34.5 102.0 36.3 56.7 170.0 74.0	134 125 139 134 103 110 03 04 44 38 37 40 31.0 00.5 24.2 20.0 27.1 64.9 00.0 92.5 97.3 102.5 132.1 55.4	110 113 134 275 334 105 109 101 10 37 32 138 28.2 28.1 10.0 15.7 28.0 57.3 26.7 28.1 28.6 59.0 101.5 61.1	72 40 155 600 635 155 100 67 41 20 42 100 11.8 9.5 10.0 10.5 10.5 46.2 71.5 00.4 55.0 74.5 71.5 61.4	0 25 91 00 11 9 2 0 0 2 10 0.0 5.7 9.3 15.3 47.1 40.0 25.0 0.0 0.0 50.5 30.4	20 40 11G 120 447 227 33 167 98 134 20 23,7 16,7 13,1 19,4 55,6 60,5 94,0 60,6 94,4 102,5 75,3		WHE FEE SE SES AS WENT IN MEAN IN SES	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20 32 22 19 13 12 17 21 10 14 12 17 22 22 30.3 32.5 15.0 13.6 13.6 13.2 17.5 25.0 21.1 35.6 23.4 25.5	147 162 164 178 147 173 226 231 17 25 25 27 187 187 187 187 187 187 187 187 187 18	50 20 20 21 24 50 473 272 104 54 5 2 12 177 11.5 8.0 15.0 15.3 16.3 12.5 12.7 10.2 13.2 13.2 23.0 10.5 31.1	7.3 105 046 1105 205 22 15 1 1 12 50 7.3 16.9 21.5 13.7 10.7 11.7 10.7 11.6 20.0 11.6 10.5	0 0 0 0 0 0 3 85 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	157 517 1101 1300 736 438 152 45 40 74 434 17.2 14.6 19.3 13.6 13.3 12.7 15.5 22.8 24.9 22.5 30.9		NO. N. NOT A FISH AS PSS S 355 35 353	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	46 25 20 16 12 10 15 16 6 11 10 10 10 10 41.7 35.7 35.3 26.9 26.0 27.0 27.5 27.5 27.5 37.4 18.7 31.6 59.3	107 73 64 140 150 130 243 222 A1 19 17 20 1/5 28 0 26 24 15 27 0 51.1	50 20 21 170 270 401 221 74 22 3 1 6 141 16.3 15.4 16.1 15.3 19.5 16.4 11.5 16.3 11.4 11.7 25.0 25.5 41.2	15 2 3 00 506 1053 173 10 11 1 0 11 50 14 50 14.3 15.0 22.7 14.5 16.5 15.7 9.3 5.4 6.5 4.0 0.0 19.1 27.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	218 127 131 414 1604 1005 661 300 95 34 25 63 331
	THE SE SES S SAV NOW WITH THE SE	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	16 0 1 2 6 22 6 22 1 3 3 3 1 10 10 11 2 2 1 2 3 3 3 1 10 10 10 11 2 11 2	151 134 135 130 134 140 110 40 04 44 30 37 40 40 5 31.0 00.5 24.2 20.8 27.1 64.9 00.0 92.5 97.3 102.5 132.1 55.4	135 110 113 134 277 334 135 149 181 19 31 32 133 31.4 23.2 23.1 13.9 15.7 23.8 57.3 55.7 55.1 55.1 55.0 101.5 61.1	242 72 40 155 600 635 155 160 67 41 20 42 160 11.5 11.8 9.8 10.0 10.5 10.5 46.2 71.5 00.4 58.0 74.9 78.6 61.8	74 6 0 25 91 00 11 9 2 0 0 2 10 00 15 2 0 0 0 2 10 0.2 10 0.2 2 10	576 329 270 430 103 104 44 327 335 167 58 134 239 23.7 22.5 23.7 16,7 13.1 19.4 55.0 50.5 50.0 50.8 50.8 54.4 162.5 75.3		WHE HAN HANN IN HEAR ASS S SEE SEE 35 353 3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	119 00 32 22 19 13 12 17 21 10 14 12 17 22 20.5 22.9 20.3 22.5 15.0 15.6 16.4 26.2 17.5 25.0 26.1 26.6 24.4 25.5	147 162 164 178 147 173 226 231 17 25 25 27 187 187 187 187 187 187 187 187 187 18	50 20 20 21 24 50 473 272 104 54 5 2 12 177 11.5 8.0 15.0 15.3 16.3 12.5 12.7 10.2 13.2 13.2 23.0 10.5 31.1	13 3 100 646 1100 205 22 15 1 1 12 50 15.7 7.3 16.5 21.5 13.7 10.7 11.7 10.7 11.0 20.0 11.5 10.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	165 157 1101 1000 735 438 172 45 40 74 434 155 Tr.2 14.6 19.3 13.6 13.7 15.7 15.5 22.9 24.5 22.5 23.9		E ESE SE SE SE SS BS WEN WENT IN DAM NA NAM	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20, 20, 16, 12, 10, 15, 16, 6, 11, 10, 10, 10, 10, 35,7,35,38,9,34,0,25,0,27,5,20,5,20,5,37,4,18,7,31,6,59,3	107 73 64 140 150 130 243 222 A1 19 17 20 1/5 28 0 26 24 15 27 0 51.1	50 20 21 170 270 401 221 74 22 3 1 6 141 16.3 15.4 16.1 15.3 19.5 16.4 11.5 16.3 11.4 11.7 25.0 25.5 41.2	33 15 2 3 80 505 1033 173 10 11 1 0 11 15 17.6 14.3 15.0 22.7 14.5 16.5 15.7 9.3 9.4 6.5 4.0 6.0 15.1 27.0	0.0 0.0 0.0 0.0 38 84 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	218 127 131 414 1604 1005 661 300 95 34 25 63 331
	1999 PN NOW B ASS ASS ASS ASS ASS ASS ASS ASS ASS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 16 3 1 18 5 1 22 5 22 5 24 5 100 6 05 2 10 10 10 10 10 10 10 10 10 10 10 10 10	144 151 134 125 120 134 103 110 03 64 44 36 37 40 44 44 45 45 45 51.0 65 64 52 57 51 65 65 65 65 65 65 65 65 65 65 65 65 65	20, 100 110 113 124 274 135 145 146 181 175 37 32 130 28.0 31.4 20.2 22.1 15.9 15.7 20.6 57.3 25.7 25.1 20.6 20.0 101.5 81.1	205 272 72 40 155 600 CGS 155 100 G1 41 20 42 100 151 152 11.5 11.8 9.8 10.0 10.9 16.9 46.2 71.5 00.4 56.0 74.9 70.6 G1.0	6.3 6.2 4.7 6.0 5.7 9.3 15.3 47.1 40.0 26.0 0.0 5.0 5.33.4	000 016 320 220 420 1163 1200 447 327 333 1167 98 134 239 28.1 22.7 22.5 22.7 16,7 13.1 19.4 55.0 00.5 00.0 80.8 91.4 102.5 53.3		WHE HE WAY IN INCH INCH IN INCH HEN IN INCH INCH	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	119 00 32 22 19 13 12 17 21 10 14 12 17 22 20.5 22.9 20.3 22.5 15.0 15.6 16.4 26.2 17.5 25.0 26.1 26.6 24.4 25.5	171 147 162 169 178 179 255 251 179 255 25 33 145 177 147 16.1 16.9 14.5 14.5 14.6.1 15.1 17.0 25.4 24.5 25.8 25.6	105 59 20 20 21 10 10 10 10 10 10 10 10 10 10 10 10 10	53 15 3 3 100 046 1100 205 22 15 1 12 12 13 16 16 16 18 16 18 18 18 18 18 18 18 18 18 18 18 18 18	0 0 0 0 0 0 3 85 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	425 220 105 157 517 1101 1300 736 438 162 45 40 74 484 162 15.5 15.5 17.2 14.6 19.3 13.5 13.1 12.7 15.5 22.6 24.9 22.5 50.9		FOR ES SE SE SE SE SAN SIN HON IN NA NA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55 46 25 20 16 12 10 15 16 6 11 10 10 10 10 10 10 10 10 10 10 10 10	145 107 70 04 149 120 130 240 222 41 19 17 20 1/15 25.5 28.0 28.1 20 3/15 20.3 3/10 5/1.1	127 50 20 21 170 270 401 221 74 32 3 1 6 141 19.8 18.3 18.4 18.1 18.5 18.5 18.4 11.6 10.3 11.4 11.7 25.0 25.5 41.2	33 15 2 3 80 505 1033 173 10 11 1 0 11 15 17.6 14.3 15.0 22.7 14.5 16.5 15.7 9.3 9.4 6.5 4.0 6.0 15.1 27.0	0.0 0.0 0.0 0.0 38 84 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACC 218 127 131 414 1004 1005 0G1 300 50 34 28 CS 331
	NAM NA WAW W WAY WE S SSX SS SKS S SKS SS SKS SKS SKS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45.6 25.5 37.1 25.4 21.1 18.0 18.7 22.5 32.5 34.5 100.0 10.3 05.7 170.0 14.0	105 IAN 151 134 125 120 134 108 110 03 04 A1 38 37 40 54.2 A4.2 A6.5 31.0 05.6 24.2 25.8 27.1 54.9 05.0 95.5 97.3 102.5 132.1 55.4	24, 25, 155 110 113 134 277 254 145 149 161 19 51 52 133 145 155 25,1 150 15,7 25,8 5,7 25,1 25,6 20,0 101.5 81.1	20 205 202 72 40 135 600 005 135 100 67 41 20 42 105 22.5 13.2 11.5 11.8 9.8 10.0 10.0 10.0 46.2 71.5 00.4 56.0 74.9 70.6 61.0	5.0 6.9 6.2 4.7 0.0 5.7 9.3 15.3 47.1 48.0 25.0 0.0 0.0 5.3 28.4	440 000 010 500 500 400 1163 1300 441 501 505 167 98 134 203 41,1 28,1 28,1 28,5 28,7 16,7 13,1 19,4 56,0 50,5 50,0 50,6 91,4 102,5 16,3		WH FM MAN M MEN NE NEES S 252 35 363 3 344 3M 3M	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	119 00 32 22 19 13 12 17 21 10 14 12 17 22 20.5 22.9 20.3 22.5 15.0 15.6 16.4 26.2 17.5 25.0 26.1 26.6 24.4 25.5	210 171 177 178 25 27 173 255 271 179 25 25 179 179 179 179 179 179 179 179 179 179	154 105 50 20 20 21 301 473 272 104 54 5 2 12 177 14,8 11.7 11.9 8.0 15.0 13.3 16.3 12.5 12.7 10.2 13.2 13.2 23.9 13.5 31.1	97 31 15 3 3 100 645 1107 205 22 15 1 1 12 09 8.3 6.3 9.6 45.7 7.3 16.5 21.5 13.7 10.7 10.7 10.9 20.6 10.5 10.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ST6 ACC 200 105 157 117 1101 100 705 AC 102 A5 A0 74 AN 102 16.2 15.6 15.5 T.2 AA 10.7 10.5 10.0 10.5 20.9		אנא אא אא אא אפא אר פער א פאר איז איז איז איז איז איז איז איז איז איז	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108 55 46 26 20 16 12 10 15 16 6 11 10 16 10 15 10 6 51.4 10 10 10 10 10 10 10 10 10 10 10 10 10	211 MG 101 73 MG 146 128 128 245 222 AT 19 HT 28 115 AT 55 ES 250 251 21.3 21.3 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	24.5 122 50 20 24 170 278 401 224 74 22 3 1 6 141 24.5 19.8 18.3 16.4 18.3 19.5 16.4 11.6 16.3 11.4 11.7 25.0 25.5 41.2	97 38 15 2 3 00 905 1033 173 10 11 1 0 11 56 125 17.5 17.6 14.3 15.0 22.7 14.5 15.9 15.7 9.3 9.4 6.5 4.0 6.0 10.1 27.0	0.0 0.0 0.0 0.0 0.0 15.0 9.5 0.0 0.0 0.0 0.0 0.0 18.0	557 ACC 218 127 131 ALM 1024 1395 (G) 300 G) 34 25 C) 371
	N 1865 NS BYG E EYE 3E SSB SV WWW W MAN NA MAN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 7 13 16 9 7 5 6 22 6 2 6 2 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	131 105 144 151 134 135 130 134 105 110 03 84 44 35 37 40 79.1 54.2 44.2 45.5 31.0 30.5 27.2 23.8 77.1 64.9 03.0 03.5 37.3 102.5 132.1 55.4	181 अर्थ ट्राप्ट 118 113 134 ट्राप्ट ट्राप्ट 234 155 155 155 155 155 155 155 155 155 15	100 50 205 202 72 40 155 600 055 155 100 67 41 20 42 105 45.4 22 15.2 11.5 11.5 11.5 11.5 11.5 11.5 1	0 1 23 74 6 0 25 91 00 11 9 2 0 0 2 10 0.0 5.0 5.9 6.2 4.7 0.0 5.7 9.3 15.3 47.1 40.0 25.0 0.0 0.0 5.35.43.4	332 449 000 016 332 230 432 1133 1320 441 327 335 167 38 134 239 63.8 41.1 28.1 28.1 22.5 23.7 16.7 13.1 19.4 55.0 60.5 50.0 60.6 91.4 162.5 16.3	W	WHEN WAY WAY WE EVER SE SES SES SES WHEN WHEN WHEN WHEN WHEN WHEN WHEN WHEN	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	119 00 32 22 19 13 12 17 21 10 14 12 17 22 20.5 22.9 20.3 22.5 15.0 15.6 16.4 26.2 17.5 25.0 26.1 26.6 24.4 25.5	252 210 171 147 162 104 178 137 173 255 231 173 25 25 33 105 36.0 231.0 271.4 271.5 25.6 25.6 35.0 21.7 17.7 14.7 16.1 16.9 14.5 14.5 14.5 14.4 15.1 15.3 17.0 231.4 251.5 251.6 251.6	100 154 105 50 20 20 20 201 150 1473 272 104 54 5 2 12 177 252 14.8 11.7 11.9 8.0 15.0 15.3 16.3 12.5 12.1 10.2 13.2 13.2 23.0 10.5 31.1	20 97 31 15 3 3 100 646 1107 205 22 15 1 1 12 09 20.2 22 3 6.3 8.6 15.7 7.3 16.5 21.6 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	553 576 405 200 155 157 517 1101 1500 755 435 152 45 40 74 444 253 18.2 15.2 15.5 15.5 17.2 14.6 15.3 15.5 13.5 13.7 15.5 22.5 26.9 25.5 26.9	समाव	NOV PAR NAME NO POST NOS S SSS SSS SSS SSS SSS SSS SSS SSS S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57 103 56 46 25 20 16 12 10 15 16 6 11 10 16 10 18 10 18 10 10 10 10 10 10 10 10 10 10 10 10 10	202 211 MG 107 70 M 1MG 120 130 202 202 M 19 17 20 150 00.7 M 19 25 20.2 30.3 30.0 30.0 30.0 30.0 30.0 30.0	24.5 122 50 20 24 170 278 401 224 74 22 3 1 6 141 24.5 19.8 18.3 16.4 18.3 19.5 16.4 11.6 16.3 11.4 11.7 25.0 25.5 41.2	22. 97. 33. 15. 2. 3. 80. 505. 1033. 173. 10. 11. 10. 11. 35. 23. 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	467 SS7 460 218 127 131 414 1004 1005 051 300 50 34 25 C3 371
STATION	1865 HE EVE E ESTE SE SSE S SVV WWW WANTER THE STEEL S	2.5 6 6 6 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 1 1 10 16 0 1 1 5 6 22 6 2 1 2 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 152 155 144 151 134 135 130 134 180 110 63 64 44 30 37 49 60 76 78.1 54.2 44.5 45.5 31.0 305 62.12 20.8 27.1 64.9 50.0 56.5 57.3 162.5 152.1 55.4	0 191 आ, द्वार, 110 110 110 127 द्वार 132 142 181 19 जा दव 128 0.0 व्य.उ व्य.ट व्य.ठ ३१.४ व्य.ट व्य.१ 15.0 15.7 व्य.ठ 57.3 व्य.१ व्य.१ व्य.ट व्य.ठ 101.5 हो.।	0 100 50 205 202 72 40 135 600 605 155 100 61 41 20 47 105 0.0 6.0 45.4 22.5 13.2 11.5 11.8 9.8 10.0 10.9 15.9 46.2 71.5 00.4 59.0 74.9 70.6 61.0	0 0 1 22 74 6 0 26 91 60 11 9 2 0 0 2 10 0.0 0.0 5.0 6.9 6.2 4.1 0.0 5.7 9.3 15.3 47.1 00.0 25.0 0.0 0.0 5.33.4	440 000 010 500 500 400 1163 1300 441 501 505 167 98 134 203 41,1 28,1 28,1 28,5 28,7 16,7 13,1 19,4 56,0 50,5 50,0 50,6 91,4 102,5 16,3	B ILANT	WHEN WAY WAY WE EVER SE SES SES SES WHEN WHEN WHEN WHEN WHEN WHEN WHEN WHEN	23 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 77 115 119 00 02 22 19 13 12 17 21 10 14 12 17 22 0.0 30.8 20.8 20.8 20.5 20.9 20.3 22.5 20.9 20.3 22.5 10.0 13.6 16.4 24.2 25.5	0 222 210 171 147 162 163 173 173 255 231 73 25 25 35 35 165 165 165 165 165 165 165 165 165 16	0 100 154 105 50 20 20 214 501 473 772 104 54 5 2 12 177 0.0 56.2 14.8 11.7 11.9 6.0 15.0 13.3 16.3 12.5 12.7 10.2 13.2 13.2 13.2 23.0 19.5 31.1	0 20 97 31 15 3 3 100 645 1100 205 22 15 1 1 12 00 0.0 0.0 20 12 12 0.0 0.0 0.0 11.7 10.7 10.7 10.0 20.0 11.8 10.8 10.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ST6 ACC 200 105 157 117 1101 100 705 AC 102 A5 A0 74 AN 102 16.2 15.6 15.5 T.2 AA 10.7 10.5 10.0 10.5 20.9	507-102 (301-102	CALLY N NOS NE EYE E ESE SE SE S SSU SU NEW W NOW	25, 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 67 103 95 46 26 20 16 12 10 15 16 6 11 10 16 10 0 0 0 0 0 0 0 0 0 0 0	0, 220, 211, 146, 197, 79, 54, 146, 126, 136, 245, 222, 47, 19, 17, 28, -115, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0 159 150 151 50 20 21 170 270 401 221 74 22 3 1 6 1/11 0.0 42.0 24.5 19.8 10.3 15.4 10.1 15.3 19.5 16.4 11.6 10.3 11.4 11.7 35.0 25.5 41.2	0 22 97 38 15 2 3 00 900 1030 173 10 11 1 0 11 06 0.0 0.0 27 72.5 72.5 72.5 72.5 72.0 22.7 72.5 72.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACT SST 400 218 127 131 414 1004 1006 051 300 50 50 50 50 501
HOLLY COST STATEM	N 1865 NS BYG E EYE 3E SSB SV WWW W MAN NA MAN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 7 13 16 9 7 5 6 22 6 2 6 2 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	131 105 144 151 134 135 130 134 105 110 03 84 44 35 37 40 79.1 54.2 44.2 45.5 31.0 30.5 27.2 23.8 77.1 64.9 03.0 03.5 37.3 102.5 132.1 55.4	181 अर्थ ट्राप्ट 118 113 134 ट्राप्ट ट्राप्ट 234 155 155 155 155 155 155 155 155 155 15	100 50 205 202 72 40 155 600 055 155 100 67 41 20 42 105 45.4 22 15.2 11.5 11.5 11.5 11.5 11.5 11.5 1	0 1 23 74 6 0 25 91 00 11 9 2 0 0 2 10 0.0 5.0 5.9 6.2 4.7 0.0 5.7 9.3 15.3 47.1 40.0 25.0 0.0 0.0 5.35.43.4	332 449 000 016 332 230 432 1133 1320 441 327 335 167 38 134 239 63.8 41.1 28.1 28.1 22.5 23.7 16.7 13.1 19.4 55.0 60.5 50.0 60.6 91.4 162.5 16.3	(NGZ) TOURS FLANT	WHEN WAY WAY WE EVER SE SES SES SES WHEN WHEN WHEN WHEN WHEN WHEN WHEN WHEN	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	119 00 32 22 19 13 12 17 21 10 14 12 17 22 20.5 22.9 20.3 22.5 15.0 15.6 16.4 26.2 17.5 25.0 26.1 26.6 24.4 25.5	252 210 171 147 162 104 178 137 173 255 231 173 25 25 33 105 36.0 231.0 271.4 271.5 25.6 25.6 35.0 21.7 17.7 14.7 16.1 16.9 14.5 14.5 14.5 14.4 15.1 15.3 17.0 231.4 251.5 251.6 251.6	100 154 105 50 20 20 20 201 451 102 102 103 155 2 12 177 252 148 11-1 11-9 8.0 15.0 13.3 16.3 12.5 12.1 10.2 13.2 13.2 23.0 13.5 31.1	20 97 31 15 3 3 100 646 1107 205 22 15 1 1 12 09 20.2 22 3 6.3 8.6 15.7 7.3 16.5 21.6 13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	553 576 405 200 155 157 517 1101 1500 755 435 152 45 40 74 444 253 18.2 15.2 15.5 15.5 17.2 14.6 15.3 15.5 13.5 13.7 15.5 22.5 26.9 25.5 26.9	אוא יסס-'קצוכב	NOV PAR NAME NO POST NOS S SSS SSS SSS SSS SSS SSS SSS SSS S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57 103 56 46 25 20 16 12 10 15 16 6 11 10 16 10 18 10 18 10 10 10 10 10 10 10 10 10 10 10 10 10	202 211 MG 107 70 M 1MG 120 130 202 202 M 19 17 20 150 00.7 M 19 25 20.2 30.3 30.0 30.0 30.0 30.0 30.0 30.0	24.5 122 50 20 24 170 278 401 224 74 22 3 1 6 141 24.5 19.8 18.3 16.4 18.3 19.5 16.4 11.6 16.3 11.4 11.7 25.0 25.5 41.2	22. 97. 33. 15. 2. 3. 80. 505. 1033. 173. 10. 11. 10. 11. 35. 23. 13. 13. 13. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOTAL 20 157 SET 400 218 127 131 414 1004 1385 051 330 35 34 25 53 351 0513

Table 1-23 (4) Concentration by Wind Direction and by Wind Velocity Level (SPM)

