residential and commercial purposes. For safety against flood, reckless development in the riparian area should be suitably controlled by the Municipality. In particular, any changing of the channel section or construction along the river course requires assessment of its influence on flood conditions.

Mining ponds have natural storage functions in mitigating flood peak discharge. Thus it is recommended to retain the ponds as they are to avoid unanticipated disasters in future.

(2) Flood Forecasting and Warning System

At Phuket airport, a radar raingauge will be operated soon. The detailed specification such as type of equipment, accuracy and coverage of area etc. has not yet been confirmed by the Study Team. This station is managed by the Meteorological Department.

It is noted that the radar rainfall data would be very helpful for forecasting of rainfall in the Bang Yai river basin. It may be possible to forecast floods by a flood forecasting system for the Phuket municipality. The system is composed of a data collection system, data management system, analysis system and data dissemination system. All systems are functioned by computer and telecommunication network.

Even if a flood exceeding design flood attacks the municipality, the system could give time for the citizens to fight the flood and to escape under the guidance of executing agencies of flood forecasting.

8.6 Hydraulic Condition of Bridges over Bang Yai River

Replacement of the bridges in the Municipality is recommended in the Chapter 8.2 to mitigate local floods from the residual basin. In response to the request of the Phuket Municipality to review the necessity of the replacement of bridges, flow conditions at bridges were restudies by non-uniform calculation using cross sections of bridges which are prepared by the Phuket Municipality.

As a result, water surface of the probable floods which are more than 5 year flood will exceed the bottom elevation of bridge girder at three bridges, Pra-Aram, Phang Nga and Toan pradit bridges as shown in Annex Fig. 8.1. Therefore it is recommended to reconstruct such bridges. As for other bridges, freeboard of Phoonphol, Taling Chang and Thepkrasattri bridges is less than 50 cm. It is recommended to study the necessity of the replacement of these bridges in more detail at the detailed design stage.

CHAPTER 9
ORGANIZATION

CHAPTER 9 : ORGANIZATION

9.1 Executing Agency for Construction

The construction of the drainage and flood control systems will be under the responsibility of the Public Works Department (PWD). The PWD, which is under the Ministry of Interior, is in charge of the development of infrastructures such as roads, bridges and utilities for water supply and sewerage. With regard to sewerage and flood control for second class rivers, the PWD takes responsibility mainly in the planning, surveying, designing, construction and personnel training for the projects.

9.2 Executing Agency for Operation and Maintenance Works

Since there is no basic law that regulates the implemention and operation and management of sewage works in both the central and local level, it is necessary to enact laws for sewage works. With reference to such regulations for sewage works, the recommendation is presented in the Master Plan report.

In the initial stage of construction of the sewage treatment plant and trunk sewers works, the PWD will support and assist the city in the financial and technical aspects. After the completion of those facilities, the city has to undertake the various works involved in the construction of branch sewers and house connections where existing drains are not connected yet to the street gutters, discharging to the rivers or canals directly. Such works will be done by the engineering section in the City as is presently practiced. However, as these works will be interdependent with the other works of the project, a particular section might be affected by the developments in the other portions of the work.

To avoid the occurrence of such problem, therefore, it is recommended to establish a new division to exclusively implement the sewerage system project. Special attention shall be paid to the operation and management of the public sewerage system, because at present the management and maintenance of the drainage and sludge

removal service for sewage in the cesspools and septic tanks is delegated to the city's public health section in the city. Including these services, the new division to be established shall take responsibility for the management as well as operation and maintenance of the sewerage system.

As for the monitoring of floods, the PWD will also support and assist the city on the financial and technical aspects of this task. After the completion of the flood control structures, the city has to take responsibility for all management works in order to maintain the surroundings of the river as well as the drainage facilities. It is recommended that the city tie in closely with the people in the flood-affected area to foster better understanding and cooperation of the residents.

CHAPTER 10
PROJECT EVALUATION

CHAPTER 10: PROJECT EVALUATION

10.1 Economic Analysis

10.1.1 General

The Project evaluation is carried out in order to ascertain the feasibility of the project in view of economic, financial and socio-economic aspects. This section is to cover principally the economic analysis by calculating the economic internal rate of return (EIRR) on the foregoing study of the Project.

The Economic benefits for sewerage project are principally used to be evaluated by:

- 1) Health and welfare improvement benefit Such as improvement of hygiene/health and reduction in those disease
- 2) Environmental improvement benefit
 Such as conservation of agriculture and fishery, development
 of water resources and preservation of sound environment
 including leisure and recreation
- Other economic benefit Such as decrease of flood damages, development of land use, increase of land value, promotion of local industry and resources including reuse of treated water and saving of water supply costs

Taking those circumstances, in the case of this Project, the particular conditions in Phuket City could afford to scarcely quantify those economic benefits. However, since an institutional nature of infrastructure project, even if those benefits are not awfully enough to conform the project costs namely unprofitable, the project is apt to be implemented from socio-economic and or political viewpoints essentially for a part of basic human needs as described in Section 10.3, indirect benefit and socio-economic

impact. Accordingly, the economic analysis is made only for flood control scheme. While the project justifications including financial aspect and indirect benefit and socio-economic impact are conducted for the sewerage schemes.

For the economic evaluation, the following basic assumptions are established.

- The economic useful life of the Project is taken as 50 years for flood control scheme respectively from completion of the construction.
- 2) At the beginning of the above project life, 4 years from 1991 for flood control scheme is required for design, preparation procedure and construction.
- 3) The current prices as of December 1989 are used in this evaluation.
- 4) The exchange rate of Thailand Baht is taken to be 5.7 Japanese Yen or 0.0399 U.S. Dollars equivalent to 1 Thai Baht based on the foreign exchange middle rate of the Bank of Thailand at the year end of 1989.
- 5) Only direct benefits of flood control are counted in the evaluation. Indirect and/or intangible benefits are excluded and separately described in Section 10.3.

As the direct benefit of drainage scheme is seemed more unquantifiable, the appraisal of this scheme itself is to be covered in Section 10.4.

10.1.2 Economic Prices

For evaluation of economic resources, the economic price out of the market price is made under the criteria mentioned hereunder.

Table 10.1 Summary of Country Parameters for Thailand

Efficiency Pricing Parameters	Central value	Sensitivity range
Standard Conversion Factor (SCF)	0.92	0.91 - 0.94
Consumption Goods Conversion Factor (CGCF)	0.95	0.77 - 0.98
Intermediate Goods Conversion Factor (IGCF)	0.94	0.90 - 1.09
Capital Goods Conversion Factor (KGCF)	0.84	0.83 - 0.96
Construction Conversion Factor (CCF)	0.88	0.86 - 0.92
Electricity Conversion Factor (ECF)	0.90	0.88 - 0.93
Transportation Conversion Factor (TCF)	0.87	0.85 - 0.90
Labor Conversion FActor (LCF)	0.92	0.91 - 0.94
Marginal Productivity of Capital (q)	0.16	0.12 - 0.20
Rice Conversion Factor (RCF)	1.11	0.92 - 1.49

Source: Shadow Prices for Economic Appraisal of Projects, An
Application to Thailand, World Bank Staff Working Papers
No. 609

Those well matured parameters have been prevailing since early 1980s. Even now, because of steady growth of the national economy, they are still enough in force provided with the following justifications to properly settle within the said sensitivity range.

(1) Standard Conversion Factor (SCF)

Tariff and trade restrictions introduce a distortion in the price relationships between traded goods and non-traded goods. In order to evaluate the project cost and benefit comparable to the world market price, a SCF is applied to the price of non-traded goods and services. In the absence of trade restrictions, SCF is figured at 0.93, according to the actual trend of the foreign trade, taxation and surcharges in Thailand for the last 5 years as per Table 10.2.

Table 10.2Estimation of Standard Conversion Factorout of Foreign Trade Balance1984 - 1988

ount t F.O.B. 175,237,200 193,365,507 231,224,934 299,853,086 405,589,839 1,305,250 t C.I.F. 245,155,025 251,169,435 241,357,738 334,208,962 513,114,323 1,585,005 1 + 2 420,392,225 444,534,942 472,582,672 634,062,048 918,684,162 2,890,256 t duty 2,176,805 1,322,798 560,697 1,321,288 1,058,479 6,440 t duty 30,658,347 30,503,434 30,329,106 37,108,434 54,152,710 182,752 t excise tax 1,496,257 1,534,236 3,758,134 8,629,879 9,284,425 24,702 on factor (rate) 0.93 0.94 0.93 0.93 0.93 0.94 0.99	***************************************						(Unit: Thousands of Baht)
F.O.B. 175,237,200 193,365,507 231,224,934 299,853,086 405,569,839 C.I.F. 245,155,025 251,169,435 241,357,738 334,208,962 513,114,323 1 + 2 420,392,225 444,534,942 472,582,672 634,062,048 918,684,162 duty duty 2,176,805 1,322,798 560,697 1,321,288 1,058,479 excise tax 1,496,257 1,534,236 3,758,134 8,629,879 9,284,425 tal 5 + 6 32,154,604 32,037,670 34,087,240 45,738,313 63,437,135 n factor (rate) 0.93 0.94 0.93 0.94	Year:	1984	1985	1986	1987	1988 Tc	tal: 1984 - 1988
F.O.B. 175,237,200 193,365,507 231,224,934 299,853,086 405,569,839 C.I.F. 245,155,025 251,169,435 241,357,738 334,208,962 513,114,323 1 + 2	Trade amount						
C.I.F. 245,155,025 251,169,435 241,357,738 334,208,962 513,114,323 1 + 2		175,237,200	193,365,507	231,224,934	299,853,086	405,569,839	1,305,250,566
duty 2,176,805 1,322,798 560,697 1,321,288 1,058,479 duty 30,658,347 30,503,434 30,329,106 37,108,434 54,152,710 excise tax 1,496,257 1,534,236 3,758,134 8,629,879 9,284,425 tal 5 + 6 32,154,604 32,037,670 34,087,240 45,738,313 63,437,135 (rate) 0.93 0.94 0.93 0.94	Import	245,155,025	251,169,435	241,357,738	334,208,962	513,114,323	1,585,005,483
duty 2,176,805 1,322,798 560,697 1,321,288 1,058,479 duty 30,658,347 30,503,434 30,329,106 37,108,434 54,152,710 18 excise tax 1,496,257 1,534,236 3,758,134 8,629,879 9,284,425 2 tal 5 + 6 32,154,604 32,037,670 34,087,240 45,738,313 63,437,135 20 (rate) 0.93 0.94 0.93 0.93 0.94 0.93 0.94 0.93	- 4 -	420,392,225	•	472,582,672	634,062,048	918,684,162	2,890,256,049
duty 2,176,805 1,322,798 560,697 1,321,288 1,058,479 duty 30,658,347 30,503,434 30,329,106 37,108,434 54,152,710 18 excise tax 1,496,257 1,534,236 3,758,134 8,629,879 9,284,425 2 tal 5 + 6 32,154,604 32,037,670 34,087,240 45,738,313 63,437,135 20 n factor (rate) (rate) 0.93 0.94 0.93 0.94 0.93 0.94 0.93	Duties						
duty 30,658,347 30,503,434 30,329,106 37,108,434 54,152,710 excise tax 1,496,257 1,534,236 3,758,134 8,629,879 9,284,425 tal 5 + 6 32,154,604 32,037,670 34,087,240 45,738,313 63,437,135 n factor (rate) 0.93 0.94 0.93 0.94	4. Export duty	2,176,805	1,322,798	560,697	1,321,288	1,058,479	6,440,067
excise tax 1.496,257 1.534,236 3,758,134 8,629,879 9.284,425 tal 5 + 6 32,154,604 32,037,670 34,087,240 45,738,313 63,437,135 n factor (rate) 0.93 0.94 0.93 0.93		30,658,347	30,503,434	30,329,106	37,108,434	54,152,710	182,752,031
tal 5 + 6 32,154,604 32,037,670 34,087,240 45,738,313 63,437,135 n factor (rate) 0.93 0.94 0.93 0.93	Import excise	1,496,257	1,534,236	3,758,134	8,629,879	9,284,425	24,702,931
n factor (rate) 0.93 0.94 0.93 0.94	Sub-total 5	32,154,604	32,037,670	34,087,240	45,738,313	63,437,135	207,454,962
(rate) 0.93 0.94 0.93 0.94	Conversion factor						
		0.93	0.94	0.93	0.93	0.94	0.93

Remark: S.C.F. (Standard Conversion Factor) =

Export amount + Import amount

Export amount - Export duty + Import amount + Import duty & tax Source: Statistical Yearbook Thailand No. 35/36 1988/1989, NSD-0PM

(2) Construction Conversion Factor (CCF)

The construction of project facilities is carried out by equipment, materials, skilled and unskilled labors. Based on our cost structure, the construction conversion factor is assumed at 0.898 as below:

Table 10.3 Conversion Factors

		Conversion	
Commodity	Share (%)	factor	Weighted average
Traded goods	34.4	1.0	34.4
Non-traded:			
Capital goods	31.7	0.84	26.628
Intermediate good	s 2.1	0.94	1.974
Transportation			
service	15.1	0.87	13.137
Skilled labor	1.5	0.92	1.38
Unskilled labor	5.4	0.61	3.294
Miscellaneous	9.8	0.92	9.016
Total	100.0	· · · · · · · · · · · · · · · · · · ·	89.829 (%

10.1.3 Economic Costs

The capital cost broadly comprises:

- i) Cost for preparatory works,
- ii) Construction cost for project facilities including the contractor's overhead costs, profit and contract tax,
- iii) Cost for land acquisition and compensation,
- iv) Administration expenses,
- v) Engineering services,
- vi) Physical contingencies, and
- vii) Price contingencies.

Among the costs mentioned above, all the costs except the contractor's profit, contract tax and price contingencies are counted as the net capital cost to be considered in the economic evaluation.

Whereas, the breakdown of land acuisition and compensation for sewerage scheme is shown on Table 10.4. And the subjected land for sewer treatment plan is a dumping ground belonged to the City and to be applied for this purpose at free of charge. Thus, such land cost is not borne financially but is to be counted as an economic cost.

Table 10.4 Outline of Land Acquisition Cost for Sewerage Scheme

Description	Land space	Financial cost	Total
Phase 1			
Pumping station	1,520 m ²	@ 11,000 Baht/4m ²	4,180 103 Baht
Sewer treatment Plant	27,700 m ²	@ 2,300 [*]	15,928 "
Sub-total:	29,220 m ²		20,108 10 ³ Baht
Phase 2			
Sewer treatment Plant	4,000 m ²	@ 2,300 Baht/4m2	2,300 10 ³ Baht
Total :	33,220 m ²		22,428 10 ³ Baht

This net capital cost is further converted into the economic capital cost by applying the CCF specified in Section 10.1.2.

The economic capital cost thus estimated and its annual disbursement as well as operation and maintenance cost for each scheme are as shown below:

Table 10.5 Economic Capital Cost
(Unit: thousands of Baht)

Year	Sewerage Scheme	Flood Control Scheme	Total
1991	(Phase 1)	(30-year probable flood)	-
1992	28,322	8,910	37,232
1993	9,685	11,360	21,045
1994	40,995	91,440	132,435
1995			131,572
	(Phase 2)		
1998	3,076		3,076
1999	21,680		21,680
2000	20,305		20,305

Table 10.6 Economic Annual Operation & Maintenance Cost

Sewerage	Scheme	Flood Control Scheme	Total
Phase 1	4,687 607	(30-year probable flood)	
Annual	5,294	540	5,834
Milliar	5,294	540	5,054

10.1.4 Economic Benefits

As the particular nature of social infrastructure, this project bears several problems and difficulties such as:

- i) Low elevation flat city area faced to the bay and surrounded by hills
- ii) High population density in down town alongside of a straight stream, Bang Yai river
- iii) The river is not large enough for water transportation, floating market, fishing and leisure purposes, and rather remains useless with disposals and pollutions.
- iv) The projected sewer treatment plant locates near by the river mouth and the reuse of the output as household living and/or industrial water can not be expected.

Under the circumstances, all the benefits are apt to be not wholly quantifiable. Thus, the benefits to be derived from flood control of Bang Yai river will be grouped into 2 categories, namely (1) Induced benefit for sewerage system and (2) Flood control benefit.

(1) Induced Benefit

In socio-economic view of this project, an contribution to tourism by environmental improvement is quantified in terms of incremental surplus of regional economy, which should be otherwise nonentity if the project might be not realized.

Recent success in tourism in Phuket City is represented as per the drastic increase of travelers' expenditures in Table 10.7, and have boosted up the relevant industries in the City (Ref. Table 10.8).

In comparison of the development between Trade and Service sectors in Gross Municipal Development Product (GMDP) and the correspond-

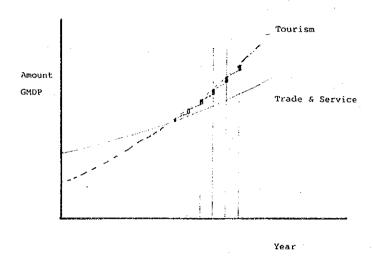
ing added value productivity by tourism revenue, the growth of the latter is more faster and will overcome the former at the extension by regression analysis of those trends.

The local trade and service sectors are not fully for tourism and such reversals might be absorbed into the relevant sectors.

However, the most possible extent of the respective growths will logically mark up an excess on the economic projection as the fruits of commercial efforts and infrastructural development.

Throughout interviews with government authorities and field reconnaissances, it is obviously emphasized the apprehension to economic depression by the pollution and deterioration of the environment as well as an inevitable decline of the reputation of Phuket City.

Thus, a half of such incremental surplus by tourism over the sum of trade and service sectors is accounted as the induced benefit of this project.


Table 10.7 Revenue from tourists in Phuket City 1984 - 1988

			1			of Baht)		
u.	Year :	1984	1985	1986	87	98	\$	84/88
Numbers of Tourist arrival	!	-					(%)) (c)
in Phuket Province	persons	40,95	45.26	76.95	46 94	26.17	\ <u>\</u> \	* C C C
Foreign	persons	144,601	156,174	253, 731	334,889	509.322		37.01
Domestic	persons	96,34	89,03	23.22	12,06	, cc		י פיני
Avr. length of stay	days	4	ic.	6.	, (C	\$		<u>.</u> د
Avr. personal expenditure:	•		;		•	۲ •	•	
Foreign	œ	12	3	ຕ	5.7	ار در		V
Domestic	baht/day	.06	16			25		יי דע
Distribution of expenditure:	≫ «	\circ	100.00	100.00	100.00	100.00		+
Accommodation	કેન્દ્ર ક	8.1	5.6	26.6	26.8	4	26.00	
Food & drink	<i>6</i> 9	0.5	6	G.	α α	ເເດ	, α	
Shopping	9-6	0.1	3.0	.3	00) (C		-
Entertainment	3-6	0.4	1.6	0.0) (C		
Local transport & tour	58	4	00	in in	ا در د د در	2 =	10.1	
Miscellaneous	~	2	,	\ \tau	, c	,	i e	
Revenue from tourists in Ph	nuket City:	g	t	•	•		,	
Hotel guests in the City	1	453		ರು	ഥ	3.9		.8.
Foreign		·~	ıΩ	1		V	:	. 17.
stic		ന	ιΩ	∞	00	24		
Guests from outside the City	City.	CTS	3	မ	O	0		
Foreign		r	\circ	\sim	ιΩ	0.00		; c
Domestic		~~	O	4	ব	L) C
Total revenue	Mil. baht	746	749	1,056	1,349	2,279		32.20
)

*1 - Commpound annual growth rate 1984/1988 in percentage Annual Statistical Report on Tourism in Thailand 1985 - 1988 Tourism Authority of The Thailand Remark: Source:

Table 10.8 : Estimated GMDP - Phuket Municipality out of GPDP - Phuket Province for 1975 - 1987 by industrial origin at current prices (millions of Baht) and their Sectoral Distribution (%) & Annual Growth Rate (%)

				$(x_{i+1}, \dots, x_{i+1}) \in \mathcal{C}_{i+1}$	988 888 888 888 888 888 888 888 888 888
1987	22 1 2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	32913	48 241 48 241 267 447 1131 2446	2.73 8.23 2.70 113.46 24.39 14.92 2.29 6.31 24.97	1981/94 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1986	24	4661 28595	45 64 64 64 64 64 65 65 30 30 30 30 30 30 30 30 30 30 30 30 30	3,10 6,11 14,08 14,08 17,02 17,02 17,02 17,02 17,02 17,02 17,02 17,02 17,02 17,02 17,02 17,02 17,02 17,02 17,03 17,03 17,03 18	1987 1987 1988 1988 1988 1988 1988 1988
1985	262 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4045	73 77 70 173 335 217 18 88 88 290 275 27191	3.37 5.67 3.13 13.58 26.28 16.98 1.37 22.71	1985 105 105 105 105 105 105 105 105 105 10
1984	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3814 25596	40 60 37 146 323 323 195 195 16 263 263 271 25211	27.45 5.89 5.89 5.89 27.46 16.58 16.58 6.89 22.83	1985 (Prev) 106, 72 108, 13 108, 13 101, 13 10
1983	621-2 4121-222 422-422-422-422-422-422-422-422-422	3687 25291	117 112 298 176 176 15 25 25 25 25 25 25 25 25 25 25 25 25 25	25.38 27.38 27.38 27.38 16.17 1.33 7.49 23.52	1984 109.84 110.80 10.80 10.8
1982	200 200 200 100 100 100 100 100 100 100	3319 23373	40 50 35 130 282 282 12 12 71 241 22022	3.96 4.88 3.46 12.76 27.76 15.19 77.70 23.77	1983 1821 1922 1011 1012 1013 1014 1014 1014 1014 1014 1014 1014
1981	200 212 212 272 272 173 173 173 173 173 173 173 173 173 173	3184	262 282 282 282 10 10 60 203 203 17	4.71 5.62 2.83 12.22 30.56 13.33 13.33 1.08 6.45 23.19	1982 995.34 134.48 114.68 1125.20 125.20 1092.87 1093.87
1.980	225 244 244 255 217 217 212 212 212 212 212	3257 24309	257 257 257 106 108 18724	6.04 17.77 11.66 30.40 12.56 12.56 12.56 12.56 12.56 12.56 12.56 12.56	1981 1795 1795 1795 1106 1116 1107 1107 1107 1108 1108 1108 1108 1108
1978	41 6 2 4 1 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3193 24373	123 171 171 293 73 73 164 164 836	5.10 15.40 1.97 35.07 8.74 0.90 5.21 19.39	11 980 11 11 11 11 11 11 11 11 11 11 11 11 11
1978	106 106 133 102 102 112 112 113 113 113 113 113 113 113 11	2283 18056	36 14 184 175 175 175 175 175	6.18 2.455 3.1.24 3.1.24 1.11 6.04 1.00	1979 1221 1222 1223 1223 1223 1223 1223 122
1977	2011 100 2010 2010 2011 100 20	2071 16701	33 111 171 171 170 8 100 503	6.26 6.56 8.53 33.90 7.95 1.09 5.77 7.72 100.00	1978 11 8 8 8 7 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1976	231 1221 1531 1532 1532 1532 1533 1533 1	1850 13000	20 135 135 135 135 135 135 135 135 135 135	5.09 4.15 2.90 12.53 35.12 8.49 1.31 6.92 23.50	102.77 102.70 102.70 102.70 103.70 103.70 103.70 103.70 103.70 103.70 103.70 103.70
1975	22 92 39 39 30 10 10 10 10 10 10 10 10 10 10 10 10 10	11901	21 114 114 28 55 53 33 33	2 2	25.00 11.00
	cockes cockes ry quarrying ring ion ater supply & communi & retails u. & retails	P, Phuket Prov. P per capita Baht	in is	Tion by sector ion ater supply after supply a community of retails a. & community of estate defence defence ket Munici."	owth: Ting aler supply a communi & communi & retails u. & estate defence ket Munici
Year	Agriculture Crops Livestock Fisheries Foresitry Manufacturing Construction Elec. & water sup Transport. & comm Wholesale & retail Bank. insu. & est Dwellings Gerice Gerice	GPDP, Phuke GPDP per ca	Manufacturing Construction Fice & water surfransport. & commerce & bond Bank. Insu. & est Dwellin. & defence Service GMDP. Phuket Munifulli.	Manufatturing Construction Elec. & water sugarners Transport, & comming Wholesale x retails Bank. insu. & est Dwellings Admin. & defence Service GMPP. Phuket Mnn	Annual grouth: Hanufacturing Construction Flec. & Water sup Transport. & comm Wholeastle & retail Bank. insu. & est Owellings defence Service GNUP. Phuket Muni
					•

(2) Flood Control Benefit

The flood control benefit is evaluated as an economic countereffect involved by flood damages on houses, household articles, stock assets of offices and shops and public facilities. As described in chapter 8, the aforesaid flood control benefit thereof is so estimated on the basis of international boarder price or so bearable against economic evaluation that such assumption can be applied commonly to this economic benefit.

(3) Total Benefits

All the above economic benefits after completion of the built-up are described in Table 10.9.

10.1.5 Economic Internal Rate of Return (EIRR)

Thus and so, the economic cost and benefit stream is prepared as per Table 10.9.

Then the economic analysis is made which results EIRR of 12.5% for flood control scheme (30-year probable flood).

Table 10.9 Cost Benefit Stream for Flood Control Scheme

No.			Cost	year pro	mante IIC	011	<u>it: B1,00</u> Net
	Fiscal Year	F/C	L/C	O&M (L/C)	Total	Benefit	Benefi
1	1989 / 90			***************************************	0	0	
2	1990 / 91				0	0	
3	1991 / 92	3,620	5,270		8,890	0	-8,89
4	1992 / 93	910	10,400		11,310	0	-11,31
5	1993/94	63,860	27,610		91,470	0	-91,47
6	1994 / 95	31,390	10,780		42,170	. 0	-42,17
7	1995/96			540	540	22,100	21,56
8	1996 / 97			540	540	22,100	21,56
9	1997 / 98			540	540	22,100	21,56
10	1998 / 99			540	540	22,100	21,56
11	1999 / 0			540	540	22,100	21,56
12	2000 / 1			540	540	22,100	21,56
13	2001 / 2		•	540	540	22,100	21,56
14	2002 / 3			540	540	22,100	21,56
15	2003 / 4			540	540	22,100	21,56
16	2004./ 5			540	540	22,100	21,56
17	2005 / 6			540	540	22,100	21,56
18	2006 / 7			540	540	22,100	21,56
19	2007 / 8			540	540	22,100	21,56
20	2008 / 9			540	540	22,100	21,56
21	2009/10			540	540	22,100	21,56
22	2010 /11			540	540	22,100	21,56
23	2011 /12	•		540	540	22,100	21,56
24	2012 / 13			540	540	22,100	21,56
25	2013 /14			540	5.40	22,100	21,56
26	2014 / 15			540	540	22,100	21,56
27	2015 /16			540	540	22,100	21,56
28	2016/17			540	540	22,100	21,56
29	2017 / 18			540	540	22,100	21,56
30	2018 / 19			540	540	22,100	21,56
31	2019/20			540	540	22,100	21,56
32	2020 / 21			540	540	22,100	21,56
33	2021 / 22			540	540	22,100	21,56
34	2022 / 23			540	540	22,100	21,56
35	2023 / 24			540	540	22,100	21,56
36	2024 / 25			540	540	22,100	21,56
37	2025 / 26			. 540	540	22,100	21,56
38	2026 / 27			540	540	22,100	21,56
39	2027 / 28			540	540	22,100	21,56
40	2028 / 29			540	-540	22,100	21,56
4.1	2029 / 30			540	540	22,100	21,56
42	2030 /31			540	540	22,100	21,56
43	2031 /32		•	540	540	22,100	21,56
44	2032 / 33			540	540	22,100	21,56
45	2033 / 34			540	540	22,100	21,56
46	2034 / 35			540	540	22,100	21,56
47	2035 / 36			540	540	22,100	21,56
48	2036 / 37			540	540	22,100	21,56
49	2037 / 38			540	540	22,100	21,56
50	2038 / 39			540	540	22,100	21,56
51	2039 / 40			540	540	22,100	21,56
52	2040 / 41			540	540	22,100	21,56
53	2041 / 42			540	540	22,100	21,56
54	2042 / 43			540	540	22,100	21,560
55	2043 / 44			540	540	22,100	21,56
56	2044 / 45			540	540	22,100	21,560

EIRR= 12.5%

10.1.6 Sensitivity Analysis

In order to evaluate further the soundness of the Project to possible changes of economic situations in future, the economic sensitivity analyses are made in terms of EIRR under the condition of:

Both of project cost and benefit are increased or decreased by 0, 5 & 10% in combination.

Table 10.10 EIRR in Sensitivity Analysis
(Flood control (30-year flood) scheme)

	Cost:	-10%	-5%	02	+5%	+10%
Benefit	-10%	12.5%	11.9%	11.3%	10.8%	10.3%
	- 5%	13.2%	12.5%	11.9%	11.4%	10.9%
	0%	13.8%	13.1%	12.5%	11.9%	11.4%
	+ 5%	14.4%	13.7%	13.1%	12.5%	12.0%
	+10%	15.0%	14.3%	13.7%	13.1%	12.5%
	: 7	,		• • • •		

10.2 Financial Aspect

10.2.1 General

The financial feasibility of the project is evaluated principally from the viewpoint of national economy in Phuket City. In this connection, an assumption of the prospective sewerage charge to be borne by the beneficiaries is made on preliminary basis. The study on the capability of foreign capital cost repayment of sewerage scheme is also made on the project level provided with the cash flow table.

10.2.2 Financial Cost

Based on the current market prices as of December 1989, the financial construction cost of the Project is estimated as respec-

tively shown in Chapter 8 for flood control scheme and Table 10.2 for sewerage scheme.

In this estimate, the price contingencies of 2% per annum for the foreign currency portion and 10% per annum for the local currency portion are considered to be added.

In addition, annual operation and maintenance (0 & M) cost in financial price is to be:

Table 10.11 0 & M Cost

Sewerage	scheme	Flood control scheme	Total
Phase 1	5,326	(30-year probable flood)	
Phase 2	690		
	6,016	614	6,630

(Unit: Thousands of Baht)

10.2.3 Sewerage Charge

After commencement of sewerage service, if the sewerage charge is not collected as usual, all the cost of the Project will have to be financed by the Government, and such expenditure will become a heavy burden to the country. It is generally understood that the sewerage charge is imposed to the beneficial users, and the sewerage charges thus collected is spent for payment of 0 & M expenditures incurred to the Project and/or for repayment of the capital cost of the Project. In Thailand, however, the users traditionally are not used to pay sewerage charge directly.

Under such circumstances, a maximum coverage by individuals is seemed an extent of 0 & M expenditures or a little more. Thus, as an immediate criterion, one (1) Baht per cubic meter of sewer flow is set down to recommend.

In view from project side, calculation is made as follows:

Investment:

i) Annualized capital investment by means of capital recovery coefficient

$$T \times (i + \frac{i}{(1+i)^{n}-1}) = 35,215 \ 10^{3} \ Bahts ---- (1)$$

Where, T= 573,614 103 Bahts: Total capital investment i= 4.5%: Interest rate of cost allocation by IBRD n= 30 years: Project life

ii) Annual 0% M cost 6,016 103 Bahts ---- (2)

Annual total (i)+(ii) 41,231 103 Bahts (100%)

Revenue:

Annual sewerage charge

 $1 \times 18,300 \text{ cu.m} \times 365 \text{ days} = 6,680 \ 10^3 \text{ Bahts} \ (16.22)$

This means that the beneficiaries bear merely 16.2% of the total obligation and rather rejoice the balance 83.8% as "Consumer's Surplus".

On the other hand, in comparison with household income and expenditure survey in Table 10.13, this sewerage charge will result to add a small share, on their household expenditure respectively as follows:

Monthly sewerage charge:

1 Baht/m3 x 350 1pcd x 3.6 persons/H·H x 30 days

= 37.8 Baht/mt

equivalent to 15.4% of fuel & light expenditure 246 Baht or 0.65% of household total expenditure 5,817 Baht

Annual sewerage charge:

1 Baht x 350 lpced x 3.6 persons x 365 days = 459.90 Baht

So far, it is to say this amount is obviously marked within the citizen's "Ability to Pay".

Table 10.12 Average Monthly Income and Expenditure per Household in 1986 by Socio-Economic Class in Southern Region & Municipal Area

Zonal Average	Municipal	Area	Southern	<u>(Unit: Baht</u> Region
		Distribution (%		Distribution (%
No. of household (102)	100	(10 0)		
No. of household (10°) Family size (person/household)	168	(12.6)	1,330	(100.0)
Family size (person/household)	3.6		4.2	
TOTAL MONTHLY INCOME	6,621	128.2 (113.8)	3,657	103.0 (93.7)
TOTAL MONTHLY EXPENDITURE	5,817	112.6 (100.0)	3,901	109.9 (100.0)
Consumption Expenditure:	5,164	100.0 (88.8)	3,549	100.0 (91.0)
Foods	2,058	39.9	1,519	42.8
Apparel	285	5.5	287	8.1
Cloth & clothing	237	4.6	240	6.8
Footwear	48	0.9	. 47	1.3
Housing	1,369	26.5	804	22.7
Shelter	591	11.4	229	6.5
Rental value of owned home	362	7.0	291	8.2
Fuel & light	246	4.8	160	4.5
Textile housefurnishings	27	0.5	36	1.0
Minor equipment	15	0.3	16	0.5
Major equipment	55	1.1	27	0.8
Cleaning supply	64	1.2	38	1.1
Domestic servants	9	0.2	7	0.2
Medical Care	126	2.4	131	3.7
Drugs & medicines	34	0.7	30	0.8
Medical services	92	1.8		
Personal Care	162	3.1	101	2.8
Personal care items	123		103	2.9
Personal services	39	2.4	80	2.3
Transportation & Communication	621	0.8	23	0.6
Local transportation		12.0	402	11.3
Travel out of area	102	2.0	60	1.7
Yehicle operations	185	3.6	96	2.7
Vehicle purchase	205	4.0	131	3.7
Communications	95	1.8	101	2.8
· · · · · · · · · · · · · · · · · · ·	34	0.7	14	0.4
Recreation & Reading Admissions	194	3.8	82	2.3
	16	0.3	9	0.3
Sports equipment	39	0.8	18	0.5
Musical equipment	31	0.6	20	0.6
Reading materials	37	0.7	11	0.3
Religious activities	71	1.4	24	0.7
Education Miscellaneous	120	2.3	56	1.6
riscertaneous	41	0.8	39	1.1
Non-Consumption Expenditure:	653	12.6 (11.2)	352	9.9 (9.0)
Direct Taxes	62	1.2	15	0.4
Gifts & Cotributions	353	6.8	230	6.5
Insurance Premiums	44	0.9	20	0.6
Lottery Tickets	106	2.1	51	1.4
Interest on Debts & Shares	63	1.2	29	0.8
Other Expenses	25	0.5	7	0.2

Source : 1986 Household Socio-Economic Survey Report, Southern Region by National Statistical Office

10.2.4 Repayment of Project Cost

The financial evaluation of the Project is made by examining the repayment capability for the capital cost of the Project. For the examination, a financial cash flow statement for the project development plan using the anticipated project revenue and fund requirement is prepared as shown in Table 10.14.

In the examination of repayment capability, it is assumed that the capital required for the project implementation will be arranged under the following conditions:

- (1) For the foreign currency portion, the capital is financed by bilateral or international organization with an interest rate of 3.5% per annum for a repayment period of 30 years including a grace period of 10 years.
- (2) For the local currency portion, the capital is financed by the budget allocation of the Government without interest and repayment.

Table 10.13 Financial Cash Flow Statement for Proposed Sewerage Scheme

T to	Capi	tal Cost		oreign		Cash Outflo	£ *		Cas	(Unit: Thou	sands of	Baht)	ا م
Order	F.C. *1	L.C. *2	Total	Joan accumulate	& M Cost	t Repayment c	of loan	Total	Werage	vernm	Total		,
				5		רבדבאר	9 1 1	τi	arg	Subsidy	∞	(¥) -	e
136	9,66	.8	6,48	.66		C		c			c		ć
130	6	1,375	11,235	9.52		~		~			200		 •
6	1.43	0.08	1.52	0		0				7 (0 7		=
190	50.06	, c.	0 0 0 0	9 6		0 (683		0
0	72.55	, 0	,,,	700		د		7		C-3	734		0
, 0	1	0.00	77.77	44.20		2		4.8		4.2	~	٠	—
9 0				44.26	.32	0.7		0,37	76	99	-		; c
9 6		Ć	ì	44,26	.32	, 04		0,37	7.6	. 60			· c
200	000	V	2,726	144.260	5	5,049			.78	1,608			
7 6	71 (2,4	, 5	56,56	.32	, O.		0,37	2.	. 60	0.37		· =
700	14.00	0 1 00	9.4	59, 10	. 32	2,		0.80	7.5	8	0.80		· =
300				60,64	Ö.	. 9.	45	0,39	89	3.7			? =
300				52.19	.01	. 62	45	0.09	. 68	3.4	0		· c
2 6				43,73	.01	.32	45	9.79	. 68	~			· C
7 6				35.28	<u>.</u>	03	5.	60	89	2.82			c ==
300				26,82	5	7.3	.45	9.20	83	2.52	200		> c
96	٠			18,37	.0	43	. 45	8,91	. 53	2.23	0.00		: =:
- C				16.90		. 14	45	5	89.	1.93	<u>ت</u>		: E
900				01.46	<u>.</u>	8	45		. 88	1.63			: C
900				2,00	5	J.	, 45	0.2	89	1.34	8.02		· C
200				5.5	9	25	8,455	7.	83	0	7.72		· C
200				90.0	<u>.</u>	93	45	43	83	0.75	. 4.3		-
300				. 54	2	.66	.45	7,13	.68	0.45	7		
200				9.13	0	.36	5.	5,83	89.	0.15	83		; c
100					5	, 07	, 13,	54	68	9,86	57		- C
900				2.27	5	77	45	6,24	68	56	2.24		; C
200				85	<u>.</u>	4.0	45	5,95	. 68	2	101		c =
200				, co	2	138	45	5.83	89	O	. 85		· =
200				5	5	ďΩ	5.	5,35	88	6			· =
900				4	. 0	ന	5.	5,06	68	8	90		. =
31 2021					8,016	ന	5.	14.767	6,680	08	14.767		, c
1					5			0	68		89	6	ပ
								. !					

Foreign currency portion Local currency portion Repayment period of 30 years including grace period of 10 years, with interest of 3.5% per annum * * * ~ 0 0

Remarks:

10.3 Indirect Benefit and Socio-Economic Impact

In addition to the direct benefits mentioned above, this section describes the positive or negative indirect and/or intangible benefits and socio-economic impacts to be borne by improvement of sewerage and drainage systems and flood control of Bang Yai river.

The study, including socio-economic reconnaissances and foreign/domestic tourist interviews, is made principally in three viewpoints such as community well-being, economic contribution and project implementation.

The most obvious impact of the project will be the improvements expected in the public health of the inhabitants and visitors to Phuket City through the provision of the new sewerage system with no flood measure. All the wastewater currently infiltrated into the river or ground will be shut off and collected by the sewers, and then treated at the treatment plant to the level acceptable to the environs.

Even the retribution between contamination of groundwater or river water and higher incidence rate of food & water borne diseases in Phuket is still unclear, the introduction of a modern sewerage system will be quite helpful to improve those situation. Furthermore, the recovery of the amenity alongside of Bang Yai river will be also very worthy likewise relocation of "Green Park" into down town, which comprises 56 hectares of ponds & playground to accept daily 500 of sports visitors and costs 5 million Bahts for reclamation and monthly 10 thousand Bahts for maintenance of the park. Thereby, more healthy and comfort community can be achieved.

In a similar vein, this modernization and improvement of urban environment is indispensable for the City as a tourism national center, though which the largest apprehension in local economy will be entirely released.

Under successful reconstruction of industrial structure from tin & plantation to tourism oriented industry, all of the citizens and

activities are closely related to the tourism either direct or indirect. In 1988, 726,172 tourists, 4.7 times of inhabitants, have been visited Phuket Province and the expenditure by foreign travelers reached up 5.72 billion Bahts corresponding to about 3 times of total productivity of Phuket City.

This development policy is in conformity with the national strategies, hence such local revenue contribute to share 1.26 % of the national total service receipt in Balance of Payment and will certainly be progressed far more extent. (Ref. Table 10.12 and 10.14)

Since the sewage treatment plant construction site is selected at an isolated area far from the residential and commercial districts of the city, the impact to environment by the treatment facilities will not be significant. Construction activities of the treatment plant may not affect to the nearby inhabitants.

Excavations for sewers and pumping stations throughout the project area will cause traffic interruption for some times, however, this problem can be avoided as much as possible by the well scheduled construction programs. The excavations may also cause soil erosion, but such erosion will be limited by minimizing excavation on steeply sloping the land and by requiring reasonable soil conservation measures by the contractors.

Despite of such inconveniences during the construction, more opportunities to work, recovery of amenity and prospective expansion of activity quotas are much more expected by the City.

Table 10.14 Revenue from Foreign Tourists, 1984 - 1988

_
\sim
-
Baht
111
4-4
0
ions
=
O
. [
$\overline{}$
£
>
• •
4.
ౌ
<u>.</u>

rear:		1984	1985	1986	1987	1988	284/,88
I tem	Description	÷					compound annual growth rate (%)
-	Balance of Payment:						
ন	Service receipts	73,643	85,880	87,665	107,187	149,089	19.3
2.	Revenu from foreign tourists:	l tourists:					
۵	Whole Thailand	28,654	31,768	37,321	50,023	78,859	28.8
٠ ن	Phuket Province	1,348	1,295	2,057	2,865	5,728	43.6
Q	rnuket City	445	566	733	1,024	1,880	43.4
ن	Distribution:						
r is	Service receipts	\sim	100.00 (270.3)	100.00 (234.9)	100.00 (214.3)		0.0
ا د	Whole inalland Phuket Province	38.91 (100.0)	36.99 (100.0)	42.57 (100.0) 2.35 (5.5)	46.67 (100.0)	52.89 (100.0)	с С
,	Phuket City	0.60 (1.6)	0.54 (1.5)	0.84 (2.0)	0.96 (-2.1)	_	20.4

Source : Statistical Yearbook Thailand No. 35/36 1988/1989, National Statistics Office, The Office of Prime Minister Annual Statsitical Report on Tourism in Thailand 1985 - 1988, Tourism Authority of The Thailand

10.4 Project Justification

(1) Sewerage Improvement Project

Thailand's economy is currently developing extensively. However, it is bringing about an environmental pollution in the developing districts, especially in the resort areas. Consequently, special emphasis has been placed on the environmental improvement in the National Economic and Social Development Plan and also Tourism Development plan of Thailand in line with the world wise tendencies.

Phuket Island is a famous resort in the south of Thailand. Being blessed with beautiful scenery, it is one of the most popular tourist spot and Phuket City is a center of the island as its provincial capital town. However, destruction of the City's environmental condition, the river and the sea water pollution, has caused by the wastewater discharged from the various economical activity like hotels and tourism industries as well as residents in the area. Delay of the execution of the water pollution control on the excessive discharging loads is over the natural purification capacity in the area.

In the background of such circumstance, conservation of the environmental condition is one of the most important and urgent tasks due consideration to the national policy that is not only for impress appealing the natural resources as a famous resort in the south of Thailand, but also for a public health and sanitation in the study area.

According to an estimation on the water quality of the Bang Yai river in 2006, the BOD value of the river is expected to be improved into one-half as much as the present, provided this project will be fully implemented. Suppose any other countermeasure will not be done the value is forecasted to be approximately 2.5 times as much as the present. In addition to this such offensive surroundings that wastewater is staying and rotter in the canals due to affect by the back flow of sea water, are considerably improved

When the project is carried out on schedule.

The results of analysis and study show that the Project is economically feasible and is financially viable, too, as above.

The socio-economic and environment studies is also found positive.

Hence, from economic, financial and socio-environmental viewpoints, the project is qualifiable for launching.

The observation of existing situation on environment and building boom and assumed tangible benefits apparently lead to a conclusion that the proposed sewerage development project is justifiable and then needed to introduce as much as earlier. If no sewerage system were provided in the area, sanitary conditions, which are already deplorable in some areas in the city, will become progressively worse and degraded in the tourism. Moreover, if this project is not undertaken at this time, the building boom will be in more heat in the area and so the cost escalation might hamper the project implementation at later stage.

It is desirable that the project start as earliest as possible as this project insures to create great benefit to Phuket island as well as the city in terms of improvement of the economy, society and living standards of the people in the areas. Likewise, the project is expected to expand the potentiality of the further development of related public facilities and private services industries as an international resort center in the southern Thailand.

(2) Drainage Improvement Project

In order to improve the drainage system in the study area, it should be developed paying due consideration to reflect the flood control, because the more rising of water in the river, the less capacity of the drainage. The flow capacity of the Bang Yai river is estimated at 20 to 70 m³/sec depend on locations. Consequently, for measures against a heavy rain like a probable rainfall

more than two-year, the improvement plan of the drainage system should be on premise of the implementation of the flood control.

Aiming to design as a whole for effective use of the existing facility, the improvement of the drainage is planned to manage the probable rainfalls with five-year return period for main drains and canals, and two-year return period for lateral drains. Reconstruction works for improvement of the drains have been undertaking by the city's budget, which are almost the same way to the proposed improvement plans in this study.

Observing the existing situation of drainage system and assuming the frequent inundation in the city, the proposed drainage improvement plan is justifiable. Since it is insured that the improvement of the drainage system will be provide through local, special emphasis is given to the implementation of the flood control scheme as earlier as possible.

The magnitude of flood damage will increase remarkably and economic growth will be disturbed, suppose no flood control measure are implemented.

The economic internal rate of return (EIRR) of the flood control project for 30 year probable flood is the highest among the alternative schemes. Note is taken that the difference of the project costs between the scheme for 30 year probable flood and that for 5 year probable flood is only 8% out of the total. Therefore it is recommended to implement the project to control 30 year rains which is the target flood for the Master Plan.