DIST) (DEB STATION	TATION																í	0454) S.P.P	S.P.P80,GFF1G	ы	.	ĺ													ſ
3/	SL	×	35.	걸	30.6	303	35	335		S SSW	Š	NS3	3	75	3	KW T	TITAL,	8	ş	×	<u>8</u>	點	343	3	33	S.	355	ASS S	R	ğ	39	3	7	HOW TOTAL	zi.
0 -0.4 (bour) (µ£/m)	113.4	0.0	0.0	0.0	0.0	0.0 0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	000	00	0.0	113.4	0 -0.4 (hour) (µ £ /n!)	. S	° 6.	0.0	000	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	31
0.5-0.9 (bour) (#g /nf)		0.0 124.4 142.3 103.0 102.0	7 12.3 IC	22 O.C	17 9 .0 84.4	9 7	7 .91.8	5 7 8 83.3	22.22	106.0	38.2	121.0	303.0	117.3	153	-0.53	33.4	0.5-0.9 (bour) (uz /m)	0.0	50.03	122.2	121	82.8 8	33 25 89.5 114.1		10 12 75.0 86.5	12 14 S 04.5	105.3 105.3	22 0.03	13 12.8	13 38.8	13.9 11	118.1	22.01. 01.8.01	22.83
1.0-1.9 (bour) (# g /nt)		0 57 10x 0.0 102.5 87.3	104 7.3	175, 153 75,9 68,9	ಔಷ ∺ಔ	137 125 65.0 62.6	2.63	119 137 50.0 61.9	2 2 2 4	2.82 E.C.	120.9 120.9	20.03	±8.	20.00	12.35	3,19	1500 70.8	1.0-1.9 (bour) (uz/m)	000	330 233	88	8.0	158	101 72.1	110 180 65.5 61.8	88. 8.140	771 CE	3.88.4	315 57.3	83.23	8 1.8	22 23 10	35 105.112	133.5	88
2.0-2.9 (hour) (µg /nf)	000	170	76.7 10.2	218 191 (X.8 55.4	31 119 .4 45.9	10 112	2 126 4 45.6	5 E 277	88	3.8 5.4	E 1.0	8 27	5.3	88	86	=8	25.55 6.95	2.0-2.9 (hour) (#£/m)	0.0	124.9	7.5 7.5	58.1	74 61.5 5	S7.1 41	8.0.1 2.0.2	522 5.2 45.3	20.03 20.03	8 3	51.5	2,3	25.8	23.07	14.5	88	27.0
3.0-4.9 (hour) (#g /m)	0.0	97 72.8 5	. 85 54.8 ≰	150 ZT 40.5 34.3	3 31.72	25.58	25.83 8.83	893	28	2 57.0	88	5.2	28	នុះ	8. 5.0	82	27M	3.0-4.9 (bour) (µg/m)	000	52	.0 .0 .0	75. 75.4	22.2	30.3	3 111 45.0 41.7	11 654 10.054	201 E	33.6	22.5	5.5	20.	105.0	12 00 05.1 116.2	85	23.07 11.9
5.0- (bour) (µg/nt)	0.0	0.0 3	33.0 X	30.4	73 G 25.6 14.3	30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22.2	8,68	= 2.7	40.7	2.0	00	00	20.01	28	i i i	5.0- (hour) (µ g /hl)	0.0	0.0	0.0	000	000	000	000	0.0 32.0	87.	8	08	00	08	08	900	8	55
TOTAL	113.4	322 87.5	412 75.8 CC	506 G71 50.2 49.0	50.15 0.18	23 205 .0 51.0	5 42 ES	4 40.1	65.5 65.5	25.T. S	888	25.23	22.5	8.5	2.8 2.5	88	22.03 23.03	זסואר	155.3	130.5	35.4	502	317 73.67	157 1 72.2 61	772 532 67.8 51.2	22 1199	2 31.7	85	5.73	25.6	25.25	22.03	8.08	135.7.	27.5 97.2
DISCO POLICE PLANT	T.M.								1								1 ·	055) 11. &	I, ESTATE	æ															1
85/ 83/	3	æ	33	35	33	3 x 3	ļ	SE SSE		S SSI	PS.	10	*	3	₹	MON (II)	TOTAL	8 3	3	×	SE SE	函	ä	w	ដ	33	355	ğ	8	3	3	3	3	N. TO	TOTAL
0 -0.4 (hour) (#8 /nf)	32 143.0	0.0	0.0	0.0	0.0	0.0	60 60	000	00	0.0	000	000	000	ိုင်	00	00	88.0 143.0	0 -0.4 (hour) (µ£/म)	88.3 8.3	၀ဒ္ဓ	ိဒ္ဓ	- 5	00	000	0.0	0.0	0.0	0.0	000	08	-8	000	000	000	2 g
0.5-0.9 (hour) (# (# /#!)	0.0 113.1	113.1	15.33 88	25. 27.	15.1 33.5	22 25 26 30 30 30 30 30 30 30 30 30 30 30 30 30	8 g	28 21 21 21 21 21	25 25.7	8 57	80	28.	ž.	. 8 2.	2.2	20	28	0.5-0.9 (hour) (#z /nl)	00	35	8.5	58	57.5	F. 2.	80.8 8	88 35.8 36.2	5 2 38 33	80	86.	8 8	84	8.5.8	83.2 7.2	101	25.23
1.0-1.9 (hour) (µg /m)	0.0 100.5	341	279	500 10	102 1	112 111 52.1 45.8	1.75 8.2.8	25.55 25.05	E.S.	2 34 2 5 5	316	88	B.S.	8	8	8 2	2000	(10-1.9 (bour) (#g /#f)	ిక	£ 8.	88	88	18 83 25.55	를 를 2.5	3.8 2.0		5 31.6 31.6		25.28		¥ 6.			5.3	88
2.0-2.9 (hour) (µ£ /nf)	00	25.18 25.18	200 200 300 300 300 300 300 300 300 300	36.1 42	73 20 42.0 41.4	20 .4 29.3	22 83 8.63 8.64	2.3 2.3	5.6 8.3	8 202 6 41.2	20.2	28	25.5	73.57	8.23	28	20.8	2.0-2.9 (bour) (µ£/m)	08	F. 5	8.5	E 83	8.6	37.55	22.4 28.5				8.5		8 2			84	88
3.0-4.9 (hour) (µs /nf)	0.0	& G.	28.7	# 27.9 35	22 3 30.5 26.3	3 32.0	3 111	1 G21	33.6	5 20 20 5 20 20 5 20 20	22.2	23	17.0	1.0	22.53	88	2048	3.0-4,9 (bour) (µ£/14)	° 8	염급	27.5	Ξ±.	8.4.	21.9	E	28.5	28.82	88.8	25.5	22.62	8 				1838
5.0- (bour) (#E /m)	0.0	0.0	0.00	0.0	0.0	0.0 0.0	0.0	0 37 0 49.3	3 41.2	83	3 0.0	0.0	0.6	00	000	7.073	85.5	5.0- (hour) (με/π)	0.0	0.0	3.6	88.0	80	5.0	000	000	0.0	88	2,5	98	0	08	000	00	= %
TOTAL	8.03 0.03	712 56.8	730 65.0 S	50,03 50,03	323 176 54.1 57.7	76 174 .7 47.5	4 531 5 35.7	1131	5.5 5.5 5.5	000 000 000 000 000 000 000 000 000 00	3 476	150 150 150 150	20.00	å.	85.	25.5 22.6	85.53	TOTAL	28.5	88.83 88.63	88 85 67	88.83	88.3 6.3.2	701 47.3 33	255 200 37.3 22.8	2 413 8 31.4	3 917	13.88 10.00	25 ES	31.6		25.16 61.4	67.4	222 3.10	3187
OCS) MIN.DEP.OFFICE	P.OFFICE	E-3							ŀ							1	1	-																	7
(S)	3	=	왩	ž.	363	3G 3	3.	E SSE		S	3	Ş	3	3	2	Ę.	מותער.																		
0 -0.4 (hour) (us /n!)	88	000	000	0.0	0.0	0.0 0.0	0.0	0.0	0.0	00.0	00.0	000	000	000	000	-8	\$2.2I																		
0.5-0.9 (hour) (#\$ /nf)		0 83 125 122 0.0 112.6 116.4 113.0	135 16.4 11	122 CC 3.0 100.2	88	35,5 103.0	8 8 5	26.2	3 67.7	21 85.5 25.5	22 25	8 21	28 22	25	aş.	26	16.2																		
1.0-1.9 (hour) (#£/ml)	000	8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8	25.0% St. 0.0%	130 152 03.0 07.8	52 111 .8 74.9	11 11 22.1	 ≅5	25.65 0.56	88	21.23	25 di 600	, 8 , 8	ងក	ងខ្លួ	52	80	30.1																		
2.0-2.9 (hour) (#5/nf)	0.0	73.2	150 25.7	14! 7! 46.8 51.5	≅ κί α	28.83 27.63 1.73	88	15.3 25.3 26.3	5.03	8 8 8 5	31.7	8,	22.2	£0.0	88	#5°E	27.25 55.6																		
3.0-4.9 (hour) (µ E /nt)	. 6.	€2.0 S	127 52.3 Æ	44 22 49.5 46.3	21 ts	31.0 44.0	3 41.8 0 41.8	883	5 LT 25	25.25 25.55	25.25 25.55	21.15	Z 2	8.0	4.1	85	46.3																		
5.0- (hour) (#E /hf)	ိဒ္ဓ	00.0	0.0	0.0 0.0	00	0.0 0.0	0	0.0 41.1	88	5 17,71	200	° ?	°8	98	000	- 0; E	33.2																		
TOTAL	82.0	8.5	2.2	600 735 506 311 174 172 543 1108 66.1 62.8 73.6 60.9 76.0 72.1 58.1 50.0	7 75	72 .0	28	32 E	20.75 20.05	5.5 5.5	5.3 5.1	S. 53	38.17	3,83 83,8	79.7 79.7	8.5	623																		

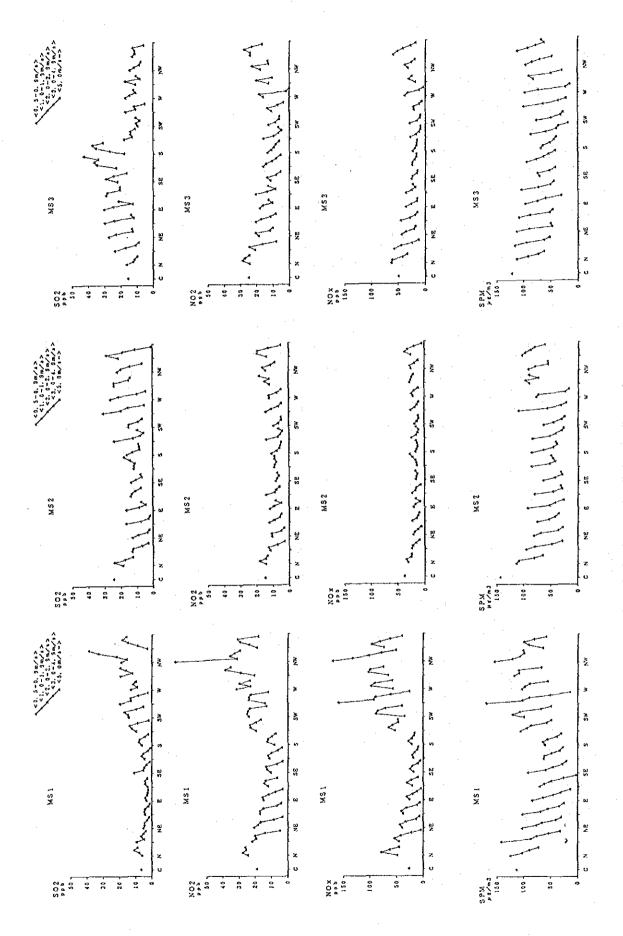


Fig. 1-27 (1) Average Atmospheric Pollutant Concentration by Wind Direction and by Wind Velocity Rank

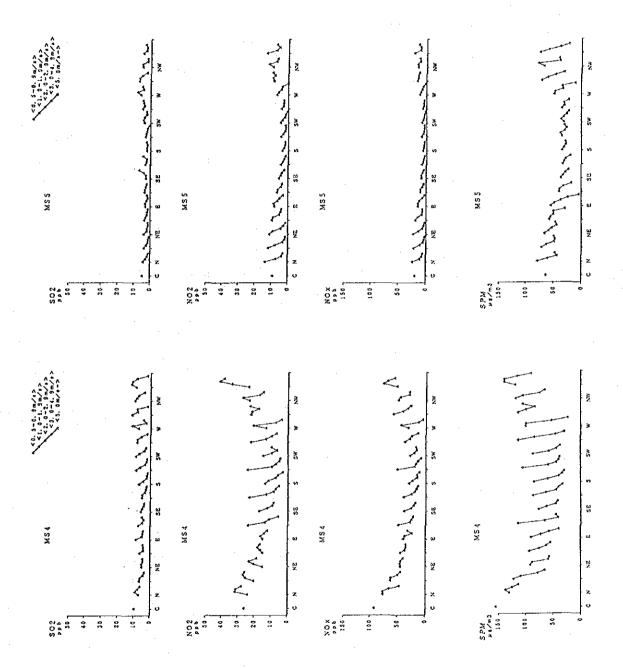


Fig. 1-27 (2) Average Atmospheric Pollutant Concentration by Wind Direction and by Wind Velocity Rank

1.4.2 Average Pollutant Concentrations by Wind Velocity Range and by Atmospheric Stability

The atmospheric stability can be classified as shown in Table 1-6 according to such factors as wind velocity, solar radiation and net radiation and the plume spread (width) increases as atmospheric stability is destroyed (Fig. 1-13).

Table 1-24 and Fig. 1-28 show average concentrations of SO₂, NO₂, NO₃ and SPM observed at each monitoring station by wind velocity range and by atmospheric stability. Concentrations, regardless of pollutant type, increase as atmospheric stability improves. The trend is more pronouncedly seen in SO₂ of MS2 and MS3, in NO₂ and NO₃ of MS1, MS3 and MS4, and in SPM concentration of MS1, MS2, MS3 and MS4.

In addition, the atmospheric stability takes A, B, C and D type in the daytime as shwon in Table 1-8 but mostly E and F type at night. The frequency of these appearances seems well correlated to the atmospheric pollutant concentrations. Namely, in the daytime the concentrations increase in the ascending order of A to D while in the night time the concentrations samely increase from E to F although average level stays lower at stability D. The concentration difference between D in daytime and F in night is thought due to that of source activities.

When viewed in term of wind velocity range, the pollutant concentrations increase as so does wind velocity so long as atmospheric stability is maintained. The trend is clearly shown by SO₂ of MS3. Worthy of mentioning here is that atmospheric concentration varies depending on air stability change but is greatly dependent on other factors such as changes of wind velocity and its direction, fluctuation of source activities, relative position between source and monitoring station and others.

,	~
:	#
	ቯ
	g
Ċ	n
	U
•	C
	ë
•	≂
	õ
	옃
	Ħ
	7
	`
	⋛
	=
•	2
	ä
	نه
	ó
	₫
,	S
¢	-
	>
٠	F
	ŏ
•	Ť
÷	>
	vind velo
	z
:	=
:	۶
	_
	۵
	S
	Ç
	오
•	¥
	Ľ
	2
	تة
	ž
	5
(ن
	ũ
	C
	Ω
	3
	₹
	ച്
	=
٠	_
	Þ
	ণ
,	÷
	anle
	apl
	C
	_

UPPER; number of data LOWER; concentration(ppb) (PGS) POWER PLANT	Wind velocity Solar radiation Net radiation (W/mf)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
NO ₂ (961) ONEB STATION	wind Solar radia (W/m) velocity T≥ 580 ≥ 200 ≥ 20 (2.5.0)	Wind Solar radiation Net radiation Ne	Wind Solar radiation Net radiation Ne
UPPER; number of data LOMER; concentration(ppb) (ASS) POMER PLANT	Wind (a/s) Solar radiation (W/m) velocity (a/s) T = 80 200 800 200 200 201 0.0-0.4 CA 0 0 0 0 0 2.5-0.9 CA 0 0 0 0 0 2.5-12 S4 0 0 0 0 0 0 2.5-12 CA 0 0 0 0 0 0 0 0 0 0 2.5-12 CA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wind Solar radiation With radiation Web calculated With radiation With radiatio	
SO ₂ (MS1) CHEB STATION	where we have the solar radiation (and solar radiation) we have the solar radiation (and solar radiation) (b) $\frac{(W/M)}{500}$ $\frac{(W/M)}{200}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 1-24 (2) Pollutant Concentrations by Wind Velocity Range and by Atmospheric Stability

以外的: number of data LOAGN: concentration(ルミ/式) (AGS) POAGN PAMT	wind velocity Solar radiation We tradiation W π 0 W π 0<	wind (we) Soler radiation (W/mi) Net radiation (W/mi) Net radiation (W/mi) (W/mi) (W/mi) (ws) Tag 500 200 151 0.2 -34 0.0-0.4 CA CB C 151 0.2 -3 -3 0.5-0.9 A B C	
SPM (MS1) CNEB STATICA	wind velocity $T \ge 0$ $\infty 0$ ∞ $\infty 0$ ∞	Wind Solar radiation (M/M) (M/	Wind Solar radiation Net radiation (W.M.) welcoity 7≥ 800 290 151 0≥ 29
UPPER; number of data LIMER; concentration(ppb)	Wind Solar radiation (W/m/) velocity Ta 80 20 20 0.0-0.4 G 0 0 0 0 0 0.5-0.9 A 20, 2 15 1.0-1.9 B 322 C 15 2.0-2.9 B 541 C 15 3.0-4.9 B 541 C 65 5.0- C 74 B 545	Wind (w/s) Solar radiation (w/m) Net radiation (w/m) Net radiation (w/m) Net radiation (w/m) Net radiation (w/m) Net radiation (w/m) 0.0-0.1 550 250 250 151 >7 -34 >9 0.0-0.4 G 0 C 53 0 3 C 3 D 34 >9 1.0-1.9 B 3 A 3 B 34.0 52.0 E 55.0 57.0 9 B 43.0 8 55.0 6.5	
OPS1) GNEB STATION	s) T≥ (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)	Solar radiation Solar rad	Wind velocity Cox50 H. 3 I. STATE Net radiation velocity T.2 580 250 151 0.2 -34 >9 0.0-0.4 C.0 G.1 C. 7 C.5 0.132 0.5-0.5 A.9 B 97 D.71 E.373 F.71 1.0-1.9 B 419 C.22 1134 15.1 2.0-2.9 B 97 D.71 E.56 F.1194 2.0-2.9 B 77 1.22 11.4 15.1 2.0-2.9 B 77 1.22 11.4 10.7 4.5 3.0-4.9 B 737 C. 197 D. 176 20.5 5.5 5.0-2.9 C 528 D. 4.5 D. 16 5.9 3.3 5.0-2.9 S.2 D. 4.5 D. 16 D.71 4.5 5.0-7 S.2 D. 4.5 D. 71 4.5 5.0-7 S.2 D. 4.5 D. 71 4.5
N ×	Wind velocity (6.%) (0.04-0.00-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.5-0.	P S S S S S S S S S	#ind welco.

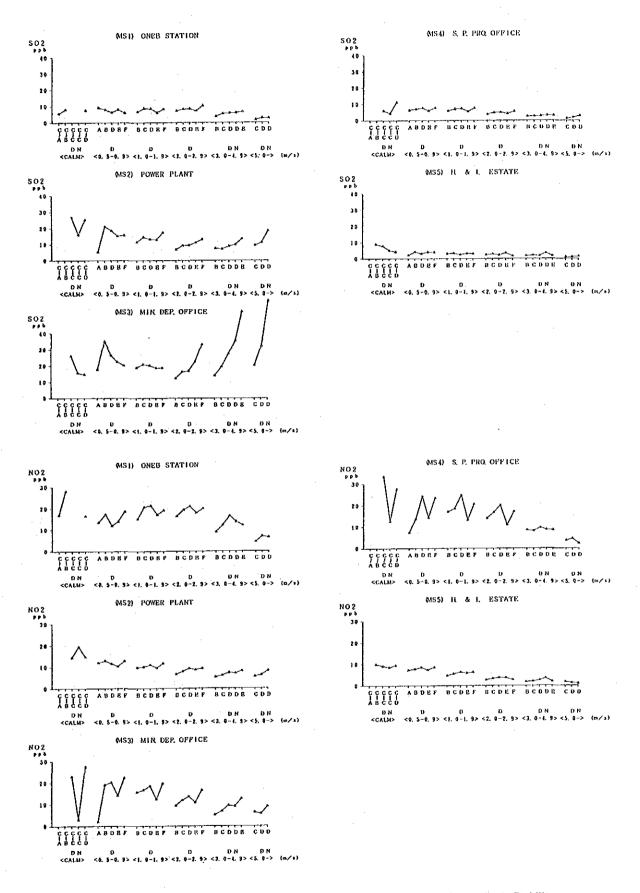


Fig. 1-28 (1) Pollutant Concentrations by Wind Velocity Range and by Atmospheric Stability

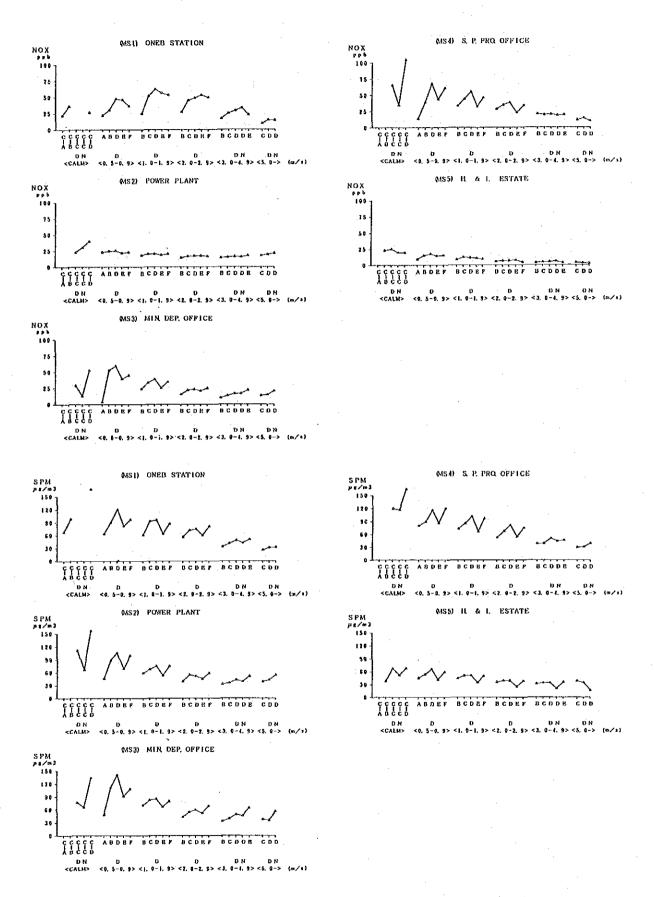


Fig. 1-28 (2) Pollutant Concentrations by Wind Velocity Range and by Atmospheric Stability

1.4.3 Analytical Study on High Pollutant Concentrations

The study was thought important to clarify the effect of meteorological conditions on appearance of high hourly or daily average values in terms of SO_2 , NO_2 , NO_3 , and SPM concentrations.

(1) Study of hourly values

Data base for this study are top fifty hourly values extracted (hourly values observed during fifty discrete hours which correspond to 0.6 pct of annual observation period) and are subject to analytical study from the viewpoint of knowing how they are correlated to variables such as appearance time, wind direction, wind velocity, atmospheric stability and other pollutant concentrations. Table 1-25 summarizes the result of such study effort.

Interesting is a fact as seen in Table 1-26 that high concentration values about all pollutants appear during the time frame of 17:00 through 9:00, i.e., from evening until early morning (with exception of high SO₂ value at MS5 and high NO₂ values at MS1, MS2 and MS3 in the daytime). The meteorological conditions about each station that seem associated with such high concentrations are:

MS5; The wind maintains NNW and SW direction while atmospheric stability is mostly B.

MS1; The wind direction is mostly W and atmospheric stability drops mostly in B. The appearance of high concentrations is thought due to the effect of the traffic on Sukhumvit roadway.

MS2; The wind maintains N direction while atmospheric stability is kept in B and high concentrations appears in the daytime.

MS3; The wind maintains mostly N and E direction and atmospheric stability drops in B. High concentrations appear in the daytime.

Table 1-27 summarizes frequency of high concentration appearance by wind direction at each monitoring station. As for MS1, SO₂ appears high in S~W~NNW wind and NO₂ as well as NO_x appear high in N~W~SSW wind. Those observations may be attributable to First Stage Express Way and Bang Na-Trat High Way to the north and SuKumvit to the WNW direction. It is found difficult to define the wind direction associated with high concentration appearance of SPM.

At MS2, concentrations of SO₂, NO₂ and NO_x appear somewhat high in N and NNW wind but maintain high in other wind directions as well. It is found difficult to define the wind direction for high SPM concentrations.

At MS3, high SO_2 concentration appeared in SSE and S wind (by 96 pct of appearances). This may be due to the SO_2 source existing in such wind directions. As for other pollutants, NO_2 and NO_x , high concentrations appeared in NNW~N~ENE wind and the wind direction to cause high SPM concentration is again found indefinable.