ANNEX: TABLES

Table 4.1 Flow Calculation of Trunk Sewers

						,			1						·		 	·	ì
3		Remarks		***************************************	·			-											
	,ر	Eerth Cove	٤	86.		6.6	3.8		325	001		200	28.9			888	 0.0		
		Invert Elevotion	Σ	7870 7753		7880	4014		6500	8657 7487		7388	7238 2889		4083	2789	4595		
Sewer		Ground Elevation	≥	202 202		99.2 25.2	262		23.2 29.2 29.2	9:9.2 8:7.5	:	8.75 8.75	87.5 52.4		\$22.4	72'S	 \$53		
1	(11)	Capasity(Fu	ξ,	090 2 5		0000	0025		0014	0:038		0.039	0104	*******	0.057	6910	 9000		
Designed		Velosity	E/S	8		[]	<u>8</u>		- 6	080		8			80	g.	 21.0		
ő		Slope	%	350		100	350		005	2,60		2,60	250		350	<u>§</u> .	 700		
		Diameter	Εά	500	:	8	200		150	250		250	400		300	200	100		
-	-	Flow		0		0	0		0	0		0	0		0	0	 0		
	υδ	Total Design	ξ. S	0024		0001	1200		9014	0008		000	0:0 6.8		000	0137	 1000		
2	ers	lotoT	Ę,												 		 		
Flow	Others	Instrement	%												00011		 		
water	()	Flow (Pea)	ξ×	0024		1000	0024		0014	0.038		0030	0.068		0037	0126	 0001		
Westewater		2 loloT	Perso -ns	1480		76	1514		853	2366		1858	4223		2328	7856	 93		
>		5 3 109m-	Pers F	001480		ੜ			853	- 5		201858			328	301316	 23		\neg
		Population Vising O	75	17.001		33, 30	0.00		57.20	0,00		73.201	0.00		54.402328	33. 301	533.30		
gth		lotoT	E	~~~			35		23	215		120	1955		v,	196533.	2		
Length		Increment	ε	8		- 55	33		· · ·	. 180		120	17.40		-S	2	v,		
Area		Total	ЪС	3147		102	3249		1490	47,39		2.53.7	7276		12.78	15506	 277		
Ą		Inemeni	욛			203	00		1,690	000		2537	000		1278	3952	 2,17		
	9104	AAC 10 041	•	1023			1024			1026			1028						J
		wes to of		1 N 1 0 2 1		1 N 1022	1023		1N10 24A	1024 B		1025	1025		1 N 1027	1028	18 1015		

	. r						·····		· · · · · ·	,	~~~~			, .		·					_
5	3																				
			Remorks																		
		1 1:	Eerth Cove	T	1215	85	64.00	<u> </u>	v7:00		67:50	60,100		1 =: 4		<u> </u>	~:	00 (rs	ļ.,	200	
		<u> </u>	••••	1 -	0.07.5	0 424	202 203		2 1 1 8		0 119 S 122	3 278	1	88	3 201		5 0.64	7 2 3		0.64	
,			Invert Elevotion	Σ	4210	0.650	2532 2036		3210		3260	2113		3840	1363		3550	1645	<u> </u>	35.60	
	Sewer		Ground Elevation	Σ	553	52.4	\$2.4 45.5		455		455	455		20 23 20 23	685 640		0.04	440		0,70	
	1	(110	Caposity(F	15,	6 0 1 6 9	70170	5 0:268		9 0014		9000	126		0000	0.268		0000	0268		9000	
	Designed		Velosity	E/S	g.		S		<u>G</u>		27.0	0.79		072	8g		27.5	60		0,72	
	0		adols	%	200	90	1.80		2005		<u>§</u>	§		<u></u>	8		<u>ê</u> .	130		700	l
			Diameter	8.8	0 500	98	009		0 150		001	051 0		100	009) 100	009 <		100	-
		υß	Total Desi Plaw	Ę [©]	0105	0107	0244		0008		0003			<u> </u>	0225		0	0226		0001	
	>	57.5	lotoT	.E/v	800	50	0015		0001			1000			9100	:		00016			
	Flow	Other	ta s menon1	ξķ	00004				0000												
	Westewater	()	Flow (Pea	.ξ.\ \	1010	0103	0.229		0001	:	3003	0100	****	9901	0,239		0:001	0540		0001	
	Weste	Population	lotoT	Perso -ns	6239	6391	14256		436		163	599		33	14893		64	14957		. 72	
		. g		Pers	306299	0	5		436		163	0		39			9	o"		72	
		u	Population Viensity	%	533.30	0.00	0.00		33.30		33,30	0.00		33, 30	0.00		33, 30	0.00		3. 30	
:	hgth	:	lotoT	E		25	2195		3			35		- 55	2310		- 23	2335		5 33.	
	Len	-	Increment	£	S	20	230		٧,		5	30		8	115		~~~	2.5		~~	
	Area		Total	oc.	18913	191,90	34696		1303		4383	17.98		115	36509			36800	•••••	214	•
į	٩	1	пөтөтэй.	ğ	18913	000	000		1309			000		115			- 16	000			
		\$ 124	es to ob			_			1033									(E)			
		III	~2 to 014		1016 1016	(<u>§</u>)	S S		1 0 3 1		1032	1033		1034 1034			₹01 102 103			1051	

												:					٠		
							1			<u> </u>									
		Remarks																	
		,0Ver	Еегій С	E	2.2		. S . S	<u> </u>	5 8	27.7	23.4		123		130	- 38 - 38 - 38 - 38 - 38		1653	
		UO	Elevoti	Σ	1397		3175		29.10 29.75	1365	0.941		Z8 9 S		29 10	2845		2120	
ę			Elevoti	 	440		77.9		426	426	3396		(881		88.	3396		356	<u> </u>
Sewer		:	neodoo Eround	∑ S	<u> </u>		<u> </u>	<u> </u>		1	<u> </u>			!_		- <u>-</u> -	<u> </u>		
gned	<u> </u>		tizolaV fizogoJ	LE/	095 0268		072 0006		072 0006	0.00 0.014	0.95 0.268		072 0008		0,72 0,006	g		0.80 0.025	
Designed	-		Slope	% E/S	130 0		700		90	200	150		700		700	500 07		350	
				 	009		001		100	150	009		100	<u> </u>	100	3 051		200	
	_	191	 semoiO	E	0		0		0	. 0	0		0		0	0		0	
	į	bisac	Total (ξ,	0258		900		0000	0000	0261		0003	*****	0000	0000		0.022	
	5.		lotoT	Ę,	0016		0000			2000	8100		0000			0000		00012	
Flow	Other	tne	เมือาวกไ	ξ. V			0.00						0000					0012	
dier	(Sak) wol3	rE/S	0.212		0003		2000	0,005	0:248		0001		004	0000		0,010	***********
Westewater		Loi Loi	lotoT	Perso (15028		192		113	304	15331		4.9		247	296	-	641	
*		Population	enoni. inem-	Pers P	-		192		112	0	0		4.9		247			5.4.1	
	-	noit	olugo9 tisnaQ	γ _s	0.00		33.30		33. 30	0.00	0.00		33, 30	-	184. 20	0.00		33, 30	
gth			lotoT	٤	2440	7. 20.0			- 25	30	2610		- is		. 25	185		- co	
Len		tuəi	กราวกไ	٤	105		ν,	· -		25	1.10		- 53		······································	180		vo	
ea		ŀ	5	ħā	37014		578		33.4	016	37924		134.5		<u></u>	27.9		19:22	
A		109r	neren	ЪО	000		576		334	000	లై		Sy 1		131	000		1922	
				L			1063			-			1076			(E)		1073 1	•
	sıa	was	to oN			<u> </u>	1N 1051 1		1N 1052	1063			1074 1		1N 1075	1076		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

						 ,				· · · · · · · · · · · · · · · · · · ·		,		·	···	,			~~
		Remarks																	
	,	Eerth Cove	Ε	72 23	230	 9.5	282			282		- 6 6 6	253		88		2.5	5 53	
		Invert Elevation	Σ	0.932	0.767	17.80	-0667		0.950	-0:689		138 90 138 5 S	-0712 272 -0780 253		3623		8 8 2 5	2995 163 1617 153	
Sewer		Ground Elevation	Σ	9 55	30.00	 30.3	8 6 8 6 8 8		88	303		230	290		8 (-1)		8 8	3330	1
1	(Hr	Caposity(Fu	E _S	90039	9512	 0025	0512		9025	0512		9000	0.512	4	8014		9000	200	
Designed		VtizolaV	[ξ%		102	 <u>8</u>	<u>8</u>			<u>8</u>		- 2	1302		<u>5</u>			67.0	
De		adol2	8	560		 S			- 8	- 52		<u>ള</u>					<u>§</u>	§.	
		Nometer	E	250	800	200	800		2000	800		100	800		150		001	150	
	u6	Total Desi Flow	£/2	0038	0309	 00 110	0326		0 0	0 \$\$		0004	0352		0		0003	0 1100	
	ers	lotoT	ξ(_α	0012	0032	 	00032			00032			0032						
Flow	Others	Increment	ξ. (S)			 													
waler	 (Я	Flow (Pea	چ اگ	0:026	0,217	 017	0.294		023	0,317		004	0:320		010		003	9013	
Westewater	Population	TotoT	Perso -ns	1508	17234	 1052	13285		1126	19711		220	19930		650		174	823	
	Ğ	ytiangO 9 anoni. Inam-	Pers -ons	. 6	0	84. 201052	0		201426	-6		20 220	5		650		20 174	-	
	t	noitoluqo9	7,5	0.00	0.00		0,00		83.4	00.00		184	0.00		33, 30		184.	0.00	
Length		lotoT	٤	30	3060	 S	3075		٠,	3090		S	3135		5			260	
Ler		Increment	ε	25	450		15		.5	15		23	<u></u>					255	
Area		Total	ho	24.47	40650	57.1	41221		77.4	41995		611	42114		1949		<u>F</u>	2043	
Ar		Increment.	ha	000	000	 571	000		77.4	000		119	000		1949		- 76	000	
	wers	198 TO ON	~~.			 									11.14			1117	
		, -N		1013		18 1081			18 1091			1101			1.12		E 13	7	

		Remarks				, , , , , , , , , , , , , , , , , , , ,											
	,	Eerth Cove	E		88		25.		152		. 19	 202	200 001	3.5	 176		+
		Invert Elevotion	Σ		27.25		2715	2093 1843	1567	ļ <u>.</u>	2015	17.80 17.55	1355	0.487	1530 0855		T
Sewer		Ground Elevation	Σ		325		325	322	330		38.5 20.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3		393	264	27.7		1
i .	(110	Copasity(Fu	S		20.		9000		00025		Į į	 	0.025	0:038	2017		l
Designed		VilsolaV	Ęζ				0.72	- 5.0			25	 13	86.	080	 0		Ţ.
ő	L	Slope	%				<u> </u>	క్లి.	<u>\$</u>			 တို့	క్ట్	2.60	 200		ļ.,
		Diameter	E		150		100	150	200		150	1 20	200	250	 150	· · · · · · · · · · · · · · · · · · ·	ŀ
<u> </u>	<u> </u>	Flow	70		0		0	0	0		0	 0	 O	<u></u>	0		L
	иб	ieed lotoT	Ę/		6000		1000	<u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> -	0.024		0008	 0000	5100	0,038	 8000		
Flow	Others	1010T	ξ'°								000	 	903	0003	 9000	*********	
	ö	Increment	.E/S			**********		···			9003	 			 0000		ļ.,
Westewater	()	Flow (Pea	S'S		000		001	00010	03024		00.5	 007	09013	0935	003		
/este	ution	lotoT	Perso -ns		573		3/6	619	1471		284	 - 6	723 (2193 (163		_
>	Population	9าวกไ. 1กากกา	Pers F		573		9/	- 0			284	 439		8	 163		
		Population Pensity	√ _Σ		184 20		5184. 20	0.00	0.00		184. 20	5184.20	00 0	0.00	 84. 20		_
gth		Total	E		- 15		S	55	440		25	\$ 1	103	605	135184.		
Len		Increment	Ε		S.		C)	So	180		-0	-3	8	185	135		_
Area		Total	2				041	352	2395		15.4	238	335	2787	888		
ব	ı	Incremen	<u>و</u>		Ę		2	000	- S	-	154	238	000	8	 088 8		•••
	212M	as to ov			1117 A				ق ا ا		= m				6111		
		~3 Yo Old			11.15		1116	1117 A	11117 B		₩. I. I. 8	187 194		 	 0 0		
				··	·	<u></u>	·· - <u>-</u> L	······································		1	l <u>-</u> -	 -			 <u> </u>		-

			**	٠														
(8)	Remorks																	
	erth Cover			24.13.9	- <u>7</u> .2.	2 2 2	2 22 6		5.5		5 5 5		2 8	8 2	2 9		000	3212
	nvert nottovet	5		C960	0943	0043	00013		15 50		10110		1310	1025	-0925		1535	-0724
Sewer	found notional			270	27.0	27.7	264		306 250		31.6		3 3	250	250		204	264
1	oposity(Full)) K		0.057	0.057	7010	0.104		9000		9000		9000	7100			800	0:025
Designed	Velosity	16.		350 031	350 081	250 083	250 083		800 076		70 077		7:00 0:72	500 073	500 079		127	080
	1919mold	1.		300	300	400	100		100 8		100		100	35.051	150 Se		100 2000	200 350
-	wol-	1 /N	<u> </u>	0 %	0	<u>0</u>	0		<u>0</u>		0		0	0	0	<u> </u>	0	0 2
	ngisəO lotol	-		0054	9500	0000 0000			600		, 000		0000	5000	8		0000	<u>8</u>
Flow	O เกษกษาวก รั	\vdash															-	
oter	low (Peak)	_		054	00.5	6500	00034		004		100		500	6000	00013		003	910
Westewater	ig Intol	8	<u> </u>	3333	3484 0	3645	5838 0		277	:	240		5 8 3	533	809		- 82	99.7
-	ytizna(g atoni g finam- ig lotol	Pers		5184. 203333	00	00	00		20 277		20 240		20 293	- 0	0		20 188	
ج	lotoT noitolugo ^c	1 9/2		5184.	130 0.0	280 0.0	655 0. (70184.20		5 184. 20		5,184.20	25 0.00	390 0.00		5 184. 20	105 0.00
Length	tnemenan			- 5	125	145	SO		10		VS.		· v	20	320		- 10	15.4
ea	Toral	ğ.		18:03	18:31	1979	47,66		051		130		15.9	289	25. 25.	-	201	178
Area	Increment	문		18:09	000	000	000	1 1	1:50		130		159	000	000		102	<u>8</u>
	Slawac io ou						1119 R		1119 N		1119 M				1119 P			1119 R
	elewers			1N11 19F	1119	1118 H	1119		1119 J		1811 19K		1811 191.	51 ×	1119 N		1 N I I 190	1118 F

		Remarks																
		rth Cover	3 E		1	- 62		52.22	253		8 09		130	999	285	 0.95	25.2	
		lyer! evalion			1.483	2280		0950	-0780		0950		1335	0933	-1005	1300	-1:185 265	
Sewer		bnuo noitbye			792	264		264	2564		27.4		27.4	27.4	27.4	2.56	202	-
,	1 /11	uR)ytisogo	ν ₃ c	<u> </u>	100	~		9000	0512		0.025	<u> </u>	0.000	00025	0512	 0001	212	<u> </u>
Designed		ytizols	۸ ξ%		6	-		2	<u> </u>				0.72	080	192	 	102	
å		obe	S 8		8			Ę.	1.50		350				150	 		-
		netemol	0 E		1.50	250		001	800		200		100	200	800	 8	800	┞
	-	WO		ļ	0	10		0	0		0		0	0		 0	0	L
	ui	otol Desig			6000	0127		0003	0,482	·········	0001	! 	0000	0,024	0507	 0001	8050	
3	ers	1010	τ 🖏			800			00.40	•	8 	······		0311	000 21	 	1500	
<u> </u>	Other.	tnemenan	1 %								00.1					 		
water	()	109 (Peal	1 %		00	6110		003	0442		010		700	51.00	0456	 001	0.457	
Westewater		fnem fnem loto			557	7381	· · ·	187	27507		512		218	829 (28338 (28400 0	
_	0		ons I		557	6		187	8		612		218	8	- 6	 - %	0	_
		noitalugo ytisus	ס, ונ		184.20	0.00		184.20	0.00		5184.20		84. 20	0, 00	0.00	184. 20	0.00	
ength		loto	٤		3	745		5	3285		- 3		٠.	8	3405	2	3675	_
Le	·	กระคุณอนาวน	€			90		~	150		S		vs	52	120	50	270	
Area		Total	5		302	5603			47824		333		8	53	48274	335	48309	
Ā		insmenson	e E		302	000		<u></u>	8		332		8	8	§.	 935	000	
				L					(E)		1123		\dashv			1	$\overline{\Xi}$	
;	×19W	92 to oV			190	61.19		<u>= = (</u>	1		1.1.2.1. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		1122	1123		 = (

r		·			,		- ₁	.,											: :	
(8)		Remarks																		
-	T	Eerth Cove	7	~		10,79	0 ,6	<u> </u>	N-0	ļ	67:00	N:00			ļ <u></u>		<u> </u>			
	-		E	0 0.6 2		7 0350	246		50000		500.0	249		0.069		0.63	100		0377	
		Invert Elevotion	Σ	0.990		0950	-1790	ļļ	1065		1070	01995		0330		0.990	0.580	<u> </u>	10000	
Sewer		Ground Elevation	Σ	202		202	202		222		222	222		8 6		179	28.99			
1	(11	Capasity(Fu	ξ'ς (S	98.	-	6500	0.864		8014	<u> </u>		0025		9000		71.00	55		9000	1
Designed		Velosity	ξ%	0.72		8	01		2.2		079	88		0.12		0 0	080			-
a		Slope	8	<u>§</u>		2,60	<u></u>		<u></u>		200	350		0 005		200	350		700 07	
		Diometer	Eπ	100		250	1000	, <u> </u>	0.51		150	200	:	001		150	200		100	
		WOL 1		0		0	0		0		0	0		: 0		0	0		0	
	υδ	Total Desi- Wol7	ξ _ω	1000		00026	0534	••••	8912		6000	000 22		0001	··············		00023	ļ	<u></u>	
*	ers	lotoT	ξ/ς,		••••	00021	0,072		0000			1000				8008	8000			
Flow	Others	tnemenanl	Έ/ς,			0,021			000							8009				
vater	()	Flow (Pea	£%	100		500	0.462		10		600	0,021		. 001		003	015	<u> </u>	00 1	
Westewater	o citotio d	Total	Perso - ns			315	28745		70.	<u> </u>	581	1286		63		203	916		- 23	
-	000	fnsm-	Pers	္က		31.5			706		58.1	0		63		203	- 55		- 53	-
	ı	Population Viensity	7,5	184.20		84.20	0.00		84.20		84.20	e e	···	84. 20		- 20	-8		- 2	
=		Total	E	50		- 2	3740		1518		518	445 0.		. S		.5184.	135 184.		5184.3	ŀ
Length	-	Inscrement	E	20			65		15		50	430		is.		- 53	130 1		- 63	
Da		Total	ha	9116			48496		 88 88		3.1.5	869		034	**********	110	497		0.23	
Area		Incremeni	ۇر 1	910		Ē	000		383		31.5	8		034		01	353		0.28	
— <u>l</u>	4612	ac 10 ov					(1)		1153			1159 F		1155			1159 B		1159 A 0]
		as to oN		1142		~ -			11511		1152	1153		1154		11.55 11.55	1156		1157	

8			<u> </u>	· T	1	T		T]	T-	T	T	T	·]]	T	T
	Remarks						1											
	Eerth Cover	ε		77. 2. 2.	82	1.54		07.8		21.00	21.58	23 S. S.		950	ļ <u>i</u>	0.74	151	
	Invert Elevation	Σ		1000	0775	00014		0660		0365	0035	-0610		0860		0990	0480	
Sewer	Ground Elevotion	Σ		8 88 88 88		80 80 90 80		88.83		82.89		1 ;		19.6		or or	134	
	Coposity Curvi	ξ°.		9000	9000	0033		9000		9000	0039			7010	<u> </u>	0025		
Designed	Velosity	€%		07.2	0.72			27.5		0.72	<u>e</u>			8.		98		
å	Slope	%		0	, ĝ					7.00	860	350		220		င္တို့		
	Diameter	e e		0 100	0	0 250		001 0		0	0 250	1		400		> 200	1	Ì
	ngizəO lotoT wol7	ξ. (%		0003	0003			0000		0003	0034	0058		87.6 O		00 81 0		
	δ [ntoT					8008					0000	8		0003			0003	
F Iow	tnemenal	.E/v										89.1		0003				
voter	Flow (Peak)	.E%		003	0003	018		005	:	003	0.026	9046		073		018	0.94	
Westewater	PotoT	Perso		4 154	215	9911 9		284		152	1661	2887		4519		1106	5830	
	VisneO G ensiti. S fnem-	Pers		20 16A	-	20 35		20 284		20 1 52		°		204519		201106	20 206	
<u> </u>	noitoluqoq	75		5184.	0 0 00	184		5184.		5 184. 20	0.00	0,00		5.184.2		184	184	
Length	TotoT	ε		vo-	15 20	\$ 150		- 65		- 10	250	470		- W-		5	100	
٦	Inscrement	E				15					1 00	25				5	105	
Area	Total	ρς		68:0	1117	633		154		0;82	698	1567		2453		009	3165	
A	Increment	рq		0.89	000	0.19		154		0.82	0	000		2453		00.9	112	
	No of Sewers					1159 E		1159 E				1159 L		1159			1159 K	
	3 7N			1 1 5 B	1159 A	1159 B		1N11 59C		1N11 590	1159 E	1159 F		1N11 59G		1N11 591	1159	

									1										
		Remorks			:														
	1	Еегір Соуе	ε	190	7 5 	822		50.00	2322		256	3 Z Z Z		0665	23.33		052	3,5	
		Invert Elevation	Σ	0505	-0110 184 -0297 179	-0338		1000	-0938		1010	-1084 2 -1,154 2		1170	-1154 2		0.970 0	-1874 2	
Sewer		Ground Elevation	Σ	219	219	195		\$ 65	185		5 S	135		139.5	282		07.1	227	
1 .	(110	Capasity(Fu	S _N	0000	010	01169		9000	6910		900	0.169		8 1	0 6 9		0:025	0864	ļ
Designed		Velosity	چ%	072	0.83	88		0.7.2	88		0772	8g.		673	8		ဝန္လ		
å		Slope	%	700	250			007	.00		<u></u>	02		8	<u>ද</u>		350	<u></u>	
		Diameter	ε	001 ⊙	007	0 88		001	005	-	001	005		0 150	0 200		002 0	0001 O	
	u6	Total Desi Flow	Ę\	0001	8600	0154			05155		8	0158		7000	9970		0021	0721	
3	ers	[DTOT	ξ⁄ν		00003	0013			0.0013			0013			0013		0013	9008	
Flow	Other	Increment	ξ/v					· · · · · · · · · · · · · · · · · · ·	ļ								0013		
water	()	Flow (Pea	ξ'n	8 . 001	0.095	0141		3 001	0142		1 000	0145		7 007	0153		800 9	0.623	
Westewater	Dogulation	lotoT	Perso	5.8	5888	8774		33	8816		4 234	9050		7	9487		5.1	38747	
		noitolugo9 ytizne0 enanl.	25 Sa	184.20	00	. 8		84. 20	0	ļ	184. 20 234	00.		184. 20 437	8		84. 20 516	00	
E		Totol	٤	4518	185 0.	190 0.	· ·	81.8	510		\$ 18	545 6.	-	\$ 18	570 0.		5.18	4005 0.	
Length		Increment	٤	4.5	7.5	50		U.S	20		un un	55.		- 5	25		us	265 40	
Area		Total	문	0:31	31196	47.63		023	47.86		127	4913		231	8150		280	53926	<u>-</u>
A	-	Insrement	윤	31		000		023	000		127	- 8		23.7	000		280	000	
	613.	Lac to ou				1159 N			1159 P			1159 R			(=)			(3)	
	976V	792 to 0M		1159 J	1159	1159		11 K 6 9	11.59 N		1N11 590	1159		1 N 1 1 5 9 Q	R 89	-	1111 598	<u>~</u>	\Box

					_			4.											
3															·				
			Remarks					-			:								
-	\neg	19	Eerth Cov	ε	602	338		9.5	 0.0	17.1		27.7	£ 49	48. 10. 10.		6 <u>6</u>	8 9 8	395	385
			Invert Elevation	Σ	1,020	-2219		2400 2365	2365	0680		1000	-2427	-2927		-3055	-3478	-3544	-3665
	Sewer		Ground Elevation	Σ	227	227		230	08.Z 08.Z	230		238	281	282		. 28 28	187	191	181
ı	- I	(Hn.	Coposity(F	ξí		0864		000	 9000	9000		900	0.864	0364		0512	1293	1293	1233
	Designed		Velosity	%	5			0,12	 072	<u>2</u>		67.5	9			2		<u></u>	
	ဝီ		adol2	%				<u>8</u>	 6	00.		9		130		150	011	01	- 2
			Diometer	E	0 0	0 1000	.*	0 100	0	0		0 100	0 1900	O 1000		0 800	0 1200	0 1200	0 1200
		uɓị	Flow Wolf	Ę,	0010			0003	 1000	0000		0000		0,744		0313	13060	19063	1066
		2	Total	.ξ _ω		8600			 				88 000	00.98		3015	0115	0115	11.5
	F10%	Othe	Insmeronl	ξ/ν												00015	0000		
	Westewater	()	Flow (Pec	ج/ي	010	0.633		7 .003	 80 001	000		7 005	0.642	86. 645		298	0945	2 948	9 951
	Weste	Population	lotoT	Perso	630	0 39377	<u> </u>	177 177	8	0 257	. :	297 297	62662 0	257 40186		34 18534	38 58757	205 58962	187 59149
			oitolugo9 ytisneQ eyonl. fnem-	Pers Sons	<u> </u>	0.00		184.20 1	5184.20	9.00		5 184. 20 2	1	- 8		41.0018534	80	- 2	- 8
	Length		lotoT	E	S	4165		3	5	120			4245	4515184		- 2	0 457582.	5 4630 151.	4685149
	Le		Increment	٤	1 3	160				115		\$	80	270			9	5.5	5.5
	Area		Total	EG.	342	5.4268		036	 	<u>8</u>		155	54558	547.07	***********	45204	99957	100012	100217
	Ā		Incremen	5	3,42	000		960	 3	000		191	66			45204	9,46	135	1.25
		wers	es to ov					11.73											
			- · · · ·		191 1161			IN 1171	13 1172	1173		1.1.74 1.1.74	(Ξ)	(=)		(≅≅)		(🖺	(\bar{z})

		s,																	
		Remarks		-			s.												
	,ر	Eerth Cove	lε		283	375	88	232		- 5 E			247		130	384	 120	ļ	
		Invert Elevotion	2		-1420 -1420	-1720	1090	-0273		0.950		1:000	-0273		0970 0957	-0.823	1320		
Sewer		Ground Elevation	Σ			138.7 7.81	245	27.2		272		272	272		252 252	320	 287		
1 .	(Hr	Coposity(Fu	ξ		010	0104	0,173	0258		107		0.025	0,268		0033	0512	 0:057		
Designed		Velosity	%ع			083	54 2	<u>8</u>		83		8	0.95 1.36 0.95		080	19.5	 <u>8</u>		
اۃ		adolS	%		250	250				250		350	130		2,60	8	 350		
		Diameter	E E		400	400	300	600		00)	:	200	600 500		250	800	300		
		Flow	\0		0	0.71	<u>0</u>	0	·	0 2		<u>0</u>	o ⊙c		<u>0</u>	0	 0		1
	სზ	isaO lotoT	Έ		03080	0.097	0,173	0.173		0012		0023	0,268		0:034	0301	 0042		
*	ers	lotoT	ξ,		9011	1100	02040	99.40		91.08			9500			95020	 0100	*******	
Flow	Others	Increment	.ξ/λ				**********		···	9100				*********		 	 0100	*******	
woter	()	Flow (Peal	ξ̈́ω		6900	9800	0133	0133		3 0 2 8		9 023	0,212		5 034	0245	 032		
Westewoter	Control (CO	lotoT	Perso -ns		4288	5371	8282	8282		3463		1419	13169		2035	15263	1 202 1		
			Pers		1288	8	. 6	6		203469		0141			6020		 2020		
		Population VisneO	7 _Z		516.604288	0.00	0.00	0.00		184. 2		133. 101419	0.00		153.302095	0.00	184. 20202		J
ŧ.		lotoT	ε			220	575	1100				70	1150		ŵ	1625	v,		
Length		Inscrement	٤		- 5	135	09	525				5	50		٠,	475	٠,٠		
Area		Total	D.		25830	28411	29991	29991		1883		10.66	32940	••••	1366	34306	 1097		
Ar		Inscrement	헏		25830	000	000	000		1833		1066	000		1366	000	 1097		
	C 12.	100 10 00			8			(302)	·	(10°)						(30)	3093		
		YS TO ON					(30)			1 N 3071		1N 3072			3081	()	1800 3091		

(1/2)		Remarks																	
	,	Eerth Cove	٤	123	346	384		90:T		0.92	1906	 967	- E		. <u>8</u> 8	- 28 - 28 - 28 - 28 - 28 - 28 - 28 - 28		099 101	
		Invert Elevotion	Σ.	1400	1225 129 -0613 346	-1535		1395		1530	1395	 1550	0240		0950 0937	-00050		0950 039 0933 101	
Sewer		Ground Elevation	Σ	287	220	320		255		256 256	215	306	212 Z15		215	215		215	
j .	(I)	Coposityl Fu	ξ'n	0.014	0:057	0512		2 0006		2 000 6	000.6	 9000	9000 2		0 0038	0039		0:025	
Designed		Velosity	Ε̈́S	- E		ē.	• • • • • • • • • • • • • • • • • • • •				0.72	 077	E		<u>8</u>	8		080	
ျီ		Slope	%	200		150		700		7,00	7.00	 700	700		2,60			350	
		Diameter	E E	150	300	800		100		001 (001 (001 (001 (250	250		200	
	┼	Flow	S		0		<u> </u>	0.		0 ~	. S	 0 2	<u>O</u>		0	0			
İ	u6	Total Desi	ŝ	6000		0353		0000		0002	0002	 0002	9000		0033	0038		0017	
}	ers	lotoT	N			9906							•••••	***********	0016	9100		0:013	
Flow	Others	Increment	ξ.									 			80 16			0013	ļ
Westewater	()	Flow (Peol	,E	3 009		0287		5 002		0 002	0002	 5 002	9000		1 017	0023		3 00 4	
/este	3	S tnsm-	Perso -ns	5.53	2574	17836		135		- 25	284	201	389		107	1459		253	
5		g tnom-	Pers	55.3				- 55		음	- 8	 - 5			107			253	<u> </u>
		noitolugo9 Vtien90 S sincie	7, E A	84. 20	8.	00,		184.20		8 . 20	8	184. 20	8.		184. 201	. 8		84.20	
- -	 	lotoT -	· · · ·	5.18	530 0.	1870 0.		- 52		\$ 18 18	170	 2518	190 0.		5 18	220 0.		518	
Length		Increment	£		\$28	245 18		~		2	165	 25	20		- 23	8	•	vo	
	 		3	ļ	<u> </u>	<u> </u>		ļ	 		<u> </u>	 ļ				<u> </u>			
60		Total	운	<u>S</u>	1397	35703		073		- 8 - 2	154	 0.57	112		58.1	792		137	
Ar		Insmeronl	ይ	300	ê	ç,		5,		28	§.	 0.57	000		581			137	
	5124	was to ov						3103			3105		3107			3109 A	-		-
				1 N 3092	3093			3101 3101		1N 3102	3103	3104	3105		3106	3107		11. 3108	

			 -							 		 					1	
(15)		Remarks								-								
	J	Eerth Cove	٤	3338		109 208	348		139	 126	35.77	 129	351	455		1109		
		Invert Elevation	Σ	-0178		1030	-1328		0352	0.980	-1540	0550	-1580	-2193 455		0.975		
Sewer		Ground Elevotion	Σ	215		250	250		250	052 052	250	250	250	225		22.5		
	(117	Copasity(Fr	™S	0.057	********	0025	0104		0014	 5£000	0169	 68090	6910	0512		9014		
Designed		Velosity	8			080	8		0.79	 0:80	986	 080	980	1:02		0.79		
å		Slope	%	350		350	2,50		500	 2,60	200	 092	200			500	**********	İ
		Diometer	mm.	300		200	400		150	 052 (500	0 2 2 0	> 500	008 0		051 (
}		Flow		0	•	 O	0		<u>o</u>	 .0	0	0	4 0	0	 	0		
	uб	iesO_lotoT_	ξ. S.	00057		0025	9981		 2017	 0:028	0,123	 9031	0:154	0:20 7				
	srs	lotoT	£/2	0003		8100	0.047	********		 1000	00048	 0000	0020	911.				L,
Flow	Others	Increment	ž%			00018				 0.000		 0000						
water	(X	Flow (Peal	Έ⁄ν	0023		8 .007	0034	,	9 014	 9 027	0.075	 1 029	010	1680		9 014		
Westewater	Population	Total	Perso -ns	1712		8 408	2119		8 8 8 8	6991 6	4646	1 181	6457	24293		9 859		
	ā		S S			20 408	0		20 859	 201669	0	 201811	- 6	-	ļ <u>.</u>	20 859		
		Population VtiensG	7,5	0.00		235 184. 2	0.00		84.	184.	0.00	 5184. 2	0.00	0.00		5184. 2		·
45	-	lotoT	٤	520		235	565		- 65	101	585		066	2205				İ
Length		Increment	٤	300		235	4.5		S	r.c.	20	, v	405	335		U.S.		
Area		Total	рq	928		221	11.50		993	 908	2522	 983	3205	39208		466		
Ą		tnemenant.	рų	000		221	§.		468	306	000	 983	000	8		466		
	wers	/98 to oN		3109			3109		3109 F		3109 II							
		o 32 -14		3109 A	:	3109	3109		1N31 090	 1N31 09E	3109	 1831 09G	3109 H			1N 3111		

												· .		 	 			
(91)	:	Remarks			-													
	Já	Serth Cove	E	197 105	5.4 15.53 5.53	. 12 SS	8.5		102	. 2.2.				 	 	ļ	ļ <u>ļ</u>	
		Invert Elevotion	۶	0910	-3393 -3503	13594	-4336		1299.	0630				 				
Sewer		Ground Elevation	Σ	22.5 22.5	22.5	220	250		250 250	. 22 22 23 24								
1 1	() (1	Coposity(F	s,	0025	0864	0.864	2121		0,025				ļ	 ļ	 	ļ	ļ	
Designed		Velosity	ξ,	8	110		120		g	Ç				 	 			
å		Slope	%		130	130	060		350					 	 			
		Diameter	шш	002	O 1000	0001	0051 ©		007	0,,800								
	uб	ieaO lotoT Wol-T	چ گ	0013	0539	0539 K	1613		0021	1834				 ļ		ļ <u>.</u>		
2	ers	lo1oT	ž,	9000	0122	0122	0237			0237				 	 	:		
F low	Others	Increment	-ξ/V	9000										 	 	ļ		
water	()	Flow (Peo	.Zv	6013	0417	9411	376		0021	1397				 			ļ	
Westewater	Population	lotoT	Perso	198	25949	25949	85573	-	1328	86900	7							
			8 S S	198	. 0	6	233		1328	٥								
	ŧ	Population VisneO	$7_{\rm S}$	595.20	0.00	0.0	108.20		523. 601328	0.00							<u> </u>	
d lg		loto]	ε	u,	2290	2330	5025108		- CO	6145								
Length		Increment	٤	~	. 88	å	210			1120								
Area		Total	٤	83. 83.	40512	40512	141116		4484	145600			<u> </u>					
Ā		increment.	足	838	000	- 6 6	220		44.84									
	wers	res to ovi	 ,							T. PL	1							
		~)W		1 N 3112			Ê		1241									

Table 4.2 Calculation of Capacity for Sewage treatment Facility

I Pumping Station (PS-1)
Calculation of Capacity

	Most Urgent Plan	F/S Plan	Master Plan
1. Design Wastewater Flow			
(1) Design Mean Dry Weather Flow per Day			
Wastewater Ground water	15,800m ³ /d × 0.8 = 12,640 m ³ /d 15,800m ³ /d × 0.2 = 3,160 m ³ /d q_1 = 15,800 m ³ /d = 658 m ³ /hr=11.0 m ³ /min	18,300 m ³ /d × 0.8 = 14,640 m ³ /d 18,300 m ³ /d × 0.2 = 3,660 m ² /d q ₁ = 18,300 m ³ /d = 763 m ³ /hr = 12.7 m ³ /min	30,500 m ³ /d × 0.8 = 24,400 m ³ /d 30,500 m ³ /d × 0.2 = 6,100 m ³ /d 0 ₁ = 30,500 m ³ /d $\approx 1,271$ m ³ /hr ≈ 21.2 m ³ /min
(2) Design Maximum Dry Weather Flow per Day	q2'= 12,640 x 1.2 + 3,160 = 18,330 m³/d = 764m³/hr = 12.7 m³/min	$q_2 = 14,640 \times 1.2 + 3,660$ $= 21,230 \text{ m}^3/\text{d}$ $= 885 \text{ m}^3/\text{hr} = 14.7 \text{ m}^3/\text{min}$	$\theta_z = 24,400 \times 1.2 + 6,100$ $\approx 35,380 \text{ m}^3/\text{d}$ $\approx 1,474 \text{ m}^3/\text{hr} \approx 24.6 \text{ m}^3/\text{min}$
(3) Design Maximum Hourly Wastewater Flow	$q_3' = 12,640 \times 1.2 \times 1.4 + 3,160$ $= 24,400 \text{ m}^3/\text{d}$ $= 1,017\text{m}^3/\text{hr} = 16.9 \text{ m}^3/\text{min}$	$q_3' = 12,640 \times 1.2 \times 1.4 + 3,160$ $q_3' = 12,640 \times 1.2 \times 1.4 + 3,660$ $q_3' = 24,400 \text{ m}^3/\text{d}$ $q_3' = 28,260 \text{ m}^3/\text{d}$ $q_3' = 1,017\text{m}^3/\text{hr} = 16.9 \text{ m}^3/\text{min}$ $q_3' = 1,178 \text{ m}^3/\text{hr} = 19.6 \text{ m}^3/\text{min}$	$\theta_3 = 24,400 \times 1.2 \times 1.4 + 6,100$ $= 47,090 \text{ m}^3/\text{d}$ $= 1,962 \text{ m}^3/\text{hr} = 32.7 \text{ m}^3/\text{min}$
(4) Design Wet Weather Maximum Hourly Wastewater Flow	3q ₃ = 24,400 × 3 = 73,200m³/d = 3,050m³/nr≒ 50.8 m³/min	3q ₃ = 28,260 x 3 = 84,780 m³/d = 3,533 m³/hr = 58.9 m³/min	30 ₃ = 47,090 x 3 = 141,270 m ³ /d = 5,886 m ³ /hr = 98.1 m ³ /min

	Most Urgent Plan	F/S Plan	Master Plan
2. Grit Chamber			- Committee of the comm
Design removal article Dry Weather	Specific gravity 2.65 Grain size Settling velocity V = 0.021m/min	same as left	same as left
Surface loading	1,800m³/m²/day (Design Maximum Flow)	same as left	same as left
Wet Weather	Specific gravity 2.65 Grain Size 0.6mm Settling velocity V = 0.063m/min	same as left	same as left
Surface loadinga	5,400m³/m²/day (Design Wet weather Maximum Hourly Flow)	same as left	same as left
Configuration 1) Dry Weather	W 1.2 m x L 8.0 m x D 0.35 x 1 Channel	W 1.2 m x L 8.0 m x D 0.55 x 1 Channel	W 1.2 m x L 8.0 m x D 0.65 x 2 Channel
(Surface) (Volume)	9.6 m² 3.4 m³	9.6 m² 5.3 m³	19.2 m ² 12.5 m ³
Study Surface loading	$\frac{18,330}{9.6} = 1,909 \text{ m}^3/\text{m}^2/\text{day}$	$\frac{21,230}{9.6}$ = 2,211 m ³ /m ² /day	$\frac{35,380}{19.2} = 1,843 \text{m}^2/\text{m}^2/\text{day}$
Mean velocity	$18,330/86,400 \times 1.2 \times 0.35$ = 0.51 m/sec	$21,230/86,400 \times 1.2 \times 0.55$ = 0.37 m/sec	35,380/86,400 x 1.2 x 0.65 = 0.26 m/sec
Sedimentation time	3.4 x 86,400/18,330 = 16 sec	5.3 x 86,400/21,230 = 22 sec	12.5 x 86,400/35,380 = 31 sec

	Most Urgent Plan	F/S Plan	Master Plan
Settling time	0.35/0.021 = 17 sec	0.55/0.021 = 26 sec	0.65/0.021≒ 31 sec
Removal efficiency	$\{1-\frac{1}{1+16/17}\}=48\%$	$\{1 - \frac{1}{1 + 22/26}\} \times 100 = 46\% \left\{ 1 - \frac{1}{1 + 31/31} \right\} \times 100 = 50\%$	$\{1 - \frac{1}{1 + 31/31}\} \times 100 = 50\%$
2) Wet weather	W 1.2 m x L 8.0 m x D 0.70 x 2 channel	W1.2 m x L 8.0 m x D 0.90 x 2 channel	W 1.2 m x L 8.0 m x D 1.20 x 3 channel
(Surface) (Volume)	19.2 m² 13.4 m³	19.2 m² 17.3 m³	28.8 34.6 m³
Study Surface loading Mean velocity	73, 200/19.2 = 3,813 m ³ /m ² /day 73,200/86,400 x 1.2 x 0.7 x 2	84, 780/19.2 = 4,416 m ³ /m ² /day 84, 780/86,400 x 1.2 x 0.9 x 2	141, 270/28.8=4,905 $m^3/m^2/day$ 141, 270/86,400 x 1.2 x 1.2 x 3
Sedimentation time Settling time Removal efficiency	13.4 x 86,400/73,200 = 0.50 m/sec 0.7/0.063 = 11sec $(1 - \frac{1}{1 + 16/11}) = 59\%$	17.3 x 86,400/24,780 = 10.45 m/sec 0.9/0.063 = 14sec $\left\{1 - \frac{1}{1 + 18/14}\right\}$ x 100 = 56%	34.6 x 86,400/141,270 = 21 sec 1.2/0.063 = 19sec $\left\{1 - \frac{1}{1 + 21/19}\right\} \times 100 = 50$
3. Main Pump			
Submersible pump No.1	\$300 x 12.5 m³/min x 16 m x 55 kW x 1 unit	$\phi 300 \times 12.5 \text{ m}^3/\text{min } \times 16 \text{ m}$ $\times 55 \text{ kW} \times 1 \text{ unit}$	\$300 x 12.5 m³/min x 16 m x 55 kW x 2 units
Submersible pump No.2	\$500 x 25 m³/min x 16 m x 110 kW x 3 units (reserve 1 unit)	φ500 x 25 m³/min x 16 m x 110 kW x 3 units (reserve 1 unit)	\$500 x 25 m ³ /min x 16 m x 110 kW x 4 units (reserve 1 unit)

	Most Urgent Plan	F/S Plan	Master Plan
1. Design Wastewater Flow			
(1) Design Mean Dry Weather Flow per Day			
Mastewater Groundwater	15,800 m³/d x 0.8 = 12,640m³/d 15,800 m³/d x 0.2 = 3,160m²/d qı'= 15,800m²/d	15,800 m³/d x 0.8 = 12,640m³/d 18,300 m³/d x 0.8 = 14,640m³/d 15,800 m³/d x 0.2 = 3,160m³/d 18,300 m³/d x 0.2 = 3,660m³/d 18,300 m³/d x 0.2 = 18,300m³/d	34,500 m³/d x 0.8 = 27,600m³/d 34,500 m³/d x 0.2 = 6,900m³/d 0.1 = 34,500m³/d (Base Design Plow 35,000m³/d)
(2) Design Maximum Ory Weather Flow per Day	$q_2' = 12,640 \times 1.2 + 3,160$ $= 18,330 \text{ m}^3/d$	$q_2 = 14,640 \times 1.2 + 3,660$ = 21,230 m ³ /d	$u_z = 27,600 \times 1.2 + 6,900$ $= 40,020 \text{ m}^3/\text{d}$
(3) Design Maximum Hourly Wastewater Flow	q3'=12,640 x 1.2 x 1.4 + 3,160 = 24,400 m³/d	$q_{3}=14,640 \times 1.2 \times 1.4 + 3,660$ = 28,260 m ³ /d	l ₃₌ 27,600 × 1.2 × 1.4 + 6,900 ≒ 53,270 m³/d
(4) Design Wet Weather Maximum Hourly Wastewater Flow	3q3'= 24,400 x 3 = 73,200 m³/d	3q ₃ = 28,260 x 3 = 84,780 m³/d	392= 53,270 × 3 = 159,810 m³/a

2. Design Influent water Quality and removal Efficiency

Removal ratio	% 06	75 %
Effluent quality	12 mg/1	25 mg/l
Influent quality	120 mg/l	100 mg/1
	BOD	S

	Most liveont Dian	F/5 D12n	
	Most Urgent Flan	r/s Plan	Master Plan
స్ట్ స్ట్ జ్యాజ్ల	15,800 × 120× 10 $^{-3}$ = 1,896 kl/d 18,300 15,800 × 100× 10 $^{-3}$ = 1,580 kl/d 18,300	$18,300 \times 120 \times 10^{-3} = 2,196 \text{ kl/d}$ $18,300 \times 100 \times 10^{-3} = 1,830 \text{ kl/d}$	35,000 x 120 x 10 -3= 4,200 kI/d 35,000 x 100 x 10 -3= 3,500 kI/d
	$1.896 \times 0.9 = 1.706 \text{ kg/d}$ $1.580 \times 0.75 \times 0.85 = 1.007 \text{kg/d}$ $1.830 \times 0.75 \times 0.85 = 1.167 \text{kg/d}$	x 0.9 = 1,976 kg/d x 0.75 x 0.85 = 1,167kg/d	4,200 × 0.9 = 3,780 kg/d 3,500 × 0.75 × 0.85 = 2,231kg/d
7,00	1,007 - $\frac{100}{100 - 99.3} \times 10^{-3}$ 1,167 - = 144 m ³ /d	$1,167 - \frac{100}{100 - 99.3} \times 10^{-3}$ $= 167 \text{ m}^3/\text{d}$	$2,231 - \frac{100}{100 - 99.3} \times 10^{-3}$ = 319 m ³ /d
	•		
	15,800 m³/d	18,300 m³/đ	35,000 m³/d
	0.1 kg/SS/kg/d	same as left	same as left
·	2,000 to 3,000 mg/l	same as left	same as left
			$\frac{35,000 \times 120}{0.1 - 2.500} = 16,800 \text{ m}^3$
₹ 3	$4.0 \text{ m} \times \text{L } 106 \text{ m} \times \text{D } 2.5 \text{ m}$ W 4.0 2 tanks x 3 units V = 6,360 m ³	W 4.0 m x L 106 m x D 2.5 m 2 tanks x 4 units $V = 8.480 \text{ m}^3$	W 4.0 m x L 106 m x B 2.5 m 2 tanks x 8 units $V = 16,980 \text{ m}^3$
15.	15,800 x 120 6,360 x 2,500 kg-80D/kg-ss/d 8,48	$\frac{18,300 \times 120}{8,480 \times 2,500} \stackrel{=}{=} 0.10$ 8,480 × 2,500 kg-800/kg-ss/d	35,000 × 120 16,960 × 2,500 kg-BoD/kg-ss/d