	ង	
	3.	ผนน 40000001-0000000000-00000-00-1
;	9	ਫ਼ੑਫ਼
X	X.	ළි සිහියව යළ පිරිසියක ම ම සිව සට සට සම්පිරිත පිරිසියක් වන වැඩියියක් සම සිට සට සට සම්පිරිත පිරිසියක් සට සට සට සම්පිරිත සට සට සට සට සට සට සට සට සට සට සට සට සට
ONES STATICA	28	สพบสตรีตัดสัตร์สตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีตัดสตรีต
063)	S. g.	ស្តីស្តីពិភូមិនគឺក្នុងសិទ្ធពីមុខ២៦ថ្ងៃកុទ្ធិពីក្រុសសម្មិលបានបីកុងសិច្ចក្នុងមកក្តីគឺ១ស្តីខែមាន។ : 3. ម្សី ស្តី ស្តី ស្តី សិទ្ធិ សិទ្ឆិ សិទ្ធិ
	3 g	高密密密表法由占出台级密学器密密路路密密码电空空空空设备设备设备公式公式公式公式公式公司
	date bour	ฮฮฮฮฮฮฮ-เรองฮฮ-เฮอฮฮฮอฮอฮะเงอฮย-ย-ฮฮอฮบ-๛จอฮฮฮฮออะะะ ชอชชชช-ชยฮยฮ-ชยยลชอฮฮยขอฮย-ยยฮอย-ยยฮอะเชชงว-เฮฮสชยชะย ชุชชยชุชฺเนื่อเชื่อเชื่อเชียเชียยนชีชชาชีอสหชอชิวชีชชชชยชิชชียนะเรื่
	Kank	

1		ts.	francingen permenumeraringuagor wagoning Berrogarere fra
1		8,5	71112121121212121111111111111111111111
1		3	프로링크프링UNIN 플프로콜로 MIN 링링 프로그램 NO NO 프랑 MIN 플링링 UNIN 링프 프링킹 다양 다양 다양 다양 다양 다양 다양 다양 다양 다양 다양 다양 다양
		, X	ක්ඩුබ්ම්ඩ්ට්ඩ්ට්ඩුව්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට්ට
721	שנים ארוני	5.gc	A
	98	Š, g	त्रु । इ.स.च.च्या १८०० होते व्यक्त १९०० होते होते होते होते होते होते होते होते
		2,₹	äääpeesaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
3		date hour	อสสสออสออสออสออสออสออสออสออสออสออสออย
		Rank	2014200129129929929929999999999999999999

15	mmpamerre maner no annerge generenannamere con e rome nonnamere a
25.5	はらするまたしまってきるからなるようなものできるようなものでものできません ようため ちょうしゅう ちょうしゅう ちょう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ
9	การในผมที่ที่ผลงองเทียงเกล้าเล็กเลงเกล้าเลงเกล่าเกลงเล็กเล็กเลงเรียกเล่น
4 3	සාසනයහනුවලයනවූ සමය සමු සහ අව සම්බන්ධ වේ සමුව පළමු සහ අව සම්බන්ධ වේ සම්බන්ධ සහ අව සම්බන්ධ සහ අව සම්බන්ධ සහ අව ස
Š.g	นชь, =ยอฟฉฟะอชบ _{ังค} ะยะสส1ชชอชชระช=ลอบฺถฺถ _{ึง} ฉัจปั _ง อธ==น _ี ถชฺจ=ษย
5 g	聚四份被查记表现式设计区户提出公司的现在分词在公司公司公司公司公司公司公司公司公司公司公司公司公司公司公司公司公司公司公司
S. g	最著层层层层层层线点设置性线器型型设置设置通过直通设置的设置中的设置设置的设置设置设置设置设置
date bour	ด
ğ	

ı	ti	Byarrirerenses meressarrines free green francostrating or
ľ	3.5	0-4-1000-141-1414-141-1414-141-141-141-1
ľ	9	~\$\$_\$_\$_8\$_\$\$_\$\$\$_\$\$\$6~\$*\$\$\$_\$\$\$_\$\$\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$\
	, s,	සම්සුස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස
	0. 0.	ୟଞ୍ଜୁଞ୍ଜୁ ଜାଷ୍ଟ୍ରୟକୁଲ୍ଲୟଖସୁଖିଛୁକୁ Iଞ୍ଜୁ ଗାଳ୍ୟଖଅଧୟଖନ୍ତ୍ରଧ ସମୟକ୍ର ଅନ୍ୟମୟ ଅନ୍ୟାନ୍ତି ଓ ଅନ୍ୟାନ୍ତ ଓ ଅନ୍ୟାନ୍ତ ଓ ଅନ୍ୟାନ୍ତ ଓ ଅନ୍ୟାନ୍ତ ଓ ଅନ୍ୟାନ୍ତ ଓ ଅନ୍ୟାନ୍ତ ଓ ଅନ୍ୟାନ୍ତ ଓ ଅନ୍ୟାନ୍ତ ଓ ଅନ୍ୟାନ୍ତ ଓ
•	Ž,Ķ	
I	S &	កកកម្មមានមានមានមន្ត្រី នេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ
	date hour	######################################
ſ	ğ	2000年8月10日 100 100 100 100 100 100 100 100 100

Table 1-25 (1) Highest 50 hours of SO₂ Concentrations

88

					:	_																
	is.	- QU	- 4	ZŽ.	ie te	JZ.		900	200			e ie	υŏ		, c. t.	കവ		20.	900			u
	3 %	21.2	0101-	- 6ir	22		12.	122			10.5	1 → 0	000	တရာ တရာ	900	21		0 1	4	a → เก๋เก๋	250	200
	3	왕성종	#æ°	-30	22	×	<u>ا</u>	83	× 3	373	3.	29	~3	#};	5×8	à	192	d.	~ 9	23	38	1*3
	cm/8.n FdS	ត្តឱដ	용달	(152 (153)	ee KK	€9iĕ	9 183	ខ្មែន		ខ្លួច ទ	88	168(172)	85	និខរ	S SSE	888	វិធាខ	9 558				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
OEB STATION	. 55 56	25 35 35 35 35 35	<u>ള</u>	-r- y;	6 6 6 6 6 7	0530	() () ()	37(16)		385 388		96	អន់	282	ន ជីន	യവ്വ	- <u>-</u>	N-•	аñ	្សិ សនា	8 8 8 8	13 13 13 13 13 13 13 13 13 13 13 13 13 1
	2 a	8113 8133 8133 8133	ह्य	(6) (8)	98 88	<u> </u>	21,2		5 ! !	58	្ត្រធ	<u>রু</u> জ	E (5)	(i) (i) (ii)	មវិវិនិ	88 El K		1818 1818	នន	(S)	9 9 9 9 9	- 편 면
	10,	日は	333	181	888	522)EE	Þβ	15 15	ölük	3 6, 5	FF	55	288	888	889	388	388	ماما	88	5 81	888
	date bour	00000 2000 2000 2000	126	11919	ផងរ	955	NA K) 	ಸನೀ	2148	20,8	18181	SI KI	25,	200	n-6	221	₩e	arı	mm;	783 5	313 a.
l	Renk	ลลล	926	E-8	ଜଲୁ	385	39	96	998	វិធិទិ	រលិនិ	ßß.	SR	ଷ୍ଟି	198	કેલેઇ	i G	ลิจิ	ęę	936	386) 9 9

٥٠		li.	www.mprend.mpren
3.55		ននិ	02-1401-01-05-1401-0001-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
33		9	ĸĸĔĠĸĔĔĸĸĔĸĸĸĸĸĸĔĸĸĔĸĸĔŔĔĸĔŖĔĸĔĸĔĸŔĸĸĔĸĸĔĸĸĔĸĸĸĸĔĔĸĸĔŶŶŶŶ
6.5		78.83 11.87.83	් වූම් (මාම්වාල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල්ල
10	POLOR PLANT	Si g	ංජුලූ ් සමහමුන්දුවේදුවල්ගත්තනයන් පමුණු අත්වක යනමුතු දුනු දුනුමුතු පුනුව පුනුව දුනුමුත් පුනුව දුනුමුත් පුනුව දි මයි ම ම ලමුත් දෙන්න දෙනුම් දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව දිනුව
388	623)	4 8€	ස්සැපයම්පාදුයේ මියිම්මීම්මේදීම්මේදීම්මේදීම්මේදීම්මේදීම්මේදීම්මීම්මේදීම්මීම්මීම්මීම්මීම්මීම්මීම්මීම්මීම්මීම්
3:3		ξ.g.	ชนเวลสราวดองององจาวจองจงยนนนยยยยยยยยนนนนนนนนนนนนนนนนนนนนนนน
0 19		date hour	කහය–සහස්ය-යෙන්ටස්ප්ප්ටවය්ටස්වේට්ටස්සනයේටපටවටස්වේටසහස්යටටටටස් සහසංවේටයංවේසහියන්ව සහස්සනයේ සහස්වේ ද්රිත්වයංවේස්වේ ලේස්ට්සහිය සහස්වේසහිය සහස්වේස්වේස්වේස්වේස්වේස්වේස්වේස්වේස්වේස්වේ
) (S		Rank	୍ଦର୍ଗ ଅବସ୍ଥର ଜିଲ୍ଲ ଅନ୍ତର ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ ଅଧିକ

ħ	<u>кан макентения Сримения поделения поделения поделения в де</u>
35	1861-11-1-11-10-10-10-10-10-10-10-10-10-10-
3	룖붑콢;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
15 N	මුදුම්වූම්වූම්වූම්වූම්මමම්ම්වූම්මම්ම්වීම්වීම්වීම්වීම්වීම්වීම්වීම්වීම්ව
នុខ	선생님없었습니다. 그 사람들은 사람들은 사람들이 사람들이 사람들이 사람들이 사람들이 사람들이 사람들이 되었다.
₽8	අයාලියන්ට සියුවන්ට සියුවන් සියුවන් සියුවන්ට සියුවන්ට සියුවන්ට සියුවන්ට සියුවන්ට සියුවන්ට සියුවන්ට සියුවන්ට සිය සියුවන්ට සියුවන්ට ස
5,8	#FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
de te hour	๛๛๛๘๛๛ฃ๛ฃ๛ฃ๛ฃ๛๛๚๚๛ฃ๛๛ฃ๛๛๛๚๛๛๛ฃ๛๛ฃ๛ฃ๛๛๛ ฃฃ๗ฃ๛๛ฃ๗๗๗ฅ๛๚ฃฃ๛ฃ๗๛๛๛๛๛๛๛๛๛๛๛๛ฃ๛๛ฃ๛๛๛๛ ๛๛ฃ๛๛๛ฃ๗๗๛๛๛ฃ฿๛๛๚๛ฃ๛๚ฃฃ๚๛๛๛ฃ๛๛ฃ๛ฃ๛๛ฃ๛๛ฃ๚๛ฃ
A A	

ti	
3	なしまさなものないないないようなしましましましましましましましましましましましましまします。 ちょうちょう ちょう ちょう ちょう ちょう ちょう ちょう さい しょう はん しょう しょう はん しょう しょう しょう しょう しょう しょう しょう しょう しょう しょう
3	u=235578535-8-2950-546743-358865-3534833335-33
ĕ	*************************************
ģ	- ඉතුළ දුන්දුන් සුයුත් දුඩුමු යන් මුතුම් සම්බන්ධ දුන්දුන් සුවුම් සිට සුනුම් සිට සිට සිට සිට සිට සිට සිට සිට සි සිට සිට සිට සිට සිට සිට සිට සිට සිට සිට
Ş	<u>කුදින්වල් අදවස්තුව විශ්වාදිත වූ විසුවල් වෙන අපවස්තුවේ අදවස්වේද වෙන අවස්ථාදිය වූ ඉදිරියා විසිය වූ විසිය වූ විසි</u>
ģ.	<u>정령적급급류받은왕융역맥역왕왕왕왕왕왕왕왕왕왕왕왕</u> 쪽쪽쪽쪽쪽쪽쪽쪽쪽
date bour	これのけなけ、なななな、よびもなななななななななな。 これなな、なななも、なななも、なななも、なななな。 自ははずる まっぱん はない はっぱん はい はい はい はい はい はい はい はい はい はい はい はい はい
Rank	28699666663388388588388883885883586

F		77 C V V 7
	ನ	
	32	### 40000000000000000000000000000000000
١	9	本位于第三年至至至高。10年以上,10年12年12年至至至至至至至20年的,10年12年12年12年12年12年12年12年12年12年12年12年12年12年
	N.	स्रभूत्रचयस्य गर्माराष्ट्रवस्य प्रसूचन व्यवस्था । स्रम्बस्य स्थान स्थान स्थान स्थान स्थान स्थान स्थान स्थान स् स्थान स्थान स्
WILKES SEAT	ÿ£	8-80-88
_ 1	Š.	ម្ភាស់ ក្រុម ខេត្តសម្រាស់ ខេត្តសម្រាស់ ខេត្តសម្រាស់ ខេត្តសម្រាស់ ខេត្តសម្រាស់ ខេត្តសម្រាស់ ខេត្តសម្រាស់ ខេត្តស គឺ ខ្លួន ខណ្ឌ ខណ្ឌ ខណ្ឌ ខណ្ឌ ខណ្ឌ ខណ្ឌ ខណ្ឌ ខណ្ឌ
ľ	¥.8	CORRESPONDE LA CORRES
	date hour	๛ฮัลฮัลอธิรฮิลิตฮิลอลอธิรีสิลอีลิตฮิลชิลชิลชิลชิลชิลชิลฮิลฮิลฮิลฮิลฮิลฮิลฮิลฮิลฮิลฮิลฮิลฮิลฮิ
Ī	R.	
_		

	۶.	при в при при при при при при при при при при
	33	949-49-49-44-49-4-49-64-64-64-64-64-64-44-44-44-44-64-64-64-
1	3	按사다도도도콜다법을도도도도콜도반다고도콜콜콜콜콜럼콜콜다콜콜도콜로콜로콜링링스콜레링버링링도도콜츠로
	E	න් (න්හ්වුන්මන්න්නය යෙයට ඉන්නව වඩ නැත්වෙන් යන්න යා යන්න යුතුම් වූ දින මෙන්ව කරන කරන වන වන කරන කරන කරන කරන කරන ක
POLCR PLANT	S.E	ଞ୍ଚଳକ୍ଷ୍ୟରକ୍ଷ୍ୟକ୍ଷ୍ୟ ବ୍ୟବ୍ୟ ପ୍ରଥମ ଅନ୍ତର୍ଶ ବ୍ୟବ୍ୟ ଅନ୍ତର୍ଶ୍ୱ ବ୍ୟକ୍ଷୟ ଅନ୍ତର୍ଶ୍ୱ ବ୍ୟବ୍ୟ ଅନ୍ତର୍ଶ୍ୱ ବ୍ୟବ୍ୟ ଅନ୍ତର୍ଶ୍ୱ
383	- 1 K	87 9 688 5 6 8 8 8 8 8 8 8 6 6 6 6 6 6 6 6 6
	چ <u>چ</u>	885555554988888888888888888888888888888
	date bour	でもないのかかないかないないない。 できょうしょうしゅうしゅうしょう はっちょう はっちょう はんしょう はっちょう しょう はっかい しょう はっかい はっかい はっかい はっかっかい しょう はんしょう はんしょう はんしょう はんしょう はんしょう はんしょう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ
1	Rank	при при при при при при при при при при

• 1	_	90
	ti	DOMERNIE DE LE
1	3.2	Quantaquataquooooooooooooooooooooooooooooooo
į	9	멡뫮즈프로발프로프믶빏프엁멅로법맛헕찞텇벋밥죠나멎멎주도니죠죠죠도뮟으도빌스칼춋훒고쓅스도스쿨끳넔
	Z.	නුව පුනුවදයන් සම්සුන්ත් සම්සුන්ත්ව සම
	e g	お記念は17つの11日記念は記名日記記が打ち記録に打ち出るは必然にいいるとなるについるとなるについます。
I	Q 64	हुत्र । स्वत्यात्र क्षेत्र स्वत्य क्षेत्र स्वत्य क्षेत्र स्वत्य स्
١	ငှင်	<u> 원양성장당단단단적합적절절관하자자망골건근관ਫ਼국국적경구등관련단단规원국관단법단원인합단단단</u>
	date bour	ವವಶಭವವವಭನ್ನು-ವವಸ್ಥುವಭವವಸ್ಥಾನ – ಸರವಭವಭವಧವವಧವಾಭಗರ – 202 – 2 89,2,24844,0888,4881119198880,852,080,084,850,888,889,2,200,587,29 ಪಾರ್ವದಲ್ಲಿ ನಿರ್ವಹಿಸಿಕೆ ಪ್ರಾಥಕ್ಷಿ ಕಾರ್ವನಿ ನಿರ್ವಹಿಸಿಕೆ ನಿರ್ವಹಿಸಿಕ ಪ್ರಾಥಕ್ಷಿ ಕಾರ್ವನಿ ನಿರ್ವಹಿಸಿಕ ನಿರ್ದಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರಿಸಿಕ ನಿರಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ ನಿರ್ವಹಿಸಿಕ
ľ	¥.	

	ħ		
	3.2	4-N00040404440-10-40-4000404040404040404040	
	3	Maria Control of the	29
,	MS.	<u> </u>	ž.
	. S.	প্রস্তুপুত্র করি করি করি করি করি করি করি করি করি কর	31
	č. 95	ନ୍ୟପ୍ରିଲଖନ୍ନଥ୍ୟ ମୁଖ୍ୟ ଅନ୍ୟୁକ୍ତ ସମୟ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ ଅନ୍ୟୁକ୍ତ ଜ ଓ ଓ ଅନ୍ୟୁକ୍ତ ଅନୁକ୍ଷ୍ୟ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ ଅନ୍ୟୁକ୍ତ	85
ı	₹8	REGARABERS SELECTION OF THE SERVING BRANCH B	38
	date hour	สสรมชอชลรอชลชลชล-นิจัล-นิจัลประชาชลชล-นิจรอชนนสชลชลธอชลชล ลิจชิวสชิชรชิชชิชชิงชีคลับประวัติ 682 ระชาชิวชิย-กอะชิล ลิชิธชิ <i>ะ ลิป</i> ชิชรชิร ระห ชิงระชาชิชชิงกชิยชิง ชาชิชชิชชิงชิงสิชิรชิรชิรชิรชิรชิช ระหชิงระชาชิชชิง	36
ĺ	lank		Ìŝ

ţ,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
95	449-14-44-14-14-14-14-14-14-14-14-14-14-14-
9	以此的一种主义的是是自己的一种主义的,而是一种主义的是一种主义的是是一种主义的是是一种主义的是是一种主义的。
***	हार वर्षः हा हा हा हा हा हा हा हा हा हा हा हा हा
6. gr	ពត្តកុំគ្គត់តុក្ខភាសិកខ្ពុជាខ្ពុត្តម្តុមានមន្តម្ភមន្តមន្តមន្តមន្ត្រី និង មិន ១៥២ និង មិន មិន ១៥២ និង មិន ១៥២ និង មិន ១៥២ និង មិន ១៥២ និង ២០៥២ និង ២២២២២២២ និង ២២២២២២២២២២២២២២២២២២២២២២
₹	សដីកុម្ភីខ្លីងរដ្ឋទីមកមគ្គអ្វីត្តិទីកុម្ភីនៅនិត្តិសតីលប់សម្តីកុម្ភីខ្លីសពីលសម្ព័ក្សិទ្ធិសពីលប់សម្តីកុម្ភិទ្ធិ ជីបិស ស៊ី ខេត្ត ខិត្តិ និទ្ធិ និ
3	与别用品的品牌用用用的用的用数的图像用品品的工作品的工作用的图像图像图像图像图像图像图像图像图像图像图像图像图像图像图像图像图像图像图像
date bour	oodicidi5
Sank	

١,		t .	фиметолетемавомитервительностите времено починения и и и и и и и и и и и и и и и и и и
7		25	- M0000M4-14/49000M040-1-000001-1-1-1-1-00000044-0-1-4001-1-1-1-
•		9	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ
(20)		g %	०००च मुक्त प्रदेश प्रदेश प्रदेश स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स स्थापन स्थापन स्यापन स्थापन स्यापन स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स्थापन स्
	POST PLAT	ē.	지수도 짜리되었수요성실 발표 발범및교법교법원원병원설업업도업업다고업업급 = 교업교 공 원원 및 현 원 원 등 명원 발표원 학생 학생 등 등 등 등 등 등
5 E	625	S. S.	8යක් අතරුද්යයේ අර්මික් ලක්සේ දැක්වන් ඉදිලිසේ අත්තය ම සහ මු ක්රමික්වම් කුදීළු දී මු දීමුණු මි
3		7.5	医西恩氏线球球性心结点 经经验的 医克里特氏 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
3		date hour	できるははままさなものできながかしたようによってもはいいないでは、これないでは、これでしました。 おおおななはあらないのであってもなるなな。まってあるとはなりないないないないとは、 けぬなくをもった。
	ĺ	ž	200200010001000100010001000100010001000

	6	rmpresquares roserserrerererensitementenserrerer reconstr
	2.5	00010-0000-1-0-10-10-10-00-00-10-00-00-10-00-0
	9	정마말하였을없었으면 말하는 학생들이 말했다고 말했다. 그 그 전 전 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계 기계
ы	g B	නිටහස්තුබ්ල් නියම සහ සහ සට සට සට සට සට සට සට සට සට සට සට සට සට
HIH, DEP, OFFICE	ξ,gς	គលសុខដង្គងមខង្គ ខែកក្នុងស្ដី ដែកកិច្ចកាន់ក្នុង ដឹក្នុង ដឹក្នុង បានក្ដុងអ្នក ដែក ដឹក្សិត ទី ស្ដី 3 ដី ទី
063) HTH	Ž &	មានក្នុងមាស្តីម្ភុលសស្ថានជម្លីក្នុងទៅក្នុងទៅសង្គម្ពី មិន សង្គិត្ត នៅ មិន សង្គិត្ត ទៀត មិន សង្គិត្ត ទៀត មិន សង្ ទី ស្តី សង្គិត សង្គិត សង្គិត សង្គិត្ត សង្គិត្ត សង្គិត្ត សង្គិត្ត ទី សង្គិត្ត សង្គិត្ត ទី សង្គិត្ត ទី សង្គិត្ត
		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
	date hour	-ผา-พอรีมหอี-หาหอ-เขตเดยสนินินินยนตน-เนา-นเวนินอินนินยนยอธิ ธีนเอนิลยะนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนนน
ĺ	ž	中的4400年89月日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日

Table 1-25 (4) Highest 50 hours of SPM Concentrations

:	ķ	кынымававички визаманички правительного подистольного по
	3.2	4444006060400 444004484-4414-6-16006-4-4-0-2464-4-0-0-0
	3	ᇠᅩᆴᅩᅩᆓᄓᄥᅲᆸᄓᄥᇰᅩᄡᆙᆍᆂᅩᅩᅩᅩᇕᅩᅩᄔᅩᅩᄛᅩᇰᅩᇕᅩᇕᅩᇕᅼᆄᅾᇕᆽᄼᅩᄡᇰᇰᇚᇕᅩᇕᆙᇰᆖᇙᇬᇰᅷᅩᅛ
	នីនិ	. මේ සිටුල් සිටුල් සිටුල් සිටල් ස
S.P.PID.OFFICE	IOI Pyto	1088808808 2088 122 1188 118 186 36 268 මිට පු 3 දි පු 6 ද විශිව මිට
0K50 S.P	-10°64	1848 1948 1948 11 11 11 11 12 18 13 18 13 18 13 18 18
	SH. #10/87	需要表表表的产品的複数形式性性物質效应效应的效应的表现的对应的的现在分词是是需要的的对应的对应的对应的的对应的对应的对应的对应的对应的对应的对应的对应的对应的对
	date hour	๛=น==นอนนอนนอน=========================
1	and a	авоомения в в в в в в в в в в в в в в в в в в в

	G	jaju, ti	, U (1	ik (12715	.01	4.52	<u>.</u>	mue	964	. [-	18	6	-1	2	L.S.	LL		ŗ		0*	Θĺ	å		- 6"	, in La	.0
	9%	40.	120	150		oi	37	0	1.75	300	32	900	o o	00	20	2	00	000	90	10	o.	3	121	13.	9.	100	3
	9	202 202	<u>ر</u> ح	33	3	39	= 83	* 6	32 '	.02	9.	ΔÄ.	E ()	30	ġ2	m k	2	3	*	2.5	o,	(U)	326	λ ω:	y to g	w z	Į.
	8 E	6363n	1616	E S			ĝ ăr	73 Fr m	SME SEE		Ž ro	D (CI)	nt-		est-	ត្តនុ គឺខ្				3 300		>1-1	- 631	,E	3 3 3	18 8	(S)
	7 SE	م الم الم	ដ្ឋា	ig N		ío	#r-	ı		3E 38				8 10				36. 38.			e Š	हर हा	•	7 1	ନ ଧି	S to è	16(300)
COSO R.E	Žģ.	13.Z					33	Iz	3 80			300 300		ğ 8		jă jă	35(153)	a ĕ	(F)	9	8 8	S S S S S	ეშ. ქ	7	(B)	46	₹ ¥8
	, S	58																									
	date bour	1 5 19 7 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2	72	100	lo (3	. ~	φg	B~3	\$~¢	1 4.	-81	3-1	NR	თდ	188	N°		1 13	நம்			280	v o	188	3210	71i
ĺ	Rank	226	96	@F	86	9	9	23	20 E	92	និទិ	B	i d	96	GR	ឱឱ	36	នេះ	इल	g L	iQ p	393	9	331) & (99	វិនិ

Table 1-26 Frequency of Highest 50 Hours of Ambient Pollutant Concentrations for Each Hour

			§ O 2				1	102			Γ	1	VO:	X		T.		SPN	4	
Hour	MS .	MS	MS	YS	XX	YS	MS	YS.	MS	MS	ЗŊ	MS	YS	MS	MS	YS	IS	HS	YS	MS
	1	2	3	4	5	1	-2	3	4	<u>_5</u>	1	2	3	4	5_	1	2_	3	4	5
1	1	4	8	3	4	1	3	2		2	4	4	4	2	4	4	3	2	2	- 4
2		2	7	1	1		1			1	2	3	2	3	5	2	1	3	5	_3
3		2	5	1	2		1	l	L'_	1	3	3	3	2	5	1	2	3	2	3 2 2
4		_5	4		1					1	2	4	3	1	53	2	1	3	2	2
- <u>5</u>	_1	. 3	4	1	2					2	4	4	3	1	3	3	5_	1 5	1	
6	_ [1	3	1		_1				2	3	2	4	2	4	5		1	3
7	_1,	3	3	4	2			1	1		3	2	6	L	6	_3	5	6	3	3 2 2
8	_1	6	2	3	3	1		2	_1		8	4	11	5	6	_1	6	3	2	2
9	_ 1	2		2	4		1	6	_1		2	_1	3	9		1	1	2		
10				_ 1	3	1	3	5		L		1				1		1		
11					3	1	1	2		_1_										
12			L	_1	2	_ l	_l		1								1			
13						4			1			_1		1						
14	1			_	1	2						[1			$\frac{1}{1}$
15				:		2										1	_1	1		
16	_1					7	_:_		_1								1	1		
17	2	_1	L		L	6	_1		1							1	1			2
18	2	Ľ.,,			1	3		1	2		1			1			1	1	1	2
19	5	2		2	1	6	3	1	-3	_8				1	2	4	2	3	2 6	2 5
20	10		انينا	2	3	7	5	8	7	10	3	2	1	1		6	1	3		5
2 1	10	5	3	7	5	3	10	7	10	6	5	2	3	_4	3	6	1	6	7	7
22	7	6	4	_7	1	2	. 9	6.	7	8	5	3	3	4	2	6	1	-3	5	4
23	3	5	1	7	3	2	5	5	6	6	3	6	3	7	4	2	4	_1	6	5
24	3	4	_8	3	2	. 1	5	4	4	3	2	7	3	4	3	1	6	2	5	3

Table 1-27 Frequency of Highest 50 Hours of Ambient Pollutant Concentrations for Each Wind Direction

Wind			02				1	102				Ň	10)	<u> </u>				SPN	1	
direc-	KS	MS	KS	MS	MS	KS.	MS	MS	MS	MS.	MS	MS	MS	MS	MS	MS	HS	MS	MS	MS
tion	i	2	3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
Calm		1		1	2					5		4	2	4	17		2		3	9
N		14		11	3	9	16	13	14	_8	1	16	22	23	_3	4	_8	2	17	56533
NNE		4		2	1		3	8	. 4	5	2	2	13	9	8	5	8	9	4	6
NE		1		2		1	3	4	3	4	1	-3	7	_1	9		6	5	3	5
ENE	1	1	1	2		4	2	. 3		2	3	_1	2		3	2	2	6		3
E		2		2	2	1	3	5	_1	1					1	3	2	2	2	3
ESE		1		1	2		Γ		2	2	1				1	1		2		1
SE				1	1	1		1			1	1						2		
SSE			12		2											2	3	. 8		1
S	2	1	36	2	6	Ι.	2					1				2	9	3		
SSW	3	3	1	1	. 3	3	1	1	Γ		1	1	[4	1	3	1	3
SW	9			_3	6	15					10					9			1	2
WSW	7	3		2	_3	5	1	1		1	7					9	1	_1	2	
W	2	2		2	8	2				3	7	1			1	1		1	ī	2
WNW	3	3	ſ	- 2	6	7	2	2	1	2	1	3			2		3		1_	2 3 5
NW	15	2		1	4		1		1	6	9	2			2	6	1		ī	
NNW	7	11		12	1	2	16	12	24	11	6	15	4	11	3		4	4	13	2

At MS4, high SO₂ concentrations are found in all wind directions but somewhat pronounced in N and NNW wind. High concentrations of NO₂ and NO_x are mostly found in NNW~N~NE wind. This may be due to the combined effect of ships in Chao Phraya river and the traffic on SuKumvit roadway. SPM concentration appeared high in all wind directions but somewhat pronounced in N and NNW wind.