Most Urgent Plan
$\frac{18,300 \times 120}{6,360 \times 2,500} = 0.14$ kg/ss/kg/d
$\frac{6,360 \times 24}{15,800} = 9.7 \text{ hr}$
6,380 × 24 = 8.3 hr 18,300 = 8.3 hr
15,800 m³/d
15 m³/m²/d
3.0 hr
DIA 19.5 m x D 2.5 m x 3 tanks $A = 895 \text{ m}^2$ $V = 2,238 \text{ m}^3$
$\frac{15,800}{895} = 17.7 \text{m}^3/\text{m}^2/\text{d}$
$\frac{18,330}{895} = 20.5 \text{m}^3/\text{m}^2/\text{d}$
$\frac{2,238 \times 24}{15,800} = 3.4 \text{ hr}$
$\frac{2,238 \times 24}{18,330} = 2.9 \text{ hr}$

	Most Urgent Plan	F/S Plan	Master Plan
4.3 Chlorination Tank			
Design Westewater Quantity	15,800 m³/d	18,300 m³/d	35,000 m³/d
Contact Time	15 minutes	same as left	same as left
Configuration	W 2.0 m x L 16.0 m x D 1.5 m x 4 channel x 1 unit y = 199 m ³	same as left	same as left
Study Contact Time	$\frac{192 \times 60 \times 24}{15 \text{ R/O}} = 17.5 \text{ min}$	$\frac{192 \times 60 \times 24}{18 \text{ gen}} = 15.1 \text{ min}$	384 x 60 x 24 = 15.8 min
q2' or q2 or Q2	192 x 60 x 24 18,330 = 15.1 min	$\frac{192 \times 60 \times 24}{21,230} = 13.0 \text{ min}$	$384 \times 60 \times 24$ 40,020 = 13.8 min
Chlorine ratio	$2\sim4$ mg/1	same as left	same as left
Chlorine dosage	$15,800 \times 3 + 10^{-3} = 47.4 \text{ kg/d}$	$18,300 \times 3 + 10^{-3} = 54.9 \text{ kg/d}$	$35,000 \times 3 + 10^{-3} = 105 \text{ kg/d}$
5. Draing Bed			and a grant page.
Design Sludge Product	144 m³/d (1,007 kg/d)	167 m³/d (1,167 kg/d)	319 m³/d (2,231 kg/d)
Drying Days	18 days	same as left	same as left
Solid Loading	4.5 kg/m³/d	same as left	same as left
Required Area	$\frac{1,007 \times 18}{4.5} = 4,028 \text{ m}^2$	$\frac{1,167 \times 18}{4.5} = 4,668 \text{ m}^2$	$\frac{2.231 \times 18}{4.5} = 8.928 \text{ m}^2$
Configration	$20 \text{ m} \times 12.6 \text{ m} \times 15 \text{ Bed}$ $A = 3,780 \text{ m}^2$	20 m x 12.6 m x (18 + 2) Bed A = 3,780 m ² (18 Bed)	20 m x 12.6 m x (36 + 4) Bed A = 9,072 m ² (36 Bed)

Table 7.1 Flow Capacity of Bang Yai River

	Distance from river mouth	bed	Bank	Left Bank		Freeboard (0.6m)
SECTION 1	(km) 0.1		(El m) Mangrove	1.6	(m3/s) 140	(m3/s) Name of Bridg 140
	0.2		Mangrove	1.8	140	140
2	0.4		Mangrove	1.8	140	140
4	0.5		Mangrove	1.5	140	10
5	0.6		Mangrove	1.7	140	80
6	0.7	-1.6	1.8	1.9	140	120
7	0.8	-1.9	1.8	2.0	140	90
8	1.0	-1.7	1.8	2.1	140	80
9	1.1	-1.6	2.0	2.2	140	. 100
10	1.2	-1.7	1.8	2.1	140	60
11	1.3	-1.6	2.4	2.7	140	140
12 13	1.4 1.6	-1.6 -2.1	2.2	2.7	140	100
14	1 7	-1.5	2.3	2.2	140 140	90 90
15	1.8	-1.8	2.3	2.4	140	100
16	1.9	-1.3	1.8	1.7	90	20
17	2.0	-1.3	2.0	1.7	80	20
18	2.2	-1.7	2.3	1.7	40	10
19	2.3	-1.2	2.1	1.8	40	10
20	2.4	-1.1	1.9	2.1	40	10
BR1	2.45	-0.9	2.2	2.2	50	20 Poonphol
21	2.5	-0.2	2.0	2.0	40	20
22	2.6	-0.9	2.9	2.0	20	10
23	2.7	-1.0	2.6	1.9	10	20
24	2.8	-0.8	2.6	1.9	40	20
BR2	2.85	-0.7	2.8	2.8	40	20 Taling Chan
25	2.9	-0.9	2.5	2,4	20	10
26	3.0	-0.4		2.1	20	10
27	3.1	-0.5	2.6	2.1	20	10
28 BR3	3.2 3.3	0.3	2.3	2.3	20	20
BR4	3.4	-0.1	2.4 2.5	2.5	20 20	10 Pra-a-ram
BR5	3.5	-0.1	3.2	3.6	30	10 Phang Nga 20 Tuanpradit
32	3.6	0.1	3.8	3.7	40	20 Tuanpradic 20
33	3.7	0,2	3.8	3.8	40	30
34	3.8	0.2	3,8	3.8	40	20
BR6	3.85	1.0	3.0	3.0	20	10 Thepkrasattri
35	3.9	0.5	4.1	4.1	40	30
36	4.0	0.5	4.1	4.2	40	20
37	4.1	1.0	4.7	4.7	50	40
38	4.2	1.2	4.7	4.6	50	30
BR7	4.25	1.8	4.8	4.8	50	40 Damrong
39	4.3	1.8	4.6	4.6	40	30
40	4.4	1.8	5.6	5.6	50	50
41 42	4.5 4.6	1.3	5.0	4.3	30	10
43	4.7	$\frac{1.8}{1.0}$	4.5 4.4	3.9 4.4	20 20	10 10
44	4.8	1.4	5.5	5.2	40	30
45	4.9	2.0	6.1	6.1	60	50
46	5.0	3.2	5.5	5.5	40	30
BR8	5.05	3.1	5.5	5.5	40	30 Thepkrasattri
47	5.1	3.5	6.3	6.3	60	50
48	5.2	3.0	6.2	6.2	40	- 10
49	5.3	3.4	6.8	6.5	40	20
50	5.5	3.6	7.2	6.3	30	10
51	5.6	4,1	7,9	6.9	40	20
52	5.7	4.8	8.6	8.5	60	40
53	5.8	3.8	9.0	7.7	40	30
54	5.9	3.8	9.3	8.5	40	20
55	6.1	4.7	8.6	8.4	30	20
56	6.2	4.7	9.3		30	20
57 58	6.4	4.7	9.5	8.7	40	30
59	6.5 6.6	5.2	9.0	9.1	50	40
60	6.8	5.4 5.6	$9.2 \\ 10.1$	$\frac{8.6}{9.9}$	40 - 70	20
61	6.9	5.8	10.1	10.5	90	50 60
62	7.1	6.0	11.0	11.0	80	60
63	7.2	6.2	10.1	10.6	50	40
BR9	7.25	6.8	9.9	9.9	50	40 Yaovaraj
64	7.3	6.4	10.2	10.0	40	20
65	7,5	6.6	9.2	9,0	20	10
66	7,6	6.8	9.8	9.3	20	10
67	7.8	7.1	9.8	11.5	30	20
68	7.9	7.3	10.2	10.5	30	20
69	8.0	7.5	12.2	12.2	80	60
70	8.2	7.7	12.2	13.2	80	60
71	8.3	8.3	11.6	12.1	60	50
72	8.5	8.6	11.9	12.5	50	30
73	8.6	8.2	12.2	12.2	50	30
74	8.8	8.1	12.5	12.4	50	30
75	9.0	9.4	13.0	13.0	60	40
76	9.2	9.3	13.8	13.8	70	40
77	9.4 9.6	$\frac{11.2}{11.6}$	14.5 14.2	14.7 15.7	90 40	60 20
78						

Table 7.2 Daily Maximum Rainfall

		*****								Stati	ion na	me:	Phuket
Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.		Annual
1968	12	0	. 0	37	143	85	75	90	82	45	19	54	143
1969	39	16	16	- 6	61	129	50	53	57	52	48	3	129
1970	11	2	31	53	78	62	71	32	38	40	52	23	78
1971	22	42	44	2	74	95	83	96	110	72	43	21	110
1972	0	2	3	52	53	38	32	32	57	30	24	29	57
1973	2	21	23	. 29	64	99	85	81	100	37	49	28	100
1974	0	- 2	12	73	53	76	123	43	61	135	66	20	135
1975	33	10	20	70	71	60	59	15	130	83	30	12	130
1976	0	2	15	46	87	106	104	86	102	53	27	20	106
1977	12	16	0	16	34	70	34	80	87	84	27	4	87
1978	13	0	14	80	38	69	87	67	50	22	35	23	87
1979	2	1	0	34	50	53	80	38	80	36	14	15	80
1980	2	44	54	34	48	69	85	110	41	48	32	29	110
1981	1	0	25	42	53	46	33	53	72	33	124	17	124
1982	. 1	-23	19	28	68	23	135	23	55	44	45	16	135
1983	9	0	28	42	48	43	36	118	88	82	44	11	118
1984	14	1	35	90	42	90	62	29	76	47	28	73	90
1985	34	39	29	47	66	67	50	82	133	68	32	46	133
1986	9	12	. 3	124	127	44	78	81	173	76	90	10	173
1987	5 8	. 0	18	15	80	25	19	95	60	66	126	45	126
1988	8	38	20	41	59	35	57	55	55	42	141	12	141
1989	6	1	112	31	60	31	68	78	90	102	19	7	112
Max.	39	44	112	124	143	129	135	118	173	135	141	73	173

									Stati	on nai	ne: B	ang W	ad Dam
Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Auq.	Sep.	Oct.	Nov.	Dec.	Annual
1982									 			18	
1983	· 8	0	9	21	50	69	42	101	70	96	36	10	101
1984	10	6	16	65	42	72	107	33	62	61	55	51	107
1985	14	9	68	56	65	57	73	.95	96	60	39	18	96
1986	16	4	0	67	146	40	56	167	155	100	219	19	219
1987	4	0	10	19	62	60	16	. 137	142	63	133	48	142
1988	- 8	11	22	30	58	50	70	44	76	40	105	20	105
1989	6	0	8	40	66	54	98	115	80	115	30	0	115
Max.	16	11	68	67	146	72	107	167	155	115	219	51	219

							<u>Stati</u>	on nam	ie: B	an Mai	reab	School
<u>Year Jan.</u>	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1989									128	13	21	

Table 7.3 Monthly Rainfall

						:			<u> </u>	Stat:	on na	me:	Phuket
Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.		Annual
1968	14	0	0	135	400	341	343	401	498	188	94		2,532
1969	67	17	31	18	305	534	329	283	398	289	255	4	2,530
1970	32	2	130	242	241	184	470	213	354	342	115	79	
1971	22	173	197	3	536	479	203	546	441	499	106	44	
1972	.0	2	5	188	235	212	232	136	434	139	108	127	1,818
1973	3	21	73	107	307	371	454	293	482	204	233	81	2,629
1974	. 0	3	45	156	283	421	423	250	439	507	198	62	2,787
1975	91	. 15	62	228	384	491	136	100	508	416	191	25	2,647
1976	0	2	56	128	462	268	348	263	416	189	105	23	
1977	15	40	0	25	206	247	157	343	455	376	119	8	1,991
1978	24	. 0	19	117	226	301	430	213	243	86	82	31	1,772
1979	2	1	0	149	155	266	452	112	248	152	5.7	42	1,636
1980	2	44	133	63	222	375	349	486	336	294	172	130	2,606
1981	1	1	26	147	289	147	165	149	288	166	279	35	1,693
1982	3	50	30	116	303	87	650	131	184	274	211	. 36	2,075
1983	15	0	. 29	43	221	256	294	508	603	366	127	19	
1984	34	1		382	203	470	411	86	332	282	69	230	2,568
1985	36	57	103	219	499	196	173	213	430	416	76	80	2,498
1986	29	12	. 4	248	454	185	308	417	881	330	269	20	
1987	11	0	18	38	321	138	76	656	368	327	501	104	2,558
1988	19	74	44	103	275	114	333	192	546	322	292	31	2,345
1989	16	1	152	67	217	118	220	323	249	480	49	7	1,899
								1					
Mean	20	23	56	133	307	282	316	287	415	302	169	61	2,370
					1			,					
Mean	23	21	60	157	313	211	259	342	487	360	198	70	2,501
('83-	89)								· · · · · · · · · · · · · · · · · · ·				

	· · · · · · · · · · · · · · · · · · ·								Stati	on na	me: B	ang W	ad Dam
Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1982												42	
1983	14	- 0	10	22	229	306	304	490	689	.374	97	: 18	2,553
1984	20	6	38	312	260	507	364	87	. 364	347	108	301	2,714
1985	14	18	126	156	456	203	172	232	367	457	104	72	
1986	.31	7	0	148	460	144	290	466	907	420	467		3,370
1987	10	0	18	38	363	126	58	776	402	231	506	133	•
1988	20	27	35	92	285	142	365	270	694	315	273	46	
1989	11	0	17	95	294	190	240	345	330	502	45	0	2,069
Mean	17	8	35	123	335	231	256	381	536	378	229	86	2,615

								Stati	on nar	ie: B	an Mai	reab Schoo	1
Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec. Annua	1
1989										573	52	21	

Table 7.4 Project Cost for 5-year Flood Control

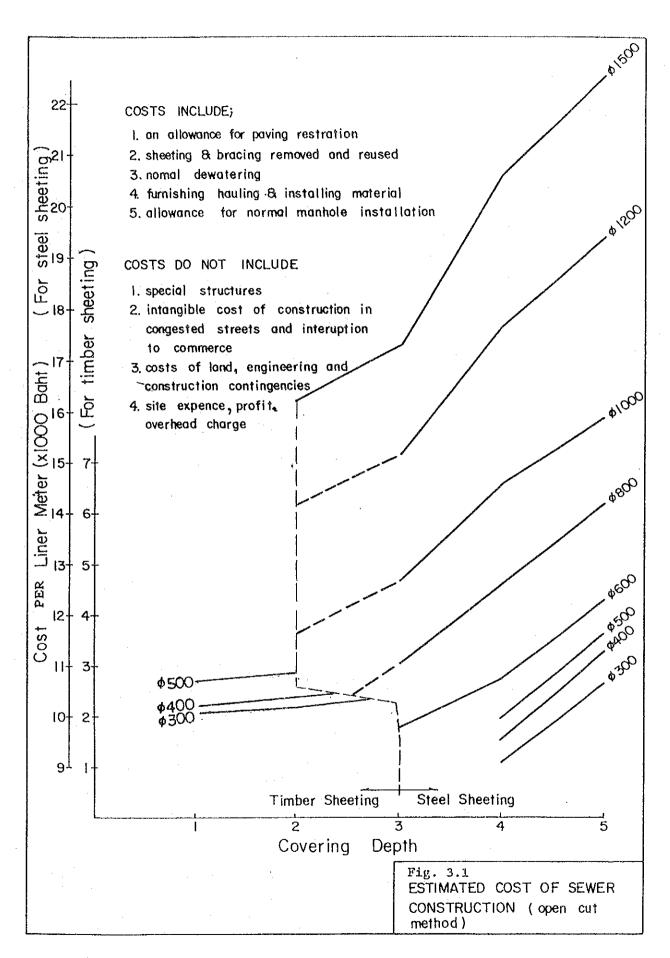
					Foreign C	urrency	Local Cı	irrency
	WORK ITEM	•		Quantity	Unit Price	Amount	Unit Price	Amount
			Unit		(Baht)		(Baht)	(B1,000)
							133351	111170007
1.	Floodway					(56,840)		(20, 110)
	Excavation	Soil	m3	384,000	33	12,670	. 9	3,460
	_							-,
	Levee		_	_				•
	Dorrahmank	Embankment	m3	0	53	0	13	
	Revetment	Slope Protection	0	F1 000	500	06 50-		
		Foot&Top Protection	m2	51,000 6,860		26,520		9,950
		roocarop rrocection	m	0,000	670	4,600	250	1,720
	Inlet	Concrete	m3	500	1,140	570	290	100
		Reinforcement Bar	t	40		120		150
		Backfill	m3	700		20		170
	Bridge		m2	1,700		12,340		4 660
				27.00	.,200	12,540	2,740	4,660
	1 1			-				
2.	River Impro					(5,890)		(2,250)
	Channel	Excavation	mЗ	18,400	33	610	9	170
	_							
	Levee	Embankment	m3	0	53	0	13	0
	Dotodadae M	iii na h			•			
	Retaining W	and the second s	_					
		Excavation	m3	2,000	. 33	70	9	20
	•	Concrete	m3	600	1,140	680	290	170
		Reinforcement Bar	t	48	3,050	150	4,350	210
		Backfill	m3	1,400	30	40	7	10
	Bridge	• *	m2	480	7,260	3,480	2,740	1,320
	Saen Suk In	ovation						
	onen oux in	and the second s	m3	200	3 140			
		Reinforcement Bar		200	1,140	230	290	60
			t no.	16 2	3,050	50	4,350	70
		oace (2 m x 2 m)	no.	2	290,500	580	109,700	220
3.	Miscellaneo	us	10% x	(1.+2.)		(6, 270)	÷	(2,240)
	Access & Se			•	•	(4,5,4)		(2,240)
	Yards							
								•
	Direct Cost					69,000		24,600
								•
4.	Land Acquis	ition & Compensation						$\{17, 200\}$
	Land Acquis:	ition	l.s.					10,200
	Houses		nos.	20			350,000	7,000
	Panda a a ud	100 - 12 01						
	Engineering	& 10% x (1~3) ion 2.5% x (1~3,LC)	4.			6, 900		5,230
	AUMITITSCIACI	101 2.5 x (1~3,LC)	1)					
5.	Physical Cor	ntingency				15 100		
•		20% x (1~5)				15,180	•	9,410
		(4 0)						
	Total					91,080		56,440
	Grand Total	\$5,870	(x 1.0	000) =	······································	¥842,200 =		
	change rate		·, ·	,		2042/200	-	B147,520
	US\$1 = :							
	¥1 =							

Table 7.5 Project Cost for 10-year Flood Control

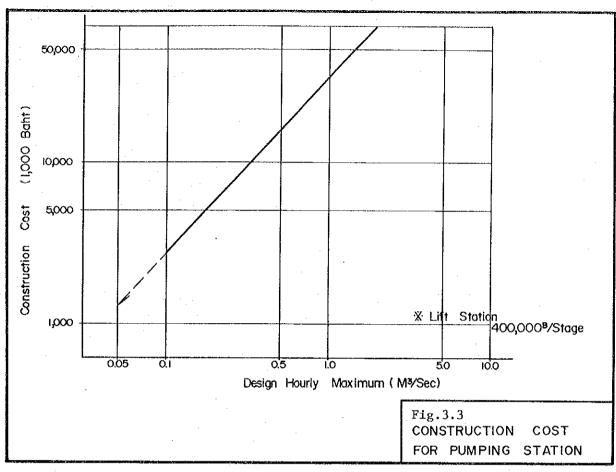
Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger			Quantity	Foreign C		Local Cu	
Floodway Excavation Soil Levee Embank Revetment Slope Foot&T Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger				Unit Price	Amount	Unit Price	Amount
Excavation Soil Levee Embank Revetment Slope Foot&T Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger		Unit		(Baht)	(B1,000)	(Baht)	(B1,000)
Excavation Soil Levee Embank Revetment Slope Foot&T Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger							
Levee Revetment Slope Foot&T Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger					(57,960)	•	(20,46
Revetment Slope Foot&T Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger		m3	402,000	33	13,270	9	3,6
Revetment Slope Foot&T Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger	4		•				
Revetment Slope Foot&T Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	lemant.	m3	0	53	0	13	
Slope Foot&T Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger	Kment	เนอ	U	33	U	13	
Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger	Protection	m2	52,000	520	27,040	195	10,1
Inlet Concre Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger	Top Protection		6,860		4,600		1,7
Reinfo Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Houses Engineering & Administration Physical Continger	•		· .				
Backfi Bridge River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	ete	mЗ	500		570		15
River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	orcement Bar	t	40		120	•	17
River Improvement Channel Excava Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	ill	mЗ	700		20		
Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger		m2	1,700	7,260	12,340	2,740	4,6
Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger							
Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	,				(5,950)		(2,260
Levee Embank Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger		m3	18,400	33	610		17
Retaining Wall Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	402011	mo	10, 100	33	010	,	_
Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	kment	m3	1,090	53	60	13	. 1
Excava Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger							
Concre Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	ation	mЗ	2,000	33	70	9	•
Reinfo Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger		m3	600		680	290	1.
Backfi Bridge Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	orcement Bar	t	48	•	150	4,350	2.
Saen Suk Inovation Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger		m3	1,400	•	40		
Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger		m2	480	7,260	3,480	2,740	1,3
Concre Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger		-					
Reinfo Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition & Land Acquisition Houses Engineering & Administration Acquisition Continger		-2	200	. 1 140	230	200	
Gate (Miscellaneous Access & Service I Yards Direct Cost Land Acquisition E Land Acquisition Houses Engineering & Administration Administration Acquisition Continger	orcement Bar	m3 t	16	•	230 50		
Miscellaneous Access & Service I Yards Direct Cost Land Acquisition Land Acquisition Houses Engineering & Administration Physical Continger	(2 m x 2 m)	no.	2	. •	580		22
Access & Service I Yards Direct Cost Land Acquisition Eland Acquisition Houses Engineering & Administration 2 Physical Continger	(5 11)			220,000		200,100	
Yards Direct Cost Land Acquisition and Acquisition Houses Engineering & Administration Acquisition	Road	10-8	x (1.+2.)		(6, 390)		(2,27)
Direct Cost Land Acquisition a Land Acquisition Houses Engineering & Administration 2 Physical Continger	NOQU						
. Land Acquisition (Land Acquisition (Houses . Engineering & Administration (. Physical Continger							
Land Acquisition Houses Engineering & Administration 2 Physical Continger					70,300		24,99
Land Acquisition Houses Engineering & Administration 2 Physical Continger	c Componentia	n					(17, 40)
Houses Engineering & Administration 2 Physical Continger	a compensacio	" l.s.					10,40
. Engineering & Administration 2		nos.	20			350,000	7,00
Administration 2						550,000	
. Physical Continger	$10\% \times (1~3)$ 2.5% × $(1~3, L)$	C4)			7,030		5,3
	, ,	.,					9.1
ኃስዬ ሁ	ency (1~5)				15,470		9,5
206 X	(1.0)						
Total					92,800		57,24
Grand Total	\$5,970) (x 1	.000)	=	¥856,400	= ,	B150,04
Exchange rate Baht	1 ,						