At MS5, SO_2 concentration appears in all wind directions whereas both NO_2 and NO_x appear in W \sim N \sim ESE. As for SPM, the relationship between high concentration and wind direction is not clearly seen.

Table 1-28 shows the appearance frequency of high concentrations by atmospheric stability. It is seen from the table that all pollutants appears high in the atmospheric stability of F (stable period) and secondly high in that of B whereas

As for wind velocity related with high concentration, it is found that high concentration of each pollutant appears in breeze of $1\sim3$ m/sec wind velocity. Concerning to the collelation among pollutants at high concentration, however, this trend is not found. For example, when concentration of SO_2 is high, concentrations of other pollutants do not appear in high level. Those trend appeared at all monitoring stations, especially in case of SPM.

44-		Г	- 5	S O 2		-		1	10 ₂				1	10	(-			3 P M	1	
	ospheric stability	MS 1	MS 2	MS 3	KS 4	HS 5	NS 1	HS 2	HS 3	HS 4	MS 5	MS 1	KS 2	KS 3	HS 4	MS 5	MS 1	MS 2	KS 3	MS 4	14S
С	CA							ì		Ì					İ						
	СВ																	l		<u></u>	L
A	CC-day			\Box												1					
й	CC-night	Ī		4		Ţ					2				Γ.	. 4					
IVI	CD		1	2	1	2					3		4	2	4	Ī		2		3	
	Α	Г		Г												i					
W	В	1	2		3	15	5	5	10	4	1		3	1	1	1	2	2	2		
1	C	3			1	2	11	1	3	1		5	2	3		l	1	3	2		1
N	D-day	4	7		3	1	12	1	3	3		j	2	9	5	3	3	8	5	2	_
D	D-night				1		1					ì						1	1		
Y	Е	15	7	28	7	4	3	10		1		8	10	6		2	1	9	8	8	
:	F	26	30	16	27	26	18	33	34	40	38	29	29	24	37	23	42	25	88	36	2

Table 1-28 Frequency of Highest 50 hours of Ambient Pollutant Concentration for Each Atmospheric Stability

(2) Analytical study on high daily average concentrations

Table 1-29 lists top 20 high concentrations with respect to all pollutants together with recorded times. Such extracted time (20 days observation period) corresponds to 5 pct of yearly monitoring. Interesting is that peaking days of all pollutants seem coinciding.

When monthly appearance as seen in Table 1-30 of high concentrations is reviewed, high values of SO_2 are observed at $MS1\sim MS4$ in the northerly dry season and at MS5 in the southerly dry season. As for NO_2 and NO_x , high values are observed at MS1 in the southerly dry season, at MS3 and MS4 in the northerly dry season, at MS2 and MS5 in both southerly and northerly dry seasons. As for SPM, all stations observed high concentrations in the northerly dry season.

Table 1-31 shows the hourly pollutants concentrations and meteorological conditions of the highest two days of daily averages. The findings particular to each station are as follows:

(1) MS1

Top two high concentrations of SO₂ appear in the southerly dry season and mostly in the NNW~W~WSW wind coming from SuKhumvit roadway while its velocity is maintained in 2.5~4.0 m/sec comparatively high at Samut Prakarn province. The atmospheric stability of the same period is C~B in the daytime and F in the night. As for NO₂ and NO_x, high concentrations are observed at all stations in the southerly wet season and in the same wind direction and atmospheric stability range as those of SO₂. But the wind velocity at which high concentrations appear maintains between 2.0~3.0 m/sec. In case of SPM, there is no

Table 1-29 (1) Top 20 High Concentrations of SO₂ Daily Average Correlated to Other Pollutant Levels

(MSI) ONER STATION

			is dand them		
Rank	date	SO, ppb	NO. ppb	NO. ppb	SPN µg/m³
1)2334567889011231341567819920	12/24 11/17 1/29 1/29 1/29 9/2 12/21 11/8 10/21 12/14 8/5 8/5 12/23 1/4 2/12 2/12 12/20	23.5 20.2 19.8 19.8 19.7 19.0 18.6 18.6 17.5 17.4 17.4 17.2 17.2	64.3 (38) 43.6 (69.0 (27) 37.0 (9) 112.0 (9) 149.3 (4) 64.3 (37) 51.5 237.2 37.2 (29) 68.3 (28) 58.1 (4) 60.9 (14) 60.9 (14) 60.8 (39) 41.3 62.8 (39) 41.3	22.3 19.8 24.0 (34) 21.6 20.9 32.6 (9) 30.0 (15) 21.1 20.8 27.9 (18) 12.5 16.8 23.9 (35) 20.1 22.3 18.9 22.5 21.8 27.0 (20) 22.2	122.4 (11) 60.7 (38) 0 (38) 144.8 (4) 81.4 78.8 78.8 147.3 (2) 95.0 (30) 155.8 (1) 83.8 117.2 (12) 98.3 (25) 98.3 (25) 92.0 (37) 116.7 (13) 103.3 (20) 74.9 126.5 (10)

(MS2) POWER PLANT

Rank	date	SO ₂ ppb	NO _x ppb	NO; ppb	SPM # g/m³
1) 233 4) 5667 89 101123 134 156 178 199 20	10/26 10/28 12/14 11/14 12/13 12/24 11/20 12/30 12/30 11/21 11/22 12/30 11/21 12/30 11/21 12/30 11/21 12/30 11/21 12/30	33.3 33.3 31.6 31.6 31.6 31.6 31.6 31.6	33.0 (16) 35.7 (12) 41.0 (6) 36.6 (8) 24.6 **** 34.1 (14) 32.8 (17) **** 27.6 (32) 11.4 **** 30.5 (22) 16.1 **** 24.6	16.0 (29) 17.5 (16) 19:9 (6) 21.1 (4) 18.0 (13) *** 20.5 (5) 14.8 (36) *** 13.8 13.6 14.6 (37) 1.6 *** 14.5 (42) *** 18.1 (12) 12.5 12.7 12.7 13.8	105.1 (20) 97.2 (31) 101.5 (24) 101.2 (25) 110.8 (14) 102.3 (22) 110.8 (37) 83.1 (30) 85.1 (43) 109.4 (16) 85.1 (46) 85.1 (41) 116.8 (11) 169.5 (41)

(MS3) MIN. DEP. OFFICE

Rank	date	50 <i>z</i> ppb	NO _x ppb	NOs ppp	SPM µg/m³
1) 3) 4) 56) 7) 8) 10) 11) 12) 16) 17) 18) 19) 20)	7/15 1/31 3/17 3/18 3/22 3/21 3/21 3/21 2/3 2/4 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2	765001827585163868855 665866899866885555555555555555555	14.7 22.3 23.5 18.6 22.2 24.0 20.8 13.3 24.0 19.9 *** 19.9 *** 17.8 31.3 31.3 17.9 22.8 22.8 12.6	2.3 13.2 6.4 11.4 7.8 7.6 5.9 2.0 7.7 13.5 11.6 *** 18.1 11.4 11.4 11.5 9.3 12.7 6.8	44.0 63.8 52.3 51.2 71.1 70.9 56.5 44.9 61.6 54.6 55.0 57.9 63.4 93.3 (40) 67.5 59.0 51.4 52.7 44.8

(VCA) & D DOD OFFICE

Rank	date	SO. ppb	NO _x ppb	NO _z ppb	SPH # g/m³
122 33 43 56 67 88 90 1123 133 143 155 167 188 199 200	12/14 10/26 10/28 12/23 12/23 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20	20.26 17.6.27 14.53 13.7 13.10 12.7 12.2 11.9 11.8	154.1 (3) 41.5 (13) 41.5 (13) 50.5 (13) 56.2 (33) 32.5 (39).0 (59.5 (27) 45.5 (47) 49.7 (33.0 (41) 49.7 (33.6 (5)) 113.6 (5) 113.6 (5) 105.0 (7)	69.3 (1) 22.3 33.9 (32) **** 32.4 (36) 19.2 20.3 23.8 (48) 23.0 23.6 (20) 20.5 20.6 (27) 20.4 (5) 39.6 (19) 34.0 (31)	179.9 (4) 126.5 (40) 132.2 (30) 153.2 (11) 112.5 100.1 133.2 (29) 129.0 (37) 111.3 137.4 (26) 63.3 (25) 116.3 122.1 (44) 105.0 131.8 (31) 172.8 (6) 130.7 (33) 127.0 (38)

Rank	date	SO ₂ ppb	NO _x ppb	NO _z ppb	SPM # 8/m²
1) 2) 3) 4) 5) 6) 7) 8) 9) 12) 13) 14) 16) 17) 18) 19) 20)	7/7 7/8 7/24 7/23 7/19 7/23 7/19 7/20 7/17 7/20 7/14 7/16 6/2 12/13 9/23	20.6 16.3 10.2 9.3 9.8 8.5 8.3 8.1 8.1 1.9 7.7 7.5 7.2	8.6 8.3 7.3 6.1 13.6 10.9 6.8 15.0 (50) 8.0 4.2 9.8 6.3 9.0 25.7 (6) 4.0 7.5 ***********************************	7.3 4.0 3.0 5.7 5.7 12.1 (14) 4.8 1.8 4.8 3.0 4.1 7.2 2.1 3.0 2.3 *** 10.8 (24)	34.0 30.3 30.9 35.9 35.5 82.7 (20) 32.6 17.4 23.2 26.3 26.1 67.6 21.2 20.7 26.4 83.8 (19) 96.7 (11)

Table 1-29 (2) Top 20 High Concentrations of NO₂ Daily Average Correlated to Other Pollutant Levels

(MS1) ONEB STATION

			WOT) OURD OF	WITON	
Rank	date	NO2 ppb	NO _x ppb	SO₂ ppb	SPM # g/m³
1) 2) 3) 4) 5) 6) 7) 8) 10) 11) 12) 13) 14) 15)	9/12 9/10 9/26 10/3 9/3 9/21 9/21 9/22 2/22 2/23 10/1 11/14 9/12	48.9 48.3 41.4 38.7 36.9 32.5 32.5 31.2 31.0	79.3 (17) 126.3 (6) 91.9 (13) 121.5 (7) 93.5 (12) 71.6 (23) 94.3 (11) 77.5 (20) 112.0 (9) 58.7 (50) 52.7 143.9 (5)	15.7 (30) 15.2 (33) 2.3 8.8 14.3 (38) 9.1 (35) 9.2 (35) 19.7 (6) 10.3 16.7 (23) 0.7 11.3 13.0 (49) 19.0 (7)	78.7 112.3 112.3 136) 80.7 60.6 68.4 70.0 49.5 78.8 128.6 (9) 146.1 (3) 98.7 (24) 78.4 54.6
16) 17)	9/30 8/25	28.5 28.0	96.1 (10) 49.6	0.8 6.7	65.0 68.0
18) 19) 20)	1/9 9/23 2/12	27.9 27.6 27.0	58.2 53.2 41.3	18.7 (10) 9.5 17.2 (19)	155.8 (1) 73.1 126.5 (10)

(MS2) POWER PLANT

Rank	date	NO: ppb	NO _x ppb	SO ₂ ppb	SPN # 8/m²
1) 2) 3) 4) 5) 6) 7) 8) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20)	11/8 11/9 9/24 11/10 11/10 11/19 9/22 2/22 10/21 12/13 9/20 9/28 9/28 9/28 10/1	31.8 28.0 21.8 21.5 20.5 19.9 19.6 19.1 18.4 18.1 17.6 17.5 17.5 17.2 17.2	56.0 (1) 51.7 (2) 31.0 (21) 31.0 (21) 31.0 (21) 31.0 (21) 36.5 (8) 34.1 (14) 41.0 (6) 36.5 (9) 41.8 (5) 49.6 (3) 30.5 (22) 24.6 25.8 (44) 23.9 (26) 26.4 (40) 29.9 (26) 29.9 (26) 30.5 (33) 24.6	17.7 15.0 11.3 31.6 (4) 29.6 (7) 32.7 (3) 22.0 (28) 17.5 5.5 17.8 19.3 (45) 24.0 (17) 31.5 (5) 10.4 15.4 15.4 15.4 15.4 15.4 15.5 **** 7.7 23.7 (20)	85.6 (50) 105.3 (19) 75.3 (19) 75.3 (25) 91.6 (37) 101.5 (24) 101.5 (61) 111.6 (13) 140.7 (4) 125.5 (8) 124.4 (9) 87.1 (41) 110.8 (14) 168.9 (1) 106.7 (18) 106.7 (31) 65.6 73.6 72.8 49.5

(MS3) MIN.DEP.OFFICE

Rank	date	NO₂ ppb	NO _x ppb	SO₂ ppb	SPN # 8/m³
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20)	2/22 12/3 2/23 12/13 12/14 11/22 12/29 12/19 12/7 12/28 12/4 11/21 12/30 4/15 2/21 12/18	40.7 32.0 1.1 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	55.0 (13) 59.9 (8) 47.2 (20) 43.5 (24) 64.8 (4) 36.9 (42) 51.3 (14) 37.5 (40) 50.6 (26) 30.6 (26) 30.6 (26) 30.6 (25) 58.0 (10) 45.1 (22) 30.7 41.0 (33)	22.3 12.2 31.6 13.8 11.3 14.8 12.2 19.9 14.5 39.0 (47) 15.6 19.0 9.2 8.7 13.3 13.3 16.8 10.7	141.0 (5) 107.5 (15) 156.9 (1) 89.0 (48) 98.4 (31) 73.3 42.3 63.4 (11) 137.8 (6) 108.3 (14) 103.2 (23) 31.7 58.6 63.8 86.3 63.8 63.8 86.3 63.8 86.3 (26)

(MS4) S.P.PRO.OFFICE

Rank	date	NO₂ ppb	NO _x ppb	SO ₂ ppb	SPM µg/m³
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 14) 15) 16) 17) 18) 19) 20)	12/14 12/13 12/15 12/15 12/16 12/16 12/16 12/21 11/18 11/18 12/29 12/27 12/29 12/20 12/20 12/18	69.35 65.37 45.7.2 45.7.2 43.0 441.2 441.2 40.5 441.4 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40	154.1 (3) 119.3 (4) 180.2 (1) 101.5 (8) 101.5 (19) 80.5 (19) 90.1 (14) 91.1 (12) 75.3 (10) 67.8 (31) 76.0 (21) 71.7 (25) 76.0 (21) 71.7 (25) 82.8 (17) 73.3 (24) 84.3 (18)	20.2 (1) 11.5 (23) 10.7 (34) 6.1 11.9 (18) 8.3 7.5 11.5 (26) 7.4 4.1 7.3 10.5 (38) 6.6 7.4 11.5 (24) 8.0 11.3 (27) 11.9 (19) 5.0	179.9 (4) 150.7 (14) 148.2 (15) 145.5 (17) 172.8 (6) 86.1 144.0 (19) 139.4 (23) 129.2 (36) 76.1 115.4 93.8 104.8 110.3 104.8 123.3 (24) 110.3 157.8 (9) 101.0 130.7 (33) 97.8

Rank	date	NO2 ppb	NO _x ppb	SO ₂ ppb	SPH #g/m³
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20)	12/27 10/3 12/28 10/2 9/10 12/29 9/10 11/16 3/8 2/21 1/20 1/17 9/2 1/5 11/5 11/20	93332092331622-1986631 15151443312221211116631	17.3 (30) 17.0 (34) 18.5 (24) 28.6 (3) 17.3 (32) 16.5 (38) 17.7 (27) 21.4 (15) 14.0 (28) 17.7 (28) 12.7 (28) 15.0 (50) 16.9 (36) 36.2 (1) 17.3 (31) 16.7 (37) 15.7 (46)	2.7 2.1 2.0 3.8 3.3 3.3 4.6 (45) 1.8 2.5 2.0 2.2 2.3 3.0 (8) 1.4 1.4 1.2,7 1.6	95.5 (13) 62.6 111.8 (4) 113.7 (2) 94.4 (15) 108.8 (6) 63.9 63.9 68.6 55.1 60.3 86.2 (18) 60.3 82.7 (20) 70.9 (43) 95.3 (14) 102.6 (8) 80.3 (25) 66.9

Table 1-29 (3) Top 20 High Concentrations of NO_x Daily Average Correlated to Other Pollutant Levels

(MS1) ONER STATION

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(MSI) UNEB STATION							
23 10 / 6 158.7 16.4 1.7 94.3 (33) 10 / 5 155.7 22.8 (49) 1.3 110.8 (16) 34.8 (16) 35.0 (15) 19.0 (7) 38.8 (16) 37.0 (Rank	date				SPM #8/m³		
19) 10/29 78.5 22.1 10.5 ***	2) 3) 4) 5) 6) 7) 8) 9) 11) 12) 13) 14) 16) 17) 18)	10/6 10/5 9/2 10/1 10/3 10/3 10/3 9/3 9/3 9/3 9/3 10/4 10/29 10/29	158.7 155.7 149.3 126.3 121.5 112.0 96.1 94.3 93.5 91.9 90.9 85.8 79.3 78.5	16.4 22.8 (49) 30.0 (15) 31.2 (12) 48.3 (21) 48.3 (21) 10.6 (9) 28.5 (16) 36.1 (7) 38.7 (5) 41.4 (5) 41.4 (5) 42.3 (38) 12.9 (1) 18.4 (2)	1.7 1.3 19.0 (7) 0.7 15.2 (33) 8.8 13.5 (46) 19.7 (6) 0.8 14.8 (35) 14.3 (38) 2.3 17.5 (15) 5.5 1.5 15.7 (30) 13.5 (44)	94.3 (33) 110.8 (16) 78.8 98.7 (24) 112.3 (15) 86.0 (27) 78.8 65.0 70.0 60.6 92.4 (36) 92.0 (37) 68.5 92.4 (36) 92.0 (37)		

(MS2) POWER PLANT

Rank	date	NO _*	NO _z ppb	SO ₂ ppb	SPN # 8/a3
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 12) 13) 14) 15) 17) 18) 19)	8 9 11	56.0 51.7 49.1 41.8 41.8 36.6 36.3 36.3 36.1 33.1 33.1 33.1 33.1	31.8 (1) 28.0 (2) 18.4 (1) 13.9 (50) 19.1 (9) 19.9 (6) 13.8 21.1 (4) 19.6 (8) 12.1 11.0 16.4 (26) 20.5 (5) 10.3 10.3 10.4 11.3 10.4 10.6 10.7	17.7 15.0 19.3 (45) 18.3 5.5 32.7 (3) 29.1 (10) 31.6 (4) 17.5 10.8 12.1 33.3 (2) 21.4 (31) 29.6 (7) 9.8 (1) 29.5 (8) 16.3 13.1 13.7	85.6 (50) 105.3 (19) 124.4 (9) 61.4 140.7 (4) 101.5 (24) 101.2 (25) 111.6 (13) 93.3 (36) 33.4 97.2 (31) 111.9 (12) 91.6 (37) 67.4 105.1 (20) 83.1 67.3 45.8 72.5

(MS3) HIN.DEP.OFFICE

Rank	date	NO _x ppb	NO₂ ppb	SO₂ ppb	SPH µg/m³
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 13) 14) 15) 16) 17) 18) 19) 20)	12/25 12/31 12/28 12/14 12/24 12/29 12/33 11/23 11/23 12/23 12/23 12/23 12/21 12/25 12/23	75.3 71.6 68.8 62.5 62.5 62.1 59.9 58.0 57.4 57.1 55.0 50.6 49.3 48.1 47.2	24.2 (29) 22.1 (39) 27.6 (12) 30.1 (5) 27.1 (15) 21.5 (43) 32.7 (2) 24.0 (30) 32.7 (2) 24.0 (30) 18.7 17.4 40.7 (1) 29.3 (8) 25.3 (22) 40.7 (1) 29.3 (8) 25.3 (23) 32.0 (3)	12.9 12.1 15.6 11.3 8.7 21.7 21.8 12.2 13.3 14.4 29.3 19.9 13.3 19.9 13.3 14.4 29.3 19.9 13.6 14.4	144.1 (4) 68.5 108.3 (14) 98.4 (31) 88.6 96.5 (34) 84.8 107.5 (15) 105.8 (16) 88.0 98.3 (32) 79.2 79.2 141.0 (5) 88.3 88.9 (49) 137.8 (6) 99.3 (29) 84.3 83.7 156.9 (1)

(MS4) S.P.PRO.OFFICE

Rank	date	NO _x ppb	NO _z PPO	SO ₂	SPM # g/m³
1) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20)	12/15 10/29 12/14 12/3 12/39 12/39 12/39 12/39 12/39 12/32 1	180.2 159.2 154.3 119.3 1113.6 111.1 105.0 101.5 99.3 93.2 91.1 89.3 90.5 90.1 89.3 84.7 82.8 81.8 80.5 76.3	64.3 (3) 34.7 (30) 69.3 (1) 50.4 (5) 38.7 (21) 51.7 (4) 35.8 (29) 35.3 (29) 35.3 (29) 30.0 (40) 43.0 (9) 43.2 (8) 41.6 (13) 40.6 (17) 45.9 (6) 40.8 (16)	10.7 (34) 5.4 (20.2 (1) 11.5 (23) 11.9 (18) 9.5 (49) 11.8 (20) 6.1 (2.7) 4.1 (9.1) 11.5 (26) 16.2 (3) 7.5 (38) 11.9 (19) 8.0 (5.0) 8.0 (5.1)	148.2 (15) 147.6 (16) 179.9 (4) 150.7 (14) 172.8 (6) 193.5 (2) 193.5 (2) 193.5 (3) 145.5 (17) 131.5 (32) 115.4 (23) 132.2 (36) 132.2 (30) 139.4 (23) 138.3 (24) 138.3 (24) 138.3 (4) 157.8 (9) 86.1 (19) 123.3 (43)

(a) O H. G. L. E. STATE						
Rank	date	NO _x ppb	NO _z ppb	SO ₂ ppb	SPM µg/m³	
1) 2) 3) 4) 56) 7) 8) 9) 10) 11) 12) 13) 16) 17) 18) 19) 20)	9/2 9/10 10/2 6/6 6/6 10/21 10/21 10/21 10/25 10/25 6/5 10/25 6/25 11/15 10/20 11/15 10/20 11/15 10/23	36.2 35.5 28.65 26.4 25.7 24.6 24.1 23.5 23.4 23.1 21.7 21.7 21.9 20.5 20.1 19.5	11.8 (16) 14.2 (7) 15.2 (4) 7.6 7.2 7.5 7.7 8.4 (45) 6.4 4.4 6.5 3.8 8.3 (48) 13.3 (9) 4.1 10.4 (27) 3.8	3.4 4.6 (45) 3.8 5.3 (33) 8.1 (14) 2.9 3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.1 5.4 (29) 1.8 2.5 2.7 4.7 4.7 4.7 4.7 4.7	95.3 (14) 63.9 (2) 113.7 (2) 25.3 74.0 (35) 67.6 54.5 29.8 44.3 45.9 22.3 43.0 20.6 24.6 55.1 27.4 29.1 461.1 51.9	

Table 1-29 (4) Top 20 High Concentrations of SPM Daily Average Correlated to Other Pollutant Levels

(MS1) ONER STATION

	(MOT) GUED STREETON						
Rank	date	SPH µg/m²	NO _X ppb	NO:	SO ₂ ppb		
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 12) 13)	1/9 10/22 2/23 1/22 1/21 3/11 12/7 1/10 2/22 2/12 12/24 10/21 1/52	155.8 147.3 146.1 144.8 142.7 131.3 130.2 129.7 128.6 126.5 122.4 117.2 116.7	58.2 64.3 (37) 52.7 37.0 47.5 38.0 46.5 36.0 58.7 (50) 41.3 64.3 (38) 68.2 (29) 60.3 (44)	27.9 (18) 21.1 31.9 (11) 21.6 22.5 18.5 18.8 18.3 32.5 (10) 27.0 (20) 22.3 16.8 18.9	18.7 (10) 18.9 (8) 16.7 (23) 19.8 (4) 16.2 (27) 5.7 13.9 (40) 16.8 (22) 10.3 17.2 (19) 23.5 (1) 18.3 (12) 17.4 (16)		
14) 15) 16) 17)	1/23 9/10 10/5 11/9	113.6 112.3 110.8 108.7	28.8 126.3 (6) 155.7 (3) 60.5 (43)	15.3 48.3 (2) 22.8 (49) 24.9 (31)	11.3 15.2 (33) 1.3 15.4 (31)		
18) 19) 20)	10/23 10/2 12/23	106.3 103.3 103.3	33.0 175.6 (1) 54.9	26.3 (22) 22.5	15.0 (34) 0.8 17.4 (17)		

(MS2) POWER PLANT

(MS3) MIN.DEP.OFFICE

(1150) Tital Del (Ol 11 rec						
Rank	date	SPM µg/m³	NO _x ppb	NO 2 PPb	SO ₂ ppb	
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20)	2/23 9/10 1/22 12/25 2/22 12/7 3/11 10/29 1/9 1/9 1/19 11/23 12/3 11/26 10/28 2/20 10/26 3/10	144.5 144.1 141.0 137.8 136.8 132.0 123.6 123.3 118.9 113.0 111.0 108.3 107.5	47.2 (20) *** 29.5 75.3 (1) 55.0 (13) 50.6 (16) 41.9 (30) *** *** 38.2 (38) 22.4 46.1 (21) 68.9 (3) 59.9 (8) 58.1 (9) 41.6 (32) 27.6 36.1 (45) 24.2	32.0 (3) *** 19.3 24.2 (29) 40.7 (1) 28.8 (11) 19.1 *** 28.9 (10) 16.0 24.5 (28) 27.6 (12) 32.7 (2) 32.7 (2) 32.4.0 (30) 18.3 24.8 (25) 19.2 17.5	31.6 25.7 44.2 (36) 12.9 22.3 39.0 (47) 26.4 26.1 *** 19.0 26.5 14.3 14.8 15.6 12.2 13.7 19.4 11.0 21.0	

(MS4) S.P.PRO.OFFICE

(434) 3,7,7,0,0071CE						
Rank	date	SPM µg/m³	NO _x ppb	NO ₂ ppb	SO ₂ ppb	
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 16) 17) 18) 19) 20)	11/6 12/25 11/5 11/7 12/14 11/7 12/3 2/23 11/4 10/2 2/22 11/11/2 11/13 12/5 11/9 11/9 11/1	200.7 193.5 180.5 179.9 177.4 172.8 168.7 162.4 157.8 156.8 153.2 151.2 151.2 150.7 148.5 145.6 145.5 145.0 143.9	**** 111.1 (6) *** 154.1 (3) *** 113.6 (5) *** 82.8 (17) 36.2 *** *** 119.3 (4) 180.2 (1) 159.2 (2) 101.5 (8) *** 80.5 (19) ***	*** 38.7 (21) *** 69.3 (1) *** 50.4 (5) *** 40.6 (17) 21.8 *** *** 65.5 (2) 64.3 (3) 34.7 (30) 51.7 (4) *** 45.7 (7)	10.0 (41) 9.5 (49) 9.5 (50) 20.2 (1) 11.6 (21) 11.9 (18) 11.2 (31) 9.5 (48) 8.0 8.8 14.7 (4) 4.6 12.1 (16) 11.5 (23) 10.7 (34) 5.4 6.1 11.0 (32) 8.3 10.8 (33)	

Rank	date	SPH µg/m³	NO _x ppb	NO ₂ ppb	SO₂ ppb	
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 12) 13) 14) 15) 16) 17) 18)	2/23 10/2 12/25 12/28 4/14 2/22 12/24 1/5 1/9/22 12/6 12/7 12/29 12/7 1/21 10/1	119.3 113.7 112.5 111.8 109.8 108.8 102.6 102.6 100.6 96.7 96.5 95.5 95.3 94.4 91.4 88.6 86.2	13. 9 28.6 (3) *** 18.5 (24) 7.6 16.5 (38) *** 16.7 (37) *** 18.4 (25) *** 17.3 (30) 36.2 (1) 17.3 (32) *** 15.6 (47) 16.2 (42)	10.2 (30) 15.2 (4) *** 15.3 (3) 6.8 14.9 (6) *** 11.6 (18) *** 19.2 (38) 10.8 (24) *** 15.9 (1) 11.8 (16) 15.0 (5) *** 10.3 (29) 13.1 (10)	3. 2 3. 8 3. 2 2. 0 2. 6 3. 3 4. 1 1. 8 0. 4 3. 2 7. 3 (19) 6. 2 (25) 2. 7 3. 4 3. 3 5. 0 (38) 3. 2 2. 0	
19) 20)	12/13 1/20	83.8 82.7	15.0 (50)	12.1 (14)	7.5 (18) 8.3 (8)	

particular seasonal preference for high concentration appearances except somewhat higher values in January and in October. The wind direction is also found indefinable and shows all directions. The atmospheric stability drops mostly in B in the daytime and in F in the night.

Table 1-30 Monthly Appearance of Top 20 Days in which Daily High Concentrations of Each Pollultant

Mon-		SO ₂					NO ₂						OV	(SPN	<u> </u>	
th	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	MS
1	1	2	.3	4	5	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
JAN.	5		4	3	1	1	1	1	2	4			_1	1		6	4	3	1	4
FEB.	1		6	_1_		3	1	3		3			2	_1		3	1	3	2	2
MAR.			7	1		:				3						1		2		
APR. MAY.					:			1				4	1				1			1
MAY.		1			1						1	_						-		
JUN.				4 .	1										3					
JUL.	1		2		14										1					
AUG.	:2					1					2	2	I		2					
SEP.	2		1		1	12	7			2	9	1			3	1	3	1		2
OCT.	2	4		7	1	2	4			3	8	6	1	3	9	5	4	4	2	2
NOV.	1	- 5		3		1	4	3	1	2		4	1		2	1	1	3	8	115
DEC.	6	10		5	1		3	12	17	3		3	13	15		3	6	4	7	9

(2) MS2

The top two high concentrations of SO₂ appeared on 26th and 28th of October. The wind direction varied all day long on both days and the velocity maintained at about 1.0 m/sec whereas the atmospheric stability varied from B, C, D (unstable through neutral range) in the daytime to E, F (stable) in the high. High concentrations of both NO₂ and NO_x appeared during November 8th through 9th when the wind direction was NNE~N~NNW all day long at its velocity of about 2.0 m/sec. The atmospheric stability showed mostly B and C in the daytime and E and F in the night. As for SPM, both September 20th and December 25th marked high concentrations and the wind direction maintained NNE~N~NNW on both days though September 20th had the wind direction of E and S as well. The wind velocity remains comparatively low at about 2.0 m/sec and atmospheric stability maintains B-C in the daytime and mostly E-F in the night.

(3) MS3

The top two high concentrations of SO₂ appeared in July and in January when the wind direction maintained all day long in SE~S~SSW and its velocity comparatively low at 3-4 m/sec. The atmospheric stability kept mostly C and D type all day long on July 15th whereas that of January 31st kept B and C in the daytime and E, F in the night. The top two high concentrations of NO₂ appeared on February 22nd and December 3rd while those of NO_x did on December 25th and December 31st. The wind direction maintained all day long on both days in ENE~N~NNW and its velocity low at about 1.5 m/sec. The atmospheric stability remained at B in the daytime and at F in the night. Top two high concentrations of SPM appeared on February 23rd and September 10th. The wind direction maintained

NE~E~SSW on both days and the wind blew from the other side of Chao Phraya river. The atmospheric stability remained at B and D in the daytime and at E, F in the night.

(4) MS4

The top two high concentrations of each pollutant, SO_2 , NO_2 , NO_3 , SPM appeared on the different days, but the wind direction maintained $NNE\sim N\sim NNW$ on both days. (In October 26th, the top high concentration of SO_2 had the wind direction of S as well.) The wind velocity remained at about $1.5\sim 2.0$ m/sec all day long. The atmospheric stability showed mostly D in the daytime and F in the night.

(5) MS5

The wind directions of the days when the top two high concentrations of each pollutant, SO_2 , NO_2 , NO_x , SPM appeared unsteady all day long. The wind velocity remained low about $1\sim2$ m/sec (sometime Calm) and the atmospheric stability showed mostly B in the daytime and F in the nighttime.

NO

Table 1-31 (1) Highest 2 Days of Ambinet Pollutant Concentrations at MS1

SO₂
(HS1) ONEB STATION
(D 12 / 24 SG₃
(11. SO₄ NO₅ NO

	_	
	2	######################################
	HET	
	SUR	0000000%9##############################
ą	ž.	222222222222222222222222222222222222222
= 23.46 ppb	ş	を表現である。 大学などのでは、 大学などのでは、 大学などのでは、 大学などのでは、 大学などのでは、 大学などのでは、 は、 大学などのでは、 は、 は、 は、 は、 は、 は、 は、 は、 は、
AVE = 2	HAS	5525512539288882685 <u>82555</u>
SO2 A	У0 х	228225252800048085885885
	,0X	<u>817777768270000000000000000000000000000000</u>
12 / 24	30°	@enedatikaneses+eskenene
\sim		-0100

1	S	۵	=	:22	œ	=	*	^	ں	^	ں	_	_	_	<i>ن</i>	·	<u>-</u>	=	_	•	_	ы	ш	_	ш
	NET	-32	3	Ŧ	:0	**	፧	2	8	290	340	33	45	9	312	83	91	ĸ	5	ş	8	3	-43	33	ş
	SUN	0	0	0	0	5	0		12	8	8	43	532	=	449	<u>8</u>	8	2	ch	O	0	0	0	0	0
2	WS	51	2	\$	÷	Ş	44.	4	÷	S	á	40	g	5	S	Ę	S	23	\$	£	Ç	48	69	8	6
00.12	QM	NNM	Z.N.	×	ž	2	:	ž	Ž	ŽΝ	AN	Ž	32	z	Z	菱	Ē	ž	Ž	₹	Ž	ž	ž	2	ž
A	HJS.	52	B	22	21	***	:	2	8	3	8	2	3.8.8	111	40	8	සි	2	ö	8	8	22	K	<u>8</u>	2
20%	KOX	67	S	22	2.2	።	:	Ç	ß	z	5	43	***	1431	33	ij	Ę	ঠ	ß	63	5	22	Ç	9	8
	NO.	ž	~		2	:	:	7	-	=	≊	5	***	***	22	8	53	23	5	2	23	20	51	2	-
	20.	83	r)	n	5	***	***	~	X	=	Ξ	8	***	***	œ	23	e	57	ę	6	5	9	र	21	9
3	Н.	-	2	m	~	5	r)	-	8	9	2	=	2	33	Ξ	33	9	=	9	2	8	2	3	83	S

175,62	O.A	ASSESSED OF STREET OF STRE
NOX. AVE = 1	SPA	¥E842584144088488835185848
Š	¥0.4	888877777788888888888888888888888888888
	នុំ	
/ 22	NOx	62525252525252525555555555555555555555
Θ	≓	
1	S	コロジを・* さいさいこれいいしゅうひからいからい
	NET	88448 1 28888 2 288 288 288 288 288
- 1	z	000000

- 1	St	
	NET	
	SUN	000000828888888888
죷	SM	8000188752888888888874608 <u>2</u>
175,62	G _A	25.25.25.25.25.25.25.25.25.25.25.25.25.2
AVE = 1	SPH	¥ <u>558</u> 2585254008558885255585
ž	×0.4	888888888888888888888888888888888888888
; cs	30,	
/ 01	NOx	626282532212424893588
θ	"	No. 4 no se 5 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

SI	ACULUANDA COU E MA OU CANDACHE
NET	<u>មម្ដង់មានកេត្តដើម្បីតិនិងដែនបង់វាមិនន</u>
SIK	00000000000000000000000000000000000000
经	***************************************
G	នសន្តសន្តសន្តសន្តសនិតសនិត្តសន្តសន្តសន្តសន្ត សង្គសន្តសន្តសន្តសនិត្តសន្តសន្តសន្តសន្តសន្ត
E S	G352482185488446888888888
20%	5500000-0055224285285255425
S,	00000000
NO.	8080808282888026828888
12	

		ST	**************************************
		NET	44444444444444444444444444444444444444
		SUM	000000845888888888888888888888888888888
	quid	ş	888888888888888888888888888888888888888
	40.92	ī,	SSSS STATE OF STATE O
	AVE = 4	N.is	25222233 25222333 25222333 25222333 2522233 2522233 2522233 252223 2523 25223 2523
∓	NO.	NO.	13
STATION	. 21	50,	852-7-4-2111111111111111111111111111111111
Ě	6	NO.	aczz888842888488518888888
SS.	8	=	

	ıs	Exrancements
	NET	P25284625582-662888-628888
	SUN	00000000000000000000000000000000000000
ppt	S.	522222222222222222222222222222222222222
48.33 PI	Q.	음속성축취라면하다고면RN N N 물질등의하고만하다
AVE = 4	HdS	425225265255555555555555555555555555555
NU _{z.} A	#Ox	22222222222222222222222222222222222222
10	50,	
1 / 6	MO.	\$1868888882£88888888888888888888888888888
8	=	

			15	**********************
			1311	8455468445888888888884646644
		:	ND.	000000000000000000000000000000000000000
		1 K/43	æ	228288888888882888888888888888888888888
		155.83	9	SSS 등 등 등 등 도 모 및 및 및 및 및 및 SSS SSS SSS SSS SSS SSS S
		AVE =	NG	<u> </u>
	325	S	S	######################################
	STATION	6	50,	45541016888550001588882821
Z	338	1/	KHS	982758888886558288888485888
SPM	(HST)	9	=	120240010000011001100110010000000000000
	_			

	\$5.	were the following many of the first and
	NET	ਲ਼ਫ਼ਫ਼ਫ਼ਲ਼ੑਲ਼ <u>ਜ਼ਲ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼</u> ਖ਼ਲ਼ਖ਼ਲ਼ਖ਼ਫ਼ਖ਼ਫ਼ਫ਼
	SIIN	000000%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 g/m	K.S	52554775588888888885555
147.33	(L)	See A See See See See See See See See Se
4 KE =	NUK	<u>92552888888655665368888688</u>
N.S.	NO.	8448888888844444
23	SUL	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
10 / 2	51%	夏夏夏王至芒岩原上岛在台口岛内省沿岸市西班牙
8	=	
. :		

AYE # 31.83 ppb

호 호

NO₂ (MSZ) POWER PLANT E

ole 1-31 (2) Highest 2 Days of Ambinet Pollutant Concentrations at MS2

		ğ	8	**************************************
	PLANT		ŝ	2882228882 # コニゅっゅゅっっっ だいっっ
v	HS2) POWER PLANT	Ø 11 / B	NO.	88688888888844444488888
Š	HS2)	θ	==	
	Ĭ			
				*
			<u></u>	<u></u>
			r St	***********
			NET	255444445888888888888888888888888888888
			StiN	00000011587847877277 555587577777
		ગુત	SM	ដីដីដីដីក្រុម និង និង និង និង និង និង និង និង និង និង
		50, AVE = 33,32 ppb	RN .	S S S S S S S S S S S S S S S S S S S
		: NE = :	NJS	23522222 252222222 25222222222222222222
		SUr	MOx	252224466888888 - voole8888
		_	NO.	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		10 / 28	202	77777777777777777777777777777777777777
		8	ı,	-00400ca05-555455FBB828
		. '		
		1	_	F00FFFF00EDEEG5050C00
			S	
			15	D48000000000000000000000000000000000000
			I NET	<u> </u>
	•		SUN NET	
		odd		000000822288228822222
	•	33.79 ppb	SUN	
	•	4VE ~ 33.79 ppb	KUS SH	**************************************
		50x AVE ~ 33.79 ppb	KUS SM OM	28 28 28 28 28 28 28 28 28 28 28 28 28 2
	PLANT		NUS SM ON NUS	22
302	MS2) POWER PLANT	Ф 10 / 26 SO _x AVE ≈ 33.79 ppb	NO. SW OW NYS KON	25 25 25 25 25 25 25 25 25 25 25 25 25 2

	AVE =	₽	8225568645287538822888
	SPH	°CN .	494012886288828828828282
POWER PLANT	: 0	S!)*	₹51 1000512121251040000000000000000000000000
	9 / 20	MdS	8884-F4685848848553400-e8
(NS2)	Θ.	₩.	
		ST	
		NET	នុ៥ន្ឌន់ខ្ពង់ខ្មែនទីនឹងនិធីនិធិន្តន់នុង <u>១ខិង</u> និង
	•	₽MS	2222 2222 2222 2222 2223 2223 2223 2233 203 20
	րդմ	SA	5118282211822282828282221122
	23.00 "	GP.	PERSON NEW TEXT TO THE PROPERTY OF THE PROPERT
	3.0		·

25839845888228844454888448884488844

REAL ENGINEERS OF THE STREET,

<u> ភឌិសឌិទី៩៤៤ឧបខង៩៩ឧបខម្មិទីទីទី</u>

22622222224444444422225882

	ST	によるなのではなっていることでは、
	NET	<u> </u>
	NAS	00000008220000000
qdd	SM.	7º255288888888888565287520
55.96 2	CR.	大部立 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
u ·	NJS	k
NOX AVE	NO.	2888488888888888888
. 8	SO.	288228882 # 110000000000000000000000000000000000
11 /	кож	86668886688944464488895888
i		

	ST	www.www.waanawaa.wo.co.co.co.co.co.co.co.co.co.co.co.co.co
	NET	ដ្ឋមន្ត្រីមិន្ត្រីមិន្ត្រីមិន្ត្រីមិន្តិមិនិង្គិមិនិង្គិមិនិងមិន្តិមិន្តិមិន្តិមិន្តិមិន្តិមិន្តិមិនិង្គិមិន្តិមិន្តិមិន្តិមិន្តិមិន្តិមិន្តិមិន្តិមិន្តិមិន្តិមិនិង្ចិមិនិង្គិមិនិង្គិមិនិង្ភិមិងមិនិងិមិនិង្ចិមិនិង្ភិមិង្ភិមិង្ភិមិង្ភិមិង្គិមិនិងិងមិនិង្គិមិនិង្ភិមិងិង អីក្រងិមិង អីក្រងិមិង អីក្រងិមិង អីក្រងិមិនិង អីក្រងិមិង អីក្រងិ
	Nits	2222 2222 2222 2222 2223 2223 2223 222
- idd	Ş	21ma1m22ccc322222222222222
51.70	ş	A CONTRACT OF STREET OF ST
AVE =	SPR	8511252885555566666666666666666666666666
NOx	ZON.	25588781-00:532555555558888888888888888888888888888
S	SO.	20000000000000000000000000000000000000
/ II &	KO _x	88848888888888
6	=i	
,		

	-					_		_		_	_	_	_			_		_						_	
	15	u.	8	بنا	8	ta.	ي.	14	_	<u>_</u>	62	=	÷	=	÷C.	6 5	=	-	=	_	-	4	14.	٠.	•
	NFT	ġ	23	3	8	ş	9	S	6/3	9	23	374	ij	3	S	Ŕ	3	*	3	Ŗ	-44	Ş	Ģ	8	8
,	SUR	0	0	0	0	Ö	0	-	8	S	8	g	Š	Š	8	S	8	120	ပ	p	0	. 0	0	0	0
161.42 # K/B"	SAS	9	~	ی	_	ß		r-	∞	4	23	23	Š	13	ĸ	5	51	Ξ	9	-	Ξ	X	12	8	12
2691	OM.	*	·	ž	U	N.	=	24	¥	7	4	뿚	¥		발	墨	날	꽃	3	3	Ž	~	34	200	差
SITE AVE.	NU	1312	***	2362	22.55	***	\$6.54	***	****	****	****	12.52	9838	***	3110	****	****	1111	***	***	***	****	****	****	3 E S R
7	4111	3226	***	***	***	26.2	184	:	***	48.0	****	****	4332	***	***	4112	2482	**	***	****	***	#2 E.R	***	***	***
	StJz	97	3	F	7	ន	8	=	77	5	2	'n	-	0	0	0	-	N	*	9	8	S	K	12	(07
2	SIM	522	202	22	23	8	ς; Ω	5	150	8	7	(S)	3	6	=	អ	8	Y	8	8	20	25	5	ŗ,	\$2
3	11.	-	2	6	7	S	9		æ	C 7	2	:::	2	23	4	2	9	1	18	Ω	8	7	8	Ŋ	ঠ
					_		_							_	_	_	_	_	_	_	_		_	_	

BOUNDERS Exercises Services S

103.92 µ s/m³

Table 1-31 (3) Highest 2 Days of Ambinet Pollutant Concentrations at MS3

HS3) KIN. DEP. OFFICE

(MSS) MIN. DEP. OFFICE

73	000000000000000000000000000000000000000
NET	22258222222222222222222222222222222222
SUN	000000000000000000000000000000000000000
ß	<i>-</i> 등록소속유원경양왕왕왕왕왕왕조수축수말왕종청왕
9	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
SI'K	648888655886
¥0,¥	82592233925
10k	241-204-40-40-40-40-40-40-40-40-40-40-40-40-4
SO.	255558528555 548888888144
=	-88582828282828288888888888888888888888

NO₂

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Avg. = 55.00 pale.

20, Av

SPM

		r.	
		ŔĒ	<u>ġċġċġċġċijĕ₽ĔŸŸŸŞŦ₽</u> Ĭãźġôġġġ
		SUN	000000000000000000000000000000000000000
	# 18/B	SM	5200:51-5828E7225288886
	156.92	3#	SENERGE SENERG
	AYE =	жОх	8446848476484844446888888
3	SPA	NUx	88828282658° 400550788658
5	8	SO.	<u> </u>
1	2 / 23	N.S.	882286484748488888888888
3	Θ	11.	-00.400-805-555455555588888

F grantencompoundonorderant

| 1. | Mar. | SOs. | MOX AVE = 75.25 pob |
| 1. | Mar. | SOs. | Mos. | Sos. | Mos. | Mos. | Sos. | Mos. | M

ST
11.63
 芝 記段8262638262122811→5282688 芝 高路8262638382121→5282688 芝 高路高高 芝 高路高高 芝 高路高高 芝 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003 ジ 2003
で
7
· \$\int absenzesignadun ====================================
§ 88892378227777475088889
& armererzezen 222
다. 다. 프립티프램티트필스웨딩트디프 # # # # # # # # # # # # # # # # # # #
8 =www.coccoccidazazazazaz

							_			_	_			_ :			_					_		_	
	P.	14	٠.	:-	143	u.	٠.,	ш	2	:	=	æ	==	==	t£.	-	_	_	=	ш	w	Le.	u	ы	Ŀ
	NET	D/3·	3	-52	ģ	7	48	73	53	22	£	37	613	Ş	23	8	Ŗ	8	9	63	Ş	Ŗ	ņ	Ŗ	ĸ
ا .	SUN	0	0	0	٥	0	0	:3	2	8	465	ý	33	S	Š	3	8	60	9	0	0	0	0	0	0
# 8/18	Ş	8	to	w	2	æ	נט	'n	111	* * *	***	=	2	N	S	3	ន	13	43	23	23	5	9	2	2
152,58	G.	NF.	25.	눈	*	2:	¥	×	X S X	*	**	8	SS	v	ν,	SSE	2	2	뿔	NE	꾿	뱢	쏫	Z	32
AVE =	NIS	* 3 # 0	****	****		2	:::	1041	****	***	1361	1632	::	***	:	X22X	***	***	****	1111	***		****	***	4 9 6 4
ZI.¥	NO	1321	1111	11 11	:	***	***	1221	***	***	****	1111	***	****	*	***		***	:	***	2222	2 X X 2	****	****	i
	SO	13	င္တ	23	2	9	202	8	g	7	25	Ş	22	2	8	7	Ξ	ທ	82	ន	::	ur)	0	œ	61
9 / 10	SIN	121	3	2	Ξ		23	83	8	ឡ	253	8	22	23	5	22	8	2	Ś	22	8	3	8	47	241
3	#	-	2	3	<	'n	ယ	-	œ	Ċ	9	=	2	9	3	2	2	=	83	5	ន	7	z	Ø	z

Table 1-31 (4) Highest 2 Days of Ambinet Pollutant Concentrations at MS4

No. AME = 17.83 pp. No. SPA 1.83 pp. No. SPA 1.83 pp. No. SPA 1.84 pp.	SSW 22 NW 10 N 10 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
ANE = 17.58 ppb SPR W WD WS 13.7 PW WD WS 13.7 PW WD WS 13.7 PW WD WS 13.8 PW WD WS 13.9 PW WD WS 13.9 PW WD WS 13.0 PW WS 13.0 P	SSW NW NW NO 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A M M M M M M M M M M M M M M M M M M M	SSW NV 10 22 22 22 22 22 22 22 22 22 22 22 22 22
AN	ASS. No. S. S. S. S. S. S. S. S. S. S. S. S. S.
7	
w w	
2 2 00004400000000000000000000000000000	នឧឧឧ
8 8 48382225844425828888	2523
8	====
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
용 즉 -여자수자라노파화중크로프로프로	នននន
五 ちちちはななせど	2583
# 666828228886685878855	2588
88 000000 E 88 21 21 21 2000000 E 88 88 88 88 88 88 88 88 88 88 88 88 8	
表	ឧឧឧឧ
SO 22 OF STANDARD STANDARD SO 22 OF STANDARD SO STANDA	****
*	8888
	8888
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
86886888888888888888888888888888888888	9182
	3248

rmeseemnnadacama::::::::::

ង់ឧងខុងខុងក្នុងទីនិងទីនិងទីនិងឧត្តនន្តន្ទ

200000888888888888888

50024028888888888

#888888#EEB\$8888#8#858

88888888822228488888888888

825528894455544453886558

000000 228825558270000000

MIX AVE = 159.21 PPB

10 / 23

ន័

ž

ST

NOx AVE = 180.21 ppb

(MS4) S. P. PRO, OFFICE © 12 / 15

HS4) S.P.PRO. OFFICE

 SO_2

			,			∖ I		• · · · · · · · · · · · · · · · · · · ·
	WS					28	₹	2.722222222222222222222222222222222222
1	웃	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~] .			200.67	3	が 大学 大学 大学 大学 大学 大学 大学 大学 大学 大学
2	K4S	25225252525252525252525555555555555555				A	Ď	
	, O.	F80328588842268288689888	ĺ			2	2	
•	50.	8888288882c44804848989ccc	1 .	•	. PRO. OFF?	۵	S	800 e 20 e 20 e 20 e 20 e 20 e 20 e 20 e
1	NO.	25525252525252525555555555555555555555		¥	Δ.	_	Š	<u>25284411868287884288858888</u>
2		-00400c005-555455558585888	1	SPM	(9824)	э	ΞĖ	
•	=	ANNON PER PER PER PER PER PER PER PER PER PER	}	S	•			
9	=	SANASESSESSES	}	93	8			
,]	S	8	[5	Laguetica o do momento de la cultura de
	NFT ST	FMACTFECSERROSSER		S	0	ŀ	NET ST	25555256555555555555555555555555555555
•	T ST	జీజీజీజీజీజీజీజీజీజీజీజీజీజీజీజీజీజీజ		S 2	ð,		,_	
	SUN NFT ST	FMACTFECSERROSSER		S			NE.T	2566644688888888844444444444444444444444
•	WS SUN NFT ST	08-445451-05460-0-220-5		S	: -		WS SUR NET	++++++++++++++++++++++++++++++++++++++
	SUN NFT ST			S		on-se him	ND WS SUR NET	

%

12 / 13

ŝ

Sī

NO. AVE = 69.26 ppb

Ø 12 / 14

NS4) S.P.PRO.0FFICE

<u> - Бавитиорания видеритивич</u>

avsakev.488£\$£88a_aksacka

8588884448888448588885728

89258888888888888888888888888

000000495555555555

<u>ಹರ್ಟವಾಗಹದರ್ಥಗಾಲ</u> ಕ್ಷಾಲ-ಸರ್ವಧರ್ನಾ

-86400-865-555-565-568-1004-865-

1222882222222222222222

NFT.