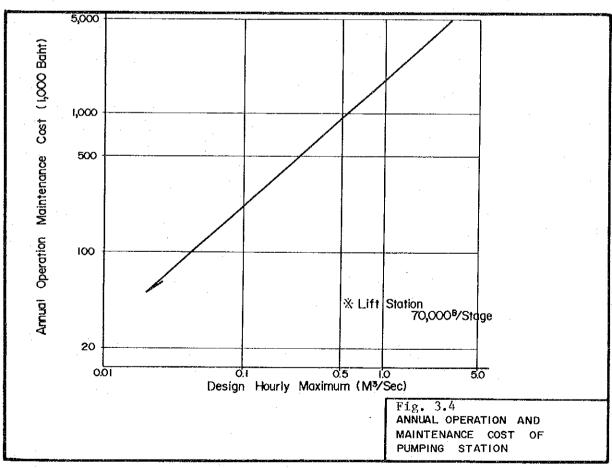
US\$1 = 25.1 Y1 = 0.175

Table 7.6 Project Cost for 20-year Flood Control

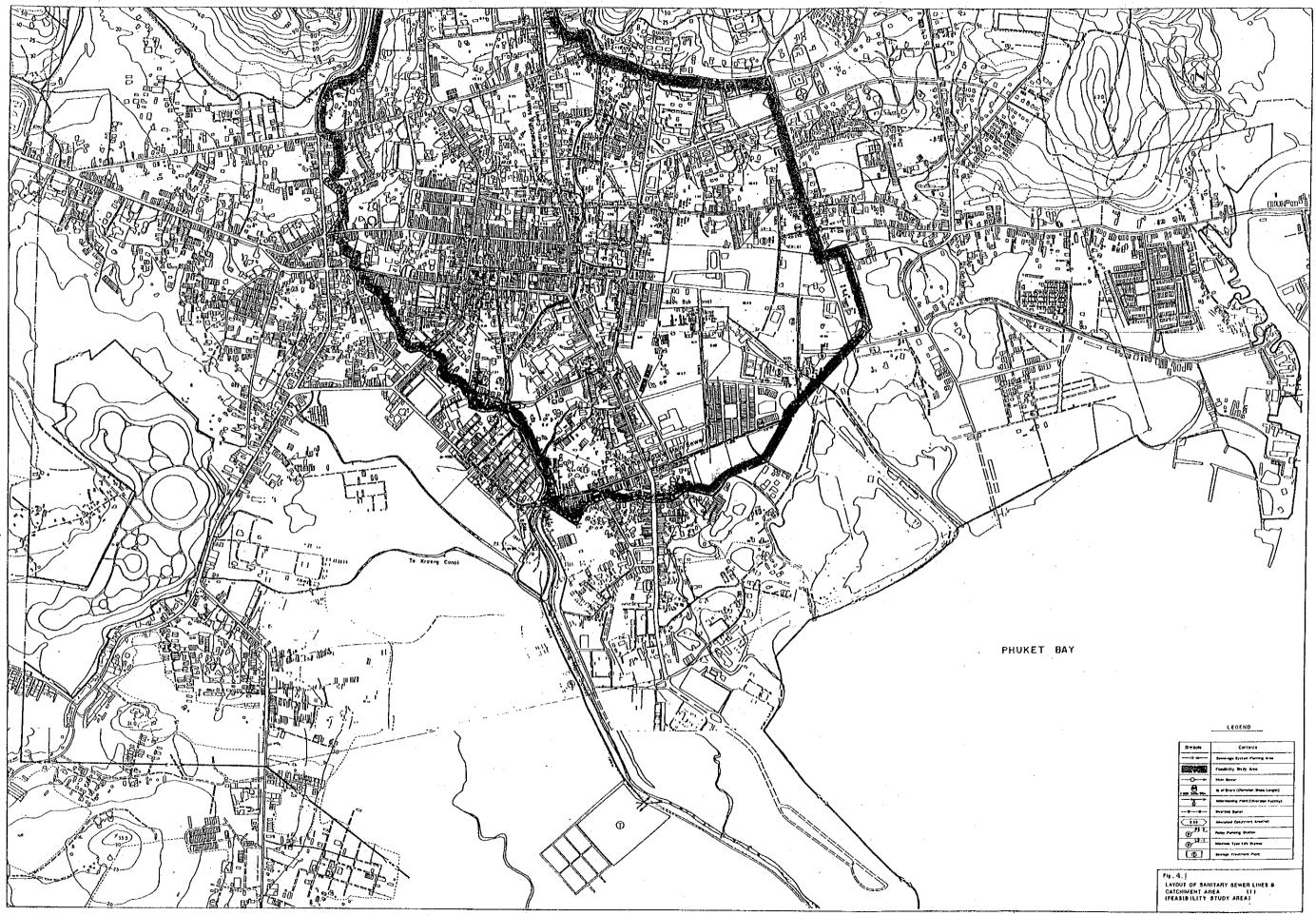

					Foreign C	urrency	Local Cu	rrency
	WORK ITEM			Quantity	Unit Price	Amount	Unit Price	Amount
			Unit		(Baht)	(B1,000)	(Baht)	(B1,000
١.	Floodway	•	_			(60, 390)	_	(21,30
	Excavation	Soil	m3	422,000	33	13,930	9	3,8
	Levee							
	телее	Embankment	m3	0	53	0	13	
	Revetment	Ellipatralette	1110	·	33	J	13	•
	No recineste	Slope Protection	m2	54,000	520	28,080	195	10,5
	•	Foot&Top Protection		6,860		4,600	250	1,7
		-						
	Inlet	Concrete	m3	500	,	570	290	1.
		Reinforcement Bar	t	40		120	4,350	1
		Backfill	mЗ	700		20	7	
	Bridge	•	m2	1,800	7,260	13,070	2,740	4,9
							•	
2.	River Impro	vement.				(6, 250)		(2,34)
•	Channel	Excavation	m3	18,400	33	610	9	1
	ondinioz.	271041 402011	*****	20,.00	-	V		•
	Levee	Embankment	mЗ	6,800	53	360	13	g
	Dotoinine W	-11						
	Retaining W	Excavation	m3	2,000	33	70	9	;
		Concrete	m3	600		680	290	1
		Reinforcement Bar	t	48	3,050	150		2
		Backfill	m3	1,400		40	7	۷.
	Bridge	DACKIIII	m2	480	7,260	3,480	2,740	1,3
								•
	Saen Suk In		_					
		Concrete	m3	200	1,140	230	290	
•		Reinforcement Bar	t	16	3,050	50	4,350	
		Gate (2 m x 2 m)	no.	2	290,500	580	109,700	22
3 _	Miscellaneo	ns	10%	x (1.+2.)		(6, 660)		(2,360
	Access & Se			. ,		, . , ,		
	Yards							
	State and					72 200		00.00
	Direct Cost					73,300		26,00
1.	Land Acquis	ition & Compensation						(17, 600
•	Land Acquis		l.s.					10,60
	Houses		nos.	20			350,000	7,00
							•	•
۶.	Engineering					7,330		5,52
	Administrat	ion 2.5% x (1~3,LC	4)					
	Physical Co	ntinganay.				16,130		9,82
٠.	Physical co	20% x (1~5)				10,150		2,01
	Total					96,760		58,94
	TOLAT	\$6,200		 	ka	¥888,600		B155,70

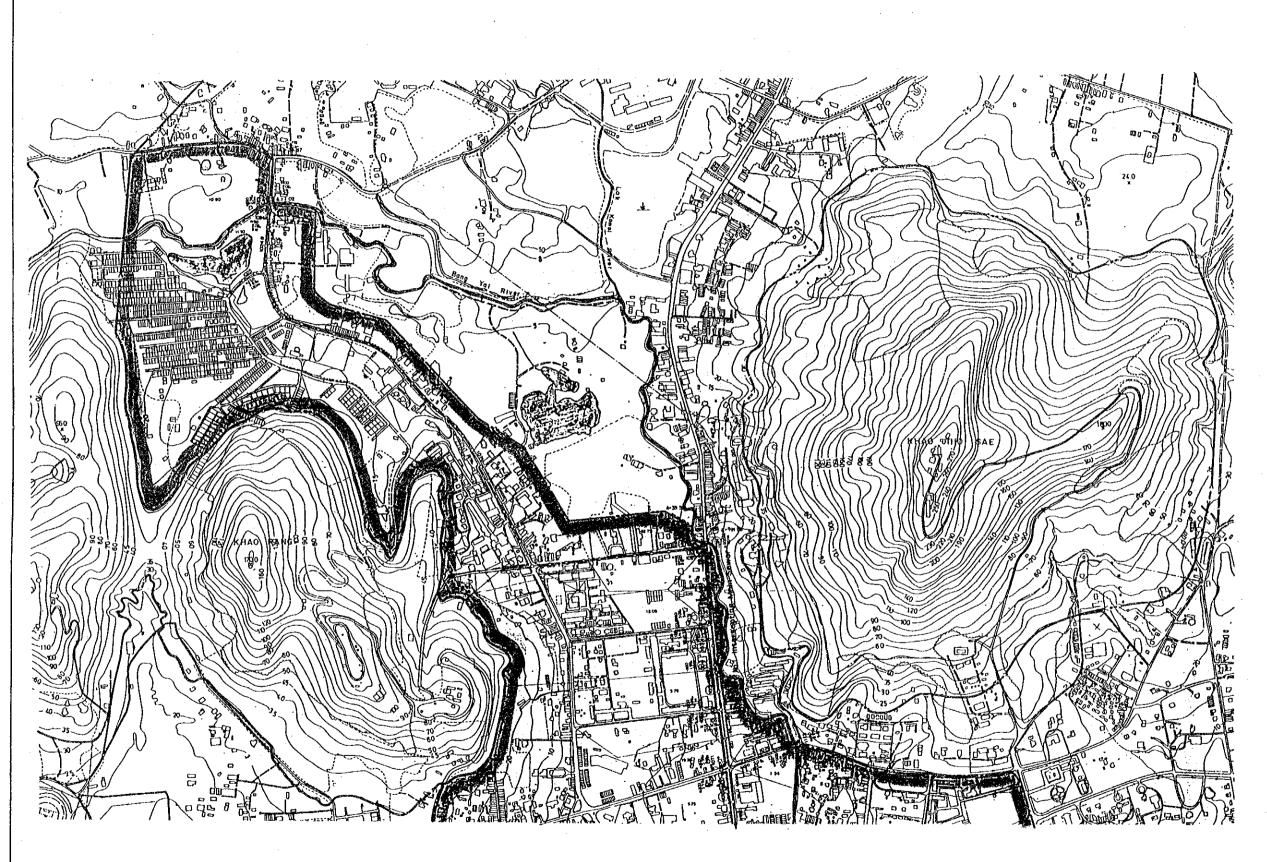
US\$1 = 25.1 Y1 = 0.175


Table 7.7 Project Cost for 30-year Flood Control

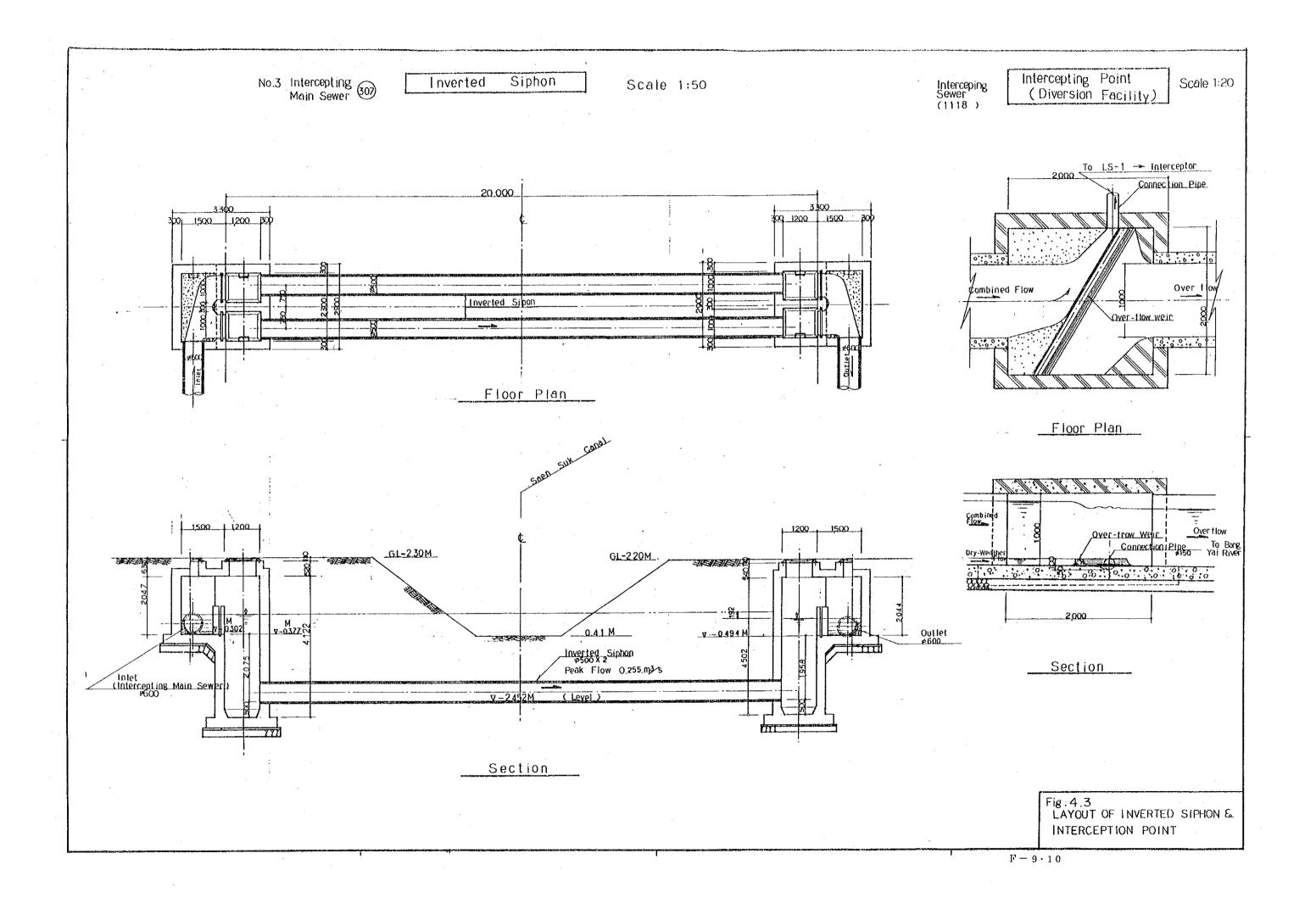

					Foreign C	urrencv	Local Cu	rrencv
	WORK ITEM			Ouantity	Unit Price	Amount	Unit Price	Amount
			Unit		(Baht)	(B1,000)	(Baht)	(B1,000)
								1.021.0001.
1.	Floodway					(62,290)		(21,960
	Excavation	Soil	m3	442,000	33	14,590		3,98
								•
	Levee							
		Embankment	mЗ	0	53	0	13	•
	Revetment	Olema Duetantida.		55 000	500		* * * *	
		Slope Protection Foot&Top Protection	m2	55,000 6,860	520 670	28,600 4,600		10,73
		rootatop Protection	ш	0,000	670	4,600	250	1,72
	Inlet	Concrete	m3	500	1,140	570	290	15
		Reinforcement Bar	t	40	3,050	120		170
		Backfill	m3	700	30	20		
	Bridge		m2	1,900	7,260	13,790		5,21
						•	• • • •	,,
					•			
2.	River Impro		_			(6, 440)		(2,390)
	Channel	Excavation	m3	18,400	33	610	9	170
	Levee	Embankment	m3	10,470	53	550	12	3.64
	пелее	EMDAIRMENC	IIIJ	10,470	55	550	13	140
	Retaining W	all						
	-	Excavation	m3	2,000	33	70	9	20
		Concrete	m3	600	1,140	680		170
		Reinforcement Bar	t	48	3,050	150		210
		Backfill	m3	1,400	30	40		10
	Bridge		m2	480	7,260	3,480		1,320
								•
	Saen Suk In		_					
		Concrete	m3	200	1,140	230		60
		Reinforcement Bar	t	. 16	3,050	50	4,350	70
		Gate (2 m x 2 m)	no.	2	290,500	580	109,700	220
3.	Miscellaneo	นร	10% :	(1.+2.)		(6,870)		(2,440)
	Access & Se			. (27.21)		(0,0,0,		(2,440)
	Yards							
	Direct Cost					75,600		26,790
	*****	454 A O						
		ition & Compensation						(17, 900)
	Land Acquis	ition	l.s.					10,900
	Houses		nos.	20			350,000	7,000
5.	Engineering	& 10% x (1~3)				7,560		F 600
	Administrat		4)			7,500		5,680
		, , , , , , , , , , , , , , , , , , , ,	-,					
6.	Physical Co	ntingency	-			16,630		10,070
		20% x (1~5)				-		, -, -
	Total	46 6001	7 1	0001		99,790	·····	60,440
р.	Grand Total	\$6,380\	(x 1,	000)	=	¥914,700	=	B160,230
دن	change rate: == US\$1							

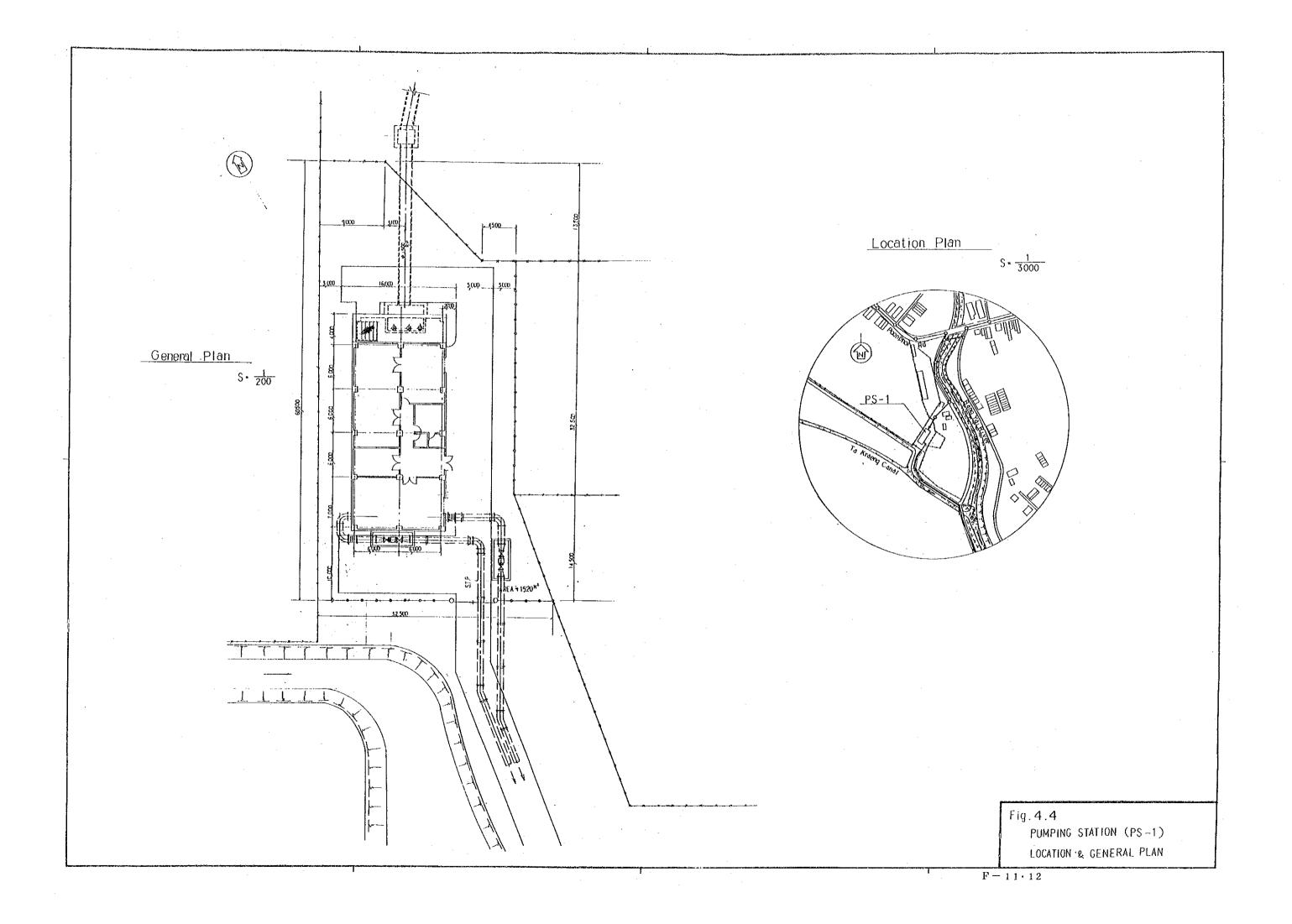
ANNEX : FIGURES

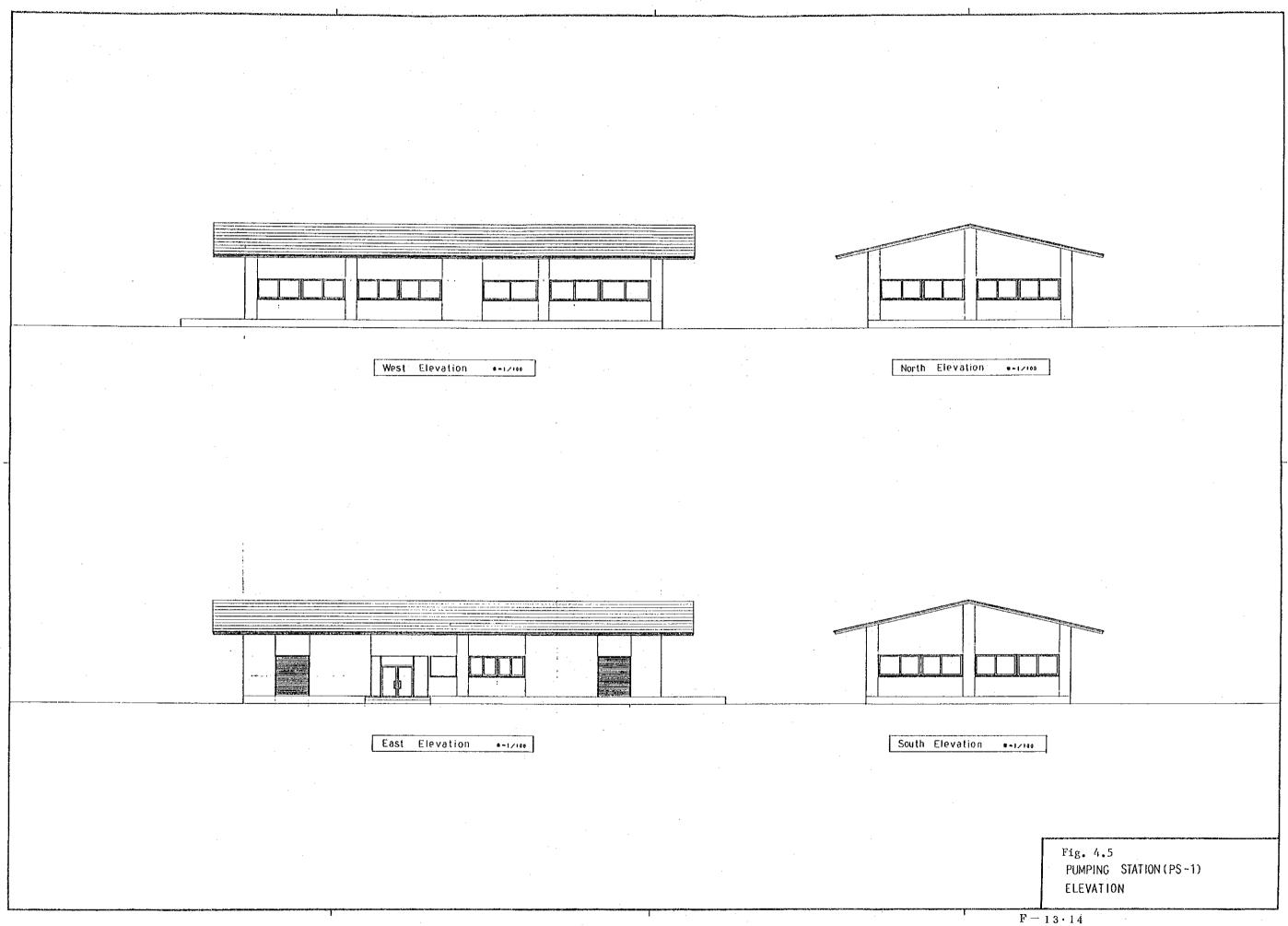




 $F - 5 \cdot 6$






LEGEND

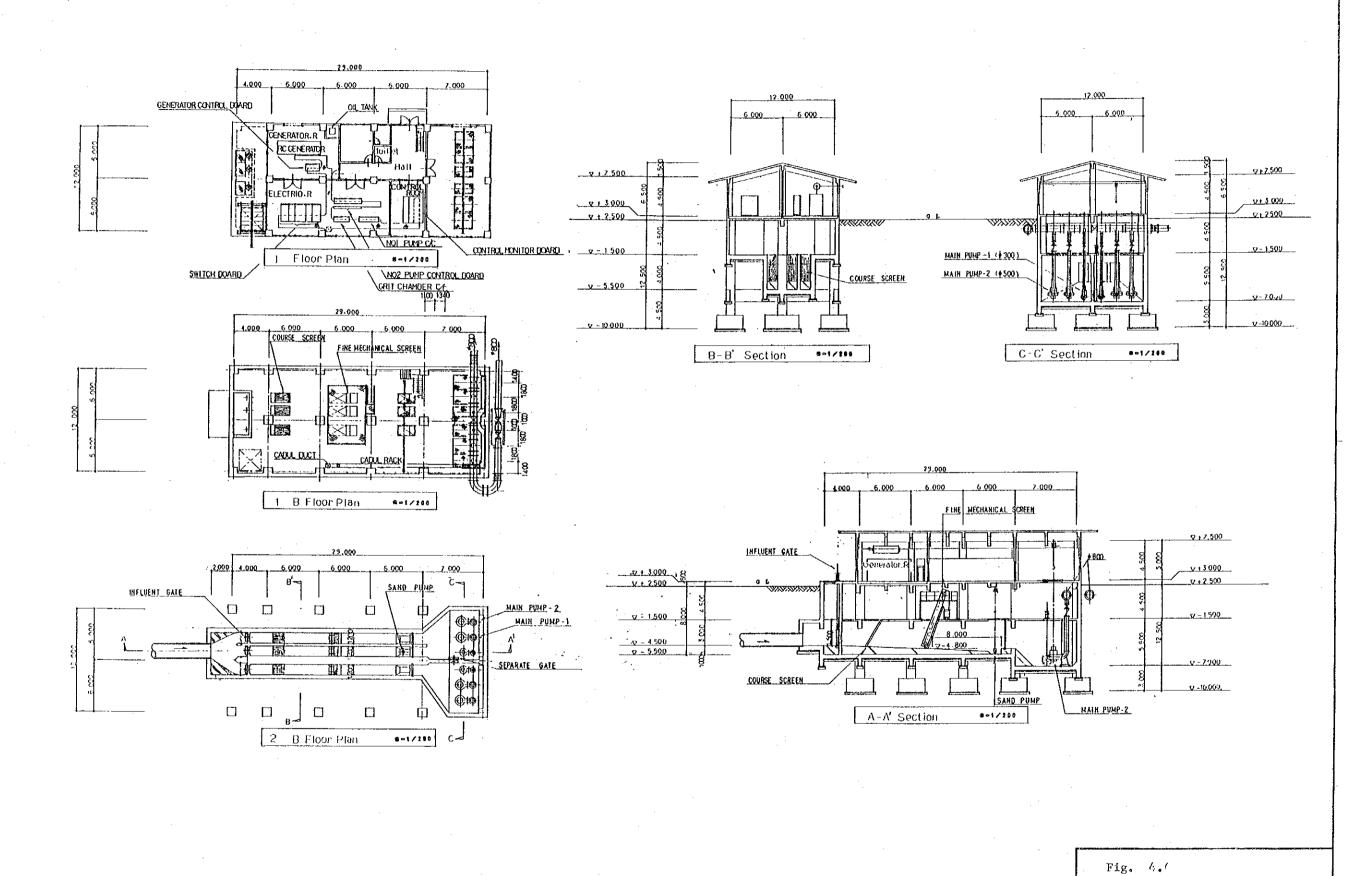
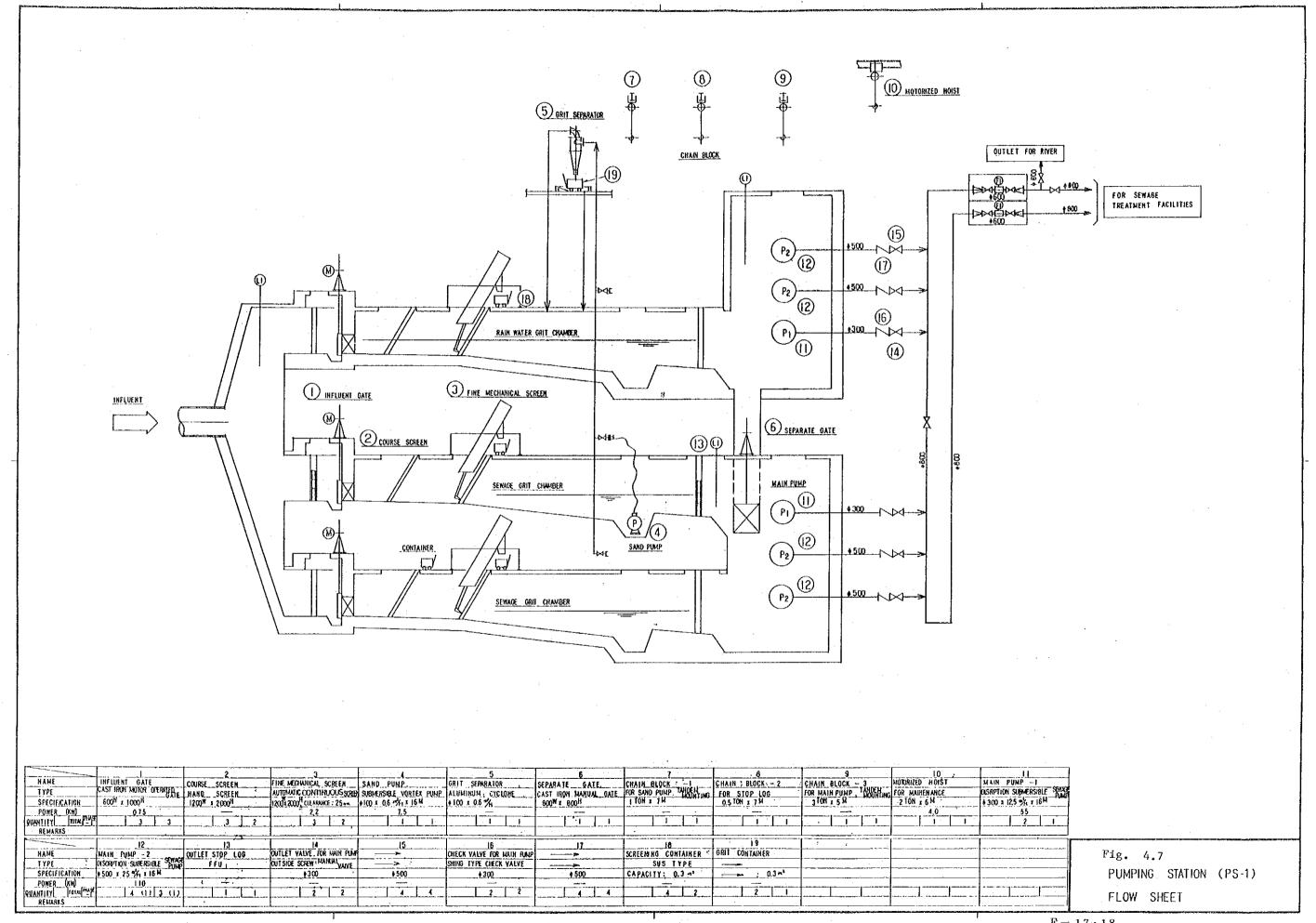
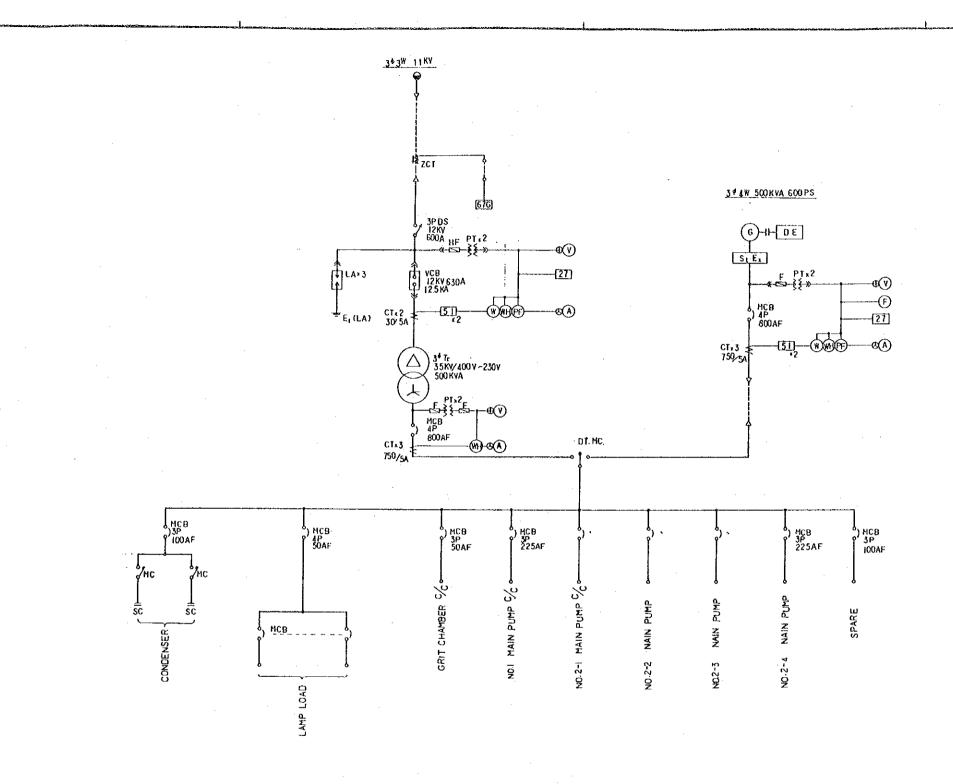
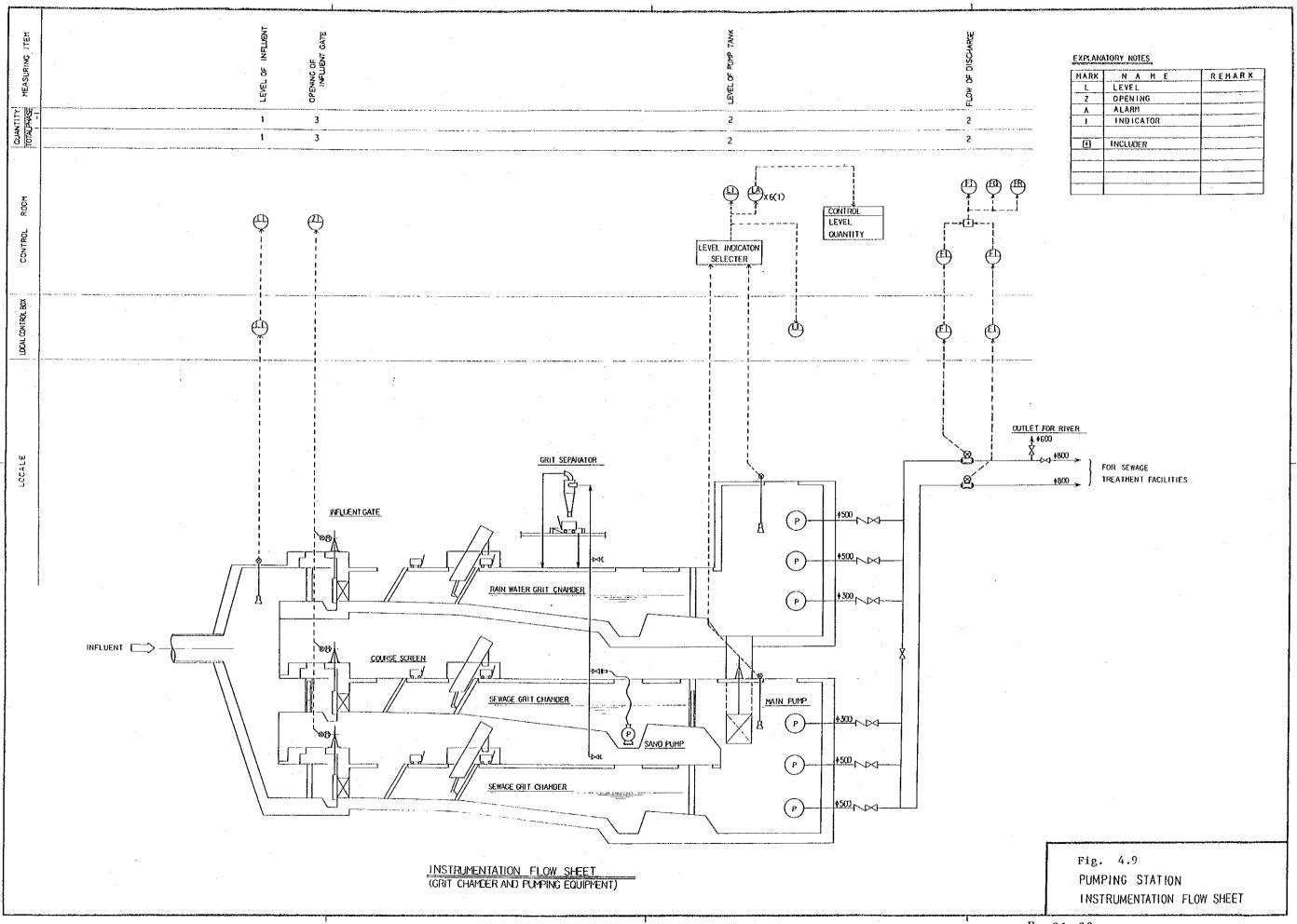

Simbole	Cantents
	Semerage System Pleasing Area
	Feathering Study Also
-0	Make Server
Q	Sp of Brane (Decretor, Scool Langth)
3	blersteing Part (Cronstan Foodit)
	kwartsel Stehon
(150)	Absorbed Cotonment Areschell
O B.i.	News Purplish Ration
@ Lis-I_	Market Type LM1 B1600A
(Bowsgo Transport Figur

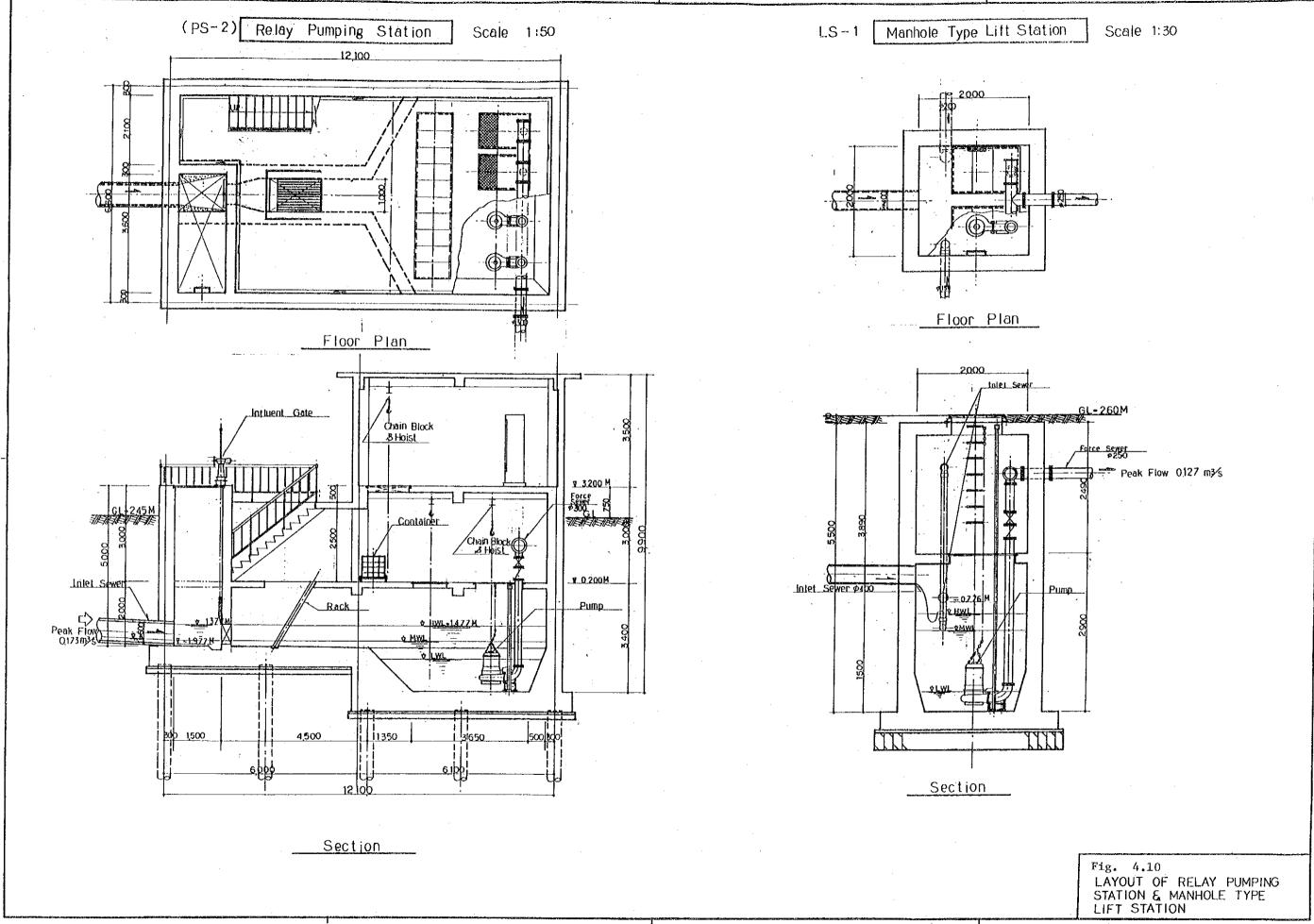
Fig. 4. 2 LAYOUT OF SANITARY SEWER LINES & CATCHIMENT AREA (2) (FEASIBILITY STUDY AREA)