AYE = 133,50 µg/m²

Š. £

З

7 21

¥0,¥

20,

돐

SEN

Table 1-31 (5) Highest 2 Days of Ambinet Pollutant Concentrations at MS5

	1.ESTATE
SC2	(HSS) R.C

	57	
	138	82228882888288838884584454
	SUR	2223 2233 2233 2233 2233 2233 2233 223
php	SH	ee5e2Tee5G5558888885555577
20.63	Œ#.	NN NN NN NN NN NN NN NN NN NN NN NN NN
AVE =	KdS	22056888888882====
20.	NOR	ชนะชี <u>รีรสากักโ</u> ยรมชนพลงงกะกะ
7	Ç.	22-7-1100007-2400004000-c-
11	Z 0S	222222222222222222222222222222222222222
8	11	

11	S0.	0000000008888888
છ	'n	-40400000000000000000000000000000000000
	57	
	NET	<u>ප්ස්ථාත්දර් පම්මිසිදීම් පිට ප්රදේශයේ</u>
	SUR	0000009422425555555 0000009422425555555555555555555555555555
pda abd	ž	88888888888888888888888888888888888888
20.63	Q#	SASSES NO NO NO NO NO NO NO NO NO NO NO NO NO
li II	Kd:	2255588888888882===589=58

- 1	SI	reeriencessessessesses
	NET	418668888888888888888888888888888888888
	SUN	255-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5
ргр	SA	######################################
16,33	ΠM	SOUND NO NO NO NO NO NO NO NO NO NO NO NO NO
AVE =	HJS	855888888888888888888888888888888888888
205	NGx	
83	NO	ಬಬರಣ—ಪರಾಧ್ವ ಕರಣಕರಣಕರಣಕರು
1/2	203	000000000000000000000000000000000000000
8	ı:	-40400000000000000000000000000000000000

		Ľ	ĸ	20000000000000000000000000000000000000
		qd.	Š	2012/2022/2022/2022/2022
			ŝ	SONS SONS SONS SONS SONS SONS SONS SONS
		AVE = 3	SPA	225-25-25-4 25-822-25-25-25-25-25-25-25-25-25-25-25-25-2
		~	20	はは1112222200 # 21000000000000
	I.ESTATE	2	8	4444000-00° 000040-00° 000
~	٠,	6	NO.	8=5886488888 812510000-4840
Š	(155)	⊖ [=	12224691699155555555555555555555555555555555
~	~			

	ST	ини 8668 при время на при при при при при при при при при при
-	NET	ន្ធខ្មុននេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ
	NES	00000000000000000000000000000000000000
odd:	Sin	204484689-0712881127128
9 / 10 Mtx AVE = 25,45 Pt	- QM	SSE ENGINEER CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
	KJS -	<u> </u>
	E(3)	8582288855
	SO.	022244400-112400-15250
	NOx.	881888888 tot # 82188418888
3	#.	

	NET	64444444444444444444444444444444444444
	SUN	00000011122110000000000000000000000000
J.	SH	121552112288889885125
15.86 P	Q#	
AVE = J	N.J.S	11
g.	ž	2
H.R 1.ESTATE	20.	- 1000
B.5 1	МОª	0
(§§)	=	_uu_au_au_au_au_au_au_au_au_au_au_au_au_
5	1	

	57	######################################
	NET	\$\$±\$\$\$£088888888888488
	SUR	00000000000000000000000000000000000000
qud	S.	ఛజన <u>చనద</u> వజంగాలనజపరిశిశిశాణలులనికి
15.35 p	ΟM	NAWA WANTER CONTROL OF THE CONTROL O
AVE = 1	SPH	
NU.	M()N	3r-0:13:228882:1882:10:0:0:22:18r
3	\$0.	444445-6466000000
/ 01	×0×	27-5115555555555555555555555555555555555
8	11	

	I.ESTATE
_	*
Š	(835)

	22	CEEEE COOLSESSESSESSES CEEEE
	NET	<u> इंदेडे १५४५ १५८५ १५८५ १५८५ १५८५ १५८५ १५८५ १५८५</u>
n_	SUR	00000000000000000000000000000000000000
# E/B	샹	251152500258888888754845410
119.30	윺	SSS SSS SS
AVE .	MO.	00000000000000000000000000000000000000
E	NO.	DB888511255m4uuvvuunuuu
R	20.	ರವಾಗಾರ್ವವವಾಗುತ್ತದೆ ಆರೂ≃==ಎಗಾನಾವ-====
2 / 2	N.S	68898888888888888888888888888888888888
Θ	≃:	
•		

	SŢ	<u> инитенданоная выпоснания</u>
	ian -	<i>ង់</i> ខម _្ ត់ក់ត់ខម្មមីដីដីដីដីដីដីដូន _{ដំតំ} ង់កំងក់ង
٠.	NOS	ccccc2 <u>7</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
£ 8 / ₹	SM	0-588251154088-
113.71	OM :	Rade Second Seco
AVE =	*0N ·	844822224
S.	RO.	8888888 5200 0 12121-21
63	0S -	1135 1155 1155 1155 1155 1155 1155 1155
/ 01	HJS .	<u>8242</u> 83895 58866888 5 8888888
8	11.	さきょうらしゅうローはは対対は行用は改改な対

2. Data Analysis of the Short Term Field Surveys

The short term field surveys were carried out in January, March and July 1988. In these terms, the size distribution of TPM were measured by Andersen sampler at five monitoring stations. Using these data, analysis of TSP concentration for the varying ranks of particles size was conducted. At the same time, data measured by continuous and automatic monitoring instruments during each short term field survey were subject to analytical study.

2.1 Analysis of Ambient Pollutant Concentration

2.1.1 TSP Concentration by Ranks of Particle Size

The size distribution of TSP measured by Andersen samplers are shown in Table 2-1. The concentration of TPM divided into coarse particles (over 2.1 μ m) and fine particles (under 2.1 μ m) are shown in Fig. 2-1. From those results, the appearance of relatively high concentration is commonly seen at every station in the 1st survey period. This trend is seen especially at MS1, MS3 and MS4.

Table 2-1 Particulate Size Distribution Measured by Andersen Sampler

(unit μg/m³)

P	articula	te size		İs	t surv	ey			2 n	d surv	ey		3rd survey		ey		
Classify	Stage	Rank(µ≡)	MS 1	HS 2	MS 3	MS 4	MS 5	HS 1	MS 2	MS 3	MS 4	MS 5	MS 1	MS 2	KS 3	HS 4	HS 5
	0	> 11 µm	7.0	6.2	8.0	15.1	9.5	6.4	3.1	5.5	9.9	3.9	5.3	2.9	3.8	9.8	7.5
İ	1	11.0 - 7.0	5.9	5.0	3.3	7.9	7.4	3,8	3.7	3.6	4.9	2.3	4.3	2.1	3.2	5.0	3.4
	2	7.0 - 4.7	10.6	8.2	6.9	8.6	11.9	6.0	5.6	6.5	6.6	4.2	7.1	3.9	5.5	7.4	5,7
Coarse	3	4.7 - 3.3	10.0	8.2	12.6	9.5	10.5	5.1	5.0	6.2	5.3	3.5	7.4	4.6	5.7	6.7	5,4
	4	3.3 - 2.1	7.4	6.6	8.8	6.8	5.8	3.2	3.3	1.8	2.7	2.3	7.0	4.7	5.8	5.4	4.0
	Sub total		40.9	34.4	39.6	47.9	45.1	24.5	20.6	23.6	29.4	16.0	31.1	18.2	24.0	34.3	26.0
	5	2.1 - 1.1	7.0	6,5	9.2	6.0	3.8	1.5	2.2	4.4	1.3	0.9	4.8	3.1	4.5	3.6	1.9
	6	1.1 - 0.65	7.7	8.1	13.5	7.2	6.1	1.8	3.4	5.4	2.4	1.4	3.0	2.3	4.6	3.1	0.9
Fine	7	0.65 - 0.43	7.5	6.0	17.8	4.9	5.1	3.7	6.1	5.2	3.1	3.4	2.6	2.7	3.8	2.3	1.2
	8	< 0.43 μm	16.6	15.6	17.8	16.6	12.5	6.6	9.0	11.9	7.8	6.5	12.7	6.4	10.8	10,5	4.0
1.	Sub total		38.8	36.2	58.4	34.7	27.4	13.6	20.7	26,9	14.6	12.2	23.0	14.5	23.7	19.5	7.9
	Tota	1	79.7	70.6	98.0	82.6	72.5	38.1	41.3	50.5	44.0	28.2	54.1	32.7	47.7	53.8	33.9

The particulate matter in the ambient air has its origin in various sources as shown Table 2-2. The sources of particulate matter are numerous such as the natural background sources (soil, sea salt, etc.), the man-made sources (factories, automobiles, etc.) and the secondary particulates which are produced from the gaseous substances in the ambient air by physicochemical reactions. The size of the particulate matter suspended in the ambient air broadly distributed as shown in Fig. 2-2 having different originating sources.

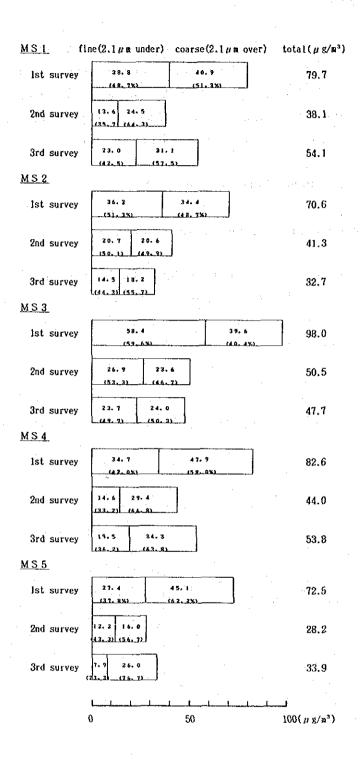


Fig. 2-1 Seasonal Variations of the Concentration of Total Suspended Particulate by Particulate Size

Table 2-2 Classification of Particulate Matter by Emission Sources

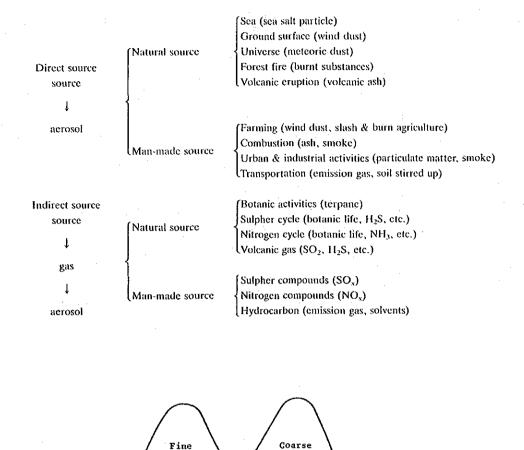


Fig. 2-2 Size Distribution of Particulate Matter in the Ambient Air

Particle diameter (µm)

100

0.01

In the figure, there are two peaks. The trend is generally seen in the ambient air. The coarse particles of over 2 microns are originated from the primary particles of natural background (sea salt, soil, volcanic ash, etc.) and man-made sources (airborne soil dust by car and dust originating from material pulverizing). The fine particles smaller than 2 microns are generally composed of primary particles from man-made sources (dust produced by combustion, fumes from metal smelting processes and emitted gas from automobiles, etc.) and secondary particles physicochemically reacted in the ambient air $(SO_4^{2-}, NO_3^-, etc.)$.

The weight percentage of coarse particles in MS5 was found to be always high. We understood from the above mentioned that this is probably due to the reason that this monitoring station is surrounded by non-paved roads and the area MS5 is located in a savanna. We will describe later in this report the relationship between emission sources of particulate matter and their contribution rates on concentrations of particulate matter by knowing chemical components data of particulate matter.

2.1.2 Particle Size Distribution of Total Suspended Particulate

The cumulative concentration curve and size distribution curve were developed from the measurement data (shown in Table 2-1) that was collected by Andersen samplers. To develop the former, observed cumulative concentrations were plotted with respect to the uppermost particle size of each stage and then the concentration profile between neighboring two plots were divided into five parts, the values for which were approximated by interpolation using a best fit line, the cubic polynominal equation to cover four measured points. As for size range at both sides, less than 0.43 microns and larger than 11 microns, one of the neighboring four points is missing and thus prior to develop the regressional best fit line (of the third power), one point was added in such way that its gradient is zero. The gradient of the third order equation was approximated by taking the first derivative at every plotted point, as shown in Fig. 2-3 (left).

The cumulative concentration distribution curve and size distribution curve developed are shown in Fig. 2-3. The curves shows two peaks around 0.4 and 4 microns and a dimple around 1 micron size. The distribution profile was found identical and complies with measurement results by Whithy¹⁰⁾ or other researchers in Japan.

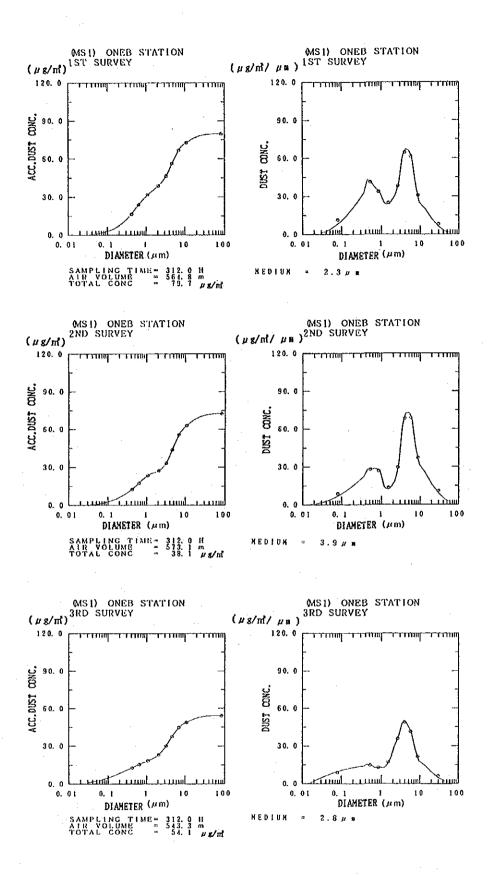


Fig. 2-3(1) Cumulative Concentration and Size Distribution of TSP Measured by Andersen Sampler (MS1)

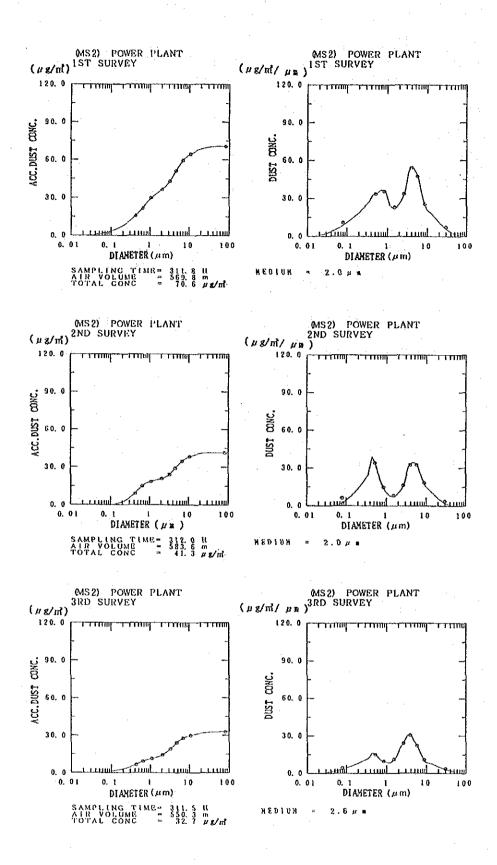


Fig. 2-3(2) Cumulative Concentration and Size Distribution of TSP Measured by Andersen Sampler (MS2)

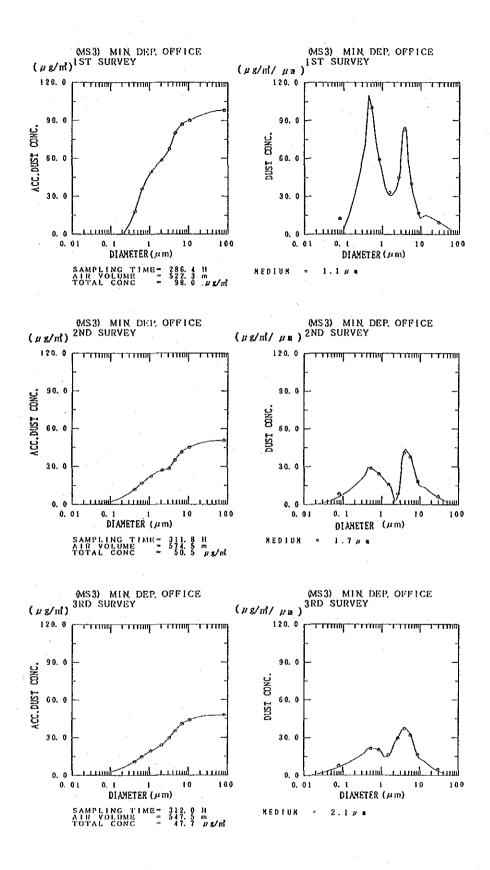


Fig. 2-3(3) Cumulative Concentration and Size Distribution of TSP Measured by Andersen Sampler (MS3)

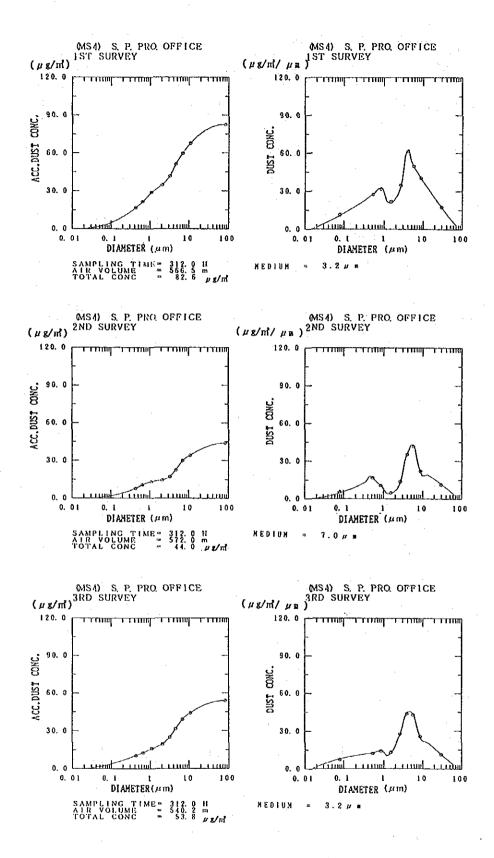


Fig. 2-3(4) Cumulative Concentration and Size Distribution of TSP Measured by Andersen Sampler (MS4)

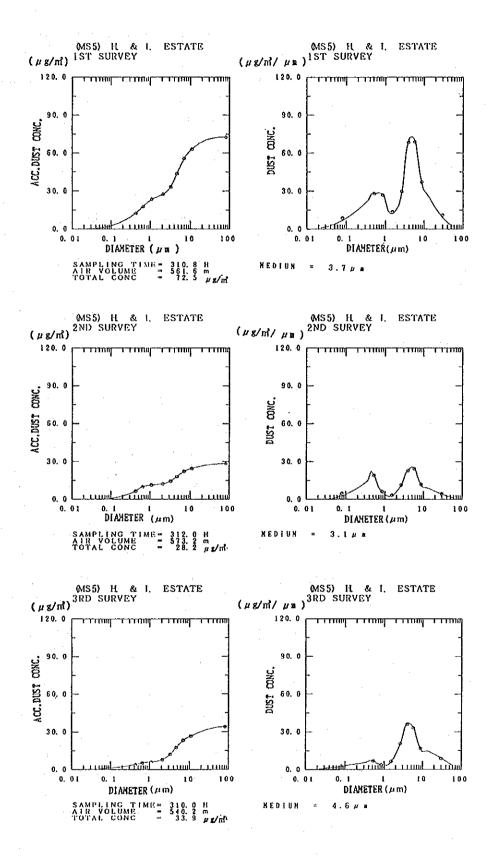


Fig. 2-3(5) Cumulative Concentration and Size Distribution of TSP Measured by Andersen Sampler (MS5)

2.1.3 Comparison of Particulate Matter Concentrations Measured by Different Instruments

Table 2-3 and Fig. 2-4 show the concentration of particulate matter measured by low-volume sampler, Andersen sampler and Beta ray dust analyzer. The data measured by low-volume and Andersen samplers are 13 days average value, and the data measured by Beta ray dust analyzer are hourly values. So in order to adjust the measurement duration, the comparative study was done on measurements by low-volume and Andersen samplers were performed. The concentration measured by Beta ray dust analyzers is averaged using 24 hours data starting from 11 A.M.

The concentration measured by Andersen sampler was slightly higher than the value measured by other instruments. But, when comparison was made between the concentration below the 11 μ m diameter measured by Andersen sampler and the concentration measured by other instruments, there were not significant differences.

Table 2-3 Comparison of Particulate matter Concentrations among Different Instruments

【 First	V1.1			(unit;	u g/m³)					
Vacan		Monitoring station								
neasu	ring instruments					MS 5				
<i>β</i> − r	ay dust analyser	75.8	65.0	75.3	69.1	51.1				
Low-volume	Quartz-fiber filter	62.8	59.4	86.9	73.6	55.5				
sampler	Polyflone filter	66.1	58.2	84.3	66.9	62.1				
Andersen	0~11 µ m	72.7	64.3	90.0	67.5	62.9				
sampler	TOTAL	79.7	70.6	98.0	82.6	72.5				

Second	Survey]			<u> </u>	(unit;	u g/m³)					
Мозон	ring instruments	Monitoring station									
riedau	MS 1	MS 2	MS 3	MS 4	MS 5						
<i>β</i> - r	ay dust analyser	38.5	60.2	65.0	38.0	31.8					
Low-volume	Quartz-fiber filter	34.4	38.1	48.8	38.2	28.0					
sampler	Polyflone filter	36.8	40.1	59.6	38.9	29.6					
Andersen	0~11 µ m	31.7	38.2	45.0	34.1	24.4					
sampler	TOTAL	38.1	41.3	50.5	44.0	28.2					

【 Third	Survey]				(unit;	u g/m³)				
Mongu	ring instruments	Monitoring station								
measu	Measuring instruments			MS 3	MS 4	MS 5				
β- r	ay dust analyser	42.1	30.1	44.6	41.4	27.6				
Low-volume	Quartz-fiber filter	40.0	31.2	38.4	43.3	27.0				
sampler	Polyflone filter	42.7	29.6	41.6	40.7	26.7				
Andersen	0~11 μ m	48.8	29.7	43.9	44.0	26.4				
sampler	TOTAL	54.1	32.7	47.7	53.8	33.9				

Note: The value of TPM concentration measured by Low-volume sampler is calculated by Flow $I\!I$.

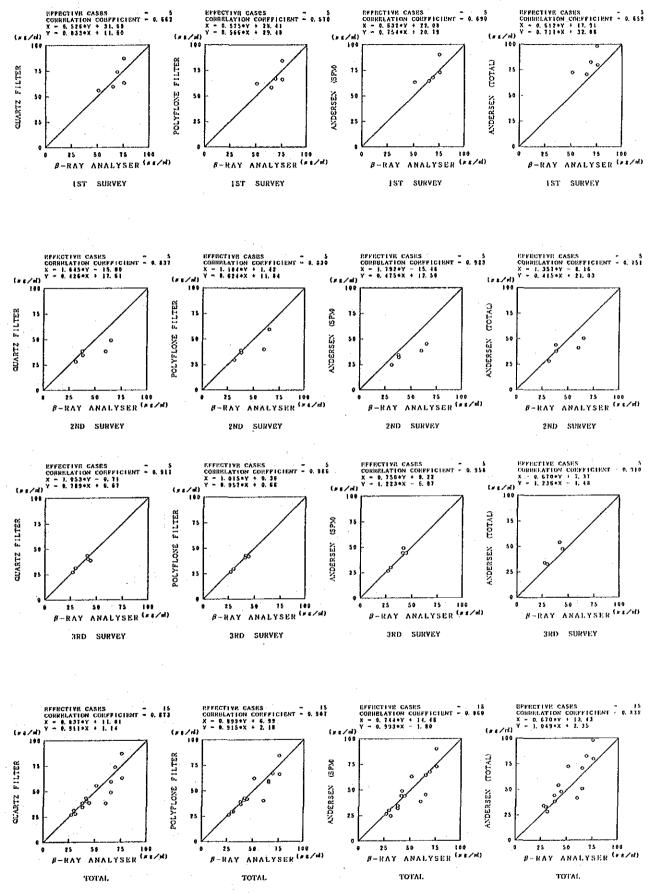


Fig. 2-4 Comparison of Particulate matter Concentrations among Different Instruments

2.2 Relationship between the Meteorological Factors and the Ambient Pollutant Concentrations

The following is the relationship studied between the meteorological factors and the air pollutant concentrations (SO₂, NO₂, NO₃, SPM) during each short term field survey.