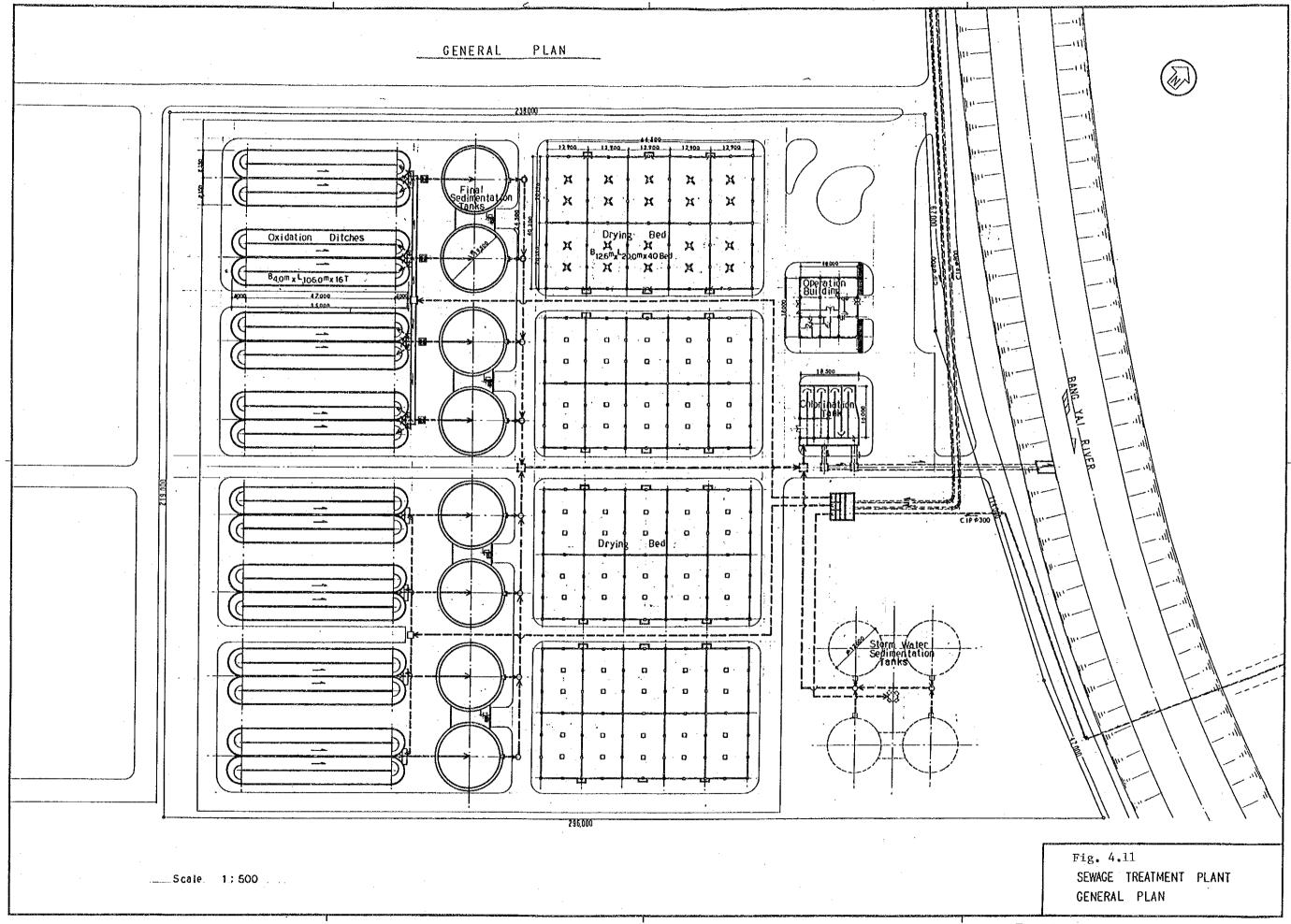




PUMPING STATION (PS-1)
PLAN AND SECTION



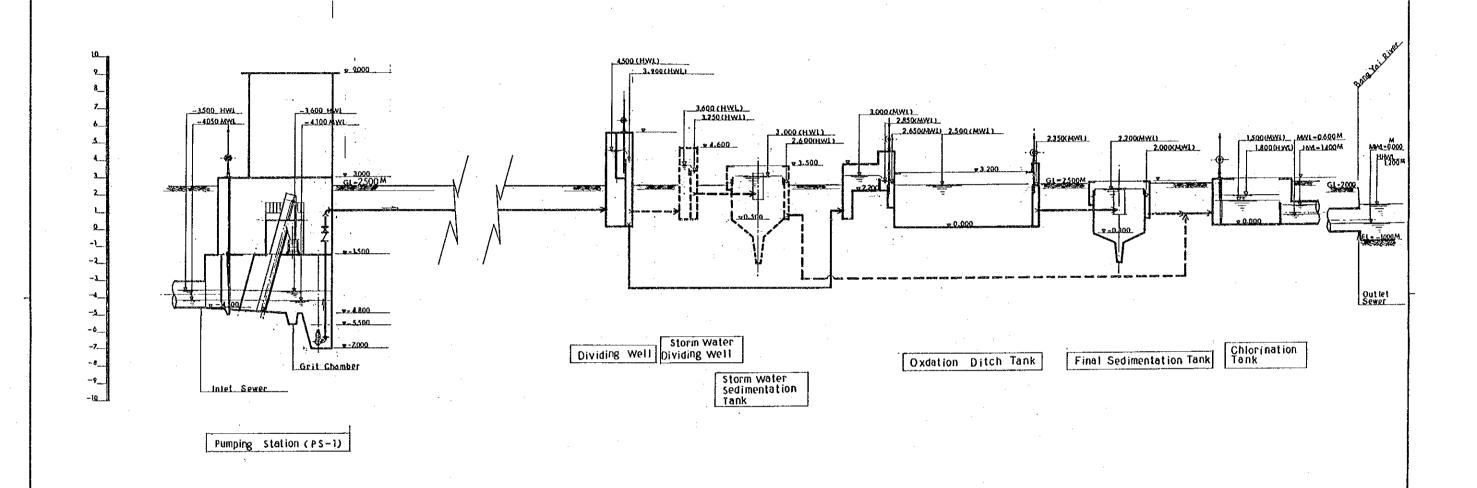
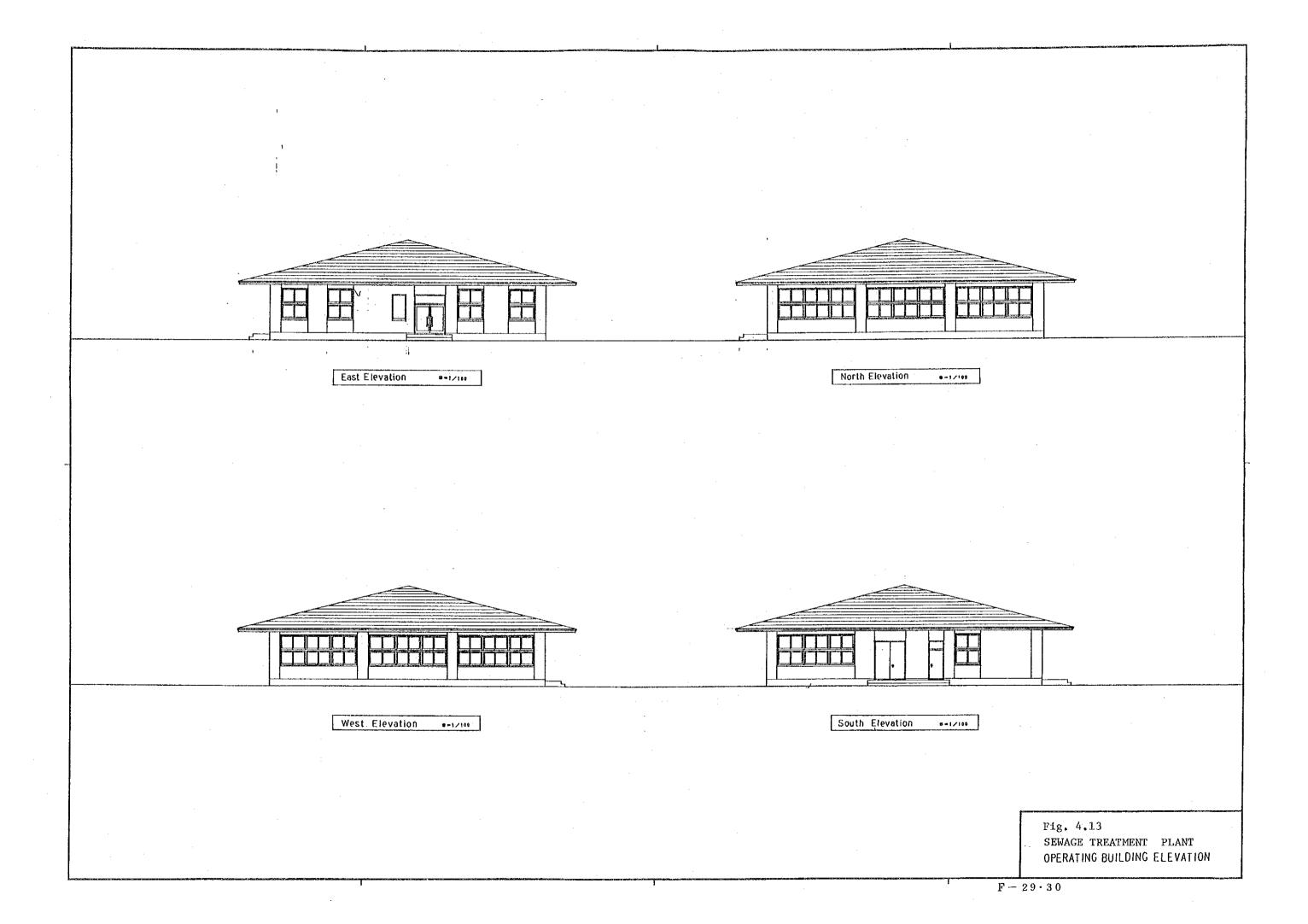
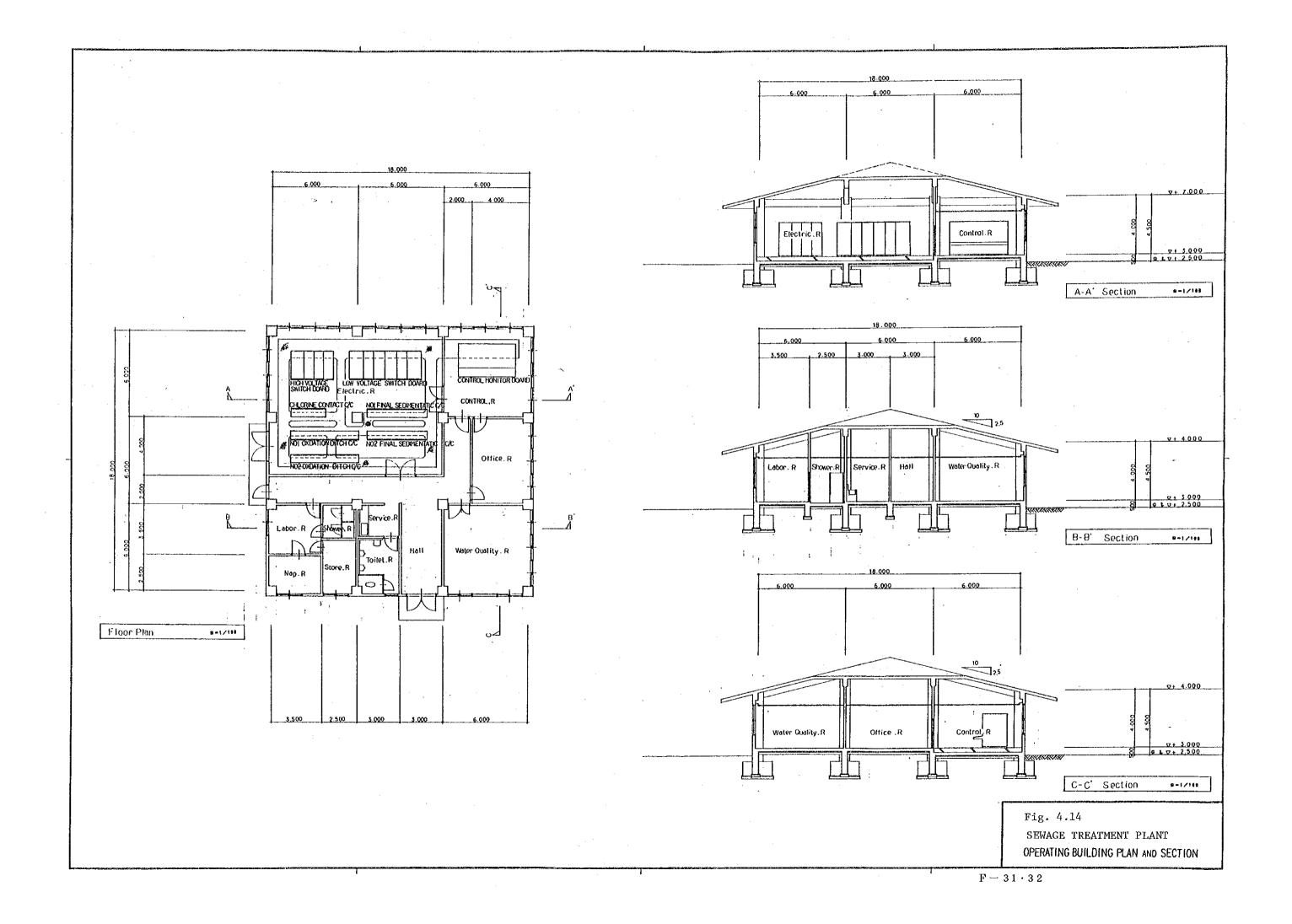
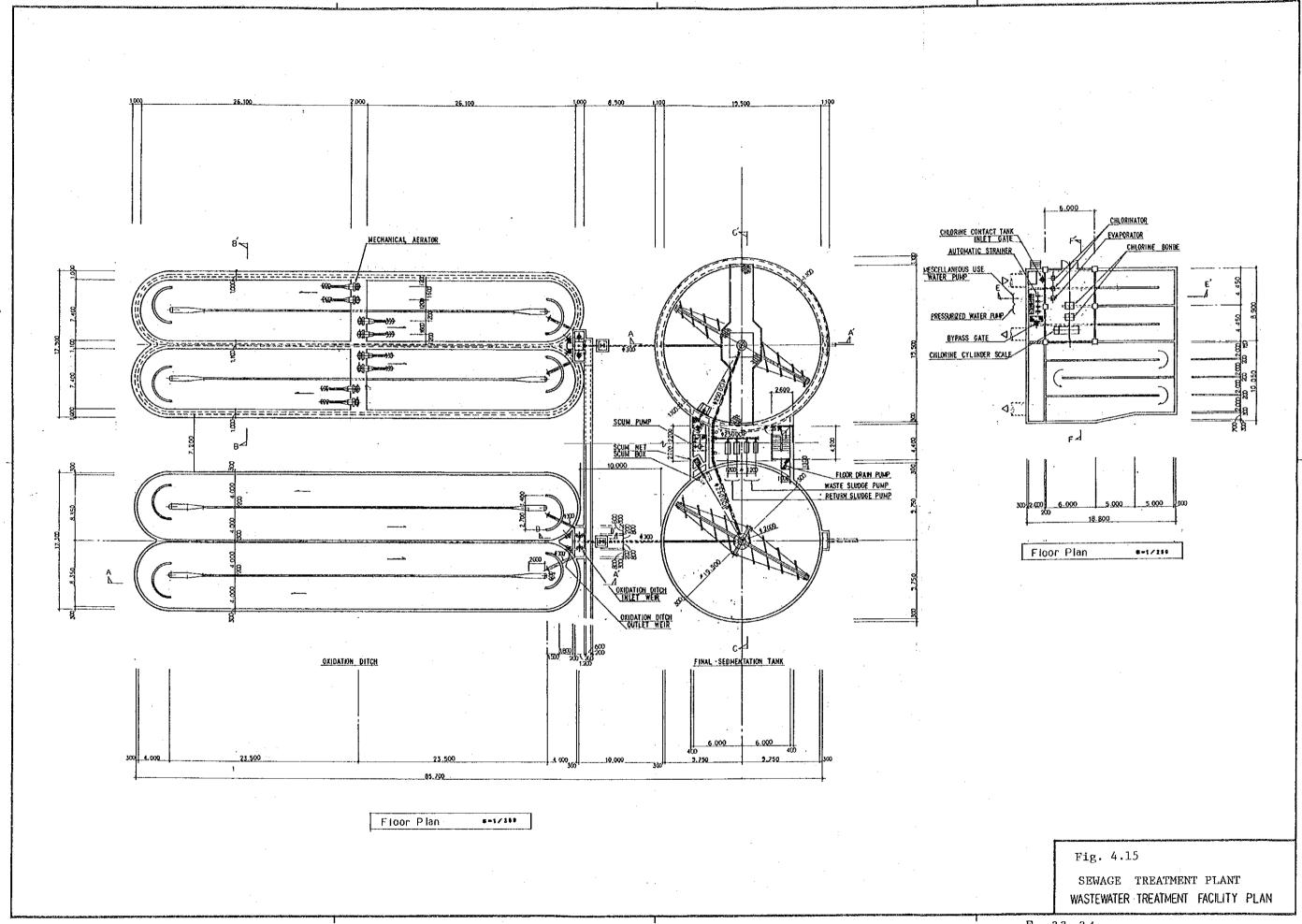
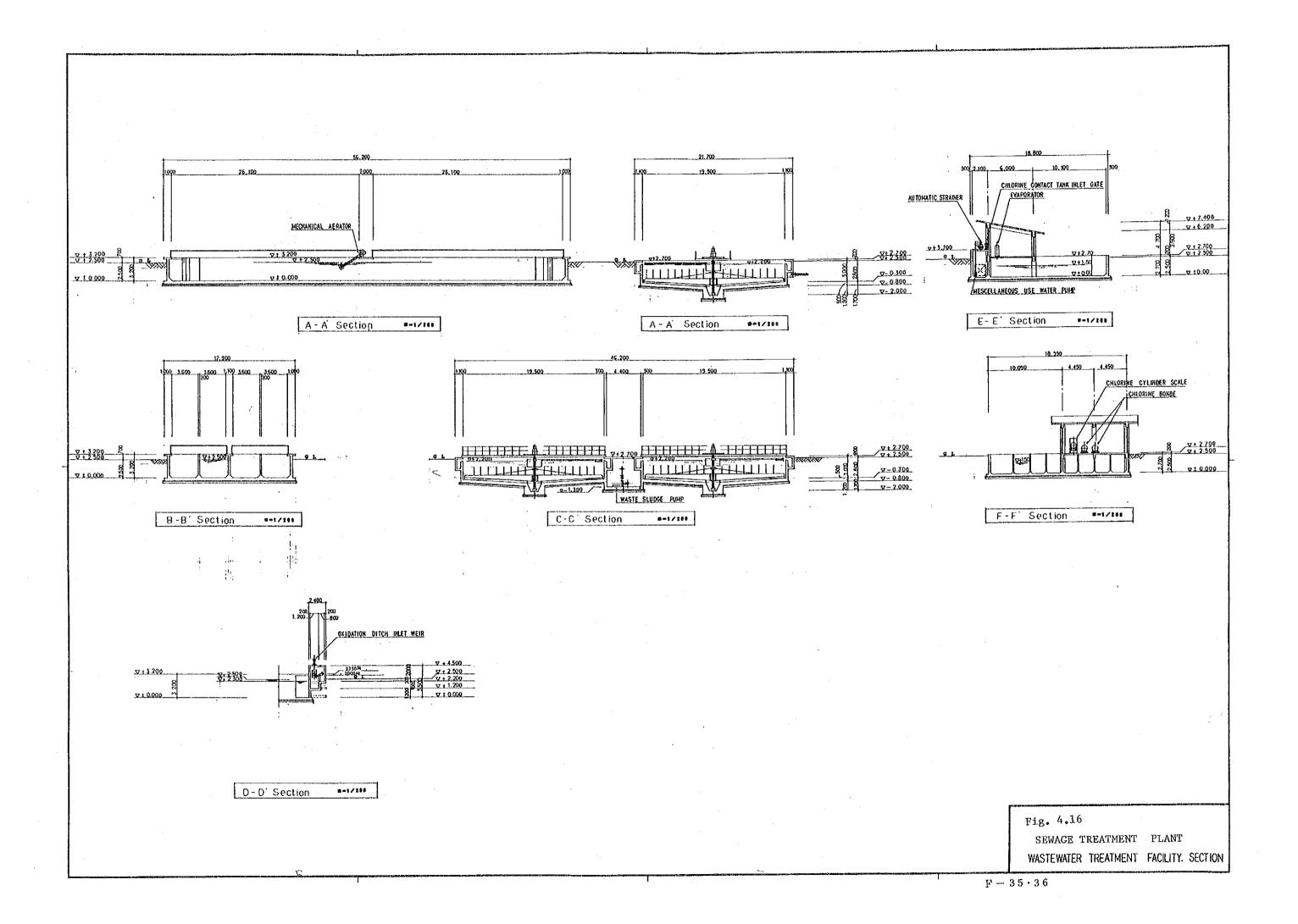

EXPLANATORY NOTES

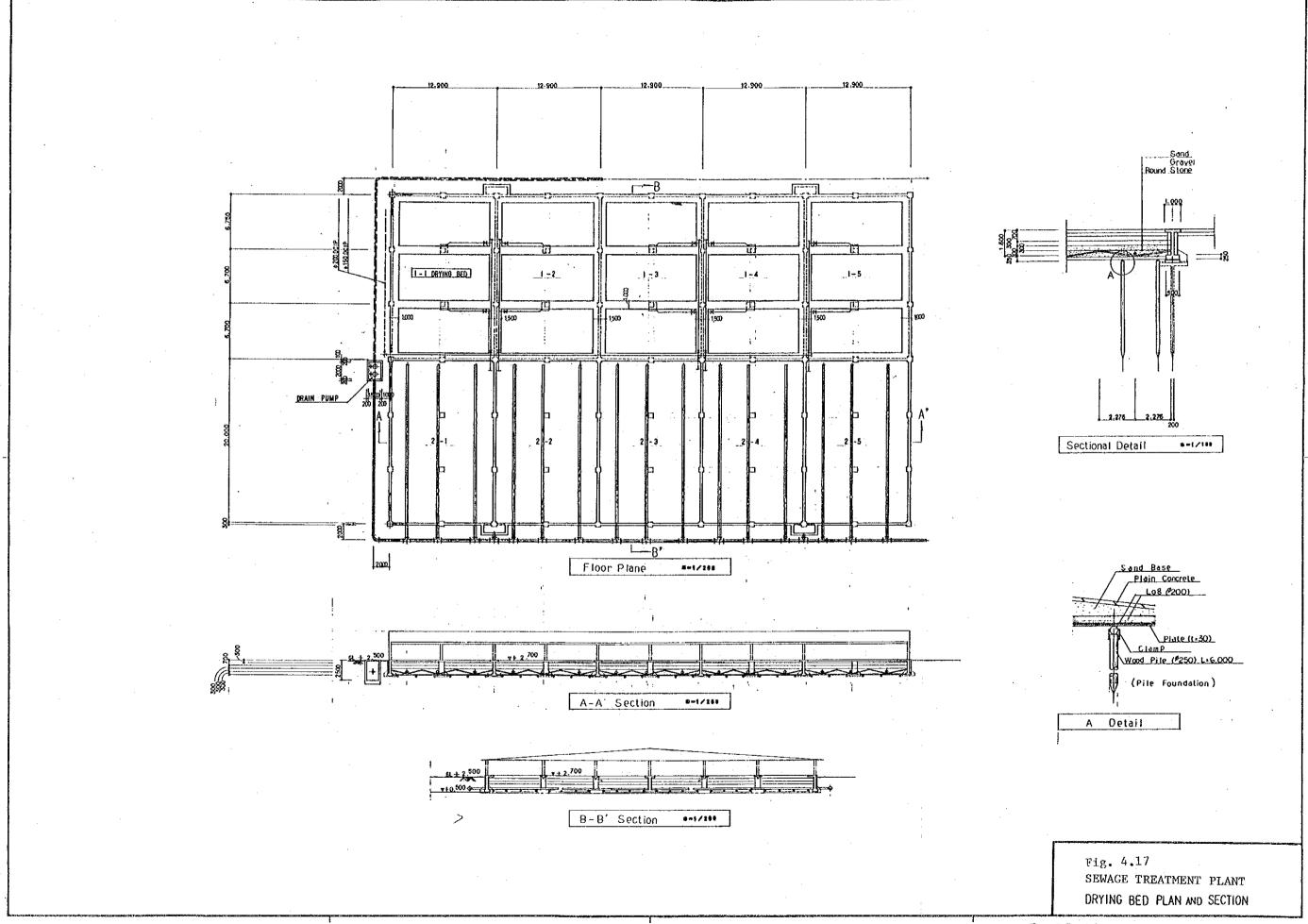

VETWOMINGES				
MARK	NANE	REMARK		
усв	YACUM CIPCUIT BREKER			
MCB	HOLDED CASE CIRCUIT BREAKER			
0.5	DISCONNECTING SWICH			
LA.	AIRRESTER			
Ţr	TRANSFOMER			
SC	CONDENSER			
HF	HIGHT VOLTAG FUSE			
· F	LOW VOLTAG FUSE			
CT	CURRENT TRANSFORER			
PT	POTENTIAL TRANSFORER			
G	AC. GERERATOR			
DE	DIESEL ENGINE			
(A)	A.C. APPETER			
Ø	AMMETER CHANG OVER SWICH			
\overline{\over	A.C. YOLTAG			
Ф	VOLTAG CHANG-OVER SWICH			
(8)	WATT METER			
₩	ELECTRIC ENERGY HETER			
9	POWER FACTOR INDICATOR			
(Ē)	FREQUENCY METER			
27	UNDER VOLTAG RELAY			
51	OVER CURRENT RELAY			
67G	CROUND RELAY			

SKELTON DIAGRAM

Fig. 4.8 PUMPING STATION SKELTON DIAGRAM

JWATER LEVEL PLAN


Fig. 4.12
PUMPING STATION & SEWAGE
TREATMENT PLANT
WATER LEVEL PLAN