2.2.1 Dependence of Air Pollutant Concentration during the Short Term Field Surveys by Wind Directions

Table 2-4 and Fig. 2-5 show average concentrations of air pollutant during the short term field surveys by wind directions. Fig. 2-6 shows wind rose during the short term field surveys. From Fig. 2-6, the dominant wind direction in each field survey is found as follows:

1st survey;

the directions are South and North-East

2nd and 3rd survey;

the direction is South

Table 2-4(1) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Directions

Upper: Average concentration Lower: Data counts

[first survey] Wind directions Upper ; Average concentration Lower ; Number of dala Sta Hes Cala NNE ΝE ENE Ave Lion N MS I (8.7 (3) (11.8 (¹4) (4.0 (2) $\binom{2.7}{(3)}$ (2,6 (33) (18.7 (37) (38) (8.4 (11) (81) (310) (15) (36) (46) HS 2 20.0 (1) (30i) (26)(45) (10.7 (21) (10) 9.9 (16) (37) (96)(38) S 0 z MS 3 $\binom{22.3}{39}$ (44₃3 (45.6 (95) (25) (12,9 (28) (21)3 (3/6) (76) 648 (ppb) KS 4 (12.0 (303) (29) (46) 10.8 (26) 6.3 (16) (37)(93) (39) (jö) NS 5 (17) (10.5 (6) $\binom{26.0}{(i)}$ (^{0,3}) (1)8 (20) (23) (49) 2.1 (235) (13) (14)(21) (48) KS I 8.3 (46) $\binom{22.5}{(31)}$ 11.5 (310) (¹⁷.3) (18,1 (15) (33) (20) (1i) (39) (81) HS 2 (19.0 (1) 20,0 (90) (38) 7.4 (285) (21) (36) (19) (10) 5.3 (16) (37) NO. NS 3 10.9 (16) 33.0 (300) 25.7 (29) 17.1 (38) (37)(8.4 (95) 7.1 (39) (ppb) HS 4 (19,0 (31,0 (24,0 (308) (23.8 (^{18,3} (²⁶⁾ (15.5 (10) (16) (3) (39) (17,5 (83) MS 5 (24.0 (i) (2.3 (4) (23C) $\begin{pmatrix} 3.0 \\ (3) \end{pmatrix}$ (6.6 $\binom{10.4}{(20)}$ (23)(13) (14) (27) (50) (48) KS I (83,0 (310) (59,3) (24.4 (39) (15.4 (172) (37) (⁴⁰,2) (list (39) (10,4 MS 2 12.0 (16) 10.8 (33) (22.0 (1) 14.6 (285) (21.0 (21) 17.0 (36) (15.8 (19) (14.3 (10) (^{15,5} (³⁷) (12.2 (96) NOx NS 3 (15,9 (16) (²³,0 (²⁹i) (35,0 (1) 20.5 (298) (^{43.9} (²⁸⁾ (38) $\binom{27.3}{(24)}$ (35,3)(^{14.9} (³⁷) (95) (39) (opb) NS 4 15.4 (16) 14.8 (39) 52.3 (4) 11.6 (93) (303) 36.0 (45) (25) 33.3 (10) 11.8 (37) KS 5 3.8 (4) $\binom{10,1}{7}$ $\binom{18.4}{(20)}$ (48) (^{15,5} 26_i0 (236) (5,7 (24.7 (13) (14) (27) (50) (3.0 KS I 57.1 (11) (37) (29.9 (15) 87.7 (39) 53.9 (81) 236.0 (2) 75.8 (310) 64.1 (46) 86.1 (20) 46.9 (39) KS 2 105,0 125,0 121,0 259,0 113,9 (47) (%) (200) (81,8 (16) (46,5 (96) (38)(311) (37) SPM HS 3 158,0 (1) 93.0 (i) 145.2 (26) 47.3 (96) 45.8 (38) (33) 71.8 (2i) 132.9 (8) 63.5 (37) (281)(µg HS 4 [21₁] /nf) 113,0 169,0 136,0 234,5 127,3 (316) (%) 109,5 116.5 (57.6) $\binom{37.9}{(31)}$ (^{40,3} (⁹³⁾ (⁴³39) (300) MS 5 $\binom{32.3}{3}$ 27.9 (14) (50)(47)

Table 2-4(2) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Directions

Upper: Average concentration Lower: Data counts

(second survey)

SN WSW		6NV	- W	KSW	2.0 (312)
		_		ĺ	13.6
					(312)
1					46.8 (312)
					(309)
0.5 (10)			<u> </u>		0.4 (31i)
		<u> </u>			(311)
		<u> </u>			(311)
					(3/2)
					(310)
(10)					(310)
					(311)
					(3715
					(3i2)
					(310)
(10)					(310)
					(312)
					(292)
					(312)
					38.0 (312)
(4103					(310)
	204	204	\$69 \$69	\$60 P	\$65 Section 1

(third survey

Ites	Sta-				Wind	directio	ns				Uppe	r ; Ave	age conc	entratio	a l	over ; }	usber of	dala	
Lites	tion	Calm	N	NNE.	NE	ENE	E	ESE	SE	322	S	SSW	5¥	NSW	¥	MAN	NW .	NM	Ave
1	HS 1			(^{3,2} (⁵⁾	(^{1,0}	(6)	(¹ 1)	(16)	(29)	(h)	(3,5	(21)	(%)	(35)	6.8 (16)	(²³ i)		(2 _i)	(310)
so.	HS 2		(^{9,5}	(^{4,0} (²)	(う)	(^{2,3}	(^{4,4} (⁵)	(13.0 (2)	(28)	(^{13.1}	(3.4 (9i)	7.1 (55)	(10.5 (24)	(¹¹ ,7	(7.3 (4)	(²¹ ,0			(3137
	KS 3		(⁶ 2)	(⁴² ,0	(³⁶ ,3	20,8 (*6)	(34,0 (5)	(³⁹ ,0	(24,2	(F)	(^{26.7}	(^{11,2} (54)	(24 3	(¹⁰ 1) ³	(6,8 (4)	(¹² i)			(30s)
(ppb)	HS 4		(2,0 (2)	(2.0 (2)	(^{2,1}	(6)	2.2 (5)	(1.5 (2)	(28)	(1 17	1.8 (91)	4.0 (55)	3.8 (24)	(5.3 (7)	2.0 (4)	(5.0 (i)			2.5 (311)
	₩S 5	(9.7 (14)		0,0 (1°)	(ii)	(8,0	(⁷ ,4 (8)	(17)	(38)	(3i)	(56)	(82)	(8)	(10,2 (14)	(^{11,7} (²²)	(10,0	(⁹ ,3	(11,5 (2)	(310)
	KS I			(10,0 (*5)	(^{11.0}	(6)	(7)	(ie)	(29)	(77)	12.4 (57)	18.5 (27)	20,6 (25)	(^{17,1} (35)	16.4 (16)	23.0 (i)		(17.0	(310)
NO.	HS 2		(7,0 (2)	(^{10,5} (²)	(⁷ 7)	(₁₀ ,3	(⁷ ,4 (⁵)	(10,0 (2)	(28)	(n)	(514 (91)	(56)	(24)	(^{7,9}	(7.3 (4)	(19.0			(3[13
(opb)	KS 3		(2,5 (2)	7.5 (2)	(77	(¹¹ .7	(8,4 (5)	(8.5 (2)	(28)	(4;3	(89)	(54)	(24) ⁵	(⁴ / ₂) ³	(^{2,5}	(15.0 (i)			(308)
G, C,	HS 4	<u>. </u>	(^{3,0} (²)	(⁸ 25	(⁸ / ₂)	(¹⁴ 6)	(8,5 (4)	(⁶ 2)	(2i)	(73)	(88)	(\d{5})	(20)	(8,4 (5)	(e'0	(13,0 (1)			(200)
	HS 5	8.8 (14)		8.0 (i)	(ii)	6,9 (†)	5.8 (8)	(17)	3.1 (38)	(34)	(57)	2.3 (62)	3.4 (18)	(14)	6.3 (22)	10.7 (3)	6.0 (3)	(2) (2)	(311)
	KS 1			(28,6 (5)	(²⁴ ,6	(⁴⁴ ,0 (⁶)	(²⁶ ₁ 3	(26)	(^{11,6}	(1713	(51)	(⁵⁷ 21)	(25)	(35)	(33.5 (16)	86,0 ("i)		(⁴⁴ ,0	(310) (310)
NOx	HS 2		(10.5 (2)	(14.0 (2)	(¹² ,7	(11.8 (6)	(8.8 (5)	(^{12,0} (²)	(^{12,2} (²⁸⁾	(^{19,2}	(9i)	10.8 (55)	14.6 (2i)	(¹² ,6	(11.5 (4)	(30 _i)			(311)
(ppb)	MS 3		(^{10,5}	(20,0 (2)	(36,4	(²⁰ ,8	(25)	(25,5 (2)	(28)	(14,4	(89)	(54)	(24)	(^{8,0}	6.0 (4)	(²³ i)			(308)
4757	MS 4		47.0 (2)	(33.5 (2)	(62.0 (7)	(⁴⁷ .3	37.5 (4)	(37.0 (2)	29.3 (24)	(^{19,6} (⁷³⁾	20.0 (88)	25.0 (45)	(20)	(43.8 (5)	(15.0	(22.0 (1)			24.5 (230)
	KS 5	(18.7 (14)		(1 ⁹ 1)	c ¹ 7i7	(¹⁶)	(⁹ / ₈)	(183	(30)	(3)	(37)	(62)	ીક	(14)	(^{10,6} (²²⁾	(²¹ ,0	(¹³ ,3)	(¹⁷ .0	(3]18
	KS 1			48.0 (5)	(37.5 (8)	59.3 (6)	56.6 (7)	30.8 (16)	23.8 (20)	26.1 (71)	37.0 (58)	61.1 (Zi)	64.6 (25)	(35)	61.0 (16)	(⁷³ .0		(38.0 (1)	(311)
SPM	KS 2		(³⁰ 2)	(³⁷ ,5	(⁴⁹ 1)	(⁴² ,7	(36,4	(³⁹ ,5	(28)	(34,8	(28,4 (9i)	(^{32,7} (⁵⁵)	(^{31.5} (²⁴)	(21,0	26,8 (4)	(³⁶ i)			(31)
(µg	HZ 3		62.5 (2)	(82.5 (°2)	115,9	(81.0	78.6 (5)	(^{70,5} (²)	45.8 (28)	(45,2	(35.6 (90)	(^{42,7} (⁵⁴⁾	40.2 (24)	(⁴³ ,7)	(³⁰ ,5	(86,0 (1)			(309)
/m)	NS 4		(⁴⁷ ,5	(57,5 (2)	(80,4	(70,B	(⁵⁷ ,4	(⁴⁹ ,5	(⁴⁹ .8 (²⁰)	(34)	(30.5 (9i)	51.3 (55)	(21)	(⁶¹ η ⁴	(³⁸ .3	125 ₁ 0			3115
	MS 5	(39.7		(²¹ i)	(29.5	(31.0	(19 ₆ 3	25.6 ('i')	(37)	(35)	(37) (37)	(24.8 (62)	27,5 (18)	35.4 (14)	12.1 (22)	(32,3)	25.7 (°3)	56.5 (2)	27.6 (311)

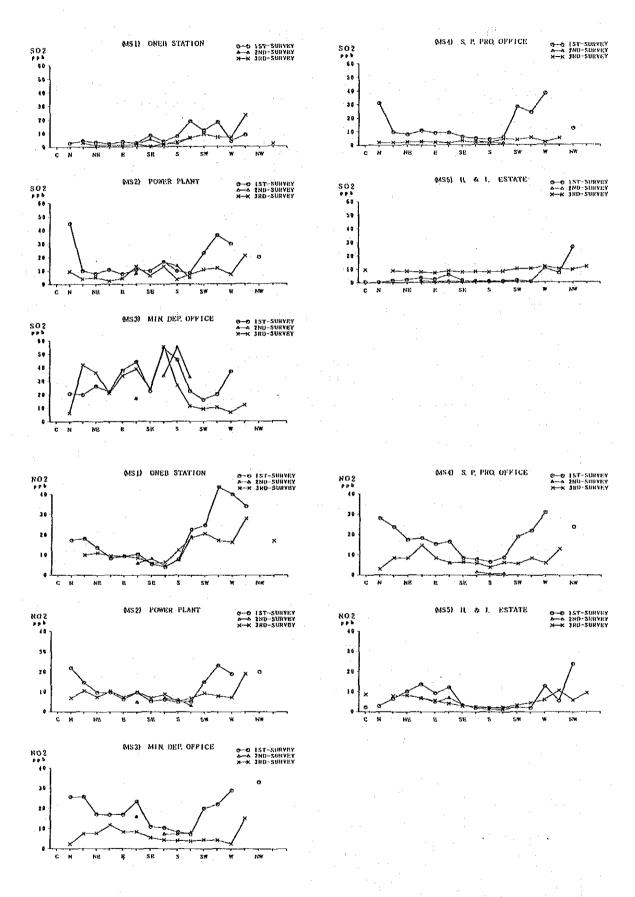


Fig. 2-5(1) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Directions

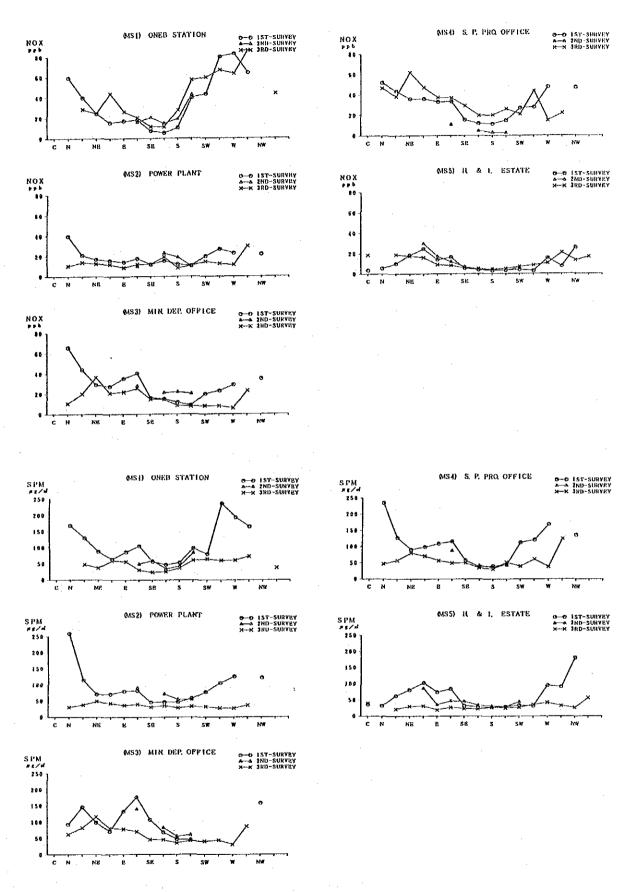


Fig. 2-5(2) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Directions

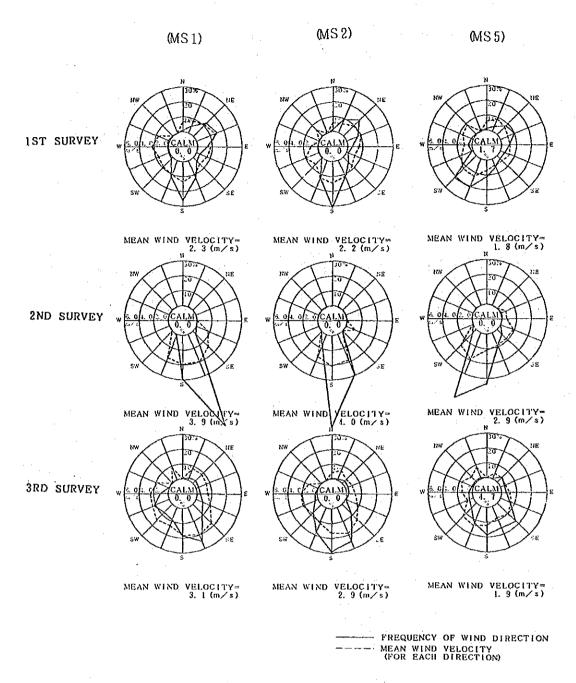


Fig 2-6 Wind Rose during the Short Term Field Surveys

The wind directions which relate to comparatively high concentrations of ambient air pollutants are as described below. As for MS3 and MS4, however, wind direction and velocity were not monitored and thus the wind directions of MS3 and MS4 were thought to be same as that of MS2. It is because the correlation coefficients of wind direction and wind velocity vectors among all of MS1, MS2 and MS5 are sufficiently high. Hence, the meteorological conditions in this target area were thought nearly identical as discussed in Chapter 1.1.5. The wind direction and velocity at MS3 and MS4 were thus chosen the same as those of MS2 which located in close proximity to MS3 and MS4.

(1) SO₂

(1) MS1

Pollutant concentration was found higher when wind maintains SSW-NNW direction, which is thought attributable to the effect of Sukhumvit road.

(2) MS2

Comparatively high concentration observed when the wind direction is SW-WNW is thought caused by scattered factories to the south-west of MS2.

(3) MS3

Observed high concentration in the NNE-E~S wind is thought caused by steel works, food processing plants and vessels navigating the Chao Phraya river.

(4) MS4

The station observed a high concentration in SW-W wind probably caused by navigating vessels.

(5) MS5

No notable concentration increase was observed except an insignificantly high value in NW wind.

(2) NO_2 , NO_x

(1) MS1

Appreciably high values of both NO₂ and NO_x in SSW-NNW wind are thought caused by the Sukhumvit roadway as such is the case with SO₂.

(2) MS2

The higher concentration of nitric oxides, more pronouncedly in NO₂ content than in NO_x, was observed in the wind direction of SW-WNW.

(3) MS3

A higher concentration of NO_x (the same as SO_2) was observed in the wind direction of NNE-E-S, while NO_2 maintains high values in all directions except $SE \sim S \sim SW$.

4 MS4

Both NO_2 and NO_x content maintain high values in the wind direction of SSW~N~ESE and do not comply with the wind direction in which SO_2 keeps high values. Such high values of NO_2 and NO_x may be attributed to the influence coming from Route 3115 and Sukhumvit roadways in Samut Prakarn.

(5) MS5

Values were observed somewhat higher in the wind direction of NE~ESE but the concentration level itself remains comparatively low.

(3) SPM

The wind direction in which the SPM concentration reads a high value agrees with that of the high NO_x value, which may suggest that sources for both pollutants are identical.

2.2.2 Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Velocity Ranks

Table 2-5 and Fig. 2-7 show the dependence of air pollutant concentration during each short term field survey on seven wind velocity ranks. The results show the common trend that, except for SO_2 concentration at MS3, the air pollutant concentration becomes lower when wind velocity gets higher. The exception case is probably due to the reason that there is a plant emitting conciderably large volume of SO_2 around MS3, and when wind velocity was about 3 m/s, the maximum concentration C_{max} appeared near MS3.

Table 2-5(1) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Velocity Ranks

						(f	irst sur	vey l
·	Sta-			Wind	velocity	ranks		
Item	tion	0.0	0.5	1.0	2.0	3.0	5.0a/s	Ave
	11011	~ 0.4	~ 0.9	~ 1.9	~ 2.9	~ 4.9	over	
	MS 1		(22)	(93)	8.4 (136)	(36)	(¹ .3)	(310)
SO _z	MS 2		16.8 (24)	13.0 (105)	10.2 (95)	(7.0 (77)		10.9 (301)
(ppb)	HS 3		(³¹ .6 (²⁰)	(31.3 (98)	(88)	(^{32, 9} (⁷⁴⁾		(35 ₀ 5 (280)
(660)	MS 4		12.7 (24)	9.2 (106)	5.5 (95)	4.3 (83)		7.0 (308)
4, 1	MS 5	0.8 (4)	2.8 (49)	(90)	(62)	(30)		(235)
,	MS 1		13.1 (22)	13.0 (93)	13.2 (136)	5.0 (56)	3.0 (3)	(310)
ΝOz	MS 2		(¹⁴ .6 (²²)	(10.2 (97)	(5.7 (92)	(3.6 (74)		7.4 (285)
(ppb)	MS 3		24.1 (24)	18.2 (106)	10.4 (9i)	5.8 (79)		13.0 (300)
(PP)	MS 4		(^{21,2} (²⁴⁾	(106)	(95)	(83)		12.3 (308)
	HS 5	(4)	9.9 (49)	6.1 (89)	2.7 (64)	1.5 (30)		5.3 (236)
	MS 1		(30.2 (22)	26.3 (93)	(136) 20,0	(56)	(4,0 (3)	20 1 (310)
NOx	MS 2		24.5 (22)	17.3 (97)	(92)	(^{11,1} (⁷⁴⁾		14.6 (285)
(ppb)	MS 3		(⁴⁸ .0 (²³)	(105)	(¹⁴ .3 (⁹ i)	(79)		(298) (298)
(,,,,	HS 4		44.5 (24)	30.7 (106)	16.1 (95)	(¹⁴ .2 (⁸³)		22.8 (308)
,	MS 5	(3.8 (4)	15.6 (49)	(^{10,0}	(64)	(30)		8.6 (236)
	MS 1		(118.8 (22)	101.3 (93)	68.6 (136)	37.1 (56)	(²⁴ .3 (³)	75.8 (310)
SPM	MS 2		129.6 (24)	89.3 (108)	49.5 (97)	32.4 (82)		65.0 (311)
(μg	MS 3		166.6 (20)	105.1 (97)	58.9 (87)	(34,1 (80)		75.3 (284)
/㎡)	MS 4		140.7 (24)	96.5 (106)	44.1 (95)	41.8 (83)		69.1 (308)
	MS 5	35.8 (4)	69.6 (49)	57.4 (90)	37.4 (63)	27.8 (30)		50.5 (236)

[Note

Upper; Average concentration

Lower: Number of data

Table 2-5(2) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Velocity Ranks

F-4	-	80.4	2	3.8	(31i)	(388)	$\begin{pmatrix} 2.5\\ (311) \end{pmatrix}$	(310)	(316)	(3[1]3	(308)	(%) (%)	33.8	3306	(311)	(308)	22 280 280 5	(3115)	(311)	(321)	(303)	(311)	(311)	data
[third survey]		5.0m/s	over	(23)	(617)	(⁴⁵ 95)	(61.)		(23)	(8 6 (19)	(81)	(183		(83)	(21.5) (-1.9)	(10.6 (13.5)	(21,5		19.8	(372,8	33.4	(36,7	<u> </u>	Lower; Number of data
Cthir	ranks		~ 4.9	(130)	(126)	(225)	(126)	(48)	(130)	(126)	(125)	(112)	(48)	(130)	14.0 (126)	(125)	(112)	(48)	30.4 (131)	(38.9	37,4 (125)	(321)	(^{21,5} (48)	Lower: N
	velocity ra	0 3.0	2.9	5.0	743	(2/2)	(2.6	825	(15,4	(54)	(42)	(§5)	(93)	(45,9)	(74)	(22)	(23.9	(§3)	(278)	(25 ₁ .6	(33,3	(40.3	(24.0	ue
ĺ	Wind vel	1.0 2.0	7.9 ~	$\begin{pmatrix} 5_10 \\ 7_1 \end{pmatrix}$	(35)	(16.5)	(75)	(1825)	(^{13.8})	(854	(55)	(88)	3.8 (102)	(⁴⁸ i§	(12.8	(¹³ ,5)	(88)	(1025	(⁶⁰ ,7	(49,5)	(275)	(51°)	(102)	Upper; Average concentration
			€.0	(11 ₂)	(17)	$\frac{32}{17}$	3.2	(54)	(10,5	(17)	(1,19	(37)	(54)	(552)	(11,6	$\binom{23}{17}$	(28.2	(12,1	(2,0)	(⁴⁵ 7}	(11,8)	(84,4	(35,4	rage con
		0.0 0.5	. 0.4					(14)					(14)					(14)					(39.7	per : Ave
		Ц.,	~	MS 1	MS 2	MS 3	MS 4	MS 5	MS 1	MS 2	MS 3	MS 4	MS 5	Æ 1	XS 2	. WS 3	MS 4	AS 5	¥3 1	MS 2	AS 3	#S 4	MS 5	นี้ก
		Item				· i	<u> </u>		لـــــــا			 3 4		1		, 4 2, 2	<u>}</u>			ر خ م م		ÎE		[Note]
•															٠									
ey]		414		(312)	13.6	312)	(309)	(311)	(311)	(311)	(312)	(310)8	(310)	(311)	(311)	(312)	(310)	(310)	38.5 (312)	(582)	(312)	(312)	31.9 (310)	data
nd survey]		<u></u>		\$07 (312)	14.9 13.6 35) (312)	41,9 (312) 35) (312)	35 (309)	28) (311)	4.5 5.6 49) (311)	\$49 (311)	35, (312)	35) (310)	(27) (310)				(35) (310)	(27) (310)				(35) (312)		umber of data
[second survey]	nks	5.0m/s	4.9 over	(303	14,9	(41,9	(35)	(285	(49)	(34)	(35)	(35)	(27,5	(223) (149) (311)	(248) (34) (31)	(248) (295) (312)			$\begin{pmatrix} 37.4 \\ (223) \end{pmatrix} \begin{pmatrix} 30.7 \\ (50) \end{pmatrix} \begin{pmatrix} 38.5 \\ (312) \end{pmatrix}$	(232) (55,4) (292)			30.9 28.3 31.9 (105) (28) (310)	Lower; Number of data
	locity ranks	3.0 5.0m/s	2.9 ~ 4.9 over	ļ			ļ						ļ	(65,1)	(20.5 (34)	(20,5)	355	3,2	(30,7	(35,1	50.8	(35)	28.3	
	Wind velocity ranks	2.0 3.0 5.0m/s	~ 4.9 over	(223) (50]	13.8 (248) (35)	(248) (41,9 (248) (35)	(245) (35)	(105) (28)	(223) (4.5	(248) (34)	(248) (35)	(247) (35)	(105) (27)	(223) (149)	(248) (34)	(248) (285)	(247) (35)	(105) (37)	$\begin{pmatrix} 37.1 \\ (223) \end{pmatrix} \begin{pmatrix} 30.7 \\ 50.5 \end{pmatrix}$	(232) (55 ₅ 1	62,3 (248) (35)	(248) (35)	30.9 28.3 (105) (28)	tration
	1 velocity	5 1.0 2.0 3.0 5.0m/s	2.9 ~ 4.9 over	(253 (223) (50)	37 (26) (248) (14.9	(36,5 (248) (41,9) (35)	(26) (245) (35)	3 (98) (185) (285	(25) (523) (45)	(26) (248) (34)	$\begin{pmatrix} 8.8 \\ 26.9 \end{pmatrix} \begin{pmatrix} 7.4 \\ (248) \end{pmatrix} \begin{pmatrix} 6.4 \\ 35.9 \end{pmatrix}$	(25) (247) (35)	7 (188) (105) (27)	(125) (223) (149)	$\begin{pmatrix} 23.2 & 19.2 & 20.5 \\ (26) & (248) & (34) \end{pmatrix}$	3 (226) (248) (285)	(25) (27) (35)	9 (38) (105) (37)	9 (525) (323) (3507	3 (522) (532) (535)	3 105.7 62.3 50.8 (26) (248) (35)	33 (426) (348) (35)	30,2 30,9 28,3 (97) (105) (28)	tration
	1 velocity	0.5 1.0 2.0 3.0 5.0m/s	$ 9 \sim 1.9 \sim 2.9 \sim 4.9 $ over	(33) (25) (223) (50]	37 (26) (248) (14.9	(36,5 (248) (41,9) (35)	(26) (245) (35)	(87) (88) (108) (28)	$\begin{pmatrix} 9.1 \\ 13 \end{pmatrix}$ $\begin{pmatrix} 7.9 \\ 25 \end{pmatrix}$ $\begin{pmatrix} 5.4 \\ 223 \end{pmatrix}$ $\begin{pmatrix} 4.5 \\ 49 \end{pmatrix}$	(26) (248) (34)	$\begin{pmatrix} 8.8 \\ 26.9 \end{pmatrix} \begin{pmatrix} 7.4 \\ (248) \end{pmatrix} \begin{pmatrix} 6.4 \\ 35.9 \end{pmatrix}$	(25) (247) (35)	$(\frac{1}{67})$ $(\frac{1}{98})$ $(\frac{1}{27})$ $(\frac{1}{27})$	$\binom{2135}{135}$ $\binom{1251}{255}$ $\binom{149}{223}$	$\begin{pmatrix} 23.2 & 19.2 & 20.5 \\ (26) & (248) & (34) \end{pmatrix}$	3 (226) (248) (285)	(25) (27) (35)	(\$7) (\$8) (\$31)	$\begin{bmatrix} 64_{13} \\ 133 \end{bmatrix} \begin{bmatrix} 50_{13} \\ 253 \end{bmatrix} \begin{bmatrix} 37_{23} \\ 223 \end{bmatrix} \begin{bmatrix} 30_{17} \\ 50 \end{bmatrix}$	3 (522) (532) (535)	3 105.7 62.3 50.8 (26) (248) (35)	33 (426) (348) (35)	(33.1 (30.2 30.9 (28.3 (57) (105) (28)	tration
	Wind velocity	5 1.0 2.0 3.0 5.0m/s	$ \sim 0.4 \sim 0.9 \sim 1.9 \sim 2.9 \sim 4.9 $ over	(33) (25) (223) (50]	37 (26) (248) (14.9	(36,5 (248) (41,9) (35)	(26) (245) (35)	(87) (88) (108) (28)	$\begin{pmatrix} 9.1 \\ 13 \end{pmatrix}$ $\begin{pmatrix} 7.9 \\ 25 \end{pmatrix}$ $\begin{pmatrix} 5.4 \\ 223 \end{pmatrix}$ $\begin{pmatrix} 4.5 \\ 49 \end{pmatrix}$	(26) (248) (34)	$\begin{pmatrix} 8.8 \\ 26.9 \end{pmatrix} \begin{pmatrix} 7.4 \\ (248) \end{pmatrix} \begin{pmatrix} 6.4 \\ 35.9 \end{pmatrix}$	(25) (247) (35)	$(\frac{1}{67})$ $(\frac{1}{98})$ $(\frac{1}{27})$ $(\frac{1}{27})$	$\binom{2135}{135}$ $\binom{1251}{255}$ $\binom{149}{223}$	$\begin{pmatrix} 23.2 & 19.2 & 20.5 \\ (26) & (248) & (34) \end{pmatrix}$	3 (226) (248) (285)	(25) (27) (35)	(\$7) (\$8) (\$31)	$\begin{bmatrix} 64_{13} \\ 133 \end{bmatrix} \begin{bmatrix} 50_{13} \\ 253 \end{bmatrix} \begin{bmatrix} 37_{23} \\ 223 \end{bmatrix} \begin{bmatrix} 30_{17} \\ 50 \end{bmatrix}$	3 (522) (532) (535)	3 105.7 62.3 50.8 (26) (248) (35)	33 (426) (348) (35)	(33.1 (30.2 30.9 (28.3 (57) (105) (28)	

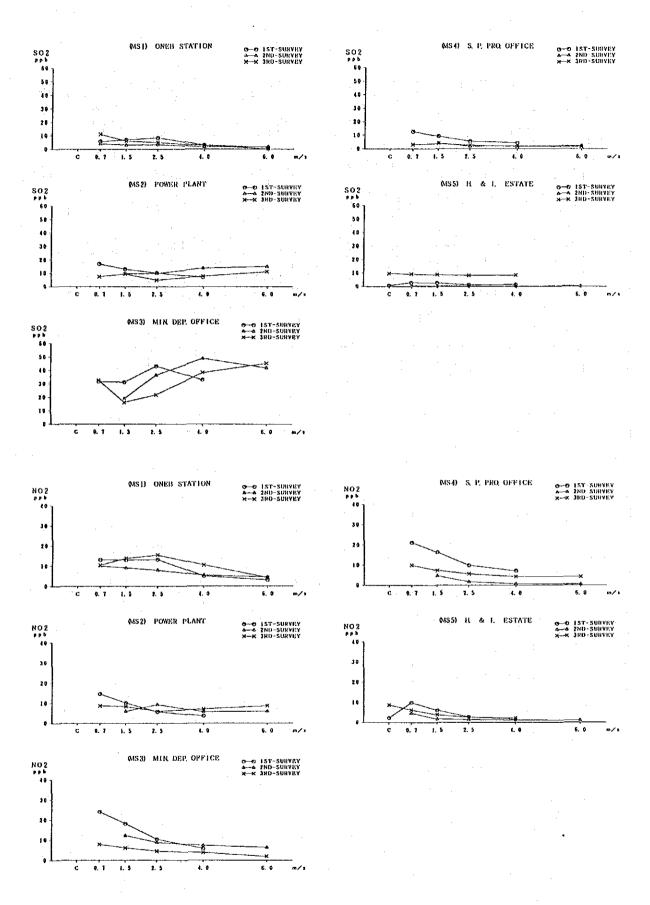


Fig. 2-7(1) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Velocity Ranks

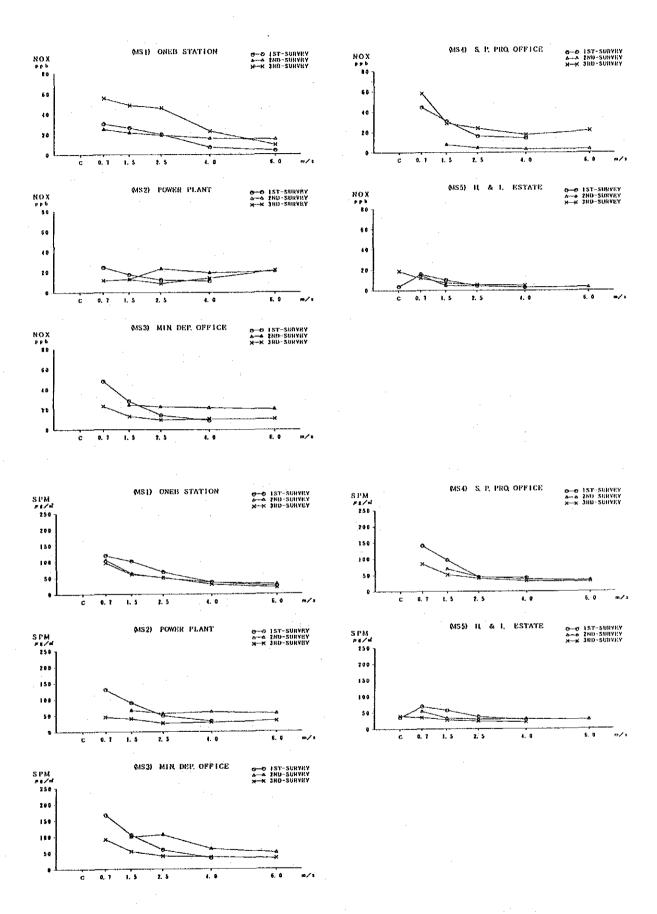


Fig. 2-7(2) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Wind Velocity Ranks

2.2.3 Dependence of Air Pollutant Concentration during the Short Term Field Survey on Atmospheric Stability

The atmospheric diffusion depends strongly on atmospheric stability. And the ground level concentration is strongly influenced by diffusion conditions. Generally, when the distance between the location of emission sources and monitoring station is not large, the concentration gets higher when the atmospheric condition is unstable than when it is stable. Table 2-6 and Fig. 2-8 show the dependence of air pollutant concentration during the short term field survey on atmospheric stability. The results do not clearly show the relationship between air pollutant concentration and atmospheric stability except for SO₂ concentration at MS3. SO₂ concentration in MS3 is higher in a stable condition than in an unstable one. This trend can be seen in each field survey.

Table 2-6(1) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Atmospheric Stability

								survey)	
Item	Sta-	Calm	5.4			ability	·		Ave
	tion		A	В	С	D	E	F	
	MS 1		(²³ i)	(76)	(35)	(29)	(3,3 (17)	(152)	(310)
S 0 2	HS 2			7.6 (73)	6.6 (34)	9.5 (28)	9.6 (28)	14.2 (138)	(30i)
(ppb)	MS 3			(²¹ ,8 (⁶⁷)	(^{26,3} (³²⁾	(37.3 (26)	(⁴⁹ .7 (²⁸)	(121) (121)	(35.5 (280)
(140)	KS 4			5.6 (75)	5.5 (36)	(* 28)	3.9 (28)	(141)	7.0 (308)
	₩S 5	0,8 (4)	:	(59)	(25)	(2i)	(13)	(113)	(235) (235)
	MS 1		(¹⁰ .0	6.5 (76)	7.8 (35)	13.5 (29)	(17)	15.1 (152)	11.5 (310)
NO ₂	MS 2			(⁵ i}	(32) ⁹	(⁷ 6)	(28)	(128)	7.4 (285)
(ppb)	₩S 3			(7i)	8.6 (34)	12.8 (28)	(28)	17.2 (139)	13.0 (300)
(1707)	MS 4			(¹⁰ ,6 (⁷ 5)	10.1 (36)	(^{14,3} (²⁸⁾	5.5 (28)	(1416 (141)	(308)
	MS 5	(2.3 (4)		(60)	4.2 (25)	6.6 (21)	3.5 (13)	6.5 (113)	5.3 (236)
•	MS 1		(¹² ,0	9.8 (76)	13.1 (35)	(³² .7 (²⁹)	(12.0 (17)	25,5 (152)	20.1 (310)
NOx-	MS 2			(¹² .4 (7i)	12.6 (32)	17.3 (26)	(28)	16.5 (128)	14.6 (285)
(ppb)	MS 3	·		(¹² 18)	(¹⁵ .1 (³⁴)	(²⁹ .6 (²⁸)	13.2 (28)	25,5 (137)	20.5 (298)
(990)	MS 4			19.6 (75)	20.5 (36)	35.6 (28)	10.4 (28)	25.1 (141)	22.8 (308)
	MS 5	(³ 4) ⁸		(50) ⁷	7.0 (25)	(¹³ .5 (² 1)	(73 ⁶	(113)	(236)
	MS I		(⁸⁴ .0 (¹)	50.5 (76)	53.3 (35)	92.0 (29)	58.8 (17)	92.5 (152)	75.8 (310)
SPM	MS 2			- (⁴³ .4 (⁷ 9)	47.9 (35)	68.3 (28)	(37.9 (28)	86.1 (141)	65.0 (311)
(µg	MS 3			51.1 (68)	49.0 (34)	87.4 (27)	49.1 (28)	98.5 (127)	75.3 (284)
/m/)	MS 4			(55.1 (75)	55.6 (36)	(87.7 (28)	40.0 (28)	82.0 (141)	(308)
	MS 5	35.8 (4)		40.8 (59)	48.4 (25)	68.5 (22)	39.2 (13)	54.3 (113)	50.5 (236)
()	iote)	Uppe	r: Avera	ge conce	ntration	Lo	wer; Num	ber of d	ata

Table 2-6(2) Dependence of Air Pollutant Concentration during the Short Term Field Survey on Atmospheric Stability

ſ	Ave	,	(310)	(311)	(308)	(311)	(310)	(310)	(311)	(308)	(280)	(311)	33.6 (310)	(311)	(308)	(24.5 (280)	(31i)	(311)	(311)	(30g) (30g)	$\frac{41.5}{(311)}$	(311)
Survey		ſx,	(31)	306	(30)	(30)	(2,8)	(1318	(30)	(30)	(30)	(325	(45.8 (31)	(12,4	(11,1	(30)	(42)	$\binom{49.5}{31}$	30,0	60g)	(47,1	5 (2886 (342) (
third survey	at windy	ш	(88)	(25)	(25.4	(26)	(109)	(13.8)	(35)	(515	(81)	(1095	(43.7 (88)	(25)	(18.0	(31,3	(109)	(88)	32.3	(533)	(47.7	(108)
		Ω	(26)	(184)	(47,4	(84)	(28)	(25)	(84)	(840)	5.8	3.5	$\binom{21.0}{92}$	(1843)	(14.7	. (24.6	(28)	(292)	35.1	(45,7)	41.9	(229)
	Atmospheric stability	ပ	(\$i}	(48)	(25,9	(28)	(45)	(151)	(48)	(3,6	(43)	(45)	(51)	(12.2	9.9	(243)	5.8	(42,8)	31.0	(36.9)	(48)	(26,3
	A CEOSph	В	(5,0	(3,3	(35,)	(57)	(72)	(16,9)	(57)	3,4	(49)	(73)	(35.2	(10,5	(36)	(17.7)	(73)	$\binom{47}{48}$	(55.9	(3g _E)	31.8	(243)
		4																				[47] (243) (255)
		,					(14)					(14)					(18.7					~
	Sta-	tion	¥S 1	£ 2	MS 3	MS 4	MS 5	MS 1	MS 2	AS 3	#S 4	AS 5	.E.	₹ 2	¥S 3	AS 4	MS 5	MS 1	MS 2	MS 3	MS 4	Æ 5
	1,00			Ċ	2 (46)	044			2	~ 3 2 3 3 4	(odd)			2		(odd)			200	8 3)	Ê/	
														:								
														:								
[ve]	Ave	>	(312)	(312)	(312)	(308)	(311)	(311)	(3[1]	(3[2]	(310)8	(310)	(311)	19.6	(312)	(310)	(310)	38.5	3 (292)	(312)	38.0	3 (310)
nd survey]		je,	(26)	(22)	(32,5)	(22)	(131)	(36)	9.8	(22)	(21)	(1315	(18:1	(22,6	(22.5	(21)	(131)	(526)	(52.8	(525)	(42.9	9 (331) (310)
(second	at windy	-	(127) (26)	(131) (32)	(131) (37.4	(125) (22)	(37) (131)	(127) (26)	(131) (22)	(131) (22)	(130) (21)	(37) (1315	(127) (18.1	(131) (225)	(131) (22.5	(130) (21)	(37) (131)	(127) (51,1	(120) (52.8 (120) (18)	(1316) (322)	(131) (42.9	(38,9 (331)
(second	ty at windy	ſt.,	(26)	(22)	(32,5)	(28) (29) (22)	$\begin{pmatrix} 0.6 \\ 34 \end{pmatrix} \begin{pmatrix} 0.2 \\ 37 \end{pmatrix} \begin{pmatrix} 0.3 \\ 131 \end{pmatrix}$	(36)	9.8	(48) (131) (22)	(48) (130) (21)	(1315	(141) (121) (181)	(20,5 (131) (22,5 (22)	$\begin{pmatrix} 22.1 & 24.6 & 22.5 \\ 48) & (131) & (22) \end{pmatrix}$	(48) (130) (21)	(34) (37) (131)	$\begin{pmatrix} 4_1, 4 \\ 4_7, 4 \end{pmatrix}$ $\begin{pmatrix} 36, 16 \\ 127, 6 \end{pmatrix}$ $\begin{pmatrix} 51, 16 \\ 126, 6 \end{pmatrix}$	$\begin{pmatrix} 70.1 & 64.2 \\ 48) & (120) & (18) \end{pmatrix}$	(528) (131) (923)	(46) 36,9 (42,9) (22)	(334) (337) (331)
(second	ty at windy	E E	$\begin{pmatrix} 2.3 \\ 66 \end{pmatrix} \begin{pmatrix} 2.7 \\ 47 \end{pmatrix} \begin{pmatrix} 127 \\ 127 \end{pmatrix} \begin{pmatrix} 2.7 \\ 26 \end{pmatrix}$	$\binom{10.5}{55}$ $\binom{15.4}{48}$ $\binom{15}{131}$ $\binom{9.2}{22}$	48) (131) (323)	(125) (22)	$\begin{pmatrix} 0.6 \\ 34 \end{pmatrix} \begin{pmatrix} 0.2 \\ 37 \end{pmatrix} \begin{pmatrix} 0.3 \\ 131 \end{pmatrix}$	(127) (26)	(131) (22)	(131) (22)	(130) (21)	(37) (1315	(127) (18.1	(131) (225)	(131) (22.5	(130) (21)	(37) (131)	(127) (51,1	$\begin{pmatrix} 54.3 & 70.1 & 64.2 & 52.8 \\ 54) & (48) & (120) & (18) \end{pmatrix}$	(585) (6286) (1316) (923)	(131) (42.9	(334) (337) (331)
(second	at windy	D E F	(27) (127) (26)	$\binom{10.5}{55}$ $\binom{15.4}{48}$ $\binom{15}{131}$ $\binom{9.2}{22}$	(448) (131) (323)	(28) (29) (22)	$\begin{pmatrix} 0.6 \\ 34 \end{pmatrix} \begin{pmatrix} 0.2 \\ 37 \end{pmatrix} \begin{pmatrix} 0.3 \\ 131 \end{pmatrix}$	(21} (127) (26)	(48) (131) (22)	(48) (131) (22)	(48) (130) (21)	(34) (37) (1315	(141) (121) (181)	(20,5 (131) (22,5 (22)	$\begin{pmatrix} 22.1 & 24.6 & 22.5 \\ 48) & (131) & (22) \end{pmatrix}$	(48) (130) (21)	(34) (37) (131)	$\begin{pmatrix} 4_1, 4 \\ 4_7, 4 \end{pmatrix}$ $\begin{pmatrix} 36, 16 \\ 127, 6 \end{pmatrix}$ $\begin{pmatrix} 51, 16 \\ 126, 6 \end{pmatrix}$	$\begin{pmatrix} 70.1 & 64.2 \\ 48) & (120) & (18) \end{pmatrix}$	(528) (131) (923)	(46) 36,9 (42,9) (22)	(334) (337) (331)
(second	ty at windy	CDEF	$\begin{pmatrix} 2.3 \\ 66 \end{pmatrix} \begin{pmatrix} 2.7 \\ 47 \end{pmatrix} \begin{pmatrix} 127 \\ 127 \end{pmatrix} \begin{pmatrix} 2.7 \\ 26 \end{pmatrix}$	$\binom{10.5}{55}$ $\binom{15.4}{48}$ $\binom{15}{131}$ $\binom{9.2}{22}$	(25) (448) (651) (323)	(55) (285 (129) (22)	(39) (34) (37) (131)	(85) (81) (121) (26)	(54) (48) (131) (22)	(55) (48) (131) (22)	(55) (48) (130) (21)	(38) (34) (37) (1315	$\begin{pmatrix} 17,6 \\ 65 \end{pmatrix} \begin{pmatrix} 17,1 \\ 47 \end{pmatrix} \begin{pmatrix} 18,1 \\ 127 \end{pmatrix} \begin{pmatrix} 18,1 \\ 26 \end{pmatrix}$	(154) (285 (2313) (225)	(18.9) (22.1) 24.6 (22.5) (55) (48) (131) (22.5)	(55) (48) (20) (21)	(38) (4.6 (37) (131)	$\begin{pmatrix} 38.2 \\ 66. \end{pmatrix} \begin{pmatrix} 41.4 \\ 47. \end{pmatrix} \begin{pmatrix} 36.5 \\ 127. \end{pmatrix} \begin{pmatrix} 51.1 \\ 26. \end{bmatrix}$	$\begin{pmatrix} 54.3 & 70.1 & 64.2 & 52.8 \\ 54) & (48) & (120) & (18) \end{pmatrix}$	(585) (6286) (1316) (923)	(41,7) (40,5 36,9 (42,9) (55) (131) (22)	(334) (337) (331)
(second	ty at windy	A B C D E F	$\begin{pmatrix} 2.3 \\ 66 \end{pmatrix} \begin{pmatrix} 2.7 \\ 47 \end{pmatrix} \begin{pmatrix} 127 \\ 127 \end{pmatrix} \begin{pmatrix} 2.7 \\ 26 \end{pmatrix}$	$\binom{10.5}{55}$ $\binom{15.4}{48}$ $\binom{15}{131}$ $\binom{9.2}{22}$	(25) (448) (651) (323)	(55) (285 (129) (22)	(39) (34) (37) (131)	(85) (81) (121) (26)	(54) (48) (131) (22)	(55) (48) (131) (22)	(55) (48) (130) (21)	(38) (34) (31)	$\begin{pmatrix} 17,6 \\ 65 \end{pmatrix} \begin{pmatrix} 17,1 \\ 47 \end{pmatrix} \begin{pmatrix} 18,1 \\ 127 \end{pmatrix} \begin{pmatrix} 18,1 \\ 26 \end{pmatrix}$	(154) (285 (2313) (225)	(18.9) (22.1) 24.6 (22.5) (55) (48) (131) (22.5)	(55) (48) (20) (21)	(38) (4.6 (37) (131)	$\begin{pmatrix} 38.2 \\ 66. \end{pmatrix} \begin{pmatrix} 41.4 \\ 47. \end{pmatrix} \begin{pmatrix} 36.5 \\ 127. \end{pmatrix} \begin{pmatrix} 51.1 \\ 26. \end{bmatrix}$	$\begin{pmatrix} 54.3 & 70.1 & 64.2 & 52.8 \\ 54) & (48) & (120) & (18) \end{pmatrix}$	(585) (6286) (1316) (923)	(41,7) (40,5 36,9 (42,9) (55) (131) (22)	(339) (334) (337) (331)
(second	Atmospheric stability at windy	A B C D E F	$\begin{pmatrix} 2.3 \\ 66 \end{pmatrix} \begin{pmatrix} 2.7 \\ 47 \end{pmatrix} \begin{pmatrix} 127 \\ 127 \end{pmatrix} \begin{pmatrix} 2.7 \\ 26 \end{pmatrix}$	$\binom{10.5}{55}$ $\binom{15.4}{48}$ $\binom{15}{131}$ $\binom{9.2}{22}$	(25) (448) (651) (323)	(55) (285 (129) (22)	(39) (34) (37) (131)	(85) (81) (121) (26)	(54) (48) (131) (22)	(55) (48) (131) (22)	(55) (48) (130) (21)	(38) (34) (31)	$\begin{pmatrix} 17,6 \\ 65 \end{pmatrix} \begin{pmatrix} 17,1 \\ 47 \end{pmatrix} \begin{pmatrix} 18,1 \\ 127 \end{pmatrix} \begin{pmatrix} 18,1 \\ 26 \end{pmatrix}$	(154) (285 (2313) (225)	(18.9) (22.1) 24.6 (22.5) (55) (48) (131) (22.5)	(55) (48) (20) (21)	(38) (4.6 (37) (131)	$\begin{pmatrix} 38.2 \\ 66. \end{pmatrix} \begin{pmatrix} 41.4 \\ 47. \end{pmatrix} \begin{pmatrix} 36.5 \\ 127. \end{pmatrix} \begin{pmatrix} 51.1 \\ 26. \end{bmatrix}$	$\begin{pmatrix} 54.3 & 70.1 & 64.2 & 52.8 \\ 54) & (48) & (120) & (18) \end{pmatrix}$	MS 3 (45.8 (53.6) (62.8 (13.16 (92.2)	(41,7) (40,5 36,9 (42,9) (55) (131) (22)	(334) (337) (331)